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INTRODUCTION

Welcome to The Art of ARM Assembly. This
\ = book will teach you how to program 64-bit
/ ARM CPUs, such as those found in modern
Apple macOS machines, ARM-based Linux sys-
tems (including the Raspberry Pi with a 64-bit version

of Raspberry Pi OS, previously known as Raspbian,
which I'll just call Pi OS), and even mobile devices
such as iPhones, iPads, and some Android devices.
With the arrival of the ARM-based Apple macOS
systems, the need to learn and understand 64-bit ARM
assembly language increased dramatically, leading me
to write this book. However, I've made the source code
and other information in this book as portable as pos-
sible so that it applies to all 64-bit ARM machines.
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Introduction

This book is a sister volume to The Art of 64-Bit Assembly, which was,
itself, a rewrite of The Art of Assembly Language Programming (AoA). AoA
was a project I began way back in 1989 as a tool for teaching 80x86 (x86)
assembly-language programming to students at California State Polytechnic
University, Pomona, and the University of California, Riverside. For over
25 years, AoA served as a guide for learning x86 assembly language pro-
gramming. During that time, other processors came and went, but x86
remained king of the hill in personal computers and high-end workstations,
and x86 assembly language remained the de facto assembly language to
learn. However, ARM-based PCs became mainstream with the introduction
of the Apple M1-based systems (and later Apple machines), so the need to
learn ARM assembly language programming is increasing.

This book was written using The Art of 64-Bit Assembly as a model for
the material to cover. Anyone who has read my earlier books will find
this book to be very familiar at a high level. Of course, the ARM instruc-
tions and assemblers—either the GNU assembler (Gas) or Apple’s Clang
assembler (largely compatible with Gas)—are quite different from the x86
instructions and the Microsoft Macro Assembler (MASM). The low-level
presentation and programming techniques are therefore also somewhat
different.

A Brief History of the ARM CPU

The ARM CPU has a long and storied history. It was first developed by
Acorn Computers Ltd. in late 1983 as a replacement for the venerable 8-bit
6502 CPU used in its BBC Micro system. ARM originally stood for Acorn
RISC Machine, though this was later changed to Advanced RISC Machine
(RISC stands for reduced instruction set computer). That original design was
largely a mind meld between the design described in the early University of
California, Berkeley, RISC design and the 6502 CPU. For this reason, many
would argue that the ARM initially wasn’t a pure RISC design. We might
think of the ARM as the spiritual successor to the 6502, inheriting many of
the 6502’s features.

In many respects, the ARM CPU is modeled on the 6502 CPU’s notion
of a reduced instruction set computer. In the original RISC design, each
instruction was designed to do as little work as possible so it would require
less hardware support and could run faster. Pure RISC architectures, for
example, generally don’t use condition code bits (as setting condition codes
after the execution of an instruction would require the CPU do extra work),
and use fixed-size machine instruction encodings (typically 32 bits). The
6502, on the other hand, attempted to reduce the total number of machine
instructions as much as possible.

Additionally, the original ARM supported both 16-bit and 32-bit
instruction encodings. While pure RISC CPUs try to maximize the num-
ber of general-purpose registers (generally 32), the original ARM design
supported only 16. Furthermore, the ARM used one of the general-
purpose registers as the program counter, which allows for all kinds of
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programming tricks but creates problems for pure RISC designs (such as
handling exceptions). Finally, the ARM partially supported a hardware
stack, something you don’t see on pure RISC machines. Nevertheless, “pure”
or not, the ARM design outlasted all the other RISC CPUs of that era.

Opver the years, the ARM CPU variants have largely been used in mobile
and embedded applications, with the vast majority of ARM CPUs wind-
ing up in mobile phones and tablets. However, one notable use is in the
Raspberry Pi computer system (with over 61 million units sold as of this
writing). In addition to the Pi, millions of ARM-based Arduino-compatible
and other single-board computers (such as the Teensy series) have been
sold. At the time of writing, the Raspberry Pi Foundation released the
Raspberry Pi Pico, an ARM-based microcontroller board for $4 (US), sell-
ing more than 4 million of these devices by January 2024.

Why Learn ARM Assembly?

RISC CPUs were designed to be programmed using high-level languages
(especially C/C++). Very few programs of note have been written in RISC
assembly language (though the original ARM Basic is a good counter-
example). The main reason assembly language is taught in colleges and uni-
versities is to teach machine organization (an introduction to the machine’s
architecture). In addition, some applications (or, at the very least, portions
of some applications) can benefit from an assembly language implementa-
tion. Speed and space are the two main reasons for using assembly lan-
guage, though it is also true that certain algorithms are more easily written
in assembly language (particularly bit-handling operations).

Finally, learning assembly language can help you write much better
high-level language code. After all, a compiler for a language like C/C++
translates that high-level source code into assembly language. Understanding
the underlying machine language will help you write better high-level lan-
guage (HLL) code because you can avoid inefficient HLL constructs. This
understanding can also be helpful when debugging or optimizing HLL code.
Sometimes you must look at the code that the compiler generated to under-
stand a bug or inefficiency.

So why a book on ARM assembly language in particular? Until the
Apple Silicon M1 CPU came along, the only common personal computer
using an ARM CPU was the Raspberry Pi. While the Pi was popular, it
generally wasn’t being used in schools to teach machine organization and
assembly language programming. A few hobbyists were probably interested
in picking up ARM assembly language on their own, but most Pi program-
mers were using Scratch or Python, with the hard-core types program-
ming in C/C++ While mobile devices such as iPhones, iPads, and Android
phones and tablets are also popular, developers rarely consider switching
from Objective-C, Swift, or Java into assembly language for applications on
those devices.

However, once Apple released M1-based Mac minis, MacBooks, and
iMacs, the situation changed. Interest in low-level programming on ARMs
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spiked, because now ARM assembly could be taught in colleges and uni-
versities on “normal” machines. Apple has sold more A-series (iPad and
iPhone) and M-series (iPad and Mac) systems than Raspberry Pi since they
were introduced. It is conceivable that Apple will have sold around a bil-
lion ARM-based personal computers and mobile devices by the time you're
reading this.

Given these developments, a lot more people are going to be interested
in assembly language programming on ARM CPUs. If you want to be able
to write high-performance, efficient, and small code on this new crop of
devices, learning ARM assembly language is the place to start.

Why Learn 64-Bit ARM?

Although the original ARM was a 32-bit CPU, Arm Holdings—the outfit
that licenses the ARM design—introduced a 64-bit version in 2011. Apple
introduced its 32-bit iPhone 5 a few years after that. Since then, most
mobile and personal computer devices (including the Raspberry Pi 3, 4,
and 400) have used 64-bit CPUs, while embedded devices have largely stuck
with the 32-bit CPU variants. Code written for 32-bit CPUs is generally more
memory efficient than that for 64-bit CPUs; unless an application requires
more than 4GB, using a 32-bit instruction set is usually better.

Nevertheless, for high-performance computing, 64 bits is definitely
the future. Why is this the case? Can’t 64-bit ARM CPUs run the older
32-bit code? The answer is a qualified yes. For example, the Raspberry Pi
provides a 32-bit OS that runs only 32-bit code, even when running on a
64-bit CPU such as on the Pi 3, 4, or 400. However, the 64-bit ARM CPUs
(ARMv8 or AARCH64, informally abbreviated to ARM64) operate in one
of two modes: 32-bit or 64-bit. When in 32-bit mode, they execute the 32-bit
instruction set; when in 64-bit mode, they execute the 64-bit instruction
set. Though these instruction sets have some similarities, they are not the
same. Thus, when operating in one of these modes, you cannot execute the
instructions from the other mode.

Given the incompatibility of the two instruction sets, this book focuses
on 64-bit ARM assembly language. Since you can’t program the Apple M1
(and later) in 32-bit ARM assembly language, teaching 32-bit alone would
be a nonstarter. Why not teach both? While knowing 32-bit assembly lan-
guage would help readers who want to write code for the 32-bit Pi OS and
other embedded single-board microcontrollers, this book aims to teach
fundamentals. Teaching two different instruction sets complicates the edu-
cational experience; better to do one thing well (64-bit assembly) rather
than two things poorly. Teaching both 32-bit and 64-bit assembly is almost
like trying to teach x86-64 and ARM in the same book; it’s just too much
to take in all at once. Moreover, the 32-bit operating modes will likely fade
away entirely over time. As I write this, ARM has already introduced a vari-
ant that supports only 64-bit code; I expect all future desktop-class proces-
sors will head in this direction.
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Although concentrating on 64-bit ARM assembly language for desktop-class and
mobile machines (such as iPhones) makes sense, some will want to learn 32-bit ARM
assembly language to work with embedded devices. Arduino-based single-board com-
puters (SBCs), Raspberry Pi Pico SBCs, and many other classes of ARM-based embed-
ded systems use 32-bit ARM variants. Furthermore, if you're operating a Raspberry
Pi using a 32-bit version of Pi OS, yow'll need to use 32-bit ARM assembly language.
For that reason, The Art of ARM Assembly, Volume 2, will cover 32-bit ARM
assembly language on those systems.

Expectations and Prerequisites

This book assumes that you are already comfortable programming in an
HLL such as C/C++ (preferred), Python, Swift, Java, Pascal, Ruby, BASIC,
or another object-oriented or imperative (procedural) programming lan-
guage. Although many programmers have successfully learned assembly
language as their very first programming language, I recommend that you
learn to program first, then learn assembly language programming. This
book makes use of several HLL examples (typically in C/C++ or Pascal).
The examples are generally simple, so you should be able to understand
them if you know a different HLL.

This book also assumes you're comfortable with the edit/compile/test/
debug cycle during program development. You should be familiar with
source code editors and using standard software development tools, as I
won’t explain how to edit source files.

A wide variety of 64-bit ARM systems are out there, and I aimed to
make this book applicable to as many of them as possible. To that end,
every example program in this book has been tested on each of the follow-
ing systems:

e Apple Ml-based Mac systems such as the Mac mini M1 and Mac mini
M2. The book’s example code was tested on the mini M1 but should
work on any of the ARM-based MacBooks or iMacs, as well as future
Mux systems.

e Raspberry Pi 3, 4, 400, and 5 systems (and future 64-bit-capable Pi
systems) running the 64-bit version of Pi OS.

e PINEG64 system including the Pinebook, Pinebook Pro, and
ROCKPro 64.

e  Almost any 64-bit ARM-based Linux system.
e NVIDIA Jetson Nano systems.

In theory, it should be possible to apply the information in this book
to ARM-based Windows machines (such as the Surface Laptop Copilot+).
Unfortunately, Microsoft’s software development tools, particularly its
assembler, are based on the original ARM assembly syntax defined by Arm
(the company), not Gas. While Microsoft’s armasm64 is a better tool in many
respects (as it uses standard ARM assembly language syntax), everyone
else uses Gas syntax. The machine instructions are more or less the same
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between the two sets of assemblers, but the other statements (known as
assembler directives or pseudo-opcodes) are completely different. Therefore,
example programs written in Gas will not assemble under armasm64, and
vice versa. Since trying to present both syntax forms in example programs
would be just as confusing as trying to teach 32- and 64-bit programming
simultaneously, I stick to Gas syntax in my examples.

Source Code

This book contains considerable ARM assembly language (and some
C/C++) source code that typically comes in one of three forms: code snip-
pets, single assembly language procedures or functions (modules), or full-
blown programs.

Code snippets are fragments of a program; they are not stand-alone, and
you cannot compile them by using an ARM assembler (or a C++ compiler,
in the case of C/C++ source code). They exist to make a point or provide
a small example of a particular programming technique. Here is a typical
example:

.data
i64 .quad 0

ldr x1, 164

The vertical ellipses denote arbitrary code that could appear in their
place.

Modules are small blocks of code that can be compiled but won’t run on
their own. Modules typically contain a function that will be called by another
program. Here is a typical example:

someFunc:
add x0, x1, x2
sub x0, x0, x3
ret

Full-blown programs are called listings in this book, and I refer to them
by listing number or filename. A typical filename usually takes the form
ListingC-N.S, where C is the chapter number and N is a listing number
within that chapter. For example, the following Listingl-1.S is the first listing
that appears in Chapter 1:

// Listing1-1.S

//

// Comments consist of all text from a //

// sequence to the end of the line.

// The .text directive tells MASM that the
// statements following this directive go in



// the section of memory reserved for machine
// instructions (code).

.text

// Here is the main function.

// (This example assumes that the
// assembly language program is a
// stand-alone program with its own
// main function.)

//

// Under macOS, the main program

// must have the name _main

// beginning with an underscore.

// Linux systems generally don't

// require the underscore.

//

// The .global main statement

// makes the main procedure's name
// visible outside this source file
// (needed by the linker to produce
// an executable).

.global main

// The .align 2 statement tells the

// assembler to align the following code
// on a 4-byte boundary (required by the
// ARM CPU). The 2 operand specifies

// 2 raised to this power (2), which

// is 4.

.align 2

// Here's the actual main program. It
// consists of a single ret (return)
// instruction that simply returns
// control to the operating system.

_main:
ret

Although most listings take the form ListingC-N.S, some (especially
those from external sources) simply consist of a descriptive filename, such
as the aoaa.inc header file used by most of the sample programs in this book.

All listings are available in electronic form at https://artofarm.randallhyde
.com, either individually or as a ZIP file containing all the listings found
in this book. That page also contains support information for this book,
including errata and PowerPoint slides for instructors.

Most of the programs in this book run from a command line. These
examples typically use the bash shell interpreter. Therefore, every build
command and sample output will typically have the text prefix $ or % before
any command you would type from the keyboard on the command line.
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Under macOS, the default shell (command line) program is zsh. It prints a
percent sign (%) rather than $ as the prompt character. If you are completely
unfamiliar with the Linux or macOS command line, please see Appendix D
for a quick introduction to the command line interpreter.

Unless otherwise noted, all source code appearing in this book is cov-
ered under the Creative Commons 4.0 license. You may freely use that code
in your own projects as per the Creative Commons license. See https://creative
commons.org/licenses/by/4.0/ for more details.

Typography and Pedantry

Computer books have a habit of abusing the English language. This book
is no exception. Whenever source code snippets appear in the middle of an
English sentence, a conflict often arises between the grammar rules of the
programming language and English. This section describes my choices for
differentiating syntactical rules in English versus programming languages,
in addition to a few other conventions.

First, this book uses a monospaced font to denote any text that appears
as part of a program source file. This includes variable and procedure func-
tions, program output, and user input to a program. Therefore, when you
see something like get, you know that the book is describing an identifier in
a program, not commanding you to get something.

A few logic operations have names that also have common English
meanings: AND, OR, and NOT. When using these terms as logic functions,
this book uses all caps to help differentiate otherwise-confusing English
statements. When using these terms as English, this book uses the standard
typeset font. The fourth logic operator, exclusive or (XOR), doesn’t nor-
mally appear in English statements, but this book still capitalizes it.

In general, I always try to define any acronym or abbreviation the first
time I use it. If I haven’t used the term in a while, I will often redefine it on
that usage. The glossary in Appendix B also includes most of the acronyms
appearing in this book.

Organization

This book is organized into 4 parts comprising 16 chapters and 6 appendixes.
Part I, Machine Organization, covers data types and machine architec-
ture for the ARM processor:

Chapter 1: Hello, World of Assembly Language Teachesyou a small
handful of instructions so you can experiment with the software devel-
opment tools and write simple little programs.

Chapter 2: Data Representation and Operations Discusses the inter-
nal representation of simple data types such as integers, characters,
and Boolean values. It also discusses the various arithmetic and logical
operations possible on these data types. This chapter also introduces
some basic ARM assembly language operand formats.
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Chapter 3: Memory Access and Organization Discusses how the ARM
organizes main memory. It explains the layout of memory and how

to declare and access memory variables. It also introduces the ARM’s
methods for accessing memory and the stack (a place to store tempo-
rary values).

Chapter 4: Constants, Variables, and Data Types Describes how to
declare named constants in assembly language, how to declare and
use pointers, and the use of composite data structures such as strings,
arrays, structs (records), and unions.

Part II, Basic Assembly Language, provides the basic tools and instruc-
tions you need to write assembly language programs.

Chapter 5: Procedures Covers the instructions and syntax you need
to write your own assembly language functions (procedures). This
chapter describes how to pass arguments (parameters) to functions and
return function results. It also describes how to declare (and use) local
or automatic variables that you allocate on the stack.

Chapter 6: Arithmetic Explains the basic integer arithmetic and logi-
cal operations in ARM assembly language. It also describes how to con-
vert arithmetic expressions from an HLL into ARM assembly language.
Finally, this chapter covers floating-point arithmetic using the hardware-
based floating-point instructions.

Chapter 7: Low-Level Control Structures Describes how to imple-
ment HLL-like control structures such as if, elseif, else, while, do...
while (repeat...until), for, and switch in ARM assembly language. This
chapter also touches on optimizing loops and other code in assem-
bly language.

Part III, Advanced Assembly Language, covers more advanced assembly
language operations.

Chapter 8: Advanced Arithmetic Explores extended-precision arithme-
tic, mixed-mode arithmetic, and other advanced arithmetic operations.
Chapter 9: Numeric Conversion Provides a very useful set of library
functions you can use to convert numeric values to string format and
convert string values to numeric format.

Chapter 10: Table Lookups Describes how to use memory-based
lookup tables (arrays) to accelerate certain computations.

Chapter 11: Neon and SIMD Programming Discusses the ARM
Advanced SIMD instruction set that allows you to speed up certain
applications by operating on multiple pieces of data at once.

Chapter 12: Bit Manipulation Describes various operations and func-
tions that allow you to manipulate data at the bit level in ARM assem-
bly language.

Chapter 13: Macros and the Gas Compile-Time Language Covers the
Gas macro facilities. Macros are powerful constructs enabling you to
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design your own assembly language statements that expand to a large
number of individual ARM assembly language instructions.

Chapter 14: String Operations Explains the use and creation of vari-
ous character string library functions in ARM assembly language.

Chapter 15: Managing Complex Projects Describes how to create
libraries of assembly language code, and build those libraries by using
makefiles (along with a discussion of the make language).

Chapter 16: Stand-Alone Assembly Language Programs Shows how
to write assembly language applications that don’t use the C/C++ stan-
dard library for I/O and other operations. This chapter includes system
call examples for both Linux (Pi OS) and macOS.

Part IV, Reference Materials, provides reference information, includ-
ing a table listing the full ASCII character set, a glossary, instructions for
installing and using Gas on your system, an introduction to the bash shell
interpreter, useful C/C++ functions you can call from your assembly lan-
guage programs, and answers to the questions at the end of each chapter.
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HELLO, WORLD OF
ASSEMBLY LANGUAGE

This “quick-start” chapter gets you writ-
ing basic assembly language programs as

rapidly as possible, giving you the skills you

need to learn new assembly language features
in the following chapters. You'll learn the foundations
of 64-bit ARM architecture and the basic syntax of
the GNU assembler (Gas) program, a compiler for
assembly language.

You'll also learn to set aside memory for variables, control the CPU by
using machine instructions, and link a Gas program with C/C++ code so
that you can call routines in the C standard library (C stdlib). Gas running
under Linux and macOS is by far the most common assembler for writing
real-world ARM assembly language programs. Vendors (especially Apple)
have produced variants of Gas with slightly different syntax; for instance,
under macOS, Gas is known as the Clang or Mach-O assembler. To make the
source code in this book portable between macOS and Linux, this chapter
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also introduces a header file, aoaa.inc, that eliminates the differences
between Gas and the Clang assembler.

What You’ll Need

To learn assembly language programming with Gas, you’ll need a version of
the assembler for your platform, plus a text editor for creating and modify-
ing Gas source files, a linker, various library files, and a C++ compiler. You’ll
learn to set up the Gas assembler and text editor in this section, and the
other tools later in this chapter.

I.1.1 Setting Up Gas

The GNU Compiler Collection (GCC) emits Gas source code as its out-
put (which Gas then converts to object code). Therefore, if you have the
compiler suite running on your system, you also have Gas. Apple macOS
uses a compiler based on the LLVM compiler suite rather than GCC, so

if you have a macOS, you’ll need to install its Xcode integrated develop-
ment environment (IDE) to gain access to the assembler (see Appendix C).
Otherwise, if you don’t have the GCC compiler, install it with the instruc-
tions in your operating system (OS) documentation.

The GNU assembler and the Clang assembler’s executable name is actually as (assem-
bler). The examples in this book rarely invoke the assembler directly, so you won’t use
the as program often. Therefore, this book refers to the assembler by using the name
Gas rather than as (or Clang assembler).

1.1.2  Setting Up a Text Editor

To write ARM assembly language programs, you will need some sort of pro-
grammer’s text editor to create assembly language source files. The choice
of editor is dictated by personal tastes and editor availability for your OS or
development suite.

The standard suffix for assembly language source files is .s, since GCC
emits this suffix when it converts a C/C++ file into assembly language dur-
ing compilation. For handwritten assembly language source files, the .S
suffix is a better choice, since it tells the assembler to route the source file
through the C preprocessor (CPP) before assembly. Since this allows the
use of CPP macros (#define statements), conditional compilation, and other
facilities, all example files in this book use .S.

GCC always produces assembly language output files, which are then
processed by Gas. GCC automatically invokes the assembler and then
deletes the assembly source file after the assembly is complete.

1.1.3 Understanding C/C++ Examples

Today’s software engineers drop into assembly language only when their
C/C++, C#, Java, Swift, or Python code is running too slowly and they need
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to improve the performance of certain modules or functions. The examples
in this book use C/C++ because you'll typically interface assembly language
with G/C++ or other high-level language (HLL) code in the real world.

The C/C++ standard library is another good reason to use this language.
To make the C stdlib immediately accessible to Gas programs, I present
examples with a short C++ main function that calls a single external function
written in assembly language using Gas. Compiling the C++ main program
along with the Gas source file produces a single executable file that you can
run and test.

This book spoon-feeds you the C++ you’ll need to run the example
HLL programs, so you'll be able to follow even if you're not fluent in the
language. However, you’ll have an easier time if you have a little prior
familiarity with C/C++. At minimum, this book assumes that you have
some experience in a language such as Pascal (or Delphi), Java, Swift,
Rust, BASIC, Python, or any other imperative or object-oriented program-
ming language.

The Anatomy of an Assembly Language Program

A typical (stand-alone) Gas program takes the form shown in Listing 1-1.

// Listing1-1.S

/!

// Comments consist of all text from a //

// sequence to the end of the line.

// The .text directive tells Gas that the

// statements following this directive go in the
// section of memory reserved for machine

// instructions (code).

O .text

// Here is the main function. (This example assumes
// that the assembly language program is a

// stand-alone program with its own main function.)
//

// Under macOS, the main program must have the name
// _main beginning with an underscore. Linux

// systems generally don't require the underscore.
//

// The .global main statement makes the main

// procedure's name visible outside this source file
// (needed by the linker to produce an executable).

.global main, main
// The .align 2 statement tells the assembler to
// align the following code on a 4-byte boundary

// (required by the ARM CPU). The 2 operand
// specifies 2 raised to this power (2), which is 4.

Hello, World of Assembly Language 5
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® .align 2

// Here's the actual main program. It consists of a
// single ret (return) instruction that simply
// returns control to the operating system.

_main:
main:
ret

Assembly language programs are broken into sections. Some sections
contain data, some contain constants, some contain machine instruction
(executable statements), and so on. Listing 1-1 contains a single code sec-
tion, called text in macOS and Linux. The .text statement @ tells the assem-
bler that the following statements are associated with the code section.

In assembly language source files, symbols are usually local or private
to a source file. When creating an executable source file, you must pass one
or more symbols to the system linker—at least the name of the main pro-
gram. You can accomplish this by using the .global statement, specifying
the global name as an operand: _main in the macOS case, main in the Linux
case. Leaving out this statement gives you an error when you try to compile
the source file.

The ARM instruction set requires all machine instructions to begin on
a 32-bit (4-byte) boundary in memory. Therefore, before the first machine
instruction in a .text section, tell the assembler to align the addresses on
a 4-byte boundary. The .align statement @ raises 2 to the power specified
by its operand and aligns the next instruction on that boundary. Since 22 is
equal to 4, this statement aligns the next instruction on a 4-byte boundary.

A procedure, or function, in ARM assembly simply consists of the
name of that function (_main or main in this case) followed by a colon. The
machine instructions follow. The main program in this example consists
of a single machine instruction: ret (return). This instruction immediately
returns control to whatever called the main program—that is, the OS.

Identifiers in Gas are similar to identifiers in most HLLs. Gas identifiers
may begin with a dollar sign ($), an underscore (_), or an alphabetic char-
acter and may be followed by zero or more alphanumeric, dollar sign, or
underscore characters. Symbols are case sensitive.

LINUXVS. MACOS: GLOBAL NAMES

The C/C++ compiler treats global (extern) names differently in macOS and
Linux programs. The Clang compiler (macOS) automatically prepends an under-
score character () to the beginning of each external/global symbol, as in _main
in Listing 1-1; the GCC compiler does not.
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I've written the source code appearing in this book to make it easy to port
between the two OSes, by using equates for all the global symbols so that they
have to be changed in only one spot. We'll discuss using equates to resolve
external symbols in section 4.1, “Gas Constant Declarations,” on page 170;
also see section 1.12, “For More Information,” on page 43 for details specific to
macOS and Linux assembly language programming.

. J

While the program in Listing 1-1 doesn’t really do anything, you can use
it to learn how to use the assembler, linker, and other tools necessary for
writing ARM assembly language programs, as we’ll do in the next section.

Running Your First Assembly Language Program

Once you have an assembly source file, you can compile and run that pro-
gram. In theory, you could run the assembler (as) and then the linker (1d,
supplying appropriate library files needed by the OS). Here’s how that would
look for macOS (where the $ appearing at the beginning of each line is the
OS’s shell prompt):

$ as -arch armé64 Listing1-1.S -o Listingl-1.0

$ 1d -o Listingl-1 Listingl-1.0 -1System \
-syslibroot “xcrun -sdk macosx --show-sdk-path® \
-e _main -arch armé4

$ ./Listing1-1

However, the command lines differ depending on your OS, and pro-
ducing an executable in this way takes a lot of typing. An easier way to com-
pile the program and produce an executable is to use the GCC compiler
(g++) by running this command:

$ g++ -o Listingl-1 Listingi-1.S

This command line even works on macOS, which uses the Clang
compiler rather than GCC; macOS has an alias for Clang named g++. On
macOS, you could also use the clang -o Listingl-1 Listing1-1.S command
line. This book, however, will stick to the g++ command line, as that works
on macOS and Linux.

The g++ command is smart enough to note that this is an assembly lan-
guage source file and run Gas on it to produce an object file. GCC will then
run the linker (1d) and supply all the default libraries the OS requires.

You can run the resulting executable file from the command line
as follows:

$ ./Listingi-1

Hello, World of Assembly Language 7
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This program immediately returns without any output, since that’s all
Listing 1-1 does; it’s simply intended to demonstrate how to compile and
run ARM assembly language programs.

In addition to reducing the amount of typing required, using g++ to
assemble your assembly language source files provides another advantage:
it’s the easiest way to run the CPP, which many of the example files in this
book require. You can invoke the CPP (by itself) on an assembly source file
by using a command like the following, to see the modifications the CPP
makes to your assembly source files:

$ g++ -E Listing1-1.S

You can even pipe the output from the CPP to Gas, using the following
command:

$ g++ -E Listing1-1.S | as -o Listingl-1.o0

However, at that point, you may as well have typed

$ g++ -o Listingl-1.0 Listing1-1.S

as it’s shorter and easier to input.

Running Your First Gas/C++ Hybrid Program

This book commonly combines an assembly language module containing
one or more functions written in assembly language with a C/C++ main
program that calls those functions. Because the compilation and execution
process is slightly different from a stand-alone Gas program, this section
demonstrates how to create, compile, and run a hybrid assembly/C++ pro-
gram. Listing 1-2 provides the main C++ program that calls the assembly
language module.

// Listing1-2.S

/1

// A simple C++ program that calls
// an assembly language function

/1
// Need to include stdio.h so this
// program can call printf().

#include <stdio.h>

// extern "C" namespace prevents
// "name mangling" by the C++
// compiler.

extern "C"

{

// Here's the external function,



// written in assembly language,
// that this program will call:

void asmMain( void );

};
int main(void)
{
printf( "Calling asmMain:\n" );
asmMain();
printf( "Returned from asmMain\n" );
}

Listing 1-3, a slight modification of the stand-alone Gas program, con-
tains the asmMain() function that the C++ program calls. The main differ-
ence between Listing 1-3 and Listing 1-1 is that the function’s name changes
from _main to _asmMain. The C++ compiler and linker would get confused
if we continued to use the name _main, as that’s also the name of the C++
main function.

// Listing1-3.S

//

// A simple Gas module that contains
// an empty function to be called by
// the C++ code in Listing 1-2

Jtext
// Here is the asmMain function:

.global _asmMain, asmMain

.align 2 // Guarantee 4-byte alignment.
_asmMain:
asmMain:

// Empty function just returns to C++ code.

ret // Returns to caller

Finally, to compile and run these source files, run the following
commands:

$ g++ -o Listing1-2 Listingi-2.cpp Listing1-3.S
$ ./Listing1-2

Calling asmMain:

Returned from asmMain

$

Granted, this assembly language example doesn’t accomplish much
other than demonstrate how to compile and run some assembly code. To
write real assembly code, you're going to need a lot of support code. The

Hello, World of Assembly Language 9
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next section describes the aoaa.inc header file that provides some of this
support.

The aoaa.inc Include File

The example code in this book was written to be as portable between
macOS and Linux assemblers as possible, a difficult task requiring consid-
erable advanced behind-the-scenes trickery. Many of those tricks are a bit
too advanced to easily explain to beginning ARM programmers, so I've
incorporated all this magic code in a special header file, aoaa.inc, that I use
in most of the example programs from this point forward.

This human-readable include file is little more than a typical advanced
C/C++ header file; it just contains a bunch of macros (for example, C/C++
#define statements) that help smooth out some of the differences between
the macOS and Linux versions of the assembler. By the time you get to the
end of this book (especially by the time you read Chapter 13), most of the
material in the header file will make perfect sense. For now, I won’t distract
you with advanced macros and conditional assembly information.

You can find aoaa.inc along with all the other example code at hitps://
artofarm.randallhyde.com. If you're curious about this file’s content and don’t
want to wait for Chapter 13, load it into a text editor and take a look.

To include this file in an assembly, use the following CPP statement in
your assembly language source files:

#include "aoaa.inc"

Just as in C/C++, this statement will automatically insert the content
of this file into the current source file during assembly (at the point of the
#include statement).

Gas has its own include statement, used as follows:

.include "include file name"

However, don’t use this statement to include aoaa.inc¢ in your source
files. The Gas .include directive executes after the CPP runs, but aoaa.inc
contains CPP macros, conditional compilation statements, and other code
that must be processed by the CPP. If you use the .include directive rather
than #include, the CPP will never see the contents of the aoaa.inc file, and
Gas will generate errors when it processes the file.

The aoaa.inc file must be present in the same directory as your assembly
source file during the assembly process (or you must supply an appropriate
path to the file in the #include "aoaa.inc" statement). If the header file isn’t
in the current directory, Gas will complain that it can’t find the file and ter-
minate the assembly. Also remember to use the .S suffix with your assembly
source files when using #include "aoaa.inc", or GCC won’t run the CPP on
those files.


https://artofarm.randallhyde.com
https://artofarm.randallhyde.com

1.6 The ARM64 CPU Architecture

Thus far, you've seen a pair of Gas programs that compile and run. However,
the statements appearing in those programs do nothing more at this point
than return control to the OS. Before you learn some real assembly lan-
guage, you'll need to understand the basic structure of the ARM CPU fam-
ily so you can follow the machine instructions.

The ARM CPU family is generally classified as a Von Neumann archi-
tecture machine. Von Neumann computer systems contain three main
building blocks: the central processing unit (CPU), memory, and input/output
(I/0) devices. These three components are interconnected via the system bus
(consisting of the address, data, and control buses). Figure 1-1 shows this

relationship.
Memory
CPU
I/O devices
Figure 1-1: A Von Neumann computer

system block diagram

The CPU communicates with memory and 1/O devices by placing
a numeric value on the address bus to select one of the memory or I/O
device port locations, each of which has a unique binary numeric address.
Then the CPU, memory, and I/O devices pass data among themselves by
placing the data on the data bus. The control bus contains signals that
determine the direction of the data transfer (to/from memory and to/from
an I/O device).

1.6.1 ARM CPU Registers

There are two categories of ARM CPU registers: general-purpose registers
and special-purpose kernel-mode registers. The special-purpose registers are
intended for writing OSes, debuggers, and other system-level tools. Such
software construction is well beyond the scope of this text.

The ARMG64 supports 32 general-purpose 64-bit registers (named X0
through X31) and 32 general-purpose 32-bit registers (named WO through
W3I). This doesn’t imply there are 64 registers total; instead, the 32-bit
registers overlay the low-order (LO) 32 bits of each of the 64-bit registers.
(Chapter 2 discusses LO components in more depth.) Modifying one of
the 32-bit registers also modifies the corresponding 64-bit register, and vice
versa, as outlined in Figure 1-2.

Hello, World of Assembly Language 11
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64 bits ——

X0 WO
X1 W1
X2 W2
X3 W3
X4 w4
X5 W5
X6 Wé
X7 W7
X8 W8
X9 W9
X10 W10
X11 W11
X12 W12
X13 W13
X14 W14
X15 W15
X16 W16
X17 W17
X18 W18
X19 W19
X20 W20
X21 W21
X22 W22
X23 W23
X24 W24
X25 W25
X26 W26
X27 W27
X28 W28
X29 W29
X30 W30
X31 W31

32 bits

Figure 1-2: The 32- and 64-bit
registers on the ARM

Those new to assembly language are often surprised that all calcula-
tions on the ARM64 involve a register. For example, to add two variables
together, storing the sum into a third variable, you must load one of the
variables into a register, add the second operand to the value in the regis-
ter, and then store the register away in the destination variable. Registers
are a middleman in nearly every calculation, so they’re important in
ARMG64 assembly language programs.



Although these registers are known as general-purpose registers, a few of
them have special purposes:

e  X3l, usually referred to as SPin code, is called the stack pointer, since it’s
used to maintain a hardware stack on the ARM (another non-RISC, or
reduced instruction set computer, feature), always as a 64-bit register.
Because it’s used as the stack pointer, SP cannot be used for other pur-
poses in most code. This register is accessible only by a few instructions.

e The XZR/WZR register (also treated as X31/W31 by the hardware) is
called the zero register. It always returns 0 when read and is a convenient
way to obtain the constant 0 in a program.

e Register X30 is the link register, referred to by the name LR rather than
X30. The ARM CPU uses this register to hold return addresses when
the code makes a function call. (Chapter 5 discusses the LR in greater
detail.) This register is also always accessed in 64-bit mode. While you
could theoretically use X30/W30 as a general-purpose register, you
should avoid doing so, because function calls will wipe out the value in
this register.

e Although this special purpose isn’t enforced by the hardware, most soft-
ware uses X29 as a 64-bit frame pointer (FP). Software generally uses this
register to provide access to function parameters and local variables.
Technically, you could use any of the general-purpose registers for this
purpose, but using X29/FP is conventional.

e Apple reserves X18 for its own internal purposes. Programs written
for macOS, i0S, iPadOS, and so on must not use this register. Since 29
other registers are available, the examples in this book don’t use X18,
even for Linux examples.

In addition to the 32 general-purpose registers, the ARM64 CPUs have
two additional special-purpose registers accessible to user programs: the
32-bit processor state (PSTATE) register and the 64-bit program counter (PC) reg-
ister. The PC register always contains the address of the machine instruc-
tion being executed. Because instructions are always 32 bits long, the CPU
will increment this register by 4 whenever it finishes the execution of one
instruction and moves on to the next (more on this activity in Chapter 2).

32-bit ARM CPUs refer to the PSTATE register as the CPSR or PSR. You may see

references to those names in various documents.

The PSTATE register is 32 bits wide (of which only 16 bits are used at
the time of this writing) and is really just a collection of individual Boolean
flags. Its layout appears in Figure 1-3.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
[ofalrfr] Jol [ [ss)

Figure 1-3: The PSTATE register layout

Hello, World of Assembly Language 13
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Most user applications use only the N, Z, C, and V bits in the PSTATE
register. These bits, also known as the condition codes, have the following
meanings:

N Negative (sign) flag, set when an instruction produces a negative
result

Z Zero flag, set when an instruction produces a zero result
C Carry flag, set when an unsigned arithmetic overflow occurs

V  Overflow flag, set when a signed arithmetic overflow occurs

Most of the remaining flags are inaccessible or of little use in user pro-
grams. UAO and PAN control CPU access features, allowing user programs
to access kernel memory. SS is the single-step control bit for debugging. IL is
the illegal instruction flag, set when the CPU executes an illegal instruction.
D, A, I, and F are interrupt flags. cEL selects an exception level, usually 00
for user mode. SPS selects a stack pointer to use (kernel versus user mode).

In addition to the 32 general-purpose registers, the ARM64 provides
32 floating-point and vector registers to handle nonintegral arithmetic.
Chapters 6 and 11 discuss these registers in greater detail when covering
floating-point arithmetic and single-instruction/multiple data (SIMD)
operations.

1.6.2 The Memory Subsystem

A typical ARMG64 processor running a modern 64-bit OS can access a
maximum of 2'® memory locations, or just over 256 TB—probably far more
than any of your programs will ever need. Since the ARM64 supports byte-
addressable memory, the basic memory unit is a byte, which is sufficient to
hold a single character or a very small integer value (discussed further in
Chapter 2).

Because 2% is a frightfully large number, the following discussion uses
the 4GB address space of 32-bit ARM processors. Scaled up, the same dis-
cussion applies to 64-bit ARM processors.

While the ARMG64 supports 64 address bits in software, the hardware supports only
48 to 52 addpess bits for virtual memory operations. Most OSes limit this to 48 bits.

Think of memory as a linear array of bytes. The address of the first
byte is 0, and the address of the last byte is 2*2 — 1. For an ARM processor,
the following pseudo-Pascal array declaration is a good approximation of
memory:

Memory: array [0..4294967295] of byte;




C/C++ and Java users might prefer the following syntax:

byte Memory[4294967296];

To execute the equivalent of the Pascal statement Memory [125] :=0;,
the CPU places the value 0 on the data bus, places the address 125 on the
address bus, and asserts the write line (which generally involves setting that
line to 0), as shown in Figure 1-4.

Address = 125 Memory
Data = O Location

CPU 125
Write = 0

—

Figure 1-4: The memory write operation

To execute the equivalent of CPU := Memory [125];, the CPU places the
address 125 on the address bus, asserts the read line (because the CPU is
reading data from memory), and reads the resulting data from the data bus
(see Figure 1-5).

Address = 125 Memory

Data = Memory[125] Location
CPU 125

Read = 0 /

—

Figure 1-5: The memory read operation

This discussion applies only when accessing a single byte in memory.
To store values larger than a single byte, like Zalf words (2 bytes) and words
(4 bytes), the ARM uses a sequence of consecutive memory locations, as
shown in Figure 1-6. The memory address is the address of each object’s
first byte (that is, the lowest address).

Hello, World of Assembly Language 15
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195 4

194

193

Double word
192
at address 192

191

Address
190

189

Word at

address 188 188

187
address 186

Figure 1-6: Byte, halfword, and word storage
in memory

The ARMG64 generally supports unaligned memory access, meaning the
CPU can read or write an object of any size—byte, half word, word, or
double word (dword)—at any address in memory. Certain instructions,
however, require that memory access be aligned on the natural size of the
transfer. Generally, this means that 16-, 32-, and 64-bit memory accesses
must take place on addresses that are a multiple of 2, 4, or 8; otherwise, the
CPU may raise an exception. Regardless of exceptions, the CPU can usually
access memory locations aligned on a natural boundary faster.

Modern ARM processors don’t connect directly to memory. Instead, a
special memory buffer on the CPU known as the cache (pronounced “cash”)
acts as a high-speed intermediary between the CPU and main memory.
You'll learn to set the alignment of memory objects and the effects of the
cache on data alignment in Chapter 3.

Declaring Memory Variables in Gas

Referencing memory by using numeric addresses in assembly language is
possible, but painful and error-prone. Rather than having your program
state, “Give me the 32-bit value held in memory location 192 and the 16-bit
value held in memory location 188,” it’s much nicer to state, “Give me the
contents of elementCount and portNumber.” Using variable names, rather than
memory addresses, makes your program much easier to write, read,

and maintain.

To create (writable) data variables, you have to put them in a data sec-
tion of the Gas source file, defined using the .data directive. The .data direc-
tive tells Gas that all following statements (up to the next .text or other
section-defining directive) will define data declarations to be grouped into
aread/write section of memory.



Within a .data section, Gas allows you to declare variable objects by
using a set of data declaration directives. The basic form of a data declara-
tion directive is

label: directive value(s)

where Iabel is a legal Gas identifier and directive is one of the directives in
the following list:

.byte Byte (8-bit) values. One or more comma-separated 8-bit expres-
sions appear in the operand field (values).

.hword, .short, .2byte Half-word (16-bit) values. One or more comma-
separated 16-bit expressions appear in the operand field.

-word, .4byte 'Word (32-bit) values. One or more comma-separated
32-bit expressions appear in the operand field.

.quad, .8byte Dword (64-bit) values. One or more comma-separated
64-bit expressions appear in the operand field. .quad is an unfortunate
misnomer for ARM64, since a 64-bit value is actually a double word, not
a quad word (on the ARM, a quad word is 128 bits). The term predates
the ARM assembler, coming from “quad word” in the x86 and 68000
assembly language days. To avoid confusion, this book uses the .dword
directive in place of .quad.

.dword The .dword macro appearing in the aoaa.inc include file is a syn-
onym for the .quad directive that emits 8 bytes (64 bits) for each oper-
and. Using .dword is preferable to .quad. You must include the aoaa.inc
file in order to use this directive.

.octa Octaword (oword, 128-bit/16-byte) values. One or more comma-
separated 128-bit expressions appear in the operand field. .octais an
unfortunate misnomer for ARM64, since a 128-bit value is actually a quad
word, not an “octa” word (on the ARM, an octaword is 256 bits). To avoid
confusion, this book avoids the .octa directive and uses .qword instead.

.qword This is a macro appearing the aoaa.inc include file. It is a syn-
onym for the .octa directive and emits 16 bytes for each operand. You
must include the aoaa.inc file in order to use this directive.

.ascii String values. A single string constant (surrounded by quota-
tion marks) appears in the operand field. Note that Gas does not termi-
nate this string with a 0 byte.

.asciz Zero-terminated string values. A single string constant (sur-
rounded by quotation marks) appears in the operand field. Gas will
emit a 0 after the last character in the string operand.

.float Single-precision floating-point values. One or more comma-
separated 32-bit single-precision floating-point expressions appear in
the operand field.

.double Double-precision floating-point values. One or more comma-
separated 64-bit double-precision floating-point expressions appear in
the operand field.
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Gas provides additional synonyms for some of the directives in this
list; see the link to the Gas documentation in section 1.12, “For More
Information,” on page 43.

Here are some examples of valid Gas data declarations:

byteVar: .byte o

halfvar: .hword 1,2 // Actually reserves 2 half-words

wordVar: .word -1

dwordVar:  .dword 123456789012345

stri: .ascii "Hello, world!\n" // Uses C-style escape for newline
str2: .asciz  "How are you?\n" // Sequences are legal.

pi: .float 3.14159

doubleVar: .double 1.23456e-2

Whenever you declare a variable in this manner, Gas will associate the
current location in the output object-code file with the label at the begin-
ning of the line. It will then emit the appropriate-sized data value into
memory at that location, adjusting the assembler’s location counter (which
tracks the current location) by the size of each operand it emits.

The label field in these data declaration directives is optional. If you do
not include the label, Gas simply emits the data in the operand field, start-
ing at the current location counter and incrementing the location counter
afterward. This is useful, for example, when you want to insert a control
character or special Unicode character into a string:

longStr:  .ascii "A bell character follows this string"
.byte 7, 0 // Bell (7) and zero termination

Gas allows C-style escape sequences within quoted strings. Although
Gas doesn’t support the full set of escape characters, it does support the
following:

\b Backspace character (0x08)

\n Newline character/line feed (0x0A)

\r Carriage return (0x0D)

\t  Tab (0x09)

\f Form feed character (0x0C)

\\ Backslash character

\nnn . Where nnn is a three-digit octal value; emit the value to the code
stream

\xhh Where hh is a two-digit hexadecimal value; emit the value to the
code stream

Gas does not support \a, \e, \f, \v, \', \", \?, \uhhhh, or \Uhhhh escape
sequences.
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1.7.1 Associating Memory Addresses with Variables

With an assembler like Gas, you don’t have to worry about numeric memory
addresses. Once you declare a variable in Gas, the assembler associates that
variable with a unique set of memory addresses. For example, say you have
the following declaration section:

.data
i8: .byte o0
i16: .hword O
i32: .word O
i64: .dword O

Gas will find an unused 8-bit byte in memory and associate it with the
i8 variable; it will likewise associate a pair of consecutive unused bytes with
i16, 4 consecutive unused bytes with i32, and 8 consecutive unused bytes
with i64. You'll always refer to these variables by their names and generally
don’t have to concern yourself with their numeric addresses. Still, be aware
that Gas is doing this for you.

When Gas is processing declarations in a .data section, it assigns con-
secutive memory locations to each variable. Assuming i8 (in the previous
declarations) as a memory address of 101, Gas will assign the addresses
appearing in Table 1-1 to i8, i16, i32, and i64.

Table 1-1: Variable Address Assignments

Variable Memory address

i8 101

i16 102 (address of i8 plus 1)
i32 104 (address of i16 plus 2)
i64 108 (address of 132 plus 4)

Technically, Gas assigns offsets into the .data section to variables.
Linux/macOS converts these offsets to physical memory addresses when it
loads the program into memory at runtime.

Whenever you have multiple operands in a data declaration statement,
Gas will emit the values to sequential memory locations in the order in
which they appear in the operand field. The label associated with the data
declaration (if one is present) is associated with the address of the first
(leftmost) operand’s value. See Chapter 4 for more details.

1.7.2  Aligning Variables

As noted already, your programs may run faster if your variables are aligned
on a natural boundary (alignment to the size of the object). Alignment is accom-
plished with the .align directive, which you saw in Listing 1-1.

Byte variables don’t require any alignment. Use the .align 1 directive
to put half words at an even address (2-byte boundary); remember, Gas will
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align the next statement on a boundary that is equal to 2", where 7 is the
.align statement’s operand. For words, use the .align 2 directive. For double
words (.dword), use the .align 3 directive.

For example, let’s return to the declaration given earlier:

.data
i8: .byte 0
i16: .hword O
i32: .word O
i64: .dword O

Sticking .align directives in front of every declaration (except i8) will
start to clutter up your code and make it harder to read:

.data
i8: .byte 0 // No alignment necessary for bytes
.align 1
i16: .hword o0
.align 2
i32: .word 0O
.align 3
i64: .dword o0

If your variables don’t have to be declared in a particular order, you
can clean this up by declaring the largest variables first and the remaining
variables sorted by decreasing size. If you do this, you have to align only the
first variable in your declaration list:

.data
.align 3
i64: .dword 0
i32: .word ©
i16: .hword o0
i8: .byte 0 // No alignment necessary for bytes

Because the 164 declaration appears immediately after the .align 3
statement in this code, the 164 address will be aligned on an 8-byte bound-
ary. As 132 immediately follows i64 in memory, it will also be aligned on
an 8-byte boundary (which, of course, is also a 4-byte boundary). This
is because 164 is aligned on an 8-byte boundary and consumes 8 bytes;
therefore, the address following 164 (the address of 132) will also be 8-byte
aligned.

Meanwhile, because 116 immediately follows i32 in memory, it will be
aligned on a 4-byte boundary (which is also an even address). The align-
ment of i8 doesn’t matter, but it happens to be at an even address, as it fol-
lows i16, which was aligned on a 4-byte boundary and consumes 2 bytes.
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Gas also provides a .balign directive whose operand must be a power of 2 (1, 2, 4,
8, 16, . . .) to specify the alignment value directly, rather than as a power of 2. While
this book uses .align because it’s the original divective, feel free to use .balign if you

prefer.

Strings are sequences of bytes, so their alignment usually doesn’t matter.
However, it is possible to write very high-performance string functions in
assembly language that process strings eight or more characters at a time.
If you have access to such library code, it might run faster if your strings are
aligned on an 8-byte boundary.

Of course, floats and doubles should be aligned on 4-byte and 8-byte
boundaries for the highest performance. In fact, as you'll see in Chapter 11,
16-byte alignment is also sometimes better.

1.7.3 Declaring Named Constants in Gas

Gas allows you to declare manifest constants by using the .equ directive. A
manifest constant is a symbolic name (identifier) that Gas associates with a
value. Everywhere the symbol appears in the program, Gas will directly sub-
stitute its value.

A manifest constant declaration takes the following form:

.equ label, expression

Here, label is a legal Gas identifier, and expression is a constant arith-
metic expression (typically a single literal constant value). The following
example defines the symbol dataSize to be equal to 256:

.equ dataSize, 256

Constant declarations, or equates in Gas terminology, may appear any-
where in your Gas source file prior to their first use: in a .data section, in a
.text section, or even outside any sections.

Once you define a constant symbol with .equ, it cannot be further modi-
fied in the source file during assembly. If you need to reassign the value
associated with a label during assembly (see Chapter 13 for reasons you’d
want to do this), use the .set directive:

.set valueCanChange, 6
// valueCanChange has the value 6 here.
.set valueCanChange, 7

// From this point forward, valueCanChange has the value 7.

Equates can specify textual arguments as well as numeric constants.
Because Gas will run your source files through the CPP if the filename
suffix is .S, you can also use the CPP #define macro definition to create

Hello, World of Assembly Language 21



22

1.8

Chapter 1

named constants. Although the .equ directive is probably the better choice,
the C macro form offers a few advantages, like allowing arbitrary textual
substitution, not just numeric expression substitution. For more on this,
see Chapter 13.

1.7.4 Creating Register Aliases in Gas and Substituting Text

As you begin to write more complex ARM assembly language programs,
you’ll discover that the 32 general-purpose register names (X0 to X30 and
SP) obscure the meaning of their values in the program. It’s been decades
since BASIC supported only variable names like A0, A1, B2, and Z3. To
avoid returning to those days by using meaningless two-character names,
Gas provides a way to create more meaningful aliases of register names in
your programs: the .req directive.

The syntax of the .req directive is

symbolicName .req register

where symbolicName is any valid Gas identifier and register is one of the
32- or 64-bit register names. After this statement in the source file, if you
use symbolicName in place of register, Gas will automatically substitute that
register for the name.

Sadly, the .req directive works only for creating register aliases; you
can’t use it as a general-purpose text-substitution facility. However, if you
name your assembly language source files with .S, Gas/GCC will first run
your source file through the CPP. This allows you to embed C/C++ #define
statements in your assembly source file, and the CPP will happily expand
any symbols you define in such statements throughout your source file. The
following example demonstrates using #define:

#define arrayPtr Xo

// From this point forward, you can use arrayPtr in place of Xo.

Typically, you'll use .req for register aliases and #define for any other
textual substitutions in the source file, though my personal preference is to
use the #define statement for both purposes in this book. Since #define also
accepts parameters, it’s flexible. Gas also supports textual substitution via
macros; see Chapter 13 for more on this.

Basic ARM Assembly Language Instructions

Thus far, the programming examples in this chapter have consisted of func-
tions that use only the ret instruction. This section describes a few more
instructions to get you started writing more meaningful assembly lan-
guage programs.



1.8.1 Idr, str, adr, and adrp

One solidly RISC feature of ARM is its use of load/store architecture. All com-
putational activity takes place in the ARM’s registers; the only instructions
that access main memory are those that load a value from memory or store
a value into memory.

Although the ARM64 has many general-purpose registers for holding
variable values (and thus can avoid using memory), most applications use
more variable data than can fitin all the registers. This is especially true for
larger objects like arrays, structs, and strings. Furthermore, programming
conventions—known as the application binary interface (ABI), discussed later
in this chapter—often reserve many of ARM’s registers so they cannot be
used to hold application variables for any length of time. So variables must
be placed in main memory and accessed via these 1dr (load) and str (store)
instructions.

This is the generic syntax for the load and store instructions

ldr{size} reg, mem
str{size} reg, mem

where size is either absent or one of the character sequences b, h, sb, sh, or sw;
reg is one of the ARM’s 32- or 64-bit registers; and mem is a memory address-
ing mode that specifies where to fetch the data from in memory. The ldr
instruction loads the register specified by reg from the memory location
specified by mem. The str instruction stores the value held in the register
operand into the memory location.

Chapter 2 discusses the size operand in greater depth, but this chapter
largely ignores the size suffixes on the ldr and str instructions. Without a
size prefix, the reg operand determines the operation’s size. If reg is Xn, the
instruction transfers 64 bits; if it’s Wn, then the instruction transfers 32 bits.

The mem operand is either the name of a variable in your program,
typically in the .data section (Linux only), or a register name surrounded
by square brackets ([]). In this latter case, the register holds the numeric
memory address of the memory location to access. See Chapter 3 for more
on mem.

LINUX VS. MACOS:
POSITION-INDEPENDENT EXECUTABLES

One major OS policy difference between macOS and Linux ARM assembly
language is that macOS requires the use of position-independent executables
(PIE), while Linux only encourages them. PIE allows the system to load the vari-
ous sections of a program into different memory locations at runtime. This is
important for two reasons: it enables the use of shared libraries and addresses

security concerns.
(continued)
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Shared libraries contain code shared among applications. An OS will
load only one copy of a library’s code into physical memory and share that
single copy among multiple running applications. However, the library code
has to sit at an address in a given application’s memory space in order for that
application to call functions within the library, yet the address used for a library
function in one application may already be in use when a second application
attempts to load the library. Therefore, the second application will need to call
that function at a different address in its own virtual memory address space.

If two separate copies of the function were made in real memory, calling
the function at different addresses in memory wouldn't be an issue; the first
application could locate the function at an address completely independent of
the second. However, one major reason to use shared libraries is to share the
exact same code in real (physical) memory.

The OS resolves the virtual memory address conflicts by programming the
memory management unit (MMU) to map that physical memory to two separate
virtual memory addresses in the two applications. However, for this to work,
the library code must not access any absolute (fixed) memory addresses; if it
does, the second application maps the function to a different address in the
virtual memory address space, and the sharing concept fails. For example,
if the library code transfers control from location Ox12_3456 to location
0x12_3500 in memory, this transfer will fail if the code is moved to a different
location; the application will still want to transfer to location 0x12_3500, even
though the code has moved elsewhere.

For machine instructions, this is not a problem. The ARM instructions that
transfer control typically use program-counter-relative (PC-relative) addressing.
Rather than transfer control to a fixed location (like 0x12_3500), they transfer
control to a location relative to the current location. That is, they transfer to a
location a certain number of bytes before or after the current value in the PC
register. If the code moves to a different fixed address in memory, the instruction
will still transfer to the correct place, because the destination location moved
along with the current instruction.

Unfortunately, this scheme doesn’t work for data. If a shared library
accesses global data, the OS has to create a separate block of data for each
application that uses the shared library; you typically don’t want one applica-
tion to affect the data in another application. That means data addresses must
be relocatable as well.

The ARM CPU can also access data at locations relative to the PC, so in
theory, the OS can remap the data to a different location for each application,
as it does for the code. However, using PIE is still wise for security reasons. In
the past, various hacks have taken advantage of the fact that the data for a
shared library sits at a fixed offset from the code. To help prevent such exploits,
macOS and Linux support address space layout randomization (ASLR). With this
feature, the OS randomly assigns a different address to the code and data sec-
tions of a program (or library) code when loading it into memory. This makes it
more difficult for a hack to exploit the code.




ASIR also makes it slightly more difficult (and less efficient) to access that
data. Worse sfill, Linux and macOS provide completely different mechanisms
for accessing position-independent data. This is transparent to HLL program-
mers, but it has to be handled explicitly when writing assembly language code.
This creates problems in a book such as this one, where the goal is to provide
example code that compiles and runs on different OSes. As for other Linux ver-
sus macOS issues, the aoaa.inc header file contains macros and other code to
resolve these issues. I'll have more to say about PIE in Chapter 3.

. J

Because macOS requires that your applications be written in a position-
independent fashion (as we just discussed in “Linux vs. macOS: Position-
Independent Executables”), you will not be able to use an 1ldr instruction of
this form:

ldr x0, i64 // i64 is a 64-bit variable declared
// in the .data section by using .dword.

To access the i64 variable, you must first load its address into a 64-bit
register, then access that data by using the register-indirect addressing mode, or
Xn. To do so, place the address of the variable you want to access in the reg-
ister by using the adr and adrp instructions:

adr reg,,, mem
adrp reg,,, mem

Here, reg,, is the name of a 64-bit general-purpose register, and mem
is a memory addressing mode, like the name of a global variable. The adr
instruction loads reg with the address of the memory variable, which must
be +IMB from the adr instruction if the operand is just the name of a vari-
able (like 164 from the previous example). The adrp instruction loads the
64-bit destination register with the page (4,096-byte boundary) containing
the memory object. That value will have the LO 12 bits containing all Os.

Because of macOS’s PIE requirements, it doesn’t take kindly to instruc-
tions such as the following:

ldr xo0, i64

On the Mac, you must use the register-indirect addressing mode to
access a global variable. Unfortunately

adr x1, i64

fails for the same reason: you're not allowed to specify the name of a global
variable.
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In this book, to get the address of a global variable into a register under
macOS, we’ll use the following statement:

lea reg, mem

The lea (load effective address) macro, included in aoaa.inc, will expand
into two instructions (different ones depending on your OS). These instruc-
tions will load the address of the second operand (mem) into the 64-bit regis-
ter specified by the first operand (reg). You can use lea in any projects where
you've included aoaa.inc at the beginning of your source file.

As noted, the aoaa.inc macros make the code in this book portable
between OSes. However, you can choose to go with the appropriate OS-specific
code, which can sometimes be more efficient, once you master basic ARM
assembly language programming. See Chapter 7 for more details on lea.

To conclude this discussion of taking the address of a variable, let’s
recap how to load and store values by using 1dr and str:

.data
i64: .dword 0 // This also requires the aoaa.inc file.

// Load i64's value into Xo:

lea x0, i64
1dr x0, [x0]

// Store X0 into i64:

lea x1, i64
str xo0, [x1]

When loading X0 with a variable’s value, you can first load X0 with the
address of the variable and then load X0 indirectly from the location held
in X0. This winds up using only a single register. However, when storing
data to memory, you need a second register to hold the address (X1 in this
example).

If you are referencing a particular variable several times within a small
section of code, it’s more efficient to load its address into a register just once
and reuse that register value multiple times, rather than constantly reload-
ing the address:

lea x1, i64
1dr xo0, [x1]

str x0, [x1]




Of course, this means you can’t use the register for any other purpose
while it holds 164’s address. Fortunately, for just this reason, the ARM64 has
lots of registers.

1.8.2 mov

Beyond the 1dr and str instructions, the mov instruction handles two addi-
tional data movement operations: moving data between a pair of registers
and copying a constant into a register. The generic syntax for mov is as
follows:

mov req, ., reg.,.
mov reg,., #constant

The first mov instruction copies the data in the source register (reg_,)
into the destination register (reg,.,). This instruction is equivalent to the
C/C++ statement reg,,, = reg_, ;. The source and destination registers can
be any of the general-purpose registers but must be the same size (32 or
64 bits).

The second mov instruction moves a small integer constant into the des-
tination register. Constants encoded as part of the instruction are known as
immediate constants and are generally preceded by a # character (though Gas
often allows you to drop the # when specifying literal numeric constants).
Chapter 2 discusses limitations on constants, but for now, assume any con-
stant less than +2,047 will work.

Here are two examples of the mov instruction:

X0
10

mov x1, x0 // X1
mov x2, #10 // X2

There are many additional variants of mov, covered in depth in later
chapters. For example, if you encounter a constant you cannot load into a
register with a single mov instruction, other variants of mov let you load any
arbitrary 32- or 64-bit constant by using two to three instructions. In the
meantime, this variant of the ldr instruction will load any constant into
aregister:

ldr reg, =verylargeConstant

The assembler will simply store veryLargeConstant in a memory location
somewhere and then load the contents of that memory location to the speci-
fied register. Use this handy pseudo-instruction when you need to load a
large constant into a register with a single instruction.
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1.8.3 add and sub

The add and sub instructions handle simple arithmetic on the ARM CPU.
These instructions take many forms covered more thoroughly in the next
couple of chapters. Their basic forms are the following:

add T€Gjests T€915rcr T€Grsrc // T€Gest = T€0915rc + T€G,grc
add reg,,, reg,,., #const // reg,. . = reg,  + const
adds 1€G4est> T€915rcs T€0rgrc // T€Ggest = T€G15yc + T€G,6rc
adds reg, ., reg,. ., #const // reg, . = reg, . + const

sub T€Gjests T€G15rcs T€Grgrc // T€Gest = T€915rc = T€G, gy
sub reg,.., reg,.,. #const // reg, . = reg, . - const

subs 1€Gjest> T€G15rcs 1€ grc // T€Ggest = T€915rc = T€0, 5pc
subs reg,., reg,., #const // reg, ., = reg, . - const

Here, reg,,.,, reg,, ., and reg,  are 32- or 64-bit registers (which must all be
the same size for a given instruction), and const is an immediate constant in
the range 0 to 4,095. You'll learn to specify larger constants later, but these
forms are sufficient for the example programs in the next few chapters.

Some assemblers allow a range of —4,095 to +4,095 and swap the add and sub
instructions if the immediate constant is negative.

The instructions with the s suffix affect the condition code flags. They
set the flags according to the conditions specified in the following list:

N  Setif the arithmetic operation produces a negative result (high-
order, or HO, bit is set); clear if it produces a nonnegative result (HO
bit is clear).

Z  Setif the arithmetic operation produces a 0 result; clear if it pro-
duces a nonzero result.

C  Setif the addition operation produces an unsigned overflow (carry
out of the HO bit). Clear if a subtraction operation produces a
borrow (unsigned underflow), and set otherwise.

V  Setif the arithmetic operation produces a signed overflow (carry
out of the next-to-HO bit).

The following instructions negate their source operands, because they
subtract the source register from 0 (remember that WZR and XZR are the
zero registers and return 0 when read):

sub regdestBZ’ WzrT, regsrcﬂ // regdestﬂ = regsrCBZ
sub regdestﬁd’ Xzr, regsrc64 // regde5t64 =" regsrc64

Gas provides synonyms for these instructions:

neg req,..;» 1€l // Negate instruction, no flags
negs reg,,..;» req,, ., // Negate instruction, w/flags



neg reg,. ... r€d. // Negate instruction, no flags
negs req,.....» red.,.. // Negate instruction, w/flags

These forms are a little easier to read.

1.8.4 b, blr, and ret

Calling procedures and functions is handled by the bl (branch and link)
and blr (branch and link through register) instructions. Here’s their syntax

bl Ilabel
blr Xn

where Ilabel is a statement label preceding code in the .text section, and

Xn represents one of the 64-bit registers. These two instructions copy the
address of the next instruction (following the bl or blr instruction) into the
link register (LR/X30), then transfer control either to the target label or to
the address specified by the contents of Xn.

The bl instruction does have a minor limitation: it can transfer control
only to a statement label within +128MB of the current instruction. This is
generally far more than enough for any function you’ll write. In theory, if
the OS loads code into another section (besides .text), it could be placed
sufficiently far away that it would exceed this range. The OS linker will prob-
ably complain if this occurs. This book generally places all code within the
.text section, as it would be rare for such programs to exceed this limitation.

The blr instruction copies the full 64-bit address from Xz into the
PC (after copying the address of the next instruction into LR). Therefore,
blr does not have the range limitation of the bl instruction. If you ever do
encounter the range limitation when using bl, overcome it by using the fol-
lowing sequence:

lea x0, farAwayProcedure
blr xo

This will load the address of farAwayProcedure into X0 (no matter where
it appears in memory), then transfer control to that procedure via blr.

The ret instruction has appeared in several examples up to this point.
It copies the contents of the LR (X30) register into the PC. Assuming that
LR was loaded with a value as a result of executing the bl or blr instruction,
this returns control to the instruction following the bl/blr.

The bl, blr, and ret instructions have one issue: the ARM architecture
tracks only a single subroutine call with the LR register. Consider the fol-
lowing code fragment:

someFunc:
ret
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main:
bl someFunc
ret

When the OS calls the main program, it loads the LR register with
the return address back to the OS. Normally, when the main program
completes execution, its ret instruction transfers control to this location.
However, that’s not the case in this example: when the main program
begins execution, it immediately calls someFunc with the bl instruction. This
instruction copies its return address (the address of the main program’s
ret instruction) into the LR register, wiping out the OS’s return address
currently residing there. When someFunc executes the return instruction, it
returns control back to the main program.

Upon return from someFunc, the main program executes the ret instruc-
tion. However, the LR register now contains the return address of the
someFunc call, which is the address of the ret instruction in the main pro-
gram, so control transfers there, re-executing ret. The LR register’s value
hasn’t changed; it still points at that ret instruction, meaning this code
enters an infinite loop continuously executing the return and transferring
control back to the return (where LR continues to point).

Chapter 3 discusses the high-level solution to this problem. For the
time being, we must save the LR register value in the main program before
calling someFunc. One quick-and-dirty way to do this is to copy it into another
(unused by main) register and restore LR before the final return:

someFunc:
ret

main:
mov x1, 1r
bl someFunc
mov lr, x1
ret

This code saves the return address (in LR) in the X1 register and
restores it after returning from someFunc (the call to someFunc overwrote the
value in LR).

In general, saving the return address in the X1 register is a bad idea,
because the ARM’s designers reserve X1 for passing parameters. (Using X1
worked in this example because someFunc doesn’t have any parameters, as
it just returns to its caller.) The next section covers in greater depth which
registers are reserved for various purposes.

The ARM64 Application Binary Interface

A CPU’s application binary interface (ABI) describes how programs should use
registers, pass parameters between functions, represent data, and many



other conventions. Its primary purpose is to provide interoperability among
programming languages and systems. The ARM64’s ABI, for example,
describes the conventions that allow C/C++ programs to call functions writ-
ten in Swift, Pascal, and other languages. Since the GCC (and Clang) com-
pilers follow these rules, you must also follow them to pass information
between your assembly language code and code written in an HLL such

as C/C++.

An ABI is a convention, not an absolute rule. It is a contract between the
code being called and the code making the call. When writing your own
assembly language functions to be called by your own assembly language
code, you are under no obligation to use the ABI and can use whatever
inter-code communication scheme you like. However, if you call C/C++
code from your assembly functions, or if your assembly code is being called
from C/C++, you must follow the ARM64 ABI. Since this book uses a con-
siderable mixture of C/C++ and assembly code, understanding the ARM64
ABI is critical for our purposes.

1.9.1 Register Usage

The ARM64 ABI reserves some of its 32 general-purpose registers for spe-
cific uses and defines whether registers are volatile (meaning you don’t have
to preserve their values) or nonvolatile (meaning that you must preserve
their values within a function). Table 1-2 describes the special purposes and
volatility of the 32 ARM registers.

Table 1-2: ARMé4 ABI Register Conventions

Register Volatile Special meaning

X0/WO Yes Pass parameter 1 here, return function results here.
Registers XO through X7 can also be used as a scratchpad/temporary/
local variable if not used as a parameter.

X1/W1 Yes Pass parameter 2 here, return function results here.

X2/W2 Yes Pass parameter 3 here, return function results here.

X3/W3 Yes Pass parameter 4 here, return function results here.

X4/WA4 Yes Pass parameter 5 here, return function results here.

X5/W5 Yes Pass parameter 6 here, return function results here.

X6/Wé Yes Pass parameter 7 here, return function results here.

X7/W7 Yes Pass parameter 8 here, return function results here.

X8/W8 Yes Pointer to large function return results (for example, a large C structure
returned by value).

X9/W9 Yes Can be used as a scratchpad/temporary/local variable.

X10/W10 Yes

X11/W1 Yes

X12/W12 Yes

X13/W13 Yes

X14/W14 Yes

X15/W15 Yes

(continued)
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Table 1-2: ARM64 ABI Register Conventions (continued)

Register Volatile Special meaning

X16/W16/IPO Yes, but . . . You can use this register as a temporary variable, but its value may
change across the execution of a control-transfer instruction; the
system linker/loader may use this register to create a veneer, also
known as a frampoline (more on this in Chapter 7).

X17/W17/IP1 Yes, but...  You can use this register as a temporary variable, but its value may
change across the execution of a control-transfer instruction; the sys-
tem linker/loader may use this register to create a veneer, also known
as a frampoline (more on this in Chapter 7).

X18/W18/Plat  No access This register is reserved for use by the OS, and qulicction programs
must not modify its value. Under macOS, you definitely must not
modify this register; under Linux, you may get away with using this
register if you preserve its value, but the safe choice is to avoid
using this register.

X19/W19 No A function using this register must save and restore the register’s value

X20/W20 No so that it contains its original value when the function returns.

X21/W21 No

X22/W22 No

X23/W23 No

X24/W24 No

X25/W25 No

X26/W26 No

X27/W27 No

X28/W28 No

X29/W29/FP N/A Reserved for use as the system frame pointer.

X30/W30/LR N/A Reserved for holding function return addresses.

SP /X31/W31 N/A Reserved for use as the system stack pointer.
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Conveniently, when using volatile registers in a function, you don’t have
to preserve (save and restore) their values within the function. However,
this means that you also cannot expect them to maintain their values across
any functions you call via bl or blr. Nonvolatile registers will maintain their
values across function calls you make, but you must explicitly preserve their
values if you modify them within your functions.

1.9.2 Parameter Passing and Function Result Conventions

Chapter 5 provides a complete discussion of parameter passing and func-
tion results in assembly language. However, when calling functions written
in a different languages (particularly HLLs), you must adhere to the con-
ventions that language uses. Most HLLs use the ARM ABI as the conven-
tion for passing parameters.

The ARM ABI uses registers X0 through X7 to pass up to eight integer
parameters to a function. These parameters can be 8-, 16-, 32-, or 64-bit
entities. You pass the first parameter in X0, the second in X1, and so on. To
pass fewer than eight parameters, simply ignore the additional registers in
this set. Chapter 5 discusses how to pass more than eight parameters and
how to pass data types larger than 64 bits, including arrays and structs.
Chapter 6 covers how to pass floating-point values to a function.
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You can also return function results in these registers. Most functions
return integer results in X0. If you're returning a large object by value, like
a structure, array, or string, you typically use X8 to return a pointer to that
data object. Chapter 6 discusses returning floating-point function results.

Registers X0 through X7 are volatile, meaning you can’t expect a called
function to preserve the original register values on return. This is true even
if you don’t use all eight registers to pass parameter values. If you want to
preserve a value across function calls, use a nonvolatile register.

Calling C Library Functions

All the coding examples in this book so far have immediately returned to
the OS, apparently without accomplishing anything. While it is theoretically
possible for a pure assembly language program to produce its own output,
it takes a lot of work and is largely beyond the scope of this book. Instead,
this book calls prewritten C/C++ library code to do the 1/O. This section
discusses how this is done.

Most other books on assembly language that use libraries in this way
call the OS by using available application programming interfaces (APIs). This
is a reasonable approach, but such code is tied to the particular OS for
which the calls are made (see Chapter 16 for examples). This book instead
relies on library functions written in the C stdlib, since it’s available on
many OSes.

In most introductory programming books, the first programming
example provided is the venerable “Hello, world!” program. Here’s that
program written in C:

#include <stdio.h>

int main( int argc, char **argv )

{
}

printf( "Hello, world!\n" );

Except for an actual printf() statement, the assembly language source
files given thus far have fulfilled the purpose of the “Hello, world!” example:
learning how to edit, compile, and run a simple program.

Most of this book uses the C printf() function to handle program out-
put to the console. This function requires one or more arguments—that
is, a variable-length parameter list. The first argument is the address of a
format string. If that string requires it, additional parameters provide data to
convert to string form. For the “Hello, world!” program, the format string
("Hello, world!\n") is the only argument.

The C stdlib—and all C functions, for that matter—adheres to the ARM
ABI. Therefore, printf() expects its first argument, the format string, in the
X0 register. Instead of trying to pass a string (with 14 characters, including
the newline) in a 64-bit register, we pass the address of that string in mem-
ory. If we put the string "Hello, world!\n" in the .text section along with the
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program (out of the way, so the CPU doesn’t try to execute it as code), then
we can compute the address of that string by using the lea macro:

hwStr:  .asciz "Hello, world!\n"

lea X0, hwStr

Once we have this string address in X0, calling printf() prints that
string to the standard output device:

lea x0, hwStr
bl printf

To run, this program must be linked against the C stdlib and a small
C/C++ program like the one in Listing 1-2. Rather than grabbing that pro-
gram, I'll create a slightly better version in Listing 1-4 to use with almost
every example program in the rest of this book.

// Listingl.4.cpp

/1

// Generic C++ driver program to call AoAA example programs
// Also includes a "readlLine" function that reads a string
// from the user and passes it on to the assembly language
// code

/1

// Need to include stdio.h so this program can call "printf"
// and stdio.h so this program can call strlen.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Extern "C" namespace prevents "name mangling" by the C++
// compiler:

extern "C"

{

// asmMain is the assembly language code's "main program":
® void asmMain( void );

// getTitle returns a pointer to a string of characters
// from the assembly code that specifies the title of that
// program (that makes this program generic and usable

// with a large number of sample programs in "The Art of
// ARM Assembly Language"):

® char *getTitle( void );

// C++ function that the assembly
// language program can call:



® int readlLine( char *dest, int maxLen );
};

// readline reads a line of text from the user (from the

// console device) and stores that string into the destination
// buffer the first argument specifies. Strings are limited in
// length to the value specified by the second argument

// (minus 1).

//

// This function returns the number of characters actually

// read, or -1 if there was an error.

//

// If the user enters too many characters (maxLen or

// more), this function returns only the first maxLen - 1

// characters. This is not considered an error.

int readLine( char *dest, int maxLen )

{
// Note: fgets returns NULL if there was an error, else
// it returns a pointer to the string data read (which
// will be the value of the dest pointer):
char *result = fgets( dest, maxLen, stdin );
if( result != NULL )
{
// Wipe out the newline character at the
// end of the string:
int len = strlen( result );
if( len > 0)
{
dest[ len - 1 ] = 0;
}
return len;
return -1; // If there was an error
}
int main(void)
{
// Get the assembly language program's title:
char *title = getTitle();
printf( "Calling %s:\n", title );
asmMain();
printf( "%s terminated\n", title );
}

This program contains a few additional features over Listing 1-2. First,
the name of the assembly language function has changed to asmMain() @,
the assembly language main program. This code also requires a second
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assembly function, getTitle() @. This function, provided by the assembly
language source code, returns a pointer to a zero-terminated string con-
taining the program’s title. The program displays this title before and after
calling asmMain().

The readlLine() function appears in the C program that reads a line of
text from the user and stores that text into a buffer specified by the caller ©.
You can call this function from the example assembly code, sparing you
from having to write the function in assembly (it’s grunt work better done
in C). You'll see examples of this function call in later chapters.

This file (appearing as Listingl-4.cpp or c.cpp in the online code) requires
the assembly code to provide a getTitle() function that returns the address
of a string so the C program can display the name. This string is embedded
in the assembly language source file, since most of the programs in this
book use only one version of ¢.cpp. The getTitle() function is the same in
every program

getTitle:
lea x0, title // C expects pointer in Xo.
ret

where title is a zero-terminated string appearing elsewhere in your pro-
gram (usually in the .data section). That declaration will usually take
this form:

title: .asciz "Listing1-5"

The getTitle function returns the address of this string to the c¢.cpp pro-
gram. The string following the .asciz directive will typically be the name of
the assembly language source file (I used Listingl-5 in this example).

1.10.1 Assembling Programs Under Multiple OSes

We could easily bang out a “Hello, world!” program for Linux or macOS
at this point, but the programs would be slightly different for each OS. So
that we don’t need to use a different include file for each OS, I've modified
aoaa.inc to look for a couple of symbol definitions: isMac0S and isLinux. Both
symbols must be defined with the CPP #define declaration, and one must be
true (1) while the other is false (0). The aoaa.inc file uses these symbols to
adjust the definitions present in the file for the appropriate OS.

In theory, we could use code like the following to define these symbols:

#define isMacOS (1)
#tdefine isLinux (0)
#include "aoaa.inc"

However, this would force every example program to have two versions,
one for macOS (the example just given) and one for Linux, containing the
following statements:



#define isMacOS (0)
#define isLinux (1)
#include "aoaa.inc"

GCC has a preferable command line option that lets you define a pre-
processor symbol and give it a value:

-D name=value

This way, the following commands will automatically define the symbol
prior to assembling the source.S file:

g++ -D isMac0S=1 source.S
g++ -D islinux=1 source.S

We can specify the OS from the command line in this way so that the
source files (source.S and aoaa.inc) don’t require any changes under either
macOS or Linux. To avoid any extra typing required to assemble the pro-
gram, we’ll use a command line program known as a shell script.

While writing a shell script for this purpose, I also further automated
the build process. The script, named build, accepts the base name of an
example file without a suffix and automatically deletes any existing object
or executable files with that base name (a clean operation, in Unix terminol-
ogy). It then determines which OS build is running on and then automati-
cally generates the appropriate GCC command line to build the example.

SHELL SCRIPTS VS. MAKEFILES

If you have experience developing software by using the command line, you
may wonder why | haven't built the examples with a makefile. | discuss make-
files further in Chapter 15, but I've chosen not to use them here for a couple of
reasons:

e If you don't already know the Make language, I'd prefer to put off teaching
that until you've mastered a little more assembly language.
e Using Make would mean writing a separate makefile for each example

program. However, the build shell script this section describes works for
nearly all the example programs in this book.

For example, to build a file named example.S, you’d execute the follow-
ing command:

./build example
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Under Linux, this would generate the following command:

g++ -D islinux=1 -o example c.cpp example.S

Under macOS, it would generate the following:

g++ -D isMac0S=1 -o example c.cpp example.S

The build script also supports a couple of command line options: -c and
-pie. The -c (compile-only) option generates the following command line,
which only assembles the assembly file to an object file; it does not compile
c.cpp, nor does it produce an executable:

./build -c example

This executes the following command as appropriate:

g++ -c -D isMac0S=1 -o example.o example.S

or

g++ -c -D islinux=1 -o example.o example.S

The -pie option applies only to Linux. It issues the appropriate com-
mands to tell Linux to produce a position-independent executable file (by
default, Linux produces a non-position-independent executable). Because
macOS’s assembler always produces PIE code, this option is ignored under
macOS.

For the curious, I've provided the text for this shell script in the file
build without further comment, as writing shell scripts is beyond the scope
of this book:

#!/bin/bash

build

Usage:

options:

e EEEEEEEE N

fileName=
compileOnly=

38 Chapter 1

Automatically builds an Art of ARM Assembly
example program from the command line

build {options} fileName

(no suffix on the filename.)

-c: Assemble .S file to object code only.
-pie: On Linux, generate a PIE executable.



pie="-no-pie
cFile="c.cpp
lib=" "
while [[ $# -gt 0 ]]
do

key="$1"
case $key in

-c)
compileOnly="-c'
shift

)

-pie)
pie='-pie’
shift

)

-math)
math="-1m'
shift

b

*)
fileName="$1"
shift
35
esac
done

# If -c option was provided, only assemble the

# file and produce an .o output file.
#

.S

# If -c not specified, compile both c.cpp and the

# file and produce an executable:

if [ "$compileOnly" = '-c' ]; then
objectFile="-o $fileName".o
cFile=" "

else

objectFile="-o $fileName"
fi

# If the executable already exists, delete it:

if test -e "$fileName"; then
rm "$fileName"
fi

# If the object file already exists, delete it:

if test -e "$fileName".o; then
rm "$fileName".o
fi

.S

Hello, World of Assembly Language
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# Determine what 0S you're running under (Linux or Darwin [macOS]) and
# issue the appropriate GCC command to compile/assemble the files.

unamestr=$(uname)
if [ "$unamestr" = 'Linux' ]; then

g++ -D islinux=1 $pie $compileOnly $objectFile $cFile $fileName.S $math

elif [ "$unamestr" = 'Darwin' ]; then

fi

g++ -D isMac0S=1 $compileOnly $objectFile $cFile $fileName.S -1System $math
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Check out a book on GNU’s bash shell interpreter if you want to learn
how this works (see section 1.12, “For More Information,” on page 43).

The build shell script is available in electronic form at https://artofarm
randallhyde.com. Execute the following command to make this file execut-
able from the bash command line on your Linux or macOS system:

chmod u+x build

This makes the build script executable. See Appendix D for more infor-
mation about the chmod command.

1.10.2  Writing a “Hello, World!” Program

You finally have the pieces in place to write a complete “Hello, world!” pro-
gram, as shown in Listing 1-5.

// Listing1-5.S

//

// The venerable "Hello, world!" program, written
// in ARM assembly by calling the C stdlib printf
// function

//

// aoaa.inc is the Art of ARM Assembly include file.
/1

// This makes asmMain global and

// automatically converts it to _asmMain

// if this program is being assembled under macOS.
// It also converts printf to printf for macOS.

#include "aoaa.inc"

.data

O title: .asciz "listing 1-5"

savelR: .dword o0 // Save LR here.
hwStr: .asciz  "Hello, world!\n"

.text
// getTitle function, required by c.cpp, returns the

// name of this program. The title string must
// appear in the .text section:


https://artofarm.randallhyde.com
https://artofarm.randallhyde.com

NOTE

.align 2 // Code must be 4-byte aligned.

B getTitle:

lea X0, title
ret

// Here's the main function called by the c.cpp function:
asmMain:

// LR is *highly* volatile and will be wiped

// out when this code calls the printf() function.
// We need to save LR in memory somewhere so we
// can return back to the 0S using its value.

// For now, save it in the savelR global

// variable:

lea X0, savelR
str 1r, [x0]

// Set up printf parameter (format string)
// and call printf():

® lea x0, hwStr  // hwStr must be in .text.
bl printf // Print the string.

// Back from printf(), restore LR with its original
// value so we can return to the 0S:

0O lea X0, savelR
ldr 1r, [x0]

// Return to the 0S:

ret

The title string @ holds the program’s title ("Listing 1-5" in this exam-
ple). The hwStr variable holds the Hello, world! string that the main pro-
gram will pass to the printf() function. The getTitle() function @ returns
the address of the title string to the c.cpp program. As per the ARM ABI,
this function returns the function result in the X0 register.

Upon entry into the asmMain() function (the assembly language main
program), the code must preserve the contents of the LR register because
the call to printf() will overwrite its value. This code saves the LR register
(which holds the return address to the c.¢pp main function) in the savelR
global variable in the .data section @.

Saving the LR register value in this fashion is not good practice. In Chapter 3 yow'll

learn about the ARM stack and discover a much better place to save return addresses
held in LR.
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The code that actually prints Hello, world! © loads X0 with the printf()
format string as per the ARM ABI, then calls printf() by using the bl
instruction. Before returning to c.¢pp, the assembly code must reload LR
with the returned address held in savelR @.

Here are the commands to build and run the program in Listing 1-5,
along with the program’s output:

$ ./build Listing1-5
$ ./Listingi-5
Calling Listing1-5:
Hello, world!
Listing1l-5 terminated

You now have a functioning “Hello, world!” program in assembly
language.

LINUXVS. MACOS: VARIADIC PARAMETERS

Passing parameters to functions with a variable number of parameters, such as
printf(), works differently in the standard ARM ABI and the macOS variant.
Linux, using the standard ABI, passes the first eight parameters in registers X0
through X7, as Table 1-2 describes. However, macOS unfortunately passes only
the first parameter of a variadic function (a function with a variable number
of parameters) in register XO. It passes all remaining parameters on the stack
(described in Chapters 3 and 5).

To allow us to write code that will assemble and run on both OSes, the
aoaa.inc include file comes to the rescue once again. This file contains six mac-
ros with the following names:

vparm2, vparm3, ..., vparm7

Each macro takes a single argument: the name of a variable in the .data
section. These macros will load the specified variable into the appropriate
location (a register or on the stack) for that parameter. For this to work under
macOS, the following statement must appear at the very beginning of your
asmMain() function:

sub sp, sp, #64

You must also include the following statement before the ret instruction at
the end of your asmMain() function:

add sp, sp, #64

Chapter 5 fully explains the purpose of these instructions; just trust them for
now (they are required for macOS and do no harm under Linux).
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If you have two variables, i and j, declared as words in your .data sec-
tion, here's how to print them by using printf()

lea x0, fmtStr // Parameter 1 is still passed in Xo.
vparm2 i

vparm3 j

bl printf

where fmtStr is something like this:

fmtStr: .asciz "i=%d, j=%d\n"

We use vparm2, vparm3, and so on only for variadic functions. Functions
with a fixed number of parameters use registers X0 through X7 for the first eight
parameters on both Linux and macOS.

Moving On

This chapter equipped you with the prerequisites to start learning new
assembly language features in the chapters that follow. You learned the
basic syntax of a Gas program and the basic 64-bit ARM architecture, and
how to use the aoaa.inc header file to make source files portable between
macOS and Linux. You also learned how to declare some simple global vari-
ables, use a few machine instructions, and assemble a Gas program with
C/C++ code so you can call routines in the C stdlib (using the build script
file). Finally, you ran that program from the command line.

The next chapter introduces you to data representation, one of the main
reasons for learning assembly language in the first place.

For More Information

e For more information about the bash shell interpreter, visit the refer-
ence manual at https://www.gnu.org/software/bash/manual/bash.himl.

e For more information about the GNU assembler, visit the reference man-
ual at Attps://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/htmi_chapter/as_toc. html.

e You can find an online guide to 64-bit ARM assembly language at
https://modexp.wordpress.com/2018/10/30/arm64-assembly,/.

e Ifyou’re interested in programming ARM assembly language on Apple
platforms, see hitps://developer.apple.com/documentation/xcode/writing
-armo64-code-for-apple-platforms.

e The ARM developer portal at https://developer.arm.com provides
generic information about ARM CPUs and ARM assembly language
programming.
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= @

TEST YOURSELF

What is the name of the Gas executable program file?
What are the names of the three main system buses?

Which register holds the condition code bits?

How many bytes are consumed by the following data types@
a. Word

b. Dword
c. Oword
d. Double

What is the destination (register) operand size for the lea macro?

6. What is the name of the assembly language instruction you use to call a

procedure or function?

What is the name of the assembly language instruction you use to return
from a procedure or function?

8. What does ABI stand fore

10.

In the ARM ABI, where do you return the following function return results2
a. 8-bit byte values
b. 16-bit word values
32-bit integer values
d.  64-bit integer values

e. 64-bit pointer values

Where do you pass the first, second, third, and fourth parameters to an
ARM ABI-compatible function?



DATA REPRESENTATION
AND OPERATIONS

A major stumbling block many beginners
encounter when learning assembly language

is the common use of the binary and hexa-

decimal numbering systems. However, the advan-
tages of these systems far outweigh their disadvantages:
they greatly simplify the discussion of other topics,
including bit operations, signed numeric representa-
tion, character codes, and packed data.

This chapter discusses the following:

e The binary and hexadecimal numbering systems

e Binary data organization (bits, nibbles, bytes, half words, words, and
double words)

e Signed and unsigned numbering systems
e Arithmetic, logical, shift, and rotate operations on binary values
e Bit fields and packed data
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e Floating-point and binary-code decimal formats

e (Character data

The remainder of this book depends on your understanding of these
basic concepts. If you are already familiar with these terms from other
courses or study, you should still skim this material to be sure you’re not
missing anything, and to learn the instructions this chapter introduces,
before proceeding to the next one. If you are unfamiliar or only partly
familiar with this material, study it carefully before proceeding. Don’t skip
any sections: all the material in this chapter is important!

Numbering Systems

Most modern computer systems do not use the decimal (base-10) system to
represent numeric values. Instead, they typically use a binary numbering
system. This is because the binary (base-2) numbering system more closely
matches the electronic circuitry used to represent numeric values in a com-
puter system.

2.1.1 Decimal

You've been using the decimal numbering system for so long that you probably
take it for granted. When you see a number like 123, you don’t think about the
value 123; rather, you generate a mental image of how many items this value
represents. In reality, however, the number 123 represents the following:

(1x10%) + (2x 10" + (3x10%
or
100+20 + 3

In a decimal positional numbering system, each digit appearing to the left
of the decimal point represents a value from 0 to 9 multiplied by an increas-
ing power of 10. Digits appearing to the right of the decimal point repre-
sent a value from 0 to 9 multiplied by an increasing negative power of 10.
For example, the value 123.456 means this:

(1x102) + (2x10Y) + (3% 10%) + (4 x 1071 + (5x 1072) + (6x 107%)
or

100+20 + 3+0.4+0.05+0.006

2.1.2 Binary

Most modern computer systems operate using binary logic. The computer
uses two voltage levels (usually 0 V and 2.4 to 5 V) to represent values.
These two levels can represent exactly two unique values. These could be



any two values, but they typically represent the values 0 and 1, the two digits
in the binary numbering system.

The binary numbering system works just like the decimal numbering
system, except binary allows only the digits 0 and 1 (rather than 0 to 9) and
uses powers of 2 rather than powers of 10. Therefore, converting a binary
number to decimal is easy. For each 1 in a binary string, add 2", where 7 is
the zero-based position of the binary digit. For example, the binary value
11001010, represents the following:

(Ix27) + (1x25) + (0%x25) + (0x2%) + (1x2%) + (0x2%) + (I1x2") + (0x2")
=128,,+64,,+8,,+2,,
=202,

Converting decimal to binary is slightly more difficult. You must find
those powers of 2 that, when added together, produce the decimal result.

A simple way to convert decimal to binary is the even/odd, divide-by-2
algorithm, comprising the following steps:

1. If the number is even, emit a 0. If the number is odd, emit a 1.

2. Divide the number by 2 and throw away any fractional component or
remainder.

3. If the quotient is 0, the algorithm is complete.

4. If the quotient is not 0 and is odd, insert a 1 before the current string;
if the number is even, prefix your binary string with 0.

5. Go back to step 2 and repeat.

Binary numbers, although they have little importance in HLLs, appear
everywhere in assembly language programs, so make sure you're comfort-
able with them.

In the purest sense, every binary number contains an infinite number
of digits (or bits, which is short for binary digits). For example, you can repre-
sent the number 5 with any of the following:

101

00000101

0000000000101

...000000000000101

Any number of leading-zero digits may precede the binary number
without changing its value. Because the ARM typically works with groups
of 8 bits, this book will zero-extend all binary numbers to a multiple of 4 or
8 bits. Following this convention, you’d represent the number 5 as 0101, or
00000101,

To make larger numbers easier to read, I will often separate each group

of 4 binary bits with an underscore. For example, I will write the binary
value 1010111110110010 as 1010_1111_1011_0010. (Gas does not actually
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allow you to insert underscores into the middle of a binary number; I use
this convention just for readability purposes.)

The usual convention is to number each bit as follows: the rightmost bit
in a binary number is bit position 0, and each bit to the left is given the next
successive bit number. An 8-bit binary value uses bits 0 to 7:

XX X X, X X, X X
A 16-bit binary value uses bit positions 0 to 15:
X5 Xpy X3 Xpp Xy Xjp Xy X X0 X X X, X5 X X, X

A 32-bit binary value uses bit positions 0 to 31, and so on.

Bit 0 is the low-order (LO) bit; some refer to this as the least significant bit.
The leftmost bit is called the high-order (HO) bit, or the most significant bit. I'11
refer to the intermediate bits by their respective bit numbers.

In Gas, you can specify binary values as a string of 0 or 1 digits begin-
ning with the sequence Ob—for example, 0b10111111.

2.1.3 Hexadecimal

Unfortunately, binary numbers are verbose: representing the value 202,
requires eight binary digits but only three decimal digits. When dealing
with large values, binary numbers quickly become unwieldy. Since the com-
puter “thinks” in binary, however, using the binary numbering system is
convenient when creating values for the computer to use. Although you can
convert between decimal (which humans tend to be most comfortable with)
and binary, the conversion is not a trivial task. Additionally, many assembly
language constants are easier to read and understand when written in binary
(rather than decimal), so it’s often a better idea to use binary.

The hexadecimal (base-16) numbering system solves many of the prob-
lems inherent in the binary system: hexadecimal numbers are compact, and
it’s simple to convert them to binary, and vice versa. For this reason, most
engineers use the hexadecimal numbering system rather than binary.

Because the radix (base) of a hexadecimal number is 16, each hexa-
decimal digit to the left of the hexadecimal point represents a certain value
multiplied by a successive power of 16. For example, the number 1,234, is
equal to this:

(1x16%) + (2x162) + (3x 16) + (4x 16°)
or
4,096, + 512, +48, +4,,= 4,660,

Each hexadecimal digit can represent one of 16 values from 0 to 15,,.
Because there are only 10 decimal digits, you need 6 additional digits
to represent the values in the range 10,, to 15,,. Rather than create new
symbols for these digits, the convention is to use the letters A to F. The fol-
lowing are examples of valid hexadecimal numbers:



1234,

DEAD,,

BEEF,

OAFB,

FOO1

D8B4,,

Because you’ll often need to enter hexadecimal numbers into the com-
puter system, and on most computer systems you cannot enter a subscript to
denote the radix of the associated value, you’ll need a different mechanism

for representing hexadecimal numbers. In this book, I use the following
Gas conventions:

e All hexadecimal values have a 0x prefix (for example, 0x123A4 and
0xDEAD).

e All binary values begin with a Ob sequence (for example, 0b10010).

e Decimal numbers do not have a prefix character.

e If the radix is clear from the context, I may drop the 0x or Ob prefix

characters.

Gas also allows the use of octal (base-8) numbers that begin with a
leading 0 and contain only the digits 0 through 7. This book, however, does
not use octal numbers.

Here are examples of valid hexadecimal numbers using Gas notation:

0x1234

0xDEAD

0xBEEF

0xAFB

0xF001

0xD8B4

As you can see, hexadecimal numbers are compact and easy to read. In
addition, you can easily convert between hexadecimal and binary. Table 2-1
provides all the information you need to convert any hexadecimal number
into a binary number, or vice versa.

To convert a hexadecimal number into a binary number, substitute the
corresponding 4 bits for each hexadecimal digit in the number. For exam-
ple, to convert OxABCD into a binary value, convert each hexadecimal digit

according to Table 2-1: A becomes 1010, B becomes 1011, C becomes 1100,
and D becomes 1101, giving you the binary value 1010_1011_1100_1101.
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Table 2-1: Binary/Hexadecimal Conversion

Binary Hexadecimal Decimal
0000 (0] 0
0001 1 1
0010 2 2
oon 3 3
0100 4 4
0101 5 5
0110 6 6
om 7 7
1000 8 8
1001 9 9
1010 A 10
101 B 11
1100 C 12
1101 D 13
1110 E 14
1 F 15

Converting a binary number into hexadecimal format is almost as easy:

1. Pad the binary number with Os to make sure that the number contains
a multiple of 4 bits. For example, given the binary number 1011001010,
add 2 bits to the left of the number so that it contains 12 bits:
001011001010.

2. Separate the binary value into groups of 4 bits. In this example, you’d
get 0010_1100_1010.

3. Look up these binary values in Table 2-1 and substitute the appropriate
hexadecimal digits: 0x2CA.

Contrast this with the difficulty of conversion between decimal and
binary, or decimal and hexadecimal!

Because you’ll need to convert between hexadecimal and binary over
and over again, take a few minutes to memorize the conversion table. Even
if you have a calculator that can do the conversion for you, manual conver-
sion is much faster and more convenient once you get the hang of it.

Numbers vs. Representation

Many people confuse numbers and their representation. Beginning assem-
bly language students often ask, “I have a binary number in the WO regis-
ter; how do I convert that to a hexadecimal number in the WO register?”
The answer is, “You don’t.” Although one could make a strong argument



that numbers in memory or in registers are represented in binary, it’s best
to view values in memory or in a register as abstract numeric quantities.
Strings of symbols like 128, 0x80, or 0b10000000 are not different numbers;
they are simply different representations for the quantity that people refer
to as “one hundred twenty-eight.” Inside the computer, a number is a num-
ber regardless of representation; the only time representation matters is
when you input or output the value in a human-readable form.

Pure assembly language has no generic print or write functions you
can call to display numeric quantities as strings on your console. Chapter 9
demonstrates how to write your own procedures to handle this process.
For the time being, the Gas code in this book relies on the C stdlib printf()
function to display numeric values. Consider Listing 2-1, which converts
various decimal values to their hexadecimal equivalents.

// Listing2-1.S
/!
// Displays some numeric values on the console
#include "aocaa.inc"
.data
// Program title, required by C++ code:

titleStr: .asciz "Listing 2-1"

// Format strings for three calls to printf():

fmtStrI: .asciz "i=%d, converted to hex=%x\n"
fmtStrl: .asciz "j=%d, converted to hex=%x\n"
fmtStrK: .asciz "k=%d, converted to hex=%x\n"

// Some values to print in decimal and hexadecimal form:

.align 2 // Be nice and word-align.
i: .dword 1
j: .dword 123
k: .dword 456789
savelR: .dword 0
Jtext
.align 2 // Code must be word-aligned.
.extern printf // printf is outside this code.

// Return program title to C++ program:
getTitle:

// Load address of "titleStr" into the X0 register (Xo holds
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// the function return result) and return back to the caller:

lea x0, titleStr
ret

// Here is the asmMain function:

.global asmMain
asmMain:
sub sp, sp, #64 // Magic instruction

// Save LR so we can return to C++ program:

lea X0, savelR
str 1r, [x0]

// Call printf three times to print the three values
// i, j, and k:

/1

// printf( "i=%d, converted to hex=%x\n", i, i );

O lea X0, fmtStrI
vparm2 i // Get parameter 2
vparm3 i // Get parameter 3
bl printf

// printf( "j=%d, converted to hex=%x\n", j, j );

® lea X0, fmtStr]
vparmz Jj
vparm3 j
bl printf

// printf( "k=%d, converted to hex=%x\n", k, k );

® lea X0, fmtStrK
vparm2 k
vparm3 k
bl printf

// Restore LR so we can return to C++ program:

lea X0, savelR

ldr 1r, [x0]

add sp, sp, #64 // Magic instruction
ret // Returns to caller

To simulate the C statement

printf( "i=%d, converted to hex=%x\n", i, i );

the code must load three parameters @ into X0, X1, and X2: the address of
the format string (fmtStrI) and the current value held in variable i (passed
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twice, in X1 and X2). Note that the vparm2 and vparm3 macros will load their
argument (i) into X1 and X2, respectively. In a similar vein, the code sets
up X0, X1, and X2 to print the values held in the j and k variables @ ©.

This decimal-to-hexadecimal conversion program uses the generic
c.cpp program from Chapter 1, along with the generic build shell script. You
can compile and run this program by using the following commands at the
command line:

$ ./build Listing2-1

$ ./Listing2-1

Calling Listing2-1:

i=1, converted to hex=1

j=123, converted to hex=7b
k=456789, converted to hex=6f855
Listing2-1 terminated

As you can see, this program displays the initialized values of i, j, and k
in decimal and hexadecimal form.

Data Organization

In pure mathematics, a value’s representation may require an arbitrary
number of bits. Computers, on the other hand, generally work with a spe-
cific number of bits. Common collections are single bits, groups of 4 bits
(called nibbles), 8 bits (bytes), 16 bits (half words, or hwords), 32 bits (words),
64 bits (double words, or dwords), 128 bits (quad words, or quwords), and more.
The following subsections describe how the ARM CPU organizes these
groups of bits and the typical values you can represent with them.

2.3.1 Bits

The smallest unit of data on a binary computer is a single bit. With one bit,
you can represent any two distinct items, such as 0 or 1, true or false, and right
or wrong. However, you are not limited to representing binary data types; you
could use a single bit to represent the numbers 723 and 1,245 or, perhaps, the
colors red and blue, or even the color red and the number 3,256. You can rep-
resent any two values with a single bit, but only two values with a single bit.

Different bits can represent different things. For example, you could use
one bit to represent the values 0 and 1, while a different bit could represent
the values true and false, and another bit could represent the two colors red
and blue. You can’t tell what a bit represents just by looking at it, though.

This illustrates the whole idea behind computer data structures: data
is what you define it to be. If you use a bit to represent a Boolean (true/false)
value, then that bit, by your definition, represents true or false. However, you
must be consistent. If you're using a bit to represent true or false at one point
in your program, you shouldn’t use that value to represent red or blue later.
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2.3.2 Nibbles

A nibbleis a collection of 4 bits. With a nibble, you can represent up to 16
distinct values, using the 16 possible unique combinations of those 4 bits:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

A nibble takes 4 bits to represent a single digit in binary-coded decimal
(BCD) numbers and hexadecimal numbers. In the case of hexadecimal
numbers, each of the values 0, 1,2, 3,4,5,6,7,8,9,A,B,C,D,E,and F
is represented with 4 bits. BCD uses 4 binary bits to represent each of the
10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) used in decimal numbers.

BCD requires 4 bits because you can represent only 8 different values
with 3 bits, and representing 10 values takes at least 4 bits. (The additional
6 values you can represent with 4 bits are never used in BCD representation.)
In fact, any 16 distinct values can be represented with a nibble, though hexa-
decimal and BCD digits are the primary items you’ll represent with a single
nibble.

2.3.3 Bytes

Without question, the most important data structure used by the ARM
microprocessor is the byte, which consists of 8 bits. Main memory and I/O
addresses on the ARM are all byte addresses. This means that the smallest
item that can be individually accessed by an ARM program is an 8-bit value.
To access anything smaller requires that you read the byte containing the
data and eliminate the unwanted bits. The bits in a byte are normally num-
bered from 0 to 7, as shown in Figure 2-1.

7 6 5 4 3 2 1 0

Figure 2-1: Bit numbering

Bit 0 is the LO bit, or least significant bit, and bit 7 is the HO bit, or most
significant bit, of the byte. I'll refer to any other bit by its number.



A byte contains exactly 2 nibbles, as shown in Figure 2-2.

7 6 5 4 3 2 1 0

S 5 [

HO nibble LO nibble

Figure 2-2: The 2 nibbles in a byte

Bits 0 to 3 compose the LO nibble, and bits 4 to 7 form the HO nibble.
Because a byte contains exactly 2 nibbles, byte values require two hexa-
decimal digits.

Because a byte contains 8 bits, it can represent 28 (256) values. Generally,
assembly programmers use a byte to represent numeric values in the range
0 through 255, signed numbers in the range —128 through +127 (see sec-
tion 2.6, “Signed and Unsigned Numbers,” on page 65), character codes,
and other special data types requiring no more than 256 values. Many data
types have fewer than 256 items, so 8 bits is often sufficient.

Because the ARM is a byte-addressable machine, it’s more efficient to
manipulate a whole byte than an individual bit or nibble. That means it’s
more efficient to use a whole byte to represent data types that require 2 to
256 items, even if fewer than 8 bits would suffice.

Probably the most important use for a byte is holding a character value.
Characters typed at the keyboard, displayed on the screen, and printed
on the printer all have numeric values. To communicate with the rest of
the world, PCs typically use a variant of the American Standard Code for
Information Interchange (ASCII) character set or the Unicode character
set. The ASCII character set has 128 defined codes. (Because the Unicode
character set has far more than 256 characters, a single byte is insufficient
to represent all the Unicode characters; see section 2.17, “Gas Support for
the Unicode Character Set,” on page 102 for more.)

Bytes are also the smallest variable you can create in a Gas program. To
create an arbitrary byte variable, use the .byte data type, as follows:

.data
byteVar: .byte o0

The byte data type holds any 8-bit value: small signed integers, small
unsigned integers, characters, and the like. It’s up to you to keep track of
the type of object you’ve put into a byte variable.

2.3.4 Half Words

A half word is a group of 16 bits. The bits in a half word are numbered from
0 to 15, as Figure 2-3 shows. As with the byte, bit 0 is the LO bit. For half
words, bit 15 is the HO bit. When referencing any other bit in a half word,
I'll use its bit position number.
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151413121109 8 7 6 5 4 3 2 1 0

Figure 2-3: The bit numbers in a half word

A half word contains exactly 2 bytes, as shown in Figure 2-4. Bits 0 to 7
form the LO byte, and bits 8 to 15 form the HO byte.

15 14 13 12 11 10 9

_!lll!llJDﬂﬂJEIﬂﬂ

HO byte LO byte

Figure 2-4: The 2 bytes in a half word
A half word also contains 4 nibbles, as shown in Figure 2-5.

151413121109 8 7 6 5 4 3 2 1 0

N [

Nibble 3 Nibble 2 Nibble 1 Nibble 0
HO nibble LO nibble

Figure 2-5: The nibbles in a half word

With 16 bits, you can represent 2'° (65,536) values. These could be the
values in the range 0 to 65,535 or, as is usually the case, the signed values
-32,768 to +32,767, or any other data type with no more than 65,536 values.

The two major uses for half words are short signed integer values and
short unsigned integer values. Unsigned numeric values are represented by
the binary value corresponding to the bits in the half word. Signed numeric
values use the two’s complement form for numeric values (see section 2.6,
“Signed and Unsigned Numbers,” on page 65).

As with bytes, you can also create half-word variables in a Gas program.
To create an arbitrary half-word variable, just use the .hword data type, as
follows:

.data
hw: .hword o0

This defines a 16-bit variable (hw) initialized with 0.

2.3.5 Words

A word quantity is 32 bits long, as shown in Figure 2-6.

24 23 16 15 8 7 0

Figure 2-6: The bit numbers in a word
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Naturally, this word can be divided into a HO half word and a LO half
word, 4 bytes, or 8 nibbles, as shown in Figure 2-7.

31 24 23 ]6 15
JAN Y E[EIZEEEEEED_EED_
HO half word LO half word
24 23 16 15 0
rrrrrrrr mrrrrrrr [ 1]
Byte 3 Byte 2 Byte 1 By’re 0
HO byte LO byte
24 23 1615

[E[[E[[[![EWEEETEEE[[E[[!E[FE[[T

Nibble 7 Nibble 6 Nibble 5 Nibble 4 Nibble 3 Nibble 2 Nibble 1 Nibble 0
HO nibble LO nibble

Figure 2-7: The nibbles, bytes, and half words in a word

Words can represent all kinds of things. You’ll commonly use them
to represent 32-bit integer values (which allow unsigned numbers in the
range 0 to 4,294,967,295 or signed numbers in the range —2,147,483,648 to
+2,147,483,647); 32-bit floating-point values also fit into a word.

You can create an arbitrary word variable by using the .word declara-
tion, as in the following example:

.data
W: .word O

This defines a 32-bit variable (w) initialized with 0.

2.3.6 Double Words and Quad Words

Double-word (64-bit) values are also important because 64-bit integers, point-
ers, and certain floating-point data types require 64 bits. In a similar vein,
quad-word (128-bit) values are important because the ARM Neon instruc-
tion set can manipulate 128-bit values. The aoaa.inc include file includes the
.dword and .qword macros, which allow Gas to declare 64- and 128-bit values
by using the dword and qword types:

.data
dw:  .dword O
gw:  .qword O

Without aoaa.inc, the standard Gas directives are .quad (for dwords)
and .octa (for qwords). This book uses .dword and .qword because they are
more descriptive.
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Technically, Gas does support .dword. 1t’s the macOS assembler (Clang assembler)
that doesn’t support .dword and requires the macro in the aoaa.inc header file.

You cannot directly manipulate 128-bit integer objects by using standard
instructions like mov, add, and sub because the standard ARM integer registers
process only 64 bits at a time. In Chapter 8, you’ll see how to manipulate
these extended-precision values; Chapter 11 describes how to directly manipu-
late qword values by using SIMD instructions.

Logical Operations on Bits

Although you can represent numeric values with bytes, half words, words,
and so on, these are also groups of bits that you can manipulate at the bit
level. This section describes the operations on individual bits and how to
operate on these bits in larger data structures. You will typically do four log-
ical operations (Boolean functions) on hexadecimal and binary numbers:
AND, OR, XOR (exclusive-OR), and NOT.

2.4.1 AND

The AND operation is dyadic, meaning it accepts exactly two operands of
individual binary bits, as shown here:

0 and 0 =
0 and 1
1 and 0
1and 1

= O O O

Many texts call the AND operation a binary operation. The term dyadic
means the same thing and avoids confusion with the binary numbering
system.

A truth table, which takes the form shown in Table 2-2, is a compact way
to represent the AND operation.

Table 2-2: AND Truth Table

AND 0 1
0 0 0
1 0 1

Truth tables work just like the multiplication tables you may have
encountered in school. The values in the left column correspond to the
left operand of the AND operation. The values in the first row correspond
to the right operand of the AND operation. The value located at the inter-
section of the row and column (for a particular pair of input values) is the
result of ANDing those two values together.



In English, the AND operation is, “If the first operand is 1 and the sec-
ond operand is 1, the result is 1; otherwise, the result is 0.” You could also
state this as, “If either or both operands are 0, the resultis 0.”

You can use the AND operation to force a 0 result: if one of the oper-
ands is 0, the result is always 0 regardless of the other operand. In Table 2-2,
for example, the row labeled with a 0 input contains only 0s, and the col-
umn labeled with a 0 contains only 0s. Conversely, if one operand contains
a 1, the result is exactly the value of the second operand. These results of
the AND operation are important, particularly when you want to force bits
to 0. This chapter investigates these uses of the AND operation in section 2.5,
“Logical Operations on Binary Numbers and Bit Strings,” on the next page.

24.2 OR

The OR operation, which is also dyadic, is defined as follows:
Oor0=0

Oor1=1

l1oro=1

lorl=1

Table 2-3 shows the truth table for the OR operation.

Table 2-3: OR Truth Table

OR 0 1
0 0 1
1 1 1

Colloquially, the OR operation is, “If the first operand or the second
operand (or both) is 1, the result is 1; otherwise, the result is 0.” This is also
known as the inclusive-OR operation.

If one of the operands to the OR operation is a 1, the result is always 1
regardless of the second operand’s value. If one operand is 0, the result is
always the value of the second operand. As with the AND operation, this is
an important side effect of the OR operation that will prove quite useful.

There is a difference between this form of the inclusive-OR operation
and the standard English meaning. Consider the sentence “I am going
to the store, orI am going to the park.” Such a statement implies that the
speaker is going to the store or to the park, but not to both places. This col-
loquial use of oris analogous not to the inclusive-OR but to the exclusive-OR
operation.

2.4.3 XOR

The XOR (exclusive-OR) operation is also dyadic. Its definition is as follows:

0
1

0 xor O
0 xor 1
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1
0

1 xor O
1 xor 1

Table 2-4 shows the truth table for the XOR operation.

Table 2-4: XOR Truth Table

XOR 0 1
0 0 1
1 1 0

In English, the XOR operation is, “If the first operand or the second
operand, but not both, is 1, the result is 1; otherwise, the resultis 0.”

If one of the operands to the exclusive-OR operation is a 1, the result
is always the inverse of the other operand; that is, if one operand is 1, the
result is 0 if the other operand is 1, and the result is 1 if the other operand
is 0. If the first operand contains a 0, the result is exactly the value of the
second operand. This feature lets you selectively invert bits in a bit string.

2.4.4 NOT

The NOT operation is monadic, meaning it accepts only one operand:
not 0 =1

not 1 =0

Table 2-5 shows the truth table for the NOT operation.

Table 2-5: NOT Truth Table
NOT 0 1
1 0

The NOT operation inverts the value of the input bit.

Logical Operations on Binary Numbers
and Bit Strings

The previous section defined the logical functions for single-bit operands.
Because the ARM uses groups of 8, 16, 32, 64, or more bits, this section
extends the definition of these functions to deal with more than 2 bits.

Logical functions on the ARM operate on a bit-by-bit (or bitwise) basis.
Given two values, these functions operate on bit 0 of each value, produc-
ing bit 0 of the result; then they operate on bit 1 of the input values, pro-
ducing bit 1 of the result, and so on. For example, if you want to compute
the AND of the following two 8-bit numbers, you would perform the AND
operation on each column independently of the others:



0b1011_0101
0b1110_1110

0b1010_0100

You may apply this bit-by-bit calculation to the other logical functions
as well. To perform a logical operation on two hexadecimal numbers, first
convert them to binary.

The ability to force bits to 0 or 1 by using the AND or OR operations
and the ability to invert bits by using the XOR operation are very important
when working with strings of bits (for example, binary numbers). These
operations let you selectively manipulate certain bits within a bit string
while leaving other bits unaffected.

For example, if you have an 8-bit binary value X and want to guarantee
that bits 4 to 7 contain 0s, you could AND the value Xwith the binary value
0000_1111. This bitwise AND operation would force the HO 4 bits to 0 and
pass the LO 4 bits of Xunchanged. Likewise, you could force the LO bit of
Xto 1 and invert bit 2 of X by ORing Xwith 0000_0001 and then XORing
Xwith 0000_0100.

Using the AND, OR, and XOR operations to manipulate bit strings in
this fashion is known as masking bit strings, because you can use certain
values (1 for AND, 0 for OR/XOR) to mask out or mask in certain bits from
the operation when forcing bits to 0, 1, or their inverse. The term masking
comes from painting. Painters use tape (masking tape) and paper to cover
(mask out) those portions of an object they want to protect while painting.
In a similar sense, programmers use 1s (with the AND operation) in bit
positions they want to protect when forcing bits to 0, and they use Os (with
the OR operation) to mask bit positions they want to protect when forcing
bits to 1.

The ARM-64 CPUs support five instructions that apply these bitwise
logical operations to their operands: and, ands, orr, eor, and mvn. The and,
ands, orr, and eor instructions use the same syntax as the add and sub instruc-
tions you learned about in Chapter 1:

and dest, source, ., source
ands dest, source, ., source
orr dest, source,, ., source
eor dest, source source

right

/] Affects the flags

right

right

// XOR operation

left? right

These operands have the same limitations as the add operands. Speci-
fically, the source, ., operand has to be a register operand, the source,, .
operand must be a register or a constant, and the dest operand must be a
register. The operands must also be the same size. You’ll see extensions to
this syntax in section 2.19, “Operand2,” on page 106.

The orr and eor instructions do not have versions with the s suffix.
You’ll have to work around this bizarre limitation in the instruction set if
you would like to test the flags after these instructions.
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The immediate constant (source,, gt operand) has a completely different
set of restrictions than the immediate constants for add and sub. For more
information on what constitutes legal immediate constants, see section 2.19,
“Operand?2,” on page 106.

These instructions compute the obvious bitwise logical operation via
the following equation:

dest = source; q operator source,;

The ARM doesn’t have an actual not instruction. Instead, a variant of
the mov instruction does the honors: mvn (move and not). This instruction
takes the following form:

mvn dest, source

Note that this instruction does not provide a form with an s suffix that
updates the condition code flags after its execution.
This instruction computes the following result:

dest = not( source )

The operands must both be registers.
The program in Listing 2-2 inputs two hexadecimal values from the
user and calculates their logical AND, OR, XOR, and NOT.

// Listing2-2.S
/!
// Demonstrate AND, OR, XOR, and NOT operations.

#include "aoaa.inc"

.data
leftOp: .dword oxfofofof
rightOp1: .dword oxfofofofo
rightOp2: .dword 0x12345678
result: .dword 0
savelR: .dword 0
titleStr: .asciz  "Listing 2-2"
fmtStri: .asciz  "%Ix AND %1x = %1x\n"
fmtStr2: .asciz "%1x OR %lx = %Ix\n"
fmtStr3: .asciz "%1x XOR %1x = %Ix\n"
fmtStra: .asciz = "NOT %lx = %1x\n"
.text

.align 2 // Make code word-aligned.
.extern printf

// Return program title to C++ program:



.global getTitle
getTitle:

// Load address of "titleStr" into the X0 register (X0 holds the
// function return result) and return back to the caller:

lea x0, titleStr
ret

// Here is the "asmMain" function.

.global asmMain
asmMain:

// "Magic" instruction offered without explanation at this point:
sub sp, sp, 64
// Save LR so we can return to C++ code:

lea X0, savelR
str 1r, [x0]

// Demonstrate the AND operation:

0 lea X0, leftOp
ldr x1, [x0]
lea X0, rightOp1
ldr x2, [x0]
and x3, x1, x2 // Compute left AND right.
lea X0, result
str x3, [x0]

lea x0, fmtStra // Print result.
vparm2 leftOp

vparm3 rightOp1

vparm4 result

bl printf

// Demonstrate the OR operation:

8 lea X0, leftOp
ldr x1, [x0]
lea X0, rightOp1
ldr x2, [x0]
orr X3, x1, x2 // Compute left OR right.
lea X0, result
str x3, [x0]

lea x0, fmtStr2 // Print result.
vparm2 leftOp

vparm3 rightOp1

vparm4 result

bl printf
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// Demonstrate the XOR operation:

© lea x0, leftOp
ldr x1, [x0]
lea x0, rightOp1
ldr x2, [x0]
eor X3, x1, x2 // Compute left XOR right.
lea X0, result
str x3, [x0]

lea x0, fmtStr3 // Print result.
vparm2 leftOp

vparm3 rightOp1

vparm4 result

bl printf

// Demonstrate the NOT instruction:

0 lea x0, leftOp
ldr x1, [x0]

mvn wl, wi // W1 = not W1 (32 bits)
lea X0, result
str x1, [x0]

lea x0, fmtStr4 // Print result.
vparm2 leftOp
vparm3 result

bl printf
O lea x0, rightOp1
ldr x1, [x0]
mvn wl, wi // W1 = not W1 (32 bits)
lea X0, result
str x1, [x0]

lea x0, fmtStr4 // Print result.
vparm2 rightOp1

vparm3 result

bl printf

0O lea X0, rightOp2
ldr x1, [x0]

mvn wl, wi // Wi = not W1
lea X0, result
str x1, [x0]

lea X0, fmtStr4 // Print result.
vparm2 rightOp2

vparm3 result

bl printf

// Another "magic" instruction that undoes the effect of

// the previous one before this procedure returns to its
// caller:
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add sp, sp, #64
// Restore LR so we can return to C++ code:
lea X0, savelR

ldr 1r, [x0]
ret // Returns to caller

The code computes the logical AND @, OR @, and XOR © of left0p
and rightOp1. It then prints the result. The code next computes the NOT of
leftop @, rightop1 @, and rightOp2 ® and prints their results.

Here’s the build command and output for the program in Listing 2-2:

$ ./build Listing2-2
$ ./Listing2-2
Calling Listing2-2:

fofofof AND fofofofo = 0
fofofof OR fofofofo = FFFFFFFF
fofofof XOR fofofofo = FFFFFFFF

NOT fofofof = fofofofo
NOT fofofofo = fofofof
NOT 12345678 = edcba987
Listing2-2 terminated

As you can see, the AND operation clears bits, the OR operation sets
bits, and the XOR and NOT operations invert bits.

Signed and Unsigned Numbers

Thus far, this chapter has treated binary numbers as unsigned values. The
binary number 0 ... 00000 represents 0, 0 ... 00001 represents 1,0 . . .
00010 represents 2, and so on toward infinity. With n bits, you can represent
2" unsigned numbers.

What about negative numbers? If you assign half of the possible combi-
nations to the negative values, and half to the positive values and 0, with »
bits you can represent the signed values in the range —2"! to +2"! — 1. This
means you can represent the negative values —128 to —1 and the nonnega-
tive values 0 to 127 with a single 8-bit byte. With a 16-bit half word, you can
represent values in the range —32,768 to +32,767. With a 32-bit word, you
can represent values in the range —2,147,483,648 to +2,147,483,647.

In mathematics and computer science, the complement method encodes
negative and nonnegative (positive plus zero) numbers into two equal sets
in such a way that they can use the same algorithm or hardware to perform
addition and produce the correct result regardless of the sign.

The ARM microprocessor uses (wo’s complement notation to represent
signed integers. In this system, the HO bit of a number is a sign bit: the
integers are divided into two equal sets. If the sign bit is 0, the number is
positive (or zero); if the sign bit is 1, the number is negative (taking a com-
plement form, which I'll describe in a moment).
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Here are some examples of 16-bit positive and negative numbers:

0x8000 is negative because the HO bit is 1.

0x100 is positive because the HO bit is 0.

Ox7FFF is positive.

OxFFFF is negative.

OxFFF is positive.

If the HO bit is 0, the number is positive (or zero) and uses the stan-
dard binary format. If the HO bit is 1, the number is negative and uses the
two’s complement form: the magic form that supports addition of negative
and nonnegative numbers with no special hardware.

You convert a positive number to its negative two’s complement form
with the following algorithm steps:

1. Invert all the bits in the number; that is, apply the NOT function.
2. Add 1 to the inverted result and ignore any carry out of the HO bit.

This produces a bit pattern that satisfies the mathematical definition
of the complement form. In particular, adding negative and nonnegative
numbers using this form produces the expected result.

For example, to compute the 8-bit equivalent of —5:

1. Write 5 in binary: 0000_0101.
2. Invert all the bits: 1111_1010.
3. Add 1 to obtain the result: 1111_1011.

If you take -5 and perform the two’s complement operation on it, you
get your original value, 0000_0101, back again:

1. Take the two’s complement for —5: 1111_1011.
2. Invert all the bits: 0000_0100.
3. Add 1 to obtain the result 0000_0101.

If you add +5 and -5 together (ignoring any carry out of the HO bit),
you get the expected result of 0:

0b1111 1011 Take the two's complement for -5.
+ 0b0000_0101 Invert all the bits and add 1.
(1) 0boo00_0000 Sum is zero, if you ignore carry.

The following examples provide some positive and negative 16-bit
signed values:

Ox7FFF: +32,767, the largest 16-bit positive number
0x4000: +16,384
0x8000: -32,768, the smallest 16-bit negative number



To convert the preceding numbers to their negative counterpart (that
is, to negate them), do the following:

OX7FFF:

X04000:

0x8000:

0b0111 1111 1111 1111
0b1000_0000_0000_0000
0b1000_0000_0000_0001

0b0100_0000_0000_0000
0b1011 1111 1111 1111
0b1100_0000_0000_0000

0b1000_0000_0000_0000
0bo111 1111 1111 1111
0b1000_0000_0000_0000

+32,767
Invert all the bits (8000h).
Add 1 (8001h or -32,767).

16,384
Invert all the bits (OBFFFh).
Add 1 (oCoooh or -16,384).

-32,768
Invert all the bits (7FFFh).
Add 1 (8000h or -32,768).

0x8000 inverted becomes 0x7FFF. After adding 1, you obtain 0x8000!
Wait, what’s going on here? —(-32,768) is —32,768? Of course not. But the
value +32,768 cannot be represented with a 16-bit signed number, so you
cannot negate the smallest negative value.

Usually, you won’t need to perform the two’s complement operation by
hand. The ARM microprocessor provides an instruction, neg (negate), that
performs this operation for you:

neg dest, source
negs dest, source // Sets condition code flags

This instruction computes dest = -source, and the operands must be
registers. Because this is a signed integer operation, it only makes sense to
operate on signed integer values. Listing 2-3 demonstrates the two’s comple-
ment operation and the neg instruction on signed 32-bit integer values.

// Listing2-3.S

//

// Demonstrates two's complement operation and input of
// numeric values

#include "aoaa.inc"

.equ maxLen, 256
.data
titleStr: .asciz "Listing 2-3"
prompti: .asciz "Enter an integer between 0 and 127:"
fmtStral: .asciz "Value in hexadecimal: %x\n"
fmtStr2: .asciz "Invert all the bits (hexadecimal): %x\n"
fmtStr3: .asciz "Add 1 (hexadecimal): %x\n"
fmtStr4: .asciz "Output as signed integer: %d\n"
fmtStrs: .ascii "Negate again and output as signed integer:"
.asciz " %d\n"
fmtStr6: .asciz "Using neg instruction: %d\n"
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intValue: .dword 0
savelR: .dword 0

// The following reserves 256 bytes of storage to hold a string
// read from the user.

® input: .space maxLen, 0
.text
.align 2
.extern printf
.extern atoi
® .extern readline

// Return program title to C++ program:

.global getTitle
getTitle:

lea X0, titleStr

ret

// Here is the asmMain function:

.global asmMain
asmMain:

// "Magic" instruction offered without explanation at this point:
sub sp, sp, #128
// Save LR so we can return to C++ program:

lea X0, savelR
str 1r, [x0]

// Read an unsigned integer from the user: this code will blindly
// assume that the user's input was correct. The atoi function

// returns zero if there was some sort of error on the user

// input. Later chapters in AoAA will describe how to check for
// errors from the user.

lea X0, prompti
bl printf

lea X0, input
mov x1, #maxLen
bl readlLine

// Call C stdlib strtol function:

//
// i = strtol( str, NULL, 10 )
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® lea
mov
mov
bl
lea
str

x0, input
X1, XzZr

x2, #10
strtol

x1, intValue
X0, [x1]

// Print the input value (in decimal) as a hexadecimal number:

lea
vparm2
bl

x0, fmtStri
intValue
printf

// Perform the two's complement operation on the input number.
// Begin by inverting all the bits:

lea
ldr
mvn
str
lea
vparm2
bl

x1, intValue

X0, [x1]

X0, X0 // Not Xo

X0, [x1] // Store back into intValue.
X0, fmtStr2

intValue

printf

// Invert all the bits and add 1 (inverted value is in intValue):

lea
ldr
add
str
lea
vparm2
bl

lea
vparm2

bl

// Negate the value

X0, intValue

x1, [x0]

x1, x1, #1

x1, [x0] // Store back into intValue.
X0, fmtStr3

intValue

printf

x0, fmtStr4 // Output as integer rather
intValue // than hexadecimal.

printf

and print as a signed integer. Note that

// intValue already contains the negated value, so this code
// will print the original value:

lea
ldr
mvn
add
str
lea
vparm2
bl

// Negate the value

lea
ldr

X0, intValue
x1, [x0]

X1, x1

x1, x1, #1
x1, [x0]

X0, fmtStrs
intValue
printf

using the neg instruction:

x0, intValue
x1, [x0]
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neg x1, x1

str x1, [x0]
lea X0, fmtStr6
vparm2 intValue
bl printf

// Another "magic" instruction that undoes the effect of the
// previous one before this procedure returns to its caller:

lea x0, savelR

ldr 1r, [x0]

add sp, sp, #128

ret // Returns to caller

The .space directive @ is new in this chapter. This directive reserves a
buffer (array of bytes). The first operand specifies the number of bytes to
reserve, and the second operand specifies the value to assign to each byte
in the buffer. This particular directive sets aside 256 bytes to hold a line of
text to be input by the user. We’ll discuss arrays and memory allocation for
arrays further in Chapter 4.

The readLine function @ is supplied by the C++ code in the c.¢pp source
file. This function expects two parameters: the address of a buffer in the X0
register and a maximum input count in the X1 register (including room for
a zero-terminating byte). When called, this function will read a line of text
from the standard input device and place those characters in the specified
buffer (zero-terminating, and truncating if the input is greater than the
value passed in X1).

The strtol function @ is a C stdlib function that will convert a string of
characters, presumably containing numeric digits, into long integer form
(64 bits). This function expects three arguments: X0 contains the address
of a buffer (containing the string to convert); X1 points at the end of the
numeric string, or is ignored if it contains NULL (0); and X2 contains the
radix (base) for the conversion. The function returns the converted value
in the X0 register.

Here’s the build command and program output for Listing 2-3 (I sup-
plied 123 as the input for this particular run of the program):

$ ./build Listing2-3

$ ./Listing2-3

Calling Listing2-3:

Enter an integer between 0 and 127:123
Value in hexadecimal: 7b

Invert all the bits (hexadecimal): ffffff84
Add 1 (hexadecimal): ffffff8s

Output as signed integer: -123

Negate again and output as signed integer: 123
Using neg instruction: -123

Listing2-3 terminated

As you can see, this program reads an integer value in decimal format
from the user, inverts the bits, adds 1 (the two’s complement operation),
and then displays the result.



2.7

Sign Extension and Zero Extension

Converting a small two’s complement value to a larger number of bits can
be accomplished via sign extension operations.

To extend a signed value from a certain number of bits to a greater
number of bits, copy the sign bit into all the additional bits in the new
format. For example, to sign-extend an 8-bit number to a 16-bit number,
copy bit 7 of the 8-bit number into bits 8 to 15 of the 16-bit number. To
sign-extend a 16-bit half word to a word, copy bit 15 into bits 16 to 31 of the
word. Likewise, to sign-extend a 32-bit word into a 64-bit double word, copy
bit 31 from the word through the upper 32 bits of the double word.

You must use sign extension when manipulating signed values of vary-
ing lengths. For example, to add a signed byte quantity to a word quantity,
you must sign-extend the byte quantity to a word before adding the two
values. Other operations (multiplication and division, in particular) may
require a sign extension to 32 bits. Table 2-6 provides several examples of
sign extension.

Table 2-6: Examples of Sign Extension

8 bits 16 bits 32 bits

0x80 OxFF80 OxFFFFFF80
0x28 0x0028 0x00000028
Ox%A OxFFQA OxFFFFFFQA
Ox7F 0Ox007F 0x0000007F
— 0x1020 0x00001020
— 0x8086 OxFFFF8086

To extend an unsigned value to a larger one, you must zero-extend the
value. Zero extension is easy—just store a zero into the HO byte(s) of the
larger operand. For example, to zero-extend the 8-bit value 0x82 to 16 bits,
prepend a zero to the HO byte, yielding 0x0082. Table 2-7 provides several
zero-extension examples.

Table 2-7: Examples of Zero Extension

8 bits 16 bits 32 bits

0x80 0x0080 0x00000080
0x28 0x0028 0x00000028
Ox%A 0x00%A 0x0000009A
Ox7F 0Ox007F 0x0000007F
— 0x1020 0x00001020
— 0x8086 0x00008086
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You can zero-extend to double or quad words by using this same
approach.

Sign Contraction and Saturation

Sign contraction, converting a value with a certain number of bits to the iden-
tical value with a fewer number of bits, is a little more difficult. You cannot
always convert a given n-bit number to an m-bit number if m < n. For exam-
ple, consider the value —448. As a 16-bit signed number, its hexadecimal
representation is 0xFE40. The magnitude of this number is too large for an
8-bit value, so you cannot sign-contract it to 8 bits; doing so would create an
overflow condition.

To properly sign-contract a value, the HO bits to discard must all con-
tain either 0 or 1, and the HO bit of your resulting value must match every
bit you’ve removed from the number. Here are some examples (16 bits to
8 bits):

0xFF80 can be sign-contracted to 0x80.
0x0040 can be sign-contracted to 0x40.
0xFE40 cannot be sign-contracted to 8 bits.
0x0100 cannot be sign-contracted to 8 bits.

If you must convert a larger object to a smaller object, and you're will-
ing to live with loss of precision, you can use saturation. To convert a value
via saturation, copy the larger value to the smaller value if it is not outside
the range of the smaller object. If the larger value is outside the range of
the smaller value, clip the value by setting it to the largest (or smallest) value
within the range of the smaller object.

For example, when converting a 16-bit signed integer to an 8-bit signed
integer, if the 16-bit value is in the range —128 to +127, you copy the LO byte
of the 16-bit object to the 8-bit object. If the 16-bit signed value is greater
than +127, you clip the value to +127 and store +127 into the 8-bit object.
Likewise, if the value is less than —128, you clip the final 8-bit object to —128.

Although clipping the value to the limits of the smaller object results
in loss of precision, this is sometimes acceptable because the alternative is
to raise an exception or otherwise reject the calculation. For many applica-
tions, such as audio or video processing, the clipped result is still recogniz-
able, so the conversion is a reasonable choice.

Loading and Storing Byte and Half-Word Values

Memory on the ARM is byte-addressable. Up to this point, however, all
loads and stores in this book have been either word or dword operations
(determined by the 1dr/str register’s size). Fear not: the ARM CPU provides
instructions for loading and storing bytes, half words, words, double words,
and even quad words.



The generic 1dr instruction takes the following forms:

ldr req, mem
ldrb  reg,,, mem
ldrsb reg, mem
ldrh  reg,,, mem
ldrsh reg, mem
ldrsw reg,,, mem

The reg,, operands can be only 32-bit registers, and the reg,, operand
can be only a 64-bit register. The reg (no subscript) operands can be 32- or
64-bit registers.

The 1drb and 1ldrsb instructions load a byte from memory into the
destination register. Since the register is always 32 or 64 bits wide, the byte
from memory must be extended in some fashion when it is loaded into
the register. The 1drb instruction zero-extends the byte from memory
into the register. The 1ldrsb instruction sign-extends the memory byte into
the register. Zero extension works only with 32-bit registers, but the 1drb
and ldrh instructions will automatically zero out the HO 32 bits of the
corresponding 64-bit register. If you sign-extend a byte or half word into a
32-bit register, this will zero out the HO 32 bits of the corresponding 64-bit
register. Specify a 64-bit register if you want to sign-extend the byte or half
word throughout the 64-bit register.

The 1drh and 1ldrsh instructions similarly load and extend a half-word
value from memory by using zero extension (ldrh) and sign extension
(1drsh). As before, the ldrh instruction accepts a 32-bit register, but it will
automatically zero-extend throughout the full 64 bits of the register.

The ldrsw instruction will fetch a 32-bit signed integer from memory
and sign-extend it into the 64-bit register specified as the destination.

No explicit instruction zero-extends from 32 to 64 bits; the standard 1dr
instruction, with a 32-bit register operand, will automatically do this.

Note that mem operands consisting only of a label (PC-relative address-
ing) are valid only for the ldr and ldrsw instructions. The other instructions
allow only register-based addressing modes (for example, [X0]).

The ldr{size} instructions work well for loading and extending byte,
half-word, and word values from memory. If the value to extend is sitting in
another register, you don’t want to have to store that register in memory, so
you can extend the value into a different register. Fortunately, the ARM pro-
vides a set of instructions, sxtb, sxth, and sxtw, specifically for this situation:

sxtb reg,,,, reg,,. // Sign-extends LO byte of reg
sxth reg,,.., reg.,, // Sign-extends LO half word of reg_.
sxtw reg,,.., reg.,. // Sign-extends LO word of reg

The sxtw instruction requires a 64-bit destination register. The sxtb, sxth,
and sxtw instructions require 32-bit source registers, regardless of the desti-
nation register size.
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The ARM does not provide any explicit instructions for zero-extending
one register into another. However, you can use some tricks to achieve the
same result. Whenever you move data from one register into a 32-bit regis-
ter, the ARM automatically zeros out the HO 32 bits of the corresponding
destination 64-bit register. You can use this behavior to zero-extend any
smaller value to a larger value.

The following instruction copies Wm into Wn and clears the HO 32 bits
of Xn in the process:

mov wn, wn // Zero-extends 32-bit Wm into Xn

The following instruction ANDs the value in Wm with OxFFFF and then
stores the result into Wn, zero-extending throughout the HO bits of Xn:

and wn, wm, #OXFFFF // Zero-extends 16 bits to 64

And, finally, the following instruction zero-extends the LO byte of Wi
through Xn:

and wn, wm, #OxFF // Zero-extends 8 bits to 64

Storing bytes and half words to memory is much simpler than loading.
The ARM doesn’t support contraction or saturation while storing to mem-
ory. Therefore, the byte and half-word store instructions take the following
two forms:

strb reg,,, mem
strh reg,,, mem

The strb instruction stores the LO byte of the specified register to mem-
ory. The strh instruction stores the LO half word of the register to memory.
The register must be a 32-bit register (if you want to store the LO byte or
half word of a 64-bit register, simply specify the 32-bit register instead; this
does the same thing). Note that mem must be a register-based addressing
mode (these instructions do not allow the PC-relative addressing mode).

Control-Transfer Instructions

The assembly language examples thus far have limped along without mak-
ing use of conditional execution, or the ability to make decisions while execut-
ing code. Indeed, except for the bl and ret instructions, I haven’t covered
any ways to affect the straight-line execution of assembly code. However, to
provide meaningful examples for the remainder of this book, you’ll soon
need the ability to conditionally execute sections of code. Taking a brief
detour from load and store instructions, this section provides a brief intro-
duction to the subject of conditional execution and transferring control to
other sections of your program.



2.10.1 Branch

Perhaps the best place to start is with a discussion of the ARM uncondi-
tional control-transfer instruction: the b instruction. The b instruction takes
the form

b statementlabel

where statementLabel is an identifier attached to a machine instruction in
your .text section. The b instruction immediately transfers control to the
statement prefaced by the label. This is semantically equivalent to a goto
statement in an HLL.

Here is an example of a statement label in front of a mov instruction:

stmtLbl: mov x0, #55

Like all Gas symbols, statement labels have an address associated with
them: the memory address of the machine instruction following the label.

Statement labels don’t have to be on the same physical source line as a
machine instruction. Consider the following example:

anotherlLabel:
mov x0, #55

This example is semantically equivalent to the previous one. The value
(address) bound to anotherlLabel is the address of the machine instruction
following the label. In this case, it’s still the mov instruction, even though
that mov instruction appears on the next line (it still follows the label with-
out any other Gas statements that would generate code occurring between
the label and the mov statement).

B IS FOR BAD

The letter b is an incredibly bad choice for an instruction mnemonic. The fact
that it looks like a single-letter variable name, most of the time, makes reading
both code and this book more difficult. For a while, | considered creating the
following CPP macro to allow me to use bra rather than b in this book:

#define bra b

Ultimately, my concern that some people would prefer to use the “official” mne-
monic prevented me from doing this. However, you can use this trick on your
own to write more readable code.

The ARM supports a special version of the conditional branch: b.al (branch
always). This instruction is an unconditional branch to the target location. The

main drawback to using b.al is that it is limited to a £1MB range (like the other
(continued)
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conditional branches), while the b instruction supports a +128MB range. How-
ever, the £1MB range is sufficient for most cases. This book favors using the b.al
mnemonic because it is more readable. If you prefer, feel free to substitute b.al
for b in your own code (or, better yet, use the bra macro | described).

. J

Technically, you could also jump to a procedure label instead of a state-
ment label. However, the b instruction does not set up a return address; if
the procedure executes a ret instruction, the return location may be unde-
fined. Chapter 5 explores return addresses in greater detail.

Because b is a poor name for an instruction mnemonic (as we just
discussed in “B Is for Bad”), this book will use the b.al instruction when
branching to code within the current source file and reserve b for those
rare instances when branching to code outside a +1MB range.

2.10.2 Instructions That Affect the Condition Code Flags

When presenting the add, sub, and, orr, eor, and neg instructions, I pointed
out that they typically take two forms:

instr  operands
instrs operands // Only adds, subs, ands, and negs

The form with the s suffix (adds, for example) will update the condi-
tion code flags in the PSTATE register after the instruction completes. For
example, the adds and subs instructions will do the following:

e Set the carry flag if an unsigned overflow occurs during the arithmetic
operation and clear it otherwise.

e Set the overflow flag if a signed overflow occurs.
e Set the zero flag if the operation produces a zero result.

e Set the negative (sign) flag if the operation produces a negative result
(HO bit is set).

While not all instructions support the s suffix, many that perform some
sort of calculation will allow this suffix. By allowing you to select which
instructions affect the flags, the ARM CPU allows you to preserve the con-
dition codes across the execution of some instructions whose effect on the
flags you want to ignore.

As their name suggests, these condition codes allow you to test for cer-
tain conditions and conditionally execute code based on those tests. The
next section describes how you can test the condition code flags and make
decisions based on their settings.

76 Chapter 2



2.10.3 Conditional Branch

Although the b.al/b instruction is indispensable in assembly language
programs, it doesn’t provide any ability to conditionally execute sections of
code—hence the name unconditional branch. Fortunately, the ARM CPUs
provide a wide array of conditional branch instructions that allow conditional
execution of code.

These instructions test the condition code bits in the PSTATE register
to determine whether a branch should be taken. There are four condition
code bits in the PSTATE register that these conditional jump instructions
test: the carry, sign, overflow, and zero flags.

The ARM CPUs provide eight instructions that test each of these four
flags, as shown in Table 2-8. The basic operation of the conditional jump
instructions is to test a flag to see whether itis set (1) or clear (0) and
branch to a target label if the test succeeds. If the test fails, the program
continues execution with the next instruction following the conditional
jump instruction.

Table 2-8: Conditional Branch Instructions That Test the Condition Code Flags

Instruction Explanation

bcs label Branch if carry is set. Jump to label if the carry flag is set (1); control
falls through to the next instruction if the carry is clear (O).

bce label Branch if carry is clear. Jump to Iabel if the carry flag is clear (0);
fall through if the carry is set (1).

bvs label Branch if overflow set. Jump to label if the overflow flag is set (1);
fall through if the overflow is clear (O).

bvc label Branch if overflow clear. Jump to label if the overflow flag is clear (0);
fall through if the overflow is set (1).

bmi Iabel Branch if minus. Jump to label if the negative (sign) flag is set (1);
fall through if the sign is clear (O).

bpl label Branch if positive (or zero). Jump to label if the negative flag is clear (O);
fall through if the sign is set (1).

beq label Branch if equal. Jump to label if the zero flag is set (1); fall through
if zero is clear (0).

bne label Branch if not equal. Jump to label if the zero flag is clear (0); fall
through if zero is set (1).

For historical reasons, Gas also allows conditional branch mnemonics
of the form b.condition (for example, b.cs, b.cc, b.vs, and b.vc). This form
is based on the 32-bit ARM instruction set that allowed conditional execu-
tion of most data-processing instructions by using a “dot condition” suffix.
While the 64-bit ARM instruction set no longer supports these conditional
instructions, it does allow the dot condition syntax for the branch instruc-
tion. Since it’s easier to type the conditional branches without the period,
most people use that form when writing 64-bit ARM assembly language
with Gas. Gas under Linux does not seem to support bal but does support
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b.al, and the macOS assembler seems to support b.al just fine. That’s why
this book uses b.al for unconditional branches.

To use a conditional branch instruction, you must first execute an
instruction that affects one or more of the condition code flags. For exam-
ple, an unsigned arithmetic overflow will set the carry flag; if overflow does
not occur, the carry flag will be clear. Therefore, you could use the bcs
and bcc instructions after an adds instruction to see whether an unsigned
overflow occurred during the calculation. For example, the following code
checks for unsigned overflow by using bcs:

lea x0, int32Var
ldr wo, [x0]

lea x1, anotherVar
ldr w1, [x1]

adds w0, w0, wil

bcs  overflowOccured

// Continue down here if the addition did not
// produce an overflow.

overflowOccured:

// Execute this code if the sum of int32Var and anotherVar
// does not fit into 32 bits.

As noted earlier, adds (and subs/negs) sets the condition codes based
on signed/unsigned overflow, a zero result, or a negative result. The ands
instruction copies the HO bit of its result into the negative flag and sets/
clears the zero flag if it produces a zero/nonzero result.

2.10.4 cmp and Corresponding Conditional Branches

The ARM cmp instruction is extremely useful in conjunction with the condi-
tional branches. The syntax for cmp is

cmp Ieft, right

where left is a register (32 or 64 bits) and right is either a register or a small
immediate constant. The instruction compares the left operand to the
right operand and sets the flags based on the comparison. You can then use
the conditional branch instructions to transfer control based on the result
of the comparison.

Although cmp does not have an s suffix, it will set the condition code
flags; indeed, that’s why cmp exists. Technically, cmp isn’t a real instruction,
but rather an alias (synonym) for the subs instruction with a destination
operand of WZR or XZR.



PSEUDO-INSTRUCTIONS (ALIASES)
AND BUILT-IN MACROS

You'll often discover that two ARM64 assembly language instructions do exactly
the same operation. Consider, for example, the following two instructions:

cmp x0, x1
subs xzr, x0, x1

The first instruction compares X0 to X1 and sets the condition code flags. The
second instruction subtracts X1 from XO, sets the condition code flags, and then
throws the result away (whenever you store a value into the zero register—WZR
or XZR—the result is lost). The comparison operation is exactly equivalent to
subtraction if you don't keep the difference (which is exactly what the subs
instruction is doing), meaning these two instructions do exactly the same thing.

The ARM's designers noticed this semantic equivalence between many of
their instructions and decided, “This is a RISC machine; we should not include
extra hardware to handle redundant instructions.” As they already had the subs
instruction, they basically threw out the cmp instruction.

You may be thinking, “Didn’t you discuss the cmp instruction already?” Yes,
| did. But | lied: this isn't actually a emp machine instruction. When the assem-
bler accepts and executes a mnemonic named cmp that does everything you'd
expect a cmp instruction to do, under the covers Gas has actually translated that
cmp instruction into a subs instruction.

The cmp instruction is an example of a pseudo-instruction, a macro built into
Gas (and most other ARM assemblers) that automatically translates cmp into the
corresponding subs instruction. In fact, a fair number of ARM instructions fall
info this same category.

In this book, we won't worry about whether an instruction is real or
pseudo. The semantics are the important aspect, not the particular assembly
language syntax. If the assembler contains (standardized) built-in macros to
help you write clearer code, so much the better. This section exists just to let
you know what is going on if you read about pseudo-instructions elsewhere
or if you look at a disassembled listing of your code and the instructions have
changed from what you actually wrote.

After executing a compare instruction, you might ask these reasonable

questions:

Is the leftOperand equal to the rightOperand?

Is the IeftOperand not equal to the rightOperand?

Is the leftOperand less than the rightOperand?

Is the IeftOperand less than or equal to the rightOperand?
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e Is the leftOperand greater than the rightOperand?

e Is the leftOperand greater than or equal to the rightOperand?

For less-than and greater-than comparisons, you might also ask, “Are
these signed or unsigned comparisons?”

The ARM provides conditional branches to use after executing cmp
that answer these questions. Table 2-9 lists these instructions for unsigned
comparisons.

Table 2-9: Unsigned Conditional Branches

Instruction  Flag(s) tested

Description

beq

bne

bhi

bhs

blo

bls

Z=1

Z=0
C=1andZ=0
C=1

C=0
C=0o0rZ=1

Branch if equal; fall through if not equal. After a comparison, this branch
will be taken if the first cmp operand is equal to the second operand.

Branch if not equal; fall through if equal. After a comparison, this branch
will be taken if the first cmp operand is not equal to the second operand.

Branch if higher; fall through if not higher. After a comparison, this
branch will be taken if the first cmp operand is greater than the second
operand.

Branch if higher or same; fall through if not higher or same. After a com-
parison, this branch will be taken if the first cmp operand is greater than
or equal the second operand.

Branch if lower; fall through if not lower. After a comparison, this branch
will be taken if the first cmp operand is less than the second operand.

Branch if lower or same; fall through if not lower or same. After a com-
parison, this branch will be taken if the first cmp operand is less than or
equal to the second operand.

If the left and right operands contain signed integer values, use the
signed branches in Table 2-10.

Table 2-10: Signed Conditional Branches

Instruction  Flag(s) tested

Description

beq

bne

bgt

bge

blt

ble

Z=1

Z=0

Z=0and N =V

N=VorZ=1

Branch if equal; fall through if not equal. After a comparison, this branch
will be taken if the first cmp operand is equal to the second operand.

Branch if not equal; fall through if equal. After a comparison, this branch
will be taken if the first cmp operand is not equal to the second operand.

Branch if greater than; fall through if less than or equal. After a compari-
son, this branch will be taken if the first cmp operand is greater than the
second operand.

Branch if greater than or equal; fall through if less than. After a compari-
son, this branch will be taken if the first cmp operand is greater than or
equal to the second operand.

Branch if less than; fall through if greater than or equal. After a com-
parison, this branch will be taken if the first cmp operand is less than the
second operand.

Branch if less than or equal; fall through if greater than. After a compari-
son, this branch will be taken if the first cmp operand is less than or equal
to the second operand.
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As for the earlier branches based on condition codes, Gas allows branches
of the form b.condition in addition to the forms in Tables 2-9 and 2-10. As
it turns out, as shown in the “Flag(s) tested” columns, the bcs and bhs instruc-
tions are synonyms, as are the bcc and blo instructions.

Importantly, the cmp instruction sets the flags only for integer com-
parisons, which will also cover characters and other types you can encode
with an integer value. Specifically, the instruction does not compare
floating-point values and set the flags as appropriate for a floating-point
comparison.

Sometimes it’s convenient to branch on an opposite condition. For
example, you might have the following logic:

cmp x0, x1
// Branch to gelbl if X0 is not less than X1.

// Fall through to this code if X0 < X1.

// Branch here if NOT(X0 < X1) (that is, X0 >= X1).
gelbl:

Of course, the opposite of less than is greater than or equal, so this pseudo-
code could be written as follows:

cmp x0, x1
bge gelbl

// Fall through to this code if X0 < X1.

// Branch here if NOT(X0 < X1) (that is, X0 »>= X1).
gelbl:

However, using opposite branches to skip around the code you want to
execute on a condition (such as less than) can make your code harder to
read. People generally read the bge instruction as “branch to a label because
the comparison produced greater than or equal,” not as “fall through if the
comparison result was less than.”

To help make such logic clearer, the aoaa.incinclude file contains macros
for several opposite branches. Table 2-11 lists these macros and their meanings.

Data Representation and Operations 81



Table 2-11: Opposite Branches

Opposite branch  Equivalent to  Meaning

bnhs blo Branch if not higher or the same. After a comparison, this branch
will be taken if the first cmp operand is not higher or the same (not
greater than or equal to, unsigned) the second operand.

bnhi bls Branch if not higher. After a comparison, this branch will be taken if
the first cmp operand is not higher (not greater than, unsigned) the
second operand.

bnls bhi Branch if not lower or the same. After a comparison, this branch will
be taken if the first cmp operand is not lower or the same (not less
than or equal to, unsigned) the second operand.

bnlo bhs Branch if not lower. After a comparison, this branch will be taken
if the first cmp operand is not lower (not less than, unsigned) the
second operand.

bngt ble Branch if not greater than. After a comparison, this branch will be
taken if the first cmp operand is not greater than (signed) the second
operand.

bnge blt Branch if not greater than or equal. After a comparison, this branch

will be taken if the first cmp operand is not greater than or equal to
(signed) the second operand.

bnlt bge Branch if not less than. After a comparison, this branch will be taken
if the first cmp operand is not less than (signed) the second operand.

bnle bgt Branch if not less than or equal. After a comparison, this branch will
be taken if the first cmp operand is not less than or equal to (signed)
the second operand.

You should read each of these opposite-branch mnemonics as “fall
through on condition” (ignoring the not).

2.11 Shifts and Rotates

The shift and rotate operations are another set of logical operations that
apply to bit strings. These two categories can be further broken into left
shifts, left rotates, right shifts, and right rotates.

The shift-left operation moves each bit in a bit string one position to the
left, as shown in Figure 2-8.

Figure 2-8: The shift-left operation

Bit 0 moves into bit position 1, the previous value in bit position 1 moves
into bit position 2, and so on. You’ll shift a 0 into bit 0, and the previous
value of the HO bit will be lost.

The ARM provides a logical shift-left instruction, 1s1, that performs this
useful operation. This is the syntax for 1sl:
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1sl dest, source, count // Does not affect any flags

The count operand is either a register or an immediate constant in the
range 0 to n, where n is one less than the number of bits in the destination
operand (for example, n = 31 for 32-bit operands and n = 63 for 64-bit oper-
ands). The dest and source operands are registers.

When the count operand is the value 1 (either an immediate constant or
in a register), the 1sl instruction performs the operation shown in Figure 2-9.

HO bit 4 3 2 1 0

C = - - - - - <— <4— 0

Figure 2-9: Shift-left operation

If the count value is 0, no shift occurs and the value remains unchanged.
If the count value is greater than 1, the 1sl instruction shifts the specified
number of bits (shifting Os into the LO position). Note that the 1s1 instruc-
tion does not affect any flags.

Shifting a value to the left by one digit is the same thing as multiplying
it by its radix (base). For example, shifting a decimal number one position
to the left (adding a 0 to the right of the number) effectively multiplies it
by 10 (the radix):

1234 shl 1 = 12340
// (shl 1 means shift one digit position to the left.)

Because the radix of a binary number is 2, shifting it left multiplies it
by 2. If you shift a value to the left n times, you multiply that value by 2".

A shift-right operation works the same way, except you're moving the
data in the opposite direction. For a byte value, bit 7 moves into bit 6, bit 6
moves into bit 5, bit 5 moves into bit 4, and so on. During a shift right, you’ll
move a 0 into bit 7 (see Figure 2-10).

7 6 5 4 3

( _(wol _jnol | -

0—= ': O AN 1 Y

N
(@]

Figure 2-10: The shift-right operation

As you’d expect, the ARM provides an 1sr instruction that shifts the
bits to the right in a destination operand. The syntax is similar to the 1sl
instruction:

1sr dest, source, count // Does not affect any flags

This instruction shifts a 0 into the HO bit of the destination operand
and shifts the other bits one place to the right (that is, from a higher bit
number to a lower bit number).
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Because a shift left is equivalent to a multiplication by 2, it should come
as no surprise that a shift right is roughly comparable to a division by 2 (or,
in general, a division by the radix of the number). If you perform n shift-
right operations, you will divide that number by 2”.

However, a shift right is equivalent to only an unsigned division by 2. For
example, if you shift the unsigned representation of 254 (0xFE) one place
to the right, you get 127 (0x7F), exactly what you would expect. However,
if you shift the two’s complement representation of -2 (0xFE) to the right
one position, you get 127 (0x7F), which is not correct. This problem occurs
because you're shifting a 0 into bit 7. If bit 7 previously contained a 1, you're
changing it from a negative to a positive number—not a good thing to do
when dividing by 2.

To use the shift right as a division operator, this chapter must define
a third shift operation: arithmetic shift right. There is no need for an arith-
metic shift left; the standard shift-left operation works for both signed and
unsigned numbers, assuming no overflow occurs.

An arithmetic shift right works just like the normal shift-right opera-
tion (a logical shift right), except instead of shifting a 0 into the HO bit, an
arithmetic shift-right operation copies the HO bit back into itself. That is,
the shift operation does not modify the HO bit, as Figure 2-11 shows.

7 6 5 4 3 2 1 0

Figure 2-11: Arithmetic shift-right operation

An arithmetic shift right generally produces the signed integer result you
expect. For example, if you perform the arithmetic shift-right operation on -2
(OxFE), you get —1 (0xFF). However, this operation always rounds the numbers
to the closest integer that is less than or equal to the actual result. For example, if
you apply the arithmetic shift-right operation on -1 (0xFF), the result is -1,
not 0. Because —1 is less than 0, the arithmetic shift-right operation rounds
toward —1. This is not a bug in the arithmetic shift-right operation; it just uses
a different (though valid) definition of integer division.

The ARM-64 provides an arithmetic shift-right instruction, asr (arith-
metic shift right). This instruction’s syntax is nearly identical to 1s1:

asr dest, source, count // Does not affect any flags

The usual limitations on the operands apply. This instruction operates
as shown in Figure 2-12 if the count is 1.

HO bit 5 4 3 2 1 0
I__.l=_>_|.|_=._=.=._=.=._=. c

Figure 2-12: The asr dest, source, #1 operation




2.12

If the count value is 0, no shift occurs and the value remains unchanged.
If the count value is greater than 1, the asr instruction shifts the specified
number of bits (shifting Os into the LO position).

The rotate-left and rotate-right operations behave like the shift-left and
shift-right operations, except the bit shifted out from one end is shifted
back in at the other end. Figure 2-13 diagrams these operations.

7 6 5 4 3 2 1 0
B
7 6 5 4 3 2 1 0
|
|

Figure 2-13: The rotate-left and rotate-right operations

The ARM provides a ror (rotate-right) instruction, but it does not have
a rotate-left instruction. The syntax for the rotate right is similar to the shift
instructions:

ror dest, source, count // Does not affect any flags

Figure 2-14 shows the operation of this instruction on a register. Note
that this instruction does not affect any flags. If the count value is 0, no
rotate occurs and the value remains unchanged. If the count value is greater
than 1, the rotate instructions rotate the specified number of bits (shifting
0Os into the appropriate position).

HO bit 4 3 2 1 0

Figure 2-14: The ror dest, source, #1 operation

If you absolutely need a rol operation, it can be (somewhat) synthesized
using other instructions. Chapter 8 covers this in greater detail.

Bit Fields and Packed Data

Although the ARM operates most efficiently on byte, half-word, word, and
dword data types, occasionally you’ll need to work with a data type that
uses a number of bits other than 8, 16, 32, or 64. You could zero-extend

a nonstandard data size to the next larger power of 2 (such as extending
a 22-bit value to a 32-bit value); this turns out to be fast, but if you have a
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large array of such values, slightly more than 31 percent of the memory is
going to waste (10 bits in every 32-bit value). However, suppose you were to
repurpose those 10 bits for something else. By packing the separate 22-bit
and 10-bit values into a single 32-bit value, you don’t waste any space.

For example, consider a date of the form 04/02/01. Representing this
date requires three numeric values: month, day, and year values. Months, of
course, take on the values 1 to 12. At least 4 bits, a maximum of 16 values,
are needed to represent the month. Days range from 1 to 31. This means
it will take 5 bits, a maximum of 32 values, to represent the day entry. The
year value, assuming that you're working with values in the range 0 to 99,
requires 7 bits, which can be used to represent up to 128 values. This means
we need 2 bytes to hold the whole date, since 4+5 + 7=16 bits.

In other words, you can pack the date data into 2 bytes rather than the
3 that would be required if you used a separate byte for each of the month,
day, and year values. This saves 1 byte of memory for each date stored,
which could make for significant savings if you need to store many dates.
The bits could be arranged as shown in Figure 2-15.

15141312110 9 8 7 6 5 4 3 2 1 0

MIMIMMIEICICT IR Y| Y[ Y[ ¥ Y] Y] Y|

Figure 2-15: Short packed-date format (2 bytes)

In the figure, MMMM represents the 4 bits making up the month value,
DDDDD represents the 5 bits making up the day, and YYYYYYY represents
the 7 bits composing the year. Each collection of bits representing a data
item is a but field. For example, April 2, 2001, would be represented as 0x4101:

0100 00010 0000001 = 0100 0001 0000 0001b or 0x4101
4 2 01

Although packed values are space efficient (that is, they make efficient
use of memory), they are computationally inefficient (slow!). That’s because
unpacking the data packed into the various bit fields requires extra instruc-
tions. These take additional time to execute and additional bytes to hold
the instructions; hence, you must carefully consider whether packed data
fields will save you anything. The sample program in Listing 2-4 demon-
strates the effort that goes into packing and unpacking this 16-bit date
format.

// Listing2-4.S
//
// Demonstrate packed data types.

#include "aoaa.inc"

.equ NULL, O // Error code
.equ  maxlen, 256 // Max input line size



.data

savelRMain: .dword o0
savelLRRN: .dword o0

ttlStr: .asciz  "Listing 2-4"
moPrompt: .asciz  "Enter current month: "
dayPrompt: .asciz "Enter current day: "

yearPrompt: .ascii "Enter current year
.asciz  "(last 2 digits only): "

packed: .ascii "Packed date is %04x = "
.asciz  "%02d/%02d/%02d\n"

theDate: .asciz "The date is %02d/%02d/%02d\n"

badDayStr:  .ascii "Bad day value was entered "
.asciz  "(expected 1-31)\n"

badMonthStr: .ascii "Bad month value was entered "
.asciz "(expected 1-12)\n"

badYearStr: .ascii "Bad year value was entered "
.asciz "(expected 00-99)\n"

// These need extra padding so they can be printed
// as integers. They're really byte (and word) values.

month: .dword 0
day: .dword 0
year: .dword 0
date: .dword 0
m: .dword 0
d: .dword 0
y: .dword 0
input: LFill maxLen, 0
.text
.align 2 // Word-align code

.extern printf
.extern readlLine
.extern strtol

// Return program title to C++ program:
.global getTitle
getTitle:

lea x0, ttlStr
ret
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// Here's a user-written function that reads a numeric value from
// the user:

/1

// int readNum( char *prompt );

/1

// A pointer to a string containing a prompt message is passed in
// the X0 register.

//

// This procedure prints the prompt, reads an input string from
// the user, then converts the input string to an integer and

// returns the integer value in Xo.

readNum:
lea x1, savelRRN
str 1r, [x1] // Save return address.

// Must set up stack properly (using this "magic" instruction)
// before you can call any C/C++ functions:

sub sp, sp, #64
// Print the prompt message. Note that the prompt message was
// passed to this procedure in X0; we're just passing it on to
// printf:

bl printf
// Set up arguments for readlLine and read a line of text from

// the user. Note that readLine returns NULL (0) in RAX if there
// was an error.

lea x0, input
mov x1, #maxLen
bl readlLine

// Test for a bad input string:

cmp x0, #NULL
beq badInput

// Okay, good input at this point. Try converting the string

// to an integer by calling strtol. The strtol function returns
// 0 if there was an error, but this is a perfectly fine

// return result, so we ignore errors.

lea x0, input // Ptr to string

mov x1, #NULL // No end string pointer

mov x2, #10 // Decimal conversion

bl strtol // Convert to integer.
badInput:

add sp, sp, #64 // Undo stack setup.

lea x1, savelRRN // Restore return address.

ldr 1r, [x1]

ret



// Here is the "asmMain" function:

.global asmMain
asmMain:
sub sp, sp, #64 // Magic instruction
lea X0, savelRMain
str 1r, [x0]

// Read the date from the user. Begin by reading the month:

lea X0, moPrompt
bl readNum

// Verify the month is in the range 1..12:

cmp x0, #1
blo badMonth
cmp x0, #12

bhi badMonth
// Good month, save it for now:

lea x1, month
strb w0, [x1] // 1..12 fits in a byte.

// Read the day:

lea x0, dayPrompt
bl readNum

// We'll be lazy here and verify only that the day is in
// the range 1..31.

cmp x0, #1
blo badDay
cmp X0, #31
bhi badDay

// Good day, save it for now:

lea x1, day
strb wo, [x1] // 1..31 fits in a byte.

// Read the year:

lea X0, yearPrompt
bl readNum

// Verify that the year is in the range 0..99:

cmp x0, #0
blo badYear
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cmp X0, #99
bhi badYear

// Good year, save it for now:

lea x1, year
strb wo, [x1] // 0..99 fits in a byte.

// Pack the data into the following bits:

/1

// 151413121110 9 8 7 6 5 4 3 2 1 0
//  mmmmdddddyyyyyyy

lea X0, month
ldrb wl, [x0]
1s1 wl, wi, #5
lea X0, day
ldrb w2, [x0]
orr wl, wi, w2

1s1 wl, wi, #7

lea X0, year
ldrb w2, [x0]
orr wl, wl, w2
lea x0, date

strh wl, [x0]
// Print the packed date:

lea X0, packed
vparm2 date
vparm3 month
vparm4 day

vparms year

bl printf

// Unpack the date and print it:

lea X0, date
ldrh wl, [x0]

// Extract month:
lsr w2, wl, #12
lea X0, m

strb w2, [x0]

// Extract day:

lsr w3, wi, #7
and w3, w3, #ox1if
lea x0, d

strb w3, [x0]
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// Extract year:

and wl, wl, #ox7f
lea X0, y
strb wl, [x0]

lea X0, theDate
vparm2 m

vparm3 d

vparm4 vy

bl printf

b.al allDone
// Come down here if a bad day was entered:
badDay:

lea x0, badDayStr

bl printf
b.al allDone

// Come down here if a bad month was entered:
badMonth:

lea X0, badMonthStr

bl printf

b.al allDone

// Come here if a bad year was entered:

badYear:
lea X0, badYearStr
bl printf
allDone:
add sp, sp, #64
lea X0, savelRMain
ldr 1r, [xo0]
ret // Returns to caller

Here’s the result of building and running this program:

$ ./build Listing2-4

$ ./Listing2-4

Calling Listing2-4:

Enter current month: 2

Enter current day: 4

Enter current year (last 2 digits only): 56
Packed date is 2238 = 02/04/56

The date is 02/04/56

Listing2-4 terminated

The infamous problems with Y2K (year 2000) taught everyone that
using a date format limited to 100 years (or even 127 years) would be quite
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foolish. If you're too young to remember this fiasco, programmers in the
middle to late 1900s used to encode only the last two digits of the year in
their dates. When the year 2000 rolled around, these programs were inca-
pable of distinguishing dates like 2024 and 1924.

To avoid this problem and future-proof the packed-date format in
Listing 2-4, you can extend the format to 4 bytes packed into a double-word
variable, as shown in Figure 2-16. (As you’ll see in Chapters 3 and 4, you
should always try to create data objects whose length is an even power of
2—thatis, 1 byte, 2 bytes, 4 bytes, 8 bytes, and so on—or you will pay a per-
formance penalty.)

31 16 15 8 7 0
Year (0-65535) Month (1-12)| Day (1-31) |

Figure 2-16: The long packed-date format (4 bytes)

The month and day fields now consist of 8 bits each, so they can be
extracted as a byte object from the word. This leaves 16 bits for the year,
with a range of 65,536 years. By rearranging the bits so the year field is in
the HO bit positions, the month field is in the middle bit positions, and the
day field is in the LO bit positions, the long date format allows you to easily
compare two dates to see whether one date is less than, equal to, or greater
than another date. Consider the following code:

lea x0, Datel1 // Assume Datel and Date2 are words.
ldr x1, [x0] // Using the long packed-date format
lea x0, Date2

ldr x2, [x0]

cmp X1, x2

ble diLEd2

// Do something if Datel > Date2.

di1LEd2:

Had you kept the different date fields in separate variables, or orga-
nized the fields differently, you would not have been able to compare Datel
and Date2 as easily as for the short packed-date format. Therefore, this
example demonstrates another reason for packing data even if you don’t
realize any space savings: it can make certain computations more conve-
nient or even more efficient (contrary to what normally happens when you
pack data).

Examples of practical packed data types abound. You could pack eight
Boolean values into a single byte, two BCD digits into a byte, and so on. A
classic example of packed data is the PSTATE register (see Figure 2-17).
This register packs four important Boolean objects, along with 12 impor-
tant system flags, into a single 32-bit register.
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Figure 2-17: The PSTATE register as packed Boolean data

2.13

You’ll commonly access the condition code flags by using the condi-
tional jump instructions. Occasionally, you may need to manipulate the
individual condition code bits in the PSTATE register. You can do this with
the msr (move to system register) and mrs (move system register) instructions

msr systemReg, req
mrs req, systemReg

where reg is one of the ARM’s 64-bit general-purpose registers and systenReg
is a special system register name. The system register of interest here is NZCV,
named after the condition code flags.

The following instruction copies bits 28 to 31 in the PSTATE register
into the corresponding bits in X0 and copies Os to all the other bits in XO:

mrs X0, nzcv

This instruction copies bits 28 to 31 in X0 to the condition code bits in
PSTATE (without affecting any other bits in PSTATE):

msr nzcv, X0

If you want to explicitly set the carry flag, without affecting any other
condition code flags, you could do that as follows:

mrs XO, nzcv
orr x0, x0, #0x20000000 // Carry is in bit 29; set it.
msr nzcv, X0

This ORs a 1 bit into the carry flag in the PSTATE register.

IEEE Floating-Point Formats

Back in 1976, when Intel planned to introduce a floating-point coproces-
sor for its new 8086 microprocessor, it hired the best numerical analyst it
could find to design a floating-point format. That person then hired two
other experts in the field, and the three of them—William Kahan, Jerome
Coonen, and Harold Stone—designed Intel’s floating-point format. They
did such a good job designing the KCS floating-point standard that the
Institute of Electrical and Electronics Engineers (IEEE) adopted it for its
floating-point format. That format has become the standard used by CPU
vendors, including Arm.
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The IEEE-754 standard single- and double-precision formats correspond
to C’s float and double types or FORTRAN’s real and double-precision types.
These same formats are available to ARM assembly language programmers.

2.13.1 Single-Precision Format

The single-precision format uses a one’s complement 24-bit mantissa, an 8-bit
excess-127 exponent, and a single sign bit. One’s complement notation consists
of a sign bit and an unsigned binary number, with the sign bit indicating
the sign of the binary number. The mantissa (the part of the number that
represents the significant digits) usually represents a value from 1.0 to just
under 2.0. The HO bit of the mantissa is always assumed to be 1 and repre-
sents a value just to the left of the binary point. (A binary point is the same
thing as a decimal point, except it appears in binary numbers rather than
decimal numbers.) The remaining 23 mantissa bits (the fraction) appear to
the right of the binary point.

Therefore, the mantissa represents the value:

1. mmmmmmm - mmmmmmmm

The mmmm characters represent the 23 bits of the mantissa. Because the
HO bit of the mantissa is always 1, the single-precision format doesn’t actu-
ally store this bit within the 32 bits of the floating-point number. This HO
bit is known as an implied bit.

Because you are working with binary numbers, each position to the
right of the binary point represents a value (0 or 1) times a successive nega-
tive power of 2. The implied 1 bit is always multiplied by 2°, which is 1. This
is why the mantissa is always greater than or equal to 1.0. Even if the other
mantissa bits are all Os, the implied 1 bit always gives us the value 1.0. Of
course, even if you had an almost infinite number of 1 bits after the binary
point, they still would not add up to 2.0. This is why the mantissa can repre-
sent values in the range 1.0 to just under 2.0.

There is one exception to the implied bit always being 1: the IEEE
floating-point format supports denormalized values, where the HO bit is not 0.
However, this book generally ignores denormalized values.

Although there is an infinite number of values between 1.0 and 2.0,
you can represent only 8 million of them because the format uses a 23-bit
mantissa (with the implied 24th bit always being 1). This is the reason for
inaccuracy in floating-point arithmetic: you are limited to a fixed number
of bits in computations involving single-precision floating-point values.

As noted, the mantissa uses a one’s complement format rather than two’s
complement to represent signed values. This means that the 24-bit value of
the mantissa is simply an unsigned binary number, and the sign bit deter-
mines whether that value is positive or negative. One’s complement numbers
have the unusual property that there are two representations for 0.0 (with the
sign bit set or clear). Generally, this is important only to the person designing
the floating-point software or hardware system. This book assumes that the
value 0.0 always has the sign bit clear.



To represent values outside the range 1.0 to just under 2.0, the expo-
nent portion of the floating-point format comes into play. The floating-
point format raises 2 to the power specified by the exponent and then
multiplies the mantissa by this value. The exponent is 8 bits and is stored in
an excess-127 format. In excess-127 format, the exponent 0 is represented by
the value 127 (0x7F), negative exponents are values in the range 1 to 126,
and positive exponents are values in the range 128 to 254 (0 and 255 are
reserved for special cases). To convert an exponent to excess-127 format,
add 127 to the exponent value. The use of excess-127 format makes it easier
to compare floating-point values.

The single-precision floating-point format takes the form shown in

Figure 2-18.
31
[
E:?n E)i(rfs)onenf Mantissa bits

The 24th mantissa bit is
implied and is always 1.

Figure 2-18: The single-precision (32-bit) floating-point format

With a 24-bit mantissa, you will get approximately six and a half (deci-
mal) digits of precision (half a digit of precision means that the first six
digits can all be in the range 0 to 9, but the seventh digit can only be in
the range 0 to x, where x <9 and is generally close to 5). Note, however,
that only six digits are guaranteed. With an 8-bit excess-127 exponent, the
dynamic range of single-precision floating-point numbers is approximately
2#127 or about 10*%. This dynamic range is the difference in size between
the smallest and largest positive values.

Although single-precision floating-point numbers are perfectly suitable
for many applications, the precision and dynamic range are somewhat lim-
ited and unsuitable for many financial, scientific, and other applications.
Furthermore, during long chains of computations, the limited accuracy of
the single-precision format may introduce serious errors.

2.13.2 Double-Precision Format

The double-precision format helps overcome the problems of single-precision
floating-point. Using twice the space, the double-precision format has an
11-bit excess-1,023 exponent and a 53-bit mantissa (with an implied HO bit
of 1), plus a sign bit. Double-precision floating-point values take the form
shown in Figure 2-19.
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Figure 2-19: The 64-bit double-precision floating-point format

The 53rd mantissa bit is implied and is always 1. The double-precision
format provides a dynamic range of about 10*%*%® and at least 15 digits of
precision, sufficient for most applications.

2.14 Normalized Floating-Point Values

To maintain maximum precision during computation, most computations
use normalized values. A normalized floating-point value is one whose HO
mantissa bit contains 1. Almost any nonnormalized value can be normal-
ized: shift the mantissa bits to the left and decrement the exponent until
a 1 appears in the HO bit of the mantissa. Remember, the exponent is a
binary exponent. Each time you increment the exponent, you multiply
the floating-point value by 2. Likewise, whenever you decrement the expo-
nent, you divide the floating-point value by 2. By the same token, shifting
the mantissa to the left one bit-position multiplies the floating-point value
by 2; likewise, shifting the mantissa to the right divides the floating-point
value by 2. Therefore, shifting the mantissa to the left one position and
decrementing the exponent does not change the value of the floating-point
number at all.

Keeping floating-point numbers normalized maintains the maximum
number of bits of precision for a computation. If the HO = bits of the man-
tissa are all Os, the mantissa has that many fewer bits of precision available
for computation. Therefore, a floating-point computation will be more
accurate if it involves only normalized values.

In two important cases, a floating-point number cannot be normalized.
First, the floating-point value 0.0 can’t be normalized, because the repre-
sentation for 0.0 has no 1 bits in the mantissa. This, however, is not a prob-
lem because you can exactly represent the value 0.0 with only a single bit.

In the second case, you have some HO bits in the mantissa that are Os,
but the biased exponent is also 0 (and you cannot decrement it to normal-
ize the mantissa). Rather than disallow certain small values, whose HO
mantissa bits and biased exponent are 0 (the most negative exponent pos-
sible), the IEEE standard allows special denormalized values to represent
these smaller values. (The alternative would be to underflow the values to 0.)
Although the use of denormalized values allows IEEE floating-point compu-
tations to produce better results than if underflow occurred, keep in mind
that denormalized values offer fewer bits of precision. Some texts use the
term subnormal to describe denormalized values.
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2.14.1 Nonnumeric Valves

The IEEE floating-point standard recognizes four special nonnumeric values:
—infinity, +infinity, and two special not-a-number (NaN) values. For each of
these special numbers, the exponent field is filled with all 1 bits.

If the exponent is all 1 bits and the mantissa is all 0 bits (excluding the
implied bit), then the value is infinity. The sign bit will be 0 for +infinity
and 1 for —infinity.

If the exponent is all 1 bits and the mantissa is not all 0 bits, the value
is an invalid number (known as a NaNin IEEE 754 terminology). NaNs
represent illegal operations, such as trying to take the square root of a
negative number.

Unordered comparisons occur whenever either operand (or both) is
a NaN. As NaNs have an indeterminate value, they are incomparable. Any
attempt to perform an unordered comparison typically results in an excep-
tion or some sort of error. Ordered comparisons, on the other hand, involve
two operands, neither of which is a NaN.

2.14.2 Gas Support for Floating-Point Valves

Gas provides a couple of data declarations to support the use of floating-
point data in your assembly language programs. Gas floating-point con-
stants allow the following syntax: the constant begins with an optional +
or — symbol, denoting the sign of the mantissa (if this is not present, Gas
assumes that the mantissa is positive). This is followed by one or more deci-
mal digits, then a decimal point and zero or more decimal digits. These are
optionally followed by an e or E, which is in turn optionally followed by a
sign (+ or —) and one or more decimal digits.

The decimal point or the e/E must be present to differentiate a floating-
point literal constant from an integer or unsigned literal constant. Here are
some examples of legal floating-point literal constants:

1.234 3.75e2 -1.0 1.1e-1 1.e+4 0.1 -123.456e+300 +25.0e0

A floating-point literal constant must begin with a decimal digit, so you
must use, for example, 0.1 rather than .1 in your programs.

To declare a floating-point variable, use the .single or .double data types.
Aside from using these types to declare floating-point variables rather than
integers, their use is nearly identical to that of .byte, .word, .dword, and so on.
The following examples demonstrate these declarations and their syntax:

.data

fltvari: .single 0.0

fltvaria: .single 2.7

pi: .single 3.14159
DblVar: .double 0.0

DblVar2: .double 1.23456789e+10
DPVar: .double -1.0e-104
IntAsFP: .double -123
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As usual, this book uses the C/C++ printf() function to print floating-
point values to the console output. Certainly, an assembly language routine
could be written to provide this same output, but the C stdlib provides a
convenient way to avoid writing that complex code (at least until Chapter 9).

Floating-point arithmetic is different from integer arithmetic; you can-
not use the ARM add and sub instructions to operate on floating-point val-
ues. This chapter presents only the floating-point formats; see Chapter 6 for
more information on floating-point arithmetic and general floating-point
operations.

In the meantime, let’s consider some other data formats.

Binary-Coded Decimal Representation

Although the integer and floating-point formats cover most of the numeric
needs of an average program, in some special cases other numeric repre-
sentations are convenient. This section expands on the definition of the
BCD format presented earlier. Although the ARM CPU doesn’t provide
hardware support for BCD, it’s still a common format that some software
uses, with BCD arithmetic provided by programmer-written software
functions.

BCD values are a sequence of nibbles, with each nibble representing a
value in the range 0 to 9. With a single byte, you can represent values con-
taining two decimal digits, or values in the range 0 to 99. Figure 2-20 shows
the two BCD digits, represented by 4 bits each, in a byte.

7 o) 5 4 3 2 1 0
HO nibble LO nibble
(HO digits 0-9) (LO digits 0-9)

Figure 2-20: Two-digit BCD data representation
in memory

As you can see, BCD storage isn’t particularly memory efficient. For
example, an 8-bit BCD variable can represent values in the range 0 to 99,
while that same 8 bits, when holding a binary value, can represent values in
the range 0 to 255. Likewise, a 16-bit binary value can represent values in the
range 0 to 65,535, while a 16-bit BCD value can represent only about one-
sixth of those values (0 to 9,999).

However, it’s easy to convert BCD values between the internal numeric
representation and their string representation, for example, using BCD
to encode multidigit decimal values in hardware, using a thumb wheel
or dial. For these two reasons, you're likely to see people using BCD in
embedded systems (such as toaster ovens, calculators, alarm clocks, and
nuclear reactors) but rarely in general-purpose computer software.
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Unfortunately, all BCD operations on ARM have to be done using
software functions, as BCD arithmetic is not built into the hardware on the
ARM. As a result, computations involving BCD arithmetic can run slowly.
Because the BCD data type is very specialized and used in only a few situa-
tions (for example, in embedded systems), this book won’t spend any more
time discussing it.

Characters

Perhaps the most important data type on a personal computer is the char-
acter data type. Character refers to a human or machine-readable symbol
that is typically a nonnumeric entity. Specifically, a character is any symbol
that you can typically type on a keyboard (including symbols that may
require multiple keypresses to produce) or display on a video display.

Letters (alphabetic characters), punctuation symbols, numeric digits,
spaces, tabs, carriage returns (ENTER), other control characters, and other
special symbols are all characters. Numeric characters are distinct from num-
bers: the character 1 is different from the value 1. The computer (generally)
uses two internal representations for numeric characters (0, 1, . . ., 9) versus
the numeric values 0 to 9.

Most computer systems use a single- or multibyte sequence to encode
the various characters in binary form. Linux and macOS use either the
ASCII or Unicode encodings for characters. This section discusses the ASCII
and Unicode character sets and the character declaration facilities that Gas
provides.

2.16.1 The ASCII Character Encoding

The ASCII character set maps 128 textual characters to the unsigned inte-
ger values 0 to 127 (0 to 0x7F). Although the exact mapping of characters
to numeric values is arbitrary and unimportant, you must use a standard-
ized code for this mapping so that when you communicate with other pro-
grams and peripheral devices, you all speak the same “language.” ASCII is
a standardized code: if you use the ASCII code 65 to represent the charac-
ter A, then you know that a peripheral device (such as a printer) will cor-
rectly interpret this value as the character A whenever you transmit data to
that device.

Despite some major shortcomings, ASCII has become the standard for
data interchange across computer systems and programs. Most programs
can accept and produce ASCII data. Because you will be dealing with ASCII
characters in assembly language, I recommend you study the layout of the
character set and memorize a few key ASCII codes (for example, for o, A, a,
and so on). See Appendix A for a list of all the ASCII character codes.

Today, Unicode (especially the UTF-8 encoding) is rapidly replacing
ASCII, because the ASCII character set is insufficient for handling interna-
tional alphabets and other special characters, as you'll see in Chapter 14.
Nevertheless, most modern code still uses ASCII, so you should be familiar
with it.
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The ASCII character set is divided into four groups of 32 characters.
The first 32 characters, ASCII codes 0 to 0x1F (31), form a special set of
nonprinting characters, the control characters. They are called control
characters because they perform various printer/display control operations
rather than display symbols. Examples include carriage return, which positions
the cursor to the left side of the current line of characters; line feed, which
moves the cursor down one line on the output device; and backspace, which
moves the cursor back one position to the left. (Historically, carriage return
refers to the paper carriage used on typewriters: physically moving the car-
riage all the way to the right enabled the next character typed to appear
at the left side of the paper.) Unfortunately, different control characters
perform different operations on different output devices. Little standard-
ization exists among output devices. To find out exactly how a control char-
acter affects a particular device, consult its manual.

The second group of 32 ASCII character codes contains various punc-
tuation symbols, special characters, and the numeric digits. The most nota-
ble characters in this group include the space character (ASCII code 0x20)
and the numeric digits (ASCII codes 0x30 to 0x39).

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters A through Z lie in the
range 0x41 to 0x5A (65 to 90). Because there are only 26 alphabetic charac-
ters, the remaining 6 codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes represents
the lowercase alphabetic symbols, 5 additional special symbols, and another
control character (DELETE). The lowercase character symbols use the
ASCII codes 0x61 to 0x7A. If you convert the codes for the upper- and
lowercase characters to binary, you will notice that the uppercase symbols
differ from their lowercase equivalents in exactly one bit position. For
example, consider the character codes for E and e in Figure 2-21.

F pinEnEDE
- DN NEDNGE

Figure 2-21: The ASCII codes for E and e

The only place upper- and lowercase differ is in bit 5. Uppercase char-
acters always contain a 0 in bit 5; lowercase alphabetic characters always
contain a 1 in bit 5. You can use this fact to quickly convert between upper-
and lowercase. You can force an uppercase character to lowercase by setting
bit 5 to 1, or force a lowercase character to uppercase by setting bit 5 to 0.

Indeed, bits 5 and 6 determine which of the four groups in the ASCII
character set you're in, as Table 2-12 shows. You could, for instance, convert
any upper- or lowercase (or corresponding special) character to its equiva-
lent control character by setting bits 5 and 6 to 0.



Table 2-12: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and punctuation
1 0 Uppercase and special
1 1 Lowercase and special

Consider the ASCII codes of the numeric digit characters in Table 2-13.

Table 2-13: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal
0 48 30h
1 49 31h
2 50 32h
3 51 33h
4 52 34h
5 53 35h
6 54 36h
7 55 37h
8 56 38h
9 57 3%h

The LO nibble of the ASCII code is the binary equivalent of the repre-
sented number. By stripping away (that is, setting to 0) the HO nibble of a
numeric character, you can convert that character code to the correspond-
ing binary representation. Conversely, you can convert a binary value in the
range 0 to 9 to its ASCII character representation by simply setting the HO
nibble to 3. You can use the AND operation to force the HO bits to 0; like-
wise, you can use the OR operation to force the HO bits to 0b0011 (3).

Unfortunately, you cannot convert a string of numeric characters to its
equivalent binary representation by simply stripping the HO nibble from
each digit in the string. Converting 123 (0x31, 0x32, 0x33) in this fashion
yields 3 bytes, or 0x010203, but the correct value for 123 is 0x7B. The con-
versions described in the preceding paragraph work only for single digits.

2.16.2 Gas Support for ASCIl Characters

Gas provides support for character variables and literals in your assembly
language programs. Character literal constants in Gas consist of a character
surrounded by a pair of apostrophes (or single quotes):

A
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Technically, a character constant in Gas consists of a single apostrophe
followed by a single character. Gas allows a second version consisting of a
character surrounded by apostrophes. However, the macOS assembler sup-
ports only the latter form, so this book uses only that form to ensure that all
example code will assemble on both systems.

To represent an apostrophe as a character constant, use the backslash
character followed by an apostrophe. For example:

|\||

You can also use the other escape character sequences in a character
constant. See section 1.7, “Declaring Memory Variables in Gas,” on page 16
for detalils.

To declare a character variable in a Gas program, use the .byte declara-
tion. For example, the following declaration demonstrates how to declare a
variable named UserInput:

.data
UserInput: .byte 0

This declaration reserves 1 byte of storage that you could use to store
any character value. You can also initialize character variables as follows:

.data
TheCharA: .byte 'A’
ExtendedChar: .byte 128 // Character code greater than Ox7F

Because character variables are 8-bit objects, you can manipulate them
as you would any 8-bit value. You can move character variables into registers
and store the LO byte of a register into a character variable.

Gas Support for the Unicode Character Set

Unfortunately, ASCII supports only 128 character codes. Even if you extend
the definition to 8 bits (as IBM did on the original PC), you're limited to
256 characters. This is far too small for modern multinational, multilingual
applications. Back in the 1990s, several companies developed an extension
to ASCII, known as Unicode, using a 2-byte character size. Therefore, the
original Unicode supported up to 65,536 character codes.

As well-thought-out as the original Unicode standard was, systems
engineers discovered that even 65,536 symbols were insufficient. Today,
Unicode defines 1,112,064 possible characters (code points), encoded using
a variable-length character format.

Unfortunately, Gas provides almost no support for Unicode text in a
source file. Certainly, if you have a text editor that supports editing UTF-8
source files, Gas will accept UTF-8 characters in character and string liter-
als. However, it probably won’t do much with Unicode beyond that (I haven’t
tried this, but I doubt Gas will accept UTF-16 or UTF-32 source files).
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Chapter 14 covers Unicode format and implementation in much greater
detail.

Machine Code

Gas translates human-readable source files into a special binary form
known as machine code. With many (non-RISC) CPUs, it is possible to work
in assembly language without knowing much about the underlying machine
code that the assembler produces. With RISC processors, such as the ARM,
you must have a basic understanding of the underlying machine code in
order to understand how to write decent assembly language source code.

Like most RISC CPUs, the ARM64 translates individual machine instruc-
tions into a single 32-bit value. This is one of the fundamental principles
behind RISC: instructions are always the same length on a given CPU, and
that length is almost always 32 bits. Variable-length instructions are verbo-
ten. However, if the instruction set supports immediate constants (which
the assembler encodes as part of the machine instruction), and you have
64-bit registers, how do you load a 64-bit immediate constant into a register
when the instructions are limited to 32 bits? The short answer is, “You don’t.”
You may recall from Chapter 1 that immediate constants were limited to a
very small range, and now you know why: the constants must be encoded
into a 32-bit instruction value, along with considerable other information.
This severely limits the size of immediate constants.

UNDER MY THUMB

The 32-bit variants of the ARM support a special 16-bit instruction-length mode
known as the Thumb instruction set. This was done to reduce the size of pro-
grams in cost-sensitive embedded applications. In fact, certain embedded
versions of the ARM support only the Thumb instruction set. However, Thumb
extensions are definitely non-RISC-like. The ARM64 CPUs do not support the
Thumb instruction set (while operating in 64-bit mode), as most ARMé4 CPUs
have a fair amount of memory installed in the system.

Immediate constants aren’t the only thing you must encode within an
instruction’s 32-bit value. Every instruction operand will require a certain
number of bits to encode. For example, the ARM64 CPU has 32 general-
purpose registers. It takes b bits to encode 32 values. Therefore, each
register in an operand will consume 5 bits out of the 32 available for that
instruction. The following adds instruction will require at least 15 bits to
encode the three registers (as any general-purpose register is legal for the
destination, first-source, and second-source registers):

adds x0, x1, x2
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In addition to registers and constants, other pieces of information must
be encoded in an ARM instruction, such as the size of the operation (32 bits
versus 64 bits). Many instructions, like adds in the preceding example, allow
immediate constants (as the second source operand) in addition to reg-
isters. There must be some way to differentiate those two operand forms,
which take at least 1 bit. Many instructions provide an option to update
the flags at the end of the instructions’ execution, which takes another bit.
Many additional options exist that this book hasn’t even begun to cover.
We’re rapidly running out of bits.

RISC instructions must be not only fixed-length but also easy to decode
using hardware. This means that for all instructions, a certain number of
bits in fixed locations in the 32-bit instruction determine the type or clas-
sification of the instruction. Consider the basic instruction format for the
ARMG64 shown in Figure 2-22.

31 28 25 16 15 8 7 0

23
J T e I

Figure 2-22: The basic ARM instruction format

The opo field (opo is short for operation code 0, itself usually shortened to
opcode) specifies the instruction’s operation. In this example, this 4-bit field
divides the instruction set into seven components, as shown in Table 2-14.

Table 2-14: The opo 4-Bit Field in Instruction Encoding

opo Encoding group or instruction page

0000 Reserved/unallocated

0001

0010

0011

1000 Data processing instructions with immediate constants

1001

1010 Branches, exception-generating instructions, and system instructions

1011
0100 Loads and stores

0110

1100

1110

0101 Data processing instructions with registers

1101

o1 Data processing: SIMD and floating-point instructions
1111 Data processing: SIMD and floating-point instructions

Consider the instructions in the second group in Table 2-14: data pro-
cessing instructions with immediate constants. This group uses the decod-
ing shown in Figure 2-23.
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31 28 25 23 16 15 8 7 0

J N TS 1

Figure 2-23: Encoding of data processing instructions with immediate constants

The 3 bits in op1 (note that bit 25 is shared with op0) can be decoded as
shown in Table 2-15.

Table 2-15: Instructions with opo Equal to Ob100

op1 Decoding group or instruction page
000 PC-relative addressing mode instructions
001

010 Add/subtract immediate instructions

oM

100 Logical immediate instructions

101 Move Wide immediate instructions

110 Bitfield instructions

m Extract instructions

Now consider the add/subtract immediate instructions group from
Table 2-15. The full encoding for these instructions appears in Figure 2-24.

31 28 25 23 21 10 9 0
st[op S0 [oTo]o] 1] IﬂjiﬂﬂlﬂﬂﬂﬂﬂﬂllJ\llJlll
Shift —— Immediate12
Regdesr
S suffix (set flags) Reg,, —

Opcode (add/subtract)

Size (32/64 bits)

Figure 2-24: Add/subtract immediate instructions

The add and subtract instructions are a classic example of a packed-
data field (as discussed in section 2.12, “Bit Fields and Packed Data,” on
page 85). The fields have the following meanings:

sf Indicates the instruction size (variant). If 0, this is a 32-bit instruc-
tion and the registers specified by the Reg_  and Reg,_ fields are
32-bit registers. If 1, this is a 64-bit instruction, and the registers are
64-bit registers.

op (bit 30) Is an extension of the opcode (bits 24 through 28). If this
bit is 0, the instruction is an add/adds instruction; if this bitis 1, it’s a
sub/subs instruction.
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S Specifies whether there was an s suffix (for example, adds) on the
instruction. If this bit is 1, the instruction will update the condition
code flags after the execution of the instruction; if this bit is 0, no such
update takes place.

Shift Specifies how the instruction treats the Immediatel2 field. I’ll
discuss this field in greater detail shortly.

Immediatel2 Isa 12-bit unsigned integer value (0 to +4,096). This
instruction will zero-extend that value to the instruction’s size (32 or
64 bits).

Reg . Specifies the source register, the second operand for the
instruction.

Reg, Specifies the destination register, the first operand for the
. est .
instruction.

The Shift field depends on the Immediatel2 field and is a bit complex.
This field may contain 0b00 or 0b01 (0b10 and 0bl1 are reserved values).
If this field contains 0b00, the instruction uses the zero-extended value
of the Immediatel2 field as is. However, if this field contains 0b01, the
instruction first shifts the Immediatel2 to the left by 12 bits and uses that
shifted value. This shifted form is useful when doing pointer arithmetic
and adding in page offsets (see Chapter 3 for an explanation of memory-
management pages).

If the add and subtract instructions are limited to a 12-bit immedi-
ate constant (possibly shifted to the left 12 bits), how do you add a 32- or
64-bit constant to a register? You can’t do it directly; instead, you have to
load that constant into another register and use that register as the sec-
ond source operand rather than an immediate constant. As I pointed out
earlier, the same problem arises with the mov instruction and immediate
constants. As with add and subtract, the mov instruction is limited to 32 bits,
meaning you cannot load a 32- or 64-bit constant into a register with a sin-
gle mov instruction. The operative word here is single. You can load a 32- or
64-bit constant into a register by using multiple mov instructions. The next
section discusses how to do this.

Operand?2

Most ARM data processing instructions (such as add and sub) require three
operands: a destination operand and two source operands. In the following
instruction, X0 is the destination operand, X1 is the first source operand,
and X2 is the second source operand:

add x0, x1, x2 // Computes X0 = X1 + X2

Thus far in this book, I've used registers and immediate constants as the
second source operand. However, the ARM CPUs support several formats for
this second operand, known as Operand2. These forms, shown in Table 2-16,
are extremely powerful, making Operand2 legendary on the ARM.



Table 2-16: Operand?2 Allowable Fields

Operand2 Description

#immediate A 12-bit immediate value of 0-4,095 (used by arithmetic instruc-
tions) or a 16-bit immediate value (used by move instructions).

#pattern A constant that specifies a run of Os and 1s. Used to generate a
bitmask for the logical instructions. For logical instructions only.

Wn or Xn One of the general-purpose registers (32- or 64-bit).

Wn shiftOp #imm  The contents of a 32-bit register shifted the number of positions
specified by the #imm operand (0-31). shiftop is 1s1, 1sr, asr,
or ror.

Xn shiftOp #imm  The contents of a 64-bit register shifted the number of positions
specified by the #imm operand (0-63).

Wn extendOp #imm  The contents of a 32-bit register are zero- or sign-extended and
then shifted to the left by the immediate value (0-31). This form is
not available for logical instructions, as sign extension doesn't logi-
c0||y opply to those. extendOp is uxtb, uxth, uxtw, uxtx, sxtb, sxth,
sxtw, or sxtx.

Xn extendOp #imm  The contents of a 64-bit register are zero- or sign-extended and
then shifted to the left by the immediate value (0-31). This form is
not available for logical instructions, as sign extension doesn't logi-
cally apply to those.

The following sections describe each of these Operand2 forms.

2.19.1 #immediate

The immediate form of Operand2, or #immediate, is one of its more common
uses (the other being one of the 32 general-purpose registers). Because the
immediate operand is encoded as part of the 32-bit instruction value, it is
always significantly less than 32 bits in length. As you’ve seen, the arithmetic
instructions allow only a 12-bit unsigned integer as an immediate operand.
Other instructions allow different immediate operand sizes. For example,
the mov instruction allows 16-bit unsigned immediate operands.

Although many immediate constants you’ll encounter in programs will
fitinto 12 or 16 bits, some values won’t. As noted earlier in this chapter, in
those situations you will have to load a register with the larger constant and
use that value in that register, rather than using an immediate constant.
See section 2.20, “Large Constants,” on page 111 to learn how to handle
this situation.

2.19.2 #pattern

The ARM logical instructions (such as and, orr, and eor) provide a 13-bit
immediate (#pattern) field encoded into the 32-bit instruction. However, this
is not a straightforward 13-bit immediate value. Instead, it’s a combination
of 3 separate bit fields that form a bitmask pattern. Chapter 12 describes the
use of these bitmasks in greater detail. Until then, understand that there are
some weird limitations on the type of immediate constants that the logical
instructions support.
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The Arm Compiler Armasm User Guide’s entry is difficult to under-
stand. Basically, it says that immediate constants for logical instructions
consist of binary values that contain a run (consecutive sequence) of 1 bits
followed by (and possibly preceded by) 0 bits. Each sequence can be 2, 4, 8,
16, 32, or 64 bits in length. The following are legal examples of such imme-
diate constants:

and X0, x0, #0b1
and X0, x0, #0b11
and x0, x0, #0b111
and X0, x0, #0b1110
and X0, x0, #0b11100

In each case, there is a single run of 1 bits, possibly surrounded by 0 bits.
The following examples are not legal immediate constants:

and X0, x0, #0b101
and X0, x0, #0b10101
and x0, x0, #0b1110111
and X0, x0, #0b101100

These examples are illegal because they contain multiple runs of 1 bits
within the same immediate constant.

The “vector of identical elements” phrase (from the Armasm Guide)
tells us that if the sequence is less than the register size (32 or 64 bits), the
instruction replicates the sequence throughout the register in order to fill
it to 32 or 64 bits. Therefore, it is possible to have multiple runs of 1 bits in
an immediate constant if there are identical sequences of 1s and 0s, where
each sequence is a multiple of 2, 4, 8, 16, or 32 bits in length. The following
are legal examples:

// This AND instruction contains 4 copies of the sequence
// 0b11110000:

and w0, w0, #0b11110000111100001111000011110000

// This sequence is legal because it contains 16 copies of
// the 2-bit sequence 0b10:

and w0, w0, #0b01010101010101010101010101010101

// This sequence is legal because it contains 2 copies of
// the 32-bit sequence 0b11111111111111110000000000000000:

and X0, X0, #OXFFFFOOOOFFFF0000

However, if you want to use the “vector of identical elements” scheme,
you must provide a constant that completely fills the destination register.
The following example is illegal because it has two runs within 16 bits that
are not replicated throughout the HO 16 bits of the 32-bit WO register:



and w0, w0, #0b1111000011110000

This scheme is confusing but generates the most common types of immedi-
ate constants with just a few bits, so the complexity is worth it.

If you accidentally supply an inappropriate constant, Gas will respond
with an error message such as error: expected compatible register or
logical immediate or error: immediate out of range at operand 3 -- 'and
w0, w0,#0b1111000011110000".

2.19.3 Register

The most common form for Operand?2 is one of the ARM’s general-purpose
registers (32 or 64 bits). Given that registers have appeared in most exam-
ples thus far, there’s no need to further discuss this form.

2.19.4 Shifted Register

Another Operand2 form combines an ARM register with a shift operation.
This form adds an extra operand to the instruction, consisting of one of the
shift operators in Table 2-17 along with a small immediate constant (in the
range 0 to n, where n is the size of the destination register).

Table 2-17: Operand2 Shift Operators

Operator  Description

1s1 #imm Logically shifts a copy of the Operand? register value to the left imm bits
and uses the result.

1st #imm Logically shifts a copy of the Operand? register value to the right imm bits
and uses the result.

ast #imm Arithmetically shifts a copy of the Operand?2 register value to the right
imm bits and uses the result.

ror #imm Logically rotates a copy of the Operand? register value to the right
imm bits and uses the result. This form is available with only the logical
instructions.

As you’ll see in Chapter 4, using the shifted register Operand2 form
will prove handy when indexing into arrays and other data structures.

To use the shifted register Operand2 form, simply tack on an extra
operand to the end of the instruction’s operand list with one of the opera-
tors appearing in Table 2-17. Here are some examples:

add wo, wi, w2, 1sl #4 // WO = W1 + (W2 << 4)
sub x0, x1, x2, Isr #1 // X0 = X1 - (X2 >> 1)
add x0, x1, x2, asr #1 // X0 = X1 + (X2 asr 1)
and x0, x1, x2, ror #2 // X0 = X1 & (X2 ror 2)

As the comments indicate, each of these instructions shifts the value in
W2 or X2 before using that value as the second source operand.
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2.19.5 Extending Register

The last set of Operand?2 forms provide zero and sign extension, along with
an optional logical shift left, of an Operand2 register. The basic instruction
syntax is

instr reg,., reg.., reg.., extendop #optional imm

where extendop is one of the operators in Table 2-18. If the #optional_imm value
is not present, it defaults to 0.

Table 2-18: Extend Operators

Extend operator Description

uxtb #optional imm  Zero-extends the LO byte of reg.,, to the size of reg,..; and reg.,.. The reg.,.,
operand should be a word-sized register (Whn), regardless of the size of reg,,.; and
regs;.. (Gas seems to accept a dword register, substituting the corresponding word
register.) If the optional immediate value is present, it must be a value in the range
0-4 and will shift the result of the extension by the specified number of bits.

uxth #optional imm  Zero-extends the LO half word of reg.,., to the size of regy.:. The reg,., operand
should be a word-sized register (Wn), regardless of the size of reg,..; and reg,,,. If
the optional immediate value is present, it must be a value in the range 0-4 and will
shift the result of the extension by the specified number of bits.

uxtw #optional imm  Zero-extends the LO word of reg.,, to the size of reg,.. The reg.,., operand should
be a word-sized register (Whn), regardless of the size of reg,..: and reg,,,. If the
optional immediate value is present, it must be a value in the range 0-4 and will
shift the result of the extension by the specified number of bits. Note that if all the
registers are words (Whn), then this operator is equivalent to 1s1 #optional imm.

uxtx #optional_imm  This operator is applicable only when all the registers are 64 bits. This is the default
condition if no extend (or shift) operator is present after an Operand? register.

sxtb #optional imm  Sign-extends the LO byte of reg.,, to the size of reg,..; and reg,.;. The reg.,.,
operand should be a word-sized register (Whn), regardless of the size of reg,.;
and reg,,;. If the optional immediate value is present, it must be a value in the
range 0-4 and wi|r5hift the result of the extension by the specified number of bits.

sxth #optional imm  Sign-extends the LO half word of reg,,., to the size of reg,.. The reg.,., operand
should be a word-sized register (Wn), regardless of the size of reg,..; and reg.,;.
If the optional immediate value is present, it must be a value in the range 0-4 and
will shiﬁ the result of the extension by the specified number of bits.

sxtw #optional imm  Sign-extends the LO word of reg,., to the size of reg,.... The reg,,., operand must
be a word-sized register (Wn), regardless of the size of reg,.. and reg,.,. If the
optional immediate value is present, it must be a value in the range 0-4 and will
shift the result of the extension by the specified number of bits. If all the registers are
words (Whn), this operator is equivalent to 1s1 #optional imm. Note that uxtw is pre-
ferred over this form when all registers are word sized (both do the same thing with
word-sized registers).

sxtx #optional imm  This operator is applicable only when all the registers are 64 bits. This is effectively
the same as uxtx (uxtx is the preferred form).

1s1 #optional imm If the extend operator is redundant (uxtx/sxtx for double words, uxtw/sxtw for word
registers), you should use the 1s1 operator for clarity (it is the same operation).

The extension operators are very useful for mixed-sized arithmetic.
Chapter 8 discusses this when it covers operating on different-sized operands.
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2.20

Large Constants

At several points, this chapter has punted on the solution to dealing with
immediate constants that don’t fit into 12 or 16 bits. It’s time to rectify
that omission.

As mentioned, if you need a constant for an arithmetic or logical opera-
tion that won’t fit within the bits set aside for constants in the instruction’s
encoding, you’ll have to load that constant into a register and operate on
the register rather than directly using the constant. The drawback to this
scheme is that you’ll need at least one additional instruction, and often
more, to first load the constant into a temporary register so you can use that
value in an arithmetic operation. For example, suppose you want to add
the value 40,000 to the X1 register. The following instruction won’t work
because 40,000 won’t fit in 12 bits:

add x1, x1, #40000

However, since 40,000 will fit in 16 bits, you could do the following:

mov x0, #40000 // Works, because mov allows 16-bit consts
add x1, x1, x0 // Add 40000 to X1i.

Sadly, your program will be a little larger (an extra 4 bytes for the mov
instruction) and a little slower (executing two instructions rather than
one), but it’s about as efficient as it’s going to get.

What if you want to add a constant that won’t fit into 16 bits (perhaps
400,000)? This problem has a couple of solutions. First, as you saw in
Chapter 1, a variant of the 1ldr instruction allows you to load any sized con-
stant into a register (32 or 64 bits). That form has the following syntax

ldr reg, =largeConstant

where reg is a general-purpose register (32- or 64-bit) and largeConstant is an
immediate value (literal or symbolic) that will fit in the specified register.
This instruction form will set aside storage (within the .text section, which
is read-only) and initialize that storage with the specified constant. When
the 1dr instruction executes, it will load the contents of that memory loca-
tion into the specified register.

This single instruction is a convenient way to load a large constant into
a register. However, this approach has a couple of problems. First, accessing
memory on the ARM is a relatively slow process. Second, because Gas inserts
the constant into your .text section, it could affect the performance of other
code in your program; although this is rare and probably not worth worrying
about, it’s something to keep in mind.

Fortunately, you can load larger constants into a general-purpose reg-
ister in other ways. These techniques involve additional variants of the mov
instruction: movz, movk, and mvn.
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2.20.1 movz

The movz instruction (move, with zeroing) has the following syntax

movz req,, ., #imm,
movz req,,., #imm,, 1sl #imm,

where reg,,, is any general-purpose (32- or 64-bit) register, imm, is a 16-bit
immediate constant, and imm, is one of the four values 0, 16, 32, or 48
(0 is the default value, if the 1s1 #imm, operand is not present).

The movz instruction will take the imm, constant and shift it to the left
the number of bits specified by the imm, constant (with Os in all the other bit
positions, hence the with zeroing in the name). It will then move this shifted
constant into the destination register. The following three instructions do
exactly the same thing, loading the constant 122 into XO:

mov x0, #122
movz x0, #122
movz x0, #122, 1sl #0

The difference between mov and movz is that mov will sign-extend the
immediate constant you supply, whereas movz will zero-extend the constant.
For values less than 0x8000, both will load the same constant into the desti-
nation register (in fact, the assembler may convert the movz instruction to mov
if both would produce the same result). Keep in mind that the shift value can
be only 0, 16, 32, or 48; you cannot specify an arbitrary bit-shift value for
this instruction.

The movz instruction is useful when you want to load a 16-bit value into
the HO half word of a 32-bit register, or one of the three HO half words
(1, 2, or 3) of a 64-bit register.

2.20.2 movk

Although the movz instruction allows you to move some values that are larger
than 65,535 into a register, it’s not a general solution for loading 32- and
64-bit constants into a register. The movk instruction (combined with movz
and mov) fulfills that role. The movk instruction (move and keep unaffected
bits) has a syntax very similar to movz:

movk reg,.,, #imm, // Default is "lsl #0"
movk reg,, ., #imm,, 1sl #imm,

The movk instruction will shift the immediate operand by 0, 16, 32, or 48 bits
and then merge that value into the destination register. (It does not zero
the other bit positions but instead preserves their original values.)

To load a 32-bit immediate constant into the WO register, use the follow-
ing instruction sequence:

mov w0, #LO 16 bits
movk wo, #HO 16 bits, 1lsl #16
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To load a full 64 bits into X0, use the following:

mov X0, #LO 16 bits

movk x0, #Bits 16 to 31, 1sl #16
movk x0, #Bits 32_to_47, 1sl #32
movk x0, #HO 16 bits, 1sl #48

Most of the time, the immediate constant won’t require a full 64 bits, so
you might be able to get by with two or three instructions rather than the
full four. However, you’ll never need more than four instructions to load
a 64-bit constant into a register (and never more than two to load a 32-bit
constant).

2.20.3 movn

The movn (move not) instruction is another variant of mov that logically negates
the immediate constant before loading it into the destination register. The
syntax is the same as movz (swapping, of course, movn for movz):

movn reg,,., #imm, // Default shift is 1sl #o.
movn reg,,.,, #imm,, 1sl #imm,

The movn instruction shifts the immediate constant by 0, 16, 32, or 48 bits
and then inverts the whole (32- or 64-bit) bit string before assigning it to the
destination register.

Consider the following example:

movn x1, #oxff, lsl 16

This instruction loads OxFFFFFFFFFFOOFFFF into the X1 register.
(OxFF shifts left 16 bit positions and then inverts all the bits.)

Particularly when loading negative constants into a register, the movn
instruction can help reduce the number of instructions needed to load a
64-bit constant. However, 32-bit constants, which don’t fit into 16 bits, will
generally take two instructions no matter what. This differs from the mvn
instruction in that it allows shifted immediate constants.

Moving On

This chapter covered basic data types, representation, and operations on
those data types. This includes the decimal, binary, and hexadecimal num-
bering systems, and machine-level data including bits, nibbles, and so on.
It discussed logical operations on bits and bit strings, signed and unsigned
integer representation and sign and zero extension to expand the num-
ber of bits used by a number, as well as sign contraction and saturation to
reduce the number of bits used by a number. It also introduced floating-
point and BCD data formats and character data (including ASCII and
Unicode characters).

Data Representation and Operations n3
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This chapter also included information on machine instruction encod-
ing and presented ARM assembly language instructions to load and store
memory values, compare and branch instructions for controlling program
flow, and shift and rotate instructions. It described packing data into bit
fields, the Operand?2 formats for constants and other operands, and how
to load large constants that won’t fit in the 32-bit instruction encoding into
aregister.

In short, this chapter provided the tools and techniques you need for
manipulating various types of constants in assembly language programs.
While constants are an important part of any assembly language program,
being able to manipulate variable data is the basis of most computer sys-
tems. The next chapter discusses the ARM memory subsystem and how to
create and efficiently use memory-based variables.

For More Information

e For general information about data representation and Boolean func-
tions, consider reading my book Write Great Code, Volume 1, 2nd edition
(No Starch Press, 2020), or a textbook on data structures and algorithms.

e ASCII and Unicode are both International Organization for Standard-
ization (ISO) standards, and ISO provides reports for both character
sets. Generally, those reports cost money, but you can also find lots of
information about the ASCII and Unicode character sets by searching
for them by name on the internet. You can also read about Unicode at
hitps://www.unicode.org. Finally, Write Great Code, cited previously, con-
tains additional information on the history, use, and encoding of the
Unicode character set.

e For more on ARM CPUs, see https://developer.arm.com.

e To learn more on the IEEE floating-point single-precision format, see
hitps://en.wikipedia.org/wiki/Single-precision_floating-point_format.

¢ Find out more about the IEEE floating-point double-precision format at
https://en.wikipedia.org/wiki/Double-precision_ floating-point_format.

TEST YOURSELF

1. What does the decimal value 9,384.576 represent (in terms of powers
of 10)2

2. Convert the following binary values to decimal:
a. 1010
b. 1100
c. 011


https://www.unicode.org
https://developer.arm.com
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

d. 1001
e. 001
f.1m

3. Convert the following binary values to hexadecimal:

a. 1010
b. 1110
c. 101
d. 1101
e. 0010
. 1100
g. 1100_1111

h.  1001_1000_1101_0001

4. Convert the following hexadecimal values to binary:

a. 12AF
b. 9BE7
c. 4A
d. 137F
e. FOOD
f. BEAD
g. 4938
5. Convert the following hexadecimal values to decimal:
a. A
b. B
c. F
d D
e. E
f. C
6. How many bits are there in a:
a. Word
b. Qword
c.  Half word
d. Dword
e. BCD digit
f.  Byte
g. Nibble

(continued)
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7. How many bytes are there in a:

a. Word
b. Dword
c. Qword
d. Half word
8. How many different values can you represent with a:
a. Nibble
b. Byte

c. Half word
d. Bit

9. How many bits does it take to represent a hexadecimal digit?
10. How are the bits in a byte numbered?
11. Which bit number is the LO bit of a word?
12. Which bit number is the HO bit of a dword?
13. Compute the AND of the following binary values:

a. 0andO
b. Oand1
c. landO
d landl
14. Compute the OR of the following binary values:
a. Oor0
b. Oand1
c. landO
d. Tandl
15. Compute the XOR of the following binary values:
a. 0andO
b. Oand1
c. landO
d. Tandl

16. The NOT operation is the same as XORing with what value?
17. Which logical operation would you use to force bits to O in a bit string?
18. Which logical operation would you use to force bits to 1 in a bit string®

19. Which logical operation would you use to invert all the bits in a bit string®
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20.

21.

22.
23.
24.

25.

26.

27.

28.
29.
30.
31.
2.

3.

34.
SO

Which logical operation would you use to invert selected bits in
a bit string?

Which machine instruction will invert all the bits in a register?
What is the two's complement of the 8-bit value 5 (00000101b)2
What is the two's complement of the signed 8-bit value -2 (11111110)2
Which of the following signed 8-bit values are negative?

a. 1111_1111b

b. 0111_0001b

1000_0000b

0000_0000b

e. 1000_0001b

f.  0000_0001b

o o

Which machine instruction takes the two's complement of a value in a reg-
ister or memory location?

Which of the following 16-bit values can be correctly sign-contracted to
8 bits?

a. 1111111111111

b. 1000_0000_0000_0000
000_0000_0000_0001
TT11_1111_1111_0000

e. 1111_1111_0000_0000

. 0000_1111_0000_1111
g. 0000_0000_1111_1111

h.  0000_0001_0000_0000

o o

What machine instruction provides the equivalent of an HLL goto
statement?

What is the syntax for a GNU statement label2
What flags are the condition codes?

Which condition code does beq test?

Which condition codes does blo teste

Which conditional branch instructions transfer control based on an
unsigned comparison?

Which conditional branch instructions transfer control based on a signed
comparison?

How does the 1sl1 instruction affect the zero flag?

A shift left is equivalent to what arithmetic operation?
(continued)
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36.

37.

38.
39.
40.

41.

A shift right is equivalent to what arithmetic operation?

When performing a chain of floating-point addition, subtraction, multiplica-
tion, and division operations, which operations should you try to do firste

What is a normalized floating-point value?
How many bits does a (standard) ASCII character require?

What is the hexadecimal representation of the ASCII characters
0 through 92

What delimiter character(s) does Gas use to define character constants?



MEMORY ACCESS
AND ORGANIZATION

Chapters 1 and 2 showed you how to declare
and access simple variables in an assem-
bly language program. This chapter fully
explains ARM memory access. You'll learn how

to efficiently organize your variable declarations to

speed up access to their data. You'll also learn about the

ARM stack and how to manipulate data on it.

This chapter discusses several important concepts, including the

following:

Memory organization
Memory access and the memory management unit

Position-independent executables and address space layout
randomization

Variable storage and data alignment

Endianness (memory byte order)
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e ARM memory addressing modes and address expressions

e Stack operations, return addresses, and preserving register data

This chapter will teach to you make efficient use of your computer’s
MEemory resources.

Runtime Memory Organization

A running program uses memory in many ways, depending on the data’s
type. Here are some common data classifications you’ll find in an assembly
language program:

Code Memory values that encode machine instructions (also known
as the text section under Linux and macOS).

Uninitialized static data An area in memory set aside by the program
for uninitialized variables that exist the whole time the program runs;
the OS will initialize this storage area to Os when it loads the program
into memory.

Initialized static data A section of memory that also exists the whole
time the program runs. However, the OS loads values for all the vari-
ables appearing in this section from the program’s executable file, so
they have an initial value when the program first begins execution.

Read-only data Similar to initialized static data, insofar as the OS
loads initial data for this section of memory from the executable file.
However, this section is marked read-only to prevent inadvertent modi-
fication of the data. Programs typically place constants and other
unchanging data in this section (the code section is also marked read-

only by the OS).

Heap This special section of memory is designated to hold dynami-
cally allocated storage. Functions such as C’s malloc() and free() are
responsible for allocating and deallocating storage in the heap area.
Section 4.4.4, “Pointer Variables and Dynamic Memory Allocation,” on
page 178 discusses dynamic storage allocation in greater detail.

Stack In this special section in memory, the program maintains local
variables for procedures and functions, program state information, and
other transient data. See section 3.9, “The Push and Pop Operations,”
on page 155 for more information about the stack section.

These are the typical sections you will find in common programs,
assembly language or otherwise. Smaller programs won’t use all these sec-
tions, though most programs have at least code, stack, and data sections.
Complex programs may create additional sections in memory for their
own purposes. Some programs may combine several of these sections. For
example, many programs will combine the code and read-only sections into
the same section in memory (as the data in both sections gets marked as
read-only). Some programs combine the uninitialized and initialized data



sections, initializing the uninitialized variables to 0. Combining sections
is generally handled by the linker program. See section 3.12, “For More
Information,” on page 167 concerning the GNU linker.

Linux and macOS tend to put different types of data into different sec-
tions (or segments) of memory. Although it is possible to reconfigure mem-
ory to your choice by running the linker and specifying various parameters,
one typical organization might be similar to that in Figure 3-1.

High addresses
Uninitialized storage (.bss section) variables

Static (.data) variables
Read-only data (.rodata section)

- Code (.text section/program instructions)

Heap

Stack

Adrs=0x0 I Rescrved by OS (typically 128KB)

Figure 3-1: A Linux/macOS example runtime memory organization

This figure is just an example. Real programs will likely organize mem-
ory differently, especially when using address space layout randomization,
discussed later in this chapter.

The OS reserves the lowest memory addresses. Generally, your applica-
tion cannot access data (or execute instructions) at these low addresses.
One reason the OS reserves this space is to help trap NULL pointer refer-
ences: if you attempt to access memory location 0x0 (NULL), the OS will
generate a segmentation fault (also known as a general protection fault), mean-
ing you've accessed a memory location that doesn’t contain valid data.

The remaining six areas in the memory map hold different types of
data associated with your program. These sections of memory include the
stack section, the heap section, the .text (code) section, the .data section,
the .rodata (read-only data) section, and the .bss (uninitialized data) sec-
tion. Each of these memory sections corresponds to a type of data you can
create in your Gas programs. I will describe the .text, .data, .rodata, and
.bss sections in detail next. (The OS provides the stack and heap sections;
you don’t normally declare these two in an assembly language program, so
there isn’t anything more to discuss about them here.)

3.1.1 The .text Section

The .text section contains the machine instructions that appear in a
Gas program. Gas translates each machine instruction you write into a
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sequence of one or more word values. The CPU interprets these 32-bit word
values as machine instructions during program execution.

By default, when GCC/Gas/ld links your program, it tells the system
that your program can execute instructions and read data from the code
segment, but cannot write data to the code segment. The OS will generate a
segmentation fault if you attempt to store any data into the code segment.

3.1.2 The .data Section

You'll typically put your variables in the .data section. In addition to declar-
ing static variables, you can embed lists of data into the .data declaration
section. You use the same technique to embed data into your .data section
that you use to embed data into the .text section: use the .byte, .hword,
.word, .dword, and so on, directives. Consider the following example:

.data
bb: .byte 0
.byte 1,2,3
u: .word 1

.dword 5,2,10

c:  .byte 0
.byte ‘a', 'b', 'c', 'd', 'e', 'f'

bn: .byte 0
.byte  true // Assumes true is defined as 1

Values that Gas places in the .data memory segment by using these
directives are written to the segment after the preceding variables. For
example, the byte values 1,2,3 are emitted to the .data section after bb’s
0 byte. Because there aren’t any labels associated with these values, you do
not have symbolic access to these values in your program. You can use the
indexed addressing modes (described later in this chapter) to access these
extra values.

3.1.3 Read-Only Data Sections

Gas does not provide a stand-alone directive for creating sections that hold
read-only constants. However, you can easily use the Gas .section directive
to create a generic read-only constant section as follows:

.section .rodata,

Most programs use the .rodata identifier, by convention, for read-only
data. For example, GCC uses this name for read-only constant sections. You
could use any identifier you choose here. For example, I often use the name
.const for constant sections. However, as GCC uses .rodata, I'll stick to that
convention in this book. I’ll say more about the .section directive a little
later; for the time being, note that as long as the second argument is the
empty string, Gas will create a read-only data section by using this directive.



The .section .rodata section holds constants, tables, and other data that
your program cannot change during execution. This section is similar to
the .data section, with two differences:

e The .rodata section is defined with .section .rodata, rather

than .data.

e The system does not allow you to write data to variables in an .rodata
object while the program is running.

Here’s an example:

.section .rodata,
pi: .single  3.141592653589793 // (rounded)
e: .single  2.718281828459045 // (rounded)
MaxU16: .hword 65535
MaxI16: .hword 32767

For many purposes, you can treat .rodata objects as literal constants.
However, because they are actually memory objects, they behave like read-
only .data objects. You cannot use an .rodata object anywhere a literal
constant is allowed. For example, you cannot use them as displacements (con-
stant offsets from a base pointer) in addressing modes (see section 3.6, “The
ARM Memory Addressing Modes,” on page 140), in constant expressions, or
as immediate values. In practice, you can use them anywhere that reading a
.data variable is legal.

LINUXVS. MACOS: FORCED CODE ALIGNMENT

ARM machine instructions must be aligned on a word (32-bit) boundary. The
ARM cannot physically address an instruction that is not so aligned. Therefore,
if you insert data into the .text section that is not a multiple of 4 bytes long,
any instructions following that data will be misaligned. You must always include
an .align 2 (or .balign 4) directive before any code appearing after data that
is not a multiple of 4 bytes long in the .text section.

The macOS assembler is so paranoid about this that it requires all symbols
appearing in the .text section to be aligned on a 4-byte boundary, and it will
generate an error if it encounters a label declaration (1abel:, where label rep-
resents any identifier) that is not associated with a word-aligned address. The
only way to correct this error is to insert an .align 2 (or .balign 4) directive
before the label declaration. This can create a problem for certain data decla-
rations in the .text section. Consider the following code:

.align 2
bb:  .byte 0
G .byte o
(continued)
\ J
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The macOS assembler will require both of these symbols to be word-
aligned (requiring an .align 2 directive between them), even if you don’t want
this. You might, for example, want c to immediately follow bb in memory. The
macOS assembler does not allow this. If you define a label, that label must be
aligned on a word boundary.

One solution is to avoid putting data in the .text section; just put your
read-only constants, such as .rodata, in their own section. However, there are
good reasons for wanting to put data in the .text section. In those situations,
you'll have to work around this limitation when writing code for macOS.

. J

As with the .data section, you may embed data values in the .rodata sec-
tion by using the .byte, .hword, .word, .dword, and so on, data declarations.
For example:

.section .rodata,
roArray: .byte 0

.byte 1, 2, 3, 4, 5
dwVal: .dword 1

.dword 0

You can also declare constant values in the .text section. Data values
you declare in this section are also read-only objects, as Linux and macOS
write-protect the .text section. If you do place constant declarations in a
.text section, take care to place them in a location that the program will
not attempt to execute as code (such as after a b.al or ret instruction).
Unless you're using data declarations to manually encode ARM machine
instructions (which would be rare and done only by expert programmers),
you don’t want your program to attempt to execute data as machine instruc-
tions; the result is usually undefined.

Technically, the resull of executing data in the . text section is well defined: the machine
will decode whatever bit pattern you place in memory as a machine instruction.
However, few people will be able to look at a piece of data and interpret ils meaning
as a machine instruction.

3.1.4 The .bss Section

The .data section requires that you initialize objects, even if you simply
place a default value of 0 in the operand field. The .bss (block started by
symbol) section lets you declare variables that are always uninitialized when
the program begins running. This section begins with the .bss reserved
word and contains variable declarations whose initializers must always be 0.
Here is an example:



.bss

UninitUns32: .word o0
i: .word O
character: .byte 0
bb: .byte o0

The OS will initialize all .bss objects to 0 when it loads your program
into memory. However, it’s probably not a good idea to depend on this implicit
initialization. If you need an object initialized with 0, declare itin a .data
section and explicitly set it to 0.

Annoyingly, Gas requires you to explicitly provide an initializer of 0
when declaring variables in the .bss section. Good assembly language pro-
grammers don’t like doing this, because providing their source code with an
explicit value tells the reader that they are expecting that variable to contain
that value when the program runs. If the program explicitly isn’t expecting
the variable to be initialized, it would be nice to tell the reader that.

A very old convention to make this statement is to use the expression .-.
in the operand field of such declarations. For example:

.bss
UninitUns32: .word .-.
i: .word .-.
character: .byte .-.
bb: .byte .-.

Gas substitutes the current value of the location counter (see section 3.2,
“Gas Storage Allocation for Variables,” on page 131) in place of the period (.).
The expression location counter minus location_counter is equal to 0, which
satisfies the Gas requirements for initializers in the .bss section. This strange
syntax lets the reader know that you're not explicitly expecting the variable to
be initialized with 0 when the program runs.

If .-. is too bizarre for your tastes (or you don’t want to have to type three
characters), I've often used something like this to get the same results:

.equ _, 0 // " " is a legitimate identifier
.bss

UninitUns32: .word _

i: .word

character: .byte _

bb: .byte _

This book tends to use the .-. form (when not explicitly specifying 0),
as there is historical precedence for it. This form has one drawback, how-
ever: it does not work for .qword declarations (this is a Gas limitation).

Variables you declare in the .bss section may consume less disk space
in the executable file for the program. This is because Gas writes out initial
values for .rodata and .data objects to the executable file, but it may use a
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compact representation for uninitialized variables you declare in the .bss
section. Note, however, that this behavior is dependent on the OS version
and object-module format.

3.1.5 The .section Directive

The .section directive allows you to create sections using any name you
please (the .rodata section is an example). The syntax for this directive is

.section identifier, flags

where identifier is any legal Gas identifier (it does not have to begin with
a period) and flags is a string surrounded by quotes. The contents of the

string vary by OS, but both Linux and macOS seem to support the follow-
ing characters:

b Section is a .bss section and will hold uninitialized data. All data
declarations must have a 0 initializer.

x Section contains executable code.

w Section contains writable data.

a Section is allocatable (must be present for data sections).

d Section is a data section.

The flags string may contain zero or more of these characters, though
certain flags (such as "b" and "x" or "d") are mutually exclusive. If the "w"
flag is not present in the string, the section will be read-only. Here are some

typical .section declarations:

.section aDataSection, "adw" // Typical data section
.section .const, "" // Like .rodata
.section .code, "x" // Code section (like .text)

Each unique section you define will be given its own block of memory
(such as the blocks that appear in Figure 3-1). The GNU linker/loader
will merge all sections with the same name when assigning them to blocks
of memory.

3.1.6 Declaration Sections

The .data, .rodata, .bss, .text, and other named sections may appear zero or
more times in your program. The declaration sections may appear in any
order, as the following example demonstrates:

.data

i static:  .word 0
.bss

i uninit:  .word .



.section .rodata,

i readonly: .word 5
.data
j: .word 0

.section .rodata,

i2: .word 9
.bss

c: .byte -
.bss

d: .word I
.text

Code goes here.

The sections may appear in an arbitrary order, and a given declaration
section may appear more than once in your program. As noted previously,
when multiple declaration sections of the same type (for example, the three
.bss sections in the preceding example) appear in a declaration section of
your program, Gas combines them into a single group, in any order it pleases.

3.1.7 Memory Access and MMU Pages

The ARM’s memory management unit (MMU) divides memory into blocks
known as pages. The OS is responsible for managing pages in memory, so
application programs don’t typically worry about page organization. However,
when working with pages in memory, make sure you're aware of whether the
CPU even allows access to a given memory location and whether it is read/
write or read-only (write-protected).

Each program section appears in memory in contiguous MMU pages.
That is, the .rodata section begins at offset 0 in an MMU page and sequen-
tially consumes pages in memory for all the data appearing in that section.
The next section in memory (perhaps .data) begins at offset 0 in the next
MMU page following the last page of the previous section. If that previous
section (for example, .rodata) does not consume an integral multiple of
4,096 bytes, padding space will be present between the end of that section’s
data and the end of its last page, to guarantee that the next section begins
on an MMU page boundary.

Each new section starts in its own MMU page because the MMU con-
trols access to memory by using page granularity. For example, the MMU
controls whether a page in memory is readable/writable or read-only. For
.rodata sections, you want the memory to be read-only. For the .data section,
you want to allow reads and writes. Because the MMU can enforce these
attributes only on a page-by-page basis, you cannot have .data section infor-
mation in the same MMU page as an .rodata section.
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Normally, all this is completely transparent to your code. Data you
declare in a .data (or .bss) section is readable and writable, and data in
an .rodata or .text section is read-only (.text sections are also executable).
Beyond placing data in a particular section, you don’t have to worry too
much about the page attributes.

You do need to worry about MMU page organization in memory in one
situation. Sometimes it is convenient to access (read) data beyond the end
of a data structure in memory. However, if that data structure is aligned
with the end of an MMU page, accessing the next page in memory could
be problematic. Some pages in memory are inaccessible; the MMU does not
allow reading, writing, or execution to occur on that page. Attempting to
do so will generate an ARM segmentation fault. This will typically crash your
program, unless you have an exception handler in place to handle segmen-
tation faults. If you have a data access that crosses a page boundary, and
the next page in memory is inaccessible, this will crash your program. For
example, consider a half-word access to a byte object at the very end of an
MMU page, as shown in Figure 3-2.

Page boundary

Hword access crossing R R
page boundary = ——

L 4 — g

Offset OxFFF Offset 0x0000 in

in page xxxx page xxxx + 1

Figure 3-2: Half-word access at the end of a memory-management page

As a general rule, you should never read data beyond the end of a
data structure. If for some reason you need to do so, ensure that it is legal
to access the next page in memory. It goes without saying that you should
never write data beyond the end of a given data structure; this is always
incorrect and can create far more problems than just crashing your pro-
gram (including severe security issues).

3.1.8 PIE and ASLR

As noted in Chapter 1, macOS forces all code to use a position-independent
executables (PIE) form. Linux doesn’t absolutely require this, but it allows
you to write PIE code if you choose. There are two main reasons for PIE
code: shared libraries and security, which were covered in “Linux vs. macOS:
Position-Independent Executables” on page 23. However, as the behavior of
PIE code profoundly affects the way you write ARM assembly language, it is
worthwhile to spend a little more time discussing PIE, and especially address
space layout randomization (ASLR).



ASLR is an attempt by the OS to thwart various exploits (hacks) that try
to figure out where the code and data reside in an application. Prior to PIE
and ASLR, most OSes always loaded the executable code and data to the
same address in memory, making it easy for a hacker to patch or otherwise
mess with the executable program. By loading the code and data sections
into random memory locations, PIE/ASLR make it much more difficult for
exploits to tap into the executing code.

As a result of ASLR, the layout of an executing program in memory will
not actually look like that in Figure 3-1. For one given instance of a program
execution, it might look something like Figure 3-3.

High addresses
Code (.text section/program instructions)

Random space

Read-only data (.rodata section)

Uninitialized storage (.bss section) variables

Random space

Heap

Random space

Static (.data) variables

Random space

Stack

Random space

Adrs=0x0 I Rescrved by OS (typically 128KB)

Figure 3-3: A possible memory layout for one execution of an application

However, on the next run of the program, the sections will likely be
rearranged and placed at different locations in memory.

While PIE/ASLR makes it difficult for hackers to exploit your code,
it also plays havoc with the ARM’s instruction set. Consider the following
(legitimate) ARM 1dr instruction:

ldr wo, someWordvar // Assume someWordVar is in .data

This would normally load the WO register from the 32-bit variable
somelordVar found in the .data section. This particular instruction uses the
PC-relative addressing mode, which means that the instruction encodes an
offset from the address of the 1dr instruction to the someWordVar variable in
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memory. However, if you assemble this program under macOS, you get the
following error:

error: unknown AArch64 fixup kind!

Under Linux (Ubuntu and Raspberry Pi OS seem to be different; your
mileage may vary), you get something like

relocation truncated to fit: R_AARCH64 LD PREL LO19 against °.data'

This is a real ARM64 instruction and should work. In fact

ldr reg, =constant

is just a special form of this instruction, and it does work.

The problem is due to the ARM 32-bit instruction length. If you look up
the encoding for the 1dr instruction in the ARM reference manual, you’ll
discover that it sets aside 19 bits for the address of the memory location.

This turns out to be an offset (a distance in bytes) from the address of the 1dr
instruction (that is, the value of the 19-bit field is added to the PC to get the
actual memory address). Because it’s referencing data in the .text section, and
everything is word-aligned in the text section, the 19-bit offset is actually a
word offset, not a byte offset. This effectively gives the 1dr instruction another
2 bits (the LO 2 bits will always be 0). This effective 21-bit offset allows the 1ldr
instruction to access data at a location +1MB around the 1dr instruction.

Unfortunately, when accessing data in the .data section, which the OS
has been nice enough to place at a random address (probably farther than
1IMB away), the 21-bit range of the ldr instruction won’t be sufficient. This
is why Gas complains about attempting to access a variable in the .data sec-
tion with the ldr instruction. As a bottom line, you can’t use that instruction
to directly access data unless that data is also in the .text section and isn’t
more than +1MB away.

3.1.9 The .pool Section

The .pool section is a Gas pseudo-section in your program. As noted previ-
ously, the following instruction loads a large constant into a register by plac-
ing that constant somewhere in memory, then loading the contents of that
memory location into the destination register:

ldr reg, =largeConstant

In other words, this instruction is completely equivalent to either of the
following:

ldr x0, a64 bit constant
ldr wo, a32_bit constant
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// Somewhere in the .text section that will never
// be executed as code:

a64 bit constant: .dword The Actual 64bit Constant Value
a32_bit constant: .word The Actual 32bit Constant Value

Gas automatically figures out an appropriate place to put such con-
stants: near the instructions that reference them but out of the code path.

If you’d like to control the placement of these constants in your .text
section, you can use the .pool directive. Wherever you place this directive
in your .text section (and it must be in the .text section), Gas will emit the
constants it produces. Just make sure that if you put a .pool directive in
your code, you place it after an unconditional branch or return instruction
so that the program flow won’t attempt to execute that data as machine
instructions.

Normally, you don’t need to place a .pool directive in your source code,
since Gas will do a reasonable job of finding a location to place its data.
However, if you intend to also insert data of your own in the .text section,
you may want to insert the .pool directive and place your data declarations
immediately afterward. Note that the data after .pool is part of the .text sec-
tion, so you can continue to place machine instructions after the .pool.

Gas Storage Allocation for Variables

Gas associates a current location counter with each of the declaration sections
(.text, .data, .rodata, .bss, and any other named sections). These location
counters initially contain 0. Whenever you declare a variable in one of these
sections (or write code in a code section), Gas associates the current value
of that section’s location counter with the label and bumps up the value of
that location counter by the size of the object you're declaring.

For example, assume that the following is the only .data declaration sec-
tion in a program:

.data
bb: .byte o0 // Location counter = 0, size =1
s: .hword 0 // Location counter = 1, size = 2
w: .word O // Location counter = 3, size = 4
d: .dword 0 // Location counter = 7, size = 8
q: .qword O // Location counter = 15, size = 16

// Location counter is now 31.

Variable declarations listed in a single .data section have contiguous
offsets (location counter values) into the .data section. Given the preceding
declaration, s will immediately follow bb in memory, w will immediately fol-
low s in memory, d will immediately follow w, and so on. These offsets aren’t
the actual runtime addresses of the variables. At runtime, the system loads
each section to a base address in memory. The linker and the OS add the
base address of the memory section to each of these location counter values
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(normally called displacements, or offsets) to produce the actual memory
address of the variables.

OBTAINING THE CURRENT LOCATION COUNTER VALUE

If you ever want to use the current location counter value in your program, Gas
will substitute it for a single period (.) wherever a constant is allowed, as in the
following example:

.dword . // Stores the address of this dword in memory

You'd normally use the . operator to compute lengths of sections of code, using
something like the following:

1bl: .byte 0, 1, 2, 3, 4
1b12: .hword 55
size: .word . - 1bl

The . - 1bl expression computes the number of bytes between the 1b1
symbol and the size label. The . operator returns the location counter value at
the beginning of the .word directive and does not include the 4 bytes that .word
will emit to the output file.

Keep in mind that you may link other modules with your program (for
example, from the C stdlib) or even additional .data sections in the same
source file, and the linker has to merge the .data sections. Each individual
section (even when it has the same name as another section) has its own
location counter that starts from 0 when allocating storage for the variables
in the section. Hence, the offset of an individual variable may have little
bearing on its final memory address.

Gas allocates memory objects you declare in .rodata, .data, and .bss
sections in completely different regions of memory. Therefore, you cannot
assume that the following three memory objects appear in adjacent mem-
ory locations (indeed, they probably will not):

.data
bb: .byte 0
.section .rodata, ""
w: .word 0x1234

.bss
d: .dword .-.

In fact, Gas will not even guarantee that variables you declare in sepa-
rate .data (or other) sections are adjacent in memory, even if there is noth-
ing between the declarations in your code. For example, you cannot assume
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whether bb, w, and d are—or aren’t—in adjacent memory locations in the
following declarations:

.data
bb: .byte 0

.data
w: .word 0x1234

.data
d: .dword O

If your code requires these variables to consume adjacent memory loca-
tions, you must declare them in the same .data section.

Little-Endian and Big-Endian Data Organization

As you learned in section 1.6.2, “The Memory Subsystem,” on page 14, the
ARM stores multibyte data types in memory, with the LO byte at the lowest
address in memory and the HO byte at the highest address (see Figure 1-6).
This type of data organization in memory is known as little endian. Little-
endian data organization, in which the LO byte comes first and the HO byte
comes last, is common in many modern CPUs. It is not, however, the only pos-
sible approach.

Big-endian data organization reverses the order of the bytes in memory.
The HO byte of the data structure appears first, in the lowest memory
address, and the LO byte appears in the highest memory address. Table 3-1
describes the memory organization for half words.

Table 3-1: Half-Word Object Memory Organization

Data byte Little endian Big endian
0 (LO byte) base + 0 base + 1
1 (HO byte) base + 1 base + 0

Table 3-2 describes the memory organization for words.

Table 3-2: Word Object Memory Organization

Data byte Little endian Big endian
0 (LO byte) base + 0 base + 3
1 base + 1 base + 2
2 base + 2 base + 1
3 (HO byte) base + 3 base + 0
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Table 3-3 describe the memory organization for double words.

Table 3-3: Dword Object Memory Organization

Data byte Little endian Big endian
0 (LO byte) base + 0 base + 7
1 base + 1 base + 6
2 base + 2 base + 5
3 base + 3 base + 4
4 base + 4 base + 3
5 base + 5 base + 2
6 base + 6 base + 1
7 (HO byte) base + 7 base + 0

Normally, you wouldn’t be too concerned with big-endian memory
organization on an ARM CPU. However, on occasion, you may need to
deal with data produced by a different CPU (or by a protocol, such as
Transmission Control Protocol/Internet Protocol, or TCP/IP) that uses
big-endian organization as its canonical integer format. If you were to
load a big-endian value in memory into a CPU register, the value would
be incorrect.

If you have a 16-bit big-endian value in memory and you load it into
a register, its bytes will be swapped. For 16-bit values, you can correct this
issue by using the revi6 instruction, which has the following syntax:

revi6 reg,. ., reg.,.

Here, reg,, ., and reg_,_are any 32- or 64-bit general-purpose registers (both
must be the same size). This instruction will swap the 2 bytes in each of the
16-bit half-words in the source register; that is, this operates on hwordo and

hword1 in a 32-bit register and on hwordo, hword1, hword2, and hword3 in a 64-bit
register. For example

ldr wl, =0x12345678
revie wil, wil

will produce 0x34127856 in the W1 register, having swapped bytes 0 and 1
as well as bytes 2 and 3.

If you have a 32-bit value in a register (32- or 64-bit), you can swap the
4 bytes in that register by using the rev32 instruction:

rev32 req,.,, reg.,.

Again, the registers can be 32- or 64-bit, but both must be the same
size. In a 32-bit register, this will swap bytes 0 and 3 aswell as 1 and 2. In a
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64-bit register, it will swap bytes 0 and 3, 1 and 2, 7 and 4, and 6 and 5 (see
Figure 3-4).

| Byte 7 | Byte 6 | Byte 5 [ Byte 4 | Byte 3 | Byte 2 | Byte 1 | Byte O |

Figure 3-4: Operation of the rev32 instruction

The rev instruction will swap bytes 7 and 0, 6 and 1, 5 and 2, and 4 and 3
in a 64-bit register (see Figure 3-5).

I Byte 7 l Byte 6 l Byte 5 | Byte 4 | Byte 3 l Byte 2 l Byte 1 l Byte O I

Figure 3-5: Operation of the rev instruction

The rev instruction accepts only 64-bit registers.

Memory Access

Section 1.6.2, “The Memory Subsystem,” on page 14 describes how the
ARM CPU fetches data from memory on the data bus. In an idealized CPU,
the data bus is the size of the standard integer registers on the CPU; there-
fore, you would expect the ARM CPUs to have a 64-bit data bus. In practice,
modern CPUs often make the physical data bus connection to main mem-
ory much larger in order to improve system performance. The bus brings
in large chunks of data from memory in a single operation and places that
data in the CPU’s cache, which acts as a buffer between the CPU and physi-
cal memory.

From the CPU’s point of view, the cache is memory. Therefore, when
the remainder of this section discusses memory, it’s generally talking about
data sitting in the cache. As the system transparently maps memory accesses
into the cache, we can discuss memory as though the cache were not present
and discuss the advantages of the cache as necessary.

On early processors predating the ARM, memory was arranged as an
array of bytes (8-bit machines, such as the Intel 8088), half words (16-bit
machines, such as the Intel 8086 and 80286), or words (32-bit machines, such
as the 32-bit ARM CPUs). On a 16-bit machine, the LO bit of the address did
not physically appear on the address bus. This means the addresses 126 and
127 put the same bit pattern on the address bus (126, with an implicit 0 in bit
position 0), as shown in Figure 3-6.

Memory Access and Organization 135



Memory

120
Address = 126 121
122
123
16-bit 124
CPU Data = Memory[126] 125
LO 8 bits 126
HO 8 bits 127
128
129

Figure 3-6: The address and data bus for 16-bit

processors
When reading a byte, the CPU uses the LO bit of the address to select
the LO byte or HO byte on the data bus. Figure 3-7 shows the process when

accessing a byte at an even address (126 in this figure).

Memory

Address bus = 126

16-bit 124
CPU 125
LO 8 bits ———— 126
HO 8 bits 127
Byte data = Memory[126] 128
129

Figure 3-7: Reading a byte from an even address on a 16-bit CPU

Figure 3-8 shows memory access for the byte at an odd address (127 in
this figure). Note that in both Figures 3-7 and 3-8, the address appearing
on the address bus is 126.

Memory

Address bus = 126 g?
122
123
16-bit 124
CPU 125

LO 8 bits 126
«— HO 8 bits 127

Byte data = Memory[127] 128
129

Figure 3-8: Reading a byte from an odd address on a 16-bit CPU
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What happens when this 16-bit CPU wants to access 16 bits of data at
an odd address? For example, suppose that in these figures, the CPU reads
the word at address 125. When the CPU puts address 125 on the address
bus, the LO bit doesn’t physically appear. Therefore, the actual address on
the bus is 124. If the CPU were to read the LO 8 bits off the data bus at this
point, it would get the data at address 124, not address 125.

Fortunately, the CPU is smart enough to figure out what’s going on
here: it extracts the data from the HO 8 bits on the data bus and uses this
as the LO 8 bits of the data operand. However, the HO 8 bits that the CPU
needs are not found on the data bus. The CPU has to initiate a second
read operation, placing address 126 on the address bus, to get the HO
8 bits (these will be sitting in the LO 8 bits of the data bus, but the CPU
can figure that out). It takes two memory cycles for this read operation to
complete. Therefore, the instruction reading the data from memory will
take longer to execute than it would have if the data had been read from
an address that was an integral multiple of 2 (16-bit alignment).

The same problem exists on 32-bit processors, except that the 32-bit
data bus allows the CPU to read 4 bytes at a time. Reading a 32-bit value
at an address that is not an integral multiple of 4 incurs the same perfor-
mance penalty. However, accessing a 16-bit operand at an odd address
doesn’t always guarantee an extra memory cycle—only addresses that,
when divided by 4, have a remainder of 3 incur the penalty. In particular,
if you access a 16-bit value (on a 32-bit bus) at an address where the LO
2 bits contain 0b01, the CPU can read the word in a single memory cycle,
as shown in Figure 3-9.

Memory
120
Address bus = 124 121
122
123
32-bit 124
CPU 125
LO 8 bits 126
HO 8 bits 127
32-bit data bus 128
Word data = Memory[125] 129

Figure 3-9: Accessing a word on a 32-bit data bus

Modern ARM CPUs with cache systems have largely eliminated this
problem. As long as the data (1, 2, 4, or 8 bytes in size) is fully within a
cache line—a processor-defined number of bytes—no memory cycle penalty
occurs for an unaligned access. If the access does cross a cache-line bound-
ary, the CPU will run a little slower while it executes two memory opera-
tions to get (or store) the data.
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Gas Support for Data Alignment

To write fast programs, you must ensure that you properly align data
objects in memory. Proper alignment means that the starting address for
an object is a multiple of a certain size—usually the size of an object, if the
object’s size is a power of 2 for values up to 32 bytes in length. For objects
greater than 32 bytes, aligning the object on an 8-, 16-, or 32-byte address
boundary is probably sufficient. For objects fewer than 16 bytes, aligning
the object at an address that is the next power of 2 greater than or equal to
the object’s size is usually fine.

As noted in the previous section, accessing data that is not aligned at
an appropriate address may require extra time. Therefore, if you want to
ensure that your program runs as rapidly as possible, you should try to
align data objects according to their size.

Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare a byte
variable, it will consume 1 byte of storage, and the next variable you declare
in that declaration section will have the address of that byte object plus 1. If
the byte variable’s address happens to be an even address, the variable follow-
ing that byte will start at an odd address. If that following variable is a half-
word, word, or dword object, its starting address will not be optimal.

In this section, we’ll explore ways to ensure that a variable is aligned
at an appropriate starting address based on its size. Consider the following
Gas variable declarations:

.data
w: .word O
bb: .byte 0
s: .hword 0
w2: .word O
s2: .hword o
b2: .byte 0
dw: .dword 0

The first .data declaration in a program places its variables at an
address that is an even multiple of 4,096 bytes. Whatever variable first
appears in that .data declaration is guaranteed to be aligned on a reason-
able address. Each successive variable is allocated at an address that is the
sum of the sizes of all the preceding variables, plus the starting address of
that .data section.

Therefore, assuming Gas allocates the variables in the previous example
at a starting address of 4096, it will allocate them at the following addresses:

// Start Adrs Length
W: word O // 4096 4
bb: .byte 0 // 4100 1
s: .hword o0 // 4101 2
w2: .word O // 4103 4
s2:  .hword 0 // 4107 2
b2: .byte 0 /l 4109 1
dw: .dword o // 4110 8




With the exception of the first variable (which is aligned on a 4KB
boundary) and the byte variables (whose alignment doesn’t matter), all
these variables are misaligned. The s, s2, and w2 variables start at odd
addresses, and the dw variable is aligned on an even address that is not a
multiple of 8 (word-aligned but not dword-aligned).

An easy way to guarantee that your variables are aligned properly is to
put all the dword variables first, the word variables second, the half-word
variables third, and the byte variables last in the declaration, as shown here:

.data
dw: .dword o0
'K .word O
w2: .word O
s: .hword o0
s2:  .hword o
bb: .byte o0
b2: .byte o0

This organization produces the following addresses in memory:

// Start Adrs Length

dw: .dword 0o // 4096 8
W2: word 0 // 4104 4
w3: word 0 // 4108 4
s: hword o // 4112 2
s2: .hword o // 4114 2
bb: .byte o // 4116 1
b2: .byte o // 4117 1

These variables are all aligned at reasonable addresses.

Unfortunately, it is rarely possible for you to arrange your variables in
this manner. While many technical reasons make this alignment impossi-
ble, a good practical reason for not doing this is that it doesn’t let you orga-
nize your variable declarations by logical function (that is, you probably
want to keep related variables next to one another, regardless of their size).

To resolve this problem, Gas provides the .align and .balign directives.
As noted in section 1.2, “The Anatomy of an Assembly Language Program,”
on page b, the .align argument is a value that will be raised to that power of
2, and the .balign’s operand is an integer that must be a power of 2 (1, 2, 4,
8, 16, and so on). These directives ensure that the next memory object will
be aligned to the specified size.

By default, these directives will pad the data bytes they skip with Os; in a
.text section, Gas aligns the code by using nop (no-operation) instructions.
If you would like to use a different padding value, these two directives allow
a second operand:

.align pwr2Alignment, padValue
.balign alignment, padValue
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Here, padvalue must be an 8-bit constant, which these directives will use as
the padding value. Gas also allows a third argument, which is the maximum
allowable padding; see the Gas documentation for more details.

The previous example could be rewritten, using the .align directive,
as follows:

.data

.align 2 // Align on 4-byte boundary.
w: .word O
bb: .byte 0

.align 1 // Align on 2-byte boundary.
s:  .hword 0

.align 2 // Align on 4-byte boundary.
w2: .word O
s2: .hword 0
b2: .byte 0

.align 3 // Align on 8-byte boundary.
dw: .dword 0

If Gas determines that an .align directive’s current address (location
counter value) is not an integral multiple of the specified value, Gas will
quietly emit extra bytes of padding after the previous variable declaration
until the current address in the .data section is a multiple of the specified
value. This makes your data larger by a few bytes, in exchange for faster
access to it. Since your data will grow only slightly larger when you use this
feature, this is probably a good trade-off.

As a general rule, if you want the fastest possible access, choose an
alignment value equal to the size of the object you want to align. That is,
align half words to even boundaries with an .align 1 statement, words to
4-byte boundaries with .align 2, double words to 8-byte boundaries with
.align 3, and so on. If the object’s size is not a power of 2, align it to the
next higher power of 2.

Data alignment isn’t always necessary, since the cache architecture
of modern ARM CPUs handles most misaligned data. Use the alignment
directives only with variables for which speedy access is absolutely critical.

The ARM Memory Addressing Modes

For the most part, the ARM uses a very standard RISC load/store architecture.
This means that it accomplishes almost all memory access by using instruc-
tions that load registers from memory or store the value held in registers to
memory. The load and store instructions access memory by using memory
addressing modes, mechanisms the CPU uses to determine the address of a
memory location. The ARM memory addressing modes provide flexible
access to memory, allowing you to easily access variables, arrays, structs,
pointers, and other complex data types. Mastering ARM addressing modes
is an important step toward mastering ARM assembly language.

In addition to loads and stores, ARM uses atomic instructions. For the
most part, these are variations of the load and store instructions, with a few



extra bells and whistles needed for multiprocessing applications. Atomic
instructions are beyond the scope of this text; for more information, see the
ARM V8 reference manual.

Until now, this book has presented only two mechanisms for accessing
memory: the register-indirect addressing mode (for example, [X0]) intro-
duced in Chapter 1, and the PC-relative addressing mode discussed in
section 3.1.8, “PIE and ASLR,” on page 128. However, the ARM provides more
than half a dozen modes (depending on how you count them) for accessing
data in memory. The following sections describe each of these modes.

3.6.1 PC-Relative

The PC-relative addressing mode is useful only for fetching values from the
.text section, as the other sections will likely fall out of the +1MB range of
this addressing mode. Therefore, it is much easier to directly access con-
stant data in the .text section than it would be in the .rodata section (or
another read-only section).

A couple of issues arise when using the PC-relative addressing mode in
the .text section. First, because the 19-bit offset buried in the 32-bit instruc-
tion encoding is shifted left 2 bits to produce a word offset (as discussed
earlier), you can load only word and double-word values when using this
addressing mode—no bytes or half words. For example, you can access byte
and half-word values in the .text section with the register-indirect address-
ing mode, but not with the PC-relative addressing mode.

When accessing data in the .text section by using the PC-relative
addressing mode, keep the following points in mind:

e Under macOS, all labels in the .text section must be aligned on a
4-byte boundary, even if the data associated with that label doesn’t
require such alignment (such as bytes and half words).

e Data values in the .text section cannot refer to other sections (for
example, pointer constants, discussed in Chapter 4). However, such
objects can refer to data within the .text section itself (this is important
for jump tables, covered in Chapter 7).

e The data must reside within £+1MB of the instruction(s) that reference
it. For example, you cannot create an array of data that exceeds IMB.

e Only word and dword accesses are allowed when using the PC-relative
addressing mode.

e As the data resides in the .text section, it is read-only; you cannot put
variables in the .text section.

To use the PC-relative addressing mode, just reference the label you
used to declare the object in the .text section:

ldr wo, wordVar

wordVar: .word 12345
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Don’t forget that all data declarations you put in the .text section need
to be out of the execution path, preferably in the .pool section. (You'll see
an exception to this rule in Chapter 5 when I discuss passing parameters in
the code stream.)

3.6.2 Register-Indirect

Up to this point, most examples in this book have used the register-indirect
addressing mode. Indirect means that the operand is not the actual address,
but that the operand’s value specifies the memory address to use. In a register-
indirect addressing mode, the value held in the register is the address of
the memory location to access. For example, the instruction

1dr xo0, [x1]

tells the CPU to load X0’s value from the location whose address is cur-
rently in X1. The square brackets around X1 tell Gas to use the register-
indirect addressing mode.

The ARM has 32 forms of this addressing mode, one for each of the 32
general-purpose 64-bit registers (though X31 is not legal; use SP instead).
You cannot specify a 32-bit register in the square brackets when using an
indirect addressing mode.

Technically, you could load a 64-bit register with an arbitrary numeric
value and access that location indirectly by using the register-indirect
addressing mode:

ldr x1, =12345678
ldr x0, [x1] // Attempts to access location 12345678

Unfortunately (or fortunately, depending on how you look at it), this
will probably cause the OS to generate a segmentation fault because it’s not
always legal to access arbitrary memory locations. There are better ways to
load the address of an object into a register, as you’ll see shortly.

You can use the register-indirect addressing modes to access data ref-
erenced by a pointer, to step through array data, and, in general, whenever
you need to modify an object’s address while your program is running.

When using a register-indirect addressing mode, you refer to the value
of a variable by its numeric memory address (the value you load into a regis-
ter) rather than by the name of the variable. This is an example of using an
anonymous variable.

The aoaa.inc include file provides the lea macro, which you can use to
take the address of a variable and put it into a 64-bit register:

lea x1, j

After executing this lea instruction, you can use the [x1] register-
indirect addressing mode to indirectly access the value of j (which is how
almost every example up to this point has accessed memory). In section 3.8,
“Getting the Address of a Memory Object,” on page 153, you’ll see how
the lea macro works.



3.6.3 Indirect-Plus-Offset

Consider the following data declaration, similar to other examples given in
this book:

bvar: .byteo, 1, 2, 3

If you load X1 with the address of bvar, you can access that byte (0) by using
an instruction such as this:

ldrb w1, [x1] // Load byte at bvar (0) into Wi1.

To access the other 3 bytes following that 0 in memory, you can use the
indirect-plus-offset addressing mode. Here is the mode’s syntax:

[Xn|SP, #signed expression]

Xn|SP means X0 to X30 or SP, and signed expression is a small integer expres-
sion in the range —256 to +255. This particular addressing mode will
compute the sum of the address in Xz (n = 0 to 30, or SP) with the signed
constant and use that as the effective memory address (the memory address
to access).

For example, if X1 contains the address of bvar from the previous exam-
ple, the following instruction will fetch the byte just beyond bVar (that is, the
byte containing 1 in that example):

ldrb wo, [x1, #1] // Fetch byte at address X1 + 1.

Once again, the 32-bit instruction size severely limits the range of this
addressing mode (only 9 bits are available for the signed offset). If you
need a greater offset, you must explicitly add a value to the address in X1
(perhaps using a different register if you need to maintain the base address
in X1). For example, the following code does this using X2 to hold the
effective address:

add x2, x1, #2000 // Access location X1 + 2000.
ldrb w2, [x2]

This computes X2 = X1 + 2000 and loads W2 with the word at that address.

3.6.4 Scaled Indirect-Plus-Offset

The scaled indirect-plus-offset addressing mode is a somewhat more complex
variant of the indirect-plus-offset mode. It incorporates a 12-bit unsigned
constant into the instruction encoding that is scaled (multiplied) by 1, 2,
4, or 8, depending on the size of the data transfer. This provides a range
extension to the 9-bit signed offset of the indirect-plus-offset mode.
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This addressing mode uses the same syntax as the indirect-plus-offset
addressing mode, except that it doesn’t allow signed offsets:

[Xn|SP, #unsigned expression]

For byte transfers (1drb), the unsigned expression can be a value in
the range 0 to OxFFF (4,095). For half-word transfers (1drh), the unsigned
expression can be a value in the range 0 to Ox1FFE, but the offset must
be even. For word transfers (1dr), the unsigned expression must be in the
range 0 to 0x3FFC and must also be divisible by 4. For dword transfers, the
unsigned expression must be in the range 0 to 0x7FF8 and must be divis-
ible by 8. As you’ll see in Chapter 4, these numbers work great for accessing
elements of a byte, half-word, word, or double-word array.

Generally, the assembler will automatically select between the indirect-
plus-offset and scaled indirect-plus-offset addressing modes, based on the
value of the offset appearing in the addressing mode. Sometimes the choice
might be ambiguous. For example:

ldr wo, [X2, #16]

Here, the assembler could choose the scaled or unscaled versions of the
addressing mode. Typically, it would choose the scaled form. Its decision
shouldn’t matter to your code; either form will load the appropriate word in
memory into the WO register.

If, for some reason, you wish to explicitly specify the unscaled address-
ing mode, you can do so using the ldur and stur instructions (load or store
register unscaled).

3.6.5 Pre-indexed

The pre-indexed addressing mode is very similar to the indirect-plus-offset
addressing mode, insofar as it combines a 64-bit register and a signed 9-bit
offset. However, this addressing mode copies the sum of the register and
offset into the register before accessing memory. In the end, it accesses the
same address as the indirect-plus-offset mode, but once the instruction fin-
ishes, the index register points into memory at the indexed location. This
mode is useful for stepping through arrays and other data structures by
incrementing the register after each access in a loop.

Here’s the syntax for the pre-indexed addressing mode:

[Xn|SP, #signed expression]! // Xn|SP has the usual meaning.

The ! at the end of this sequence differentiates the pre-indexed address-
ing mode. As with the indirect-plus-offset mode, the signed expression value
is limited—in this case, to 9 bits (=256 to +255).



The following code fragment uses this addressing mode:

bvar: .byteo, 1, 2, 3

lea x0, bVar-1 // Initialize with adrs of bVar - 1.
mov x1, 4
loop:  1ldrb w2, [x0, #1]!

Do something with the byte in h2.

subs x1, x1, #1
bne loop

On the first iteration of this loop, the addressing mode adds 1 to X0 so
that it points at the first byte in the bVar array of 4 bytes. This also leaves X0
pointing at that first byte. On each successful iteration of the loop, X0 is
incremented by 1, accessing the next byte in the bVar array.

The subs instruction will set the Z flag when it decrements X1 down to 0.
When that happens, the bne (branch if Z = 0) instruction will fall through,
terminating the loop.

3.6.6 Post-Indexed

The post-indexed addressing mode is very similar to the pre-indexed
addressing mode, except it uses the value of the register as the memory
address before updating the register with the signed immediate value.
Here’s the syntax for the post-indexed addressing mode:

[Xn|SP], #signed expression // Xn|SP has the usual meaning.

Again, the signed_expression is limited to 9 bits (—256 to +255).
The example of the previous section can be rewritten and slightly
improved by using the post-indexed addressing mode:

bvar: .byte o, 1, 2, 3

lea x0, bVar
mov x1, 4
loop: 1ldrb w2, [x0], #1

Do something with the byte in W2.

subs x1, x1, #1
bne loop

This example starts with X0 pointing at bvar and ends with X0 pointing
at the first byte beyond the (four-element) bVar array. On the first iteration
of this loop, the 1dr instruction first uses the value in X0, pointing at bVar,
then increments X0 after fetching the byte where X0 points.
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3.6.7 Scaled-Indexed

The scaled-indexed addressing mode contains two register components
(rather than a register and an immediate constant) that form the effective
address. The syntax for this mode is the following:

[Xn|SP, Xi]
[Xn|SP, Wi, extend]
[Xn|SP, Xi, extend]

The first form is the easiest to understand: it computes the effective
address (EA) by adding the values in Xn (or SP) and Xi. Generally, Xn (or
SP) is known as the base address, and the value in Xiis the index (which
must be X0 to X30 or XZR). The base address is the lowest memory address
of an object, and the index is an offset from that base address (much like
the immediate constants in the indirect-plus-offset addressing mode). This
is just a simple base + index addressing mode: no scaling takes place.

WHY XN|SP, NOT X31?

As noted in section 1.6, “The ARM64 CPU Architecture,” on page 11, the stack
pointer register, SP, is the same as X31. However, if you fry to use X31 as the
base register in an addressing mode, Gas will report an error. This is because
the ARM64 CPU actually maps two separate registers to X31: SP and XZR (the
zero regjister). You use one of those register names rather than X31.

In addressing modes, the ARM does not allow you to use XZR as a base
register. You can, however, use SP as the base register. Conversely, XZR is
allowed as an index register (though it's somewhat redundant to do so), and SP
is not allowed there.

The base + index form is useful in these situations:

e You have a pointer to an array object in a register (Xn, the base address),
and you want to access an element of that array by using an integer
index (typically in a memory variable). In this case, you would load the
index into the index register (X¢) and use the base + index mode to
access the actual element.

e You want to use the indirect-plus-offset addressing mode, but the offset
is outside the range —256 to +255. In this case, you can load the larger
offset into X7 and use the base + index addressing mode to access the
memory location regardless of the offset.

The second and third forms of the scaled-indexed addressing mode
provide an extension/scaling operation, which is quite useful for index-
ing into arrays whose element size is larger than a byte. Of these two



scaled-indexed modes, one uses a 32-bit register as the index register, and
the other uses a 64-bit register.

The 32-bit form is convenient because most of the time indices into an
array are held in a 32-bit integer variable. If you load that 32-bit integer into
a 32-bit register (Wi), you can easily use it as an index into an array with the

[Xn, Wi, extend]

form of the scaled-indexed addressing mode.

Ultimately, all effective addresses turn out to be 64 bits. In particular,
when the CPU adds Xn and Wi together, it must somehow extend the Wi
index value to 64 bits prior to adding them. The extend operator tells Gas
how to extend Wi to 64 bits.

The simplest forms of extend are the following:

[Xn|SP, Wi, uxtw]
[Xn|SP, Wi, sxtw]

The [Xn|SP, Wi, uxtw] form zero-extends Wi to 64 bits before adding
it to Xn, while the [Xn|SP, Wi, sxtw] form sign-extends Wi to 64 bits before
the addition.

Another form of the scaled-indexed addressing mode introduces the
scaled component. This form allows you to load elements from an array of
bytes, half words, words, or dwords scaled by the size of the array element
(1, 2, 4, or 8 bytes). These particular forms are not stand-alone addressing
modes that can be used with an arbitrary 1dr or str instruction. Instead,
each addressing mode form is tied to a specific instruction size. The follow-
ing is the allowable syntax for the 1drb/ldrsb and strb instructions (Wd is a
32-bit destination register, and Ws is a 32-bit source register):

1drb Wd, [Xn|SP, Wi, sxtw #0] // #0 is optional;
ldrb Wd, [Xn|SP, Wi, uxtw #0] // 0 is default shift.
ldrb Wd, [Xn|SP, Xi, 1sl #0]

ldrsb Wd, [Xn|SP, Wi, sxtw #0]
ldrsb Wd, [Xn|SP, Wi, uxtw #0]
ldrsb Wd, [Xn|SP, Xi, 1sl #0]

strb Ws, [Xn|SP, Wi, sxtw #0]
strb Ws, [Xn|SP, Wi, uxtw #0]
strb Ws, [Xn|SP, Xi, 1sl #0]

These forms zero- or sign-extend Wi (or X7) and add the result with Xn
to produce the EA. The previous instructions are equivalent to the follow-
ing (because the #0 is optional):

ldrb Wd, [Xn|SP, Wi, sxtw]
ldrb Wd, [Xn|SP, Wi, uxtw]
ldrb Wd, [Xn|SP, Xi]
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ldrsb Wd, [Xn|SP, Wi, sxtw]
ldrsb Wd, [Xn|SP, Wi, uxtw]
ldrsb Wd, [Xn|SP, Xi]

strtb Ws, [Xn|SP, Wi, sxtw]
strb Ws, [Xn|SP, Wi, uxtw]
strb Ws, [Xn|SP, Xi]

For the 1drh/1drsh and strh instructions, you can specify either the 0 (x1)
or 1 (x2) scale factor:

ldrh Wd, [Xn|SP, Wi, sxtw #1] // #0 is also legal, or
ldrh Wd, [Xn|SP, Wi, uxtw #1] // no immediate value (which
ldrh  Wd, [Xn|SP, Xi, 1sl #1] // defaults to 0).

ldrsh Wd, [Xn|SP, Wi, sxtw #1]
ldrsh Wd, [Xn|SP, Wi, uxtw #1]
ldrsh Wd, [Xn|SP, Xi, 1sl #1]

strh Ws, [Xn|SP, Wi, sxtw #1]
strh Ws, [Xn|SP, Wi, uxtw #1]
strh Ws, [Xn|SP, Xi, 1sl #1]

With a scaling factor of #1, these addressing modes compute Wi x 2 or
Xix 2 (after any zero or sign extension) and then add the result with the
value in X7 to produce the EA. This scales the EA to access half-word values
(2 bytes per array element). If the scaling factor is #0, no scaling occurs, as
the scaling factor is 2°. The preceding code must multiply Wi or Xi by an
appropriate scaling factor, if needed. Loading or storing half words allows a
scaling factor of only 0 or 1.

For the 32-bit 1dr instruction (Wdis the destination register) and str
instruction (Wsis the 32-bit source register), the allowable scaling factors
are 0 (x1) or 2 (x4):

ldr Wd, [Xn|SP, Wi, sxtw #2] // #0 is also legal, or
1dr Wd, [Xn|SP, Wi, uxtw #2] // no immediate value (which
ldr Wd, [Xn|SP, Xi, 1sl #2] // defaults to 0).

str Ws, [Xn|SP, Wi, sxtw #2]
str Ws, [Xn|SP, Wi, uxtw #2]
str Ws, [Xn|SP, Xi, 1sl #2]

Finally, for the 64-bit 1dr and str instructions, the allowable scaling fac-
tors are 0 (x1) and 3 (x8):

ldr Xd, [Xn|SP, Wi, sxtw #3] // #0 is also legal, or
ldr Xd, [Xn|SP, Wi, uxtw #3] // no immediate value (which
1dr Xd, [Xn|SP, Xi, 1s1 #3] // defaults to 0).

str Xs, [Xn|SP, Wi, sxtw #3]
str Xs, [Xn|SP, Wi, uxtw #3]
str Xs, [Xn|SP, Xi, 1sl #3]




3.7

You'll see the main uses for the scaled-indexed addressing modes in the
next chapter, when it discusses accessing elements of arrays.

Address Expressions

Often, when accessing variables and other objects in memory, you will need
to access locations immediately before or after a variable rather than at
the address of the variable. For example, when accessing an element of an
array, or a field of a struct, the exact element or field is probably not at the
address of the variable itself. Address expressions provide a mechanism to
access memory at an offset from the variable’s address.

Consider the following legal Gas syntax for a memory address. This
isn’t a new addressing mode but simply an extension of the PC-relative
addressing mode:

varName + offset

This form computes its effective address by adding the constant offset
to the variable’s address. For example, the instruction

ldr wo, i + 4

loads the WO register with the word in memory that is 4 bytes beyond the
i object (which, presumably, is in the .text section; see Figure 3-10).

0x1007
1dr wo, i + 4 0x1006
0x1005
WO 0x1004 (i + 4)
0x1003
0x1002
0x1001

_ 0x1000 (address of i)

Figure 3-10: Using an address expression to access data beyond a variable

The offset value in this example must be a constant (for example, 3). If
Index is a word variable, then varName + Index is not a legal address expression.
If you wish to specify an index that varies at runtime, you must use one of
the indirect or scaled-indexed addressing modes. Also remember that the
offset in varName + offset is a byte address. This does not properly index into
an array of objects unless varName is an array of bytes.
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The ARM CPU does not allow the use of the 1drb and ldrh instructions when using
the PC-relative addressing mode. You can only load words or double words when
using this addressing mode. Furthermore, because the instructions don’t encode the
LO 2 bits of the offset, any offset you specify using an address expression must be a
multiple of 4.

Until this point, the offset in the addressing mode examples has always
been a single numeric constant. However, Gas also allows a constant expres-
sion anywhere an offset is legal. A constant expression consists of one or more
constant terms manipulated by operators such as addition, subtraction,
multiplication, division, and a wide variety of others, as shown in Table 3-4.
Note that operators at the same precedence level are left-associative.

Table 3-4: Gas Constant Expression Operators

Operator Precedence  Description

+ 3 Unary plus (no effect on expression)
- 3 Unary minus (negates expression)
* 2 Multiplication

/ 2 Division

<< 2 Shift left

>> 2 Shift right

| 1 Bitwise OR

& 1 Bitwise AND

n 1 Bitwise XOR

! 1 Bitwise AND-NOT

+ 0 Addition

- 0 Subtraction

Most address expressions, however, involve only addition, subtraction,
multiplication, and sometimes division. Consider the following example:

1ldr wo, X + 2%4

This instruction will move the byte at address X + 8 into the WO register.

The value X + 2*4 is an address expression that is always computed at
compile time, never while the program is running. When Gas encounters
the preceding instruction, it calculates

2 x4

on the spot and adds this result to the base address of X in the .text section.
Gas encodes this single sum (base address of X plus 8) as part of the instruc-
tion; it does not emit extra instructions (that would waste time) to compute
this sum for you at runtime. Because Gas computes the value of address



expressions at compile time, and therefore Gas cannot know the runtime
value of a variable while it is compiling the program, all components of the
expression must be constants.

Address expressions are useful for accessing the data in memory beyond
a variable, particularly when you’ve used directives like .byte, .hword, .word,
and so on in a .data or .text section to tack on additional values after a data
declaration. For example, consider the program in Listing 3-1 that uses
address expressions to access the four consecutive words associated with
memory object i (each word is 4 bytes apart in memory).

// Listing3-1.S
//

// Demonstrates address expressions

#include "aoaa.inc"

.data
savelR: .dword 0
outputVal: .word 0
ttlStr: .asciz "Listing 3-1"
fmtStra: .asciz "i[o]=%d "
fmtStr2: .asciz "i[1]=%d "
fmtStr3: .asciz "i[2]=%d "
fmtStra: .asciz "i[3]=%d\n"
.text
.extern printf
.align 2
i: .word 0, 1, 2, 3

// Return program title to C++ program:
.global getTitle
getTitle:
lea x0, ttlStr
ret

// Here is the asmMain function:

.global asmMain
asmMain:

// "Magic" instruction offered without
// explanation at this point:

sub sp, sp, #256
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// Save LR so we can return to the C++

// program later:

lea
str

X0, savelR
1r, [x0]

// Demonstrate the use of address expressions:

lea

O ldr
lea
str
vparm2
bl

lea

® ldr
lea
str
vparm2
bl

lea

®© ldr
lea
str
vparm2
bl

lea

O ldr
lea
str
vparm2
bl

lea
ldr
add
ret

X0, fmtStri
wi, i +0

x2, outputVal
wl, [x2]
outputVal
printf

X0, fmtStr2
wi, i +4

x2, outputVal
wl, [x2]
outputval
printf

x0, fmtStr3
wi, i + 8

X2, outputVal
wl, [x2]
outputval
printf

X0, fmtStr4
wl, i+ 12
x2, outputVal
wl, [x2]
outputVal
printf

x0, savelR
1r, [x0]
sp, sp, #256

Loading W1 from location i + 0 fetches 0 from the word array @. Loading
WI from location i + 4 fetches 1 from the second word in the array, located
4 bytes beyond the first element @. Loading W1 from location i + 8 fetches
2 from the third word in the array @, located 8 bytes beyond the first ele-
ment. Loading W1 from location i + 12 fetches 3 from the fourth word in
the array @, located 12 bytes beyond the first element.

Here’s the program’s output:

$ ./build Listing3-1

$ ./Listing3-1

Calling Listing3-1:

if[o]=0 i[1]=1 i[2]=2 i[3]=3
Listing3-1 terminated




3.8

Because the value at the address of i is 0, the output displays the four
values 0, 1, 2, and 3 as though they were array elements. The address expres-
sion i + 4 tells Gas to fetch the word appearing at i’s address plus 4. This is
the value 1, because the .word statement in this program emits the value 1 to
the .text segment immediately after the (word/4-byte) value 0. Likewise, for
i+4and i+ 8, this program displays the values 2 and 3.

Getting the Address of a Memory Object

Up to this point, this book has used the lea macro to obtain the address of
a memory object. Now that this chapter has provided the necessary prereq-
uisite information, instead of treating lea like a black box, it’s time to look
behind the curtains to see what this macro is doing for you.

The ARM CPU provides two instructions for computing the effective
address of a symbol in an assembly language program. The first is adr:

adr Xd, label

This instruction loads the 64-bit destination register (Xd) with the
address of the specified label. Because instruction encodings (operation
codes, or opcodes) are limited to 32 bits, a huge caveat is attached to adr:
it has room for only a 21-bit offset within the opcode, so label must be a
PC-relative address within +1MB of the adr instruction. This effectively lim-
its adr to taking the address of symbols within the .text section.

To rectify this situation, the ARM CPU also provides the adrp (address
of a page) instruction. This instruction has roughly the same generic syntax
as adr:

adrp Xd, label

The instruction loads the address of the MMU page containing the
label into the destination register. By adding the offset of the label into that
page to the value in Xd, you can obtain the actual address of the memory
object, using code that looks something like this:

adrp Xd, label
add Xd, Xd, page offset of label

At this point, Xd will contain the address of Iabel.

This scheme has a couple of issues: first, computing the page offset of
the label symbol is done differently in macOS versus Linux. Second, when
you use the syntax just given to try the adrp instruction, you’ll find that Gas
rejects this on macOS.

Let’s first consider the Linux solutions to these problems, as they’re a
little simpler than those for macOS. If you're not creating a PIE applica-
tion and the symbol is less than +1MB away, you don’t have to use the adrp
instruction. Instead, you can get by with the single adr instruction. If the
data is more than +1MB from the adr, you must use the adrp version. If you
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need to reference a memory object outside the .text section, you must use
the adrp/add sequence. Here’s the code to do this:

adrp x0, label
add xo0, x0, :loi12:label

The :1o12: item is a special operator that tells Gas to extract the LO
12 bits of label’s relocatable address; this value is the index into a 4,096-
byte memory management page. For more information on this operator,
see section 3.12, “For More Information,” on page 167. Unfortunately, the
macOS assembler uses a completely different syntax to obtain the LO 12
bits of an address; you must use the following instead:

adrp x0, label@PAGE
add x0, x0, label@PAGEOFF

The lea macro resolves this issue, automatically expanding into the
appropriate sequence for whichever OS you’re using.

p
LINUXVS. MACOS: ABSOLUTE ADDRESSES
Apple’s macOS (and presumably, iOS, iPadOS, and so on) is far more restric-
tive about what you can and cannot do in a PIE program. Specifically, macOS
does not allow any absolute pointers in your .text section that reference other
sections. Linux, on the other hand, doesn’t have a problem with this at all, in
either PIE or non-PIE mode.
For example, say you're working in Linux and have the following symbol in
your .data section:
var: .word 55
You can use the instruction
ldr x0, =var
to load the address of that symbol into XO. If you try to use this instruction in
macOS, however, the program will give the following complaint:
1d: Absolute addressing not allowed in arm64 code but used in
'noPrint' referencing 'var'
Likewise, if you put the statement
ptrToVar: .dword var
in your .text section somewhere, Linux is perfectly happy with it, but macOS
will reject it, using roughly the same message.
§
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Pointers info the .text section from other sections are perfectly acceptable
to Gas under macOS. Apparently, Apple thinks that the only way hackers are
going fo determine your data memory location is by looking for addresses
buried in the executable code, while pointers in your .data, .rodata, and other
sections are immune to such attacks.

Ultimately, this means that you'll need to use the adrp instruction (or the lea
macro) fo obtain at least your first pointer out of the .text section. This makes
assembly language programming a touch more difficult under macOS than
under Linux. Fortunately, the lea macro helps smooth out these issues.

The Push and Pop Operations

The ARM maintains a hardware stack in the stack segment of memory (for
which the OS reserves the storage). The stack is a dynamic data structure
that grows and shrinks according to certain needs of the program. It also
stores important information about the program, including local variables,
subroutine information, and temporary data.

The ARM CPU controls its stack via the SP register. When your pro-
gram begins execution, the OS initializes SP with the address of the last
memory location in the stack memory segment. Data is written to the stack
segment by pushing data onto the stack and popping it off the stack.

The ARM stack must always be 16-byte aligned—that is, the SP register
must always contain a value that is a multiple of 16. If you load the SP register
with a value that is not 16-byte aligned, the application will immediately termi-
nate with a bus error fault. One of the stack’s primary purposes is to provide a
temporary storage area where you can save things such as register values. You
will typically push a register’s value onto the stack, do some work (such as call-
ing a function) that uses the register, and then pop that value off the stack and
back into the register when you want to restore its value. However, the general-
purpose registers are only 64 bits (8 bytes); pushing a dword value on the stack
will not leave it 16-byte aligned, which will crash the system.

In this section, I’'ll describe how to push and pop register values. Then
I'll present three solutions to the problem of pushing dword values that
don’t leave the stack 16-byte aligned: wasting storage; pushing two registers
simultaneously; and reserving storage on the stack, then moving the regis-
ter’s data into this reserved area.

3.9.1 Using Double Loads and Stores

The 1dp instruction will load two registers from memory simultaneously.
The generic syntax for this instruction is shown here:

ldp Xd,, Xd,, mem // mem is any addressing mode
ldp Wd,, Wd,, mem // except PC-relative.
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The first form will load Xd, from the memory location specified by mem
and Xd, from the memory location 8 bytes later. The second form will load Wd,
from the specified memory location and Wd, from the location 4 bytes later.

The stp instruction has a similar syntax; it stores a pair of registers into
adjacent memory locations:

stp Xd,, Xd,, mem // Store Xd, to mem, Xd, to mem + 8.

stp Wd,, Wd,, mem // Store Wd, to mem, Wd, to mem + 4.
// mem is any addressing mode except
// PC-relative.

These instructions have many uses. With respect to using the stack,
however, the forms that load and store a pair of 64-bit registers will manipu-
late 16 bytes at a time—exactly what you need when pushing and popping
data on the stack.

3.9.2 Executing the Basic Push Operation

Many CPUs, such as the Intel x86-64, provide an explicit instruction that
will push a register onto the stack. Because of the 16-byte stack alignment
requirement, you can’t push a single 8-byte register onto the stack (without
creating a stack fault). However, if you're willing to use 16 bytes of space on
the stack to hold a single register’s value, you can push that register’s value
on the stack with the following instruction:

str Xs, [sp, #-16]!

Remember, the pre-indexed addressing mode will first add -16 to SP
and then store Xs (the source register) at the new location pointed at by
SP. This store operation writes only to the LO 8 bytes of the 16-byte block
created by dropping SP down by 16 (wasting the HO 8 bytes). However, this
scheme keeps the CPU happy, so you won’t get a bus error.

This push operation does the following:

SP := SP - 16
[SP] := Xs

For example, assuming that SP contains OxO0FF_FFEOQ, the instruction

str xo0, [sp, #-16]!

will set SP to Ox00FF_FFDO and store the current value of X0 into memory
location 0xO0FF_FFDO, as Figures 3-11 and 3-12 show.
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Before the
str xo0, [sp, #-16]!

instruction

SP

X0

OOFF_FFFO
OOFF_FFEC
OOFF_FFE8
OOFF_FFE4
OOFF_FFEO
OOFF_FFDC

OOFF_FFD8

OOFF_FFD4

OOFF_FFDO

OOFF_FFCC

OOFF_FFC8

Figure 3-11: The stack segment before the str xo, [sp, #-16]! operation

After the str instruction, the stack looks like Figure 3-12.

After the
str xo, [sp, #-16]!

instruction

X0

SP

OOFF_FFFO
OOFF_FFEC
OOFF_FFE8
OOFF_FFE4
OOFF_FFEO
OOFF_FFDC

OOFF_FFD8

X0 value
on stack

OOFF_FFD4
OOFF_FFDO

OOFF_FFCC

OOFF_FFC8

Figure 3-12: The stack segment after the str xo, [sp, #-16]! operation

Although this wastes 8 bytes of space on the stack (shown at addresses

0xO0FF_FFDS8 through 0xO0FF_FFDF), the usage is probably temporary,

and the stack space will be reclaimed when the program pops the data off

the stack later.

3.9.3 Executing the Basic Pop Operation
The pop operation can be handled using the post-indexed addressing

mode and a ldr instruction:

ldr Xd, [sp], #16

This instruction fetches the data from the stack, where SP is pointing,

and copies that data into the destination register (Xd). When the opera-

tion is complete, this instruction adjusts SP by 16, restoring it to its original

value (its value before the push operation). Figure 3-13 shows the stack

before the pop operation.
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Before the OOFF_FFFO

OOFF_FFEC
OOFF_FFE8
OOFF_FFE4
OOFF_FFEO
OOFF_FFDC
OOFF_FFD8
X0 valve OOFF_FFD4
Sp [~ onstack OOFF_FFDO
OOFF_FFCC
OOFF_FFC8

ldr xo0, [sp], #16

instruction

X0

Figure 3-13: Before the str operation
Figure 3-14 shows the stack organization after executing ldr.

After the OOFF_FFFO

OOFF_FFEC
OOFF_FFE8
OOFF_FFE4
OOFF_FFEO
OOFF_FFDC
OOFF_FFD8
X0 value OOFF_FFD4
on stack OOFF_FFDO
OOFF_FFCC
OOFF_FFC8

ldr xo, [sp], #16

instruction

SP

X0 value from stack

Figure 3-14: After the pop operation

Popping a value does not erase the value in memory; it just adjusts the
stack pointer so that it points at the next value above the popped value.
However, never attempt to access a value you've popped off the stack. The
next time something is pushed onto the stack, the popped value will be
obliterated. Because your code isn’t the only thing that uses the stack (for
example, the OS uses the stack to do subroutines), you cannot rely on data
remaining in stack memory once you've popped it off the stack.

3.9.4 Preserving at Least Two Registers

If you need to preserve at least two registers, you can reclaim the wasted
space shown in Figures 3-11 and 3-12 by using the stp instruction rather
than str. The following code fragment demonstrates how to push and pop
both X0 and X7 simultaneously:
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stp x0, x7, [sp, #-16]!
// Use X0 and X7 for other purposes.

ldp x0, x7, [sp], #16 // Restore X0 and X7.

The third way to push data on the stack is to drop SP down by a mul-
tiple of 16 bytes and then store the value into the stack area by indexing
off the SP register. The following code does basically the same thing as the
stp/1dp pair:

sub sp, sp, #16 // Make room for X0 and X7.
stp x0, x7, [sp]

// Use X0 and X7 for other purposes.

ldp xo, x7, [sp]
add sp, sp, #16

While this clearly takes more instructions (and, therefore, takes longer
to execute), it’s possible to reserve the stack storage only once within a func-
tion and reuse that space throughout the execution of the function. You’ll
see examples of this in Chapter 5.

3.9.5 Preserving Register Values on the Stack

As you've seen in previous examples, the stack is a great place to temporar-
ily preserve registers so they can be used for other purposes. Consider the
following program outline:

Some instructions that use the X20 register.

Some instructions that need to use X20, for a
different purpose than the above instructions.

Some instructions that need the original value in X20.

The push and pop operations are perfect for this situation. By insert-
ing a push sequence before the middle sequence, and a pop sequence
after the middle sequence, you can preserve the value in X20 across those
calculations:

Some instructions that use the X20 register.
str x20, [sp, #-16]!

Some instructions that need to use X20, for a
different purpose than the above instructions.
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ldr x20, [sp], #16

Some instructions that need the original value in X20.

This push sequence copies the data computed in the first sequence of
instructions onto the stack. Now the middle sequence of instructions can use
X20 for any purpose it chooses. After the middle sequence of instructions
finishes, the pop sequence restores the value in X20 so the last sequence of
instructions can use the original value in X20.

3.9.6 Saving Function Return Addresses on the Stack

Throughout the example programs up to this point, I've preserved the return
address appearing in the link register (LR) by using instructions like the
following:

lea x0, savelR
str 1r, [x0]

lea x0, savelR
ldr 1r, [x0]
ret

I’'ve also mentioned that this is a truly horrible way of preserving the
value in LR. It takes six instructions to accomplish (remember, lea expands
into two instructions), making it slower and bulkier than it needs to be.
This scheme also creates problems when you have one user-written function
calling another: all of a sudden, you need two separate savelR variables, one
for each function. In the presence of recursion (see Chapter 5) or, worse,
multithreaded code, this mechanism fails completely.

Fortunately, saving return addresses in the stack is the perfect solution.
The stack’s LIFO structure (see the next section) completely emulates the way
(nested) function calls and returns work, and it takes only a single instruction
to push LR onto the stack or pop LR off the stack. The earlier code sequence
can be easily replaced by:

str 1r, [sp, #-16]!

ldr 1r, [sp], #16
ret

Using the stack to save and restore the LR register is probably the most
common use of the stack. Chapter 5 discusses managing return addresses
and other function-related values in much greater depth.
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Pushing and Popping Stack Data

You can push more than one value onto the stack without first popping
previous values off the stack. However, the stack is a last-in, first-out (LIFO)
data structure, so you must be careful in the way you push and pop mul-
tiple values.

For example, suppose you want to preserve X0 and X1 across a block of
instructions. The following code demonstrates the obvious (but incorrect)
way to handle this:

str xo, [sp, #-16]!
str x1, [sp, #-16]!
Code that uses X0 and X1 goes here.
1dr xo, [sp], #16
ldr x1, [sp], #16

Unfortunately, this code will not work properly! Figures 3-15 through 3-18
show the problem, with each box in these figures representing 8 bytes (note
the addresses). Because this code pushes X0 first and X1 second, the stack
pointer is left pointing at X1’s value on the stack.

After the

str xo, [sp, #-16]!
OOFF_FFFO
OOFF_FFE8
OOFF_FFEO
OOFF_FFD8
SP——— > X0 value OOFF_FFDO
OOFF_FFC8
OOFF_FFCO
OOFF_FFB8
OOFF_FFBO
OOFF_FFA8
OOFF_FFAO

instruction

Figure 3-15: The stack after pushing XO

Figure 3-16 shows the stack after pushing the second register (X1).
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After the

str x1, [sp, #-16]!
OOFF_FFFO
OOFF_FFE8
OOFF_FFEO
OOFF_FFD8
X0 valve OOFF_FFDO
OOFF_FFC8
SP— X1 valuve OOFF_FFCO
OOFF_FFB8
OOFF_FFBO
OOFF_FFA8
OOFF_FFAO

instruction

Figure 3-16: The stack after pushing X1

When the 1dr xo0, [sp], #16 instruction comes along, it removes the
value that was originally in X1 from the stack and places it in X0 (see
Figure 3-17).

After the

ldr xo0, [sp], #16

OOFF_FFFO
OOFF_FFE8
OOFF_FFEO
OOFF_FFD8
SP—— > XOvalue OOFF_FFDO
OOFF_FFC8
xo[ Xl valve 4] X1 value | OOFF_FFCO

OOFF_FFB8
OOFF_FFBO
OOFF_FFA8
OOFF_FFAO

instruction

Figure 3-17: The stack after popping XO

Likewise, the 1dr x1, [sp], #16 instruction pops the value that was origi-
nally in X0 into the X1 register. In the end, this code manages to swap the
values in the registers by popping them in the same order that it pushes
them (see Figure 3-18).
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After the

ldr x1, [sp], #16

OOFF_FFFO

instruction OOFF_FFE8
sP— ] OOFF_FFEO

OOFF_FFD8

X1[ Xovake <] X0 valve | OOFF_FFDO
OOFF_FFC8

XO‘E X1 value OOFF_FFCO
OOFF_FFB8

OOFF_FFBO

OOFF_FFA8

OOFF_FFAO

Figure 3-18: The stack after popping X1

To rectify this problem, because the stack is a LIFO data structure, the
first thing you must pop is the last thing you push onto the stack. Therefore,
always pop values in the reverse order that you push them.

The correction to the previous code is shown here:

str xo, [sp, #-16]!
str x1, [sp, #-16]!
Code that uses X0 and X1 goes here.
ldr x1, [sp], #16
ldr xo, [sp], #16

Also remember to always pop exactly the same number of bytes that you push.
In general, this means you’ll need exactly the same the number of pushes
and pops. If you have too few pops, you will leave data on the stack, which
may confuse the running program. If you have too many pops, you will
accidentally remove previously pushed data, often with disastrous results.

As a corollary, be careful when pushing and popping data within a loop. It’s
easy to put the pushes in a loop and leave the pops outside the loop (or
vice versa), creating an inconsistent stack. Remember, it’s the execution
of the push and pop operations that matters, not the number of push and
pop operations that appear in your program. At runtime, the number (and
order) of the push operations the program executes must match the num-
ber (and reverse order) of the pop operations.

Finally, remember that the ARM requires the stack to be aligned on a 16-byte
boundary. If you push and pop items on the stack (or use any other instruc-
tions that manipulate the stack), make sure that the stack is aligned on a
16-byte boundary before calling any functions or procedures that adhere to
the ARM requirements.

3.10.1 Removing Data from the Stack Without Popping It

You may often discover that you’ve pushed data you no longer need onto
the stack. Although you could pop the data into an unused register, there
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is an easier way to remove unwanted data from the stack: simply adjust the
value in the SP register to skip over the unwanted data on the stack.

Consider the following dilemma (in pseudocode, not actual assembly
language):

str x0, [sp, #-16]! // Push Xo.
str x1, [sp, #-16]! // Push X1.

Some code that winds up computing some values we want
to keep in Xo and X1.

if( Calculation was performed ) then

// Whoops, we don't want to pop X0 and X1!
// What to do here?

else
// No calculation, so restore X1, XO.

ldr x1, [sp], #16
1dr xo, [sp], #16

endif;

Within the then section of the if statement, this code wants to remove
the old values of X0 and X1 without otherwise affecting any registers or
memory locations. How can you do this?

Because the SP register contains the memory address of the item on the
top of the stack, we can remove the item from the top by adding the size
of that item to the SP register. In the preceding example, we wanted to
remove two dword items from the top. We can easily accomplish this by add-
ing 16 to the stack pointer:

str x0, [sp, #-16]! // Push Xo
str x1, [sp, #-16]! // Push X1

Some code that winds up computing some values we want to keep
into rax and rbx.

if( Calculation was performed ) then

// Remove unneeded X0/X1 values
// from the stack.

add sp, sp, #32
else

// No calculation, so restore X1, XO.
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1dr x1, [sp], #16
ldr xo, [sp], #16

endif;

Effectively, this code pops the data off the stack without moving it any-
where. This code is faster than two dummy pop operations, because it can
remove any number of bytes from the stack with a single add instruction.

Remember to keep the stack aligned on a quad-word (16-byte) bound-
ary. This means you should always add a constant that is a multiple of 16 to
SP when removing data from the stack.

3.10.2 Accessing Data Pushed onto the Stack Without Popping It

Once in a while, you’ll push data onto the stack and will want to get a copy of
that data’s value, or perhaps you’ll want to change that data’s value without
actually popping the data off the stack (that is, you wish to pop the data off
the stack at a later time). The ARM [SP, #toffset] addressing mode provides
the mechanism for this.

Consider the stack after the execution of the following instruction:

stp x0, x1, [sp, #-16]! // Push X0 and X1.

This produces the stack result shown in Figure 3-19.

SP + 40
SP + 32
SP +24
SP +16
X1 value SP + 8
SP— X0 value SP +0
SP -8
SP-16

Figure 3-19: The stack after pushing X0 and X1

If you wanted to access the original X0 value without removing it from
the stack, you could cheat by popping the value, then immediately pushing
it again. Suppose, however, that you wish to access X1’s old value or another
value even farther up the stack. Popping all the intermediate values and
then pushing them back onto the stack is problematic at best, impossible
at worst.

However, as Figure 3-19 shows, each value pushed on the stack is ata
certain offset from the SP register in memory. Therefore, we can use the
[SP, #+offset] addressing mode to gain direct access to the value we are
interested in. In the preceding example, you can reload X1 with its original
value by using this single instruction:

ldr x1, [sp, #8]
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This code copies the 8 bytes starting at memory address SP + 8 into the
X1 register. This value just happens to be the previous value of X1 that was
pushed onto the stack. You can use this same technique to access other data
values you've pushed onto the stack.

Don’t forget that the offsets of values from SP into the stack change
every time you push or pop data. Abusing this feature can create code that
is hard to modify; using this feature throughout your code will make it dif-
ficult to push and pop other data items between the point where you first
push data onto the stack and the point where you decide to access that data
again using the [SP, #offset] memory addressing mode.

The previous section pointed out how to remove data from the stack by
adding a constant to the SP register. That pseudocode example could prob-
ably be written more safely as this:

stp x0, x1, [sp, #-16]!

Some code that winds up computing some values we want
to keep into X0 and X1.

if( Calculation_was_performed ) then
// Overwrite saved values on the stack with
// new X0/X1 values (so the pops that
// follow won't change the values in Xo/X1).

stp x0, x1, [sp]

endif;
ldp xo0, x1, [sp], #16

In this code sequence, the calculated result was stored over the top of
the values saved on the stack. Later, when the program pops the values, it
loads these calculated values into X0 and XI.

THE “MAGIC” INSTRUCTIONS

In most of the example programs in this book so far, the following lines of code
have appeared in asmMain (and in other functions):

// "Magic" instruction offered without
// explanation at this point:

sub sp, sp, #256

add sp, sp, #256
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At this point, it should be clearer what this code is doing: reserving storage on
the stack (and removing that storage before returning from the function).

Chapter 5 covers this scheme in greater detail when it discusses local vari-
ables and parameter functions. For the time being, just know that the purpose of
these statements is to reserve storage on the stack for parameters being passed
to the printf() function via the vparmn macros.

Moving On

This chapter discussed memory organization and access, and how to cre-
ate and access memory variables on the ARM CPU. It went over problems
that can occur when accessing data beyond the end of a data structure that
crosses over into a new MMU page, then discussed little- and big-endian
memory organizations and how to use the ARM memory addressing modes
and address expressions to access those memory objects in multiple ways.
You learned how to align data in memory to improve performance, how

to obtain the address of a memory object, and the purpose of the ARM
stack structure.

Thus far, this book has generally employed only basic data types such
as different-sized integers, characters, Boolean objects, and floating-point
numbers. Fancier data types, such as pointers, arrays, strings, and structs
are the subject of the next chapter.

For More Information
e See hitps://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/htmi_chapter/as_toc.himl
for details on the GNU assembler.

e Learn more about the GNU linker at https://ftp.gnu.org/old-gnu/Manuals/
ld-2.9.1/hitml_mono/ld.himl.

e For more about the macOS (LLVM) linker, see https://lld.llvm.org.

e  Visit the ARM developer website at https://developer.arm.com for more on
ARM CPUs.

e Wikipedia offers an explanation of address space layout randomization
at hutps://en.wikipedia.org/wiki/Address_space_layout_randomization.

e To better understand position-independent executables, see https://en
wikipedia.org/wiki/Position-independent_code.

e For information on the :1o12: operator, see the “Assembly Expressions”
section in the document downloadable from Attps://developer.arm.com/
documentation/100067/0612/armclang-Integrated-Assembler.
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O o BRI

TEST YOURSELF

The PC-relative addressing mode indexes off which 64-bit register?
What does opcode stand for2

What type of data is the PC-relative addressing mode typically used fore
What is the address range of the PC-relative addressing mode?

In a register-indirect addressing mode, what does the register contain@

Which of the following registers is valid for use with the register-indirect
addressing mode?

a. WO
b. X0

. XZR
d. SP

What instruction would you normally use to load the address of a memory
object into a register?

What is an effective address?

9. How would you align a variable in the .data section to an 8-byte

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

boundary?
What does MMU stand for2
What is an address expression?

What is the difference between a big-endian value and a little-endian
value?

If WO contains a 32-bit big-endian value, what instruction could you use to
convert it fo a little-endian value?

If WO contains a 16-bit little-endian value, what instruction could you use
to convert it o a big-endian value?

If XO contains a 64-bit big-endian value, what instruction could you use to
convert it fo a little-endian value?

Explain, step by step, what the str xo0, [sp, #-16]! instruction does.
Explain, step by step, what the 1dr xo, [sp], #16 instruction does.

When using the push and pop operations to preserve registers, you must
always pop the registers in the order that you pushed them.

What does LIFO stand for?



CONSTANTS, VARIABLES,
AND DATA TYPES

Chapter 2 discussed the basic format for
data in memory, and Chapter 3 covered how

a computer system physically organizes that
data in memory. This chapter completes that dis-
cussion by connecting the concept of data representation
to its actual physical representation. I'll focus on three
main topics: constants, variables, and data structures.

This chapter doesn’t assume you’ve taken a formal course in data struc-
tures, though such experience would be useful. You’ll learn to declare and
use constants, scalar variables, integers, data types, pointers, arrays, structs,
and unions. Work to master these subjects before going on to the next
chapter. Declaring and accessing arrays, in particular, seem to present a
multitude of problems to beginning assembly language programmers, but
the rest of this text depends on your understanding of these data structures
and their memory representation. Do not try to skim over this material with
the expectation that you’ll pick it up as needed later; you’ll need to compre-
hensively understand it right away.
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Gas Constant Declarations

Probably the first place to start is with constant declarations that allow you
to attach a name to a literal constant value. Gas provides four directives,
collectively known as equates, that let you define constants in your assembly
language programs. You've already seen the most common form, .equ:

.equ symbol, constantExpression

For example:

.equ MaxIndex, 15

Once you declare a symbolic constant in this manner, you may use the
symbolic identifier anywhere the corresponding literal constant is legal.
These constants are known as manifest constants—symbolic representations
that allow you to substitute the literal value for the symbol anywhere in
the program.

Technically, you could also use CPP macros to define constants in Gas. See
Chapter 13 for more details.

Contrast this with .rodata objects: an .rodata value is a constant value,
because you cannot change it at runtime. However, a memory location
is associated with an .rodata declaration, and the OS, not the Gas assem-
bler, enforces the read-only attribute. Although the following instruction
sequence will crash your program when it runs, writing it is perfectly legal:

lea x0, ReadOnlyVar
str x1, [x0]

On the other hand, it is no more legal to write the following, using the
preceding declaration

str x1, MaxIndex

than it is to write this:

str x1, #15

In fact, both statements are equivalent: the compiler substitutes 15 for
MaxIndex whenever it encounters this manifest constant.

Constant declarations are great for defining magic numbers that could
change during program modification. Examples include constants like nl
(newline), maxLen, and NULL.

The GNU .set directive uses the following syntax:

.set label, expression




4.2

This is semantically equivalent to the following:

label = expression

Both the .set and = directives allow you to redefine a symbol previously
defined with these directives.
For example:

maxLen = 10
At this point in the code, Gas will replace maxLen with 10.
maxLen = 256

In this section of the code, maxLen gets replaced by 256.

You'll see how to take advantage of this feature in Chapter 13, which dis-
cusses macros and the Gas compile-time language.

Note that .equ also allows you to redefine symbols in your source file.
These many synonyms for the same directive are Gas’s attempt to maintain
compatibility with multiple assemblers and assembler versions.

The final equate directive Gas offers is .equiv:

.equiv symbol, expression

Unlike the other three directives, .equiv will generate an error if the symbol
is already defined. This is therefore likely the safest equate to use, unless
you really need to redefine symbols in your program.

Expressions appearing in these equates are limited to 64 bits. If you
specify a value greater than 64 bits, the assembler will report an error.

The Location Counter Operator

One very special constant you’ll frequently use is the current location coun-
ter value. As noted in the previous chapter, Gas will substitute the value of
the current section’s location counter in place of an individual period (.)
appearing in a constant expression. You could in theory use this operator to
embed a pointer to a variable within that variable itself:

ptrVar: .dword . // Stores the address of ptrVar in ptrVar

However, this isn’t especially useful. It’s a better idea to use the location
counter operator to compute offsets and lengths within a particular section.
If you subtract a label in a section from the location counter, the difference
is the (signed) distance from that point in the code to the specified label.
This allows you to compute string lengths, function lengths, and other val-
ues that involve measuring the byte distance within a section.
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Here’s an example that uses this technique to compute a string length:

someStr: .ascii "Who wants to manually count the characters"
.asciz  "in this string to determine its length?"
sslen = .-someStr

This counts all the bytes Gas emits (including the zero-terminating byte) by
the two string directives. You can use this technique to compute the length
of any data object, not just the characters in a string.

Intuitively, there is a subtle difference between the location counter
constant (.) and a literal constant such as 0. The constant 0 will always have
the same value wherever it appears in the source file, whereas the location
counter constant will have a different value through the source file. An
HLL would associate a different type with these two types of constants.

The next sections discuss types in assembly language, including relocatable
types (the location counter is a relocatable type in assembly language).

Data Types and Gas

Like most traditional (that is, 1960s-era) assemblers, Gas is completely type-
less. It relies on you, the programmer, to make sense of all the data types
you use in your program, via your choice of instructions. In particular, Gas
will be more than happy to accept any of the following statements:

.text
.align 2
wv: .word O

ldr w0, wv // Yes, this one's "type correct."”
ldr x0, wv // Loads more data than is present

The second instruction loads 64 bits from a 32-bit variable. However,
Gas accepts this erroneous code and loads the 64 bits at the address you
specify, which might include the 32 bits just beyond the wv declaration
you’ve placed in your .text section.

Accessing data by using the wrong data type can lead to subtle defects
within your code. One advantage of (strongly typed) HLLs is that they
can catch most program errors resulting from the misuse of data types.
Assembly language, however, provides very little in the way of type check-
ing. Type checking is your responsibility in assembly language. Section 4.4,
“Pointer Data Types,” covers this issue next in great detail. Also see
“Relocatable and Absolute Expressions” on page 176, which describes one
of the few cases where Gas provides a small amount of type checking on
your code.
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Pointer Data Types

If you had a bad experience when you first encountered pointers in an
HLL, fear not: pointers are easier to deal with in assembly language. Any
problems you had with pointers probably had more to do with the linked-
list and tree data structures you were trying to implement with them.
Pointers, on the other hand, have many uses in assembly language that
have nothing to do with linked lists, trees, and other scary data structures.
Indeed, simple data structures like arrays and structs often involve the use
of pointers.

A pointeris a memory location whose value is the address of another
memory location. Unfortunately, HLLs like C/C++ tend to hide the simplic-
ity of pointers behind a wall of abstraction. This added complexity tends
to frighten programmers because they don’t understand what’s going on
behind the scenes.

To illuminate how pointers work, consider the following array declara-
tion in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is simple. Mis an array
with 1,024 integers in it, indexed from M[0] to M[1023]. Each one of these
array elements can hold an integer value independent of the others. In
other words, this array gives you 1,024 integer variables, each of which you
refer to by number (the array index).

It’s easy to see that the statement M[0]:=100; is storing the value 100 into
the first element of the array M. The following two statements perform an
identical operation:

i := 0; (* Assume "i" is an integer variable. *)

M [i] := 100;

Indeed, you can use any integer expression in the range 0 to 1,023 as
an index into this array. The following statements still perform the same
operation as our single assignment to index 0:

i:=5; (* Assume all variables are integers. *)
j := 10;

k := 50;

M [i*j-k] := 100;

“Okay, so what’s the point?” you're probably thinking. “Anything that
produces an integer in the range 0 to 1,023 is legal. So what?” Consider the
following code that adds an interesting layer of indirection:

[1] := 0;
[ M[1] ] := 100;

M
M
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With a little thought, you should see that these two instructions per-
form the exact same operation as the previous examples. The first state-
ment stores 0 into array element M[1]. The second statement fetches the
value of M[1], a legal array index, and uses that value (0) to control where it
stores the value 100.

If you're willing to accept this as reasonable, you’ll have no problems
with pointers. If you were to change M to memory and imagine that this array
represents system memory, then M[1] is a pointer: that is, a memory location
whose value is the address (or index) of another memory location. Pointers
are easy to declare and use in an assembly language program; you don’t
even have to worry about array indices.

OkXkay, this section has used a Pascal array as an example of a pointer,
which is fine, but how do you use pointers in an ARM assembly language
program?

4.4.1 Pointer Usage in Assembly Language

An ARM64 pointer is a 64-bit value that may contain the address of another
variable. For a dword variable p that contains 0x1000_0000, p “points” at
memory location 0x1000_0000. To access the dword that p points at, you
could use code like the following:

lea x0, p // Load X0 with the
ldr x0, [x0] // value of pointer p.
ldr x1, [x0] // Fetch the data at which p points.

By loading the value of p into X0, this code loads the value 0x1000_0000
into X0 (assuming p contains 0x1000_0000). The second instruction loads
the X1 register with the dword starting at the location whose offset appears
in X0. Because X0 now contains 0x1000_0000, this will load X1 from loca-
tions 0x1000_0000 through 0x1000_0007.

Why not just load X1 directly from location 0x1000_0000, like this?

lea x1, varAtAddress1000 0000
1dr x1, [x1]

The primary reason not to do so is that this ldr instruction always loads
X1 from location varAtAddress1000_0000. You cannot change the address from
where it loads X1.

The former instructions, however, always load X1 from the location
where p is pointing. This is easy to change under program control. Consider
the following pseudocode instruction sequence:

lea x0, i
lea x1, p // Set p = address of i.
str xo0, [x1]

Some code that sets or clears the carry flag ...

bcc skipSetp



lea x0, j
lea x1, p // Set p = address of j.
str x0, [x1]

skipSetp: // Assume both code paths wind up
lea x0, p // down here.
ldr x0, [x0] // Load p into Xo.
ldr x1, [x0] // X1 =i or j, depending on path here.

This short example demonstrates two execution paths through the
program. The first path loads the variable p with the address of the vari-
able i. The second path through the code loads p with the address of the
variable j. Both execution paths converge on the last two ldr instructions
that load X1 with i or j, depending on which execution path was taken. In
many respects, this is like a parameter to a procedure in an HLL like Swift.
Executing the same instructions accesses different variables depending on
whose address (i or j) winds up in p.

4.4.2 Pointer Declarations in Gas

Because pointers are 64 bits long, you could use the .dword directive to allo-
cate storage for your pointers:

.data

bb: .byte .-. // Uninitialized
.align 3

d: .dword .-. // Uninitialized

pByteVar: .dword bb // Initialized with the address of bb
pDWordVar: .dword d // Initialized with the address of d

This example demonstrates that it is possible to initialize as well as
declare pointer variables in Gas. You may specify addresses of static vari-
ables (.data, .rodata, and .bss objects) in the operand field of a .dword direc-
tive, so you can initialize only pointer variables with the addresses of static
objects by using this technique.

Remember that macOS does not allow you to take the address of a sym-
bol in the .text section because of the limitation of PIE code.

4.4.3 Pointer Constants and Expressions

Gas allows very simple constant expressions wherever a pointer constant is
legal. Pointer constant expressions take one of the following forms:

StaticVarName + PureConstantExpression
StaticVarName - PureConstantExpression
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The PureConstantExpression term is a numeric constant expression that
does not involve any pointer constants (an absolute constant, using Gas
terminology). This type of expression produces a memory address that
is the specified number of bytes before or after (- or +, respectively) the
StaticVarName variable in memory. The first two forms shown here are seman-
tically equivalent: both return a pointer constant whose address is the sum
of the static variable and the constant expression.

RELOCATABLE AND ABSOLUTE EXPRESSIONS

Gas divides constant expressions into two categories: relocatable and absolute.
Absolute expressions are those that Gas can evaluate to a numeric value during
assembly. Examples include the following:

5 8+2%*3 (8 *2) - 45 ‘A’ OXFFFF + 1 OXFFFE & 0xABCD

Relocatable expressions, on the other hand, involve symbolic names that refer-
ence memory locations in various sections of the program.

Expressions can have a mixture of absolute and relocatable components.
The class of the resulting expression (that is, relocatable or absolute) depends
on a few simple rules. If R is a relocatable expression (for example, a single
symbol) and A is an absolute expression, then:

® R+ Aisalso a relocatable expression.

e R-Aisalso a relocatable expression.

® R, —R,is an absolute expression (both R, and R, must be in the same
section of memory).

° R, +R,isillegal.

Since you can create pointer constant expressions, it should come as
no surprise that Gas lets you define manifest pointer constants by using
equates. Listing 4-1 demonstrates how to do this.

// Listing4-1.S
//

// Pointer constant demonstration

#include "aoaa.inc"

.section .rodata,
ttlStr:  .asciz "Listing 4-1"

fmtStr:  .ascii "pb's value is %p\n"
.asciz "*pb's value is %d\n"
.data

bb: .byte 0

.byte 1, 2, 3, 4, 5, 6, 7



0 pb = bb + 2 // Address of "2" in bb

® pbvar:  .dword pb

pbValue: .word 0
.text
.align 2

.extern printf
// Return program title to C++ program:

.global getTitle
getTitle:

lea x0, ttlStr

ret

// Here is the asmMain function:

.global asmMain

asmMain:
sub sp, sp, #64 // Reserve space on stack.
str 1r, [sp, #56] // Save return address.

lea X0, pbVar // Get pbVar.
ldr X0, [x0]
ldrb wo, [x0] // Fetch data at *pbVar.
® lea x1, pbValue // Save in pbValue for now.
str wo, [x1]

// Print the results:

lea X0, fmtStr
® vparm2 pbVar
® vparm3 pbValue

bl printf

ldr lr, [sp, #56] // Restore return address.
add sp, sp, #64
ret // Returns to caller

The equate pb = bb + 2 initializes the constant pb with the address of the
third element @ (index 2) of the bb array. The pbVar: .dword pb declaration @
creates a pointer variable (named pbVar) and initializes with the value of the
pb constant. Because pb is the address of bb[2], this statement initializes pbVar
with the address of bb[2]. The program stores the value held in pbVar into the
pbValue variable ©, then passes pbVar @ and pbValue © to printf() to print their
values.

Here’s the build command and sample output:

$ ./build Listing4-1
$ ./Listingg-1
Calling Listing4-1:
pb's value is 0x411042
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*pb's value is 2
Listing4-1 terminated

The address that’s printed may vary on different machines and OSes.

4.4.4 Pointer Variables and Dynamic Memory Allocation

Pointer variables are the perfect place to store the return result from the

C stdlib malloc() function. This function returns the address of the storage
it allocates in the X0 register; therefore, you can store the address directly

into a pointer variable immediately after a call to malloc(). Listing 4-2 dem-
onstrates calls to the C stdlib malloc() and free() functions.

// Listing4-2.S
/1

// Demonstration of calls
// to C stdlib malloc
// and free functions

#include "aoaa.inc"

.section .rodata, ""
ttlStr: .asciz "Listing 4-2"
fmtStr: .asciz "Addresses returned by malloc: %p, %p\n"
.data
ptrVar: .dword .
ptrVar2: .dword .
.text
.align 2
.extern printf
.extern malloc
.extern free

// Return program title to C++ program:

.global getTitle
getTitle:

lea X0, ttlStr

ret

// Here is the "asmMain" function:

.global asmMain
asmMain:
sub sp, sp, #64 // Space on stack
str 1r, [sp, #56] // Save return address.

// C stdlib malloc function

//
// ptr = malloc( byteCnt );
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/1

// Note: malloc has only a single parameter; it
// is passed in X0 as per ARM/macOS ABI.

©® mov X0, #256 // Allocate 256 bytes.
bl malloc
lea x1, ptrVar // Store pointer into
str x0, [x1] // ptrVar variable.
mov X0, #1024 // Allocate 1,024 bytes.
bl malloc
lea x1, ptrVar2 // Store pointer into
str x0, [x1] // ptrVar2 variable.

// Print the addresses of the two malloc'd blocks:

lea X0, fmtStr
vparm2 ptrVar
vparm3 ptrVar2

bl printf

// Free the storage by calling
// C stdlib free function.

//
// free( ptrToFree );
/!
// Once again, the single parameter gets passed in Xo.
B lea x0, ptrVar
ldr X0, [x0]
bl free
lea x0, ptrVar2
ldr X0, [x0]
bl free
ldr 1r, [sp, #56] // Get return address.
add sp, sp, #64 // Clean up stack.
ret

Because malloc() @ and free() ® have only a single argument, you pass
those arguments to them in the X0 register. For the call to malloc(), you
pass an integer value specifying the amount of storage you want to allocate
on the heap. For free(), you pass the pointer to the storage (previously allo-
cated by malloc()) that you want to return back to the system.

Here’s the build command and sample output:

$ ./build Listing4-2

$ ./Listinga-2

Calling Listing4-2:

Addresses returned by malloc: 0x240b46b0, 0x240b47cO
Listing4-2 terminated
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As usual, the addresses you get will vary by OS and perhaps even by dif-
ferent runs of the program.

4.4.5 Common Pointer Problems

In most programming languages, programmers encounter five common
problems. Some of these errors will cause your programs to immediately
stop with a diagnostic message; other problems are subtler, yielding incor-
rect results or simply affecting the performance of your program without
otherwise reporting an error. These five problems are as follows:

e Using an uninitialized pointer (illegal memory access)

e Using a pointer that contains an illegal value (for example, NULL)

e Continuing to use malloc()’d storage after that storage has been freed
e TFailing to free() storage once the program is finished using it

e Accessing indirect data using the wrong data type

The following subsections describe each of these problems, their
effects, and how to avoid them.

4.4.5.1 lllegal Memory Access Due to an Uninitialized Pointer

Beginning programmers often don’t realize that declaring a pointer vari-
able reserves storage only for the pointer itself; it does not reserve storage
for the data that the pointer references. Therefore, youw’ll run into problems
if you attempt to dereference a pointer that does not contain the address of
a valid memory location. Listing 4-3 demonstrates this problem (don’t try to
compile and run this program; it will crash).

// Listing4-3.S

/1

// Uninitialized pointer demonstration
// This program will not run properly.

#include "aoaa.inc"

.section .rodata, ""

ttlStr: .asciz "Listing 4-3"

fmtStr: .asciz "Pointer value= %p\n"
.data

® ptrvar: .dword .-. // ".-." means uninitialized.

.text
.align 2
.extern printf

// Return program title to C++ program:

.global getTitle
getTitle:



lea x0, ttlStr
ret

// Here is the "asmMain" function:

.global asmMain

asmMain:
sub sp, sp, #64 // Stack storage
str 1r, [sp, #56] // Save return address.

8 lea x0, ptrVar

ldr x1, [x0] // Get ptrVar into Xi.
ldr x2, [x1] // Will crash the system
ldr 1r, [sp, #56] // Retrieve return adrs.
add sp, sp, #64 // Restore stack.
ret

Although variables you declare in the .data section are, technically, initial-
ized, static initialization still doesn’t initialize the pointer in this program @
with a valid address (but instead with a 0, which is NULL).

Of course, there is no such thing as a truly uninitialized variable on
the ARM. There are variables that you've explicitly given an initial value,
and there are variables that happen to inherit whatever bit pattern was in
memory when storage for the variable was allocated. Much of the time,
these garbage bit patterns don’t correspond to a valid memory address.
Attempting to dereference such a pointer (that is, access the data in memory
at which it points @) typically raises a memory access violation exception (seg-
mentation fault).

Sometimes, however, those random bits in memory just happen to
correspond to a valid memory location you can access. In this situation,
the CPU will access the specified memory location without aborting the
program. Although to a naive programmer this situation may seem prefer-
able to stopping the program, in reality this is far worse, since your defec-
tive program continues to run without alerting you to the problem. If you
store data through an uninitialized pointer, you may overwrite the values
of other important variables in memory. This defect can produce some
difficult-to-locate problems in your program.

4.4.5.2 Invalid Addresses

The second common problem is storing invalid address values into a pointer.
The previous problem is actually a special case of this second problem (with
garbage bits in memory supplying the invalid address, rather than you
producing it via a miscalculation). The effects are the same: if you attempt
to dereference a pointer containing an invalid address, you either will get

a memory access violation exception or will access an unexpected memory
location.

Constants, Variables, and Data Types 181



182

Chapter 4

4.4.5.3 The Dangling Pointer Problem

The third problem, continuing to use malloc()’d storage after that storage
has been freed, is also known as the dangling pointer problem. To understand
this problem, consider the following code fragment:

mov X0, #256

bl malloc // Allocate some storage.
lea x1, ptrVar
str x0, [x1] // Save address away in ptrVar.

Code that uses the pointer variable ptrVar

lea x0, ptrVar // Pass ptrVar's value to free.
ldr xo0, [x0]
bl free // Free storage associated with ptrVar.

Code that does not change the value in ptrVar
lea xo0, ptrVar

ldr x1, [x0]
strb w2, [x1]

This code allocates 256 bytes of storage and saves the address of that
storage in the ptrVar variable. It then uses this block of 256 bytes for a while
and frees the storage, returning it to the system for other uses.

Calling free() does not change the value of ptrVar in any way; ptrvar
still points at the block of memory allocated by malloc() earlier. The value
in ptrVar is a dangling pointer, or wild pointer—a pointer that is pointing at
deallocated storage. In this example, free() does not change any data in the
block allocated by malloc(), so upon return from free(), ptrVar still points at
the data stored into the block by this code. However, the call to free() tells
the system that the program no longer needs this 256-byte block of memory,
so the system can use this region of memory for other purposes.

The free() function cannot enforce the fact that you will never access
this data again; you are simply promising that you won’t. Of course, the pre-
ceding code fragment breaks this promise; as you can see in the last three
instructions, the program fetches the value in ptrVar and accesses the data it
points at in memory.

The biggest problem with dangling pointers is that you can often get
away with using them. As long as the system doesn’t reuse the storage you've
freed, a dangling pointer produces no ill effects. However, with each new
call to malloc(), the system may decide to reuse the memory released by
that previous call to free(). When this happens, any attempt to dereference
the dangling pointer may produce unintended consequences. The prob-
lems range from reading data that has been overwritten (by the new, legal
use of the data storage), to overwriting the new data, to, in the worst case,
overwriting system heap management pointers and likely crashing your
program. The solution is clear: never use a pointer value after you free the storage
associated with that pointer.
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Of all the pointer problems listed at the beginning of this section, failing to
free allocated storage will probably have the least negative impact. The fol-
lowing code fragment demonstrates this problem:

mov x0, #256
bl malloc
lea x1, ptrVar
str xo0, [x1]

Code that uses ptrVar
This code does not free up the storage
associated with ptrVar.

mov x0, #512
bl malloc
lea x1, ptrVar
str xo0, [x1]

// At this point, there is no way to reference the original
// block of 256 bytes pointed at by ptrVar.

In this example, the program allocates 256 bytes of storage and refer-
ences it by using the ptrVar variable. Later, the program allocates another
block of bytes and overwrites the value in ptrVar with the address of this
new block. The former value in ptrVar is lost. Because the program no lon-
ger has this address value, there is no way to call free() to return the storage
for later use.

As a result, these 256 bytes of memory are no longer available to your
program. While this may seem like only a minor cost, imagine that this
code is in a repeating loop. With each execution of the loop, the program
loses another 256 bytes of memory, eventually exhausting the memory avail-
able on the heap. This problem is often called a memory leak, because it’s
as though the memory bits are leaking out of your computer during pro-
gram execution.

Memory leaks are far less damaging than dangling pointers. They cre-
ate only two problems: the danger of running out of heap space (which
ultimately may cause the program to abort, though this is rare) and perfor-
mance problems due to virtual memory page swapping. Nevertheless, you
should get in the habit of always freeing all storage after you have finished
using it. When your program quits, the OS reclaims all storage, including
the data lost via memory leaks. Therefore, memory lost via a leak is lost only
to your program, not to the whole system.

4.4.5.5 Lack of Type-Safe Access

Because Gas cannot and does not enforce pointer type checking, you can
load the address of a data structure into a register and access that data as
though it were a completely different type (often resulting in logic errors in
your program). For example, consider Listing 4-4.
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// Listing4-4.S

//

// Demonstration of lack of type
// checking in assembly language
// pointer access

#include "aoaa.inc"

maxLen = 256
.section .rodata, ""
ttlStr: .asciz "Listing 4-4"
prompt: .asciz "Input a string: "
fmtStr: .asciz "%d: Hex value of char read: %x\n"
.data
valToPrint: .word ..
bufIndex: .dword .-
bufPtr: .dword ..
bytesRead: .dword .
.text
.align 2
.extern readlLine
.extern printf
.extern malloc
.extern free

// Return program title to C++ program:

.global getTitle
getTitle:

lea x0, ttlStr

ret

// Here is the asmMain function:

.global asmMain
asmMain:

sub sp, sp, #64 // Reserve stack space.
str 1r, [sp, #56] // Save return address.

// C stdlib malloc function

// Allocate sufficient characters
// to hold a line of text input
// by the user:

mov X0, #maxLen // Allocate 256 bytes.

bl malloc
lea x1, bufPtr // Save pointer to buffer.
str X0, [x1]
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// Read a line of text from the user and place in

// the newly allocated buffer:

lea x0, prompt
bl printf

lea X0, bufPtr
ldr X0, [x0]

mov x1, #maxLen
bl readlLine
cmp X0, #-1

beq allDone
lea x1, bytesRead
str X0, [x1]

// Prompt user to input
// a line of text.

// Pointer to input buffer

// Maximum input buffer length
// Read text from user.

// Skip output if error.

// Save number of chars read.

// Display the data input by the user:

mov x1, #0
lea x0, bufIndex
str x1, [x0]

displp: lea X0, bufIndex
ldr x1, [x0]
lea X2, bufPtr
ldr x2, [x2]

ldr w0, [x2, x1]
lea x1, valToPrint
str wo, [x1]

lea X0, fmtStr
vparm2 bufIndex
vparm3 valToPrint

bl printf

lea X0, bufIndex
ldr x1, [x0]

add x1, x1, #1
str x1, [x0]

lea X0, bytesRead
ldr X0, [x0]

cmp x1, x0

blo displp

// Free the storage by calling
// C stdlib free function.

//
// free( bufPtr )

allDone:
lea X0, bufPtr
ldr X0, [x0]
bl free

ldr 1r, [sp, #56]
add sp, sp, #64

// Set index to 0.

// Get buffer index
// into X1.
// Get pointer to buffer.

// Read word rather than byte!

// Increment index by 1.

// Repeat until
// you've processed "bytesRead"
// bytes.

// Restore return address.

ret // Returns to caller
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Here are the commands to build and run the program in Listing 4-4:

$ ./build Listing4-4

$ ./Listings-4

Calling Listing4-4:

Input a string: Hello world

0: Hex value of char read: 6c6c6548
: Hex value of char read: 6f6c6c65
Hex value of char read: 206f6c6c
Hex value of char read: 77206f6c
Hex value of char read: 6f77206f
Hex value of char read: 7267720
Hex value of char read: 6c726f77
Hex value of char read: 646c726f
Hex value of char read: 646c72
9: Hex value of char read: 646¢c

10: Hex value of char read: 64

11: Hex value of char read: 0
Listing4-4 terminated

o~ oYUV B WN R

Listing 4-4 reads data from the user as character values and then dis-
plays the data as double-word hexadecimal values. While assembly language
lets you ignore data types at will and automatically coerce the data without
any effort, this power is a double-edged sword. If you make a mistake and
access indirect data by using the wrong data type, Gas and the ARM may
not catch the mistake and your program may produce inaccurate results.
Therefore, you need to ensure that you use data consistently with respect to
data type when working with pointers and indirection in your programs.

This demonstration program has one fundamental flaw that could cre-
ate a problem for you: when reading the last two characters of the input
buffer, the program accesses data beyond the characters input by the
user. If the user inputs 255 characters (plus the zero-terminating byte that
readLine() appends), this program will access data beyond the end of the
buffer allocated by malloc(). In theory, this could cause the program to
crash. This is yet another problem that can occur when accessing data by
using the wrong type via pointers.

Despite all the problems that pointers suffer from, they are essential for
accessing common data structures such as arrays, structs, and strings. That’s
why this chapter discussed pointers prior to these other composite data types.
However, with the discussion of pointers out of the way, it’s time to look at
those other data types.

Composite Data Types

Composite data types, also known as aggregale data types, are those that are
built up from other, generally scalar, data types. A string, for example, is
a composite data type, since it’s built from a sequence of individual char-
acters and other data. The following sections cover several of the more
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important composite data types: character strings, arrays, multidimensional
arrays, structs, and unions.

Character Strings

After integer values, character strings are probably the most common data
type that modern programs use. This section provides a couple definitions
of character strings (the ubiquitous zero-terminated string, the more effi-
cient length-prefixed string, and other combinations of the two) and dis-
cusses how to process those strings.

In general, a character string is a sequence of ASCII characters that pos-
sesses two main attributes: a length and character data. Different languages
use different data structures to represent strings. For assembly language
(at least, sans any library routines), you can choose to implement strings in
whichever format you want—perhaps based on the format’s compatibility
with an HLL or on a desire to produce faster string functions. All you need
do is create a sequence of machine instructions to process the string data in
whatever format the strings take.

It’s also possible for strings to hold Unicode characters. This section
uses ASCII in all the examples (because Gas does a better job of supporting
ASCII characters). The principles apply to Unicode as well, with an appro-
priate extension in the amount of storage you use.

4.6.1 Zero-Terminated Strings

Zero-terminated strings are the most common string representation in use
today, since this is the native string format for C, C++, and other languages.
A zero-terminated string consists of a sequence of zero or more ASCII charac-
ters ending with a 0 byte. For example, in C/C++, the string "abc" requires
4 bytes: the three characters a, b, and c, followed by a byte containing 0.

To create zero-terminated strings in Gas, simply use the .asciz direc-
tive. The easiest place to do this is in the .data section, using code like
the following:

.data
zeroString: .asciz "This is the zero-terminated string"

Whenever a character string appears in the .asciz directive, as it does
here, Gas emits each character in the string to successive memory locations
and terminates the whole string with a 0 byte.

There are a couple of ways to accommodate a zero-terminated string
that’s longer than a single source line. First, you can use .ascii directives for
all but the last source code line in a long string. For example:

.data

longZString: .ascii "This is the first line"
.ascii "This is the second line"
.asciz "This is the last line"
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The .asciz directive zero-terminates the entire string. However, if you prefer,
you can always use a .byte directive to explicitly add the zero-terminating
byte yourself:

.data

longZString: .ascii "This is the first line"
.ascii "This is the second line"
.ascii "This is the last line"
.byte 0

Use whichever scheme you like. Some people prefer the explicit .byte
directive because it’s easy to add and remove strings from the list without
having to worry about changing .ascii to .asciz (or vice versa).

Zero-terminated strings have two principal attributes: they are simple
to implement, and the strings can be any length. However, they also have a
few drawbacks. First, zero-terminated strings cannot contain the NUL char-
acter (whose ASCII code is 0). Generally, this isn’t a problem, but it does
create havoc once in a while. Second, many operations on zero-terminated
strings are somewhat inefficient. For example, to compute the length of
a zero-terminated string, you must scan the entire string looking for that
0 byte (counting characters up to the 0). The following program fragment
demonstrates how to compute the length of the preceding string:

lea x1, longZString

mov X2, X1 // Save pointer to string.
whilelp: ldrb wo, [x1], #1 // Fetch next char and inc X1.

cmp  wo, #0 // See if 0 byte.

bne  whilelp // Repeat while not 0.

sub  x0, x1, x2 // X0 = X1 - X2

sub  x0, x0, #1 // Adjust for extra increment.

// String length is now in Xo.

This code saves the initial string address (in X2), then subtracts the
final pointer (just beyond the 0 byte) from the initial address to compute
the length. The extra sub (by 1) is present because we don’t normally
include the zero-terminating byte in the string’s length.

As you can see, the time it takes to compute the length of the string is
proportional to the length of the string; as the string gets longer, comput-
ing its length takes longer.

4.6.2 Length-Prefixed Strings

The length-prefixed string format overcomes some of the problems with
zero-terminated strings. Length-prefixed strings are common in languages
like Pascal; they generally consist of a length byte followed by zero or more
character values. The first byte specifies the string length, and the following
bytes (up to the specified length) are the character data. In a length-pre-
fixed scheme, the string "abc" would consist of 4 bytes: 3 (the string length)



followed by a, b, and c. You can create length-prefixed strings in Gas by
using code like the following:

.data
lengthPrefixedString: .byte 3
.ascii "abc"

Counting the characters ahead of time and inserting them into the
byte statement, as was done here, may seem like a major pain. Fortunately,
there are ways to have Gas automatically compute the string length for you.

Length-prefixed strings solve the two major problems associated with
zero-terminated strings. It is possible to include the NUL character in
length-prefixed strings, and those operations on zero-terminated strings
that are relatively inefficient (for example, string length) are more efficient
when using length-prefixed strings. However, length-prefixed strings have
their own drawbacks; most important, they are limited to a maximum of
255 characters in length (assuming a 1-byte length prefix).

Of course, if you have a problem with a string-length limitation of
255 characters, you can always create a length-prefixed string by using any
number of bytes for the length as you need. For example, the High-Level
Assembler (HLA) uses a 4-byte length variant of length-prefixed strings,
allowing strings up to 4GB long. (See section 4.11, “For More Information,”
on page 221 for more on the HLA.) In assembly language, you can define
string formats however you like.

To create length-prefixed strings in your assembly language programs,
you don’t want to manually count the characters in the string and emit that
length in your code. It’s far better to have the assembler do this kind of
grunt work for you by using the location counter operator (.), as follows:

.data
lengthPrefixedString: .byte lpsLen
.ascii "abc"
lpsLen = . - lengthPrefixedString - 1

The 1psLen operand subtracts 1 in the address expression because

. - lengthPrefixedString

also includes the length prefix byte, which isn’t considered part of the string
length.

Gas does not require you to define 1psLen before using it as the operand
field in the .byte directive. Gas is smart enough to go back and fill in the
value after it is defined in the equate statement.

4.6.3 String Descriptors

Another common string format is a string descriptor. A string descriptor is
typically a small data structure (see section 4.8, “Structs,” on page 212) that
contains several pieces of data describing a string.
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At a bare minimum, a string descriptor will probably have a pointer to
the actual string data and a field specifying the number of characters in the
string (that is, the string length). Other possible fields might include the
number of bytes currently occupied by the string, the maximum number
of bytes the string could occupy, the string encoding (for example, ASCII,
Latin-1, UTF-8, or UTF-16), and any other information the string data
structure’s designer could dream up.

By far, the most common descriptor format incorporates a pointer to the
string’s data and a size field specifying the number of bytes currently occu-
pied by that string data. Note that this particular string descriptor is not the
same thing as a length-prefixed string. In a length-prefixed string, the length
immediately precedes the character data itself. In a descriptor, the length and
a pointer are kept together, and this pair is (usually) separate from the charac-
ter data itself.

4.6.4 Pointers to Strings

Often, an assembly language program won’t directly work with strings
appearing in the .data (or .text, .rodata, or .bss) section. Instead, the pro-
gram will work with pointers to strings (including strings whose storage the
program has dynamically allocated with a call to a function like malloc()).
Listing 4-4 provided a simple (though broken) example. In such applica-
tions, your assembly code will typically load a pointer to a string into a base
register and then use a second (index) register to access individual charac-
ters in the string.

4.6.5 String Functions

Unfortunately, few assemblers provide a set of string functions you can call
from your assembly language programs. As an assembly language program-
mer, youre expected to write these functions on your own. Fortunately, a
couple of solutions are available if you don’t quite feel up to the task.

The first set of string functions you can call, without having to write
them yourself, are the C stdlib string functions from the string.h header file
in C. Of course, you’ll have to use C strings (zero-terminated strings) in
your code when calling C stdlib functions, but this generally isn’t a big prob-
lem. Listing 4-5 provides examples of calls to various C string functions,
further described in Appendix E.

// Listing4-5.S
/1
// Calling C stdlib string functions

#include "aoaa.inc"

maxLen = 256
savelR = 56

.section .rodata, ""
ttlStr: .asciz "Listing 4-5"



prompt: .asciz "Input a string:

fmtStra: .asciz "After strncpy, resultStr='%s'\n"
fmtStr2: .asciz "After strncat, resultStr='%s'\n"
fmtStr3: .asciz "After strcmp (3), Wo=%d\n"
fmtStra: .asciz "After strcmp (4), Wo=%d\n"
fmtStrs: .asciz "After stremp (5), Wo=%d\n"
fmtStr6: .asciz "After strchr, Xo='%s'\n"
fmtStr7: .asciz "After strstr, Xo='%s'\n"
fmtStr8: .asciz "resultStr length is %d\n"
stri: .asciz "Hello, "
str2: .asciz "World!"
str3: .asciz "Hello, World!"
str4: .asciz "hello, world!"
strs: .asciz "HELLO, WORLD!"

.data
strLength: .dword .
resultStr: .space maxLen, .-.
resultPtr: .dword resultStr
cmpResult: .dword .

.text

.align 2

.extern readLine

.extern printf

.extern malloc

.extern free

// Some C stdlib string functions:

//

// size t strlen(char *str)
.extern strlen

// char *strncat(char *dest, const char *src, size t n)
.extern strncat

// char *strchr(const char *str, int c)
.extern strchr

// int strcmp(const char *stri, const char *str2)
.extern strcmp

// char *strncpy(char *dest, const char *src, size t n)
.extern strncpy

// char *strstr(const char *inStr, const char *search4)

.extern strstr
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// Return program title to C++ program:

.global getTitle
getTitle:

lea x0, ttlStr

ret

// Here is the "asmMain" function.

.global asmMain
asmMain:
sub sp, sp, #64 // Allocate stack space.
str 1r, [sp, #savelR] // Save return address.

// Demonstrate the strncpy function to copy a
// string from one location to another:

lea x0, resultStr // Destination string

lea x1, stri // Source string

mov X2, #maxLen // Max number of chars to copy
bl strncpy

lea x0, fmtStri

vparm2 resultPtr

bl printf

// Demonstrate the strncat function to concatenate str2 to
// the end of resultStr:

lea X0, resultStr
lea x1, str2

mov x2, #maxLen
bl strncat

lea x0, fmtStr2
vparm2 resultPtr

bl printf

// Demonstrate the strcmp function to compare resultStr
// with str3, str4, and strs:

lea X0, resultStr
lea x1, str3

bl strcmp

lea x1, cmpResult
str x0, [x1]

lea X0, fmtStr3
vparm2 cmpResult

bl printf

lea X0, resultStr
lea x1, str4

bl strcmp



lea
str

lea
vparm2
bl

lea
lea
bl

lea
str

lea
vparmz
bl

x1, cmpResult
X0, [x1]

X0, fmtStr4
cmpResult
printf

X0, resultStr
x1, strs
strcmp

x1, cmpResult
X0, [x1]

X0, fmtStrs
cmpResult
printf

// Demonstrate the strchr function to search for
// '," in resultStr:

lea
mov
bl

lea
str

lea
vparm2
bl

X0, resultStr
x1, #','
strchr

x1, cmpResult
x0, [x1]

x0, fmtStré
cmpResult
printf

// Demonstrate the strstr function to search for
// str2 in resultStr:

lea
lea
bl

lea
str

lea
vparm2
bl

X0, resultStr
x1, str2
strstr

x1, cmpResult
X0, [x1]

X0, fmtStr7
cmpResult
printf

// Demonstrate a call to the strlen function:

lea
bl

lea
str

lea
vparm2
bl

X0, resultStr
strlen

x1, cmpResult
x0, [x1]

x0, fmtStr8
cmpResult
printf
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ldr 1r, [sp, #savelR] // Restore return address.
add sp, sp, #64 // Deallocate storage.
ret // Returns to caller

Here’s the build command and sample output from Listing 4-5:

$ ./build Listinga-5

$ ./Listinga-5

Calling Listing4-5:

After strncpy, resultStr='Hello,
After strncat, resultStr='Hello, World!'
After strcmp (3), WO=0

After strcmp (4), Wo=-128

After strcmp (5), Wo=128

After strchr, Xo=', World!'

After strstr, Xo='World!'

resultStr length is 13

Listing4-5 terminated

Of course, you could make a good argument that if all your assembly
code does is call a bunch of C stdlib functions, you should have written your
application in C in the first place. Most of the benefits of writing code in
assembly language happen only when you “think” in assembly language,
not C.

In particular, you can dramatically improve the performance of your
string function calls if you stop using zero-terminated strings and switch to
another string format (such as length-prefixed or descriptor-based strings
that include a length component). Chapter 14 presents some pure assembly
string functions for those who want to avoid the inefficiencies of using zero-
terminated strings with the C stdlib.

Arrays

Along with strings, arrays are probably the most commonly used composite
data type. Yet most beginning programmers don’t understand their inter-
nal operation or their associated efficiency trade-offs. It’s surprising how
many novice (and even advanced!) programmers view arrays from a com-
pletely different perspective once they learn how to deal with arrays at the
machine level.

Abstractly, an arrayis an aggregate data type whose members (elements)
are all the same type. Selection of a member from the array is by an integer
index (or other ordinal type such as Boolean or character). Different indi-
ces select unique elements of the array. This book assumes that the integer
indices are contiguous, though this is by no means required. That is, if the
number xis a valid index into the array and yis also a valid index, with
x <y, then all 7such that x < ¢ < y are valid indices. Most HLLs use contiguous
array indices, and they are the most efficient to use, hence their use here.



Whenever you apply the indexing operator to an array, the result is the
specific array element chosen by that index. For example, A[i] chooses the
ith element from array A. There is no formal requirement that element i be
anywhere near element i + 1 in memory; the definition of an array is satis-
fied as long as A[i] always refers to the same memory location and A[i + 1]
always refers to its corresponding location (and the two are different).

As noted, this book assumes that array elements occupy contiguous
locations in memory. An array with five elements will appear in memory as
shown in Figure 4-1.

A0l A[T]  A[2]  A[3]  Al4]

L \ High
p T ieetd Base address of A 19y memory

addresses addresses

Figure 4-1: An array layout in memory

The base address of an array is the address of that array’s first element
and always appears in the lowest memory location. The second array ele-
ment directly follows the first in memory, the third element follows the sec-
ond, and so on. Indices are not required to start at 0. They may start with
any number as long as they are contiguous. However, for the purposes of
discussion, this book starts all indices at 0.

To access an element of an array, you need a function that translates an
array index to the address of the indexed element. For a single-dimensional
array, this function is very simple:

Element Address =
Base Address + ((Index - Initial Index) x Element Size)

Here, Initial_Index is the value of the first index in the array (which you can
ignore if it’s 0), and the value Element_Size is the size, in bytes, of an indi-
vidual array element (this may include padding bytes used to keep elements
properly aligned).

4.7.1 Declaring Arrays in Gas Programs

Before you can access elements of an array, you need to set aside storage for
that array. Fortunately, array declarations build on the declarations you've
already seen. To allocate n elements in an array, you would use a declara-
tion like the following in one of the variable declaration sections:

ArrayName: .fill n, element_size, initial value

ArrayName is the name of the array variable, n is the number of array elements,
element_size is the size (in bytes) of a single element, and initial_value is the
initial value to assign to each array element. The element_size and initial
_value arguments are optional, defaulting to 1 and o, respectively.
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For example, to declare an array of sixteen 32-bit words, you could use
the following:

wordArray: .fill 16, 4

This would set aside sixteen 4-byte words, each initialized with 0 (the default
initial value).

The value for element_size must not exceed 8; if it does, Gas will clip the
value to 8. For historical (Gas) reasons, you should limit the initial value to
32 bits; larger values are transformed in nonintuitive ways (and differently
on macOS and Linux). As a general rule, I strongly recommend defaulting
to 0 for each array element when using the .fill directive.

If you use the . fill directive in a .bss section, the initial value must be absent or
set to 0.

An alternative to the .fill directive is .space

ArrayName: .space size, fill

where size is the number of bytes to allocate for the array and fill is an
optional 8-bit value that Gas will use to initialize each byte of the array. If
the fill argument is absent, Gas uses a default value of 0.

To declare an array of a type other than bytes, you must compute the
size argument as numberOfElements x elementSize. For example, to create a
16-element array of words, you could use the following declaration:

wordArray:  .space 16 * (4) // word wordArray[16]

Because the fill argument is not present, Gas will initialize this array
with bytes containing 0s. I recommend putting parentheses around the ele-
ment size in the expression to better document your intent; this differenti-
ates the element size from the element count. As you'll see in section 4.7.4,
“Implementing Multidimensional Arrays,” on page 203, the element count
could be an expression based on the size of each dimension.

To obtain the base address of these arrays, just use ArrayName or wordArray
in an address expression. If you prefer to initialize an array with different
values in each of the elements, you must manually supply those values in
the directives .byte, .hword, .word, .dword, and so on. Here’s a 16-word array
initialized with the values 0 to 15:

wordArray: .word 0, 1, 2, 3, 4, 5, 6, 7
.word 8, 9, 10, 11, 12, 13, 14, 15

If you need to initialize a large array with different values, you're best
off either writing an external program (perhaps in an HLL like C/C++) or
using Gas’s macro facilities to generate the array. I discuss this further in
Chapters 10 and 13.
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4.7.2 Accessing Elements of a Single-Dimensional Array

To access an element of a zero-based array, use this formula:

Element_Address = Base Address + index x Element Size

If the array is located within your .text section (an array of constants),
or if you're writing a Linux application and the array isn’t farther than
+1MB from your code that accesses the array, you can use the array’s name
for the Base_Address entry. This is because Gas associates the address of the
first element of an array with the name of that array.

Otherwise, you’ll need to load the base address of the array into a
64-bit register. For example:

lea x1, Base Address

The Element_Size entry is the number of bytes for each array element. If
the object is an array of bytes, the Element_Size field is 1 (resulting in a very
simple computation). If each element of the array is a half word (or other
2-byte type), then Element_Size is 2, and so on. To access an element of the
wordArray array in the previous section, you'd use the following formula (the
size is 4 because each element is a word object):

Element Address = wordArray + (index x 4)

The ARM code equivalent to the statement wo = wordArray[index] is as
follows:

lea x1, index // Assume index is a 32-bit integer.

ldr w1, [x1] // Get index into Wi.

lea x2, wordArray

ldr wo, [x2, wi, uxtw #2] // index * 4 and zero-extended

This instruction sequence does not explicitly compute the sum of the
base address plus the index times 4 (the size of a 32-bit integer element in
wordArray). Instead, it relies on the scaled-indexed addressing mode (the
uxtx #2 operand) to implicitly compute this sum. The instruction

ldr wo, [x2, wi, uxtw #2]

loads WO from location X2 + W1 * 4, which is the base address plus index * 4
(because W1 contains index).

To multiply by a constant other than 1, 2, 4, or 8 (the immediate shift
constants possible with the scaled-indexed addressing mode), you’ll need to
use the 1sl instruction to multiply by the element size (if multiplying by a
power of 2) or the mul instruction. You’ll see some examples in a bit.

The scaled-indexed addressing mode on the ARM is the natural address-
ing mode for accessing elements of a single-dimensional array. Make sure
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you remember to multiply the index by the size of an element; failure to do
so will produce incorrect results.

The examples in this section assume that the index variable is a 32-bit
value, which is common for array indices. To use a smaller integer, you'd
need to sign- or zero-extend it to 32 bits. To use a 64-bit integer, simply
adjust the scaled-indexed addressing mode to use a 64-bit index register
and use the shift-left scaling without zero or sign extension.

4.7.3 Sorting an Array of Values

When introducing arrays, books commonly introduce sorting the elements
of an array. To acknowledge this historical precedent, this section takes a
quick look at a simple sort in Gas. The program presented in this section
uses a variant of the bubble sort, which is great for short lists of data and lists
that are nearly sorted, but horrible for just about everything else. However,
a bubble sort is easy to implement and understand, which is why this and
other introductory texts continue to use it in examples.

Because of the relative complexity of Listing 4-6, I'll insert comments
throughout the source code rather than explaining it at the end. We begin
by including aoaa.inc, as usual.

// Listing4-6.S
/1
// A simple bubble sort example

#include "aoaa.inc"

Right away, let’s make some coding improvements as compared to many
of the previous examples in this book. Those examples, such as Listing 4-1,
used “magic” numbers, like 64 for the amount of stack space to allocate
and 56 for the offset into the stack allocation where I preserve the LR
register. I used these literal constants directly in the code to be as trans-
parent as possible; however, good programming style demands the use of
symbolic names in place of those magic numbers. The two equates below
accomplish this.

// Listing4-6.S (cont.)

stackAlloc = 64 // Space to allocate on stack
savelR 56 // Save LR here (index into stack frame).

The next couple of statements in the source file define offsets into the
stack frame (allocated storage on the stack) where the program can pre-
serve register values. In all the example programs so far, I've placed (global)
variables in memory locations. That’s not the appropriate paradigm for
RISC assembly language programming.

The ARM ABI reserves registers X19 through X28 for use as nonvolatile
(permanent) variable storage. Nonvolatile means you can call functions (like
printf()) without worrying about those registers’ values being changed. The



drawback to using nonvolatile registers is that you have to preserve their
values upon entry into your code. The following two equates specify the
offset into the stack allocation area for register preservation. This code will
use registers X19 and X20 as loop control variables:

// Listing4-6.S (cont.)

x19Save savelR - 8 // Save X19 here.
x20Save = x19Save - 8 // Save X20 here.

The remaining equates define other constants used in this code:

// Listing4-6.S (cont.)

maxLen = 256
true = 1
false = 0

Next come the usual read-only and writable data sections. In particular,
the .data section contains the sortMe array, which will be the subject of the
sorting operation. Also, this block of statements contains the getTitle func-
tion required by the c.cpp program:

// Listing4-6.S (cont.)

.section .rodata, ""
ttl1Str: .asciz "Listing 4-6"
fmtStr: .asciz "Sortme[%d] = %d\n"
.data

// sortMe - A 16-element array to sort:

sortMe:
.word 1, 2, 16, 14
.word 3, 9, 4, 10
.word 5, 7, 15, 12
.word 8, 6, 11, 13
sortSize = (. - sortMe) / 4 // Number of elements

// Holds the array element during printing:

valToPrint: .word .-.
i: .word  .-.

.text
.align 2
.extern printf

// Return program title to C++ program:

.global getTitle

Constants, Variables, and Data Types 199



200

Chapter 4

getTitle:
lea x0, ttlStr
ret

Now we get to the bubble-sort function itself:

// Listing4-6.S (cont.)

/!

// Here's the bubble-sort function.

/!

// sort( dword *array, gword count )
/!

// Note: this is not an external (C)
// function, nor does it call any

// external functions, so it will

// dispense with some of the 0S-calling-
// sequence stuff.

//

// array- Address passed in X0

// count- Element count passed in X1
//

// Locals:

//

// W2 is "didSwap" Boolean flag.

// X3 is index for outer loop.

// W4 is index for inner loop.

The bubble-sort function could just use register names like X0, X1, W2,
and X3 for all the local variables. However, the following #define statements
let you use more meaningful names. X5, X6, and X7 are pure temporaries
(no meaningful name is attached to them), so this code continues to use
the ARM register names for these temporary or local objects. Technically,
X0 through X7 are reserved for parameters. As the sort function has only
two parameters (array and count), it uses X2 through X7 as local variables
(which is fine, as these registers are volatile, according to the ARM ABI):

// Listing4-6.S (cont.)

#define array x0
#define count x1
#define didSwap w2
#define index x3

The count parameter just defined contains the number of array elements
(which will be 16 in the main program). Since it’s more convenient for this
to be a byte count rather than a (word) element count, the following code
multiplies count (X1) by 4, using a shift left by 2. Also, the loop executes count
—1 times, so this code also preps count by subtracting 1 from it:



// Listing4-6.S (cont.)

sort:
sub count, count, #1  // numElements - 1

1sl count, count, #2 // Make byte count.

The bubble sort works by making count — 1 passes through the array,
where count is the number of elements. On each pass, it compares each adja-
cent pair of array elements; if the first element is greater than the second
one, the program swaps them. At the end of each pass, one element winds
up being moved to its final position. As an optimization, if no swaps occur,
then all the elements are already in place, so the sort terminates:

// Listing4-6.S (cont.)
//
// Outer loop

outer: mov didSwap, #false
mov index, #0 // Outer loop index
inner: cmp index, count // while outer < count - 1
bhs xInner
add X5, array, index // W5 = &array[index]
ldr w6, [x5] // W6 = array[index]
ldr w7, [x5, #4] // W7 = array[index + 1]
cmp w6, w7 // If W5 > W
bls dontSwap // then swap.

// sortMe[index] > sortMe[index + 1], so swap elements.

str w6, [x5, #4]
str w7, [x5]
mov didSwap, #true

dontSwap:
add index, index, #4 // Next word
b.al inner

// Exited from inner loop, test for repeat
// of outer loop:

xInner: cmp didSwap, #true
beq outer
ret
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The main program begins by preserving the nonvolatile registers (LR,
X19, and X20) that it uses:

// Listing4-6.S (cont.)
//

// Here is the asmMain function:

.global asmMain
asmMain:

sub sp, sp, #stackAlloc // Allocate stack space.

str 1r, [sp, #savelR] // Save return address.
str x19, [sp, #x19Save] // Save nonvolatile
str x20, [sp, #x20Save] // X19 and X20.

Next, the main program calls the sort function to sort the array. As per
the ARM ABI, this program passes the first argument (the address of the
array) in X0 and the second argument (element count) in X1:

// Listing4-6.S (cont.)
/1
// Sort the "sortMe" array:

lea X0, sortMe
mov x1, #sortSize // 16 elements in array
bl sort

Once sort has finished, the program executes a loop to display the
16 values in the array. This loop uses the nonvolatile registers X19 and X20
to hold the base address of the array and the loop index, so these values
don’t have to be reloaded on each iteration of the loop. Because they are
nonvolatile, we know that printf() won’t disturb their values:

// Listing4-6.S (cont.)
//
// Display the sorted array.

lea x19, sortMe

mov X20, Xzr // X20 = 0 (index)
displp: ldr w0, [x19, x20, 1sl #2] // WO = sortMe[X20]

lea x1, valToPrint

str wo, [x1]

lea x1, i

str x20, [x1]

lea x0, fmtStr // Print the index

vparm2 i // and array element

vparm3 valToPrint // on this loop iteration.

bl printf

add X20, x20, #1  // Bump index by 1.

cmp x20, #sortSize // Are we done yet?

blo displLp




Once the output is complete, the main program must restore the non-
volatile registers before returning to the C++ program:

// Listing4-6.S (cont.)

ldr x19, [sp, #x19Save] // Restore nonvolatile
1dr x20, [sp, #x20Save] // registers.

ldr 1r, [sp, #savelR] // Restore rtn adrs.
add sp, sp, #stackAlloc // Restore stack.

ret // Returns to caller

You could slightly optimize this program by using the stp and 1dp instruc-
tions to preserve both X19 and X20. To emphasize saving and restoring both
registers as independent operations, I didn’t make that optimization here.
However, you should get in the habit of optimizing your code in this manner
in order to reap the benefits of using assembly language.

Here’s the build command and output for Listing 4-6:

$ ./build Listing4-6
$ ./Listing4-6
Calling Listing4-6:
Sortme[0] = 1
Sortme[
Sortme[
Sortme[3
Sortme[4
Sortme[5
Sortme[6
Sortme[7
Sortme[8
Sortme[9]
Sortme[10]
Sortme[11]
Sortme[12]
Sortme[13] = 14
Sortme[14] = 15
Sortme[15] = 16
Listing4-6 terminated

1
2

]
]
]
]
]
]
]
]

[}
B O oo~Noul b WwWwN

11
12
13

As is typical for a bubble sort, this algorithm terminates if the inner-
most loop completes without swapping any data. If the data is already pre-
sorted, the bubble sort is very efficient, making only one pass over the data.
Unfortunately, if the data is not sorted (or, worst case, if the data is sorted
in reverse order), then this algorithm is extremely inefficient. Chapter 5
provides an example of a more efficient sorting algorithm, quicksort, in
ARM assembly language.

4.7.4 Implementing Multidimensional Arrays

The ARM hardware can easily handle single-dimensional arrays. Unfortu-
nately, however, accessing elements of multidimensional arrays takes some
work and several instructions.
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Before discussing how to declare or access multidimensional arrays,
I’ll show you how to implement them in memory. First, how do you store a
multidimensional object into a one-dimensional memory space? Consider
for a moment a Pascal array of this form:

A:array[0..3,0..3] of char;

This array contains 16 bytes organized as four rows of four characters.
Somehow, you have to draw a correspondence with each of the 16 bytes in
this array and 16 contiguous bytes in main memory. Figure 4-2 shows one
way to do this.

Memory

Figure 4-2: Mapping a 4x4 array to sequential
memory locations

The actual mapping is not important as long as two things occur:
(1) each element maps to a unique memory location (no two entries in the
array occupy the same memory locations), and (2) the mapping is consis-
tent (a given element in the array always maps to the same memory loca-
tion). Therefore, you need a function with two input parameters (row and
column) that produces an offset into a linear array of 16 memory locations.

Any function that satisfies these constraints will work fine. Indeed, you
could randomly choose a mapping, as long as it’s consistent. However, you
really want a mapping that is efficient to compute at runtime and that works
for any size array (not just 4x4 or even limited to two dimensions). While
many possible functions fit this bill, two in particular are used by most pro-
grammers and HLLs: row-major ordering and column-major ordering.

4.74.1 Row-Major Ordering

Row-major ordering assigns successive elements, moving across the rows and
then down the columns, to successive memory locations. Figure 4-3 demon-
strates this mapping.



Memory

A:array[0..3, 0..3] of char;
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Figure 4-3: Row-major ordering of array elements

ROW AND COLUMN INDICES VS. NUMBERS

When discussing multidimensional arrays, it is easy to confuse row and column
numbers and indices. A row number is, quite literally, the number associated
with a row. In Figure 4-3, the row numbers are the values O, 1, 2, and 3 to the
left of the 4x4 matrix, numbering each of the rows. Similarly, the column num-
bers are the values O, 1, 2, and 3 at the top of the matrix, numbering each of
the columns.

An index into a row is the offset from the beginning of each row into the
elements of that row. For example, in row 1 in Figure 4-3, the element at
index 2 contains the value 6. Similarly, a column index is an index into a col-
umn (moving from top to bottom in Figure 4-3). The array element in column 2
at column index 3 is the value 14.

Here's where confusion could occur: a column number is the same as a
row index; likewise, a row number is the same as a column index. When this
chapter presents the formulas for indexing into multidimensional arrays, be cog-
nizant of the difference between row and column numbers and indices.

. J

Row-major ordering is the method most HLLs employ. It is easy to imple-
ment and use in machine language: you start with the first row (row 0) and
then concatenate the second row to its end. You then concatenate the third
row to the end of the list, then the fourth row, and so on (see Figure 4-4).
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Low addresses High addresses

of112]3 4 516 |7 81 Q10|11 |[12]13]14]|15

8 9 1 10| 11

1213 14| 15

Figure 4-4: Another view of row-major ordering for a 4x4 array

The function that converts a list of index values into an offset is a slight
modification of the formula for computing the address of an element of
a single-dimensional array. The formula to compute the offset for a two-
dimensional row-major ordered array is as follows:

Element_Address =
Base_Address +
(colindex x row size + rowindex) x Element Size

As usual, Base_Address is the address of the first element of the array
(A[o][0] in this case), and Element_Size is the size of an individual element
of the array, in bytes. colindex is the leftmost index, and rowindex is the
rightmost index into the array. row_size is the number of elements in one
row of the array (4, in this case, because each row has four elements).
Assuming Element_Size is 1, this formula computes the following offsets
from the base address:

Column Row Offset
Index into Array
0 0 0

0 1 1

0 2 2

0 3 3

1 0 4

1 1 5

1 2 6

1 3 7

2 0 8

2 1 9

2 2 10

2 3 11

3 0 12

3 1 13

3 2 14

3 3 15




For a three-dimensional array, the formula to compute the offset into
memory is the following:

Address =
Base + ((depthindex x col _size + colindex) x row size +
rowindex) x Element Size

col_sizeis the number of items in a column, and row_size is the number of
items in a row.
In C/C++, if you've declared the array as

type A[i][j1[k];

then row size is equal to k and col_size is equal to j.
For a four-dimensional array, declared in C/C++ as

type A[i][j][k][m];

the formula for computing the address of an array element is shown here:

Address =
Base +
(((LeftIndex x depth size + depthindex) x col size +
colindex) x row size + rowindex) x Element Size

depth_size is equal to j, col_size is equal to k, and row_size is equal to m.
LeftIndex represents the value of the leftmost index.

By now you’re probably beginning to see a pattern. A generic formula
will compute the offset into memory for an array with any number of
dimensions; however, you’ll rarely use more than four.

Another convenient way to think of row-major arrays is as arrays of
arrays. Consider the following single-dimensional Pascal array definition

A: array [0..3] of sometype;

where sometype is the type sometype = array [0..3] of char; and Ais a single-
dimensional array. Its individual elements happen to be arrays, but you can
safely ignore that for the time being.

Here is the formula to compute the address of an element in a single-
dimensional array:

Element Address = Base + Index x Element Size

In this case, Element_Size happens to be 4 because each element of A is an
array of four characters. Therefore, this formula computes the base address
of each row in this 4x4 array of characters (see Figure 4-5).
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Alo] | O 1 2 8

A[1] | 4 5 6 7

Each element of A
is 4 bytes long.

a1 [ 8 |9 [10] 1

Azl |12 |13 |14 ] 15

Figure 4-5: Viewing a 4x4 array as an array of arrays

Of course, once you compute the base address of a row, you can reapply
the single-dimensional formula to get the address of a particular element.
While this doesn’t affect the computation, it’s probably a little easier to deal
with several single-dimensional computations rather than a complex multi-
dimensional array computation.

Consider a Pascal array defined as follows:

A:array [0..3, 0..3, 0..3, 0..3, 0..3] of char;

You can view this five-dimensional array as a single-dimensional array
of arrays. The following Pascal code provides such a definition:

type

OneD = array[0..3] of char;
TwoD = array[0..3] of OneD;
ThreeD = array[0..3] of TwoD;
FourD = array[0..3] of ThreeD;
var

A: array[0..3] of FourD;

The size of OneD is 4 bytes. Because TwoD contains four OneD arrays, its size
is 16 bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is
four ThreeDs, so it is 256 bytes long. To compute the address of A[b, ¢, d, e, f],
you could use the following steps:

1. Compute the address of A[b] as Base + b x size. Here size is 256 bytes. Use
this result as the new base address in the next computation.

2. Compute the address of A[b, c] by the formula Base + ¢ x size, where Base
is the value obtained in the previous step and size is 64. Use the result
as the new base in the next computation.

3. Compute the base address of A [b, ¢, d] by Base + d x size, where Base
comes from the previous computation and size is 16. Use the result as
the new base in the next computation.



4. Compute the address of A[b, c, d, e] with the formula Base + e x size,
using Base from the previous step and a size of 4. Use this value as the
base for the next computation.

5. Finally, compute the address of A[b, c, d, e, f] by using the formula
Base + f x size, where Base comes from the previous computation and size
is 1 (obviously, you can ignore this final multiplication). The result you
obtain at this point is the address of the desired element.

One of the main reasons you won’t find higher-dimensional arrays in
assembly language is that assembly language emphasizes the inefficiencies
associated with such access. It’s easy to enter something like A[b, c, d, e, f]
into a Pascal program, not realizing what the compiler is doing with the
code. Assembly language programmers are not so cavalier—they see the
mess you wind up with when you use higher-dimensional arrays. Indeed,
good assembly language programmers try to avoid two-dimensional arrays
and often resort to tricks in order to access data in such an array when its
use becomes absolutely mandatory.

4.74.2 Column-Major Ordering

Column-major ordering is the other function HLLs frequently use to compute
the address of an array element. FORTRAN and various dialects of BASIC
(for example, older versions of Microsoft BASIC) use this method.

In row-major ordering, the rightmost index increases the fastest as you
move through consecutive memory locations. In column-major ordering,
the leftmost index increases the fastest. Pictorially, a column-major ordered
array is organized as shown in Figure 4-6.

Memory

A:array[0..3, 0..3] of char;
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Figure 4-6: Column-major ordering of array elements
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The formula for computing the address of an array element when using
column-major ordering is similar to that for row-major ordering. You reverse
the indices and sizes in the computation.

For a two-dimensional column-major array:

Element_Address = Base Address +
(rowindex x col size + colindex) x Element_Size

For a three-dimensional column-major array:

Address = Base + ((rowindex x col size + colindex) x
depth _size + depthindex) x Element Size

For a four-dimensional column-major array:

Address =
Base + (((rowindex x col size + colindex) x depth size +
depthindex) x Left size + Leftindex) x Element Size

The formulas for higher-dimension arrays progress in a like fashion.

4.74.3 Storage Allocation for Multidimensional Arrays

If you have an mxn array, it will have m x n elements and require m x n

x Element_Size bytes of storage. To allocate storage for an array, you must
reserve this memory. As usual, you can accomplish this task in several ways.
The most common way to declare a multidimensional array in Gas is to use
the .space directive:

ArrayName: .space size, * size, * size, * ... * size * (Element_Size)

Here, size, to size, are the sizes of each of the dimensions of the array, and
(Element_Size) is the size (in bytes) of a single element. I recommend putting
parentheses around the Element_Size component of this expression to empha-
size that it is not another dimension in the multidimensional array.

For example, here is a declaration for a 4x4 array of characters:

GameGrid: .space 4 * 4 // Element Size is 1.

Here is another example that shows how to declare a three-dimensional
array of strings (assuming the array holds 64-bit pointers to the strings):

NameItems: .space 2 * 3 * 3 * (8) // dword NameItems[2, 3, 3]

As with single-dimensional arrays, you may initialize every element of
the array to a specific value by following the declaration with the values of the
array constant. Array constants ignore dimension information; all that matters
is that the number of elements in the array constant corresponds to the num-
ber of elements in the actual array. The following example shows the GameGrid
declaration with an initializer:



GameGrid: .byte 'a', 'b', 'c', 'd’
byte 'e', 'f', 'g', 'h’
.byte 'i', 'j', 'k', '1'

.byte 'm', 'n*, ‘o', 'p

This example was laid out to enhance readability. Gas does not inter-
pret the four separate lines as representing rows of data in the array;
humans do, which is why it’s good to write the data in this manner. If you
have a large array, an array with really large rows, or an array with many
dimensions, there is little hope for winding up with something readable; in
this case, comments that carefully explain everything come in handy.

The use of a constant expression to compute the number of array ele-
ments rather than simply using the constant 16 (4 x 4) more clearly suggests
that this code is initializing each element of a 4x4 element array than does
the simple literal constant 16.

4.74.4 How to Access Elements of Multidimensional Arrays

To access elements of a multidimensional array, you'll need to be able to
multiply two values; this is done using the mul (multiply) and madd (multiply
and add) instructions.

The mul and madd instructions have the following syntax

mul reg, reg,, reg, /] reg, = reg, * reg,
madd reg, reg,, reg, reg, // reg, = reg, * reg, + reg,

where reg, is the destination register (32 or 64 bits), reg, and reg, are source
registers (left- and right-hand operands), and reg, is a third source operand.
These instructions perform the calculations described in the comments.

These instructions do not have a form with an s suffix and therefore do
not update the flags after their execution. An n-bit x n-bit multiplication
can produce a 2 x n bit result; however, these instructions maintain only
n bits in the destination register. Any overflow is lost. Sadly, these instruc-
tions do not allow immediate operands, though this would be useful.

The multiply instruction has several other variants that are used for
other purposes. These are covered in Chapter 6.

Now that you've seen the formulas for computing the address of a multi-
dimensional array element, it’s time to see how to access elements of those
arrays with assembly language. The 1dr, 1s1, and mul/madd instructions make
short work of the various equations that compute offsets into multidimen-
sional arrays. First, consider a two-dimensional array:

.data
i: .word .-.
j: .word .-

TwoD: .word 4 * 8 * (4)
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// To perform the operation TwoD[i,j] := 5;
// you'd use code like the following.
// Note that the array index computation is (i * 4 + j) * 4.

lea x0, i

ldr wo, [x0] // Clears HO bits of X0

1s1 x0, x0, #2 // Multiply i by 4.

lea x1, j

ldr w1, [x1]

add wo, wo, wi // Wo =1 * 4 + j

lea x1, TwoD // X1 = base

mov w2, #5 // [TwoD + (i * 4 + ) * 4] =5

str w2, [x1, x0, 1sl #2] // Scaled by 4 (element size)

Now consider a second example that uses a three-dimensional array:

.data
i: .word .-.
j: .word .-.
k: .word .-.

ThreeD: .space 3 * 4 * 5 * (4) // word ThreeD[3, 4, 5]

// To perform the operation ThreeD[i,j,k] := W7;
// you'd use the following code that computes
// ( (1 *4+73)*5+k)*4as the address of ThreeD[i,j,k].

lea xo0, i

ldr wo, [x0]

1s1 wo, wo, #2 // Four elements per column
lea x1, j // Add in j.

ldr w1, [x1]

add w0, w0, wi

mov wl, #5 // Five elements per row

lea x2, k

ldr w2, [x2]

madd wo, w0, wi, w2 // ( (i * 4+ 3) *5+k)
lea x1, ThreeD

str w7, [x1, wo, uxtw #2] // ThreeD[i,j,k] = W7

This code uses the madd instruction to multiply the value in WO by 5 and
add in the k index at the same time. Because the 1s1 instruction can multi-
ply a register by only a power of 2, we must resort to a multiplication here.
While there are ways to multiply the value in a register by a constant other
than a power of 2, the madd instruction is more convenient, especially as it
handles an addition operation at the same time.

Structs

Another major composite data structure is the Pascal record or C/C++/C#
struct. The Pascal terminology is probably better, because it tends to avoid
confusion with the more general term data structure. However, this book



uses the term struct, as C-based languages are more commonly used these
days. (Records and structures also go by other names in other languages,
but most people recognize at least one of these names.)

Whereas an array is homogeneous, with elements that are all the same
type, the elements in a struct can have different types. Arrays let you select
a particular element via an integer index. With structs, you must select an
element, known as a field, by offset (from the beginning of the struct).

The whole purpose of a struct is to let you encapsulate different, though
logically related, data into a single package. The Pascal record declaration
for a hypothetical student is a typical example:

student =

record
sName: string[64];
Major: integer;
SSN: string[11];
Midtermi: integer;
Midterm2: integer;
Final: integer;
Homework: integer;
Projects: integer;

end;

Most Pascal compilers allocate each field in a record to contiguous
memory locations. This means that Pascal will reserve the first 65 bytes for
the name, the next 2 bytes hold the Major code (assuming a 16-bit integer),
the next 12 bytes hold the Social Security number, and so on. (Strings
require an extra byte, in addition to all the characters in the string, to
encode the length.) The John variable declaration allocates 89 bytes of stor-
age laid out in memory, as shown in Figure 4-7 (assuming no padding or
alignment of fields).

sName SSN Midterm2  Homework
(65 bytes) (12 bytes) (2 bytes) (2 bytes)
T 1 |/;,| T T T |/;’| T T T T T T
John 1 1 1 1 1 1
1 1 I’{/I 1 1 1 I'{/I 1 1 1 1 1 1
Major Midterm1 Final = Projects
(2 bytes) (2 bytes) (2 bytes) (2 bytes)

Figure 4-7: Student data structure in memory

If the label John corresponds to the base address of this record, the
sName field is at offset John + 0, the Major field is at offset John + 65, the SSN field
is at offset John + 67, and so on. In assembly language, if X0 holds the base
address of the John structure, you could access the Major field by using the
following instruction:

ldrh w0, [x0, #65]

This loads WO with the 16-bit value at the address specified by John + 65.
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4.8.1 Dealing with Limited Gas Support for Structs

Unfortunately, Gas provides only the smallest amount of support for struc-
tures via the .struct directive (see “Linux .struct Directive” on page 217).
Even more unfortunately, the macOS assembler doesn’t support .struct.

To use structures under macOS and Linux together, you’ll need a way
to specify the offsets to all the fields of a structure for use in the register
indirect-plus-offset addressing mode (such as in the last example line of the
previous section). In theory, you could manually use equates to define all
the offsets:

.equ sName, 0
.equ Major, 65
.equ SSN, 67

.equ Mid1, 79
.equ Mid2, 81
.equ Final, 83
.equ Homework, 85
.equ Projects, 87

However, this is an absolutely horrible, error-prone, and difficult-to-
maintain approach. The ideal method would be to supply a structure name
(the type name) and a list of the field names and their types. From this, you'd
aim to get offsets for all the fields, plus the size of the entire structure (which
you can use with the .space directive to allocate storage for the structure).

The aoaa.inc include file contains several macro definitions that can
help you declare and use structures in your assembly language source files.
These macros aren’t amazingly robust, but when used carefully, they get
the job done. Table 4-1 lists these macros and their arguments. Field names
must be unique throughout the program, not just in the structure defini-
tion. Also note that the struct/ends macros do not support nesting.

Table 4-1: The aoaa.inc Macros for Defining Structures

Macro  Argument(s) Description

struct  name, offset Begin a structure definition. The offset field is optional and can be either
a (small) negative number or 0. The default (and most commonly used)
value is O.

ends name Ends a structure definition. The name argument must match the name supplied
in the struct invocation.

byte name, elements  Create a field of type byte. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

hword name, elements  Create a field of type hword. name is the (unique) field name. elements is
optional (default value is 1) and specifies the number of array elements.

word name, elements  Create a field of type word. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

dword name, elements  Create a field of type dword. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

qword name, elements  Create a field of type qword. name is the unique field name. elements is
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optional (default value is 1) and specifies the number of array elements.



Macro  Argument(s) Description

single  name, elements  Create a field of type single. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

double  name, elements  Create a field of type double. name is the unique field name. elements is

optional (default value is 1) and specifies the number of array elements.

For strings, you’d specify either a dword field (to hold a pointer to the
field) or a byte field with a sufficient number of elements to hold all the
characters in the string.

The student example from the previous section could be encoded as
follows:

struct student
byte sName, 65 // Includes zero-terminating byte
hword Major
byte SSN, 12 // Includes zero-terminating byte
hword Midterm1i
hword Midterm2
hword Final
hword Homework
hword Projects
ends student

You would declare a variable of type student like this:

student John

The ends macro automatically generates a macro with the same name as
the structure name, so you can use that like a directive to allocate sufficient
space to hold an instance of the structure type.

You could access fields of John as follows:

lea x0, John

ldrh w1, [x0, #Midtermi]

ldrh w2, [x0, #Midterm2]

ldrh w3, [x0, #Final] // And so on ...

This macro package has a couple of issues. First of all, the field names
must be unique throughout the assembly language source file (unlike stan-
dard structures, where the field names are local to the structure itself). As
a result, these structures tend to suffer from namespace pollution, which hap-
pens when you try to reuse some of the field names for other purposes. For
example, sName will likely be used again elsewhere in the source file, since it’s
a common identifier. A quick-and-dirty solution to this problem is to always
prefix the field names with the structure name and a period. For example:

struct student
byte student.sName, 65
hword student.Major
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byte student.SSN, 12

hword student.Midterm1

hword student.Midterm2

hword student.Final

hword student.Homework

hword student.Projects
ends student

This requires a bit more typing, but it resolves the namespace pollution
issue most of the time.

Consider the student John macro invocation/declaration given in this
section. This macro expands into

John: .fill student.size

where student.size is an extra field that the struct macro generates, specify-
ing the total size of the structure (in bytes).

The struct macro accepts a second (optional) parameter: the starting
offset for fields in the structure. By default, this is 0. If you supply a negative
number here, the directive/macro that struct generates works a little differ-
ently. Consider the following structure definition:

struct HLAstring, -4

word  HLAstring.len

byte  HLAstring.chars, 256
ends  HLAstring

HLA strings are actually a bit different from the structure provided here,
but this does serve as a good example of negative starting offsets.
The HLAstring macro that struct generates does the following:

HLAstring myString
// Expands to
.fill 4
myString: .fill 256

This expansion places the myString label after the first 4 bytes of the
beginning of the structure. This is because the HLAstring.len field’s offset
is —4, meaning that the length field starts 4 bytes before the base address
of the structure (and the structure variable’s name is always associated with
the base address). You'll see some important uses for this feature in the
next chapter.

The struct macro does not allow positive offsets (values greater than 0).
It will generate an error at assembly time if you specify a positive value.



LINUX .STRUCT DIRECTIVE

The Gas .struct directive (available only under Linux) doesn’t begin a structure
definition in the sense of an HLL like C/C++. Instead, it begins a new section
(similar to .text, .data, or .section). However, rather than creating a memory
section that can be relocated in memory when the OS loads the program, the
.struct section is an absolute section located in memory at the address speci-
fied by constExpression. Furthermore, this is a phantom section, insofar as Gas
doesn't actually write any data to the object file in response to this directive;
.struct exists only for the purpose of associating offsets with symbols created
within the section.

Consider the following simple example:

.struct 0
f1: .byte 0
f2: .hword 0
13: .word 0
f4: .dword 0

size =

During assembly, Gas will set the location counter of the .struct section
to O (because of the 0 operand after .struct). Therefore, symbol f1 will have
the offset O associated with it, as it is the first symbol defined in the section.
Because f1 is a byte (and consumes 1 byte of memory), the location counter
advances to 1 when Gas encounters symbol f2. Therefore, 2 has the offset
2 associated with it. Similarly, 3 has the offset 3, and 4 has the offset 7 (the
offsets are the sums of the sizes of all the prior objects in the section). The sym-
bol size is given the value of the location counter at the end of the sequence, so
it has the value 15.

You can use the symbol names defined in a .struct section as offsets in
an address expression. For example, if you've defined the structure object s1 as
s1: .space size, you can access the 3 field of s1 as follows

lea x0, s1
ldr wo, [x0, #f1]

where #f1 is the offset into the struct from its base address (held in XO).

One issue with the struct macro is that it doesn’t provide a way to ini-
tialize the fields of the structure. To learn how to do that, keep reading.

4.8.2 |Initializing Structs

The struct macro definitions do not provide any way to initialize the fields
of a structure at compile time. You’ll have to either assign the values at
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runtime or manually build up the structure variable by using Gas direc-
tives. For example:

John: .asciz "John Somebody" // sName
.space 65 - (.-John) // Must be 65 bytes long!
.hword o // Major
.asciz  "123-45-6578" // SSN-Exactly 12 bytes long
.hword 75 // Midterm1i
.hword 82 // Midterm2
.hword 90 // Final
.hword 72 // Homework
.hword 80 // Projects

This initializes the fields of the structure to the corresponding values.

4.8.3 Creating Arrays of Structs

A common pattern in program design is to create an array of structures.
To do so, create a struct type and multiply its size by the number of array
elements when declaring the array variable, as shown in the following
example:

numStudents = 30

Class: .fill student.size * numStudents

To access an element of this array, use the standard array-indexing
techniques. Because class is a single-dimensional array, you’d compute the
address of an element of this array by using the formula baseAddress + index
x student.size. For example, to access an element of class, you’d use code
like the following:

// Access field Final, of element i of class:
// X1 := 1 * student.size + offset Final

lea x1, i

ldr x1, [x1]

mov x2, #student.size

mov x3, #student.Final

madd x1, x1, x2, x3  // Include offset to field.
lea x2, class

ldrh wo, [x2, x1] // Accesses class[i].Final

You must sum in the offset to the field you want to access. Sadly, the
scaled-indexed addressing mode doesn’t include an offset component as
part of the addressing mode, but madd saves us an instruction by working in
this addition as part of the multiplication.

Naturally, you can create multidimensional arrays of structs as well,
using the row-major or column-major order functions to compute the



address of an element within such structs. The only real change is that the
size of each element is the size of the struct object:

.data
numStudents = 30
numClasses = 2

// student Instructor[numClasses][numStudents]

Instructor:  .fill numStudents * numClasses * (student.size)
whichClass:  .dword 1
whichStudent: .dword 10

// Access element [whichClass,whichStudent] of class
// and load Major into Wo:

lea x0, whichClass

ldr x1, [x0]

mov x2, #numStudents // X1 = whichClass * numStudents
mul x1, x1, x2

lea x0, whichStudent

ldr x2, [x0] // X1 = (whichClass * numStudents +
add x1, x1, x2 //  numStudents)

mov X2, #student.size // * sizeStudent + offset Major
mov x3, #Major

madd x1, x1, x2, x3

lea x0, Instructor // WO = Instructor[whichClass]
ldrh wo, [x0, x1] // [whichStudent].Major

This demonstrates how to access fields of an array of structs.

4.8.4 Aligning Fields Within a Struct

To achieve maximum performance in your programs, or to ensure that

Gas structures properly map to records or structures in an HLL, you will
often need to be able to control the alignment of fields within a struct. For
example, you might want to ensure that a double-word field’s offset is a mul-
tiple of 4. You can use the salign macro to do this. The following creates a
structure with aligned fields:

struct tst

byte bb

salign 2 // Aligns offset to next 4-byte boundary
byte c

ends tst

As for the .align directive, the salign macro aligns the structure’s offset
to 2", where n is the value specified as the salign argument. In this example,
c’s offset is set to 4 (the macro rounds up the field offset from 1 to 4).
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Field alignment is up to you when you’re creating your own structure vari-
ables. However, if you're linking with code written in an HLL that uses struc-
tures, you'll need to determine field alignment for that particular language.
Most modern HLLs use natural alignment: fields are aligned on a boundary
that is the size of that field (or an element of that field). The structure itself is
aligned at an address rounded to the size of the largest object in the structure.
See section 4.11, “For More Information,” on page 221 for appropriate links.

Unions

Unions (in an HLL like C/C++) are similar to structures insofar as they cre-
ate an aggregate data type containing several fields. Unlike structures, how-
ever, the fields of a union all occupy the same offset in the data structure.

Programmers typically use unions for one of two reasons: to conserve
memory or to create aliases. Memory conservation is the intended use of
this data structure facility. To see how this works, consider the following
struct type:

struct numericRec

word i
word u
dword q

ends  numericRec

If you declare a variable, say n, of type numericRec, you access the fields
asn.i, n.u, and n.q. A struct assigns different offsets to each field, effec-
tively allocating separate storage to each field. A union, on the other hand,
assigns the same offset (typically 0) to each of these fields, allocating the
same storage to each.

For struct, then, numericRec.size is 16 because the struct contains two
word fields and a double-word field. The size of the corresponding union,
however, would be 8. This is because all the fields of a union occupy the
same memory locations, and the size of a union object is the size of the larg-
est field of that object (see Figure 4-8).

Offset
0 4 8

i u q record/struct variable

union variable

i, u

Figure 4-8: The layout of a union versus a structure variable
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Programs use unions for several purposes: preserving memory, overlay-
ing data types, and creating variant types (dynamically typed values whose
type can change during execution). Because you probably won’t use unions
that often in an assembly language program, I've not bothered creating
a union macro in the aoaa.incinclude file. However, if you really need a
union macro, you could take the information in Chapter 13 and the source
code to the struct macro in aoaa.inc and write your own.

Moving On

This chapter concludes the machine organization component of this book,
which dealt with the organization of memory, constants, data, and data
types. It discussed memory variables and data types, arrays, row-major and
column-major ordering, structs and unions, and strings, including zero-
terminated, length-prefixed, and descriptor-based strings. It also covered
issues you may encounter when using pointers, including uninitialized
pointers, illegal pointer values, dangling pointers, memory leaks, and type-
unsafe access.

Now it’s time to begin studying assembly language programming in ear-
nest. The next section of the book will begin discussing procedures and
functions (Chapter 5), arithmetic (Chapter 6), low-level control structures
(Chapter 7), and advanced arithmetic (Chapter 8).

For More Information

e For additional information about data structure representation in
memory, consider reading my book Write Great Code, Volume 1, 2nd
edition (No Starch Press, 2020). For an in-depth discussion of data
types, consult a textbook on data structures and algorithms such as
Introduction to Algorithms, 3rd edition (MIT Press, 2009), by Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

e  You can find information about the GNU assembler (including the
.struct directive) in the manual at https://ftp.gnu.org/old-gnu/Manuals/
gas-2.9.1/html_chapter/as_toc.himl.

¢ Asnoted in Chapter 3, you can find more information about ARM
CPUs at the developer website at https://developer.arm.com. To learn
more about field alignment in particular, see https://developer.arm.com/
documentation/dui0491/i/C-and-C---Implementation-Details/Structures
--unions--enumerations--and-bitfields?lang=en.

e For more on dangling pointers, see https://en.wikipedia.org/wiki/Dangling
_pointer.

e  For more on the High-Level Assembler, see the online resources at my
website, https://www.randallhyde.com/AssemblyLanguage/HighLevelAsm/.
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TEST YOURSELF

. What is a manifest constant?

Which directive(s) would you use to create a manifest constant?

3. What is a constant expression, and how would you determine the number

of data elements in the operand field of a byte directive?

4. What is the location counter?

What operator returns the current location countere

6. How would you compute the number of bytes between two declarations in

11.

12.
13.
14.
15.
16.

17.

18.
19.
20.

21.

22.
23.
24.

25.

the .data section?

What is a pointer and how is it implemented?

How do you dereference a pointer in assembly language?
How do you declare pointer variables in assembly language?

What are the five common problems encountered when using pointers in a
program?

What is a dangling pointer?

What is a memory leak?

What is a composite data type?

What is a zero-terminated string?

What is a length-prefixed string?

What is a descriptor-based string?

What is an array?

What is the base address of an array?
Provide an example of an array declaration.

Describe how to create an array whose elements you initialize at
assembly time.

What is the formula for accessing elements of a:
a. Single-dimensional array dword A[10]2
b. Two-dimensional array word W[4, 8]2

c. Three-dimensional array double R[2, 4, 6]2

What is row-major order?
What is column-major order?

Provide an example of a two-dimensional array declaration (word array
W[4, 8]).
What is a struct (record)?



26.
27.
28.
29.

How do you declare a struct data structure?
How do you access fields of a struct?
What is a union?

What is the difference between the memory organization of fields in a
union versus those in a struct?
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PART i

BASIC ASSEMBLY LANGUAGE






PROCEDURES

In a procedural programming language,
the basic unit of code is the procedure. A

procedureis a set of instructions that compute

a value or take an action, such as printing or
reading a character value. This chapter discusses how
Gas implements procedures, parameters, and local
variables. By the end of this chapter, you should be
well versed in writing your own procedures and func-
tions. You'll also fully understand parameter passing
and the ARM application binary interface (ABI) call-
ing convention.

This chapter covers several topics, including the following:

e An introduction to assembly language programming style, along with
some aoaa.inc macros to improve the readability of your programs
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e  Gas procedures/functions and their implementation (including the use
of the bl, br, and ret instructions), along with more aoaa.inc macros to
allow the better declaration of procedures in your source files

e Activation records, automatic variables, local symbols, register preserva-
tion, and the ARM stack

e Various ways to pass parameters to a procedure, including pass by value
and pass by reference, and how to use procedure pointers and proce-
dural parameters

This chapter also discusses how to return function results to a caller
and how to call and use recursive functions.

Assembly Language Programming Style

Up until this chapter, I've not stressed good assembly language program-
ming style for two reasons. First, this book assumes you're already familiar
with the need for good programming style based on your experience with
HLLs. Second, the programs quoted up to this point have been relatively
trivial, and programming style doesn’t matter much with trivial code.
However, as you begin to write more advanced ARM assembly language
programs, style becomes more important.

As you can probably tell by now, ARM assembly language code is
nowhere near as readable as code written in an HLL such as C/C++, Java,
or Swift. Therefore, as an assembly language programmer, you must expend
extra effort to write assembly code that is as readable and maintainable as
possible. As I've pointed out, the GNU assembler was written not as a tool
for assembly language programmers but as a backend to the GCC com-
piler to process the compiler’s output. Because of this and the fact that Gas
attempted to absorb as many features as possible from a huge number of
assembly languages (for many CPUs, not just the ARM), writing high-quality
code with Gas is a difficult task.

Fortunately, you can use Gas’s macro processor (and ability to take advan-
tage of the CPP) to modify the Gas assembly language somewhat, accessing
features that can help improve your programming style. The aoaa.incinclude
file contains a fair number of predefined macros and symbol definitions to
help achieve this goal. Chapter 13 covers the contents of aoaa.incline by line
and explains how you can use these macros, and create macros of your own,
to improve the readability of your ARM assembly language programs.

When you write assembly language source files, feel free to include
aoaa.inc in that code or incorporate any features from that code in your
assembly language source files. Even if you don’t require the cross-platform
portability offered by aoaa.inc, its macros and other definitions can help
you write more readable and maintainable code. The aoaa.inc header file is
open source and covered by the Creative Commons 4.0 Attribution license
(see section 5.12, “For More Information,” on page 290).



NOTE

As an example of using macros to make code more readable, consider
the .code macro from aoaa.inc. It expands into the following two statements:

.text
.align 2

As a general rule, you should always ensure that the .text section is
aligned on a word boundary (code could get misaligned if you've declared
some data in the previous code section whose length is not a multiple of 4).
It’s good programming style to always align a .text section; just to be sure
an instruction begins at a proper address. Rather than clutter up your code
with a bunch of extra .align directives, I recommend using the .code direc-
tive to automatically handle the alignment. Having less clutter makes your
code easier to read.

The aoaa.inc header file contains several additional macros I will pre-
sent throughout the rest of this chapter that take the 1960s-style Gas syntax
and attempt to provide features found in more modern assemblers (such as
the Microsoft Macro Assembler, or MASM, and the HLA assemblers avail-
able for the x86 processor family). Using these features (such as formal
procedure declarations and local variable declarations) can help produce
easier-to-read assembly language source code.

Even when writing traditional assembly language source code, you can
follow certain rules to produce more readable code. Throughout this book,
I've generally organized assembly language statements as follows (braces
surround optional items and don’t appear in the actual source code):

{Label:} {{instruction} operands} {// Comment}

As a general rule, I try to put all label definitions in column 1 and to
line up all the instruction mnemonics in column 2. I try to start the oper-
ands in column 3. The exact number of spaces between these columns
is not important, but be sure that the mnemonics are generally lined up
together, in one column, and that the operands tend to start in the next
column. This is the traditional assembly language programming style and
the format that most assembly language programmers will want to see when
reading your code.

For formatting reasons, this book often compresses the amount of space between the
columns and sometimes varies the position of each column within the same listing.
This was done to ensure source lines fit on one line within the book. In a normal
source file, you should try to keep all the columns aligned (two 4-character tab posi-
tions for column 2, column 3 around character position 16, and so on).

In general, don’t try to indent statements as you would blocks in an
HLL. Assembly language is not a block-structured language and does not
lend itself to the same indentation techniques that work well for block-
structured languages. If you need to set apart a sequence of statements,
the best approach is to insert two or more blank lines before and after that
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sequence of statements. Comments are also useful for differentiating two
separate, loosely coupled blocks of code.

Gas usually expects an entire assembly language instruction to reside
on a single line of source code. In theory, you could use the backslash char-
acter immediately before a newline character to break a single statement
across two lines:

b.al \
targetLlabel

However, there’s almost never a good argument for doing this. Keep your
instructions on a single line unless you have a really good reason to split
them across multiple lines (for example, if the source line becomes inordi-
nately long for some reason, which is rare). The label field is an exception
to this rule: labels may appear on a line by themselves even if they are asso-
ciated with the next machine instruction in the program.

Gas (under Linux) allows putting multiple assembly language instruc-
tions on the same line, separated by a semicolon. However, putting multiple
statements on the same source line is an even worse idea in assembly lan-
guage than it is in HLLs—don’t do it. In any case, the macOS assembler
does not support this feature.

With a few assembly language style guidelines out of the way, it’s time
to consider the main topic of this chapter: procedures (functions) in assem-
bly language.

Gas Procedures

Most procedural programming languages implement procedures by using
the call/return mechanism. The code calls a procedure, the procedure per-
forms whatever actions it was written to do, and then the procedure returns
to the caller. The call and return operations provide the ARM’s procedure
invocation mechanism. The calling code calls a procedure with the bl instruc-
tion, and the procedure returns to the caller with the ret instruction. For
example, the following ARM instruction calls the C stdlib library printf()
function:

bl printf

Alas, the C stdlib does not supply all the routines you’ll need. Most of
the time, you’ll have to write your own Gas procedures. A basic Gas proce-
dure declaration takes the following form:

procName :
Procedure statements
ret

Technically, the procedure does not need to end with a ret instruction;
the ret could be somewhere in the middle of the procedure, with a b.al



instruction at the end. However, it’s considered good programming style
to use a ret instruction (or an equivalent) as the last instruction of a proce-
dure’s body.

Procedure declarations appear in the .text section of your program. In
the preceding syntax example, procName represents the name of the proce-
dure you wish to define. This can be any valid (and unique) Gas identifier.

Here is a concrete example of a Gas procedure declaration. This pro-
cedure stores Os into the 256 words at which X0 points upon entry into
the procedure:

zeroBytes:
mov x1, #256%4 // 1,024 bytes = 256 words
repeatlp: subs x1, x1, #4
str wzr, [x0, x1] // Store *after* subtraction!
bne repeatlp // Repeat while X1 >= 0.
ret

As you've probably noticed, this simple procedure doesn’t bother with
the “magic” instructions that add and subtract a value to and from the SP
register. Those instructions are a requirement of the ARM ABI when the
procedure will be calling other C/C++ code (or other code written in an
ARM ABI-compliant language). Because this little function doesn’t call any
other procedures, it doesn’t bother executing such code.

Also note that this code uses the loop index to count down from 1,024
down to 0 by 4, filling in the 256-word array backward (from end to begin-
ning) rather than filling it in from beginning to end. This is a common
technique in assembly language. Finally, this code decrements X1 by 4
before storing the 0 into memory. This is because the loop index (X1) is ini-
tialized just beyond the end of the array pointed at by X0. The str instruc-
tion does not affect the flags, so the bne instruction responds to the flags set
by the subs instruction.

You can use the ARM bl instruction to call this procedure. When,
during program execution, the code falls into the ret instruction, the pro-
cedure returns to whoever called it and begins executing the first instruc-
tion beyond bl. Listing 5-1 provides an example of a call to the zeroBytes
routine.

// Listing5-1.S
//

// Simple procedure call example

#include "aoaa.inc"

stackSpace = 64
savelR = 56

.section .rodata, ""
ttlStr: .asciz  "Listing 5-1"
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.data

wArray: .space 256 * (4), oxff // Fill with OxFF.
.text
.align 2

// getTitle
/1

// Return program title to C++ program:

.global getTitle
getTitle:

lea x0, ttlStr

ret

// zeroBytes

/!

// Here is the user-written procedure
// that zeros out a 256-word buffer.
// On entry, Xo contains the address
// of the buffer.

zeroBytes:
mov X1, #256 * 4
repeatlp:  subs x1, x1, #4

str wzr, [x0, x1] // Store *after* subtraction!
bne repeatlp // Repeat while X1 != 0.
ret

// Here is the asmMain function:

.global asmMain

asmMain:
sub sp, sp, #stackSpace // Reserve stack storage.
str 1r, [sp, #savelR]

lea X0, wArray

bl zeroBytes

ldr 1r, [sp, #savelR] // Restore return address.
add sp, sp, #stackSpace // Clean up stack.

ret // Returns to caller

I won’t bother with a build or run command, as this program doesn’t pro-
duce any real output beyond saying that it ran and terminated.

The Gas language doesn’t really have a syntactical concept of a pro-
gram component we think of as a procedure (or function). It has labels you
can call with the bl instruction, along with the ret instruction, which you
can use to return from a procedure. However, it has no syntactical entity
you can use to delineate one procedure from another in your assembly lan-
guage source file.



So far, the few procedures in this book have delineated the code in the
procedure by using a label and a return statement. For example, the follow-
ing procedure begins with zeroBytes and ends with ret:

zeroBytes:
mov x1, #256 * 4
repeatlp: subs x1, x1, #4
str wzr, [x0, x1] // Store *after* subtraction!
bge repeatlp // Repeat while X1 >= 0.
ret

A comment immediately before the procedure might help separate it
from previous code. However, the person reading the code has to work to
differentiate the zeroBytes label from the repeatlp label. In fact, there’s
no reason you couldn’t use both labels as entry points for a procedure
(zeroBytes would always zero out 256 words starting at the address passed
in X0, and repeatlp would zero out the number of words specified in X1/4).
Of course, a procedure isn’t required to use just a single ret instruction (or
any at all, since there are other ways to return from a procedure). The last
instruction of a procedure also doesn’t have to be a ret. Therefore, relying
on a statement label and a ret instruction to delineate the procedure is not
always appropriate.

Though it’s always a good idea to put comments at the beginning and
end of your Gas procedures to clarify what’s happening, the best way to
solve this problem would be to use syntactical sugar—statements that clarify
meaning without generating any code—to delineate procedures. Although
Gas does not provide such statements, you can write your own macros for
the same purpose. The aoaa.inc include file provides a couple of these
macros: proc and endp. Here is their syntax:

proc procedureName {, public} // Braces denote optional item.
Body of the procedure

endp procedureName

Here, procedureName will be the name of the procedure, and you must sup-
ply the same name in the proc and endp statements. The , public argument
is optional, as denoted by the meta-symbol braces. If the public argument is
present, the proc macro will automatically generate a .global directive for
the procedure.

Here’s a very simple example of using the proc and endp macros with the
getTitle function:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle
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These macros generate the usual statements for the getTitle procedure:

.global getTitle // Generated by public
getTitle: // Generated by proc

lea x0, ttlStr

ret

The endp macro doesn’t generate anything in the program. It simply
checks the identifier passed as an argument to ensure that it matches the
procedure’s name in the proc macro invocation.

Because the proc and endp statements neatly isolate a procedure’s body
from other code in the program, this book uses them for procedures from
this point forward. I suggest you take advantage of these macros to help
make your own future procedures more readable too.

Procedures and functions in an HLL provide useful features in the
form of local symbols. The next section covers the limited form of local
labels supported by Gas.

5.2.1 Gas Local Labels

Unlike HLLs, Gas does not support lexically scoped symbols. Labels you define
in a procedure are not limited in scope to that procedure. Except for one
special case, symbols you define in a Gas procedure, including those defined
with proc/endp, are visible throughout the source file.

However, Gas does support a limited form of local labels, which consist
of a single numeric digit followed by a colon (0: through 9:). In your code,
refer to these symbols by using Ab or N, where N is the digit (0 through 9).

A symbol of the form Nb references the previous N: label in the source file
(b is for backward). A symbol of the form Nf references the next N: symbol in
the source file (f is for forward).

Here’s an example of a Gas local label in the zeroBytes procedure
(rewritten from the previous section):

proc zeroBytes
mov x1, #256 * 4

0: subs x1, x1, #4
str wzr, [x0, x1] // Store *after* subtraction!
bne ob // Repeat while X1 != o.
ret

endp zeroBytes

Local labels are useful when there is no compelling reason to use a
more meaningful name. Be careful about using these local symbols, though.
When used sparingly, they help reduce the distraction of meaningless labels
in your program, but using too many will destroy the readability of your pro-
grams (“to which o label is this code jumping?”).

When you use local labels, your target label should be only a few
instructions away; if the code jumps any great distance, you run the risk
of inserting that same local label between the source and targets when



enhancing your code later. This would produce undesirable consequences,
and Gas won'’t notify you of the error.

5.2.2 bl, ret, and br

Once you can declare a procedure, the next problem is how to call (and
return from) a procedure. As you've seen many times throughout this book,
you call procedures by using bl and return from those procedures by using
ret. This section covers those instructions (as well as the br instruction) in
more detail, including the effects of their use.

The ARM bl instruction does two things: it copies the (64-bit) address
of the instruction immediately following the bl to the LR register, and then
it transfers control to the address of the specified procedure. The value that
bl copies to LR is known as the return address.

When a procedure wants to return to the caller and continue execution
with the first statement following the bl instruction, that procedure com-
monly returns to its caller by executing a ret instruction. The ret instruction
transfers control indirectly to that address held in the LR register (X30).

The ARM ret instruction takes two forms

ret
ret reg,,

where reg,, is one of the ARM’s thirty-two 64-bit registers. If a 64-bit regis-
ter operand appears, the CPU uses the address held in that register as the
return address; if no register is present, the default is X30 (LR).

The ret instruction is actually a special case of the br (branch indirect
through register) instruction. The br syntax is

br reg,,

where reg,, is one of the ARM’s thirty-two 64-bit registers. This instruction
also transfers control to the address held in the specified register. Whereas
the ret reg,, instruction provides a hint to the CPU that this is an actual
return-from-subroutine, the br reg,, instruction offers no such hint. In some
circumstances, the ARM can execute the code faster if it’s given the hint.
Chapter 7 covers some uses for the br instruction.

The following is an example of the minimal Gas procedure:

proc minimal
ret
endp minimal

If you call this procedure with the bl instruction, minimal will simply
return to the caller. If you fail to put the ret instruction in the procedure,
the program will not return to the caller upon encountering the endp state-
ment. Instead, the program will fall through to whatever code happens to
follow the procedure in memory.
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Listing 5-2 demonstrates this problem. The main program calls noRet,
which falls straight through to followingProc (printing the followingProc was
called message).

// Listing5-2.S
//

// A procedure without a ret instruction

#include "aoaa.inc"

stackSpace = 64

savelR = 56
.section .rodata, ""

ttlStr: .asciz "Listing 5-2"

fpMsg: .asciz "followingProc was called\n"
.code
.extern printf

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// noRet

//

// Demonstrates what happens when a procedure
// does not have a return instruction

proc noRet
endp noRet

proc followingProc
sub sp, sp, #stackSpace
str 1r, [sp, #savelR]

lea x0, fpMsg
bl printf

ldr 1r, [sp, #savelR]
add sp, sp, #stackSpace
ret

endp followingProc

// Here is the asmMain function:
proc asmMain, public

sub sp, sp, #stackSpace
str 1r, [sp, #savelR]
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bl

ldr
add
ret
endp

noRet

1r, [sp, #savelR]
sp, sp, #stackSpace

asmMain

As you can see, there is no ret instruction in noRet, so when the main

program (asmMain) calls noRet, it will fall straight through into followingProc.
Here’s the build command and sample execution:

$ ./build Listing5-2
$ ./Listing5-2
Calling Listing5-2:

followingProc was called
Listing5-2 terminated

Although this behavior might be desirable in certain rare circumstances,
it usually represents a defect in most programs. Therefore, always remember
to explicitly return from the procedure by using the ret instruction.

Saving the State of the Machine

Listing 5-3 attempts to print 20 lines of 40 spaces and an asterisk.

// Listing5-3.S
//

// Preserving registers (failure) example

#include "aoaa.inc"

stackSpace =

savelR =

saveX19 =
.section

ttlStr: .asciz

space: .asciz

asterisk: .asciz
.data

loopIndex: .word

.code
.extern

/] getTitle
//

64

56

48
.rodata, ""
"Listing 5-3"

||*, %d\nn

.. // Used to print loop index value

printf

// Return program title to C++ program:

proc
lea

getTitle, public
x0, ttlStr
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ret
endp

// print4oSpaces
/1

getTitle

// Prints out a sequence of 40 spaces
// to the console display

proc
sub
str

mov
printLoop: lea
bl
subs
bne
ldr
add
ret
endp

print40Spaces
sp, sp, #stackSpace
1r, [sp, #savelR]

wl9, #40

X0, space

printf

w19, w19, #1

printLoop // Until W19 ==
1r, [sp, #savelR]

sp, sp, #stackSpace

print4oSpaces

// Here is the asmMain function:

proc

sub
str
str

mov
astLp: bl
lea
str
lea
vparm2
bl
subs
bne

ldr
ldr
add
ret
endp

asmMain, public

sp, sp, #stackSpace
1r, [sp, #savelR] // Save return address.
x19, [sp, #saveX19] // Must preserve nonvolatile register.

w19, #20
print4oSpaces
x0, loopIndex
w19, [x0]

X0, asterisk
loopIndex
printf

w19, wi9, #1
astlp

x19, [sp, #saveX19]
1r, [sp, #savelR]
sp, sp, #stackSpace
// Returns to caller
asmMain

Unfortunately, a subtle bug creates an infinite loop. The main program
uses the bne printlLoop instruction to create a loop that calls Print4oSpaces
20 times. This function uses W19 to count off the 40 spaces it prints, and
then returns with W19 containing 0. The main program prints an asterisk
and a newline, decrements W19, and then repeats because W19 isn’t 0 (it
will always contain —1 at this point).



The problem here is that the print4oSpaces subroutine doesn’t preserve
the W19 register. Preserving a register means you save it upon entry into
the subroutine and restore it before leaving. Had the print4oSpaces sub-
routine preserved the contents of the W19 register, Listing 5-3 would have
functioned properly. There is no need to build and run this program; it just
runs in an infinite loop.

Consider the following code for print4oSpaces:

proc print40Spaces
sub sp, sp, #stackSpace
str 1r, [sp, #savelR]

str x19, [sp, #saveX19]

mov w19, #40
printLoop: lea X0, space

bl printf

subs w19, w19, #1

bne printLoop // Until W19 ==
ldr 1r, [sp, #savelR]

ldr x19, [sp, #saveX19]

add sp, sp, #stackSpace

ret

endp print4oSpaces

This variant of print4oSpaces saves and restores X19 on the stack, along
with the LR register. Because X19 is a nonvolatile register (in the ARM
ABI), it is the responsibility of the callee (the procedure) to preserve it.

Note that print4oSpaces uses X19 rather than one of the X0 to X15 reg-
isters specifically because it is nonvolatile. The printf() function does not
have to preserve X0 to X15 because they are volatile registers in the ARM
ABI. Any attempt to use those registers would have likely failed because
printf() doesn’t have to preserve their values.

In general, either the caller (the code containing the call instruction)
or the callee (the subroutine) can take responsibility for preserving the reg-
isters. When following the ARM ABI, it is the caller’s responsibility to pre-
serve volatile registers and the callee’s responsibility to preserve nonvolatile
registers. Of course, when writing your own procedures that won’t be called
by ABI-compliant functions and don’t call any ABI-compliant functions, you
can choose whichever register preservation scheme you prefer.

Listing 5-4 shows the corrected version of the program in Listing 5-3,
which properly preserves X19 in the call to print4oSpaces.

// Listing5-4.S
//

// Preserving registers (successful) example

#include "aoaa.inc"

stackSpace = 64
savelR = 56
saveX19 = 48
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.section .rodata,

ttlStr: .asciz "Listing 5-4"

space: .asciz "

asterisk: .asciz "k %d\n"
.data

loopIndex: .word - // Used to print loop index value
.code
.extern printf

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// print4oSpaces

//

// Prints out a sequence of 40 spaces
// to the console display

proc print4oSpaces
sub sp, sp, #stackSpace
str 1r, [sp, #savelR]

str x19, [sp, #saveX19]
mov w19, #40

printLoop: lea X0, space
bl printf

subs w19, w19, #1

bne printLoop // Until W19 ==
ldr 1r, [sp, #savelR]

ldr x19, [sp, #saveX19]

add sp, sp, #stackSpace

ret

endp print4oSpaces

// Here is the asmMain function:
proc asmMain, public

sub sp, sp, #stackSpace

str 1r, [sp, #savelR] // Save return address.
str x19, [sp, #saveX19] // Must preserve nonvolatile register.
mov w19, #20
astlp: bl print4oSpaces
lea X0, loopIndex
str w19, [x0]
lea X0, asterisk
vparm2 loopIndex
bl printf
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subs w19, w19, #1
bne astlp

ldr 1r, [sp, #savelR]
ldr x19, [sp, #saveX19]
add sp, sp, #stackSpace
ret // Returns to caller
endp asmMain

Here’s the build command and sample output for Listing 5-4:

$ ./build Listing5-4
$ ./Listing5-4
Calling Listing5-4:

\.\.\.h\.\.\..\.\.
PR R R R R R R RN
R NW RS UTON 0W O

v el .

- -

-

XK K K X K K X X K K XK X K XK X X X X K
- -

[y

o

-
PN WSRO 0O

-

Listing5-4 terminated

As you can see, this program executes properly without entering an infi-
nite loop.

Callee preservation has two advantages: space and maintainability. If
the callee (the procedure) preserves all affected registers, only one copy
of the str and ldr instructions exists—those that the procedure contains.
If the caller saves the values in the registers, the program needs a set of
preservation instructions around every call. This makes your programs not
only longer but also harder to maintain. It’s not easy to remember which
registers to save and restore on each procedure call.

On the other hand, a subroutine may unnecessarily preserve some reg-
isters if it preserves all the registers it modifies. If the caller is preserving the
registers, the subroutine doesn’t have to save registers it doesn’t care about.

One big problem with having the caller preserve registers is that your
program may change over time. You may modify the calling code or the
procedure to use additional registers. Such changes, of course, may change

Procedures 241



242

3.4

Chapter 5

the set of registers that you must preserve. Worse still, if the modification

is in the subroutine itself, you will need to locate every call to the routine
and verify that the subroutine does not change any registers that the calling
code uses.

Assembly language programmers typically use a common convention
with respect to register preservation: unless there is a good reason (perfor-
mance) for doing otherwise, most programmers will preserve each register
that a procedure modifies (and doesn’t explicitly return a value in a modi-
fied register). This reduces the likelihood of defects occurring in a program
because a procedure modifies a register the caller expects to be preserved.
Of course, you could follow the rules concerning the ARM ABI with respect
to volatile and nonvolatile registers; however, such calling conventions
impose their own inefficiencies on both programmers and other programs.
This book generally adheres to the ARM ABI with respect to volatile and
nonvolatile registers, though many examples preserve all affected registers
in a procedure.

There’s more to preserving the environment than preserving registers.
You can also preserve variables and other values that a subroutine might
change.

Call Trees, Leaf Procedures, and the Stack

Imagine a procedure, A, that calls two other procedures B and C. Also
assume that B calls two procedures D and E, and procedure C calls two
other procedures F and G. We can diagram this calling sequence by using a
call tree, as shown in Figure 5-1.

Figure 5-1: A call-tree diagram

This entire call graph is the tree, and the procedures at the bottom that
do not call any other procedures—in this case, D, E, F, and G—are known
as leaf proceduvres.

Leaf procedures are different from non-leaf procedures in ARM assem-
bly language because they can leave the return address in the LR register
rather than saving it to memory (the stack). As leaf procedures don’t make
any other calls via the bl instruction, the procedure won’t disturb the value
in LR upon entry into the procedure. (This assumes that the procedure
doesn’t explicitly modify LR, but generally, there is no good reason for
doing so.) Therefore, leaf procedures can be slightly more efficient than



non-leaf procedures, as they are spared the need to preserve the value in
the LR register. Leaf procedures can also make full use of the volatile regis-
ter set without worrying about their values being scrambled during a call to
another procedure.

Non-leaf procedures must preserve the value in the LR register because
calls they make (via bl) will overwrite the value in LR. A procedure can pre-
serve LR in a few places: in another register, on a stack, or in a global mem-
ory location, as our examples did before Chapter 3 introduced the stack.

I've already pointed out that using global variables to preserve LR
is a poor choice in nearly every case. That scheme can handle only one
level of calls and completely fails when using recursion (see section 5.8,
“Recursion,” on page 277) or writing multithreaded applications. It’s also
slower, uses more code, and is less convenient to use than other schemes.

You could use another register to temporarily hold the return address
while calling another procedure. Of course, that register must be nonvola-
tile (or, at least, the procedure you're calling must not modify that register’s
value) so that it will still contain the saved return address whenever the
procedure you call returns. Using a register to preserve LR like this is very
fast. Unfortunately, guaranteeing that other procedures won’t modify the
saved value often means you have to preserve that value in memory within
the second procedure to be called. Since you still have to write the value to
memory (and read it back), you may as well have saved LR directly to mem-
ory in the first place.

The most common place to save the return address in LR is on the
stack. Usually, one of the first instructions in a procedure will move the con-
tents of the LR register into the stack. This is typically done in one of two
ways. The first is to directly push the LR register onto the stack:

str 1r, [sp, #-16]!

The second is to adjust the stack down in memory and store LR into the
storage area just created:

sub sp, sp, #someAmount // Make room for LR on stack.
str 1r, [sp, #someOffset] // Store LR into space allocated on stack.

Here, someAmount is a multiple of 16 (or another value that keeps the stack
16-byte aligned), and someOffset is an index into the space just allocated on
the stack by the sub instruction.

Notice that the former example uses the pre-indexed addressing mode
to adjust SP downward and store LR into the vacated space (because of
stack alignment issues, this actually reserves 16 bytes, though it uses only
8 of them). The latter example uses the indirect-plus-offset addressing
mode to simply store the return address into the storage allocated by the sub
instruction. This book most commonly uses the latter form because the cost
of sub is often shared by other code that uses the stack.

Wasting 8 bytes by using the pre-indexed addressing mode won’t turn
out to be an issue. As you’ll see shortly, most of the time you’ll want to
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preserve the value of the FP register along with the return address, so you’ll
commonly use an stp instruction, like one of the following, that won’t waste
any memory:

stp fp, 1lr, [sp, #-16]!

or

sub sp, sp, #someAmount
stp fp, 1r, [sp, #someOffset]

The following subsections cover the use of the stack in procedures,
including activation records, accessing data within activation records (local
and automatic variables as well as parameters), how the ARM ABI influ-
ences activation records and passing parameters, and how to build and
destroy activation records.

5.4.1 Activation Records

When you call a procedure, the program associates certain information with
that procedure call, including the return address, parameters, and automatic
local variables (which I'll discuss in later sections). To do so, it uses a data
structure called an activation record, also known as a stack frame. The program
creates an activation record when calling (activating) a procedure, and the
data in the record is organized in a manner identical to structs.

This section covers traditional activation records created by a hypothet-
ical compiler, ignoring the parameter-passing conventions of the ARM ABI.
A later section of this chapter presents the ARM ABI conventions.

Construction of an activation record begins in the code that calls a
procedure. The caller makes room for the parameter data (if any) on the
stack and copies the data onto the stack. The bl instruction then passes the
return address into the procedure. At this point, construction of the activa-
tion record continues within the procedure itself. The procedure typically
pushes the value in LR onto the stack along with other registers and other
important state information, then makes room in the activation record for
local variables. The procedure might also update the FP register (X29) so
that it points at the base address of the activation record.

To see what a traditional activation record looks like, consider the fol-
lowing C++ procedure declaration:

void ARDemo(unsigned i, int j, unsigned k)
{

int a;

float 1;

char c;

bool bb;



short w;

Whenever a program calls this ARDemo procedure, it begins by pushing
the data for the parameters onto the stack. In the original C/C++ call-
ing convention (ignoring the ARM ABI), the calling code pushes all the
parameters onto the stack in the opposite order in which they appear in
the parameter list, from right to left. Therefore, the calling code pushes
first the value for the k parameter, then the value for the j parameter, and
finally the data for the i parameter (with possible padding for the param-
eters to keep the stack aligned).

Next, the program calls ARDemo. Immediately upon entry into the ARDemo
procedure, the stack contains these three items arranged as shown in
Figure 5-2. Since the program pushes the parameters in reverse order, they
appear on the stack in the correct order, with the first parameter at the low-
est address in memory.

k’s value

i’s value «—— SP

Figure 5-2: Stack organization immediately upon
entry into ARDemo

The first few instructions in ARDemo push the current values of LR and
FP onto the stack, then copy the value of SP into FP. Next, the code drops
the stack pointer down in memory to make room for the local variables.
This produces the stack organization shown in Figure 5-3.
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Previous
stack
contents

k’s value

j's value

i’s value

Return address (LR)

Old FP value —  FP

Possible padding — SP

Figure 5-3: The activation record for ARDemo

Because local variables can be any size in the activation record, their
total storage might not be a multiple of 16 bytes. However, the entire block
of local variables must be a multiple of 16 bytes so that SP remains aligned
on a 16-byte boundary as required by the ARM CPU—hence the presence
of possible padding in Figure 5-3.

5.4.2 Objects in the Activation Record

To access objects in the activation record, you can use offsets from the FP
register to the desired object. The two items of immediate interest to you
are the parameters and the local variables. You can access the parameters
at positive offsets from the FP register; you can access the local variables at
negative offsets from the FP register, as Figure 5-4 shows (the figure assumes
that the i, j, and k parameters are all 64-bit integers with appropriate pad-
ding to 8 bytes each).

ARM specifically reserves the X29/FP register for use as a pointer to
the base of the activation record. This is why you should avoid using the FP
register for general calculations. If you arbitrarily change the value in the
FP register, you could lose access to the current procedure’s parameters and
local variables.



Offset from FP

l

k's value +32
j's value +24
i’s value +16
Return address +8
Old FP value +0 <«— FP
-4
-8
-9
-10
-12
Padding -16 «— SP

Figure 5-4: Offsets of objects in the ARDemo activation
record

The local variables are aligned on offsets that are equal to their native
size: chars are aligned on 1-byte addresses; shorts/hwords are aligned on
2-byte addresses; longs, ints, unsigned, and words are aligned on 4-byte
addresses; and so forth. In the ARDemo example, all the locals just happen to
be allocated on appropriate addresses (assuming a compiler allocates stor-
age in the order of declaration).

5.4.3 ARM ABI Parameter-Passing Conventions

The ARM ABI makes several modifications to the activation record model:

e The caller passes the first eight (non-floating-point) parameters in reg-
isters (X0 through X7) rather than on the stack.

e Parameters are always 8-byte values, either in registers or on the stack
(if the formal parameter is fewer than 8 bytes in size, the unused HO
bits are undefined).

e  Structures and unions greater than 16 bytes in size are passed by value
on the stack above any other parameters, but with a pointer to the value
in the normal parameter position (in a register or on the stack). Structs
and unions that are 8 bytes (or fewer) are passed in a 64-bit register;
those that are 9 to 16 bytes are passed in two consecutive registers.

You must follow these conventions only when calling ARM ABI-compliant
code. For assembly language procedures that you write and call, you can use
any convention you like.
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Apple’s calling conventions for macOS (iOS, iPadOS, and so on) vary
a little from the standard ARM ABI. This will affect your assembly code if
you're doing the following:

e Passing more than eight parameters to a procedure

e Passing parameters to a variadic procedure

When passing parameters on the stack—that is, when you’re passing
more than eight arguments to a function—Apple packs them on the stack,
meaning it doesn’t simply allocate 8 bytes for each parameter on the stack.
It does ensure that each value is aligned in memory on its natural size
(chars = 1 byte, half words = 2 bytes, words = 4 bytes, and so on).

Variadic procedures are those with a variable number of parameters, such
as the C printf() function. Apple passes all variadic parameters on the stack
and allocates 8 bytes for each parameter, regardless of type. This is the
purpose behind the vparm2, vparms, . . . , macros in aoaa.inc: calls to printf()
under macOS must pass the arguments on the stack, while the same calls
on Linux pass the first eight parameters in registers.

The vparm2, vparm3, and so on, macros automatically generate the appro-
priate code based on the OS (either putting the parameters in the stack or
passing them in registers).

5.4.4 Standard Entry Sequence

The caller of a procedure is responsible for allocating storage for parame-
ters on the stack and moving the parameter data to its appropriate location.
In the simplest case, this just involves moving the data onto the stack by
using str or stp instructions. It is the procedure’s responsibility to construct
the rest of the activation record. You can accomplish this by using the fol-
lowing assembly language standard entry sequence code:

stp fp, lr, [sp, #-16]! // Save LR and FP values.
mov fp, sp // Get activation record ptr in FP.
sub sp, sp, #NumVars // Allocate local storage.

The mov fp, spinstruction copies the current address held in SP into the
FP register. As SP is currently pointing at the old value of FP pushed on the
stack, FP will point at the original FP value after the execution of this instruc-
tion, as shown in Figure 5-4. When using the stp instruction in the standard
entry sequence, make sure to specify the FP register as the first argument
so that it is stored at location [SP] and LR is stored at location [SP, #8]. This
ensures that FP will point at the old FP value after the mov instruction.

In the third instruction, NumVars represents the number of bytes of local
variables needed by the procedure, a constant that should be a multiple
of 16 so that the SP register remains aligned on a 16-byte boundary. If the
number of bytes of local variables in the procedure is not a multiple of 16,
round up the value to the next higher multiple of 16 before subtracting
this constant from SP. Doing so will slightly increase the amount of stor-
age the procedure uses for local variables but will not otherwise affect the



operation of the procedure. If the procedure doesn’t have any local vari-
ables or call any other functions, the

sub sp, sp, #NumVars

instruction isn’t necessary.

In theory, you could use any register to access the data in the stack
frame. However, the OS, and especially debugger applications, often depend
on the activation record being built with FP pointing at the old FP value in
the activation record.

If an ARM ABI-compliant program calls your procedure, the stack will
be aligned on a 16-byte boundary immediately prior to the execution of the
bl instruction. Pushing LR and FP onto the stack (before copying SP into
FP) adds another 16 bytes to the stack so that SP remains 16-byte aligned.
Therefore, assuming the stack was 16-byte aligned prior to the call, and the
number you subtract from SP is a multiple of 16, the stack will be 16-byte
aligned after allocating storage for local variables.

The ARDemo activation record from the previous section has only 12 bytes
of local storage. Therefore, subtracting 12 from SP for the local variables
will not leave the stack 16-byte aligned. The entry sequence in the ARDemo
program must subtract 16 (which will include 4 bytes of padding) to keep
the stack properly aligned (as shown in Figure 5-4).

A possible alternate entry code sequence that is equivalent to the ear-
lier example takes this form:

sub sp, sp, #numVars + 16  // Space for locals and SP/LR
stp fp, 1r, [sp, #tnumVars]
add fp, sp, #numVars

The ARM ABI calling convention suggests saving the LR and FP values
below the local variables. However, it is often convenient to allocate parame-
ter space for additional procedure calls (from the current procedure) while
allocating local variables. If you save the LR and FP values at the bottom of
the activation record in memory, you will need an extra instruction to make
room for those parameters, and cleaning up the activation record will take
more effort when the procedure returns.

Because you'll so often use the standard entry sequence, the aoaa.inc
include file provides a macro to generate this sequence for you:

enter numVars

The single constant argument is the amount of stack space to allocate
(for local variables and other memory objects) in addition to the 16 bytes
set aside to preserve the LR and FP registers. This macro generates the fol-
lowing sequence of instructions for the entry sequence:

stp fp, 1r, [sp, #-16]!
mov fp, sp
sub sp, sp, #(numVars + 15) & OXxFFFFFFFFFFFFFFFO
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The final expression involving numVars ensures that the space allocated
on the stack is a multiple of 16 bytes, to keep the stack 16-byte aligned.

5.4.5 Standard Exit Sequence

The standard exit sequence for an assembly language program is the
following:

mov sp, fp // Deallocates storage for all the local vars
1dp fp, 1lr, [sp], #16 // Pop FP and return address.
ret // Return to caller.

In the aoaa.incinclude file, the leave macro expands to the original
standard exit sequence.

Local Variables

Procedures and functions in most HLLs let you declare local variables
(also known as automatic variables). The previous sections mentioned that
procedures maintain local variables in an activation record, but they didn’t
really define how to create and use them. This section (and the subsections
that follow) defines local variables and describes how to allocate storage for
them and use them.

Local variables possess two special attributes in HLLs: scope and life-
time. The scope of an identifier determines where that identifier is visible
(accessible) in the source file during compilation. In most HLLs, the scope
of a procedure’s local variable is the body of that procedure; the identifier
is inaccessible outside that procedure. Sadly, Gas does not support locally
scoped variables in a procedure, since Gas has no syntax to determine the
bounds of a procedure.

Whereas scope is a compile-time attribute of a symbol, lifetime is a run-
time attribute. The lfetime of a variable is a range of time, from that point
when storage is first bound to the variable until the point where the storage
is no longer available for that variable. Static objects (those you declare in
the .data, .rodata, .bss, and .text sections) have a lifetime equivalent to the
total runtime of the application. The program allocates storage for such
variables when the program first loads into memory, and those variables
maintain that storage until the program terminates.

Local variables, more properly known as automatic variables, have
their storage allocated upon entry into a procedure. That storage is then
returned for other use when the procedure returns to its caller. The name
automatic refers to the program automatically allocating and deallocating
storage for the variable on procedure invocation and return.

Under Linux, a procedure can access any global .data, .bss, or .rodata
object exactly the same way the main program accesses such variables:
by referencing the name, using the PC-relative addressing mode (sadly,
macOS’s PIE format doesn’t allow easy access to non-.text section objects).
Accessing global objects is convenient and easy. However, accessing global



objects makes your programs harder to read, understand, and maintain, so
you should avoid using global variables within procedures.

Although accessing global variables within a procedure may sometimes
be the best solution to a given problem, you likely won’t be writing such
code at this point, so carefully consider your options before doing so. (An
example of a legitimate use of global variables might be when sharing data
between threads in a multithreaded application, a bit beyond the scope of
this chapter.)

This argument against accessing global variables does not apply to
other global symbols, however. It is perfectly reasonable to access global
constants, types, procedures, and other objects in your programs.

5.5.1 Llow-Level Implementation of Automatic Variables

Your program accesses local variables in a procedure by using negative
offsets from the activation record base address (FP). Consider the Gas pro-
cedure in Listing 5-5, which is intended primarily to demonstrate the use of
local variables.

// Listing5-5.S
//

// Accessing local variables
#include "aoaa.inc"
.text

// local vars

//

// Word a is at offset -4 from FP.

// Word bb is at offset -8 from FP.

//

// On entry, Wo and W1 contain values to store

// into the local variables a & bb (respectively).

proc local vars
enter 8

str wo, [fp, #-4] // a =MWo
str wi, [fp, #-8] // bb =Wl

// Additional code here that uses a & bb

leave
endp local vars

This program isn’t runnable, so I won’t bother providing a build com-
mand for it. The enter macro will actually allocate 16 bytes of storage, rather
than the 8 specified by the argument (for locals a and bb), in order to keep
the stack 16-byte aligned.

The activation record for local_vars appears in Figure 5-5.
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Offset from FP

|

Previous
stack
contents +16
Return address +8
Old FP value +0 ~— FP

Space reserved to keep
stack 16-byte aligned

-16 «—— SP

Figure 5-5: The activation record for the Iocal vars
procedure

Of course, having to refer to the local variables by the numeric offset
from the FP register is truly horrible. This code is not only difficult to
read (Is [FP, #-4] the a or the bb variable?) but also hard to maintain. For
example, if you decide you no longer need the a variable, you’d have to go
find every occurrence of [FP, #-8] (accessing the bb variable) and change it
to [FP, #-4].

A slightly better solution is to create equates for your local variable
names. Consider the modification to Listing 5-5 shown in Listing 5-6.

// Listing5-6.S
//

// Accessing local variables #2
#include "aoaa.inc"
.code

// local vars

//

// Demonstrates local variable access

//

// Word a is at offset -4 from FP.

// Word bb is at offset -8 from FP.

//

// On entry, Wo and W1 contain values to store

// into the local variables a & bb (respectively).

#tdefine a [fp, #-4]
#define bb [fp, #-8]

proc local vars
enter 8



str wo, a
str wl, bb

Additional code here that uses a & bb.

leave
endp local vars

In Listing 5-6, the CPP replaces a and bb with the appropriate indirect-
plus-offset addressing mode to access those local variables on the stack.
This is considerably easier to read and maintain than the program in
Listing 5-5. However, this approach still requires some manual work to set
the local variable offsets in the #define statements, and moditying the code
(when adding or removing local variables) can create maintenance issues.
I’ll provide a better solution in the next section.

One big advantage to automatic storage allocation is that it efficiently
shares a fixed pool of memory among several procedures. For example, say
you call three procedures in a row, like this:

bl ProcA
bl ProcB
bl ProcC

In this example, ProcA allocates its local variables on the stack. Upon
return, ProcA deallocates that stack storage. Upon entry into ProcB, the pro-
gram allocates storage for ProcB’s local variables by using the same memory
locations just freed by ProcA. Likewise, when ProcB returns and the program
calls ProcC, ProcC uses the same stack space for its local variables that ProcB
recently freed up. This memory reuse makes efficient use of the system
resources and is probably the greatest advantage to using automatic variables.

Now that you've seen how assembly language allocates and deallocates
storage for local variables, it’s easy to understand why automatic variables
do not maintain their values between two calls to the same procedure.
Once the procedure returns to its caller, the storage for the automatic vari-
able is lost, and, therefore, the value is lost as well. Thus, you must always
assume that a local variable object is uninitialized upon entry into a procedure. If
you need to maintain the value of a variable between calls to a procedure,
you should use one of the static variable declaration types.

5.5.2 The locals Macro

Using equates to maintain local variable references is a lot of work.
Granted, it’s better than using magic numbers in all your local variable
references, but even when using equates, inserting and deleting local vari-
ables in a procedure takes time and effort. What would be really nice is a
declaration section that lets you declare your local variables in an HLL-like
fashion and leave it up to the assembler to maintain all the offsets into
the activation record. The aoaa.inc header file provides a set of macros you
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can use to automate the creation of local variables. This section describes
those macros.

The activation record is a record (structure). In theory, you could use
the struct macro from Chapter 4 to define an activation record. However,
it’s easy enough to modify the struct/ends macros to create something even
better for local variables. To achieve that, the aoaa.incinclude file includes
two additional macros for declaring local variables: locals and endl. Use
these in a manner almost identical to the struct/ends macros

locals procName
declarations (same as for struct)
endl  procName

where procName is an identifier (usually the name of the procedure that the
local variables are associated with).

Like the ends macro, endl generates a symbol with the name procName.size
that is an equate set to the size of the local variable space. You can supply
this value to the enter macro to specify the amount of space to reserve for
the local variables:

proc  myProc

locals myProc

dword mp.ptrVar
word mp.counter
byte  mp.inputChar
salign 4

word  mp.endIndex
endl  myProc

enter myProc.size
Insert procedure's body here.

leave
endp  myProc

The locals/endl declarations create a set of equates whose values cor-
respond to the offsets of the symbols within an activation record. For exam-
ple, the symbols in the previous example have the following values:

mp.ptrVar -8

mp.counter —12

mp.inputChar -13

mp.endIndex —20

You can use these offsets with the [FP, #offset] addressing mode to ref-
erence these local variables in the activation record. For example:
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1dr wo, [fp, #mp.counter]
ldr x1, [fp, #mp.ptrVar]
str wo, [x1]

This is a whole lot easier than accessing global variables in the .data section!

When allocating offsets for variables between the locals and endl mac-
ros, the declaration macros first decrease the offset counter by the size of
the variable’s declaration and then assign the decremented offset value to
the symbol. Specifying the salign directive will then adjust the offset to the
specified boundary (2", where n is the salign operand’s value). The next
declaration will not use this offset, but rather it will first decrement the run-
ning offset counter by the size of the declaration and assign that offset to
the variable. In the earlier example, the salign directive set the running off-
set to —16 (because 13 bytes of variables were allocated at that point). The
following variable’s offset is —20, because mp.endIndex consumes 4 bytes.

As I'mentioned earlier, Gas does not support the concept of lexically
scoped local variable names, which are private to a procedure. Therefore,
all symbols you declare within the locals/endl block are visible throughout
the source file. This can lead to namespace pollution, where you wind up
creating names in one procedure and cannot reuse those names in a differ-
ent procedure.

In the examples of this section, I use a convention that I continue
throughout this book to alleviate namespace pollution: I use local variable
names of the form proc.local, where proc is the procedure’s name (or an
abbreviation of the procedure’s name) and local is the specific local vari-
able name I want to use. For example, mp.ptrVar is the ptrVar local variable
within the myProc (mp) procedure.

Parameters

Although many procedures are totally self-contained, most procedures
require input data and return data to the caller (parameters).

The first aspect to consider when discussing parameters is how we
pass them to a procedure. If you are familiar with Pascal or C/C++, you've
probably seen two ways to pass parameters: pass by value and pass by refer-
ence. Anything you can do with an HLL can be done in assembly language
(obviously, as HLL code compiles into machine code), but you have to pro-
vide the instruction sequence to access those parameters in an appropriate
fashion.

Another concern when dealing with parameters is where you pass them.
There are many places to pass parameters: in registers, on the stack, in the
code stream, in global variables, or a combination of these. The following
subsections cover several of the possibilities.

5.6.1 Passing by Valve

A parameter passed by valueis just that—the caller passes a value to the
procedure. Pass-by-value parameters are input-only parameters. You can
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pass them to a procedure, but the procedure cannot return values through
them. Consider this C/C++ function call:

CallProc(I);

If you pass I by value, CallProc() does not change the value of I, regard-
less of what happens to the parameter inside CallProc().

Because you must pass a copy of the data to the procedure, you should
use this method only for passing small objects like bytes, words, double
words, and quad words. Passing large arrays and records by value is ineffi-
cient, because you must create and pass a copy of the object to the procedure.

5.6.2 Passing by Reference

To pass a parameter by reference, you must pass the address of a variable
rather than its value. In other words, you must pass a pointer to the data.
The procedure must dereference this pointer to access the data. Passing
parameters by reference is useful when you must modify the actual param-
eter or when you pass large data structures between procedures. Because
pointers on the ARM are 64 bits wide, a parameter that you pass by refer-
ence will consist of a double-word value, typically in one of the general-
purpose registers.

You can use the lea macro to take the address of any static variable
you've declared in your .data, .bss, .rodata, or .text sections. Listing 5-7
demonstrates how to obtain the address of a static variable (staticvVar) and
pass that address to a procedure (someFunc) in the X0 register.

// Listing5-7.S

//

// Demonstrate obtaining the address

// of a variable by using the lea instruction.

#include "aoaa.inc"

.data
staticvar: .word .-.

.code
.extern someFunc

proc get address

enter 0

lea X0, staticVar
bl someFunc
leave

endp get address

Calculating the address of a nonstatic variable is a bit more work.
Unfortunately, the adr and adrp instructions compute only the address of a
PC-relative memory access. If your variable is referenced by one of the other
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ARM addressing modes, you’ll have to manually compute the effective
address yourself.

Table 5-1 describes the process for effective address calculation. In the
table, the [Xn, #const] (scaled form) addressing mode describes a machine
encoding, not an assembler syntax. In source code, the scaled and unscaled
variants share the same syntax: [Xn, #const]. The assembler will pick the
correct machine encoding based on the value of the constant.

Table 5-1: Effective Address Calculations

Addressing mode Effective address ~ Description

[xn]

[Xn, #const]

[Xn, #const]

[Xn, #const]!
[Xn], #const

[Xn, Xm]

[Xn, Xm,
extend #s]

Xn For the register-indirect addressing mode, the effective address
is just the value held in the register.

Xn + const For the indirect-plus-offset addressing mode, the sum of the Xn
register and the constant is the effective address. This assumes
the constant is =256 to +255 and the shift is O.

Xn + const (scaled)  For the scaled-indirect-plus-offset mode (where the scaling
factor is determined by the size of the data being loaded or
stored), the constant has to be multiplied by the size of the
memory operand prior to adding with the Xn register. For
strb/1drb, the multiplier is 1; for strh/1drh, the multiplier is 2;
for str/1dr (word register), the multiplier is 4; and for str/1dr
(dword register), the multiplier is 8. For strb/1drb, the constant
must be in the range 0-4,096. For strh/1drh, the constant must
be in the range 0-8,191 and must be an even number. For 1dr/
str with a word-sized register operand, the constant must be in
the range 016,383 and must be a multiple of 4. For 1dr/str
with a dword-sized register operand, the constant must be in
the range 0-32,767 and must be a multiple of 8.

Xn + const For the pre-indexed addressing mode, the effective address is
the sum of the Xn register and the constant.

Xn For the post-indexed addressing mode, the effective address is
just the value in the Xn register.

Xn + Xm For the scaled-indexed addressing mode, with a scaling factor
of 1, the effective address is the sum of the two registers (sign-
or zero-extend Xm, if specified).

Xn + (Xm << s For the scaled-indexed addressing mode with a shift exten-
sion, the effective address is the sum of Xn plus the value in Xm
shifted to the left s positions (with Xm zero- or sign-extended, if
specified).

Suppose that a procedure has a local variable and you want to pass that
on to a second procedure by reference. Because you access local variables by
using the [FP, #offset] addressing mode, the effective address is FP + offset.
You would have to use the following instruction to compute the address of
that variable (leaving the address in XO0):

add xo, fp, #offset

Listing 5-8 demonstrates passing a local variable as a reference param-
eter to a procedure.
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// Listing5-8.S

//

// Demonstrate passing a local variable
// by reference to another procedure.

#include "aoaa.inc"

.data
staticvar: .word .-.

.code
.extern aSecondFunction

proc demoPassLc1ByRef

locals ga

word ga.alocalVariable

endl ga

enter ga.size

add x0, fp, #ga.alocalVariable // Pass parameter in Xo.
bl aSecondFunction

leave

endp demoPassLclByRef

Pass by reference is usually less efficient than pass by value. You must
dereference all pass-by-reference parameters on each access; this is slower
than simply using a value because it typically requires at least two instruc-
tions: one to fetch the address into a register and one to fetch the value
indirectly through that register.

However, when passing a large data structure, pass by reference is faster
because you do not have to copy the large data structure before calling the
procedure. Of course, you’d probably need to access elements of that large
data structure (such as an array) by using a pointer, so little efficiency is lost
when you pass large arrays by reference.

5.6.3 Using Low-Level Parameter Implementation

A parameter-passing mechanism is a contract between the caller and the
callee (the procedure). Both parties have to agree on where the parameter
data will appear and what form it will take (for example, value or address).

If your assembly language procedures are being called only by other
assembly language code that you’ve written, you control both sides of the
contract negotiation and get to decide where and how you'’re going to pass
parameters. However, if external code is calling your procedure, or your
procedure is calling external code, your procedure will have to adhere to
whatever calling convention that external code uses.

Before discussing the particular calling conventions, this section con-
siders the situation of calling code that you’ve written (and, therefore,



have complete control over its calling conventions). The following sections
describe the various ways you can pass parameters in pure assembly language
code (without the overhead associated with the ARM or macOS ABIs).

5.6.3.1 Passing Parameters in Registers

Having touched on %ow to pass parameters to a procedure, the next topic
to discuss is where to pass parameters. This depends on the size and num-
ber of those parameters. If you are passing a small number of parameters
to a procedure, the registers are an excellent place to pass them. If you
are passing a single parameter to a procedure, pass that data in X0, as
described in Table 5-2.

Table 5-2: Parameter Size and Location

Parameter size Location

Byte Pass a byte parameter in the LO byte of WO.

Half word Pass a halfword parameter in the LO half-word of WO.

Word Pass a word in WO.

Dword Pass a dword in XO.

> 8 bytes | suggest passing a pointer to the data structure in X0, or the value

in XO/X1 if 16 bytes or fewer.

When passing fewer than 32 bits in X0, the macOS ABI requires that
the value be zero- or sign-extended throughout the X0 register. The ARM
ABI does not require this. Of course, when passing data to a procedure
you’ve written in assembly language, it is up to you to define what must be
done with the HO bits. The safest course of action, portable everywhere,
is to zero-extend or sign-extend the value into the HO bits (depending on
whether the value is unsigned or signed).

If you need to pass more than 8 bytes as a parameter, you could also
pass that data in multiple registers (for example, under macOS and Linux,
the C/C++ compiler will pass a 16-byte structure in two registers). Whether
you pass the argument as a pointer or in multiple registers is up to you.

For passing parameters to a procedure in registers, the ARM ABI
reserves X0 to X7. Of course, in pure assembly language code (that won’t
call, or be called by, ARM ABI-compliant code), you can use whichever
registers you choose. However, X0 through X7 should probably be your first
choice unless you can provide a good reason for using other registers.

Eight parameters probably cover 95 percent of the procedures ever
written. If you are passing more than eight parameters to a pure assembly
procedure, nothing is stopping you from using additional registers (for
example, X8 through X15). Likewise, nothing is stopping you from passing
large objects in multiple registers, if you really want to do that.
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5.6.3.2 Passing Parameters in the Code Stream

You can also pass parameters in the code stream immediately after the bl
instruction. Consider the following print routine that prints a literal string
constant to the standard output device:

bl print
.asciz "This parameter is in the code stream..."

Normally, a subroutine returns control to the first instruction imme-
diately following the bl instruction. Were that to happen here, the ARM
would attempt to interpret the ASCII codes for "This..." as an instruction.
This would produce undesirable results. Fortunately, you can skip over this
string before returning from the subroutine.

One big issue arises with the design of the ARM CPU, however: all
instructions must be word-aligned in memory. Therefore, the parameter
data appearing in the code stream must be a multiple of 4 bytes long (I
chose the string in this example to contain 39 characters so that the zero-
terminating byte made the whole sequence 40 bytes).

So how do you gain access to these parameters? Easy: the return address
in LR points at them. Consider the implementation of print in Listing 5-9.

// Listing5-9.S
//

// Demonstrate passing parameters in the code stream
#include "aoaa.inc"

.text
.pool

ttlStr: .asciz "Listing 5-9"
.align 2

/] getTitle
//

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// print

//

// Here's the print procedure.

// It expects a zero-terminated string
// to follow the call to print:

rtnAdrs = 8 // Offset to rtn adrs from FP.

proc print



® locals print
gword print.x0X1Save // Register save area.
gword  print.x2X3Save
gword  print.x4X5Save
gword  print.x6X7Save
gword  print.x8X9Save
gword  print.x10X11Save
gword  print.x12X13Save
gword  print.x14X15Save
endl print

enter print.size

// Assembly language convention--save all the registers
// whose values we change. Spares caller from having to
// preserve volatile registers.

// Note: this code calls ABI function write, so you must
// preserve all the volatile registers.

stp X0, x1, [fp, #print.x0X1Save]
stp X2, x3, [fp, #print.x2X3Save]
stp x4, x5, [fp, #print.x4XsSave]
stp x6, x7, [fp, #print.x6X7Save]
stp x8, x9, [fp, #print.x8X9Save]
stp x10, x11, [fp, #print.x10X11Save]
stp x12, x13, [fp, #print.x12X13Save]
stp x14, x15, [fp, #print.x14X15Save]

// Compute the length of the string immediately following
// the call to this procedure:

® mov x1, lr // Get pointer to string.
search4 0: 1ldrb w2, [x1], #1 // Get next char.
cmp w2, #o // At end of string?
bne search4 0 // If not, keep searching.
sub X2, x1, 1r // Compute string length.

// LR now points just beyond the 0 byte. We need to
// make sure this address is 4-byte aligned:

© add x1, x1, #3
and X1, x1, #-4 /] oxfff...fffo

// X1 points just beyond the 0 byte and padding.
// Save it as the new return address:

O str x1, [fp, #rtnAdrs]

// Call write to print the string to the console.

/!
// write( fd, bufAdrs, len );

//
// fd in X0 (this will be 1 for stdout)
// bufAdrs in X1
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// len in X2

® mov X0, #1 // stdout = 1
mov x1, 1r // Pointer to string
bl write

// Restore the registers we used:

0@ ldp X0, x1, [fp, #print.x0X1Save]
1dp X2, x3, [fp, #print.x2X3Save]
1dp x4, x5, [fp, #print.x4X5Save]
1dp x6, x7, [fp, #print.x6X7Save]
1dp x8, x9, [fp, #print.x8X9Save]
ldp x10, x11, [fp, #print.x10X11Save]
ldp x12, x13, [fp, #print.x12X13Save]
1dp x14, x15, [fp, #print.x14X15Save]
leave // Return to caller.
endp print

// Here is the asmMain function:

proc asmMain, public
enter 64

// Demonstrate passing parameters in code stream
// by calling the print procedure:

bl print
@ .asciz "Hello, world!!\n"

leave // Returns to caller
endp asmMain

The print procedure @ saves all the registers it modifies (even the vola-
tile registers, because the call to write() might overwrite them). This is a
normal assembly language convention, but it’s especially important for print
because you want to be able to print (debug) messages without saving regis-
ter values across your calls.

LR points at the string to print upon entry into the print procedure @.
This code scans through that string to find the zero-terminating byte; this
scan produces both the length and the (approximate) return address.

Because code must be aligned on a 4-byte boundary, the return address
isn’t necessarily the byte after the zero-terminating byte. Instead, the code
may need to pad the end of string pointer by 1 to 3 bytes to advance to the
next word boundary in the .text section ®. Adding 3 and then ANDing
the result with OxXFFFFFFFFFFFFFFFC (-4) pads the return address up
to the appropriate boundary. The code then stores the return address over
the original on the stack @.

Once you have the string length, you can call the C stdlib write function
to print it @ (if the first argument is 0, this prints the string to the standard
output device). On exit, the code restores the registers you saved earlier ©.



For this listing, I included two exclamation marks @ so that the length
of the string (including the zero-terminating byte) is a multiple of four
characters. This ensures that the following instruction is aligned on a
4-byte boundary.

To avoid a bus fault, the length of the data following the call to print
must be a multiple of 4 bytes so that the next instruction is properly aligned
on a 4-byte boundary. The length of the string itself doesn’t have to be a
multiple of 4 bytes; arbitrary padding after the zero-terminating byte is
fine. Rather than counting the number of characters in the string, you
could use the Gas .p2align directive. This directive will pad the location
counter to a boundary that is a multiple of 2" bytes, where n is the (first)
value in the .p2align operand field. For example

.p2align 2

pads the location counter to the next word boundary.
Using the .p2align 2 directive, you can call the print procedure with an
arbitrary-length string as follows:

bl print
.asciz "Hello, world!\n"
.p2align 2

Remembering to put the .p2align 2 directive in the code can be dif-
ficult, not to mention that having to type it is a pain, and it clutters up your
code. To resolve this, the aoaa.inc include file includes a wastr (word-aligned
string) macro that automatically adds the padding for you:

bl print
wastr "Hello, world!\n"

Besides showing how to pass parameters in the code stream, the print
routine also exhibits another concept: variable-length parameters (the length
of the string can be arbitrarily long). The string following the bl can be any
practical length. The zero-terminating byte marks the end of the parameter
list. You can handle variable-length parameters in two easy ways: either use
a special terminating value (like 0) or pass a special length value that tells
the subroutine the number of parameters you are passing. Both methods
have advantages and disadvantages.

Using a special value to terminate a parameter list requires that you
choose a value that never appears in the list. For example, print uses 0 as
the terminating value, so it cannot print the NUL character (whose ASCII
code is 0). Sometimes this isn’t a limitation. Specifying a length parameter
is another mechanism you can use to pass a variable-length parameter list.
While this doesn’t require any special codes or limit the range of possible
values that can be passed to a subroutine, setting up the length parameter
and maintaining the resulting code can be a real nightmare; this is espe-
cially true if the parameter list changes frequently.
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Despite the convenience afforded by passing parameters in the code
stream, this method also has disadvantages. First, if you fail to provide the
exact number of parameters the procedure requires, the subroutine will
get confused. Consider the print example. It prints a string of characters up
to a zero-terminating byte and then returns control to the first instruction
following that byte. If you leave off the zero-terminating byte, the print rou-
tine happily prints the following opcode bytes as ASCII characters until it
finds a 0 byte. Because 0 bytes often appear in the middle of an instruction,
the print routine might return control into the middle of another instruc-
tion, which will probably crash the machine.

On the ARM, you must ensure that the parameters you pass in the code
stream are a multiple of 4 bytes long. The instructions following the param-
eters must lie on a word boundary. Problems notwithstanding, however,
the code stream is an efficient place to pass parameters whose values do
not change.

5.6.3.3 Passing Parameters on the Stack

Most HLLs use the stack to pass a large number of parameters because
this method is fairly efficient. Although passing parameters on the stack
is slightly less efficient than doing so in registers, the register set is limited
(especially if you're limiting yourself to the eight registers the ARM ABI sets
aside for this purpose). The stack, on the other hand, allows you to pass a
large amount of parameter data without difficulty. This is the reason that
most programs pass their parameters on the stack (at least, when passing
more than eight parameters).

To manually pass parameters on the stack, push them immediately
before calling the subroutine (just remember to keep the stack 16-byte
aligned). The subroutine then reads this data from the stack memory and
operates on it appropriately. Consider the following HLL function call:

CallProc(i,j,k);

Because keeping SP aligned on a 16-byte boundary is crucial, you
can’t simply push one argument at a time with a str instruction, nor can
you push values smaller than 32 bits. Assuming that i, j, and k are 32-bit
integers, you would need to somehow marshal them together into a 128-bit
package (including an extra 32 bits of unused data) and push 16 bytes onto
the stack. This is so inconvenient that ARM code almost never pushes indi-
vidual (or even pairs of) register values onto the stack.

The common solution in ARM assembly language is first to drop the
stack down by however many bytes you need (plus any padding, to make
sure the stack is aligned properly), and then to simply store your parameters
into the stack space so allocated. For example, to call CallProc, you might
use code like the following:

sub sp, sp, #16 // Allocate space for parameters.
str wo, [sp] // Assume i is in Wo,



str wi, [sp, #4] // j is in W1, and

str w2, [sp, #8] // k is in W2.

bl CallProc

add sp, sp, #16 // Caller must clean up stack.

The sub instruction allocates 16 bytes on the stack; you need only
12 for the three 32-bit parameters, but you must allocate 16 to keep the
stack aligned.

The three str instructions store the parameter data (which is pre-
sumed to be in W0, W1, and W2 by this code) into the 12 bytes from SP + 0
through SP + 11. The CallProc will simply ignore the extra 4 bytes allocated
on the stack.

In this example, the three 32-bit integers are packed into memory, each
consuming 4 bytes on the stack. So the i parameter is found at SP + 0, the
j parameter is found at SP + 4, and the k parameter is found at SP + 8 upon
entry into CallProc (see Figure 5-6).

SP+ 16 B Previous stack contents ]
+12 Garbage bits
.
+4 j's current value
+0 i’s current value - 5P

Figure 5-6: Stack layout upon entry into CallProc

If your procedure includes the standard entry and exit sequences, you
may directly access the parameter values in the activation record by index-
ing off the FP register. Consider the layout of the activation record for
CallProc that uses the following declaration:

proc CallProc
enter 0 // No local variables

leave
endp CallProc

At this point, i’s value can be found at [FP, #16], j’s value can be found
at [FP, #20], and k’s value can be found at [FP, #24] (see Figure 5-7).
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FP+32 B Previous stack contents N
+28 Garbage bits
+20 j's current value
+16 i's current value
+8 Return address
+0 FP’s old value «~——SP FP

Figure 5-7: CallProc activation record after standard entry
sequence

Within the CallProc procedure, you can access the parameter values
with these instructions:

ldr wo, [fp, #16]
ldr w1, [fp, #20]
ldr w2, [fp, #24]

Of course, using magic numbers such as these to reference the param-
eter offsets is still a bad idea. It would be far better to use equates or, even
better, create a declaration macro similar to struct and locals to define the
parameters for a procedure. The aoaa.inc file contains just such a macro: args
(and enda). Listing 5-10 demonstrates the use of this macro.

// Listing5-10.S
/1

// Accessing a parameter on the stack

#include "aoaa.inc"

.data

value1: .word 20

value2: .word 30

pVar: .word  .-.

ttlStr: .asciz "Listing 5-10"

fmtStri: .asciz "Value of parameter: %d\n"
.code

.extern printf

/] getTitle
//

// Return program title to C++ program.

proc getTitle, public
lea x0, ttlStr



ret
endp getTitle

// valueParm
//

// Passed a single parameter (vp.theParm) by value

proc valueParm

args  vp // Declare the

word  vp.theParm // parameter.

enda vp

enter 64 // Alloc space for printf.

// vparms macro accepts only global variables.
// Must copy parameter to that global to print it:

lea x0, fmtStri
ldr wl, [fp, #vp.theParm]

lea X2, pVar
str wl, [x2]
vparm2 pVar

bl printf
leave

ret

endp valueParm
// Here is the asmMain function:

proc asmMain, public

enter 64

lea X0, valuel

ldr wl, [x0]

str wl, [sp] // Store parameter on stack.
bl valueParm

lea X0, value2

ldr wl, [x0]

str wil, [sp] // Store parameter on stack.
bl valueParm

leave

endp asmMain

The args macro requires an argument list name, which can be the
procedure name or an abbreviation of it, and an optional second argu-
ment with a starting offset. The second argument defaults to 16, which is
an appropriate value if the procedure uses the standard entry sequence
(pushing the LR and FP registers on the stack). Offsets associated with the
parameters you declare are offsets from FP in the procedure.
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Here’s the build command and sample output for Listing 5-10:

% ./build Listing5-10
% ./Listing5-10
Calling Listing5-10:
Value of parameter: 20
Value of parameter: 30
Listing5-10 terminated

If your procedure does not use the standard entry sequence, you can
specify an explicit offset as the second argument. For example:

args procName, O

If you aren’t pushing anything on the stack in the procedure (or allo-
cating local variables), 0 is a good value to use; then the offsets are SP based
rather than FP based.

5.6.3.4 Removing Parameters in Callee vs. Caller Stack Cleanup

When passing parameters on the stack, ultimately those parameters must
be removed from the stack. The ARM ABI specifies that the caller is respon-
sible for removing all parameters it pushes onto the stack. Most of the
example programs in this book thus far have (implicitly) done this.

Removing the parameters after every procedure call is slow and inef-
ficient. Fortunately, an easy optimization eliminates the need to allocate
and deallocate parameter storage for each function call. Upon entry into a
procedure, when allocating storage for local variables, include additional
storage to be used for parameters the procedure passes to other functions.
This, in fact, has been the whole purpose of the “magic stack allocation”
instructions at the beginning of most procedures in this book up to this
point. The examples thus far have typically reserved 64 or 256 bytes of stor-
age on the stack (enough for between eight and thirty-two 64-bit param-
eters, respectively).

Functions that pass parameters on the stack, such as printf() running
on macOS, can store data into this area prior to calling the function. Upon
return from the function, your code does not have to worry about cleaning
up the parameters. That stack space is now available for the next function
you want to call that requires stack parameters.

Ultimately, of course, the parameters must be deallocated from the
stack. That happens when the procedure executes the leave macro (or man-
ually copies FP into SP, which is part of leave’s expansion). When using enter
and leave to allocate this stack space for the parameters, along with any
local variables a procedure might need, you need to allocate and deallocate
the stack space only once, not for each individual procedure call.

If your procedure doesn’t have any local variables, you can easily allo-
cate stack space for parameters by using code like the following:



proc myProc
enter 64 // Allocate 64 bytes for parameter usage.

leave // Deallocate storage and returns.
endp myProc

If your procedure requires local variable storage, just specify the extra
stack space as a dummy local variable at the end of your locals declaration:

proc  myProc

locals mp

word  mp.localil

dword mp.local2

byte mp.local3

byte mp.stack, 64 // Allocate 64 bytes for parms.

endl mp
enter mp.size // Allocate locals and stack space.
leave // Deallocate storage and returns.

endp  myProc

Remember that enter always allocates a multiple of 16 bytes, so we know
that the stack storage will be aligned on a 16-byte boundary.

5.6.3.5 Passing Parameters to the C/C++ printf() Function

Under Linux, you pass the first eight printf() parameters in registers, just
as you would any other nonvariadic function. On macOS, those param-
eters are always passed on the stack, each occupying a dword. Until now,
this book has used the vparmsn macros to handle the difference in the way
parameters are passed (and, of course, to avoid dealing with the stack,
which the book hadn’t covered in the earlier chapters).

In this book, I strived to write code that is portable between Linux and
macOS, resorting to OS-specific code only as necessary; this was part of
the motivation for using the vparmsn macros when calling printf(). Now that
you’ve learned how these two OSes expect you to pass variadic parameters,
you’ll probably want to pass parameters in a more flexible manner than
using the vparmsn macros. Nevertheless, there is great benefit (at least for the
source code in this book) to writing portable code. Fortunately, with a little
sleight of hand, it is possible to directly pass the parameters to printf() with-
out using vparmsn and still have the code assemble and run on both OSes.

The first rule is to load each printf() argument into X0 through X7.
This puts the arguments into the locations where Linux expects them.
Once the arguments are in these registers, you’ll also store them into the
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stack storage area at SP + 0, SP + 8, SP + 16, . . ., SP + 56 (which is where
macOS expects them). Here’s a typical call to printf() printing the values in
X0, X5, and X7:

locals mp
Byte mp.stack, 24

endl mp
enter mp.size

mov  x1, X0 // Put data in appropriate registers first.
mov  x2, X5

mov  x3, X7

lea x0, fmtStr

str x1, [sp] // For mac0S, store the arguments

str x2, [sp, #8] // onto the stack in their

str x3, [sp, #16] // appropriate locations.

bl  printf // Then call printf.

Strictly speaking, the str instructions aren’t necessary when running
under Linux. To allow the creation of slightly more efficient code, I've pro-
vided the following mstr macro in the aoaa.incinclude file:

mstr register, memory

This macro assembles to nothing under Linux and to the correspond-
ing str instruction under macOS. If you rewrite the former code by using
mstr, it will not generate any excess code under Linux:

locals mp
Byte mp.stack, 24

endl mp
enter mp.size

mov  x1, X0 // Put data in appropriate registers first.
mov X2, X5

mov X3, X7

lea x0, fmtStr

mstr x1, [sp] // For mac0S, store the arguments

mstr x2, [sp, #8] // onto the stack in their

mstr x3, [sp, #16] // appropriate locations.

bl printf // Then call printf.




Of course, if you're writing code only for Linux and don’t care at all
about macOS portability, you can drop the mstr instructions altogether to
remove some clutter.

5.6.4 Accessing Reference Parameters on the Stack

Because you pass the addresses of objects as reference parameters, access-
ing the reference parameters within a procedure is slightly more difficult
than accessing value parameters, as you must dereference the pointers to
the reference parameters.

Consider Listing 5-11, which demonstrates a single pass-by-reference
parameter.

// Listing5-11.S
//

// Accessing a reference parameter on the stack

#include "aoaa.inc"

.data

valuel: .word 20

value2: .word 30

ttlStr: .asciz "Listing 5-11"

fmtStral: .asciz "Value of reference parameter: %d\n"
.code

.extern printf

// getTitle
/!

// Return program title to C++ program.

proc getTitle, public
lea X0, ttlStr

ret

endp getTitle

// refParm
//

// Expects a pass-by-reference parameter on the stack

proc refParm

args  rp
dword  rp.theParm

enda Ip

enter 64 // Alloc space for printf.

lea X0, fmtStri
O ldr x1, [fp, #rp.theParm]
ldr wl, [x1]
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@ mstr x1, [sp]
bl printf

leave
endp refParm

// Here is the asmMain function:

proc asmMain, public
enter 64

// Pass the address of the arguments on the
// stack to the refParm procedure:

® lea X0, valuel
str x0, [sp] // Store address on stack.
bl refParm
lea x0, value2
str x0, [sp] // Store address on stack.
bl refParm
leave

endp asmMain

The refParm procedure fetches the reference parameter (a 64-bit
pointer) into X1 @ and then immediately dereferences this pointer by
fetching the 32-bit word at the address in X1. The mstr macro @ stores the
second parameter onto the stack (under macOS). To pass a variable by ref-
erence to refParm ®, you must compute its effective address and pass that.

Here is the build command and sample output for the program in
Listing 5-11:

$ ./build Listing5-11

$ ./Listing5-11

Calling Listing5-11:

Value of reference parameter: 20
Value of reference parameter: 30
Listing5-11 terminated

As you can see, accessing (small) pass-by-reference parameters is a little
less efficient than accessing value parameters, because you need an extra
instruction to load the address into a 64-bit pointer register (not to mention
that you have to reserve a 64-bit register for this purpose). If you access ref-
erence parameters frequently, these extra instructions can really begin to
add up, reducing the efficiency of your program.

Furthermore, it’s easy to forget to dereference a reference parameter
and use the address of the value in your calculations. Therefore, unless you
really need to affect the value of the actual parameter, you should use pass
by value to pass small objects to a procedure.



Passing large objects, like arrays and records, is where using reference
parameters becomes efficient. When passing these objects by value, the call-
ing code has to make a copy of the actual parameter; if it is a large object,
the copy process can be inefficient. Because computing the address of a
large object is just as efficient as computing the address of a small scalar
object, no efficiency is lost when passing large objects by reference. Within
the procedure, you must still dereference the pointer to access the object,
but the efficiency loss due to indirection is minimal when you contrast this
with the cost of copying that large object.

Listing 5-12 demonstrates how to use pass by reference to initialize an
array’ofstructures.

// Listing5-12.S

/!

// Passing a large object by reference
#include "aocaa.inc"

NumElements = 24

// Here's the structure type:

struct Pt
byte pt.x
byte pt.y
ends Pt
.data
ttlStr: .asciz "Listing 5-12"
fmtStral: .asciz "refArrayParm[%d].x=%d"
fmtStr2: .asciz  "refArrayParm[%d].y=%d\n"
.code

.extern printf

// getTitle
//

// Return program title to C++ program.

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// refAryParm

//

// Passed the address of an array of Pt structures
// Initializes each element of that array

proc refAryParm
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dword  rap.ptArray // Reference parameter
enda rap
enter 0 // No stack space needed!

// Get the base address of the array into X1i:
® ldr x1, [fp, #rap.ptArray]

// While X0 < NumElements, initialize each
// array element. x = X0/8, y = X0 % 8:

mov X0, Xzr // Index into array.
ForEachEl: cmp x0, #NumElements // While we're not done

bhs LoopDone

// Compute address of ptArray[Xo].
// Element adrs = base address (X1) + index (X19) * size (2):

@ add x3, x1, x0, 1sl #1 // X3 = X1 + X0 * 2
// Store index / 8 into x field:

Isr X2, X0, #3 // X2 =X0 / 8
strb w2, [x3, #pt.x] // ptArray[Xo].x = X0/8

// Store index % 8 (mod) into y field:

and X2, x0, #0b111 // X2 =X0 % 8

strb w2, [x3, #pt.y] // ptArray[Xo].y = X0 % 8

// Increment index and repeat:

add X0, x0, #1
b.al ForEachEl

LoopDone:  leave
endp refAryParm

// Here is the asmMain function:
proc asmMain, public

// Easier to access local variables than globals, so let's
// make everything a local variable:

locals am

word saveX19

byte Pts, NumElements * (Pt.size)
byte stackSpace, 64

endl am

enter am.size // Reserve space.
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str x19, [fp, #saveX19] // Save nonvolatile reg.

// Initialize the array of points:
® add x0, fp, #Pts // Compute address of Pts.

str x0, [sp] // Pass address on stack.

bl refAryParm
// Display the array:

mov x19, xzr // X19 is loop counter.
displp: cmp x19, #NumElements

bhs dispDone
// Print the x field:

lea X0, fmtStri

mov x1, x19

mstr x1, [sp]

add x3, fp, #Pts // Get array base address.
add x3, x3, x19, 1sl #1 // Index into array.

ldrb w2, [x3, #pt.x] // Get ptArray[Xo].x.

mstr X2, [sp, #8]

bl printf

// Print the y field:

lea X0, fmtStr2

mov x1, x19

mstr x1, [sp]

add x3, fp, #Pts // Get array base address.
add X3, X3, x19, 1sl #1 // Index into array.

1drb w2, [x3, #pt.y] // Get ptArray[Xo].x.

mstr X2, [sp, #8]

bl printf

// Increment index and repeat:

add x19, x19, #1
b.al displp

dispDone:
ldr x19, [fp, #saveX19] // Restore X19.
leave
endp asmMain

The code computes the address of the Pts array and passes this array
(by reference) to the refAryParm procedure @. It loads this address into X1 @
and uses this pointer value as the base address of the array that refAryParm
processes @.

Here’s the build command and sample output:

$ ./build Listing5-12
$ ./Listing5-12
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Calling Listing5-12:

refArrayParm[0].x=0 refArrayParm[0].y=0
refArrayParm[1].x=0 refArrayParm[1].y=1
refArrayParm[2].x=0 refArrayParm[2].y=2
refArrayParm[3].x=0 refArrayParm[3].y=3
refArrayParm[4].x=0 refArrayParm[4].y=4
refArrayParm[5].x=0 refArrayParm[5].y=5
refArrayParm[6].x=0 refArrayParm[6].y=6
refArrayParm[7].x=0 refArrayParm[7].y=7
refArrayParm[8].x=1 refArrayParm[8].y=0
refArrayParm[9].x=1 refArrayParm[9].y=1
refArrayParm[10].x=1 refArrayParm[10].y=2
refArrayParm[11].x=1 refArrayParm[11].y=3
refArrayParm[12].x=1 refArrayParm[12].y=4
refArrayParm[13].x=1 refArrayParm[13].y=5
refArrayParm[14].x=1 refArrayParm[14].y=6
refArrayParm[15].x=1 refArrayParm[15].y=7
refArrayParm[16].x=2 refArrayParm[16].y=0
refArrayParm[17].x=2 refArrayParm[17].y=1
refArrayParm[18].x=2 refArrayParm[18].y=2
refArrayParm[19].x=2 refArrayParm[19].y=3
refArrayParm[20].x=2 refArrayParm[20].y=4
refArrayParm[21].x=2 refArrayParm[21].y=5
refArrayParm[22].x=2 refArrayParm[22]. y=6

rRefArrayParm[23].x=2 refArrayParm[23].y
Listing5-12 terminated

This output shows how the refAryParm procedure initialized the array.

Functions and Function Return Results

Functions are procedures that return a result to the caller. In assembly lan-
guage, few syntactical differences exist between a procedure and a func-
tion. This is why aoaa.inc doesn’t provide a specific macro declaration for a
function. Nevertheless, semantic differences exist; although you can declare
them the same way in Gas, you use them differently.

Procedures are a sequence of machine instructions that fulfill a task.

The end result of the execution of a procedure is the accomplishment of
that activity. Functions, on the other hand, execute a sequence of machine
instructions specifically to compute a value to return to the caller. Of course,
a function can perform an activity as well, and procedures can undoubtedly
compute values, but the main difference is that the purpose of a function is
to return a computed result; procedures don’t have this requirement.

In assembly language, you don’t specifically define a function by using
special syntax. In Gas, everything is a procedure. A section of code becomes
a function when the programmer explicitly decides to return a function
result via the procedure’s execution.

The registers are the most common place to return function results.
The strlen() routine in the C stdlib is a good example of a function that
returns a value in one of the CPU’s registers. It returns the length of the
string (whose address you pass as a parameter) in the X0 register.
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By convention, programmers try to return 8-, 16-, and 32-bit results
in the WO register and 64-bit values in the X0 register. This is where most
HLLs return these types of results, and it’s where the ARM ABI states that
you should return function results. The exception is floating-point values;

I discuss floating-point function results in Chapter 6.

There is nothing particularly sacred about the W0/XO0 register. You can
return function results in any register if it’s more convenient to do so. Of
course, if you're calling an ARM ABI-compliant function, such as strlen(),
you have no choice but to expect the function’s return result in the X0 reg-
ister. The strlen() function returns an integer in X0, for example.

If you need to return a function result that is larger than 64 bits, you
obviously must return it somewhere other than in X0 (which can hold only
64-bit values). For values slightly larger than 64 bits (for example, 128 bits
or maybe even as many as 256 bits), you can split the result into pieces and
return those parts in two or more registers. It is not uncommon to see func-
tions returning 128-bit values in the X1:X0 register pair. Just keep in mind
that these schemes are not ARM ABI compliant, so they’re practical only
when calling code you've written.

If you need to return a large object as a function result (say, an array of
1,000 elements), you obviously are not going to be able to return the function
result in the registers. When returning function results greater than 64 bits,
the ARM ABI specifies that the caller allocate storage for the result and pass
a pointer to that storage in X8. The function places the result in that storage,
and the caller retrieves the data from that location upon return.

Recursion

Recursion occurs when a procedure calls itself. The following, for example,
is a recursive procedure:

proc Recursive
enter 0

bl Recursive
leave

endp Recursive

Of course, the CPU will never return from this procedure. Upon entry
into Recursive, this procedure will immediately call itself again, and control
will never pass to the end of the procedure. In this case, runaway recursion
results in a logical infinite loop that produces stack overflow, at which point
the OS will raise an exception and stop the program.

Like a looping structure, recursion requires a termination condition in
order to stop infinite recursion. Recursive could be rewritten with a termina-
tion condition as follows:

proc Recursive
enter 0
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subs x0, x0, #1

beq  allDone

bl Recursive
allDone:

leave

endp Recursive

This modification to the routine causes Recursive to call itself the num-
ber of times appearing in the X0 register. On each call, Recursive decre-
ments the X0 register by 1 and then calls itself again. Eventually, Recursive
decrements X0 to 0 and returns from each call until it returns to the origi-
nal caller.

So far in this section, there hasn’t been a real need for recursion. After
all, you could efficiently code this procedure as follows:

proc Recursive
enter 0

iterlp:
subs x0, x0, #1
bne iterlp
leave
endp Recursive

Both of these last two examples would repeat the body of the proce-
dure the number of times passed in the X0 register. (The latter version will
do it considerably faster because it doesn’t have the overhead of the bl/ret
instructions.) As it turns out, you cannot implement only a few recursive
algorithms in an iterative fashion. However, many recursively implemented
algorithms are more efficient than their iterative counterparts, and most of
the time the recursive form of the algorithm is much easier to understand.

The quicksort algorithm is probably the most famous algorithm that usu-
ally appears in recursive form. Listing 5-13 shows a Gas implementation of
this algorithm.

// Listing5-13.S
//

// Recursive quicksort

#include "aoaa.inc"

numElements = 10
.data
ttlStr: .asciz "Listing 5-13"
fmtStr1: .asciz "Data before sorting: \n"
fmtStr2: .ascii "%d" // Use nl and 0 from fmtStr3
fmtStr3: .asciz "\n"
fmtStra: .asciz "Data after sorting: \n"
fmtStrs: .asciz "ary=%p, low=%d, high=%d\n"

theArray: .word 1,10,2,9,3,8,4,7,5,6



.code
.extern printf

// getTitle
//

// Return program title to C++ program.

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// quicksort

/!

// Sorts an array using the quicksort algorithm

//

// Here's the algorithm in C, so you can follow along:
/!

// void quicksort(int a[], int low, int high)

/1A

// int i,j,Middle;

// if( low < high )

// {

// Middle = a[(low + high)/2];

// i = low;

// j = high;

// do

/1 {

// while( a[i] <= Middle ) i++;
// while( a[j] > Middle ) j--;
// if(i<=73)

/1 {

/1 swap( a[i],a[j] );
// it++;

/1 i

// }

// } while( i <= j );

//

// // Recursively sort the two subarrays:

/!

// if( low < j ) quicksort( a,low,j );

// if( i < high ) quicksort( a,i,high );

// }

1}

/!

// Args:

// X19 (La): Pointer to array to sort

// %20 (_lowBnd): Index to low bound of array to sort
// X21 (_highBnd): Index to high bound of array to sort
//

// Within the procedure body, these registers

// have the following meanings:

/!

// X19: Pointer to base address of array to sort
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// X20:
/] X21:

/1

/] X22:
/] X23:
/] X24:

//

Lower bound of array (32-bit index)
Higher bound of array (32-bit index)

index (i) into array
index (j) into array
Middle element to compare against

// Create definitions for variable names as registers
// to make the code more readable:

#define array x19

#define lowBnd x20
#define highBnd x21

#define i x22
#define j x23

#define middle w24

proc

locals
dword
dword
dword
dword
dword
dword
dword
byte
endl

enter

quicksort

gsl

gsl.saveX19
gsl.saveX20
gsl.saveX21
gsl.saveX22
gsl.saveX23
gsl.saveX24
gsl.saveXo
gsl.stackSpace, 32
gsl

gsl.size

// Preserve the registers this code uses:

str
str
str
str
str

cmp
bge

mov
mov

x0, [fp, #gsl.saveXo]

x19, [fp, #gsl.saveX19]
x22, [fp, #gsl.saveX22]
x23, [fp, #gsl.saveX23]
x24, [fp, #gsl.saveX24]

lowBnd, highBnd

endif3
i, lowBnd // 1= low
j, highBnd /] j = high

// Compute a pivotal element by selecting the

// physical middle

/1

// Element address

//

add
lsr

(S

lement of the array:

((1 +3) /2) *4a (4 1is element size)
((1+3)*2)

x0, i, j
X0, x0, #1



// Middle = ary[(i + j) / 2]:
ldr middle, [array, x0, 1lsl #2]

// Repeat until the i and j indices cross each
// other (i works from the start toward the end
// of the array, j works from the end toward the
// start of the array):

rptUntil:
// Scan from the start of the array forward,

// looking for the first element greater or equal
// to the middle element:

sub i, i, #1 // To counteract add, below
while1: add i, i, #1 //i=1+1

ldr wl, [array, i, 1sl #2]

cmp middle, wi // While middle <= ary[i]

bgt while1

// Scan from the end of the array backward, looking
// for the first element that is less than or equal
// to the middle element:

add j, j, #1 // To counteract sub, below
while2: sub i, 3, #1 /l3=3-1

ldr wl, [array, j, 1sl #2]

cmp middle, wi // while middle >= a[j]

blt while2

// If you've stopped before the two pointers have

// passed over each other, you have two

// elements that are out of order with respect

// to the middle element, so swap these two elements:

cmp i, j /] Ifi<=7j
bgt endif1
ldr wo, [array, i, 1sl #2]

[
ldr wi, [array, j, 1sl #2]
str wo, [array, j, 1sl #2]
str wl, [array, i, 1sl #2]
add i, i, #1
sub j, j, #1

endifi: cmp i, j // Until 1 > j
ble rptUntil

// The code has just placed all elements in the array in
// their correct positions with respect to the middle

// element of the array. Unfortunately, the

// two halves of the array on either side of the pivotal
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// element are not yet sorted. Call quicksort recursively
// to sort these two halves if they have more than one

// element in them (if they have zero or one elements,

// they are already sorted).

cmp lowBnd, j // If lowBnd < j
bge endif2

// Note: a is still in X19,
// Low is still in X20.

str highBnd, [fp, #gsl.saveX21]
mov highBnd, j

bl quicksort // ( a, low, j )
ldr highBnd, [fp, #gsl.saveX21]

endif2: cmp i, highBnd // If i < high
bge endif3

// Note: a is still in X19,
// High is still in X21.

str lowBnd, [fp, #gsl.saveX20]

mov lowBnd, i

bl quicksort // (a, i + 1, high )
ldr lowBnd, [fp, #gsl.saveX20]

// Restore registers and leave:

endif3:

ldr x0, [fp, #qgsl.saveXo]
ldr x19, [fp, #gsl.saveX19]
1dr x22, [fp, #qgsl.saveX22]
ldr x23, [fp, #gsl.saveX23]
ldr x24, [fp, #gsl.saveX24]
leave

endp quicksort

// printArray

//
// Little utility to print the array elements

proc printArray

locals pa
dword  pa.saveX19
dword  pa.saveX20
endl pa

enter pa.size
str x19, [fp, #pa.saveX19]
str x20, [fp, #pa.saveX20]

lea x19, theArray
mov X20, Xxzr
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whilelT10: cmp x20, #numElements
bge endwhile1

lea X0, fmtStr2

ldr wl, [x19, x20, 1sl #2]
mstr wl, [sp]

bl printf

add X20, x20, #1
b.al whilelT10

endwhilel: lea X0, fmtStr3
bl printf

ldr x19, [fp, #pa.saveX19]
ldr x20, [fp, #pa.saveX20]
leave

endp printArray

// Here is the asmMain function:
proc asmMain, public

locals am

dword  am.savex19

dword  am.savex20

dword am.savex21

byte am.stackSpace, 64
endl am

enter am.size

str array, [fp, #am.saveX19]

str lowBnd, [fp, #am.saveX20]

str highBnd, [fp, #am.saveX21]
// Display unsorted array:

lea x0, fmtStri

bl printf

bl printArray

// Sort the array:

lea array, theArray

mov lowBnd, xzr // low =0

mov highBnd, #numElements - 1 // high = 9

bl quicksort // (theArray, 0, 9)

// Display sorted results:
lea X0, fmtStr4

bl printf
bl printArray
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ldr array, [fp, #am.saveX19]
ldr lowBnd, [fp, #am.saveX20]
ldr highBnd, [fp, #am.saveX21]
leave

endp asmMain

Here’s the build command and output for Listing 5-13:

$ ./build Listing5-13
$ ./Listing5-13
Calling Listing5-13:
Data before sorting:
1

=
o

AV N D OW O N

Data after sorting:

B O oo~NOUVLSs WN PR

0

Listing5-13 terminated

This output shows the contents of the array prior to sorting and after
the quicksort procedure has sorted the array.

Procedure Pointers and Procedural Parameters

The ARM bl instruction supports an indirect form: blr. This instruction has
the following syntax:

blr reg,, // Indirect call through reg,,

This instruction fetches the address of a procedure’s first instruction from
this specified register. It is equivalent to the following pseudo-instructions:

add 1r, pc, #4 // Set LR to return address (PC is pointing at mov).
mov pc, reg,, // Transfer control to specified procedure.




Gas treats procedure names like static objects. Therefore, you can com-
pute the address of a procedure by using the lea macro along with the pro-
cedure’s name. For example

lea x0, procName

loads the address of the very first instruction of the procName procedure into
X0. The following code sequence winds up calling the procName procedure:

lea x0, procName
blr xo

Because the address of a procedure fits in a 64-bit object, you can store
such an address into a double-word variable; in fact, you can initialize a
double-word variable with the address of a procedure by using code like the
following:

proc p
endp p

.data
ptrToP:
.dword p

lea xo0, ptrToP
ldr xo0, [x0]
blr xo0 // Calls p if ptrToP has not changed

Note that although macOS does not allow you to initialize a dword vari-
able in the .text section with the address of an object outside the .text sec-
tion, it will allow you to initialize a pointer (in any section) with the address
of some code within the .text section.

As with all pointer objects, you should not attempt to indirectly call a
procedure through a pointer variable unless you've initialized that variable
with an appropriate address. You can initialize a procedure pointer variable
in two ways: you can create dword variables with initializers in the .data,
.text, and .rodata sections, or you can compute the address of a routine
(as a 64-bit value) and store that 64-bit address directly into the procedure
pointer at runtime. The following code fragment demonstrates both ways to
initialize a procedure pointer:

.data
ProcPointer: .dword p // Initialize ProcPointer with
// the address of p.
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lea x0, ProcPointer
ldr xo0, [x0]
blr x0 // First invocation calls p.

// Reload ProcPointer with the address of g:

lea x0, q
lea x1, ProcPointer
str x0, [x1]

lea x0, ProcPointer
ldr xo0, [x0]
blr x0 // This invocation calls q.

Although all the examples in this section use static variable declarations
(.data, .text, .bss, and .rodata), you aren’t limited to declaring simple proce-
dure pointers in the static variable declaration sections. You can also declare
procedure pointers (which are just dword variables) as local variables, pass
them as parameters, or declare them as fields of a record or a union.

Procedure pointers are also invaluable in parameter lists. Selecting
one of several procedures to call by passing the address of a procedure is a
common operation. A procedural parameter is just a double-word parameter
containing the address of a procedure, so passing a procedural parameter
is really no different from using a local variable to hold a procedure pointer
(except, of course, that the caller initializes the parameter with the address
of the procedure to call indirectly).

A Program-Defined Stack

Using the pre- and post-indexed addressing modes, along with one of the
ARM’s 64-bit registers, it is possible to create software-controlled stacks that
don’t use the SP register. Since the ARM CPU provides a hardware stack
pointer register, it may not be obvious why you’d consider using another
stack. As you've learned, one limitation of the ARM’s hardware stack is that
it must be 16-byte aligned at all times. Return addresses and other values
you might want to preserve on the stack are generally 8 bytes or smaller. For
example, you cannot push the LR register onto the stack by itself without
causing a bus error fault. However, if you create your own stack, you won’t
have this issue.

Perhaps you're wondering why anyone would ever want to use a second
stack in their programs. If the normal hardware stack works fine, why add the
complexity of a second stack? Having two stacks is useful in several situations.
Particularly, coroutines, generators, and iterators can make use of an extra
stack pointer. See section 5.12, “For More Information,” on page 290 for a
Wikipedia link on this subject. Of course, as just pointed out, not having to



16-byte align the stack pointer is another good reason for using a program-
defined stack.

Creating your own stack has two drawbacks: you must dedicate one of
the ARM’s registers for this purpose, and you must explicitly allocate stor-
age for that stack yourself (the OS automatically allocates the hardware
stack when it runs your program).

You can easily allocate storage in the .data segment. A typical stack will
have at least 128 to 256 bytes of storage. The following is a simple example
that allocates a 256-byte stack:

.data
smallStk: .fill 256
endSmallStk:

You may need more than 256 bytes of storage if you use automatic
variables in your procedures; see section 5.4.1, “Activation Records,” on
page 244 and section 5.5, “Local Variables,” on page 250.

Normally, stacks start at the end of their allocated space in memory and
grow downward toward smaller memory addresses. Having the endSmallStk
label at the end of the stack in this example gives you a handle with which
to initialize your stack pointer.

Because the ARM uses SP for its hardware stack pointer, you must use
a different register for your program-defined stack pointer. This needs to
be a nonvolatile register—you don’t want a function call like printf() to
mess with your stack. As X30 is already used for LR and X29 is reserved for
FP (see Chapter 1), X28 is a good choice for a user-defined stack pointer
(USP). You can initialize it to point at the end of smallStk as follows:

#define usp x28 // Use a reasonable name for the user SP.

lea usp, endSmallStk

This leaves USP pointing just beyond the end of the stack, which is
exactly what you want; the stack pointer should point at the current top of
the stack, and when the stack is empty, as it is after initialization, the stack
pointer isn’t pointing at a valid stack address.

To push and pop data on the stack, use the same str and ldr instruc-
tions, along with the pre-indexed and post-indexed addressing modes, just
as you would with the hardware stack. The only differences are that you
specify the USP register (X28) and you don’t have to keep the stack aligned
to 16 bytes (in fact, you technically don’t have to keep it aligned to any-
thing, but it will be faster if you keep it word or dword aligned). Here’s how
you can push the LR register into the user stack and pop it off:

str 1r, [usp, #-8]! // Pre-decrement addressing mode
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ldr 1r, [usp], #8 // Post-increment addressing mode
ret

Listing 5-14 is a rewrite of Listing 5-4 using a software stack.

// Listing5-14.S
//

// Demonstrating a software stack

#include "aoaa.inc"

#tdefine usp x28 // Program-defined stack pointer

stackSpace = 64 // Space on the HW stack

savelRUSP = 48 // 16 bytes to hold LR and USP
.section .rodata, ""

ttlStr: .asciz "Listing 5-14"

space: .asciz "

asterisk: .asciz "%, %1d\n"
.data

loopIndex: .dword . // Used to print loop index value

// Here's the software-based stack this program will use
// to store return addresses and the like:

.align 3
smallStk: Lfill 256, .-.
endSmallStk:

.code

.extern printf

/] getTitle
//

// Return program title to C++ program.

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// print4oSpaces

//

// Prints out a sequence of 40 spaces
// to the console display

proc print4oSpaces
O stp 1r, x19, [usp, #-16]! // Preserve LR and X19.

mov w19, #40
printLoop: lea X0, space
bl printf
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subs w19, w19, #1
bne printLoop // Until w19 == 0

® 1dp 1r, x19, [usp], #16 // Restore LR and X19.
ret
endp print4o0Spaces

// Here is the asmMain function:
proc asmMain, public
© sub sp, sp, #stackSpace // HW stack space
stp 1r, usp, [sp, #savelLRUSP] // Save on HW stack.

0 lea usp, endSmallStk // Initialize USP.
@ str x19, [usp, #-16]! // Save X19 on SW stk.

mov x19, #20
astlp: bl print4oSpaces

lea x0, loopIndex

str x19, [x0]

lea X0, asterisk

vparm2 loopIndex

bl printf

subs x19, x19, #1

bne astlp

@ ldr x19, [usp], #16 // Restore from SW stack.
@ ldp 1r, usp, [sp, #savelRUSP]

add sp, sp, #stackSpace

ret // Returns to caller

endp asmMain

Upon entry into print4oSpaces, the code pushes LR and X19 onto the
software stack @, using an stp instruction to save both registers at the same
time. The pre-indexed addressing mode decrements USP by 16; then this
instruction stores the two 8-bit registers on the software stack. Just before
returning, print4oSpaces restores the LR and X19 registers from the software
stack @, using an lpd instruction and the post-indexed addressing mode.

Although this program demonstrates using a software-controlled stack,
it must still use the hardware stack for a couple of purposes. In particular,
the printf() function will push its return address (and parameters, as it
turns out) onto the hardware stack. Therefore, the main program sets up
storage space on the hardware stack for this purpose ®. The program must
also preserve the USP register (X28) before initializing it to point at the
end of the smallStack data area. The space just allocated on the hardware
stack is the perfect place for this. As long as the code is saving USP there, it
may as well save LR at the same time, since you must always write 16 bytes to
the hardware stack.

Once the code has preserved USP’s value (because it is a nonvolatile
register), the next step is to initialize USP with the address of the end of
the smallStack memory buffer @. Loading the address of endSmallStk into
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USP accomplishes this. Once the stack is initialized, the code can use it; for
example, this statement pushes nonvolatile register X19 onto the software
stack @ (to preserve it for the C++ program).

Before leaving, the code pops the X19 nonvolatile register off the soft-
ware stack to restore its value @. Finally, the main program restores USP
and LR from the hardware stack (and cleans up allocated storage) before
returning to the C++ code @.

Just to prove it really works, here’s the build command and sample out-
put for the program in Listing 5-14:

$ ./build Listing5-14
$ ./Listing5-14
Calling Listing5-14:

T TGO e
= = N
w ~ o

-

¥ XK K K K X K K K X K K K X K X X X ¥ ¥
-

v e .
RPN WRS U OV 00

-

Listing5-14 terminated

As you can see, Listing 5-14 produces the same output as Listing 5-4.

5.11 Moving On

This chapter covered considerable material, including an introduction to
assembly language programming style, basic Gas procedure syntax, local
labels, calling and returning from procedures, register preservation, acti-
vation records, function results, and more. Armed with this information,
you're ready to learn how to write functions that calculate arithmetic results
in the next chapter.

5.12 For More Information

e  For more details on the Creative Commons 4.0 Attribution license, see
hitps://creativecommons.org/licenses/by/4.0/.
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The ARM developer site has more on the AARCH64 (ARM64) calling
convention and ABI at Attps://github.com/ARM-software/abi-aa/releases.

Wikipedia provides a useful entry on coroutines, generators, and itera-
tors at hitps://en.wikipedia.org/wiki/Coroutine.

—_

o 0~ WD

N

TEST YOURSELF

Explain, step by step, how the bl instruction works.
Explain, step by step, how the ret instruction works.
What is the main disadvantage of caller preservation?
What is the main problem with callee preservation?
What is an activation record?

What register usually points at an activation record, providing access to
the data in that record?

What is the standard entry sequence for a procedure (the instructions)?

8. What is the standard exit sequence for a procedure (the instructions)?

9. What is an automatic variable?

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.
21.
22.

23.

When does the system allocate storage for an automatic variable?
What value does a pass-by-value parameter pass to a function?
What value does a pass-by-reference parameter pass to a function?

When passing four integer parameters to a function, where does the ARM
ABI state those parameters are to be passed?

When passing more than eight parameters to a function, where does the
ARM ABI state the parameters will be passed?

What is the difference between a volatile and nonvolatile register in the
ARM ABI2

Which registers are volatile in the ARM ABI2
Which registers are nonvolatile in the ARM ABI2

When passing parameters in the code stream, how does a function access
the parameter data?

What is the best way to pass a large array to a procedure?
Where is the most common place to return a function resulte
What is a procedural parameter?

How would you call a procedure passed as a parameter to a function/
procedure?

If a procedure has local variables, what is the best way to preserve regis-
ters within that procedure?
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6.1

ARITHMETIC

This chapter discusses arithmetic computa-

tion in assembly language, including floating-
point arithmetic on the ARM processor and

architectural support for real arithmetic. By the

end of this chapter, you should be able to translate
arithmetic expressions and assignment statements from
HLLs like Pascal, Swift, and C/C++ into ARM assem-
bly language. You'll learn to pass floating-point values
as parameters to procedures and return real values as
function results.

Additional ARM Arithmetic Instructions

Before learning to encode arithmetic expressions in assembly language, you
should learn the rest of the arithmetic instructions in the ARM instruction



294

Chapter 6

set. Previous chapters have covered most of the arithmetic and logical
instructions, so this section covers the remaining few.

6.1.1 Multiplication

Chapter 4 provided a brief introduction to multiplication with the mul and
madd instructions. As a reminder, those instructions are as follows:

mul  Xd, Xs,, Xs, /] Xd = Xs, * Xs,
madd Xd, Xs,, Xs,, Xs; // Xd = Xs;, * Xs, + Xs,

As long as overflow doesn’t occur, these instructions produce correct
results for both unsigned and signed multiplications.

These instructions multiply two 64-bit integers and produce a 64-bit
result. The multiplication of two n-bit numbers can actually produce a
2 x n—bit result, meaning that multiplying two 64-bit registers could pro-
duce up to a 128-bit result. These instructions ignore any overflow and keep
only the LO 64 bits of the product (Chapter 8 discusses how to produce a
full 128-bit result, if you require that).

You can also specify 32-bit registers for these two instructions:

mul  Wd, Ws,, Ws, /] Wd = Ws, * Ws,
madd Wd, Ws,, Ws,, Ws, // Wd = Ws, * Ws, + Ws,

These instructions produce 32-bit results, ignoring any overflow. There
are two additional multiplication instructions: multiply and subtract, and
multiply and negate:

msub Wd, Ws,, Ws,, Ws, // Wd = Ws, * Ws, - Ws,
msub Xd, Xs,, Xs,, Xs; // Xd = Xs, * Xs, + Xs,
mneg Wd, Ws,, Ws, /] Wd = -(Ws, * Ws,)
mneg Xd, Xs,, Xs, /] Xd = -(Xs, * Xs,)

As with the previous instructions, these multiplications ignore any over-
flow beyond 32 or 64 bits.

The ARM does not provide multiplication instructions that affect the
condition code flags. These instructions have no s-suffix versions.

6.1.2 Division and Modulo
The ARM64 CPU provides only two division instructions:

sdiv Xd, Xs,, Xs, // Xd = Xs, / Xs, (signed division)
udiv Xd, Xs,, Xs, // Xd = Xs, / Xs, (unsigned division)

Unlike with multiplication, you must use separate instructions for
signed and unsigned integer values.

Division has two special cases that you must consider: division by 0 and
dividing the smallest negative number by -1 (which would, mathemati-
cally, produce an overflow). A division by 0 produces 0 as the result, with no



indication of the problem. A signed division (sdiv) of 0x8000000000000000
(the smallest 64-bit negative number) by OXFFFFFFFFFFFFFFFF (-1) will
produce the result 0x8000000000000000, also without indication of an error.
You’ll get similar results for the 32-bit division: 0x80000000 / OxFFFFFFFF.
You must explicitly test for these operands before the division to catch these
errors.

There’s no single instruction to compute the remainder after a division
operation on the ARM64 CPU. You can compute the remainder by combin-
ing a division and a multiplication operation:

mod( x0, x1 ) = x0 - (x0 / x1) * x1

Alternatively, you can compute the same result by using the following
two instructions:

udiv x2, x0, x1
msub x3, x2, x1, X0

After this sequence, X2 and X3 hold the following values

X2 = x0 / x1
x3 =x0 % x1 // % is C modulo (remainder) operator.

thus providing the modulo in X3.

6.1.3 cmp Revisited

As noted in section 2.10.4, “cmp and Corresponding Conditional Branches,”
on page 78, the cmp instruction updates the ARM’s flags according to the
result of the subtraction operation (LeftOperand - RightOperand). Based on
the way the ARM sets the flags, you can read this instruction as “compare
LeftOperand to RightOperand.” You can test the result of the comparison by
using conditional branch instructions (see Chapter 2 for the conditional
branches or Chapter 7 for more on control structure implementations).

A good place to start when exploring cmp is to look at exactly how it
affects the flags. Consider the following cmp instruction:

cmp w0, wi

This instruction performs the computation WO — W1 and sets the flags
depending on the result of the computation. The flags are set as follows:

Z The zero flag is set if and only if WO = W1. This is the only time
WO — W1 produces a zero result. Hence, you can use the zero flag to test
for equality or inequality.

N The negative (sign) flag is set to 1 if the result is negative. You
might think this flag would be set if WO is less than W1, but this isn’t
always the case. If WO =0x7FFFFFFFh and W1 = -1 (OxFFFFFFFF), then
subtracting W1 from WO produces 0x80000000, which is negative (so
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the negative flag will be set). For signed comparisons, at least, the nega-
tive flag doesn’t contain the proper status. For unsigned operands, con-
sider WO = OxFFFFFFFF and W1 = 1. Here, WO is greater than W1, but
their difference is OxXFFFFFFFER, which is still negative. As it turns out,
the negative flag and the overflow flag, taken together, can be used for
comparing two signed values.

V  The overflow flag is set after a cmp operation if the difference of
WO and W1 produces a signed overflow or underflow. As mentioned
previously, the sign and overflow flags are both used when performing
signed comparisons.

C The carry flag is set after a cmp operation if subtracting W1 from W0
requires a borrow (unsigned overflow or underflow). This occurs only
when WO is less than W1, where WO and W1 are both unsigned values.

Table 6-1 shows how the cmp instruction affects the flags after compar-
ing to unsigned or signed values.

Table 6-1: Condition Code Settings After cmp

Flag Unsigned result Signed result
Zero (2) Equality/inequality Equality/inequality
Carry (C) Left > right (C = 1) No meaning
Left < right (C = 0)
Overflow (V) No meaning See discussion in this section
Sign (N) No meaning See discussion in this section

Given that the cmp instruction sets the flags in this fashion, you can test
the comparison of the two signed operands with the following flags:

cmp Left, Right

For signed comparisons, the N and V flags, taken together, have the fol-
lowing meanings:

e If [N !=V], then Left < Right for a signed comparison.
e If [N ==V], then Left > Right for a signed comparison.

To understand why these flags are set in this manner, consider the
32-bit examples in Table 6-2. The values easily sign-extend to 64 bits, and
the results are the same.

Table 6-2: Sign and Overflow Flag Settings After Subtraction (32-Bit Values)

Left Minus Right N \'
OXFFFFFFFF (-1) - OXFFFFFFFE(2) 0 0
0x80000000 (-2 billion+) - 0x000000001 0 1
OXFFFFFFFE (-2) - OXFFFFFFFF (-1) 1 0
Ox7FFFFFFF (2 billion+) - OxFFFFFFFF (-1) 1 1




Remember, the cmp operation is really a subtraction; therefore, the
first example in Table 6-2 computes (-1) — (-2), which is +1. The result is
positive, and an overflow did not occur, so both the N and V flags are 0.
Because (N ==V), Left is greater than or equal to Right.

The cmp instruction would compute (-2,147,483,648) — (+1), which
is (-2,147,483,649), in the second example. Because a 32-bit signed inte-
ger cannot represent this value, the value wraps around to O0x7FFFFFFF
(+2,147,483,647) and sets the overflow flag. The result is positive (at least as
a 32-bit value), so the CPU clears the negative flag. Because (N ==V) here,
Left is less than Right.

In the third example, cmp computes (-2) — (-1), which produces (-1).
No overflow occurred, so the V is 0; the result is negative, so N is 1. Because
(N 1=V), Left is less than Right.

In the final example, cmp computes (+2,147,483,647) — (-1). This pro-
duces (+2,147,483,648), setting the overflow flag. Furthermore, the value
wraps around to 0x80000000 (-2,147,483,648), so the negative flag is set as
well. Because (N ==V) is 0, Left is greater than or equal to Right.

The cmn (compare negative) instruction compares its first source oper-
and against a negated second operand; like cmp, it sets the flags and ignores
the result. It is also, like cmp, an alias for a different instruction, add:

add wzr, Ws,, Ws,
add xzr, Xs,, Xs,

This is because cmp is equivalent to a sub instruction, using WZR/XZR
as the destination register; when comparing a negated value, you get the
expression left — (—right), which is mathematically equivalent to left + right.

Using add as a synonym for cmn has one issue: add doesn’t set the carry flag
properly if the second (right) operand is 0. As a result, you cannot use the
unsigned condition codes (hs, hi, 1s, or 1lo) after a cmn instruction if there is
any possibility that the right operand is 0. This shouldn’t generally be a prob-
lem because, by definition, you are using cmn to compare signed values and
you should be using signed conditionals after the use of the instruction.

Arguably the main reason for the existence of cmn is that Operand?2
immediate values must be in the range 0 to 4,095. You cannot compare a
register against a negative immediate value by using the cmp instruction.
The cmn instruction is also limited to constants in the range 0 to 4,095, but
it will negate the immediate value before the comparison, allowing negative
constants in the range -1 to —4,095 (-0 is still 0).

6.1.4 Conditional Instructions

In the original, 32-bit ARM architecture, most of the data manipulation
instructions were conditional. You could execute an instruction, such as
add, conditionally, based on PSTATE condition code flag settings. Alas, the
4 bits required to test the 16 possible conditions (same as the conditional
branch instructions) were needed for other encodings in 64-bit mode.
Nevertheless, condition instruction execution is useful, so the ARM64 kept
a few of the more commonly used condition instructions.
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The first condition instruction is csel (conditional select)

csel Wd, Ws,, Ws,, cond // if( cond ) then Wd = Ws, else Wd = Ws,
csel Xd, Xs,, Xs,, cond [/ if( cond ) then Xd = Xs, else Xd = Xs,

where cond is one of the following condition specifications

cs, cc, eq, ne, mi, pl, vs, vc, hs, hi, 1ls, lo, gt, ge, 1t, le

which have the same meanings as for the conditional branch instructions.
The aoaa.inc include file provides definitions for the following opposite
conditions:

nhs, nhi, nls, nlo, ngt, nge, nlt, nle

These are synonyms for lo, 1s, hi, hs, le, 1t, ge, and gt, respectively.

As its name suggests, the csel instruction selects one of the two source
operands to copy into the destination register, based on the current flag
settings. For example, the following instruction

csel x0, x1, x2, eq

copies X1 into X0 if the zero flag is set; otherwise, it copies X2 into X0.
The csinc instruction allows for a conditional select (if true condition)
or increment (if false condition) operation:

csinc Wd, Ws,, Ws,, cond // if( cond ) then Wd = Ws, else Wd = Ws, + 1
csinc Xd, Xs,, Xs,, cond [/ if( cond ) then Xd = Xs, else Xd = Xs, + 1

Using the predefined macro cinc is sometimes more convenient:

cinc Wd, Ws1, cond // csinc Wd, Ws,, Ws,, invert( cond )
cinc Xd, Xs,, cond // csinc Xd, Xs,, Xs,, invert( cond )

That is, cinc increments and copies the source into the destination if
the condition is true; otherwise, it just copies the source without increment-
ing it. Of course, the source and destination registers can be the same if
you simply want to conditionally increment a specific register. Note that the
conditions for the cinc macros are reversed from the csinc instruction.

The next two conditional instructions are csinv and csneg, which condi-
tionally invert or negate values:

csinv Wd, Ws,, Ws,, cond // if( cond ) then Wd = Ws, else Wd = not Ws,
csinv Xd, Xs,, Xs,, cond // if( cond ) then Xd = Xs, else Xd = not Xs,
csneg Wd, Ws,, Ws,, cond // if( cond ) then Wd = Ws, else Wd = -Ws,
csneg Xd, Xs,, Xs,, cond // if( cond ) then Xd = Xs, else Xd = -Xs,

There are also cinv and cneg macros that take only a single source oper-
and (like cinc). The cset and csetm macros are variants of csinc and cinv:
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cset Wd, cond // if( cond ) then Wd = 1 else Wd = 0
cset Xd, cond // if( cond ) then Xd = 1 else Xd = 0
csetm Wd, cond // if( cond ) then Wd = -1 else Wd = 0
csetm Xd, cond // if( cond ) then Xd = -1 else Xd = 0

The cset macro is equivalent to cinc with WZR or XZR as both source
operands, and csetm is equivalent to cinv with WZR or XZR as the source
operands. These macros are useful for setting a register to a Boolean value
(either true/—1 or false/0) based on the condition codes.

Finally, the ARM also supports two conditional compare instructions,
ccmp and cemn (conditional compare negative), each with a few forms:

ccmp  Wd, Ws, #nzcv4, cond
ccmp  Xd, Xs, #nzcv4, cond
ccmp Wd, #imms, #nzcv4, cond
ccmp  Xd, #imms, #nzcv4, cond
ccmn Wd, Ws, #nzcv4, cond
ccmn Xd, Xs, #nzcv4, cond
ccmn Wd, #imms, #nzcv4, cond
ccmp  Xd, #imms, #nzcv4, cond

Whereas ccmp compares by subtracting the second operand from the
first, ccmn compares by adding the second operand to the first. These
instructions test the provided condition (cond). If it is false, these instruc-
tions copy the 4-bit immediate value #nzcv4 directly into the condition codes
(bit 3 to N, bit 2 to Z, bit 1 to C, and bit 0 to V).

If the condition specified by cond is true, these instructions compare
the destination register to the source operand (register or 5-bit unsigned
immediate value) and set the condition code bits based on the comparison.
As you’ll see later in this chapter, the conditional comparisons are useful
for evaluating complex Boolean expressions.

Memory Variables vs. Registers

Before jumping into converting arithmetic expressions into assembly lan-
guage statements, let’s also wrap up the discussion of variables from the last
five chapters. As I've pointed out many times, the ARM is based on a load/
store architecture. The ARM has been blessed with many general-purpose
registers that you can use in lieu of memory locations for your more com-
monly used variables. With careful planning, you should be able to keep
most of your often-used variables in registers.

Consider the following C/C++ statement and its conversion to ARM
assembly language:

X =y *z;

// Conversion to ARM assembly if x, y, and z are 32-bit
// memory variables in the .data section:

lea xo0, y // Remember, lea expands to two instructions.

ldr wo, [x0] h 299
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lea x1, z

ldr w1, [x1]
mul w0, wo, wl
lea x1, x

str wo, [x1]

If you keep x, y, and z in registers W19, W20, and W21, respectively, the
translation of that expression into assembly language would be

mul x19, x20, x21

which is one-tenth the size and much faster than the conversion just given.

On RISC CPUs like the ARM, it’s a much better idea to keep variables
in registers rather than in memory. Your job as an assembly language pro-
grammer is to carefully choose the variables you keep in registers versus
the (less often used) values you will have to maintain in memory. You can
do this by counting the number of times you access a variable during execu-
tion and keep the most-frequently accessed variables in registers, leaving
the least-frequently accessed variables in memory.

6.2.1 Volatile vs. Nonvolatile Register Usage

If you are adhering to the ARM ABI in your assembly code, you must also
be cognizant of the difference between volatile and nonvolatile registers
in your procedures. Using nonvolatile registers has a cost: if you modify a
nonvolatile register’s value, you must preserve the register’s original value
within a procedure. This generally involves allocating storage in the proce-
dure’s activation record, storing the nonvolatile register’s value on entry to
the procedure, and restoring the register’s value before returning.

Using volatile registers means you're spared the expense and storage
required to preserve them. However, volatile registers may have their con-
tents disturbed if you make calls to other procedures, which aren’t known
to explicitly preserve the volatile registers. Because it is the caller’s respon-
sibility to preserve any volatile register contents across other function calls,
you may as well use a nonvolatile register (assuming one is available) if
you're making calls to other functions within your procedures.

This assumes, of course, that the functions you're calling adhere to the
ARM ABI conventions. If, for example, you're calling assembly language
functions that preserve all register values they modity, you don’t have to
worry about preserving those registers, even if the ARM ABI considers
them volatile.

6.2.2 Global vs. Local Variables

If you have to use memory—because you don’t have sufficient register
resources available or because you have a large data structure to manipu-
late that won’t fit in registers—you can locate the variables you must



maintain in memory. You can put them in either a global, static data section
(such as .data, .bss, and so on) or in an activation record you've created for
your current procedure.

When you learned to program in an HLL, you were probably taught
to avoid using global variables in your programs. That advice applies even
more in ARM assembly language, especially when programming under
macOS. Under macOS, as you've seen many times, accessing global data
is more expensive than accessing local data in an activation record. To
fetch a 32-bit variable from global (.data) memory requires code such as
the following:

lea x0, globalVariable // Remember, this is two instructions.
1dr wo, [x0]

Fetching data from a local variable takes only a single instruction
(assuming the variable’s offset into the activation record is relatively small):

1dr wo, [fp, #localVariable]

That means accessing local variables takes one-third the number of
instructions it takes to access global variables.

Of course, if you're running under Linux and don’t need your assembly
code to run under macOS as well, you can also access global variables by
using a single instruction and the PC-relative addressing mode:

ldr wo, globalVariable

Just keep in mind that the data must sit within +IMB of this instruction.
Blowing past this limit is pretty easy when writing larger applications.

Local variables are not without their own limitations. In general, the
activation record has a limit of about +256 bytes of storage, a little more if
you can use the scaled-indirect-plus-offset addressing mode with half-word,
word, and double-word variables. Fortunately, you’ll rarely surpass that
number of bytes of scalar (non-array/nonstructure) variables in a single pro-
cedure. If you do require more space, you'll have to compute the effective
address of the variable within the activation record, which winds up taking
as many instructions as accessing global variables.

6.2.3 Easy Access to Global Variables

To make it just as easy to access global variables in a .data or .bss section as
itis to access local variables within an activation record, you can create a
static activation record. Local variables are easy to access because you use
the indirect-plus-offset (or scaled indirect-plus-offset) addressing mode to
index off the FP register. What if you had the equivalent of FP pointing into
a static data section? Although the ARM doesn’t provide an SB (static base)
register, nothing is stopping you from creating your own:

#define SB X28
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I chose to use X28 in this example, since it’s a nonvolatile register in the
ARM ABI and is right below the FP (X29) register.

Listing 6-1 demonstrates using the SB register (X28) to efficiently
access global variables.

// Listing6-1.S
/1
// Demonstrate using X28 as a "static base"
// register to conveniently access global
// variables.
#include "aoaa.inc"
#tdefine sb X28 // Use X28 for SB register.

// Declaration of global variables:

struct globals_t

word g1
dword g2
hword g3

byte g4,128
ends globals_t

.data
globals_t globals // Global variables go here.
.text
.pool
ttlStr: wastr "Listing 6-1"
proc getTitle, public
lea x0, ttlStr
ret

endp getTitle

proc asmMain, public

locals am

dword  saveSB // Save X28 here.

byte stackSpace, 64 // Generic stack space
endl am

enter am.size // Reserve space for locals.
str sb, [fp, #saveSB] // Preserve SB register.
lea sb, globals // Initialize with address.
mov w0, #55 // Just demonstrate the
str w0, [sb, #g1] // use of the static

add X0, X0, #44 // base record in the

str X0, [sb, #g2] // .data section.
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and w0, w0, #oxff
strth  wo, [sb, #g3]

1ldr sb, [fp, #saveSB] // Restore SB register.
leave // Return to caller.
endp asmMain

Keep in mind that the [sb, #offset] addressing mode is limited to
+256 bytes (or up to 1KB when using the scaled indirect-plus-offset modes),
so it’s best to keep nonscalar (composite) variables outside the static record.

As written, the globals record in Listing 6-1 provides access to only
256 bytes of storage (because all the struct field offsets are positive or 0).
The following declaration starts the offsets at —256, providing an additional
256 bytes of storage in the static record:

struct globals t, -256

word gl
dword g2
hword g3

byte g4,128
ends globals_t

However, if you do this, you must adjust the value you load into SB
appropriately, as shown here

lea sb, globals+256 // Initialize with address.

so that SB will point into the correct place in the globals_t structure.

Arithmetic Expressions

The biggest shock to beginners facing assembly language for the first time
will likely be the lack of familiar arithmetic expressions. Arithmetic expres-
sions in most HLLs look similar to their algebraic equivalents. For example,
in Cyou could write the following algebraic-like statement:

X =y *z

In assembly language, you’ll need several statements to accomplish this
same task if these variables are sitting in memory locations (assume they’re
local variables):

ldr wo, [fp, #y]
ldr wi, [fp, #z]
mul wo, wo, wil

str wo, [fp, #x]

// If you can keep x, y, and z in registers:

mul x0, x1, x2 // Assume x = X0, y = X1, and z = X2.
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Obviously, the HLL version is much easier to type, read, and under-
stand. Although a lot of typing is involved, converting an arithmetic expres-
sion into assembly language isn’t difficult. By attacking the problem in
steps, the same way you would solve the problem by hand, you can easily
break any arithmetic expression into an equivalent sequence of assembly
language statements.

6.3.1 Simple Assignments

The easiest expressions to convert to assembly language are simple assign-
ments, which copy a single value into a variable and take one of two forms:

variable = constant

or

varl = var2

If your variables are sitting in registers, converting these statements to
assembly language is simple:

mov variable, #constant // Assumption: constant fits in 16 bits.
mov varl, var2

This mov instruction copies the source constant or register into the des-
tination register.

If the constant is too large, you’ll either have to use the movk sequence
(see section 2.20.2, “movk,” on page 112) or the constant form of 1dr:

ldr register, =constant

If the source variable is in memory, you must use the 1dr instruction to
fetch the data from memory, as shown in the following examples:

1dr register, [fp, #offset] // Assuming a local variable
ldr register, [sb, #offset] // Assuming variable is in static record

lea reg,,, GlobalVariable // Global variable in arbitrary memory
ldr register, [reg,,]

If the destination is a memory variable, you must first load the source
variable or constant into a register (if it isn’t already in a register) and use
the str instruction to store the value into the memory variable:

str register, [fp, #offset]
str register, [sb, #offset]

lea reg,,, GlobalVariable
str register, [reg,,]




Clearly, the most efficient code occurs when both variables are in a reg-
ister or the destination is a register and the source value is a small constant,
in which case a single mov instruction suffices.

6.3.2 Simple Expressions

The next level of complexity is a simple expression, which takes the form

varl = terml op term2;

where var1 is a variable, term1 and term2 are variables or constants, and op is
an arithmetic operator (addition, subtraction, multiplication, and so on).
Most expressions take this form. It should come as no surprise, then, that
the ARM architecture was optimized for just this type of expression.

Assuming var1, term1, and term2 are all in registers, a typical conversion
for this type of expression takes the form

op varl, termi, term2

where op is the mnemonic that corresponds to the specified operation (for
example, + is add, — is sub, and so forth).
Note that the simple expression

varl = constl op const2z;

is easily handled with a compile-time expression and a single mov instruc-
tion. For example, to compute

varl = 5 + 3;

you would use the single instruction:

mov varl, #5 + 3

If term2 is a (small enough) constant, you can typically use an instruc-
tion of the following form:

op varl, termi, #constant

Exceptions exist, however. Certain instructions, such as mul and udiv/
sdiv, do not allow immediate operands. In such cases, you’ll need to use the
two instructions

mov someReg, #constant
op varl, termi, someReg

where someReg is an available temporary register.
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If term1 is a constant and term2 is a register, you can get away with sim-
ply swapping the two source operands in the instruction for commutative
operations. For example

X0 = 25 + x1;

becomes this:

add x0, x1, #25

For noncommutative operations, such as subtraction and division, this
scheme doesn’t work. You may have to load the constant into a register prior
to the operation.

Of course, if the constant is too large (generally 12 bits for arithmetic
instructions), you’ll have to first load that constant into a register by using
the mov, movk, or ldr instructions.

If your terms are memory variables rather than registers (or constants),
you will need to use the ldr instruction to move the memory variable(s) into
register(s) prior to the operation. Likewise, if the destination variable is in
memory, you will have to use a str instruction to store the value after the
operation is complete. For example

x=y+1z; //x,y, and z are all 32-bit memory variables.

becomes this:

ldr wo, [fp, #y] // Assuming y is a local variable

ldr wi, [sb, #z] // Assuming z is in the static base record
add w2, wo, wi

lea x3, globalvar // Assuming globalVar is a global variable
str w2, [x3] // in the .data section

Here are some examples of common simple expressions (assume x, y,

and z are in WO, W1, and W2):

/] x =y +z; // Signed or unsigned
add wo, wil, w2

/] x =y -1z; // Signed or unsigned
sub wo, wil, w2

/] x =y *z; // Signed or unsigned
mul wo, wi, w2

/l x =y [ z; // Unsigned div

udiv wo, wi, w2



/] x=y [/ z; // Signed div
sdiv w0, wl, w2
// x =y % z; // Unsigned remainder

udiv x0, x1, x2
msub x0, x0, x2, x1

// x =y %z; // Signed remainder

sdiv  x0, x1, x2
msub x0, x0, x2, x1

If any of the operands are memory variables, you will first have to load
them into registers by using the ldr instruction. If any operands are con-
stants, follow the guidelines from the previous section.

6.3.3 Complex Expressions

A complex expression is any arithmetic expression involving more than two
terms and one operator. Such expressions are commonly found in pro-
grams written in an HLL. Complex expressions may include parentheses
to override operator precedence, function calls, array accesses, and so on.
This section outlines the rules for converting such expressions.

Complex expressions that are easy to convert to assembly language
involve three terms and two operators. Here’s an example:

W=w-Yy-z;

Clearly, the straightforward assembly language conversion of this state-
ment requires two sub instructions. However, even with an expression as
simple as this, the conversion is not trivial. You can convert the preceding
statement into assembly language in two ways (assume wis in W0, y is in W1,
and z is in W2):

sub w0, w0, wil
sub wo, w0, w2

or

sub w3, wi, w2
sub wo, w0, w3

Both methods can produce different results, with the first conversion
largely adhering to C language semantics. The problem is associativity. The
second sequence in the preceding example computesw=w - (y - z), which
is not the same asw = (w - y) - z. The placement of the parentheses around
the subexpressions can affect the result.
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Precedence, the order in which operations occur, is another issue.
Consider this expression:

X=w*y+z;

Once again, you can evaluate this expression in one of two ways:

x
n

(w*y) +z;

Xx=w*(y+2);

By now, you're probably thinking that this explanation is crazy—
everyone knows the correct way to evaluate these expressions is to use the
former form. However, this isn’t always correct. The APL programming
language, for example, evaluates expressions solely from right to left and
does not give one operator precedence over another. The “correct” method
depends entirely on how you define precedence in your arithmetic system.

Consider this expression:

X oply op2 z

If op1 takes precedence over op2, this evaluates to (x op1y) op2 z. Otherwise,
if op2 takes precedence over op1, the expression evaluates to x op1 (y op2 z).
Depending on the operators and operands involved, these two computations
could produce different results.

Most HLLs use a fixed set of precedence rules to describe the order
of evaluation in an expression involving two or more different operators.
Such programming languages usually compute multiplication and division
before addition and subtraction. Those that support exponentiation (for
example, FORTRAN and BASIC) usually compute that before multiplica-
tion and division. These rules are intuitive because most people learn them
before high school.

When converting expressions into assembly language, you must be sure
to compute the subexpression with the highest precedence first. The fol-
lowing example demonstrates this technique (assuming multiplication has
higher precedence than addition):

[/ w=x+y*z; [/ Assume w = WO, x = W1, y = W2, and z = W3.

W2 * W3
WL+ (W2 * W3)

mul w4, w2, w3 // W4
add wo, wi, w4 // Wo

If two operators appearing within an expression have the same prece-
dence, use the associativity rules to determine the order of evaluation. Most
operators are left-associative, meaning that they evaluate from left to right.
Addition, subtraction, multiplication, and division are all left-associative.

A right-associative operator evaluates from right to left. The exponentiation



operator in FORTRAN is a good example of a right-associative operator.
For instance:

2**2**3

is equal to

2**(2**3)

not

(2**2)**3

The precedence and associativity rules determine the order of evalua-
tion. Indirectly, these rules tell you where to place parentheses in an expres-
sion to determine the order of evaluation. Of course, you can always use
parentheses to override the default precedence and associativity. However,
the ultimate point is that your assembly code must complete certain opera-
tions before others to correctly compute the value of a given expression.
The following examples demonstrate this principle:

// w=x-y-z // Assume w = WO, x = W1, y = W2, and z = W3.

sub wo, wi, w2 // Evaluate from left to right.
sub wo, wo, w3 // Wo = (x-y)-z

[l w=x+y*z

mul w0, w2, w3 // Must compute y * z first.
add wo, wo, wi // WO = (W2 * W3) + W1 (commutative)

or, even better

madd wo, w2, w3, wi // Wo = (W2 * W3) + W1
/fw=x/]y-z

sdiv wo, wl, w2 // Division has highest precedence.
sub w0, wo, w3 // Wo = (W1 / W2) - W3

[l w=x*y*z

mul wo, wi, w2 // Commutative, so order doesn't matter.
mul wo, wo, w3

The associativity rule has one exception: if an expression involves mul-
tiplication and division, it is generally better to perform the multiplication
first. For example, given an expression of the form

w=x/y*z; // Note: this is (x / y) * z, not x / (y * z).
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it is usually better to compute x * z and then divide the result by y, rather
than dividing x by y and multiplying the quotient by z. Doing the multiplica-
tion first increases the accuracy of the computation. Remember, (integer)
division often produces an inexact result. For example, if you compute 5 / 2,
you will get the value 2, not 2.5. Computing (5 / 2) x 3 produces 6. However,
computing (5 x 3) / 2 gives you the value 7, which is a little closer to the real
quotient (7.5).
Therefore, if you encounter an expression of the form

w=x/y*z; // Assume w = WO, x = W1, y = W2, and z = W3.

you can usually convert it to the following assembly code:

X *z

(x*z)/y

mul wo, wi, w3 // w
sdiv wo, wo, w2 // w

If the multiplication will likely produce an overflow, computing the
division operation first may be better.

If the algorithm you’re encoding depends on the truncation effect of
the division operation, you cannot use this trick to improve the algorithm.
The moral of the story is that you should always make sure you fully under-
stand any expression you are converting to assembly language. If the seman-
tics dictate that you must perform the division first, do so.

Consider the following statement:

Ww=x-y*z; // Assume w = WO, x = W1, y = W2, and z = W3.

Because subtraction is not commutative, you cannot compute y * x
and then subtract x from this result. Rather than use a straightforward
multiplication-and-subtraction sequence, you’ll have to use a temporary
register to hold the product. For example, the following two instructions
use W4 as a temporary:

mul w4, w2, w3 // temp =y * z
sub w0, wi, wd // w=x- (y*z)

As your expressions increase in complexity, the need for temporaries
grows. Consider the following C statement:

w = (a+bb) * (y + z);

Following the normal rules of algebraic evaluation, compute the subex-
pressions inside the parentheses first (that is, the two subexpressions with
the highest precedence) and set their values aside. When you’ve computed
the values for both subexpressions, you can compute their product. One
way to deal with a complex expression like this is to reduce it to a sequence
of simple expressions whose results wind up in temporary variables. For
example, you can convert the preceding single expression into the follow-
ing sequence:



templ = a + bb;
temp2 =y + z;
w = templ * temp2;

Since converting simple expressions to assembly language is easy, it’s
now a snap to compute the former complex expression in assembly, as
shown in the following code:

// Assume w = WO, y = W1, z = W2, a = W3, and bb = W4.

add w5, w3, w4 // templ (W5) = a + bb
add w6, wi, w2 // temp2 (W6) =y + z
mul wo, w5, w6 // w = templ * temp2

Here’s yet another example of a complex arithmetic conversion:

x = (y +2z)* (a-bb)/ 10;

You can convert this to a set of four simple expressions:

templ = (y + z)
temp2 = (a - bb)
templ = templ * temp2
x = templ / 10

You can convert these four expressions into the following assembly lan-
guage statements:

// Assume x = WO, y = W1, z = W2, a = W3, and bb = W4.

add w5, wi, w2 // templ (W5) =y + z

sub w6, w3, w4 // temp2 (W6) = a - bb

mul w5, w5, w6 // templ = templ * temp2

mov w6, #10 // Need a temp to hold constant 10.
sdiv w0, w5, w6 // x = templ / 10

Most important, make sure you keep temporary values in registers for
efficiency. Use memory locations to hold temporaries only if you’ve run out
of registers.

In short, as you've seen, converting a complex expression to assembly
language is a little different from solving the expression by hand. Instead of
computing the result at each stage of the computation, you write the assem-
bly code that computes the result.

6.3.4 Commutative Operators

If op represents an operator, that operator is commutative if the following
relationship is always true:

(AopB)=(BopA)
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As you learned in the previous section, commutative operators are
easy to translate because the order of their operands is immaterial, which
lets you rearrange a computation, often making it easier or more efficient.
Often, rearranging a computation allows you to use fewer temporary vari-
ables. Whenever you encounter a commutative operator in an expression,
check whether you can use a better sequence to improve the size or speed
of your code.

Table 6-3 lists the commutative operators typically found in HLLs.

Table 6-3: Commutative Dyadic (Two-Operand) Operators

Pascal C/C++ and similar Description

+ + Addition

* * Multiplication

and 8& or & Logical or bitwise AND

or || or | Logical or bitwise OR

Xor Z Logical or bitwise exclusive-OR
- == Equality

<> = Inequality

Table 6-4 lists many of the noncommutative operators.

Table 6-4: Noncommutative Dyadic Operators

Pascal C/C++ and similar Description

o = Subtraction

/ or div / Division

mod % Remainder (modulo)

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal

If you encounter any other operator types, check the associated HLL
definition for the operators to determine whether they are commutative or
noncommutative and determine their precedence and associativity.

Logical Expressions

Consider the following logical (Boolean) expression from a C/C++ program:

bb = ((x == y) 8 (a <= ) || ((z - a) I= 5);

Here, bb is a Boolean variable, and the remaining variables are all integers.



Though it takes only a single bit to represent a Boolean value, most
assembly language programmers allocate a whole byte or even a word to
represent Boolean variables. Most programmers (and, indeed, some pro-
gramming languages like C) choose 0 to represent false and anything else
to represent true. Some people prefer to represent true and false with 1
and 0, respectively, and not allow any other values. Others select all 1 bits
(OxFFFF_FFFF_FFFF_FFFF, OxFFFF_FFFF, OxFFFF, or OxFF) for true and
0 for false. You could also use a positive value for true and a negative value
for false.

All these mechanisms have their advantages and drawbacks. Using
only 0 and 1 to represent false and true offers two big advantages. First, the
cset instruction produces this result, so this scheme is compatible with that
instruction. Second, the ARM logical instructions (and, orr, eor, and, to a
lesser extent, mvn) operate on these values exactly as you would expect. If
you have two Boolean variables a and bb, the following instructions perform
the basic logical operations on these two variables:

// d = a AND bb; // Assume d = WO, a = W1, and bb = W2.
and w0, wl, w2

// d=a || bb;

OIT W0, Wl, W2

// d = a XOR bb;

€or W0, wl, w2

// bb = NOT a;

//

// (NOT 0) does not equal 1.

// The AND instruction corrects this problem.

mvn w2, wi
and w2, w2, #1

// Here's an alternative solution (for NOT) using EOR:

eor w2, wi, #1 // Inverts bit 0

The mvn instruction will not properly compute logical negation. The bit-
wise NOT of 0 is OxFF (assuming a byte value), and the bitwise NOT of 1 is
OFEh. Neither result is 0 or 1. However, ANDing the result with 1 gives you
the proper result. You can implement the NOT operation more efficiently
by using the eor instruction (as shown in the last eor example just given)
because it affects only the LO bit.

Using 0 for false and anything else for true has a lot of subtle advan-
tages. The test for true or false is often implicit in the execution of any
logical instruction. However, this mechanism has a major downside: you
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cannot always use the ARM and, orr, eor, and mvn instructions to implement
the Boolean operations of the same name. Consider the two values 0x55
and 0xAA. They’re both nonzero, so they both represent the value true.
However, if you logically AND 0x55 and 0xAA together using the ARM
and instruction, the result is 0. True AND true should produce true, not
false. Although you can account for situations like this, it usually requires
a few extra instructions and is somewhat less efficient when computing
Boolean operations.

A system that uses nonzero values to represent true and 0 to represent
false is an arithmetic logical system. A system that uses two distinct values like
0 and 1 to represent false and true is called a Boolean logical system, or simply
a Boolean system. You can use either system as convenient. Consider this
Boolean expression:

bb = ((x == y) and (a <= d)) || ((z - a) != 5);

The resulting simple expressions might be as follows:

// Assume bb = WO, x = W1, y = W2, a = W3, d = W4, and z = Ws.

cmp wl, w2

cset w6, eq /] templ (W6) = x ==y
cmp w3, wh
cset w7, le // temp2 (W7) = a <=d

and w6, w6, w7 // templ = (x ==y) 8& (a <= d)

sub w7, w5, w3 // temp2 =z - a
cmp w7, #5
cset w7, ne // temp2 = (z - a) !=5

orr wo, we, w7 // WO = templ || temp2

When working with Boolean expressions, don’t forget that you might be
able to optimize your code by simplifying it with algebraic transformations.
In Chapter 7, you'll also see how to use control flow to calculate a Boolean
result, which can be a bit more efficient than using the methods taught by
the examples in this section.

Conditional Comparisons and Boolean Expressions

The conditional comparison instruction, ccmp, is quite useful for encoding
complex Boolean expressions in assembly language. Consider the following
Boolean expression:

bb = (x == y) 8&% (a <= d)

Using the logic from the previous section, you could translate this into
the following assembly language code:



// Assume bb = WO, x = W1, y = W2, a = W3, and d = W4.

cmp  wl, w2
cset w5, eq // templ (W5) = x ==y

cmp w3, wa
cset we, le // temp2 (W6) = a <=d
and w0, w5, w6 // bb = (x ==y) & (a <= d)

By using the conditional comparison instruction, you can keep the tem-
porary values in the condition code flags to shorten your code:

cmp wl, w2
ccmp w3, w4, #0, eq
cset wo, le

The first cmp instruction sets the Z flag if x is equal to y. If that condition
is false, the whole logical expression must return false. If it’s true, this code
has to test whether a is less than or equal to d.

Assuming that x does not equal y, the Z flag will be clear after the first
cmp instruction. In that case, the ccmp instruction will not compare W3 (a) to
W4 (d) but will load the flags with 0b0000 instead (because the ccmp instruc-
tion compares only the first two operands if the condition, eq, is true; at this
point, it is not). Because all the flags are clear (meaning N==VandZ != 1),
the le condition for the cset is false; therefore, that instruction will store a 0
into WO (bb), exactly what you want.

On the other hand, if x is equal to y, the eq condition for the ccmp
instruction will be true and will compare the value of W3 (a) to W4 (d). If a
is less than or equal to d, the N, V, and Z flags will be set in such a way that
the cset instruction moves a 1 into W0. Otherwise, cset will move a 0 into
WO, which is again exactly what you want. This sequence with only three
instructions does the work of the earlier sequence with five instructions, a
huge win.

6.5.1 Implementing Conjunction Using ccmp

Consider this C/C++ logical expression:

(a cc, bb) && (c cc, d)

In general, to convert this expression containing the logical conjunction
operator (8&) into ARM assembly using conditional comparison instructions,
you would use the following five steps:

1. Compare the operands on the left-hand side of the conjunction opera-
tor, cc, (see Table 6-5).

2. Immediately after the first comparison, execute a ccmp instruction, sup-
plying cc, as the conditional field.
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3. Choose the corresponding #nzcv encoding from the opposite column in
Table 6-5 to match cc,. The full ccmp instruction should be:

cecmp ¢, d, #nzcvop, cc,

4. The last instruction in the sequence should test cc,, as in the following
example:

cset xo0, cc,

5. If cc, fails, the ccmp instruction will set the flags to the #nzcv, value and
not compare c against d. Since you want the Boolean expression to yield
false in this situation, choose an #nzev,, value that is the opposite of cc,
so that the following test (for example, cset) produces a false result. If
cc, is true upon executing the ccmp instruction, ccmp will compare ¢ and d
and set the flags.

Table 6-5: Conditional Operators, Opposites, and NZCV Settings

C/C++ Operator  #nzcv Opposite  #nzcv,,

= eq 0b0100 ne 0b0000
I= ne 0b0000 eq 0b0100
> (unsigned) hi 0b0010 1s 0b0100
>= (unsigned) hs 0b0110 lo 0b0000
< (unsigned) 1o 0b0000 hs 0b0110
<= (unsigned) 1s 0b0100 hi 0b0010
> (signed) gt 0b0000 le 0b0101

>= (signed) ge 0b0100 1t 0b0001
< (signed) 1t 0b0001 ge 0b0100
<= (signed) le 0b0101 gt 0b0000
Same as hs cs 0b0010 cc 0b0000
Same as lo cc 0b0000 cs 0b0010
N/A vs 0b0001 ve 0b0000
N/A vC 0b0000 Vs 0b0001
N/A mi 0b1000 pl 0b0000
N/A pl 0b0000 mi 0b1000

Because keeping the flag settings for the third ccmp operand straight in
your mind is difficult and error-prone, the aoaa.incinclude file contains sev-
eral defines to make it easy to choose these values, as well as some defines
for opposite conditions. Table 6-6 lists these defines and their values.
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Table 6-6: NZCV Constant Defines

Condition Define Value

eq cceq 0b0100 (nZcv)
ne ccne 0b0000 (nzcv)
hi cchi 0b0010 (nzCv)
hs cchs 0bO0110 (nZCv)
1o cclo 0b0000 (nzcv)
1s ccls 0b0100 (nZcv)
gt cegt 0b0000 (nzcv)
ge ccge 0b0100 (nZcv)
1t cclt 0b0001 (nzcV)
le ccle 0b0101 (nZcV)
cs cccs 0b0010 (nzCv)
cc cccc 0b0000 (nzcv)
Vs cevs 0b0001 (nzcV)
vc ceve 0b0000 (nzcV)
mi cemi 0b1000 (Nzcv)
pl cepl 0b0000 (nzcv)

Table 6-7 lists some common antonyms (opposite conditions).

Table 6-7: NZCV Antonym Constants

Condition Define Same as
Not hi cenhi ccls
Not hs ccnhs cclo
Not lo cenlo cchs
Not 1s cenls cchi
Not gt cengt ccle
Not ge cenge cclt
Not 1t cenlt ccge
Not le cenle cegt

Using these symbols instead of constants for the immediate ccmp
instruction operand can make your code easier to read and understand.

Sometimes specifying the opposite condition in one of the conditional
instructions can create confusion. It’s easy to think that the opposite of
“less than” is “greater than” when it’s actually “greater than or equal,” for
example. To help reduce this confusion, the aoaa.incinclude file also pro-
vides defines for several opposite conditions, as listed in Table 6-8.
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Table 6-8: Opposite Condition Defines

Condition Opposite define
lo nlo (same as hs)
1s nls (same as hi)
hi nhi (same as 1s)
hs nhs (same as 1o)
gt ngt (same as le)
ge nge (same as 1t)
1t nlt (same as ge)
le nle (same as gt)

By using the aoaa.inc definitions, you can make your code easier to read
and understand.

6.5.2 Implementing Disjunction Using ccmp

The conditional comparison can also be used to simulate disjunction (logi-
cal OR). Consider the following expression:

bb = (x ==y) || (a <= d)

Here’s the translation of this expression to assembly language:

cmp wil, w2
ccmp w3, w4, #0b0100, ne // 0b0100 is .Z.. or use #cceq
cset wo, le // or #ccle

Notice how the conditional compare instruction tests for the not equal
condition. If x is equal to y, you don’t need to do this comparison. In that
case, the ccmp instruction will load 0b0100 into the condition codes, which
sets Z to 1 and clears all the other flags. When the cset instruction tests for
less than or equal, the equal condition (Z = 1) exists, setting WO (bb) to 1.
Comparing a and d plays no role in the computation of bb’s value.

If x does not equal y, the ne condition will exist when the program exe-
cutes the ccmp instruction. Therefore, ccmp will compare a and d and set the
condition code bits on the basis of that comparison. At that point, the cset
instruction will set bb’s value based on the comparison of a and d.

The following algorithm describes how to convert an expression
containing disjunction into ARM assembly language using a conditional
comparison:

(a cc, bb) || (c cc, d)

Here are the four steps to follow for this conversion:

1. Compare the operands on the left-hand side of the disjunction opera-
tor (operator is cc,).
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2. Immediately after the first cmp instruction, execute a ccmp instruc-
tion, supplying the opposite of cc, as the conditional field (return to
Table 6-5 to find the opposite conditions).

3. Choose the corresponding #nzcv encoding from the regular column in
Table 6-5 to match cc,. The full ccmp instruction should be as follows:

cemp ¢, d, #nzcv, opposite(cc,)

4. The last instruction in the sequence should test cc,. For example:

cset x0, cc,

If cc, succeeds, the cemp instruction will set the flags to the #nzcv,, value
and not compare c against d, because you've chosen the opposite of cc, for
the cecmp condition. As you want the Boolean expression to yield true in this
situation, choose an #nzcv,, value that is the same as cc, so that the following
test (for example, cset) produces a true result. If cc, is false upon executing
the cemp instruction, ccmp will compare ¢ and d and set the flags appropriate
for the following test.

6.5.3 Handling Complex Boolean Expressions

You can extend the Boolean expressions by adding additional ccmp instruc-
tions to the sequence. Just keep in mind that, at least in C/C++, conjunction
has higher precedence than disjunction, so you must modify your order

of evaluation to handle conjunction first when expressions contain both
operators.

Also note that the ccmp scheme uses complete Boolean evaluation (mean-
ing it evaluates every subterm of the Boolean expression), whereas the C++
programming language uses short-circuit Boolean evaluation (which may not
compute all subterms). Chapter 7 covers these two forms in greater detail,
but for now, just know that the two forms may produce different results.

Machine and Arithmetic Idioms

An idiom is an idiosyncrasy (a peculiarity). Several arithmetic operations
and ARM instructions have idiosyncrasies that you can take advantage

of when writing assembly language code. Some people refer to the use of
machine and arithmetic idioms as tricky programming that you should always
avoid in well-written programs. While it is wise to avoid tricks just for the
sake of tricks, many machine and arithmetic idioms are well known and
commonly found in assembly language programs. This section provides an
overview of the idioms you’ll see most often.

6.6.1 Multiplying Without mul

When multiplying by a constant, you can sometimes write equivalent code
by using shifts, additions, and subtractions in place of multiplication
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instructions. Although performance differs little between using a mul
instruction and other arithmetic instructions, some addressing mode vari-
ants involving shifts can spare you an extra multiply instruction.

Remember, a 1sl instruction computes the same result as multiplying the
specified operand by 2. Shifting to the left two bit positions multiplies the
operand by 4. Shifting to the left three bit positions multiplies the operand
by 8. In general, shifting an operand to the left n bits multiplies it by 2". You
can multiply any value by a constant by using a series of shifts and additions
or shifts and subtractions. For example, to multiply the WO register by 10,
you need only multiply it by 8 and then add 2 times the original value. That
is, 10 x WO =8 x W0 +2 x WO. Use the following code to accomplish this:

1s1 wo, wo, #1 // WO = WO * 2
add wo, wo, wo, 1sl #2 // Wo = (Wo * 2) + (Wo * 8)

The first instruction multiplies W0 by 2, so when the second instruction
shifts WO 2 bits to the left, it’s actually shifting the original W0 value to the
left by 3 bits.

Looking at the instruction timings, you'll see that the multiply instruc-
tion executes at the same speed as the 1s1 or add instructions, so this second
sequence isn’t faster. However, if you have to load the constant 10 into a
register to do the multiplication by 10, this sequence is no slower. If you've
already done the shift as part of another calculation, this sequence could
turn out to be faster.

You can also use subtraction with shifts to perform a multiplication
operation. Consider the following multiplication by 7:

sub w0, wo, wo, 1sl #3 // Actually computes WO * (-7)
neg wo, wo // Fix sign.

Beginning assembly language programmers commonly make the error
of subtracting or adding 1 or 2 rather than W0 x 1 or WO x 2. The following
does not compute WO x 7

1s1 wo, wo, #3
sub wo, wo, #1

Rather, this code computes (8 x W0) — 1, which is entirely different
(unless, of course, W0 =1). Beware of this pitfall when using shifts, addi-
tions, and subtractions to perform multiplication operations.

The Operand?2 addressing mode variations, particularly those involving
1s1, are quite useful for combining shifts along with other arithmetic opera-
tions. For example, consider the following pair of instructions:

1s1 wo, wo, #3
add w1, wil, wo




You can easily replace this by a single instruction:

add w1, wi, wo, 1sl #3

Because RISC CPUs, such as the ARM, tend to execute most instruc-
tions in a single CPU clock cycle, using strength-reduction optimizations like
substituting shifts and adds for multiplication rarely pays off. Generally, a
single shift instruction (for a multiplication by a power of 2) may produce
better results than mul; beyond that, it’s unlikely to improve the speed,
unless you need those shifts and adds for other calculations.

6.6.2 Dividing Without sdiv or udiv

Just as the 1sl instruction is useful for simulating a multiplication by a
power of 2, the 1sr and asr instructions can simulate a division by a power
of 2. Unfortunately, you cannot easily use shifts, additions, and subtractions
to perform division by an arbitrary constant. Therefore, this trick is useful
only when dividing by powers of 2. Also, don’t forget that the asr instruction
rounds toward negative infinity, unlike the sdiv instruction, which rounds
toward 0.

On the ARM64 CPU, the division instructions tend to take about twice
as long as other instructions to execute. Therefore, if you can simulate a
division by a power of 2 by using a single shift-right instruction, your code
will run a little faster. You can also divide by a value by multiplying by its
reciprocal. This is usually faster than division, since the multiply instruction
is faster than the divide instruction.

To multiply by a reciprocal when dealing with integers, you must cheat.
If you want to multiply by 1/10, there is no way you can load the value 1/10
into an ARM integer register prior to performing the multiplication. It
won’t work to multiply 1/10 by 10, perform the multiplication, and divide
the result by 10 to get the final result. In fact, this would make performance
worse, because you're now doing a multiplication by 10 as well as a division
by 10. However, suppose you multiply 1/10 by 65,536 (6,554), perform the
multiplication, and then divide by 65,536. Consider the following code that
divides WO by 10:

mov wl, #6554
mul wo, wo, wil
1sr wo, w0, #16 // Division by 65,536

This code leaves WO / 10 in the WO register. To understand how this
works, consider what happens when you use the mul instruction to multiply
WO by 65,536 (0x1_0000). This moves the LO half word of W0 into the HO
half word and sets the LO half word to 0 (a multiplication by 0x1_0000 is
equivalent to a shift left by 16 bits). Multiplying by 6,554 (65,536 divided
by 10) puts WO divided by 10 into the HO half word of the WO register.

Multiplying by a reciprocal works well only when dividing by a constant,
such as 10. While you could coerce the calculation with multiple instruc-
tions to divide a register by a nonconstant value, the udiv/sdiv instructions
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would certainly be faster by that point; it’s questionable whether multiply-
ing by a reciprocal is faster than a division.

6.6.3 Implementing Modulo-N Counters with AND

To implement a counter variable that counts up to 2" — 1 and then resets to 0,
use the following code

add wo, wo, #1
and w0, w0, #nBits

where nBits is a binary value containing n bits of 1s right-justified in the
number. For example, to create a counter that cycles from 0 to 15 (2! - 1),
you could use the following:

add wo, wo, #1
and w0, w0, #0b1111

6.6.4 Avoiding Needlessly Complex Machine Idioms

The machine idioms you've just learned work well to improve performance
on older complex instruction set computers (CISCs) that typically take a
varying number of CPU clock cycles to execute each instruction. Complex
instructions like division can take upward of 50 clock cycles on an x86 CPU,
for example. RISC CPUs, such as the ARM, try to execute instructions in
one clock cycle. While the ARM doesn’t always achieve this (sdiv and udiv
are a little slower, for example), the additional time required doesn’t justify
replacing the instruction with a long sequence of other instructions.

Using machine idioms makes your code harder to read and under-
stand. If using a machine idiom offers no clear performance benefit, stick
with using easier-to-understand code. Those who work on your project
afterward (including yourself, in the future) will thank you.

Floating-Point and Finite-Precision Arithmetic

Before discussing how the ARM CPU implements floating-point arithmetic,
it is worthwhile to first describe the mathematical theory behind floating-
point arithmetic and the problems you will encounter when using it. This
section presents a simplified model to explain floating-point arithmetic and
why you cannot apply standard algebraic rules to calculations involving it.

6.7.1 Basic Floating-Point Terminology

Integer arithmetic does not let you represent fractional numeric values.
Therefore, modern CPUs support an approximation of real arithmetic:
Sloating-point arithmetic. To represent real numbers, most floating-point for-
mats employ scientific notation and use a certain number of bits to repre-
sent a mantissa and a smaller number of bits to represent an exponent.



For example, in the number 3.456e+12, the mantissa consists of 3.456,
and the exponent digits are 12. Because the number of bits is fixed in
computer-based representations, computers can represent only a certain
number of digits (known as significant digits) in the mantissa. For example,
if a floating-point representation could handle only three significant
digits, then the fourth digit in 3.456e+12 (the 6) could not be accurately
represented with that format, as three significant digits can represent only
3.45e+12 or 3.46e+12 correctly.

Because computer-based floating-point representations also use a finite
number of bits to represent the exponent, that exponent also has a limited
range of values, approximately ranging from 10 =38 for the single-precision
format to about 10 %% for the double-precision format. This is known as
the dynamic range of the value. Denormalized numbers (which I'll define
shortly) can represent values as small as +4.94066 x 107324,

6.7.2 Limited-Precision Arithmetic and Accuracy

A big problem with floating-point arithmetic is that it does not follow the
standard rules of algebra. Normal algebraic rules apply only to infinite-
precision arithmetic. Therefore, if you translate an algebraic formula into
code, that code might produce different results from what you would (math-
ematically) expect. This can introduce defects in your software.

Consider the simple statement x = x + 1, where x is an integer. On any
modern computer, this statement follows the normal rules of algebra as
long as overflow does not occur. That is, this statement is valid only for certain
values of x (minint < x < maxint). Most programmers do not have a problem
with this because they are well aware that integers in a program do not fol-
low the standard algebraic rules (for example, 5 / 2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any
of the (integer) values above the maximum integer or below the minimum
integer. Floating-point values suffer from this same problem, only worse.
After all, integers are a subset of real numbers. Therefore, the floating-point
values must represent the same infinite set of integers. However, an infinite
number of real values exist between any two integer values. In addition to
having to limit your values between a maximum and minimum range, you
cannot represent all the values between any pair of integers either.

To demonstrate the impact of limited-precision arithmetic, this chapter
adopts a simplified decimal floating-point format for our examples. This
format provides a mantissa with three significant digits and a decimal expo-
nent with two digits. The mantissa and exponents are both signed values, as
shown in Figure 6-1.

SN P

Figure 6-1: A floating-point
format
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When adding and subtracting two numbers in scientific notation,
you must adjust the two values so that their exponents are the same.
Multiplication and division don’t require the exponents to be the same;
instead, the exponent after a multiplication is the sum of the two operand
exponents, and the exponent after a division is the difference of the divi-
dend and divisor’s exponents.

For example, when adding 1.2el and 4.5¢0, you must adjust the values
so that they have the same exponent. One way to do this is to convert 4.5e0
to 0.45el and then add, producing 1.65¢l. Because the computation and
result require only three significant digits, you can compute the correct
result via the representation shown in Figure 6-1.

However, suppose you want to add the two values 1.23el and 4.56¢0.
Although both values can be represented using the three-significant-digit
format, the computation and result do not fit into three significant digits.
Thatis, 1.23el +0.456el requires four digits of precision in order to com-
pute the correct result of 1.686, so you must either round or truncate the
result to three significant digits. Rounding generally produces the most
accurate result, so round the result to obtain 1.69el.

In fact, the rounding does not occur after adding the two values
together (that is, producing the sum 1.686¢l and then rounding this to
1.69el), but rather when converting 4.56e0 to 0.456¢l, because four digits
of precision are required to maintain the value 0.456e¢l. Therefore, during
the conversion, you have to round 0.456el to 0.46e¢l so that the result fits
into three significant digits. The sum of 1.23el and 0.46el then produces
the final rounded sum of 1.69el.

As you can see, the lack of precision (the number of digits or bits main-
tained in a computation) affects the accuracy (the correctness of the com-
putation). In the addition/subtraction example, you could round the result
because you maintained four significant digits during the calculation (spe-
cifically, when converting 4.56e0 to 0.456el). If your floating-point calcula-
tion had been limited to three significant digits during computation, you
would have had to truncate the last digit of the smaller number, obtaining
0.45el and producing a sum of 1.68el, a value that is even less accurate.

To improve the accuracy of floating-point calculations, it is useful to
maintain one or more extra digits for use during the calculation, such as
the extra digit used to convert 4.56e0 to 0.456el. Extra digits available
during a computation are known as guard digits (or guard bits in the case
of a binary format). They greatly enhance accuracy during a long chain
of computations.

6.7.3 Errors in Floating-Point Calculations

In a sequence of floating-point operations, errors can accumulate and
greatly affect the computation itself. For example, suppose you were to add
1.23e3 to 1.00€0. Adjusting the numbers so their exponents are the same
before the addition produces 1.23e3 +0.001e3. The sum of these two val-
ues, even after rounding, is 1.23e3. This might seem perfectly reasonable;



after all, you can maintain only three significant digits, so adding in a small
value shouldn’t affect the result at all.

However, suppose you were to add 1.00e0 to 1.23e3 ten times (though
not in the same calculation, where guard digits could maintain the fourth
digit during the calculation). The first time you add 1.00e0 to 1.23e3, you
get 1.23e3. You get this same result the second, third, fourth . .. and tenth
times you add 1.00e0 to 1.23e3. On the other hand, had you added 1.00e0
to itself 10 times, then added the result (1.00el) to 1.23e3, you would have
gotten a different result, 1.24e3. Keep in mind this important guideline for
limited-precision arithmetic:

When performing complex operations, watch the order of evaluation, as it
can affect the accuracy of the result.

You'll get more accurate results if the relative magnitudes (the expo-
nents) are close to one another when adding and subtracting floating-point
values. If you're performing a chain calculation involving addition and sub-
traction, attempt to group the values appropriately.

When computing addition and subtraction, you can also wind up with
false precision. Consider the computation 1.23e0 — 1.22¢0, which produces
0.01e0. Although the result is mathematically equivalent to 1.00e — 2, this
latter form suggests that the last two digits are exactly 0. Unfortunately,
you have only a single significant digit at this time (remember, the original
result was 0.01e0, and those two leading Os were significant digits). Indeed,
some floating-point unit (FPU) or software packages might actually insert
random digits (or bits) into the LO positions. This highlights a second
important rule concerning limited-precision arithmetic:

When subtracting two numbers with the same signs (or adding two num-

bers with different signs), be aware that the result may contain high-order
significant digits (bits) that are 0. This reduces the number of significant

digits (bits) by a like amount in the final result. If possible, try to arrange

your calculations to avoid this.

By themselves, multiplication and division do not produce particularly
poor results. However, they tend to multiply any error that already exists in
avalue. For example, if you multiply 1.23e0 by 2 when you should be mul-
tiplying 1.24e0 by 2, the result is even less accurate. This leads to a third
important rule for working with limited-precision arithmetic:

When performing a chain of calculations involving addition, subtraction,
multiplication, and division, try to perform the multiplication and division
operations first.

Often, by applying normal algebraic transformations, you can arrange
a calculation so the multiply and divide operations occur first. For example,
suppose you want to compute x * (y+ z). Normally, you would add y and z
together and multiply their sum by x. However, your results will be a little
more accurate if you transform x * (y+2z) toget x * y+ x * z and compute
the result by performing the multiplications first. Of course, the drawback
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is that you must now perform two multiplications rather than one, so the
result may be slower.

Multiplication and division have their own problems. When multiply-
ing two very large or very small numbers, it is quite possible for overflow or
underflow to occur. The same situation occurs when dividing a small num-
ber by a large number, or dividing a large number by a small (fractional)
number. This brings us to a fourth rule to follow when multiplying or divid-
ing values:

When multiplying and dividing sets of numbers, try to arrange the multi-
plications so that they multiply large and small numbers together; likewise,
try to divide numbers that have the same relative magnitudes.

6.7.4 Floating-Point Value Comparisons

Given the inaccuracies present in any computation (including converting
an input string to a floating-point value), you should never compare two
floating-point values to see if they are equal. In a binary floating-point for-
mat, different computations that produce the same (mathematical) result
may differ in their least significant bits. For example, 1.31e0 + 1.69e0 should
produce 3.00e0. Likewise, 1.50e0 + 1.50€0 should also produce 3.00¢0.
However, if you were to compare (1.31e0+ 1.69¢0) against (1.50e0 +1.50€0),
you might find out that these sums are not equal to each other.

The test for equality succeeds if and only if all bits (or digits) in the two
operands are exactly the same. Because this is not necessarily true after two
different floating-point computations that should produce the same result,
a straight test for equality may not work. Instead, use the following test:

if Value1l >= (Value2 - error) and Valuei <= (Value2 + error) then ...

Another common way to handle this same comparison is to use a state-
ment of this form:

if abs(Value1l - Value2) <= error then ...

In these statements, error should be a value slightly greater than the
largest amount of error that will creep into your computations. The exact
value will depend on the particular floating-point format you use. In short,
follow this final rule:

When comparing two floating-point numbers, always compare one value
to see whether it is in the range given by the second value plus or minus a
small error value.

Many other little problems can occur when using floating-point values.
This book points out only some of the major problems and will make you
aware that you cannot treat floating-point arithmetic like real arithmetic
because of the inaccuracies present in limited-precision arithmetic. A good
text on numerical analysis or even scientific computing can help fill in the
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details. If you plan to work with floating-point arithmetic in any language,
take the time to study the effects of limited-precision arithmetic on your
computations (see section 6.13, “For More Information,” on page 352).

Now that you've seen the theory behind floating-point arithmetic, we’ll
review the ARM’s implementation of floating-point.

Floating-Point Arithmetic on the ARM

When the ARM CPU was first designed, floating-point arithmetic was
among the set of “complex” instructions that RISC CPUs avoided. Those
who required floating-point arithmetic were forced to implement it in
software. As time passed, it became clear that high-performance systems
required fast floating-point arithmetic, so it was added to the ARM’s
instruction set.

The ARM64 supports the IEEE single- and double-precision floating-
point formats (see section 2.13, “IEEE Floating-Point Formats,” on page 93),
as well as a 16-bit half-precision floating-point format that appeared in later
revisions of the IEEE standard. To support floating-point arithmetic, the
ARM provides an extra set of registers and augments the instruction set
with suitable floating-point instructions. Originally, these types of instruc-
tions were handled by coprocessors—separate chips that handled floating-
point instructions (while the main CPU handled integer operations). In the
ARMG64 architecture, the FPU is built into the main CPU’s integrated circuit.

The following subsections introduce the floating-point register set, the
floating-point status register, and the floating-point control register. These
are the programmer-visible components of the floating-point hardware on

the ARM CPU.

6.8.1 Neon Registers

To support floating-point arithmetic, the ARM64 provides a second set of
32 registers specifically tailored to hold floating-point and other values.
These are known as the Neon registers because, in addition to supporting sca-
lar floating-point (FP) arithmetic, they also support vector arithmetic using
the Neon instruction set extensions, covered in Chapter 11.

The 32 main FP/Neon registers are 128 bits each. Just as the general-
purpose registers are divided into two sets based on their size (Wn and Xn),
the FP/Neon registers are broken into five groups based on their size:

V0 to V31 The 128-bit vector registers (for Neon instructions), also ref-
erenced as QO to Q31, the qword registers. The Vr names
support special syntax for vector operations.

DO to D31 The 64-bit double-precision floating-point registers.
S0 to S31  The 32-bit single-precision floating-point registers.
HO to H31 The 16-bit half-precision floating-point registers.
B0 to B31 The 8-bit byte registers.
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In addition to the 32 main registers, this set includes two special-
purpose floating-point registers: the floating-point status register (FPSR)
and the floating-point control register (FPCR), shown in Figure 6-2. You’ll
learn more about these registers in the following subsections.

127 0

V31
V30
V29
V28
V27
V26
V25
V24
V23
V22
V21
V20
V19
V18
V17
Vié
V15
Vi4
Vi3
V12
V11
V10
Vo
V8
V7
Vé
V5
V4
V3
V2
Vi
VO

FPCR
FPSR

Figure 6-2: The FP/Neon registers

The Bn, Hn, Sn, Dn, and Vn registers overlay one another, as shown in
Figure 6-3.
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Figure 6-3: The FP/Neon register overlays

For historical reasons, the even-numbered single-precision registers

Vn
Dn
Sn, S(n + 1)
Hn
Bn

(50, 82, ...,830) are mapped to bits 0 through 31 in DO through D15, and
the odd-numbered single-precision registers are mapped to bits 32 through
64. No Sn registers are mapped to D16 through D31 (see Figure 6-4).

63
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D10
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D5
D4
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D1
DO

Figure 6-4: How Sn registers overlay Dn

registers

The following sections concentrate mainly on the Dn and S» register
sets. This book doesn’t discuss half-precision floating-point arithmetic in
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depth, as it’s used mainly by graphics processing units (GPUs) and certain
graphics routines. The floating-point hardware doesn’t actually work with
half-precision values—it only allows you to convert between half- and single-
or double-precision values.

Most of the ARM floating-point instructions operate on the Dn or Sn
registers. This chapter collectively refers to these registers as Fn, mean-
ing you can substitute any double- or single-precision register for Fn. I will
also note exceptions as needed. Vector registers (Vn) are the subject of
Chapter 11.

6.8.2 Control Register

The floating-point control register (FPCR) specifies how certain floating-point
operations take place. Although this register is 32 bits, only 6 bits are used,
as you can see in Figure 6-5.

26 25 24 23 22 19 15 0

1 N I I D B B

ap—| T Lrz16
DN

FZ

Figure 6-5: The FPCR layout
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Table 6-9 describes the meaning of each of these bits.

Table 6-9: FPCR Bits

Bit(s) Name  Description

19 FZ16 Flush-to-zero mode for half-precision arithmetic. O = disabled,
1 = enabled. This replaces denormalized values with 0. The result
may not be as precise, but the instructions may execute faster.

22,23 Rmode Rounding mode: 00 = round to nearest, 01 = round to +infinity,
10 = round to —infinity, 11 = truncate (round toward 0).

24 FZ Flush-to-zero mode for single- and double-precision arithmetic.

25 DN Default NaN (not a number) mode. O = disable default NaN
mode, 1 = enable. When disabled, NaNs propagate through
arithmetic operations; when enabled, invalid operations return the
default NaN.

26 AHP Alternate half-precision bit. Enables (1) alternate half-precision
mode or (0) IEEE half-precision mode.

For the most part, you’ll leave all these bits set to 0. Setting Rmode to
Obll is a reasonable change when you want to truncate rather than round a
floating-point calculation.

To manipulate the FPCR register, use the mrs (move system to register)
and msr (move register to system) instructions, specifying FPCR as the sys-
tem register:



mrs Xn, FPCR // Copies FPCR to Xn
msr FPCR, Xn // Copies Xn to FPCR

For example, to clear all the (defined) bits in the FPCR, you’d use the
following instructions:

mrs x0, fpcr

mov x1,  #oxffff // Load 0xf836ffff into X1, which is
movk x1,  #0xf836, 1sl #16 // not a valid logical instr immediate value.
and x0, x0, x1 // Must put it in a register.

msr fpcr, x0

Set the rounding mode to truncate with the following instructions:

mrs x0, fpcr
orr x0, X0, #0x00c00000 // Is valid logical instr immediate value
msr fpcr, x0

The default FPCR settings are unknown on a warm reset, so you should
always initialize this register before performing floating-point operations.

6.8.3 Status Register

The FPSR holds status information about ARM floating-point hardware.
Reading this register provides the current floating-point status, while writ-
ing to it allows you to clear exception conditions. Although this is a 32-bit
register, only 11 bits are defined and, in fact, only 7 of those are used in
64-bit mode (see Figure 6-6).

31 30 29 28 27 26 7 6 5 4 3 2 1 0
|N|Z|C|V|QC| | | |IDC| | |IXC|UFC|OFC|DZC|IOC‘

Figure 6-6: The FPSR layout
Table 6-10 describes the purpose of each of the bits in the FPSR.

Table 6-10: FPSR Bits

Bit(s) Name Definition

0 IOC Invalid operation cumulative flag. This bit is set when the result
of an operation has no mathematical value or cannot be
represented.

1 DzC Division by zero cumulative flag. This bit is set when a division

by zero occurs.

2 OFC Overflow cumulative flag. This bit is set when a floating-point
operation causes an overflow situation.

(continued)
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Table 6-10: FPSR Bits (continued)

Bit(s) Name Definition

3 UFC Underflow cumulative flag. This bit is set when underflow occurs
during an arithmetic operation.

4 IXC Inexact cumulative flag. This bit is set (often!) when a floating-
point operation produces an inexact result.

7 IDC Input denormal cumulative flag. This bit is set when a denormal-
ized input operand is replaced in the computation by a zero.

27 QC Saturation cumulative flag. This flag is set when a saturation
instruction clips a value. See Chapter 11 for a discussion of the
saturating instructions.

28-31 N, C,Z V These flags are used only in 32-bit mode. In 64-bit mode, the
floating-point comparisons and other instructions directly set the
N, Z, C, and V flags in the PSTATE register.

You can read and write the FPSR with the mrs and msr instructions, using
FPSR as the system register name. Read the FPSR to determine if any floating-
point exceptions have occurred, and write the FPSR to clear the exception
bits (by writing Os to the affected bits in the register). For example the follow-
ing code clears the Invalid Operation Cumulative flag in the FPSR:

mrs x0, FPSR
and x0, x0, #-2 // Clear I0C bit (-2 is OXFFFF...FE).
msr FPSR, xO

Floating-Point Instructions

The FPU adds many instructions to the ARM instruction set. I will classify
these as data movement instructions, conversions, arithmetic instructions,
comparisons, and miscellaneous instructions. This section describes each
instruction in these categories.

6.9.1 FPU Data Movement Instructions

The data movement instructions transfer data between the internal FPU reg-
isters and memory. The instructions in this category are ldr/ldur, str/stur,
1dp/1ldnp, stp/stnp, and fmov.

6.9.1.1 Idr/ldur and str/stur

The 1dr and str instructions load one of the FPU registers from a memory
location, using the normal memory addressing modes. The ldur/stur
instructions force an unscaled load or store operation, for cases where
the assembler might choose a scaled indirect-plus-offset mode. Generally,
rather than using ldur/stur, you'd let the assembler pick the appropriate
underlying machine coding for you.



You can specify any of the FPU register names when using this instruc-
tion. For example, the following code loads the specified floating-point reg-
isters from memory:

ldr go, [x0] // Loads 128 bits from memory
ldr do, [x0] // Loads 64 bits from memory
1dr so0, [x0] // Loads 32 bits from memory
1dr bo, [x0] // Loads 8 bits from memory

6.9.1.2 Idp/ldnp and stp/stnp

The 1dp and stp instructions work similarly to their integer counterparts
with floating-point registers: they load or store a pair of registers at a time.
These instructions do not support the Hn or Bn registers; you can load only
word, dword, or qword FPU registers using these instructions.

The following examples demonstrate loading 256, 128, and 64 bits from
memory:

ldp q0, q1, [x0] // Loads 256 bits from memory
1dp do, d1, [x0] // Loads 128 bits from memory
ldp so, s1, [x0] // Loads 64 bits from memory

The 1dnp and stnp instructions do nontemporal loads and stores. This
informs the CPU that you don’t intend to access the specified memory loca-
tion again in the near future, so the CPU won’t copy the data into its cache
(a convenient example of what you can do in assembly and not in an HLL).
This can improve performance by helping to prevent a situation known as
thrashing, in which the CPU constantly moves data in and out of the cache
memory.

6.9.1.3 fmov

The fmov instruction transfers data between two like-sized floating-point
registers (where both registers are either 32 or 64 bits), or between a 32- or
64-bit general-purpose (GP) register and a like-sized floating-point register.
Here is the allowable syntax for this instruction:

fmov Sd, Sn // Move data between two 32-bit FP registers.
fmov Dd, Dn // Move data between two 64-bit FP registers.
fmov Sd, Wn // Move data from a 32-bit GP to an FP register.
fmov Wd, Sn // Move data from a 32-bit FP to a GP register.
fmov Dd, Xn // Move data from a 64-bit GP to an FP register.
fmov Xd, Dn // Move data from a 64-bit FP to a GP register.

Moving a general-purpose register into a floating-point register does
not convert an integer value in the GP register to a floating-point value;
such an fmov operation assumes that the GP register contains the bit pattern
for a floating-point number. Likewise, moving a floating-point register into
a general-purpose register does not convert the floating-point value into
an integer.
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6.9.1.4 fmov with Inmediate Operand

The ARM provides an fmov instruction that allows a very limited immediate
operand. The syntax is as follows

fmov Sd, #fimm
fmov Dd, #fimm

where fimm is a floating-point constant from a very small set of possible val-
ues. The allowable values are =n / 16 x 2", where 16 < n < 31 and -3 < m < 4.
This means you can represent values such as 1.0 or —2.0 but cannot repre-
sent 1.2345e5.

You cannot represent the value 0.0 with this immediate form. However,
you can load 0.0 into a floating-point register by using one of the following
two instructions:

fmov Sd, wzr
fmov Dd, xzr

If you want to load an arbitrary floating-point constant into a register,
you will have to stick that constant into a memory location, using the .single
or .double directive, and load the register from that location. Unfortunately,
the 1dr instruction doesn’t accept floating-point immediate operands:

ldr do, =10.0 // Generates an error

Fortunately, the PC-relative addressing mode does work, so you can
access memory locations you've initialized in your .text section (preferably
in the .pool area), as the following example demonstrates:

.code
.pool
fp10:  .double 10.0

ldr do, fp1o

By adding the .pool directive, Gas can embed other assembler-generated
constants in this area too.

6.9.2 FPU Arithmetic Instructions

The ARM CPU provides a large set of floating-point instructions that oper-
ate on single-precision and double-precision floating-point values. As for
the integer operations, most of these instructions require three (floating-
point) register operands: a destination, a left source, and a right source.
Table 6-11 lists the syntax for the arithmetic instructions. In this table,
Fd, Fn, Fm, and Fa represent floating-point registers and can be Sn or Dn



(n=0 to 31), depending on the precision of the instruction. For a given
instruction, all registers must be the same size (32 or 64 bits).

Table 6-11: Floating-Point Arithmetic Instructions

Instruction Operands Description

fadd Fd, Fn, Fm Fd = Fn + Fm

fsub Fd, Fn, Fm Fd=Fn-Fm

fmul Fd, Fn, Fm Fd = Fn x Fm

fnmul Fd, Fn, Fm Fd = —(Fn x Fm)

fmadd Fd, Fn, Fm, Fa Fd=Fa + Fn x Fm

fmsub Fd, Fn, Fm, Fa Fd=Fa—-FnxFm

fnmadd Fd, Fn, Fm, Fa Fd = —(Fa + Fn x Fm)

fnmsub Fd, Fn, Fm, Fa Fd=—(Fa—-Fn x Fm)

fdiv Fd, Fn, Fm Fd=Fn/Fm

fmax Fd, Fn, Fm Fd = max(Fn, Fm), NaN if either operand is NaN

fmaxnm Fd, Fn, Fm Fd = max(Fn, Fm), number if other operand is (quiet) NaN
fmin Fd, Fn, Fm Fd = min(Fn, Fm), NaN if either operand is NaN

fminnm Fd, Fn, Fm Fd = min(Fn, Fm), number if other operand is (quiet) NaN
fabs Fd, Fn Fd = fabs(Fn), absolute value

fneg Fd, Fn Fd = -Fn

fsqrt Fd, Fn Fd = sqrt(Fn)

Many operations can raise an exception of one sort or another. For
example, fdiv can set the DZC flag in the FPSR if a division by 0 occurs.
Some operations, such as fsqrt, can produce an invalid result—for example,
when trying to take the square root of a negative number. After a sequence
of floating-point instructions, check the FPSR to see if the result obtained
is valid. The FPSR bits are sticky and will remain set once an exception
occurs; this allows you to check for an error at the end of a chain of calcula-
tions, rather than after each floating-point instruction.

SIGNALING VS. QUIET NANS

NaNs come in two varieties: signaling and quiet. When a quiet NaN occurs, the
operations set the result to NaN (a special floating-point value; see section 2.14.1,
“Nonnumeric Values,” on page 97). Any further operations quietly propagate
this value throughout the calculation so that the final result remains NaN.
Signaling NaNs, on the other hand, can raise an exception when the bad
calculation occurs. This functionality can be enabled or disabled with the DN

bit (bit 25) in the FPCR.
(continued)
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When exceptions are enabled, the CPU invokes a special trap handler any-
time an exception occurs. When disabled, the CPU will set only the status bits
and pass NaNs through the calculation as an indication that an exception hap-
pened. The exception handler is generally provided by the OS and enabled via
OS system calls; writing an exception handler to deal with this situation is beyond
the scope of this book. Fortunately, exception processing is normally turned off by
default, and you must explicitly test for exceptions by reading the FPSR.

6.9.3 Floating-Point Comparisons

The ARM provides a floating-point compare and a conditional compare
instruction. Both have a couple of forms

fcmp  Fd, Fs
fcmpe Fd, Fs
fcmp  Fd, #0.0
fcmpe Fd, #0.0

fcemp  Fd, Fs, #nzcv, cond
fcempe Fd, Fs, #nzcv, cond

where nzcv and cond have the same meanings they did with the ccmp instruction.

The instructions with the e suffix raise an exception if either operand
is NaN during the comparison. Dealing with exceptions raised by these
instructions is beyond the scope of this book, so subsequent example code
uses just the forms without the e suffix.

The fcmp instruction will compare an FPU register against either
another FPU register or the immediate constant 0.0. If you need to com-
pare against any other floating-point constant, you’ll have to first load that
into a register. Note that fccmp doesn’t provide a form that allows a compari-
son against 0.0 (although you can copy XZR or WZR into another FPU reg-
ister and compare against that).

6.9.3.1 Comparison Logic

The fcmp instruction sets the (PSR, not FPSR) condition code bits N, Z, C,
and V in response to the comparison, allowing you to use the conditional
branches and other conditional instructions to test the result of the com-
parison. However, the behavior of the settings is a bit different from integer
comparisons. First of all, there aren’t unsigned and signed comparisons
(floating-point values are always signed); second, floating-point compari-
sons can be unordered.

Unordered comparisons occur when one or both of two values you're
comparing are NaN, since two values are incomparable under those



circumstances. At best, you can say they are not equal to each other; it’s
safer simply to say the result is unordered and leave it at that. Generally, if
the result of a comparison is unordered, something is seriously wrong and
you’ll want to take corrective action.

One way to avoid this issue is to use the fcmpe form, which can generate
an exception, and leave it up to the exception handler to deal with unor-
dered values. However, as noted earlier, dealing with those exceptions is
beyond the scope of this book, so I recommend sticking with fcmp.

The fcmp instruction sets the N, Z, V, and C flags in such a way that you
can test them for ordered and unordered results after a comparison. The
good news is that you can handle unordered and ordered comparisons by
using normal conditional branch and other instructions. The bad news
is that the fcmp results slightly change the definition of those conditional
branch instructions. Table 6-12 describes how fcmp sets the flags.

Table 6-12: Flags Set by fcmp

Condition Meaning

EQ Equal

NE Not equal, or unordered

GE Greater than or equal

LT Less than, or unordered

GT Greater than

LE Less than or equal, or unordered

HI Greater than, or unordered

HS/CS Greater than or equal, or unordered
LO/CC Less than

LS Less than or equal

Ml Less than

PL Greater than or equal, or unordered
VS Unordered

VC Ordered

Two points in Table 6-12 are easy to miss:

e The fcmp instruction sets the V flag if the comparison is unordered.

e Both signed and unsigned tests are used for floating-point compari-
sons, which are intrinsically signed values.

You’'ll notice that GE and GT are ordered comparisons, while LE and
LT handle unordered comparisons. Likewise, LS and LO are ordered com-
parisons, while HI and HS also handle unordered comparisons. At first
glance, this might seem weird; why not make one set (signed or unsigned)
ordered and the other set unordered?
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However, you want the two opposite tests (for example, LE and GT,
or LT and GE) to handle all possible outcomes. One of the outcomes is
unordered. Therefore, one of the opposite comparisons needs to handle
unordered so that the two tests in each pair provide total coverage of
the conditionals (the same logic applies to HI-LS and HS-LO). You can
always test the overflow flag (V) to see whether a comparison is ordered
or unordered.

6.9.3.2 Conditional Comparisons

The conditional floating-point comparison instruction, fccmp, is the floating-
point analog to the integer conditional comparison instruction. You can
use it to reduce complex Boolean expressions involving conjunction (AND)
and disjunction (OR), as noted earlier (see section 6.5, “Conditional
Comparisons and Boolean Expressions,” on page 314).

6.9.3.3 Comparison for Equality

As discussed in section 6.7, “Floating-Point and Finite-Precision Arithmetic,”
on page 322, you should be very careful about comparing two floating-point
values (especially for equality). Minor inaccuracies in two calculations that
would produce the same result using infinite-precision real arithmetic may
yield different results when using limited-precision floating-point arithmetic.
If you want to compare two values for equality, compute their difference and
determine whether the absolute value of their difference is within an accept-
able error range.

The real question is how to determine an acceptable range for the error.
Because the difference between these (presumably equal) floating-point val-
ues will manifest itself in the LO bits of the mantissa, the error value should
be something corresponding to a 1 bit in one of those positions.

Listing 6-2 demonstrates how to calculate this error value.

// Listing6-2.S

/1

// Demonstrate comparing two floating-point
// values for equality by using a difference
// and error range comparison.

#include "aoaa.inc"
// The following bit mask will keep the
// exponent bits in a 64-bit double-precision
// floating-point value. It zeros out the
// remaining sign and mantissa bits.
© maskFP = 0x7FF0000000000000
// bits is the number of bits you want to

// mask out at the bottom of the mantissa.
// It must be greater than o:
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® bits
bitMask

4
(1 << bits)-1

// expPosn is the position of the first
// exponent bit in the double-precision
// format:

expPosn = 52

.text

.pool
ttlStr: wastr “Listing 6-2"
fmtStr: wastr “error for (%24.16e) = %e\n"
difMsg: wastr  "Difference:%e\n"
values: wastr  "Value1l=%23.16e, Value2=%23.16e\n"
egMsg: wastr  "Valuel == Value2\n"
neMsg: wastr  "Valuel != Value2\n"

// When value2 is somewhere between
// 8e-323 and 9e-323, the
// comparison becomes not equal:

valuel: .double 1.0e-323
value2: .double 9e-323

// Generic values to compare:

// value1l: .double 1.2345678901234567
// value2: .double 1.234567890123456

// getTitle

//

// Return pointer to program title
// to the C++ code:

proc getTitle, public
lea X0, ttlStr

ret

endp getTitle

// computeError

/!

// Given a double-precision floating-point
// value in Do, this function computes an
// error range value for use in comparisons.
// If the difference between two FP values
// (one of which is the value passed in Do)
// is less than the error range value, you
// can consider the two values equal.

® proc computeError

// Preserve all registers this code
// modifies:

locals ce
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gword  ce.saveX01
byte stack, 64
endl ce

enter ce.size
stp X0, x1, [fp, #ce.saveX01]

// Move the FP number into X0 so you can mask
// bits:

fmov x0, do
// Generate mask to extract exponent:

0 and X0, X0, #maskFP // Extract exponent bits.
1sr x1, X0, #expPosn // Put exponent in bits 0-10.

// We need to normalize the value,
// if possible:

@ cmp x1, #(expPosn - bits - 1)
blo willBeDenormal

// If the result won't be a subnormal
// (denormalized value), then set

// the mantissa bits to all 0s

// (plus the implied 1 bit) and

// decrement the exponent to move

// the "bits" position up to the

// implied bit:

0@ sub x1, x1, #expPosn-bits // Adjust exponent.
1s1 X0, x1, #expPosn // Put exponent back.
b.al allDone

// If the result will be denormalized, handle that
// situation down here:

@ willBeDenormal:
mov X0, #bitMask

1s1 X0, x0, x1 // Shift as much as you can.
allDone:

fmov do, x0 // Return in Do.

1dp x0, x1, [fp, #ce.saveX01]

leave

endp computeError

T 1117111111111111111117
/1

// Here's the asmMain procedure:
proc asmMain, public

locals am
double am.error
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double am.diff

byte am.stackSpace, 64
endl am

enter am.size

// Display the values you're going to compare:

ldr do, valuel
str do, [sp]

ldr d1, value2
str d1, [sp, #8]
lea X0, values
bl printf

// Compute the error value:

ldr do, valuel
bl computeError
str do, [fp, #am.error]

// Print the error value:

str do, [sp, #8]
ldr d1, valuel
str di, [sp]

lea x0, fmtStr
bl printf

// Compute the difference of the
// two values you're going to compare
// and print that difference:

ldr do, valuel

ldr d1, value2

fsub do, do, d1

str do, [fp, #am.diff]
str do, [sp]

lea x0, difMsg

bl printf

// Compare the difference of the two
// numbers against the error range.

ldr di, [fp, #am.error]

ldr do, [fp, #am.diff]

fabs do, do // Must be abs(diff)!
femp do, d1

ble isEqual

// Print whether you should
// treat these values as equal:

lea X0, neMsg
b.al printIt
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isEqual:

lea X0, eqMsg
printIt:
bl printf
leave // Return to caller.

endp asmMain

The mask 0x7FFo_0000_0000_0000 @, when ANDed with a double-precision
floating-point value, will strip out the mantissa and sign bits, leaving the
exponent in bit positions 52 to 62 (11-bit exponent).

The bits constant @ in this listing determines the number of LO bits in
the mantissa that the code will eliminate when generating the error value
(this is currently 4 bits, so the 4 LO bits of the mantissa become insignifi-
cant, but in most cases it should be 2 to 3 bits for single-precision and 3 to
4 bits for double-precision comparisons). Once the computeError function
generates the error value, the main program uses that error to compare
a couple of floating-point numbers and report whether they should be
treated as equal (their difference is less than the error value) or not equal
(their difference is greater). The bitMask value is just a string of 1 bits (4 in
Listing 6-2).

The procedure computeError ® is passed a floating-point value in DO.
This function computes an error value for that floating-point number
such that if it is compared with a second number, their difference will be
less than the error value if they should be considered equal. This function
returns the error value in the DO register.

To compute the error value, computeError begins by shifting the expo-
nent down to bits 0 to 10 so that it is easier to work with @. If the exponent
is less than 52 — 5 bits, the error value will turn out to be a subnormal
(denormalized) number. The code determines whether the error value will
be normalized or subnormal ©.

If the result will be a normalized number, the code generates the error
value by 52 bits (47 if bits is 4) and then shifts the exponent back into its
proper location @. The mantissa and sign bits will all be 0; however, the
implied bit for double-precision numbers will be 1, because the exponent is
not 0.

If the error value will turn out to be subnormal, the code sets the expo-
nent to 0, denoting a denormalized value, and shifts the bitMask value to
the left the number of bit positions specified by the exponent minus the
bits value @.

Here’s the build command and sample output for Listing 6-2:

$ ./build Listing6-2

$ ./Listing6-2

Calling Listing6-2:

Value1=9.8813129168249309e-324, Value2=28.8931816251424378e-323
error for ( 7.4109846876186982e-323) = 9.881313e-324
Difference:-7.905050e-323

Valuel != Value2

Listing6-2 terminated




This demonstrates that the difference between Valuel and Value2 is defi-
nitely outside the error range allowed for this comparison.

6.9.3.4 Conditional Select Instruction

Although the ARM does not support all the conditional instructions pres-
ent in the integer instruction set, it does support the most often used condi-
tional instruction: conditional select, or fcsel. The fcsel instruction has the
following syntax:

fcsel Fd, Ft, Ff, cond

This instruction will test the condition and copy Ft to Fd if the condition
is true, or it will copy Ff to Fd if the condition is false.

6.9.4 Floating-Point Conversion Instructions

The ARM instruction set includes a wide variety of instructions that con-
vert between various floating-point formats and between signed/unsigned
integers and floating-point formats. Certain CPUs even support conver-
sions between floating-point and fixed-point formats. This section describes
these conversions.

6.9.4.1 fovt

The fcvt instruction converts between the three supported floating-point
formats (half-, single-, and double-precision). This is one of the few instruc-
tions that supports the Hn registers (1dr and str are the others). The syntax
for this instruction is the following:

fcvt Hd, Ss
fcvt Hd, Ds
fcvt Sd, Hs
fcvt Sd, Ds
fcvt Dd, Hs
fcvt Dd, Ss

These instructions convert their source operand to the type of the des-
tination operand and copy the converted data into that operand. Of course,
not all conversions can happen without error—be aware that converting
a larger-size format to a smaller-size format can produce underflow and
underflow exceptions. You might want to consider checking the FPSR after
such an operation:

fcvt so, d1

mrs x0, FPSR

mov w1, #0x8c

ands wo, wo, wi // UFC, OFC, and IDC bits
bne badCvt
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This code demonstrates checking the UFC, OFC, and IDC bits to see if
an error occurred after the conversion.

6.9.4.2 Conversion Between Floating-Point and Integer

The instructions in Table 6-13 convert between various floating-point
(single- and double-precision) and integer formats. The syntax for these
instructions is as follows

fevt{m}{s|u} Rd, Fn

where mis a, m, n, p, or z that specifies a rounding mode (see Table 6-13,
where FP = floating-point, SI = signed integer, and Ul = unsigned integer).
Fn represents any single- or double-precision floating-point register, and Rd
represents any general-purpose register (Wd or Xd).

Table 6-13: The fcvt{m}{s|u} Conversion Instructions

Instruction  Description

fevtas Convert FP to Sl; round away from O.

fcvtau Convert FP to Ul; round away from O.

fevtms Convert FP to SI; round toward —infinity (floor function).
fevtmu Convert FP to Ul; round toward —infinity (floor function).
fevtns Convert FP to SI; round to even (standard IEEE rounding).
fevtnu Convert FP to Ul; round to even (standard IEEE rounding).
fevtps Convert FP to SI; round toward +infinity (ceil function).
fevtpu Convert FP to Ul; round toward +infinity (ceil function).
fevtzs Convert FP to SI; round toward O (truncation).

fevtzu Convert FP to SI; round toward O (truncation).

In addition to converting floating-point values to integers, the ARM
provides two instructions that convert integers to floating-point values:

scvtf Fd, Rd // Same register meanings as for fcv*
ucvtf Fd, Rd // instructions

The scvtf instruction converts a signed integer to a floating-point value,
and the ucvtf instruction converts an unsigned integer to floating-point.
Note that some integer values cannot be exactly represented by a single- or
double-precision value. For example, a double-precision floating-point value
has a 56-bit mantissa, so it cannot precisely represent all 64-bit integers.

6.9.4.3 Fixed-Point Conversions

Some 64-bit ARM CPUs support conversion between a fixed-point binary
value and a floating-point value. These instructions take the following forms:



fcvtzs Rd, Fs, #bits
fcvtzu Rd, Fs, #bits
scvtf Fd, Rs, #bits
ucvtf Fd, Fs, #bits

Here, bits is the number of bits to the right of the binary point in the
general-purpose register. It is a constant from 0 to one less than the size of
the general-purpose register. For example, in a 64-bit register, a value of 32
would provide you with 32 bits to the left and right of the binary point in
the fixed-point number.

6.9.44 Rounding

The ARM provides several floating-point rounding instructions. They are
similar in nature to the floating-point-to-integer conversion insofar as they
round a real number to an integral value. However, these instructions pro-
duce not binary integer values but rather floating-point results that just hap-
pen to be integer numbers (or, rather, the floating-point representation of
those integer numbers).

These instructions all take a pair of floating-point registers as operands.
Both registers must be the same size (single- or double-precision). The generic
syntax is as follows:

frint{m} Fd, Fs // Both registers must be Sn or Dn.

The instruction descriptions appear in Table 6-14.

Table 6-14: The frint{m} Instructions

Instruction Description

frinta Round away from 0.

frinti Round using the Rmode setting in the FPCR.

frintm Round toward —infinity.

frintn Normal rounding, exactly 0.5 rounds to nearest even value.
frintp Round toward +infinity.

frintx Round using FPCR mode; raise an exception if value was not

originally an integer.

frintz Round toward 0.

Now that you've reviewed the floating-point conversion instructions, I’ll
show you how to use floating-point instructions in code that interfaces with
other programs.
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The ARM ABI considers VO through V7 and V16 through V31 to be volatile.
The caller must preserve these registers across procedure calls if it requires
that they retain their values across a call.

Registers V8 through V15 are nonvolatile. A callee must preserve
these registers within a procedure if it modifies their values. Of course, the
advantage of these registers is that once a procedure preserves them (for
its caller), it does not have to worry about modification to these registers by
any functions it calls.

Callers pass the first eight floating-point parameters in registers to a
procedure. When passing a combination of integer and floating-point param-
eters, the caller passes the non-floating-point parameters in the general-
purpose registers (X0 to X7) and the floating-point arguments in the
floating-point registers. If the number of floating-point parameters exceeds
eight, the caller passes the floating-point parameters on the stack.

Parameters are assigned the next available register, not a register num-
ber based on the parameter’s position in the parameter list. Consider the
following C function prototype:

void p

(
int i,
double d,
int j,
int k,
double e,
int 1,
double f,
double g,
double h

)s

The ARM ABI would associate the registers in Table 6-15 with these
formal parameters:

Table 6-15: Parameter Assignments to Registers

Register Parameter
X0 i
DO d
X1 j
X2 k
D1 e
X3 1
D2 f
D3 g
D4 h




6.11

If a function passes a floating-point parameter by reference, the address
of that floating-point value is passed in the next available general-purpose
register (no floating-point registers for pass-by-reference parameters).

If a function returns a floating-point result, it returns that value in D0
(or S0, if the language supports returning single-precision floats as function
return results). See Chapter 11 for details on returning vectors (multiple
floating-point values) as function results (hint: V0). If a function returns an
array of floating-point values, the caller must allocate storage for that array
and pass a pointer to that array in X8. The function will store the results
into that storage before returning.

Using C Standard Library Math Functions

Although the ARM instruction set provides a set of machine instructions
that compute basic arithmetic operations, it does not have instructions

for computing complex mathematical functions such as sine, cosine, and
tangent. You could (with the appropriate knowledge) write these functions
yourself in assembly language, but a much simpler solution is available:
call functions that are already written for you. In particular, the C stdlib
contains many useful mathematical functions you can use. This section
describes how to call several of them.

As a sample program that demonstrates passing floating-point values to
functions, Listing 6-3 makes calls to various C stdlib <math.h> functions (spe-
cifically sin(), cos(), and tan()). Each of these functions accepts a double-
precision parameter and returns a double-precision result.

// Listing6-3.S

/!

// Demonstrates calling various C stdlib
// math functions

#include "aoaa.inc"

.text

.extern sin // C stdlib functions
.extern cos // this program calls
.extern tan

.pool
ttlStr: wastr  “Listing 6-3"

// Format strings for each of the outputs:

piStr: wastr  "%s(pi) = %20.14e\n"
pi2Str: wastr = "%s(pi/2) = %20.14e\n"
piaStr: wastr  "%s(pi/4) = %20.14e\n"
pi8Str: wastr  "%s(pi/8) = %20.14e\n\n"

// Function names (printed as %s argument
// in the format strings):
sinStr: wastr  “"sin"
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cosStr: wastr  "cos
tanStr: wastr  "tan"

// Sample values to print for each
// of the functions:

pi: .double 3.141592653588979
pi2: .double 1.5707963267949
pi4: .double 0.7853981639745
pi8: .double 0.39269908169872

// getTitle

/!

// Return pointer to program title
// to the C++ code.

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// Trampolines to the C stdlib math functions.
// These are necessary because lea can't take
// the address of a function that could be

// very far away (as the dynamic libraries

// probably are).

/!

// Note: Must use real "b" instruction here
// rather than "b.al" because external

// functions are likely out of range.

® proc sinVeneer
b sin
endp sinVeneer

proc cosVeneer
b cos
endp cosVeneer

proc tanVeneer
b tan

endp tanVeneer

// doPi( char *Xo, func X1 )

//

// Xo- Contains the address of a function
// that accepts a single double and
/! returns a double result.

// X1- Contains the address of a string
// specifying the function name.

//

// This function calls the specified function



// passing PI divided by 1, 2, 4, and 8 and
// then prints the result that comes back.

® proc doPi

locals dp

dword  dp.saveX1

dword  dp.saveXo

dword  dp.saveX19

byte dp.stackSpace, 64
endl dp

// Set up activation record and save register values:

enter dp.size

stp x0, x1, [fp, #dp.saveXo] // X1 -> saveXi, too
str x19, [fp, #dp.saveX19] // Preserve nonvolatile.

mov x19, x0 // Keep address in nonvolatile.

// Call the function for various values
// of pi/n:

© ldr do, pi
blr x19 // Call function.

mstr do, [sp, #8] // Save func result as parm.

ldr x1, [fp, #dp.saveX1]
mstr x1, [sp]
lea x0, piStr

bl printf

ldr do, pi2

blr x19 // Call function.
mstr do, [sp, #8]

lea X0, piStr

ldr x1, [fp, #dp.saveX1]
mstr x1, [sp]

lea X0, pi2Str

bl printf

ldr do, pi4

blr x19 // Call function.
mstr do, [sp, #8]

lea X0, piStr

ldr x1, [fp, #dp.saveX1]

mstr x1, [sp]

lea X0, pi4Str

bl printf

ldr do, pi8

blr x19 // Call function.
mstr do, [sp, #8]

lea x0, piStr

ldr x1, [fp, #dp.saveX1]
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mstr x1, [sp]
lea x0, pi8Str
bl printf

// Restore nonvolatile register
// and return:

ldr x19, [fp, #dp.saveX19]
leave
endp doPi

LTI E 1111 771110071110171111717
/1

// Here's the asmMain procedure:

proc asmMain, public
enter 64 // Generic entry

// Load X0 with the address

// of the veneer (trampoline) function
// that calls the C stdlib math function,
// load X1 with the function's name,

// then call doPi to call the function
// and print the results:

O lea X0, sinVeneer // SIN(x) output
lea x1, sinStr
bl doPi

lea x0, cosVeneer // COS(x) output
lea x1, cosStr
bl doPi

lea X0, tanVeneer // TAN(x) output

lea x1, tanStr
bl doPi
leave // Return to C/C++ code.

endp asmMain

This program calls the sin(), cos(), and tan() functions indirectly—the
address of the particular function is passed as a parameter to the doPi pro-
cedure. Unfortunately, macOS’s PIE functionality prevents you from taking
the address of such a function by using the lea macro, because there is no
telling where the OS will load the dynamically linked (shared) library at
runtime; it could be farther away than the +4GB allowed by lea. Therefore,
this code creates trampolines for these functions that the OS can patch to
transfer control to wherever the functions are sitting in memory @. These
trampolines are necessary only for macOS; though they will work with
Linux code, Linux allows you to take the address of the C stdlib functions
with lea.



The doPi function ® saves the values of X0, X1, and X19 in the activa-
tion record. Preserving X19 is necessary because this is a nonvolatile regis-
ter. Saving X0 and X1 is necessary because the procedure needs their values
across calls to printf(), and these registers are volatile.

The body of the doPi calls the appropriate function (sin(), cos(), or
tan()) four times with the values i, 1/2, /4, and n/8, and it then displays
the result these functions return ©. Note how doPi calls the function indi-
rectly by using the blr instruction—the address of the function was origi-
nally passed to doPi in the X0 register.

The main procedure loads the address of the trampoline (veneer)
function into X0, along with a string pointer, and calls doPi to compute the
values and print the results @. (Trampolines and veneers are explained
further in Chapter 7.) Loading the address of the trampoline functions into
X0 is necessary only under macOS; with Linux, you can load the address of
the sin(), cos(), or tan() function directly and spare the minor inefficiency
of having to jump through the trampoline function.

Here’s the build command and sample output for Listing 6-3:

$ ./build -math Listing6-3

$ ./Listing6-3

Calling Listing6-3:

sin(pi) = 8.14137986335080e-13
sin(pi/2) = 1.00000000000000e+00
sin(pi/4) = 7.07106781594585e-01
sin(pi/8) = 3.82683432365086e-01

cos(pi) = -1.00000000000000e+00

cos(pi/2) = -3.49148133884313e-15
cos(pi/4) = 7.07106780778510e-01
cos(pi/8) = 9.23879532511288e-01

tan(pi) = -8.14137986335080e-13
tan(pi/2) = -2.86411383293069e+14
tan(pi/4) = 1.00000000115410e+00
tan(pi/8) = 4.14213562373090e-01

Listing6-3 terminated

You’ll notice one difference between this build command and most of
the others in the book: the -math argument. This tells Linux to link in the
C stdlib math library functions (macOS automatically links this in). Without
the -math option, you’ll get a linker error when you try to build the program.

The C stdlib contains many double-precision functions you might find
useful. Check them out online for more details. Many of these functions
are unnecessary in assembly language, as they correspond to one or two
machine instructions. Nevertheless, the library contains complex functions
that you wouldn’t want to write yourself.

You may find various functions online that purport to be faster than
those in the C stdlib. Be careful about using them because they tend to be
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notoriously inaccurate. Unless you're well grounded in numerical analysis,
don’t try to write these functions yourself.

Moving On

This chapter covered a lot of material: the remaining arithmetic instruc-
tions (including multiplication, division, and remainder, as well as cmp and
the various conditional instructions), maintaining variables in registers
rather than memory locations, and the proper use of volatile and nonvola-
tile registers. It also discussed creating structures to provide efficient access
to global variables, converting arithmetic and logical expressions (integer
and floating-point) to their machine instruction equivalents, and calling
functions written in C/C++.

Armed with this information, you can now convert arithmetic expressions
in an HLL such as C/C++ to ARM assembly language. The only basic skill
missing from your programming repertoire is a good understanding of con-
trol structures in assembly language, which you'll learn in the next chapter.

For More Information

e My book Write Great Code, Volume 1 (No Starch Press, 2020), includes
sections on the cache and thrashing.

e Reference Wikipedia for details on fixed-point arithmetic: https://en
.wikipedia.org/wiki/Fixed-point_arithmetic.

e  You can learn more about limited-precision arithmetic from the follow-
ing resources:

e A Central Connecticut State University tutorial in the form of an
interactive questionnaire: https://chortle.ccsu.edu/assemblytutorial/
Chapter-29/ass29_10.html.

e Python documentation on the topic: https://docs.python.org/3/tutorial/
Sloatingpoint. html.

e  For more information on writing better code using floating-point arith-
metic, see the following post on the Society of Actuaries website: https://
www.soa.org/news-and-publications/newsletters/compact/2014/may/com-2014
-iss51/losing-my-precision-tips-for-handling-tricky-floating-point-arithmetic.

e Wikipedia documents the C stdlib math functions at https://en.wikipedia
.org/wiki/C_mathematical_functions.

e Ifyou insist on writing your own transcendental functions, you might
try to locate a copy of the following book (long out of print), the “bible”
of transcendental functions: Computer Approximations, by John F. Hart,
E.W. Cheney, and Charles L. Lawson (Krieger Publishing, 1978).


https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://chortle.ccsu.edu/assemblytutorial/Chapter-29/ass29_10.html
https://chortle.ccsu.edu/assemblytutorial/Chapter-29/ass29_10.html
https://docs.python.org/3/tutorial/floatingpoint.html
https://docs.python.org/3/tutorial/floatingpoint.html
https://www.soa.org/news-and-publications/newsletters/compact/2014/may/com-2014-iss51/losing-my-precision-tips-for-handling-tricky-floating-point-arithmetic
https://www.soa.org/news-and-publications/newsletters/compact/2014/may/com-2014-iss51/losing-my-precision-tips-for-handling-tricky-floating-point-arithmetic
https://www.soa.org/news-and-publications/newsletters/compact/2014/may/com-2014-iss51/losing-my-precision-tips-for-handling-tricky-floating-point-arithmetic
https://en.wikipedia.org/wiki/C_mathematical_functions
https://en.wikipedia.org/wiki/C_mathematical_functions

TEST YOURSELF

How does the cmp instruction affect the zero flag?

How does the cmp instruction affect the carry flag, with respect to an
unsigned comparison?

How does the cmp instruction affect the negative and overflow flags, with
respect fo a signed comparison?

Convert the following expressions to assembly language (assume all vari-
ables are signed 32-bit integers):

X=X+y
X=y-12

Xx=y*z
X=y+z*t
x=(y+2z *t
x=-(x*y) /2

x = (y == z) & (t != 0)

Compute the following expressions without using a mul instruction (assume
all variables are signed 32-bit integers):

X =x*2
Xx=y*5
x=y*8

Compute the following expressions without using a udiv or sdiv instruction
(assume all variables are unsigned 64-bit integers):

X=x/2
x=y/8
x=12z/ 10

Convert the following expressions to assembly language (assume all vari-
ables are double-precision floating-point values):

X +y
=y-z
=y*Z
=y+z*t
(y+2) *t
-(x *y) / 2)

X X X X X X

Convert the following expressions to assembly language by using floating-
point instructions. Assume bb is a 1-byte Boolean variable and x, y, and z
are .double floating-point variables:

bb = x <y
bb = x >=y 8 x < z

Avrithmetic
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LOW-LEVEL CONTROL
STRUCTURES

The examples in this book up to this point
have created assembly control structures in

an ad hoc manner. Now it’s time to formalize

how to control the operation of your assembly
language programs. By the time you finish this chapter,
you should be able to convert HLL control structures
into assembly language control statements.

Control structures in assembly language consist of conditional branches
and indirect jumps. This chapter discusses those instructions and how
to emulate HLL control structures such as if...else, switch, and loop
statements. This chapter also discusses labels, the targets of conditional
branches and jump statements, as well as the scope of labels in an assembly
language source file.
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Statement Labels

Before discussing the jump instructions and how to use them to emulate
control structures, an in-depth discussion of assembly language statement
labels is necessary. Labels in an assembly language program stand in as sym-
bolic names for addresses. Referring to a position in your code by using a
name such as LoopEntry is far more convenient than using a numeric address
such as 0xAF1C002345B7901E. For this reason, assembly language low-level
control structures make extensive use of labels within source code (see
section 2.10, “Control-Transfer Instructions,” on page 74).

You can do three operations on code labels: transfer control to a label
via a conditional or unconditional jump instruction, call a label via the bl
instruction, and take the address of a label. The last of these is useful when
you want to indirectly transfer control to that address at a later point in
your program.

The following code sequence demonstrates how to take the address of a
label in your program by using the lea macro:

stmtlbl:
lea x0, stmtlbl

stmtLbl2:

Because addresses are 64-bit quantities, you'll typically load an address
into a 64-bit general-purpose register by using the lea instruction. Also see
section 7.5, “Taking the Address of Symbols in Your Code,” on page 364 for
more information about taking the address of a label in your programs.

Initializing Arrays with Statement Labels

Gas allows you to initialize double-word objects with the addresses of state-
ment labels. The code fragment in Listing 7-1 demonstrates how to do this.

// Listing7-1.S

/!

// Initializing qword values with the
// addresses of statement labels

#include "aoaa.inc"

.data

.align 3 // Align on dword boundary.
1blsInProc: .dword globallbli, globallbl2 // From procWlLabels

.code
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// procWLabels

/!

// Just a procedure containing private (lexically scoped)
// and global symbols. This really isn't an executable
// procedure.

proc prochLabels

globallbli: b.al globallbl2
globallbl2:

ret

endp procWlLabels

.pool
.align 3 // dword align
dataInCode: .dword globallbl2, globallbli

You might recall that pointers in the .text section cannot refer to objects
outside that section; however, it is perfectly legitimate for pointers in other
sections (such as .data) to refer to symbols in the .text section.

As addresses on the ARM are 64-bit quantities, you will typically use the
.dword directive, as in the previous examples, to initialize a data object with
the address of a statement label.

Unconditional Transfer of Control

The b.al (branch) instruction unconditionally transfers control to another
point in the program. This instruction has three forms: two PC-relative
branches and an indirect jump. These instructions take the following forms:

b  Iabel // Range is +128MB.
b.al label // Range is +1MB.
br reg,,

The first two instructions are PC-relative branches, which you've seen in
various sample programs up to this point. For PC-relative branches, you
normally specify the target address by using a statement label. The label
appears either on the same line as an executable machine instruction or by
itself on a line preceding it. The direct jump is completely equivalent to a
goto statement in an HLL.

Here’s an example of a direct jump that transfers control to a label else-
where in the program:

statements
b laterInPgm // Or b.al laterInPgm

laterInPgm:
statements
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Unlike HLLs, for which your instructors usually forbid you to use goto
statements, you will find that the use of the b/b.al instruction in assembly
language is essential.

Register-Indirect Branches

The third form of the br reg,, branch instruction given earlier is a register-
indirect jump instruction that transfers control to the instruction whose
address appears in the specified 64-bit general-purpose register. To use the
br instruction, you must load a 64-bit register with the address of a machine
instruction prior to the execution of br. When several paths, each loading
the register with a different address, converge on the same br instruction,
control transfers to an appropriate location determined by the path up to
that point.

Listing 7-2 reads a string of characters from the user that contain an
integer value. It uses strtol() to convert that string to a binary integer value.
This C stdlib function doesn’t do the best job of reporting an error, so this
program tests the return results to verify a correct input and uses register-
indirect jumps to transfer control to different code paths based on the result.

The first part of Listing 7-2 contains constants, variables, external dec-
larations, and the (usual) getTitle() function.

// Listing7-2.S

/1

// Demonstrate indirect jumps to
// control flow through a program.

#include "aoaa.inc"
maxLen = 256
EINVAL = 22 // "Magic" C stdlib constant, invalid argument
ERANGE = 34 // Value out of range
.data
buffer: .fill 256, 0 // Input buffer
Jtext
.pool
ttlStr: wastr  "Listing 7-2"
fmtStrA: wastr  "value=%d, error=%d\n"
fmtStra: .ascii "Enter an integer value between "

wastr "1 and 10 (0 to quit): "

badInpStr: .ascii "There was an error in readlLine
wastr  "(ctrl-D pressed?)\n"

invalidStr: wastr  "The input string was not a proper number\n"



rangeStr:  .ascii "The input value was outside the

unknownStr: .ascii "The was a problem with strToInt

wastr  "range 1-10\n"

wastr  "(unknown error)\n"
goodStr: wastr  "The input value was %d\n"
fmtStr: wastr  "result:%d, errno:%d\n"

// getTitle

/1

// Return pointer to program title
// to the C++ code.

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

The next section of Listing 7-2 is the strToInt function, a wrapper around
the C stdlib strtol() function that does a more thorough job of handling

erroneous inputs from the user. See the comments for the function’s return
values:

// Listing7-2.S (cont.)

//

// strTolnt

/1

// Converts a string to an integer, checking for errors

//

// Argument:

// X0-  Pointer to string containing (only) decimal
// digits to convert to an integer

//

// Returns:

// X0-  Integer value if conversion was successful.
//  X1-  Conversion state. One of the following:

// 0- Conversion successful

// 1- Illegal characters at the beginning of the
// string (or empty string)

// 2- Illegal characters at the end of the string
// 3- Value too large for 32-bit signed integer

proc strTolnt

locals sti

dword sti.saveX19

dword  sti.endPtr

word sti.value

byte sti.stackSpace, 64
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/] Xo
/] X1
/] X2

// On
//
//
//
/!
/] If

endl sti

enter sti.size

mov x19, x0 // Save, so you can test later.
already contains string parameter for strtol,
needs the address of the string to convert, and
needs the base of the conversion (10).

® add x1, fp, #sti.endPtr
mov x2, #10 // Decimal conversion
bl strtol

return:

Xo0- Contains converted value, if successful
endPtr-Pointer to 1 position beyond last char in string

strtol returns with endPtr == strToConv, then there were no
// legal digits at the beginning of the string.
mov x1, #1 // Assume bad conversion.
1ldr x2, [fp, #sti.endPtr] // Is startPtr = endPtr?
cmp x19, x2
beq returnValue

// If endPtr is not pointing at a 0 byte, you have
// junk at the end of the string.

mov x1, #2 // Assume junk at end.
ldrb w3, [x2] // Byte at endPtr.

cmp X3, #0 // Is it zero?

bne returnValue // Return error if not o.

// If the return result is ox7fff ffff or 0x8000 0000
// (max long and min long, respectively), and the C
// global _errno variable contains ERANGE, you have
// a range error.

str wo, [fp, #sti.value] // Get C errno value.
® getErrno // Magic macro

mov X2, X0

ldr wo, [fp, #sti.value]

mov x1, 0 // Assume good input.
cmp w2, #ERANGE // errno = out of range?
bne returnValue

mov x1, #3 // Assume out of range.
mov X2, Oxffff

movk x2, Ox7fff, 1sl #16

cmp wo, w2
beq returnValue



mvn W2, w2 // W2 = 0x8000_0000
cmp w0, w2
beq returnValue

// If you get to this point, it's a good number.
mov x0, #0
returnValue:

leave
endp strToInt

The strtol() @ function expects a pointer to an end-of-string pointer
variable. The strToInt procedure reserved space for this pointer in the acti-
vation record. This code computes the address of that pointer variable to
pass on to the strtol() function.

Retrieving the C errno variable @ is done differently in macOS and Linux
(or, more likely, in Clang versus GCC). The getErrno macro in the aoaa.inc
include file generates the appropriate code for the two systems. It returns
errno in XO0.

The final section of Listing 7-2 is the main program and the most inter-
esting part of the code, because it demonstrates how to call the strToInt
function:

// Listing7-2.S (cont.)
//

// Here's the asmMain procedure:

proc asmMain, public

locals am

dword  am.saveX19 // Nonvolatile
byte am.stackSpace, 64

endl am

enter am.size
str x19, [fp, #am.saveX19] // Must preserve X19.

// Prompt the user to enter a value
// from 1 to 10:

repeatPgm: lea X0, fmtStri
bl printf

// Get user input:

lea X0, buffer

mov x1, #maxLen

bl readLine

lea x19, badInput // Initialize state machine.

® ands w0, w0, wo // X0 is -1 on bad input.
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bmi hadError // Only neg value readlLine returns.

// Call strtoint to convert string to an integer and
// check for errors:

lea X0, buffer // Ptr to string to convert
bl strTolnt

lea x19, invalid

cmp wl, #1

beq hadError

cmp wl, #2

beq hadError

lea x19, range
cmp wi, #3
beq hadError

lea x19, unknown
cmp wl, #0
bne hadError

// At this point, input is valid and is sitting in Xo.
//

// First, check to see if the user entered 0 (to quit
// the program):

® ands X0, X0, X0 // Test for zero.
beq allDone

// However, we need to verify that the number is in the
// range 1-10:

lea x19, range
cmp X0, #1

blt hadError
cmp X0, #10

bgt hadError

// Pretend a bunch of work happens here dealing with the
// input number:

lea x19, goodInput
// The different code streams all merge together here to
// execute some common code (for brevity, we'll pretend that happens;
// no such code exists here):
hadError:
// At the end of the common code (which mustn't mess with
// X19), separate into five code streams based

// on the pointer value in X19:

® br x19
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// Transfer here if readlLine returned an error:

badInput: lea X0, badInpStr
bl printf
b.al allDone

// Transfer here if there was a nondigit character
// in the string:

invalid: lea X0, invalidStr
bl printf
b.al repeatPgm

// Transfer here if the input value was out of range:

range: lea x0, rangeStr
bl printf
b.al repeatPgm

// Shouldn't ever get here. Happens if strToInt returns
// a value outside the range 0-3:

unknown : lea X0, unknownStr
bl printf
b.al repeatPgm

// Transfer down here on a good user input:

goodInput: mov wl, wo
lea x0, goodStr
mstr wi, [sp]
bl printf
b.al repeatPgm

// Branch here when the user selects "quit program" by
// entering the value 0:

allDone: ldr x19, [fp, #am.saveX19] // Must restore before returning.
leave

endp asmMain

The main function loads the X19 register with the address of code to
execute based on the strToInt return results. The strToInt function returns
one of the following states (see the comments in the previous code for an
explanation):

e Valid input
e Illegal characters at the beginning of the string
e Illegal characters at the end of the string

e Range error
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The program then transfers control to different sections of asmMain
based on the value held in X19, which specifies the type of result strToInt
returns.

The readline function returns —1 @ if there was an error reading the
line of text from the user, which typically occurs when the end of the file is
detected. This is the only negative value that readline returns, so rather than
test for —1, this code just checks to see if readline returned a negative value.
The test is a little sneaky, but it’s a standard trick; anytime you AND a value
with itself, you get the original value back. In this case, the code uses the
ands instruction, which also sets the Z flag if the value was 0 and sets the N
flag if the number was negative @. Therefore, testing the N flag afterward
checks for an error condition. Note that a cmp x0, #0 instruction would serve
this same purpose.

Once again, this code uses the ands instruction @ to compare the result
against 0. This time, it’s actually checking for the value 0 (via the Z flag) by
using the beq instruction immediately afterward. This is where the program
in Listing 7-2 demonstrates using the br (branch indirect through register)
instruction to implement the logic ©.

Here’s the build command and a sample run of Listing 7-2:

$ ./build Listing7-2

$ ./Listing7-2

Calling Listing7-2:

Enter an integer value between 1 and 10 (0 to quit): a123
The input string was not a proper number

Enter an integer value between 1 and 10 (0 to quit): 123a
The input string was not a proper number

Enter an integer value between 1 and 10 (0 to quit): 1234567890123
The input value was outside the range 1-10

Enter an integer value between 1 and 10 (0 to quit): -1
The input value was outside the range 1-10

Enter an integer value between 1 and 10 (0 to quit): 11
The input value was outside the range 1-10

Enter an integer value between 1 and 10 (0 to quit): 5
The input value was 5

Enter an integer value between 1 and 10 (0 to quit): 0
Listing7-2 terminated

This sample run demonstrates several bad inputs, including non-
numeric inputs, out-of-range values, a legitimate value, and entering 0 to
exit the program.

Taking the Address of Symbols in Your Code

Listing 7-2 computed the address of various symbols throughout the .text
section in order to load those addresses into a register for later use.
Obtaining the runtime address of a symbol in the program is a common
operation in assembly language programs, because this is how you access
data (and code) indirectly via a register.



This chapter covers control structures, and this section discusses obtain-
ing addresses of statement labels in the program. Much of the information
in this section is review material from earlier chapters in this book, but I've
pulled it together here for reference purposes and extended the discussion.

7.5.1 Revisiting the lea Macro

Listing 7-2 used the lea macro to initialize 64-bit registers with the address of
alocation to jump to via the br instruction. This has been the go-to macro for
obtaining the address of a symbol throughout this book. However, remember
that lea is a macro and that

lea x0, symbol

translates into this:

// Under macOS:

adrp x0, symbol@PAGE
add x0, x0, symbol@PAGEOFF

// Under Linux:

adrp x0, symbol
add xo0, x0, :lol2:symbol

The two-instruction sequence allows the lea macro to compute the
address of a PC-relative symbol anywhere in a +4GB range. The adr instruc-
tion can also compute the address of a symbol but it supports only a +1MB
range (see section 1.8.1, “ldr, str, adr, and adrp,” on page 23).

When taking the address of nearby statement labels in the .text section,
it is going to be more efficient to use the adr instruction:

adr x0, symbol

The only time this will fail is if your .text section is very large and the
symbol is more than 1MB away from the adr instruction. The main reason
for using the lea macro is to obtain the address of a symbol that is in a dif-
ferent section (especially on macOS, whose PIE/ASLR policy will likely
locate that section farther than +1MB away).

If the symbol/memory location whose address you wish to compute is
farther than 4GB away from the current instruction, you’ll have to use one
of the approaches in the following sections to obtain its address.

7.5.2 Statically Computing the Address of a Symbol

Since memory addresses are 64 bits, and the .dword directive allows you to
initialize a dword object with a 64-bit value, shouldn’t it be possible to ini-
tialize such an object with the 64-bit address of another symbol in the pro-
gram? The answer depends on the OS you’re running under.
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Under Linux, it is perfectly legal (even when running PIE code) to do
the following

varPtr: .dword variable

where variable is the name of a symbol appearing in a .data, .bss, .rodata,

or .text section. When Linux loads the executable program into memory,

it will automatically patch this dword memory location with the address of
that symbol in memory (wherever Linux has loaded it). Depending on the
section, you might be able to directly load the contents of this location in
the X0 register by using the following instruction, assuming that the symbol
is within the PC-relative range of the ldr instruction:

1ldr x0, varPtr

Sadly, this scheme may not work under macOS, where youre not allowed
to use absolute addresses in your .text section. If you move varPtr to the
.data section, macOS will accept the pointer initialization but will reject the
1dr instruction with the same complaint about an illegal absolute address. Of
course, you could use the lea macro to load the address of varPtr into X0 and
then fetch variable’s address by using the [X0] addressing mode; however,
at that point, you may as well use the lea instruction to load the address of
variable directly into X0. In any case, you're back to the +4GB limitation of
the lea macro.

You can get around the absolute address limitation of macOS by using
a relative address rather than an absolute address. A relative address is just
an offset from a fixed point in memory (for example, a PC-relative address
is an offset from the address held in the PC register). You can create a self-
relative 64-bit pointer by using the following statement:

varPtr: .dword variable-. // "." is same as "varPtr" here.

This initializes this 64-bit memory location with the distance (in bytes)
from the varPtr object to the desired memory location (variable). This is
known as a self-relative pointer because the offset is from the pointer variable
itself. As it turns out, macOS’s assembler is perfectly happy with this address
expression (even in the .text section) because it is not an absolute address.

MACOS AND INITIALIZED POINTERS

MacOS does not allow é4-bit absolute addresses within the .text section. They
can't point info the .text section or at other sections. No absolute addresses,
absolutely.

This restriction does not exist in other sections. You can have initialized
64-bit pointers in a .data section or in an .rodata section. Those pointers can




even point at addresses within the .text section. | don't know why absolute
pointers are allowed in these other sections but not the .text section, but |
suspect that an exploit took advantage of a pointer in the .text section that
doesn’t work if the pointer is in other sections.

. J

Of course, you cannot simply load these 64 bits into a register and address
the memory location at which they point. The value is an offset, not an
address. However, if you add the address of varPtr to its contents, this will
give you the address of variable, as demonstrated in the following code:

adr x0, varPtr // Assume varPtr is in .text and nearby.
ldr x1, varPtr // Get varPtr address and contents, then
add x0, x0, x1 // add them together for variable's address.

This sequence solves the problem with addresses under macOS and
happens to work just fine under Linux as well. Because this sequence
will work under both OSes, this book adopts this scheme when fetching
addresses from variables in memory.

Under macOS, this sequence requires varPtr to be in the same .text
section as the instructions. Otherwise, macOS will complain that varPtr is
an absolute address and will reject this code. Because I've written this book
assuming the code will generally work under Linux and macOS, I will keep
such labels in the .text section.

A single 1dr instruction will also work fine under Linux, so if you’re
writing Linux-only code, the single 1dr is more efficient.

7.5.3 Dynamically Computing the Address of a Memory Object

Computing the address of a nonstatic memory object is a bit more involved
than doing the same for static (.data, .bss, .text, .rodata, and so on) memory
objects.

Because every ARM machine instruction is exactly 32 bits in length,
you can view a .text section containing nothing but machine instructions
as an array of words, where the value in each word just happens to be the
encoding of a machine instruction. (This view isn’t 100 percent accurate; if
the .text section contains data as well as instructions, there are limitations to
how far you can go with treating the .text section as an array of instructions.
However, if you limit yourself to those areas that contain only instructions,
everything will be fine.)

With this in mind, it is possible to manipulate the values in the .text
section by using the techniques for arrays from section 4.7, “Arrays,” on
page 194. This includes techniques such as indexing into arrays and com-
puting the effective address of array elements.
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Section 5.6.2, “Passing by Reference,” on page 256 describes a procedure for comput-
ing the effective address of an object you reference via the ARM’s various addressing
modes. For data objects, see that discussion.

Consider the following instruction sequence of arbitrary instructions
cut from Listing 7-2:

goodInput: mov wl, wo
lea X0, goodStr
mstr wl, [sp]
bl printf

b.al repeatPgm

The label goodInput is the base address of an array of five words contain-
ing the five instructions in this short sequence. You can, of course, take
the base address of this array by using the adr instruction (or lea if this
sequence is too far away). Once you have this base address in a register
(such as X0), you can use the array-indexing calculation to compute the
address of a particular entry in the array:

element_address = base_address + index x element size

The element_size value is 4, as each instruction is 32 bits. Index 0 specifies
the mov instruction, index 1 specifies the adr instruction, and so on.

Given an index value in X1, you can transfer control directly to one of
these five instructions by using the following code:

adr x0, goodInput
add x0, x0, x1, 1sl #2
br x0

The add instruction multiplies the index (X1) by 4 before adding it to
the base address. This computes the byte address of the specified instruc-
tion in the sequence; then br transfers control to the instruction.

In many respects, this is similar to a switch or case statement, where
a unique case is associated with each instruction in the sequence. This
chapter considers such control structures in section 7.6.7, “switch...case
Statements,” on page 389. In the meantime, just know that you can dynami-
cally compute the address of one of the instructions in this sequence by
using normal effective address calculations.

7.5.4 Working with Veneers

In the rare case you need to branch to a location beyond the range of the
conditional branch instructions, you can use an instruction sequence such
as the following

bcc skipImp

opposite

lea x16, destlLbl



br x16
skipJmp:

where bec,,, ;. 18 the opposite of the branch you want to take. This oppo-
site branch skips over the code that transfers control to the target location.
This provides you with the 4GB range of the lea macro, which should be
sufficient if you’re branching to code in your program. The opposite con-
ditional branch transfers control to the normal fall-though point in the code
(the code you’d normally fall through to if the condition is false). If the
condition is true, control transfers to a memory-indirect jump that jumps to
the original target location via a 64-bit pointer.

This sequence is known as a veneer (or a trampoline), because a program
jumps to this point to move even further in the program—much like jump-
ing on a trampoline lets you jump higher and higher. Veneers are use-
ful for call and unconditional jump instructions that use the PC-relative
addressing mode (and thus are limited to a +IMB range around the current
instruction). You’ll rarely use veneers to transfer to another location within
your program, since it’s unlikely you’ll write assembly language programs
that large.

Note the use of the X16 register in this example. The ARM ABI reserves
registers X16 and X17 for dynamic linking and veneer use. You're free to
use these two as volatile registers with the expectation that their contents
may be changed upon executing a branch instruction (of any kind, though
generally a bl instruction). Compilers and linkers will typically modify an
out-of-range branch instruction to transfer code to a nearby veneer, which
then transfers control the full distance to the actual destination. When cre-
ating your own veneers, it makes sense to use these registers as temporaries
for that purpose.

Branching to code outside this range generally means you're transfer-
ring control to a function in a shared (or dynamically linked) library. See
the appropriate documentation for your OS for details on such libraries.

Table 7-1 lists the opposite conditions; refer to Table 2-11 on page 82
for the available opposite branch macros in aoaa.inc.

Table 7-1: Opposite Conditions

Branch condition Opposite
eq ne

ne eq

hi Is

hs lo

lo hs

Is hi

gt le

ge It

(continued)
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Table 7-1: Opposite Conditions (continued)

Branch condition Opposite
It ge
le gt
Cs CC
CcC Cs
Vs vC
vC \A)
mi pl
pl mi

If the destination location is beyond the +4GB range of the lea macro,
you’ll need to create a 4-byte pointer (offset) to the actual location and use
code such as the following:

adr
ldr
add
br

destPtr:

.dword

x16, destPtr
x17, destPtr
x16, x16, x17
x16

destination-. // Same as "destination-destPtr"

This particular sequence is sufficiently useful that the aoaa.incinclude
file provides a macro that expands to it:

goto destination

If you need to call a procedure that’s more than +4GB away, you could
emit similar code

adr
ldr
add
blr
b.al

destPtr:

.dword
skipAdrs:

x16, destPtr
x17, destPtr
x16, x16, x17
x16

skipAdrs

destination-.

However, it’s easier to do this:

bl

veneer:
goto destination

veneer




7.6

With the discussion of veneers out of the way, the next section can dis-
cuss how to implement HLL-like control structures in assembly language.

Implementing Common Control Structures
in Assembly Language

This section shows you how to implement HLL-like control structures such
as decisions, loops, and other control constructs by using pure assembly lan-
guage. It concludes by showing some ARM instructions designed for creat-
ing common loops.

Throughout many of the following examples, this chapter assumes that
various variables are local variables in the activation record (indexed off of
the FP register) or static/global variables indexed off the SB (X28) register.
We presume that appropriate structure declarations have been made for all
the variable’s identifiers and that the FP/SB registers have been properly
initialized to point at these structures.

7.6.1 Decisions

In its most basic form, a decision is a branch within the code that switches
between two possible execution paths based on a certain condition. Normally
(though not always), conditional instruction sequences are implemented
with the conditional jump instructions. Conditional instructions corre-
spond to the following if...then...endif statement in an HLL:

if(expression) then
statements
endif;

To convert this to assembly language, you must write statements that
evaluate the expression and then branch around the statements if the result
is false. For example, if you had the C statements

if(aa == bb)

printf("aa is equal to bb\n");
}

you could translate this to assembly as follows:

ldr wo, [fp, #aa] // Assume aa and bb are 32-bit integers.
ldr w1, [fp, #bb]
cmp wo, wil

bne aNEb // Use opposite branch to skip then
lea x0, alskEqlBstr // " aa is equal to bb\n".
bl  printf

aNEb:
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In general, conditional statements may be broken into three basic cat-
egories: if statements, switch...case statements, and indirect jumps. Next,
you’ll learn about these program structures, how to use them, and how to
write them in assembly language.

7.6.2 if...then...else Sequences

The most common conditional statements are the if...then...endif and
if...then...else...endif statements. These two statements take the form
shown in Figure 7-1.

if...then...else...endif if...then...endif
Test for a condition Test for a condition
False True False True
Execute this block Execute this block
of statements if the of statements if the
condition is true condition is true

I

Execute this block
of statements if the
condition is false

\/ \

Yy
' ] Continue execution
Continue execution down here after the
down here after the completion of the
completion of the then or if skipping
then or else blocks the then block

Figure 7-1: The if...then...else...endif and if...then...endif statements

The if...then...endif statement is just a special case of the if...then...
else...endif statement (with an empty else block). The basic implementa-
tion of an if...then...else...endif statement in ARM assembly language
looks something like this

Sequence of statements to test a condition
bcc ElseCode;

Sequence of statements corresponding to the THEN block

b.al EndOfIf
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ElseCode:
Sequence of statements corresponding to the ELSE block

EndOfIf:

where bcc represents a conditional branch instruction (typically the oppo-
site branch of the condition being tested).

For example, suppose you want to convert the C/C++ statement into
assembly language:

if(aa == bb)
c=d;

else
bb = bb + 1;

To do so, you could use the following ARM code:

ldr wo, [fp, #aa] // aa and bb are 32-bit integers
ldr w1, [fp, #bb] // in the current activation record.
cmp w0, wl

bne ElseBlk // Use opposite branch to goto else.
ldr wo, [sb, #d] // Assume ¢ and d are 32-bit static
str wo, [sb, #c] // variables in the static base

b.al EndOfIf // structure (pointed at by SB).
ElseBlk:

ldr wo, [fp, #bb]

add wo, wo, #1

str wo, [fp, #bb]
EndofIf:

For simple expressions like (aa == bb), generating the proper code for
an if...then...else...endif statement is easy. Should the expression become
more complex, the code complexity increases as well. Consider the follow-
ing C/C++ if statement:

if(((x >y) 8 (z <t )) || (aa != bb))
c =d;

To convert a complex if statement such as this one, break it into a
sequence of three if statements as follows (assuming the use of short-
circuit evaluation; see section 7.6.5, “Short-Circuit vs. Complete Boolean
Evaluation,” on page 382 for details):

if(aa != bb)
c =d;
else if(x > vy)
if(z < t)
c = d;
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This conversion comes from the following C/C++ equivalences:

if(expri && expr2) stmt;

is equivalent to

if(expr1) if(expr2) stmt;

and

if(exprl || expr2) stmt;

is equivalent to

if(expr1) stmt;
else if(expr2) stmt;

In assembly language, the former if statement becomes the following:

/] if(((x > y) 8 (z < t)) || (aa != bb))
// c=d;
//

// Assume x = WO, y = Wi, z = W2, t = W3, aa = W4, bb = W5, c = W6, and d = W7
// and all variables are signed integers.

cmp w4, w5 // (aa != bb)?

bne DoIf

cmp  wO0, wl /] (x> y)?

bngt EndOfIf  // Not greater than

cmp w2, w3 /] (z < t)?

bnlt EndOfIf  // Not less than
DoIf:

mov. w6, w7y // c=d
EndOfIf:

Note the use of opposite branches to suggest that falling through is the
main condition to consider.

The biggest problem with complex conditional statements in assembly
language is trying to figure out what you’ve done after you've written the
code. HLL expressions are much easier to read and comprehend, so well-
written comments are essential for clear assembly language implementa-
tions of if...then...else...endif statements. The following code shows an
elegant implementation of the preceding example:

/13 (((x > y) 8& (z < t)) [] (aa != bb))

// c=d;

//

// Assume x = WO, y = W1, z = W2, t = W3, aa = W4, bb = W5, ¢ = We,
// and d = W7.

//

// Implemented as:



//
// if (aa != bb) then goto DoIf

cmp w4, w5 // (aa != bb)?
bne DoIf

// if not (x > y) then goto EndOfIf

cmp wo, wi // (x > y)?
bngt EndOfIf // Not greater than

// if not (z < t ) then goto EndOfIf

cmp w2, w3 // (z < t)?
bnlt EndOfIf // Not less than

// true block:
DoIf:

mov w6, w7 // c=d
EndOfIf:

Whenever you're working in assembly language, don’t forget to step
back for a moment and see if you can rethink the solution in assembly lan-
guage rather than playing “human C/C++ compiler.” When working with a
complex Boolean expression, your first thought should be, “Can I use the
conditional compare instruction to resolve this?” The following example
does just that:

/1 if(((x > y) && (z < t)) || (aa != bb))
/1 c=4d;
/1

// Assume x = Wi, y = W2, z = W3, t = W4, aa = W5, bb = W6, c = WO, and d = W7.

cp  wl, w2 /] x>y ?gt: ngt (Cternary ?: op)
ccmp w3, w4, #cenlt, gt // x>y ? gt : ngt

ccmp w5, wé, #cene, nlt // nlt ? (a !=bb ? ne : nne) : ne
csel w0, w7, wo, ne // if(ne) c =d

The cmp instruction sets the flags for (x > y). The first ccmp instruction
sets the flags to simulate a signed ge (not less than) if (x <=y) or based on
the comparison of (z < t) if (x > y). After executing the first ccmp instruc-
tion, N=Vif (x > y) 88 (z < t).

Upon executing the second ccmp instruction, if N # V (meaning signed
less than), the code just sets NZCV to simulate ne and doesn’t bother com-
paring aa and bb (because the left-hand side of the disjunction operator is
already true, there is no need to evaluate the third parenthetical expres-
sion). Setting Z = 0 means the csel instruction will copy d to ¢ (based on the
ne condition).

If N = Vwhen executing the second ccmp instruction, the ge condition
is true, which means that the conjunction operation yielded false and you
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must test to see if aa does not equal bb. That will set the flags appropriately
for the csel instruction. Listing 7-3 demonstrates the execution of this con-
ditional comparison code.

// Listing7-3.S

/1

// Demonstrate the ccmp instruction

// handling complex Boolean expressions.

#include "aoaa.inc"

.data
xArray: .word -1, 0, 1,-1, 0, 1,-1, 0, 1, 1
yArray: .word -1,-1,-1, 0, 0, 0, 1, 1, 1, O
zArray: .word -1, o, 1,-1, 0, 1,-1, 0, 1, O
tArray: .word o, 0, 0, 1, 1, 1,-1,-1,-1, 1
aArray: .word o, 0, 0,-1,-1,-1, 1, 1, 1, 1
bArray: .word -1, o0, 1,-1, 0, 1,-1, 0, 1, 1
size = 10

.text

.pool

ttlStr: wastr  "Listing 7-3"

fmtStri: .ascii "((x > y) 8& (z < t)) || (aa !'= bb)\n"
.ascii " x y z t aa bb Result\n"
wastr  "-- -- - -- oo - —-o--\n"

fmtStr2: wastr  "%2d %2d %2d %2d %2d %2d  %2d\n"

// getTitle

//

// Return pointer to program title
// to the C++ code:

proc getTitle, public
adr X0, ttlStr

ret

endp getTitle

LTI 0000007111111100001111111111711111117
/1

// Here's the asmMain procedure:
p
proc asmMain, public

locals am

gword  saveX1920
gword  saveX2122
gword  saveX2324
dword  saveX25

byte stackSpace, 64
endl am
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// Save nonvolatile registers and initialize
// them to point at xArray, yArray, zArray,

enter

am.

size

// tArray, aArray, and bArray:

#define
#define
#define
#define
#define
#define

oS L+ N < X

[S i<V}

stp
stp
stp
str

x19
x20
x21
X22
X23
x24

lea
lea
lea
lea
lea
lea

lea
bl

x19, x20, [fp, #saveX1920]
x21, x22, [fp, #saveX2122]
X23, x24, [fp, #saveX2324]
x25, [fp, #saveX25]

X’
Y
z,
t,
aa,
bb,

X0,

xArray
yArray
zArray
tArray
aArray
bArray

fmtStr1

printf

// Loop through the array elements
// and print their values along

// with the result of
/1 ((x >y) 8& (z < t)) || (aa != bb)

rptlp:

mov
ldr
ldr
ldr
ldr
ldr
ldr

cmp
ccmp
ccmp
cset

lea

mstr
mstr
mstr
mstr
mstr
mstr
mstr

x25, #0

wi,
w2,
w3,
wh,
w5,
w6,

wi,
w3,
w5,
w7,

X0,
wl,
w2,
w3,
Wi,
W5,
w6,
w7,

]
y, x25, 1sl #2]
z, x25, 1sl #2]
t, x25, 1sl #2]
aa, x25, 1sl #2]
bb, x25, 1sl #2]

X, X25, 1sl #2
)
)

[
[
[
[
[
[

w2
w4, #cenlt, gt
w6, #ccne, nlt
ne

fmtStr2

sp, #8]

// w1
/] W2
/] W3
// Wa
// Ws
/] We

x[X25]
y[X25]
z[X25]
t[X25]
aa[X25]
bb[X25]
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bl printf

add x25, x25, #1
cmp x25, #size
blo rptlp

// Restore nonvolatile register values
// and return:

1dp x19, x20, [fp, #saveX1920]
ldp x21, x22, [fp, #saveX2122]
1dp x23, x24, [fp, #saveX2324]
ldr x25, [fp, #saveX25]

leave
endp asmMain

Here’s the build command and sample output for Listing 7-3:

$ ./build Listing7-3
$ ./Listing7-3
Calling Listing7-3:
((x >y) & (z < t)) || (aa != bb)
X y z t aa bb Result

-1-1-1 0 0 -1 1

0 0

o
1
[y
o

1
N
P PR OO
1
=
1
=

-1-1 1
0-1 1
1-1 1
10 0 1 1 1

Listing7-3 terminated

0
0
1 01
1
1
1

R OR R RLRRLRORO

The output shows the truth table for the given expression.

7.6.3 Complex if Statements Using Complete Boolean Evalvation

Many Boolean expressions involve conjunction (AND) or disjunction (OR)
operations. You can convert such Boolean expressions into assembly lan-
guage in two ways: using complete Boolean evaluation or using short-circuit
Boolean evaluation. This section discusses complete Boolean evaluation, and
the next discusses short-circuit Boolean evaluation.

Conversion via complete Boolean evaluation is almost identical to
converting arithmetic expressions into assembly language, as covered in
section 6.4, “Logical Expressions,” on page 312. However, for Boolean eval-
uation, you do not need to store the result in a variable; once the evaluation
of the expression is complete, you check whether you have a false (0) or
true (1, or nonzero) result to take whatever action the Boolean expression
dictates. Remember that only the ands instruction sets the zero flag; there is



no orrs instruction. Consider the following if statement and its conversion
to assembly language using complete Boolean evaluation:

/1 if(((x <y) & (z > 1)) || (aa != bb))

// Stmt1 ;

//

// Assume all variables are 32-bit integers and are local
// variables in the activation record.

ldr wo, [fp, #x]

ldr w1, [fp, #y]

cmp  wo, wl

cset w7, 1t // Store x <y in W7.
ldr wo, [fp, #z]

ldr w1, [fp, #t]

cmp  wo, wl

cset w6, gt // Store z > t in Wé.
and w6, w6, w7 // Put (x <y) 8% (z > t) into We.
ldr wo, [fp, t#aa]

ldr w1, [fp, #bb]

cmp w0, wil
cset w0, ne // Store aa != bb into Wo.
orr w0, w0, wé // Put (x <y) & (z>t) ||
cmp w0, #0 // (aa != bb) into Wo.

beq SkipStmti // Branch if result is false.
Code for Stmti

SkipStmt1:

This code computes a Boolean result in the WO register and then, at the
end of the computation, tests this value to see whether it contains true or
false. If the result is false, this sequence skips over the code associated with
Stmt1. The important thing is that the program will execute every instruc-
tion that computes this Boolean result (up to the beq instruction).

By now you should recognize that we can improve this code by using
the ccmp instruction:

ldr wo, [fp, #x]

ldr w1, [fp, #y]

cmp w0, wl

ldr wo, [fp, #z]

ldr w1, [fp, #t]

ccmp wo, wil, #cengt, 1t

ldr wo, [fp, #aa]

ldr w1, [fp, #bb]

ccmp wo, wi, #cceq, gt

beq SkipStmti // Branch if result is false.

Code for Stmti

SkipStmta:
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The code is still a bit longer than usual, but this is the result of using
memory variables rather than registers for everything in this example. Even
though this example uses the ccmp instruction, the code still executes each
and every instruction in the sequence, even if the condition becomes false
early on and could never become true.

7.6.4 Short-Circvit Boolean Evalvation

If you are willing to expend a little more effort (and your Boolean expres-
sion doesn’t depend on side effects), you can often convert a Boolean
expression to a faster sequence of assembly language instructions by using
short-circuit Boolean evaluation. This approach attempts to determine whether
an expression is true or false by executing only some of the instructions
that would compute the complete expression.

Consider the expression aa 8& bb. Once you determine that aa is false,
there is no need to evaluate bb because there is no way the expression
can be true. If bb represents a complex subexpression rather than a single
Boolean variable, it should be clear that evaluating only aa is more efficient.

As a concrete example, consider the subexpression ((x < y) 8& (z > t)).
Once you determine that x is not less than y, there is no need to check
whether z is greater than t because the expression will be false regardless of
the values of z and t. The following code fragment shows how to implement
short-circuit Boolean evaluation for this expression:

/] if((x <y) & (z > t)) then ...

ldr wo, [fp, #x]
ldr w1, [fp, #y]
cmp w0, wi

bnlt TestFails
ldr wo, [fp, #z]
ldr w1, [fp, #t]
cmp w0, wi

bngt TestFails

Code for THEN clause of IF statement

TestFails:

The code skips any further testing once it determines that x is not less
than y. Of course, if x is less than y, the program has to test z to see if it is
greater than t; if not, the program skips over the then clause. Only if the pro-
gram satisfies both conditions does the code fall through to the then clause.

For the logical OR operation, the technique is similar. If the first sub-
expression evaluates to true, there is no need to test the second operand.
Whatever the second operand’s value is at that point, the full expression
still evaluates to true. The following example demonstrates the use of short-
circuit evaluation with disjunction (||):



// if(Wo < 'A' || Wo > 'Z")
// then printf("Not an uppercase char");
// endif;

cmp  wo, #'A'
blo ItsNotUC
cmp wo, #'Z'
bnhi ItWasUC

TtsNotUC:
Code to process Wo if it's not an uppercase character

ItWasuC:

Because the conjunction and disjunction operators are commutative,
you can evaluate the left or right operand first if it is more convenient to
do so.

Be aware that some expressions depend on the leftmost subexpression
evaluating one way in order for the rightmost subexpression to be valid;
if(x !=NULL & x -> y) is a common test in C/C++, for example.

As one last example in this section, consider the full Boolean expres-
sion from the previous section:

/] if(((x <y) & (z > t)) || (aa != bb)) Stmt1 ;

ldr wo, [sb, #aa] // Assume aa and bb are globals.
ldr wi, [sb, #bb]

cmp w0, wl

bne DoStmt1

ldr wo, [fp, #x] // Assume x, y, z, and t
ldr w1, [fp, #y] // are all locals.

cmp w0, wl

bnlt SkipStmt1

ldr wo, [fp, #z]

ldr w1, [fp, #t]

cmp w0, wl

bngt SkipStmti

DoStmt1:
Code for Stmti

SkipStmt1:

The code in this example evaluates aa != bb first, because it is shorter
and faster, and the remaining subexpression last. This is a common tech-
nique assembly language programmers use to write better code.

This assumes, of course, that all comparisons are equally likely to be
true or false. If you can predict that the subexpression aa != bb will be false
the vast majority of the time, it would be best to test that condition last.
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7.6.5 Short-Circuit vs. Complete Boolean Evaluation

When using complete Boolean evaluation, every statement in the sequence
for that expression will execute; short-circuit Boolean evaluation, on the
other hand, may not require the execution of every statement associated
with the Boolean expression. As you've seen in the previous two sections,
code based on short-circuit evaluation is often shorter and possibly faster.

However, short-circuit Boolean evaluation may not produce the correct
result in some cases. Given an expression with side effects (changes to vari-
ables within the expression), short-circuit Boolean evaluation will produce
a different result than complete Boolean evaluation. Consider the following
C/C++ example:

if((x == y) && (++z != 0)) Stmt;

Using complete Boolean evaluation, you might generate the following:

ldr wo, [fp, #x] // See if x ==y.
ldr w1, [fp, #y]

cmp w0, wi

ldr w2, [fp, #z]

add w2, wi, 1 /] ++z

str w2, [fp, #z]

ccmp w2, #0, #cceq, eq

beq SkipStmt

Code for Stmt

SkipStmt:

The ccmp instruction compares the incremented value of z against 0, but
only if x is equal to y. If x is not equal to y, the ccmp instruction sets the Z flag
to 1 so that control transfers to SkipStmt with the following beq instruction.

Using short-circuit Boolean evaluation, you might generate the follow-
ing code:

ldr wo, [fp, #x] // See if x ==
ldr w1, [fp, #y]

cmp wo, wi

bne SkipStmt

ldr w2, [fp, #z]

adds w2, wi, 1 /] ++z -- sets Z flag if z
str w2, [fp, #z] // becomes 0.
beq SkipStmt // See if incremented z is 0.

Code for Stmt

SkipStmt:




A subtle but important difference exists between these two conversions:
if x is equal to y, the first version still increments z and compares it to 0 before
it executes the code associated with Stmt. The short-circuit version, on the
other hand, skips the code that increments z if it turns out that x is equal
to y. Therefore, the behavior of these two code fragments is different if x is
equal toy.

Neither implementation is wrong; depending on the circumstances, you
may or may not want the code to increment z if x is equal to y. However, it
is important to realize that these two schemes produce different results, so
you can choose an appropriate implementation if the effect of this code on
z matters to your program.

Many programs take advantage of short-circuit Boolean evaluation and
rely on the program not evaluating certain components of the expression.
The following C/C++ code fragment demonstrates perhaps the most com-
mon example that requires short-circuit Boolean evaluation:

if( pntr != NULL 8& *pntr == 'a' ) Stmt;

If it turns out that pntr is NULL, the expression is false, and there is
no need to evaluate the remainder of the expression. This statement relies
on short-circuit Boolean evaluation for correct operation. Were C/C++ to
use complete Boolean evaluation, the second half of the expression would
attempt to dereference a NULL pointer, when pntr is NULL.

Consider the translation of this statement using complete Boolean
evaluation:

// Complete Boolean evaluation:

ldr xo, [fp, #pntr]

cmp  x0, #0 // Check to see if X0 is 0 (NULL is 0).
cset wi, ne  // wl = pntr != NULL

ldrb wo, [x0] // Get *pntr into Wo.

cmp wo, #'a'

cset w2, eq

ands wi, wl, w2

beq SkipStmt

Code for Stmt

SkipStmt:

If pntr contains NULL (0), this program will attempt to access the data at
location 0 in memory via the 1drb wo, [x0] instruction. Under most OSes,
this will cause a memory access fault (segmentation fault).

Now consider the short-circuit Boolean conversion:

ldr xo0, [fp, #pntr] // See if pntr contains NULL (0)
cmp X0, #0 // and immediately skip past Stmt
beq SkipStmt // if this is the case.

Low-Level Control Structures 383



384

Chapter 7

1drb wo, [x0] // If we get to this point, pntr

cmp wo, #'a' // contains a non-NULL value, so see
bne SkipStmt // if it points at the character 'a'.
Code for Stmt

SkipStmt:

In this example, the problem with dereferencing the NULL pointer
doesn’t exist. If pntr contains NULL, this code skips over the statements that
attempt to access the memory address that pntr contains.

7.6.6 Efficient Implementation of if Statements in Assembly Language

Encoding if statements efficiently in assembly language takes a little
more thought than simply choosing short-circuit evaluation over complete
Boolean evaluation. To write code that executes as quickly as possible in
assembly language, you must carefully analyze the situation and generate
the code appropriately. The following paragraphs provide suggestions you
can apply to your programs to improve their performance.

7.6.6.1 Knowing Your Data

Programmers often mistakenly assume that data is random. In reality, data
is rarely random, and if you know the types of values that your program
commonly uses, you can write better code. To see how, consider the follow-
ing C/C++ statement:

if((aa == bb) & (c < d)) ++i;

Because C/C++ uses short-circuit evaluation, this code will test whether
aa is equal to bb. If so, it will test whether c is less than d. If you expect aa to
be equal to bb most of the time but don’t expect c to be less than d most of
the time, this statement will execute slower than it should. Consider the fol-
lowing Gas implementation of this code:

ldr wo, [fp, #aa]
ldr w1, [fp, #bb]
cmp - w0, wi

bne DontIncI

ldr wo, [fp, #c]
ldr w1, [fp, #d]
cmp WO, wi

bnlt DontIncI

ldr wo, [sb, #i]
add wo, wo, #1
str wo, [sb, #i]

DontIncI:




As you can see, if aa is equal to bb most of the time and c is not less
than d most of the time, you will have to execute the first eight instructions
nearly every time in order to determine that the expression is false. Now
consider the following implementation that takes advantage of this knowl-
edge and the fact that the 8& operator is commutative:

ldr wo, [fp, #c]
ldr w1, [fp, #d]
cmp w0, wl

bnlt DontIncI

ldr wo, [fp, #aa]
ldr w1, [fp, #bb]
cmp w0, wl

bne DontIncI

ldr wo, [sb, #i]
add wo, wo, #1
str wo, [sb, #i]

DontIncI:

The code first checks whether c is less than d. If most of the time c is not
less than d, this code determines that it has to skip to the label DontIncI after
executing only three instructions in the typical case, compared with seven
instructions in the previous example.

Optimizations like this are much more obvious in assembly language
than in an HLL, one of the main reasons assembly programs are often
faster than their HLL counterparts. The key here is to understand the
behavior of your data so you can make intelligent decisions.

7.6.6.2 Rearranging Expressions

Even if your data is random, or you can’t determine how the input values
will affect your decisions, rearranging the terms in your expressions may
still be beneficial. Some calculations take far longer to compute than oth-
ers. For example, computing the remainder is slower than a simple cmp
instruction. Therefore, if you have a statement like the following, you may
want to rearrange the expression so that the cmp comes first:

if((x % 10 = 0) & (x !=y)) ++x;

Converted directly to assembly code, this if statement becomes the
following:

ldr w1, [fp, #x] // Compute x % 10.
mov w2, #10

udiv w0, wil, w2

msub w0, w0, w2, wil

cmp  wo, #0

bne  SkipIf
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ldr wo, [fp, #x]
ldr w1, [fp, #y]
cmp w0, wl
beq  SkipIf

add wo, wo, #1 /] ++x
str  wo, [fp, #x]

SkipIf:

The remainder computation is expensive (about one-third the speed
of most of the other instructions in this example). Unless it is three times
more likely that the remainder is 0 rather than x is equal to y, it would be
better to do the comparison first and the remainder calculation afterward:

ldr w1, [fp, #x] // Compute x % 10.
ldr w1, [fp, #y]

cnp WO, wi

beq  SkipIf

ldr w1, [fp, #x]
mov w2, #10

udiv w0, wl, w2
msub w0, wO, w2, wi

cmp w0, #0
bne  SkipIf
add w1, wi, #1 /] ++x

str w1, [fp, #x]

SkipIf:

The 8& and || operators are commutative in the mathematical sense
that if you evaluate that left or right side first, the logical result is the same.
In terms of execution, they are not commutative because the order of evalu-
ation may cause the code to skip the evaluation of the second subexpres-
sion; in particular, these operators may not be commutative if side effects
occur within the expression. This example works fine because there are no
side effects or possible exceptions being shielded by the reordered evalua-
tion of the &3 operator.

7.6.6.3 Destructuring Code

Structured code is sometimes less efficient than unstructured code because
it introduces code duplication or extra branches that might not be present
in unstructured code. Most of the time, this is tolerable because unstruc-
tured code is difficult to read and maintain; sacrificing some performance
in exchange for maintainable code is often acceptable. In certain instances,
however, you may need all the performance you can get and might choose
to compromise the readability of your code.



In HLLs, you can often get away with writing structured code because
the compiler will optimize it, producing unstructured machine code.
Unfortunately, when writing in assembly language, the machine code you
get is exactly equivalent to the assembly code you write.

Taking previously written structured code and rewriting it in an unstruc-
tured fashion to improve performance is known is destructuring code. The
difference between unstructured code and destructured code is that
unstructured code was written that way in the first place; destructured code
started out as structured code and was purposefully written in an unstruc-
tured fashion to make it more efficient. Pure unstructured code is usually
hard to read and maintain. Destructured code isn’t quite as bad because
you limit the damage (unstructuring the code) to only those sections where
it is absolutely necessary.

One classic way to destructure code is to use code movement, physically
moving sections of code elsewhere in the program. You move code that your
program rarely uses out of the way of code that executes most of the time.

Code movement can improve the efficiency of a program two ways.
First, a branch that is taken is more expensive (time-consuming) than a
branch that is not taken. If you move the rarely used code to another spot
in the program and branch to it on the rare occasion the branch is taken,
most of the time you will fall straight through to the code that executes
most frequently. Second, sequential machine instructions consume cache
storage. If you move rarely executed statements out of the normal code
stream to another section of the program that is rarely loaded into cache,
this will improve the cache performance of the system.

For example, consider the following pseudo C/C++ statement:

if(See_If an_Error Has Occurred)

Statements to execute if no error

}

else

{
}

Error-handling statements

In normal code, you don’t expect errors to be frequent. Therefore, you
would typically expect the then section of the preceding if to execute far
more often than the else clause. The preceding code could translate into
the following assembly code:

cmp See If an Error Has_Occurred, #true
beq HandleTheError

Statements to execute if no error

b.al EndOfIf
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HandleTheError:
Error-handling statements
EndOfIf:

If the expression is false, this code falls through to the normal state-
ments and then jumps over the error-handling statements. Instructions that
transfer control from one point in your program to another (for example,
b.al instructions) tend to be slow. It is much faster to execute a sequen-
tial set of instructions than to jump all over the place in your program.
Unfortunately, the preceding code doesn’t allow this.

One way to rectify this problem is to move the else clause of the code
somewhere else in your program. You could rewrite the code as follows:

cmp See If an Error Has Occurred, #true
beq HandleTheError

Statements to execute if no error
EndOfIf:

// At some other point in your program (typically after a b.al
// or ret instruction), you would insert the following code:

HandleTheError:
Error-handling statements
b.al EndOfIf

The program isn’t any shorter. The b.al you removed from the original
sequence winds up at the end of the else clause. However, because the else
clause rarely executes, moving the b.al instruction from the then clause
(which executes frequently) to the else clause is a big performance win,
because the then clause executes using only straight-line code. This tech-
nique is surprisingly effective in many time-critical code segments.

7.6.6.4 Calculating Rather than Branching

On the ARM processor, branches are expensive compared to many other
instructions. For this reason, it is sometimes better to execute more instruc-
tions in a sequence than fewer instructions that involve branching.

For example, consider the simple assignment wo = abs(w0). Unfortunately,
no ARM instruction computes the absolute value of an integer. The obvious
way to handle this is with an instruction sequence that uses a conditional
jump to skip over the neg instruction (which creates a positive value in WO if
WO was negative):

cmp wo, #0
bpl ItsPositive

neg wo, wo

ItsPositive:




Now consider the following sequence that will also do the job:

cmp w0, #0
cneg w0, w0, mi

Not only is the instruction set shorter, it also doesn’t involve any branches, so
it runs faster. This demonstrates why it’s good to know the instruction set!

Another example of calculation versus branching that you've seen
is using the ccmp instruction to handle conjunction and disjunction in a
Boolean expression (see section 7.6.5, “Short-Circuit vs. Complete Boolean
Evaluation,” on page 382). Though they tend to execute more instructions
than short-circuit evaluation, no branching is involved, and this often
equates to faster-running code.

Sometimes calculation without branching isn’t possible. For certain
types of branches (in particular, multiway branches), you can combine cal-
culations with a single branch to handle complex operations, as discussed
in the next section.

7.6.7 switch...case Statements
The C/C++ switch statement takes the following form:

switch(expression)

case consti:
Code to execute if
expression equals consti

case const2:
Code to execute if
expression equals const2

case constn:
Code to execute if
expression equals constn

default: // Note that the default section is optional.
Code to execute if expression
does not equal any of the case values

When this statement executes, it checks the value of the expression
against the constants const1 to constn. If it finds a match, the corresponding
statements execute.

C/C++ places a few restrictions on the switch statement. First, it allows
only an integer expression (or something whose underlying type can be an
integer). Second, all the constants in the case clauses must be unique. The
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next few subsections describe the semantics of the switch statement and
various implementations and clarify the reasons for the restrictions.

7.6.7.1  switch Statement Semantics

Most introductory programming texts introduce the switch...case statement
by explaining it as a sequence of if...then...elseif...else...endif state-
ments. They might claim that the following two pieces of C/C++ code are
equivalent:

switch( wo )

{
case 0: printf("i=0"); break;
case 1: printf("i=1"); break;
case 2: printf("i=2"); break;

}

if( wo ==0)

printf("i=0");
else if( wo == 1)
printf("i=1");
else if( wo == 2 )
printf("i=2");

While semantically these two code segments may be the same, their
implementation is usually different. Whereas the if...then...elseif...
else...endif chain does a comparison for each conditional statement in the
sequence, the switch statement normally uses an indirect jump to transfer
control to any one of several statements with a single computation.

7.6.7.2  if...else Implementation of switch

The switch (and if...else...elseif) statements could be written in assembly
language with the following code:

// if...then...else...endif form:
ldr wo, [fp, #i]
cmp wo, #0 // Check for o.
bne Noto

Code to print "i = 0"

b.al EndCase

Noto:
cmp wo, #1
bne Not1

Code to print "i = 1"

b.al EndCase



Not1:
cmp wo, #2
bne EndCase

Code to print "i = 2"

EndCase:

This code takes longer to determine that the last case should execute
than it does to determine whether the first case executes. This is because
the if...else...elseif version implements a linear search through the case
values, checking them one at a time from first to last until it finds a match.

7.6.7.3  Indirect Jump switch Implementation

A faster implementation of the switch statement is possible by using an indi-
rect jump table (a table containing target addresses to jump to). This imple-
mentation uses the switch expression as an index into a table of addresses;
each address points at the target case’s code to execute. The following
example demonstrates the use of a jump table:

// Indirect jump version
ldr wo, [fp, #i] // Zero-extends into Xo!
® adr x1, JmpTbl
® ldr x0, [x1, x0, 1sl #3]
® add x0, x0, x1
br xo0
JmpTbl: .dword Stmto-ImpTbl, Stmti-ImpTbl, Stmt2-ImpTbl
Stmto:
Code to print "i = 0"
b.al EndCase
Stmt1:
Code to print "i = 1"
b.al EndCase
Stmt2:

Code to print "i = 2"

EndCase:

To use the scaled-indexed addressing mode, this code begins by
loading the address of the jump table (JmpTbl) into X1 @. Because ImpTbl
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is in the .text section (and nearby), the code uses the PC-relative address-
ing mode.

The code fetches the ith entry from JmpTbl @. Because each entry in the
jump table is 8 bytes long, the code must multiply the index (i, which is in X0)
by 8, which the 1s1 #3 argument handles. The base address (in X1) plus
index times 8 gives the address of the appropriate entry in JmpTbl.

Because the entries in JmpTbl are offsets rather than absolute addresses
(remember, macOS doesn’t allow absolute addresses in the .text section),
you must convert the offset to an absolute address by adding in the base
address of the jump table ® (as each entry in the table is an offset from the
base address). The following br instruction transfers control to the appro-
priate case in the switch statement.

To begin, a switch statement requires that you create an array of point-
ers, with each element containing the address of a statement label in your
code; those labels must be attached to the sequence of instructions to
execute for each case in the switch statement. As noted in the code annota-
tions, macOS does not allow absolute addresses here, so the code uses off-
sets from the base address of the jump table, which also works for Linux. In
this example, the JmpTbl array, initialized with the offsets of the statement
labels Stmto, Stmt1, and Stmt2, serves this purpose. You must place the jump-
table array in a location that will never be executed as code (such as imme-
diately after a br instruction, as in this example).

The program loads the WO register with the value of i (assuming i is
a 32-bit unsigned integer, the ldr instruction zero-extends W0 into X0). It
then uses this value as an index into the JmpTbl array (W1 holds the base
address of the JmpTbl array) and transfers control to the 8-byte address
found at the specified location. For example, if W0 contains 0, the br xo
instruction will fetch the double word at address JmpTbl+o (W0 x 8 = 0).
Because the first double word in the table contains the offset of Stmto, the
br instruction transfers control to the first instruction following the Stmto
label. Likewise, if i (and therefore, W0) contains 1, then the indirect br
instruction fetches the double word at offset 8 from the table and transfers
control to the first instruction following the Stmt1 label (because the offset
of Stmt1 appears at offset 8 in the table). Finally, if i (W0) contains 2, then
this code fragment transfers control to the statements following the Stmt2
label because it appears at offset 16 in the JmpTbl table.

As you add more (consecutive) cases, the jump-table implementation
becomes more efficient (in terms of both space and speed) than the if...
elseif form. Except for simple cases, the switch statement is almost always
faster, and usually by a large margin. As long as the case values are consecu-
tive, the switch statement version is often smaller as well.

7.6.7.4  Noncontiguous Jump-Table Entries and Range Limiting

What happens if you need to include nonconsecutive case labels or can’t be
sure the switch value doesn’t go out of range? With the C/C++ switch state-
ment, such an occurrence will transfer control to the first statement after
the switch statement (or to a default case, if one is present in the switch).



However, this doesn’t happen in the example in the previous section. If
variable i does not contain 0, 1, or 2, executing the previous code produces
undefined results. For example, if i contains 5 when you execute the code,
the indirect br instruction will fetch the dword at offset 40 (5x 8) in ImpTbl
and transfer control to that offset. Unfortunately, JmpTbl doesn’t have six
entries, so the program will fetch the value of the sixth double word follow-
ing JmpTbl and use that as the target offset, which will often crash your pro-
gram or transfer control to an unexpected location.

The solution is to place a few instructions before the indirect br to ver-
ify that the switch selection value is within a reasonable range. In the previ-
ous example, you’d want to verify that the value of i is in the range 0 to 2
before executing the br instruction. If the value of i is outside this range,
the program should simply jump to the endcase label, which corresponds to
dropping down to the first statement after the entire switch statement. The
following code provides this modification:

ldr wo, [fp, #i] // Zero-extends into Xo!
cmp  wo, #2 // Default case if i > 2
bhi EndCase
adr x1, JmpTbl
ldr xo0, [x1, x0, 1sl #3]
add xo0, x0, x1
br xo0
JmpTbl: .dword Stmto-ImpTbl, Stmti-ImpTbl, Stmt2-ImpTbl
Stmto:
Code to print "i = 0"
b.al EndCase
Stmt1:
Code to print "i = 1"
b.al EndCase
Stmt2:

Code to print "i = 2"

EndCase:

Although this code handles the problem of selection values being out-
side the range 0 to 2, it still suffers from two severe restrictions:

e The cases must start with the value 0. That is, the minimum case con-
stant has to be 0.

e The case values must be contiguous.

Low-Level Control Structures 393



394

Chapter 7

Solving the first problem is easy, and you deal with it in two steps. First,
you compare the case selection value against a lower and upper bound
before determining whether the case value is legal, as shown in the follow-
ing example:

// SWITCH statement specifying cases 5, 6, and 7:
// WARNING: This code does *NOT* work.
// Keep reading to find out why.

ldr wo, [fp, #i] // Zero-extends into Xo!

cmp w0, #5 // Verify i is in the range
blo EndCase // 5 to 7 before indirect
cmp  wo, #7 // branch executes.

bhi EndCase
adr x1, JmpTbl
ldr xo0, [x1, x0, 1sl #3]
add x0, x0, x1
br x0
ImpTbl: .dword Stmt5-ImpTbl, Stmt6-ImpTbl, Stmt7-ImpTbl

Stmts:
Code to print "i = 5"

b.al EndCase

Stmt6:
Code to print "i = 6"

b.al EndCase

Stmt7:
Code to print "i = 7"

EndCase:

This code adds a pair of extra instructions, cmp and blo, to test the selec-
tion value to ensure it is in the range 5 to 7. If not, control drops down to
the EndCase label; otherwise, control transfers via the indirect br instruction.
Unfortunately, as the comments point out, this code is broken.

Consider what happens if variable i contains the value 5: the code will
verify that 5 is in the range 5 to 7 and then will fetch the dword at offset
40 (5x8) and jump to that address. As before, however, this loads 8 bytes
outside the bounds of the table and does not transfer control to a defined
location. One solution is to subtract the smallest case selection value from
WO before executing the br instruction, as shown in the following example:

// SWITCH statement specifying cases 5, 6, and 7:

ldr wo, [fp, #i] // Zero-extends into Xo!
subs w0, wo, #5 // Subtract smallest range.
blo EndCase // Subtract sets flags same as cmp!



cmp  wo, #7-5 // Verify in range 5 to 7.
bhi EndCase

adr x1, JmpTbl

ldr xo, [x1, x0, 1sl #3]

add x0, x0, x1

br x0

JmpTbl: .dword Stmt5-ImpTbl, Stmt6-ImpTbl, Stmt7-ImpTbl

Stmts:
Code to print "i = 5"

b.al EndCase

Stmt6:
Code to print "i = 6"

b.al EndCase

Stmt7:
Code to print "i = 7"

EndCase:

By subtracting 5 from the value in W0, the code forces WO to take on
the value 0, 1, or 2 prior to the br instruction. Therefore, case-selection
value 5 jumps to Stmt5, case-selection value 6 transfers control to Stmt6, and
case-selection value 7 jumps to Stmt7.

This code has one piece of trickery: the subs instruction serves double
duty. It not only adjusts the lower bound of the switch expression down to 0
but also serves as the comparison against 5 for the lower bound. Remember,
the cmp instruction sets the flags the same way as the subs instruction.
Therefore, subtracting 5 is the same as comparing against 5 as far as the
flag settings are concerned. When comparing the value in W0 against 7, the
code must actually compare against 2 because we’ve subtracted 5 from the
original index value.

You can handle cases that don’t start with 0 in another way:

// SWITCH statement specifying cases 5, 6, and 7:

ldr wo, [fp, #i] // Zero-extends into Xo!

cmp  wo, #5 // Verify the index is in
blo EndCase // the range 5 to 7.
cmp wo, #7

bhi EndCase

adr x1, JmpTbl - 5*%8 // Base address - 40
ldr xo0, [x1, x0, 1sl #3]

add xo0, x0, x1

br xo0
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JmpTbl: .dword Stmt5-ImpTbl, Stmt6-ImpTbl, Stmt7-ImpTbl
Stmt5:
Code to print "i = 5"
b.al EndCase
Stmté6:
Code to print "i = 6"
b.al EndCase
Stmt7:
Code to print "i = 7"

EndCase:

This example subtracts 40 (5 x 8) from the base address of the jump
table when loading that base address into X1. The index is still in the range
5 to 7, yielding an offset of 40 to 56 into the table; however, because the
base address is now specified 40 bytes before the actual table, the array-
indexing calculation properly indexes into the jump-table entries.

The C/C++ switch statement provides a default clause that executes if
the case-selection value doesn’t match any of the case values. The following
switch statement includes a default clause:

switch(expression)

case 5: printf("expression = 5"); break;
case 6: printf("expression = 6"); break;
case 7: printf("expression = 7"); break;
default:
printf("expression does not equal 5, 6, or 7");

Implementing the equivalent of the default clause in pure assembly lan-
guage is easy: just use a different target label in the blo and bhi instructions
at the beginning of the code. The following example implements a switch
statement similar to the preceding one:

// SWITCH statement specifying cases 5, 6, and 7:

ldr wo, [fp, #i] // Zero-extends into Xo!

cmp wo, #5 // Verify the index is in
blo DefaultCase // the range 5 to 7.
cmp w0, #7



bhi DefaultCase
adr x1, JmpTbl - 5 * 8 // Base address - 40
ldr xo0, [x1, x0, 1sl #3]
add x0, x0, x1
br xo0
JmpTbl: .dword Stmt5-ImpTbl, Stmt6-ImpTbl, Stmt7-ImpTbl
Stmts:
Code to print "i = 5"
b.al EndCase
Stmt6:
Code to print "i = 6"
b.al EndCase
Stmt7:
Code to print "i = 7"
b.al EndCase
DefaultCase:

Code to print "expression does not equal 5, 6, or 7"

EndCase:

The second restriction noted earlier, that the case values need to be
contiguous, is easy to handle by inserting extra entries into the jump table.
Consider the following C/C++ switch statement:

switch(i)
{
case 1: printf("i = 1"); break;
case 2: printf("i = 2"); break;
case 4: printf("i = 4"); break;
case 8: printf("i = 8"); break;
default:
printf("i is not 1, 2, 4, or 8");

The minimum switch value is 1, and the maximum value is 8. Therefore,
the code before the indirect br instruction needs to compare the value in i
against 1 and 8. If the value is from 1 to 8, it’s still possible that i might
not contain a legal case-selection value. However, because the br instruc-
tion indexes into a table of double words, the table must have eight double-
word entries.
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To handle the values from 1 to 8 that are not case-selection values, sim-
ply put the statement label of the default clause (or the label specifying the
first instruction after the end of the switch if there is no default clause) in
each of the jump-table entries that don’t have a corresponding case clause.
The following code demonstrates this technique:

// SWITCH statement specifying cases 1, 2, 4, and 8:

ldr
cmp
blo
cmp
bhi
adr
ldr
add
br

wo, [fp, #i] // Zero-extends into Xo!

wo, #1 // Verify the index is in
DefaultCase // the range 1 to 8.

wo, #8

DefaultCase

x1, JmpTbl - 1 * 8 // Base address - 8

x0, [x1, x0, 1sl #3]
X0, X0, x1
X0

ImpTbl: .dword Stmti-ImpTbl
.dword Stmt2-JmpTbl
.dword DefaultCase-JImpTbl // Case 3
.dword Stmt4-ImpTbl
.dword DefaultCase-JImpTbl // Case 5
.dword DefaultCase-ImpTbl // Case 6
.dword DefaultCase-JImpTbl // Case 7
.dword Stmt8-ImpTbl

Stmt1:

Code to print "i = 1"

b.al EndCase

Stmt2:

Code to print "i = 2

"

b.al EndCase

Stmt4:

Code to print "i = 4"

b.al EndCase

Stmt8:

Code to print "i = 8"

b.al EndCase

DefaultCase:



Code to print "expression does not equal 1, 2, 4, or 8"

EndCase:

This code uses cmp instructions to ensure that the switch value is in the
range 1 to 8 and transfers control to the DefaultCase label if this is the case.

7.6.7.5 Sparse Jump Tables

The current implementation of the switch statement has a problem. If the
case values contain nonconsecutive entries that are widely spaced, the jump
table could become exceedingly large. The following switch statement
would generate an extremely large code file:

switch(i)

{
case 1: Stmt1
case 100: Stmt2 ;
case 1000: Stmt3 ;
case 10000: Stmt4 ;
default: Stmts ;

}

In this situation, your program will be much smaller if you implement
the switch statement with a sequence of if statements rather than using an
indirect jump statement. However, the size of the jump table does not nor-
mally affect the execution speed of the program. If the jump table contains
2 entries or 2,000, the switch statement will execute the multiway branch
in a constant amount of time. The if statement implementation requires a
linearly increasing amount of time for each case label appearing in the case
statement.

One of the biggest advantages to using assembly language over an HLL
like Swift or C/C++ is that you get to choose the actual implementation of
statements like switch. In some instances, you can implement a switch state-
ment as a sequence of if...then...elseif statements, you can implement
it as a jump table, or you can use a hybrid of the two. The following code
examples demonstrate combining if...then...elseif and jump-table imple-
mentations for the same control structure:

switch(i)
case 0: Stmto
case 1: Stmt1
case 2: Stmt2

case 100: Stmt3 ;
default: Stmt4 ;
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That code could become the following:

ldr
cmp
beq
cmp
bhi
adr
ldr
add
br

wo, [fp, #i]

w0, #100 // Special case 100
DoStmt3

wo, #2

DefaultCase

x1, JmpTbl

x0, [x1, x0, 1sl #3]

X0, X0, x1

X0

Some switch statements have sparse cases, but the cases are often
grouped into contiguous clusters. Consider the following C/C++ switch

statement:

switch(expression)

{

case 0:

Code for case 0

break;

case 1:

Code for case 1

break;

case 2:

Code for case
break;
case 10:
Code for case
break;
case 11:
Code for case
break;

case 100:

10

11



Code for case 100
break;
case 101:
Code for case 101
break;
case 103:
Code for case 103
break;
case 1000:
Code for case 1000
break;
case 1001:
Code for case 1001
break;
case 1003:
Code for case 1003
break;
default:
Code for default case

break;
} // End switch.

You can convert a switch statement that consists of widely separated
groups of (nearly) contiguous cases to assembly language code using one
jump-table implementation for each contiguous group, then use compari-
son instructions to determine which jump-table instruction sequence to
execute. Here’s one possible implementation of the previous C/C++ code:

// Assume expression has been computed and is sitting in Xo
// at this point ...

cmp - x0, #100

blo tryo 11
cmp  x0, #103
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bhi  try1000_ 1003

adr X1, jthO - 100*8
ldr xo0, [x1, x0, 1sl #3]
add xo0, x0, x1

br X0

jt100:  .dword case100-jt100, casel01-jt100
.dword default-jt100, case103-jt100

tryo 11: cmp  x0, #11 // Handle cases 0-11 here.
bhi  default
adr x1, jto 11
ldr xo0, [x1, x0, 1sl #3]
add xo0, x0, x1
br X0

jto_11: .dword case0-jto_11, casel-jt0_11, case2-jto_11
.dword default-jto_ 11, default-jto_11
.dword default-jto_ 11, default-jto_ 11
.dword default-jto 11, default-jto 11
.dword default-jto_ 11, case10-jto_11, casel1l-jto 11

try1000 1003:
cmp  x0, #1000
blo default
cmp  x0, #1003
bhi  default
adr  x1, jt1000 - 1000*8
ldr xo0, [x1, x0, 1sl #3]
add xo0, x0, x1
br X0
jt1000: .dword case1000-jt1000, case1001-jt1000
.dword default-jt1000, case1003-jt1000

Code for the actual cases here

This code sequence combines groups 0 to 2 and 10 to 11 into a single
group (requiring seven additional jump-table entries) in order to save hav-
ing to write an additional jump-table sequence. For a set of cases this sim-
ple, it’s easier to just use compare-and-branch sequences, but I've simplified
this example to demonstrate multiple jump tables.

7.6.7.6  Other switch Statement Alternatives

What happens if the cases are too sparse to do anything but compare the
expression’s value case by case? In this situation, the code is not necessarily
doomed to being translated into the equivalent of an if...elseif...else...
endif sequence. However, before considering other alternatives, remem-
ber that not all if...elseif...else...endif sequences are created equal.
Look back at the last example in the previous section (the sparse switch



statement). A straightforward implementation might have been something
like this:

if(unsignedExpression <= 11)
Switch for 0 to 11.
else if(unsignedExpression >= 100 &8 unsignedExpression <= 103)

Switch for 100 to 103.

}

else if(unsignedExpression >= 1000 &3 unsignedExpression <= 1003)

{

Switch for 1000 to 1003.

}

else

{
Code for default case

Instead, the former implementation first tests against the value 100
and branches based on the comparison being less than (cases 0 to 11) or
greater than (cases 1000 to 1001), effectively creating a small binary search
that reduces the number of comparisons. It’s hard to see the savings in the
HLL code, but in assembly code you can count the number of instructions
that would be executed in the best and worst cases and see an improvement
over the standard linear search approach of simply comparing the values in
the cases in the order they appear in the switch statement. (Of course, if you
have many groups in a sparse switch statement, a binary search will be much
faster, on average, than a linear search.)

If your cases are too sparse (no meaningful groups at all), such as the 1, 10,
100, 1,000, 10,000 example given in section 7.6.7.5, “Sparse Jump Tables,” on
page 399, you can’t reasonably implement the switch statement by using a jump
table. Rather than devolving into a straight linear search, which can be slow, a
better solution is to sort your cases and test them by using a binary search.

With a binary search, you first compare the expression value against the
middle case value. If it’s less than the middle value, you repeat the search
on the first half of the list of values; if it’s greater than the middle value, you
repeat the test on the second half of the values; if it’s equal, obviously you
drop into the code to handle that test. The following code shows the binary
search version of the 1, 10, 100, . . . example:

// Assume expression has been calculated into Xo.
cmp x0, #100
blo try1 10
bhi try1000 10000

Code to handle case 100

b.al AllDone
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try1l 10:
cmp X0, #1
beq casel
cmp x0, #10
bne defaultCase
Code to handle case 10
b.al AllDone
casel:
Code to handle case 1
b.al AllDone
try1000_10000:
cmp x0, #1000
beq case1000
mov x1, #10000 // cmp can't handle 10000.
cmp x0, x1
bne defaultCase
Code to handle case 10,000
b.al AllDone
casel000:
Code to handle case 1,000
b.al AllDone
defaultCase:
Code to handle defaultCase

AllDone:

The techniques presented in this section have many possible alterna-
tives. For example, one common solution is to create a table containing a
set of records, with each record entry a two-tuple containing a case value
and a jump address. Rather than having a long sequence of compare
instructions, a short loop can sequence through all the table elements,
searching for the case value and transferring control to the corresponding
jump address if a match occurs. This scheme is slower than the other tech-
niques in this section, but it can be much shorter than the traditional if...
elseif...else...endif implementation. With a little effort, you could use a
binary search if the table is sorted.

7.6.7.7  Jump-Table Size Reductions

All the switch statement examples up to this point have used double-word
arrays for the jump table. With a 64-bit offset, these jump tables can
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transfer control to any location in the ARM’s address space. In reality, this
range is almost never necessary. Most offsets will be relatively small num-
bers (often less than +128, or £32,767). This means that the HO bits of the
jump-table entries will likely be all Os or all 1s (if the offset is negative).
With a slight modification to the instructions that transfer control through
the jump table, cutting the size of the table in half is easy:

adr x1, JmpTbl

ldr wo, [x1, x0, 1sl #2] // X4 for 32-bit entries

add xo0, x1, w0, sxtw // Sign-extend WO to 64 bits.
br xo0

JmpTbl: .word Stmti-JImpTbl, ...

This example has three modifications to the other examples in this
chapter:

e The scaled-indexed addressing mode (1ldr instruction) scales the index
(in X0) by 4 instead of 8 (because we’re accessing elements of a word
array rather than a dword array).

e The add instruction sign-extends WO to 64 bits before adding the value
with X1.

e The jump table contains word entries instead of dword entries.

This modification limits the range of the case labels to +2GB around
the jump table, rather than the full 64-bit address space—hardly a limita-
tion for most programs. In exchange for this limit, the jump table is now
half its original size.

Before you get the sneaky idea of reducing the size of the table entries
to 16 bits (giving you a +32K range), be aware that neither macOS’s nor
Linux’s object code format—Mach-O and the Executable Linkable Format
(ELF), respectively—supports 16-bit relocatable offsets; 32-bit offsets are
the best you can do.

State Machines and Indirect Jumps

Another control structure commonly found in assembly language programs
is the state machine. In basic terms, a state machineis a piece of code that
keeps track of its execution history by entering and leaving certain states. A
state machine uses a state variable to control program flow. The FORTRAN
programming language provides this capability with the assigned goto state-
ment. Certain variants of C, such as GNU’s GCC from the Free Software
Foundation, provide similar features. In assembly language, the indirect
jump can implement state machines.

In one sense, all programs are state machines. The CPU registers and
values in memory constitute the state of that machine. However, this chap-
ter uses a much more constrained definition. For most purposes, only a sin-
gle variable (or the value in the PC register) will denote the current state.
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For a concrete example of a state machine, suppose you have a proce-
dure and want to perform one operation the first time you call it, a differ-
ent operation the second time you call it, something else the third time you
call it, and then something new again on the fourth call. After the fourth
call, the code repeats these four operations in order. For example, say you
want the procedure to add W0 and W1 the first time, subtract them on the
second call, multiply them on the third, and divide them on the fourth. You
could implement this procedure as shown in Listing 7-4.

// Listing7-4.S
//

// A simple state machine example
#include "aoaa.inc"

O #define state x19

.code
.extern printf

ttl1Str: wastr  "Listing 7-4"
fmtStro: .ascii "Calling StateMachine,
wastr  "state=%d, W20=5, W21=6\n"

fmtStrob:  .ascii "Calling StateMachine, "
wastr  "state=%d, W20=1, W21=2\n"
fmtStrx: .ascii "Back from StateMachine, "
wastr  "state=%d, W20=%d\n"
fmtStra: .ascii "Calling StateMachine, "
wastr  "state=%d, W20=50, W21=60\n"
fmtStr2: .ascii "Calling StateMachine, "
wastr  "state=%d, W20=10, W21=20\n"
fmtStr3: .ascii "Calling StateMachine, "
wastr  "state=%d, W20=50, W21=5\n"

// getTitle

//

// Return pointer to program title
// to the C++ code.

proc getTitle, public
adr x0, ttlStr

ret

endp getTitle

// State machine is a leaf procedure. Don't bother
// to save LR on stack.

/!



// Although "state" is technically a nonvolatile
// register, the whole point of this procedure
// is to modify it, so we don't preserve it.

// Likewise, X20 gets modified by this code,

// so it doesn't preserve its value either.

proc  StateMachine
cmp state, #0
bne TryState1

// State 0: Add W21 to W20 and switch to state 1:

add w20, w20, w21
add state, state, #1 // State 0 becomes state 1.
b.al exit

TryStatel:
cmp state, #1
bne TryState2

// State 1: Subtract W21 from W20 and switch to state 2:
sub w20, w20, w2l
add state, state, 1 // State 1 becomes state 2.
b.al exit

TryState2: cmp state, #2
bne MustBeState3

// If this is state 2, multiply W21 by W20 and switch to state 3:
mul w20, w20, w21
add state, state, #1 // State 2 becomes state 3.
b.al exit

// If it isn't one of the preceding states, we must be in
// state 3, so divide W20 by W21 and switch back to state o.

MustBeState3:

sdiv w20, w20, w21

mov state, #0 // Reset the state back to 0.
exit: ret

endp  StateMachine
HTHTI0TT0TTT1170177117101111111111111171117111111117
% Here's the asmMain procedure:

proc  asmMain, public

locals am

dword  saveX19
dword  saveX2021

Low-Level Control Structures
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byte
endl

enter

stackSpace, 64
am

am.size

// Save nonvolatile registers and initialize
// them to point at xArray, yArray, zArray,
// tArray, aArray, and bArray:

0 str
stp
© mov

state, [fp, #saveX19]
x20, x21, [fp, #saveX2021]
state, #0

// Demonstrate state 0:

lea
mov
mstr
bl

mov
mov
bl

O lea
mov
mov
mstr

mstr
bl

X0, fmtStro
x1, state

x1, [sp]
printf

x20, #5
x21, #6
StateMachine

X0, fmtStrx
x1, state
X2, x20

x1, [sp]

x2, [sp, #8]
printf

// Demonstrate state 1:

lea
mov
bl

mov
mov
bl

O lea
mov
mov
mstr
mstr
bl

x0, fmtStri
x1, state
printf

x20, #50
x21, #60
StateMachine

x0, fmtStrx
x1, state
X2, X20

x1, [sp]

x2, [sp, #8]
printf

// Demonstrate state 2:

lea
mov
mstr
bl

X0, fmtStr2
x1, state

x1, [sp]
printf



mov
mov
bl

O lea
mov
mov
mstr

mstr
bl

x20, #10
x21, #20
StateMachine

X0, fmtStrx
x1, state
X2, x20

x1, [sp]

x2, [sp, #8]
printf

// Demonstrate state 3:

lea
mov
mstr
bl

mov
mov
bl

@ lea
mov
mov
mstr
mstr
bl

// Demonstrate back

lea
mov
mstr
bl

mov
mov
bl

O lea
mov
mov
mstr

mstr
bl

x0, fmtStr3
x1, state

x1, [sp]
printf

X20, #50
x21, #5
StateMachine

x0, fmtStrx
x1, state
X2, X20

x1, [sp]

x2, [sp, #8]
printf

in state 0O:

X0, fmtStrob
x1, state

x1, [sp]
printf

x20, #1
x21, #2
StateMachine

X0, fmtStrx
x1, state
X2, X20

x1, [sp]

x2, [sp, #8]
printf

// Restore nonvolatile register values

// and return.

ldr
ldp
leave
endp

state, [fp, #saveX19]

x20, x21, [fp, #saveX2021]
// Return to C/C++ code.
asmMain
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This code uses X19 to maintain the state variable @. The main pro-
gram preserves X19 (and X20) @ and then initializes the state machine
to state 0 ©. The code then makes successive calls to the state machine
functions and prints the results from state 0 @, 1 ©, 2 @, and 3 @. After
executing in state 3, the code returns to state 0 and prints the result ©.

Here’s the build command and program output:

$ ./build Listing7-4

$ ./Listing7-4

Calling Listing7-4:

Calling StateMachine, state=0, W20=5, W21=6
Back from StateMachine, state=1, W20=11
Calling StateMachine, state=1, W20=50, W21=60
Back from StateMachine, state=2, W20=-10
Calling StateMachine, state=2, W20=10, W21=20
Back from StateMachine, state=3, W20=200
Calling StateMachine, state=3, W20=50, W21=5
Back from StateMachine, state=0, W20=10
Calling StateMachine, state=0, W20=1, W21=2
Back from StateMachine, state=1, W20=3
Listing7-4 terminated

Technically, the StateMachine procedure is not the state machine. Instead,
the variable state and the cmp/bne instructions constitute the state machine.
The procedure is little more than a switch statement implemented via the
if...then...elseif construct. The only unique thing is that it remembers how
many times it has been called (or rather, how many times, modulo 4, it has
been called) and behaves differently depending on the number of calls.

While this is a correct implementation of the desired state machine, it is
not particularly efficient. The astute reader may recognize that this code
could be made a little faster by using an actual switch statement rather than
the if...then...elseif...endif implementation. However, an even better
solution exists.

It’s common to use an indirect jump to implement a state machine
in assembly language. Rather than having a state variable that contains a
value like 0, 1, 2, or 3, we could load the state variable with the address of
the code to execute upon entry into the procedure. By simply jumping to
that address, the state machine could save the tests needed to select the
proper code fragment. Consider the implementation in Listing 7-5 using
the indirect jump.

// Listing7-5.S
//
// An indirect jump state machine example

#include "aoaa.inc"

#define state  x19



.code
.extern printf

ttlStr: wastr  "Listing 7-5"
fmtStro: .ascii "Calling StateMachine, "
wastr  "state=%d, W20=5, W21=6\n"

fmtStrob:  .ascii "Calling StateMachine, "
wastr  "state=%d, W20=1, W21=2\n"
fmtStrx: .ascii "Back from StateMachine, "
wastr  "state=%d, W20=%d\n"
fmtStr1: .ascii "Calling StateMachine, "
wastr  "state=%d, W20=50, W21=60\n"

fmtStra: .ascii "Calling StateMachine, "
wastr  "state=%d, W20=10, W21=20\n"

fmtStr3: .ascii "Calling StateMachine, "
wastr  "state=%d, W20=50, W21=5\n"

// getTitle

/!

// Return pointer to program title
// to the C++ code.

proc getTitle, public
adr X0, ttlStr

ret

endp getTitle

// State machine is a leaf procedure. Don't bother
// to save LR on stack.

//

// Although "state" is technically a nonvolatile
// register, the whole point of this procedure

// is to modify it, so we don't preserve it.

// Likewise, x20 gets modified by this code,

// so it doesn't preserve its value either.

proc StateMachine
0 br state // Transfer control to current state.

// State 0: Add W21 to W20 and switch to state 1:
stateo:
add w20, w20, w21
® adr state, statel1 // Set next state.
ret

// State 1: Subtract W21 from W20 and switch to state 2:

statel:
sub w20, w20, w21
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adr state, state2 // Switch to state 2.
ret

// If this is state 2, multiply W21 by W20 and switch to state 3:

state2:
mul w20, w20, w21
adr state, state3 // Switch to state 3.
ret

// If it isn't one of the preceding states, we must be in
// state 3, so divide W20 by W21 and switch back to state 0.

state3:
sdiv w20, w20, w21l
adr state, stateo
ret

endp StateMachine

LTI 100011070111110111111111111171
//
// Here's the asmMain procedure:

proc asmMain, public

locals am

dword  saveX19

dword  saveX2021

byte stackSpace, 64

endl am

enter am.size
// Save nonvolatile registers and initialize
// them to point at xArray, yArray, zArray,
// tArray, aArray, and bArray:

str state, [fp, #saveX19]
stp x20, x21, [fp, #saveX2021]

// Initialize state machine:
® adr state, stateo
// Demonstrate state 0:

lea x0, fmtStro

mov x1, state
mstr x1, [sp]
bl printf

412 Chapter 7



mov
mov
bl

lea
mov
mov
mstr
mstr
bl

X20, #5
x21, #6
StateMachine

X0, fmtStrx
x1, state
X2, x20

x1, [sp]

x2, [sp, #8]
printf

// Demonstrate state 1:

lea
mov
bl

mov
mov
bl

lea
mov
mov
mstr
mstr
bl

x0, fmtStri
x1, state
printf

x20, #50
X21, #60
StateMachine

x0, fmtStrx
x1, state
X2, X20

x1, [sp]

x2, [sp, #8]
printf

// Demonstrate state 2:

lea
mov
mstr
bl

mov
mov
bl

lea
mov
mov
mstr
mstr
bl

X0, fmtStr2
x1, state

x1, [sp]
printf

X20, #10
x21, #20
StateMachine

X0, fmtStrx
x1, state
X2, X20

x1, [sp]

x2, [sp, #8]
printf

// Demonstrate state 3:

lea
mov
mstr
bl

X0, fmtStr3
x1, state

x1, [sp]
printf
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mov x20, #50
mov x21, #5
bl StateMachine

lea X0, fmtStrx
mov x1, state
mov X2, Xx20
mstr x1, [sp]
mstr x2, [sp, #8]
bl printf

// Demonstrate back in state 0:

lea x0, fmtStrob

mov x1, state
mstr x1, [sp]

bl printf

mov x20, #1

mov x21, #2

bl StateMachine

lea X0, fmtStrx
mov x1, state
mov X2, X20
mstr x1, [sp]
mstr x2, [sp, #8]
bl printf

// Restore nonvolatile register values
// and return:

ldr state, [fp, #saveX19]

ldp x20, x21, [fp, #saveX2021]
leave // Return to C/C++ code.
endp asmMain

This code has the same structure as Listing 7-4. The main difference is
that this code assumes that the target address of the state machine is in X19
rather than a state number.

The br instruction at the beginning of the StateMachine procedure @
transfers control to the location pointed at by the state variable (X19). The
first time you call StateMachine, it points at the stateo label. Thereafter, each
subsection of code sets the state variable to point at the appropriate succes-
sor code. Within each state of the state machine @, the code sets X19 to the
address of the next entry point of the state machine (rather than setting
a state number). The main program initializes the state machine with the
address of the Stateo label ® rather than the value 0. Otherwise, this main
program is largely the same as in Listing 7-4.
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Here’s the build command and program output:

$ ./build Listing7-5

$ ./Listing7-5

Calling Listing7-5:

Calling StateMachine, state=4196420, W20=5, W21=6
Back from StateMachine, state=4196432, W20=11
Calling StateMachine, state=4196432, W20=50, W21=60
Back from StateMachine, state=4196444, W20=-10
Calling StateMachine, state=4196444, W20=10, W21=20
Back from StateMachine, state=4196456, W20=200
Calling StateMachine, state=4196456, W20=50, W21=5
Back from StateMachine, state=4196420, W20=10
Calling StateMachine, state=4196420, W20=1, W21=2
Back from StateMachine, state=4196432, W20=3
Listing7-5 terminated

This output demonstrates that Listing 7-5 behaves in a manner similar
to Listing 7-4.

Loops

Loops represent the final basic control structure (sequences, decisions, and
loops) that make up a typical program. Most HLLs have implied loop struc-
tures hidden away. For example, consider the BASIC statement if A$ = B$
then 100. This if statement compares two strings and jumps to statement
100 if they are equal. In assembly language, you would need to write a loop
to compare each character in A$ to the corresponding character in B$ and
then jump to statement 100 if and only if all the characters matched. (The
C stdlib provides the strcmp routine that compares the strings for you, effec-
tively hiding the loop. However, if you were to write this function yourself,
the looping nature of the operation would be obvious.)

Program loops consist of three components: an optional initialization
component, an optional loop-termination test, and the body of the loop.
The order in which you assemble these components can dramatically affect
the loop’s operation. Three permutations of these components appear fre-
quently in programs: while loops, repeat...until loops (do...while in C/C++),
and infinite loops (for example, for(;;) in C/C++). This section covers those
three loop types along with C-style for loops (definite loops), register usage
in loops, and breaking out of loops.

7.8.1 while

The most generic loop is the while loop. In C/C++, it takes the following form:

while(expression) statement(s);

In the while loop, the termination test appears at the beginning of the
loop. As a direct consequence of the position of the termination test, the
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body of the loop may never execute if the Boolean expression is always
false.
Consider the following C/C++ while loop:

i=0;
while(i < 100)
{ .
++i;
}

The i = 0; statement is the initialization code for this loop. i is a loop-
control variable, because it controls the execution of the body of the loop.
i < 100 is the loop-termination condition: the loop will not terminate as
long as i is less than 100. The single statement ++i; (increment i) is the loop
body that executes on each loop iteration.

A C/C++ while loop can be easily synthesized using if and goto state-
ments. For example, you may replace the previous C while loop with the fol-
lowing C code:

i=0;
Whilelp:
if(i < 100)
{
++1;
goto Whilelp;

More generally, you can construct any while loop as follows:

Optional initialization code

Uniquelabel:
if(not_termination condition)
{

Loop body

goto Uniquelabel;

Therefore, you can use the techniques from earlier in this chapter to
convert if statements to assembly language and add a single b.al instruction
to produce a while loop. The example in this section translates to the follow-
ing pure ARM assembly code:

mov w0, #0
Whilelp:

cmp w0, #100

bnlt WhileDone



Loop body

add wo, wo, #1  // ++i
b.al WhileLp

WhileDone:

GCC will actually convert most while statements to different ARM
code than this section presents. The reason for the difference appears in
section 7.9.1, “Moving the Termination Condition to the End of a Loop,” on
page 428, which explores how to write more efficient loop code.

7.8.2 repeat...until

The repeat...until loop, also called the do...while loop in C, tests for the
termination condition at the end of the loop rather than at the beginning.
In Pascal, the repeat...until loop takes the following form:

Optional initialization code
repeat

Loop body

until(termination condition);

This is comparable to the following C/C++ do. . .while loop:

Optional initialization code
do

{
Loop body

twhile(not_termination_condition);

This sequence executes the initialization code, then executes the loop
body, and finally tests a condition to see whether the loop should repeat. If
the Boolean expression evaluates to false, the loop repeats; otherwise, the
loop terminates. In the repeat...until loop, the termination test appears
at the end of the loop and, as a direct consequence, the loop body always
executes at least once.

Like the while loop, the repeat...until loop can be synthesized with an
if statement and a b.al (branch). The following is an example of just such
an implementation:

Initialization code
SomeUniquelabel:

Loop body

if(not_the_termination condition) goto SomeUniquelabel;

Low-Level Control Structures 417



418

Chapter 7

Based on the material presented in the previous sections, you can easily
synthesize repeat...until loops in assembly language, as shown in the follow-
ing simple example:

repeat (* Pascal code *)

write('Enter a number greater than 100:');
readln(i);

until(i > 100);
// This translates to the following if/jmp code:
RepeatLabel:

write('Enter a number greater than 100:');
readln(i);

if(i <= 100) then goto Repeatlabel;
// It also translates into the following assembly code:
Repeatlabel:
bl print

wastr "Enter a number greater than 100:
bl  readInt // Function to read integer from user

cmp  wo0, #100 // Assume readInt returns integer in WO.
bngt Repeatlabel

The repeat...until loop has a slightly more efficient implementation
because it combines the loop termination test and the branch back to the
beginning of the loop.

7.8.3 forever/endfor

If while loops test for termination at the beginning of the loop and repeat...
until and do...while loops check for termination at the end of the loop, the
only place left to test for termination is in the middle of the loop. The C/C++
high-level for(;;) loop, combined with the break statement, provides this
capability. The C/C++ infinite loop takes the following form:

for(;)
{

Loop body

There is no explicit termination condition. The for(;;) construct forms
an infinite loop. A break statement usually handles loop termination. Consider
the following C++ code that employs a for(;;) construct:



for(;;)

{
cin >> character;
if(character == '.") break;
cout << character;

}

Converting a for(;;) loop to pure assembly language is easy: all you
need is a label and a b.al instruction. The break statement in this example is
also nothing more than a b.al instruction (or conditional jump). The pure
assembly language version of the preceding code looks something like the
following:

foreverlLabel:
bl getchar  // Assume it returns char in Wo.
cmp wo, #'.'

beq ForIsDone

bl putcchar // Assume this prints the char in Wo.
b.al foreverlLabel

ForIsDone:

As you can see, the forever loop has a very simple implementation.

7.8.4 for

The standard for loop is a special form of the while loop that repeats the
loop body a specific number of times, which is known as a definite loop. In
C/C++, the for loop takes the following form:

for(Initialization Stmt; Termination Expression; inc_Stmt)

{

statements

This is equivalent to the following:

Initialization_ Stmt;
while(Termination Expression)

{

statements

inc_Stmt;

Traditionally, programs use the for loop to process arrays and other
objects accessed in sequential order. You normally initialize a loop-control
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variable with the initialization statement, then use the loop-control variable
as an index into the array (or other data type), as shown in the following
example:

for(i = 0; i < 7; ++i)
{
printf("Array Element = %d /n", SomeArray[i]);

To convert this to pure assembly language, begin by translating the for
loop into an equivalent while loop:

i=0;
while(i < 7)
{

printf("Array Element = %d \n", SomeArray[i]);
++1;

Now, using the techniques from section 7.8.1, “while,” on page 415,
translate the code into pure assembly language:

mov  x19, #0 // Use X19 to hold loop index.
Whilelp: cmp x19, #7
bnlt Endwhilelp

lea x0, fmtStr // fmtStr = "Array Element = %d\n"
lea x1, SomeArray

ldr wi, [x1, x19, 1sl #2] // SomeArray is word array.

mstr x1, [sp]

bl  printf

add x19, x19, #1 // ++i
b.al Whilelp;

Endwhilelp:

This is a fairly efficient implementation of a while loop in assembly
language, though for for loops that execute a fixed number of times, you
might consider using the cbnz instruction (see section 7.8.6, “ARM Looping
Instructions,” on page 425).

7.8.5 break and continve

The C/C++ break and continue statements both translate into a single b.al
instruction. The break statement exits the loop that immediately contains
the break statement; the continue statement restarts the loop that contains
the continue statement.

To convert a break statement to pure assembly language, just emit a
goto/b.al instruction that transfers control to the first statement following



the end of the loop to exit. You can do this by placing a label after the loop
body and jumping to that label. The following code fragments demonstrate
this technique for the various loops:

// Breaking out of a FOR(;;) loop:

for(;;)
{
stmts
// break;
goto BreakFromForever;
stmts
}
BreakFromForever:

// Breaking out of a FOR loop:

for(initStmt; expr; incStmt)

{
stmts
// break;
goto BrkFromFor;
stmts
}
BrkFromFor:

// Breaking out of a WHILE loop:

while(expr)
{
stmts
// break;
goto BrkFromWhile;
stmts
}
BrkFromihile:

// Breaking out of a REPEAT...UNTIL loop (do...while is similar):

repeat
stmts

// break;
goto BrkFromRpt;

stmts
until(expr);
BrkFromRpt:
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In pure assembly language, convert the appropriate control structures
to assembly and replace the goto with a b.al instruction.

The continue statement is slightly more complex than the break state-
ment. The implementation is still a single b.al instruction; however, the
target label doesn’t wind up going in the same spot for each of the loops.
Figures 7-2 through 7-5 show where the continue statement transfers control
for each of the loops.

Figure 7-2 shows the for(;;) loop with a continue statement.

for( ;; )

{
stmts
continue;
stmts

}

Figure 7-2: The continue destination and
the for(;;) loop

Figure 7-3 shows the while loop with a continue statement.

while( expr )
{

stmts
continue;
stmts

Figure 7-3: The continue destination and
the while loop

Figure 7-4 shows a C/C++ for loop with a continue statement.

for( initStmt; expr; incStmt )
{

stmts

continue;

stmts
}

Figure 7-4: The continue destination and the for loop
Note in Figure 7-4 that the continue statement forces the execution of

incStmt and then transfers control to the test for loop termination.
Figure 7-5 shows a repeat...until loop with a continue statement.
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repeat

stmts
continue;
stmts

until( expr );

Figure 7-5: The continue destination and the repeat...
until loop

The following code fragments demonstrate how to convert the continue
statement into an appropriate b.al instruction for each of these loop types:

// for(;;)/continue/endfor
// Conversion of forever loop with continue
// to pure assembly:

/] for(;;)
/1 {
// stmts
// continue;
// stmts
/1}
/l
// Converted code:
foreverlbl:

stmts

// continue;
b.al foreverlLbl

stmts
b.al foreverlLbl
// while/continue/endwhile

// Conversion of while loop with continue
// into pure assembly:

//

// while(expr)
/14

// stmts

// continue;
// stmts
/1}

//

// Converted code:
whllabel:

Code to evaluate expr
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bcc EndOfWhile // Skip loop on expr failure.
stmts

// continue;

b.al whllLabel // Jump to start of loop on continue.
stmts
b.al whllLabel // Repeat the code.

EndOfWhile:

// for/continue/endfor
// Conversion for a for loop with continue
// into pure assembly:

/!

// for(initStmt; expr; incStmt)

/1 {

// stmts

// continue;

// stmts

/l}

!/

// Converted code:
initStmt

ForLpLbl:

Code to evaluate expr
bcc EndOfFor // Branch if expression fails.
stmts

// continue;
b.al ContFor // Branch to incStmt on continue.

stmts
ContFor:

incStmt

b.al ForLpLbl

EndOfFor:

// repeat...continue...until

// repeat

// stmts

// continue;
// stmts



// until(expr);

//
// do
/1 {
// stmts
// continue;
// stmts
//
// Iwhile(!expr);
//
// Converted code:
RptLpLbl:
stmts

// continue;
b.al ContRpt // Continue branches to termination test.

stmts
ContRpt:
Code to test expr

bcc RptlLpLbl // Jumps if expression evaluates false.

In each case, the b.al instruction transfers control to the point in the
loop where it will test the loop condition and increment the loop control
variable (for for loops), or to the beginning of the loop’s body.

7.8.6 ARM Looping Instructions

The ARM CPU provides four machine instructions that are useful for cre-
ating loops. These instructions violate the RISC principle of “an instruc-
tion does only one thing,” but they are quite handy even if they are a little
“CISCy.”

The first two instructions test a register’s value and branch if that regis-
ter is equal to, or not equal to, 0. The two instructions are cbz (compare and
branch if zero) and cbnz (compare and branch if not zero). Their syntax is

cbz wn, label
cbz xn, label
cbnz wn, Iabel
cbnz xn, label

where Xn and Wn are the register to compare against 0 and Iabel is a state-
ment label within +1MB of the current instruction.
These instructions are equivalent to the following:

cmp wn, wzr // cbz wn, label
beq label
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cmp xn, xzr // cbz xn, label
beq label

cmp wn, wzr  // cbnz wn, label
bne label

cmp xn, xzr // cbnz xn, label
bne Iabel

Another useful pair of instructions are tbz (test bit for 0 and branch)
and tbnz (test bit for not 0 and branch). These instructions test a bit in a
register and branch based on that bit’s value (0 or nonzero). The syntax for
these instructions is

tbz wn, #imm,, label
tbz xn, #imm,, label
tbnz wn, #immg, label
tbnz xn, #imm,, label

where X7 and Wn are the register to test, imm is a bit number in the range
0-63 for 64-bit registers and 0-31 for 32-bit registers, and label is a state-
ment label within +32KB of the current instruction. The tbz instruction
branches to the Iabel if the specified bit in the register is 0, while the tbnz
instruction branches if the bit is not 0.

7.8.7 Register Usage and Loops

Given that the ARM accesses registers more efficiently than memory loca-
tions, registers are the ideal spot to place loop-control variables (especially
for small loops). However, registers are a limited resource, despite the many
registers available on the ARM. Unlike with memory, you cannot place
much data in the registers.

Loops present a special challenge for registers. Registers are perfect for
loop-control variables because they’re efficient to manipulate and can serve
as indexes into arrays and other data structures (a common use for loop-
control variables). However, the limited availability of registers often creates
problems when using registers in this fashion. This is especially true if you
call other functions/procedures within the loops, which limits you to using
nonvolatile registers for loop control variables. Consider the following code
with nested loops that will not work properly because it attempts to reuse a
register (X19) that is already in use, leading to the corruption of the outer
loop’s loop-control variable:

mov w19, #8
loop1:

mov w19, #4
loop2:

stmts



subs w19, w19, #1
bne loop2

subs w19, w19, #1
bne loop1

The intent here was to create a set of nested loops, one loop inside
another. The inner loop (loop2) should repeat four times for each of the
eight executions of the outer loop (loop1). Unfortunately, both loops use the
same register as a loop-control variable. Therefore, this will form an infinite
loop. Because W19 is always 0 upon encountering the second subs instruc-
tion, control will always transfer to the loop1 label (because decrementing 0
produces a nonzero result).

The solution is to save and restore the W19 register or to use a different
register in place of W19 for the outer loop; the following code demonstrates
preserving W19 across the execution of the loop:

mov wi9, #8
loop1:
str w19, [sp, #-16]! // Push onto stack.
mov w19, #4
loop2:
stmts
subs w19, w19, #1
bne loop2
ldr w19, [sp], #16 // Pop off the stack.
subs w19, w19, #1 // Decrement W19.
bne loop1
or
mov w19, #8
loop1:
mov w20, #4
loop2:

stmts

subs w20, w20, #1
bne loop2

subs w19, w19, #1
bne loop1

Register corruption is one of the primary sources of bugs in loops in
assembly language programs, so always keep an eye out for this problem.

Until this point, this chapter has mainly focused on the correct imple-
mentation of various types of loops in assembly language. The next section
begins discussing how to write loops efficiently in assembly language.
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Because loops are the primary source of performance problems within a
program, they are also the place to look when attempting to speed up your
software. A treatise on how to write efficient programs is beyond the scope
of this chapter, but you should be aware of the following concepts when
designing loops in your programs. They’re all aimed at removing unneces-
sary instructions from your loops in order to reduce the time it takes to
execute a single iteration of the loop.

7.9.1 Moving the Termination Condition to the End of a Loop

As you may have noticed, the repeat...until loop is slightly more efficient
than a while loop. This is because repeat...until manages to combine the
loop’s Boolean test along with the branch back to the beginning of the loop.
You can improve the other loops to be slightly more efficient. Consider the
following flow graphs for the three types of loops presented earlier:

repeat...until loop:
Initialization code
Loop body
Test for termination and branch back if necessary.
Code following the loop

while loop:
Initialization code
Loop-termination test
Loop body
Jump back to test.
Code following the loop

forever/endfor loop:
Initialization code
Loop body part 1
Loop-termination test
Loop body part 2
Jump back to loop body part 1
Code following the loop

The repeat...until loop is the simplest of the bunch. This is reflected in
the assembly language implementation of these loops. Consider the follow-
ing semantically identical repeat...until and while loops:

// Example involving a while loop:

mov w0, wil
sub w0, w0, #20

// while(Wo <= W1)



whilelp: cmp wO0, wl
bnle endwhile

stmts
add w0, wo, #1
b.al whilelp
endwhile:
// Example involving a repeat...until loop:
mov w0, wil
sub w0, wo, #20
repeatlp:
stmts
add w0, wo, #1

cmp w0, wil
bngt repeatLp

Testing for the termination condition at the end of the loop allows
you to remove a b.al instruction from the loop, which can be significant if
the loop is nested inside other loops. Given the definition of the loop, you
can easily see that the loop will execute exactly 20 times, which suggests
that the conversion to a repeat...until loop is trivial and always possible.
Unfortunately, it’s not always quite this easy.

Consider the following C code:

while( wo <= wi )

{

stmts

++W0;

In this example, you don’t know what WO contains upon entry into the
loop. Therefore, you cannot assume that the loop body will execute at least
once. This means you must test for loop termination before executing the
body of the loop. The test can be placed at the end of the loop with the
inclusion of a single b.al instruction:

b.al WhlTest
TopOfLoop:

stmts
add wo, wo, #1

WhlTest: cmp wo0, wl
ble TopOfLoop

Low-Level Control Structures 429



430

Chapter 7

Although the code is as long as the original while loop, the b.al instruc-
tion executes only once rather than on each repetition of the loop.
However, the slight gain in efficiency is obtained via a slight loss in read-
ability, so be sure to comment it. The second code sequence is also closer to
spaghetti code than the original implementation. Such is often the price of
a small performance gain. Carefully analyze your code to ensure that such
a performance boost is worth the loss of clarity.

7.9.2 Executing the Loop Backward

Because of the nature of the flags on the ARM, loops that repeat from a
number down to (or up to) 0 are more efficient than loops that execute

from O to another value. Compare the following C/C++ for loop and the
comparable assembly language code:

for(j = 15 j <= & ++J)

stmts

}

// Conversion to pure assembly (as well as using a
// REPEAT...UNTIL form):

mov w0, #1 // Assume j = Wo.
ForLp:

stmts
add wo, wo, #1

cmp wo, #8
ble ForlLp

Now consider another loop that also has eight iterations but runs its
loop-control variable from 8 down to 1 rather than from 1 up to 8, thereby
saving a comparison on each repetition of the loop:

mov w0, #8 // Assume j = WO.
LoopLbl:

stmts

subs w0, wo, #1
bne LoopLbl

Saving the execution time of the cmp instruction on each iteration of the
loop may result in faster code. Unfortunately, you cannot force all loops to
run backward. However, with a little effort and some coercion, you should
be able to write many for loops so that they operate backward.

The previous example worked out well because the loop ran from 8 down
to 1. The loop terminated when the loop-control variable became 0. What
happens if you need to execute the loop when the loop-control variable goes



to 0? For example, suppose that the preceding loop needed to range from
7 down to 0. As long as the lower bound is nonnegative, you can substitute
the bpl instruction in place of the bne instruction in the earlier code:

mov w0, #7 // Assume j = Wo.
LoopLbl:

stmts

subs w0, w0, #1
bpl LooplLbl

This loop will repeat eight times, with WO (j) taking on the values 7 to 0.
When W0 decrements 0 to —1, it sets the sign flag and the loop terminates.

Keep in mind that some values may look positive but are actually nega-
tive. If the loop-control variable is a word, values in the range 2,147,483,648
to 4,294,967,295 are negative in the two’s complement system. Therefore,
initializing the loop-control variable with any 32-bit value in this range (or,
of course, 0) terminates the loop after a single execution. This can get you
into trouble if you're not careful.

7.9.3 Eliminating Loop-Invariant Calculations

A loop-invariant computation is a calculation that appears within a loop that
always yields the same result. You needn’t do such computations inside the
loop but can instead compute them outside the loop and reference the
value of the computations inside the loop. The following C code demon-
strates an invariant computation:

for(i = 0; 1 < n; ++i)
{
k=1(j-2)+1
Other code

Because j never changes throughout the execution of this loop, the
subexpression j - 2 can be computed outside the loop:

jm2 = j - 2

j - 2;
for(i = 0; 1 < n; ++i)
{
k = jm2 + i;
Other code
}

This translates to the following assembly code, which moves the invari-
ant calculation outside the loop:

ldr w19, [fp, #j]
sub w19, w19, #2
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mov w20, #0 // Assume W20 = i.
lp:  cmp w20, #n

bnlt loopDone

add w21, w19, w20 // k = jm2 + 1

add w20, w20, #1

Other code

b.al 1p
loopDone:

7.9.4 Unraveling Loops

For small loops—those whose bodies are composed of just a few statements—
the overhead required to process the loop may constitute a significant per-
centage of the total processing time. For example, consider the following
Pascal code and its associated ARM assembly language code:

for i := 3 downto 0 do A[i] := 0;

mov w19, #3 // Assume i = W19.

add x20, fp, #A // LEA X20,A, assuming A is local.
LoopLbl:

str wzr, [x20, x19, 1sl #2]

subs w19, w19, #1

bpl LooplLbl

Three instructions execute on each repetition of the loop. Only one
instruction is doing the desired operation (moving a 0 into an element of A).
The remaining two instructions control the loop. Therefore, it takes 12
instructions to do the operation logically required by 4.

While we could make many improvements to this loop based on the
information presented thus far, consider carefully exactly what it is that
this loop is doing: it’s storing four Os into A[0] through A[3]. A more effi-
cient approach is to use four str instructions to accomplish the same task.
For example, if A is an array of words, the following code initializes A much
faster than the preceding code:

str wzr, [fp, #A + 0]
str wzr, [fp, #A + 4]
str wzr, [fp, #A + 8]
str wzr, [fp, #A + 12]

Although this is a simple example, it shows the benefit of loop unraveling
(also known as loop unrolling), which consists of repeating the loop’s body
as source code for each iteration of the loop. If this simple loop appeared
buried inside a set of nested loops, the 3:1 instruction reduction could pos-
sibly double the performance of that section of your program. (It would be
criminal not to mention at this point that you could cut this down to two



instructions by storing XZR, a double word, into A + 0 and A + 8, though that
is a different optimization.)

Of course, you cannot unravel all loops. Loops that execute a variable
number of times are difficult to unravel because there is rarely a way to deter-
mine at assembly time the number of loop iterations. Therefore, unraveling a
loop is a process best applied to loops that execute a known number of times,
with the number of times known at assembly time.

Even if you repeat a loop a fixed number of iterations, it may not be a
good candidate for loop unraveling. Loop unraveling produces impressive
performance improvements when the number of instructions controlling
the loop (and handling other overhead operations) represents a significant
percentage of the total number of instructions in the loop. Had the previ-
ous loop contained 36 instructions in the body (exclusive of the 3 overhead
instructions), the performance improvement would be, at best, only 10 per-
cent, compared with the 300 to 400 percent it now enjoys.

Therefore, the costs of unraveling a loop—all the extra code that must
be inserted into your program—quickly reach a point of diminishing returns
as the body of the loop grows larger or as the number of iterations increases.
Furthermore, entering that code into your program can become quite a
chore. Therefore, loop unraveling is a technique best applied to small loops.

7.9.5 Using Induction Variables

This section introduces optimizations based on induction variables. An
induction variableis one whose value depends entirely on the value of
another variable. Consider the following Pascal loop:

for i := 0 to 255 do csetVar[i] := [];

Here the program is initializing each element of an array of charac-
ter sets to the empty set. The straightforward code to achieve this is the
following:

str wzr, [fp, #i]
lea x20, csetVar
FLp:

// Assume that each element of a csetVar
// array contains 16 bytes (256 bits).

ldr w19, [fp, #i]
1s1 w19, wi9, #4 // i * 16 (element size)

// Set this element to the empty set (all 0 bits).
str xzr, [x20, x19] // Fill in first 8 bytes.
add x20, x20, #8

str xzr, [x20, x19] // Initialize second 8 bytes.
sub x20, x20, #8

Low-Level Control Structures 433



434

7.10

Chapter 7

ldr
add
str
cmp
blo

w19, [fp, #i]

wi9, wi9, #1

w19, [fp, #i]

w19, #256 // Quit if at end of array.
FLp

Although unraveling this code will still improve performance, it will
take 2,304 instructions to accomplish this task—too many for all but the
most time-critical applications. However, you can reduce the execution time
of the loop’s body by using induction variables.

In the preceding example, the index into the array csetVar tracks the
loop-control variable; it’s always equal to the value of the loop-control vari-
able times 16. Because i doesn’t appear anywhere else in the loop, there is
no sense in performing the computations on i. Why not operate directly on
the array index value? Furthermore, because the scaled-indexed addressing
mode doesn’t support an integer offset component, the code is constantly
adding 8 to or subtracting 8 from X20 to initialize the second half of each
character set element. This computation can also be worked into the induc-
tion of the loop control variable. The following code demonstrates this
technique:

lea
add
FLp:

x20, csetVar
x19, x20, #255 * 16 // Compute array ending address.

// Set current element to the empty set (all o bits).

str
str

add
cmp
blo

xzr, [x20] // Fill in first 8 bytes.
xzr, [x20, #8] // Fill in second 8 bytes.

w20, x20, #16 // Move on to next element.
x20, Xx19
FLp

The induction that takes place in this example occurs when the code
initializes the loop control variable with the address of the array (moved
into X20 for efficiency) and then increments it by 16 on each iteration of
the loop rather than by 1. This allows the code to use the indirect-plus-
offset addressing mode (rather than the scaled-indexed addressing mode),
as no shift is required. Once the code can use the indirect-plus-offset mode,
it can drop the addition and subtraction of the loop control variable in
order to access the second half of each character set array element.

Moving On

After mastering the material in this chapter and the chapters up to this
point, you should be capable of translating many HLL programs into
assembly code.
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This chapter covered several concepts concerning the implementa-
tion of loops in assembly language. It discussed statement labels, including
working with their addresses, efficiently representing pointers to labels
in your programs, using unconditional and indirect branches, working
with veneers, and transferring control to statements beyond the range
of the ARM branches. It then covered decisions: how to implement if...
then...else...elseif, switch statements, state machines in assembly lan-
guage, Boolean expressions, and complete/short-circuit evaluation. It also
described how to utilize 32-bit PC-relative addresses to reduce jump-table
(and pointer) sizes. Finally, this chapter described various kinds of loops,
improving loop performance, and the special ARM machine instructions
that support loop construction.

You're now prepared to start writing some serious assembly language
code. Starting with the next chapter, you’ll learn some intermediate assem-
bly language programming that enables you to write code that is difficult or
impossible to write in HLLs.

For More Information

e My book Write Great Code, Volume 2, 2nd edition (No Starch Press,
2020) provides a good discussion of the implementation of various
HLL control structures in low-level assembly language. It also discusses
optimizations such as induction, unrolling, strength reduction, and so
on that apply to optimizing loops.

TEST YOURSELF

1. What are the typical mechanisms for obtaining the address of a label
appearing in a program?

What is the form of the indirect branch instruction?
What is a state machine?

What is a trampoline?

O A 0D

Explain the difference between short-circuit and complete Boolean
evaluation.

6. Convert the following if statements to assembly language sequences by
using complete Boolean evaluation (assume all variables are unsigned
32-bit integer values):

a.

if(x ==y || z> 1)

Do something.

}

(continued)
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if(x =y &8 z < t)
{

then statements

}

else

{

else statements

}

Convert the preceding statements (a) and (b) to assembly language by
using short-circuit Boolean evaluation, assuming all variables are signed
16-bit integer values.

Convert the following switch statements to assembly language (assume all
variables are unsigned 32-bit integers):

a.

switch(s)

{

case 0: case 0 code break;
case 1: case 1 code break;
case 2: case 2 code break;
case 3: case 3 code break;

}

switch(t)

{

case 2: case 2 code break;
case 4: case 4 code break;
case 5: case 5 code break;
case 6: case 6 code break;
default: default code

Convert the following while loops to assembly code (assume all variables
are signed 32-bit integers):

a.

while(i < j)
{

Code for loop body
}

do
{



Code for loop body
} while(i != j);

do

Code for loop body, part a
if(m != 5) continue;

Code for loop body, part b
if(n == 6) break;

Code for loop body, part c
} while(i < j & k > j);

for(int i = 0; i < 10; ++i)

Code for loop body
}
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8.1

ADVANCED ARITHMETIC

This chapter covers extended-precision
arithmetic and arithmetic on operands of
different sizes. By the end of this chapter, you
should know how to apply arithmetic and logical
operations to integer operands of any size, including
those larger than 64 bits, and how to convert operands
of different sizes into a compatible format.

Extended-Precision Operations

Assembly language does not limit the size of integer operations, a major
advantage over HLLLs (which typically rely on functions, written in assembly
language, to handle extended-precision arithmetic). For example, the stan-
dard C programming language defines four integer sizes: short int, int, long
int, and long long int. On the PC, these are often 16-, 32-, and 64-bit integers.
Although the ARM machine instructions limit you to processing 32- or
64-bit integers with a single instruction, you can use multiple instructions



to process integers of any size. This section describes how to extend vari-
ous arithmetic and logical operations from 32 or 64 bits to as many bits as
you please.

8.1.1 Addition

The ARM add/adds instruction adds two 32- or 64-bit numbers. After the
execution of adds, the ARM carry flag is set if you have an overflow out
of the HO bit of the sum. You can use this information to do extended-
precision addition operations. (This book uses multidigit and multibyte as
synonyms for extended precision.)

Consider the way you manually perform a multidigit addition opera-
tion, as shown in Figure 8-1.

Step 1: Add the least significant digits together

289 289
+ 456 produces + 456
5 with carry 1

Step 2: Add the next significant digits plus carry

1 (carry) 1 (carry)
289 289
+ 456 produces + 456
5 45 with carry 1

Step 3: Add the most significant digits together

1 (carry) 1 (carry)
289 289
+ 456 produces + 456
45 745

Figure 8-1: Multidigit addition

The ARM handles extended-precision arithmetic the same way, except
instead of adding the numbers a digit at a time, it adds them together a
word or double word at a time, breaking a larger operation into a sequence
of smaller ones. For example, consider the three-double-word (192-bit)
addition operation in Figure 8-2.
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Step 1: Add the least significant dwords together

[ [ = [ [ [
L I [ [ I [
oo [

Step 2: Add the middle dwords together C

[ oy (I

C Ty C—
S — S E—

(plus carry, if any)

Step 3: Add the most significant dwords together C

[ I | [ I |

[ I ] [ | ]

o I | ([ I ]

(plus carry, if any)
Figure 8-2: Adding two 192-bit objects together

Since the ARM processor family is capable of adding together at most
64 bits at a time (using general-purpose registers), the operation must pro-
ceed in blocks of 64 bits or fewer, according to the following steps:

1. Add the two LO double words together just as you would add the two

LO digits of a decimal number together in the manual algorithm, using
the adds instruction. If there is a carry out of the LO addition, adds sets
the carry flag to 1. Otherwise, it clears the carry flag.

. Add together the second pair of double words in the two 192-bit values,
plus the carry out of the previous addition (if any), using the adcs (add
with carry) instruction. The adcs instruction uses the same syntax as
adds and performs almost the same operation:

adcs dest, sourcel, source2 // dest := sourcel + source2 + C

The only difference is that adcs adds in the value of the carry flag
along with the source operands. It sets the flags the same way adds does
(including setting the carry flag if there is an unsigned overflow). This
is exactly what we need in order to add together the middle two double
words of our 192-bit sum.

. Add the HO double words of the 192-bit value with the carry out of
the sum of the middle two quad words by using adcs. (You could also
use a plain adc instruction if you don’t need the flag settings after
the instruction.)
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To summarize, the adds instruction adds the LO double words together,
and adcs adds all other double-word pairs together. At the end of the extended-
precision addition sequence, the carry flag indicates unsigned overflow
(if set), a set overflow flag indicates signed overflow, and the sign flag
indicates the sign of the result. The zero flag doesn’t have any real mean-
ing at the end of the extended-precision addition; it simply means that the
sum of the two HO double words is 0 and does not indicate that the whole
result is 0.

For example, suppose you have two 128-bit values you wish to add
together, defined as follows:

.data
X: .qword 0
Y: .qword 0

Say you want to store the sum in a third variable z, which is also a
qword. The following ARM code will accomplish this task:

lea x0, X
ldr x3, [x0] // Add together the LO 64 bits
lea x1, Y // of the numbers and store the

ldr x4, [x1] // result into the LO dword of Z.
adds x5, x3, x4

lea x2, 2

str x5, [x2]

ldr x3, [x0, #8] // Add together the HO 64 bits (with
ldr x4, [x1, #8] // carry) and store the result into
adcs x5, x3, x4 // the HO dword of Z.

str x5, [x2, #8]

The first seven instructions add the LO double words of X and Y
together and store the result into the LO double word of Z. The last four
instructions add the HO double words of X and Y together, along with the
carry from the LO word, and store the result in the HO double word of Z.

You can extend this algorithm to any number of bits by using adcs to
add in the higher-order values. For example, to add together two 256-bit
values declared as arrays of four double words, you could use code like
the following:

.data
BigVali: .space 4*8 // Array of four double words
BigVal2: .space 4*8

BigVal3: .space 4*8 // Holds the sum

lea xo0, BigVali
lea x1, BigVal2
lea x2, BigVal3
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ldr
ldr
adds
str

ldr
ldr
adcs
str

ldr
ldr
adcs
str

ldr
ldr
adcs
str

x4, [x0]
x5, [x1]
X6, x4, X5
x6, [x2]

x4, [x0, #8]
x5, [x1, #8]
X6, X4, X5

x6, [x2, #8]

x4, [x0, #16]
x5, [x1, #16]
X6, x4, X5

x6, [x2, #16]

x4, [x0, #24]
x5, [x1, #24]
X6, x4, X5

x6, [x2, #24]

// BigVali[o]
// BigValz[o]

// BigVal3[o]

// BigVali[1]
// BigVal2[1]

// Bigval3[1]

// BigVali[2]
// BigVal2[2]

// BigVal3[2]

// BigVali[3]
// BigVal2[3]

// BigVal3[3]

This produces a 256-bit sum and stores it in the memory location

BigVals.

8.1.2 Subtraction

The ARM also performs multibyte subtraction the same way you would
manually, except that it subtracts whole words or double words at a time
rather than decimal digits. Use the subs instruction on the LO word or

double word and the sbc/sbcs (subtract with carry) instruction on the
HO values.

The following example demonstrates a 128-bit subtraction using the

64-bit registers on the ARM:

Left:
Right:
Diff:

lea
ldr
lea
ldr
subs
lea
str

ldr
ldr
sbcs
str

.data

.qword  .-.
.qword  .-.
.qword  .-.

X0, Left
x3, [x0]
x1, Right
x4, [x1]
X5, X3, X4
x2, Diff
x5, [x2]

x3, [x0, #8]
x4, [x1, #8]
X5, X3, X4

x5, [x2, #8]
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The following example demonstrates a 256-bit subtraction:

.data
BigVali: .space 4*8 // Array of four dwords
Bigval2: .space 4*8
BigVal3: .space 4*8

// Compute BigVal3 := BigVall - BigVal2.

lea xo0, BigVali
lea x1, BigVal2
lea x2, BigVal3

ldr x4, [x0] // Bigvali[o]
ldr x5, [x1] // Bigval2[o]
subs x6, x4, X5

str x6, [x2] // Bigval3[o]
ldr x4, [x0, #8] // Bigvali[1]
ldr x5, [x1, #8] // Bigval2[1]
sbcs x6, x4, X5

str x6, [x2, #8] // Bigval3[1]
ldr x4, [x0, #16] // Bigvali[2]
ldr x5, [x1, #16] // Bigval2[2]
sbcs x6, x4, X5

str x6, [x2, #16] // Bigval3[2]
ldr x4, [x0, #24] // BigVali[3]
ldr x5, [x1, #24] // BigVal2[3]
sbcs x6, x4, X5

str x6, [x2, #24] // Bigval3[3]

This produces a 256-bit difference and stores it in the memory location
BigVvals.

8.1.3 Comparisons

Unfortunately, there’s no “compare with carry” instruction that you can use
to perform extended-precision comparisons. However, you can compare
extended-precision values by using just a cmp instruction.

Consider the two unsigned values 0x2157 and 0x1293. The LO bytes of
these two values do not affect the outcome of the comparison. Simply com-
paring the HO bytes, 0x21 with 0x12, tells you that the first value is greater
than the second.

You must look at both bytes of a pair of values if the HO bytes are equal.
In all other cases, comparing the HO bytes tells you everything you need
to know about the values. This is true for any number of bytes, not just two.
The following code compares two signed 128-bit integers by comparing



their HO double words first and comparing their LO double words only if
the HO quad words are equal:

// This sequence transfers control to location "IsGreater" if

// DwordValue > DwordValue2. It transfers control to "IsLess" if
// DwordValue < DwordValue2. It falls through to the instruction
// following this sequence if DwordValue = DwordValue2.

// To test for inequality, change the "IsGreater" and "IslLess"
// operands to "NotEqual" in this code.

ldr xo, [fp, #DwordValue+8] // Get HO dword.
1dr x1, [fp, #DwordValue2 +8]

cmp x0, x1

bgt IsGreater

blt Isless

ldr xo, [fp, #DwordValue+0] // If HO gwords equal,
ldr x1, [fp, #DwordValue2+0] // then we must compare
cmp x0, x1 // the LO dwords.

bgt IsGreater

blt IslLess

// Fall through to this point if the two values are equal.

To compare unsigned values, use the bhi and blo instructions in place of bgt
and blt.

You can synthesize any comparison from the preceding sequence, as
shown in the following examples that demonstrate signed comparisons;
just substitute bhi, bhs, blo, and bls for bgt, bge, blt, and ble (respectively) if
you want unsigned comparisons. Each of the following examples assumes
these declarations:

locals 1cl
oword OWi
oword  OW2
byte stkSpace, 64
endl 1cl

The following code implements a 128-bit test to see if OW1 < OW2 (signed).
Control transfers to the IsLess label if OW1 < OW2. Control falls through to the
next statement (label NotLess) if this is not true:

ldr xo0, [fp, #OW1+8] // Gets HO dword
ldr x1, [fp, #OW2+8]

cmp x0, x1

bgt NotlLess

blt Isless

ldr xo0, [fp, #OWi+0] // Fall through to here if the HO
ldr x1, [fp, #OW2+0] // dwords are equal.
cmp x0, x1
blt Isless
NotLess:
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Here is a 128-bit test to see if OW1 <= OW2 (signed). This code jumps to
IslessEQ if the condition is true:

1dr x0, [fp, #OW1+8] // Gets HO dword
ldr x1, [fp, #OW2+8]

cmp x0, x1

bgt NotlLessEQ

blt IsLessEQ

ldr xo, [fp, #OW1+0] // Fall through to here if the HO
ldr x1, [fp, #OW2+0] // dwords are equal.
cmp x0, x1
ble IslLessEQ
NotLessEQ:

This is a 128-bit test to see if ON1 > OW2 (signed). It jumps to IsGtr if this
condition is true:

ldr xo, [fp, #OW1+8] // Gets HO dword
ldr x1, [fp, #OW2+8]

cmp x0, x1

bgt IsGtr

blt NotGtr

1dr xo, [fp, #OW1+0] // Fall through to here if the HO
ldr x1, [fp, #0W2+0] // dwords are equal.
cmp X0, x1
bgt IsGtr
NotGtr:

The following is a 128-bit test to see if OW1 >= OW2 (signed). This code
jumps to label IsGtrEQ if this is the case:

ldr xo, [fp, #OW1+8] // Gets HO dword
ldr x1, [fp, #OW2+38]

cmp x0, x1

bgt IsGtrEQ

b1t NotGtrEQ

ldr x0, [fp, #OW1+0] // Fall through to here if the HO
ldr x1, [fp, #OW2+0] // dwords are equal.
cmp x0, x1
bge IsGtrEQ
NotGtrEQ:

Here is a 128-bit test to see if OW1 == OW2 (signed or unsigned). This code
branches to the label IsEqual if OW1 == OW2. It falls through to the next instruc-
tion if they are not equal:

ldr xo, [fp, #0W1+8] // Gets HO dword
1dr x1, [fp, #OW2+8]

448 Chapter 8



cmp x0, x1
bne NotEqual

ldr xo0, [fp, #OWi+0] // Fall through to here if the HO
ldr x1, [fp, #OW2+0] // dwords are equal.
cmp X0, x1
beq IsEqual
NotEqual: // Fall through to here if not equal.

The following is a 128-bit test to see if W1 != OW2 (signed or unsigned).
This code branches to the label IsNotEqual if OW1 != OW2. It falls through to
the next instruction if they are equal:

ldr xo, [fp, #OW1+8] // Gets HO dword
ldr x1, [fp, #OW2+8]

cmp x0, x1

bne NotEqual

ldr xo, [fp, #OW1+0] // Fall through to here if the HO
1dr x1, [fp, #OW2+0] // dwords are equal.

cmp x0, x1

bne NotEqual

// Fall through to here if they are equal.

To generalize the preceding code for objects larger than 128 bits, start
the comparison with the objects” HO double words and work your way down
to their LO double words, as long as the corresponding double words are
equal. The following example compares two 256-bit values to see if the first
is less than or equal (unsigned) to the second:

locals cmp256
dword Bigi, 4
dword Big2, 4
endl  cmp256

ldr xo, [fp, #Bigl+24]
ldr x1, [fp, #Big2+24]
cmp x0, x1

blo isLE

bhi notLE

ldr xo, [fp, #Bigl+16]
ldr x1, [fp, #Big2+16]
cmp X0, x1

blo islLE

bhi notLE
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ldr xo0, [fp, #Bigl+8]
ldr x1, [fp, #Big2+8]
cmp X0, x1

blo islE

bhi notLE

ldr xo, [fp, #Bigl+0]
ldr x1, [fp, #Big2+0]
cmp  x0, x1
bnls notLE

isLE:

Code to execute if Bigl <= Big2

notLE:

Code to execute if Bigl > Big2

Presumably, there is a branch immediately before the notLE label to skip
over the code to execute if Bigl > Big2.

8.1.4 Multiplication

Although 64 x 64-bit multiplication (or one of the smaller variants) is usu-
ally sufficient, sometimes you may want to multiply larger values. Use the
ARM single-operand umul and smul instructions for extended-precision
multiplication operations, using the same techniques that you employ when
manually multiplying two values.

You likely perform multidigit multiplication by hand using the method
shown in Figure 8-3.



Step 1: Multiply 5 x 3

123
x 45

15 (5 x 3)

Step 4: Multiply 4 x 3

123
x 45

15
100
500
120 (40 x 3)

Step 2: Multiply 5 x 2

123
x 45

15

100 (5 x 20)

Step 5: Multiply 4 x 2

123
x 45

15
100
500
120
800

Step 7: Add partial products together

123
x 45

15

100
500
120
800

+ 4000

5535

Figure 8-3: Multidigit multiplication

(40 x 20)

Step 3: Multiply 5 x 1

123
x 45

15
100

500 (5 x 100)

Step 6: Multiply 4 x 1

123
x 45

15
100
500
120
800

4000 (40 x 100)

The ARM does extended-precision multiplication in the same manner,
but with words and double words rather than digits, as shown in Figure 8-4.
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Step 1: Multiply the LO words
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Step 5: Compute sum of partial products

_pbxe |
[ bxA ]
| CxA

[ AB x CD

i
i

|

Figure 8-4: Extended-precision multiplication

When performing an extended-precision multiplication, remember
that you must also perform an extended-precision addition at the same
time. Adding up all the partial products requires several additions.

The umul and smul instructions you've seen thus far multiply two n-bit
operands (32 or 64 bits), producing an n-bit result, ignoring any overflow.
You can'’t easily use these instructions for multiprecision multiplication
operations. Fortunately, the ARM CPU provides two sets of extended-
precision multiplication instructions that will do the job: one set for 32 x 32
multiplications (producing a 64-bit result), and a second set for 64 x 64 mul-
tiplications (producing a 128-bit result).

Here are the instructions that produce 64-bit results:

smull Xdest’ wsrcl’ wscm // Xdest = wsrc1 * WSICZ (Slgned 1ong)
umull Xdest’ wsrcl’ Wsrc? // Xdest = Wsrcl * Wsrcz (un51gned long)
Smneg]‘ Xdest’ wsrcl’ wsrcz // Xdest = -(wsrcl * wscm)

umnegl Xdest’ wsrcl’ wscm // Xdest = wsrcl * WSICZ



_ *

smaddl X,,op Wy Woyr Xos /7 Xopor = (W * W) + X,
- *

umaddl Xdest’ srcl? “'src2? "‘src3 dest srcl Wsrcz) + Xsrc3
= * -

smsubl Xdest’ wsrcl’ wscm’ Xsrc3 // Xdest - (wsrcl wsrcz) Xsrc3
- * -

umsubl X, W0y Wons Xy /7 Xjpsr = (W * W, src3

The smull (signed multiply long) and umull (unsigned multiply long)
instructions multiply the 32-bit registers to produce a 64-bit result, storing
the result in the 64-bit destination register. The smnegl and umnegl also mul-
tiply two 32-bit values but negate the 64-bit result before storing it in the
destination register.

The smaddl/umaddl and smsubl/umsubl instructions multiply their 32-bit
operands, producing a 64-bit result, then add or subtract a 64-bit register
from the result before storing the result into the 64-bit destination register.
You could use the smaddl/umaddl instruction, for example, to multiply C x B
and simultaneously add in D x A in Figure 8-4.

The 32 x 32 multiplication instructions are less useful than they seem
because the existing mxxx instructions will accept 64-bit operands (produc-
ing a 64-bit result). You can easily zero- or sign-extend a 32-bit value into
a 64-bit register and use the standard multiply instructions to achieve the
same result as the long multiply instructions.

You could use the 32-bit long multiply instructions to synthesize larger
multiplications (for example, a 128-bit multiplication). However, the ARM
provides two additional instructions that are better suited for this: smulh and
umulh (signed and unsigned multiply high):

smulh Xdest’ Xsrcp Xscm
umulh X X X I Kgest = (

dest? “‘src1? “‘src2 dest Xsrcl Xscm

// Xdest = (Xsrcl * Xscm) asr 64
) 1sr 64

These instructions multiply the two 64-bit source operands and store
the HO 64 bits of the 128-bit result into the destination register. The stan-
dard mul instruction produces the LO 64 bits of the result, so between the
mul and smulh/umulh instructions, you can compute the full 128-bit result:

// Multiply X0 x X1, producing a 128-bit result in X3:X2
// (unsigned).

mul X2, x0, x1
umulh x3, x0, x1

For signed multiplication, simply substitute smulh for umulh.

To multiply larger values together, you can use the mul, umulh, and smulh
instructions to implement the algorithm depicted in Figure 8-4. Listing 8-1
demonstrates how to multiply two 128-bit values (producing a 256-bit result)
by using 64-bit instructions.

// Listing8-1.S
//
// 128-bit multiplication
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#include "aoaa.inc"

.code
.extern printf

ttlStr: wastr  "Listing 8-1"

fmtStr1: .ascii "%0161x %0161x * %0161x %0161x = \n"
wastr " %0161x _%0161x_%0161x %0161x\n"

opl: .qword 0x10001000100010001000100010001000

op2: .qword 0x10000000000000000000000000000000

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// muli28

/1

// Multiplies two unsigned 128-bit values passed on the stack by
// doing a 128x128-bit multiplication, producing a 256-bit

// result

/1

// Stores result to location pointed at by X8

® proc mul128

args a128

gword  m128.mp // Multiplier
gword mi28.mc  // Multiplicand
enda a128

locals m128

gword  m128.saveX01
qword  m128.saveX23
gword  m128.saveX45
gword  m128.saveX67
byte stkSpace, 64
endl m128

enter m128.size

8 stp x0, x1, [fp, #m128.saveXo1] // Preserve
stp X2, x3, [fp, #mi128.saveX23] // these
stp x4, x5, [fp, #m128.saveX45] // register
stp x6, x7, [fp, #m128.saveX67] // values.

// Load operands into registers:

© ldr x0, [fp, #m128.mp]
ldr x1, [fp, #m128.mp+8]
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ldr
ldr

// X5:X4 = X0 * X2

mul
umulh

/] X6:X7 = X1 * X2,
mul

umulh
adds

X2,
X3,

X4,
X5,

[fp, #m128.mc]
[fp, #m128.mc+8]

X0, X2
X0, X2

then X5 = X5 + X7 (and save carry for later):

X7,
X6,
x5,

X1, X2
X1, X2
X5, X7

// X7 = X0 * X3, then X5 = X5 + X7 + C (from earlier):

mul
adcs
umulh
adcs

/] X7:X2 = X3 * X1

mul
umulh

adc
adds
adc

X7,
X5,
X7,
X6,

X2,
X7,

X7,
X6,
X7,

// X7:X6:X5:X4 contains

O stp
stp

1dp
ldp
ldp
1dp
leave
endp

X4,
X6,

X0,
X2,
X4,
X6,

X0, X3
x5, x7
X0, X3
x6, x7 // Add in carry from adcs earlier.

X3, x1
X3, x1

X7, xzr // Add in C from previous adcs.
x6, x2 // X6 = X6 + X2
X7, xzr // Add in carry from adds.

256-bit result at this point:

x5, [x8] // Save result to location
X7, [x8, #16] // pointed at by X8.

// Restore
// saved
// registers.

x1, [fp, #m128.saveX01
x3, [fp, #m128.saveX23
X5, [fp, #mi128.saveX45
X7, [fp, #m128.saveX67

(S

mul128

// Here is the asmMain function:

proc
locals
oword
byte
endl

enter

str

asmMain, public

am

product
stkSpace, 128

am

am.size

xzr, [fp, #product]
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// Test the muli28 function:

e

// Print the result:

(6]

lea
ldp
stp

lea
ldp
stp
add
bl

lea
ldr
mstr

ldr
mstr

lea
ldr
mstr
ldr
mstr

ldr
mstr

ldr
mstr

ldr
mstr

ldr

X2,
X0,
X0,

X2,
X0,
X0,
x8,

op1
x1, [x2]
x1, [sp]

op2

x1, [x2]

x1, [sp, #16]
fp, #product

mul128

x0,
X1,
x1,

X2,
X2,

X0,
X3,
X3,
X4,
X4,

X5,
X5,

X6,
X6,

X7,
X7,

X0,

op1 // Note: display HO
[x0, #8] // dwords first so the
[sp] // values appear normal.

[x0]
[sp, #8]

op2
[xo0, #8]
[sp, #16]
[x0]
[sp, #24]

[fp, #product+24]
[sp, #32]

[fp, #product+16]
[sp, #40]

[fp, #product+8]
[sp, #48]

[fp, #product]

// Under mac0S, all arguments must be on stack for printf,
// under Linux, only eighth argument is on stack.

EightthArg
//EightthArg

str

lea
bl

leave
endp

56 // For macOS

0

// For Linux

X0, [sp, #EighthArg]

X0, fmtStri
printf

// Returns to caller
asmMain




The mul128 procedure @ multiplies two 128-bit values passed on the
stack (note that this is not ARM ABI-compliant). Although X0 through X7
are volatile in the ARM ABI, this function is nice and preserves those regis-
ters @. The code loads the two 128-bit values from the stack into the X1:X0
and X3:X2 register pairs ©. The 128-bit multiplication algorithm follows, as
described in the program comments.

The code stores the 256-bit result into the memory location passed to
this function in the X8 register @; then the mul128 function restores the pre-
served registers and returns to the caller. The main program calls mul128 ©
and displays the result (in hexadecimal form) ©.

Here’s the build command and output from Listing 8-1:

$ ./build Listing8-1

$ ./Listing8-1

Calling Listing8-1:

1000100010001000_1000100010001000 * 1000000000000000_0000000000000000 =
0100010001000100_0100010001000100_0000000000000000_1000100010001000

Listing8-1 terminated

The code works only for unsigned operands. To multiply two signed
values, you must change the umulh instructions to smulh.

Listing 8-1 is fairly straightforward because it is possible to keep the
partial products in various registers. If you need to multiply larger values
together, you will need to maintain the partial products in temporary
(memory) variables. Other than that, the algorithm that Listing 8-1 uses
generalizes to any number of words.

8.1.5 Division

You cannot synthesize a general n-bit / m-bit division operation by using
the sdiv and udiv instructions. A generic extended-precision division requires
a sequence of shift and subtract operations, which takes quite a few instruc-
tions and runs much slower. This section presents the algorithm for
extended-precision division.

As with multiplication, the best way to understand how the computer
performs division is to study how you were probably taught to do long divi-
sion by hand. Consider the steps you’d take to manually divide 3,456 by 12,
as shown in Figure 8-5.
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123456  Step 1: 12 goes into 34 1213456  Step 2: Subtract 24 from 34
24 two times 24 to get 10 and drop down the 5
105
28 28
123456  Step 3: 12 goes into 105 123456  Step 4: Subtract 96 from 105
24 eight times 24 to get 9 and drop down the 6
105 105
96 96
96
28 288
123456  Step 5: 12 goes into 96 123456  Step 6: Therefore, 12 goes
24 exactly eight times 24 info 3,456 exactly 288 times
105 105
96 96
96 96
0% %
0

Figure 8-5: Manual digit-by-digit division operation

This algorithm is easier in binary because you don’t have to guess at
each step how many times 12 goes into the remainder, nor do you have to
multiply 12 by your guess to obtain the amount to subtract. At each step in
the binary algorithm, the divisor goes into the remainder exactly zero or
one times. For example, Figure 8-6 shows how to divide 27 by 3 in binary
(that is, dividing 11011 by 11).
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11[11011 Step 1: 11 goes into 11 1111011 Step 2: Subtract the 11,
11 one time 11 producing 0, and bring
00 down the O

10 10
11[11011 Step 3: 11 goes into 00 1111011 Step 4: Subtract out the O
11 zero times 11 and bring down the 1
00 00
00 00
01
100 100
11{11011 Step 5: 11 goes into O1 11{11011 Step 6: Subtract out the zero
11 zero times 11 and bring down the 1
00 00
00 00
01 01
00 00
11
1001 1001
11{11011 Step7: 11 goes into 11 1111011 Step 8: This produces the
11 exactly one time 11 final result of 1,001
00 00
00 00
01 01
00 00
11 1
00

Figure 8-6: longhand division in binary

The following algorithm implements this binary division operation in a
way that computes the quotient and the remainder at the same time:

Quotient := Dividend;
Remainder := 0;
for i := 1 to NumberBits do

Remainder:Quotient := Remainder:Quotient LSL 1;
if Remainder >= Divisor then

Remainder := Remainder - Divisor;
Quotient := Quotient + 1;

endif
endfor
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NumberBits is the number of bits in the Remainder, Quotient, Divisor, and
Dividend variables. LSL is the shift-left operator. The statement Quotient :=
Quotient + 1; sets the LO bit of Quotient to 1 because this algorithm previ-
ously shifted Quotient 1 bit to the left. Listing 8-2 implements this algorithm.

// Listing8-2.S

/!

// 128-bit by 128-bit division
#include "aoaa.inc"

.data

// op1l is a 128-bit value. Initial values were chosen
// to make it easy to verify the result.

opl: .qword  0x2000400060008000A000CO00E0001000
op2: .qword 2
op3: .qword  OXEEEECCCCAAAA88886666444422221111
result: .qword 0
remain: .qword 0

.code

.extern printf

ttl1Str: wastr "Listing 8-2"

fmtStri: .ascii  "quotient ="
wastr "%0161x_%0161x\n"

fmtStr2: .ascii  "remainder = "

wastr "%0161x_%0161x\n"

fmtStr3: .ascii  "quotient (2) ="
wastr  "%0161x_%0161x\n"

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// divi28

/1

// This procedure does a general 128 / 128 division operation
// using the following algorithm (all variables are assumed
// to be 128-bit objects):

//

// Quotient := Dividend

// Remainder := 0

// for i := 1 to NumberBits do

//

// Remainder:Quotient := Remainder:Quotient SHL 1



// if Remainder >= Divisor then

//

// Remainder := Remainder - Divisor
// Quotient := Quotient + 1

//

// endif

// endfor

//

// Data passed:

//

// 128-bit dividend, by reference in X0
// 128-bit divisor, by reference in X1
//

// Data returned:

//

// Pointer to 128-bit quotient in X8

// Pointer to 128-bit remainder in X9

® proc div128

#define remainderL x10
#define remainderH x11
#define dividendL  x12
#define dividenddH  x13
#define quotientL  dividendL
#define quotientH  dividendH
#define divisorl x14
#define divisorH x15

locals d128

dword  saveXo

gword  saveX1011
gword  saveX1213
gword  saveX1415
byte stkSpace, 64

endl d128
quotient = dividend // Alias to dividend
enter d128.size // Set up activation record.

// Preserve registers divi28 modifies:
O str X0, [fp, #saveXo]

stp x10, x11, [fp, #saveX1011]

stp x12, x13, [fp, #saveX1213]

stp x14, x15, [fp, #saveX1415]

// Initialize remainder with o:

© mov remainderL, #0
mov remainderH, #0
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// Copy the dividend to local storage:
ldp dividendlL, dividendH, [x0]
// Copy the divisor to local storage:
ldp divisorL, divisorH, [x1]
mov wo, #128 // Count off bits in Wo.

// Compute Remainder:Quotient := Remainder:Quotient LSL 1

//

// Note: adds x, x, x is equivalent to 1sl x, x, #1
// adcs x, x, x is equivalent to rol x, x, #1
// (if rol existed)

!/

// The following four instructions perform a 256-bit
// extended-precision shift (left) dividend through
// remainder:

repeatlp: adds dividendlL, dividendlL, dividendL
adcs dividendH, dividendH, dividendH
adcs remainderL, remainderlL, remainderlL
adc remainderH, remainderH, remainderH

// Do a 128-bit comparison to see if the remainder
// is greater than or equal to the divisor:

cmp remainderH, divisorH
bhi isGE
blo notGE
cmp remainderl, divisorl
bhi isGE
blo notGE

// Remainder := Remainder - Divisor

isGE: subs remainderL, remainderlL, divisorlL
sbc remainderH, remainderH, divisorH

// Quotient := Quotient + 1:

adds quotientl, quotientL, #1
adc quotientH, quotientH, xzr

// Repeat for 128 bits:

notGE: subs w0, wo, #1
bne repeatlp

// Okay, copy the quotient (left in the Dividend variable)
// and the remainder to their return locations:

O stp quotientl, quotientH, [x8]
stp remainderL, remainderH, [x9]
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// Restore the registers divi28 modified:

® ldr

ldp
ldp
1dp
leave
endp

X0, [fp, #saveXo0]

x10, x11, [fp, #saveX1011]
x12, x13, [fp, #saveX1213]
x14, x15, [fp, #saveX1415]
// Return to caller.
divi128

// Here is the asmMain function:

proc
locals
byte
endl

enter

asmMain, public

am
am.stkSpace, 64
am

am.size // Sets up activation record

// Test the divi128 function:

@ lea

lea
lea
lea
bl

X0,
x1,

op1
op2
x8, result
X9, remain
div128

// Print the results:

// Test the

ldr
mstr
ldr
mstr

lea
bl

lea
ldr
mstr
ldr
mstr

lea
bl

x1, [x8, #8] // X8 still points at result.
x1, [sp]

x2, [x8]

x2, [sp, #8]

x0, fmtStra
printf

remain

x1, [x9, #8]
x1, [sp]
x2, [x9]
x2, [sp, #8]

// Assume printf munged X9,
// must reload.

X9,

X0, fmtStr2
printf

divi28 function (again):

lea
lea
lea
lea
bl

X0,
x1,

op3
op2
x8, result
X9, remain
div128
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// Print the results:

ldr x1, [x8, #8] // X8 still points at result.
mstr x1, [sp]

ldr x2, [x8]

mstr x2, [sp, #8]

lea X0, fmtStr3
bl printf

lea X9, remain // Must reload

ldr x1, [x9, #8] // (because of printf).
mstr x1, [sp]

ldr x2, [x9]

mstr x2, [sp, #8]

lea X0, fmtStr2
bl printf

leave // Returns to caller
endp asmMain

The div128 function @ is a 128 x 128-bit division operation that simul-
taneously produces the quotient and the remainder. Unlike the extended-
precision multiplication given earlier, this function passes its arguments by
reference (in X0 and X1) rather than by value on the stack. It stores the
128-bit quotient in the location pointed at by X8 and the remainder in the
location pointed at by X9. As in the multiplication code, the div128 func-
tion @ preserves all the volatile registers it modifies.

Next is the division algorithm @, as described in the program comments.
The code stores the quotient and remainder away @ and then restores the
preserved registers ©. The main program ® demonstrates the divi28 func-
tion with a pair of calls, along with the code to display the results.

Here’s the build command and program output:

$ ./build Listing8-2

$ ./Listing8-2

Calling Listing8-2:

quotient = 1000200030004000 5000600070000800
remainder = 0000000000000000_0000000000000000
quotient (2) = 7777666655554444_3333222211110888
remainder = 0000000000000000_0000000000000001
Listing8-2 terminated

This code does not check for division by 0 (it will produce the quotient
OxFFFF_FFFF_FFFF_FFFF if you attempt to divide by 0). It handles only
unsigned values and is very slow, a couple of orders of magnitude worse
than the sdiv/udiv instructions. To handle division by 0, check the divisor
against 0 prior to running this code and return an appropriate error code if
the divisor is 0. To deal with signed values, note the signs, take the operands’



absolute values, do the unsigned division, and then fix the sign afterward
by setting the result negative if the operand signs were different.

8.1.6 Negation

The neg instruction doesn’t provide a generic extended-precision form.
However, a negation is equivalent to subtracting a value from 0, so you can
easily simulate an extended-precision negation by using the subs and sbcs
instructions.

The following code provides a simple way to negate a (320-bit) value by
subtracting that value from 0, using an extended-precision subtraction:

ldr xo, [fp, #value320]
subs x0, xzr, x0
str xo, [fp, #value320]

ldr xo, [fp, #value320+8]
sbcs x0, xzr, x0
str xo, [fp, #value320+8]

ldr xo, [fp, #value320+16]
sbcs x0, xzr, x0
str xo, [fp, #value320+16]

ldr xo0, [fp, #value320+24]
sbcs x0, xzr, x0
str xo, [fp, #value320+24]

ldr xo0, [fp, #value320+32]
sbcs x0, xzr, x0
str xo, [fp, #value320+32]

You can extend this algorithm to any number of bits (or reduce it to fewer
bits) by using the scheme I presented for extended-precision subtraction.

8.1.7 AND

Performing an n-byte AND operation is easy: simply AND the corre-
sponding bytes between the two operands, saving the result. For example,
to perform the AND operation with all operands 128 bits long, you could
use the following code:

ldp x0, x1, [fp, #sourcel]
1dp x2, x3, [fp, #source2]
and x2, x2, X0

and x3, x3, x1

stp x2, x3, [fp, #dest]

To extend this technique to any number of dwords, logically AND the cor-
responding dwords together in the operands.
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When testing the flags after an AND sequence, remember that the ands
instruction will set the flags only for that particular portion of the AND
sequence. If you convert the last and to an ands instruction, it will properly
set the N flag but will not properly set the Z flag. To set the Z flag (indicat-
ing a 0 result for the entire 128 bits), you can use ccmp (conditional com-
pare) to test the Z flag from the ands instruction and compare X2 with 0
(see section 6.1.4, “Conditional Instructions,” on page 297):

ldp xo0, x1, [fp, #sourcel]

ldp x2, x3, [fp, #source2]

and x2, x2, x0

ands x3, x3, x1

stp x2, x3, [fp, #dest]

ccmp x2, #0, 0b0100, eq // Sets Z if X3 == 0 && X2 ==

If you need to test both the N and Z flags after this sequence, consider
using the tbz/tbnz instructions to test the HO bit of register X3, which con-
tains the sign bit.

8.1.8 OR

Multibyte logical OR operations are performed in the same way as multi-
byte AND operations: you OR the corresponding bytes in the two operands
together. For example, to logically OR two 256-bit values, use the follow-
ing code:

ldp x0, x1, [fp, #source1]
ldp x2, x3, [fp, #sourcel+16]
ldp x4, x5, [fp, #source2]
ldp x6, x7, [fp, #source2+16]

orr x0, x0, x4
orr x1, x1, x5
orr x2, x2, x6
orr X3, X3, X7

stp x0, x1, [fp, #dest]
stp x2, x3, [fp, #dest+16]

Remember that the orr instruction does not affect any flags (and there
is no orrs instruction). If you need to test the zero flag after an extended-
precision OR, you must compare all the resulting double words to 0.

You can also use the Vn registers to perform extended-precision logi-
cal operations, up to 128 bits at a time. See section 11.13, “Use of SIMD
Instructions in Real Programs,” on page 699 for more details.

8.1.9 XOR

As with other logical operations, extended-precision XOR operations will
XOR the corresponding bytes in the two operands to obtain the extended-
precision result. The following code sequence operates on two 128-bit



operands, computes their exclusive-OR, and stores the result into a 128-bit
variable:

1dp x0, x1, [fp, #sourcel]
1dp x2, x3, [fp, #source2]
eor x2, x2, x0

eor x3, x3, x1

stp x2, x3, [fp, #dest]

The comment about the zero flag in the previous section applies here,
as well as the comment about Vn registers.

8.1.10 NOT

The mvn instruction inverts all the bits in the specified operand. Perform an
extended-precision NOT by executing the mvn instruction on all the affected
operands. For example, to perform a 128-bit NOT operation on the value
in X1:X0, execute the following instructions:

mvn X0, XO
mvn x1, X1

If you execute the mvn instruction twice, you wind up with the origi-
nal value. Also, exclusive-ORing a value with all 1s (such as OxFF, OxFFFF,
OxFFFF_FFFF, or OXFFFF_FFFF_FFFF_FFFF) performs the same operation
as the mvn instruction.

8.1.11  Shift Operations

Extended-precision shift operations on the ARM are somewhat problem-
atic. Traditionally, the way you accomplish an extended-precision shift is to
shift a bit out of one register into the carry flag, then rotate that carry bit
into another register. Unfortunately, the ARM doesn’t provide such instruc-
tions, so a different approach is necessary.

The exact approach depends on two things, as described in the follow-
ing subsections: the number of bits to shift and the direction of the shift.

8.1.11.1  Shift Left
A 128-bit 1s1 (logical shift left) takes the form shown in Figure 8-7.

63 4 3 2 1 0

| |

|— 4——4—4-—4-—4—4-—4"— - O

127 68 67 66 65 64

[ |-

Figure 8-7: The 128-bit shift-left operation
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To accomplish this with machine instructions, you must first shift the
LO dword to the left (for example, using the 1sls instruction) and capture
the output from bit 63 (conveniently, the carry flag does this for us). Next,
shift this bit into the LO bit of the HO dword while simultaneously shifting
all the other bits to the left (and capturing the output by using the carry
flag). No instruction specifically rotates the carry flag into a register, but
you can use the magic instruction adc/adcs to do this if you supply appropri-
ate operands.

Remember, a shift left is the same thing as a multiplication by 2. Adding
a value to itself is the very definition of a multiplication by 2. Therefore, the
1sls and adds instructions can both shift an operand to the left, moving the
overflow bit into the carry flag. In order for adds to behave like a shift-left
operation, you must supply the same operand in both source positions:

adds x0, x0, x0 // Same as 1sl x0, x0, #1

The adcs instruction (with the same operands) will also shift all the bits
to the left one position and shift the carry flag into bit 0 (as well as shift the
HO bit into the carry flag at the end of the operation). This is, effectively, a
single-bit rotate-through-carry-left operation, as illustrated in Figure 8-8.

HO bit 4 3 2 1 0
f f \ f | f { (
B B e i

Figure 8-8: The rotate-through-carry-left operation

You can use the adds and adcs instructions to implement a 128-bit shift.
For example, to shift the 128-bit quantity in X1:X0 one position to the left,
use the following instructions:

adds x0, x0, x0
adcs x1, x1, x1

The adds instruction shifts a 0 into bit 0 of the 128-bit operand and
shifts bit 63 into the carry flag. The adcs instruction then shifts the carry
flag into bit 64 and shifts bit 127 into the carry flag, giving you exactly the
result you want, as shown in Figure 8-9.
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Figure 8-9: Extended-precision shift left using adds /adcs

Using this technique, you can shift an extended-precision value only
1 bit at a time. You cannot shift an extended-precision operand several bits
by using a register, nor can you specify a constant value greater than 1 when
using this technique.

To perform a shift left on an operand larger than 128 bits, use addi-
tional adcs instructions. An extended-precision shift-left operation always
starts with the least-significant double word, and each succeeding adcs
instruction operates on the next-most-significant double word. For example,
to perform a 192-bit shift-left operation on a memory location, you could
use the following instructions:

adds x0, x0, x0
adcs x1, x1, x1
adcs x2, x2, x2

If you need to shift your data by 2 or more bits, you can either repeat
the preceding sequence the desired number of times for a constant number
of shifts or place the instructions in a loop to repeat them a certain number
of times. For example, the following code shifts the 192-bit value in X0, X1,
and X2 to the left by the number of bits specified in W3:

ShiftLoop:
adds x0, x0, x0
adcs x1, x1, x1
adcs x2, x2, x2
subs w3, w3, #1
bne ShiftLoop

The only problem with this multibit shift is that it can run rather slowly
when shifting more than a few bits to the left. In general, we say that this
algorithm is O(n), meaning the runtime is proportional to the number of
bits we shift to the left.
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An instruction to shift multiple bits simultaneously, as the 1s1 instruc-
tion can do, would help solve this problem. If a rol instruction existed, you
could use it to shift the 128 bits in X1:XO0 to the left 8 bits:

rol X2, X0, #8 // Shift HO 8 bits into LO 8
and X2, x2, #OxFF // bits and clear other bits.
1s1 X0, x0, #8 // Shift Xo 8 bits.

1sl x1, x1, #8 // Shift X1 8 bits.

orr x1, x1, x2 // Merge in LO 8 bits.

Unfortunately, the ARM CPU’s instruction set has no rol instruction;
however, you can use the ror instruction to do anything a rol instruction
would do. For any bit shift that occurs in the range 1-63, rol(n) is equivalent
to ror((64 - n) % 64), where rox(n) means “rotate left/right » bits.” For the
special case of rol(0), ror(0) ((64 - 0) % 64) is 0) will also rotate the value 0
bits. Therefore, you can replace the previous noncompiling code with this:

ror X2, X0, #64-8 // Shift HO 8 bits into LO 8
and X2, x2, HOXFF // bits and clear other bits.

1sl X0, X0, #8 // Shift Xo 8 bits.
1s1 x1, x1, #8 // Shift X1 8 bits.
orr x1, x1, X2 // Merge in LO 8 bits.

When nis greater than 2 or 3, this sequence will execute much faster
than the adds/adcs loop given earlier.

Figures 8-10 through 8-14 show the operations for this extended-
precision shift left.

127 64
JN 1 o v

Figure 8-10: Extended-precision shift left using ror, before the shift

In Figure 8-11, the algorithm makes a temporary copy of bits 0 to 63
and rotates the value to the left by 8 bits.

63 0

5 T e Y [

63 0 Temporary
T T e R [ e

127 64
T e Y v

Figure 8-11: Step 1: Making a temporary copy and shifting bits



Figure 8-12 shows shifting the original value to the left 8 bits (which
clears the LO bits) and clearing the HO temporary bits (via an AND
operation).

63 0
N e Y Y I

63 oTemporory
N A 5 5 5 5 e
127 64

ey et
Figure 8-12: Step 2: Shifting and clearing bits

Figure 8-13 shows the merging of the temporary and HO dwords (OR
operation).

63 0
e et

63 OTemporcry
JAN T e 5 [ [ e
127

64
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Figure 8-13: Step 3: Merging the temporary and HO dwords

Figure 8-14 shows the result after the shift.

Figure 8-14: Step 4: After the shift

To implement a variable extended-precision shift-left operation, the
code needs to generate a bitmask to clear the LO bits (the and instructions
in the previous code). As it turns out, you can generate the mask for an
n-bit shift by using the following code:

mov x3, #1

1s1 x3, x3, x4 // Assume X4 contains the shift count.

sub x3, x3, #1  // Generates 1 bits in positions 0 to (n-1)
and x2, x2, x3 // Clears unused bits of X2

The trick here is that 1s1(n) produces 2". Then, 2" — 1 is all 1 bits from
bit 0 to position n— 1.
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8.1.11.2  Shift Right and Arithmetic Shift Right

Unfortunately, no trick like using the adds/adcs instructions allows you

to perform a rotate through carry right operation (shifting all the bits right
through the carry, and shifting the original carry back into the HO bit).
Therefore, to do an extended-precision shift right (or arithmetic shift right),
you must use the ror instruction again. Here’s an example that shifts a
128-bit value in X1:X0 to the right 8 bits:

ror x2, x1, #8 // Shifts bits 64-71 into HO
and x2, x2, #OXFF << 56 // 8 bits and clears bits 64-119
Isr x1, x1, #8 // Shifts X1 8 bits

1sr x0, x0, #8 // Shifts X0 8 bits

orr x0, x0, X2 // Merges in bits 56-63

The code for the extended-precision arithmetic shift-right operation
is similar:

ror x2, x1, #8 // Shifts bits 64-71 into HO
and x2, x2, #OxFF << 56 // 8 bits and clears bits 64-119
asr x1, x1, #8 // Arithmetic shift X1 8 bits
1sr x0, x0, #8 // Shifts X0 8 bits

orr x0, x0, x2 // Merges in bits 56-63

In this case, you substitute an asr instruction for the 1sr on the HO
dword. Note that you continue to use a lsr instruction on the LO dword; 1sr
is necessary to shift Os into the HO bits so that the orr instruction properly
merges the bits shifted out of the HO dword.

As alast example, here’s a 192-bit arithmetic shift right that shifts the
bits in X2:X1:X0 to the right 4 bits:

ror x3, x2, #4 // Temp copy holding bits 128-131

And x3, x3, #HOXF << 60 // Clears all but HO 4 bits of temp
asr x2, x2, #4 // Arithmetic shift right X2 4 bits
ror x4, x2, #4 // Temp (2) copy holding bits 64-67
And x4, x4, #OxF << 60 // Clears all but HO 4 bits of temp2
Isr x2, x2, #4 // Shifts the original 3 dwords 4 bits

1sr x1, x1, #4

1sr x0, x0, #4

orr x1, x1, x3 // Merges in bits 124-127
orr x0, x0, x4 // Merges in bits 60-63

The Neon instructions allow you to shift 128-bit values left and right;
see Chapter 11 for details.

Operating on Different-Size Operands

Occasionally, you may need to do a computation on a pair of operands that
are not the same size (mixed-size, or mixed-mode, arithmetic). For example,
you may need to add a word and a double word together or subtract a byte



value from a word value. To do so, extend the smaller operand to the size
of the larger operand, then operate on two same-size operands. For signed
operands, sign-extend the smaller operand to the same size as the larger
operand; for unsigned values, zero-extend the smaller operand. This works
for any operation.

The following examples demonstrate adding a byte variable, a half-
word variable, and a dword variable:

locals 1cl
byte varl
hword var2
align 3

dword  var3
endl 1cl

// Unsigned addition (8-bit + 16-bit addition
// producing a 16-bit result):

ldrb  wo, [fp, #vari] // Zero-extends byte to 32 bits
ldrh wl, [fp, #var2] // Zero-extends hword to 32 bits
add w0, wo, wil // Adds 32 bits

strh  wo, [fp, #var2] // Store LO 16 bits in var2.

// Signed addition (8-bit + 16-bit addition
// producing a 16-bit result):

ldrsb  wo, [fp, #varil] // Sign-extends byte to 32 bits
ldrsh w1, [fp, #var2] // Sign-extends hword to 32 bits
add w0, wo, wil // Adds 32 bits

strh  wo, [fp, #var2] // Store LO 16 bits in var2.

In both cases, the byte variable is loaded into the WO register, extended
to 32 bits, and then added with the half-word operand (also extended to
32 bits).

All these examples add a byte value to a half-word value. By zero- or
sign-extending the operands to the same size, you can easily add any two
different-size variables together.

As a last example, consider adding an 8-bit signed value to a qword
(128-bit) value:

ldrsb  x0, [fp, #vari] // Sign-extends byte to 64 bits

asr X1, x0, #63 // Sneaky sign-extend to 128 bits
1dp x2, x3, [fp, tvar3]

adds X2, X2, X0 // Adds LO dwords

adc x3, X3, x1 // Adds HO dwords

stp X2, X3, [fp, #var3]

The trick in this code is the asr instruction. This instruction sign-
extends X0 into X1:X0 by copying the sign bit in X0 throughout X1 (an
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arithmetic shift right by 63 bits effectively copies bit 63 into bits 0-62). Once
X0 has been sign-extended into X1, you have a 128-bit value in X1:X0 that
you can add to the 128-bit value in variable var3.

The previous examples in this chapter assumed that the different-size
operands were memory variables. They used the 1drb/1ldrsb and 1drh/1drsh
instructions to zero- and sign-extend 8- and 16-bit operands to 32 bits (which
could also extend their operands to 64 bits by supplying a 64-bit register).
Although these examples did not demonstrate mixing 32- and 64-bit oper-
ands, you could also have used the ldrsw instruction to sign-extend 32 bits
to 64.

If your operands are already in registers (not memory), you can use the
uxtb/uxth/uxtw and sxtb/sxth/sxtw instructions to zero- or sign-extend the
operands. For example, the following code sign-extends the 32-bit value in

WO to 128 bits:

// Assume 8-bit value is in WO and 128-bit value is in X3:X2.
// Add byte in WO to 128-bit value in X3:X2.

sxtb  x0, wo // Sign-extends byte to 64 bits
asr x1, x0, #63 // Sneaky sign-extend to 128 bits
adds X2, X2, X0 // Adds LO dwords

adc X3, X3, x1 // Adds HO dwords

When adding smaller values to 32- or 64-bit registers that don’t require
sign-extending the smaller value to 128 bits or more, you can use the sign-
extension modifiers for Operand2 in arithmetic instructions to zero- and
sign-extend the smaller values to the larger size:

// Add 8-bit unsigned value in WO to 32-bit value in Wi:
add wl, wi, w0, uxtb #0

// Add 8-bit signed value in WO to 32-bit value in W1:
add wl, wi, w0, sxtb #0

// Add 16-bit unsigned value in WO to 32-bit value in W1:
add wl, wl, w0, uxth #0

// Add 16-bit signed value in WO to 32-bit value in Wi:
add wl, wl, w0, sxth #0

// Add 32-bit unsigned value in WO to 64-bit value in X1:
add x1, X1, w0, uxtw #0

// Add 32-bit signed value in WO to 64-bit value in X1:

add x1, X1, w0, sxtw #0




8.3

8.4

To add bytes and half words to 64-bit dwords, just change the W1 regis-
ters to X1 in this code.

Moving On

Extended-precision arithmetic is difficult or impossible in HLLs but is fairly
easy in assembly language. This chapter described the extended-precision
arithmetic, comparison, and logical operations in ARM assembly language.
It concluded by discussing mixed-mode (mixed-size) arithmetic, where the
operands have differing sizes.

Armed with the information from this chapter, it’s easy to handle arith-
metic and logical operations that are difficult to achieve in most HLLs. The
next chapter, which covers numeric-to-string conversions, will use these
extended-precision operations when converting values larger than 64 bits.

For More Information

e  One arithmetic feature missing from the ARM instruction set is decimal
arithmetic (base-10), meaning if the need arises, you’ll have to perform
that arithmetic in software. Though most of the code is in C, visit the
General Decimal Arithmetic site if you want to implement decimal
arithmetic: https://speleotrove.com/decimal/.

e Donald Knuth’s The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (Addison-Wesley Professional, 1997) contains lots of useful
information about decimal arithmetic and extended-precision arithme-
tic, though the text is generic and describes how to do this in MIXAL
assembly language rather than ARM assembly language.

TEST YOURSELF

Assume all variables are unsigned integers and are local in the current activa-
tion record.
1. Provide the code to compute x = y + z, assuming the following:

a. x,y, and z are 128-bit integers.

b. xand y are 96-bit integers, and z is a 64-bit integer.

c.  x, y, and z are 48-bit integers.

2. Provide the code to compute x = y — z, assuming the following:
a. x,y, and z are 192-bit integers.
b. x, y, and z are 96-bit integers.

(continued)
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Provide the code to compute x = y x z, assuming x, y, and z are 128-bit
unsigned integers.

Assuming x and y are unsigned 128-bit integers, convert the following to
assembly language:

a. if( x==y ) then code

b. if( x <y ) then code

c. if( x >y ) then code

d. if( x !=y ) then code

Assuming x and y are signed 128-bit integers, convert the following to
assembly language:

a. x=-x

b. x=-y

Assuming x, y, and z are all 128-bit integer values, convert the following
to assembly language:

a. x=y& z bitwise logical AND)
b. x=y| z(bitwise logical OR)
c. x=y" zbitwise logical XOR)
d.  x= ~y (bitwise logical NOT)

x =y << 1 (bitwise shift left)
f. x=y>>1 (bitwise shift right)
Assuming x and y are signed 128-bit values, convert x = y >> 1 to assem-
bly language (bitwise arithmetic shift right).
Provide the assembly code to rotate the 128-bit value in x through the
carry flag (left by 1 bit).



NUMERIC CONVERSION

This chapter discusses basic conversions
between various numeric formats, including

integer to decimal string, integer to hexadeci-

mal string, floating-point to string, hexadeci-
mal string to integer, decimal string to integer, and real
string to floating-point. It also covers error handling
for string-to-numeric conversions, as well as perfor-
mance enhancements. Finally, it introduces standard-
precision conversions (for 8-, 16-, 32-, and 64-bit integer
formats) and extended-precision conversions (for exam-
ple, 128-bit integer/string conversions).

In this chapter, you’ll begin to solve problems directly in assembly lan-
guage, rather than translating a solution from an HLL as you did in previ-
ous chapters. Some examples here first present code that solves a problem
with an HLL-based solution, then provide an optimized assembly language
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solution. This should help you learn to solve assembly language problems
without relying on HLLs, thereby producing higher-quality programs.

Converting Numeric Strings to Values

Up to this point, this book has relied on the C stdlib to perform numeric
I/0 (writing numeric data to the display and reading numeric data from
the user). However, the library doesn’t provide extended-precision numeric
I/0 facilities (and even 64-bit numeric I/O is questionable; this book has
been using a GCC extension to printf() to do 64-bit numeric output).
Therefore, it’s time to break down how to do numeric I/O in assembly
language.

Because most OSes support only character or string input and output,
you won'’t actually do numeric I/O. Instead, you’ll write functions that con-
vert between numeric values and strings, then do string I/O. The examples
in this section work with 64-bit (non-extended-precision) and 128-bit values,
but the algorithms are general and extend to any number of bits.

9.1.1 Numeric Valves to Hexadecimal Strings

In this section, you’ll learn to convert numeric values (bytes, half words,
words, double words, and so on) to a character string containing the equiv-
alent hexadecimal characters for the value. To begin, you need a function
that converts a 4-bit nibble into a single ASCII character in the range '0" to
‘9" or 'A' to 'F'. In an HLL such as C, you could write this as follows:

// Assume nibbleIn is in the range 0-15:

charOut = nibbleIn + '0';
if( charOut > '9" ) charOut = charOut + (‘A" - '9' - 1);

You can convert any numeric value in the range 0 to 9 to its corre-
sponding ASCII character by ORing the numeric value with '0' (0x30).
Unfortunately, this maps numeric values in the range 0xA through 0xF
to Ox3A through 0x3F, so the C code checks to see if it produces a value
greater than Ox3A and adds 7 ("A" — '9" — 1) to produce a final character
code in the range 0x41 to 0x46 (‘A" through 'F").

With a function that converts a nibble to the appropriate ASCII char-
acter, you can convert bytes, half words, and so on by taking all the nibbles
in the number and calling the function on each one to produce the cor-
responding output character. However, because ARM assembly language
programs generally deal with objects no smaller than a byte, it’s more
straightforward and efficient to write a function that converts a byte value
to two ASCII characters. Let’s call this function btoh (byte to hex).

Listing 9-1 shows a straightforward btoh implementation. This function
expects a single-byte value in X1 (ignoring bits 8 to 63 in X1) and returns
the two characters in bits 0 to 15 of X1. Listing 9-1 converts a C algorithm
into assembly language by using the techniques described in Chapter 7.



// Listing9-1.S
#include "aocaa.inc"
proc btoh_simple
and x1, x1, #0xFF  // Ensure only 8 bits.

mov X0, x1 // Save LO nibble.

// Process the HO nibble:

O lsr x1, x1, #4 // Move HO nibble to LO posn.
orr x1, x1, #'0' // Convert to 0x30 to Ox3F.
cmp x1, #'9' // See if 0x3A to Ox3F.
bls legas
add x1, x1, #7 // Convert 0x3A to Ox3F to

legas: // 'A" through 'F'.

// Process the LO nibble:

® and x0, x0, #HOxF // Strip away HO nibble.

orr x0, x0, #'0' // Convert to 0x30 to Ox3F.

cmp x0, #'9' // See if 0x3A to Ox3F.

bls legbs

add X0, X0, #7 // Convert Ox3A to Ox3F to
legbs: // 'A" through 'F'.

// Merge the 2 bytes into X1.

orr x1, x1, x0, 1sl #8

ret

endp btoh simple

This function returns the character corresponding to the HO nibble
in bits 0 through 7 @ and the character corresponding to the LO nibble in
bits 8 through 15 @. This is because you’ll generally use this function to
build up character strings containing the converted hexadecimal value.
Character strings are inherently big-endian, with the most significant digit
appearing in the lowest memory address (so the number will be read from
left to right when you print the string). Returning the two characters
swapped in X1 allows you to store the two characters as a half-word value
into memory by using a single instruction.

You may be wondering why btoh_simple passes the value to convert in X1
rather than X0 (the standard “first argument” location). This is in anticipa-
tion of functions that will output the characters to a memory buffer (string).
For those string-based functions, X0 will contain the address of the buffer.

Because Listing 9-1 is basically hand-compiled C/C++ code, the perfor-
mance will be about the same as (or worse than) the code produced by an
optimizing C/C++ compiler processing the C code given earlier. To write
faster code in assembly language, you’ll first need to measure the perfor-
mance of two functions to determine which one is faster. While you can
do so with many software tools (performance analyzers, or profilers), I've
employed a simple solution: write a main program that calls the function

Numeric Conversion 479



many times, then use the Unix time command line utility to measure the
amount of time the program takes to run. Listing 9-2 shows such a pro-
gram, for example.

// Listing9-2.S
#include "aoaa.inc"
Include both simple and other code here necessary for a working program.

proc asmMain, public

locals am // Preserve the X20 and
dword  saveX20 // X21 registers that
dword  saveX21 // this program uses
byte stackspace, 64 // as loop-control

endl  am // variables.

enter am.size // Create activation record.

str x20, [fp, #saveX20] // Preserve nonvolatile
str x21, [fp, #saveX21] // registers.

// Outer loop executes 10,000,000 times:

ldr X20, =10000000
outer:

// Inner loop executes 256 times, once for each byte value.
// It just calls the btoh *** function and ignores the

// return value. Do this to measure the speed of the

// function.

#define funcToCall btoh x1 // btoh x1, btoh2, btoh nob, or btoh simple

mov x21, #256
inner: add x1, x20, #-1
bl funcToCall
adds x21, x21, #-1
bne inner
adds X20, x20, #-1
bne outer
mov x1, #0x9a // Value to test
mov x6, x1 // Save for later.
bl funcToCall

// Print btoh *** return result:
and x2, x1, #oxff // Print HO nibble first.

mstr x2, [sp, #8]
lsr X3, x1, #8 // Print LO nibble second.
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mstr X3, [sp, #16]

mov x1, x6 // Retrieve save value.
mstr x1, [sp]

lea X0, fmtStra

bl printf

ldr x21, [fp, #saveX21] // Restore nonvolatile
ldr x20, [fp, #saveX20] // registers.

leave

ret

endp asmMain

An advanced software engineer might find several faults with this tech-
nique for measuring the executing time of some code. However, it is simple,
is easy to understand and use, and doesn’t require any special software
tools. While the measurements it produces are not perfect, it’s good enough
for most purposes.

Here’s the build command and sample output (using the Unix time com-
mand to time the running of the program):

$ ./build Listing9-2

$ time ./Listing9-2

Calling Listing9-2:

Value=9a, as hex=9A

Listing9-2 terminated

./Listing9-2 3.49s user 0.01s system 98% cpu 3.542 total

On my Mac mini M1, this took about 3.5 seconds to run. (Obviously,
this will vary by system; for example, on a Raspberry Pi 3, it took about
37 seconds.)

As noted in Chapter 7, branches tend to run slower than straight-line
code. Listing 9-2 uses branches to handle cases when the converted char-
acteris '0' through '9' or 'A' through 'F'. I wrote a version using the csel
instruction to differentiate these two cases after ORing or adding '0' to the
nibble value. The code ran in 2.5 seconds (on a Mac mini M1). However,
this was achieved by not preserving the X1 and X2 registers. Saving X1
and X2 to memory and restoring them increased the execution time to
4.68 seconds.

You've just discovered a big time sink in ARM assembly code: accessing
memory is very slow (and the 1dp/stp instructions are much slower than the
1ldr/str instructions). This is why Arm defined nonvolatile registers, so you
don’t have to preserve certain working registers in memory. Nevertheless,
preserving volatile registers is sometimes worthwhile to ensure that pro-
grams are correct. Assembly language code can quickly become complex,
and having a function stomp on registers you forgot to save in your calling
code can lead to long debugging sessions. A fast program with defects is
never as good as a slower program that works properly.

When writing 32-bit ARM code for a Raspberry Pi 400 (for the second
volume of this series), I discovered that using a 256-element lookup table
(with each element containing the two characters corresponding to the
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hexadecimal value) was faster than the standard algorithm. When I tried
that approach in 64-bit ARM assembly, the runtime was 4.6 seconds. Once
again, memory accesses (at least on the Apple M1 CPU) are expensive. On
a different system, such as a Pi 3, 4, or 5, you will get different results.

Once you can convert a single byte to a pair of hexadecimal characters,
creating a string, output to the display is straightforward. We can call the
btoh (byte to hex) function for each byte in the number and store the corre-
sponding characters away in a string. With this function, you can write
btoStr (byte to string), hwtoStr (half word to string), wtoStr (word to string),
and dtoStr (double word to string) functions. This chapter expands several
of the lower-level functions (btoStr, hwtoStr, and wtoStr) and uses procedure
calls to the smaller functions for the larger-sized conversions (dtoStr). In
Chapter 13, I discuss macros that will provide another way to easily expand
these functions.

The approach this book takes is to try to write fast conversion code. If
you would prefer to save space rather than increase speed, see the following
“Reducing Code Size” box for details.

REDUCING CODE SIZE

To reduce code size and make these functions easier to write, you can code
hwtoStr to call btoStr twice (and concatenate their output), code wtoStr fo call
hwtoStr twice, code dtoStr to call wtoStr twice, and so on. This produces func-
tions with just a few instructions each, but the performance suffers. For example,
assuming you've written the functions in this fashion, consider a call to dtoStr:
it calls wtoStr twice; wtoStr calls hwtoStr twice, which calls btoStr twice (which
ultimately calls the btoh function). This means that dtoStr makes 22 total calls.
As most of these (except possibly btoh) are higher-level functions, they should
preserve any registers they modify. If each function saves a couple of registers,
this results in 28 writes to, and 28 reads from, memory to preserve and restore
the register values. As you saw with the btoh function, preserving registers can
be expensive.

A higher-performance alternative, albeit requiring more code, is to call
btoh (with no register preservation) as many times as necessary fo convert each
of the data types fo the appropriately sized string. The higher-level function can
preserve the registers exactly once and make multiple calls to btoh (such as the
high-performance btoh x1 function that doesn't preserve registers). Within that
function (for example, dtoStz), it is aware that btoh might wipe out X0 and X1;
the higher-level function preserves those registers, so its caller doesn't have to,
and treats them as volatile across calls to btoh. This way, the registers are saved
and restored only once across the call to the higher-level function.

Another possible performance improvement is to ditch the btoh function
entirely and expand it inline in the higher-level functions. Before software engi-
neers recoil in horror from this suggestion, remember these are very low-level
functions that are generally part of a library rather than an application program

482 Chapter 9




(other than via linking in the appropriate library). For low-level library code,
optimization generally pays off handsomely. For those with doubts, consider
using macros (see Chapter 13), which give you the benefit of straight-line effi-
cient code along with the structured nature of procedure calls.

All the binary-to-hexadecimal string functions will accept two param-
eters: a value to convert in the X1 register, and a pointer to a string buffer to
hold the string result in X0. These functions will assume that the buffer
is sufficiently large to hold the string result: btoStr requires a 3-character
buffer, hwtoStr requires a 5-character buffer, wtoStr requires a 9-character
buffer, and dtoStr requires a 17-character buffer. Each byte in the value
requires two characters in the buffer. In addition to the character data, the
buffer must also include 1 byte for the zero-terminating byte. The caller is
responsible for ensuring that the buffer is large enough.

To implement these four hexadecimal-to-string functions, I'll start by
writing four hexadecimal-to-buffer functions. There are two differences
between the *tobuf and *tostr functions (where the * indicates a substitu-
tion of b, hw, w, or d, as per regular expression syntax):

e  The *tobuf functions do not preserve any registers. They modify the
values in X0 and X2.

e  The *tobuf functions leave X0 pointing at the zero-terminating byte at
the end of the string, which is often useful; the *tostr functions pre-
serve X0’s value (pointing at the first character of the output buffer).

I will also take this opportunity to introduce another assembly lan-
guage feature: multiple entry points to a function. The btobuf, htobuf, wtobuf,
and dtobuf functions all contain common code. Listing 9-3 merges all these
functions into a single function (dtobuf) with separate entry points into the
code sequence for the other three functions.

// Listing9-3.S

Usual header code snipped

// dtobuf

//

// Convert a dword to a string of 16 hexadecimal digits.
/!

// Inputs:

// Xo- Pointer to the buffer. Must have at least
// 17 bytes available.

/] X1- Value to convert

//

// Outputs:

//  Xo- Points at zero-terminating byte at the end
// of the converted string

//
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// Note: This function does not preserve any registers.

// It is the caller's responsibility to preserve
// registers.
//
/! Registers modified: X0, X2
proc dtobuf

#tdefine AtoF ('A'-'9'-1)

// Process the HO nibble:

O Isr
orr
cmp
bls
add

dec15:
strb

x2, x1, #60
w2, w2, #'0'
w2, #'9'
dec15

w2, w2, #AtoF

w2, [x0], #1

// Process nibble 14:

Isr
and
orr
cmp
bls
add
dec14: strb

X2, x1, #56
X2, x2, Oxf
w2, w2, #'0'
w2, #'9'
dec14

w2, w2, #AtoF
w2, [x0], #1

// Process nibble 13:

Isr
and
orr
cmp
bls
add
dec13: strb

X2, x1, #52
X2, X2, Oxf
w2, w2, #'0'
w2, #'9'
dec13

w2, w2, #AtoF
w2, [x0], #1

// Process nibble 12:

1sr
and
orr
cmp
bls
add
dec12: strb

X2, x1, #48
X2, X2, Oxf
w2, w2, #'0'
w2, #'9'
dec12

w2, w2, #AtoF
w2, [x0], #1

// Process nibble 11:

Isr
and

X2, X1, #44
X2, X2, Oxf

// Convert to 0x30 to Ox3F.
// See if 0x3A to Ox3F.

// Skip if 0 to 9.

// If it was A to F

// Store byte to memory.

// See comments for HO nibble.



orr w2, w2, #'0'
cmp w2, #'9'

bls dec11
add w2, w2, #AtoF
dec11: strb w2, [x0], #1

// Process nibble 10:

Isr X2, x1, #40

and X2, x2, oxf

orr w2, w2, #'0'

cmp w2, #'9'

bls dec10

add w2, w2, #AtoF
dec10: strb w2, [x0], #1

// Process nibble 9:

Isr X2, x1, #36

and X2, x2, Oxf

orr w2, w2, #'0'

cmp w2, #'9'

bls dec9

add w2, w2, #AtoF
dec9: strb w2, [x0], #1

// Process nibble 8:

Isr X2, x1, #32

and X2, x2, oxf

orr w2, w2, #'0'

cmp w2, #'9'

bls dec8

add w2, w2, #AtoF
dec8: strb w2, [x0], #1

// Entry point for wtobuf

//

// wtobuf

//

// Convert a word to a string of 8 hexadecimal digits.

//

// Inputs:

//  Xo- Pointer to the buffer. Must have at least

// 9 bytes available.

[/l X1- Value to convert

//

// Outputs:

//  Xo- Points at zero-terminating byte at the end

// of the converted string

//

// Note: This function does not preserve any registers.
// It is the caller's responsibility to preserve
// registers.
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/1

/! Registers modified: X0, X2
® wtobuf:

// Process nibble 7:
lsr x2, x1, #28 // See comments for nibble 15.
and X2, X2, Oxf
orr w2, w2, #'0'
cmp w2, #'9'
bls dec7
add w2, w2, #AtoF

dec7: strb w2, [x0], #1

// Process nibble 6:

Isr X2, x1, #24

and X2, X2, Oxf

orr w2, w2, #'0'

cmp w2, #'9'

bls dec6

add w2, w2, #AtoF
decé6: strb w2, [x0], #1

// Process nibble 5:

lsr X2, x1, #20

and X2, X2, Oxf

orr w2, w2, #'0'

cmp w2, #'9'

bls decs

add w2, w2, #AtoF
decs: strb w2, [x0], #1

// Process nibble 4:

Isr X2, x1, #16

and X2, X2, Oxf

orr w2, w2, #'0'

cmp w2, #'9'

bls dec4

add w2, w2, #AtoF
decq: strb w2, [x0], #1

// Entry point for htobuf:

/1

// htobuf

//

// Convert a half word to a string of 4 hexadecimal digits.
/1

// Inputs:

// Xo- Pointer to the buffer. Must have at least

// 5 bytes available.

/] Xi- Value to convert
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/1

// Outputs:
/] Xo- Points at zero-terminating byte at the end
// of the converted string
//
// Note: This function does not preserve any registers.
// It is the caller's responsibility to preserve
// registers.
//
// Registers modified: X0, X2
© htobuf:
// Process nibble 3:
Isr x2, x1, #12 // See comments for nibble 15.
and X2, x2, Oxf
orr w2, w2, #'0'
cmp w2, #'9'
bls dec3
add w2, w2, #AtoF
dec3: strb w2, [x0], #1

// Process nibble 2:

Isr X2, x1, #8

and X2, x2, oxf

orr w2, w2, #'0'

cmp w2, #'9'

bls dec2

add w2, w2, #AtoF
dec2: strb w2, [x0], #1

// Entry point for btobuf:

//
// btobuf

/1
// Convert a byte to a string of two hexadecimal digits.

//

// Inputs:

//  Xo- Pointer to the buffer. Must have at least

// 3 bytes available.

// X1- Value to convert

//

// Outputs:

// Xo- Points at zero-terminating byte at the end

// of the converted string

//

// Note: This function does not preserve any registers.
// It is the caller's responsibility to preserve
// registers.

//

// Registers modified: X0, X2
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// Process nibble 1:

O btobuf:

lsr X2, x1, #4 // See comments for nibble 15.
and X2, X2, Oxf
orr w2, w2, #'0'
cmp w2, #'9'
bls dec1
add w2, w2, #AtoF

dec1: strb w2, [x0], #1
// Process LO nibble:
and X2, x1, Oxf
orr x2, x2, #'0'
cmp w2, #'9'
bls deco
add w2, w2, #AtoF

deco: strb w2, [x0], #1
strb wzr, [x0] // Zero-terminate.
ret

endp dtobuf

The dtobuf function begins by processing the HO nibble (nibble 15) of
the dword @. For performance reasons, this code uses an unrolled loop,
processing each nibble individually. Each nibble uses the standard algo-
rithm for converting a binary value to a hexadecimal character.

After this code processes the HO eight hex digits, you’ll notice an
entry point for the wtobuf function @. Code calling wtobuf transfers control
into the middle of the dtobuf function (literally). This works because dtobuf
doesn’t push anything onto the stack or otherwise alter the environment
that would require special work by wtobuf on entry. Likewise, entry points
for htobuf ® and btobuf @ are at nibbles 3 and 1, respectively. By merging
these functions into a single section of code, you save all the code that
would be used for wtobuf, htobuf, and btobuf.

I made several failed attempts at optimizing this code. First, I tried
saving 8 bytes in a register and wrote the data to memory a dword at a
time rather than a byte at a time. This ran slower (on my Mac mini M1).

I also tried eliminating branches in the code by using csel instructions.
Surprisingly, that code ran slower too. I even tried using a ubfx instruction
(see Chapter 12), which still ran slower than the code with branches. I timed
these versions on a Mac mini M1 and a Raspberry Pi 400. While the tim-
ings on the two machines varied greatly, the relative performance of the
three algorithms remained the same (the branch version was always faster).
Sometimes, getting clever with different algorithms can hurt you. That’s why
you should always test the performance of your code (preferably on mul-
tiple architectures).

With the *tobuf functions out of the way, writing the *toStr functions
is relatively easy. The *toStr functions simply call the *tobuf functions and



preserve the registers that the *tobuf functions modify. Listing 9-4 provides
the code for these functions (note that Listing9-4.S, from the online files,
also includes the code for the dtobuf function; to avoid redundancy, I've
removed that code from the listing).

// Listing9-4.S

//

// btoStr, htoStr, wtoStr, and dtoStr functions
// Also includes btobuf, htobuf, wtobuf, and

// dtobuf functions

#include "aoaa.inc"
.section .rodata, ""

ttlStr: .asciz "Listing 9-4"
.data

// Buffer space used by main program

buffer: .space 256,0
.code
.extern printf

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

® Insert the code for dtobuf here. See Listing 9-3.

// btoStr-

//

// Inputs:

//

// X0- Pointer to buffer that will hold the result
// (must allocate at least 3 bytes for buffer)
// X1- Value to print (in LO byte)

//

// Outputs:

//

// Buffer pointed at by X0 receives the two-character
// conversion of the value in X1 to a hexadecimal string.

/!
// Preserves all registers.
® proc btoStr

str X2, [sp, #-16]!
stp x0, lr, [sp, #-16]!
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bl btobuf
// Restore registers and return:

1ldp x0, 1r, [sp], #16
ldr x2, [sp], #16

ret

endp btoStr

// htoStr

/1
// Inputs:

/1

// X0- Pointer to buffer that will hold the result

// (must allocate at least 5 bytes for buffer)

// X1- Value to print (in LO hword)

/1

// Outputs:

//

// Buffer pointed at by X0 receives the four-character

// conversion of the hword value in X1 to a hexadecimal string.

/1

// Preserves all registers
© proc htoStr

str x2, [sp, #-16]!
stp x0, lr, [sp, #-16]!

bl htobuf
// Restore registers and return:

ldp x0, 1r, [sp], #16
ldr x2, [sp], #16

ret

endp htoStr

// wtoStr

//

// Inputs:

//

// Xo- Pointer to buffer that will hold the result
// (must allocate at least 9 bytes for buffer)
// X1- Value to print (in LO word)

/1
// Outputs:

// Buffer pointed at by X0 receives the eight-character
// conversion of the word value in X1 to a hexadecimal string.
/1

// Preserves all registers

@ proc wtoStr
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str x2, [sp, #-16]!
stp x0, 1lr, [sp, #-16]!

bl wtobuf
// Restore registers and return:

1dp x0, lr, [sp], #16
1dr x2, [sp], #16
ret

endp wtoStr

// dtoStr

/!

// Inputs:

//

// Xo- Pointer to buffer that will hold the result
// (must allocate at least 17 bytes for buffer)
// X1- Value to print

//

// Outputs:

/!

// Buffer pointed at by X0 receives the 16-character
// conversion of the dword value in X1 to a hexadecimal string.

//
// Preserves all registers

@ proc dtoStr

str x2, [sp, #-16]!
stp x0, 1lr, [sp, #-16]!

bl dtobuf

// Restore registers and return:
1dp x0, lr, [sp], #16

ldr x2, [sp], #16

ret

endp dtoStr

// Utility functions to print bytes, hwords, words, and dwords:

pbStr: wastr  "Byte=%s\n"
proc pByte
locals pb

gword  pb.saveXoX1
byte pb.buffer, 32
byte pb.stkSpace, 64
endl pb

enter pb.size
stp X0, x1, [fp, #pb.saveXoX1]
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phStr:

pwStr:

mov
add
bl

lea
add
mstr
bl

ldp
leave
endp

wastr
proc

locals
qword
byte
byte
endl

enter
stp

mov
add
bl

lea
add
mstr
bl

ldp
leave
endp

wastr
proc

locals
qword
byte
byte
endl

enter
stp

mov
add
bl

X1, X0
x0, fp, #pb.buffer // lea x0, stkSpace
btoStr

X0, pbStr
x1, fp, #pb.buffer

x1, [sp]
printf

x0, x1, [fp, #pb.saveXoX1]
pByte
"Hword=%s\n"

pHword

ph

ph.saveXoX1
ph.buffer, 32
ph.stkSpace, 64

ph

ph.size
x0, x1, [fp, #ph.saveXoX1]

x1, x0
x0, fp, #ph.buffer // lea x0, stkSpace
htoStr

x0, phStr
x1, fp, #ph.buffer

x1, [sp]
printf

x0, x1, [fp, #ph.saveXoX1]
pHword
"Word=%s\n"

pWord

pw
pw.saveXoX1i
pw.buffer, 32
pw.stkSpace, 64

pw

pw.size
X0, x1, [fp, #pw.saveX0X1]

x1, X0
x0, fp, #pw.buffer // lea x0, stkSpace
wtoStr



lea X0, pwStr
add x1, fp, #pw.buffer
mstr x1, [sp]

bl printf
1dp X0, x1, [fp, #pw.saveX0X1]
leave
endp pWord
pdStr: wastr  "Dword=%s\n"

proc pDword

locals pd

gword  pd.saveXoX1
byte pd.buffer, 32
byte pd.stkSpace, 64
endl pd

enter pd.size
stp x0, x1, [fp, #pd.saveXoX1i]

mov x1, X0
add x0, fp, #pd.buffer // lea x0, stkSpace
bl dtoStr

lea X0, pdStr

add x1, fp, #pd.buffer
mstr x1, [sp]

bl printf

1dp X0, x1, [fp, #pd.saveXoX1]
leave
endp pDword

// Here is the asmMain function:

proc asmMain, public

// Local storage:

locals am

byte stackspace, 64

endl am

enter am.size // Create activation record.

ldr X0, =0x0123456789abcdef

bl pByte
bl pHword
bl pWord
bl pDword
leave
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ret

endp asmMain

As noted, I've pulled the dtobuf function out of this listing; insert that
code @. The btoStr function @ saves the X0, X2, and LR registers on the
stack (the registers that will be modified by calls to the *tobuf functions),
calls the btobuf function to write the two hex digits to the buffer pointed
at by X0, then restores the registers and returns. The code does largely the
same for htoStr @, wtoStr @, and dtoStr @, the only difference being the
conversion function they call.

Here’s the build command and sample output for the program in
Listing 9-4:

$ ./build Listing9-4

$ ./Listing9-4
Calling Listing9-4:
Byte=EF

Hword=CDEF
Word=89ABCDEF
Dword=0123456789ABCDEF
Listing9-4 terminated

As the assembly code appearing in this book calls C/C++ standard
library functions for I/O, these binary-to-hexadecimal-string functions will
all produce zero-terminated C-compatible strings. They are easy enough
to modify to produce other string formats, if need be. See Chapter 14 for
more on string functions.

9.1.2 Extended-Precision Hexadecimal Values to Strings

Extended-precision hexadecimal-to-string conversion is easy: it’s simply an
extension of the normal hexadecimal conversion routines from the previ-
ous section. For example, Listing 9-5 is a 128-bit hexadecimal conversion
function, qtoStr, which expects a pointer to a 128-bit value in X2:X1 and

a pointer to a buffer in X0. Listing9-5.S is largely based on Listing9-4.S; to
avoid redundancy, I've included just the gtoStr function here.

// Listing9-5.S

//

// qtoStr

//

// Inputs:

//

/] Xo- Pointer to buffer that will hold the result
// (must allocate at least 33 bytes for buffer)
// X2:X1- Value to print

//

// Outputs:

//



// Buffer pointed at by X0 receives the 32-character
// conversion of the dword value in X2:X1 to a hexadecimal string.

//
// Preserves all registers

proc qtoStr

str X2, [sp, #-16]!
stp x0, lr, [sp, #-16]!

str x1, [sp, #-16]! // Save for later.

mov x1, X2 // Convert HO dword first.
bl dtobuf

ldr x1, [sp], #16 // Restore X1 value.

bl dtobuf

// Restore registers and return:

1dp x0, lr, [sp], #16
1d4 x2, [sp], #16

ret

endp qtoStr

The function in Listing 9-5 calls dtobuf twice to convert the 128-bit
qword value to a string by converting first the HO dword, then the LO
dword, and concatenating their results. To extend this conversion to any
number of bytes, simply convert the HO bytes down to the LO bytes of the
large object.

9.1.3 Unsigned Decimal Valves to Strings

Decimal output is a little more complicated than hexadecimal output
because, unlike for hexadecimal values, the HO bits of a binary number
affect the LO digits of the decimal representation. Therefore, you must cre-
ate the decimal representation for a binary number by extracting one deci-
mal digit at a time from the number.

The most common solution for unsigned decimal output is to succes-
sively divide the value by 10 until the result becomes 0. The remainder after
the first division is a value in the range 0 to 9, which corresponds to the LO
digit of the decimal number. Successive divisions by 10 (and their corre-
sponding remainder) extract successive digits from the number.

Iterative solutions to this problem generally allocate storage for a
string of characters large enough to hold the entire number. The code then
extracts the decimal digits in a loop and places them in the string one by
one. At the end of the conversion process, the routine prints the characters
in the string in reverse order (remember, the divide algorithm extracts the
LO digits first and the HO digits last, the opposite of the way you need to
print them).

This section employs a recursive solution because it is a little more elegant.
This solution begins by dividing the value by 10 and saving the remainder
in a local variable. If the quotient is not 0, the routine recursively calls

Numeric Conversion 495



496

Chapter 9

itself to output any leading digits first. On return from the recursive call
(which outputs all the leading digits), the recursive algorithm outputs the
digit associated with the remainder to complete the operation. For exam-

ple, here’s how the operation works when printing the decimal value 789:

1.
2.

Divide 789 by 10. The quotient is 78, and the remainder is 9.

Save the remainder (9) in a local variable and recursively call the rou-
tine with the quotient.

. Recursive entry 1: divide 78 by 10. The quotient is 7, and the remain-

der is 8.

. Save the remainder (8) in a local variable and recursively call the rou-

tine with the quotient.

. Recursive entry 2: divide 7 by 10. The quotient is 0, and the remain-

deris 7.

. Save the remainder (7) in a local variable. Because the quotient is 0,

don’t call the routine recursively.

. Output the remainder value saved in the local variable (7). Return to

the caller (recursive entry 1).

. Return to recursive entry 1: output the remainder value saved in the

local variable in recursive entry 1 (8). Return to the caller (original
invocation of the procedure).

. Original invocation: output the remainder value saved in the local vari-

able in the original call (9). Return to the original caller of the output
routine.

Listing 9-6 provides an implementation of this recursive algorithm for

64-bit unsigned integers.

// Listing9-6.S

//
// u64atoBuf function
#include "aoaa.inc"
.section .rodata, ""
ttlStr: .asciz "Listing 9-6"
fmtStri: .asciz "Value(%1lu) = string(%s)\n"
.align 3
gwordVal:  .dword 0x1234567890abcdef
.dword Oxfedcba0987654321
.data
buffer: .space 256,0
.code
.extern printf

// Return program title to C++ program:



/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

//
/!
//
//
//
//
//
//
/!
//
//
//
//
//
//

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

u6b4ToStr
Converts a 64-bit unsigned integer to a string
Inputs:

Xo- Pointer to buffer to receive string

X1- Unsigned 64-bit integer to convert
Outputs:

Buffer- Receives the zero-terminated string
Buffer must have at least 21 bytes allocated for it.
This function preserves all registers.

® proc ub4ToStr
stp X0, x1, [sp, #-16]!
stp X2, x3, [sp, #-16]!
str 1r, [sp, #-16]!
bl u64ToBuf
ldr 1r, [sp], #16
1dp X2, x3, [sp], #16
1dp x0, x1, [sp], #16
ret
endp u64ToStr
u64ToBuf
Converts a 64-bit unsigned integer to a string
Inputs:

Xo- Pointer to buffer to receive string

X1- Unsigned 64-bit integer to convert
Outputs:

Xo0- Points at zero-terminating byte

Buffer- Receives the zero-terminated string
Buffer must have at least 21 bytes allocated for it.
Caller must preserve X0, X1, X2, and X3!

® proc u64ToBuf
cmp X1, xzr // See if X1 is o.
bne u64ToBufRec

// Special case for zero, just write
// "0" to the buffer. Leave X0 pointing
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// at the zero-terminating byte.

mov wil, #'0'
strh wl, [x0], #1 // Also emits zero byte
ret

endp u64ToBuf

// u64ToBufRec is the recursive version that handles
// nonzero values:

® proc u64ToBufRec
stp x2, lr, [sp, #-16]! // Preserve remainder.

// Divide X1 by 10 and save quotient and remainder:
A mov x2, #10

udiv x3, x1, x2 // X3 = quotient
msub X2, X3, X2, x1 // X2 = remainder

// Make recursive call if quotient is not o:

cmp X3, Xzr
beq allDone

© mov x1, x3 // Set up for call.
bl u64ToBufRec

// When this function has processed all the
// digits, write them to the buffer. Also
// write a zero-terminating byte, in case
// this is the last digit to output.

® allDone: orr w2, w2, #'0' // Convert to char.
strh w2, [x0], #1  // Bump pointer after store.
@ ldp x2, lr, [sp], #16
ret
endp u64ToBufRec

// Here is the "asmMain" function.

proc asmMain, public

enter 64 // Reserve space on stack.
// Test u64ToBuf:

mov x1, OXFFFF

movk x1, OXFFFF, 1sl #16

movk x1, OXFFFF, 1sl #32
movk x1, OXFFFF, 1sl #48

lea X0, buffer
bl u64ToStr
lea x2, buffer
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mstr x2, [sp, #8]

mov x1, OxFFFF

movk x1, OXFFFF, 1sl #16
movk x1, OXFFFF, 1sl #32
movk x1, OXFFFF, 1sl #48
mstr x1, [sp]

lea x0, fmtStri
bl printf
leave

ret

endp asmMain

The ub4toStr function @ is a facade that preserves the registers while
calling the u64ToBuf procedure. The u64ToBuf function @ handles the special
case when X1 contains 0 (the recursive code terminates when the result
is 0). If X1 is 0 upon entry, this code immediately writes a '0" character to
the output buffer, increments X0, and returns. If X1 is nonzero, it transfers
control to the recursive ub4toBufRec function @ to process the value. For
performance reasons, ué4ToBufRec preserves only X2 (which contains the
remainder value on recursive calls) and LR.

The recursive function computes the quotient and remainder @. The
quotient is left in X3, and the remainder is in X2. If the quotient was non-
zero, there are still more HO digits to process: copy the quotient into X1
and make the recursive call to u64toBufRec ®. On the return from the recur-
sive call @ (or if the recursive call was skipped), all HO digits have been
emitted to the buffer, so convert the current digit to a character and add
it to the end of the buffer. Note that the post-increment addressing mode
automatically increments X0 to point at the zero-terminated byte emitted
by the strh instruction. The code restores the value in X2 @, in the event
that this was a recursive call.

Here’s the build command and sample output for Listing 9-6:

$ ./build Listing9-6

$ ./Listing9-6

Calling Listing9-6:

Value(18446744073709551615) = string(18446744073709551615)
Listing9-6 terminated

Unlike hexadecimal output, there’s no need to provide a byte-size,
hword-size, or word-size numeric-to-decimal-string conversion function.
Simply zero-extending the smaller values to 64 bits is sufficient. Unlike the
hexadecimal conversions, no leading zeros are emitted by the u64toStr func-
tion, so the output is the same for all sizes of variables (64 bits and smaller).

This code has several opportunities for optimization. Since decimal-to-
string conversions are common (most program output uses this function)
and the algorithm is not as fast as hexadecimal conversion, optimizing this
code is probably worthwhile.

It’s easy enough to get rid of the recursion and do an iterative version
of u64toStr. This eliminates the need to preserve the registers and return
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address on multiple recursive calls (typically, one recursive call for each
digit converted) and having to build the activation record on each call.
Listing 9-7 takes this one step further, unraveling the loop (up to 20 itera-
tions, one for each possible digit).

// Listing9-7.S

/1

// ub4toStr function (nonrecursive, straight-line
// code version)

#include "aoaa.inc"
.section .rodata, ""

ttlStr: .asciz "Listing 9-7"

fmtStra: .asciz "low=%s, "

fmtStr2: .asciz "hi=%s\n"

loData: . dword 0, 1, 10, 100, 1000, 10000, 100000
.dword 1000000, 10000000, 100000000
.dword 1000000000, 10000000000, 100000000000
.dword 1000000000000, 10000000000000
.dword 100000000000000, 1000000000000000
.dword 10000000000000000, 100000000000000000
.dword 1000000000000000000, 10000000000000000000
.equ dataCnt, .-loData

hiData: .dword 9, 9, 99, 999, 9999, 99999, 999999
.dword 9999999, 99999999, 999999999
.dword 9999999999, 99999999999, 999999999999
.dword 9999999999999, 99999999999999
.dword 999999999999999, 9999999999999999
.dword 99999999999999999, 999999999999999999
.dword 9999999999999999999
.dword -1
.data

buffer: .space 256, 0
.code
.extern printf

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// u64ToBuf

/1

// Converts a 64-bit unsigned integer to a string

//

//  Inputs:

// Xo- Pointer to buffer to receive string
// X1- Unsigned 64-bit integer to convert
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// Outputs:

// Buffer- Receives the zero-terminated string

// Xo- Points at zero-terminating byte in string
//

// Buffer must have at least 21 bytes allocated for it.
// Note: Caller is responsible for preserving Xo-X7!

® proc

® mov
mov
mov
mov

u64ToBuf

x4,
X5,
X6,
X7,

#10
XZr
XzZr
XZr

// Handle the LO digit here:

© udiv
msub
orr
orr
cmp
beq

// Handle the 10's digit here:

O udiv
msub
orr
orr
cmp
beq

X2,
X3,
X3,
X5,
X2,

allDone1

x1,
X3,
X3,
X5,
x1,

allDone2

x1,
X2,
X3,
X3,
#0

X2,
X1,
X3,
X3,
#0

x4 /] X2
x4, x1 [/ X3
#'0'

x5, 1sl #8

X4 /] X1
x4, x2 /] X3
#'0'

x5, 1sl #8

// Handle the 100's digit here:

udiv
msub
orr
orr
cmp
beq

// Handle the 1000's digit here:

udiv
msub
orr
orr
cmp
beq

X2,
X3,
X3,
X5,
X2,

allDone3

x1,
X3,
X3,
X5,
x1,

allDone4

x1,
X2,
X3,
X3,
#0

X2,
x1,
X3,
X3,
#o

x4 /] X2
x4, x1 // X3
#'0'

x5, 1s1 #8

X4 /] X1
X4, X2 // X3
#'0'

x5, 1sl #8

quotient
remainder

quotient
remainder

quotient
remainder

quotient
remainder

// Handle the 10,000's digit here:

udiv
msub

X2, X1, x4 /] X2
x3, X2, x4, x1 // X3

quotient
remainder

Numeric Conversion

501



502

Chapter @

orr x3, x3, #'0'
orr X5, x3, x5, lsl #8

cmp X2,

#0

beq allDones

// Handle the 100,000's digit

udiv x1,
msub X3,
orr X3,
orr X5,
cmp X1,

X2,
x1,
X3,
X3,
#o

x4 /] X1
x4, x2 // X3
#'0'

x5, 1s1 #8

beq allDone6

here:

// Handle the 1,000,000's digit

udiv X2,
msub X3,
orr X6,
cmp X2,

x1,
X2,
X3,
#0

x4 /] X2
x4, x1 // X3
#'0'

beq allDone7

quotient
remainder

here:

quotient
remainder

// Handle the 10,000,000's digit here:

udiv X1,
msub X3,
orr X3,
orr X6,
cmp X1,

X2,
X1,
X3,
X3,
#o

x4 // X1
x4, x2 // X3
#'0'

X6, 1sl #8

beq allDone8

quotient
remainder

// Handle the 100,000,000's digit here:

udiv X2,
msub X3,
orr X3,
orr X6,
cmp X2,

beq allDone9

X1,
X2,
X3,
X3,
#

x4 /] X2
x4, x1 [/ X3
#'0'

X6, 1sl #8

// Handle the 1,000,000,000's
udiv x1, X2, x4 // X1
msub x3, x1, x4, x2 // X3
orr X3, X3, #'0'

orr x6, X3, x6, 1lsl #8
cmp x1, #0

beq allDone10

quotient
remainder

digit here:

quotient
remainder

// Handle the 10,000,000,000's digit here:

udiv. x2, x1, x4 /] X2
msub X3, x2, x4, x1 // X3

quotient
remainder



orr X3, x3, #'0'

orr X6, x3, x6, 1sl #8
cmp X2, #0

beq allDone11

// Handle the 100,000,000,000's digit here:

udiv  x1, x2, x4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr x6, x3, x6, 1lsl #8

cmp x1, #0

beq allDone12

// Handle the 1,000,000,000,000's digit here:

udiv X2, x1, x4 // X2 = quotient
msub x3, X2, x4, x1 // X3 = remainder
orr X3, x3, #'0'

orr X6, x3, x6, 1sl #8

cmp X2, #0

beq allDone13

// Handle the 10,000,000,000,000's digit here:

udiv x1, X2, x4 // X1 = quotient
msub X3, X1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr X6, x3, x6, 1sl #8

cmp x1, #0

beq allDone14

// Handle the 100,000,000,000,000's digit here:

udiv X2, X1, x4 // X2 = quotient
msub X3, X2, x4, x1 // X3 = remainder
orr X7, X3, #'0'

orr x6, x3, x6, 1lsl #8

cmp X2, #0

beq allDone15

// Handle the 1,000,000,000,000,000's digit here:

udiv X1, X2, X4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr X7, X3, x7, 1lsl #8

cmp x1, #0

beq allDone16
// Handle the 10,000,000,000,000,000's digit here:

udiv X2, X1, x4 // X2 = quotient
msub x3, X2, x4, x1 // X3 = remainder
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orr x3, x3, #'0'

orr X7, X3, x7, 1lsl #8
cmp X2, #0

beq allDone17

// Handle the 100,000,000,000,000,000's digit here:

udiv x1, X2, x4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr X7, X3, X7, 1lsl #8

cmp x1, #0

beq allDone18

// Handle the 1,000,000,000,000,000,000's digit here:

udiv X2, x1, x4 // X2 = quotient
msub X3, X2, x4, x1 // X3 = remainder
orr x3, x3, #'0'
orr X7, X3, X7, 1sl #8
cmp X2, #0
beq allDone19

© udiv x1, X2, x4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr X7, X3, X7, 1lsl #8

allDone20: str x7, [x0], #6
str x6, [x0], #8
str x5, [x0], #7
ret

// When this function has processed all the
// digits, write them to the buffer. Also
// write a zero-terminating byte, in case
// this is the last digit to output.

® allDonel: strh w5, [x0], #1
ret

allDone2: strh w5, [x0], #2
strb wzr, [x0]
ret

allDone3: str w5, [x0], #3
ret

allDone4: str w5, [x0], #4
strb wzr, [x0]

ret

allDone5: str x5, [x0], #4
1sr x5, x5, #32
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allDone6:

allDone7:

allDone8:

allDone9:

allDone10:

allDone11:

allDone12:

allDone13:

allDone14:

allDone15:

allDone16:

strh
ret

str
Isr
strh
strb
ret

strb
str
ret

strh
str
ret

str
str
ret

str
str
ret

str
str
ret

str
str
ret

str
str
ret

str
str
ret

strb
str
str
ret

strh
str

wb,
x5,

wb,
x5,

wb,
X5,

wb,
x5,

X6,
x5,

X6,
X5,

X6,
X5,

X6,
x5,

W7,
X6,
X5,

w7,
X6,

[x0],
[xo],

[x0],
[x0],

[x0],
[xo],

[x0],
[x0],
[x0],

#3
#7

#a
#7

#7
#7

#2
#8

// Writes an extra garbage byte
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str x5, [x0], #7
ret

allDone17:
str w7, [x0], #3
str x6, [x0], #8
str x5, [x0], #7
ret

allDone18:
str w7, [x0], #4
str X6, [x0], #8
str x5, [x0], #7
ret

allDone19:
str x7, [x0], #5
str x6, [x0], #8
str x5, [x0], #7
ret
endp u64ToBuf

// ub4ToStr
//

// Version of ub4ToBuf that preserves the registers

© proc ub4ToStr
stp X0, x1, [sp, #-16]! // Preserve registers.
stp X2, X3, [sp, #-16]!
stp x4, x5, [sp, #-16]!
stp x6, X7, [sp, #-16]!
str 1r, [sp, #-16]!
bl ub4ToBuf
ldr 1r, [sp], #16
1dp x6, X7, [sp], #16 // Restore registers.
1dp x4, x5, [sp], #16
1dp x2, x3, [sp], #16
ldp x0, x1, [sp], #16
ret
endp u64ToStr

// Here is the asmMain function:
proc asmMain, public
locals am
gword  am.x20_x21
dword  am.x22
byte stk, 64

endl am

enter am.size // Create act rec.
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// Preserve nonvolatile registers:

stp X20, x21, [fp, #am.x20 x21]
str x22, [fp, #am.x22]

lea x20, loData
lea x21, hiData
mov X22, Xzr
loop:
lea X0, buffer
ldr x1, [x20, x22, 1sl #3]
bl u64ToStr

lea x0, fmtStri

lea x1, buffer

mstr x1, [sp]

bl printf

lea x0, buffer

ldr x1, [x21, x22, 1sl #3]
bl ub4ToStr

lea x0, fmtStr2

lea x1, buffer

mstr x1, [sp]

bl printf

add X22, x22, #1

cmp x22, #(dataCnt / 8)
blo loop

ldr x22, [fp, #am.x22]
1dp x20, x21, [fp, #am.x20 x21]

leave
endp asmMain

The u64ToBuf function @ is a variant of u64ToStr that doesn’t preserve
any registers. It stomps on X0 through X7, and the caller is responsible for
saving any registers it needs preserved.

This function initializes X4 with the constant 10 @, because each digit
conversion will divide and multiply by this constant, which must be in a
register. Reserving X4 for this constant spares the code from having to
reload the constant all the time. This code zeros out X5, X6, and X7, which
will hold the characters of the converted string; this also initializes the
zero-terminating byte (which can be in various locations in these registers,
depending on the number of output digits).

The function converts the binary number to a string of digits by using
the same basic “divide and remainder” algorithm as did the program in
Listing 9-6 ®. The function divides the value by 10; the remainder is a
value in the range 0 to 9 that the function converts to the corresponding
ASCII character. The code shifts the converted digit into its final output
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position in the X5, X6, or X7 register. Digits 1 through 6, the HO digits,
wind up in X5; digits 7 through 14 in X6; and digits 15 through 20 in X7.
Zero bytes fill in all the unused digit positions. For example, if the number
has only three digits, X6 and X7 will contain 0, and bits 24 through 63 in
X5 will all contain 0.

A separate sequence of divide/remainder instructions is used for each
possible output digit in the conversion (hence the name expanded/straight-
line code) @. The sequence is roughly the same for each digit conversion,
though two variants alternate between the value in X1 and X2, as the
quotient from the division becomes the value to divide in the next step.
Whenever the quotient becomes 0, the conversion is complete, and control
transfers to a different location to write the converted digits to the buffer.
Only a single branch in the function will be taken, as these branches fall
through to the next instruction sequence until the conversion is complete.
Additionally, these digit conversion sequences may place the converted digit
into a different output register based on the digit’s final position.

If the code falls all the way through to digit 20, there is no test for a
0 result; the quotient will always be 0 at that point, so the function simply
stores away the digits into the buffer and returns ©.

If the number has six digits or fewer, the function writes the characters
in X5 to the buffer @. X5 will always contain the LO digits of the number.
By placing a maximum of six characters in X5, the HO 2 bytes of X5 will
always be 0 (and provide the zero-terminating byte for larger strings). For
numbers with fewer than six digits, the code must explicitly write a zero-
terminating byte to the buffer. For values with 7 to 14 digits, the function
writes out registers X6 and X5 (in that order) to the buffer @. X5 provides
the zero-terminating byte, so the code doesn’t need to explicitly write any
0 bytes. For values with 15 or more digits, the code writes out the data in
registers X7, X6, and X5 (X5 provides the zero-terminating byte) ©.

The actual u64ToStr function @ is a short facade that preserves all the
register values across a call to u64ToBuf. By breaking u64ToStr into these two
functions, it is possible to call u64ToBuf directly if you want to leave X0 point-
ing at the end of the string (though you must preserve X1 through X7 if
necessary). Also, putting the register preservation code in u64ToStr allows
the u64ToBuf code to avoid restoring registers before all the ret instructions
(or avoid yet another branch to code that handles restoring the registers).

Here’s the build command and sample output from Listing 9-7:

$ ./build Listing9-7
$ time ./Listing9-7
Calling Listing9-7:
low=0, hi=9

low=1, hi=9

low=10, hi=99
low=100, hi=999
low=1000, hi=9999
low=1000, hi=9999
low=100000, hi=999999
1low=1000000, hi=9999999



1ow=10000000, hi=99999999

1ow=100000000, hi=999999999

1ow=1000000000, hi=9999999999

1ow=10000000000, hi=99999999999
1ow=100000000000, hi=999999999999
1ow=1000000000000, hi=9999999999999
1ow=10000000000000, hi=99999999999999
1ow=100000000000000, hi=999999999999999
1ow=1000000000000000, hi=9999999999999999
1ow=10000000000000000, hi=99999999999999999
1ow=100000000000000000, hi=999999999999999999
1ow=1000000000000000000, hi1=9999999999999999999
1ow=10000000000000000000, hi=18446744073709551615
Listing9-7 terminated

I modified both versions of u64toStr in order to time their execution.
For the recursive version, I got the following timing on my Mac mini:

Listing9-7a 404.58s user 0.42s system 99% cpu 6:46.25 total

For the straight-line code, the runtime was as follows:

Listing9-7a 173.60s user 0.15s system 99% cpu 2:53.78 total

The latter code ran about 2.3 times faster than the recursive version, a big win.
I also created a version of u64ToStr that first counted the number of out-
put digits (using a binary search), then branched to the appropriate code
to convert exactly that many digits. Alas, the code ran slightly slower than
Listing 9-7. I also tried a variant that emitted the HO digits first (dividing by
le+19, the successively lower values by 10). It was a little faster than the digit
count version, and a little slower than Listing 9-7. I've included the source
code for both experiments in the online files for your perusal.

9.1.4 Signed Integer Values to Strings

To convert a signed integer value to a string, first check whether the num-
ber is negative. If it is, emit a hyphen (-) character and negate the value,
then call the u64toStr function to finish the job. Listing 9-8 shows the rel-
evant code.

// Listing9-8.S
Code taken from Listing 9-7 goes here.

// 164ToStr

//

// Converts a signed 64-bit integer to a string
// If the number is negative, this function will

// print a '-' character followed by the conversion
// of the absolute value of the number.
//
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// Inputs:

/1
// X0- Pointer to buffer to hold the result.
// Buffer should be capable of receiving
// as many as 22 bytes (including zero-
// terminating byte).
// X1- Signed 64-bit integer to convert
//
// Outputs:
/1
// Buffer- Contains the converted string
proc i64ToStr
locals 1i64
dword  1i64.x0
byte i64.stk, 32
endl i64
enter i64.size
// Need to preserve X1 in
// case this code negates it.
str x1, [fp, #i64.x0]
cmp x1, #0
bpl isPositive
mov wl, #'-' // Emit '-'
strb wl, [x0], #1
// Negate X0 and convert
// unsigned value to integer:
ldr x1, [fp, #i64.x0]
neg x1, x1
isPositive: bl ub4ToStr
ldr x1, [fp, #i64.x0]
leave

endp i64ToStr

Code taken from Listing 9-7 goes here.

Listing 9-8 shows only the i64ToStr function (the rest of the program is
taken from Listing 9-7). The full source code is available online.

9.1.5 Extended-Precision Unsigned Integers to Strings

The only operation in the entire string-conversion algorithm that requires
extended-precision arithmetic is the divide-by-10 operation. Listing 9-9
implements a 128-bit decimal output routine utilizing this technique.



I modified the divi28 algorithm from Chapter 8 to do an explicit divide-
by-10 operation (speeding divi28 up a little) and modified the recursive con-
version routine from Listing 9-6 to perform the conversion.

// Listing9-9.S
//
// u128toStr function

#include

.section
tt1Str: .asciz
fmtStr1: .asciz

qdata: .quord
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
.qword
qcnt =

"aoaa.inc"
.rodata, ""

"Listing 9-9"
"Value = %s\n"

1

21

302

4003

50004

600005

7000006

80000007

900000008

1000000009

11000000010

120000000011

1300000000012

14000000000013

150000000000014

1600000000000015

17000000000000016

180000000000000017
1900000000000000018
20000000000000000019
210000000000000000020
2200000000000000000021
23000000000000000000022
240000000000000000000023
2500000000000000000000024
26000000000000000000000025
270000000000000000000000026
2800000000000000000000000027
29000000000000000000000000028
300000000000000000000000000029
3100000000000000000000000000030
32000000000000000000000000000031
330000000000000000000000000000032
3400000000000000000000000000000033
35000000000000000000000000000000034
360000000000000000000000000000000035
3700000000000000000000000000000000036
38000000000000000000000000000000000037
300000000000000000000000000000000000038
340282366920938463463374607431768211455
(.-qdata)/16
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.data

buffer: .space 256,0
.code
.extern printf

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

// divio

/1

// This procedure does a general 128-bit / 10 division operation
// using the following algorithm (assume all variables except
// Remainder are 128-bit objects; Remainder is 64 bits):

//

// Quotient := Dividend;

// Remainder := 0;

// for i := 1 to NumberBits do

//

// Remainder:Quotient := Remainder:Quotient SHL 1;

// if Remainder >= 10 then

//

// Remainder := Remainder - 10;
// Quotient := Quotient + 1;
//

// endif

// endfor

/!

// Data passed:

//

// 128-bit dividend in X6:X5

//

// Data returned:

//

// 128-bit quotient in X6:X5
// 64-bit remainder in X4
/!

// Modifies X1

® proc div10
#define remainder x4
#define dividendL x5
#define dividendH x6
#define quotientL dividendL
#define quotientH dividendH

// Initialize remainder with 0:

mov remainder, #0

512 Chapter 9



// Copy the dividend to local storage:
mov wl, #128 // Count off bits in Wo.
// Compute Remainder:Quotient := Remainder:Quotient LSL 1

/1

// Note: adds x, x, x is equivalent to 1sl x, x, #1

// adcs x, x, x is equivalent to rol x, x, #1
// (if rol existed)
//

// The following four instructions perform a 256-bit

// extended-precision shift (left) dividend through

// remainder.

repeatlp:  adds dividendlL, dividendlL, dividendL
adcs dividendH, dividendH, dividendH
adc remainder, remainder, remainder

// Do a comparison to see if the remainder
// is greater than or equal to 10:

cmp remainder, #10
blo notGE

// Remainder := Remainder - Divisor
isGE: sub remainder, remainder, #10
// Quotient := Quotient + 1

adds quotientl, quotientl, #1
adc quotientH, quotientH, xzr

// Repeat for 128 bits:

notGE: subs wl, wi, #1
bne repeatlp

ret // Return to caller.
endp divio

// u128toStr:

//

// Converts a 128-bit unsigned integer to a string

//

//  Inputs:

// Xo- Pointer to buffer to receive string

// X1- Points at the unsigned 128-bit integer to convert
//

// Outputs:

// Buffer- Receives the zero-terminated string

//

// Buffer must have at least 40 bytes allocated for it.
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® proc u128toStr
stp X0, x1, [sp, #-16]!
stp x4, x5, [sp, #-16]!
stp x6, 1lr, [sp, #-16]!

1dp X5, x6, [x1] // Test value for o.
orr x4, X5, X6

cmp x4, Xzr /] 7 =1 1if X6:X5 is o.
bne doRec128

// Special case for zero, just write
// "0" to the buffer

mov w4, #'0'
strb w4, [x0], #1
b.al allDone2
doRec128: bl u128toStrRec // X6:X5 contain value.
// Restore registers:
allDone2: strb wzr, [x0] // Zero-terminating byte
ldp x6, lr, [sp], #16
1dp x4, X5, [sp], #16
1dp x0, x1, [sp], #16
ret

endp u128toStr

// u128toStrRec is the recursive version that handles
// nonzero values.
//

// Value to convert is passed in X6:X5.

© proc u128toStrRec
stp x4, 1r, [sp, #-16]!

// Convert LO digit to a character:

bl divio // Quotient -> X6:X5, Rem -> W4
// Make recursive call if quotient is not 0:

orr 1r, x5, x6 // Use LR as a temporary.

cmp 1r, #0

beq allDone

// New value is quotient (X6:X5) from above:

bl u128toStrRec

// When this function has processed all the
// digits, write them to the buffer:

allDone: orr w4, w4, #'0' // Convert to char.
strb w4, [x0], #1 // Bump pointer after store.
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// Restore state and return:
1dp x4, lr, [sp], #16 // Restore prev char.
ret
endp u128toStrRec
// Here is the asmMain function.
proc asmMain, public
locals am
dword  am.x2021
byte stk, 64
endl am
enter am.size // Reserve space on stack.

stp x20, x21, [fp, #Ham.x2021]

lea x20, qdata

mov x21, #qcnt
loop: mov x1, x20
lea X0, buffer
bl u128toStr
lea x1, buffer

mstr x1, [sp]
lea X0, fmtStra

bl printf

add x20, x20, #16 // Next value to convert
subs x21, x21, #1

bne loop

1dp X20, x21, [fp, #am.x2021]

leave

ret

endp asmMain

The code includes an optimized version of the 128-bit division function
that divides a number by 10 @. This is followed by the nonrecursive entry
point for u128toStr, which handles 0 as a special case and calls the recursive
version for all other values @, and the recursive code for u128toStr ©. As
these functions are nearly identical to the recursive 64-bit string output
functions, refer to that code (in Listing 9-6) for more details.

One issue with the u128toStr function is that it is much slower than
the other numeric-to-string functions. This is all due to the performance
of the divio subroutine. Because the 128-bit divide-by-10 algorithm is so
slow, I won’t bother improving the performance of the u128toStr conversion
function. Unless you can come up with a very high-performance divio sub-
routine (perhaps using multiplication by a reciprocal; see section 9.6, “For
More Information,” on page 603), trying to optimize u128toStr is probably
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a waste of time. Fortunately, this function likely won’t be called often, so its
performance won’t matter much.
Here’s the build command and sample output from Listing 9-9:

$ ./build Listing9-9
$ ./Listing9-9
Calling Listing9-9:

Value = 1
Value = 21
Value = 302
Value = 4003

Value = 50004

Value = 600005

Value = 7000006

Value = 80000007

Value = 900000008

Value = 1000000009

Value = 11000000010

Value = 120000000011

Value = 1300000000012

Value = 14000000000013

Value = 150000000000014

Value = 1600000000000015

Value = 17000000000000016

Value = 180000000000000017

Value = 1900000000000000018

Value = 20000000000000000019

Value = 210000000000000000020

Value = 2200000000000000000021

Value = 23000000000000000000022

Value = 240000000000000000000023

Value = 2500000000000000000000024

Value = 26000000000000000000000025

Value = 270000000000000000000000026

Value = 2800000000000000000000000027

Value = 29000000000000000000000000028

Value = 300000000000000000000000000029

Value = 3100000000000000000000000000030

Value = 32000000000000000000000000000031
Value = 330000000000000000000000000000032
Value = 3400000000000000000000000000000033
Value = 35000000000000000000000000000000034
Value = 360000000000000000000000000000000035
Value = 3700000000000000000000000000000000036
Value = 38000000000000000000000000000000000037
Value = 300000000000000000000000000000000000038
Value = 340282366920938463463374607431768211455
Listing9-9 terminated

I will leave it to you to create a 128-bit signed-integer conversion func-
tion, since the code is almost identical to i64toStr (see Listing 9-8); you just
have to supply 128-bit negation and comparison operations. As a hint, for
the comparison, just check the HO dword to see if the sign bit is set.
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9.1.6 Formatted Conversions

The code in the previous sections converted signed and unsigned integers
to strings by using the minimum number of necessary character positions.
To create nicely formatted tables of values, you will need to write functions
that provide appropriate padding in front of the string of digits before actu-
ally emitting the digits. Once you have the “unformatted” versions of these
routines, implementing the formatted versions is easy.

The first step is to write iSize and uSize routines that compute the
minimum number of character positions needed to display the value. One
algorithm to accomplish this is similar to the numeric string conversion
routines. The only difference is that you initialize a counter to 0 upon entry
into the routine and increment this counter rather than outputting a digit
on each recursive call. (Don’t forget to increment the counter inside iSize
if the number is negative; you must allow for the output of the minus sign.)
After the calculation is complete, these routines should return the size of
the operand in the X0 register.

However, thanks to its use of recursion and division, such a conversion
scheme is slow. A brute-force conversion using a binary search is shown in
Listing 9-10.

// Listing9-10.S

//

// u64Size function: Computes the size
// of an unsigned 64-bit integer (in
// print positions)

#include "aoaa.inc"
.section .rodata, ""
ttlStr: .asciz "Listing 9-10"
fmtStr: .asciz "Value = %11lu, size=%d\n"

// Values to test the u64Size function:

dvals: .dword 1
.dword 10
.dword 100
.dword 1000
.dword 10000
.dword 100000
.dword 1000000
.dword 10000000
.dword 100000000
.dword 1000000000
.dword 10000000000
.dword 100000000000
.dword 1000000000000
.dword 10000000000000
.dword 100000000000000
.dword 1000000000000000
.dword 10000000000000000
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.dword 100000000000000000

.dword 1000000000000000000

.dword 10000000000000000000
dCnt = (.-dvals) / 8

.code

.extern printf

// Return program title to C++ program:

proc getTitle, public
lea X0, ttlStr

ret

endp getTitle

// ub4Size

/1

//  Counts the number of output positions
// required for an integer-to-decimal-
// string conversion

/1

// Uses a binary search to quickly

// count the digits required by a value

//

// Input:

// X1- Unsigned integer to count
//

// Output:

// X1- Digit count

//

// Table of digit counts and values:
//

// 11

/] 2: 10

// 3: 100

//  4: 1,000

//  5: 10,000

//  6: 100,000

//  7: 1,000,000

//  8: 10,000,000

//  9: 100,000,000

// 10: 1,000,000,000

// 11: 10,000,000,000

// 12: 100,000,000,000

// 13: 1,000,000,000,000

// 14: 10,000,000,000,000

// 15: 100,000,000,000,000

// 16: 1,000,000,000,000,000

// 17: 10,000,000,000,000,000

// 18: 100,000,000,000,000,000
// 19: 1,000,000,000,000,000,000
// 20: 10,000,000,000,000,000,000

® proc u64Size
stp X0, x2, [sp, #-16]!
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® mov
ldr
cmp
bhs

ldr
cmp
bhs

// Must

mov
cmp
cinc
cmp
cinc
cmp
cinc
1dp
ret

X2, x1

x0, =1000000000 // 10: 1,000,000,000
X2, x0

ge10

X0, =10000
X2, x0
ges

be 1 to 4 digits here:

x1, #1

X2, #1000

x1, x1, hs

x2, #100

x1, x1, hs

X2, #10

x1, x1, hs

X0, x2, [sp], #16

// Must be 5 to 9 digits here:

ges: ldr
cmp
bhs

// Must

mov
ldr
cmp
cinc
1dp
ret

x0, =1000000  // 7: 1,000,000
X2, X0
ge7

be 5 or 6 digits:

x1, #5

X0, =100000 // 6: 100,000
X2, X0

x1, x1, hs

X0, x2, [sp], #16

// Must be 7 to 9 digits here:

ge7: mov
ldr
cmp
cinc
ldr
cmp
cinc
ldp
ret

x1, #7

x0, =10000000 // 8: 10,000,000
X2, X0

x1, x1, hs

X0, =100000000 // 9: 100,000,000
X2, X0

x1, x1, hs

X0, x2, [sp], #16

// Handle 10 or more digits here:

gel0: ldr
cmp
bhs

X0, =100000000000000  // 15: 100,000,000,000,000
X2, X0
ge15
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// 13 or 14

gei3:

// 15 to 20

ge1s:

// 18 to 20

ge18:

// 10 to 14 digits here:

ldr
cmp
bhs

x0,
X2,

ge13

=1000000000000 // 13: 1,000,000,000,000
X0

// 10 to 12 digits here:

mov
ldr
cmp
cinc
ldr
cmp
cinc
ldp
ret

digits here:

mov
ldr
cmp
cinc
ldp
ret

digits here:

ldr
cmp
bhs

x1,
X0,
X2,
X1,
X0,
X2,
x1,
X0,

X1,
X0,
X2,
X1,
X0,

X0,
X2,

ge18

#10

=10000000000 // 11: 10,000,000,000
X0

x1, hs

=100000000000 // 12: 100,000,000,000
X0

x1, hs

x2, [sp], #16

#13

=10000000000000 // 14: 10,000,000,000,000
X0

x1, hs

x2, [sp], #16

=100000000000000000 // 18: 100,000,000,000,000,000
X0

// 15, 16, or 17 digits here:

mov
ldr
cmp
cinc
ldr
cmp
cinc
ldp
ret

digits here:

mov
ldr
cmp
cinc
ldr
cmp
cinc

X1,
X0,
X2,
X1,
X0,
X2,
X1,
X0,

x1,
X0,
X2,
x1,
X0,
X2,
x1,

#15

=1000000000000000 // 16: 1,000,000,000,000,000
X0

x1, hs

=10000000000000000 // 17: 10,000,000,000,000,000
X0

x1, hs

x2, [sp], #16

#18

=1000000000000000000 // 19: 1,000,000,000,000,000,000
X0

x1, hs

=10000000000000000000 // 20 digits

X0

x1, hs



ldp X0, x2, [sp], #16
ret
endp u64Size

The actual u64Size function @ uses a binary search algorithm to quickly
scan through all the possible values to determine the digit count. It begins
by dividing the search space in half, by comparing the input value (moved
to X2) against a 10-digit value @. In the usual binary search fashion, the two
sections of code will test for numbers with 1 to 9 digits and 10 to 20 digits.
In each of those ranges, the search is (roughly) broken into halves again
and again until the algorithm zeros in on the exact number of digits. When
the code gets down to 2 to 4 digits, it uses some straight-line code and a
series of cinc instructions to rapidly handle the last few cases without exe-
cuting a branch ©.

Here’s the build command and sample output:

$ ./build Listing9-10

$ ./Listing9-10

Calling Listing9-10:

Value = 1, size=1

Value = 10, size=2

Value = 100, size=3

Value = 1000, size=4

Value = 10000, size=5

Value = 100000, size=6

Value = 1000000, size=7

Value = 10000000, size=8

Value = 100000000, size=9

Value = 1000000000, size=10

Value = 10000000000, size=11

Value = 100000000000, size=12

Value = 1000000000000, size=13
Value = 10000000000000, size=14
Value = 100000000000000, size=15
Value = 1000000000000000, size=16
Value = 10000000000000000, size=17
Value = 100000000000000000, size=18
Value = 1000000000000000000, size=19
Value = 10000000000000000000, size=20
Listing9-10 terminated

For signed integers, add the function in Listing 9-11 to the code in
Listing 9-10 (find a full Listing 9-11 in the book’s downloadable code files at
hitps://artofarm.randalllyde.com).

// Listing9-11.S

/1

// i64Size:

//

// Computes the number of character positions that
// the i64toStr function will emit
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proc i64Size
str 1r, [sp, #-16]!

cmp x1, #0 // If less than zero,
bge isPositive // negate and treat
// like an unsé64.

neg x1, x1
bl ub4Size
add x1, x1, #1 // Adjust for "-".
ldr 1r, [sp], #16
ret

isPositive: bl ub4Size
ldr 1r, [sp], #16
ret

endp i64Size

For extended-precision size operations, the binary search approach
quickly becomes unwieldy (64 bits is bad enough). The best solution is to
divide your extended-precision value by a power of 10 (say, le+16). This will
reduce the size of the number by 16 digits. Repeat this process as long as
the quotient is greater than 64 bits, keeping track of the number of times
you’ve divided the number by le+16. When the quotient fits into 64 bits
(19 or 20 digits), call the 64-bit u64Size function and add in the number of
digits you eliminated with the division operation (16 for each division by
le+16). I'll leave this implementation to you.

Once you have the 164Size and u64Size routines, writing the formatted
output routines u64toStrSize or i64toStrSize is easy. On initial entry, these rou-
tines call the corresponding i64Size/u64Size routine to determine the number
of character positions for the number. If the value that the 1645ize/u64Size
routine returns is greater than or equal to the value of the minimum size
parameter (passed into ub4toStrSize or i64toStrSize), no other formatting is
necessary. If the value of the parameter size is greater than the value i64Size/
u64Size returns, the program must compute the difference between these
two values and emit that many spaces (or other filler characters) to the out-
put string before the numeric conversion (assuming rightjustification of the
value, which is what this chapter presents).

Listing 9-12 shows the utoStrSize/itoStrSize functions (full source code
appears online); here, I omit everything but the utoStrSize/itoStrSize func-
tions themselves.

// Listing9-12.S (partial)

/1

// ub4ToSizeStr

/1

// Converts an unsigned 64-bit integer to
// a character string, using a minimum field
// width

//



//  Inputs:

// X0- Pointer to buffer to receive string
//

// X1- Unsigned 64-bit integer to convert
// to a string

/!

// X2- Minimum field width for the string
// (maximum value is 1,024). Note: if
// the minimum field width value is less
// than the actual output size of the
// integer, this function will ignore
// the value in X2 and use the correct
// number of output positions for the
// value.

//

// Outputs:

//

// Buffer- Receives converted characters.
// Buffer must be at least 22 bytes
// or X1 + 1 bytes long.

® proc ub4ToStrSize
stp x0, 1lr, [sp, #-16]!
stp X1, x2, [sp, #-16]!
stp X23, X24, [sp, #-16]!
stp X25, x26, [sp, #-16]!

// Initialize x25 and x26 with
// appropriate functions to call:

lea X25, u64Size
lea X26, ub4ToStr

b.al toSizeStr
endp u64ToStrSize

LTI 0000007111111100111111111117711111
//

// 164ToStrSize:

//

// Just like ub4ToStrSize, but handles signed integers
//

// Inputs:

// X0- Pointer to buffer to receive string
//

// X1- Signed 64-bit integer to convert

// to a string

//

// X2- Minimum field width for the string
// (maximum value is 1,024). Note: if
// the minimum field width value is less
// than the actual output size of the
// integer, this function will ignore
// the value in X2 and use the correct
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/! number of output positions for the

/! value.

/!

// Note: Don't forget that if the number
// is negative, the '-' consumes

// an output position.

//

// Outputs:

// Buffer- Receives converted character.

// Buffer must be at least 22 bytes
// or X2 + 1 bytes long.

® proc i164ToStrSize
stp x0, lr, [sp, #-16]!
stp x1, x2, [sp, #-16]!
stp X23, x24, [sp, #-16]!
stp X25, x26, [sp, #-16]!

// Initialize x25 and x26 with
// appropriate functions to call:

lea x25, i64Size
lea X26, i64ToStr

b.al  toSizeStr // Technically, this could just fall through.
endp i64ToStrSize

I1101171771117717711117171171711111117111111111111111111
//
// toSizeStr:

/1
// Special function to handle signed and
// unsigned conversions for u64ToSize and 164ToSize

©® proc toSizeStr

mov x24, x1 // Save for now.
O blr x25 // Compute size of number.

// Compute difference between actual size
// and desired size. Set to the larger of
// the two:

O cmp X2, x1
csel x23, x2, x1, ge

// Just as a precaution, limit the
// size to 1,024 characters (including
// the zero-terminating byte):

mov x2, #1023 // Don't count 0 byte here.

cmp X23, X2
csel X23, x23, x2, 1s
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// Compute the number of spaces to emit before
// the first digit of the number:

subs X23, x23, x1
beq spacesDone

// Emit that many spaces to the buffer:

® mov x1, #0x2020

movk x1, #0x2020, 1sl #16
movk  x1, #0x2020, 1sl #32
movk x1, #0x2020, 1sl #48
b.al tst8

// Handle sequences of eight spaces:

wh18: str x1, [x0], #8
sub x23, Xx23, #8
tst8: cmp X23, #8
bge wh18
// If four to seven spaces, emit four
// spaces here:
cmp X23, #4
blt try2
str wl, [x0], #4
sub x23, x23, #4
// If two or three spaces, emit two
// here:
try2: cmp X23, #2
blt try1
strh wl, [x0], #2
sub X23, x23, #2
// If one space left, emit it here:
try1: cmp x23, #1
blt spacesDone
strb wl, [x0], #1
// Okay, emit the digits here:
spacesDone: mov X1, x24 // Retrieve value.

@ blr X26 // XXXToStr

1dp x25, x26, [sp], #16
1dp X23, x24, [sp], #16
1dp x1, x2, [sp], #16
1dp x0, 1r, [sp], #16
ret

endp toSizeStr
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//
// printSize
//

// Utility used by the main program to
// compute sizes and print them

O proc

locals
dword
endl

enter

mov
lea
blr

mov
mstr
mstr
lea
mstr
lea
bl

leave
endp

values: .dword
.dword
.dword
.dword
.dword
.dword
.dword
.set

negValues: .dword
.dword
.dword
.dword
.dword
.dword
.dword

sizes: .word
.word

printSize

ps
stk, 64

ps
ps.size

X6, X1
X0, buffer
x27 // Call XXXToStrSize.

X1, X6

x1, [sp]

x2, [sp, #8]
x3, buffer
x3, [sp, #16]
X0, fmtStr
printf

printSize

1, 10, 100, 1000, 10000, 100000, 1000000
10000000, 100000000, 1000000000, 10000000000
100000000000, 1000000000000, 10000000000000
100000000000000, 1000000000000000
10000000000000000, 100000000000000000
1000000000000000000, 10000000000000000000
OX7 T

valSize, (.-values)/8

-1, -10, -100, -1000, -10000, -100000, -1000000
-10000000, -100000000, -1000000000, -10000000000
-100000000000, -1000000000000, -10000000000000
-100000000000000, -1000000000000000
-10000000000000000, -100000000000000000
-1000000000000000000, -10000000000000000000
0x8000000000000000

5, 6, 7, 8, 9, 10, 15, 15, 15, 15
20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30

LTI 0000071111110001711111111117111111

/1

// Here is the asmMain function:



© proc asmMain, public

locals am

gword  am.x26x27
gword  am.x24x25
byte am.stk, 64
endl am

enter am.size // Activation record
stp X26, x27, [fp, #Ham.x26x27]
stp x24, x25, [fp, #am.x24x25]

// Test unsigned integers:

lea X27, ub4ToStrSize

lea x24, values

lea x25, sizes

mov x26, #valSize
tstlp: ldr x1, [x24], #8

ldr w2, [x25], #4

bl printSize

subs X26, x26, #1

bne tstlp

lea x27, 164ToStrSize

lea x24, negValues

lea x25, sizes

mov x26, #valSize
ntstlp: ldr x1, [x24], #8

ldr w2, [x25], #4

bl printSize

subs X26, x26, #1

bne ntstlp

1dp X26, x27, [fp, #am.x26x27]
1dp x24, x25, [fp, #am.x24x25]
leave

endp asmMain

The u64toStrSize function @ simply loads up X25 and X26 with appro-
priate addresses and branches to the generic toSizeStr function to handle
the real work. The 164ToStrSize function @ does the same thing for signed
integer conversions.

The toSizeStr function ©® handles the real work. First, it calls the
appropriate toSize function (whose address was passed in X25) to compute
the minimum number of print positions the value will require @. It then
computes the number of fill characters required in front of the digits to
right-justify the number in the output field . It emits the required number
of filler characters ® before outputting the numeric string @. Probably
the only thing worth noting here is that the code attempts to output eight
spaces at a time in order to improve performance, as long as there are at
least eight padding characters, then four, then two, and finally one.
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The printSize procedure ® is a little utility function that the asmMain
procedure uses to display values, and the asmMain procedure @ tests the
u64ToStrSize and 164ToStrSize procedures.

Here’s the build command and sample output for Listing 9-12 (remem-
ber that the actual main program appears only in the online source code):

$ ./build Listing9-12
$ ./Listing9-12
Calling Listing9-12:

1: = 1'
10: =' 10"
100: ="' 100’
1000: ="' 1000’
10000: 9=' 10000
100000: 10=" 100000"
1000000: 15=' 1000000
10000000: 15=' 10000000
100000000: 15=' 100000000
1000000000: 15=' 1000000000
10000000000: 20=" 10000000000
100000000000:  20=" 100000000000
1000000000000: 20=" 1000000000000
10000000000000:  20=" 10000000000000"
100000000000000:  20=" 100000000000000"
1000000000000000:  25=" 1000000000000000"
10000000000000000:  25=" 10000000000000000"
100000000000000000:  25=" 100000000000000000"
1000000000000000000:  25=" 1000000000000000000"
-8446744073709551616: 25=' 10000000000000000000"
9223372036854775807: 30=' 9223372036854775807"
-1: 5=" -1'
-10:  6=' -10'
-100: 7='  -100'
-1000: 8='  -1000'
-10000: 9="  -10000'
-100000: 10='  -100000'
-1000000: 15=' -1000000"
-10000000: 15=" -10000000"
-100000000: 15=' -100000000"
-1000000000: 15=" -1000000000"
-10000000000: 20=" -10000000000'
-100000000000: 20=" -100000000000"
-1000000000000: 20=" -1000000000000"
-10000000000000: 20="' -10000000000000"
-100000000000000: 20=" -100000000000000"
-1000000000000000: 25=" -1000000000000000
-10000000000000000: 25=" -10000000000000000"
-100000000000000000:  25=" -100000000000000000"
-1000000000000000000:  25=" -1000000000000000000'
8446744073709551616: 25=" 8446744073709551616'
-9223372036854775808: 30=' -9223372036854775808"

Listing9-12 terminated

The output is value:size="conversion'.

528

Chapter 9



9.2

NOTE

Converting Floating-Point Values to Strings

Thus far, this chapter has dealt with converting integer numeric values to

character strings (typically for output to the user). This section discusses

converting floating-point values to a string, which is just as important.
Converting floating-point values to strings can take one of two forms:

e Decimal notation conversion (such as txxx.yyy format)

e Exponential (or scientific) notation conversion (such as +x.yyyyyetzz
format)

Regardless of the final output format, you’ll need two distinct opera-
tions to convert a value in floating-point form to a character string. First,
you must convert the mantissa to an appropriate string of digits. Second,
you convert the exponent to a string of digits.

However, this isn’t a simple case of converting two integer values to a dec-
imal string and concatenating them (with an ¢ between the mantissa and
exponent). First of all, the mantissa is not an integer value; it is a fixed-point
fractional binary value. Simply treating it as an n-bit binary value (where
nis the number of mantissa bits) will almost always result in an incorrect
conversion. Second, while the exponent is, more or less, an integer value, it
represents a power of 2, not a power of 10. Displaying that power of 2 as an
integer value is not appropriate for decimal floating-point representation.
These two issues (fractional mantissa and binary exponent) are the source
of the major complications associated with converting a floating-point value
to a string.

The exponent is actually a biased-exponent value. However, that’s easy to convert to
a signed binary integer.

Double-precision floating-point values have a 53-bit mantissa (including
the implied bit). This is not a 53-bit integer. Instead, those 53 bits represent
a value from 1.0 to slightly less than 2.0. (See section 2.13, “IEEE Floating-
Point Formats,” on page 93 for more details on the IEEE 64-bit floating-
point format.) The double-precision format can represent numbers from 0
to about 5 x 107%* (around =1 x 10*3%® using normalized values).

To output the mantissa in decimal form with approximately 16 digits of
precision, successively multiply or divide the floating-point value by 10 until
the number is from le+15 to just less than le+16 (thatis, 9.9999 ... e+15).
Once the exponent is in the appropriate range, the mantissa bits form a
16-digit integer value (no fractional part), which can be converted to a deci-
mal string to obtain the 16 digits that make up the mantissa value.

To convert the exponent to an appropriate decimal string, track the
number of multiplications or divisions by 10. For each division by 10, add 1
to the decimal exponent value; for each multiplication by 10, subtract 1
from the decimal exponent value. At the end of the process, subtract 16 from
the decimal exponent value (as this process produces a value whose expo-
nent is 16) and convert the decimal exponent value to a string.
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The conversions in the following sections assume that you always want
to produce a mantissa with 16 significant digits. To produce formatted out-
put with fewer significant digits, see section 9.2.4, “Double-Precision Values
to Strings,” on the next page.

9.2.1 Floating-Point Exponent to String of Decimal Digits

To convert the exponent to a string of decimal digits, use the following
algorithm:

1. If the number is 0.0, directly produce the mantissa output string of
"0000000000000000" (notice the space at the beginning of the string), set
the exponent to 0, and you're done. Otherwise, continue with the
following steps.

2. Initialize the decimal exponent to 0.

3. If the exponent is negative, emit a hyphen (-) character and negate the
value; if it is positive, emit a space character.

4. If the value of the (possibly negated) exponent is less than 1.0, skip to
step 8.

5. Positive exponents: Compare the number against successively smaller
powers of 10, starting with 10 *25, then 10*!28, then 10 7%, then . . .,
then 10°. After each comparison, if the current value is greater than the
power of 10, divide by that power of 10 and add the power-of-10 expo-
nent (256, 128, .. ., 0) to the decimal exponent value.

6. Repeat step 5 until the exponent is 0 (that is, the value is in the range
1.0 < value < 10.0).

7. Skip to step 10.

8. Negative exponents: Compare the number against successful larger pow-
ers of 10 starting with 1072%, then, 107128, then 10754, then . . ., then 10°.
After each comparison, if the current value is less than the power of 10,
divide by that power of 10 and subtract the power-of-10 exponent (256,
128, ..., 0) from the decimal exponent value.

9. Repeat step 8 until the exponent is 0 (thatis, the value is in the range
1.0 < value < 10.0).

10. At this point, the exponent value is a reasonable number that can be
converted to an integer value by using standard unsigned-to-string con-
versions (see section 9.1.3, “Unsigned Decimal Values to Strings,” on
page 495).

9.2.2 Floating-Point Mantissa to String of Digits

To convert the mantissa to a string of digits, you can’t simply treat the 53-bit
mantissa produced in the previous section as an integer value, since it still
represents an integer from 1.0 to just less than 2.0. However, if you multiply
that floating-point value (which has been converted to a value from 1.0 to
slightly less than 10.0) by 10715, this effectively produces an integer with the
digits shifted to the left 15 print positions (16 digits being the number of



output digits possible with a double-precision value). You can then convert
this “integer” to a string. The result will consist of the 16 mantissa digits. To
convert the mantissa to a string, do the following:

1. Multiply the value produced by the exponent calculation in the previ-
ous section by le+15. This produces a number with the decimal digits
shifted to the left by 15 print positions.

2. Grab the 52-bit mantissa and OR in an implicit bit 52 equal to 1, and
zero-extend this 53-bit value to 64 bits.

3. Convert the resulting 64-bit value to a string by using the unsigned
integer-to-string function given earlier in this chapter (see section 9.1.3,
“Unsigned Decimal Values to Strings,” on page 495).

9.2.3 Strings in Decimal and Exponential Format

To produce a decimal string (rather than a number in exponential form),
the remaining task is to properly place the decimal point into the string
of digits. If the exponent is greater than or equal to 0, you need to insert
the decimal point in position exponent + 1, starting from the first mantissa
digit produced in the previous section. For example, if the mantissa con-
version produced 1234567890123456 and the exponent is 3, then you would
insert a decimal point before the character atindex 4 (3 + 1), yielding
1234.567890123456 as the result.

If the exponent is greater than 16, insert exponent — 16 zero characters
at the end of the string (or return an error if you don’t want to allow con-
versions of values larger than le+16 to decimal form). If the exponent is
less than 0, insert 0. followed by abs(exp) — 1 zero characters in front of the
string of digits. If the exponent is less than —16 (or another arbitrary value),
you might elect to return an error or automatically switch to exponen-
tial form.

Producing exponential output is slightly easier than decimal output.
Always insert a decimal point between the first and second characters in
the converted mantissa string and then follow the string with e+xxx, where
+xxx is the exponent value’s string conversion. For example, if the mantissa
conversion produces 1234567890123456 and the exponent is -3, the result-
ing string will be 1.234567890123456e-003 (note the leading Os on the expo-
nent digits).

9.2.4 Double-Precision Values to Strings

This section presents the code that will convert a double-precision value to
a string in either decimal or exponential form, with separate functions for
the two output formats. As Listing 9-13 is rather long, I've broken it into
pieces and annotated each section.

// Listing9-13.S
//

// Floating-point (double) to string conversion

/1
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// Provides both exponential (scientific notation)
// and decimal output formats

#include "aoaa.inc"

® .section .rodata, ""
ttlStr: .asciz "Listing 9-13"
fmtStr1: .asciz "r64ToStr: value="%s'\n"
fmtStr2: .asciz "fpError: code=%11d\n"
fmtStr3: .asciz "e64ToStr: value='%s'\n"
newlines: .asciz "\n\n"
expStr: .asciz "\n\nTesting e64ToStr:\n\n"

// riostr 1: A global character array that will
// hold the converted string

® .data

ré4str_1:  .space 32, 0
.code

.extern printf

// tenTo15: Used to multiply a value from 1.0
// to less than 2.0 in order to convert the mantissa
// to an actual integer

® tenTol5: .double 1.0e+15

// potPos, potNeg, and expTbl:

/1

// Power of 10s tables (pot) used to quickly
// multiply or divide a floating-point value
// by powers of 10. expTbl is the power-of-

// 10 exponent (absolute value) for each of

// the entries in these tables.

O potPos: .double 1.0e+0
.double 1.0e+1
.double 1.0e+2
.double 1.0e+4
.double 1.0e+8
.double 1.0e+16
.double 1.0e+32
.double 1.0e+64
.double 1.0e+128
.double 1.0e+256
expCnt = (.-potPos) / 8
potNeg: .double 1.0e-0
.double 1.0e-1
.double 1.0e-2
.double 1.0e-4
.double 1.0e-8
.double 1.0e-16
.double 1.0e-32
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.double 1.0e-64

.double 1.0e-128

.double 1.0e-256
expTbl: .dword 0

.dword 1

.dword 2

.dword 4

.dword 8

.dword 16

.dword 32

.dword 64

.dword 128

.dword 256

// Maximum number of significant digits for
// a double-precision value:

© maxDigits = 16
// Return program title to C++ program:
® proc getTitle, public
lea X0, ttlStr

ret
endp getTitle

As is typical for sample programs in this chapter, Listing 9-13 begins
with a read-only data section @ containing the program’s title string and
various format strings used by printf() calls in the main program. The
single data variable in this program is ré4str_1 @, a 32-byte character string
used to hold the converted string. The program is responsible for ensuring
that all conversions will fit into 32 bytes.

Listing 9-13 places several read-only constants in the .code section so
the program can directly access these constants by using the PC-relative
addressing mode (rather than using multiple instructions to take the
address of the object and access it indirectly). The first such constant is
tenTo15 ©, which holds the value 1.0e+15. The conversion code uses this
constant to multiply a floating-point value in the range 1.0 to slightly less
than 10.0 by le+15, thereby obtaining a value slightly less than le+16 when
converting the mantissa to an integer value.

The potPos, potNeg, and expTbl tables @ contain the positive and negative
powers of 10 (pot) tables used to multiply the floating-point value by vari-
ous powers of 10 when massaging the value into the range 1.0 to 10.0. The
expTbl contains the absolute value of the exponent corresponding to the
same entry in the potPos and potNeg tables. The code adds or subtracts this
value from the accumulated decimal exponent while converting the man-
tissa to the range 1.0 to 10.0.

The maxDigits manifest constant @ specifies the number of significant
digits supported by this conversion code (16 digits for double-precision
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floating-point numbers). Finally, this code section contains the ubiquitous
getTitle function ® that returns the address of the program’s title string to
the C++ shell code.

The following code converts a floating-point value to a string:

// Listing9-13.S (cont.)

/1

/1 u53toStr

//

// Converts a 53-bit unsigned integer to a string containing
// exactly 16 digits (technically, it does 64-bit arithmetic,
// but is limited to 53 bits because of the 16-digit output
// format)

/1

// Inputs:

// Xo- Pointer to buffer to receive string

// Xi1- Unsigned 53-bit integer to convert

/1

// Outputs:

// Buffer- Receives the zero-terminated string

// Xo- Points at zero-terminating byte in string
/1

// Buffer must have at least 17 bytes allocated for it.
//

// This code is a bit simplified from the ub4toStr function
// because it always emits exactly 16 digits
// (never any leading 0s).

® proc us3toStr

stp x1, x2, [sp, #-16]!
stp X3, X4, [sp, #-16]!
str x5, [sp, #-16]!

mov x4, #10 // Mul/div by 10 using X4
mov X5, Xzr // Holds string of 8 chars

// Handle LO digit here. Note that the LO

// digit will ultimately be moved into

// bit positions 56-63 of X5 because numeric

// strings are, intrinsically, big-endian (with
// the HO digit appearing first in memory).

@ udiv X2, X1, x4 // X2 = quotient
msub X3, X2, x4, x1 // X3 = remainder
orr X3, x3, #'0'

orr x5, X3, x5, 1sl #8

// The following is an unrolled loop
// (for speed) that processes the
// remaining 15 digits.

//
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// Handle digit 1 here:

udiv X1, X2, x4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr x5, x3, x5, 1sl #8

// Handle digit 2 here:

udiv X2, X1, x4 // X2 = quotient
msub X3, X2, x4, x1 // X3 = remainder
orr X3, x3, #'0'

orr x5, x3, x5, 1sl #8

// Handle digit 3 here:

udiv x1, X2, x4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr X5, X3, x5, 1sl #8

// Handle digit 4 here:

udiv. x2, x1, x4 // X2 = quotient
msub x3, X2, x4, x1 // X3 = remainder
orr x3, x3, #'0'

orr x5, X3, X5, 1sl #8

// Handle digit 5 here:

udiv X1, X2, X4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr x3, x3, #'0'

orr x5, x3, x5, 1sl #8

// Handle digit 6 here:

udiv X2, X1, x4 // X2 = quotient
msub X3, X2, x4, x1 // X3 = remainder
orr X3, x3, #'0'

orr x5, x3, x5, 1sl #8

// Handle digit 7 here:

udiv x1, X2, x4 // X1 = quotient
msub x3, x1, x4, x2 // X3 = remainder
orr X3, x3, #'0'

orr x5, x3, x5, 1sl #8
// Store away LO 8 digits:

str X5, [x0, #8]
mov X5, Xzr
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// Handle digit

© udiv
msub
orr
orr

// Handle digit

udiv
msub
orr
orr

// Handle digit

udiv
msub
orr
orr

// Handle digit

udiv
msub
orr
orr

// Handle digit

udiv
msub
orr
orr

// Handle digit

udiv
msub
orr
orr

// Handle digit

udiv
msub
orr
orr

// Handle digit

udiv
msub
orr
orr

X2,
X3,
X3,
X5,

x1,
X3,
X3,
X5,

X2,
X3,
X3,
X5,

X1,
X3,
X3,
X5,

X2,
X3,
X3,
X5,

x1,
X3,
X3,
X5,

X2,
X3,
X3,
X5,

x1,
X3,
X3,
X5,

x1,
X2,
X3,
X3,

X2,
x1,
X3,
X3,

x1,
X2,
X3,
X3,

X2,
X1,
X3,
X3,

X1,
X2,
X3,
X3,

X2,
X1,
X3,
X3,

X1,
X2,
X3,
X3,

X2,
x1,
X3,
X3,

8 here:

x4
x4, x1
#'0'

x5, 1sl

9 here:

x4

X4, X2
#'0'
x5, 1sl

10 here:

x4

x4, X1
#'0'
x5, 1sl

11 here:

x4

X4, X2
#'0'
x5, 1sl

12 here:

x4

x4, x1
#'0'
x5, 1lsl

13 here:

x4

X4, X2
#'0'
x5, 1sl

14 here:

X4

x4, X1
#'0'
x5, 1sl

15 here:

x4

X4, X2
40"
x5, 1sl

/] X2
/] X3

#8

/] X1
// X3

#8

/] X2
/] X3

#8

// X1
/] X3

/] X2
/] X3

#8

/] X1
// X3

#8

/] X2
/] X3

#8

// X1
/] X3

quotient
remainder

quotient
remainder

quotient
remainder

quotient
remainder

quotient
remainder

quotient
remainder

quotient
remainder

quotient
remainder



// Store away HO 8 digits:

str x5, [x0]
strb  wzr, [x0, #maxDigits]! // Zero-terminating byte

ldr X5, [sp], #16
1dp X3, x4, [sp], #16
1dp x1, x2, [sp], #16
ret

endp u53toStr

The us53ToStr function @ is responsible for converting a 53-bit unsigned
integer to a string of exactly 16 digits. In theory, this code could have used
the u64toSizeStr function from Listing 9-12 to convert the 53-bit value (zero-
extended to 64 bits) into a string. However, the conversion of floating-point
mantissa to string always produces a 16-character string (with leading Os,
if necessary), so the decimal integer-to-string conversion can be more effi-
cient than the u64toSizeStr function, which could produce variable-length
strings. To prioritize saving space, if you're already using the u64toSizeStr
function in your code, you could remove u53ToStr and substitute a call to
ub4toSizeStr (specifying '0' as the fill character).

The conversion algorithm u53ToStr uses is straightforward and brute-
force: it converts the LO eight digits to a sequence of eight characters and
emits them @, then converts the HO eight digits to a sequence of eight
characters and emits them ®. It both cases, it uses the divide-by-10 and
remainder of division-by-10 algorithms to convert each digit to a character
(see the discussion of u64ToStr in Listing 9-6 for more details).

This function is used by FPDigits to convert the mantissa to a string of
decimal digits:

// Listing9-13.S (cont.)

//

// FPDigits

//

// Used to convert a floating-point value
// in DO to a string of digits

//

// Inputs:

// Do- Double-precision value to convert
/] Xo- Pointer to buffer to receive chars
//

// Outputs:

/] Xo- Still points at buffer

/] X1- Contains exponent of the number

/l Xa- Contains sign (space or '-')

proc FPDigits

str 1r, [sp, #-16]!
str do, [sp, #-16]!
stp di, d2, [sp, #-16]!
stp X22, x23, [sp, #-16]!
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stp x24, x25, [sp, #-16]!
stp X26, x27, [sp, #-16]!

mov x2, #' ' // Assume sign is +.
#tdefine fp1 d2 // D2 holds 1.0.

fmov fp1, #1.0

// Special case for 0.0:

O fcmp do, #0.0
bne donoto

// Check for -0.0:

® fmov x1, do
ands x1, x1, #0x8000000000000000

beq posZero

mov x2, #'-'
posZero:

mov x1, #0x3030

movk x1, #0x3030, 1lsl #16
movk x1, #0x3030, 1sl #32
movk x1, #0x3030, 1sl #48

str x1, [x0]
str x1, [x0, #8]
mov x1, #0 // Exponent = 0

// For debugging purposes, zero-terminate this
// string (the actual code just grabs 16 bytes,
// so this isn't strictly necessary):

strb w0, [x0, #16]
b.al fpdDone

// If the number is nonzero, deal with it here. Note
// that the flags were set by comparing DO to 0.0 earlier.

® donoto: bge fpIsPositive // See if positive or negative.

// If negative, negate and change the sign

// character to '-'.

fabs do, do
mov x2, #'-'

// Get the number from 1.0 to <10.0 so you can figure out
// what the exponent is. Begin by checking to see if you have
// a positive or negative exponent.

fpIsPositive:
mov x1, xzr // Initialize exponent.
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O fcmp
bge

do, fp1
posExp

// The value is in the range 0.0 to 1.0,

// exclusive, at this point. That means this
// number has a negative exponent. Multiply
// the number by an appropriate power of 10
// until you get it in the range 1 through 10.

lea
lea
lea
mov

x27, potNeg
x26, potPos
x25, expTbl
x24, #expCnt

// Search through the potNeg table until you find a power
// of 10 that is less than the value in Do:

cmpNegExp:
@ subs
blt

ldr
fcmp
ble

X24, x24, #1
test1 // Branch if X24 < 1.

d1, [x27, x24, 1sl #3] // D1 = potNeg[X24 * 8]
di, do // Repeat while
cmpNegExp  // table <= value.

// Eliminate the current exponent indexed by
// X24 by multiplying by the corresponding
// entry in potPos:

ldr
sub
ldr
fmul
b.al

x22, [x25, x24, 1sl #3] // X22 = expTbl[X24 * 8]
x1, x1, x22

d1, [x26, x24, 1sl #3] // D1 = potPos[X24 * 8]
do, do, di

cmpNegExp

// If you get to this point, you've indexed through
// all the elements in the potNeg and it's time to stop.

/1

// If the remainder is *exactly* 1.0, you can branch
// on to InRangel 10; otherwise, you still have to multiply
// by 10.0 because you've overshot the mark a bit.

test1: femp
beq

fmov
fmul
sub

b.al

do, fp1
inRange1_10

d1, #10.0

do, do, di

x1, x1, #1 // Decrement exponent.
inRange1_10

// At this point, you have a number that is 1 or greater.
// Once again, your task is to get the value from 1.0 to <10.0.
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posExp:

lea x26, potPos
lea x25, expTbl
mov x24, #expCnt

® cmpPosExp:  subs X24, x24, #1
blt inRangel 10 /] If X24 < 1

ldr d1, [x26, x24, 1sl #3] // D1 = potPos[X24 * 8]
fcmp di, do
bgt cmpPosExp

ldr x22, [x25, x24, 1sl #3] // X22 = expTbl[X24 * 8]
add x1, x1, x22

fdiv do, do, di

b.al cmpPosExp

// Okay, at this point the number is in the range 1 <= x < 10.
// Let's multiply it by 1e+15 to put the most significant digit
// into the 16th print position, then convert the result to

// a string and store away in memory.

@ inRangel 10:
ldr d1, tenToil5s
fmul do, do, d1i
fcvtau x22, do // Convert to unsigned integer.

// Convert the integer mantissa to a
// string of digits:

stp X0, x1, [sp, #-16]!
mov x1, x22

bl u53toStr

ldp x0, x1, [sp], #16

fpdDone:
1dp X26, x27, [sp], #16
ldp x24, x25, [sp], #16
1dp x22, x23, [sp], #16
1dp di, d2, [sp], #16

ldr do, [sp], #16
ldr 1r, [sp], #16
ret

endp FPDigits

FPDigits converts an arbitrary double-precision mantissa to a string of
decimal digits. It assumes that the floating-point value to convert is held in
the DO register and that X0 contains a pointer to the buffer that will hold
the string conversion. This function also converts the binary (power-of-2)
exponent to a decimal integer, returns the exponent value in the X1 regis-
ter, and returns the value’s sign (a space character, indicating a nonnegative
value, or -) in the X2 register.
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FPDigits begins by first checking for the special case of 0.0 @. If DO con-
tains 0, this function initializes the string buffer to 0000000000000000 (sixteen
0 characters) and returns with X0 containing 0 and X2 containing a space
character. The code checks for the special case of -0.0 and returns X2 con-
taining a minus sign if the resultis -0.0 @. Next, FPDigits checks the sign
of the floating-point value and sets X2 to a '-', if appropriate ®. The code
also initializes the decimal exponent accumulator (held in X0) to 0.

After setting the sign, the FPDigits function checks the floating-point
value’s exponent to see if it is positive or negative @. The code handles
values with positive or negative exponents independently. If the exponent
is negative, the cmpNegExp loop searches through the potNeg table looking for
the value that is greater than the value in DO ©. When the loop finds such
a value, it multiplies DO by that entry in potNeg and then subtracts the cor-
responding entry in expTbl from the decimal exponent value held in X1. The
cmpNegExp loop repeats this process until the value in DO is greater than 1.0.
Whenever the result isn’t greater than 1.0, the code multiplies the value in
DO by 10.0, because the code needs to adjust for the multiplication by 0.1
that has taken place. If, on the other hand, the exponent was positive ®, the
cmpPosExp loop does the same task but divides by entries in the potPos table
and adds the corresponding entry in expTbl to the decimal exponent value
held in X1.

Once the cmpPosExp or cmpNegExp loop gets the value into the range 1.0 to
just less than 10.0, it multiplies the value by 10'® and converts it to an integer
(in X22) @. Then FPDigits calls the u53toStr function to convert this inte-
ger to a string of exactly 16 digits. The function returns the sign character
(space for nonnegative values, '-' for negative values) in X2 and the decimal
exponent in XI.

Note that FPDigits converts only the mantissa to a string of digits. This
is the base code used by the r64ToStr and e64ToStr functions that convert
floating-point values into recognizable strings. Before presenting those
functions, there is one utility function to explain: chkNaNINF.

Certain floating-point operations produce invalid results. The IEEE
754 floating-point standard defines three special values to represent these
invalid results: NaN (not a number), +INF (infinity), and -INF (negative infin-
ity). Because the ARM floating-point hardware can produce these results,
it is important that the conversions of floating-point to string handle these
three special values. NaN, +INF, and -INF all have an exponent value contain-
ing 0x7FF (and no other valid values use this exponent). If the exponent is
0x7FF and the mantissa bits are all Os, the value is +INF or -INF (determined
by the sign bit). If the mantissa is nonzero, the value is NaN (and you can
ignore the sign bit). The chkNaNINF function checks for these values and out-
puts the strings NaN, INF, or -INF if the number is invalid:

// Listing9-13.S (cont.)
//
// chkNaNINF

//
// Utility function used by r64ToStr and e64ToStr to check
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// for NaN
/!

// Inputs:
// Do-

// X19-

/] X21-

/] X22-

!l X25-
/!

// Outputs:
// Buffer-
/!

/!

and INF

Number to check against NaN and INF

Field width for output

Fill character

(outBuf) Pointer to output buffer

Return address to use if number is invalid

Will be set to the string NaN, INF,
or -INF if the number is not valid

// Note: Modifies value in X0

proc chkNaNINF

// Handle NaN and INF special cases:

@ fmov x0, do

Isr X0, x0, #52
and X0, x0, #Hox7ff
cmp X0, #ox7ff

blo notINFNaN

// At this point, it's NaN or INF. INF has a
// mantissa containing 0, NaN has a nonzero
// mantissa:

® fmov x0, do

ands X0, x0, #0x000fffffffffffff
beq isINF

// Is NaN here:

©ldr w0, ='N' + (‘a' <« 8) + ('N' <« 16)

O isINF:

®© minusINF:

str wo, [x22]
mov X0, #3
b.al fillSpecial

// INF can be positive or negative. Must output a
// '-' character if it is -INF:

fmov x0, do
ands X0, x0, #0x8000000000000000 // See if -INF.
bne minusINF

ldr wo, ="I'" + ("'N' << 8) + ('F' << 16)
str wo, [x22]

mov x0, #3

b.al fillSpecial

ldr wo, ="-" + ("I' << 8) + ('N' << 16) + ('F' << 24)
str wo, [x22]



strb wzr, [x22, #4]
mov x0, #4

// For NaN and INF, fill the remainder of the string, as appropriate:

@ fillSpecial:
b.al  whlLTwidth

fsLoop: strb w21, [x22, x0]
add X0, x0, #1
whlLTwidth:
cmp X0, x19
blo fsLoop
@ mov 1r, x25 // Return to alternate address.

notINFNaN: ret
endp chkNaNINF

The code moves the floating-point value in D0 into X0 and then checks
the exponent bits to see if they contain 0x7FF @. If the exponent does not
contain this value, the procedure returns to the caller (using the return
address in LR).

If the exponent bits are 0x7FF, the code checks the mantissa to see if it
is 0 or nonzero @. If it’s nonzero, the code emits the character string NaN to
the buffer pointed at by X22 ©. If the mantissa is nonzero, the code checks
whether the sign bit is set @. If not, this code emits INF to the output buffer.
If the sign bit is set, the code emits -INF to the output buffer .

In all three cases (NaN, INF, or -INF), the code transfers to fillSpecial @,
where it adds sufficient padding characters (the padding character is in
W21, and the field width is in X19). Rather than return to the caller, this
code transfers control to the address held in X25 @. The caller (r64ToStr
or e64ToStr) loads the invalid value return address into X25 prior to call-
ing chkNaNINF. I could have set a flag, such as the carry flag, and tested it on
return. However, I wanted to demonstrate another way to achieve this, and
this approach is slightly more elegant (though arguably less readable).

With chkNaNINF out of the way, it’s time to take a look at the r64ToStr
function that the user calls to convert floating-point values into strings:

// Listing9-13.S (cont.)

//

// 164ToStr

//

// Converts a REAL64 floating-point number to the
// corresponding string of digits. Note that this
// function always emits the string using decimal
// notation. For scientific notation, use the e10ToBuf
// routine.

//

// On entry:

//

// Do- (r64) Real64 value to convert
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/1

// Xo- (outBuf) r64ToStr stores the resulting

!/ characters in this string.

//

// Xi- (fWidth) Field width for the number (note
// that this is an *exact* field width, not a
// minimum field width)

//

/] X2- (decDigits) # of digits to display after the
// decimal pt

//

/] X3- (fill) Padding character if the number of
// digits is smaller than the specified field
/1 width

//

/] X4- (maxLength) Maximum string length

//

// On exit:

//

// Buffer contains the newly formatted string. If the
// formatted value does not fit in the width specified,
// r64ToStr will store "#" characters into this string.

//

// Carry- Clear if success, set if an exception occurs.

// If width is larger than the maximum length of

// the string specified by buffer, this routine

// will return with the carry set.

/1

//ieskzk kkk kkk *

proc r64ToStr
// Local variables:

locals rts

gword  rts.xOx1
gword  rts.x2x3
gqword  rts.x4x5
gword  rts.x19x20
gword  rts.x21x22
gword  rts.x23x24

dword rts.x25

byte rts.digits, 80
byte rts.stk, 64
endl rts

enter rts.size

// Use meaningful names for the nonvolatile
// registers that hold local/parameter values:

#define fpval do
#define fWidth x19 // chkNaNINF expects this here.
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#define decDigits x20

#tdefine fill w21 // chkNaNINF expects this here.
#define outBuf x22 // chkNaNINF expects this here.
#define maxLength x23

#define exponent x24

#define sign w25

#define failAdrs x25 // chkNaNINF expects this here.

// Preserve registers:

stp x0, x1, [fp, #rts.xox1]
stp X2, X3, [fp, #rts.x2x3]
stp x4, x5, [fp, #Hrts.x4x5]
stp x19, x20, [fp, #rts.x19x20]

stp x21, x22, [fp, #rts.x21x22]
stp X23, x24, [fp, #rts.x23x24]
str x25, [fp, #rts.x25]

// Move parameter values to nonvolatile
// storage:

mov outBuf, x0
mov fWidth, x1
mov decDigits, x2
mov fill, w3

mov maxLength, x4

// First, make sure the number will fit into
// the specified string.

cmp fWidth, maxLength
bhs strOverflow

// If the width is 0, return an error:

cmp fWidth, #0
beq valOutOfRange

// Handle NaN and INF special cases.

// Note: if the value is invalid, control

// transfers to clcAndRet rather than simply
// returning.

O lea failAdrs, clcAndRet
bl chkNaNINF

// Okay, do the conversion. Begin by
// processing the mantissa digits:

add x0, fp, #rts.digits // lea x0, rts.digits

8 bl FPDigits // Convert r64 to string.
mov exponent, x1 // Save away exponent result.
mov sign, w2 // Save mantissa sign char.
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// Round the string of digits to the number of significant
// digits you want to display for this number. Note that
// a maximum of 16 digits are produced for a 53-bit value.

© cmp
ble
mov

dontForceWidthZero:

add
cmp
bhs

exponent, #maxDigits
dontForceWidthZero

X0, XzZr

// If the exponent is negative or
// too large, set width to 0.

X2, x0, decDigits // Compute rounding position.

x2, #maxDigits
dontRound

// Don't bother if a big #.

// To round the value to the number of

// significant digits, go to the digit just

// beyond the last one you are considering (X2
// currently contains the number of decimal

// positions) and add 5 to that digit.

// Propagate any overflow into the remaining
// digit positions.

add
ldrb

add
cmp
bls

mov

whileDigitGT9:
sub
strb
subs
bmi

ldrb
add
strb

cmp
bhi
b.al

hitFirstDigit:

X2, X2, #1
wo, [x1, x2]

w0, wo, #5
wo, #'9'
dontRound

x0, #('0" + 10)

w0, w0, #10
wo, [x1, x2]
X2, x2, #1
hitFirstDigit

wo, [x1, x2]
w0, wo, #1
wo, [x1, x2]

wo, #'9’
whileDigitGT9
dontRound

// Index + 1 of last sig digit
// Get that digit.

// Round (for example, +0.5)

// Force to 0.

// Sub out overflow,
// carry, into prev
// digit (until first
// digit in the #).

// Increment previous
// digit.

// Overflow if > '9'

// If you get to this point, you've hit the
// first digit in the number, so you have to
// shift all the characters down one position

// in the string of bytes and put a "1

in the

// first character position.

A mov
repeatUntilX2eqo:

x2, #imaxDigits

// Max digits in value



ldrb wo, [x1, x2]

add X2, x2, #1

strb w0, [x1, x2]
subs X2, x2, #2

bne repeatUntilX2eq0

mov wo, #'1'
strb wo, [x1, x2]

add exponent, exponent, #1 // Increment exponent because
// you added a digit.

dontRound:
// Handle positive and negative exponents separately.
® mov X5, Xzr // Index into output buf.
cmp exponent, #0
bge positiveExponent

// Negative exponents:

// Handle values from 0 to 1.0 here (negative

// exponents imply negative powers of 10).

//

// Compute the number's width. Since this

// value is from 0 to 1, the width

// calculation is easy: it's just the number of
// decimal positions they've specified plus

// 3 (since you need to allow room for a

// leading "-0."). X2 = number of digits to emit

// after "."

mov x4, #4

add x2, decDigits, #3
cmp X2, X4

csel X2, X2, x4, hs // If X2 < X4, X2 = X4

cmp x2, fWidth
bhi widthTooBig

// This number will fit in the specified field
// width, so output any necessary leading pad

// characters. X3 = number of padding characters
// to output.

@ sub x3, fWidth, x2
b.al testWhileX31tWidth

whileX31tWidth:

strb fill, [outBuf, x5]

add X5, X5, #1 // Index

add X2, X2, #1 // Digits processed
testhWhileX31tWidth:

cmp x2, fWidth
blo whileX31tWidth
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// Output " 0." or "-0.", depending on
// the sign of the number:

strb sign, [outBuf, x5]
add x5, X5, #1

mov wo, #'0'

strb w0, [outBuf, x5]
add x5, x5, #1

mov wo, #'.'

strb w0, [outBuf, x5]
add x5, X5, #1

add X3, x3, #3

// Now output the digits after the decimal point:

mov X2, Xz // Count the digits here.
add x1, fp, #rts.digits // lea x1, rts.digits

// If the exponent is currently negative, or if
// you've output more than 16 significant digits,

// just output a 0 character.

repeatUntilX3geWidth:

mov x0, #'0'

adds exponent, exponent, #1
bmi noMoreQutput

cmp x2, fimaxDigits

bge noMoreOutput

ldrb wo, [x1]
add x1, x1, #1

noMoreQutput:
strb w0, [outBuf, x5]
add X5, X5, #1 // Index
add X2, X2, #1 // Digits processed
add X3, X3, #1 // Digit count

cmp x3, fWidth
blo repeatUntilX3geWidth
b.al r64BufDone

// If the number's actual width was bigger than the width
// specified by the caller, emit a sequence of '#' characters
// to denote the error.

@ widthTooBig:
// The number won't fit in the specified field
// width, so fill the string with the "#"

// character to indicate an error.

mov x2, fWidth
mov wo, #'#'



fillPound: strb w0, [outBuf, x5]
add X5, X5, #1 // Index
subs X2, x2, #1
bne fillPound
b.al 164BufDone

// Handle numbers with a positive exponent here.

//

// Compute # of print positions consumed by output string.
// This is given by:

//

// Exponent // # of digits to left of "."
// + 2 // Sign + 1's digit

// + decDigits  // Add in digits right of "."
// + 1 // If there is a decimal point

©® positiveExponent:

mov x3, exponent  // Digits to left of "."

add X3, X3, #2 // sign posn
cmp decDigits, #0 // See if any fractional
beq decPtsIso // part.

add X3, X3, decDigits // Digits to right of "."
add X3, X3, #1 // Make room for the "."

decPtsIso:

// Make sure the result will fit in the
// specified field width.

cmp x3, fWidth
bhi widthTooBig
beq noFillChars

// If the actual number of print positions
// is less than the specified field width,
// output leading pad characters here.

subs x2, fWidth, x3
beq noFillChars

fillChars: strb fill, [outBuf, x5]
add x5, x5, #1
subs X2, x2, #1
bne fillChars
noFillChars:
// Output the sign character:

strb sign, [outBuf, x5]
add x5, x5, #1
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// Okay, output the digits for the number here:

mov X2, Xzr // Counts # of output chars
add x1, fp, #rts.digits // lea x1, rts.digits

// Calculate the number of digits to output
// before and after the decimal point:

add x3, decDigits, exponent
add X3, X3, #1 // Always one digit before "."

// If we've output fewer than 16 digits, go ahead
// and output the next digit. Beyond 16 digits,
// output Os.

repeatUntilX3eqo:
mov wo, #'0'
cmp x2, #maxDigits

bhs putChar

ldrb wo, [x1]
add x1, x1, #1

putChar: strb w0, [outBuf, x5]
add X5, x5, #1

// If the exponent decrements down to 0,
// output a decimal point:

cmp exponent, #0
bne noDecimalPt

cmp decDigits, #0
beq noDecimalPt

mov wo, #'.'
strb w0, [outBuf, x5]
add X5, x5, #1

noDecimalPt:
sub exponent, exponent, #1 // Count down to
add X2, x2, #1 // # of digits thus far
subs  x3, x3, #1 // Total # of digits to output
bne repeatUntilX3eqo

output.

// Zero-terminate string and leave:

r64BufDone: strb wzr, [outBuf, x5]
©® clcAndRet: msr nzcv, xzr // clc = no error
b.al popRet

strOverflow:

mov X0, #-3 // String overflow
b.al ErrorExit
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valOutOfRange:

mov x0, #-1 // Range error
® ErrorExit: mrs X1, nzcv
orr x1, x1, #(1 << 29)
msr nzcv, x1 // stc = error

strb wzr, [outBuf] // Just to be safe
// Change X0 on return:
str X0, [fp, #rts.xox1]

popRet:
1dp X0, x1, [fp, #rts.xox1]
1dp X2, x3, [fp, #Hrts.x2x3]
1dp x4, x5, [fp, #rts.x4x5]
1dp x19, x20, [fp, #rts.x19x20]
1dp x21, x22, [fp, #rts.x21x22]
1dp X23, x24, [fp, #rts.x23x24]
ldr X25, [fp, #rts.x25]
leave
endp 164ToStr

The r64ToStr function converts the floating-point value in DO to a string
in standard decimal form, supporting output field widths, number of digits
after the decimal point, and fill character for leading positions that would
normally be blank.

After appropriate initialization, r64ToStr first checks for the values NaN
(not a number), INF (infinity), and -INF (minus infinity) @; these values
require special nonnumeric output strings, which must still be padded to
fWidth characters. The r64ToStr calls FPDigits to convert the mantissa to a
string of decimal digit characters (and obtain the power-of-10 exponent in
integer form) @. The next step is to round the number based on the num-
ber of digits to appear after the decimal point ©. This code computes the
index into the string produced by FPDigits one character beyond the num-
ber of digits specified by the decDigits parameter. It fetches this character
(which will be '0" through '9') and adds 5 to its ASCII code. If the result is
greater than the ASCII code of '9', the code has to bump the previous digit
in the string by 1. Of course, if that character contains '9', overflow will
occur and the carry has to ripple through to previous digit(s). If the carry
ripples all the way to the first character of the string, the code must shift all
the characters one position to the right and inserta '1" at the beginning of
the string @.

Next, the code emits the characters associated with the final decimal
string. The algorithm splits into two sections @, with one section handling
positive (and 0) exponents and the other handling negative exponents. For
negative exponents, the code will emit any fill characters, the sign of the
number (still held in X2), and the decDigits digits from the mantissa string
conversion @. If the field width and decDigits are sufficiently large, the code
will simply output the '0' character for all characters beyond the 16th sig-
nificant digit. If the number of output digits would exceed the field width
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the caller passes, the widthTooBig code @ will emit # characters to indicate a
formatting error (the standard HLL approach to format errors in floating-
point conversions).

The code handles floating-point conversions of values greater than or
equal to 1.0 (positive exponents) ©. This code emits necessary padding
characters and the value’s sign, then calculates the position of the decimal
point in the output string and rounds the last digit throughout the string,
as previously described. It then outputs the characters returned by FPDigits
up to that position. Finally, it outputs the decimal point, followed by the
remaining fractional digits. If it turns out that the code cannot fit the num-
ber into the field width (and decimal digits) specified, it transfers control to
widthTooBig to produce the error string.

To notify the caller of possible errors, this code clears the carry flag
upon return @ if the conversion was successful, or sets the carry flag on
return if there was an error @. This allows the caller to easily test for success/
failure with a single bcs or bec instruction after the call to r64ToStr.

The final output format handled by Listing 9-13 is exponential (sci-
entific) form. Two functions handle this conversion: expToBuf and e64ToStr.
The former handles the formatting of the exponent portion of the out-
put string:

// Listing9-13.S (cont.)

//

// expToBuf

/1

// Unsigned integer to buffer

// Used to output up to three-digit exponents

/1

// Inputs:

//

// Xo- Unsigned integer to convert

// X1-  Exponent print width 1-3

// X2- Points at buffer (must have at least 4 bytes)
//

// Outputs:

/1

// Buffer contains the string representing the converted
// exponent.

/1

// Carry is clear on success, set on error.

proc expToBuf

stp x0, 1r, [sp, #-16]!
stp x1, x3, [sp, #-16]!
stp x4, X5, [sp, #-16]!

mov X5, Xz // Initialize output string.
mov x4, #10 // For division by 10

// Verify exponent digit count is in the range 1-3:



O cmp
blo
cmp
bhi

x1, #1
badExp
x1, #3
badExp

// Verify the actual exponent will fit in the number of digits:

A cmp x1, #2
blo oneDigit
beq twoDigits
// Must be 3:
cmp x0, #1000
bhs badExp

// Convert three-digit value to a string:

® udiv
msub
orr
orr

udiv
msub
orr
orr

udiv
msub
orr
orr

b.al

// Single digit is easy:

oneDigit:
O cmp
bhs

orr
b.al

X1, X0, x4 // X1
x3, x1, x4, x0 // X3
X3, x3, #'0'

x5, x3, x5, 1sl #8
X0, X1, x4 // X0
X3, X0, x4, x1 // X3
x3, x3, #'0'

x5, x3, x5, 1sl #8
x1, X0, x4 /] X1
X3, x1, x4, x0 // X3
x3, x3, #'0'

x5, x3, x5, 1sl #8
outputExp

x0, #10

badExp

x5, x0, #'0'
outputExp

quotient
remainder

quotient
remainder

quotient
remainder

// Convert value in the range 10-99 to a string
// containing two characters:

twoDigits:
@ cmp
bhs

udiv
msub
orr
orr

X0, #100
badExp

X1,
X3,
X3,
X5,

X0,
X1,
X3,
X3,

x4 /] X1
x4, x0 // X3
40"

x5, 1s1 #8

quotient
remainder
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udiv X0, x1, x4 // Xo
msub X3, x0, x4, x1 // X3
orr x3, x3, #'0'

orr x5, x3, x5, 1sl #8

quotient
remainder

// Store the string into the buffer (includes a 0
// byte in the HO positions of W5):

outputExp:
0O str w5, [x2]
ldp x4, x5, [sp], #16
1dp x1, x3, [sp], #16
1dp x0, 1r, [sp], #16
msr nzcv, Xzr // clc = no error
ret
leave

badExp:
1dp x4, x5, [sp], #16
1dp x1, x3, [sp], #16
1dp x0, 1r, [sp], #16

mrs X0, nzcv

orr X0, x0, #(1 << 29)

msr nzcv, X0 // stc = error

mov X0, #-1 // Value out of range ...
ret

endp expToBuf

The expToBuf function produces a string of exactly one, two, or three digits
(based on the parameters the caller passes in X0 and X1). The expToBuf func-
tion begins by verifying that the exponent digit count is within range @ and
that the actual exponent will fit in the number of digits specified @. The code
branches to three separate output conversion code sequences if the exponent
output is three digits (the normal case @), one digit @, or two digits ©. The
code stores those characters into the buffer where X2 points @.

The function returns the error status in the carry flag, returning with
the carry clear for a successful operation, or the carry set if the exponent is
too large or the converted number will not fit in the number of character
positions that X1 specifies. Other than this, expToBuf is basically a switch
statement (implemented using if...then...else logic) that has three cases:
one for each exponent size (one, two, or three characters).

The e64ToStr function handles the conversion from double-precision to
string using exponential format:

// Listing9-13.S (cont.)
//
// e64ToStr

/1
// Converts a REAL64 floating-point number to the
// corresponding string of digits. Note that this



// function
// notation;
//

// On entry:
//

/] Do-

//

/] Xo-

/l

//

// Xi-

//

//

//

/] X2-

//

//

!/l X3-

//

//

/]l Xa-

//

// On exit:
//

always emits the string using scientific
use the r64ToStr routine for decimal notation.

(e64) Double-precision value to convert

(buffer) e64ToStr stores the resulting characters in
this buffer.

(width) Field width for the number (note that this
is an *exact* field width, not a minimum

field width)

(fill) Padding character if the number is smaller
than the specified field width

(expDigs) Number of exponent digits (2 for real32
and 3 for real64)

(maxLength) Maximum buffer size

// Buffer contains the newly formatted string. If the
// formatted value does not fit in the width specified,
// e64ToStr will store "#" characters into this string.

//
// Carry-
//
//
//
//
//

[]==mmmmmmm

/1

Clear if no error, set if error.
If error, Xo is

-3 if string overflow

-2 if bad width

-1 if value out of range

// Unlike the integer-to-string conversions, this routine
// always right-justifies the number in the specified
// string. Width must be a positive number; negative
// values are illegal (actually, they are treated as

// *really*

big positive numbers that will always raise

// a string overflow exception).
//
/!

proc e64ToStr
#define e2sWidth  x19 // chkNaNINF expects this here.
#define e2sExp x20
#define e2sFill  x21 // chkNaNINF expects this here.
#define e2sBuffer x22 // chkNaNINF expects this here.
#define e2sMaxLen x23
#define e2sExpDigs x24

Numeric Conversion 555



#define e2sSign w25
#tdefine eFailAdrs x25 // chkNaNINF expects this here.
#define e2sMantSz  x26

locals e2s

gword  e2s.x1x2
gqword  e2s.x3x4
gword  e2s.x5x19
gword  e2s.x20x21
gword  e2s.x22x23
gqword  e2s.x24x25
gword  e2s.x26x27
dword  e2s.x0

dword  e2s.do

byte e2s.digits, 64
byte e2s.stack, 64
endl e2s

// Build activation record and preserve registers:

enter e2s.size

str X0, [fp, #e2s.x0]

stp x1, x2, [fp, #He2s.x1x2]
stp X3, X4, [fp, #e2s.x3x4]
stp X5, x19, [fp, #e2s.x5x19]
stp x20, x21, [fp, #e2s.x20x21]
stp x22, x23, [fp, #e2s.x22x23]
stp x24, x25, [fp, #e2s.x24x25]
stp X26, x27, [fp, #e2s.x26x27]
str do, [fp, #e2s.do]

// Move important data to nonvolatile registers:

mov e2sBuffer, x0
mov e2sWidth, x1
mov e2sFill, x2
mov e2sExpDigs, x3
mov e2sMaxLen, x4

// See if the width is greater than the buffer size:

cmp e2sWidth, e2sMaxLen
bhs strovfl

strb wzr, [e2sBuffer, e2sWidth] // Zero-terminate str.
// First, make sure the width isn't o:

O cmp e2sWidth, #0
beq valOutOfRng

// Just to be on the safe side, don't allow widths greater
// than 1024:
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cmp e2sWidth, #1024
bhi badWidth

// Check for NaN and INF:

B lea failAdrs, exit eToBuf // Note: X25, used before
bl chkNaNINF // e2sSign (also X25)

// Okay, do the conversion:

® add x0, fp, #e2s.digits // lea x1, e2s.digits

bl FPDigits // Convert Do to digit str.
mov e2skExp, x1 // Save away exponent result.
mov e2sSign, w2 // Save mantissa sign char.

// Verify that there is sufficient room for the mantissa's sign,
// the decimal point, two mantissa digits, the "E",

// and the exponent's sign. Also add in the number of digits

// required by the exponent (2 for single, 3 for double).

//

// -1.2e+00 :reals

// -1.2e+000  :real8

0 add x2, e2sExpDigs, #6  // Minimum number of posns
cmp X2, e2sWidth
bls goodWidth

// Output a sequence of "#...#" chars (to the specified width)
// if the width value is not large enough to hold the
// conversion:

mov X2, e2sWidth
mov X0, #'#'
mov x1, e2sBuffer

fillPnd: strb w0, [x1]
add x1, x1, #1
subs X2, x2, #1
bne fillPnd
b.al exit_eToBuf

// Okay, the width is sufficient to hold the number; do the
// conversion and output the string here:

goodWidth:
// Compute the # of mantissa digits to display,
// not counting mantissa sign, decimal point,
// "E", and exponent sign:

® sub e2sMantSz, e2sWidth, e2sExpDigs
sub e2sMantSz, e2sMantSz, #4

// Round the number to the specified number of

// print positions. (Note: since there are a
// maximum of 16 significant digits, don't
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// bother with the rounding if the field width
// is greater than 16 digits.)

cmp e2sMantSz, #maxDigits
bhs noNeedToRound

// To round the value to the number of

// significant digits, go to the digit just

// beyond the last one you are considering (e2sMantSz
// currently contains the number of decimal

// positions) and add 5 to that digit.

// Propagate any overflow into the remaining

// digit positions.

add x1, e2sMantSz, #1

add x2, fp, #e2s.digits // lea x2, e2s.digits

ldrb  wo, [x2, x1] // Get least sig digit + 1.
add w0, wo, #5 // Round (for example, +0.5).
cmp wo, #'9'

bhi whileDigGT9
b.al noNeedToRound

// Sneak this code in here, after a branch, so the
// loop below doesn't get broken up.

firstDigitInNumber:

// If you get to this point, you've hit the

// first digit in the number, so you have to
// shift all the characters down one position
// in the string of bytes and put a "1" in the
// first character position.

ldr x0, [x2, #8]
str X0, [x2, #9]
ldr x0, [x2]

str x0, [x2, #1]

mov x0, #'1' // Store '1' in 1st
strb  wo, [x2] // digit position.

// Bump exponent by 1, as the shift did
// a divide by 10.

add e2sExp, e2sExp, #1
b.al noNeedToRound

// Subtract out overflow and add the carry into the previous
// digit (unless you hit the first digit in the number):

whileDigGT9:
sub w0, w0, #10
strb wo, [x2, x1]
subs x1, x1, #1
bmi firstDigitInNumber
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// Add in carry to previous digit:

ldrb w0, [x2, x1]

add w0, wo, #1
strb w0, [x2, x1]
cmp wo, #'9' // Overflow if char > '9'

bhi  whileDigGT9

noNeedToRound:
add x2, fp, #e2s.digits // lea x2, e2s.digits

// Okay, emit the string at this point. This is pretty easy,
// since all you really need to do is copy data from the
// digits array and add an exponent (plus a few other simple chars).

® mov x1, #0 // Count output mantissa digits.
strb e2sSign, [e2sBuffer], #1

// Output the first character and a following decimal point
// if there are more than two mantissa digits to output.

ldrb wo, [x2]

strb w0, [e2sBuffer], #1
add x1, x1, #1

cmp x1, e2sMantSz

beq noDecPt

mov wo, #'.'
strb w0, [e2sBuffer], #1

noDecPt:

// Output any remaining mantissa digits here.

// Note that if the caller requests the output of
// more than 16 digits, this routine will output Os
// for the additional digits.

b.al whileX21tMantSizeTest

whileX21tMantSize:
mov wo, #'0'
cmp x1, #maxDigits

bhs justPuto

ldrb w0, [x2, x1]
justPuto:

strb w0, [e2sBuffer], #1

add x1, x1, #1

whileX21tMantSizeTest:

cmp x1, e2sMantSz
blo whileX21tMantSize
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// Output the exponent:

@ mov wo, #'e’
strb w0, [e2sBuffer], #1
mov wo, #'+'
mov w4, #'-'
neg x5, €e2skExp
cmp e2skxp, #0
csel w0, w0, w4, ge
csel e2sExp, e2sExp, x5, ge
strb w0, [e2sBuffer], #1
mov x0, e2sExp
mov x1, e2sExpDigs
mov X2, e2sBuffer
bl expToBuf
bcs error
exit_eToBuf:
msr nzcv, Xzr // clc = no error
ldr x0, [fp, #e2s.x0]
returnk64:
ldp x1, x2, [fp, #e2s.x1x2]
1ldp X3, x4, [fp, #e2s.x3x4]
1dp X5, x19, [fp, #e2s.x5x19]
1dp x20, x21, [fp, #e2s.x20x21]
ldp X22, x23, [fp, #e2s.x22x23]
1dp x24, x25, [fp, #e2s.x24x25]
1dp X26, x27, [fp, #e2s.x26x27]
ldr do, [fp, #e2s.do]
leave
strOvfl: mov X0, #-3
b.al error
badWidth:  mov X0, #-2
b.al error
valOutOfRng:
mov x0, #-1
error:
mrs x1, nzcv
orr x1, x1, #(1 << 29)
msr nzcv, x1i // stc = error
b.al returnE64
endp e64ToStr

Converting the mantissa to a string is very similar to the routine in
r64ToStr, though exponential form is a little easier, as the format always
places the decimal point immediately after the first mantissa digit. As with
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r64ToStr, e64ToStr begins by checking the input parameters to see if they are
valid @ (returning with the carry flag set and an error code in X0 if an error
occurred). After parameter validation, the code checks for NaN or INF @. It
then calls FPDigits to convert the mantissa to a string of digits © (held in a
local buffer). This call also returns the sign of the value as well as a decimal
integer exponent.

After calculating the decimal exponent value, the e64ToStr function
checks whether the converted value will fit into the space specified by the
Width input parameter @. If the converted number would be too large,
e64ToStr emits a string of # characters to denote an error.

Note that this situation is not considered an error in the sense of return-
ing the carry flag set. If the caller specifies an insufficient field width, the
function still succeeds in creating a string conversion; that string just hap-
pens to be filled with # characters. The carry flag is set, on error, when
e64ToStr cannot produce an output string.

After verifying that the string will fit in the specified field width, the
e64ToStr function rounds the result to the specified number of decimal dig-
its @. This algorithm is identical to that used by r64ToStr. Next, the code
outputs the mantissa digits @. Again, this is similar to the way r64ToStr
works, except that the decimal point is always placed after the first digit
(no need to calculate its position). Finally, the code emits e followed by the
exponent’s sign character @ and then calls expToBuf to convert the exponent
to a one-, two-, or three-digit character sequence (specified by the expDigs
parameter the caller passes in X3).

The remaining code in Listing 9-13 provides utility functions used by
the main program to display data (r64Print and e64Print), along with the
asmMain procedure that demonstrates floating-point output using the func-
tions in this section:

// Listing9-13.S (cont.)
//

proc 164Print

stp X0, x1, [sp, #-16]!
stp X2, x3, [sp, #-16]!
stp X4, x5, [sp, #-16]!
stp x6, X7, [sp, #-16]!
stp x8, 1lr, [sp, #-16]!
sub sp, sp, #

lea X0, fmtStri

lea x1, r64str 1
mstr x1, [sp]
bl printf

add sp, sp, #64

1dp x8, 1r, [sp], #16
1dp x6, x7, [sp], #16
1dp x4, x5, [sp], #16
1dp x2, x3, [sp], #16
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1dp X0, x1, [sp], #16
ret
endp r64Print

proc e64Print

stp x0, x1, [sp, #-16]!
stp X2, X3, [sp, #-16]
stp x4, x5, [sp, #-16]
stp X6, X7, [sp, #-16]
stp x8, 1r, [sp, #-16]!
sub sp, sp, #64

lea X0, fmtStr3

lea X1, ré4str_1
mstr x1, [sp]
bl printf

add sp, sp, #64

ldp x8, 1lr, [sp], #16
1dp x6, x7, [sp], #16
1dp x4, x5, [sp], #16
ldp X2, x3, [sp], #16
1dp x0, x1, [sp], #16
ret

endp e64Print

Note that these functions preserve all the nonvolatile registers because
printf() can modify them.

The asmMain function is a typical demonstration program for the floating-
point string-conversion functions. It calls the r64ToStr and e64ToStr func-
tions with various input parameters to demonstrate the use of these
functions:

// Listing9-13.S (cont.)
//
® 164 1: .double 1.234567890123456

.double 0.0000000000000001
.double 1234567890123456.0
.double 1234567890.123456
.double 99499999999999999.0
.dword 0x7+f0000000000000
.dword 0xfff0000000000000
.dword  Ox7fffffffffffffff
.dword  Oxffffffffffffffff
.double 0.0
.double -0.0

fCnt = (. - r64 1)

rSizes: .word 12, 12, 2, 7, 0, 0, 0, 0, 0, 2, 2
e64_1: .double 1.234567890123456e123

.double 1.234567890123456e-123
e64 3: .double 1.234567890123456e1
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.double
.double
.double
.double
.double
.dword
.dword
.dword
.dword
.double
.double
eCnt =

eSizes: .word
expSizes:  .word

1.234567890123456e-1
1.234567890123456€10
1.234567890123456e-10
1.234567890123456€100
1.234567890123456e-100
0x7ff0000000000000
0xfff0000000000000
OXTFFFFEFFFFFFFFFT
OXFFFFFFFFFFFFFFFF
0.0

-0.0

(. - eb4 1)

6, 9, 8, 12, 14, 16, 18, 20, 12, 12, 12, 12, 8, 8
3) 3) 2’ 2) 2) 21 3) 3) 2) 2) 2’ 2) 2) 2

// Here is the asmMain function:

proc

locals
dword
dword
byte
endl

enter
stp
str

// F output

mov

fLoop:
ldr
lea
mov
mov
mov
bl
bcs
bl
subs
bpl

lea
bl

lea
lea
mov
f2Loop: ldr
lea
mov

asmMain, public

am
am.x8x9
am.x27
am.stk, 64
am

am.size // Activation record
x8, x9, [fp, #am.x8x9]
x27, [fp, #am.x27]

x2, #16 // decDigits

do, 164 1

X0, ré64str 1 // Buffer
x1, #30 // fWidth
X3, #'.' // Fill

x4, 32 // maxLength
1r64ToStr

fpError

164Print

X2, X2, #1

fLoop

X0, newlines
printf

X5, 164 1

x6, rSizes

x7, #fCnt/8

do, [x5], #8

X0, ré64str 1 // Buffer
x1, #30 // fWidth
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ldr w2, [x6], #4 // decDigits

mov x3, #'.' // Fill

mov x4, #32 // maxLength
bl 164ToStr

bcs fpError

bl r64Print

subs X7, X7, #1
bne f2Loop

// E output
lea X0, expStr
bl printf
lea x5, e64_1
lea X6, eSizes
lea X7, expSizes
mov x8, #eCnt/8
elLoop:
ldr do, [x5], #8
lea X0, ré4str 1 // Buffer
ldr wl, [x6], #4 // fWidth
mov x2, #'.' // Fill
ldr w3, [x7], #4  // expDigits
mov x4, #32 // maxLength
bl e64ToStr
bcs fpError
bl e64Print
subs x8, x8, #1
bne elLoop
b.al allDone
fpError:
mov X1, x0
lea X0, fmtStr2
mstr x1, [sp]
bl printf
allDone:

1dp x8, X9, [fp, #am.x8x9]
ldr x27, [fp, #am.x27]
leave

endp asmMain

Listing 9-13 places the floating-point constant values in the code sec-
tion rather than a read-only data section @, making it easier to modify
them when looking at the main program.

The following is the build command and sample output for Listing 9-13:

% ./build Listing9-13

% 1G
Calling Listing9-13:
r64ToStr: value="........... 1.2345678901234560"



164ToStr: value="............ 1.234567890123456"

164ToStr: value='..........u.. 1.23456789012345"
164ToStr: value='......cvuuun.n 1.2345678901234"
r64ToStr: value="............... 1.234567890123"
r64ToStr: value=".....covevuunn.. 1.23456789012"
164ToStr: value=".....ccevvveennnnn 1.2345678901"
r64ToStr: value=".......cievvunenns 1.234567890"
164ToStr: value="........ccvvvieenn. 1.23456789"
T64ToStr: value="....veuieeennnennnnn 1.2345678"
164ToStr: value="...eeeuieeennnennnnns 1.234567"
r64ToStr: value="....ccoviiiiiennennn. 1.23456'
r64ToStr: value=".....cciiiiiiiennennnnn 1.2345"
T64TOStr: value="...eeeenierennneennnannn 1.234'
T64ToStr: value="...ieeuiiernnennnnnennnns 1.23'
T64ToStr: value="....ciiiiiiiiiiiennennnnn 1.2'
T64ToStr: value=".. ..ot iiiiiieinirnnnnnnnns 1'
r64ToStr: value="............... 1.234567890123"
164ToStr: value="............... 0.000000000000"
164ToStr: value=".......... 1234567890123456.00"
164ToStr: value="........... 1234567890.1234560"

r64ToStr: value="............ 99500000000000000"
164ToStr: value="INF '
164ToStr: value='-INF '
164ToStr: value='NaN '
164ToStr: value='NaN '
164ToStr: value="....ciiiiiiiiiinennennnn 0.00'
T64ToStr: value="...ieeeiieeennenennnnnnnns -0.00'

Testing e64ToStr:
e64ToStr: value='#i####'

e64ToStr: value=' 1.2e-123'
e64ToStr: value=' 1.2e+01'

e64ToStr: value=' 1.23456e-01'
e64ToStr: value=' 1.2345678e+10'
e64ToStr: value=" 1.234567890e-10"
e64ToStr: value=" 1.2345678901e+100"

e64ToStr: value=" 1.234567890123e-100"
e64ToStr: value="INF !
e64ToStr: value='-INF '
e64ToStr: value="'NaN '
e64ToStr: value='NaN '
e64ToStr: value=' 0.0e+00'

e64ToStr: value='-0.0e+00"

Listing9-13 terminated

This output demonstrates double-precision floating-point output. If you
want to convert a single-precision value to a string, first convert the single-
precision value to double-precision and use this code to translate the result-
ing double-precision value to a string.
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String-to-Numeric Conversions

The routines converting numeric values to strings, and strings to numeric
values, have two fundamental differences. First of all, numeric-to-string
conversions generally occur without possibility of error (assuming you have
allocated a sufficiently large buffer so that the conversion routines don’t
write data beyond the end of the buffer). String-to-numeric conversions, on
the other hand, must handle the real possibility of errors like illegal charac-
ters and numeric overflow.

A typical numeric input operation consists of reading a string of char-
acters from the user and then translating this string of characters into an
internal numeric representation. For example, in C++ a statement like
cin »> i32; reads a line of text from the user and converts a sequence of
digits appearing at the beginning of that line of text into a 32-bit signed
integer (assuming i32 is a 32-bit int object). The cin >> i32; statement skips
over certain characters, like leading spaces, in the string that may appear
before the actual numeric characters. The input string may also contain
additional data beyond the end of the numeric input (for example, it is pos-
sible to read two integer values from the same input line), and therefore the
input conversion routine must determine where the numeric data ends in
the input stream.

Typically, C++ achieves this by looking for a character from a set of
delimiter characters. The delimiter character set could be something as
simple as any character that is not a numeric digit; or the set could be the
whitespace characters (space, tab, and so on) along with perhaps a few
other characters such as a comma (,) or another punctuation character.
For the sake of example, the code in this section assumes that any leading
spaces or tab characters (ASCII code 9) may precede the first numeric digit
and that the conversion stops on the first non-digit character it encounters.
Possible error conditions are as follows:

e No numeric digits at all at the beginning of the string (following any
spaces or tabs).
e The string of digits is a value that would be too large for the intended

numeric size (for example, 64 bits).

It will be up to the caller to determine whether the numeric string ends
with an invalid character upon return from the function call.

9.3.1 Decimal Strings to Integers

The basic algorithm to convert a string containing decimal digits to a num-
ber is the following:

1. Initialize an accumulator variable to 0.
2. Skip any leading spaces or tabs in the string.
3. Fetch the first character after the spaces/tabs.



. If the character is not a numeric digit, return an error. If the character

is a numeric digit, fall through to step 5.

. Convert the numeric character to a numeric value (using AND 0xf).

6. Set the accumulator = (accumulator x 10) + current numeric value.

. If overflow occurs, return and report an error. If no overflow occurs,

fall through to step 8.

8. Fetch the next character from the string.

9. If the character is a numeric digit, go back to step 5; otherwise, fall

10.

through to step 10.

Return success, with the accumulator containing the converted value.

For signed integer input, you use this same algorithm with the follow-

ing modifications:

If the first non-space/tab character is a hyphen (-), set a flag denoting
that the number is negative and skip the - character. If the first charac-
ter is not -, clear the flag.

At the end of a successful conversion, if the flag is set, negate the inte-
ger result before returning (you must check for overflow on the negate
operation).

Listing 9-14 implements the conversion algorithm; I've again broken

this listing into several sections to better annotate it. The first section con-
tains the usual format strings, along with various sample strings the main
program uses to test the strtou and strtoi functions.

// Listing9-14.S

/!
// String-to-numeric conversion
#include "aoaa.inc"
false =
true = 1
tab = 9
.section .rodata, ""
ttlStr: .asciz "Listing 9-14"
fmtStr1: .ascii "strtou: String='%s'\n"
.asciz " value=%11u\n"
fmtStra: .ascii "Overflow: String='%s'\n"
.asciz " value=%11x\n"
fmtStr3: .ascii "strtoi: String='%s'\n"
.asciz ! value=%11i\n"
unexError: .asciz "Unexpected error in program\n"
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valuel: .asciz "o

value2: .asciz "12 "
value3: .asciz " 123 "
values4: .asciz "1234"
values: .asciz "1234567890123456789"
value6: .asciz "18446744073709551615"
OFvalue: .asciz "18446744073709551616"
OFvalue2: .asciz "999999999999999999999"
ivalueil: .asciz ot
ivalue2: .asciz "-12 "
ivalue3: .asciz "-123 "
ivalues: .asciz "-1234"
ivalues: .asciz "-1234567890123456789"
ivalue6: .asciz "-18446744073709551615"
OFivalue: .asciz "18446744073709551616"
OFivalue2: .asciz "-18446744073709551616"
.code
.extern printf

LTI 117777711711171117111111111111111
/1

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

This program doesn’t have any static, writable data; all variable data is
kept in registers or in local variables.

The following code is the strtou function, which converts strings con-
taining decimal digits to an unsigned integer:

// Listing9-14.S (cont.)

//

LTI 00111001 17701110007111007111011111111111117
//

// strtou

//

// Converts string data to a 64-bit unsigned integer

//

// Input:

//

/] X1- Pointer to buffer containing string to convert

//

// Outputs:

//

//  Xo- Contains converted string (if success), error code
// if an error occurs

//

/l X1- Points at first char beyond end of numeric string
// If error, X1's value is restored to original value.



// Caller can check character at [X1] after a

// successful result to see if the character following
// the numeric digits is a legal numeric delimiter.

//

/l C- (carry flag) Set if error occurs, clear if

// conversion was successful. On error, X0 will

// contain 0 (illegal initial character) or

// OFFFFFFFFFFFFFFFFh (overflow).

proc strtou

str X5, [sp, #-16]!
stp X3, x4, [sp, #-16]!
stp x1, x2, [sp, #-16]!

mov X3, Xzr
mov X0, Xxzr
mov x4, #10 // Used to mul by 10

// The following loop skips over any whitespace (spaces and
// tabs) that appear at the beginning of the string:

O sub x1, x1, #1 // Incremented below
skipWs: 1drb w2, [x1, #1]! // Fetch next (first) char.
cmp w2, #' '
beq skipWs
cmp w2, #tab
beq skipWs

// If you don't have a numeric digit at this
// point, return an error.

e cmp w2, #'0" // Note: '0' < "1' < ... < '9'
blo badNumber
cmp w2, #'9'
bhi badNumber

// Okay, the first digit is good. Convert the string
// of digits to numeric form.

//

// Have to check for unsigned integer overflow here.
// Unfortunately, madd does not set the carry or

// overflow flag, so you have to use umulh to see if
// overflow occurs after a multiplication and do

// an explicit add (rather than madd) to add the

// digit into the accumulator (X0).

® convert: umulh x5, x0, x4 // Acc * 10
cmp X5, Xzr
bne overflow
and X2, x2, #oxf // Char -> numeric in X2
mul X0, X0, x4 // Can't use madd!
adds X0, X0, X2 // Add in digit.
bcs overflow
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0 ldrb w2, [x1, #1]! // Get next char.
cmp w2, #'0' // Check for digit.
blo end0fNum
cmp w2, #'9'
bls convert

// If you get to this point, you've successfully converted
// the string to numeric form. Return without restoring
// the value in X1 (X1 points at end of digits).

© endOfNum:  1dp x3, x4, [sp], #16 // Really X1, X2

mov X2, X4
1dp X3, x4, [sp], #16
ldr x5, [sp], #16

// Because the conversion was successful, this
// procedure leaves X1 pointing at the first

// character beyond the converted digits.

// Therefore, we don't restore X1 from the stack.

msr nzcv, xzr // clr c = no error
ret

// badNumber- Drop down here if the first character in

// the string was not a valid digit.
@ badNumber: mov X0, Xzr
errorRet: mrs x1, nzcv // Return error in carry flag.
orr x1, x1, #(1 << 29)
msy nzcv, x1i // Set c = error.

1dp x1, x2, [sp], #16
1dp X3, x4, [sp], #16
ldr x5, [sp], #16
ret

// overflow- Drop down here if the accumulator overflowed
// while adding in the current character.

overflow: mov X0, #-1 // OXFFFFFFFFFFFFFFFF
b.al errorRet
endp strtou

On entry into strtou, the X1 register points at the first character of the
string to convert. This function begins by skipping over any whitespace
characters (spaces and tabs) in the string, leaving X1 pointing at the first
non-space/non-tab character @.

After any whitespace characters, the first character must be a decimal
digit, or strtou must return a conversion error. Therefore, after finding a
non-whitespace character, the code checks to see that the character is in
the range '0' to '9' @.

After verifying that the first character is a digit, the code enters the
main conversion loop ©. Normally, you'd just convert the character to an



integer (by ANDing with 0xF), multiply the accumulator in X0 by 10, and
add in the character’s value. This could be done using two instructions:

and x2, x2, #oxf
madd x0, x0, x4, x2 // X4 contains 10.

The only problem is that you cannot detect overflow by using these
two instructions (something that the strtou function must do). To detect
an overflow due to the multiplication by 10, the code must use the umulh
instruction and check the result for 0 (if it is not 0, overflow occurs) ©. If
the umulh result is 0, the code can multiply the accumulator (X0) by 10 with-
out fear of overflow. Of course, overflow can still occur when adding the
character’s value to the product of X0 and 10, so you still cannot use madd;
instead, you must multiply the accumulator by 10, then use the adds instruc-
tion to add in the character value and check the carry flag immediately
thereafter.

The convert loop repeats this process until either an overflow occurs
or it encounters a nondigit character. Once it encounters a nondigit char-
acter @, the converted integer value is in the X0 register, and the function
returns with the carry clear. Note that if the conversion is successful, the
strtou function does not restore the X1 register; instead, it returns with X1
pointing at the first nondigit character @. It is the caller’s responsibility to
check this character to see if it is legitimate.

In the event of an overflow or an illegal starting character, the function
returns with the carry flag set and an error code in X0 ©.

The following code is the strtoi procedure, which is the signed-integer
version of the strtou procedure:

// Listing9-14.S (cont.)

/1

// strtoi

//

// Converts string data to a 64-bit signed integer

/1

// Input:

//

/l X1- Pointer to buffer containing string to convert

/1

// Outputs:

/1

//  Xo- Contains converted string (if success), error code
// if an error occurs

//

/l X1- Points at first char beyond end of numeric string.
// If error, X1's value is restored to original value.
// Caller can check character at [X1] after a

// successful result to see if the character following
// the numeric digits is a legal numeric delimiter.
/1

// C- (carry flag) Set if error occurs, clear if

// conversion was successful. On error, X0 will
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/1
/1

tooBig:

contain 0 (illegal initial character) or
-1 (overflow).

.dword OXTFFFFFFFFFFFFFFF

proc strtoi

locals si
gword  si.saveX1X2
endl si

enter si.size

// Preserve X1 in case you have to restore it;
// X2 is the sign flag:

stp x1, x2, [fp, #si.saveX1X2]
// Assume you have a nonnegative number:

mov x2, #false

// The following loop skips over any whitespace (spaces and
// tabs) that appear at the beginning of the string:

skipWsSi:

® notNeg:

O sub x1, x1, #1 // Adjust for +1 below.

ldrb wo, [x1, #1]!
cmp wo, #' '
beq skipWsi
cmp wo, #tab
beq skipWsi

// If the first character you've encountered is
// '-', then skip it, but remember that this is
// a negative number:

@ cmp wo, #'-'

bne notNeg
mov w2, #true
add x1, x1, #1 // Skip '-'

bl strtou // Convert string to integer.
bcs hadError

// strtou returned success. Check the negative
// flag and negate the input if the flag
// contains true:

O cmp w2, ftrue

bne itsPosOro

negs X0, X0
bvs overflowi
ldr x2, [fp, #si.saveX1X2+8]



msy nzcv, xzr // clr ¢ = no error
leave

// Success, so don't restore Xi:

itsPosOro:
ldr x2, tooBig
cmp X0, X2 // Number is too big.
bhi overflowi
ldr X2, [fp, #si.saveX1X2+8]
msy nzcv, xzr // clr ¢ = no error
leave

// If you have an error, you need to restore RDI from the stack:

overflowi: mov X0, #-1 // Indicate overflow.
hadError:
mrs X2, nzev  // Return error in carry flag.
orr X2, x2, #(1 << 29)
msr nzcv, x2 // Set c = error.
1dp x1, x2, [fp, #si.saveX1X2]
leave

endp strtoi

The strtoi function converts a string containing a signed integer to the
corresponding value in X0. The code begins by eliminating whitespace @,
then checks for a '-' character ®. The function maintains a “negative
flag” in the X2 register (0 = nonnegative, 1 = negative). After skipping the
optional sign character, the code calls the strtou function to convert the fol-
lowing string to an unsigned value ©.

Upon return from strtou, the strtoi function checks the sign flag in
X2 and negates the number if it’s supposed to be negative @. In both cases
(negative or nonnegative), the code also checks for an overflow condition
and returns an error if an overflow occurred.

As for strtou, the strtoi function does not restore X1 if the conversion
was successful. However, it will restore X1 if an overflow occurred or if
strtou reported an error.

When you call strtou to convert the string to an integer, strtoi will allow
an arbitrary amount of whitespace between the minus sign and the first
digit of a string representing a negative number. If this is a problem for you,
modify strtou to skip whitespace and then call a subservient routine to do
the conversion; next, have strtoi call that subservient routine (which will
return an illegal initial character error, if appropriate) in place of strtou.

The asmMain function demonstrates calling the strtou and strtoi
functions:

// Listing9-14.S (cont.)

//
[I11771107007111711711171171117117111711711171111111111111111111117
//
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// Here is the asmMain function:

proc

locals

byte
endl

enter

asmMain, public
am
am.shadow, 64

am

am.size

// Test unsigned conversions:

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

x1, valuel
strtou
UnexpectedError

X2, X0
x0, fmtStri
x1, valuel
x1, [sp]

x2, [sp, #8]
printf

x1, value2
strtou
UnexpectedError

X2, X0
X0, fmtStri
x1, value2
x1, [sp]

x2, [sp, #8]
printf

x1, value3
strtou
UnexpectedError

X2, X0

X0, fmtStra
x1, value3
x1, [sp]

x2, [sp, #8]
printf

x1, value4
strtou
UnexpectedError

X2, X0

x0, fmtStri
x1, value4
x1, [sp]

x2, [sp, #8]
printf



lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl

bcc
cmp
beq

mov
lea
lea
mstr
mstr
bl

lea
bl

bcc
cmp
beq

mov
lea
lea
mstr
mstr
bl

x1, values
strtou
UnexpectedError

X2, X0
x0, fmtStri
x1, values
x1, [sp]

x2, [sp, #8]
printf

x1, value6
strtou
UnexpectedError

X2, X0
X0, fmtStri
x1, valueb
x1, [sp]

x2, [sp, #8]
printf

x1, OFvalue

strtou

UnexpectedError

X0, Xzr // Nonzero for overflow
UnexpectedError

X2, X0
X0, fmtStr2
x1, OFvalue
x1, [sp]

x2, [sp, #8]
printf

x1, OFvalue2

strtou

UnexpectedError

X0, Xzr // Nonzero for overflow
UnexpectedError

X2, x0

x0, fmtStr2
x1, OFvalue2
x1, [sp]

x2, [sp, #8]
printf

// Test signed conversions:

lea
bl
bcs

mov

x1, ivaluel
strtoi
UnexpectedError

X2, X0
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lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

mov
lea
lea
mstr
mstr
bl

lea
bl
bcs

X0, fmtStr3
x1, ivaluel
x1, [sp]

x2, [sp, #8]
printf

x1, ivalue2
strtoi
UnexpectedError

X2, X0

X0, fmtStr3
x1, ivalue2
x1, [sp]

x2, [sp, #8]
printf

x1, ivalue3
strtoi
UnexpectedError

X2, X0

x0, fmtStr3
x1, ivalue3
x1, [sp]

x2, [sp, #8]
printf

x1, ivalue4
strtoi
UnexpectedError

X2, X0
x0, fmtStr3
x1, ivalue4
x1, [sp]

x2, [sp, #8]
printf

x1, ivalues
strtoi
UnexpectedError

X2, X0
x0, fmtStr3
x1, ivalues
x1, [sp]

x2, [sp, #8]
printf

x1, ivalueb
strtoi
UnexpectedError



mov X2, X0

lea X0, fmtStr3
lea x1, ivalue6
mstr x1, [sp]
mstr x2, [sp, #8]

bl printf

lea x1, OFivalue

bl strtoi

bcc UnexpectedError

cmp X0, Xzr // Nonzero for overflow
beq UnexpectedError

mov X2, X0

lea x0, fmtStr2

lea x1, OFivalue

mstr x1, [sp]
mstr X2, [sp, #8]

bl printf

lea x1, OFivalue2

bl strtoi

bcc UnexpectedError

cmp X0, Xzr // Nonzero for overflow
beq UnexpectedError

mov X2, X0

lea X0, fmtStr2

lea x1, OFivalue2

mstr x1, [sp]
mstr X2, [sp, #8]
bl printf

b.al allDone

UnexpectedError:
lea X0, unexError
bl printf
allDone: leave // Returns to caller

endp asmMain

The asmMain function in Listing 9-14 is a typical test program; it converts
various strings appearing in the read-only data section to their correspond-
ing integer values and displays them. It also tests a couple of overflow condi-
tions to verify that the routines properly handle overflow.

The following is the build command and sample output for the program
in Listing 9-14:

% ./build Listing9-14

% ./Listing9-14

Calling Listing9-14:

strtou: String=" 1'
value=1
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strtou: String='12 '

value=12

strtou: String=' 123 '
value=123

strtou: String='1234'
value=1234

strtou: String='1234567890123456789'
value=1234567890123456789

strtou: String='18446744073709551615"
value=18446744073709551615

Overflow: String='18446744073709551616'
value=ffffffffHifffff

Overflow: String='999999999999999999999"
value=ffffff it

strtoi: String=' -1'
value=-1

strtoi: String='-12 '
value=-12

strtoi: String=' -123
value=-123

strtoi: String='-1234'
value=-1234

strtoi: String='-1234567890123456789'
value=-1234567890123456789

strtoi: String='-18446744073709551615"
value=1

Overflow: String='18446744073709551616'
value=ffffffffHfifffff

Overflow: String='-18446744073709551616"
value=fffff i

Listing9-14 terminated

For an extended-precision string-to-numeric conversion, simply modify
the strtou function to include an extended-precision accumulator, then
do an extended-precision multiplication by 10 (rather than a standard
multiplication).

9.3.2 Hexadecimal Strings to Numeric Form

As was the case for numeric output, hexadecimal input is the easiest
numeric input routine to write. The basic algorithm for converting hexa-
decimal strings to numeric form is the following:

1. Initialize an accumulator value to 0.

2. For each input character that is a valid hexadecimal digit, repeat steps 3
through 6; skip down to step 7 when the character is not a valid hexa-
decimal digit.

3. Convert the hexadecimal character to a value in the range 0 to 15
(Oh to OFh).



4. If the HO 4 bits of the accumulator value are nonzero, raise an

exception.

5. Multiply the current value by 16 (that is, shift left 4 bits).

6. Add the converted hexadecimal digit value to the accumulator.

7. Check the current input character to ensure that it is a valid delimiter.
Raise an exception if it is not.

Listing 9-15 implements this hexadecimal input routine for 64-bit

values.

// Listing9-15.S
//

// Hexadecimal-string-to-numeric conversion

#include
false =
true =
tab =
.section
tt1Str: .asciz
fmtStr1: .ascii
.asciz
fmtStr2: .asciz
fmtStr3: .ascii
.asciz
fmtStr4: .ascii
.asciz
hexStr: .asciz
hexStrOVFL: .asciz
hexStrBAD: .asciz
.code
.extern

"aoaa.inc"

1

9
.rodata, ""

"Listing 9-15"
"strtoh: String='%s' "
"value=%11x\n"

"Error, str='%s', x0=%11d\n"

"Error, expected overflow: x0=%11x,
"str="%s"'\n"

"Error, expected bad char: x0=%11x,
"str="%s"'\n"

"1234567890abcdef"

"1234567890abcdef0"
"x123"

printf

LTI 111010007711111111177111111111177

//

// Return program title to C++ program:

proc
lea
ret
endp

getTitle, public
X0, ttlStr

getTitle

LTI 11000111101111117111777
/!
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// strtoh:

/1

// Converts string data to a 64-bit unsigned integer

//

// Input:

/1

!/l X1- Pointer to buffer containing string to convert

//

// Outputs:

/1

/] Xo- Contains converted string (if success), error code
// if an error occurs

/1

/] X1- Points at first char beyond end of hexadecimal string.
// If error, X1's value is restored to original value.
// Caller can check character at [X1] after a

// successful result to see if the character following
// the hexadecimal digits is a legal delimiter.

//

//  C- (carry flag) Set if error occurs, clear if

// conversion was successful. On error, X0 will

// contain 0 (illegal initial character) or

// -1 = OxfFfFFFFfHFfffff (overflow).

proc strtoh

stp X3, X4, [sp, #-16]!
stp X1, x2, [sp, #-16]!

// This code will use the value in X3 to test
// whether overflow will occur in X0 when

// shifting to the left 4 bits:

mov x3, 0xF000000000000000
mov x0, xzr // Zero out accumulator.

// ox5f is used to convert lowercase to
// uppercase:

mov x4, Ox5f

// The following loop skips over any whitespace (spaces and
// tabs) that appear at the beginning of the string:

sub x1, x1, #1 // Because of inc below
skipWs: ldrb w2, [x1, #1]!

cmp w2, #' '

beq skipWs

cmp w2, #tab

beq skipWs

// If you don't have a hexadecimal digit at this
// point, return an error:
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@ convert:

® cmp w2, #'0' // Note: '0' < '1' < ... < '9’

blo badNumber

cmp w2, #'9'
bls convert
and X2, X2, x4 // Cheesy LC -> UC conversion
cmp w2, #'A'

blo badNumber

cmp w2, #'F'

bhi badNumber

sub w2, w2, #7 // Maps 41h..46h -> 3ah..3fh

// Okay, the first digit is good. Convert the
// string of digits to numeric form:

ands xzr, x3, X0 // See if adding in the current
bne overflow // digit will cause an overflow.

and x2, x2, #oxf // Convert to numeric in X2.

// Multiply 64-bit accumulator by 16 and add in
// new digit:

® 1s1 x0, x0, #4

add x0, x0, x2 // Never overflows
// Move on to next character:

ldrb w2, [x1, #1]!

cmp w2, #'0'

blo end0fNum

cmp w2, #'9'

bls convert

and x2, X2, x4 // Cheesy LC -> UC conversion
cmp x2, #'A’'

blo end0fNum

cmp X2, #'F'

bhi endOfNum

sub X2, x2, #7 // Maps 41h..46h -> 3ah..3fh
b.al convert

// If you get to this point, you've successfully converted
// the string to numeric form:

endOfNum:

// Because the conversion was successful, this
// procedure leaves X1 pointing at the first
// character beyond the converted digits.

// Therefore, don't restore X1 from the stack.

1dp X3, x2, [sp], #16 // X3 holds old X1
1dp X3, x4, [sp], #16

msr nzcv, xzr // clr ¢ = no error

ret
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// badNumber- Drop down here if the first character in
/! the string was not a valid digit.

badNumber: mov X0, Xzr
b.al errorExit

overflow: mov X0, #-1 // Return -1 as error on overflow.
errorExit:

mrs x1, nzev  // Return error in carry flag.

orr x1, x1, #(1 << 29)

msy nzcv, x1 // Set c = error.

1dp x1, x2, [sp], #16
1dp X3, x4, [sp], #16
ret

endp strtoh

e,
/1

// Here is the asmMain function:

proc asmMain, public

locals am
byte am.stack, 64
endl am

enter am.size

// Test hexadecimal conversion:

lea x1, hexStr
bl strtoh
bcs error
mov X2, X0
lea x1, hexStr
lea x0, fmtStri

mstr x1, [sp]
mstr x2, [sp, #8]
bl printf

// Test overflow conversion:

lea x1, hexStrOVFL

bl strtoh
bcc unexpected
mov X2, X0
lea x0, fmtStr2

mstr x1, [sp]
mstr x2, [sp, #8]
bl printf
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// Test bad character:

lea
bl
bcc

mov
lea
mstr
mstr
bl

b.al

unexpected: mov
lea
mstr
mstr
mstr
bl
b.al

unexp2: mov
lea
mstr
mstr
mstr
bl
b.al

error: mov
lea
mstr
mstr
bl

allDone: leave
endp

x1, hexStrBAD
strtoh
unexp2

X2, x0

X0, fmtStr2
x1, [sp]

x2, [sp, #8]
printf

allDone

X3, X0

X0, fmtStr3
x1, [sp]

x2, [sp, #8]
x3, [sp, #16]
printf
allDone

X3, X0

X0, fmtStr4
x1, [sp]

x2, [sp, #8]
x3, [sp, #16]
printf
allDone

X2, X0

X0, fmtStr2
x1, [sp]

x2, [sp, #8]
printf

asmMain

The strtoh function is similar to strtou, except that it tests for hexadeci-
mal digits @ (rather than just decimal digits), tests the HO 4 bits to deter-
mine whether an overflow occurs @ (much easier than the decimal case),
and multiplies by the hexadecimal radix (16) rather than by 10 ©.

Here’s the build command and sample output for the program in

Listing 9-15:

% ./build Listingo-15

% ./Listing9-15

Calling Listing9-15:
strtoh: String='1234567890abcdef' value=1234567890abcdef
Error, str='1234567890abcdef0o', x0=-1

Error, str='x123', x0=0
Listing9-15 terminated

Numeric Conversion

583



For hexadecimal string conversions that handle numbers greater than
64 bits, you have to use an extended-precision shift left by 4 bits. Listing 9-16
demonstrates the necessary modifications to the strtoh function for a
128-bit conversion.

// Listing9-16.S
//

// 128-bit Hexadecimal-string-to-numeric conversion

#include "aoaa.inc"
false = 0
true = 1
tab = 9
.section .rodata, ""
t1Str: .asciz "Listing 9-16"
fmtStra: .asciz "strtoh128: value=%11x%11lx, String='%s'\n"
hexStr: .asciz "1234567890abcdeffedcban987654321"
.code
.extern printf

LTI 0 00077 11111170011111111111171111111117
/1
// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

010 10001011110111011111111111111111111
//

// strtoh128

//

// Converts string data to a 128-bit unsigned integer

//

// Input:

//

[/l X2- Pointer to buffer containing string to convert

//

// Outputs:

//

//  X1:Xo- Contains converted string (if success), error code
// if an error occurs

//

/] X2- Points at first char beyond end of hexadecimal

// string. If error, X2's value is restored to

// original value.

// Caller can check character at [X2] after a
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// successful result to see if the character following

// the hexadecimal digits is a legal delimiter.
//

/l C- (carry flag) Set if error occurs, clear if
// conversion was successful. On error, X0 will
// contain 0 (illegal initial character) or

/! -1 = OXFFFFFFFFFFFFFEFE (overflow).

proc strtoh128

stp x4, x5, [sp, #-16]!
stp X2, x3, [sp, #-16]!

// This code will use the value in X4 to test
// whether overflow will occur in X1 when
// shifting to the left 4 bits:

mov x4, 0xFO00000000000000
mov x0, xzr // Zero out LO accumulator.
mov x1, xzr // Zero out HO accumulator.

// 0x5f is used to convert lowercase to
// uppercase:

mov X5, 0x5f

// The following loop skips over any whitespace (spaces and
// tabs) that appear at the beginning of the string:

sub x2, x2, #1 // Because of inc below
skipWs: ldrb w3, [x2, #1]!

cmp w3, #' '

beq skipWs

cmp w3, #tab

beq skipWs

// If you don't have a hexadecimal digit at this
// point, return an error:

cmp w3, #'0' // Note: '0' < '1' < ... < '9'
blo badNumber

cmp w3, #'9'

bls convert

and X3, X3, X5 // Cheesy LC -> UC conversion
cmp w3, #'A'

blo badNumber

cmp w3, #'F'

bhi badNumber

sub w3, w3, #7 // Maps 41h..46h -> 3ah..3fh

// Okay, the first digit is good. Convert the
// string of digits to numeric form:

convert: ands xzr, x4, x1 // See whether adding in the current
bne overflow // digit will cause an overflow.
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and x3, x3, #oxf // Convert to numeric in X3.
// Multiply 128-bit accumulator by 16 and add in
// new digit (128-bit extended-precision shift
// by 4 bits):

0 1sl x1, x1, #4 // 128 bits shifted left 4 bits

orr x1, x1, x0, lsr #60
1s1 X0, x0, #4
add x0, x0, x3 // Never overflows

// Move on to next character:

ldrb w3, [x2, #1]!
cmp w3, #'0'

blo endOfNum

cmp w3, #'9'

bls convert

and X3, X3, x5 // Cheesy LC -> UC conversion
cmp X3, #'A’

blo end0fNum

cmp x3, #'F'

bhi endOfNum

sub X3, x3, #7 // Maps 41h..46h -> 3ah..3fh
b.al convert

// If you get to this point, you've successfully converted
// the string to numeric form:

endOfNum:

// Because the conversion was successful, this
// procedure leaves X2 pointing at the first

// character beyond the converted digits.

// Therefore, we don't restore X2 from the stack.

1dp x4, x3, [sp], #16 // X4 holds old X2.
1dp x4, x5, [sp], #16
msr nzcv, xzr // clr ¢ = no error

ret

// badNumber- Drop down here if the first character in
/! the string was not a valid digit.

badNumber: mov X0, Xzr
b.al errorExit

overflow: mov X0, #-1 // Return -1 as error on overflow.
errorExit:
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mrs
orr
msx
ldp
ldp
ret
endp

x1, nzcv // Return error in carry flag.
x1, x1, #(1 << 29)
nzcv, x1 // Set c = error.

X2, x3, [sp], #16
x4, x5, [sp], #16

strtoh128

LTI 11717177111111111111111111111111

/1

// Here is the asmMain function:

proc

locals
byte
endl

enter
// Test hexadecimal

lea
bl

lea
mov
lea
mstr
mstr
mstr
bl

allDone: leave
endp

asmMain, public

am
am.stack, 64
am

am.size
conversion:

x2, hexStr
strtoh128

x3, hexStr
X2, X0

X0, fmtStri
x1, [sp]

x2, [sp, #8]
x3, [sp, #16]
printf

asmMain

This code works similarly to that in Listing 9-15. The main difference
is the 128-bit shift left by 4 bits @ in Listing 9-16. The code shifts X0 to the
right 60 bits, then ORs this into X1 after shifting it to the left 4 bits, which
shifts 4 bits from X0 into X1.

Here’s the build command and sample output for Listing 9-16:

% ./build Listing9-16
% ./Listing9-16
Calling Listing9-16:

strtoh128: value=1234567890abcdeffedcba0987654321, String='1234567890abcdeffedcban987654321"

Listing9-16 terminated

The hexadecimal-string-to-numeric function worked as expected.
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9.3.3 String to Floating-Point

Converting a string of characters representing a floating-point number to
the 64-bit double format is slightly easier than the double-to-string conver-
sion that appeared earlier in this chapter. Because decimal conversion (with
no exponent) is a subset of the more general scientific notation conversion,
if you can handle scientific notation, you get decimal conversion for free.
Beyond that, the basic algorithm is to convert the mantissa characters to an
integer form in order to convert to floating-point, then read the (optional)
exponent and adjust the double exponent accordingly. The algorithm for the
conversion is the following:

1.

10.
11.
12.

Begin by stripping away any leading space or tab characters (and any
other delimiters).

. Check for a leading plus (+) or minus (-) sign character. Skip it if one

is present. Set a sign flag to true if the number is negative (false if
nonnegative).

. Initialize an exponent value to —16. The algorithm will create an inte-

ger value from the mantissa digits in the string. As double-precision
floats support a maximum of 16 significant digits, initializing the expo-
nent to —16 accounts for this.

. Initialize a significant-digit-counter variable that counts the number of

significant digits processed thus far to 16.

. If the number begins with any leading 0Os, skip over them (do not

change the exponent or significant digit counters for leading Os to the
left of the decimal point).

. If the scan encounters a decimal point after processing any leading Os,

go to step 11; otherwise, fall through to step 7.

. For each nonzero digit to the left of the decimal point, if the significant

digit counter is not 0, multiply the integer accumulator by 10 and add in
the numeric equivalent of the digit. This is the standard integer conver-
sion. (If the significant digit counter is 0, the algorithm has already pro-
cessed 16 significant digits and will ignore any additional digits, since
the double format cannot represent more than 16 significant digits.)

. For each digit to the left of the decimal point, increment the exponent

value (originally initialized to —16) by 1.

. If the significant digit counter is not 0, decrement the significant digit

counter (which will also provide the index into the digit string array).
If the first nondigit encountered is not a decimal point, skip to step 14.
Skip over the decimal point character.

For each digit encountered to the right of the decimal point, continue
adding the digits to the integer accumulator as long as the significant
digit counter is not 0. If the significant digit counter is greater than 0,
decrement it. Also decrement the exponent value.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

If the algorithm hasn’t encountered at least one decimal digit by this
point, report an illegal character exception and return.

If the current character is not e or E, go to step 20. Otherwise, skip over
the e or E character and continue with step 15. (Note that some string
formats also allow d or D to denote a double-precision value. You can
also choose to allow this, and possibly check the range of the value if
the algorithm encounters e or E versus d or D.)

If the next character is + or -, skip over it. Set a flag to true if the sign
character is -; set it to false otherwise (note that this exponent sign flag
is different from the mantissa sign flag set earlier in this algorithm).

If the next character is not a decimal digit, report an error.

Convert the string of digits starting with the current decimal digit char-
acter to an integer.

Add the converted integer to the exponent value that was initialized to
—16 at the start of this algorithm.

If the exponent value is outside the range —324 to +308, report an out-
of-range exception.

Convert the mantissa, which is currently an integer, to a floating-point
value.

Take the absolute value of the exponent, preserving the exponent’s
sign. This value will be 9 bits or less.

If the exponent was positive, then for each set bit in the exponent, mul-
tiply the current mantissa value by 10 raised to the power specified by
that bit’s position. For example, if bits 4, 2, and 1 are set, multiply the
mantissa value by 10'6, 104, and 102

If the exponent was negative, then for each set bit in the exponent,
divide the current mantissa value by 10 raised to the power specified
by that bit’s position. For example, if bits 4, 3, and 2 are set, divide the
mantissa value by 10'%, 108, and 10* (starting with the larger values and
working your way down).

If the mantissa is negative (the first sign flag set at the beginning of the
algorithm), negate the floating-point number.

Listing 9-17 provides an implementation of this algorithm, explained

section by section. The first part is typical for the sample programs in this
book, containing some constant declarations, static data, and the getTitle

function.

/L
/!
// R

fals
true
tab

isting9-17.S
eal string to floating-point conversion

#include "aoaa.inc"

e

|
e}
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ttlStr:
fmtStra:
errFmtStr:

O fStria:
fStrib:
fStric:
fStrad:
fStr2a:
fStr2b:
fStr2c:
fStrad:
fStr3a:
fStr3b:
fStraa:
fStrab:
fStrac:
fStrad:
fStrae:
fStraf:
fStrag:
fStrah:
fStr4i:
fStraj:
fStrs5a:
fStrs5b:
fStrs5c:
fStrs5d:
fStréa:

values:

® PotTbl:

r8Val:

.section
.asciz
.asciz
.asciz

.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz
.asciz

.align
.dword
.dword
.dword
.dword
.dword
.dword
.dword
.dword
.dword

.double
.double
.double
.double
.double
.double
.double
.double
.double
.double

.data
.double

.rodata,
"Listing 9-17"

"strToR64: str='%s', value=%e\n"
"strToR64 error, code=%ld\n"

" 1.234e56"
"\t-1.234e+56"
"1.234e-56"
"-1.234e-56"
"1.23"

"-1.23"
"001.23"
"-001.23"

nym

n_q

"0.1"

"-0.1"
"0000000.1"
"-0000000.1"
"0.1000000"
"-0.1000000
"0.0000001"
"-0.0000001"

woge

o g

"123456"
"12345678901234567890"
"o

o
"0.000000000000000000001"

3

fStria, fStrib, fStric, fStrad
fStr2a, fStr2b, fStr2c, fStrad
fStr3a, fStr3b

fStr4a, fStrab, fStr4c, fStrad
fStr4e, fStraf, fStrag, fStrgh
fStr4i, fStraj

fStr5a, fStrsb, fStr5c, fStrsd
fStréa

0

.0e+256
.0e+128
.0e+64
.0e+32
.0e+16
.0e+8
.0et+4
.0e+2
.0e+l
.0e+0
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.code
.extern printf

LT 0111001 11007111771111117111117111
//

// Return program title to C++ program:

proc getTitle, public
lea x0, ttlStr

ret

endp getTitle

The read-only section contains various test strings that this program
will convert into floating-point values @. These test strings were carefully
chosen to test most of the (successful) paths through the strToR64 function.
To reduce the size of the main program, Listing 9-17 processes these strings
in a loop. The array of pointers @ points at each of the test strings, with a
NULL pointer (0) marking the end of the list. The main program will iter-
ate through these pointers in a loop to test the input strings.

The PotTbl (powers-of-10 table) array © contains various powers of 10.
The strToR64 function uses this table to convert a decimal exponent (in inte-
ger format) to an appropriate power of 10:

// Listing9-17.S (cont.)

//

/] strToR64

/1

// On entry:

//

// X0- Points at a string of characters that represent a
// floating-point value

/1

// On return:

//

// Do- Converted result
// X0- On return, X0 points at the first character this

// routine couldn't convert (if no error).

//

// C- Carry flag is clear if no error, set if error.
// X7 is preserved if an error, X1 contains an
// error code if an error occurs (else X1 is

// preserved).

proc strToR64

locals sr

gword  sr.x1x2

gword  Sr.x3x4

gword  Sr.x5x6

gword  Sr.x7x0

dword sr.d1

byte sr.stack, 64 // Not really needed, but ..
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endl ST
enter sr.size

// Defines to give registers more
// meaningful names:

© #tdefine mant x1 // Mantissa value
#idefine sigDig x2 // Mantissa significant digits
#tdefine expAcc x2 // Exponent accumulator
#define sign w3 // Mantissa sign
#tdefine fpExp x4 // Exponent
#define expSign w5 // Exponent sign
#tdefine ch w6 // Current character
#tdefine xch x6 // Current character (64 bits)
#tdefine ten X7 // The value 10

// Preserve the registers this
// code modifies:

8 stp x1, x2, [fp, #sr.x1x2]
stp X3, x4, [fp, #sr.x3x4]
stp X5, X6, [fp, #sr.x5x6]
stp X7, X0, [fp, #sr.x7x0]
str d1, [fp, #sr.d1 ]

// Useful initialization:

mov fpExp, xzr // X3 Decimal exponent value
mov mant, xzr // X0 Mantissa value
mov sign, wzr // W2 Assume nonnegative.

// Initialize sigDig with 16, the number of
// significant digits left to process.

mov sighig, #16 // X1
// Verify that X0 is not NULL.

cmp X0, Xzr
beq refNULL

The strToR64 function uses #define statements @ to create meaningful,
more readable names for the local variables it maintains in various registers.
Although this function uses only registers X0 through X7 and D1
(which are all volatile in the ARM ABI), this function preserves all the reg-

isters it modifies @. In assembly language, it’s always good programming
style to preserve modified registers. This code does not preserve X0 (assum-
ing a successful conversion) because it returns X0 pointing at the end of
the (successfully) converted string as a function result. Note that this code
returns the main function result in DO.

After function initialization, the strToR64 function begins by skipping
all whitespace (spaces and tabs) at the beginning of the string:



// Listing9-17.S (cont.)

sub X0, X0, #1 // Will inc'd in loop
whileWSLoop:

ldrb ch, [xo, #1]! // W5

cmp ch, #' '

beq whileWSLoop
cmp ch, #tab
beq whileWSLoop

This code exits with ch (W6) containing the first non-whitespace char-
acter and X0 pointing at that character in memory.

Immediately after any whitespace characters, the string may optionally
contain a single + or -character. This code skips either of these characters
(if present) and sets the mantissa sign flag (sign) to 1 if a - character is
present:

// Listing9-17.S (cont.)
// Check for + or -

cmp ch, #'+'
beq skipSign

cmp ch, #'-'
cinc  sign, sign, eq // W2
bne noSign

skipSign:  ldrb ch, [xo, #1]! // Skip '-'
noSign:

Immediately after a sign character (or if there isn’t an optional sign
character), the string must contain a decimal digit character or a decimal
point. This code tests for one of these two conditions and reports a conver-
sion error if the condition fails:

// Listing9-17.S (cont.)

® sub ch, ch, #'0' // Quick test for '0' to '9'
cmp ch, #9
bls scanDigits // Branch if '0' to '9'

e cmp ch, #'.'-'0' // Check for '.'
bne convError

// If the first character is a decimal point,
// the second character needs to be a
// decimal digit.

® ldrb ch, [xo0, #1]! // W5 Skip period.

cmp ch, #'0'
blo convError
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cmp ch, #'9'
bhi convError
b.al whileDigit2

This code uses a common trick to compare for a character in the range
‘0" through '9". It subtracts the ASCII code for '0' from the character @.

If the character was in the range '0' to '9', this translates its value to the
range 0 to 9. A single unsigned comparison against the value 9 tells us
whether the character value was in the range '0' to '9". If so, this code
transfers control to the code that will process digits to the left of the deci-
mal point.

Because the code has subtracted '0' from the character’s ASCII code, it
cannot simply compare the character against a period. The cmp ch, #'."'-'0’
instruction correctly compares the character against a period by subtract-
ing the character code for '0' from '." @. If the character was a period, the
code will verify that the following character is also a digit ©.

Next, the code starting at scanDigits processes the mantissa digits to the
left of the decimal point (if present):

// Listing9-17.S (cont.)
/1
// Scan for digits at the beginning of the number:

scanDigits: mov ten, #10 // X7 used to multiply by 10
add ch, ch, #'0' // Restore character.
whileADigit:
sub ch, ch, #'0' // Quick way to test for
cmp ch, #10 // a range and convert
bhs notDigit // to an integer

// Ignore any leading Os in the number.
// You have a leading '0' if the mantissa is 0
// and the current character is '0'.

® cmp mant, xzr // Ignore leading Os.
ccmp ch, #0, #0, eq
beq Beyond16
// Each digit to the left of the decimal
// point increases the number by an
// additional power of 10. Deal with that
// here.
® add fpExp, fpExp, #1

// Save all the significant digits but ignore
// any digits beyond the 16th digit.

© cmp sighig, xzr // X1
beq Beyond16

// Count down the number of significant digits.

sub sigDig, sigDig, #1



// Multiply the accumulator (mant) by 10 and

// add in the current digit. Note that ch

// has already been converted to an integer.
0 madd mant, mant, ten, xch // X0, X6, X5

// Because you multiplied the exponent by 10,
// you need to undo the increment of fpExp.

® sub fpExp, fpExp, #1

Beyond16:  ldrb ch, [x0, #1]! // Get next char.
b.al whileADigit

This code skips over leading 0s by noting that if the mantissa value is 0
and the current character is '0', it’s a leading 0 @. For each mantissa digit
the code fetches, it adjusts the mantissa value by multiplying the mantissa
by 10 and adding in the numeric equivalent of the digit @. However, if
the loop processes more than 16 significant digits @, it does not add in
the character to the mant accumulator (because double-precision objects
support a maximum of 16 significant digits). If the input string exceeds
16 significant digits, the code increments the fpExp variable @ to track the
eventual exponent of the number. The code undoes this increment ® if the
mantissa was multiplied by 10 (in which case the exponent does not need to
be incremented).

The next section of code handles the digits after a decimal point:

// Listing9-17.S (cont.)

//

// If you encountered a nondigit character,
// check for a decimal point:

notDigit:
cmp ch, #'."'-'0' // See if a decimal point.
bne whileDigit2

// Okay, process any digits to the right of the decimal point.
// If this code falls through from the above, it skips the
// decimal point.

getNextChar:

ldrb ch, [xo0, #1]! // Get the next character.
whileDigit2:

sub ch, ch, #'0'

cmp ch, #10

bhs noDigit2

// Ignore digits after the 16th significant
// digit but don't count leading Os

// as significant digits:

® cmp mant, xzr // Ignore leading Os.
ccmp ch, wzr, #0, eq

Numeric Conversion 595



cemp  sigDig, xzr, #0, eq // X2
beq getNextChar

// Each digit to the right of the decimal point decreases
// the number by an additional power of 10. Deal with
// that here.
® sub fpExp, fpExp, #1
// Count down the number of significant digits:
sub sigDig, sigDig, #1
// Multiply the accumulator (mant) by 10 and
// add in the current digit. Note that ch

// has already been converted to an integer:

Madd mant, mant, ten, xch // X1, X7, X6
b.al getNextChar

The code is similar to the digits to the left, except that it decrements
the running exponent value for each digit @. This is because the mantissa
is being maintained as an integer, and the code continues to insert the frac-
tional digits into the mantissa by multiplying by 10 and adding in the digit’s
value. Should the total number of significant digits exceed 16 (not including
leading Os @), this function ignores any further digits.

Next up is processing the string’s optional exponent:

// Listing9-17.S (cont.)

® noDigit2:
mov expSign, wzr  // W5 Initialize exp sign.
mov expAcc, xzr // X2 Initialize exponent.
cmp ch, #'e'-'0"

beq hasExponent
cmp ch, #'E'-'0'

bne noExponent

® hasExponent:
ldrb ch, [xo, #1]! // Skip the "E".
cmp ch, #'-' // Weé

cinc expSign, expSign, eq // Ws
beq doNextChar_2

cmp ch, #'+'

bne getExponent

doNextChar_2:
ldrb ch, [xo, #1]! // Skip '+' or '-'.

// Okay, you're past the "E" and the optional sign at this
// point. You must have at least one decimal digit.
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© getExponent:
sub ch, ch, #'0' // W5

cmp ch, #10

bhs convError

mov expAcc, xzr // Compute exponent value in X2.
ExpLoop: ldrb ch, [xo0], #1

sub ch, ch, #'0'

cmp ch, #10

bhs ExpDone

madd expAcc, expAcc, ten, xch /] X2, X7, X6
b.al ExpLoop

// If the exponent was negative, negate your computed result:

® ExpDone:
cmp expSign, #false // W5
beq noNegExp
neg expAcc, expAcc // X2
noNegExp:

// Add in the computed decimal exponent with the exponent
// accumulator:

® add fpExp, fpExp, expAcc /] X4, X2
noExponent:

// Verify that the exponent is from -324 to +308 (which
// is the maximum dynamic range for a 64-bit FP value):

® mov X5, #308 // Reuse expSign here.
cmp fpExp, X5
bgt voor // Value out of range

mov x5, #-324
cmp fpExp, X5
blt Voor
@ ucvtf do, mant /] X1

This code first checks for an e or E character denoting the start of an
exponent @. If the string has an exponent, the code checks for an optional
sign character @. If a - character is present, the code sets expSign to 1 (default
is 0) to specify a negative exponent.

After processing the exponent sign, the code expects decimal digits ©
and converts these digits to an integer (held in the expAcc variable). If
expSign is true (nonzero), the code negates the value in expAcc @. The expo-
nent code then adds expAcc to the exponent value obtained when processing
the mantissa digits to obtain the actual exponent value ©.

Finally, the code checks the exponent to verify it’s in the range —324 to
+308 @. This is the maximum dynamic range of a 64-bit double-precision
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floating-point value. If the exponent is out of this range, the code returns a
value-out-of-range error.

At this point, the code has completely processed the string data, and
the X0 register points at the first byte in memory that is not part of the
floating-point value. To convert the mantissa and exponent values from
integers into a double-precision value, first convert the mantissa value (in
mant) to a floating-point value by using the ucvtf instruction @.

Next, processing the exponent is somewhat tricky. The fpExp variable
contains the decimal exponent, but this is an integer value representing a
power of 10. You must multiply the value in DO (the mantissa) by 1075, but
unfortunately, the ARM instruction set does not provide an instruction that
computes 10 raised to some integer power. You'll have to write your own
code to do this:

// Listing9-17.S (cont.)

/1

// Okay, you have the mantissa into DO. Now multiply

// DO by 10 raised to the value of the computed exponent

// (currently in fpExp).

/1

// This code uses power-of-10 tables to help make the

// computation a little more accurate.

/1

// You want to determine which power of 10 is just less than the
// value of our exponent. The powers of 10 you are checking are
// 10**256, 10**128, 10**64, 10**32, and so on. A slick way to
// check is by shifting the bits in the exponent

// to the left. Bit #8 is the 256 bit, so if this bit is set,
// your exponent is >= 10**256. If not, check the next bit down
// to see if your exponent >= 10**128, and so on.

mov x1, -8 // Initial index into power-of-10 table
cmp fpExp, xzr // X4
bpl positiveExponent

© // Handle negative exponents here:

neg fpExp, fpExp
1sl fpExp, fpExp, #55 // Bits 0..8 -> 55..63
lea x6, PotTbl

® whileExpNEO:
add x1, x1, #8 // Next index into PotTbl.
adds  fpExp, fpExp, fpExp // (LSL) Need current POT?
bcc testExpo

ldr di, [x6, x1]
fdiv do, do, di

testExp0o:  cmp fpExp, xzr

bne whileExpNEO
b.al doMantissaSign
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// Handle positive exponents here.

©® positiveExponent:
lea X6, PotTbl
1sl fpExp, fpExp, #55 // Bits 0..8 -> 55..63
b.al testExpiso_2

whileExpNEO 2:
add X1, x1, #8
adds fpExp, fpExp, fpExp // (LSL)
bcc testExpiso 2

ldr di, [x6, x1]
fmul do, do, di

testExpiso 2:
cmp fpExp, xzr
bne whileExpNEO 2

This code uses two nearly identical sections of code to handle negative @
and positive ® exponents. The difference between the two pieces of code is
the choice of an fdiv instruction (for negative exponents) or an fmul instruc-
tion (for positive exponents). Each section contains a loop @ that steps
through each entry of the PotTbl (powers-of-10) table. The exponent is a
9-bit value, as the maximum unsigned exponent value is 324, which fits in
9 bits or fewer.

For each set bit in this integer, the code must multiply the floating-point
result by the corresponding power of 10 from PotTbl. For example, if bit 9
is set, multiply or divide the mantissa by 10%°¢ (the first entry in PotTbl); if
bit 8 is set, multiply or divide the mantissa by 10'*® (the second entry in
PotTbl), . . .; if bit 0 is set, multiply or divide the mantissa by 10° (the last
entry in PotTbl). The two loops in the code accomplish this by moving the
9 bits into the HO positions of fpExp, then shifting the bits out one at a time
and doing the multiplication (for positive exponents) or division (for nega-
tive exponents) if the carry flag is set, using successive entries from PotTbl.

Next, the code negates the value if it was negative (the flag is held in
the sign variable) and returns the floating-point value to the caller in the
DO register:

// Listing9-17.S (cont.)

doMantissaSign:
cmp sign, #false /] W3
beq mantNotNegative
fneg do, do

// Successful return here. Note: does not restore Xo
// on successful conversion.
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mantNotNegative:

msr nzcv, xzr // clr ¢ = no error
ldp x1, x2, [fp, #sr.x1x2]

1dp X3, x4, [fp, #sr.x3x4]
1dp X5, x6, [fp, #sr.x5x6]
ldr X7, [fp, #sr.x7x0]
ldr d1, [fp, #sr.d1 ]
leave

On a successful conversion, this function returns X0 pointing at the
first character beyond the floating-point string. This code does not restore
XO0 to its original value on a successful conversion.

The last part of the strToR64 function is the error-handling code:

// Listing9-17.S (cont.)
//

// Error returns down here. Returns error code in XO:

refNULL: mov x1, #-3
b.al ErrorExit

convError: mov X1, #-2
b.al ErrorExit

VOoOr: mov x1, #-1 // Value out of range
b.al ErrorExit

illChar: mov x1, #-4

// Note: on error, this code restores Xo.

ErrorExit:
str x1, [fp, #sr.xix2] // Return error code in X1i.
mrs x1, nzcv // Return error in carry flag.
orr x1, x1, #(1 << 29)
msr nzcv, x1i // Set c = error.

1dp x1, x2, [fp, #sr.xix2]
ldp X3, x4, [fp, #sr.x3x4]
1dp X5, X6, [fp, #sr.x5x6]
1dp X7, X0, [fp, #sr.x7x0]
ldr d1, [fp, #sr.d1 ]
leave

endp strToR64

Each error returns a special error code in X1. So this code does not
restore X1 upon return. Unlike the successful return, the error return code
will restore X0 to its original value.

Finally, the asmMain function consists of a loop that processes each of
the strings by using the pointers found in the values array. It simply steps
through each pointer, passing it along to strToR64, until it encounters a
NULL (0) value:



// Listing9-17.S (cont.)

// Here is the asmMain function:
proc asmMain, public
locals am
dword  am.x20
byte stack, 64

endl am

enter am.size
str x20, [fp, #am.x20]

// Test floating-point conversion:

lea X20, values
ValuesLp: ldr X0, [x20]

cmp X0, Xzr

beq allDone

bl strToR64

lea X0, fmtStri
ldr x1, [x20]
mstr x1, [sp]
mstr do, [sp, #8]
bl printf

add x20, x20, #8
b.al ValuesLp

allDone: ldr x20, [fp, #am.x20]
leave
endp asmMain

Here’s the build command and sample output for Listing 9-17:

% ./build Listing9-17

% ./Listing9-17

Calling Listing9-17:

strToR64: str=" 1.234e56', value=1.234000e+56
strToR64: str=' -1.234e+56", value=-1.234000e+56
strToR64: str="1.234e-56", value=1.234000e-56
strToR64: str="-1.234e-56", value=-1.234000e-56
strToR64: str="1.23", value=1.230000e+00
strToR64: str="-1.23", value=-1.230000e+00
strToR64: str='001.23", value=1.230000e+00
strToR64: str='-001.23", value=-1.230000e+00
strToR64: str="1', value=1.000000e+00

strToR64: str="-1', value=-1.000000e+00
strToR64: str='0.1", value=1.000000e-01
strToR64: str="-0.1", value=-1.000000e-01
strToR64: str='0000000.1", value=1.000000e-01
strToR64: str='-0000000.1", value=-1.000000e-01
strToR64: str='0.1000000", value=1.000000e-01
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strToR64: str='-0.1000000"', value=-1.000000e-01
strToR64: str='0.0000001", value=1.000000e-07

strToR64: str='-0.0000001", value=-1.000000e-07
strToR64: str='.1"', value=1.000000e-01

strToR64: str="-.1", value=-1.000000e-01

strToR64: str='123456"', value=1.234560e+05

strToR64: str='12345678901234567890"', value=1.234568e+19
strToR64: str='0", value=0.000000e+00

strToR64: str="1."', value=1.000000e+00

strToR64: str='0.000000000000000000001"', value=1.000000e-17
Listing9-17 terminated

It would be interesting to modify the real-to-string and string-to-real
programs to perform a “round-trip” conversion from real to string to real, to
see whether you get roughly the same result back that you put in. (Because
of rounding and truncation errors, you won’t always get the same exact value
back, but it should be close.) I will leave it up to you to try this out.

Other Numeric Conversions

This chapter has presented the more common numeric conversion algo-
rithms: decimal integer, hexadecimal integer, and floating-point. Other
conversions are sometimes useful. For example, some applications might
need octal (base-8) conversions or conversions in an arbitrary base. For
bases 2 through 9, the algorithm is virtually the same as for decimal integer
conversions, except that rather than dividing by 10 (and taking the remain-
der), you divide by the desired base. Indeed, it would be fairly simple to
write a generic function to which you pass the radix (base) to get the appro-
priate conversion.

Of course, base-2 output is nearly trivial because the ARM CPU stores
values internally in binary. All you need do is shift bits out of the number
(into the carry flag) and output a 0 or 1 based on the state of the carry.
Base-4 and base-8 conversions are also fairly simple, working with groups of
2 or 3 bits (respectively).

Some floating-point formats do not follow the IEEE standard. To handle
these cases, write a function that converts such formats to the IEEE form,
if possible, then use the examples from this chapter to convert between
floating-point and string. If you need to work with such formats directly,
the algorithms in this chapter should prove sufficiently general and easy to
modify for your use.

Moving On

This long chapter covered two main topics: converting numeric values

to strings and converting strings to numeric values. For the former, this
chapter covered numeric-to-hexadecimal conversion (bytes, hwords, words,
dwords, and qwords), numeric-to-unsigned decimal conversion (64- and
128-bit), and numeric-to-signed decimal conversion (64- and 128-bit). It
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also discussed formatted conversion for controlling the output format when
doing numeric-to-string conversions, and formatted floating-point-to-string
conversions for decimal and exponential formats, as well as computing the
number of print positions a conversion requires.

While discussing string-to-numeric conversions, this chapter covered
converting unsigned decimal strings to numeric forms, signed decimal
strings to numeric forms, hexadecimal strings to numeric forms, and floating-
point strings to double-precision numeric forms. Finally, the chapter briefly
discussed other possible numeric output formats.

Although this book will continue to use the C printf() function for for-
matted output, you can use the procedures in this chapter to avoid relying
on C when writing your own assembly code. These procedures also form
the basis for an assembly language library you can use to simplify writing
assembly code.

For More Information

e Donald Knuth’s The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd edition (Addison-Wesley Professional, 1997) contains
lots of useful information about decimal arithmetic and extended-
precision arithmetic, though the text is generic and doesn’t describe
how to do this in ARM assembly language.

e For more information on division via multiplication by a reciprocal, see
the University of lowa tutorial at Attp://homepage.cs.uiowa.edu/~jones/bcd/
divide.himl.

TEST YOURSELF

1. How many hexadecimal digits will hwtoStr produce?
2. Explain how to use qToStr to write a 128-bit hexadecimal output routine.

3. How do you write a signed decimal-to-string conversion if you're given a
function that does an unsigned decimal-to-string conversion?

4. What are the parameters for the u4toSizeStr function?

5. What string will u64toSizeStr produce if the number requires more print
positions than specified by the minimum field-width parameter

6. What are the parameters for the r64ToStr function?

7. What string will r64ToStr produce if the output won't fit in the string size
specified by the fWidth argument?

8. What are the arguments to the e64ToStr function?
9. What is a delimiter character?

10. What are two possible errors that could occur during a string-to-numeric
conversion?
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10.1

TABLE LOOKUPS

In the early days of assembly language pro-

gramming, replacing expensive computa-
tions with table lookups was a common way to

improve program performance. Today, memory

speeds in modern systems limit the performance gains
that can be obtained by using table lookups. However,
for very complex calculations, this is still a viable tech-
nique for writing high-performance code.

This chapter discusses how to use table lookups to speed up or reduce
the complexity of computations, demonstrating the space and speed trade-
offs involved.

Using Tables in Assembly Language

To an assembly language programmer, a tableis an array containing initial-
ized values that do not change after they’re created. In assembly language,
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you can use tables for a variety of purposes: computing functions, control-
ling program flow, or simply looking up data. In general, tables provide a
fast mechanism for performing an operation, at the expense of space in
your program (the extra space holds the tabular data).

In this section, we’ll explore some of the many possible uses of tables in
an assembly language program. Keep in mind that because tables typically
contain initialized data that does not change during program execution,
the .section .rodata, "" section is a good place to put your table objects.

10.1.1 Function Computation via Table Lookup

A simple-looking HLL arithmetic expression can be equivalent to a con-
siderable amount of ARM assembly language code and may therefore be
expensive to compute. Assembly language programmers often precompute
many values and use a table lookup of those values to speed up their pro-
grams, which is easier and often more efficient.

Consider the following Pascal statement:

if (character »>= 'a') and (character <= 'z') then
character := chr(ord(character) - 32);

This if statement converts the character variable’s value from lowercase
to uppercase if the character is in the range a to z. Comparable assembly
code requires a total of seven machine instructions, as follows:

mov wi, #'z'
ldrb wo, [fp, #character] // Assume "character" is local.
cmp w0, #'a'

© ccmp w0, wil, #0b0010, hs
bhi notLower

® eor w0, w0, #0x20

notLower:

strb wo, [fp, #character]

The NZCV constant 0b0010 sets the carry flag and clears the 0 so that
the branch will be taken if WO is less than 'a' (if WO is less than 'a’, the
carry is set and the zero flag is clear, which is “higher or same” without the
same component, so just higher) @. Note that the conditional compare
instruction allows only 5-bit immediate constants; this is why the code loads
the character constant 'z' into W1 and conditionally compares against W1.

The usual method for converting lowercase to uppercase is to clear
bit 5 of the ASCII character code. However, and w0, wo, #0x5F is not a legal
instruction because 0x5F is not a legal logical constant. This code uses the
eor (exclusive-OR) instruction to invert bit 5 @. Because this bit is guaran-
teed to be set at this point (bit 5 is set for all lowercase characters), the eor
instruction will clear this bit.

The lookup table solution uses only four instructions:

lea x1, xlatTbl
ldrb wo, [fp, #character]



ldrb wo, [x1, w0, uxt2 #0]
strb wo, [fp, #character]

The conversion logic is completely buried in the lookup table (xlatTbl).
This is a 256-byte array; each index contains the index value (element 0
contains the value 0, element 1 contains the value 1, and so on) except for
the indices corresponding to the ASCII codes for the lowercase characters
(indices 97 through 122). Those particular array elements contain the
ASCII codes for the uppercase characters (values 65 through 90).

Note that if you can guarantee that you’ll load only 7-bit ASCII charac-
ters into this code, you can get by with a 128-byte (rather than a 256-byte)
array.

Here’s a typical (128-byte) lookup table that converts lowercase charac-
ters to uppercase:

x1latTbl: .byte 0,1,2,3,4,5,6,7
.byte 8,9,10,11,12,13,14,15
.byte 16,17,18,19,20,21,22,23
.byte 24,25,26,27,28,29,30,31
.byte 32,33,34,35,36,37,38,39
-byte 40,41,42,43,44,45,46,47
.byte 48,49,50,51,52,53,54,55
.byte 56,57,58,59,60,61,62,63
.byte 64
.ascii " ABCDEFGHIJKLMNOPQRSTUVWXYZ"
.byte 91,92,93,94,95,96
.ascii " ABCDEFGHIJKLMNOPQRSTUVWXYZ"
.byte 123,124,125,126,127

If you want a full 256-byte table, elements 128 through 255 would contain
the values 128 through 255.

The 1drb wo, [x1, w0, uxtw #0] instruction loads WO with the byte at the
index specified by the (original) value held in W0, assuming X1 holds the
address of x1atTbl. If WO holds a non-lowercase character code, that index
into the table will load the same value into WO (so this instruction does not
change WO0’s value if it is not a lowercase letter). If WO contains a lowercase
letter, the index into this table fetches the ASCII code of the corresponding
uppercase character.

Listing 10-1 demonstrates these two forms of case conversion: if...eor
and table lookup.

// Listing10-1.S
//

// Lowercase-to-uppercase conversion

#include "aoaa.inc"
.section .rodata, ""
ttlStr: .asciz "Listing 10-1"
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textStr: .ascii "abcdefghijklmnopgrstuvwxyz\n"
.ascii "ABCDEFGHIJKLMNOPQRSTUVIWXYZ\n"
.asciz "0123456789\n"

// Translation table to convert lowercase to uppercase:

x1atTbl: .byte o, 1, 2, 3, 4, 5, 6, 7
.byte 8, 9, 10, 11, 12, 13, 14, 15
.byte 16, 17, 18, 19, 20, 21, 22, 23
.byte 24, 25, 26, 27, 28, 29, 30, 31
.byte 32, 33, 34, 35, 36, 37, 38, 39
.byte 40, 41, 42, 43, 44, 45, 46, 47
.byte 48, 49, 50, 51, 52, 53, 54, 55
.byte 56, 57, 58, 59, 60, 61, 62, 63
.byte 64
.ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
.byte 91, 92, 93, 94, 95, 96
.ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
.byte 123, 124, 125, 126, 127

// Various printf format strings this program uses:

fmtStr1: .asciz "Standard conversion:\n"
fmtStr2: .asciz "\nConversion via lookup table:\n"
fmtStr: .asciz "%

.code

.extern printf

LTI 011111001 10007111007111101111171111177
//

// Return program title to C++ program:

proc getTitle, public
lea X0, ttlStr

ret

endp getTitle

LTI 0010111711100 11007111001111171111777
/1

// Here is the asmMain function:
proc asmMain, public

locals am

dword  am.x20

dword am.x21

byte am.shadow, 64
endl am

enter am.size
str x20, [fp, #am.x20]
str x21, [fp, #am.x21]



// Print first title string:

lea x0, fmtStri
bl printf

// Convert textStr to uppercase using
// standard "if and EOR" operation:

lea x20, textStr // String to convert
mov x21, #'z' // CCMP doesn't like #'z'.
b.al testNoto

// Check to see if W1 is in the range 'a'..'z'. If so,
// invert bit 5 to convert it to uppercase:

stdLoop: cmp wi, #'a'
ccmp wl, w21, #0b0010, hs
bhi notLower
eor wl, wl, #0x20
notLower:

// Print the converted character:

lea X0, fmtStr
mstr x1, [sp]
bl printf

// Fetch the next character from the string:

testNoto:  ldrb wl, [x20], #1
cmp wl, #0
bne stdLoop

// Convert textStr to uppercase by using
// a lookup table. Begin by printing

// an explanatory string before the

// output:

lea x0, fmtStr2
bl printf

// textStr is the string to convert.
// x1atTbl is the lookup table that will convert
// lowercase characters to uppercase:

lea x20, textStr

lea x21, xlatTbl

b.al testNotoa

// Convert the character from lowercase to
// uppercase via a lookup table:

xlatLoop:  ldrb wl, [x21, wl, uxtw #0]
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// Print the character:

lea X0, fmtStr
mstr x1, [sp]
bl printf

// Fetch the next character from the string:

testNotoa: 1ldrb wl, [x20], #1
cmp wl, #0
bne xlatLoop

allDone: ldr x20, [fp, #am.x20]
ldr x21, [fp, #am.x21]
leave // Returns to caller
endp asmMain

Here’s the build command and sample output for Listing 10-1:

% ./build Listing10-1

% ./Listing10-1

Calling Listing10-1:
Standard conversion:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

Conversion via lookup table:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

Listing10-1 terminated

I didn’t attempt to time the two versions, because the call to printf()
dominates the execution time of the two algorithms. However, because the
table-lookup algorithm accesses memory on each character (to fetch a byte
from the lookup table), the process is no shorter even though it uses fewer
instructions. The lookup table adds 128 bytes (or 256 bytes) to the size of
the program’s code.

Using a lookup table for a simple computation such as lowercase-to-
uppercase conversion carries little benefit. But as the complexity of the
computation increases, the table lookup algorithm could become faster.
Consider the following code that swaps cases (converts lowercase to upper-
case and uppercase to lowercase):

// If it's lowercase, convert it to uppercase:

mov wi, #'z'

ldrb wo, [fp, #character] // Assume "character" is local.
cmp wo, #'a'

ccmp wo, wi, #0b0o010, hs



bhi notlLower
eor w0, w0, #0x20
b.al allDone

// If it's uppercase, convert it to lowercase:

notLower:
mov wi, #'Z'
cmp  wo, #'A’
ccmp wo, wl, #0b0010, hs
bhi allDone
eor w0, w0, #0x20

allDone:
strb wo, [fp, #character]

The lookup-table version is almost identical to Listing 10-1. Only the
values in the lookup table change:

lea x1, xlatTbl2

ldrb wo, [fp, #character]
ldrb wo, [x1, w0, uxtw #0]
strb wo, [fp, #character]

The xlatTbl2 array will contain the lowercase ASCII codes at the indi-
ces corresponding to the uppercase characters, in addition to having the
uppercase ASCII codes at the indices corresponding to the lowercase ASCII
codes.

This case-conversion algorithm still might not be complex enough to
justify using a lookup table to improve performance. However, it demon-
strates that as the complexity of the algorithm increases (taking longer to
execute without a lookup table), the lookup table algorithm’s execution
time remains constant.

10.1.2  Function Domains and Ranges

Functions computed via table lookup have a limited domain, the set of pos-
sible input values they accept. This is because each element in the domain
of a function requires an entry in the lookup table. For example, the pre-
vious uppercase/lowercase conversion functions have the 256-character
extended ASCII character set as their domain. A function such as sin() or
cos() accepts the (infinite) set of real numbers as possible input values. You
won’t find it very practical to implement a function via table lookup whose
domain is the set of real numbers, because you must limit the domain to a
small set.

Most lookup tables are quite small, usually 10 to 256 entries. Rarely
do they grow beyond 1,000 entries. Most programmers don’t have the
patience to create and verify the correctness of a 1,000-entry table (but see
section 10.1.4, “Table Generation,” on page 615 for a discussion of generat-
ing tables programmatically).
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Another limitation of functions based on lookup tables is that the ele-
ments in the domain must be fairly contiguous. Table lookups use the input
value to a function as an index into the table and return the value at that
entry in the table. A function that accepts values 0, 100, 1,000, and 10,000
would require 10,001 elements in the lookup table because of the range of
input values. You cannot, therefore, efficiently create such a function via a
table lookup. This section on tables assumes throughout that the domain of
the function is a fairly contiguous set of values.

The range of a function is the set of possible output values it produces.
From the perspective of a table lookup, a function’s range determines the
size of each table entry. For example, if a function’s range is the integer val-
ues 0 through 255, each table entry requires a single byte; if the range is
0 through 65,535, each table entry requires 2 bytes, and so on.

The best functions you can implement via table lookups are those whose
domain and range are always 0 to 255 (or a subset of this range). Any such
function can be computed using the same two instructions:

lea x1, table
ldrb wo, [x1, wO0, uxtw #0]

The only thing that changes is the lookup table. The uppercase/lowercase
conversion routines presented earlier are good examples of such functions.

Lookup tables become slightly less efficient if the domain or range is
not 0 to 255. If the domain of a function is outside 0 to 255 but the range
of the function falls within this set of values, your lookup table will require
more than 256 entries, but you can represent each entry with a single byte.
Therefore, the lookup table can be an array of bytes. The C/C++ function
invocation

B = Func(X);

where Func is

byte Func( word parm ) { ... }

which is easily converted to the following ARM code:

lea x1, FuncTbl

ldr wo, X // Using appropriate addressing mode
ldrb wo, [x1, w0, uxtw #0]
strb wo, B // Using appropriate addressing mode

This code loads the function parameter into W0, uses this value (in
the range 0 to maxParmValue) as an index into the FuncTbl table, fetches the
byte at that location, and stores the result into B. Obviously, the table must
contain a valid entry for each possible value of X (up to maxParmValue). For
example, suppose you want to map a cursor position on an 80 x 25 text-based
video display in the range 0 to 1,999 (an 80 x 25 video display has 2,000
character positions) to its X (0 to 79) or Y (0 to 24) coordinate on the screen.



You could compute the X coordinate via this function

X = Posn % 80;

and the Y coordinate with this formula:

Y = Posn / 25;

The following code, which realizes these two functions via table lookup,
may improve the performance of your code, particularly if you access the
table frequently and it is sitting in the processor’s cache:

lea x2, xTbl

lea x3, yTbl

ldr w4, Posn // Using an appropriate addressing mode
1drb wo, [x2, w4, uxtw #0] // Get X.

ldrb w1, [x3, w4, uxtw #0] // Get Y.

Given appropriate values in xTbl and yTbl, this will leave the x-coordinate in
WO and the y-coordinate in W1.

If the domain of a function is within 0 to 255 but the range is outside
this set, the lookup table will contain 256 or fewer entries, but each entry
will require 2 or more bytes. If both the range and domains of the function
are outside 0 to 255, each entry will require 2 or more bytes, and the table
will contain more than 256 entries.

Recall from Chapter 4 that the formula for indexing into a single-
dimensional array (of which a table is a special case) is as follows:

Element_Address = Base + Index x Element_Size

If elements in the range of the function require 2 bytes, you must mul-
tiply the index by 2 before indexing into the table. Likewise, if each entry
requires 3, 4, or more bytes, the index must be multiplied by the size of each
table entry before being used as an index into the table. For example, sup-
pose you have a function F(x), defined by the following C/C++ declaration:

short F( word x ) { ... } // short is a half word (16 bits).

You can create this function by using the following ARM code (and, of
course, the appropriate table named F):

lea x1, F
ldrh wo, x // Using an appropriate addressing mode
ldrh wo, [x1, wo, uxtw #1] // Shift left does multiply by 2.

Any function whose domain is small and mostly contiguous is a good
candidate for computation via table lookup. In some cases, noncontiguous
domains are acceptable as well, as long as the domain can be coerced into
an appropriate set of values (a previously discussed example is processing
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switch statement expressions). Such operations are called conditioning and
are the subject of the next section.

10.1.3 Domain Conditioning

Domain conditioning is taking a set of values in the domain of a function and
massaging them so that they are more acceptable as inputs to that function.
Consider the following function:

sin x = sin x| (xe[-2m,2n])

This says that the (computer) function sin(x) is equivalent to the (math-
ematical) function sin x where:

-2M <= X <= 21

As you know, sine is a circular function, which will accept any real-value
input. The formula used to compute sine, however, accepts only a small set
of these values. This range limitation doesn’t present any real problems;
by simply computing sin(y mod (2m)), you can compute the sine of any input
value. Modifying an input value so that you can easily compute a function
is called conditioning the input. The preceding example computed (x % 2) * pi
and used the result as the input to the sin() function. This truncates x to
the domain sin() needs without affecting the result.

You can apply input conditioning to table lookups as well. In fact,
scaling the index to handle word entries is a form of input conditioning.
Consider the following C/C++ function:

short val( short x )

{
switch ( x )
{
case 0: return 1;
case 1: return 1;
case 2: return 4;
case 3: return 27;
case 4: return 256;
}
return 0;
}

This function computes a value for x in the range 0 to 4 and returns 0
if x is outside this range. Since x can take on 65,536 values (being a 16-bit
hword), creating a table containing 65,536 hwords where only the first five
entries are nonzero seems to be quite wasteful. However, you can still com-
pute this function by using a table lookup if you use input conditioning.
The following assembly language code presents this principle:

mov w0, #0 // Result = 0, assume x > 4
ldrh w1, [fp, #x] // Assume x is local.



cmp wi, #4 // See if in the range 0 to 4.

bhi outOfRange

lea x2, valTbl // Address of lookup table

ldrh wo, [x2, w1, uxtw #1] // index * 2 (half-word table)
outOfRange:

This code checks whether x is outside the range 0 to 4. If so, it manually
sets WO to 0; otherwise, it looks up the function value through the valTbl
table. With input conditioning, you can implement several functions that
would otherwise be impractical to do via table lookup.

10.1.4 Table Generation

One big problem with using table lookups is creating the table in the first
place. This is particularly true if the table has many entries. Figuring out
the data to place in the table, then laboriously entering the data, and finally
checking that data to make sure it is valid is a time-consuming and boring
process.

For many tables, there is no way around this. For other tables, however,
you can use the computer to generate the table for you. I'll explain this by
example. Consider the following modification to the sine function:

(rx (1000 x sin x))
1000

[x € 0,359])

sin(x) x r=(

This states that xis an integer in the range 0 to 359 (degrees) and that
rmust be an integer. The computer can easily compute this with the follow-
ing code:

lea x1, Sines // Table of 16-bit values

ldr wo, [fp, #x] // Assume x is local.

ldrh w0, [x1, wo, uxtw #1] // index * 2 for half words
ldrh w2, [fp, #r] // Assume r is local.

sxth x0, wo

sxth x2, w2

smul w0, w0, w2 // t *(1000 * sin(x))

mov w2, #1000

sdiv x0, x0, x2  // r *(1000 * sin(x))/ 1000

Note that integer multiplication and division are not associative.
You cannot remove the multiplication by 1,000 and the division by 1,000
because they appear to cancel each other out. Furthermore, this code must
compute this function in exactly this order.

All you need to complete this function is Sines, a table containing
360 values corresponding to the sine of the angle (in degrees) times 1,000.
The C/C++ program in Listing 10-2 generates this table.

// Listing10-2.cpp

//

// g++ -0 Listing10-2 Listing10-2.c -1m
//
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// GenerateSines

/1
// A C program that generates a table of sine values for
// an assembly language lookup table

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char **argv)
{

FILE *outFile;

int angle;

int r;

// Open the file:
outFile = fopen("sines.inc", "w");

// Emit the initial part of the declaration to
// the output file:

fprintf
(
outFile,
"Sines:" // sin(0) = 0

)s

// Emit the Sines table:
for(angle = 0; angle <= 359; ++angle)

// Convert angle in degrees to an angle in
// radians using:

/!

// radians = angle * 2.0 * pi / 360.0;

/!

// Multiply by 1000 and store the rounded
// result into the integer variable r.

double theSine =
sin
(
angle * 2.0 *
3.14159265358979323846 /
360.0
);

r = (int) (theSine * 1000.0);

// Write out the integers eight per line to the
// source file.

// Note: If (angle AND %111) is 0, then angle
// is divisible by 8 and you should output a

// newline first.
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if((angle & 7) == 0)
{
fprintf(outFile, "\n\t.hword\t");
}
fprintf(outFile, "%5d", r);
if ((angle & 7) '=7)
{
fprintf(outFile, ",");
} // endfor
fprintf(outFile, "\n");

fclose(outFile);
return 0;

} // end main

Compiling and running the program in Listing 10-2 produces the file
sines.inc containing the following text (truncated for brevity):

Sines:
.hword o, 17, 34, 52, 69, 87, 104, 121
.hword 139, 156, 173, 190, 207, 224, 241, 258
.hword 275, 292, 309, 325, 342, 358, 374, 390
.hword 406, 422, 438, 453, 469, 484, 499, 515
.hword 529, 544, 559, 573, 587, 601, 615, 629
.hword 642, 656, 669, 681, 694, 707, 719, 731
.hword 743, 754, 766, 777, 788, 798, 809, 819

.hword ~ -529, -515, -500, -484, -469, -453, -438, -422
.hword  -406, -390, -374, -358, -342, -325, -309, -292
.hword  -275, -258, -241, -224, -207, -190, -173, -156
.hword  -139, -121, -104, -87, -69, -52, -34, -17

Obviously, writing the C program that generated this data is much eas-
ier than entering and verifying this data by hand. You can also use Pascal/
Delphi, Java, C#, Swift, or another HLL to write the table-generation pro-
gram. Because the program will execute only once, its performance is not
an issue.

Once you run the table-generation program, the only step left is to cut
and paste the table from the file (sines.incin this example) into the program
that will actually use the table (or, alternatively, use the #include "sines.inc"
directive to include the text in your source file).

Table-Lookup Performance

In the early days of PCs, table lookups were a preferred way to do high-
performance computations. Today, it is common for a CPU to be 10 to
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100 times faster than main memory. As a result, using a table lookup may
not be faster than doing the same calculation with machine instructions.
However, the on-chip CPU cache memory subsystems operate at near-CPU
speeds. Therefore, table lookups can be cost-effective if your table resides
in cache memory on the CPU. This means that the way to get good perfor-
mance from table lookups is to use small tables (because the cache has only
so much room) and to use tables whose entries you reference frequently (so
the tables stay in the cache).

Ultimately, the best way to determine whether a table lookup is faster
than a calculation is to write both versions of the code and time them.
Although the “10 million loop and time” approach is probably good enough
for coarse measurements, you might also want to find and use a decent pro-
filer program that will produce much better timing results. See “For More
Information” for additional details.

Moving On

Using table lookups to optimize applications has grown out of favor as

CPU speeds have increased and memory access times have not kept pace.
Nevertheless, this short chapter covered the instances when table lookups
are still useful. It began with a discussion of basic table lookup operations,
then covered domain conditioning and using software to automatically gen-
erate tables. It concluded with a few notes on how to decide whether table
lookups are the right choice for a particular project.

On modern CPUs, multiple cores and SIMD instruction sets are the
common way of improving application performance. The next chapter
discusses the ARM Neon/SIMD instruction set and how you can use it to
improve program performance.

For More Information

e Donald Knuth’s The Art of Computer Programming, Volume 3: Searching and
Sorting, 2nd edition (Addison-Wesley Professional, 1998), contains a lot
of useful information about searching for data in tables.

e See my book Write Great Code, Volume 1, 2nd edition (No Starch Press,
2020) or the electronic version of The Art of Assembly Language at hitps://
www.randallhyde.com for details concerning the operation of cache mem-
ory and how you can optimize its use.

e For information on profiler programs, see “Getting Started with dot-
Trace on macOS and Linux” by Maarten Balliauw at hAttps://blog.jetbrains
.com/dotnet/2023/02/22/getting-started-with-dottrace-on-macos-and-linux.
You can also check out “13 Profiling Software to Debug Application
Performance Issue” by Amrita Pathak at https://geekflare.com/application
-profiling-software/.


https://www.randallhyde.com
https://www.randallhyde.com
https://blog.jetbrains.com/dotnet/2023/02/22/getting-started-with-dottrace-on-macos-and-linux
https://blog.jetbrains.com/dotnet/2023/02/22/getting-started-with-dottrace-on-macos-and-linux
https://geekflare.com/application-profiling-software/
https://geekflare.com/application-profiling-software/

TEST YOURSELF

What is the domain of a function?
What is the range of a function?

Provide the code that implements the following functions (using pseudo-C
prototypes and f as the table name):

a. byte f(byte input)
b. halfword f(byte input)
c. byte f(word input)
d. word f(word input)

What is domain conditioning?

Why might table lookups not be effective on modern processors?

Table Lookups

619






NEON AND SIMD PROGRAMMING

This chapter discusses the vector instruc-
tions on the ARM. This special class of

instructions provides parallel processing,

traditionally known as single-instruction, multiple-
data (SIMD) instructions because, quite literally, a single
instruction operates on several pieces of data concur-
rently. As a result of this concurrency, SIMD instruc-
tions can often execute several times faster (in theory,
as much as 32 to 64 times faster) than the comparable
single-instruction, single-data (SISD) instructions that com-
pose the standard ARM instruction set.

Vector instructions, also known as the Neon instruction set or ARM
Advanced SIMD, provide an extension to the standard scalar instructions.
While a scalar instruction operates on a single piece of data at a time, the
Neon instructions simultaneously operate on a vector (a fancy name for an
array) of data objects.
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This chapter covers a brief history of SIMD instructions, then discusses
the ARM Neon architecture (including the vector registers) and Neon data
types. The majority of this chapter then covers the Neon instruction set. A
complete treatise on SIMD programming is beyond the scope of this book;
however, it wouldn’t do to write this chapter without at least a few SIMD
programming examples in order to demonstrate the benefits of SIMD pro-
gramming, so this chapter concludes with examples that show a bitonic sort
and a numeric-to-hex-string conversion.

The History of SIMD Instruction Extensions

The Neon instruction set extensions were added to the ARM instruction set
long after the ARM was created. Arm created Neon to counter competition
from the Intel x86 CPU family. To understand why the Neon instruction
set is so radically different from the standard instruction set, you have to
understand the history of SIMD (vector) instruction sets.

The first vector computers were supercomputers such as the CDC
Star-100, Texas Instruments Advanced Scientific Computer (ASC), and
Cray computers, which could operate on a vector of data with a single
instruction. These vector computers were the precursor to the early SIMD
computers such as the Thinking Machines CM-1 and CM-2. Ultimately,
supercomputers moved away from the SIMD approach when Intel intro-
duced SIMD features on its low-cost i860 (and, later, Pentium processors).

The Intel Multimedia Extensions (MMX) instruction set was the first
widely adopted desktop SIMD architecture. Intel added parallel integer
arithmetic instructions to the venerable x86 instruction set to accelerate
digital audio processing and other digital signal processing applications.
The PowerPC followed this with the much more capable AltiVec architec-
ture (which included support for single-precision floating-point values).
Intel then produced the SSE2 and SSE3, AVX, AVX2, and AVX-512 SIMD
instruction architectures (which now include full double-precision floating-
point support).

Intel’s approach to adding vector instructions to its x86 series CPUs was
a bit hackneyed. Given the limited transistor budgets on CPUs in the mid-
dle 1990s, Intel added a few vector instructions (MMX) in its early Pentium
processors and then extended the SIMD instruction set as its CPUs became
larger and had more transistors available to implement advanced features.
This evolution produced a bit of a kludge, with new sets of instructions rep-
licating and obsoleting older instructions (with the newer instruction set’s
ability to handle more data or handle data differently).

By the time ARM added SIMD instructions via its Neon Advanced SIMD
instructions, Intel had gone through multiple generations of SIMD instruc-
tions; Arm was able to cherry-pick the more interesting and useful instruc-
tions from Intel’s set, leaving behind all the kruft and legacy instructions. For
this reason, the Neon instruction set is considerably more compact and much
easier to understand than Intel’s MMX/SSE/AVX instruction sets.



11.2 Vector Registers

The ARM provides 32 main FP/Neon registers that are 128 bits each, bro-
ken into five groups based on their size:

e VO to V31, the 128-bit vector registers (for Neon instructions), also ref-
erenced as Q0 to Q31, the qword registers; the Vn names support spe-
cial syntax for vector operations

e DO to D3I, the 64-bit double-precision floating-point registers
e S50 to S31, the 32-bit single-precision floating-point registers

e HO to H3I, the 16-bit half-precision floating-point registers

e B0 to B3l, the 8-bit byte registers

Figure 11-1 shows the vector register layout.

127 0

V31
V30
V29
V28
V27
V26
V25
V24
V23
V22
V21
V20
V19
V18
V17
V1é
V15
V14
V13
V12
V11
V10
Vo
V8
V7
Vé6
V5
V4
V3
V2
Vi
VO

|:| FPCR
|:| FPSR
Figure 11-1: The FP/Neon registers
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The Bn, Hn, Sn, Dn, and Vn registers overlay one another, as shown in
Figure 11-2.

127 63 31 1570

Vn
Dn
| Sn, S(n+ 1)

Hn

Bn
Figure 11-2: Byte, half-word, single, double, and vector
register overlays

See Chapter 6 for more information about the scalar floating-point Dn,
Sn, and Hn registers. Keep in mind, however, that if you mix vector and
floating-point operations in your code, the instructions share the same reg-
ister set.

Figures 11-1 and 11-2 give the impression that the Vn registers are
128-bit registers (which, presumably, you can manipulate as a single 128-bit
value). In fact, the Vn registers are vectors containing sixteen 8-bit, eight
16-bit, four 32-bit, two 64-bit, or (single) 128-bit values, as Figure 11-3
shows.

127111 95 79 63 47 3] 1570

Vn

Vn.2d[i] //i=0or1

Vn.4s]i] //i=0to 3

Vn.8h[i] //i=0to7

L LT PP ] Jvnieblil //i=0to15

Figure 11-3: Vector register overlays

When an instruction operates on a particular element of a vector regis-
ter, you reference that element by using one of the following register names
(in all cases, n represents a vector register number in the range 0 to 31):

e Vnor Qnwhen referencing the whole 128-bit register
e Vn.B when treating the whole register as an array of 16 bytes
e Vn.H when treating the whole register as an array of eight half words

e Vn.S when treating the whole register as an array of four words (single-
precision values)

e Vn.D when treating the whole register as an array of two dwords (double-
precision values)

e Vn.2D[0] or Vn.2D[1] when referencing 64-bit double-precision in bit
positions 0 to 63 or 64 to 127, respectively

e Vn.4S[0], Vn.4S[1], Vn.4S[2], Vn.4S[3] when accessing a 32-bit single-
precision value in bit positions 0 to 31, 32 to 63, 64 to 95, or 96 to 127,
respectively
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e  Vn.8HI[0], Vn.8H[1], ..., Vn.8H[7] when accessing a 16-bit half-word
value in bit positions 0 to 15, 16 to 31, . . ., 112 to 127, respectively

e  Vnl6B[0], Vn.16B[1], ..., Vn.16B[15] when accessing an 8-bit byte in
bit positions 0 to 7, 8 to 16, . . ., 120 to 127

The exact name to choose will depend on the instruction and situation.
You’ll see examples of these registers in use in the next section, “Vector
Data Movement Instructions,” particularly section 11.3.4, “Vector Load and
Store,” on page 632.

Figures 11-2 and 11-3 showed the five basic types associated with the
data in a vector register: bytes, half words, single-precision values, double-
precision values, and 128-bit qwords. In fact, the 32-bit (single) and 64-bit
(double) fields support both floating-point (single and double) and integer
(word and dword) types, bringing the total number of types to seven.

Except for the special 128-bit case, the vector registers contain arrays
of bytes, half words, words, and qwords. For reasons you’ll learn when this
chapter discusses vector operations, each element of the array is known as
a lane. When performing operations using two vector registers, the CPU
generally computes results by using the operands in corresponding lanes
in the two source registers and stores the result in the corresponding lane
in a destination register. For example, suppose that V1 contains 2.0 in the
HO 64 bits (lIane 1) and 1.0 in the LO 64 bits (lane 0), and that V2 contains
20.0 in lane 1 and 10.0 in lane 0. Summing these two vector registers and
storing the result in V3 produces 22.0 in lane 1 and 11.0 in lane 0.

Although the vector registers generally contain arrays of data (when
performing SIMD operations), don’t forget that the floating-point regis-
ters (Dn and Sn) overlay the vector registers as well. When doing normal
floating-point operations (see Chapter 6), these registers contain a single
value rather than an array of values. These single values are known as scalars.

Very few operations treat an entire 128-bit Neon register as a scalar
value. Those that do (mainly load and store instructions) use the name Qn
to denote a scalar value rather than Vn (a vector value).

Vector Data Movement Instructions

Move instructions are the most common integer and floating-point instruc-

tions you’ll use in the Neon instruction set. In this section, you’ll learn how

to use these instructions to move data between registers, load constants into
Neon registers, and load and store vector registers to and from memory.

11.3.1 Data Movement Between Registers

You can use the mov instruction to move data between vector registers.
Unfortunately, the obvious syntax won’t work:

mov v0, vi // Generates a syntax error

Neon and SIMD Programming 625



626

Chapter 11

The mov instruction copies elements of a vector into a vector register.
It can copy data between two vector registers or data between a general-
purpose (Xn or Wn) register and a vector register. The exact syntax
depends on how much data you're copying and the location of the source
and destination registers (vector or general-purpose).

Moving data from a 32-bit general-purpose register (Wm) into a vector
register (Vn) uses one of the following syntaxes:

mov Vn.B[i], Wm // Inserts LO byte of Wm into Vn[i] (i = 0 to 15)
mov Vn.H[i], Wm // Inserts LO hword of Wm into Vn[i] (i = 0 to 7)
mov Vn.S[i], Wm // Inserts Wm into Vn[i] (i = 0 to 3)

The index i must be a literal integer constant, as demonstrated in the
following examples:

mov v0.b[15], wo // Copy LO byte of WO into lane 15 of VoO.
mov vi.h[0], w2 // Copy LO hword of W2 into lane 0 of Wi.
mov v2.s[2], wi // Copy Wi into lane 2 of V2.

Moving data from a 64-bit general-purpose register (Xm) into a vector
register (Vn) uses the following syntax:

mov Vn.D[i], Xm // Inserts Xm into Vn[i] (i = 0 to 1)

I've used the word inserts in these examples because the mov instruction
copies only the byte, hword, word, or dword into the vector register at the
index that i specifies. It does not affect the other data in Vn. For example

mov v0.b[4], wo

inserts only the LO byte from WO into lane 4 in the VO register; it leaves all
other bytes in VO unchanged. Moving bytes, hwords, and words is possible

only when using the Wm register; if you use Xm in the instruction, you can
move only 64 bits. The type specification for the vector register is S (single-
precision) for 32 bits and D (double-precision) for 64 bits. You use this des-
ignation even when copying 32-bit and 64-bit integers.

The ARM instruction ins (insert) is a synonym formov when copying data from
a geneml—purpose regl'ster to a vector Tegister—yet another reason for saying these
instructions insert data rather than saying they copy data.

The previous examples copy the value from a 32- or 64-bit general-
purpose register into a vector register. You can also copy data from one
vector register (Vn) to another (Vm) by using the following syntax:

mov Vm.8B, Vn.8B  // Copy 64 bits.
mov Vm.16B, Vn.16B // Copy 128 bits.




These instructions copy 64 bits (8 bytes, four half words, two words, or
a single dword) or 128 bits (16 bytes, eight half words, four words / single-
precision values, or two dwords / double-precision values) from one vector
register to another. In theory, you should be able to enter something like
mov vi, vO or mov qi, q0 to move the contents of the 128-bit vector register
VO (Q0) into V1 (Ql). Sadly, Gas does not accept this syntax, so you’ll have
to use one of the previous four instructions, as in the following example:

mov v0.16b, vi.16b // Copies Vi to V2

You can also extract a single byte from one vector register and insert it
in an arbitrary lane in another vector register, using the following syntax

mov Vm.B[i1], Vn.B[i2]

where 12 is the index of a byte in the source vector and i1 is the destination
index. Both indices must be in the range 0 to 15.

You can also extract a half word from one vector and insert that into
another:

mov Vm.H[i1], Vn.H[i2]

The rules are the same for bytes, except that the two index values must
be in the range 0 to 7.

You can copy words (single-precision values) and dwords (double-
precision values) by using the following syntax:

mov Vm.S[i1], Vn.S[i2] // i1 and i2 must be in range 0 to 3.
mov Vm.D[i3], Vn.D[i4] // i3 and i4 must be in range 0 to 1.

Here’s an example that copies the LO dwords of VO and V1 merges
them into the two dwords in V2:

mov v2.d[0], v0.d[0]
mov v2.d[1], vi.d[0]

Thus far, I've described how to move data from a general-purpose reg-
ister to a vector register and between two vector registers. The only missing
combination is moving data from a vector register to a general-purpose reg-
ister, handled by the following mov, umov, and smov instructions:

mov Wn, Vm.S[io] // Copies 32 bits
mov Xn, Vm.D[i1] // Copies 64 bits

umov Wn, Vm.B[i1] // Zero-extends byte to 32 bits
umov Wn, Vm.H[i2] // Zero-extends hword to 32 bits
umov Xn, Vm.D[i3] // Copies 64 bits

smov Wn, Vm.B[i5] // Sign-extends byte to 32 bits
smov Wn, Vm.H[i6] // Sign-extends hword to 32 bits
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smov Xn, Vm.B[i5] // Sign-extends byte to 64 bits
smov Xn, Vm.H[i6] // Sign-extends hword to 64 bits
smov Xn, Vm.S[i7] // Sign-extends word to 64 bits

There are no 8- or 16-bit zero extensions to 64 bits. Zero-extending into
Wn automatically zero-extends all the way through the upper 32 bits of Xn.
Here are some examples of these instructions:

mov w0, v0.s[0] // Copy lane 0 (word) of VO to Wo.

mov x1, v7.d[1] // Copy lane 1 (dword) of V7 to X1.

umov w0, vi.b[2] // Copy and zero-extend Vi[2] byte to Wo.
smov x1, v0.s[3] // Copy and sign-extend VO[3] (word) to Xi.

Remember that smov x1, v0.s[3] is moving an integer value, even though
the specified type is S (single-precision).

11.3.2 Vector Load Immediate Instructions

The ARM CPU provides a limited set of instructions that allow you to load
certain immediate constants into a vector register. The integer versions of
these instructions allow only an unsigned 8-bit immediate operand that can
be used as is or shifted to the left 1, 2, or 3 bytes (filling vacated positions
with Os or 1s). Furthermore, these immediate instructions copy the data
into every lane of a byte array, half-word array, or word array. The floating-
point versions of these instructions allow a limited set of floating-point
constants (the same limitations as for scalar floating-point constants; see
section 6.9.1.4, “fmov with Immediate Operand,” on page 334).

The standard move immediate instruction is movi

movi Vn.size, #uimm8

movi Vn.size, #uimm8, 1sl #c // size = 4H, 8H, 2S, or 4S
movi Vn.size, #uimm8, msl #c // size = 2S or 4S

movi Vn.2D, #uimmé64

movi Dn, #uimmé64

where size is 16B, 8B, 4H, 8H, 2S, or 48S; uimm8 is an 8-bit constant; and
uimmé4 is either o or OXFFFFFFFfFFFFff{f. The 1s1 #c component is optional for
instructions with 4H, 8H, 2S, and 48 sizes. The msl #c option is optional
for 2S and 48 sizes. The movi instructions initialize all lanes in the vector
register, or just the lanes in the LO 64 bits, with the specified immediate
constant. The following paragraphs describe the specific variants of each of
these instructions.

The movi Vn.8B, #uimm8 instruction fills each of the LO 8 bytes of Vn with
the specified constant and the HO 64 bits of the register with 0s. For example

movi v0.8b, #0x80

loads 0x80808080 into VO.
The movi Vn.16B, #uimm8 instruction fills all 16 bytes of Vn with the speci-
fied constant. Each lane receives a copy of the uimm8 value.



The movi Vn.4H, #uimm8 instruction fills the four hword lanes in the LO
64 bits of Vn with a copy of the uimm8 constant, and fills the HO 64 bits of Vn
with 0. Because this instruction accepts only 8-bit immediate constants, the
HO 8 bits of each half-word lane will contain 0s. For example

movi vi.4h, #1

loads 0x0001000100010001 into V1.

The movi Vn.4H, #uimm8, 1sl #0 instruction is identical to movi Vn.4H,
#uimm8. If the shift constant is #8, this instruction shifts the immediate con-
stant to the left eight positions before storing it into the four half-word
lanes (in the LO 64 bits of Vn). In this case, the LO 8 bits of each of these
lanes will contain 0s. For example

movi vi.4h, #1, 1sl #8

loads 0x0100010001000100 into V1.

The movi Vn.8H, #uimm8 and movi Vn.8H, #uimm8, 1sl #c instructions do
the same thing as the 4H instructions, except that they store the immediate
constant (shifted by 0 or 8 bits) into all eight lanes of the Vn register.

The movi Vn.2S, #uimm8 instruction fills the two word (single-precision)
lanes in the LO 64 bits of Vn with a copy of the uimm8 constant, and fills the
HO 64 bits of Vrn with 0. Because this instruction accepts only 8-bit immedi-
ate constants, the HO 24 bits of each word lane will contain 0s. Although
the type specification is S, this instruction assigns integer constants, not
floating-point constants, to the lanes. If the optional shift clause is present
(movi Vn.2S, #uimm8, 1sl #c, where c is 0, 8, 16, or 24), this instruction will
shift the 8-bit constant by the specified number of bits before storing the
constant into the two lanes. Here are a few examples:

movi v3.2s, #1 // Loads 0x0000000100000001 into V3
movi v4.2s, #1, 1sl #8 // Loads 0x0000010000000100 into V4
movi v5.2s, #1, 1sl #16 // Loads 0x0001000000010000 into V5
movi v6.2s, #1, 1sl #24 // Loads 0x0100000001000000 into V6

The movi Vn.2S, #uimm8, msl #c instruction is almost identical to its
1s1 counterpart, except it shifts 1 bits rather than 0 bits into the vacated
positions during the shift-left operation. The shift count is limited to 8 or
16 rather than 0, 8, 16, and 24 (an annoying inconsistency). For example

movi v5.2s, #1, msl #16

loads 0x0001FFFFOOO1FFFF into V5.

The movi Vn.4S, #uimm8 instruction fills the four word (single-precision)
lanes in Vn with a copy of the uimm8 constant. Otherwise, this instruction
(and the variant with shifting) behaves identically to the 2S version.

The movi Vn.2D, #uimmé4 instruction loads one of two constants (0 or —1)
into the two dword lanes of the Vn register. Once again, keep in mind that
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these are integer constants, not floating-point constants, despite the use of
the 2D type specifier.

The second move immediate instruction is mvni (move and nof immedi-
ate). It supports the following syntax

mvni Vn.size, #uimm8 {, (1sl | msl) #c}

where size and uimm8 have the same meanings as given for movi.

The operations are the same as for movi, except that mvni inverts all the
bits before storing them into the lanes of the Vn destination register. The
HO 64 bits of Vn still receive Os for the 4H and 2S type specifiers, as shown
in the following examples:

mvni v2.4h, #1, 1sl #8 // Loads OxFEFFfeffFEFFfeff into V2
mvni v4.2s, #2, msl #8 // Loads OxFFFFFDoOfffffdoo into V4

Note the absence of the 2D types for the mvni instruction. These instruc-
tions are unnecessary because the two allowable movi uimmé4 constants are
already the inverse of each other. If you want inverted bits, just use the other
uimmé4 constant (0 versus —1) with the movi instruction.

The third form of the move immediate instruction, fmov, allows you to
load certain floating-point constants into the lanes of a vector register. The
allowable syntax is the following:

fmov Vn.2S, #fimm
fmov Vn.4S, #fimm
fmov Vn.2D, #fimm

The floating-point immediate constant (fimm) must be a value defined by
tn+ 16x2r

where 16 < n < 31 and -3 < r< 4. You cannot represent 0.0 with this formula;
if you need to load 0.0 into the lanes of a vector register, just load the integer
constant 0 into those lanes by using the movi instruction (all 0 bits is 0.0):

fmov v0.2s, #1.0 // Loads [0.0, 0.0, 1.0, 1.0] into VO
fmov vo.2d, #2.0 // Loads [2.0, 2.0] into VO

The move immediate instructions load only certain constant values
into the vector registers. The following are the exact values you can load as
immediate floating-point constants (Gas will accept only these values):

0.1250000 0.1328125  0.1406250  0.1484375
0.1562500 0.1640625 0.1718750  0.1796875
0.1875000 0.1953125 0.2031250  0.2109375
0.2187500 0.2265625  0.2343750  0.2421875
0.2500000 0.2656250 0.2812500 0.2968750



0.3125000 0.3281250
0.3750000 0.3906250
0.4375000 0.4531250
0.5000000 0.5312500
0.6250000 0.6562500
0.7500000 0.7812500
0.8750000 0.9062500
1.00 1.0625
1.25 1.3125
1.50 1.5625
1.75 1.8125
2.00 2.1250
2.50 2.6250
3.00 3.1250
3.50 3.6250
4.00 4.2500
5.00 5.2500
6.00 6.2500
7.00 7.2500
8.0 8.5

10.0 10.5

12.0 12.5

14.0 14.5

16.0 17.0

20.0 21.0

24.0 25.0

28.0 29.0

0.3437500  0.3593750
0.4062500  0.4218750
0.4687500  0.4843750
0.5625000 0.5937500
0.6875000 0.7187500
0.8125000  0.8437500
0.9375000 0.9687500
1.125 1.1875
1.375 1.4375
1.625 1.6875
1.875 1.9375
2.250 2.3750
2.750 2.8750
3.250 3.3750
3.750 3.8750
4.500 4.7500
5.500 5.7500
6.500 6.7500
7.500 7.7500
9.0 9.5

11.0 11.5

13.0 13.5

15.0 15.5

18.0 19.0

22.0 23.0

26.0 27.0

30.0 31.0

Based on the way programs typically use the Neon registers, this is a
reasonable set of values, which can be encoded into a 32-bit instruction
opcode. To load larger or different constants, see section 11.3.4, “Vector

Load and Store,” on the next page.

11.3.3 Register or Lane Valve Duplication

The dup instruction allows you to duplicate a value held in a general-purpose
register or in a single lane of a vector register, throughout all the lanes in a
vector register. This instruction supports the following forms:

dup Vn.2D, Xm

dup Vn.8B, Wm
dup Vn.16B, Wm

dup Vn.4H, Wm
dup Vn.8H, Wm

dup Vn.2S, Wm
dup Vn.4S, Wm

dup Vn.8B, Vm.

B[i1]

// Copy Xm into lanes 0-1 (64 bits each) in Vn.

// LO 8 bits of Wm to lanes 0-7 in Vn
// LO 8 bits of Wm to lanes 0-15 in Vn

// LO 16 bits of Wm to lanes 0-3 in Vn
// LO 16 bits of Wm to lanes 0-7 in Vn

// Wm to lanes 0-1 in Vn
// Wm to lanes 0-3 in Vn

// Dup Vm lane i1 through lanes 0-7 in Vn.

dup Vn.16B, Vm.B[i2] // Dup Vm lane i2 through lanes 0-15 in Vn.
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dup Vn.4H, Vm.H[i3] // Dup Vm lane i3 through lanes 0-3 in Vn.
dup Vn.8H, Vm.H[i4] // Dup Vm lane i4 through lanes 0-7 in Vn.

dup Vn.2S, Vm.S[i5] // Dup Vm lane i5 through lanes 0-1 in Vn.
dup Vn.4S, Vm.S[i6] // Dup Vm lane i6 through lanes 0-3 in Vn.

dup Vn.2D, Vm.D[i7] // Dup Vm lane i7 through lanes 0-1 in Vn.

The first instruction in each pair duplicates only data in the LO 64 bits
of Vn; the second instruction of each pair copies a full 128 bits. The two
single instructions copy 128 bits.

11.3.4 Vector Load and Store

The mov, movi, mvni, fmov, and dup instructions can move data between vector
registers and between general-purpose and vector registers, and can load
constants into vector registers. However, they don’t allow you to load a regis-
ter from memory or store the value held in a vector register to memory. The
Neon instruction set provides several load and store instructions to handle
these tasks.

Because the load and store instructions are the most fundamental, this
section considers them first. To load or store an entire 128-bit vector register,
use the following syntax

ldr Qn, memory
str Qn, memory

where memory is one of the usual ARM memory addressing modes (same as
for the scalar 1dr and str instructions). Note the use of Qn to denote the
register (rather than Vn). This is one of the few places the Qn register is
legal (one wonders why they didn’t just use Vn). These instructions will load
or store a full 16 bytes, that is, 128 bits.

The stp instructions also allow vector register (Qn) operands:

ldp Qn, Qm, memory
stp Qn, Qm, memory

Note that n and m in these instructions don’t have to be consecutive
numbers but can be any arbitrary value in the range 0 to 31.

11.3.5 Interleaved Load and Store

The Neon instruction set provides load and store instructions that load data
into a single lane across multiple vector registers. These instructions load
interleaved data from memory into one, two, three, or four vector registers.
The load (1d1, 1d2, 1d3, and 1d4) and store (st1, st2, st3, and st4) instructions
support non-interleaved data, pairs of interleaved data, triplets of interleaved
data, and quad-interleaved data, respectively. The following subsections
describe these types of interleaved load and store instructions.



11.3.5.1 Interleaved Load and Store Addressing Modes

The interleaved load and store instructions access memory, but they do not
support the full set of ARM memory addressing modes, just three

instr {register list}, [Xn]
instr A{register list}, [Xn], Xm
instr {register list}, [Xn], #imm

where instr is one of 1dn/stn and register list is a comma-separated set of
Qn registers that the load and store instructions will use when loading data
from, or storing data to, memory. (The following sections discuss register
_list at greater length.)

The standard register-indirect addressing mode is[Xn]. The ldn/stn
instructions will access the data at the memory address held in general-
purpose register Xn.

The [Xn], Xm addressing mode computes its effective address as the
sum of the values in X7 and Xm. This is a post-increment addressing mode;
immediately after accessing the specified memory address, this mode adds
the value of Xm to Xn.

The [Xn], #imm addressing mode is also a post-increment addressing
mode, which computes its effective address as the sum of Xn + imm, then adds
the immediate constant to Xn after referencing the address. The immedi-
ate value is limited to the constants 1, 2, 4, 8, 16, 32, 48, or 64, where the
register_list operand(s) determines the value you must use. The following
sections describe the allowable immediate constants for each version of
the instruction.

11.3.5.2 Id1/st1

The 1d1 instruction loads one to four registers with data from sequential
(non-interleaved) memory locations. With a single vector register, the syn-
tax for this instruction is the following

1d1 {vn.8B}, memory
1d1 {vn.16B}, memory
1d1 {Vn.B}[index], memory

1d1 {Vn.4H}, memory
1d1 {vn.8H}, memory
1d1 {Vn.H}[index], memory

1d1 {vn.2S}, memory
1d1 {vn.4S}, memory
1d1 {Vn.S}[index], memory

1d1 {vn.2D}, memory
1d1 {vn.D}[index], memory
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where memory is one of the following:

[Xn]
[Xn], Xm
[Xn], #imm

The imm operand, if present, must match the size of the register oper-
and. That is, for B it must be 1; for 8B, 8; for 16B, 16; for H, 2; and so on.

The 1d1 instruction with the {Vn.8B} register list operand loads 8 bytes
into the LO 64 bits of Vn, while the {Vn.16B} register list operand loads
16 bytes.

With a 4H or 2S type specification, the 1d1 register also loads 64 bits
(four hwords or two words) into the LO 64 bits of Vn. With an 8H or 4S
type, the 1d1 instruction loads 128 bits into Vn. Although the 8B, 4H, and
2S types and the 16B, 8H, 4S, and 2D types seem to be interchangeable
(they load the same amount of data into Vrn), you should aim to pick the
most appropriate type for the data you're manipulating. Not only does this
improve your documentation, but also the internal microarchitecture of the
ARM CPU might be able to optimize its operations better based on the type
of data you are using.

With the bare B, H, S, or D type specification, the 1d1 instruction loads
a single lane in Vn with data from memory. This operation does not affect
the data in the other lanes in Vn. This is the most important variant of the
1d1 instruction because it allows you to build up data in a vector register one
lane at a time from different locations in memory.

Why does the 1d1 instruction require braces around the vector register
specification? The destination operand of this instruction is actually a reg-
ister list. You can specify one to four registers in this list, as shown in the
following examples:

1d1 {v1.8b}, [x0]

1d1 {v1.8b, v2.8b}, [x0]

1d1 {v1.8b, v2.8b, v3.8b}, [x0]

1d1 {v1.8b, v2.8b, v3.8b, v4.8b}, [x0]

The registers that may appear in this list have two restrictions:

e  They must be consecutively numbered registers (with VO being the suc-
cessor to V31).
e The type specifications must be identical for all registers in the list.

If you have two or more consecutively numbered registers in a list, you
can use the shorthand

{vn.t - V(n + m).t}




where mis 1, 2, or 3, and t is one of the usual vector types, as shown in the
following examples:

1d1 {vi1.8b}, [x0]

1d1 {v1.8b - v2.8b}, [x0]
1d1 {v1.8b - v3.8b}, [x0]
1d1 {v1.8b - v4.8b}, [x0]

When you specify more than one register in the list, the 1d1 instruction
will load values from consecutive locations into the register. For example,
the following code will load VO from the 16 bytes at the address held in X0,
V1 from the 16 bytes at X0 + 16, and V2 from the 16 bytes at X0+ 32:

1d1 {vo0.16b, vi.16b, v2.16b}, [x0]

The st1 instruction supports an identical instruction syntax (except, of
course, you substitute the st1 mnemonic for 1d1). It stores the contents of
the register(s) or lanes from those registers into the specified memory loca-
tion. Here is an example that demonstrates storing the values in VO and V1
to the location specified by XO0:

st1 {v0.16b, vi.16b}, [x0]

This instruction stores the value in VO at the address held in X0, and
the value in V1 to address X0 + 16.

11.3.5.3 1d2/st2

The 1d2 and st2 instructions load and store interleaved data. These two
instructions use the following syntax

1d2 {vn.t1, V(n + 1).t1}, memory
1d2 {vn.t2, V(n + 1).t2}[index], memory
st2 {vn.t1, V(n + 1).t1}, memory
st2 {vn.t2, V(n + 1).t2}[index], memory

where the register list must contain exactly two registers, and their register
numbers must be consecutive. The t1 size is 8B, 16B, 4H, 8H, 2S, 4S, or
2D, while t2is B, H, S, or D. The literal constant index is an appropriate
lane number for the type’s size (0 to 15 for B, 0 to 7 for H, 0 to 3 for S,

and 0 to 1 for D). Finally, memory is one of the addressing modes described
in section 11.3.5.1, “Interleaved Load and Store Addressing Modes,” on
page 633.

The variants with index (which load a single lane into the two registers)
load the first register’s lane from the specified memory address and load the
second register’s lane n bytes later (where n is the size of the lane, in bytes).

The 1d2 instruction with the t1 type specification (8B, 16B, 4H, 8H,
and so on), meanwhile, loads the two registers one value at a time (of the
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specified type: B, H, S, or D), alternating destination lanes between the two
registers. For example

1d2 {vo0.8b, v1.8b}, [x0]

loads the LO 8 bytes of VO from memory locations X0, X0+ 2, X0 +4, X0 +6,
X0+8, X0+10, X0+ 12, and X0 + 14. It loads the LO 8 bytes of V1 from loca-
tions X0+1, X0+3, X0+5, X0+7, X0+9, X0+11, X0+ 13, and X0+ 15. This
deinterleaves the data in memory, loading the even bytes into VO and the
odd bytes into V1. Figure 11-4 shows how 1d2 extracts interleaved data from
X0 and stores the deinterleaved results in VO and V1.

]
XO—— [T L P T ] 1

Vo HEEEEEEEEEEEEEEN

L HEEEEEEEEEEEEEEN

Figure 11-4: The 1d2 deinterleaving operation

If you specify the half-word type (4H or 8H), the 1d2 instruction dein-
terleaves 16-bit values (even and odd half words). This is particularly useful
for deinterleaving digital audio tracks that interleave left and right channels
(16 bits per sample).

If you specity 25/4S or 2D, this instruction will deinterleave words or
dwords. For example, if you have an array of floating-point complex numbers,
the 1d2 instruction can deinterleave the real and imaginary components.

Because 1d2 deinterleaves pairs of objects, the register list must contain
exactly two registers. The assembler will reject any other number of registers
in the list.

The st2 instruction uses the same syntax (except, of course, substituting
st2 for 1d2). This instruction stores data lanes of the specified type from two
registers into memory, interleaving the data between the two registers. The
store operation is basically reversing the arrows in Figure 11-4 (that is, copy-
ing the data from V0 and V1 into X0, interleaving the two data sets).

1.3.54 1d3/st3

The 1d3 and st3 instructions behave in a similar fashion to 1d2/st2, except
that they (de)interleave three objects in memory rather than two, and the
register list must contain exactly three registers.

A common example of using the 1d3/st3 instructions is to (de)inter-
leave red, green, blue (RGB) values consisting of 3 bytes—an 8-bit red, 8-bit
green, and 8-bit blue value—in memory. Using the 1d3 instruction, you can



deinterleave an array of 3-byte RGB values into separate red, green, and
blue byte arrays. You can use the st3 instruction to interleave red, green,
and blue values into an RGB array.

11.3.5.5 |d4/st4

Finally, as you've probably figured out by now, the 1d4 instruction copies
four consecutive values from memory and stores those values into the same
lane of the four registers specified by the four-element register list:

1d4 {v4.d, v5.d, v6.d, v7.d}[0], [x0]

This instruction copies the four dwords starting at the address held in
X0 into lane 0 of V4, V5, V6, and V7, respectively. Figure 11-5 diagrams how
this 1d4 instruction operates.

XO points here

\ Memory
| | | |

L
\Z
V5 |
Vé |
\Z | | | |
Lane 3 Lane 2 Lane 1 Lane O

Figure 11-5: The 1d4 instruction operation

The 1d4/st4 instructions are useful for (de)interleaving data in memory
that consists of an array of four objects. For example, suppose that you have
an array of CMYK (cyan-magenta-yellow-black) color pixels in memory,
arranged as shown in Figure 11-6.

LO byte HO byte
| Cyan | Magenta | Yellow | Black |

Figure 11-6: CMYK pixel layout in memory

Neon and SIMD Programming 637



638

Chapter 11

When submitting an image to a printing service, you generally need to
provide color separations—that is, four separate images consisting only of
the cyan pixels, magenta pixels, yellow pixels, and black pixels. Therefore,
you’ll need to extract all the cyan pixels from the full-color image and
create a separate image for that; likewise for the magenta, yellow, and
black pixels.

You can use the 1d4 instruction to extract the cyan, magenta, yellow,
and black values from the original image and place those pixels in four sep-
arate vector registers. For example, assuming X0 points at the first CMYK
pixel (32 bits) in memory

1d4 {vo.b - v3.b}[0], [x0]

will extract the 4 bytes pointed at by X0 and distribute them into lane 0 of
VO (cyan), V1 (magenta), V2 (yellow), and V3 (black). If you add 4 to X0 and
repeat this instruction, specifying lane 1 instead of lane 0, this will separate
the second pixel into lane 1 of VO-V4. Repeat this 14 more times and you’ll
have 16 cyan pixels in VO, 16 magenta pixels in V1, 16 yellow pixels in V2,
and 16 black pixels in V3. You can then store away these four registers into
the graphic image area that will hold the four-color separations. Repeat this
process for all the pixels in the four-color image and you’ll have your color
separations.

Of course, you can use the 8B and 16B types to process 8 or 16 pixels
concurrently:

1d4 {vo.16b - v3.16b}, [x0]

This instruction copies 64 bytes into V0, V1, V2, and V3, with every
fourth byte going into successive lanes in the four registers: VO gets bytes
at offsets i % 4, V1 gets bytes at offsets (¢ % 4) + 1, and so on, where iis the
byte index into memory.

11.3.5.6 ldnr

The 1d1, 1d2, 1d3, and 1d4 instructions load the lanes of one to four registers
with successive values in memory, deinterleaving an array of interleaved
objects (bytes, hwords, words, or dwords). The 1dir, 1d2r, 1d3r, and 1d4r
instructions also deinterleave an interleaved object, but the memory object
is a single object that the instruction replicates through all lanes in the vec-
tor register(s).

The syntax for these instructions is the same as for the 1dn instructions
with the addition of the r suffix on the mnemonic:

ldir {vn.t}, memory

1d2r {vn.t, V(n + 1).t}, memory

1d3r {vn.t, V(n + 1).t, V(n + 2).t}, memory

1d4r {vn.t, V(n + 1).t, V(n + 2).t, V(n + 3).t}, memory




The .t represents a lane type (more on this in a moment), and memory
is the usual 1dn addressing modes. You can also use the range syntax

Vn.t - V(n + m).t

when specifying two or more registers in the list.

For these instructions, allowable types are 8B, 16B, 4H, 8H, 28, 45,
and 2D. These type specifications do the following when used with the 1dir
instruction:

e 8B loads the first 8 lanes of Vn with a copy of the byte found at memory,
replicating that byte in each lane.

e 16B loads all 16 lanes of Vr with a copy of the byte found at memory, repli-
cating that byte in each lane.

e 4H loads the first 4 lanes of Vn, replicating the hword found at memory.
e 8H loads all 8 lanes of Vn, replicating the hword found at memozry.

e  2Sloads the first 2 lanes of Vn, replicating the word found at memory.

e 4S]oads all 4 lanes of Vn, replicating the word found at memory.

e 2D loads the 2 dword lanes of Vn, replicating the dword found at memory.

The 1dir instruction fetches only a single lane value from memory and
writes it to all the lanes of the destination register. The ld2r instruction
fetches two lane objects from successive memory locations and replicates
the first value throughout the first register and the second value throughout
the second. The 1d3r instruction fetches three lane objects from memory
and replicates them through the first, second, and third registers, respec-
tively. Finally, the 1d4r instruction fetches four lane objects from memory
and uses them to initialize the lanes of the four registers.

11.3.6 Register Interleaving and Deinterleaving

The 1dn/stn and ldnr instructions operate between memory and the vector
registers. When you want the ability to interleave and deinterleave data
appearing in vector registers, leaving the result in a vector register, use the
trn1, trn2, zip1, zip2, uzip1, uzip2, and ext instructions.

11.3.6.1 trnl and trn2

The trn1 and trn2 (transpose) instructions—so called because you can use
them to transpose the elements of a 2 x 2 matrix (or larger arrays with a lit-
tle effort)—extract data from two source registers and interleave that data
into a destination register. These instructions use the following syntax

trnl vd.t, Va.t, Vb.t
trn2 Vd.t, Va.t, Vb.t

where t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D. The d (destination), a, and b
items are register numbers in the range 0 to 31. These register numbers are
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arbitrary (they don’t have to be consecutive values, as is the case for the
ldn/stn and ldnr instructions).

The trn1 instruction copies the data from even-numbered lanes in Va.t
into the corresponding lanes in Vd.t, and data from even-numbered lanes
in Vb.t into the odd lanes in Vd.t, while ignoring the odd-numbered lanes in
Va.t and Vb.t. For example, consider the following instruction:

trnl v0.4s, v2.4s, v4.4s

This instruction interleaves the alternate bytes in V2 and V4, leaving
the result in VO, as shown in Figure 11-7.

Lane 3 2 1 0
(2 | | | |

Voo

va | | |

Figure 11-7: The trn1 vo0.4s, v2.4s, v4.4s operation

The trn2 instruction copies the values in the odd lanes in Va.t and Vb.t
into alternating lanes in Vd.t, as shown in Figure 11-8 (similar to trn1 except
that it swaps the source locations).

Lane 3 2 1 0
V2 | | | | |

VO |

va | | |

Figure 11-8: The trn2 vo0.4s, v2.4s, v4.4s operation

Consider the 2x2 matrix of double-precision values held in V2 and V3
as shown in Figure 11-9 (note the positions of the array elements, which is
different from what you would normally expect).



Lane 1 0

V2 | M[O,1] | M[0,0] |

V3 | M[1,1] | M(1,0] |

Figure 11-9: A 2x2 matrix held in V2 and V3

The following two instructions will transpose this matrix, leaving the
result in VO and V1:

trn1 vo.2d, v2.2d, v3.2d
trn2 vi.2d, v2.2d, v3.2d

Of course, trn1 and trn2 are generally useful for rearranging and inter-
leaving values in the vector registers, even if you aren’t transposing 2x2
matrices.

11.3.6.2  zip] and zip2

The zip1 and zip2 instructions are similar to trn1 and trn2 insofar as they
produce an interleaved result from data taken from two source registers.
The name zip comes from zipper: the instruction interleaves lanes just like a
zipper interleaves the two halves of the connector. Except for the mnemon-
ics, the syntax is identical to trn1 and trn2

zip1 vd.t, Va.t, Vb.t
zip2 Vd.t, Va.t, Vb.t

where t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D (all types must be the same
in the instruction).

The zipn and trnn instructions differ in the way they select the source
lanes to interleave. The zip1 instruction interleaves lane values taken from
the beginning of the source registers (consuming half the lanes of each
source register and ignoring the remaining lanes). See Figure 11-10 for
an example.

Lane 3 2 1 0
Vi | | | | |

Voo

v2 | | |

Figure 11-10: The zip1 v0.4s, vi1.4s, v2.4s operation
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The zip2 instruction works similarly except that it processes the second
half of the lanes in the source registers. Figure 11-11 shows an example.

Lane 3 2 1 0
Vi | | | |

vo |

vz | | |

Figure 11-11: The zip2 v0.4s, vi.4s, v2.4s operation

As you can see from these figures, the zip1 and zip2 instructions are
typically what you would use to create interleaved data using only registers.

11.3.6.3  uzpl and uzp2

The uzp1 and uzp2 (unzipl and unzip2) instructions are the inverse of zip1
and zip2. They take interleaved data in two source registers and produce
deinterleaved data in the destination register. Their syntax is the same as
that of the trnn and zipn instructions:

uzpl Vd.t, Va.t, Vb.t
uzp2 Vd.t, Va.t, Vb.t

As usual, t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D.

The uzp1 instruction copies the even lanes from Va.t into the first half of
vd.t, then appends the even lanes of Vb.t to the end of vd.t. See Figure 11-12
for an example.

Lane 3 2 1 0
Vi | | | | |

VO |

vz | | |

Figure 11-12: The uzp1 vo0.4s, vi.4s, v2.4s operation
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The uzp2 instruction copies the odd lanes from the source registers.
Figure 11-13 shows an example of the uzp2 instruction in action.

Lane 3 2 1 0
Vi | | | | |

VO |

V2| | | |

Figure 11-13: The uzp2 vo0.4s, vi.4s, v2.4s operation

If the type specifier is 64 bits (8B, 4H, or 2S), the uzp1 and uzp2 instruc-
tions leave Os in the HO lanes of the destination register.

11.3.6.4 ext

The ext (extract) instruction creates an 8- or 16-byte vector from 7 bytes in
one vector and 8-n (or 16-n) bytes from a second vector. This instruction
allows you to extract an 8- or 16-byte vector from across two vectors. The
syntax for this instruction is as follows

ext Vd.8B, Vs,.88, Vs,.88, #n
ext Vd.16B, Vs, .16B, Vs,.168, #n

where n is a starting index, Vd is the destination register, and Vs, and Vs, are
the source registers.

The ext vd.8B, Vs,.8B, Vs,.8B, #ninstruction fetches the LO n bytes from
Vs, and copies them to the HO n bytes of the LO 64 bits in Vd. It also extracts
the LO 8-n bytes from Vs, and copies them to the LO 8-n bytes of Vd. For an
example of ext, see Figure 11-14.

lane 16 8 7 0

Figure 11-14: The ext v0.88, v1.88, v2.8B, #2
instruction
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The ext Vd.16B, Vs,.16B, Vs,.16B, #n instruction fetches the LO n bytes
from Vs, and copies them to the HO n bytes of Vd. It also extracts the
LO 16-n bytes from Vs, and copies them to the LO 16-n bytes of Vd (see
Figure 11-15 for an example).

lane 16 87 0

veo QI IIITIIIrTirgd

v LI rrrrrd

Figure 11-15: The ext v0.16B, v1.16B, v2.16B, #5
instruction

This instruction supports only the 8B and 16B types. You can easily
extract hwords, words, or dwords by choosing an appropriate index value
(n) that includes all the objects you want to extract.

11.3.7 Table Lookups with thl and thx

The tbl and tbx (table lookup) instructions allow you to exchange all the
byte values in one register with values taken from a lookup table containing
up to 64 entries. The syntax for these instructions is

tbl Vd.8B, {table list}, Vs.8B
tbl Vd.16B, {table list}, Vs.16B
tbx Vd.8B, {table list}, Vs.8B
tbl Vd.16B, {table list}, Vs.16B

where table_list is a list of one to four (consecutively numbered) registers,
all of which must have a 16B type attached to them. (You can also use the
Vn.t - Vm.t syntax, where m >nand m < (n + 4).) This list of registers provides
a lookup table that contains 16, 32, 48, or 64 entries. The LO byte of the
first register is index 0 in the table; the HO byte of the last register is index
15, 31, 47, or 63 into the table.

The tbl instruction fetches each byte from the source register (Vs.t)
and uses its value as an index into the lookup table. It fetches the byte at
that index from the table and copies it to the corresponding location in the
destination register—that is, the same byte index from which the source
byte was taken; so this is equivalent to Vd[i] = table[ Vs[i] ]. If the value
is out of range (greater than 15, 31, 47, or 63, depending on the size of the
table), the tbl instruction stores a 0 into the corresponding location in the
destination register. The tbx instruction works similarly to tbl, except that it



leaves the destination location unchanged if the source value is out
of range.

For very small tables (64 entries or fewer), you can use tbl and tbx to
implement lookup tables as described in Chapter 10. However, the main
purpose of these two instructions is to provide arbitrary vector permuta-
tions like the trni/trn2, zip1/zip2, uzp1/uzp2, and ext instructions. Suppose,
for example, that you want to reverse the positions of all 16 bytes in a vector
register (swapping indices 0 and 15, 1 and 14, 2 and 13, 3 and 12, and so on).
Figure 11-16 shows a 16-byte endian swap operation, where the double-
ended arrows point to the two locations where the bytes are exchanged.

Lane 15 8 7 0

Figure 11-16: A 16-byte endian swap

If you load a vector register with the following 16-byte value

0x000102030405060708090a0b0c0d0oe0f

and then use this value in the source register for the tbl (or tbx) instruc-
tion, tbl (or tbx) will swap the bytes in a single 16-byte register supplied
as the table_list, storing the reversed bytes in the destination register.
Assuming you’ve loaded this value into VO, the following instruction will
swap the bytes in {V1}, placing the results in V2:

tbl v2.16b, {vi.16b}, v0.16b

After you load V1 with the bytes to be swapped and execute this instruc-
tion, V2 will contain the swapped values.

To use tbl or tbx as a vector permutation instruction, load the permuta-
tion indexes into the source register (VO in this example). The indices will
always be values in the range 0 to 15, to select specific entries in table_list.
For a true permutation, each of the values (0 to 15) will appear exactly once
in the source register, and there will always be a single register in the table
_list. Because you're limiting the values in the source register to the range
0 to 15, the table index values are always in range, so you can use either tbl
or tbx. Both work exactly the same when the values are not out of range.

Of course, you can use any permutation you like by specifying differ-
ent values in the source register. As with the ext instruction, tbl and tbx
support only the 8B and 16B lane types. However, it’s easy enough to syn-
thesize other types (for permutations, anyway) by choosing the positions
of the source register lane values to permute hwords, words, and dwords.
Obviously, for table lookup operations (rather than permutations), you're
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limited to 8-bit values, so hword, word, and dword types don’t make any
sense.

11.3.8 Endian Swaps with rev16, rev32, and revé64

The revi6, rev32, and revé4 instructions are similar to their scalar counter-
parts revi6, rev32, and rev (see section 3.3, “Little-Endian and Big-Endian
Data Organization,” on page 133), except, of course, they operate on the
lanes in a vector source register rather than on a general-purpose integer
register. Here is their syntax:

revip Vd.t1, Vs.t1 // Swap the bytes in the half-word lanes.
rev32 Vd.t2, Vs.t2 // Swap the bytes in the word lanes.
rev64 Vd.t1, Vs.t3 // Swap the bytes in the double-word lanes.

The legal types and lane counts for these instructions appear in
Table 11-1.

Table 11-1: Legal Types and Lane Counts
for rev* Instructions

t Type and lane count

t1 8B, 16B

t2 8B, 16B, 4H, or 8H

t3 8B, 16B, 4H, 8H, 2S, or 45

If the lane count and type is 8B, 4H, or 25, the instruction operates
only on the LO 64 bits of the source register (and clears the HO 64 bits of
the destination register). If the lane count and type is 16B, 8H, or 4S, these
instructions operate on the full 128 bits of the source register.

Vertical and Horizontal Operations

Up to this point, vector operations have been vertical, meaning they’ve oper-
ated on the same lane across multiple registers (which, when stacked as
appearing in most figures thus far, show a vertical operational direction).
Consider the following vector addition instruction:

add v0.16b, v1.16b, v2.16b

As for the scalar addition operation (for example, add wo, w1, w2), this
instruction adds the values of two source registers (V1.16B and V2.16B),
producing a sum in the destination register. However, this is not a 128-bit
addition operation, but rather an 8-bit operation repeated 16 times. Vector
operations typically operate on a lane-by-lane basis, performing multiple
small operations in parallel. For this particular instruction, the CPU adds
together 16 byte values, producing 16 independent byte results. This is the
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magic behind SIMD programming: the ability to do 16 times as much work
with a single instruction (so it should run about 16 times faster than run-
ning these 16-byte additions individually).

Figure 11-17 shows the lane-by-lane operation of the add instruction
with the lane-by-lane addition following the arrow directions.

lane n-1n-2 2 1 0
+
v L[] . HEEEEN

vd

Figure 11-17: Lane-by-lane operations

Lane-by-lane operations are independent of one another, meaning that
if any carries, overflows, or other exceptional conditions occur, such anom-
alies are limited in scope to a single lane. Because there is only a single
set of NVZC condition code flags, vector instructions cannot (and do not)
affect these flags. If an unsigned carry out of one lane occurs (such as when
adding 255+ 1 in a byte lane), the sum wraps around with no indication of
overflow or underflow. In general, you must handle overflows completely
differently from the way you’d handle them when doing scalar arithmetic.
This chapter covers some strategies for doing so when discussing saturation
in later sections.

Certain vector instructions provide horizontal operations, also known as
reducing operations. Rather than operating lane by lane between two registers,
these operations operate on all the lanes within a single vector register, pro-
ducing a scalar result. For example, the addv instruction will produce the sum
of all the lanes in a single vector register.

SIMD Logical Operations

Because logical (Boolean) operations are computed on a bitwise basis, vec-
tor logical operations are unique insofar as you can use them to perform
128 individual bit operations. Whether you treat the source operands as six-
teen 1-byte values or as one 128-byte value, the result is the same. For that
reason, the vector logical operations support only two types: 8B (for 64-bit
operands) and 16B (for 128-bit operands). If you really want to operate on
4H or 2S operands, just specify 8B; you’ll get the same result. Likewise, for
8H, 48, or 2D operands, specifying 16B produces the same result.

The Neon instruction set supports eight logical instructions, as shown
in Table 11-2. Here, t is 8B or 16B, Vd is the destination register, Vs, is the
left source register, and Vs, is the right source register (Vs is the only source
register for the not instruction).
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Table 11-2: Neon Logical Instructions

Mnemonic Syntax Description

and and Vd.t, Vs,.t, Vs,.t Vd = Vs, & Vs,

orr orr Vd.t, Vs,.t, Vs,.t Vd = Vs, | Vs,

orn orn Vd.t, Vs,.t, Vs,.t Vd = Vs, | ~(Vs,)

eor eor Vd.t, Vs,.t, Vs,.t Vd = Vs, " Vs,

bic bic Vd.t, Vs,.t, Vs,.t Vd = Vs, & ~(Vs,) (bit clear)
bif bif Vd.t, Vs,.t, Vs,.t Bit insert if false

bit bit Vd.t, Vs,.t, Vs,.t Bit insert if true

bsl bsl Vd.t, Vs,.t, Vs,.t Bitwise select

not not Vd.t, Vs.t Vd = ~Vs

The and, orr, and eor instructions do the usual logical operations (same as
scalar) and require no further explanation. The orn instruction is similar to
bic insofar as it inverts the second source operand prior to the OR operation.

The bic (bit clear) instruction clears all the bits in the value of Vs, in the
positions containing 1Is in Vs,. It stores the result in Vd. Note that there is no
need for a bis (bit set) instruction, because orr will set bits in Vd.

The bif (bit insert if false) and bit (bit insert if true) instructions are
unusual insofar as they use three operands in their computation (rather
than using a function of two inputs and storing the result in a third oper-
and). The bif instruction copies the bits from Vs, to Vd wherever the corre-
sponding bit in Vs, contains a 0. In the bit positions where Vs, contains a 1, this
instruction leaves the corresponding bit in Vd unchanged. The bit instruc-
tion works similarly, except it copies the bits when the corresponding bit in
Vs, contains a 1 (rather than 0).

The bsl (bit select) instruction selects bits from Vs, or Vs, (and copies
them to Vd) based on the original contents of Vd. If Vd originally contained
a 1 in a particular bit position, bsl selects the corresponding bit from Vs,.
Otherwise, it selects the bit from Vs,.

The not instruction inverts all the bits in the source register and stores
the result into the destination register. This instruction is different from the
other logical instructions, having only a single source operand.

The Neon instruction set supports a few special immediate versions
of the orr and bic instructions

orr Vd.t, #imm
orr Vd.t, #imm, 1sl #shift
bic vd.t, #imm
bic Vd.t, #imm, 1sl #shift

where imm is an unsigned 8-bit immediate value; the type (t) is 25, 4S, 4H,
or 8H; and shift is 0 or 8 if t is 4H/8H and 0, 8, 16, or 24 if t is 2S or 4S. If
shift is not specified, it is assumed to be 0. These instructions require the
H and S types rather than the B types, since they replicate the immediate
value through the bytes in the lanes in vd.t.
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NOTE

SIMD Shift Operations

Shift instructions are generally considered to be logical operations.
However, from a vector point of view, they are more correctly thought of
as arithmetic operations because shift operations can produce overflows.
Vector shift operations handle overflows in one of four ways:

e Ignoring any carry out of the shift operation (truncation)

e Saturating the shift result

e Rounding the result

e Providing an extended shift operation whose destination operand is

larger than the source register

This section describes these various shift operations.

The Neon instruction set uses mnemonics based on shr and shl for shift left and shift
right. This is in contrast to the 1s1, 1sr, and asr instructions that the scalar integer
instruction set uses. I cannot think of a good reason they did it this way; it would
have made the instruction set easier to learn had they stuck to a consistent naming
convention.

11.6.1 Shift-Left Instruction

The shl instruction shifts each lane of a vector register to the left the speci-
fied number of bits. This instruction shifts Os into the (vacated) LO bits.
Any carry out of the HO bit of the lane is lost. The syntax is as follows

shl Vd.8B, Vs.8B, #imm
shl Vd.16B, Vs.16B, #imm
shl Vd.4H, Vs.4H, #imm
shl Vd.8H, Vs.8H, #imm
shl vd.2S, Vs.2S, #imm
shl Vd.4S, Vs.4S, #imm
shl Vd.2D, Vs.2D, #imm

where Vd is the destination register and Vs is the source register. The imme-
diate count value must be in the ranges appearing in Table 11-3 (based on
the specified type). The assembler will report an error if an immediate shift
value is outside these ranges.

Table 11-3: Valid shl Shift Values

Type Shift range
8B/16B Oto7
4H/8H 0t015
25/4S 0 to 31

2D 0 to 63
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There is also a scalar shl instruction that operates on the LO dword of a
vector register, with the following syntax

shl Dd, Ds, #imm

where Dd is the destination scalar register and Ds is the source register (cor-
responding to the LO 64 bits of Vd and Vs). The imm shift count must be in the
range 0 to 63. Note that this instruction will zero out the HO 64 bits of Dd.

To shift the lanes by a variable number of bits, see section 11.6.9, “Shift
by a Variable Number of Bits,” on page 657.

11.6.2 Saturating Shift Left

The saturating shift-left instructions ugshl, sqshl, and sqshlu shift the lanes
in a vector to the left the specified number of bit positions. If an overflow
(whether signed or unsigned) occurs, these instructions saturate the result
to the largest (signed or unsigned) value depending on the instruction. The
syntax for these instructions is as follows

ugshl Vvd.t, Vs.t, #imm
ugshl Vvd.t, Vs.t, Vc.t
sqshl Vd.t, Vs.t, #imm
sqshl Vd.t, Vs.t, Vc.t
sqshlu Vd.t, Vs.t, #imm
sqshlu Vd.t, Vs.t, Vc.t

where Vd is the destination register, Vs is the source register, imm is an appro-
priate immediate shift constant or Vc contains a shift count in the LO byte,
and t is type 8B, 16B, 4H, 8H, 2S, 4S, or 2D. The t specification must be the
same for Vd and Vs.

The shift value’s range depends on the lane type; see Table 11-3 in the
previous section for the legal immediate values. For immediate values, the
assembler will report an error if the shift constant is out of range. For the reg-
ister shift count variants, if the LO byte contains an out-of-range value, then
the instruction will always saturate the result if a lane contains a nonzero value
(see the discussion of saturation that follows). The ugshl instruction shifts val-
ues to the left one bit position, storing the result in the corresponding lane in
the destination register. If the HO bit is set (before the shift), this instruction
stores all 1 bits (the maximum unsigned value) in the destination lane. For
example, if a lane contains 0x7F in V1, the corresponding lane will contain
OxFE (0x7F shifted left one position) after the execution of the following:

ugshl vo.16b, v1.16b, #1

However, if a source lane contains the value 0x80 through OxFF, then
shifting it to the left one position produces OxFF in the destination lane. In
general, if anything other than 0 bits are shifted out of a source lane, the
corresponding destination lane will contain OxFF.

The sqshl instruction is a signed saturation shift-left operation. For
signed values, an overflow will occur during a left shift if the H two bits of a



lane contain different values. For negative source values (the HO bit is set),
overflow saturates to a result with the HO bit set and all other bits contain-
ing Os (for example, with hword types, 0xa000 will saturate to 0x8000).

The sqgshlu instruction is similar to sqshl, except that it treats the desti-
nation as an unsigned value. Positive (and 0) source values will shift to the
left exactly like the ugshl instruction, while negative source values (with the
HO bit set) will saturate to 0.

There are also scalar versions of the ugshl, sgshl, and sqshlu instructions

ugshl Rd, Rs, #imm
sqshl Rd, Rs, #imm
sqshlu Rd, Rs, #imm

where Rn (n = d or s) is one of the registers Bn, Hn, Sn, or Dn, and d, s, and
imm have the usual meanings and limitations. Unlike the plain shl instruc-
tion, these instructions allow byte, hword, and word registers, as well as
dword registers.

As for the vector instructions, the ugshl instructions do an unsigned
saturation. If any bits are shifted out of the HO bit of the source register,
these instructions set the destination (Bn, Hn, Sn, or Dn) to all 1 bits. These
instructions zero-extend the result through the rest of the vector register
containing Rd.

The sqshl instruction does a signed saturation, leaving the result in the
destination (scalar) register. This instruction zeros out the remaining HO
bits of the corresponding vector register (that is, all the HO bits beyond the
size of the scalar register).

The sqshlu instruction does a shift on a signed source value but satu-
rates it to an unsigned value (negative results saturate to 0, just as with the
vector register versions of this instruction).

11.6.3  Shift-Left Long

The shift-left long instructions sshll, sshll2, ushll, and ushll2 provide a mech-
anism to handle overflow during a shift operation. These instructions sign-
or zero-extend the value in a lane to twice its size and then perform the left
shift on the double-sized source, storing the result into the (double-sized)
destination lane. The syntax for these instructions is

ushll Vd.t2, Vs.t, #imm
sshll Vd.t2, Vs.t, #imm

where t2 is the double-sized type and can be 8H, 4S, or 2D; t is the original
type and can be 8B, 4H, or 2S. imm is the shift count and should be in the
range 0 to n - 1, where n is the number of bits in the t type.

The ushll instruction zero-extends the values in the source lanes to twice
their size, shifts the zero-extended result by the specified number of bits, and
stores the result into the corresponding (double-sized) destination lanes. The
sshll instruction sign-extends the source lane values to twice their size, then
shifts the results and stores them in the double-sized destination lanes.
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Because these instructions double the size of their values, they operate
only on the LO 64 bits of the source register (lanes 0 to 7 for bytes, 0 to 3 for
hwords, and 0 to 1 for words). These instructions ignore the HO 64 bits of
the source register.

To handle the upper 64 bits of the source register, the ARM provides
the ushl12 and sshl12 instructions:

ushll2 Vd.t4, Vs.t3, #imm
sshll2 Vd.t4, Vs.t3, #imm

These accomplish the same operations as the ushll and sshll instruc-
tions, except that they take their source operands from the HO 64 bits
rather than the LO 64 bits. To indicate this, the t4/t3 type pairs must be
8H/16B, 4S/8H, or 2D/4S. The imm shift values must match the source lane
size in bits (0 to 15 for 8H/16B, 0 to 31 for 4S/8H, and 0 to 63 for 2D/4S).

The ushll, ushll2, sshll, and sshll2 instructions have no scalar versions.
Just use the vector versions and zero out the HO bits yourself if you need
this operation.

11.6.4 Shift and Insert

The sli and sri instructions allow you to shift a source operand a certain
number of bits and then (using other instructions) insert other bits into the
locations (0 bits) vacated by the shift operation. Here’s the syntax for these
instructions

sli Vd.t, Vs.t, #imm
sri Vd.t, Vs.t, #imm

where ¢is the usual set of types: 8B, 16B, 4H, 8H, 2S, 4S, or 2D. For sli, imm
is the shift count, which must be in the range 0 to n - 1, where n is bit size of
alane. For sri, the immediate value is a count in the range 1 to n.

The sli instruction shifts each lane in Vs.t to the left the specified num-
ber of bits. It then logically ORs the n - imm LO bits of Vd.t into the result
(replacing the Os that were shifted in) and stores the result back into Vd.t, as
shown in Figure 11-18.

Vs | |
Shiftleft operation
| . [ 05 |
|
Original vd | | |
vd | | |

Figure 11-18: The s1i instruction operation



For example, to shift in 1 bits rather than 0 bits, you could load the des-
tination register with all 1 bits, then execute the sli instruction, as shown in
the following code:

movi v0.16b, #oxff
movi vl.4s, #0x1
sli v0.4s, vl.4s, #4

This produces 0x0000001f0000001£f0000001£0000001f in VO.

The sri instruction shifts each lane in Vs.t to the right the specified
number of bits, then logically ORs the n - imm HO bits of Vd.t into the result
(replacing the Os that were shifted in), then stores the result back into Vd. t,
as shown in Figure 11-19.

Vs | |

Shiftright operation

[ 0 | . |

Original vd | | |

vd | | |

Figure 11-19: The sri instruction operation

The scalar versions of the sli and sri instructions have the following
syntax:

sli Dd, Ds, #imm // imm
sri Dd, Ds, #imm // imm

0 to 63
1 to 64

These instructions operate on the LO 64 bits of the specified vector
register (Dn) and zero out the HO 64 bits of the destination register.

11.6.5 Signed and Unsigned Shift Right

Because an arithmetic shift left and a logical shift left are essentially the
same operation, the ARM uses a single instruction for both operations:
shl. However, the logical and arithmetic shifts are different for right shifts.
Therefore, the Neon instruction set provides two instructions, sshr and ushr,
for signed and unsigned shift right (respectively, arithmetic shift right and
logical shift right).

As noted in Chapter 2, a shift-left operation is the same as a multiplica-
tion by 2. Shift-right operations are approximately the same as a division
by 2. I say approximately because the behaviors of signed and unsigned
numbers are somewhat different. For example, when you shift the value 1
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to the right one position, you get a 0 result. If you shift the signed value -1
(all 1 bits) to the right by using an arithmetic shift right, however, the result
is —1. In one case, the shift rounds toward 0, while in the other it rounds away
from 0. Neither case is particularly correct or incorrect, but not being able
to choose the rounding direction can be a problem.

With scalar instructions, you can reverse this rounding effect by adding
the carry flag to the result after the shift:

asr x0, x0, #1
adc x0, x0, xzr // -1 -> 0 and 1 -> 1

Because the vector operations don’t track carries out of a shift in the
carry flag, you don’t have the option of correcting for this. The Neon
instruction set therefore provides the rounding shift instructions srshr and
urshr, which will add in the carry for you.

The syntax for the Neon shift-right instructions is shown here:

ushr Vd.t, Vs
urshr vd.t, Vs
sshr Vvd.t, Vs
srshr Vd.t, Vs

#imm // Unsigned (logical) shift right
#imm // Unsigned rounding shift right
#imm // Signed (arithmetic) shift right

.t,
.t,
.t
.t, #imm // Signed rounding shift right

The allowable types for the vector registers are the usual 8B, 16B, 4H,
8H, 25, 4S, or 2D. The rounding variants (with the r as the second charac-
ter in the mnemonic) add the carry flag back into the destination lane after
the shift operation.

The sshr, srshr, ushr, and urshr instructions also have scalar versions:

sshr Dd, Ds, #imm
srshr Dd, Ds, #imm
ushr Dd, Ds, #imm
urshr Dd, Ds, #imm

These instructions operate on the LO 64 bits of the vector registers speci-
fied by Dd (destination) and Ds (source). The imm shift operand must be a value
in the range 1 to 64. They will zero out the HO 64 bits of the corresponding
Vd register. Otherwise, they are identical to their vector components.

11.6.6 Accumulating Shift Right

The accumulating shift-right instructions have the following syntax:

usra Vd.t, Vs.t, #imm
ursra Vd.t, Vs.t, #imm
ssra Vd.t, Vs.t, #imm
srsra Vd.t, Vs.t, #imm

These instructions are largely the same as the shift-right instructions,
but they add their shifted values to the corresponding destination lanes
(rather than just storing the shift lane values).



11.6.7 Narrowing Shift Right

The shrn, shrn2, rshrn, and rshrn2 instructions provide the converse opera-
tions to the shll and shll2 instructions. Rather than double the size of the
operands when shifting, they halve (“narrow”) the size. The syntax for these
instructions is as follows

shrn  Vd.t1, Vs.t2, #imm
shrn2 Vd.t3, Vs.t4, #imm
rshrn Vd.t1, Vs.t2, #imm
rshrn2 Vd.t3, Vs.t4, #imm

where:

t1is 8B, 4H, or 2S
t2 is 8H, 48, or 2D
t3is 8B, 16B, 4H, 8H, 28, or 4S
t4 is 8H, 48, or 2D

The shrn instruction shifts each lane right the specified number of bits
(shifting Os in from the left); extracts the LO 8, 16, or 32 bits (depending
on size of t1); and stores the result into the same lane number in the des-
tination register. The shrn instruction ignores (truncates) any HO bits left
in the shift operation that don’t fit in the destination lane (which, recall, is
half the size of the source lane). This instruction zeros out the HO 64 bits
of the destination register.

The shrn2 instruction performs the exact same operation but stores the
results in the HO 64 bits.

The rshrn and rshrn2 instructions do the same thing as shrn and shrn2,
respectively, but round the shifted result before narrowing it. The rshrn
instruction also clears the upper half of the destination register.

Because the narrowing shift-right instructions throw away all but the
LO bits that fit in the destination lane, you might think a separate set of
instructions must extract the HO bits after the shift operation. There’s no
need for such instructions, though; just add 8, 16, or 32 to your shrn, shrn2,
rshurn, or rshrn2 shift count to extract the HO bits.

11.6.8 Saturating Shift Right with Narrowing

The standard narrowing shift instructions truncate any HO bits when nar-
rowing the result to half the source lane size. The saturating shift-right
instructions will saturate the shifted value if it does not fit in the destina-
tion lane. Table 11-4 gives the syntax for these instructions.
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Table 11-4: Lane-by-Lane Saturating Shift Right with Narrowing Instructions

Mnemonic Syntax Description

ugshrn ugshrn Vd.t1, Vs.t2, #imm Unsigned shift right by imm bits with narrowing. Stores
data into LO 64 bits of vd.

ugrshrn ugrshrn Vd.t1, Vs.t2, #imm Unsigned shift right by imm bits with narrowing and
rounding. Stores data into LO 64 bits of vd.

sgshrn sgshrn Vd.t1, Vs.t2, #imm Signed shift right by imm bits with narrowing. Stores data
into LO 64 bits of vd.

sqrshrn sqrshrn Vd.t1, Vs.t2, #imm Signed shift right by imm bits with narrowing and round-
ing. Stores data into LO 64 bits of vd.

sqshrun sqshrun Vd.t1, Vs.t2, #imm Signed shift right lg/ inm bits with narrowing and satura-
tion to an unsigned number. Stores data into LO 64 bits
of vd.

sqrshrun sqrshrun Vd.t1, Vs.t2, #imm  Signed shift right by imm bits with narrowing, rounding,
and saturation to an unsigned number. Stores data into
LO 64 bits of vd.

ugshrn2 ugshrn2 Vd.t3, Vs.t4, #imm Unsigned shift right by imm bits with narrowing. Stores
data into HO 64 bits of vd.

uqrshrn2 uqrshrn2 Vd.t3, Vs.t4, #imm  Unsigned shift right by imm bits with narrowing and
rounding. Stores data into HO 64 bits of vd.

sqshrn2 sqshrn2 Vd.t3, Vs.t4, #imm Signed shift right by imm bits with narrowing. Stores data
into HO 64 bits of Vd.

sqrshrn2 sqrshrn2 Vd.t3, Vs.t4, #imm  Signed shift right by imm bits with narrowing and
rounding. Stores data into HO 64 bits of vd.

sqshrun2 sqshrun2 Vd.t3, Vs.t4, #imm  Signed shift right by imm bits with narrowing and
saturation to an unsigned number. Stores data into
HO 64 bits of vd.

sqrshrun2 sqrshrun2 Vd.t3, Vs.t4, #imm  Signed shift right by imm bits with narrowing, rounding,
and saturation to an unsigned number. Stores data into
HO 64 bits of vd.

Table 11-5 lists the legal types and lane counts for the saturating shift-
right instructions appearing in Table 11-4.

Table 11-5: Saturating Shift-Right Types and Lane Counts
t Legal types and lane counts
t1/t2 8B/8H, 4H/4S, or 25/2D
t3/t4 16B/8H, 8H/4S, or 45/2D

The instructions with the 2 suffix store their narrowed results into the
HO 64 bits of the destination register. Those without this suffix will zero
out the HO 64 bits of the destination register.

The ugrshrn, sqrshrn, ugrshrn2, and sqrshrn2 instructions round the shifted
result before saturating the value (if saturation is necessary). Rounding con-
sists of adding the last bit shifted out of the source lane back into the value.
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The instructions with the s prefix operate on signed values, while those
with the u prefix operate on unsigned values. Unsigned values saturate to
all 1 bits (if the unsigned value will not fit in the destination lane size), but
signed values will saturate to either a HO bit of 1 with other bits Os, or a HO
bit of 0 with all other bits containing ls.

The sqrshrun and sqrshrun2 instructions do the following:

e  Perform an arithmetic shiftright operation by the specified number of bits

e Round the result by adding the last bit shifted out back into the result

e Saturate the result to the maximum unsigned value (all 1 bits) if the
result will not fit into the destination lane; negative values saturate to 0

e Store the saturated result into the destination lane

The sqrshrun instruction stores the results in the LO 64 bits of the desti-
nation register; sqrshrun2 stores the results in the HO 64 bits of the destina-
tion register.

These instructions also have scalar versions:

sqshrn Bd, Hs, #imm
sqshrn Hd, Ss, #imm
sqshrn Sd, Ds, #imm

ugshrn Bd, Hs, #imm
ugshrn Hd, Ss, #imm
ugshrn Sd, Ds, #imm

sqrshrn Bd, Hs, #imm
sqrshrn Hd, Ss, #imm
sqrshrn Sd, Ds, #imm

ugrshrn Bd, Hs, #imm
ugrshrn Hd, Ss, #imm
ugrshrn Sd, Ds, #imm

sqshrun Bd, Hs, #imm
sqshrun Hd, Ss, #imm
sqshrun Sd, Ds, #imm

sqrshrun Bd, Hs, #imm
sqrshrun Hd, Ss, #imm
sqrshrun Sd, Ds, #imm

Note that these instructions clear the upper bits (beyond the specified
scalar register) of the underlying vector register.

11.6.9 Shift by a Variable Number of Bits

To shift a lane by a variable number of bits, use one of the following
instructions

sshl Vvd.t, Vs.t, Vc.t
ushl vd.t, Vs.t, Vc.t
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sqshl Vd.t, Vs.
ugshl Vd.t, Vs.
srshl Vd.t, Vs.
urshl Vd.t, Vs.
sqrshl Vvd.t, Vs
ugrshl vd.t,

t,
t,
t,
t,
t,
s.t,

where t is the usual 8B, 16B, 4H, 8H, 28S, 48, or 2D.
Vc.t holds the signed shift count in the LO byte. For positive values (in
the range 0 to 0x7F), the instruction shifts the bits in a lane the number
of bit positions to the left. For negative values (OxFF to 0x80; -1 to —128),
the instruction shifts the bits to the right, despite using a shl mnemonic.
See Table 11-6 for legal ranges when specifying the shift count by using

aregister.

Table 11-6: Legal Vc.t Shift Ranges

Type Unsigned (SHL) Signed (SHR)
8B/16B Oto7 -1 to -7
4H/8H Oto 15 -1 to =15
2S/4S 0 to 31 -1 to =31

2D 0 to 63 -1 to =63

Values outside the ranges listed in Table 11-6 will produce the results
shown in Table 11-7.

Table 11-7: Result of Shift If Count Exceeds Allowable Range

Shift Positive count, Positive count, Negative count, Negative count,

instruction  positive overflow negative overflow positive value negative value

sshl 0 0 0 ~1 (all 1 bits)

ushl 0 0 0 0

sqshl HO bit O, all others 1 HO bit 1, all others 0 O ~1 (all 1 bits)
(for example, Ox7F) (for example, 0x80)

ugshl All 1 bits (for example,  All T bits (for example, 0 0
Oxff) Oxff)

srshl 0 0 0 0 (-1 + carry)

urshl 0 0 0 1 (0 + carry)

sqshl HO bit O, all others 1 HO bit 1, all others 0 O —1 (all 1 bits)
(for example, Ox7F) (for example, 0x80)

ugshl —1 (all 1 bits) -1 (all 1 bits) 0 0

sqrshl HO bit O, all others 1 HO bit 1, all others O 0 0 (-1 + carry)
(for example, Ox7F) (for example, 0x80)

ugrshl =1 (all 1 bits) =1 (all 1 bits) 0 1 (O + carry)
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Using shf (for shift) in these instructions would probably have been a
better choice then shl, since that name better matches the operation. Just
keep in mind that the value in the LO byte of Vc.t is a signed integer and
negative values indicate a right shift.

The Neon shl instruction also has some scalar saturating versions

sqgshl Rd, Rs, Rc
ugshl Rd, Rs, Rc
sqrshl  Rd, Rs, Rc
ugrshl  Rd, Rs, Rc

where R represents one of the scalar register names (B, H, S, or D). These
instructions shift the value in the scalar register Rs the number of bit posi-
tions specified by the LO byte of Rc and store the shifted result in Rd. Rc is
treated as a signed number; positive values shift Rs left, while negative val-
ues shift Rs right. If an overflow (signed or unsigned, as appropriate) occurs
during the shift, these instructions set Rd to the maximum positive signed
or unsigned value.

If the shift count is negative for the sqshl instruction, the CPU performs
an arithmetic shift-right operation, which will replicate the HO bit when
shifting to the right. Positive (and 0) source values will saturate to 0, and
negative source values will saturate to —1 (all 1 bits).

The sqrshl and uqgrshl instructions are special rounding versions of the
saturating shift instructions. During a shift-right operation (thatis, when
Rc is negative), these instructions round the result by adding 1 if the last bit
shifted out was a 1 bit.

SIMD Arithmetic Operations

The Neon instruction set includes several common arithmetic operations,
including addition, subtraction, and multiplication. The only surprise is
that there is no division operation; instead, you’ll have to compute the
reciprocal and multiply by that value (using the instructions provided to
estimate reciprocals).

11.7.1  SIMD Addition

Neon provides a wide set of instructions that add lanes (ignoring overflow),
add and saturate (when overflow occurs), or perform horizontal additions.

11.7.1.1  Vector Addition

The Neon instruction set provides several instructions you can use to add
integer and floating-point values in lanes within the vector registers, as
listed in Table 11-8. These instructions compute Vd = VI + Vr, where Vd is the
destination, VI is the left operand, and Vr is the right operand.
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Table 11-8: Neon Addition Instructions

Instruction

mnemonic  Syntax Description

add add Vd.t1, V1.t1, Vr.t1 Computes lane-by-lane integer sum

fadd fadd vd.t2, VI.t2, Vr.t2 Computes lane-by-lane floating-point sum

sqadd sqadd Vd.t1, V1.t1, Vr.t1 Computes lane-by-lane signed integer sum, with saturation

ugadd ugadd vd.t1, V1.t1, Vr.t1 Computes lane-by-lane unsigned integer sum, with saturation

saddl saddl Vd.t3, V1.t4, Vr.t4 Computes lane-by-lane signed integer sum, with long
extension

uaddl uaddl Vd.t3, V1.t4, Vr.t4  Computes lane-by-lane unsigned integer sum, with long
extension

sadd12 saddl2 Vd.t5, V1.t6, Vr.t6 Computes lane-by-lane signed integer sum, with long
extension

uaddl2 uaddl2 Vd.t5, V1.t6, Vr.t6 Computes lane-by-lane unsigned integer sum, with long
extension

saddw saddw Vd.t3, VI.t3, Vr.t4  Computes lane-by-lane signed integer sum, with wide
extension

uaddw uaddw Vd.t3, VI.t3, Vr.t4  Computes lane-by-lane unsigned integer sum, with wide
extension

saddw2 saddw2 Vd.t5, V1.t6, Vr.t6 Computes lane-by-lane signed integer sum, with wide
extension

uaddw2 uaddw2 Vd.t5, V1.t6, Vr.t6 Computes lane-by-lane unsigned integer sum, with wide
extension

addhn addhn Vd.t4, V1.t3, Vr.t3 Computes lane-by-lane addition with narrowing

raddhn raddhn Vd.t4, V1.t3, Vr.t3 Computes lane-by-lane addition with rounding and
narrowing

addhn2 addhn2 Vd.t6, V1.t5, Vr.t5 Computes lane-by-lane addition with narrowing (uses HO bits)

raddhn2 raddhn2 Vd.t6, VI.t5, Vr.t5 Computes lane-by-lane addition with rounding and narrow-
ing (uses HO bits)

shadd shadd Vd.t7, V1.t7, Vr.t7  Computes lane-by-lane signed addition with halving

uhadd uhadd Vd.t7, V1.t7, Vr.t7 ~ Computes lane-by-lane unsigned addition with halving

srhadd srhadd Vd.t7, V1.t7, Vr.t7 Computes lane-by-lane signed addition with rounding
and halving

urhadd urhadd Vd.t7, V1.t7, Vr.t7 Computes lane-by-lane unsigned addition with rounding
and halving

addp addp Vd.t1, V1.t1, Vr.t1 Adds vector pairwise

faddp faddp Vd.t2, V1.t2, Vr.t2  Adds vector floating-point pairwise

saddlp saddlp Vd.t8, VI.t9 Adds vector pairwise, signed long integer

uaddlp uaddlp Vd.t8, VI1.t9 Adds vector pairwise, unsigned long integer

saddalp saddalp Vd.t8, V1.t9 Adds vector pairwise and accumulates, signed long integer

uaddalp uaddalp Vd.t8, V1.t9 Adds vector pairwise and accumulates, unsigned long
integer

660 Chapter 11



Table 11-9 lists the legal types for the addition and subtraction
instructions.

Table 11-9: Legal Types for Vector Addition and Subtraction

t Legal types

t1 8B, 16B, 4H, 8H, 2S, 4S, or 2D

t2 2S, 4S5, or 2D

t3/t4 8H/8B, 4S/4H, or 2D/2S

t5/t6 8H/16B, 45/8H, or 2D/4S

t7 8B, 16B, 4H, 8H, 2S, or 4S

t8/t9 4H/8B, 8H/16B, 2S/4H, 4S/8H, 1D/2S, or 2D/4S

The remainder of this section describes each of the addition instruc-
tions in Table 11-8 in greater detail.

The add instruction, with vector register operands, does a lane-by-lane
addition. Any overflow (signed or unsigned) is ignored, with the sum hold-
ing the LO bits of the result. If the type is 8B, 4H, or 285, the add instruction
adds only the lanes in the LO 64 bits of the registers, zeroing out the HO
64 bits of the destination register. Figure 11-20 provides an example of a
16B lane-by-lane addition.

Figure 11-20: 16B lane-by-lane addition using add
vd.16b, Vs,.16b, Vs,.16b

The fadd instruction, with vector register operands, adds two- or four-
lane single-precision values together, or a pair of double-precision floating-
point values. With 2S types, the fadd instruction clears the HO 64 bits of the
destination register.

The sqadd and ugadd instructions do a lane-by-lane addition (signed
and unsigned, respectively), except they saturate their results in the case of
overflow (or underflow, when adding signed numbers). As with add, those
instructions that take 64-bit source operands produce a 64-bit result and
zero out the HO 64 bits of the destination register.

The saddl and uaddl instructions take the lanes in the LO 64 bits of
the source registers, sign- or zero-extend these values to twice their size,
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compute the sum, and store the results in the full destination register (with
double-sized lanes). The destination register type must be specified as twice
the size of the source register types (see Figure 11-21). Because the sum of
two n-bit numbers requires no more than n + 1 bits, these instructions will
produce the correct result without any possibility of overflow or underflow.

T N\ NI B

\%ﬁf

vd | | | |

Vs, l\\

Figure 11-21: A uaddl operation (uaddl Vd.4s, Vs,.4h,
Vs,.4h)

The saddl2 and uaddl2 instructions also sign- or zero-extend the values
in the lanes in one-half of the source register and produce a sum in the full
128 bits of the destination register. However, the sadd12 and uadd12 instruc-
tions compute the sum of the lanes in the HO 64 bits of the source registers
(see Figure 11-22).

fo S I N N B N\ N

Jor S I N N B N\ N

‘l -
vd | | | | |

Figure 11-22: A sadd12 operation (saddl2 Vd.4s, Vs,.8h,
Vs,.8h)

Although the saddl2 and uaddl2 instructions’ source operands are only
64 bits, you must specify the 128-bit types (16B, 8H, 4S) as the source type
because the instruction retrieves the data from the upper 64 bits of a
128-bit value.

The saddw, uaddw, saddw2, and uaddw2 instructions allow you to produce the
sum of two operands whose sizes are different. The saddw and uaddw instruc-
tions expect the second source operand’s type to be half the size of the first
source and the destination operands’ types, though you specify the same
number of lanes for all three operands. These instructions will sign- or



zero-extend (respectively) the lanes in the second source operand to the
size of the other two, compute the sum, and then store the data into the
destination lanes (see Figure 11-23).

R N [ [ T

Vs

d
o | |

Figure 11-23: A uaddw operation (uaddw Vd.4s, Vs,.4s,
Vs,.4h)

The saddw2 and uaddw2 instructions also sign- or zero-extend the second
source operand, but they operate on the HO 64 bits rather than the LO
64 bits (see Figure 11-24). You must specify double the number of lanes for
the second operand so that the instruction will operate on the full 128 bits
of the second source operand.

LS (N N N \\ N

Vs | | |

vd | | | |

Figure 11-24: A saddw2 operation (saddw2 Vd.4s, Vs,.4s,
Vs,.4h)

Overflow (underflow) is possible when using the saddw, uaddw, saddw2, and
uaddw2 instructions (for example, when adding OxFFFF with 0x01). These
instructions will ignore the overflow and keep the LO bits of the result.

The addhn (vector add with narrowing) and raddhn (vector add, round,
and narrow) instructions add the specified lanes together, then narrow the
result by keeping only the HO bits. These instructions’ destination type is
half the size of the source types. For example, if you add half-word lanes
together, the narrowing additions will keep only the HO byte of the results.

The raddhn instruction rounds the result before storing it into the
destination register. If the LO half of the result contains a 1 in its HO bit

Neon and SIMD Programming 663



664

Chapter 11

position, raddhn increments the HO byte by 1; otherwise, it returns the same
result as addhn. Consider the following instruction:

raddhn v0.8b, v1.8h, v2.8h

If V2 contained 0x00010001 and V1 contained OxFE7FFE7F, then VO would
contain OxFFFF after execution of this instruction. Had V1 contained
OxFE7EFE7E, though, VO would contain OxFEFE afterward.

Overflow can still occur during the execution of addhn and raddhn.
Adding half words OxFFFF and 0x0001 together will produce 0x00 in the
corresponding destination byte lane.

The addhn2 and raddhn2 instructions also compute add and narrowing
(with rounding, if specified); however, they store their results in the HO
64 bits of the destination register and leave the LO 64 bits of the destina-
tion unchanged. Because these instructions operate on the HO 64 bits
of the destination, the destination’s lane count must be twice that of the
source registers. For example

addhn2 vo0.16b, vi1.8h, v2.8h

adds the LO 8 half words of V1 and V2 and stores the HO 8-bit result

of each lane addition into the HO 8 bytes of VO (leaving the LO 8 bytes
untouched). You must specify the destination register’s type as 16B, even
though this instruction stores only 8 bytes into the register.

The shadd, uhadd, srhadd, and urhadd instructions add a pair of lanes
together, shift right by 1 (with optional rounding, for those instructions
containing an r), and store the result into the destination lane. As usual, the
instructions beginning with an s handle signed values, while the instructions
beginning with a u handle unsigned values. Because an addition of n bits
never produces more than n + 1 bits, and a division by 2 is the same as a shift
right by 1 bit, these instructions never produce an overflow. Consider the
addition of the two largest single-byte values, OxFF + OxFF = Ox1FE. Shifting
this sum to the right 1 bit gives you 0xFF, which fits just fine into 8 bits. Even
with rounding, overflow will not occur.

These instructions are especially handy for processing digital audio. For
example, suppose you want to mix together two 16-bit audio tracks. Simply
summing the hwords from the two tracks will boost the volume by 3 deci-
bels (dB) (equivalent to doubling the digital value). Halving the result after
the sum reduces this volume increase by 3 dB. The urhadd instruction would
be ideal for mixing these tracks as it would divide the result by 2, averaging
the values of the two tracks.

11.7.1.2  Pairwise Addition

Thus far, all the addition operations have operated on corresponding lanes
in the source operands, producing a result that the instructions store in

the same lane in the destination register. This is known as a vertical addition
because the data flows vertically from register to register, as shown previously



in Figure 11-20. On occasion, you may want to produce the sum of adjacent
elements within a vector rather than the elements in corresponding lanes of
two vectors ( horizontal addition). You can accomplish this with the pairwise
addition instructions from Table 11-8.

The pairwise addition instructions, as their name suggests, add adja-
cent pairs of lanes in vectors. Because the result requires half the number
of lanes that are present in the source, the pairwise additions produce a
single vector result from two source registers. Consider the following exam-
ple that pairwise-adds the half words in V1 and V2, producing the pairwise
sum in VO:

addp v0.4s, v2.4s, vi.4s

This instruction computes the following results:
Vo[o] = V2[0] +V2[1]
vo[1] = V2[2] +V2[3]
Vo[2] =Vvi[o] +V1[1]
vo[3] =Vv1[2] +V1[3]
Figure 11-25 diagrams this operation.

Vi V2

Vo

Figure 11-25: The addp vo.4s, v2.4s, v1.4s instruction

This instruction also has a floating-point version that adds adjacent
single- or double-precision values in a pair of vectors: faddp. For example,
the following instruction performs the same operation as the previous addp
integer example but adds adjacent single-precision floating-point values
rather than 32-bit integer values:

faddp v0.4s, vi.4s, v2.4s

The addp instruction ignores any overflow during the addition. To
produce a correct result, use the saddlp and uaddlp instruction (signed and
unsigned pairwise add long) to sign- or zero-extend the lane values prior
to the addition. The syntax for these two instructions is different from that
of the other addition instructions: there are only two register operands
(a source and a destination register). For example, because the follow-
ing instruction doubles the size of the result to place in the destination
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operand and sums adjacent elements of the source operand, there is no
need for a second register operand:

saddlp vo0.2d, vi.4s

Note that the destination register type size must be twice that of the
source, and the number of lanes must be half that of the source.

The uaddalp and saddalp instructions are functionally similar to uaddlp and
saddlp, but rather than simply storing the pairwise sum into the destination
lanes, they add the sum to the value already present in the destination lanes.

11.7.1.3  Vector Saturating Accumulate

The Neon instruction set includes two instructions that sum the lanes of
a source vector into the corresponding lanes of a destination vector. The
instructions are

usqadd Vd.t, Vs.t // Add lanes of Vs to Vd.
suqadd Vd.t, Vs.t // Add lanes of Vs to Vd.

where t is 8B, 4H, or 2S5 when operating on the LO 64 bits of the registers,
or 16B, 8H, 4S, or 2D when operating on all 128 bits. The 64-bit variants
will clear the HO 64 bits of Vvd.

These instructions are unusual in that they allow you to add (with satu-
ration) an unsigned input into a signed value or add a signed number into
an unsigned value (usually instructions operate on only one type of data).

The usqgadd instruction adds a signed value in the source lanes to the
unsigned value in the corresponding destination lanes. Should the sum
exceed the maximum (unsigned) value for the destination lane’s size, this
instruction will saturate the lane to the maximum value. Should the sum go
negative, this instruction saturates the destination lane to 0. For example, if
a half-word destination lane contains OxFFF0 and the corresponding source
lane contains OxFF, the usqadd instruction (with a 4H or 8H type) will pro-
duce OxFFFF in the destination lane. On the other hand, if the destination
lane contains 0x08 and the source lane contains OxFFF0 (-16), then their
sum will produce 0 in the destination lane.

The sugadd instruction is the converse operation: it adds an unsigned
source operand to a signed destination operand, saturating to the maxi-
mum signed value. For example, if a destination half-word lane contains
0x7FF0 and the corresponding source lane contains Ox00FF, their sum will
produce 0x7FFF, the maximum signed value. Note that if the destination
operand contains OXFFFF (-1) and the source operand is 0x0002, you wind
up with 0x0001 in the destination lane (-1+2 = 1).

The usgadd and sugadd instructions also have scalar variants

usqadd Rd, Rs // Add Rs to Rd.
suqadd Rd, Rs // Add Rs to Rd.

where Rd and Rs are one of the scalar registers Bn, Hn, Sn, or Dn.



The sugadd instruction will always produce the maximum signed value
when overflowing, as you can’t reduce the value by adding an unsigned
number to it.

11.7.1.4  Horizontal Add

The addv (add across vector) instruction produces the sum of all the lanes
in a single source vector register and leaves the result in a scalar element
of another vector register (this is known as reduction). The syntax for this
instruction is as follows

addv Rd, Vs.t

where R is the destination register and is one of Bn, Hn, or Sn. The legal vec-
tor register type and lane count depend on the scalar register; Table 11-10
lists the valid types.

Table 11-10: Valid Vector Register Types for addv

Scalar register (Rd) Valid lane count and types
Bd 8B or 16B

Hd 4H or 8H

Sd 4S

This instruction is useful for summing up the elements of an array.
Unfortunately, the destination scalar type must be the same as the source
lanes’ type, and any overflow is ignored. There is no instruction that will
zero- or sign-extend the sum to a double-sized result. Therefore, it’s advis-
able to zero- or sign-extend the vector elements to the next larger size prior
to executing addv if overflow is possible. You can accomplish this by using
the saddlp or uaddlp instruction to add adjacent pairs and sign- or zero-
extend (respectively), then use the addv instruction to sum the resulting
double-sized lanes.

The addvl instruction is part of the ARM scalable vector extensions (SVE),
which are beyond the scope of this book. While you might expect addvl to
be a long version of the addv instruction, it actually does something com-
pletely different. See the ARM SVE documentation for more details.

11.7.1.5  Scalar Saturating and Scalar Pairwise Addition

The Neon instruction set also provides a couple of saturating scalar addi-
tion instructions

sqadd Rd, Rs,, Rs,
ugadd Rd, Rs,, Rs,

where R represents one of the scalar register names B, H, S, or D. These
instructions operate on the 8-, 16-, 32-, or 64-bit signed or unsigned integer
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values found in the LO bits of the specified V register (see Figure 11-2 for
the correspondence between the Vn, Bn, Hn, Sn, and D7 registers). These
instructions do the same thing as their vector counterparts, except, of
course, they operate only on a scalar value rather than doing a lane-by-lane
vector operation.

The following are the scalar variants of the addp and faddp instructions:

addp Dd, Vs.2D
faddp Sd, Vs.2S
faddp Dd, Vs.2D

Note the limited lane count and type support of these instructions.

The addp instruction ignores (discards) any overflow from the addition of
the two dword elements from the source vector. The addpl and addpl2 instruc-
tions have no scalar versions. Use the actual addpl and addpl2 instructions
(with a second vector containing 0s) if you need an extended-precision ver-
sion of this instruction.

11.7.2 Subtraction

While there aren’t quite as many Neon instructions for subtraction as there
are for addition, most of the addition instructions have a subtraction com-
plement. Table 11-11 provides the syntax for the various vector subtraction
instructions and associated data types; these instructions generally compute
Vd = V1 —Vr (exceptions as noted), where Vd = destination, VI = left operand,
and Vr = right operand.

Table 11-11: Neon Subtraction Instructions

Instruction

mnemonic  Syntax Description

sub sub Vd.t1, V1.t1, Vr.t1 Computes lane-by-lane integer difference

fsub fsub Vd.t2, V1.t2, Vr.t2 Computes lane-by-lane floating-point difference

ugsub ugsub Vd.t1, V1.t1, Vr.t1  Computes lane-by-lane unsigned integer subtraction with
saturation

sqsub sqsub Vd.t1, VI.t1, Vr.t1 ~ Computes lane-by-lane signed integer subtraction with
saturation

usubl usubl Vd.t3, V1.t4, Vr.t4  Computes lane-by-lane unsigned long integer subtraction

ssubl ssubl Vd.t3, V1.t4, Vr.t4  Computes lane-by-lane signed long integer subtraction

usubl2 usubl2 Vd.t5, V1.t6, Vr.t6 Computes lane-by-lane unsigned long integer subtraction of
the HO half of vr

ssubl2 ssubl2 Vd.t5, V1.t6, Vr.t6  Computes lane-by-lane signed long integer subtraction of the
HO half of vr

usubw usubw Vd.t3, V1.t3, Vr.t4  Computes lane-by-lane unsigned wide integer subtraction

ssubw ssubw Vd.t3, VI.t3, Vr.t4  Computes lane-by-lane signed wide integer subtraction

usubw2 usubw2 Vd.t5, V1.t4, Vr.t6 Computes lane-by-lane unsigned wide integer subtraction
involving the upper half of v1
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Instruction

mnemonic  Syntax Description

ssubw2 ssubw2 Vd.t5, VI.t5, Vr.t6  Computes lane-by-lane signed wide integer subtraction
involving the upper half of VI

subhn subhn Vd.t4, V1.t3, Vr.t3 Computes lane-by-lane subtraction with narrowing

rsubhn rsubhn Vd.t4, V1.t3, Vr.t3  Computes lane-by-lane subtraction with rounding and
narrowing

subhn2 subhn2 Vd.t6, V1.t5, Vr.t5 Computes lane-by-lane subtraction with narrowing (uses
HO bits)

rsubhn2 rsubhn2 Vd.t6, VI.t5, Vr.t5 Computes lane-by-lane subtraction with rounding and nar-
rowing (uses HO bits)

uhsub uhsub Vd.t7, VI.t7, Vr.t7 ~ Computes lane-by-lane unsigned subtraction with halving

shsub shsub Vd.t7, VI.t7, Vr.t7 Computes lane-by-lane signed subtraction with halving

The behavior of these instructions is very similar to their addition coun-
terparts, except, of course, that they subtract the values in the lanes rather

than adding them. See the previous section for more details.
There is also a saturating scalar subtraction instruction:

sqsub Rd, Rs,, Rs
ugsub Rd, Rs,, Rs

2
2

That subtracts the two source scalar registers (Bn, Hn, Sn, or Dn), pro-

ducing a scalar result.

11.7.3 Absolute Difference

In addition to the normal subtraction instructions, the Neon instruction

set includes several instructions that compute the difference of the values
in corresponding lanes and then compute the absolute value of this differ-
ence. These instructions are handy for computing distances and other vec-

tor (as in physics) calculations.

Table 11-12 lists the available absolute difference instructions. In the

Syntax column, Vd = destination, VI = left operand, and Vr = right oper-

and. Each instruction generally computes Vd = abs( VI —Vr), unless other-

wise noted.

Table 11-12: Neon Absolute Difference Instructions

Instruction

mnemonic  Syntax Description

uabd uabd Vd.t1, VI.t1, Vr.t1  Vector unsigned absolute difference; lanes contain unsigned
values.

sabd sabd Vd.t1, VI.t1, Vr.t1  Vector signed absolute difference; lanes contain signed values.

(continued)
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Table 11-12: Neon Absolute Difference Instructions (continued)

Instruction
mnemonic  Syntax Description
uaba uaba Vd.t1, V1.t1, Vr.t1  Vector unsigned absolute difference and accumulate; Vd =
Vd + abs(V1 - Vr), where lanes contain unsigned values.
saba saba Vd.t1, V1.t1, Vr.t1  Vector signed absolute difference and accumulate; vd =
Vd + abs(V1 - Vr), where lanes contain signed values.
uabdl uabdl Vd.t2, VI.t3, Vr.t3 Vector unsigned absolute difference long; lanes contain
unsigned values.
sabdl sabdl Vd.t2, V1.t3, Vr.t3 Vector signed absolute difference long; lanes contain signed
values.
uabal uabal Vd.t2, VI.t3, Vr.t3 Vector unsigned absolute difference long and accumulate;
Vd = Vd + abs(VI — Vr), where lanes contain unsigned values.
sabal sabal Vd.t2, VI.t3, Vr.t3 Vector signed absolute difference long and accumulate;
Vd = Vd + abs(V1 - Vr), where lanes contain signed values.
uabd12 uabdl2 Vd.t4, V1.t5, Vector unsigned absolute difference long; lanes contain
Vr.t5 unsigned values. Uses HO 64 bits of VI and vr.
sabd12 sabdl2 Vd.t4, VI.t5Vr.t5 Vector signed absolute difference long; lanes contain signed
values. Uses HO 64 bits of V1 and vr.
uabal2 uabal2 Vd.t4, VI.t5, Vector unsigned absolute difference long and accumulate;
Vr.ts Vd = Vid + abs(VI — Vr), where lanes contain unsigned values.
Uses HO 64 bits of V1 and vr.
sabal2 sabal2 Vd.t4, VI.t5, Vector signed absolute difference long and accumulate;
Vr.ts Vd = Vd + abs(V1 - Vr), where lanes contain signed values.
Uses HO 64 bits of V1 and Vr.
fabd fabd Vd.t6, V1.t6, Vr.t6  Vector floating-point absolute difference; lanes contain floating-
point values.
fabd fabd Sd, S1, Sr Scalar single-precision floating-point absolute difference;
Sd = abs(SI - Sr).
fabd fabd Dd, DI, Dr Scalar double-precision floating-point absolute difference;

Dd = abs(DI - Dr).

Table 11-13 lists the legal types for the absolute difference instructions.

Table 11-13: Legal Types for Absolute Difference
Instructions

t Legal types

t1 8B, 16B, 4H, 8H, 2S, or 4S
t2/t3 8H/8B, 4S/4H, or 2D/2S
ta/t5 8H/16B, 4S/8H, or 2D/4S
t6 2S, 4S, or 2D

The uabd and sabd instructions compute the difference of each lane,
take the absolute value of the difference, and store the result into the
destination lane. Although the two instructions operate on unsigned and
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signed source operands (respectively), the result is always an unsigned
value. Effectively, these are just variants of the sub instruction that take the
absolute value of the result. As long as you treat the result as an unsigned
number (particularly in the case of the sabd instruction), these instructions
will not produce an overflow (underflow).

The uaba and saba instructions add the absolute value of the difference
to the corresponding lane in the destination register. If an overflow occurs
(on the addition), these instructions store the LLO bits (the lane size) into
the corresponding destination lane. For signed operations, if VI contains
the most negative value (for example, 0x80 for a byte) and Vr contains 0,
overflow occurs and the instruction winds up adding that most negative
value to the destination lane.

The suffix-1 and suffix-12 variants of these instructions compute a
long calculation. The uabdl and sabdl instructions first zero- or sign-extend
(respectively) the lane values to twice the lanes’ size, then compute the
absolute value of the difference and store the result into the corresponding
double-sized lane. The uabdl2 and sabdl2 instructions do the same thing but
grab the lane data from the HO 64 bits of the source operands (refer back
to Figures 11-21 and 11-22 and substitute the appropriate instruction to see
how this works).

The fabd instruction computes the absolute difference of two floating-
point values. With vector register operands, it processes two double-precision
or four single-precision floating-point values at a time. This instruction also
supports scalar operations (single- or double-precision) by specifying the
Dn or Sn registers as operands. Unfortunately, there is no floating-point
absolute difference and accumulate instruction. You can simulate this
instruction by following an fabd instruction with an fadd instruction (using
a spare vector register to hold the temporary result from fabd).

11.7.4  Vector Multiplication

The Neon instruction set includes several instructions that compute the
product of corresponding lanes in the vector register (both integer and
floating-point products). The standard vector multiply instructions appear
in Table 11-14. Note that VI is the left source operand and Vr is the right
source operand.

Table 11-14: Neon Vector Multiply Instructions

Mnemonic  Syntax Description

mul mul Vd.t1, VI.t1, Vr.t1  Multiplication: Vd = VI x Vr. Ignores overflow, keeps LO bits of
result (lane by lane).

mla mla Vd.t1, VI.t1, Vr.t1  Multiply and accumulate: Vd = Vd + V1 x Vr. Ignores overflow,
keeps LO bits of result (lane by lane).

mls mls Vd.t1, VI.t1, Vr.t1  Multiply and subtract: Vd = Vd — VI x Vr. Ignores overflow,

keeps LO bits of result (lane by lane).

(continued)
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Table 11-14: Neon Vector Multiply Instructions (continued)

Mnemonic

Syntax

Description

smull

umull

smull2

umull2

smlal

umlal

smlal2

umlal2

smlsl

umlsl

smlsl2

umlsl2

fmul

fmulx

smull Vd.t2, VI.t3,
Vr.t3

umull vd.t2, VI.t3,
Vr.t3

smull2 vd.t4, VI.t5,
Vr.t5

umull2 Vd.t4, VI.t5,
Vr.t5

smlal vd.t2, VI.t3,
Vr.t3

umlal vd.t2, VI.t3,
Vr.t3

smlal2 vd.t4, VI.t5,
Vr.t5

umlal2 Vd.t4, VI.t5,
Vr.t5

smlsl Vd.t2, VI.t3,
Vr.t3

umlsl vd.t2, VI.t3,
Vr.t3

smlsl2 Vd.t4, VI.t5,
Vr.t5

umlsl2 Vd.t4, VI.t5,
Vr.t5

fmul Vd.t6, VI1.t6, Vr.t6

fmulx Vd.t6, VI1.t6,
Vr.té
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Signed extended multiplication: Vd = V1 x Vr. Multiplies LO half
of V1 by Vr and stores extended-precision result in the lanes of
vd (double lane size, lane-by-lane result).

Unsigned extended multiplication: Vd = VI x Vr. Multiplies LO
half of VI by Vr and stores extended-precision result in the lanes
of Vd (double lane size, lane-by-lane result).

Signed extended multiplication: Vd = VI x Vr. Multiplies HO half
of V1 by Vr and stores extended-precision result in the lanes of
Vd (double lane size, lane-by-lane result).

Unsigned extended multiplication: Vd = VI x Vr. Multiplies HO
half of V1 by Vr and stores extended-precision result in the lanes
of vd (double lane size, lane-by-lane result).

Signed extended multiply and accumulate: Vd = Vd + VI x Vr.
Multiplies LO half of v1 kg/ Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

Unsigned extended multiply and accumulate: Vd = Vd + V1 x Vr.
Multiplies LO half of VI by Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

Signed extended multiply and accumulate: Vd = Vd + VI x Vr.
Multiplies HO half of VI by Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

Unsigned extended multiply and accumulate: Vd = Vd + V1 x Vr.
Multiplies HO half of VI by Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

Signed extended multiply and subtract: Vd = Vd — V1 x Vr.
Multiplies LO half of VI by vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

Unsigned extended multiply and subtract: Vd = Vd — V1 x Vr.
Multiplies LO half of VI by Vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

Signed extended multiply and subtract: Vd = vd — V1 x Vr.
Multiplies HO half of VI by vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

Unsigned extended multiply and subtract: Vd = Vd - VI x Vr.
Multiplies HO half of V1 by Vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

Floating-point multiply: Vd = VI x Vr. Multiplies the floating-point
values in the V1 and Vr lanes and stores the product into the cor-
responding Vd lanes (lane by lane).

Floating-point multiply: Vd = VI x Vr. Multiplies the floating-point
values in the V1 and Vr lanes and stores the product into the
corresponding Vd lanes (lane by lane). This variant handles the
case where one source operand is O and the other is oo,
producing the value £2 (-2 if —co, +2 otherwise).



Mnemonic

Syntax Description

fmla

fmls

fmla Vd.t6, VI.t6, Vr.t6 Floating-point multiply and accumulate: Vd = Vd + VI x Vr
(lane by lane).

fmls Vd.t6, V1.t6, Vr.t6 Floating-point multiply and subtract: Vd = Vd — VI x Vr
(lane by lane).

Table 11-15 lists the legal types for the instructions appearing in

Table 11-14.

Table 11-15: Legal Types for Vector Multiply Instructions

t Types

Notes

t1 8B, 16B, 4H, 8H, 2S, or 4S 8B, 4S, and 2S operate only on LO 64 bits.
t2/t3 8H/8B, 45/4H, or 2D/2S t3 lanes are taken from the LO 64 bits.
ta/ts 8H/16B, 45/8H, or 2D/4S t5 lanes are taken from the HO 64 bits.

t6 2§, 4S, or 2D

There are also pmul, pnull, and pmull2 (polynomial multiplication) instruc-
tions. However, polynomial multiplication isn’t a traditional multiply opera-
tion, and a discussion of this is beyond the scope of this book. See the Arm
documentation for more details on these instructions.

11.7.4.1  Vector Saturating Multiplication and Double

The vector saturating multiplication and double instructions build on the
standard multiply, multiply and accumulate, and multiply and subtract
instructions to produce an extended precision (long) result that doubles
the product and saturates the result. The instructions in this set appear in
Table 11-16 and compute Vd = saturate({Vd + }(V1 x Vr) x 2), where Vd is the
destination operand, VI is the left operand, and Vr is the right operand;
{vd + } indicates that Vd + is an optional source operand.

Table 11-16: Vector Multiply and Double with Saturation Instructions

Mnemonic  Syntax Description

sqdmull sqdmull Vd.t1, VI.t2, Vr.t2 Vd = (VI x Vz) x 2 (lane by lane)

sqdmlal sqdmlal Vd.t1, VI.t2, Vr.t2 Vd = Vd + (V1 x Vr) x 2 (lane by lane)

sqdmlsl sqdmlsl Vd.t1, VI.t2, Vr.t2 Vd = Vd - (V1 x Vr) x 2 (lane by lane)

sqdmull2 sqdmull2 Vd.t3, V1.t4, Vr.t4 Vd = (VI x V) x 2 (lane by lane, HO 64 bits of source)
sqdmlal2 sqdmlal2 Vd.t3, V1.t4, Vr.t4 Vd = Vd + (V1 x Vr) x 2 (lane by lane, HO 64 bits)
sqdmls12 sqdmlsl2 Vd.t3, V1.t4, Vr.t4 Vd = Vd — (V1 x Vr) x 2 (lane by lane, HO 64 bits)
sqdmull sqdmull Vd.t5, VI.t6, Vr.t7[x] Vd = (V1 x Vr) x 2 (V1 lanes x Vr[x] scalar)

sqdmlal sqdmlal Vd.t5, VI.t6, Vr.t7[x] Vd = Vd + (V1 x Vr) x 2 (VI lanes x Vr[x] scalar)

(continued)
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Table 11-16: Vector Multiply and Double with Saturation Instructions (continued)

Mnemonic  Syntax Description

sqdmlsl sqdmlsl Vd.t5, VI.t6, Vr.t7[x] Vd = Vd — (VI x Vr) x 2 (VI lanes x Vr[x] scalar)

sqdmull2 sqdmull2 Vd.t8, VI.t9, Vr.t10[x] Vd = (VI x Vr) x 2 (VI lanes x Vr[x] scalar, HO 64 bits)

sqdmlal2 sqdmlal2 Vd.t8, V1.t9, Vr.t10[x] Vd =Vd + (VI x V) x 2 (VI lanes x Vr[x] scalar, HO
64 bits)

sqdmls12 sqdmlsl2 Vd.t8, V1.t9, Vr.t10[x] Vd =Vd - (VI x V) x 2 (VI lanes x Vr[x] scalar, HO

64 bits)
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The legal types and lane counts appear in Table 11-17.

Table 11-17: Legal Types and Lane Counts for
Vector Multiply and Double with Saturation

t Types and lane counts
t1/t2 AS/4AH, or 2D/2S
t3/t4 4S/8H, or 2D/4S
t5/t6/t7 4S/4H/H, or 2D/25/S
t8/t9/t10 4S/8H/H, or 2D/4S/S

These instructions all sign-extend their source operands to twice their
size and multiply them to produce a product. They then multiply this prod-
uct by 2. The standard multiply variants saturate and store this product into
the corresponding destination lane. The multiply and accumulate variants
add the product (multiplied by 2) to the destination and saturate the result.
The multiply and subtract variants subtract the product (multiplied by 2)
from the destination and saturate the result.

The instructions without a 2 suffix extract their lanes from the LO 64 bits
of the first source register, while those with a 2 suffix extract their lanes from
the HO 64 bits of the second source register.

The last six instructions in Table 11-16 multiply the lanes in VI by a scalar
value selected from one of the lanes in Vr (selected by the [x] index operator).
Here, x must be an appropriate value for the source type (0 to 7 for bytes,

0 to 3 for half words, or 0 to 1 for words). For the last six forms, if t10 is H,
then the Vr register number (r) must be in the range 0 to 15.

A couple of “short” versions of the sqdmul* instructions don’t double the
type size in the destination register: sqdmulh and sqrdmulh. These instruc-
tions also multiply their source operands, double the result, and saturate
it. However, they store only the HO 64 bits of the result into the destina-
tion lane (with saturation and possible rounding). Table 11-18 lists these
instructions.



Table 11-18: Saturating Multiply and Double Instructions, HO Bits

Mnemonic  Syntax Description

sqdmulh sqdmulh Vd.t1, VI.t1, Vr.t1 Lane-by-lane multiply, double, saturate, and keep HO
half of product.

sqrdmulh sqrdmulh Vd.t1, VI.t1, Vr.t1 Lane-by-lane multiply, double, round, saturate, and
keep HO half of product.

sqdmulh sqdmulh Vd.t2, V1.t3, Vr.t4[x]  Multiply the lanes in VI by the scalar selected by Vr[x];
double the result, saturate, and keep the HO half
of the product.

sqrdmulh sqrdmulh Vd.t2, VI.t3, Vr.t4[x] Multiply the lanes in V1 by the scalar selected by vr[x];
double the result, round, saturate, and keep the HO
half of the product.

sqdmulh sqdmulh Rd, R1, Rr Scalar version of sqdmulh.

sqrdmulh sqrdmulh Rd, RI1, Rr Scalar version of sqrdmulh.

In this table, t1 is 4H, 8H, 2S, or 4S. For the 4H and 2S types, the
instruction works only with the LO 64 bits of the registers; the 8H and 4S
types use all 128 bits.

The type specification t2/t3/t4 is 4H/4H/H, 8H/8H/H, 25/2S/S, or
4S/S; the 4H and 2S types work with the LO 64 bits of the registers, and the
8H and 4S types work on all 128 bits of the registers. If the type is H, Vr’s
register number must be in the range 0 to 15.

If the [x] index appears after Vr.t4, the instruction multiplies the lanes
in VI by the scalar value extracted from lane x of Vr, which must be an
appropriate value for the source type (0 to 7 for bytes, 0 to 3 for half words,
or 0 to 1 for words).

These instructions have two scalar variants. R (in Rd, R1, and Rr) must be
H or S. For example

sqdmulh ho, h1, h2

computes HO = saturate(H1 x H2 x 2).

11.74.2  Vector Multiplication by a Scalar Element

The Neon instruction set provides several instructions that multiply all the
elements of a vector by a single scalar value, as listed in Table 11-19.

Table 11-19: Vector Multiply by Scalar Instructions

Mnemonic  Syntax Description

mul mul Vd.t1, VI.t1, Vr.t2[x] Multiply integer vector element by scalar value. Multiply
each lane in VI by Vr[x] (scalar value) and store the prod-
uct into the corresponding lane in Vd (that is, for each
lane i, Vd[i] = VI[i] x Vr[x]).

mla mla Vd.t1, VI.t1, Vr.t2[x] Multiply vector elements by a scalar and accumulate. For

each lane i, vd[i] = vd[i] + VI[i] x Vr[x].

(continued)
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Table 11-19: Vector Multiply by Scalar Instructions (continued)

Mnemonic

Syntax

Description

mls

smull

smlal

smlsl

smull2

smlal2

smlsl2

umull

umlal

umlsl

umull2

umlal2

umls12

fmul
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mls Vd.t1, V1.t1, Vr.t2[x]

smull Vd.t3, V1.t4, Vr.t5[x]

smlal Vd.t3, V1.t4, Vr.t5[x]

smlsl Vd.t3, VI.t4, Vr.t5[x]

smull2 Vd.t6, V1.t7, Vr.t8[x]

smlal2 Vd.t6, VI.t7, Vr.t8[x]

smlsl2 Vd.t6, V1.t7, Vr.t8[x]

umull Vd.t3, V1.t4, Vr.t5[x]

umlal Vd.t3, VI.t4, Vr.t5[x]

umlsl Vd.t3, V1.t4, Vr.t5[x]

umull2 Vd.t6, V1.t7, Vr.t8[x]

umlal2 Vd.t6, V1.t7, Vr.t8[x]

unlsl2 Vd.t6, VI.t7, Vr.t8[x]

fmul Vd.t9, VI1.t10, Vr.t11[x]

Multiply vector elements by a scalar and subtract. For
each lane i, Vd[i] = —d[i] — VI[i] x Vr[x].

Signed vector multiply by scalar, long. Sign-extend the
(LO) lanes in VI to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only

the LO 64 bits of V1.

Signed vector multiply by scalar and accumulate, long.
Similar to smull, but sums the product info Vd rather than
just storing it into Vd.

Signed vector multiply by scalar and subtract, long. Similar
to smull, but subtracts the product from Vd rather than just
storing it into Vd.

Signed vector multiply by scalar, long. Sign-extend the
(HO) lanes in V1 to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only
the HO 64 bits of V1.

Signed vector multiply by scalar and accumulate, long
(HO source). Similar to smull2, but sums the product into
Vd rather than just storing it info Vd.

Signed vector multiply by scalar and subtract, long (HO
source). Similar to smull2, but subtracts the product from
Vd rather than just storing it into Vd.

Unsigned vector multiply by scalar, long. Zero-extend the
(LO) lanes in VI to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only

the LO 64 bits of V1.

Unsigned vector multiply by scalar and accumulate, long.
Similar to umull, but sums the product info Vd rather than
just storing it into Vd.

Unsigned vector multiply by scalar and subtract, long.
Similar to umull, but subtracts the product from vd rather
than just storing it into Vd.

Unsigned vector multiply by scalar, long. Zero-extend the
(HO) lanes in VI to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only
the HO 64 bits of V1.

Unsigned vector multiply by scalar and accumulate, long
(HO source). Similar to umull2, but sums the product into
Vd rather than just storing it info Vd.

Unsigned vector multiply bg scalar and subtract, long (HO
source). Similar to umul12, but subtracts the product from vd
rather than just storing it info Vd.

Floating-point vector multiply by scalar. Multiply each lane
in V1 by Vr[x] (scalar value) and store the product into the
corresponding lane in Vd (that is, for each lane 1,

vd[i] = VI[i] x vr[x]).



Mnemonic  Syntax Description

fmulx fmulx Vd.t9, V1.t1o, Vr.t11[x] Like fmul, except it's a special variant that handles the case
where one source operand is O and the other is 0. This
produces the value +2 (-2 if —eo, +2 otherwise).

fmla fmla Vd.t9, VI.t10, Vr.t11[x] Floating-point vector multiply by scalar and accumulate.
Multiply each lane in VI by Vr[x] (scalar value) and add
the product into the corresponding lane in Vd (that is, for
each lane i, vd[i] = vd[i] + VI[i] x Vr[x]).

fmls fmls Vd.t9, VI.t10, Vr.t11[x] Floating-point vector multiply by scalar and subtract.
Multiply each lane in VI by Vr[x] (scalar value) and sub-
tract the product from the corresponding lane in Vd (that is,
for each lane i, vd[i] = Vd[i] - V1[i] x Vr[x]).

Table 11-20 lists the legal types and lane counts for the instructions in
Table 11-19.

Table 11-20: Legal Types and Lane Counts for Vector Multiply by Scalar

t Legal types and lane counts
t1/t2 4H/H, 8H/H, 2S/S, or 45/S
t3/t4/t5 A4S/4H/H or 2D/2S/S
t6/t7/t8 4S/8H/H, or 2D/4S/S
t9/t10/t11 2S/2S/S, 4S/S, or 2D/D

Figure 11-26 shows the basic operation of the mul, mla, mls, fmul, fmla, and
fmls instructions.

V1 Vr [x]
| | | ||l |-[_lanex ||

OO OO

Multiply by Vr[x]; then store, add,
| | | | | = or subtract, depending on instruction.

Vd

Figure 11-26: Vector multiply by scalar operation

Figure 11-27 shows the basic operation of the smull, umull, smlal, umlal,
smlsl, and umlsl instructions.

Neon and SIMD Programming 677



678

Chapter 11

smull and umull store
v N | | | | | product info Vd.

smlal and umlal add

product info Vd.

smlsl and umlsl
| | subtract product from vd.

-~

v | | |

Figure 11-27: Vector multiply by scalar, long (LO bits)

Figure 11-28 shows the basic operation of the smull2, umull2, smlal2,
umlal2, smlsl2, and umlsl2 instructions.

o || Lanex || | |

smull2 and umull2 store
2 | | | N N product info Vd.

smlal2 and umlal2 add

—l product info Vd.

smlsl2 and umlsl2
vd | | | | subtract broduct from vd.

Figure 11-28: Vector multiply by scalar, long (HO bits)

Because the product of two n-bit numbers fits into 2n bits, the smul/smul2
and umul/umul2 instructions will not produce an overflow. However, keep in
mind that an addition or subtraction after the multiplication could require
an additional bit (2n + 1 bits). Should that occur, these instructions will
ignore the overflow and keep the LO bits.

11.7.4.3  Scalar Multiplication by a Vector Element

The Neon instruction set provides variants of the fmul instructions that mul-
tiply a scalar register (Sn or Dn) by a vector element (Vn[x]), storing the result
back into a scalar register. Table 11-21 lists the syntax for these instructions,
where F1 is the left source operand and Vr is the right source operand.

Table 11-21: Floating-Point Scalar Multiplication by Vector Element Instructions

Mnemonic  Syntax Description

fmul fmul Fd, F1, Vr.t[x] Fd=FIl x Vr.t[x]

fmulx fmulx Fd, FI, Vr.t[x] Fd=FI x Vr.t[x]. Handles case where F1 = 0.0
and Vr.t is xoo, which produces +2.0.

fmla fmla Fd, F1, Vr.t[x] Fd=Fd + FI x Vr.t[x]

fmls fmls Fd, F1, Vr.t[x] Fd=Fd-Fl x Vr.t[x]




Registers Fd and FI are each one of the scalar floating-point registers
(Sn or bn). Type t must be a matching size (S or D). If the type is single-
precision (Sn), then Vr must be a register in the range VO to V15.

These multiplication instructions have no integer equivalents.

11.7.5 Vector Division

The Neon instruction set does not provide any instructions to perform inte-
ger division on vectors. It does, however, provide an instruction to perform
floating-point division on lanes in a pair of vectors

fdiv vd.t, V1.t, Vr.t // Computes Vd = VI / Vr (lane by lane)

where t is 25, 4S, or 2D. (A division by zero produces NaN in the destina-
tion lane.)

Because floating-point division is rather slow, especially when iterated
over all the lanes, the Neon instruction set includes a pair of instructions
that will compute the reciprocal of a floating-point value. Multiplication
by a reciprocal is usually much faster than division. If youre dividing by a
constant, you can precompute the reciprocal value at assembly time and use
that (no runtime cost). If the value is a variable that you cannot compute at
assembly time, you can use the frecpe instruction to approximate the recipro-
cals of all the lanes in a vector register

frecpe Vd.t, Vs.t

where t is 25, 4S, or 2D (2S operates on the LO 64 bits of the registers).
There is a scalar version of frecpe

frecpe Rd, Rs

where Rd and Rs are either Sn or Dn.

The frecpe instruction produces a reciprocal approximation that is
within 8 bits of the correct value—not great, but good enough for quick-
and-dirty calculations. If you need better accuracy, use the frecps instruc-
tion (same syntax except for the mnemonic) to compute another step in
the Newton-Raphson reciprocal approximation algorithm, using code like
the following:

// Compute V0.4S = V1.4S / V2.4S by computing the reciprocal
// of V2 and multiplying V1 by this reciprocal value:

frecpe v3.4s, v2.4s // Get first approximation.
frecps vo0.4s, vi.4s, v3.4s [/ *** Refinement step
fmul v3.4s, v3.4s, v0.4s // *** Refinement step (cont.)

// Repeat "Refinement step" as many times as desired here.

fmul  vO0.4s, vi.4s, v3.4s // Compute quotient.
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The more times you repeat the refinement step, the more accurate
your result will be. However, at some point, the cost of executing all these
floating-point instructions will exceed the time consumed by a single fdiv
instruction, so take care because using frecps has diminishing returns.

There is a urecpe instruction for estimating fixed-point reciprocals, but
fixed-point arithmetic is beyond this scope of this book. To learn more, see
the ARM Architecture Reference Manual, linked in section 11.15, “For
More Information,” on page 700.

11.7.6 Sign Operations

The Neon instruction set includes four instructions that allow you to negate
or take the absolute values of the lanes in a vector register

abs Vd.t1, Vs.t1
neg Vd.t1, Vs.t1
sqabs Vd.t1, Vs.t1
sqneg Vd.t1, Vs.t1
fabs Vd.t2, Vs.t2
fneg Vd.t2, Vs.t2

where t1 represents the usual integer types (8B, 16B, 4H, 8H, 28, 4S, or 2D)
and t2 represents the usual floating-point types (25, 4S, and 2D). The 8B,
4H, and 28 types reference only the LO 64 bits of the vector register.

The abs and fabs instructions compute the absolute values of each of
the lanes in the source register, storing the result into the destination reg-
ister. Obviously, abs works on (signed) integer values, while fabs works on
floating-point values.

The neg and fneg instruction negate (change the sign of) the source lanes,
leaving the negated result in the corresponding destination lane. As expected,
neg works on signed integers, and fneg works on floating-point values.

The sqgabs and sqgneg instructions are special saturating variants of the
abs and neg instructions that never overflow. The most negative value (for
example, 0x80 for byte values) will overflow when you take its absolute value
or negate it; in both cases, you wind up with the same value. The sqabs and
sgneg instruction will produce the maximum positive value (for example,
Ox7F for byte values) if you attempt to negate it or take its absolute value.

The abs, neg, sqabs, and sqneg instructions also have scalar versions, as
shown in Table 11-22. For abs and neg, Rd and Rs can be only Dn; for sqabs and
sqneg, Rd and Rs are one of the scalar registers Bn, Hn, Sn, or Dn.

Table 11-22: Scalar Sign Operations

Mnemonic Syntax Description

abs abs Rd, Rs Rd = abs( Rs )

neg neg Rd, Rs Rd = —Rs

sqabs sqabs Rd, Rs Rd = abs( Rs ), saturated to maximum signed value
sqneg sqneg Rd, Rs Rd = —Rs, saturated to signed range




The instructions in Table 11-22 operate on the scalar value in the speci-
fied register.

11.7.7 Minimum and Maximum

The Neon instruction set provides several instructions that will select the
minimum or maximum value from corresponding lanes in two vector regis-
ters and store that value into the corresponding lane of a destination regis-
ter, as shown in Table 11-23.

Table 11-23: Vector Min and Max Instructions

Mnemonic  Syntax Description

smin smin Vd.t1, VI.t1, Vr.t1  Vd = min( VI, Vr ) (signed integer values)
smax smax Vd.t1, VI.t1, Vr.t1 Vd = max( VI, Vr ) (signed integer values)
umin umin Vd.t1, VI.t1, Vr.t1  Vd = min( VI, Vr ) (unsigned integer values)
umax umax Vd.t1, VI.t1, Vr.t1 Vd = max( VI, Vr ) (unsigned integer values)
fmin fmin Vd.t2, VI.t2, Vr.t2  Vd =min( V1, Vr ) (floating-point values)
fmax fmax Vd.t2, VI.t2, Vr.t2  Vd = max( V1, Vr ) (floating-point values)
fminnm fminnm Vd.t2, V1.t2, Vr.t2 Vd=min( V1, Vr ) (floating-point values)
fmaxnm fmaxnm Vd.t2, V1.t2, Vr.t2 Vd =max( V1, Vr) (floating-point values)

In this table, t1 must be 8B, 16B, 4H, 8H, 2S, or 4S. If t1 is 8B, 4H, or
2S, the instructions operate only on the lanes in the LO 64 bits of the vec-
tor registers; if it is 16B, 8H, or 4S, the instructions operate on all 128 bits
of the vector registers.

The type t2 must be 25, 4S, or 2D. If it is 2S, the instructions operate
only on the LO 64 bits of the vector registers; otherwise, they operate on
the entire 128 bits.

The fmin and fmax instructions return NaN if either (or both) of the
corresponding source lanes contain a NaN. The fminnm and fmaxnm instruc-
tions, on the other hand, return the numeric value if one lane contains a
valid number and the other contains a NaN. If both lanes contain a valid
floating-point value, all four instructions behave the same and return the
minimum or maximum value (as appropriate).

11.7.7.1  Pairwise Minimum and Maximum

The minimum and maximum instructions also have pairwise variants,
as shown in Table 11-24, where t1 and t2 are the same as for the lane-by-
lane instructions.

Neon and SIMD Programming 681



Table 11-24: Pairwise Minimum and Maximum Instructions

Mnemonic  Syntax Description Operates on

sminp sminp Vd.t1, V1.t1, Vr.t1 Vd = pairwise min( VI, Vr ) Signed integers
smaxp smaxp Vd.t1, VI.t1, Vr.t1 Vd = pairwise_max( VI, Vr ) Signed integers
uminp uminp Vd.t1, V1.t1, Vr.t1 Vd = pairwise min( VI, Vr ) Unsigned integers
umaxp umaxp Vd.t1, VI.t1, Vr.t1 Vd = pairwise_max( VI, Vr ) Unsigned integers
fminp fminp Vd.t2, VI.t2, Vr.t2 Vd = pairwise min( VI, Vr ) Floating-point values
fmaxp fmaxp Vd.t2, VI.t2, Vr.t2 Vd = pairwise max( VI, Vr) Floating-point values
fminnmp fminnmp Vd.t2, V1.t2, Vr.t2 Vd = pairwise min( VI, Vr ) Floating-point values
fmaxnmp fmaxnmp Vd.t2, V1.t2, Vr.t2 Vd = pairwise_max( VI, Vr ) Floating-point values

The pairwise topology is the same as for the addp instruction (see
Figure 11-29 for a uminp example).

V2 Vi

| | | || | |
| J | |
min min

min 1 { min
| | | | |

VO

uminp V0.4s, V1.4s, V2.4s

Figure 11-29: Pairwise minimum and maximum operations

There are also a set of pairwise-scalar floating-point minimum and
maximum instructions, as shown in Table 11-25, where Rd/t must be Sn/2S
or Dn/2D.

Table 11-25: Pairwise-Scalar Floating-Point Minimum and Maximum
Instructions

Mnemonic  Syntax Description

fmaxp fmaxp Rd, Vs.t Rd = max( Vs )

fmaxnmp fmaxnmp Rd, Vs.t  Rd = max( Vs ) (choose number over NaN])
fminp fminp Rd, Vs.t Rd = min( Vs )

fminnmp fminnmp Rd, Vs.t  Rd = min( Vs ) (choose number over NaN)

These instructions have no integer versions.
11.7.7.2  Horizontal Minimum and Maximum

The horizontal minimum and maximum instructions select the minimum
or maximum value within a single vector, as shown in Table 11-26.
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Table 11-26: Horizontal (Across Vector) Minimum and Maximum Instructions

Mnemonic Syntax Description

sminv sminv Rd, Vs.t1 Extract minimum signed lane value from Vs and store into Rd.
smaxv smaxv Rd, Vs.t1 Extract maximum signed lane value from Vs and store into Rd.
uminy uminv Rd, Vs.t1 Extract minimum unsigned lane value from Vs and store into Rd.
umaxv umaxv Rd, Vs.t1 Extract maximum unsigned lane value from Vs and store into Rd.
fminv fminv Sd, Vs.t2 Extract minimum real lane value from Vs and store into Sd.
fmaxv fmaxv Sd, Vs.t2 Extract maximum real lane value from Vs and store into Rd.
fminnmy fminnmv Sd, Vs.t2 Extract minimum real lane value from Vs and store into Sd.
fmaxnmv fmaxnmv Sd, Vs.t2 Extract maximum real lane value from Vs and store into Rd.

11.8

In this table, Rd/t1 is B/8B, B/16B, H/4H, H/8H, or S/48S. If t1 is 8B, or
4H, the instruction operates only on the lanes in the LO 64 bits of Vs. For
floating-point minimum and maximum, only single-precision operands are
legal; t2 must be 2S or 4S (operating on the LO 64 bits or the full 128 bits
of the source register). As for the standard fmin and fmax instructions, the nm

variants differ insofar as they return the numeric value if one of the oper-
ands is NaN.

Floating-Point and Integer Conversions

The Neon instruction set provides several instructions to convert between
floating-point and integer (or fixed-point) formats. Section 6.9.4, “Floating-
Point Conversion Instructions,” on page 343 provided examples of these
conversion instructions when operating on scalar registers; the following
subsections present the vector equivalents.

11.8.1 Floating-Point to Integer

The Neon instruction set provides vector equivalents of the fcvt* instruc-
tions that convert floating-point values to their integer equivalents, as
shown in Table 11-27.

Table 11-27: Floating-Point o Integer Conversion Instructions

Mnemonic  Syntax Description

fevtns fevtns Vd.t, Vs.t  Round to nearest signed integer. Exactly one-half
rounds to nearest even integer.

fevtas fevtas Vd.t, Vs.t  Round to nearest signed integer. Exactly one-half
rounds away from zero.

fevtps fcvtps Vd.t, Vs.t  Round toward +oo (signed integer).

fevtms fevtms Vd.t, Vs.t  Round toward —co (signed integer).

fevtzs fcvtzs Vd.t, Vs.t  Round toward O (signed integer).

(continued)

Neon and SIMD Programming 683



684

Chapter 11

Table 11-27: Floating-Point to Integer Conversion Instructions (continued)

Mnemonic  Syntax Description

fevtnu fevtnu Vd.t, Vs.t  Round fo nearest unsigned integer. Exactly one-half
rounds to nearest even integer.

fevtau fcvtau Vd.t, Vs.t  Round to nearest unsigned integer. Exactly one-half
rounds away from O.

fevtpu fevtpu Vd.t, Vs.t  Round toward +oo (unsigned integer).

fevtmu fevtmu Vd.t, Vs.t  Round toward —co (unsigned integer).

fevtzu fcvtzu Vd.t, Vs.t  Round toward O (unsigned integer).

In this table, t is 2S (which uses only the LO 64 bits of the vector regis-
ters), 4S, or 2D. The source operand is always assumed to contain floating-
point values (single- or double-precision), and the destination lanes will
receive signed or unsigned integer values (words or dwords). Note that
when converting negative floating-point values to unsigned integers, the
conversion saturates the conversion to 0.0.

The fcvtz* instruction also has some fixed-point variants:

fcvtzs vd.t, Vs.t, #imm
fevtzu Vd.t, Vs.t, #imm

The imm operand specifies the number of fractional bits to maintain in
the fixed-point value (this must be 1 to 31 for single-precision or word types
and 1 to 63 for double-precision or dword types). Because integer opera-
tions are somewhat faster than floating-point calculations, sometimes it is
faster to convert operands to fixed-point, do a chain of calculations, then
convert the result back to floating-point. However, this book doesn’t cover
fixed-point arithmetic in depth, so I won’t discuss this technique any fur-
ther. See section 11.15, “For More Information,” on page 700 for additional
information.

11.8.2 Integer to Floating-Point

The ucvtf and scvtf instructions convert 32- and 64-bit integers to single-
and double-precision values, respectively. Their syntax is roughly the same
as that of fevt*:

scvtf Vd.t, Vs.t
ucvtf Vd.t, Vs.t

As with fevt*, t must be 28§, 4S, or 2D (2S converts only the LO 64 bits).

Because double-precision values have only a 56-bit mantissa and single-
precision values have only a 24-bit mantissa, you cannot exactly represent
certain 32- and 64-bit integers as single- or double-precision floating-point
values. In those cases, the scvtf and ucvtf instructions produce the closest
approximation. However, keep in mind that executing *cvtf followed by an
fcvt* instruction may not return the exact same integer.



11.8.3 Conversion Between Floating-Point Formats

The Neon instruction set provides three instructions that will convert a
small floating-point format to a larger form, or a larger form to a smaller
form. This is one of the few instructions in the ARM instruction set that
supports half-precision (16-bit) floating-point numbers. Table 11-28 shows
the available instructions.

Table 11-28: Floating-Point Conversion Instructions

Description

Mnemonic  Syntax Lane-by-lane conversion

fevtl fevtl Vd.t1, Vs.t2 Convert from a smaller size to the next larger
size by using the LO 64 bits of the source
register.

fevtl2 fcvtl2 Vd.t3, Vs.t4  Convert from a smaller size to the next larger

size by using the upper 64 bits of the source
register (does not affect the LO bits of the
destination register).

fevtn fevtn Vd.t5, Vs.t6 Convert from a larger size to a smaller size by
using the LO 64 bits of the destination register.

fevtn2 fcvtn2 Vd.t7, Vs.t8  Convert from a larger size to a smaller size by
using the HO 64 bits of the destination register
(does not affect the LO bits of the destination

register).
fevtxn fevtxn Vd.2S, Vs.2D  Like fcvtn, except rounding is different (see text).
fevtxn2 fcvtxn2 Vd.4S, Vs.2D  Like fevtn2, except rounding is different (see text).

The legal types and lane counts for the instructions in Table 11-28
appear in Table 11-29, where H = 16-bit half-precision floating-point,
S = 32-bit single-precision floating-point, and D = 64-bit double-precision
floating-point.

Table 11-29: Legal Types and Lane Counts

for Floating-Point Conversions

t Types and lane counts
t1/t2 4S/4H or 2D/2S
t3/t4 4S/8H or 2D/4S
t5/t6 4H/4S or 25/2D
t7/t8 8H/4S or 4S/2D

Conversion from a smaller size to a larger size always produces an exact
result. Conversion from a larger size down to a smaller size may require
rounding the result to fit in the smaller size (worst case, overflow or under-
flow will occur if the larger value cannot be represented at all in the smaller
floating-point format).
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When rounding larger values to fit into a smaller format, the fcvtn and
fevtn2 instructions use the standard IEEE-754 round-to-nearest-even algo-
rithm. In some cases, this may not produce the best result. For example,
it is generally better to round to the nearest odd when converting a half-
precision value to a double-precision value (which requires two steps:
convert half-precision to single-precision, then convert single-precision to
double-precision). The fcvtxn and fcvtxn2 instructions employ this non-IEEE
rounding scheme to produce better results.

11.8.4 Floating-Point Valves Rounded to the Nearest Integral

Certain algorithms require rounding a floating-point value to an integer
but require the result to be maintained in the floating-point format. The
frint* instructions listed in Table 11-30 provide this capability.

Table 11-30: Rounding a Floating-Point Value to an Integral Value

Description
Mnemonic  Syntax Lane-by-lane rounding operation
frintn frintn Vd.t, Vs.t  Round fo nearest integer. Exactly one-half rounds

to nearest even integer.

frinta frinta Vd.t, Vs.t  Round fo nearest integer. Exactly one-half rounds
away from 0.

frintp frintp Vd.t, Vs.t  Round toward +co.

frintm frintm Vd.t, Vs.t Round toward —oo.

frintz frintz Vd.t, Vs.t Round toward O.

frinti frinti vd.t, Vs.t  Round using FPCR rounding mode.
frintx frintx Vd.t, Vs.t  Round using FPCR rounding mode with

exactness test.

In this table, t must be 2S, 4S, or 2D. If it is 2S, these instructions use
only the LO 64 bits of the registers.

The frintx instruction generates a floating-point inexact result excep-
tion if the rounded result is not equal to the original source value. You
won’t normally use this instruction unless you have an appropriate excep-
tion handler in place.

11.9 Vector Square-Root Instructions

The Neon instruction set provides two instructions for computing the
square root of a floating-point value and computing (and refining) an
estimate of the reciprocal of the square root of a floating-point value.
Table 11-31 lists these instructions.
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Table 11-31: Vector Square Root Instructions

Description
Mnemonic  Syntax Lane-by-lane operation
fsqrt fsqrt Vd.t, Vs.t Compute square root of source and store

into destination

frsqrte frsqrte vd.t, Vs.t First step of Newton-Raphson approxima-
tion of the reciprocal of the square root

frsqrts frsqrts Vd.t, Vsi.t, Vs2.t Additional steps of the Newton-Raphson
approximation

In the table, t must be 2S, 4S, or 2D. If it’s 2S, these instructions oper-
ate on the lanes in the LO 64 bits of the vector registers.
These three instructions also have scalar versions

fsqrt Rd, Rs
frsqrte Rd, Rs
frsqrts Rd, Rs1, Rs2

where Rd and Rs are one of the floating-point scalar registers Sn or Dn.

Note that the frsqrts instruction multiplies corresponding floating-
point values in the lanes of the two source registers, subtracts each of the
products from 3.0, divides these results by 2.0, and places the results into
the destination register.

Vector Comparisons

Vector comparisons are fundamentally different from normal (general-
purpose register) comparisons. When comparing general-purpose registers
(or even individual floating-point scalar values), the ARM CPU sets the con-
dition codes based on the result of the comparison; the code following the
comparison then tests those condition codes, using a conditional branch, for
example. This scheme doesn’t work when comparing vector elements because
the CPU always performs multiple comparisons in parallel. There’s only one
set of condition codes, so the CPU cannot put the results of multiple compari-
sons into the condition codes, meaning vector comparisons require a differ-
ent mechanism to make the comparison results available to the program.

Rather than a generic comparison that produces less than, greater
than, or equal results simultaneously (in the condition codes), a vector
comparison asks for a specific comparison, such as, “Are the elements of
this vector greater than the elements of another vector?” The result is true
or false for each lane-by-lane comparison. A vector comparison will store
the true or false result into the corresponding lanes of a destination vector.
Vector comparisons use all 0 bits in a lane to represent false and all 1 bits in
a lane to represent true.

Neon has two general sets of vector comparison instructions: one for
integer comparisons and another for floating-point comparisons. The fol-
lowing subsections discuss each of these forms.
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11.10.1 Vector Integer Comparisons

Table 11-32 lists the generic vector integer compare instructions, where t is
8B, 16B, 4H, 8H, 28, 48, or 2D. For the 8B, 4H, and 2S types, these instruc-
tions operate only on the LO 64 bits of the registers and clear the HO

64 bits of the destination register.

Table 11-32: Vector Integer Comparison Instructions

Description
Mnemonic  Syntax Lane-by-lane comparison
cmeq cmeq Vd.t, VI.t, Vr.t  Signed or unsigned comparison for equality
cmhs cmhs Vd.t, V1.t, Vr.t  Unsigned comparison for greater than or
equal (vd = V1 > vr)
cmhi cmhi Vd.t, VI.t, Vr.t  Unsigned comparison for greater than
(Vd = V1 > vr)
cmge cmge Vd.t, V1.t, Vr.t  Signed comparison for greater than or equal
(vd = VI > vr)
cmgt cmgt Vd.t, VI.t, Vr.t  Signed comparison for greater than
(vd = V1 > Vr)

There is no cmne instruction. You can invert all the bits in the destina-
tion register (using the not instruction) if you need this comparison, or you
can use 0 bits to imply true and 1 bits to imply false. Likewise, there are no
cmls, cmlo, cmle, or cmlt instructions; you can derive these from cmgt, cmge,
cmhs, or cmhi by reversing the operands.

These instructions have scalar variants, as shown in Table 11-33, where
Rd, R1, and Rr must be Dn.

Table 11-33: Scalar Integer Comparison Instructions

Description

Mnemonic  Syntax Scalar register comparison
cmeq cmeq Rd, R1, Rr  Signed or unsigned comparison for equality
cmhs cmhs Rd, R1, Rr  Unsigned comparison for greater than or equal
(Rd = R1 > Rz)
cmhi cmhi Rd, R1, Rr  Unsigned comparison for greater than (Rd = R1 > Rr)
cmge cmge Rd, R1, Rr  Signed comparison for greater than or equal
(Rd = R1 > Rr)
cmgt cmgt Rd, R1, Rr  Signed comparison for greater than (Rd = RI > Rr)

A special set of vector comparison instructions exists to compare the
lanes of a single vector against 0. This saves setting up a register to contain
all Os for this common case. The available instructions perform only signed
comparisons (it doesn’t make much sense to compare unsigned values
against 0). Table 11-34 lists these instructions.



Table 11-34: Signed Vector Comparisons Against O

Description

Mnemonic  Syntax Lane-by-lane comparison against 0

cmeq cmeq Vd.t, VI.t, #0 Signed comparison for lanes equal to O

cmge cmge Vd.t, VI.t, #0 Signed comparison for lanes greater than
or equal to O

cmgt cmgt Vd.t, VI.t, #0 Signed comparison for lanes greater than O

cmle cmle vd.t, VI.t, #0 Signed comparison for lanes less than or
equal to O

cmlt cmlt Vd.t, VI.t, #0 Signed comparison for lanes less than O

The type t must be 8B, 16B, 4H, 8H, 2S5, 4S, or 2D. For the 8B, 4H, and
2S types, these instructions operate only on the LO 64 bits of the registers
and clear the HO 64 bits of the destination register. The only legal immedi-
ate constant is 0 with these instructions.

Table 11-35 lists the scalar versions of these instructions.

Table 11-35: Scalar Vector Comparisons Against O

Description
Mnemonic Syntax Scalar register comparison against 0
cmeq cmeq Rd, R1, #0 Signed comparison for register equal to O
cmge cmge Rd, R1, #0 Signed comparison for register greater than
or equal to O
cmgt cmgt Rd, R1, #0  Signed comparison for register greater than O
cmle cmle Rd, R1, #0 Signed comparison for register less than

or equal to O

cmlt cmlt Rd, R1, #0 Signed comparison for register less than O

In this table, Rd, R1, and Rr must be Dn.

11.10.2  Vector Floating-Point Comparisons

You can also compare floating-point values in the vector registers’ lanes.
Table 11-36 lists the various fcm* instructions available for this purpose,
where t is 25, 45, or 2D. If t is 25, these instructions use only the LO 64 bits
of the registers.

Table 11-36: Vector Floating-Point Comparison Instructions

Description
Mnemonic  Syntax Lane-by-lane comparison
femeq femeq Vd.t, VI.t, Vr.t Floating-point comparison for equality
fcmge femge Vd.t, VI.t, Vr.t Floating-point comparison (Vd = VI > Vr)
femgt femgt Vd.t, VI.t, Vr.t Floating-point comparison (Vd = VI > Vr)
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Table 11-37 lists variants of the fcm* instructions that compare the lanes
in a vector register against 0.0, where t is 25, 45, or 2D. If t is 25, these
instructions use only the LO 64 bits of the registers.

Table 11-37: Vector Floating-Point Comparison Against 0.0

Mnemonic Syntax

Description
Lane-by-lane comparison against 0.0

fcmeq

fcmge
femgt
femle

femlt

fcmeq Vd.t, VI.t,
fcmge Vd.t, VI.t,

femgt Vd.t, VI.t,
fcmle vd.t, VI.t,

femlt vd.t, VI.t,

#0 Floating-point comparison for register equal to 0.0

#0 Floating-point comparison for register greater than

or equal to 0.0

#0 Floating-point comparison for register greater

than 0.0

#0 Floating-point comparison for register less than or

equal to 0.0

#0 Floating-point comparison for register less than 0.0

Note that the immediate constant is O (versus 0.0), even though this is a
floating-point comparison. The only legal operand for this instruction is #o.
As for the integer comparisons, the fen* instructions provide a set of
scalar instructions that also store true (all 1 bits) or false (all 0 bits) into the
destination register (in contrast to the fcmp instructions that set the condi-
tion code flags). Table 11-38 lists the scalar versions of these instructions,

where Rd, R1, and Rr must be Sn or Dn.

Table 11-38: Scalar Variants of the Vector Floating-Point Comparisons

Mnemonic

Syntax

Description
Scalar register comparison (including against 0.0)

fcmeq
fcmge
femgt
fcmeq

fcmge

femgt

fcmle

femlt

fcmeq Rd, R1, Rr
fcmge Rd, R1, Rr
fcmgt Rd, R1, Rr
fcmeq Rd, R1, #0
fcmge Rd, R1, #0

fcmgt Rd, R1, #0
fcmle Rd, RI1, #0

femlt Rd, RI, #0

Floating-point comparison for equality
Floating-point comparison (Rd = R1 > Rr)
Floating-point comparison (Rd = R1 > Rr)
Floating-point comparison for register equal to 0.0

Floating-point comparison for register greater than
or equal to 0.0

Floating-point comparison for register greater than 0.0

Floating-point comparison for register less than or
equal to 0.0

Floating-point comparison for register less than 0.0

Neon has a couple of additional floating-point comparisons: fac* (vec-
tor floating-point absolute value compare). These instructions compare the
absolute values of corresponding lanes in the source vector register and set
the destination register accordingly. Table 11-39 lists these instructions.
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Table 11-39: Floating-Point Absolute-Value Comparisons

Mnemonic  Syntax Description

facge facge Vd.t, VI.t, Vr.t Floating-point comparison (Vd = abs( VI )
> abs( vr))

facgt facgt vd.t, V1.t, Vr.t Floating-point comparison (Vd = abs( VI )
> abs( vr))

There is no faceq instruction, since there’s no need for one; just use

fcmeq.
The fac* instructions also have scalar versions, listed in Table 11-40.

Table 11-40: Scalar Floating-Point Absolute-Value Comparisons

Mnemonic  Syntax Description
facge facge Rd, R1, Rr  Floating-point comparison (Rd = abs( R1 ) > abs( Rr ))
facgt facgt Rd, R1, Rr  Floating-point comparison (Rd = abs( R1 ) > abs( Rr))

Note that Rd, R1, and Rr must be Sn or Dn.

11.10.3 Vector Bit Test Instructions

The Neon instruction set provides a vector version of the tst instruction,
cmtst, which has the following syntax

cmtst vd.t, VI.t, Vr.t

where t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D. If t is 8B, 4H, or 2S, this
instruction operates only on the LO 64 bits of the source registers and
clears the HO 64 bits of the destination register.

This instruction does a lane-by-lane logical AND operation between
V1 and Vr. If the result is nonzero, it stores all 1 bits into the corresponding
destination lane. Otherwise, it stores all Os in