
®

T H E A R T O F
A R M A S S E M B LY

6 4 - B I T A R M M A C H I N E O R G A N I Z A T I O N

A N D P R O G R A M M I N G

R A N D A L L H Y D E

THE F INEST IN GEEK ENTERTA INMENT ™

nostarch.com
®

®

T
H

E
 A

R
T

 O
F

A

R
M

 A
S

S
E

M
B

L
Y

H
Y

D
E

Building on Randall Hyde’s iconic series, The Art
of ARM Assembly delves into programming 64-bit
ARM CPUs—the powerhouses behind iPhones, Macs,
Chromebooks, servers, and embedded systems.

Following a fast-paced introduction to the art of
programming in assembly and the GNU Assembler
(Gas) specifi cally, you’ll explore memory organization,
data representation, and the basic logical operations
you can perform on simple data types. You’ll learn
how to defi ne constants, write functions, manage
local variables, and pass parameters effi ciently. You’ll
explore both basic and advanced arithmetic operations,
control structures, numeric conversions, lookup tables,
and string manipulation—in short, you’ll cover it all.

You’ll also dive into ARM SIMD (Neon) instructions, bit
manipulation, and macro programming with the Gas
assembler, as well as how to:

• Declare pointers and use composite data structures
like strings, arrays, and unions

• Convert simple and complex arithmetic expressions
into machine instruction sequences

• Use ARM addressing modes and expressions to
access memory variables

• Create and use string library functions and build
libraries of assembly code using makefi les

This hands-on guide will help you master ARM
assembly while revealing the intricacies of modern
machine architecture. You’ll learn to write more effi cient
high-level code and gain a deeper understanding of
software-hardware interactions—essential skills for any
programmer working with ARM-based systems.

A B O U T T H E A U T H O R

Randall Hyde is an embedded software engineer
who has worked in the medical, nuclear, consumer
electronics, and entertainment industries. He taught
assembly language programming at the university
level for over 10 years. He is the author of The Art of
Assembly Language, The Art of 64-Bit Assembly, The
Book of I 2C, and the Write Great Code series, all
from No Starch Press.

$89.99 US ($118.99 CDN)

Modern Instructions

for 64-Bit ARM CPUs

V O L U M E 1

V O L U M E 1

THE ART OF ARM ASSEMBLY, VOLUME 1

®

T H E A R T O F
A R M A S S E M B LY

Vo l u m e 1

6 4 - B i t A R M M a c h i n e
O r g a n i z a t i o n a n d

P r o g r a m m i n g

by Randal l Hyde

San Francisco

[E]

THE ART OF ARM ASSEMBLY, VOLUME 1. Copyright © 2025 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0282-6 (print)
ISBN-13: 978-1-7185-0283-3 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www​.nostarch​.com; info@nostarch​.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Sydney Cromwell
Developmental Editor: Abigail Schott-Rosenfield
Cover Illustrator: James L. Barry
Interior Design: Octopod Studios
Technical Reviewer: Tony Tribelli
Copyeditor: Sharon Wilkey
Proofreader: Scout Festa

Library of Congress Control Number: 2024009591

Name: Hyde, Randall, author.
Title: The Art of ARM Assembly / by Randall Hyde.
Description: San Francisco : No Starch Press, 2025. | Includes index.
Identifiers: LCCN 2024009591 (print) | LCCN 2024009592 (ebook) |
 ISBN 9781718502826 (print) | ISBN 9781718502833 (ebook)
Subjects: LCSH: Assembly languages (Electronic computers) |
 ARM microprocessors--Programming.
Classification: LCC QA76.73.A8 H9698 2025 (print) | LCC QA76.73.A8 (ebook) |
 DDC 005.2--dc23/eng/20241007
LC record available at https://lccn.loc.gov/2024009591
LC ebook record available at https://lccn.loc.gov/2024009592

For customer service inquiries, please contact info@nostarch​.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch​.com. For permission to translate this work:
rights@nostarch​.com. To report counterfeit copies or piracy: counterfeit@nostarch​.com.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

®

https://www.nostarch.com
https://lccn.loc.gov/2024009591
https://lccn.loc.gov/2024009592

​This book is dedicated to Apple, Inc., whose introduction of the
M-series-based Mac computers made this book possible.

About the Author
Randall Hyde is the author of The Art of Assembly Language, The Art of 64-Bit
Assembly, The Book of I2C, and Write Great Code, Volumes 1, 2, and 3 (all
from No Starch Press), as well as Using 6502 Assembly Language and P-Source
(Datamost). He is also the co-author of Microsoft Macro Assembler 6.0 Bible
(The Waite Group). For more than 46 years, Hyde has worked as an embed-
ded software and hardware engineer developing instrumentation for
nuclear reactors, traffic-control systems, and other consumer electronics
devices. He has also taught computer science at California State Polytechnic
University, Pomona, and at the University of California, Riverside. His web-
site is https://www​.randallhyde​.com.

About the Technical Reviewer
Tony Tribelli has more than 35 years of experience in software develop-
ment. This experience ranges from embedded device kernels to molecular
modeling and visualization to video games. The last includes 10 years at
Blizzard Entertainment. He is currently a software development consultant
and is privately developing applications utilizing computer vision.

http://www.randallhyde.com

B R I E F C O N T E N T S

Acknowledgments . xxiii

Introduction . xxv

PART I: MACHINE ORGANIZATION . 1

Chapter 1: Hello, World of Assembly Language . 3

Chapter 2: Data Representation and Operations . . 45

Chapter 3: Memory Access and Organization . 119

Chapter 4: Constants, Variables, and Data Types . 169

PART II: BASIC ASSEMBLY LANGUAGE . 225

Chapter 5: Procedures . . 227

Chapter 6: Arithmetic . 293

Chapter 7: Low-Level Control Structures . 355

PART III: ADVANCED ASSEMBLY LANGUAGE . 439

Chapter 8: Advanced Arithmetic . . 441

Chapter 9: Numeric Conversion . 477

Chapter 10: Table Lookups . . 605

Chapter 11: Neon and SIMD Programming . 621

Chapter 12: Bit Manipulation . 703

Chapter 13: Macros and the Gas Compile-Time Language . 741

Chapter 14: String Operations . 795

Chapter 15: Managing Complex Projects . 861

Chapter 16: Stand-Alone Assembly Language Programs . 889

x Brief Contents

PART IV: REFERENCE MATERIALS . 931

Appendix A: The ASCII Character Set . 933

Appendix B: Glossary . 939

Appendix C: Installing and Using Gas . . 945

Appendix D: The Bash Shell Interpreter . 949

Appendix E: Useful C Language Functions . 971

Appendix F: Answers to Questions . 977

Index . . 999

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xxiii

INTRODUCTION	 xxv
0.1  A Brief History of the ARM CPU . xxvi
0.2  Why Learn ARM Assembly? . xxvii
0.3  Why Learn 64-Bit ARM? . xxviii
0.4  Expectations and Prerequisites . xxix
0.5  Source Code . xxx
0.6  Typography and Pedantry . xxxii
0.7  Organization . xxxii

PART I: MACHINE ORGANIZATION	 1

1
HELLO, WORLD OF ASSEMBLY LANGUAGE	 3
1.1  What You’ll Need . 4

1.1.1  Setting Up Gas . . 4
1.1.2  Setting Up a Text Editor . 4
1.1.3  Understanding C/C++ Examples . 4

1.2  The Anatomy of an Assembly Language Program . 5
1.3  Running Your First Assembly Language Program . 7
1.4  Running Your First Gas/C++ Hybrid Program . . 8
1.5  The aoaa​.inc Include File . 10
1.6  The ARM64 CPU Architecture . . 11

1.6.1  ARM CPU Registers . 11
1.6.2  The Memory Subsystem . 14

1.7  Declaring Memory Variables in Gas . 16
1.7.1  Associating Memory Addresses with Variables 19
1.7.2  Aligning Variables . 19
1.7.3  Declaring Named Constants in Gas . 21
1.7.4  Creating Register Aliases in Gas and Substituting Text 22

1.8  Basic ARM Assembly Language Instructions . 22
1.8.1  ldr, str, adr, and adrp . 23
1.8.2  mov . 27
1.8.3  add and sub . 28
1.8.4  bl, blr, and ret . 29

1.9  The ARM64 Application Binary Interface . 30
1.9.1  Register Usage . 31
1.9.2  Parameter Passing and Function Result Conventions 32

1.10  Calling C Library Functions . 33
1.10.1  Assembling Programs Under Multiple OSes 36
1.10.2  Writing a “Hello, World!” Program . . 40

xii Contents in Detail

1.11  Moving On . 43
1.12  For More Information . 43

2
DATA REPRESENTATION AND OPERATIONS	 45
2.1  Numbering Systems . 46

2.1.1  Decimal . 46
2.1.2  Binary . 46
2.1.3  Hexadecimal . 48

2.2  Numbers vs. Representation . 50
2.3  Data Organization . 53

2.3.1  Bits . 53
2.3.2  Nibbles . 54
2.3.3  Bytes . 54
2.3.4  Half Words . 55
2.3.5  Words . 56
2.3.6  Double Words and Quad Words . 57

2.4  Logical Operations on Bits . 58
2.4.1  AND . 58
2.4.2  OR . 59
2.4.3  XOR . 59
2.4.4  NOT . 60

2.5  Logical Operations on Binary Numbers and Bit Strings . 60
2.6  Signed and Unsigned Numbers . 65
2.7  Sign Extension and Zero Extension . 71
2.8  Sign Contraction and Saturation . 72
2.9  Loading and Storing Byte and Half-Word Values . . 72
2.10  Control-Transfer Instructions . 74

2.10.1  Branch . 75
2.10.2  Instructions That Affect the Condition Code Flags 76
2.10.3  Conditional Branch . 77
2.10.4  cmp and Corresponding Conditional Branches 78

2.11  Shifts and Rotates . 82
2.12  Bit Fields and Packed Data . 85
2.13  IEEE Floating-Point Formats . . 93

2.13.1  Single-Precision Format . 94
2.13.2  Double-Precision Format . 95

2.14  Normalized Floating-Point Values . 96
2.14.1  Nonnumeric Values . 97
2.14.2  Gas Support for Floating-Point Values . 97

2.15  Binary-Coded Decimal Representation . 98
2.16  Characters . 99

2.16.1  The ASCII Character Encoding . 99
2.16.2  Gas Support for ASCII Characters . 101

2.17  Gas Support for the Unicode Character Set . 102
2.18  Machine Code . 103
2.19  Operand2 . 106

2.19.1  #immediate . 107
2.19.2  #pattern . 107
2.19.3  Register . 109
2.19.4  Shifted Register . . 109
2.19.5  Extending Register . 110

Contents in Detail xiii

2.20  Large Constants . 111
2.20.1  movz . . 112
2.20.2  movk . 112
2.20.3  movn . . 113

2.21  Moving On . 113
2.22  For More Information . 114

3
MEMORY ACCESS AND ORGANIZATION	 119
3.1  Runtime Memory Organization . . 120

3.1.1  The .text Section . 121
3.1.2  The .data Section . 122
3.1.3  Read-Only Data Sections . 122
3.1.4  The .bss Section . 124
3.1.5  The .section Directive . 126
3.1.6  Declaration Sections . 126
3.1.7  Memory Access and MMU Pages . 127
3.1.8  PIE and ASLR . 128
3.1.9  The .pool Section . 130

3.2  Gas Storage Allocation for Variables . 131
3.3  Little-Endian and Big-Endian Data Organization . 133
3.4  Memory Access . 135
3.5  Gas Support for Data Alignment . . 138
3.6  The ARM Memory Addressing Modes . 140

3.6.1  PC-Relative . 141
3.6.2  Register-Indirect . 142
3.6.3  Indirect-Plus-Offset . 143
3.6.4  Scaled Indirect-Plus-Offset . 143
3.6.5  Pre-indexed . 144
3.6.6  Post-Indexed . . 145
3.6.7  Scaled-Indexed . . 146

3.7  Address Expressions . 149
3.8  Getting the Address of a Memory Object . 153
3.9  The Push and Pop Operations . 155

3.9.1  Using Double Loads and Stores . 155
3.9.2  Executing the Basic Push Operation . 156
3.9.3  Executing the Basic Pop Operation . 157
3.9.4  Preserving at Least Two Registers . 158
3.9.5  Preserving Register Values on the Stack . 159
3.9.6  Saving Function Return Addresses on the Stack 160

3.10  Pushing and Popping Stack Data . 161
3.10.1  Removing Data from the Stack Without Popping It 163
3.10.2  Accessing Data Pushed onto the Stack Without Popping It 165

3.11  Moving On . 167
3.12  For More Information . 167

4
CONSTANTS, VARIABLES, AND DATA TYPES	 169
4.1  Gas Constant Declarations . . 170
4.2  The Location Counter Operator . . 171

xiv Contents in Detail

4.3  Data Types and Gas . 172
4.4  Pointer Data Types . 173

4.4.1  Pointer Usage in Assembly Language . 174
4.4.2  Pointer Declarations in Gas . 175
4.4.3  Pointer Constants and Expressions . 175
4.4.4  Pointer Variables and Dynamic Memory Allocation 178
4.4.5  Common Pointer Problems . 180

4.5  Composite Data Types . . 186
4.6  Character Strings . 187

4.6.1  Zero-Terminated Strings . 187
4.6.2  Length-Prefixed Strings . 188
4.6.3  String Descriptors . 189
4.6.4  Pointers to Strings . 190
4.6.5  String Functions . 190

4.7  Arrays . 194
4.7.1  Declaring Arrays in Gas Programs . 195
4.7.2  Accessing Elements of a Single-Dimensional Array 197
4.7.3  Sorting an Array of Values . 198
4.7.4  Implementing Multidimensional Arrays . . 203

4.8  Structs . 212
4.8.1  Dealing with Limited Gas Support for Structs 214
4.8.2  Initializing Structs . . 217
4.8.3  Creating Arrays of Structs . 218
4.8.4  Aligning Fields Within a Struct . 219

4.9  Unions . . 220
4.10  Moving On . 221
4.11  For More Information . 221

PART II: BASIC ASSEMBLY LANGUAGE	 225

5
PROCEDURES	 227
5.1  Assembly Language Programming Style . . 228
5.2  Gas Procedures . 230

5.2.1  Gas Local Labels . . 234
5.2.2  bl, ret, and br . . 235

5.3  Saving the State of the Machine . 237
5.4  Call Trees, Leaf Procedures, and the Stack . 242

5.4.1  Activation Records . 244
5.4.2  Objects in the Activation Record . 246
5.4.3  ARM ABI Parameter-Passing Conventions . 247
5.4.4  Standard Entry Sequence . . 248
5.4.5  Standard Exit Sequence . . 250

5.5  Local Variables . 250
5.5.1  Low-Level Implementation of Automatic Variables 251
5.5.2  The locals Macro . 253

5.6  Parameters . . 255
5.6.1  Passing by Value . . 255
5.6.2  Passing by Reference . 256

Contents in Detail xv

5.6.3  Using Low-Level Parameter Implementation 258
5.6.4  Accessing Reference Parameters on the Stack 271

5.7  Functions and Function Return Results . 276
5.8  Recursion . . 277
5.9  Procedure Pointers and Procedural Parameters . 284
5.10  A Program-Defined Stack . 286
5.11  Moving On . 290
5.12  For More Information . 290

6
ARITHMETIC	 293
6.1  Additional ARM Arithmetic Instructions . 293

6.1.1  Multiplication . 294
6.1.2  Division and Modulo . 294
6.1.3  cmp Revisited . 295
6.1.4  Conditional Instructions . 297

6.2  Memory Variables vs. Registers . 299
6.2.1  Volatile vs. Nonvolatile Register Usage . 300
6.2.2  Global vs. Local Variables . 300
6.2.3  Easy Access to Global Variables . . 301

6.3  Arithmetic Expressions . 303
6.3.1  Simple Assignments . . 304
6.3.2  Simple Expressions . 305
6.3.3  Complex Expressions . 307
6.3.4  Commutative Operators . . 311

6.4  Logical Expressions . 312
6.5  Conditional Comparisons and Boolean Expressions . 314

6.5.1  Implementing Conjunction Using ccmp . 315
6.5.2  Implementing Disjunction Using ccmp . 318
6.5.3  Handling Complex Boolean Expressions . 319

6.6  Machine and Arithmetic Idioms . 319
6.6.1  Multiplying Without mul . . 319
6.6.2  Dividing Without sdiv or udiv . 321
6.6.3  Implementing Modulo-N Counters with AND 322
6.6.4  Avoiding Needlessly Complex Machine Idioms 322

6.7  Floating-Point and Finite-Precision Arithmetic . 322
6.7.1  Basic Floating-Point Terminology . 322
6.7.2  Limited-Precision Arithmetic and Accuracy . 323
6.7.3  Errors in Floating-Point Calculations . . 324
6.7.4  Floating-Point Value Comparisons . 326

6.8  Floating-Point Arithmetic on the ARM . . 327
6.8.1  Neon Registers . 327
6.8.2  Control Register . 330
6.8.3  Status Register . 331

6.9  Floating-Point Instructions . 332
6.9.1  FPU Data Movement Instructions . 332
6.9.2  FPU Arithmetic Instructions . 334
6.9.3  Floating-Point Comparisons . 336
6.9.4  Floating-Point Conversion Instructions . 343

6.10  The ARM ABI and Floating-Point Registers . 346
6.11  Using C Standard Library Math Functions . 347

xvi Contents in Detail

6.12  Moving On . 352
6.13  For More Information . 352

7
LOW-LEVEL CONTROL STRUCTURES	 355
7.1  Statement Labels . 356
7.2  Initializing Arrays with Statement Labels . 356
7.3  Unconditional Transfer of Control . 357
7.4  Register-Indirect Branches . . 358
7.5  Taking the Address of Symbols in Your Code . 364

7.5.1  Revisiting the lea Macro . 365
7.5.2  Statically Computing the Address of a Symbol 365
7.5.3  Dynamically Computing the Address of a Memory Object 367
7.5.4  Working with Veneers . 368

7.6  Implementing Common Control Structures in Assembly Language 371
7.6.1  Decisions . 371
7.6.2  if...then...else Sequences . 372
7.6.3  Complex if Statements Using Complete Boolean Evaluation 378
7.6.4  Short-Circuit Boolean Evaluation . 380
7.6.5  Short-Circuit vs. Complete Boolean Evaluation 382
7.6.6  Efficient Implementation of if Statements in Assembly Language 384
7.6.7  switch...case Statements . 389

7.7  State Machines and Indirect Jumps . 405
7.8  Loops . 415

7.8.1  while . . 415
7.8.2  repeat...until . 417
7.8.3  forever/endfor . . 418
7.8.4  for . 419
7.8.5  break and continue . 420
7.8.6  ARM Looping Instructions . 425
7.8.7  Register Usage and Loops . 426

7.9  Loop Performance Improvements . . 428
7.9.1  Moving the Termination Condition to the End of a Loop 428
7.9.2  Executing the Loop Backward . 430
7.9.3  Eliminating Loop-Invariant Calculations . 431
7.9.4  Unraveling Loops . 432
7.9.5  Using Induction Variables . 433

7.10  Moving On . 434
7.11  For More Information . 435

PART III: ADVANCED ASSEMBLY LANGUAGE	 439

8
ADVANCED ARITHMETIC	 441
8.1  Extended-Precision Operations . 441

8.1.1  Addition . 442
8.1.2  Subtraction . 445
8.1.3  Comparisons . 446
8.1.4  Multiplication . 450

Contents in Detail xvii

8.1.5  Division . 457
8.1.6  Negation . 465
8.1.7  AND . 465
8.1.8  OR . 466
8.1.9  XOR . 466
8.1.10  NOT . 467
8.1.11  Shift Operations . 467

8.2  Operating on Different-Size Operands . 472
8.3  Moving On . 475
8.4  For More Information . 475

9
NUMERIC CONVERSION	 477
9.1  Converting Numeric Strings to Values . 478

9.1.1  Numeric Values to Hexadecimal Strings . . 478
9.1.2  Extended-Precision Hexadecimal Values to Strings 494
9.1.3  Unsigned Decimal Values to Strings . . 495
9.1.4  Signed Integer Values to Strings . 509
9.1.5  Extended-Precision Unsigned Integers to Strings 510
9.1.6  Formatted Conversions . 517

9.2  Converting Floating-Point Values to Strings . 529
9.2.1  Floating-Point Exponent to String of Decimal Digits 530
9.2.2  Floating-Point Mantissa to String of Digits . 530
9.2.3  Strings in Decimal and Exponential Format 531
9.2.4  Double-Precision Values to Strings . 531

9.3  String-to-Numeric Conversions . 566
9.3.1  Decimal Strings to Integers . 566
9.3.2  Hexadecimal Strings to Numeric Form . . 578
9.3.3  String to Floating-Point . 588

9.4  Other Numeric Conversions . 602
9.5  Moving On . 602
9.6  For More Information . 603

10
TABLE LOOKUPS	 605
10.1  Using Tables in Assembly Language . 605

10.1.1  Function Computation via Table Lookup . 606
10.1.2  Function Domains and Ranges . 611
10.1.3  Domain Conditioning . 614
10.1.4  Table Generation . 615

10.2  Table-Lookup Performance . 617
10.3  Moving On . 618
10.4  For More Information . 618

11
NEON AND SIMD PROGRAMMING	 621
11.1  The History of SIMD Instruction Extensions . 622
11.2  Vector Registers . 623
11.3  Vector Data Movement Instructions . 625

11.3.1  Data Movement Between Registers . 625
11.3.2  Vector Load Immediate Instructions . 628

xviii Contents in Detail

11.3.3  Register or Lane Value Duplication . 631
11.3.4  Vector Load and Store . 632
11.3.5  Interleaved Load and Store . 632
11.3.6  Register Interleaving and Deinterleaving . 639
11.3.7  Table Lookups with tbl and tbx . 644
11.3.8  Endian Swaps with rev16, rev32, and rev64 646

11.4  Vertical and Horizontal Operations . 646
11.5  SIMD Logical Operations . 647
11.6  SIMD Shift Operations . . 649

11.6.1  Shift-Left Instruction . 649
11.6.2  Saturating Shift Left . 650
11.6.3  Shift-Left Long . 651
11.6.4  Shift and Insert . 652
11.6.5  Signed and Unsigned Shift Right . . 653
11.6.6  Accumulating Shift Right . 654
11.6.7  Narrowing Shift Right . 655
11.6.8  Saturating Shift Right with Narrowing . 655
11.6.9  Shift by a Variable Number of Bits . 657

11.7  SIMD Arithmetic Operations . . 659
11.7.1  SIMD Addition . 659
11.7.2  Subtraction . 668
11.7.3  Absolute Difference . 669
11.7.4  Vector Multiplication . 671
11.7.5  Vector Division . 679
11.7.6  Sign Operations . 680
11.7.7  Minimum and Maximum . 681

11.8  Floating-Point and Integer Conversions . 683
11.8.1  Floating-Point to Integer . 683
11.8.2  Integer to Floating-Point . 684
11.8.3  Conversion Between Floating-Point Formats 685
11.8.4  Floating-Point Values Rounded to the Nearest Integral 686

11.9  Vector Square-Root Instructions . 686
11.10  Vector Comparisons . 687

11.10.1  Vector Integer Comparisons . 688
11.10.2  Vector Floating-Point Comparisons . 689
11.10.3  Vector Bit Test Instructions . . 691
11.10.4  Vector Comparison Results . 691

11.11  A Sorting Example Using SIMD Code . 694
11.12  A Numeric-to-Hex-String Example Using SIMD Code 698
11.13  Use of SIMD Instructions in Real Programs . 699
11.14  Moving On . 700
11.15  For More Information . 700

12
BIT MANIPULATION	 703
12.1  What Is Bit Data, Anyway? . 703
12.2  Instructions That Manipulate Bits . 704

12.2.1  Isolating, Clearing, and Testing Bits . . 705
12.2.2  Setting and Inserting Bits . 706
12.2.3  Clearing Bits . 708
12.2.4  Inverting Bits . 709

Contents in Detail xix

12.2.5  Shift and Rotate . 709
12.2.6  Conditional Instructions . 711
12.2.7  Counting Bits . 711
12.2.8  Bit Reversal . 712
12.2.9  Bit Insertion and Selection . 713
12.2.10  Bit Extraction with ubfx . 713
12.2.11  Bit Movement with ubfiz . 714
12.2.12  Bit Movement with ubfm . 714
12.2.13  Bit Extraction with extr . 715
12.2.14  Bit Testing with tbz and tbnz . . 715

12.3  Flag Modification by Arithmetic and Logical Instructions 715
12.3.1  The Zero Flag . . 716
12.3.2  The Negative Flag . 718
12.3.3  The Carry and Overflow Flags . 719

12.4  Packing and Unpacking Bit Strings . 719
12.4.1  Inserting One Bit String into Another . 719
12.4.2  Extracting a Bit String . 726
12.4.3  Clearing a Bit Field . 727
12.4.4  Using bfm . 728

12.5  Common Bit Operations . 728
12.5.1  Coalescing Bit Sets and Distributing Bit Strings 729
12.5.2  Creating Packed Arrays of Bit Strings . 731
12.5.3  Searching for Bits . 734
12.5.4  Merging Bit Strings . 735
12.5.5  Scattering Bits from a Bit String . . 735
12.5.6  Searching for a Bit Pattern . 736

12.6  Moving On . 738
12.7  For More Information . 739

13
MACROS AND THE GAS COMPILE-TIME LANGUAGE	 741
13.1  The Gas Compile-Time Language Interpreter . . 742
13.2  The C/C++ Preprocessor . 742

13.2.1  The #warning and #error Directives . 743
13.2.2  Compile-Time Constant Definition with CPP 744
13.2.3  CPP Compile-Time Expressions . 745
13.2.4  Conditional Assembly . 746
13.2.5  CPP Macros . 749

13.3  Components of the Gas CTL . 760
13.3.1  Errors and Warnings During Assembly . 760
13.3.2  Conditional Assembly . 760
13.3.3  Compile-Time Loops . 763
13.3.4  Gas Macros . 765

13.4  The aoaa​.inc Header File . 771
13.5  Generating Macros by Another Macro . 787
13.6  Choosing Between Gas Macros and CPP Macros . 790
13.7  Moving On . 792
13.8  For More Information . 792

xx Contents in Detail

14
STRING OPERATIONS	 795
14.1  Zero-Terminated Strings and Functions . 796
14.2  A String Format for Assembly Language Programmers 801

14.2.1  Dynamic String Allocation . 803
14.2.2  String Copy Function . 818
14.2.3  String Comparison Function . 824
14.2.4  Substring Function . . 836
14.2.5  More String Functions . 845

14.3  The Unicode Character Set . 845
14.3.1  Unicode History . 846
14.3.2  Code Points and Code Planes . 847
14.3.3  Surrogate Code Points . . 847
14.3.4  Glyphs, Characters, and Grapheme Clusters 848
14.3.5  Normal Forms and Canonical Equivalence 849
14.3.6  Encodings . 850
14.3.7  Combining Characters . 852

14.4  Unicode in Assembly Language . 853
14.4.1  Writing Console Applications with UTF-8 Characters 853
14.4.2  Using Unicode String Functions . . 857

14.5  Moving On . 858
14.6  For More Information . 859

15
MANAGING COMPLEX PROJECTS	 861
15.1  The .include Directive . 862
15.2  Ignoring Duplicate Include Operations . . 863
15.3  Assembly Units and External Directives . 864
15.4  Creating a String Library with Separate Compilation 866
15.5  Introducing Makefiles . 875

15.5.1  Basic Makefile Syntax . 876
15.5.2  Make Clean and Touch . 882

15.6  Generating Library Files with the Archiver Program . . 883
15.7  Managing the Impact of Object Files on Program Size 886
15.8  Moving On . 886
15.9  For More Information . 887

16
STAND-ALONE ASSEMBLY LANGUAGE PROGRAMS	 889
16.1  Portability Issues with System Calls . 890
16.2  Stand-Alone Code and System Calls . 891
16.3  The svc Interface and OS Portability . 894

16.3.1  Call Numbers . . 895
16.3.2  API Parameters . 897
16.3.3  API Error Handling . 898

16.4  A Stand-Alone “Hello, World!” Program . 899
16.5  A Sample File I/O Program . 901

16.5.1  volatiles.S Functions . 905
16.5.2  files.S File I/O Functions . 907

Contents in Detail xxi

16.5.3  stdio.S Functions . 915
16.5.4  File I/O Demo Application . . 922

16.6  Calling System Library Functions Under macOS . 926
16.7  Creating Assembly Applications Without GCC . 928
16.8  For More Information . 930

PART IV: REFERENCE MATERIALS	 931

A
THE ASCII CHARACTER SET	 933

B
GLOSSARY	 939

C
INSTALLING AND USING GAS	 945
C.1  macOS . 946
C.2  Linux . 946

D
THE BASH SHELL INTERPRETER	 949
D.1  Running Bash . 950
D.2  Command Lines . 950

D.2.1  Command Line Arguments . 951
D.2.2  Redirection and Piping Arguments . 952

D.3  Directories, Pathnames, and Filenames . 953
D.4  Built-in and External Bash Commands . 954
D.5  Basic Unix Commands . 955

D.5.1  man . 955
D.5.2  cd or chdir . . 955
D.5.3  pwd . 955
D.5.4  ls . 956
D.5.5  file . 956
D.5.6  cat, less, more, and tail . 956
D.5.7  mv . 957
D.5.8  cp . . 958
D.5.9  rm . 958
D.5.10  mkdir . 959
D.5.11  date . 959
D.5.12  echo . 959
D.5.13  chmod . . 959

D.6  Shell Scripts . 960
D.6.1  Defining Shell Script Variables and Values . 961
D.6.2  Defining Special Shell Variables . 963
D.6.3  Writing Your Own Shell Scripts . 963

D.7  The build Script . 964
D.8  For More Information . 968

xxii Contents in Detail

E
USEFUL C LANGUAGE FUNCTIONS	 971
E.1  String Functions . 972
E.2  Other C Stdlib and Unix Functions . 975

F
ANSWERS TO QUESTIONS	 977

INDEX	 999

A C K N O W L E D G M E N T S

The Art of ARM Assembly has quite a bit of history behind it. This book,
while a separate project from the original Art of Assembly Language and
The Art of 64-Bit Assembly, does take some material from those earlier books.
Therefore, I should begin my list of acknowledgments by mentioning the
people I thanked in the first and second editions of The Art of Assembly
Language: Bill Pollock, Alison Peterson, Ansel Staton, Riley Hoffman,
Megan Dunchak, Linda Recktenwald, Susan Glinert Stevens, Nancy Bell,
and Nathan Baker.

And in The Art of 64-Bit Assembly: Bill Pollock, Barbara Yien, Katrina
Taylor, Miles Bond, Athabasca Witschi, Nathan Heidelberger, Natalie
Gleason, Morgan Vega Gomez, Sharon Wilkey, Sadie Barry, and Jeff Lytle.

Finally, here are the people who have greatly contributed to The Art of
ARM Assembly: Bill Pollock, Jill Franklin, Abigail Schott-Rosenfield, Sabrina
Plomitallo-González, Sydney Cromwell, Sharon Wilkey, and Scout Festa.

Special thanks go to Tony Tribelli, this book’s technical reviewer, who
went above and beyond in tracking down issues with the book.

Welcome to The Art of ARM Assembly. This
book will teach you how to program 64-bit

ARM CPUs, such as those found in modern
Apple macOS machines, ARM-based Linux sys-

tems (including the Raspberry Pi with a 64-bit version
of Raspberry Pi OS, previously known as Raspbian,
which I’ll just call Pi OS), and even mobile devices
such as iPhones, iPads, and some Android devices.
With the arrival of the ARM-based Apple macOS
systems, the need to learn and understand 64-bit ARM
assembly language increased dramatically, leading me
to write this book. However, I’ve made the source code
and other information in this book as portable as pos-
sible so that it applies to all 64-bit ARM machines.

I N T R O D U C T I O N

xxvi Introduction

This book is a sister volume to The Art of 64-Bit Assembly, which was,
itself, a rewrite of The Art of Assembly Language Programming (AoA). AoA
was a project I began way back in 1989 as a tool for teaching 80x86 (x86)
assembly-language programming to students at California State Polytechnic
University, Pomona, and the University of California, Riverside. For over
25 years, AoA served as a guide for learning x86 assembly language pro-
gramming. During that time, other processors came and went, but x86
remained king of the hill in personal computers and high-end workstations,
and x86 assembly language remained the de facto assembly language to
learn. However, ARM-based PCs became mainstream with the introduction
of the Apple M1-based systems (and later Apple machines), so the need to
learn ARM assembly language programming is increasing.

This book was written using The Art of 64-Bit Assembly as a model for
the material to cover. Anyone who has read my earlier books will find
this book to be very familiar at a high level. Of course, the ARM instruc-
tions and assemblers—either the GNU assembler (Gas) or Apple’s Clang
assembler (largely compatible with Gas)—are quite different from the x86
instructions and the Microsoft Macro Assembler (MASM). The low-level
presentation and programming techniques are therefore also somewhat
different.

	 0.1	 A Brief History of the ARM CPU
The ARM CPU has a long and storied history. It was first developed by
Acorn Computers Ltd. in late 1983 as a replacement for the venerable 8-bit
6502 CPU used in its BBC Micro system. ARM originally stood for Acorn
RISC Machine, though this was later changed to Advanced RISC Machine
(RISC stands for reduced instruction set computer). That original design was
largely a mind meld between the design described in the early University of
California, Berkeley, RISC design and the 6502 CPU. For this reason, many
would argue that the ARM initially wasn’t a pure RISC design. We might
think of the ARM as the spiritual successor to the 6502, inheriting many of
the 6502’s features.

In many respects, the ARM CPU is modeled on the 6502 CPU’s notion
of a reduced instruction set computer. In the original RISC design, each
instruction was designed to do as little work as possible so it would require
less hardware support and could run faster. Pure RISC architectures, for
example, generally don’t use condition code bits (as setting condition codes
after the execution of an instruction would require the CPU do extra work),
and use fixed-size machine instruction encodings (typically 32 bits). The
6502, on the other hand, attempted to reduce the total number of machine
instructions as much as possible.

Additionally, the original ARM supported both 16-bit and 32-bit
instruction encodings. While pure RISC CPUs try to maximize the num-
ber of general-purpose registers (generally 32), the original ARM design
supported only 16. Furthermore, the ARM used one of the general-
purpose registers as the program counter, which allows for all kinds of

Introduction xxvii

programming tricks but creates problems for pure RISC designs (such as
handling exceptions). Finally, the ARM partially supported a hardware
stack, something you don’t see on pure RISC machines. Nevertheless, “pure”
or not, the ARM design outlasted all the other RISC CPUs of that era.

Over the years, the ARM CPU variants have largely been used in mobile
and embedded applications, with the vast majority of ARM CPUs wind-
ing up in mobile phones and tablets. However, one notable use is in the
Raspberry Pi computer system (with over 61 million units sold as of this
writing). In addition to the Pi, millions of ARM-based Arduino-compatible
and other single-board computers (such as the Teensy series) have been
sold. At the time of writing, the Raspberry Pi Foundation released the
Raspberry Pi Pico, an ARM-based microcontroller board for $4 (US), sell-
ing more than 4 million of these devices by January 2024.

	 0.2	 Why Learn ARM Assembly?
RISC CPUs were designed to be programmed using high-level languages
(especially C/C++). Very few programs of note have been written in RISC
assembly language (though the original ARM Basic is a good counter
example). The main reason assembly language is taught in colleges and uni-
versities is to teach machine organization (an introduction to the machine’s
architecture). In addition, some applications (or, at the very least, portions
of some applications) can benefit from an assembly language implementa-
tion. Speed and space are the two main reasons for using assembly lan-
guage, though it is also true that certain algorithms are more easily written
in assembly language (particularly bit-handling operations).

Finally, learning assembly language can help you write much better
high-level language code. After all, a compiler for a language like C/C++
translates that high-level source code into assembly language. Understanding
the underlying machine language will help you write better high-level lan-
guage (HLL) code because you can avoid inefficient HLL constructs. This
understanding can also be helpful when debugging or optimizing HLL code.
Sometimes you must look at the code that the compiler generated to under-
stand a bug or inefficiency.

So why a book on ARM assembly language in particular? Until the
Apple Silicon M1 CPU came along, the only common personal computer
using an ARM CPU was the Raspberry Pi. While the Pi was popular, it
generally wasn’t being used in schools to teach machine organization and
assembly language programming. A few hobbyists were probably interested
in picking up ARM assembly language on their own, but most Pi program-
mers were using Scratch or Python, with the hard-core types program-
ming in C/C++. While mobile devices such as iPhones, iPads, and Android
phones and tablets are also popular, developers rarely consider switching
from Objective-C, Swift, or Java into assembly language for applications on
those devices.

However, once Apple released M1-based Mac minis, MacBooks, and
iMacs, the situation changed. Interest in low-level programming on ARMs

xxviii Introduction

spiked, because now ARM assembly could be taught in colleges and uni-
versities on “normal” machines. Apple has sold more A-series (iPad and
iPhone) and M-series (iPad and Mac) systems than Raspberry Pi since they
were introduced. It is conceivable that Apple will have sold around a bil-
lion ARM-based personal computers and mobile devices by the time you’re
reading this.

Given these developments, a lot more people are going to be interested
in assembly language programming on ARM CPUs. If you want to be able
to write high-performance, efficient, and small code on this new crop of
devices, learning ARM assembly language is the place to start.

	 0.3	 Why Learn 64-Bit ARM?
Although the original ARM was a 32-bit CPU, Arm Holdings—the outfit
that licenses the ARM design—introduced a 64-bit version in 2011. Apple
introduced its 32-bit iPhone 5 a few years after that. Since then, most
mobile and personal computer devices (including the Raspberry Pi 3, 4,
and 400) have used 64-bit CPUs, while embedded devices have largely stuck
with the 32-bit CPU variants. Code written for 32-bit CPUs is generally more
memory efficient than that for 64-bit CPUs; unless an application requires
more than 4GB, using a 32-bit instruction set is usually better.

Nevertheless, for high-performance computing, 64 bits is definitely
the future. Why is this the case? Can’t 64-bit ARM CPUs run the older
32-bit code? The answer is a qualified yes. For example, the Raspberry Pi
provides a 32-bit OS that runs only 32-bit code, even when running on a
64-bit CPU such as on the Pi 3, 4, or 400. However, the 64-bit ARM CPUs
(ARMv8 or AARCH64, informally abbreviated to ARM64) operate in one
of two modes: 32-bit or 64-bit. When in 32-bit mode, they execute the 32-bit
instruction set; when in 64-bit mode, they execute the 64-bit instruction
set. Though these instruction sets have some similarities, they are not the
same. Thus, when operating in one of these modes, you cannot execute the
instructions from the other mode.

Given the incompatibility of the two instruction sets, this book focuses
on 64-bit ARM assembly language. Since you can’t program the Apple M1
(and later) in 32-bit ARM assembly language, teaching 32-bit alone would
be a nonstarter. Why not teach both? While knowing 32-bit assembly lan-
guage would help readers who want to write code for the 32-bit Pi OS and
other embedded single-board microcontrollers, this book aims to teach
fundamentals. Teaching two different instruction sets complicates the edu-
cational experience; better to do one thing well (64-bit assembly) rather
than two things poorly. Teaching both 32-bit and 64-bit assembly is almost
like trying to teach x86-64 and ARM in the same book; it’s just too much
to take in all at once. Moreover, the 32-bit operating modes will likely fade
away entirely over time. As I write this, ARM has already introduced a vari-
ant that supports only 64-bit code; I expect all future desktop-class proces-
sors will head in this direction.

Introduction xxix

N O T E 	 Although concentrating on 64-bit ARM assembly language for desktop-class and
mobile machines (such as iPhones) makes sense, some will want to learn 32-bit ARM
assembly language to work with embedded devices. Arduino-based single-board com-
puters (SBCs), Raspberry Pi Pico SBCs, and many other classes of ARM-based embed-
ded systems use 32-bit ARM variants. Furthermore, if you’re operating a Raspberry
Pi using a 32-bit version of Pi OS, you’ll need to use 32-bit ARM assembly language.
For that reason, The Art of ARM Assembly, Volume 2, will cover 32-bit ARM
assembly language on those systems.

	 0.4	 Expectations and Prerequisites
This book assumes that you are already comfortable programming in an
HLL such as C/C++ (preferred), Python, Swift, Java, Pascal, Ruby, BASIC,
or another object-oriented or imperative (procedural) programming lan-
guage. Although many programmers have successfully learned assembly
language as their very first programming language, I recommend that you
learn to program first, then learn assembly language programming. This
book makes use of several HLL examples (typically in C/C++ or Pascal).
The examples are generally simple, so you should be able to understand
them if you know a different HLL.

This book also assumes you’re comfortable with the edit/compile/test/
debug cycle during program development. You should be familiar with
source code editors and using standard software development tools, as I
won’t explain how to edit source files.

A wide variety of 64-bit ARM systems are out there, and I aimed to
make this book applicable to as many of them as possible. To that end,
every example program in this book has been tested on each of the follow-
ing systems:

•	 Apple M1-based Mac systems such as the Mac mini M1 and Mac mini
M2. The book’s example code was tested on the mini M1 but should
work on any of the ARM-based MacBooks or iMacs, as well as future
Mx systems.

•	 Raspberry Pi 3, 4, 400, and 5 systems (and future 64-bit-capable Pi
systems) running the 64-bit version of Pi OS.

•	 PINE64 system including the Pinebook, Pinebook Pro, and
ROCKPro 64.

•	 Almost any 64-bit ARM-based Linux system.

•	 NVIDIA Jetson Nano systems.

In theory, it should be possible to apply the information in this book
to ARM-based Windows machines (such as the Surface Laptop Copilot+).
Unfortunately, Microsoft’s software development tools, particularly its
assembler, are based on the original ARM assembly syntax defined by Arm
(the company), not Gas. While Microsoft’s armasm64 is a better tool in many
respects (as it uses standard ARM assembly language syntax), everyone
else uses Gas syntax. The machine instructions are more or less the same

xxx Introduction

between the two sets of assemblers, but the other statements (known as
assembler directives or pseudo-opcodes) are completely different. Therefore,
example programs written in Gas will not assemble under armasm64, and
vice versa. Since trying to present both syntax forms in example programs
would be just as confusing as trying to teach 32- and 64-bit programming
simultaneously, I stick to Gas syntax in my examples.

	 0.5	 Source Code
This book contains considerable ARM assembly language (and some
C/C++) source code that typically comes in one of three forms: code snip-
pets, single assembly language procedures or functions (modules), or full-
blown programs.

Code snippets are fragments of a program; they are not stand-alone, and
you cannot compile them by using an ARM assembler (or a C++ compiler,
in the case of C/C++ source code). They exist to make a point or provide
a small example of a particular programming technique. Here is a typical
example:

 .data
i64 .quad 0
 .
 .
 .
 ldr x1, i64

The vertical ellipses denote arbitrary code that could appear in their
place.

Modules are small blocks of code that can be compiled but won’t run on
their own. Modules typically contain a function that will be called by another
program. Here is a typical example:

someFunc:
 add x0, x1, x2
 sub x0, x0, x3
 ret

Full-blown programs are called listings in this book, and I refer to them
by listing number or filename. A typical filename usually takes the form
ListingC-N.S, where C is the chapter number and N is a listing number
within that chapter. For example, the following Listing1-1.S is the first listing
that appears in Chapter 1:

// Listing1-1.S
//
// Comments consist of all text from a //
// sequence to the end of the line.
// The .text directive tells MASM that the
// statements following this directive go in

Introduction xxxi

// the section of memory reserved for machine
// instructions (code).

 .text

// Here is the main function.
// (This example assumes that the
// assembly language program is a
// stand-alone program with its own
// main function.)
//
// Under macOS, the main program
// must have the name _main
// beginning with an underscore.
// Linux systems generally don't
// require the underscore.
//
// The .global _main statement
// makes the _main procedure's name
// visible outside this source file
// (needed by the linker to produce
// an executable).

 .global _main

// The .align 2 statement tells the
// assembler to align the following code
// on a 4-byte boundary (required by the
// ARM CPU). The 2 operand specifies
// 2 raised to this power (2), which
// is 4.

 .align 2

// Here's the actual main program. It
// consists of a single ret (return)
// instruction that simply returns
// control to the operating system.

_main:
 ret

Although most listings take the form ListingC-N.S, some (especially
those from external sources) simply consist of a descriptive filename, such
as the aoaa​.inc header file used by most of the sample programs in this book.

All listings are available in electronic form at https://artofarm​.randallhyde​
.com, either individually or as a ZIP file containing all the listings found
in this book. That page also contains support information for this book,
including errata and PowerPoint slides for instructors.

Most of the programs in this book run from a command line. These
examples typically use the bash shell interpreter. Therefore, every build
command and sample output will typically have the text prefix $ or % before
any command you would type from the keyboard on the command line.

https://artofarm.randallhyde.com
https://artofarm.randallhyde.com

xxxii Introduction

Under macOS, the default shell (command line) program is zsh. It prints a
percent sign (%) rather than $ as the prompt character. If you are completely
unfamiliar with the Linux or macOS command line, please see Appendix D
for a quick introduction to the command line interpreter.

Unless otherwise noted, all source code appearing in this book is cov-
ered under the Creative Commons 4.0 license. You may freely use that code
in your own projects as per the Creative Commons license. See https://creative​
commons​.org​/licenses​/by​/4​.0​/ for more details.

	 0.6	 Typography and Pedantry
Computer books have a habit of abusing the English language. This book
is no exception. Whenever source code snippets appear in the middle of an
English sentence, a conflict often arises between the grammar rules of the
programming language and English. This section describes my choices for
differentiating syntactical rules in English versus programming languages,
in addition to a few other conventions.

First, this book uses a monospaced font to denote any text that appears
as part of a program source file. This includes variable and procedure func-
tions, program output, and user input to a program. Therefore, when you
see something like get, you know that the book is describing an identifier in
a program, not commanding you to get something.

A few logic operations have names that also have common English
meanings: AND, OR, and NOT. When using these terms as logic functions,
this book uses all caps to help differentiate otherwise-confusing English
statements. When using these terms as English, this book uses the standard
typeset font. The fourth logic operator, exclusive or (XOR), doesn’t nor-
mally appear in English statements, but this book still capitalizes it.

In general, I always try to define any acronym or abbreviation the first
time I use it. If I haven’t used the term in a while, I will often redefine it on
that usage. The glossary in Appendix B also includes most of the acronyms
appearing in this book.

	 0.7	 Organization
This book is organized into 4 parts comprising 16 chapters and 6 appendixes.

Part I, Machine Organization, covers data types and machine architec-
ture for the ARM processor:

Chapter 1: Hello, World of Assembly Language ​  ​Teaches you a small
handful of instructions so you can experiment with the software devel-
opment tools and write simple little programs.

Chapter 2: Data Representation and Operations ​  ​Discusses the inter-
nal representation of simple data types such as integers, characters,
and Boolean values. It also discusses the various arithmetic and logical
operations possible on these data types. This chapter also introduces
some basic ARM assembly language operand formats.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Introduction xxxiii

Chapter 3: Memory Access and Organization ​  ​Discusses how the ARM
organizes main memory. It explains the layout of memory and how
to declare and access memory variables. It also introduces the ARM’s
methods for accessing memory and the stack (a place to store tempo-
rary values).

Chapter 4: Constants, Variables, and Data Types ​  ​Describes how to
declare named constants in assembly language, how to declare and
use pointers, and the use of composite data structures such as strings,
arrays, structs (records), and unions.

Part II, Basic Assembly Language, provides the basic tools and instruc-
tions you need to write assembly language programs.

Chapter 5: Procedures ​  ​Covers the instructions and syntax you need
to write your own assembly language functions (procedures). This
chapter describes how to pass arguments (parameters) to functions and
return function results. It also describes how to declare (and use) local
or automatic variables that you allocate on the stack.

Chapter 6: Arithmetic ​  ​Explains the basic integer arithmetic and logi-
cal operations in ARM assembly language. It also describes how to con-
vert arithmetic expressions from an HLL into ARM assembly language.
Finally, this chapter covers floating-point arithmetic using the hardware-
based floating-point instructions.

Chapter 7: Low-Level Control Structures ​  ​Describes how to imple-
ment HLL-like control structures such as if, elseif, else, while, do...
while (repeat...until), for, and switch in ARM assembly language. This
chapter also touches on optimizing loops and other code in assem-
bly language.

Part III, Advanced Assembly Language, covers more advanced assembly
language operations.

Chapter 8: Advanced Arithmetic ​  ​Explores extended-precision arithme-
tic, mixed-mode arithmetic, and other advanced arithmetic operations.

Chapter 9: Numeric Conversion ​  ​Provides a very useful set of library
functions you can use to convert numeric values to string format and
convert string values to numeric format.

Chapter 10: Table Lookups ​  ​Describes how to use memory-based
lookup tables (arrays) to accelerate certain computations.

Chapter 11: Neon and SIMD Programming ​  Discusses the ARM
Advanced SIMD instruction set that allows you to speed up certain
applications by operating on multiple pieces of data at once.

Chapter 12: Bit Manipulation ​  ​Describes various operations and func-
tions that allow you to manipulate data at the bit level in ARM assem-
bly language.

Chapter 13: Macros and the Gas Compile-Time Language ​  ​Covers the
Gas macro facilities. Macros are powerful constructs enabling you to

xxxiv Introduction

design your own assembly language statements that expand to a large
number of individual ARM assembly language instructions.

Chapter 14: String Operations ​  ​Explains the use and creation of vari-
ous character string library functions in ARM assembly language.

Chapter 15: Managing Complex Projects ​  ​Describes how to create
libraries of assembly language code, and build those libraries by using
makefiles (along with a discussion of the make language).

Chapter 16: Stand-Alone Assembly Language Programs ​  ​Shows how
to write assembly language applications that don’t use the C/C++ stan-
dard library for I/O and other operations. This chapter includes system
call examples for both Linux (Pi OS) and macOS.

Part IV, Reference Materials, provides reference information, includ-
ing a table listing the full ASCII character set, a glossary, instructions for
installing and using Gas on your system, an introduction to the bash shell
interpreter, useful C/C++ functions you can call from your assembly lan-
guage programs, and answers to the questions at the end of each chapter.

PART I
M A C H I N E O R G A N I Z A T I O N

This “quick-start” chapter gets you writ-
ing basic assembly language programs as

rapidly as possible, giving you the skills you
need to learn new assembly language features

in the following chapters. You’ll learn the foundations
of 64-bit ARM architecture and the basic syntax of
the GNU assembler (Gas) program, a compiler for
assembly language.

You’ll also learn to set aside memory for variables, control the CPU by
using machine instructions, and link a Gas program with C/C++ code so
that you can call routines in the C standard library (C stdlib). Gas running
under Linux and macOS is by far the most common assembler for writing
real-world ARM assembly language programs. Vendors (especially Apple)
have produced variants of Gas with slightly different syntax; for instance,
under macOS, Gas is known as the Clang or Mach-O assembler. To make the
source code in this book portable between macOS and Linux, this chapter

1
H E L L O , W O R L D O F

A S S E M B LY L A N G U A G E

4 Chapter 1

also introduces a header file, aoaa​.inc, that eliminates the differences
between Gas and the Clang assembler.

	 1.1	 What You’ll Need
To learn assembly language programming with Gas, you’ll need a version of
the assembler for your platform, plus a text editor for creating and modify-
ing Gas source files, a linker, various library files, and a C++ compiler. You’ll
learn to set up the Gas assembler and text editor in this section, and the
other tools later in this chapter.

1.1.1  Setting Up Gas
The GNU Compiler Collection (GCC) emits Gas source code as its out-
put (which Gas then converts to object code). Therefore, if you have the
compiler suite running on your system, you also have Gas. Apple macOS
uses a compiler based on the LLVM compiler suite rather than GCC, so
if you have a macOS, you’ll need to install its Xcode integrated develop-
ment environment (IDE) to gain access to the assembler (see Appendix C).
Otherwise, if you don’t have the GCC compiler, install it with the instruc-
tions in your operating system (OS) documentation.

N O T E 	 The GNU assembler and the Clang assembler’s executable name is actually as (assem-
bler). The examples in this book rarely invoke the assembler directly, so you won’t use
the as program often. Therefore, this book refers to the assembler by using the name
Gas rather than as (or Clang assembler).

1.1.2  Setting Up a Text Editor
To write ARM assembly language programs, you will need some sort of pro-
grammer’s text editor to create assembly language source files. The choice
of editor is dictated by personal tastes and editor availability for your OS or
development suite.

The standard suffix for assembly language source files is .s, since GCC
emits this suffix when it converts a C/C++ file into assembly language dur-
ing compilation. For handwritten assembly language source files, the .S
suffix is a better choice, since it tells the assembler to route the source file
through the C preprocessor (CPP) before assembly. Since this allows the
use of CPP macros (#define statements), conditional compilation, and other
facilities, all example files in this book use .S.

GCC always produces assembly language output files, which are then
processed by Gas. GCC automatically invokes the assembler and then
deletes the assembly source file after the assembly is complete.

1.1.3  Understanding C/C++ Examples
Today’s software engineers drop into assembly language only when their
C/C++, C#, Java, Swift, or Python code is running too slowly and they need

Hello, World of Assembly Language 5

to improve the performance of certain modules or functions. The examples
in this book use C/C++ because you’ll typically interface assembly language
with C/C++ or other high-level language (HLL) code in the real world.

The C/C++ standard library is another good reason to use this language.
To make the C stdlib immediately accessible to Gas programs, I present
examples with a short C++ main function that calls a single external function
written in assembly language using Gas. Compiling the C++ main program
along with the Gas source file produces a single executable file that you can
run and test.

This book spoon-feeds you the C++ you’ll need to run the example
HLL programs, so you’ll be able to follow even if you’re not fluent in the
language. However, you’ll have an easier time if you have a little prior
familiarity with C/C++. At minimum, this book assumes that you have
some experience in a language such as Pascal (or Delphi), Java, Swift,
Rust, BASIC, Python, or any other imperative or object-oriented program-
ming language.

	 1.2	 The Anatomy of an Assembly Language Program
A typical (stand-alone) Gas program takes the form shown in Listing 1-1.

// Listing1-1.S
//
// Comments consist of all text from a //
// sequence to the end of the line.
// The .text directive tells Gas that the
// statements following this directive go in the
// section of memory reserved for machine
// instructions (code).

 1 .text

// Here is the main function. (This example assumes
// that the assembly language program is a
// stand-alone program with its own main function.)
//
// Under macOS, the main program must have the name
// _main beginning with an underscore. Linux
// systems generally don't require the underscore.
//
// The .global _main statement makes the _main
// procedure's name visible outside this source file
// (needed by the linker to produce an executable).

 .global _main, main

// The .align 2 statement tells the assembler to
// align the following code on a 4-byte boundary
// (required by the ARM CPU). The 2 operand
// specifies 2 raised to this power (2), which is 4.

6 Chapter 1

 2 .align 2

// Here's the actual main program. It consists of a
// single ret (return) instruction that simply
// returns control to the operating system.

_main:
main:
 ret

Assembly language programs are broken into sections. Some sections
contain data, some contain constants, some contain machine instruction
(executable statements), and so on. Listing 1-1 contains a single code sec-
tion, called text in macOS and Linux. The .text statement 1 tells the assem-
bler that the following statements are associated with the code section.

In assembly language source files, symbols are usually local or private
to a source file. When creating an executable source file, you must pass one
or more symbols to the system linker—at least the name of the main pro-
gram. You can accomplish this by using the .global statement, specifying
the global name as an operand: _main in the macOS case, main in the Linux
case. Leaving out this statement gives you an error when you try to compile
the source file.

The ARM instruction set requires all machine instructions to begin on
a 32-bit (4-byte) boundary in memory. Therefore, before the first machine
instruction in a .text section, tell the assembler to align the addresses on
a 4-byte boundary. The .align statement 2 raises 2 to the power specified
by its operand and aligns the next instruction on that boundary. Since 22 is
equal to 4, this statement aligns the next instruction on a 4-byte boundary.

A procedure, or function, in ARM assembly simply consists of the
name of that function (_main or main in this case) followed by a colon. The
machine instructions follow. The main program in this example consists
of a single machine instruction: ret (return). This instruction immediately
returns control to whatever called the main program—that is, the OS.

Identifiers in Gas are similar to identifiers in most HLLs. Gas identifiers
may begin with a dollar sign ($), an underscore (_), or an alphabetic char-
acter and may be followed by zero or more alphanumeric, dollar sign, or
underscore characters. Symbols are case sensitive.

L INU X V S. M ACOS: GLOBA L N A MES

The C/C++ compiler treats global (extern) names differently in macOS and
Linux programs. The Clang compiler (macOS) automatically prepends an under-
score character (_) to the beginning of each external/global symbol, as in _main
in Listing 1-1; the GCC compiler does not.

Hello, World of Assembly Language 7

I’ve written the source code appearing in this book to make it easy to port
between the two OSes, by using equates for all the global symbols so that they
have to be changed in only one spot. We’ll discuss using equates to resolve
external symbols in section 4.1, “Gas Constant Declarations,” on page 170;
also see section 1.12, “For More Information,” on page 43 for details specific to
macOS and Linux assembly language programming.

While the program in Listing 1-1 doesn’t really do anything, you can use
it to learn how to use the assembler, linker, and other tools necessary for
writing ARM assembly language programs, as we’ll do in the next section.

	 1.3	 Running Your First Assembly Language Program
Once you have an assembly source file, you can compile and run that pro-
gram. In theory, you could run the assembler (as) and then the linker (ld,
supplying appropriate library files needed by the OS). Here’s how that would
look for macOS (where the $ appearing at the beginning of each line is the
OS’s shell prompt):

$ as -arch arm64 Listing1-1.S -o Listing1-1.o
$ ld -o Listing1-1 Listing1-1.o -lSystem \
 -syslibroot `xcrun -sdk macosx --show-sdk-path` \
 -e _main -arch arm64
$./Listing1-1

However, the command lines differ depending on your OS, and pro-
ducing an executable in this way takes a lot of typing. An easier way to com-
pile the program and produce an executable is to use the GCC compiler
(g++) by running this command:

$ g++ -o Listing1-1 Listing1-1.S

This command line even works on macOS, which uses the Clang
compiler rather than GCC; macOS has an alias for Clang named g++. On
macOS, you could also use the clang -o Listing1-1 Listing1-1.S command
line. This book, however, will stick to the g++ command line, as that works
on macOS and Linux.

The g++ command is smart enough to note that this is an assembly lan-
guage source file and run Gas on it to produce an object file. GCC will then
run the linker (ld) and supply all the default libraries the OS requires.

You can run the resulting executable file from the command line
as follows:

$./Listing1-1

8 Chapter 1

This program immediately returns without any output, since that’s all
Listing 1-1 does; it’s simply intended to demonstrate how to compile and
run ARM assembly language programs.

In addition to reducing the amount of typing required, using g++ to
assemble your assembly language source files provides another advantage:
it’s the easiest way to run the CPP, which many of the example files in this
book require. You can invoke the CPP (by itself) on an assembly source file
by using a command like the following, to see the modifications the CPP
makes to your assembly source files:

$ g++ -E Listing1-1.S

You can even pipe the output from the CPP to Gas, using the following
command:

$ g++ -E Listing1-1.S | as -o Listing1-1.o

However, at that point, you may as well have typed

$ g++ -o Listing1-1.o Listing1-1.S

as it’s shorter and easier to input.

	 1.4	 Running Your First Gas/C++ Hybrid Program
This book commonly combines an assembly language module containing
one or more functions written in assembly language with a C/C++ main
program that calls those functions. Because the compilation and execution
process is slightly different from a stand-alone Gas program, this section
demonstrates how to create, compile, and run a hybrid assembly/C++ pro-
gram. Listing 1-2 provides the main C++ program that calls the assembly
language module.

// Listing1-2.S
//
// A simple C++ program that calls
// an assembly language function
//
// Need to include stdio.h so this
// program can call printf().

#include <stdio.h>

// extern "C" namespace prevents
// "name mangling" by the C++
// compiler.

extern "C"
{
 // Here's the external function,

Hello, World of Assembly Language 9

 // written in assembly language,
 // that this program will call:

 void asmMain(void);
};

int main(void)
{
 printf("Calling asmMain:\n");
 asmMain();
 printf("Returned from asmMain\n");
}

Listing 1-3, a slight modification of the stand-alone Gas program, con-
tains the asmMain() function that the C++ program calls. The main differ-
ence between Listing 1-3 and Listing 1-1 is that the function’s name changes
from _main to _asmMain. The C++ compiler and linker would get confused
if we continued to use the name _main, as that’s also the name of the C++
main function.

// Listing1-3.S
//
// A simple Gas module that contains
// an empty function to be called by
// the C++ code in Listing 1-2

 .text

// Here is the asmMain function:

 .global _asmMain, asmMain
 .align 2 // Guarantee 4-byte alignment.
_asmMain:
asmMain:

// Empty function just returns to C++ code.

 ret // Returns to caller

Finally, to compile and run these source files, run the following
commands:

$ g++ -o Listing1-2 Listing1-2.cpp Listing1-3.S
$./Listing1-2
Calling asmMain:
Returned from asmMain
$

Granted, this assembly language example doesn’t accomplish much
other than demonstrate how to compile and run some assembly code. To
write real assembly code, you’re going to need a lot of support code. The

10 Chapter 1

next section describes the aoaa​.inc header file that provides some of this
support.

	 1.5	 The aoaa​.inc Include File
The example code in this book was written to be as portable between
macOS and Linux assemblers as possible, a difficult task requiring consid-
erable advanced behind-the-scenes trickery. Many of those tricks are a bit
too advanced to easily explain to beginning ARM programmers, so I’ve
incorporated all this magic code in a special header file, aoaa​.inc, that I use
in most of the example programs from this point forward.

This human-readable include file is little more than a typical advanced
C/C++ header file; it just contains a bunch of macros (for example, C/C++
#define statements) that help smooth out some of the differences between
the macOS and Linux versions of the assembler. By the time you get to the
end of this book (especially by the time you read Chapter 13), most of the
material in the header file will make perfect sense. For now, I won’t distract
you with advanced macros and conditional assembly information.

You can find aoaa.inc along with all the other example code at https://
artofarm.randallhyde.com. If you’re curious about this file’s content and don’t
want to wait for Chapter 13, load it into a text editor and take a look.

To include this file in an assembly, use the following CPP statement in
your assembly language source files:

#include "aoaa​.inc"

Just as in C/C++, this statement will automatically insert the content
of this file into the current source file during assembly (at the point of the
#include statement).

Gas has its own include statement, used as follows:

.include "include_file_name"

However, don’t use this statement to include aoaa​.inc in your source
files. The Gas ​.include directive executes after the CPP runs, but aoaa​.inc
contains CPP macros, conditional compilation statements, and other code
that must be processed by the CPP. If you use the ​.include directive rather
than #include, the CPP will never see the contents of the aoaa​.inc file, and
Gas will generate errors when it processes the file.

The aoaa​.inc file must be present in the same directory as your assembly
source file during the assembly process (or you must supply an appropriate
path to the file in the #include "aoaa​.inc" statement). If the header file isn’t
in the current directory, Gas will complain that it can’t find the file and ter-
minate the assembly. Also remember to use the .S suffix with your assembly
source files when using #include "aoaa​.inc", or GCC won’t run the CPP on
those files.

https://artofarm.randallhyde.com
https://artofarm.randallhyde.com

Hello, World of Assembly Language 11

	 1.6	 The ARM64 CPU Architecture
Thus far, you’ve seen a pair of Gas programs that compile and run. However,
the statements appearing in those programs do nothing more at this point
than return control to the OS. Before you learn some real assembly lan-
guage, you’ll need to understand the basic structure of the ARM CPU fam-
ily so you can follow the machine instructions.

The ARM CPU family is generally classified as a Von Neumann archi-
tecture machine. Von Neumann computer systems contain three main
building blocks: the central processing unit (CPU), memory, and input/output
(I/0) devices. These three components are interconnected via the system bus
(consisting of the address, data, and control buses). Figure 1-1 shows this
relationship.

CPU

Memory

I/O devices

Figure 1-1: A Von Neumann computer
system block diagram

The CPU communicates with memory and I/O devices by placing
a numeric value on the address bus to select one of the memory or I/O
device port locations, each of which has a unique binary numeric address.
Then the CPU, memory, and I/O devices pass data among themselves by
placing the data on the data bus. The control bus contains signals that
determine the direction of the data transfer (to/from memory and to/from
an I/O device).

1.6.1  ARM CPU Registers
There are two categories of ARM CPU registers: general-purpose registers
and special-purpose kernel-mode registers. The special-purpose registers are
intended for writing OSes, debuggers, and other system-level tools. Such
software construction is well beyond the scope of this text.

The ARM64 supports 32 general-purpose 64-bit registers (named X0
through X31) and 32 general-purpose 32-bit registers (named W0 through
W31). This doesn’t imply there are 64 registers total; instead, the 32-bit
registers overlay the low-order (LO) 32 bits of each of the 64-bit registers.
(Chapter 2 discusses LO components in more depth.) Modifying one of
the 32-bit registers also modifies the corresponding 64-bit register, and vice
versa, as outlined in Figure 1-2.

12 Chapter 1

W0
W1
W2
W3
W4
W5
W6
W7
W8
W9

W10
W11
W12
W13
W14
W15
W16
W17
W18
W19
W20
W21
W22
W23
W24
W25
W26
W27
W28
W29
W30
W31

X0
X1
X2
X3
X4
X5
X6
X7
X8
X9

X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31

32 bits

64 bits

Figure 1-2: The 32- and 64-bit
registers on the ARM

Those new to assembly language are often surprised that all calcula-
tions on the ARM64 involve a register. For example, to add two variables
together, storing the sum into a third variable, you must load one of the
variables into a register, add the second operand to the value in the regis-
ter, and then store the register away in the destination variable. Registers
are a middleman in nearly every calculation, so they’re important in
ARM64 assembly language programs.

Hello, World of Assembly Language 13

Although these registers are known as general-purpose registers, a few of
them have special purposes:

•	 X31, usually referred to as SP in code, is called the stack pointer, since it’s
used to maintain a hardware stack on the ARM (another non-RISC, or
reduced instruction set computer, feature), always as a 64-bit register.
Because it’s used as the stack pointer, SP cannot be used for other pur-
poses in most code. This register is accessible only by a few instructions.

•	 The XZR/WZR register (also treated as X31/W31 by the hardware) is
called the zero register. It always returns 0 when read and is a convenient
way to obtain the constant 0 in a program.

•	 Register X30 is the link register, referred to by the name LR rather than
X30. The ARM CPU uses this register to hold return addresses when
the code makes a function call. (Chapter 5 discusses the LR in greater
detail.) This register is also always accessed in 64-bit mode. While you
could theoretically use X30/W30 as a general-purpose register, you
should avoid doing so, because function calls will wipe out the value in
this register.

•	 Although this special purpose isn’t enforced by the hardware, most soft-
ware uses X29 as a 64-bit frame pointer (FP). Software generally uses this
register to provide access to function parameters and local variables.
Technically, you could use any of the general-purpose registers for this
purpose, but using X29/FP is conventional.

•	 Apple reserves X18 for its own internal purposes. Programs written
for macOS, iOS, iPadOS, and so on must not use this register. Since 29
other registers are available, the examples in this book don’t use X18,
even for Linux examples.

In addition to the 32 general-purpose registers, the ARM64 CPUs have
two additional special-purpose registers accessible to user programs: the
32-bit processor state (PSTATE) register and the 64-bit program counter (PC) reg-
ister. The PC register always contains the address of the machine instruc-
tion being executed. Because instructions are always 32 bits long, the CPU
will increment this register by 4 whenever it finishes the execution of one
instruction and moves on to the next (more on this activity in Chapter 2).

N O T E 	 32-bit ARM CPUs refer to the PSTATE register as the CPSR or PSR. You may see
references to those names in various documents.

The PSTATE register is 32 bits wide (of which only 16 bits are used at
the time of this writing) and is really just a collection of individual Boolean
flags. Its layout appears in Figure 1-3.

N Z C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UAO PAN SS D A I F 0 cEL SPSILV

Figure 1-3: The PSTATE register layout

14 Chapter 1

Most user applications use only the N, Z, C, and V bits in the PSTATE
register. These bits, also known as the condition codes, have the following
meanings:

N ​  ​�Negative (sign) flag, set when an instruction produces a negative
result

Z ​  ​Zero flag, set when an instruction produces a zero result

C ​  ​Carry flag, set when an unsigned arithmetic overflow occurs

V ​  ​Overflow flag, set when a signed arithmetic overflow occurs

Most of the remaining flags are inaccessible or of little use in user pro-
grams. UAO and PAN control CPU access features, allowing user programs
to access kernel memory. SS is the single-step control bit for debugging. IL is
the illegal instruction flag, set when the CPU executes an illegal instruction.
D, A, I, and F are interrupt flags. cEL selects an exception level, usually 00
for user mode. SPS selects a stack pointer to use (kernel versus user mode).

In addition to the 32 general-purpose registers, the ARM64 provides
32 floating-point and vector registers to handle nonintegral arithmetic.
Chapters 6 and 11 discuss these registers in greater detail when covering
floating-point arithmetic and single-instruction/multiple data (SIMD)
operations.

1.6.2  The Memory Subsystem
A typical ARM64 processor running a modern 64-bit OS can access a
maximum of 248 memory locations, or just over 256TB—probably far more
than any of your programs will ever need. Since the ARM64 supports byte-
addressable memory, the basic memory unit is a byte, which is sufficient to
hold a single character or a very small integer value (discussed further in
Chapter 2).

Because 248 is a frightfully large number, the following discussion uses
the 4GB address space of 32-bit ARM processors. Scaled up, the same dis-
cussion applies to 64-bit ARM processors.

N O T E 	 While the ARM64 supports 64 address bits in software, the hardware supports only
48 to 52 address bits for virtual memory operations. Most OSes limit this to 48 bits.

Think of memory as a linear array of bytes. The address of the first
byte is 0, and the address of the last byte is 232 – 1. For an ARM processor,
the following pseudo-Pascal array declaration is a good approximation of
memory:

Memory: array [0..4294967295] of byte;

Hello, World of Assembly Language 15

C/C++ and Java users might prefer the following syntax:

byte Memory[4294967296];

To execute the equivalent of the Pascal statement Memory [125] := 0;,
the CPU places the value 0 on the data bus, places the address 125 on the
address bus, and asserts the write line (which generally involves setting that
line to 0), as shown in Figure 1-4.

CPU

MemoryAddress = 125

Data = 0

Write = 0

Location
125

Figure 1-4: The memory write operation

To execute the equivalent of CPU := Memory [125];, the CPU places the
address 125 on the address bus, asserts the read line (because the CPU is
reading data from memory), and reads the resulting data from the data bus
(see Figure 1-5).

CPU

MemoryAddress = 125

Data = Memory[125]

Read = 0

Location
125

Figure 1-5: The memory read operation

This discussion applies only when accessing a single byte in memory.
To store values larger than a single byte, like half words (2 bytes) and words
(4 bytes), the ARM uses a sequence of consecutive memory locations, as
shown in Figure 1-6. The memory address is the address of each object’s
first byte (that is, the lowest address).

16 Chapter 1

195

194

193

192

191

190

189

188

187

186

Double word
at address 192

Word at
address 188

Byte at
address 186

Address

Figure 1-6: Byte, half-word, and word storage
in memory

The ARM64 generally supports unaligned memory access, meaning the
CPU can read or write an object of any size—byte, half word, word, or
double word (dword)—at any address in memory. Certain instructions,
however, require that memory access be aligned on the natural size of the
transfer. Generally, this means that 16-, 32-, and 64-bit memory accesses
must take place on addresses that are a multiple of 2, 4, or 8; otherwise, the
CPU may raise an exception. Regardless of exceptions, the CPU can usually
access memory locations aligned on a natural boundary faster.

Modern ARM processors don’t connect directly to memory. Instead, a
special memory buffer on the CPU known as the cache (pronounced “cash”)
acts as a high-speed intermediary between the CPU and main memory.
You’ll learn to set the alignment of memory objects and the effects of the
cache on data alignment in Chapter 3.

	 1.7	 Declaring Memory Variables in Gas
Referencing memory by using numeric addresses in assembly language is
possible, but painful and error-prone. Rather than having your program
state, “Give me the 32-bit value held in memory location 192 and the 16-bit
value held in memory location 188,” it’s much nicer to state, “Give me the
contents of elementCount and portNumber.” Using variable names, rather than
memory addresses, makes your program much easier to write, read,
and maintain.

To create (writable) data variables, you have to put them in a data sec-
tion of the Gas source file, defined using the .data directive. The .data direc-
tive tells Gas that all following statements (up to the next .text or other
section-defining directive) will define data declarations to be grouped into
a read/write section of memory.

Hello, World of Assembly Language 17

Within a .data section, Gas allows you to declare variable objects by
using a set of data declaration directives. The basic form of a data declara-
tion directive is

label: directive value(s)

where label is a legal Gas identifier and directive is one of the directives in
the following list:

.byte ​  ​Byte (8-bit) values. One or more comma-separated 8-bit expres-
sions appear in the operand field (values).

.hword, .short, .2byte ​  ​Half-word (16-bit) values. One or more comma-
separated 16-bit expressions appear in the operand field.

.word, .4byte ​  ​Word (32-bit) values. One or more comma-separated
32-bit expressions appear in the operand field.

.quad, .8byte ​  ​Dword (64-bit) values. One or more comma-separated
64-bit expressions appear in the operand field. .quad is an unfortunate
misnomer for ARM64, since a 64-bit value is actually a double word, not
a quad word (on the ARM, a quad word is 128 bits). The term predates
the ARM assembler, coming from “quad word” in the x86 and 68000
assembly language days. To avoid confusion, this book uses the .dword
directive in place of .quad.

.dword ​  ​The .dword macro appearing in the aoaa​.inc include file is a syn-
onym for the .quad directive that emits 8 bytes (64 bits) for each oper-
and. Using .dword is preferable to .quad. You must include the aoaa​.inc
file in order to use this directive.

.octa ​  ​Octaword (oword, 128-bit/16-byte) values. One or more comma-
separated 128-bit expressions appear in the operand field. .octa is an
unfortunate misnomer for ARM64, since a 128-bit value is actually a quad
word, not an “octa” word (on the ARM, an octaword is 256 bits). To avoid
confusion, this book avoids the .octa directive and uses .qword instead.

.qword ​  ​This is a macro appearing the aoaa​.inc include file. It is a syn-
onym for the .octa directive and emits 16 bytes for each operand. You
must include the aoaa​.inc file in order to use this directive.

.ascii ​  ​String values. A single string constant (surrounded by quota-
tion marks) appears in the operand field. Note that Gas does not termi-
nate this string with a 0 byte.

.asciz ​  ​Zero-terminated string values. A single string constant (sur-
rounded by quotation marks) appears in the operand field. Gas will
emit a 0 after the last character in the string operand.

.float ​  ​Single-precision floating-point values. One or more comma-
separated 32-bit single-precision floating-point expressions appear in
the operand field.

.double ​  ​Double-precision floating-point values. One or more comma-
separated 64-bit double-precision floating-point expressions appear in
the operand field.

18 Chapter 1

Gas provides additional synonyms for some of the directives in this
list; see the link to the Gas documentation in section 1.12, “For More
Information,” on page 43.

Here are some examples of valid Gas data declarations:

byteVar: .byte 0
halfVar: .hword 1,2 // Actually reserves 2 half-words
wordVar: .word -1
dwordVar: .dword 123456789012345
str1: .ascii "Hello, world!\n" // Uses C-style escape for newline
str2: .asciz "How are you?\n" // Sequences are legal.
pi: .float 3.14159
doubleVar: .double 1.23456e-2

Whenever you declare a variable in this manner, Gas will associate the
current location in the output object-code file with the label at the begin-
ning of the line. It will then emit the appropriate-sized data value into
memory at that location, adjusting the assembler’s location counter (which
tracks the current location) by the size of each operand it emits.

The label field in these data declaration directives is optional. If you do
not include the label, Gas simply emits the data in the operand field, start-
ing at the current location counter and incrementing the location counter
afterward. This is useful, for example, when you want to insert a control
character or special Unicode character into a string:

longStr: .ascii "A bell character follows this string"
 .byte 7, 0 // Bell (7) and zero termination

Gas allows C-style escape sequences within quoted strings. Although
Gas doesn’t support the full set of escape characters, it does support the
following:

\b ​    ​Backspace character (0x08)

\n ​    ​Newline character/line feed (0x0A)

\r ​    ​Carriage return (0x0D)

\t ​     ​Tab (0x09)

\f ​    ​Form feed character (0x0C)

\\ ​     ​Backslash character

\nnn ​  ​�Where nnn is a three-digit octal value; emit the value to the code
stream

\xhh ​  ​�Where hh is a two-digit hexadecimal value; emit the value to the
code stream

Gas does not support \a, \e, \f, \v, \', \", \?, \uhhhh, or \Uhhhh escape
sequences.

Hello, World of Assembly Language 19

1.7.1  Associating Memory Addresses with Variables
With an assembler like Gas, you don’t have to worry about numeric memory
addresses. Once you declare a variable in Gas, the assembler associates that
variable with a unique set of memory addresses. For example, say you have
the following declaration section:

 .data
i8: .byte 0
i16: .hword 0
i32: .word 0
i64: .dword 0

Gas will find an unused 8-bit byte in memory and associate it with the
i8 variable; it will likewise associate a pair of consecutive unused bytes with
i16, 4 consecutive unused bytes with i32, and 8 consecutive unused bytes
with i64. You’ll always refer to these variables by their names and generally
don’t have to concern yourself with their numeric addresses. Still, be aware
that Gas is doing this for you.

When Gas is processing declarations in a .data section, it assigns con-
secutive memory locations to each variable. Assuming i8 (in the previous
declarations) as a memory address of 101, Gas will assign the addresses
appearing in Table 1-1 to i8, i16, i32, and i64.

Table 1-1: Variable Address Assignments

Variable Memory address

i8 101

i16 102 (address of i8 plus 1)

i32 104 (address of i16 plus 2)

i64 108 (address of i32 plus 4)

Technically, Gas assigns offsets into the .data section to variables.
Linux/macOS converts these offsets to physical memory addresses when it
loads the program into memory at runtime.

Whenever you have multiple operands in a data declaration statement,
Gas will emit the values to sequential memory locations in the order in
which they appear in the operand field. The label associated with the data
declaration (if one is present) is associated with the address of the first
(leftmost) operand’s value. See Chapter 4 for more details.

1.7.2  Aligning Variables
As noted already, your programs may run faster if your variables are aligned
on a natural boundary (alignment to the size of the object). Alignment is accom-
plished with the .align directive, which you saw in Listing 1-1.

Byte variables don’t require any alignment. Use the .align 1 directive
to put half words at an even address (2-byte boundary); remember, Gas will

20 Chapter 1

align the next statement on a boundary that is equal to 2n, where n is the
.align statement’s operand. For words, use the .align 2 directive. For double
words (.dword), use the .align 3 directive.

For example, let’s return to the declaration given earlier:

 .data
i8: .byte 0
i16: .hword 0
i32: .word 0
i64: .dword 0

Sticking .align directives in front of every declaration (except i8) will
start to clutter up your code and make it harder to read:

 .data
i8: .byte 0 // No alignment necessary for bytes
 .align 1
i16: .hword 0
 .align 2
i32: .word 0
 .align 3
i64: .dword 0

If your variables don’t have to be declared in a particular order, you
can clean this up by declaring the largest variables first and the remaining
variables sorted by decreasing size. If you do this, you have to align only the
first variable in your declaration list:

 .data
 .align 3
i64: .dword 0
i32: .word 0
i16: .hword 0
i8: .byte 0 // No alignment necessary for bytes

Because the i64 declaration appears immediately after the .align 3
statement in this code, the i64 address will be aligned on an 8-byte bound-
ary. As i32 immediately follows i64 in memory, it will also be aligned on
an 8-byte boundary (which, of course, is also a 4-byte boundary). This
is because i64 is aligned on an 8-byte boundary and consumes 8 bytes;
therefore, the address following i64 (the address of i32) will also be 8-byte
aligned.

Meanwhile, because i16 immediately follows i32 in memory, it will be
aligned on a 4-byte boundary (which is also an even address). The align-
ment of i8 doesn’t matter, but it happens to be at an even address, as it fol-
lows i16, which was aligned on a 4-byte boundary and consumes 2 bytes.

Hello, World of Assembly Language 21

N O T E 	 Gas also provides a .balign directive whose operand must be a power of 2 (1, 2, 4,
8, 16, . . .) to specify the alignment value directly, rather than as a power of 2. While
this book uses .align because it’s the original directive, feel free to use .balign if you
prefer.

Strings are sequences of bytes, so their alignment usually doesn’t matter.
However, it is possible to write very high-performance string functions in
assembly language that process strings eight or more characters at a time.
If you have access to such library code, it might run faster if your strings are
aligned on an 8-byte boundary.

Of course, floats and doubles should be aligned on 4-byte and 8-byte
boundaries for the highest performance. In fact, as you’ll see in Chapter 11,
16-byte alignment is also sometimes better.

1.7.3  Declaring Named Constants in Gas
Gas allows you to declare manifest constants by using the .equ directive. A
manifest constant is a symbolic name (identifier) that Gas associates with a
value. Everywhere the symbol appears in the program, Gas will directly sub-
stitute its value.

A manifest constant declaration takes the following form:

.equ label, expression

Here, label is a legal Gas identifier, and expression is a constant arith-
metic expression (typically a single literal constant value). The following
example defines the symbol dataSize to be equal to 256:

.equ dataSize, 256

Constant declarations, or equates in Gas terminology, may appear any-
where in your Gas source file prior to their first use: in a .data section, in a
.text section, or even outside any sections.

Once you define a constant symbol with .equ, it cannot be further modi-
fied in the source file during assembly. If you need to reassign the value
associated with a label during assembly (see Chapter 13 for reasons you’d
want to do this), use the .set directive:

 .set valueCanChange, 6
 .
 . // valueCanChange has the value 6 here.
 .
 .set valueCanChange, 7

// From this point forward, valueCanChange has the value 7.

Equates can specify textual arguments as well as numeric constants.
Because Gas will run your source files through the CPP if the filename

suffix is .S, you can also use the CPP #define macro definition to create

22 Chapter 1

named constants. Although the .equ directive is probably the better choice,
the C macro form offers a few advantages, like allowing arbitrary textual
substitution, not just numeric expression substitution. For more on this,
see Chapter 13.

1.7.4  Creating Register Aliases in Gas and Substituting Text
As you begin to write more complex ARM assembly language programs,
you’ll discover that the 32 general-purpose register names (X0 to X30 and
SP) obscure the meaning of their values in the program. It’s been decades
since BASIC supported only variable names like A0, A1, B2, and Z3. To
avoid returning to those days by using meaningless two-character names,
Gas provides a way to create more meaningful aliases of register names in
your programs: the .req directive.

The syntax of the .req directive is

symbolicName .req register

where symbolicName is any valid Gas identifier and register is one of the
32- or 64-bit register names. After this statement in the source file, if you
use symbolicName in place of register, Gas will automatically substitute that
register for the name.

Sadly, the .req directive works only for creating register aliases; you
can’t use it as a general-purpose text-substitution facility. However, if you
name your assembly language source files with .S, Gas/GCC will first run
your source file through the CPP. This allows you to embed C/C++ #define
statements in your assembly source file, and the CPP will happily expand
any symbols you define in such statements throughout your source file. The
following example demonstrates using #define:

#define arrayPtr X0

// From this point forward, you can use arrayPtr in place of X0.

Typically, you’ll use .req for register aliases and #define for any other
textual substitutions in the source file, though my personal preference is to
use the #define statement for both purposes in this book. Since #define also
accepts parameters, it’s flexible. Gas also supports textual substitution via
macros; see Chapter 13 for more on this.

	 1.8	 Basic ARM Assembly Language Instructions
Thus far, the programming examples in this chapter have consisted of func-
tions that use only the ret instruction. This section describes a few more
instructions to get you started writing more meaningful assembly lan-
guage programs.

Hello, World of Assembly Language 23

1.8.1  ldr, str, adr, and adrp
One solidly RISC feature of ARM is its use of load/store architecture. All com-
putational activity takes place in the ARM’s registers; the only instructions
that access main memory are those that load a value from memory or store
a value into memory.

Although the ARM64 has many general-purpose registers for holding
variable values (and thus can avoid using memory), most applications use
more variable data than can fit in all the registers. This is especially true for
larger objects like arrays, structs, and strings. Furthermore, programming
conventions—known as the application binary interface (ABI), discussed later
in this chapter—often reserve many of ARM’s registers so they cannot be
used to hold application variables for any length of time. So variables must
be placed in main memory and accessed via these ldr (load) and str (store)
instructions.

This is the generic syntax for the load and store instructions

ldr{size} reg, mem
str{size} reg, mem

where size is either absent or one of the character sequences b, h, sb, sh, or sw;
reg is one of the ARM’s 32- or 64-bit registers; and mem is a memory address-
ing mode that specifies where to fetch the data from in memory. The ldr
instruction loads the register specified by reg from the memory location
specified by mem. The str instruction stores the value held in the register
operand into the memory location.

Chapter 2 discusses the size operand in greater depth, but this chapter
largely ignores the size suffixes on the ldr and str instructions. Without a
size prefix, the reg operand determines the operation’s size. If reg is Xn, the
instruction transfers 64 bits; if it’s Wn, then the instruction transfers 32 bits.

The mem operand is either the name of a variable in your program,
typically in the .data section (Linux only), or a register name surrounded
by square brackets ([]). In this latter case, the register holds the numeric
memory address of the memory location to access. See Chapter 3 for more
on mem.

L INU X V S. M ACOS:

POSIT ION-INDEPENDEN T E X ECU TA BL ES

One major OS policy difference between macOS and Linux ARM assembly
language is that macOS requires the use of position-independent executables
(PIE), while Linux only encourages them. PIE allows the system to load the vari-
ous sections of a program into different memory locations at runtime. This is
important for two reasons: it enables the use of shared libraries and addresses
security concerns.

(continued)

24 Chapter 1

Shared libraries contain code shared among applications. An OS will
load only one copy of a library’s code into physical memory and share that
single copy among multiple running applications. However, the library code
has to sit at an address in a given application’s memory space in order for that
application to call functions within the library, yet the address used for a library
function in one application may already be in use when a second application
attempts to load the library. Therefore, the second application will need to call
that function at a different address in its own virtual memory address space.

If two separate copies of the function were made in real memory, calling
the function at different addresses in memory wouldn’t be an issue; the first
application could locate the function at an address completely independent of
the second. However, one major reason to use shared libraries is to share the
exact same code in real (physical) memory.

The OS resolves the virtual memory address conflicts by programming the
memory management unit (MMU) to map that physical memory to two separate
virtual memory addresses in the two applications. However, for this to work,
the library code must not access any absolute (fixed) memory addresses; if it
does, the second application maps the function to a different address in the
virtual memory address space, and the sharing concept fails. For example,
if the library code transfers control from location 0x12_3456 to location
0x12_3500 in memory, this transfer will fail if the code is moved to a different
location; the application will still want to transfer to location 0x12_3500, even
though the code has moved elsewhere.

For machine instructions, this is not a problem. The ARM instructions that
transfer control typically use program-counter-relative (PC-relative) addressing.
Rather than transfer control to a fixed location (like 0x12_3500), they transfer
control to a location relative to the current location. That is, they transfer to a
location a certain number of bytes before or after the current value in the PC
register. If the code moves to a different fixed address in memory, the instruction
will still transfer to the correct place, because the destination location moved
along with the current instruction.

Unfortunately, this scheme doesn’t work for data. If a shared library
accesses global data, the OS has to create a separate block of data for each
application that uses the shared library; you typically don’t want one applica-
tion to affect the data in another application. That means data addresses must
be relocatable as well.

The ARM CPU can also access data at locations relative to the PC, so in
theory, the OS can remap the data to a different location for each application,
as it does for the code. However, using PIE is still wise for security reasons. In
the past, various hacks have taken advantage of the fact that the data for a
shared library sits at a fixed offset from the code. To help prevent such exploits,
macOS and Linux support address space layout randomization (ASLR). With this
feature, the OS randomly assigns a different address to the code and data sec-
tions of a program (or library) code when loading it into memory. This makes it
more difficult for a hack to exploit the code.

Hello, World of Assembly Language 25

ASLR also makes it slightly more difficult (and less efficient) to access that
data. Worse still, Linux and macOS provide completely different mechanisms
for accessing position-independent data. This is transparent to HLL program-
mers, but it has to be handled explicitly when writing assembly language code.
This creates problems in a book such as this one, where the goal is to provide
example code that compiles and runs on different OSes. As for other Linux ver-
sus macOS issues, the aoaa​.inc header file contains macros and other code to
resolve these issues. I’ll have more to say about PIE in Chapter 3.

Because macOS requires that your applications be written in a position-
independent fashion (as we just discussed in “Linux vs. macOS: Position-
Independent Executables”), you will not be able to use an ldr instruction of
this form:

ldr x0, i64 // i64 is a 64-bit variable declared
 // in the .data section by using .dword.

To access the i64 variable, you must first load its address into a 64-bit
register, then access that data by using the register-indirect addressing mode, or
Xn. To do so, place the address of the variable you want to access in the reg-
ister by using the adr and adrp instructions:

adr reg64, mem
adrp reg64, mem

Here, reg64 is the name of a 64-bit general-purpose register, and mem
is a memory addressing mode, like the name of a global variable. The adr
instruction loads reg with the address of the memory variable, which must
be ±1MB from the adr instruction if the operand is just the name of a vari-
able (like i64 from the previous example). The adrp instruction loads the
64-bit destination register with the page (4,096-byte boundary) containing
the memory object. That value will have the LO 12 bits containing all 0s.

Because of macOS’s PIE requirements, it doesn’t take kindly to instruc-
tions such as the following:

ldr x0, i64

On the Mac, you must use the register-indirect addressing mode to
access a global variable. Unfortunately

adr x1, i64

fails for the same reason: you’re not allowed to specify the name of a global
variable.

26 Chapter 1

In this book, to get the address of a global variable into a register under
macOS, we’ll use the following statement:

lea reg, mem

The lea (load effective address) macro, included in aoaa​.inc, will expand
into two instructions (different ones depending on your OS). These instruc-
tions will load the address of the second operand (mem) into the 64-bit regis-
ter specified by the first operand (reg). You can use lea in any projects where
you’ve included aoaa​.inc at the beginning of your source file.

As noted, the aoaa​.inc macros make the code in this book portable
between OSes. However, you can choose to go with the appropriate OS-specific
code, which can sometimes be more efficient, once you master basic ARM
assembly language programming. See Chapter 7 for more details on lea.

To conclude this discussion of taking the address of a variable, let’s
recap how to load and store values by using ldr and str:

 .data
i64: .dword 0 // This also requires the aoaa​.inc file.
 .
 .
 .
// Load i64's value into X0:

 lea x0, i64
 ldr x0, [x0]
 .
 .
 .
// Store X0 into i64:

 lea x1, i64
 str x0, [x1]

When loading X0 with a variable’s value, you can first load X0 with the
address of the variable and then load X0 indirectly from the location held
in X0. This winds up using only a single register. However, when storing
data to memory, you need a second register to hold the address (X1 in this
example).

If you are referencing a particular variable several times within a small
section of code, it’s more efficient to load its address into a register just once
and reuse that register value multiple times, rather than constantly reload-
ing the address:

lea x1, i64
ldr x0, [x1]
 .
 .
 .
str x0, [x1]

Hello, World of Assembly Language 27

Of course, this means you can’t use the register for any other purpose
while it holds i64’s address. Fortunately, for just this reason, the ARM64 has
lots of registers.

1.8.2  mov
Beyond the ldr and str instructions, the mov instruction handles two addi-
tional data movement operations: moving data between a pair of registers
and copying a constant into a register. The generic syntax for mov is as
follows:

mov regdest, regsrc
mov regdest, #constant

The first mov instruction copies the data in the source register (regsrc)
into the destination register (regdest). This instruction is equivalent to the
C/C++ statement regdest = regsrc;. The source and destination registers can
be any of the general-purpose registers but must be the same size (32 or
64 bits).

The second mov instruction moves a small integer constant into the des-
tination register. Constants encoded as part of the instruction are known as
immediate constants and are generally preceded by a # character (though Gas
often allows you to drop the # when specifying literal numeric constants).
Chapter 2 discusses limitations on constants, but for now, assume any con-
stant less than ±2,047 will work.

Here are two examples of the mov instruction:

mov x1, x0 // X1 = X0
mov x2, #10 // X2 = 10

There are many additional variants of mov, covered in depth in later
chapters. For example, if you encounter a constant you cannot load into a
register with a single mov instruction, other variants of mov let you load any
arbitrary 32- or 64-bit constant by using two to three instructions. In the
meantime, this variant of the ldr instruction will load any constant into
a register:

ldr reg, =veryLargeConstant

The assembler will simply store veryLargeConstant in a memory location
somewhere and then load the contents of that memory location to the speci-
fied register. Use this handy pseudo-instruction when you need to load a
large constant into a register with a single instruction.

28 Chapter 1

1.8.3  add and sub
The add and sub instructions handle simple arithmetic on the ARM CPU.
These instructions take many forms covered more thoroughly in the next
couple of chapters. Their basic forms are the following:

add regdest, reglsrc, regrsrc    // regdest = reglsrc + regrsrc
add regdest, reglsrc, #const // regdest = reglsrc + const
adds regdest, reglsrc, regrsrc    // regdest = reglsrc + regrsrc
adds regdest, reglsrc, #const // regdest = reglsrc + const
sub regdest, reglsrc, regrsrc    // regdest = reglsrc - regrsrc
sub regdest, reglsrc, #const // regdest = reglsrc - const
subs regdest, reglsrc, regrsrc    // regdest = reglsrc - regrsrc
subs regdest, reglsrc, #const // regdest = reglsrc - const

Here, regdest, reglsrc, and regrsrc are 32- or 64-bit registers (which must all be
the same size for a given instruction), and const is an immediate constant in
the range 0 to 4,095. You’ll learn to specify larger constants later, but these
forms are sufficient for the example programs in the next few chapters.

N O T E 	 Some assemblers allow a range of –4,095 to +4,095 and swap the add and sub
instructions if the immediate constant is negative.

The instructions with the s suffix affect the condition code flags. They
set the flags according to the conditions specified in the following list:

N   ​ �​ Set if the arithmetic operation produces a negative result (high-
order, or HO, bit is set); clear if it produces a nonnegative result (HO
bit is clear).

Z ​   ​� Set if the arithmetic operation produces a 0 result; clear if it pro-
duces a nonzero result.

C   ​ �​ Set if the addition operation produces an unsigned overflow (carry
out of the HO bit). Clear if a subtraction operation produces a
borrow (unsigned underflow), and set otherwise.

V   ​ ​� Set if the arithmetic operation produces a signed overflow (carry
out of the next-to-HO bit).

The following instructions negate their source operands, because they
subtract the source register from 0 (remember that WZR and XZR are the
zero registers and return 0 when read):

sub regdest32, wzr, regsrc32 // regdest32 = - regsrc32
sub regdest64, xzr, regsrc64 // regdest64 = - regsrc64

Gas provides synonyms for these instructions:

neg regdest32, regsrc32 // Negate instruction, no flags
negs regdest32, regsrc32 // Negate instruction, w/flags

Hello, World of Assembly Language 29

neg regdest64, regsrc64 // Negate instruction, no flags
negs regdest64, regsrc64 // Negate instruction, w/flags

These forms are a little easier to read.

1.8.4  bl, blr, and ret
Calling procedures and functions is handled by the bl (branch and link)
and blr (branch and link through register) instructions. Here’s their syntax

bl label
blr Xn

where label is a statement label preceding code in the .text section, and
Xn represents one of the 64-bit registers. These two instructions copy the
address of the next instruction (following the bl or blr instruction) into the
link register (LR/X30), then transfer control either to the target label or to
the address specified by the contents of Xn.

The bl instruction does have a minor limitation: it can transfer control
only to a statement label within ±128MB of the current instruction. This is
generally far more than enough for any function you’ll write. In theory, if
the OS loads code into another section (besides .text), it could be placed
sufficiently far away that it would exceed this range. The OS linker will prob-
ably complain if this occurs. This book generally places all code within the
.text section, as it would be rare for such programs to exceed this limitation.

The blr instruction copies the full 64-bit address from Xn into the
PC (after copying the address of the next instruction into LR). Therefore,
blr does not have the range limitation of the bl instruction. If you ever do
encounter the range limitation when using bl, overcome it by using the fol-
lowing sequence:

lea x0, farAwayProcedure
blr x0

This will load the address of farAwayProcedure into X0 (no matter where
it appears in memory), then transfer control to that procedure via blr.

The ret instruction has appeared in several examples up to this point.
It copies the contents of the LR (X30) register into the PC. Assuming that
LR was loaded with a value as a result of executing the bl or blr instruction,
this returns control to the instruction following the bl/blr.

The bl, blr, and ret instructions have one issue: the ARM architecture
tracks only a single subroutine call with the LR register. Consider the fol-
lowing code fragment:

someFunc:
 ret
 .
 .
 .

30 Chapter 1

main:
 bl someFunc
 ret

When the OS calls the main program, it loads the LR register with
the return address back to the OS. Normally, when the main program
completes execution, its ret instruction transfers control to this location.
However, that’s not the case in this example: when the main program
begins execution, it immediately calls someFunc with the bl instruction. This
instruction copies its return address (the address of the main program’s
ret instruction) into the LR register, wiping out the OS’s return address
currently residing there. When someFunc executes the return instruction, it
returns control back to the main program.

Upon return from someFunc, the main program executes the ret instruc-
tion. However, the LR register now contains the return address of the
someFunc call, which is the address of the ret instruction in the main pro-
gram, so control transfers there, re-executing ret. The LR register’s value
hasn’t changed; it still points at that ret instruction, meaning this code
enters an infinite loop continuously executing the return and transferring
control back to the return (where LR continues to point).

Chapter 3 discusses the high-level solution to this problem. For the
time being, we must save the LR register value in the main program before
calling someFunc. One quick-and-dirty way to do this is to copy it into another
(unused by main) register and restore LR before the final return:

someFunc:
 ret
 .
 .
 .
main:
 mov x1, lr
 bl someFunc
 mov lr, x1
 ret

This code saves the return address (in LR) in the X1 register and
restores it after returning from someFunc (the call to someFunc overwrote the
value in LR).

In general, saving the return address in the X1 register is a bad idea,
because the ARM’s designers reserve X1 for passing parameters. (Using X1
worked in this example because someFunc doesn’t have any parameters, as
it just returns to its caller.) The next section covers in greater depth which
registers are reserved for various purposes.

	 1.9	 The ARM64 Application Binary Interface
A CPU’s application binary interface (ABI) describes how programs should use
registers, pass parameters between functions, represent data, and many

Hello, World of Assembly Language 31

other conventions. Its primary purpose is to provide interoperability among
programming languages and systems. The ARM64’s ABI, for example,
describes the conventions that allow C/C++ programs to call functions writ-
ten in Swift, Pascal, and other languages. Since the GCC (and Clang) com-
pilers follow these rules, you must also follow them to pass information
between your assembly language code and code written in an HLL such
as C/C++.

An ABI is a convention, not an absolute rule. It is a contract between the
code being called and the code making the call. When writing your own
assembly language functions to be called by your own assembly language
code, you are under no obligation to use the ABI and can use whatever
inter-code communication scheme you like. However, if you call C/C++
code from your assembly functions, or if your assembly code is being called
from C/C++, you must follow the ARM64 ABI. Since this book uses a con-
siderable mixture of C/C++ and assembly code, understanding the ARM64
ABI is critical for our purposes.

1.9.1  Register Usage
The ARM64 ABI reserves some of its 32 general-purpose registers for spe-
cific uses and defines whether registers are volatile (meaning you don’t have
to preserve their values) or nonvolatile (meaning that you must preserve
their values within a function). Table 1-2 describes the special purposes and
volatility of the 32 ARM registers.

Table 1-2: ARM64 ABI Register Conventions

Register Volatile Special meaning

X0/W0 Yes Pass parameter 1 here, return function results here.
Registers X0 through X7 can also be used as a scratchpad/temporary/
local variable if not used as a parameter.

X1/W1 Yes Pass parameter 2 here, return function results here.

X2/W2 Yes Pass parameter 3 here, return function results here.

X3/W3 Yes Pass parameter 4 here, return function results here.

X4/W4 Yes Pass parameter 5 here, return function results here.

X5/W5 Yes Pass parameter 6 here, return function results here.

X6/W6 Yes Pass parameter 7 here, return function results here.

X7/W7 Yes Pass parameter 8 here, return function results here.

X8/W8 Yes Pointer to large function return results (for example, a large C structure
returned by value).

X9/W9
X10/W10
X11/W11
X12/W12
X13/W13
X14/W14
X15/W15

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Can be used as a scratchpad/temporary/local variable.

(continued)

32 Chapter 1

Register Volatile Special meaning

X16/W16/IP0 Yes, but . . . You can use this register as a temporary variable, but its value may
change across the execution of a control-transfer instruction; the
system linker/loader may use this register to create a veneer, also
known as a trampoline (more on this in Chapter 7).

X17/W17/IP1 Yes, but . . . You can use this register as a temporary variable, but its value may
change across the execution of a control-transfer instruction; the sys-
tem linker/loader may use this register to create a veneer, also known
as a trampoline (more on this in Chapter 7).

X18/W18/Plat No access This register is reserved for use by the OS, and application programs
must not modify its value. Under macOS, you definitely must not
modify this register; under Linux, you may get away with using this
register if you preserve its value, but the safe choice is to avoid
using this register.

X19/W19
X20/W20
X21/W21
X22/W22
X23/W23
X24/W24
X25/W25
X26/W26
X27/W27
X28/W28

No
No
No
No
No
No
No
No
No
No

A function using this register must save and restore the register’s value
so that it contains its original value when the function returns.

X29/W29/FP N/A Reserved for use as the system frame pointer.

X30/W30/LR N/A Reserved for holding function return addresses.

SP /X31/W31 N/A Reserved for use as the system stack pointer.

Conveniently, when using volatile registers in a function, you don’t have
to preserve (save and restore) their values within the function. However,
this means that you also cannot expect them to maintain their values across
any functions you call via bl or blr. Nonvolatile registers will maintain their
values across function calls you make, but you must explicitly preserve their
values if you modify them within your functions.

1.9.2  Parameter Passing and Function Result Conventions
Chapter 5 provides a complete discussion of parameter passing and func-
tion results in assembly language. However, when calling functions written
in a different languages (particularly HLLs), you must adhere to the con-
ventions that language uses. Most HLLs use the ARM ABI as the conven-
tion for passing parameters.

The ARM ABI uses registers X0 through X7 to pass up to eight integer
parameters to a function. These parameters can be 8-, 16-, 32-, or 64-bit
entities. You pass the first parameter in X0, the second in X1, and so on. To
pass fewer than eight parameters, simply ignore the additional registers in
this set. Chapter 5 discusses how to pass more than eight parameters and
how to pass data types larger than 64 bits, including arrays and structs.
Chapter 6 covers how to pass floating-point values to a function.

Table 1-2: ARM64 ABI Register Conventions (continued)

Hello, World of Assembly Language 33

You can also return function results in these registers. Most functions
return integer results in X0. If you’re returning a large object by value, like
a structure, array, or string, you typically use X8 to return a pointer to that
data object. Chapter 6 discusses returning floating-point function results.

Registers X0 through X7 are volatile, meaning you can’t expect a called
function to preserve the original register values on return. This is true even
if you don’t use all eight registers to pass parameter values. If you want to
preserve a value across function calls, use a nonvolatile register.

	 1.10	 Calling C Library Functions
All the coding examples in this book so far have immediately returned to
the OS, apparently without accomplishing anything. While it is theoretically
possible for a pure assembly language program to produce its own output,
it takes a lot of work and is largely beyond the scope of this book. Instead,
this book calls prewritten C/C++ library code to do the I/O. This section
discusses how this is done.

Most other books on assembly language that use libraries in this way
call the OS by using available application programming interfaces (APIs). This
is a reasonable approach, but such code is tied to the particular OS for
which the calls are made (see Chapter 16 for examples). This book instead
relies on library functions written in the C stdlib, since it’s available on
many OSes.

In most introductory programming books, the first programming
example provided is the venerable “Hello, world!” program. Here’s that
program written in C:

#include <stdio.h>

int main(int argc, char **argv)
{
 printf("Hello, world!\n");
}

Except for an actual printf() statement, the assembly language source
files given thus far have fulfilled the purpose of the “Hello, world!” example:
learning how to edit, compile, and run a simple program.

Most of this book uses the C printf() function to handle program out-
put to the console. This function requires one or more arguments—that
is, a variable-length parameter list. The first argument is the address of a
format string. If that string requires it, additional parameters provide data to
convert to string form. For the “Hello, world!” program, the format string
("Hello, world!\n") is the only argument.

The C stdlib—and all C functions, for that matter—adheres to the ARM
ABI. Therefore, printf() expects its first argument, the format string, in the
X0 register. Instead of trying to pass a string (with 14 characters, including
the newline) in a 64-bit register, we pass the address of that string in mem-
ory. If we put the string "Hello, world!\n" in the .text section along with the

34 Chapter 1

program (out of the way, so the CPU doesn’t try to execute it as code), then
we can compute the address of that string by using the lea macro:

hwStr: .asciz "Hello, world!\n"
 .
 .
 .
 lea x0, hwStr

Once we have this string address in X0, calling printf() prints that
string to the standard output device:

lea x0, hwStr
bl printf

To run, this program must be linked against the C stdlib and a small
C/C++ program like the one in Listing 1-2. Rather than grabbing that pro-
gram, I’ll create a slightly better version in Listing 1-4 to use with almost
every example program in the rest of this book.

// Listing1.4.cpp
//
// Generic C++ driver program to call AoAA example programs
// Also includes a "readLine" function that reads a string
// from the user and passes it on to the assembly language
// code
//
// Need to include stdio.h so this program can call "printf"
// and stdio.h so this program can call strlen.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Extern "C" namespace prevents "name mangling" by the C++
// compiler:

extern "C"
{
 // asmMain is the assembly language code's "main program":

 1 void asmMain(void);

 // getTitle returns a pointer to a string of characters
 // from the assembly code that specifies the title of that
 // program (that makes this program generic and usable
 // with a large number of sample programs in "The Art of
 // ARM Assembly Language"):

 2 char *getTitle(void);

 // C++ function that the assembly
 // language program can call:

Hello, World of Assembly Language 35

3 int readLine(char *dest, int maxLen);

};

// readLine reads a line of text from the user (from the
// console device) and stores that string into the destination
// buffer the first argument specifies. Strings are limited in
// length to the value specified by the second argument
// (minus 1).
//
// This function returns the number of characters actually
// read, or -1 if there was an error.
//
// If the user enters too many characters (maxLen or
// more), this function returns only the first maxLen - 1
// characters. This is not considered an error.

int readLine(char *dest, int maxLen)
{
 // Note: fgets returns NULL if there was an error, else
 // it returns a pointer to the string data read (which
 // will be the value of the dest pointer):

 char *result = fgets(dest, maxLen, stdin);
 if(result != NULL)
 {
 // Wipe out the newline character at the
 // end of the string:

 int len = strlen(result);
 if(len > 0)
 {
 dest[len - 1] = 0;
 }
 return len;
 }
 return -1; // If there was an error
}

int main(void)
{
 // Get the assembly language program's title:

 char *title = getTitle();

 printf("Calling %s:\n", title);
 asmMain();
 printf("%s terminated\n", title);

}

This program contains a few additional features over Listing 1-2. First,
the name of the assembly language function has changed to asmMain() 1,
the assembly language main program. This code also requires a second

36 Chapter 1

assembly function, getTitle() 2. This function, provided by the assembly
language source code, returns a pointer to a zero-terminated string con-
taining the program’s title. The program displays this title before and after
calling asmMain().

The readLine() function appears in the C program that reads a line of
text from the user and stores that text into a buffer specified by the caller 3.
You can call this function from the example assembly code, sparing you
from having to write the function in assembly (it’s grunt work better done
in C). You’ll see examples of this function call in later chapters.

This file (appearing as Listing1-4.cpp or c.cpp in the online code) requires
the assembly code to provide a getTitle() function that returns the address
of a string so the C program can display the name. This string is embedded
in the assembly language source file, since most of the programs in this
book use only one version of c.cpp. The getTitle() function is the same in
every program

getTitle:
 lea x0, title // C expects pointer in X0.
 ret

where title is a zero-terminated string appearing elsewhere in your pro-
gram (usually in the .data section). That declaration will usually take
this form:

title: .asciz "Listing1-5"

The getTitle function returns the address of this string to the c.cpp pro-
gram. The string following the .asciz directive will typically be the name of
the assembly language source file (I used Listing1-5 in this example).

1.10.1  Assembling Programs Under Multiple OSes
We could easily bang out a “Hello, world!” program for Linux or macOS
at this point, but the programs would be slightly different for each OS. So
that we don’t need to use a different include file for each OS, I’ve modified
aoaa​.inc to look for a couple of symbol definitions: isMacOS and isLinux. Both
symbols must be defined with the CPP #define declaration, and one must be
true (1) while the other is false (0). The aoaa​.inc file uses these symbols to
adjust the definitions present in the file for the appropriate OS.

In theory, we could use code like the following to define these symbols:

#define isMacOS (1)
#define isLinux (0)
#include "aoaa​.inc"

However, this would force every example program to have two versions,
one for macOS (the example just given) and one for Linux, containing the
following statements:

Hello, World of Assembly Language 37

#define isMacOS (0)
#define isLinux (1)
#include "aoaa​.inc"

GCC has a preferable command line option that lets you define a pre-
processor symbol and give it a value:

-D name=value

This way, the following commands will automatically define the symbol
prior to assembling the source.S file:

g++ -D isMacOS=1 source.S
g++ -D isLinux=1 source.S

We can specify the OS from the command line in this way so that the
source files (source.S and aoaa​.inc) don’t require any changes under either
macOS or Linux. To avoid any extra typing required to assemble the pro-
gram, we’ll use a command line program known as a shell script.

While writing a shell script for this purpose, I also further automated
the build process. The script, named build, accepts the base name of an
example file without a suffix and automatically deletes any existing object
or executable files with that base name (a clean operation, in Unix terminol-
ogy). It then determines which OS build is running on and then automati-
cally generates the appropriate GCC command line to build the example.

SHEL L SCR IP T S V S. M A KEF IL ES

If you have experience developing software by using the command line, you
may wonder why I haven’t built the examples with a makefile. I discuss make-
files further in Chapter 15, but I’ve chosen not to use them here for a couple of
reasons:

•	 If you don’t already know the Make language, I’d prefer to put off teaching
that until you’ve mastered a little more assembly language.

•	 Using Make would mean writing a separate makefile for each example
program. However, the build shell script this section describes works for
nearly all the example programs in this book.

For example, to build a file named example.S, you’d execute the follow-
ing command:

./build example

38 Chapter 1

Under Linux, this would generate the following command:

g++ -D isLinux=1 -o example c.cpp example.S

Under macOS, it would generate the following:

g++ -D isMacOS=1 -o example c.cpp example.S

The build script also supports a couple of command line options: -c and
-pie. The -c (compile-only) option generates the following command line,
which only assembles the assembly file to an object file; it does not compile
c.cpp, nor does it produce an executable:

./build -c example

This executes the following command as appropriate:

g++ -c -D isMacOS=1 -o example.o example.S

or

g++ -c -D isLinux=1 -o example.o example.S

The -pie option applies only to Linux. It issues the appropriate com-
mands to tell Linux to produce a position-independent executable file (by
default, Linux produces a non-position-independent executable). Because
macOS’s assembler always produces PIE code, this option is ignored under
macOS.

For the curious, I’ve provided the text for this shell script in the file
build without further comment, as writing shell scripts is beyond the scope
of this book:

#!/bin/bash
#
build
#
Automatically builds an Art of ARM Assembly
example program from the command line
#
Usage:
#
build {options} fileName
#
(no suffix on the filename.)
#
options:
#
-c: Assemble .S file to object code only.
-pie: On Linux, generate a PIE executable.

fileName=""
compileOnly=" "

Hello, World of Assembly Language 39

pie="-no-pie"
cFile="c.cpp"
lib=" "
while [[$# -gt 0]]
do

 key="$1"
 case $key in

 -c)
 compileOnly='-c'
 shift
 ;;

 -pie)
 pie='-pie'
 shift
 ;;

 -math)
 math='-lm'
 shift
 ;;

 *)
 fileName="$1"
 shift
 ;;
 esac
done

If -c option was provided, only assemble the .S
file and produce an .o output file.
#
If -c not specified, compile both c.cpp and the .S
file and produce an executable:

if ["$compileOnly" = '-c']; then
 objectFile="-o $fileName".o
 cFile=" "
else
 objectFile="-o $fileName"
fi

If the executable already exists, delete it:

if test -e "$fileName"; then
 rm "$fileName"
fi

If the object file already exists, delete it:

if test -e "$fileName".o; then
 rm "$fileName".o
fi

40 Chapter 1

Determine what OS you're running under (Linux or Darwin [macOS]) and
issue the appropriate GCC command to compile/assemble the files.

unamestr=$(uname)
if ["$unamestr" = 'Linux']; then
 g++ -D isLinux=1 $pie $compileOnly $objectFile $cFile $fileName.S $math
elif ["$unamestr" = 'Darwin']; then
 g++ -D isMacOS=1 $compileOnly $objectFile $cFile $fileName.S -lSystem $math
fi

Check out a book on GNU’s bash shell interpreter if you want to learn
how this works (see section 1.12, “For More Information,” on page 43).

The build shell script is available in electronic form at https://artofarm​
.randallhyde​.com. Execute the following command to make this file execut-
able from the bash command line on your Linux or macOS system:

chmod u+x build

This makes the build script executable. See Appendix D for more infor-
mation about the chmod command.

1.10.2  Writing a “Hello, World!” Program
You finally have the pieces in place to write a complete “Hello, world!” pro-
gram, as shown in Listing 1-5.

// Listing1-5.S
//
// The venerable "Hello, world!" program, written
// in ARM assembly by calling the C stdlib printf
// function
//
// aoaa​.inc is the Art of ARM Assembly include file.
//
// This makes asmMain global and
// automatically converts it to _asmMain
// if this program is being assembled under macOS.
// It also converts printf to _printf for macOS.

 #include "aoaa​.inc"

 .data

1 title: .asciz "Listing 1-5"
 saveLR: .dword 0 // Save LR here.
hwStr: .asciz "Hello, world!\n"

 .text

// getTitle function, required by c.cpp, returns the
// name of this program. The title string must
// appear in the .text section:

https://artofarm.randallhyde.com
https://artofarm.randallhyde.com

Hello, World of Assembly Language 41

 .align 2 // Code must be 4-byte aligned.

2 getTitle:
 lea x0, title
 ret

// Here's the main function called by the c.cpp function:

asmMain:

// LR is *highly* volatile and will be wiped
// out when this code calls the printf() function.
// We need to save LR in memory somewhere so we
// can return back to the OS using its value.
// For now, save it in the saveLR global
// variable:

 lea x0, saveLR
 str lr, [x0]

// Set up printf parameter (format string)
// and call printf():

 3 lea x0, hwStr // hwStr must be in .text.
 bl printf // Print the string.

// Back from printf(), restore LR with its original
// value so we can return to the OS:

 4 lea x0, saveLR
 ldr lr, [x0]

// Return to the OS:

 ret

The title string 1 holds the program’s title ("Listing 1-5" in this exam-
ple). The hwStr variable holds the Hello, world! string that the main pro-
gram will pass to the printf() function. The getTitle() function 2 returns
the address of the title string to the c.cpp program. As per the ARM ABI,
this function returns the function result in the X0 register.

Upon entry into the asmMain() function (the assembly language main
program), the code must preserve the contents of the LR register because
the call to printf() will overwrite its value. This code saves the LR register
(which holds the return address to the c.cpp main function) in the saveLR
global variable in the .data section 1.

N O T E 	 Saving the LR register value in this fashion is not good practice. In Chapter 3 you’ll
learn about the ARM stack and discover a much better place to save return addresses
held in LR.

42 Chapter 1

The code that actually prints Hello, world! 3 loads X0 with the printf()
format string as per the ARM ABI, then calls printf() by using the bl
instruction. Before returning to c.cpp, the assembly code must reload LR
with the returned address held in saveLR 4.

Here are the commands to build and run the program in Listing 1-5,
along with the program’s output:

$./build Listing1-5
$./Listing1-5
Calling Listing1-5:
Hello, world!
Listing1-5 terminated

You now have a functioning “Hello, world!” program in assembly
language.

L INU X V S. M ACOS: VA R I A DIC PA R A ME T ERS

Passing parameters to functions with a variable number of parameters, such as
printf(), works differently in the standard ARM ABI and the macOS variant.
Linux, using the standard ABI, passes the first eight parameters in registers X0
through X7, as Table 1-2 describes. However, macOS unfortunately passes only
the first parameter of a variadic function (a function with a variable number
of parameters) in register X0. It passes all remaining parameters on the stack
(described in Chapters 3 and 5).

To allow us to write code that will assemble and run on both OSes, the
aoaa​.inc include file comes to the rescue once again. This file contains six mac-
ros with the following names:

vparm2, vparm3, ..., vparm7

Each macro takes a single argument: the name of a variable in the .data
section. These macros will load the specified variable into the appropriate
location (a register or on the stack) for that parameter. For this to work under
macOS, the following statement must appear at the very beginning of your
asmMain() function:

sub sp, sp, #64

You must also include the following statement before the ret instruction at
the end of your asmMain() function:

add sp, sp, #64

Chapter 5 fully explains the purpose of these instructions; just trust them for
now (they are required for macOS and do no harm under Linux).

Hello, World of Assembly Language 43

If you have two variables, i and j, declared as words in your .data sec-
tion, here’s how to print them by using printf()

lea x0, fmtStr // Parameter 1 is still passed in X0.
vparm2 i
vparm3 j
bl printf

where fmtStr is something like this:

fmtStr: .asciz "i=%d, j=%d\n"

We use vparm2, vparm3, and so on only for variadic functions. Functions
with a fixed number of parameters use registers X0 through X7 for the first eight
parameters on both Linux and macOS.

	 1.11	 Moving On
This chapter equipped you with the prerequisites to start learning new
assembly language features in the chapters that follow. You learned the
basic syntax of a Gas program and the basic 64-bit ARM architecture, and
how to use the aoaa​.inc header file to make source files portable between
macOS and Linux. You also learned how to declare some simple global vari-
ables, use a few machine instructions, and assemble a Gas program with
C/C++ code so you can call routines in the C stdlib (using the build script
file). Finally, you ran that program from the command line.

The next chapter introduces you to data representation, one of the main
reasons for learning assembly language in the first place.

	 1.12	 For More Information

•	 For more information about the bash shell interpreter, visit the refer-
ence manual at https://www.gnu.org/software/bash/manual/bash.html.

•	 For more information about the GNU assembler, visit the reference man-
ual at https://ftp​.gnu​.org​/old​-gnu​/Manuals​/gas​-2​.9​.1​/html​_chapter​/as​_toc​.html.

•	 You can find an online guide to 64-bit ARM assembly language at
https://modexp​.wordpress​.com​/2018​/10​/30​/arm64​-assembly​/.

•	 If you’re interested in programming ARM assembly language on Apple
platforms, see https://developer​.apple​.com​/documentation​/xcode​/writing​
-arm64​-code​-for​-apple​-platforms.

•	 The ARM developer portal at https://developer.arm.com provides
generic information about ARM CPUs and ARM assembly language
programming.

https://www.gnu.org/software/bash/manual/bash.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_toc.html
https://modexp.wordpress.com/2018/10/30/arm64-assembly/
https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms
https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms
https://developer.arm.com

44 Chapter 1

T ES T YOURSEL F

	 1.	 What is the name of the Gas executable program file?

	 2.	 What are the names of the three main system buses?

	 3.	 Which register holds the condition code bits?

	 4.	 How many bytes are consumed by the following data types?

a.	 Word

b.	 Dword

c.	 Oword

d.	 Double

	 5.	 What is the destination (register) operand size for the lea macro?

	 6.	 What is the name of the assembly language instruction you use to call a
procedure or function?

	 7.	 What is the name of the assembly language instruction you use to return
from a procedure or function?

	 8.	 What does ABI stand for?

	 9.	 In the ARM ABI, where do you return the following function return results?

a.	 8-bit byte values

b.	 16-bit word values

c.	 32-bit integer values

d.	 64-bit integer values

e.	 64-bit pointer values

10.	 Where do you pass the first, second, third, and fourth parameters to an
ARM ABI-compatible function?

A major stumbling block many beginners
encounter when learning assembly language

is the common use of the binary and hexa-
decimal numbering systems. However, the advan-

tages of these systems far outweigh their disadvantages:
they greatly simplify the discussion of other topics,
including bit operations, signed numeric representa-
tion, character codes, and packed data.

This chapter discusses the following:

•	 The binary and hexadecimal numbering systems

•	 Binary data organization (bits, nibbles, bytes, half words, words, and
double words)

•	 Signed and unsigned numbering systems

•	 Arithmetic, logical, shift, and rotate operations on binary values

•	 Bit fields and packed data

2
D A T A R E P R E S E N T A T I O N

A N D O P E R A T I O N S

46 Chapter 2

•	 Floating-point and binary-code decimal formats

•	 Character data

The remainder of this book depends on your understanding of these
basic concepts. If you are already familiar with these terms from other
courses or study, you should still skim this material to be sure you’re not
missing anything, and to learn the instructions this chapter introduces,
before proceeding to the next one. If you are unfamiliar or only partly
familiar with this material, study it carefully before proceeding. Don’t skip
any sections: all the material in this chapter is important!

	 2.1	 Numbering Systems
Most modern computer systems do not use the decimal (base-10) system to
represent numeric values. Instead, they typically use a binary numbering
system. This is because the binary (base-2) numbering system more closely
matches the electronic circuitry used to represent numeric values in a com-
puter system.

2.1.1  Decimal
You’ve been using the decimal numbering system for so long that you probably
take it for granted. When you see a number like 123, you don’t think about the
value 123; rather, you generate a mental image of how many items this value
represents. In reality, however, the number 123 represents the following:

(1 × 102) + (2 × 101) + (3 × 100)

or

100 + 20 + 3

In a decimal positional numbering system, each digit appearing to the left
of the decimal point represents a value from 0 to 9 multiplied by an increas-
ing power of 10. Digits appearing to the right of the decimal point repre-
sent a value from 0 to 9 multiplied by an increasing negative power of 10.
For example, the value 123.456 means this:

(1 × 102) + (2 × 101) + (3 × 100) + (4 × 10−1) + (5 × 10−2) + (6 × 10−3)

or

100 + 20 + 3 + 0.4 + 0.05 + 0.006

2.1.2  Binary
Most modern computer systems operate using binary logic. The computer
uses two voltage levels (usually 0 V and 2.4 to 5 V) to represent values.
These two levels can represent exactly two unique values. These could be

Data Representation and Operations 47

any two values, but they typically represent the values 0 and 1, the two digits
in the binary numbering system.

The binary numbering system works just like the decimal numbering
system, except binary allows only the digits 0 and 1 (rather than 0 to 9) and
uses powers of 2 rather than powers of 10. Therefore, converting a binary
number to decimal is easy. For each 1 in a binary string, add 2n, where n is
the zero-based position of the binary digit. For example, the binary value
110010102 represents the following:

(1 × 27) + (1 × 26) + (0 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (0 × 20)

= 12810 + 6410 + 810 + 210

= 20210

Converting decimal to binary is slightly more difficult. You must find
those powers of 2 that, when added together, produce the decimal result.

A simple way to convert decimal to binary is the even/odd, divide-by-2
algorithm, comprising the following steps:

	 1.	If the number is even, emit a 0. If the number is odd, emit a 1.

	 2.	Divide the number by 2 and throw away any fractional component or
remainder.

	 3.	If the quotient is 0, the algorithm is complete.

	 4.	If the quotient is not 0 and is odd, insert a 1 before the current string;
if the number is even, prefix your binary string with 0.

	 5.	Go back to step 2 and repeat.

Binary numbers, although they have little importance in HLLs, appear
everywhere in assembly language programs, so make sure you’re comfort-
able with them.

In the purest sense, every binary number contains an infinite number
of digits (or bits, which is short for binary digits). For example, you can repre-
sent the number 5 with any of the following:

101

00000101

0000000000101

. . . 000000000000101

Any number of leading-zero digits may precede the binary number
without changing its value. Because the ARM typically works with groups
of 8 bits, this book will zero-extend all binary numbers to a multiple of 4 or
8 bits. Following this convention, you’d represent the number 5 as 01012 or
000001012.

To make larger numbers easier to read, I will often separate each group
of 4 binary bits with an underscore. For example, I will write the binary
value 1010111110110010 as 1010_1111_1011_0010. (Gas does not actually

48 Chapter 2

allow you to insert underscores into the middle of a binary number; I use
this convention just for readability purposes.)

The usual convention is to number each bit as follows: the rightmost bit
in a binary number is bit position 0, and each bit to the left is given the next
successive bit number. An 8-bit binary value uses bits 0 to 7:

X7 X6 X5 X4 X3 X2 X1 X0

A 16-bit binary value uses bit positions 0 to 15:

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

A 32-bit binary value uses bit positions 0 to 31, and so on.
Bit 0 is the low-order (LO) bit; some refer to this as the least significant bit.

The leftmost bit is called the high-order (HO) bit, or the most significant bit. I’ll
refer to the intermediate bits by their respective bit numbers.

In Gas, you can specify binary values as a string of 0 or 1 digits begin-
ning with the sequence 0b—for example, 0b10111111.

2.1.3  Hexadecimal
Unfortunately, binary numbers are verbose: representing the value 20210
requires eight binary digits but only three decimal digits. When dealing
with large values, binary numbers quickly become unwieldy. Since the com-
puter “thinks” in binary, however, using the binary numbering system is
convenient when creating values for the computer to use. Although you can
convert between decimal (which humans tend to be most comfortable with)
and binary, the conversion is not a trivial task. Additionally, many assembly
language constants are easier to read and understand when written in binary
(rather than decimal), so it’s often a better idea to use binary.

The hexadecimal (base-16) numbering system solves many of the prob-
lems inherent in the binary system: hexadecimal numbers are compact, and
it’s simple to convert them to binary, and vice versa. For this reason, most
engineers use the hexadecimal numbering system rather than binary.

Because the radix (base) of a hexadecimal number is 16, each hexa-
decimal digit to the left of the hexadecimal point represents a certain value
multiplied by a successive power of 16. For example, the number 1,23416 is
equal to this:

(1 × 163) + (2 × 162) + (3 × 161) + (4 × 160)

or

4,09610 + 51210 + 4810 + 410 = 4,66010

Each hexadecimal digit can represent one of 16 values from 0 to 1510.
Because there are only 10 decimal digits, you need 6 additional digits
to represent the values in the range 1010 to 1510. Rather than create new
symbols for these digits, the convention is to use the letters A to F. The fol-
lowing are examples of valid hexadecimal numbers:

Data Representation and Operations 49

123416

DEAD16

BEEF16

0AFB16

F00116

D8B416

Because you’ll often need to enter hexadecimal numbers into the com-
puter system, and on most computer systems you cannot enter a subscript to
denote the radix of the associated value, you’ll need a different mechanism
for representing hexadecimal numbers. In this book, I use the following
Gas conventions:

•	 All hexadecimal values have a 0x prefix (for example, 0x123A4 and
0xDEAD).

•	 All binary values begin with a 0b sequence (for example, 0b10010).

•	 Decimal numbers do not have a prefix character.

•	 If the radix is clear from the context, I may drop the 0x or 0b prefix
characters.

Gas also allows the use of octal (base-8) numbers that begin with a
leading 0 and contain only the digits 0 through 7. This book, however, does
not use octal numbers.

Here are examples of valid hexadecimal numbers using Gas notation:

0x1234

0xDEAD

0xBEEF

0xAFB

0xF001

0xD8B4

As you can see, hexadecimal numbers are compact and easy to read. In
addition, you can easily convert between hexadecimal and binary. Table 2-1
provides all the information you need to convert any hexadecimal number
into a binary number, or vice versa.

To convert a hexadecimal number into a binary number, substitute the
corresponding 4 bits for each hexadecimal digit in the number. For exam-
ple, to convert 0xABCD into a binary value, convert each hexadecimal digit
according to Table 2-1: A becomes 1010, B becomes 1011, C becomes 1100,
and D becomes 1101, giving you the binary value 1010_1011_1100_1101.

50 Chapter 2

Table 2-1: Binary/Hexadecimal Conversion

Binary Hexadecimal Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

Converting a binary number into hexadecimal format is almost as easy:

	 1.	Pad the binary number with 0s to make sure that the number contains
a multiple of 4 bits. For example, given the binary number 1011001010,
add 2 bits to the left of the number so that it contains 12 bits:
001011001010.

	 2.	Separate the binary value into groups of 4 bits. In this example, you’d
get 0010_1100_1010.

	 3.	Look up these binary values in Table 2-1 and substitute the appropriate
hexadecimal digits: 0x2CA.

Contrast this with the difficulty of conversion between decimal and
binary, or decimal and hexadecimal!

Because you’ll need to convert between hexadecimal and binary over
and over again, take a few minutes to memorize the conversion table. Even
if you have a calculator that can do the conversion for you, manual conver-
sion is much faster and more convenient once you get the hang of it.

	 2.2	 Numbers vs. Representation
Many people confuse numbers and their representation. Beginning assem-
bly language students often ask, “I have a binary number in the W0 regis-
ter; how do I convert that to a hexadecimal number in the W0 register?”
The answer is, “You don’t.” Although one could make a strong argument

Data Representation and Operations 51

that numbers in memory or in registers are represented in binary, it’s best
to view values in memory or in a register as abstract numeric quantities.
Strings of symbols like 128, 0x80, or 0b10000000 are not different numbers;
they are simply different representations for the quantity that people refer
to as “one hundred twenty-eight.” Inside the computer, a number is a num-
ber regardless of representation; the only time representation matters is
when you input or output the value in a human-readable form.

Pure assembly language has no generic print or write functions you
can call to display numeric quantities as strings on your console. Chapter 9
demonstrates how to write your own procedures to handle this process.
For the time being, the Gas code in this book relies on the C stdlib printf()
function to display numeric values. Consider Listing 2-1, which converts
various decimal values to their hexadecimal equivalents.

// Listing2-1.S
//
// Displays some numeric values on the console

#include "aoaa​.inc"

 .data

// Program title, required by C++ code:

titleStr: .asciz "Listing 2-1"

// Format strings for three calls to printf():

fmtStrI: .asciz "i=%d, converted to hex=%x\n"
fmtStrJ: .asciz "j=%d, converted to hex=%x\n"
fmtStrK: .asciz "k=%d, converted to hex=%x\n"

// Some values to print in decimal and hexadecimal form:

 .align 2 // Be nice and word-align.
i: .dword 1
j: .dword 123
k: .dword 456789
saveLR: .dword 0

 .text
 .align 2 // Code must be word-aligned.
 .extern printf // printf is outside this code.

// Return program title to C++ program:

getTitle:

// Load address of "titleStr" into the X0 register (X0 holds

52 Chapter 2

// the function return result) and return back to the caller:

 lea x0, titleStr
 ret

// Here is the asmMain function:

 .global asmMain
asmMain:
 sub sp, sp, #64 // Magic instruction

// Save LR so we can return to C++ program:

 lea x0, saveLR
 str lr, [x0]

// Call printf three times to print the three values
// i, j, and k:
//
// printf("i=%d, converted to hex=%x\n", i, i);

 1 lea x0, fmtStrI
 vparm2 i // Get parameter 2
 vparm3 i // Get parameter 3
 bl printf

// printf("j=%d, converted to hex=%x\n", j, j);

 2 lea x0, fmtStrJ
 vparm2 j
 vparm3 j
 bl printf

// printf("k=%d, converted to hex=%x\n", k, k);

 3 lea x0, fmtStrK
 vparm2 k
 vparm3 k
 bl printf

// Restore LR so we can return to C++ program:

 lea x0, saveLR
 ldr lr, [x0]

 add sp, sp, #64 // Magic instruction
 ret // Returns to caller

To simulate the C statement

printf("i=%d, converted to hex=%x\n", i, i);

the code must load three parameters 1 into X0, X1, and X2: the address of
the format string (fmtStrI) and the current value held in variable i (passed

Data Representation and Operations 53

twice, in X1 and X2). Note that the vparm2 and vparm3 macros will load their
argument (i) into X1 and X2, respectively. In a similar vein, the code sets
up X0, X1, and X2 to print the values held in the j and k variables 2 3.

This decimal-to-hexadecimal conversion program uses the generic
c.cpp program from Chapter 1, along with the generic build shell script. You
can compile and run this program by using the following commands at the
command line:

$./build Listing2-1
$./Listing2-1
Calling Listing2-1:
i=1, converted to hex=1
j=123, converted to hex=7b
k=456789, converted to hex=6f855
Listing2-1 terminated

As you can see, this program displays the initialized values of i, j, and k
in decimal and hexadecimal form.

	 2.3	 Data Organization
In pure mathematics, a value’s representation may require an arbitrary
number of bits. Computers, on the other hand, generally work with a spe-
cific number of bits. Common collections are single bits, groups of 4 bits
(called nibbles), 8 bits (bytes), 16 bits (half words, or hwords), 32 bits (words),
64 bits (double words, or dwords), 128 bits (quad words, or qwords), and more.
The following subsections describe how the ARM CPU organizes these
groups of bits and the typical values you can represent with them.

2.3.1  Bits
The smallest unit of data on a binary computer is a single bit. With one bit,
you can represent any two distinct items, such as 0 or 1, true or false, and right
or wrong. However, you are not limited to representing binary data types; you
could use a single bit to represent the numbers 723 and 1,245 or, perhaps, the
colors red and blue, or even the color red and the number 3,256. You can rep-
resent any two values with a single bit, but only two values with a single bit.

Different bits can represent different things. For example, you could use
one bit to represent the values 0 and 1, while a different bit could represent
the values true and false, and another bit could represent the two colors red
and blue. You can’t tell what a bit represents just by looking at it, though.

This illustrates the whole idea behind computer data structures: data
is what you define it to be. If you use a bit to represent a Boolean (true/false)
value, then that bit, by your definition, represents true or false. However, you
must be consistent. If you’re using a bit to represent true or false at one point
in your program, you shouldn’t use that value to represent red or blue later.

54 Chapter 2

2.3.2  Nibbles
A nibble is a collection of 4 bits. With a nibble, you can represent up to 16
distinct values, using the 16 possible unique combinations of those 4 bits:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

A nibble takes 4 bits to represent a single digit in binary-coded decimal
(BCD) numbers and hexadecimal numbers. In the case of hexadecimal
numbers, each of the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F
is represented with 4 bits. BCD uses 4 binary bits to represent each of the
10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) used in decimal numbers.

BCD requires 4 bits because you can represent only 8 different values
with 3 bits, and representing 10 values takes at least 4 bits. (The additional
6 values you can represent with 4 bits are never used in BCD representation.)
In fact, any 16 distinct values can be represented with a nibble, though hexa-
decimal and BCD digits are the primary items you’ll represent with a single
nibble.

2.3.3  Bytes
Without question, the most important data structure used by the ARM
microprocessor is the byte, which consists of 8 bits. Main memory and I/O
addresses on the ARM are all byte addresses. This means that the smallest
item that can be individually accessed by an ARM program is an 8-bit value.
To access anything smaller requires that you read the byte containing the
data and eliminate the unwanted bits. The bits in a byte are normally num-
bered from 0 to 7, as shown in Figure 2-1.

7 6 5 4 3 2 1 0

Figure 2-1: Bit numbering

Bit 0 is the LO bit, or least significant bit, and bit 7 is the HO bit, or most
significant bit, of the byte. I’ll refer to any other bit by its number.

Data Representation and Operations 55

A byte contains exactly 2 nibbles, as shown in Figure 2-2.

HO nibble

7 6 5 4 3 2 1 0

LO nibble

Figure 2-2: The 2 nibbles in a byte

Bits 0 to 3 compose the LO nibble, and bits 4 to 7 form the HO nibble.
Because a byte contains exactly 2 nibbles, byte values require two hexa
decimal digits.

Because a byte contains 8 bits, it can represent 28 (256) values. Generally,
assembly programmers use a byte to represent numeric values in the range
0 through 255, signed numbers in the range –128 through +127 (see sec-
tion 2.6, “Signed and Unsigned Numbers,” on page 65), character codes,
and other special data types requiring no more than 256 values. Many data
types have fewer than 256 items, so 8 bits is often sufficient.

Because the ARM is a byte-addressable machine, it’s more efficient to
manipulate a whole byte than an individual bit or nibble. That means it’s
more efficient to use a whole byte to represent data types that require 2 to
256 items, even if fewer than 8 bits would suffice.

Probably the most important use for a byte is holding a character value.
Characters typed at the keyboard, displayed on the screen, and printed
on the printer all have numeric values. To communicate with the rest of
the world, PCs typically use a variant of the American Standard Code for
Information Interchange (ASCII) character set or the Unicode character
set. The ASCII character set has 128 defined codes. (Because the Unicode
character set has far more than 256 characters, a single byte is insufficient
to represent all the Unicode characters; see section 2.17, “Gas Support for
the Unicode Character Set,” on page 102 for more.)

Bytes are also the smallest variable you can create in a Gas program. To
create an arbitrary byte variable, use the .byte data type, as follows:

 .data
byteVar: .byte 0

The byte data type holds any 8-bit value: small signed integers, small
unsigned integers, characters, and the like. It’s up to you to keep track of
the type of object you’ve put into a byte variable.

2.3.4  Half Words
A half word is a group of 16 bits. The bits in a half word are numbered from
0 to 15, as Figure 2-3 shows. As with the byte, bit 0 is the LO bit. For half
words, bit 15 is the HO bit. When referencing any other bit in a half word,
I’ll use its bit position number.

56 Chapter 2

7 6 5 4 3 2 1 089101112131415

Figure 2-3: The bit numbers in a half word

A half word contains exactly 2 bytes, as shown in Figure 2-4. Bits 0 to 7
form the LO byte, and bits 8 to 15 form the HO byte.

7 6 5 4 3 2 1 089101112131415

HO byte LO byte

Figure 2-4: The 2 bytes in a half word

A half word also contains 4 nibbles, as shown in Figure 2-5.

HO nibble

Nibble 3

7 6 5 4 3 2 1 089101112131415

LO nibble

Nibble 0Nibble 1Nibble 2

Figure 2-5: The nibbles in a half word

With 16 bits, you can represent 216 (65,536) values. These could be the
values in the range 0 to 65,535 or, as is usually the case, the signed values
–32,768 to +32,767, or any other data type with no more than 65,536 values.

The two major uses for half words are short signed integer values and
short unsigned integer values. Unsigned numeric values are represented by
the binary value corresponding to the bits in the half word. Signed numeric
values use the two’s complement form for numeric values (see section 2.6,
“Signed and Unsigned Numbers,” on page 65).

As with bytes, you can also create half-word variables in a Gas program.
To create an arbitrary half-word variable, just use the .hword data type, as
follows:

 .data
hw: .hword 0

This defines a 16-bit variable (hw) initialized with 0.

2.3.5  Words
A word quantity is 32 bits long, as shown in Figure 2-6.

31 24 16 8 071523

Figure 2-6: The bit numbers in a word

Data Representation and Operations 57

Naturally, this word can be divided into a HO half word and a LO half
word, 4 bytes, or 8 nibbles, as shown in Figure 2-7.

31 24 16 8 071523

HO half word LO half word

31 24 16 8 071523

Byte 3 Byte 2 Byte 1 Byte 0
HO byte LO byte

31 24 16 8 071523

Nibble 7 Nibble 6 Nibble 5 Nibble 4 Nibble 3 Nibble 2 Nibble 1 Nibble 0
HO nibble LO nibble

Figure 2-7: The nibbles, bytes, and half words in a word

Words can represent all kinds of things. You’ll commonly use them
to represent 32-bit integer values (which allow unsigned numbers in the
range 0 to 4,294,967,295 or signed numbers in the range –2,147,483,648 to
+2,147,483,647); 32-bit floating-point values also fit into a word.

You can create an arbitrary word variable by using the .word declara-
tion, as in the following example:

 .data
w: .word 0

This defines a 32-bit variable (w) initialized with 0.

2.3.6  Double Words and Quad Words
Double-word (64-bit) values are also important because 64-bit integers, point-
ers, and certain floating-point data types require 64 bits. In a similar vein,
quad-word (128-bit) values are important because the ARM Neon instruc-
tion set can manipulate 128-bit values. The aoaa​.inc include file includes the
.dword and .qword macros, which allow Gas to declare 64- and 128-bit values
by using the dword and qword types:

 .data
dw: .dword 0
qw: .qword 0

Without aoaa​.inc, the standard Gas directives are .quad (for dwords)
and .octa (for qwords). This book uses .dword and .qword because they are
more descriptive.

58 Chapter 2

N O T E 	 Technically, Gas does support .dword. It’s the macOS assembler (Clang assembler)
that doesn’t support .dword and requires the macro in the aoaa​.inc header file.

You cannot directly manipulate 128-bit integer objects by using standard
instructions like mov, add, and sub because the standard ARM integer registers
process only 64 bits at a time. In Chapter 8, you’ll see how to manipulate
these extended-precision values; Chapter 11 describes how to directly manipu-
late qword values by using SIMD instructions.

	 2.4	 Logical Operations on Bits
Although you can represent numeric values with bytes, half words, words,
and so on, these are also groups of bits that you can manipulate at the bit
level. This section describes the operations on individual bits and how to
operate on these bits in larger data structures. You will typically do four log-
ical operations (Boolean functions) on hexadecimal and binary numbers:
AND, OR, XOR (exclusive-OR), and NOT.

2.4.1  AND
The AND operation is dyadic, meaning it accepts exactly two operands of
individual binary bits, as shown here:

0 and 0 = 0
0 and 1 = 0
1 and 0 = 0
1 and 1 = 1

Many texts call the AND operation a binary operation. The term dyadic
means the same thing and avoids confusion with the binary numbering
system.

A truth table, which takes the form shown in Table 2-2, is a compact way
to represent the AND operation.

Table 2-2: AND Truth Table

AND 0 1

0 0 0

1 0 1

Truth tables work just like the multiplication tables you may have
encountered in school. The values in the left column correspond to the
left operand of the AND operation. The values in the first row correspond
to the right operand of the AND operation. The value located at the inter-
section of the row and column (for a particular pair of input values) is the
result of ANDing those two values together.

Data Representation and Operations 59

In English, the AND operation is, “If the first operand is 1 and the sec-
ond operand is 1, the result is 1; otherwise, the result is 0.” You could also
state this as, “If either or both operands are 0, the result is 0.”

You can use the AND operation to force a 0 result: if one of the oper-
ands is 0, the result is always 0 regardless of the other operand. In Table 2-2,
for example, the row labeled with a 0 input contains only 0s, and the col-
umn labeled with a 0 contains only 0s. Conversely, if one operand contains
a 1, the result is exactly the value of the second operand. These results of
the AND operation are important, particularly when you want to force bits
to 0. This chapter investigates these uses of the AND operation in section 2.5,
“Logical Operations on Binary Numbers and Bit Strings,” on the next page.

2.4.2  OR
The OR operation, which is also dyadic, is defined as follows:

0 or 0 = 0
0 or 1 = 1
1 or 0 = 1
1 or 1 = 1

Table 2-3 shows the truth table for the OR operation.

Table 2-3: OR Truth Table

OR 0 1

0 0 1

1 1 1

Colloquially, the OR operation is, “If the first operand or the second
operand (or both) is 1, the result is 1; otherwise, the result is 0.” This is also
known as the inclusive-OR operation.

If one of the operands to the OR operation is a 1, the result is always 1
regardless of the second operand’s value. If one operand is 0, the result is
always the value of the second operand. As with the AND operation, this is
an important side effect of the OR operation that will prove quite useful.

There is a difference between this form of the inclusive-OR operation
and the standard English meaning. Consider the sentence “I am going
to the store, or I am going to the park.” Such a statement implies that the
speaker is going to the store or to the park, but not to both places. This col-
loquial use of or is analogous not to the inclusive-OR but to the exclusive-OR
operation.

2.4.3  XOR
The XOR (exclusive-OR) operation is also dyadic. Its definition is as follows:

0 xor 0 = 0
0 xor 1 = 1

60 Chapter 2

1 xor 0 = 1
1 xor 1 = 0

Table 2-4 shows the truth table for the XOR operation.

Table 2-4: XOR Truth Table

XOR 0 1

0 0 1

1 1 0

In English, the XOR operation is, “If the first operand or the second
operand, but not both, is 1, the result is 1; otherwise, the result is 0.”

If one of the operands to the exclusive-OR operation is a 1, the result
is always the inverse of the other operand; that is, if one operand is 1, the
result is 0 if the other operand is 1, and the result is 1 if the other operand
is 0. If the first operand contains a 0, the result is exactly the value of the
second operand. This feature lets you selectively invert bits in a bit string.

2.4.4  NOT
The NOT operation is monadic, meaning it accepts only one operand:

not 0 = 1
not 1 = 0

Table 2-5 shows the truth table for the NOT operation.

Table 2-5: NOT Truth Table

NOT 0 1

1 0

The NOT operation inverts the value of the input bit.

	 2.5	� Logical Operations on Binary Numbers
and Bit Strings
The previous section defined the logical functions for single-bit operands.
Because the ARM uses groups of 8, 16, 32, 64, or more bits, this section
extends the definition of these functions to deal with more than 2 bits.

Logical functions on the ARM operate on a bit-by-bit (or bitwise) basis.
Given two values, these functions operate on bit 0 of each value, produc-
ing bit 0 of the result; then they operate on bit 1 of the input values, pro-
ducing bit 1 of the result, and so on. For example, if you want to compute
the AND of the following two 8-bit numbers, you would perform the AND
operation on each column independently of the others:

Data Representation and Operations 61

0b1011_0101
0b1110_1110

0b1010_0100

You may apply this bit-by-bit calculation to the other logical functions
as well. To perform a logical operation on two hexadecimal numbers, first
convert them to binary.

The ability to force bits to 0 or 1 by using the AND or OR operations
and the ability to invert bits by using the XOR operation are very important
when working with strings of bits (for example, binary numbers). These
operations let you selectively manipulate certain bits within a bit string
while leaving other bits unaffected.

For example, if you have an 8-bit binary value X and want to guarantee
that bits 4 to 7 contain 0s, you could AND the value X with the binary value
0000_1111. This bitwise AND operation would force the HO 4 bits to 0 and
pass the LO 4 bits of X unchanged. Likewise, you could force the LO bit of
X to 1 and invert bit 2 of X by ORing X with 0000_0001 and then XORing
X with 0000_0100.

Using the AND, OR, and XOR operations to manipulate bit strings in
this fashion is known as masking bit strings, because you can use certain
values (1 for AND, 0 for OR/XOR) to mask out or mask in certain bits from
the operation when forcing bits to 0, 1, or their inverse. The term masking
comes from painting. Painters use tape (masking tape) and paper to cover
(mask out) those portions of an object they want to protect while painting.
In a similar sense, programmers use 1s (with the AND operation) in bit
positions they want to protect when forcing bits to 0, and they use 0s (with
the OR operation) to mask bit positions they want to protect when forcing
bits to 1.

The ARM-64 CPUs support five instructions that apply these bitwise
logical operations to their operands: and, ands, orr, eor, and mvn. The and,
ands, orr, and eor instructions use the same syntax as the add and sub instruc-
tions you learned about in Chapter 1:

and dest, sourceleft, sourceright
ands dest, sourceleft, sourceright // Affects the flags
orr dest, sourceleft, sourceright
eor dest, sourceleft, sourceright // XOR operation

These operands have the same limitations as the add operands. Speci
fically, the sourceleft operand has to be a register operand, the sourceright
operand must be a register or a constant, and the dest operand must be a
register. The operands must also be the same size. You’ll see extensions to
this syntax in section 2.19, “Operand2,” on page 106.

The orr and eor instructions do not have versions with the s suffix.
You’ll have to work around this bizarre limitation in the instruction set if
you would like to test the flags after these instructions.

62 Chapter 2

The immediate constant (sourceright operand) has a completely different
set of restrictions than the immediate constants for add and sub. For more
information on what constitutes legal immediate constants, see section 2.19,
“Operand2,” on page 106.

These instructions compute the obvious bitwise logical operation via
the following equation:

dest = sourceleft operator sourceright

The ARM doesn’t have an actual not instruction. Instead, a variant of
the mov instruction does the honors: mvn (move and not). This instruction
takes the following form:

mvn dest, source

Note that this instruction does not provide a form with an s suffix that
updates the condition code flags after its execution.

This instruction computes the following result:

dest = not(source)

The operands must both be registers.
The program in Listing 2-2 inputs two hexadecimal values from the

user and calculates their logical AND, OR, XOR, and NOT.

// Listing2-2.S
//
// Demonstrate AND, OR, XOR, and NOT operations.

#include "aoaa​.inc"

 .data
leftOp: .dword 0xf0f0f0f
rightOp1: .dword 0xf0f0f0f0
rightOp2: .dword 0x12345678
result: .dword 0
saveLR: .dword 0

titleStr: .asciz "Listing 2-2"

fmtStr1: .asciz "%lx AND %lx = %lx\n"
fmtStr2: .asciz "%lx OR %lx = %lx\n"
fmtStr3: .asciz "%lx XOR %lx = %lx\n"
fmtStr4: .asciz "NOT %lx = %lx\n"

 .text
 .align 2 // Make code word-aligned.

 .extern printf

// Return program title to C++ program:

Data Representation and Operations 63

 .global getTitle
getTitle:

// Load address of "titleStr" into the X0 register (X0 holds the
// function return result) and return back to the caller:

 lea x0, titleStr
 ret

// Here is the "asmMain" function.

 .global asmMain
asmMain:

// "Magic" instruction offered without explanation at this point:

 sub sp, sp, 64

// Save LR so we can return to C++ code:

 lea x0, saveLR
 str lr, [x0]

// Demonstrate the AND operation:

 1 lea x0, leftOp
 ldr x1, [x0]
 lea x0, rightOp1
 ldr x2, [x0]
 and x3, x1, x2 // Compute left AND right.
 lea x0, result
 str x3, [x0]

 lea x0, fmtStr1 // Print result.
 vparm2 leftOp
 vparm3 rightOp1
 vparm4 result
 bl printf

// Demonstrate the OR operation:

 2 lea x0, leftOp
 ldr x1, [x0]
 lea x0, rightOp1
 ldr x2, [x0]
 orr x3, x1, x2 // Compute left OR right.
 lea x0, result
 str x3, [x0]

 lea x0, fmtStr2 // Print result.
 vparm2 leftOp
 vparm3 rightOp1
 vparm4 result
 bl printf

64 Chapter 2

// Demonstrate the XOR operation:

 3 lea x0, leftOp
 ldr x1, [x0]
 lea x0, rightOp1
 ldr x2, [x0]
 eor x3, x1, x2 // Compute left XOR right.
 lea x0, result
 str x3, [x0]

 lea x0, fmtStr3 // Print result.
 vparm2 leftOp
 vparm3 rightOp1
 vparm4 result
 bl printf

// Demonstrate the NOT instruction:

 4 lea x0, leftOp
 ldr x1, [x0]
 mvn w1, w1 // W1 = not W1 (32 bits)
 lea x0, result
 str x1, [x0]

 lea x0, fmtStr4 // Print result.
 vparm2 leftOp
 vparm3 result
 bl printf

 5 lea x0, rightOp1
 ldr x1, [x0]
 mvn w1, w1 // W1 = not W1 (32 bits)
 lea x0, result
 str x1, [x0]

 lea x0, fmtStr4 // Print result.
 vparm2 rightOp1
 vparm3 result
 bl printf

 6 lea x0, rightOp2
 ldr x1, [x0]
 mvn w1, w1 // W1 = not W1
 lea x0, result
 str x1, [x0]

 lea x0, fmtStr4 // Print result.
 vparm2 rightOp2
 vparm3 result
 bl printf

// Another "magic" instruction that undoes the effect of
// the previous one before this procedure returns to its
// caller:

Data Representation and Operations 65

 add sp, sp, #64

// Restore LR so we can return to C++ code:

 lea x0, saveLR
 ldr lr, [x0]
 ret // Returns to caller

The code computes the logical AND 1, OR 2, and XOR 3 of leftOp
and rightOp1. It then prints the result. The code next computes the NOT of
leftOp 4, rightOp1 5, and rightOp2 6 and prints their results.

Here’s the build command and output for the program in Listing 2-2:

$./build Listing2-2
$./Listing2-2
Calling Listing2-2:
f0f0f0f AND f0f0f0f0 = 0
f0f0f0f OR f0f0f0f0 = ffffffff
f0f0f0f XOR f0f0f0f0 = ffffffff
NOT f0f0f0f = f0f0f0f0
NOT f0f0f0f0 = f0f0f0f
NOT 12345678 = edcba987
Listing2-2 terminated

As you can see, the AND operation clears bits, the OR operation sets
bits, and the XOR and NOT operations invert bits.

	 2.6	 Signed and Unsigned Numbers
Thus far, this chapter has treated binary numbers as unsigned values. The
binary number 0 . . . 00000 represents 0, 0 . . . 00001 represents 1, 0 . . .
00010 represents 2, and so on toward infinity. With n bits, you can represent
2n unsigned numbers.

What about negative numbers? If you assign half of the possible combi-
nations to the negative values, and half to the positive values and 0, with n
bits you can represent the signed values in the range –2n–1 to +2n–1 – 1. This
means you can represent the negative values –128 to –1 and the nonnega-
tive values 0 to 127 with a single 8-bit byte. With a 16-bit half word, you can
represent values in the range –32,768 to +32,767. With a 32-bit word, you
can represent values in the range –2,147,483,648 to +2,147,483,647.

In mathematics and computer science, the complement method encodes
negative and nonnegative (positive plus zero) numbers into two equal sets
in such a way that they can use the same algorithm or hardware to perform
addition and produce the correct result regardless of the sign.

The ARM microprocessor uses two’s complement notation to represent
signed integers. In this system, the HO bit of a number is a sign bit: the
integers are divided into two equal sets. If the sign bit is 0, the number is
positive (or zero); if the sign bit is 1, the number is negative (taking a com-
plement form, which I’ll describe in a moment).

66 Chapter 2

Here are some examples of 16-bit positive and negative numbers:

0x8000 is negative because the HO bit is 1.

0x100 is positive because the HO bit is 0.

0x7FFF is positive.

0xFFFF is negative.

0xFFF is positive.

If the HO bit is 0, the number is positive (or zero) and uses the stan-
dard binary format. If the HO bit is 1, the number is negative and uses the
two’s complement form: the magic form that supports addition of negative
and nonnegative numbers with no special hardware.

You convert a positive number to its negative two’s complement form
with the following algorithm steps:

	 1.	Invert all the bits in the number; that is, apply the NOT function.

	 2.	Add 1 to the inverted result and ignore any carry out of the HO bit.

This produces a bit pattern that satisfies the mathematical definition
of the complement form. In particular, adding negative and nonnegative
numbers using this form produces the expected result.

For example, to compute the 8-bit equivalent of –5:

	 1.	Write 5 in binary: 0000_0101.

	 2.	Invert all the bits: 1111_1010.

	 3.	Add 1 to obtain the result: 1111_1011.

If you take –5 and perform the two’s complement operation on it, you
get your original value, 0000_0101, back again:

	 1.	Take the two’s complement for –5: 1111_1011.

	 2.	Invert all the bits: 0000_0100.

	 3.	Add 1 to obtain the result 0000_0101.

If you add +5 and –5 together (ignoring any carry out of the HO bit),
you get the expected result of 0:

 0b1111_1011 Take the two's complement for -5.
 + 0b0000_0101 Invert all the bits and add 1.

(1) 0b0000_0000 Sum is zero, if you ignore carry.

The following examples provide some positive and negative 16-bit
signed values:

0x7FFF: +32,767, the largest 16-bit positive number

0x4000: +16,384

0x8000: –32,768, the smallest 16-bit negative number

Data Representation and Operations 67

To convert the preceding numbers to their negative counterpart (that
is, to negate them), do the following:

0x7FFF: 0b0111_1111_1111_1111 +32,767
 0b1000_0000_0000_0000 Invert all the bits (8000h).
 0b1000_0000_0000_0001 Add 1 (8001h or -32,767).

x04000: 0b0100_0000_0000_0000 16,384
 0b1011_1111_1111_1111 Invert all the bits (0BFFFh).
 0b1100_0000_0000_0000 Add 1 (0C000h or -16,384).

0x8000: 0b1000_0000_0000_0000 -32,768
 0b0111_1111_1111_1111 Invert all the bits (7FFFh).
 0b1000_0000_0000_0000 Add 1 (8000h or -32,768).

0x8000 inverted becomes 0x7FFF. After adding 1, you obtain 0x8000!
Wait, what’s going on here? –(–32,768) is –32,768? Of course not. But the
value +32,768 cannot be represented with a 16-bit signed number, so you
cannot negate the smallest negative value.

Usually, you won’t need to perform the two’s complement operation by
hand. The ARM microprocessor provides an instruction, neg (negate), that
performs this operation for you:

neg dest, source
negs dest, source // Sets condition code flags

This instruction computes dest = -source, and the operands must be
registers. Because this is a signed integer operation, it only makes sense to
operate on signed integer values. Listing 2-3 demonstrates the two’s comple-
ment operation and the neg instruction on signed 32-bit integer values.

// Listing2-3.S
//
// Demonstrates two's complement operation and input of
// numeric values

#include "aoaa​.inc"

 .equ maxLen, 256

 .data
titleStr: .asciz "Listing 2-3"

prompt1: .asciz "Enter an integer between 0 and 127:"
fmtStr1: .asciz "Value in hexadecimal: %x\n"
fmtStr2: .asciz "Invert all the bits (hexadecimal): %x\n"
fmtStr3: .asciz "Add 1 (hexadecimal): %x\n"
fmtStr4: .asciz "Output as signed integer: %d\n"
fmtStr5: .ascii "Negate again and output as signed integer:"
 .asciz " %d\n"

fmtStr6: .asciz "Using neg instruction: %d\n"

68 Chapter 2

intValue: .dword 0
saveLR: .dword 0

// The following reserves 256 bytes of storage to hold a string
// read from the user.

1 input: .space maxLen, 0

 .text
 .align 2
 .extern printf
 .extern atoi
 2 .extern readLine

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, titleStr
 ret

// Here is the asmMain function:

 .global asmMain
asmMain:

// "Magic" instruction offered without explanation at this point:

 sub sp, sp, #128

// Save LR so we can return to C++ program:

 lea x0, saveLR
 str lr, [x0]

// Read an unsigned integer from the user: this code will blindly
// assume that the user's input was correct. The atoi function
// returns zero if there was some sort of error on the user
// input. Later chapters in AoAA will describe how to check for
// errors from the user.

 lea x0, prompt1
 bl printf

 lea x0, input
 mov x1, #maxLen
 bl readLine

// Call C stdlib strtol function:
//
// i = strtol(str, NULL, 10)

Data Representation and Operations 69

 3 lea x0, input
 mov x1, xzr
 mov x2, #10
 bl strtol
 lea x1, intValue
 str x0, [x1]

// Print the input value (in decimal) as a hexadecimal number:

 lea x0, fmtStr1
 vparm2 intValue
 bl printf

// Perform the two's complement operation on the input number.
// Begin by inverting all the bits:

 lea x1, intValue
 ldr x0, [x1]
 mvn x0, x0 // Not X0
 str x0, [x1] // Store back into intValue.
 lea x0, fmtStr2
 vparm2 intValue
 bl printf

// Invert all the bits and add 1 (inverted value is in intValue):

 lea x0, intValue
 ldr x1, [x0]
 add x1, x1, #1
 str x1, [x0] // Store back into intValue.
 lea x0, fmtStr3
 vparm2 intValue
 bl printf

 lea x0, fmtStr4 // Output as integer rather
 vparm2 intValue // than hexadecimal.
 bl printf

// Negate the value and print as a signed integer. Note that
// intValue already contains the negated value, so this code
// will print the original value:

 lea x0, intValue
 ldr x1, [x0]
 mvn x1, x1
 add x1, x1, #1
 str x1, [x0]
 lea x0, fmtStr5
 vparm2 intValue
 bl printf

// Negate the value using the neg instruction:

 lea x0, intValue
 ldr x1, [x0]

70 Chapter 2

 neg x1, x1
 str x1, [x0]
 lea x0, fmtStr6
 vparm2 intValue
 bl printf

// Another "magic" instruction that undoes the effect of the
// previous one before this procedure returns to its caller:

 lea x0, saveLR
 ldr lr, [x0]
 add sp, sp, #128
 ret // Returns to caller

The .space directive 1 is new in this chapter. This directive reserves a
buffer (array of bytes). The first operand specifies the number of bytes to
reserve, and the second operand specifies the value to assign to each byte
in the buffer. This particular directive sets aside 256 bytes to hold a line of
text to be input by the user. We’ll discuss arrays and memory allocation for
arrays further in Chapter 4.

The readLine function 2 is supplied by the C++ code in the c.cpp source
file. This function expects two parameters: the address of a buffer in the X0
register and a maximum input count in the X1 register (including room for
a zero-terminating byte). When called, this function will read a line of text
from the standard input device and place those characters in the specified
buffer (zero-terminating, and truncating if the input is greater than the
value passed in X1).

The strtol function 3 is a C stdlib function that will convert a string of
characters, presumably containing numeric digits, into long integer form
(64 bits). This function expects three arguments: X0 contains the address
of a buffer (containing the string to convert); X1 points at the end of the
numeric string, or is ignored if it contains NULL (0); and X2 contains the
radix (base) for the conversion. The function returns the converted value
in the X0 register.

Here’s the build command and program output for Listing 2-3 (I sup-
plied 123 as the input for this particular run of the program):

$./build Listing2-3
$./Listing2-3
Calling Listing2-3:
Enter an integer between 0 and 127:123
Value in hexadecimal: 7b
Invert all the bits (hexadecimal): ffffff84
Add 1 (hexadecimal): ffffff85
Output as signed integer: -123
Negate again and output as signed integer: 123
Using neg instruction: -123
Listing2-3 terminated

As you can see, this program reads an integer value in decimal format
from the user, inverts the bits, adds 1 (the two’s complement operation),
and then displays the result.

Data Representation and Operations 71

	 2.7	 Sign Extension and Zero Extension
Converting a small two’s complement value to a larger number of bits can
be accomplished via sign extension operations.

To extend a signed value from a certain number of bits to a greater
number of bits, copy the sign bit into all the additional bits in the new
format. For example, to sign-extend an 8-bit number to a 16-bit number,
copy bit 7 of the 8-bit number into bits 8 to 15 of the 16-bit number. To
sign-extend a 16-bit half word to a word, copy bit 15 into bits 16 to 31 of the
word. Likewise, to sign-extend a 32-bit word into a 64-bit double word, copy
bit 31 from the word through the upper 32 bits of the double word.

You must use sign extension when manipulating signed values of vary-
ing lengths. For example, to add a signed byte quantity to a word quantity,
you must sign-extend the byte quantity to a word before adding the two
values. Other operations (multiplication and division, in particular) may
require a sign extension to 32 bits. Table 2-6 provides several examples of
sign extension.

Table 2-6: Examples of Sign Extension

8 bits 16 bits 32 bits

0x80 0xFF80 0xFFFFFF80

0x28 0x0028 0x00000028

0x9A 0xFF9A 0xFFFFFF9A

0x7F 0x007F 0x0000007F

— 0x1020 0x00001020

— 0x8086 0xFFFF8086

To extend an unsigned value to a larger one, you must zero-extend the
value. Zero extension is easy—just store a zero into the HO byte(s) of the
larger operand. For example, to zero-extend the 8-bit value 0x82 to 16 bits,
prepend a zero to the HO byte, yielding 0x0082. Table 2-7 provides several
zero-extension examples.

Table 2-7: Examples of Zero Extension

8 bits 16 bits 32 bits

0x80 0x0080 0x00000080

0x28 0x0028 0x00000028

0x9A 0x009A 0x0000009A

0x7F 0x007F 0x0000007F

— 0x1020 0x00001020

— 0x8086 0x00008086

72 Chapter 2

You can zero-extend to double or quad words by using this same
approach.

	 2.8	 Sign Contraction and Saturation
Sign contraction, converting a value with a certain number of bits to the iden-
tical value with a fewer number of bits, is a little more difficult. You cannot
always convert a given n-bit number to an m -bit number if m < n. For exam-
ple, consider the value –448. As a 16-bit signed number, its hexadecimal
representation is 0xFE40. The magnitude of this number is too large for an
8-bit value, so you cannot sign-contract it to 8 bits; doing so would create an
overflow condition.

To properly sign-contract a value, the HO bits to discard must all con-
tain either 0 or 1, and the HO bit of your resulting value must match every
bit you’ve removed from the number. Here are some examples (16 bits to
8 bits):

0xFF80 can be sign-contracted to 0x80.

0x0040 can be sign-contracted to 0x40.

0xFE40 cannot be sign-contracted to 8 bits.

0x0100 cannot be sign-contracted to 8 bits.

If you must convert a larger object to a smaller object, and you’re will-
ing to live with loss of precision, you can use saturation. To convert a value
via saturation, copy the larger value to the smaller value if it is not outside
the range of the smaller object. If the larger value is outside the range of
the smaller value, clip the value by setting it to the largest (or smallest) value
within the range of the smaller object.

For example, when converting a 16-bit signed integer to an 8-bit signed
integer, if the 16-bit value is in the range –128 to +127, you copy the LO byte
of the 16-bit object to the 8-bit object. If the 16-bit signed value is greater
than +127, you clip the value to +127 and store +127 into the 8-bit object.
Likewise, if the value is less than –128, you clip the final 8-bit object to –128.

Although clipping the value to the limits of the smaller object results
in loss of precision, this is sometimes acceptable because the alternative is
to raise an exception or otherwise reject the calculation. For many applica-
tions, such as audio or video processing, the clipped result is still recogniz-
able, so the conversion is a reasonable choice.

	 2.9	 Loading and Storing Byte and Half-Word Values
Memory on the ARM is byte-addressable. Up to this point, however, all
loads and stores in this book have been either word or dword operations
(determined by the ldr/str register’s size). Fear not: the ARM CPU provides
instructions for loading and storing bytes, half words, words, double words,
and even quad words.

Data Representation and Operations 73

The generic ldr instruction takes the following forms:

ldr reg, mem
ldrb reg32, mem
ldrsb reg, mem
ldrh reg32, mem
ldrsh reg, mem
ldrsw reg64, mem

The reg32 operands can be only 32-bit registers, and the reg64 operand
can be only a 64-bit register. The reg (no subscript) operands can be 32- or
64-bit registers.

The ldrb and ldrsb instructions load a byte from memory into the
destination register. Since the register is always 32 or 64 bits wide, the byte
from memory must be extended in some fashion when it is loaded into
the register. The ldrb instruction zero-extends the byte from memory
into the register. The ldrsb instruction sign-extends the memory byte into
the register. Zero extension works only with 32-bit registers, but the ldrb
and ldrh instructions will automatically zero out the HO 32 bits of the
corresponding 64-bit register. If you sign-extend a byte or half word into a
32-bit register, this will zero out the HO 32 bits of the corresponding 64-bit
register. Specify a 64-bit register if you want to sign-extend the byte or half
word throughout the 64-bit register.

The ldrh and ldrsh instructions similarly load and extend a half-word
value from memory by using zero extension (ldrh) and sign extension
(ldrsh). As before, the ldrh instruction accepts a 32-bit register, but it will
automatically zero-extend throughout the full 64 bits of the register.

The ldrsw instruction will fetch a 32-bit signed integer from memory
and sign-extend it into the 64-bit register specified as the destination.
No explicit instruction zero-extends from 32 to 64 bits; the standard ldr
instruction, with a 32-bit register operand, will automatically do this.

Note that mem operands consisting only of a label (PC-relative address-
ing) are valid only for the ldr and ldrsw instructions. The other instructions
allow only register-based addressing modes (for example, [X0]).

The ldr{size} instructions work well for loading and extending byte,
half-word, and word values from memory. If the value to extend is sitting in
another register, you don’t want to have to store that register in memory, so
you can extend the value into a different register. Fortunately, the ARM pro-
vides a set of instructions, sxtb, sxth, and sxtw, specifically for this situation:

sxtb regdest, regsrc // Sign-extends LO byte of regsrc
sxth regdest, regsrc // Sign-extends LO half word of regsrc
sxtw regdest, regsrc // Sign-extends LO word of regsrc

The sxtw instruction requires a 64-bit destination register. The sxtb, sxth,
and sxtw instructions require 32-bit source registers, regardless of the desti-
nation register size.

74 Chapter 2

The ARM does not provide any explicit instructions for zero-extending
one register into another. However, you can use some tricks to achieve the
same result. Whenever you move data from one register into a 32-bit regis-
ter, the ARM automatically zeros out the HO 32 bits of the corresponding
destination 64-bit register. You can use this behavior to zero-extend any
smaller value to a larger value.

The following instruction copies Wm into Wn and clears the HO 32 bits
of Xn in the process:

mov wn, wm // Zero-extends 32-bit Wm into Xn

The following instruction ANDs the value in Wm with 0xFFFF and then
stores the result into Wn, zero-extending throughout the HO bits of Xn:

and wn, wm, #0xFFFF // Zero-extends 16 bits to 64

And, finally, the following instruction zero-extends the LO byte of Wm
through Xn:

and wn, wm, #0xFF // Zero-extends 8 bits to 64

Storing bytes and half words to memory is much simpler than loading.
The ARM doesn’t support contraction or saturation while storing to mem-
ory. Therefore, the byte and half-word store instructions take the following
two forms:

strb reg32, mem
strh reg32, mem

The strb instruction stores the LO byte of the specified register to mem-
ory. The strh instruction stores the LO half word of the register to memory.
The register must be a 32-bit register (if you want to store the LO byte or
half word of a 64-bit register, simply specify the 32-bit register instead; this
does the same thing). Note that mem must be a register-based addressing
mode (these instructions do not allow the PC-relative addressing mode).

	 2.10	 Control-Transfer Instructions
The assembly language examples thus far have limped along without mak-
ing use of conditional execution, or the ability to make decisions while execut-
ing code. Indeed, except for the bl and ret instructions, I haven’t covered
any ways to affect the straight-line execution of assembly code. However, to
provide meaningful examples for the remainder of this book, you’ll soon
need the ability to conditionally execute sections of code. Taking a brief
detour from load and store instructions, this section provides a brief intro-
duction to the subject of conditional execution and transferring control to
other sections of your program.

Data Representation and Operations 75

2.10.1  Branch
Perhaps the best place to start is with a discussion of the ARM uncondi-
tional control-transfer instruction: the b instruction. The b instruction takes
the form

b statementLabel

where statementLabel is an identifier attached to a machine instruction in
your .text section. The b instruction immediately transfers control to the
statement prefaced by the label. This is semantically equivalent to a goto
statement in an HLL.

Here is an example of a statement label in front of a mov instruction:

stmtLbl: mov x0, #55

Like all Gas symbols, statement labels have an address associated with
them: the memory address of the machine instruction following the label.

Statement labels don’t have to be on the same physical source line as a
machine instruction. Consider the following example:

anotherLabel:
 mov x0, #55

This example is semantically equivalent to the previous one. The value
(address) bound to anotherLabel is the address of the machine instruction
following the label. In this case, it’s still the mov instruction, even though
that mov instruction appears on the next line (it still follows the label with-
out any other Gas statements that would generate code occurring between
the label and the mov statement).

B IS FOR BA D

The letter b is an incredibly bad choice for an instruction mnemonic. The fact
that it looks like a single-letter variable name, most of the time, makes reading
both code and this book more difficult. For a while, I considered creating the
following CPP macro to allow me to use bra rather than b in this book:

#define bra b

Ultimately, my concern that some people would prefer to use the “official” mne-
monic prevented me from doing this. However, you can use this trick on your
own to write more readable code.

The ARM supports a special version of the conditional branch: b.al (branch
always). This instruction is an unconditional branch to the target location. The
main drawback to using b.al is that it is limited to a ±1MB range (like the other

(continued)

76 Chapter 2

conditional branches), while the b instruction supports a ±128MB range. How
ever, the ±1MB range is sufficient for most cases. This book favors using the b.al
mnemonic because it is more readable. If you prefer, feel free to substitute b.al
for b in your own code (or, better yet, use the bra macro I described).

Technically, you could also jump to a procedure label instead of a state-
ment label. However, the b instruction does not set up a return address; if
the procedure executes a ret instruction, the return location may be unde-
fined. Chapter 5 explores return addresses in greater detail.

Because b is a poor name for an instruction mnemonic (as we just
discussed in “B Is for Bad”), this book will use the b.al instruction when
branching to code within the current source file and reserve b for those
rare instances when branching to code outside a ±1MB range.

2.10.2  Instructions That Affect the Condition Code Flags
When presenting the add, sub, and, orr, eor, and neg instructions, I pointed
out that they typically take two forms:

instr operands
instrs operands // Only adds, subs, ands, and negs

The form with the s suffix (adds, for example) will update the condi-
tion code flags in the PSTATE register after the instruction completes. For
example, the adds and subs instructions will do the following:

•	 Set the carry flag if an unsigned overflow occurs during the arithmetic
operation and clear it otherwise.

•	 Set the overflow flag if a signed overflow occurs.

•	 Set the zero flag if the operation produces a zero result.

•	 Set the negative (sign) flag if the operation produces a negative result
(HO bit is set).

While not all instructions support the s suffix, many that perform some
sort of calculation will allow this suffix. By allowing you to select which
instructions affect the flags, the ARM CPU allows you to preserve the con-
dition codes across the execution of some instructions whose effect on the
flags you want to ignore.

As their name suggests, these condition codes allow you to test for cer-
tain conditions and conditionally execute code based on those tests. The
next section describes how you can test the condition code flags and make
decisions based on their settings.

Data Representation and Operations 77

2.10.3  Conditional Branch
Although the b.al/b instruction is indispensable in assembly language
programs, it doesn’t provide any ability to conditionally execute sections of
code—hence the name unconditional branch. Fortunately, the ARM CPUs
provide a wide array of conditional branch instructions that allow conditional
execution of code.

These instructions test the condition code bits in the PSTATE register
to determine whether a branch should be taken. There are four condition
code bits in the PSTATE register that these conditional jump instructions
test: the carry, sign, overflow, and zero flags.

The ARM CPUs provide eight instructions that test each of these four
flags, as shown in Table 2-8. The basic operation of the conditional jump
instructions is to test a flag to see whether it is set (1) or clear (0) and
branch to a target label if the test succeeds. If the test fails, the program
continues execution with the next instruction following the conditional
jump instruction.

Table 2-8: Conditional Branch Instructions That Test the Condition Code Flags

Instruction Explanation

bcs label Branch if carry is set. Jump to label if the carry flag is set (1); control
falls through to the next instruction if the carry is clear (0).

bcc label Branch if carry is clear. Jump to label if the carry flag is clear (0);
fall through if the carry is set (1).

bvs label Branch if overflow set. Jump to label if the overflow flag is set (1);
fall through if the overflow is clear (0).

bvc label Branch if overflow clear. Jump to label if the overflow flag is clear (0);
fall through if the overflow is set (1).

bmi label Branch if minus. Jump to label if the negative (sign) flag is set (1);
fall through if the sign is clear (0).

bpl label Branch if positive (or zero). Jump to label if the negative flag is clear (0);
fall through if the sign is set (1).

beq label Branch if equal. Jump to label if the zero flag is set (1); fall through
if zero is clear (0).

bne label Branch if not equal. Jump to label if the zero flag is clear (0); fall
through if zero is set (1).

For historical reasons, Gas also allows conditional branch mnemonics
of the form b.condition (for example, b.cs, b.cc, b.vs, and b.vc). This form
is based on the 32-bit ARM instruction set that allowed conditional execu-
tion of most data-processing instructions by using a “dot condition” suffix.
While the 64-bit ARM instruction set no longer supports these conditional
instructions, it does allow the dot condition syntax for the branch instruc-
tion. Since it’s easier to type the conditional branches without the period,
most people use that form when writing 64-bit ARM assembly language
with Gas. Gas under Linux does not seem to support bal but does support

78 Chapter 2

b.al, and the macOS assembler seems to support b.al just fine. That’s why
this book uses b.al for unconditional branches.

To use a conditional branch instruction, you must first execute an
instruction that affects one or more of the condition code flags. For exam-
ple, an unsigned arithmetic overflow will set the carry flag; if overflow does
not occur, the carry flag will be clear. Therefore, you could use the bcs
and bcc instructions after an adds instruction to see whether an unsigned
overflow occurred during the calculation. For example, the following code
checks for unsigned overflow by using bcs:

 lea x0, int32Var
 ldr w0, [x0]
 lea x1, anotherVar
 ldr w1, [x1]
 adds w0, w0, w1
 bcs overflowOccured

// Continue down here if the addition did not
// produce an overflow.

 .
 .
 .

overflowOccured:

// Execute this code if the sum of int32Var and anotherVar
// does not fit into 32 bits.

As noted earlier, adds (and subs/negs) sets the condition codes based
on signed/unsigned overflow, a zero result, or a negative result. The ands
instruction copies the HO bit of its result into the negative flag and sets/
clears the zero flag if it produces a zero/nonzero result.

2.10.4  cmp and Corresponding Conditional Branches
The ARM cmp instruction is extremely useful in conjunction with the condi-
tional branches. The syntax for cmp is

cmp left, right

where left is a register (32 or 64 bits) and right is either a register or a small
immediate constant. The instruction compares the left operand to the
right operand and sets the flags based on the comparison. You can then use
the conditional branch instructions to transfer control based on the result
of the comparison.

Although cmp does not have an s suffix, it will set the condition code
flags; indeed, that’s why cmp exists. Technically, cmp isn’t a real instruction,
but rather an alias (synonym) for the subs instruction with a destination
operand of WZR or XZR.

Data Representation and Operations 79

P SEUDO -INS T RUC T IONS (A L I A SES)

A ND BUILT-IN M ACROS

You’ll often discover that two ARM64 assembly language instructions do exactly
the same operation. Consider, for example, the following two instructions:

cmp x0, x1
subs xzr, x0, x1

The first instruction compares X0 to X1 and sets the condition code flags. The
second instruction subtracts X1 from X0, sets the condition code flags, and then
throws the result away (whenever you store a value into the zero register—WZR
or XZR—the result is lost). The comparison operation is exactly equivalent to
subtraction if you don’t keep the difference (which is exactly what the subs
instruction is doing), meaning these two instructions do exactly the same thing.

The ARM’s designers noticed this semantic equivalence between many of
their instructions and decided, “This is a RISC machine; we should not include
extra hardware to handle redundant instructions.” As they already had the subs
instruction, they basically threw out the cmp instruction.

You may be thinking, “Didn’t you discuss the cmp instruction already?” Yes,
I did. But I lied: this isn’t actually a cmp machine instruction. When the assem-
bler accepts and executes a mnemonic named cmp that does everything you’d
expect a cmp instruction to do, under the covers Gas has actually translated that
cmp instruction into a subs instruction.

The cmp instruction is an example of a pseudo-instruction, a macro built into
Gas (and most other ARM assemblers) that automatically translates cmp into the
corresponding subs instruction. In fact, a fair number of ARM instructions fall
into this same category.

In this book, we won’t worry about whether an instruction is real or
pseudo. The semantics are the important aspect, not the particular assembly
language syntax. If the assembler contains (standardized) built-in macros to
help you write clearer code, so much the better. This section exists just to let
you know what is going on if you read about pseudo-instructions elsewhere
or if you look at a disassembled listing of your code and the instructions have
changed from what you actually wrote.

After executing a compare instruction, you might ask these reasonable
questions:

•	 Is the leftOperand equal to the rightOperand?

•	 Is the leftOperand not equal to the rightOperand?

•	 Is the leftOperand less than the rightOperand?

•	 Is the leftOperand less than or equal to the rightOperand?

80 Chapter 2

•	 Is the leftOperand greater than the rightOperand?

•	 Is the leftOperand greater than or equal to the rightOperand?

For less-than and greater-than comparisons, you might also ask, “Are
these signed or unsigned comparisons?”

The ARM provides conditional branches to use after executing cmp
that answer these questions. Table 2-9 lists these instructions for unsigned
comparisons.

Table 2-9: Unsigned Conditional Branches

Instruction Flag(s) tested Description

beq Z = 1 Branch if equal; fall through if not equal. After a comparison, this branch
will be taken if the first cmp operand is equal to the second operand.

bne Z = 0 Branch if not equal; fall through if equal. After a comparison, this branch
will be taken if the first cmp operand is not equal to the second operand.

bhi C = 1 and Z = 0 Branch if higher; fall through if not higher. After a comparison, this
branch will be taken if the first cmp operand is greater than the second
operand.

bhs C = 1 Branch if higher or same; fall through if not higher or same. After a com-
parison, this branch will be taken if the first cmp operand is greater than
or equal the second operand.

blo C = 0 Branch if lower; fall through if not lower. After a comparison, this branch
will be taken if the first cmp operand is less than the second operand.

bls C = 0 or Z = 1 Branch if lower or same; fall through if not lower or same. After a com-
parison, this branch will be taken if the first cmp operand is less than or
equal to the second operand.

If the left and right operands contain signed integer values, use the
signed branches in Table 2-10.

Table 2-10: Signed Conditional Branches

Instruction Flag(s) tested Description

beq Z = 1 Branch if equal; fall through if not equal. After a comparison, this branch
will be taken if the first cmp operand is equal to the second operand.

bne Z = 0 Branch if not equal; fall through if equal. After a comparison, this branch
will be taken if the first cmp operand is not equal to the second operand.

bgt Z = 0 and N = V Branch if greater than; fall through if less than or equal. After a compari-
son, this branch will be taken if the first cmp operand is greater than the
second operand.

bge N = V Branch if greater than or equal; fall through if less than. After a compari-
son, this branch will be taken if the first cmp operand is greater than or
equal to the second operand.

blt N ≠ V Branch if less than; fall through if greater than or equal. After a com-
parison, this branch will be taken if the first cmp operand is less than the
second operand.

ble N ≠ V or Z = 1 Branch if less than or equal; fall through if greater than. After a compari-
son, this branch will be taken if the first cmp operand is less than or equal
to the second operand.

Data Representation and Operations 81

As for the earlier branches based on condition codes, Gas allows branches
of the form b.condition in addition to the forms in Tables 2-9 and 2-10. As
it turns out, as shown in the “Flag(s) tested” columns, the bcs and bhs instruc-
tions are synonyms, as are the bcc and blo instructions.

Importantly, the cmp instruction sets the flags only for integer com-
parisons, which will also cover characters and other types you can encode
with an integer value. Specifically, the instruction does not compare
floating-point values and set the flags as appropriate for a floating-point
comparison.

Sometimes it’s convenient to branch on an opposite condition. For
example, you might have the following logic:

 cmp x0, x1
 // Branch to geLbl if X0 is not less than X1.

 // Fall through to this code if X0 < X1.
 .
 .
 .
// Branch here if NOT(X0 < X1) (that is, X0 >= X1).
geLbl:

Of course, the opposite of less than is greater than or equal, so this pseudo-
code could be written as follows:

 cmp x0, x1
 bge geLbl

 // Fall through to this code if X0 < X1.
 .
 .
 .
// Branch here if NOT(X0 < X1) (that is, X0 >= X1).
geLbl:

However, using opposite branches to skip around the code you want to
execute on a condition (such as less than) can make your code harder to
read. People generally read the bge instruction as “branch to a label because
the comparison produced greater than or equal,” not as “fall through if the
comparison result was less than.”

To help make such logic clearer, the aoaa​.inc include file contains macros
for several opposite branches. Table 2-11 lists these macros and their meanings.

82 Chapter 2

Table 2-11: Opposite Branches

Opposite branch Equivalent to Meaning

bnhs blo Branch if not higher or the same. After a comparison, this branch
will be taken if the first cmp operand is not higher or the same (not
greater than or equal to, unsigned) the second operand.

bnhi bls Branch if not higher. After a comparison, this branch will be taken if
the first cmp operand is not higher (not greater than, unsigned) the
second operand.

bnls bhi Branch if not lower or the same. After a comparison, this branch will
be taken if the first cmp operand is not lower or the same (not less
than or equal to, unsigned) the second operand.

bnlo bhs Branch if not lower. After a comparison, this branch will be taken
if the first cmp operand is not lower (not less than, unsigned) the
second operand.

bngt ble Branch if not greater than. After a comparison, this branch will be
taken if the first cmp operand is not greater than (signed) the second
operand.

bnge blt Branch if not greater than or equal. After a comparison, this branch
will be taken if the first cmp operand is not greater than or equal to
(signed) the second operand.

bnlt bge Branch if not less than. After a comparison, this branch will be taken
if the first cmp operand is not less than (signed) the second operand.

bnle bgt Branch if not less than or equal. After a comparison, this branch will
be taken if the first cmp operand is not less than or equal to (signed)
the second operand.

You should read each of these opposite-branch mnemonics as “fall
through on condition” (ignoring the not).

	 2.11	 Shifts and Rotates
The shift and rotate operations are another set of logical operations that
apply to bit strings. These two categories can be further broken into left
shifts, left rotates, right shifts, and right rotates.

The shift-left operation moves each bit in a bit string one position to the
left, as shown in Figure 2-8.

7 6 5 4 3 2 1 0

Figure 2-8: The shift-left operation

Bit 0 moves into bit position 1, the previous value in bit position 1 moves
into bit position 2, and so on. You’ll shift a 0 into bit 0, and the previous
value of the HO bit will be lost.

The ARM provides a logical shift-left instruction, lsl, that performs this
useful operation. This is the syntax for lsl:

Data Representation and Operations 83

lsl dest, source, count // Does not affect any flags

The count operand is either a register or an immediate constant in the
range 0 to n, where n is one less than the number of bits in the destination
operand (for example, n = ​31 for 32-bit operands and n ​= 63 for 64-bit oper-
ands). The dest and source operands are registers.

When the count operand is the value 1 (either an immediate constant or
in a register), the lsl instruction performs the operation shown in Figure 2-9.

HO bit 4 3 2 1 0

0...C

Figure 2-9: Shift-left operation

If the count value is 0, no shift occurs and the value remains unchanged.
If the count value is greater than 1, the lsl instruction shifts the specified
number of bits (shifting 0s into the LO position). Note that the lsl instruc-
tion does not affect any flags.

Shifting a value to the left by one digit is the same thing as multiplying
it by its radix (base). For example, shifting a decimal number one position
to the left (adding a 0 to the right of the number) effectively multiplies it
by 10 (the radix):

1234 shl 1 = 12340
// (shl 1 means shift one digit position to the left.)

Because the radix of a binary number is 2, shifting it left multiplies it
by 2. If you shift a value to the left n times, you multiply that value by 2n.

A shift-right operation works the same way, except you’re moving the
data in the opposite direction. For a byte value, bit 7 moves into bit 6, bit 6
moves into bit 5, bit 5 moves into bit 4, and so on. During a shift right, you’ll
move a 0 into bit 7 (see Figure 2-10).

7 4 3 2 1 056

0 C

Figure 2-10: The shift-right operation

As you’d expect, the ARM provides an lsr instruction that shifts the
bits to the right in a destination operand. The syntax is similar to the lsl
instruction:

lsr dest, source, count // Does not affect any flags

This instruction shifts a 0 into the HO bit of the destination operand
and shifts the other bits one place to the right (that is, from a higher bit
number to a lower bit number).

84 Chapter 2

Because a shift left is equivalent to a multiplication by 2, it should come
as no surprise that a shift right is roughly comparable to a division by 2 (or,
in general, a division by the radix of the number). If you perform n shift-
right operations, you will divide that number by 2n.

However, a shift right is equivalent to only an unsigned division by 2. For
example, if you shift the unsigned representation of 254 (0xFE) one place
to the right, you get 127 (0x7F), exactly what you would expect. However,
if you shift the two’s complement representation of –2 (0xFE) to the right
one position, you get 127 (0x7F), which is not correct. This problem occurs
because you’re shifting a 0 into bit 7. If bit 7 previously contained a 1, you’re
changing it from a negative to a positive number—not a good thing to do
when dividing by 2.

To use the shift right as a division operator, this chapter must define
a third shift operation: arithmetic shift right. There is no need for an arith-
metic shift left; the standard shift-left operation works for both signed and
unsigned numbers, assuming no overflow occurs.

An arithmetic shift right works just like the normal shift-right opera-
tion (a logical shift right), except instead of shifting a 0 into the HO bit, an
arithmetic shift-right operation copies the HO bit back into itself. That is,
the shift operation does not modify the HO bit, as Figure 2-11 shows.

4567 3 2 1 0

Figure 2-11: Arithmetic shift-right operation

An arithmetic shift right generally produces the signed integer result you
expect. For example, if you perform the arithmetic shift-right operation on –2
(0xFE), you get –1 (0xFF). However, this operation always rounds the numbers
to the closest integer that is less than or equal to the actual result. For example, if
you apply the arithmetic shift-right operation on –1 (0xFF), the result is –1,
not 0. Because –1 is less than 0, the arithmetic shift-right operation rounds
toward –1. This is not a bug in the arithmetic shift-right operation; it just uses
a different (though valid) definition of integer division.

The ARM-64 provides an arithmetic shift-right instruction, asr (arith-
metic shift right). This instruction’s syntax is nearly identical to lsl:

asr dest, source, count // Does not affect any flags

The usual limitations on the operands apply. This instruction operates
as shown in Figure 2-12 if the count is 1.

C

45

. . .

HO bit 3 2 1 0

Figure 2-12: The asr dest, source, #1 operation

Data Representation and Operations 85

If the count value is 0, no shift occurs and the value remains unchanged.
If the count value is greater than 1, the asr instruction shifts the specified
number of bits (shifting 0s into the LO position).

The rotate-left and rotate-right operations behave like the shift-left and
shift-right operations, except the bit shifted out from one end is shifted
back in at the other end. Figure 2-13 diagrams these operations.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Figure 2-13: The rotate-left and rotate-right operations

The ARM provides a ror (rotate-right) instruction, but it does not have
a rotate-left instruction. The syntax for the rotate right is similar to the shift
instructions:

ror dest, source, count // Does not affect any flags

Figure 2-14 shows the operation of this instruction on a register. Note
that this instruction does not affect any flags. If the count value is 0, no
rotate occurs and the value remains unchanged. If the count value is greater
than 1, the rotate instructions rotate the specified number of bits (shifting
0s into the appropriate position).

HO bit 4 3 2 1 0

...

Figure 2-14: The ror dest, source, #1 operation

If you absolutely need a rol operation, it can be (somewhat) synthesized
using other instructions. Chapter 8 covers this in greater detail.

	 2.12	 Bit Fields and Packed Data
Although the ARM operates most efficiently on byte, half-word, word, and
dword data types, occasionally you’ll need to work with a data type that
uses a number of bits other than 8, 16, 32, or 64. You could zero-extend
a nonstandard data size to the next larger power of 2 (such as extending
a 22-bit value to a 32-bit value); this turns out to be fast, but if you have a

86 Chapter 2

large array of such values, slightly more than 31 percent of the memory is
going to waste (10 bits in every 32-bit value). However, suppose you were to
repurpose those 10 bits for something else. By packing the separate 22-bit
and 10-bit values into a single 32-bit value, you don’t waste any space.

For example, consider a date of the form 04/02/01. Representing this
date requires three numeric values: month, day, and year values. Months, of
course, take on the values 1 to 12. At least 4 bits, a maximum of 16 values,
are needed to represent the month. Days range from 1 to 31. This means
it will take 5 bits, a maximum of 32 values, to represent the day entry. The
year value, assuming that you’re working with values in the range 0 to 99,
requires 7 bits, which can be used to represent up to 128 values. This means
we need 2 bytes to hold the whole date, since 4 + 5 + 7 = 16 bits.

In other words, you can pack the date data into 2 bytes rather than the
3 that would be required if you used a separate byte for each of the month,
day, and year values. This saves 1 byte of memory for each date stored,
which could make for significant savings if you need to store many dates.
The bits could be arranged as shown in Figure 2-15.

15 14 13 12 11 10 9 7 6 5 4 3 2 1

D YD D D D Y Y Y Y Y Y

08

MMM M

Figure 2-15: Short packed-date format (2 bytes)

In the figure, MMMM represents the 4 bits making up the month value,
DDDDD represents the 5 bits making up the day, and YYYYYYY represents
the 7 bits composing the year. Each collection of bits representing a data
item is a bit field. For example, April 2, 2001, would be represented as 0x4101:

0100 00010 0000001 = 0100_0001_0000_0001b or 0x4101
4 2 01

Although packed values are space efficient (that is, they make efficient
use of memory), they are computationally inefficient (slow!). That’s because
unpacking the data packed into the various bit fields requires extra instruc-
tions. These take additional time to execute and additional bytes to hold
the instructions; hence, you must carefully consider whether packed data
fields will save you anything. The sample program in Listing 2-4 demon-
strates the effort that goes into packing and unpacking this 16-bit date
format.

// Listing2-4.S
//
// Demonstrate packed data types.

#include "aoaa​.inc"

 .equ NULL, 0 // Error code
 .equ maxLen, 256 // Max input line size

Data Representation and Operations 87

 .data

saveLRMain: .dword 0
saveLRRN: .dword 0

ttlStr: .asciz "Listing 2-4"
moPrompt: .asciz "Enter current month: "
dayPrompt: .asciz "Enter current day: "

yearPrompt: .ascii "Enter current year "
 .asciz "(last 2 digits only): "

packed: .ascii "Packed date is %04x = "
 .asciz "%02d/%02d/%02d\n"

theDate: .asciz "The date is %02d/%02d/%02d\n"

badDayStr: .ascii "Bad day value was entered "
 .asciz "(expected 1-31)\n"

badMonthStr: .ascii "Bad month value was entered "
 .asciz "(expected 1-12)\n"

badYearStr: .ascii "Bad year value was entered "
 .asciz "(expected 00-99)\n"

// These need extra padding so they can be printed
// as integers. They're really byte (and word) values.

month: .dword 0
day: .dword 0
year: .dword 0
date: .dword 0

m: .dword 0
d: .dword 0
y: .dword 0

input: .fill maxLen, 0

 .text
 .align 2 // Word-align code
 .extern printf
 .extern readLine
 .extern strtol

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

88 Chapter 2

// Here's a user-written function that reads a numeric value from
// the user:
//
// int readNum(char *prompt);
//
// A pointer to a string containing a prompt message is passed in
// the X0 register.
//
// This procedure prints the prompt, reads an input string from
// the user, then converts the input string to an integer and
// returns the integer value in X0.

readNum:
 lea x1, saveLRRN
 str lr, [x1] // Save return address.

// Must set up stack properly (using this "magic" instruction)
// before you can call any C/C++ functions:

 sub sp, sp, #64

// Print the prompt message. Note that the prompt message was
// passed to this procedure in X0; we're just passing it on to
// printf:

 bl printf

// Set up arguments for readLine and read a line of text from
// the user. Note that readLine returns NULL (0) in RAX if there
// was an error.

 lea x0, input
 mov x1, #maxLen
 bl readLine

// Test for a bad input string:

 cmp x0, #NULL
 beq badInput

// Okay, good input at this point. Try converting the string
// to an integer by calling strtol. The strtol function returns
// 0 if there was an error, but this is a perfectly fine
// return result, so we ignore errors.

 lea x0, input // Ptr to string
 mov x1, #NULL // No end string pointer
 mov x2, #10 // Decimal conversion
 bl strtol // Convert to integer.

badInput:
 add sp, sp, #64 // Undo stack setup.
 lea x1, saveLRRN // Restore return address.
 ldr lr, [x1]
 ret

Data Representation and Operations 89

// Here is the "asmMain" function:

 .global asmMain
asmMain:
 sub sp, sp, #64 // Magic instruction
 lea x0, saveLRMain
 str lr, [x0]

// Read the date from the user. Begin by reading the month:

 lea x0, moPrompt
 bl readNum

// Verify the month is in the range 1..12:

 cmp x0, #1
 blo badMonth
 cmp x0, #12
 bhi badMonth

// Good month, save it for now:

 lea x1, month
 strb w0, [x1] // 1..12 fits in a byte.

// Read the day:

 lea x0, dayPrompt
 bl readNum

// We'll be lazy here and verify only that the day is in
// the range 1..31.

 cmp x0, #1
 blo badDay
 cmp x0, #31
 bhi badDay

// Good day, save it for now:

 lea x1, day
 strb w0, [x1] // 1..31 fits in a byte.

// Read the year:

 lea x0, yearPrompt
 bl readNum

// Verify that the year is in the range 0..99:

 cmp x0, #0
 blo badYear

90 Chapter 2

 cmp x0, #99
 bhi badYear

// Good year, save it for now:

 lea x1, year
 strb w0, [x1] // 0..99 fits in a byte.

// Pack the data into the following bits:
//
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// m m m m d d d d d y y y y y y y

 lea x0, month
 ldrb w1, [x0]
 lsl w1, w1, #5

 lea x0, day
 ldrb w2, [x0]
 orr w1, w1, w2
 lsl w1, w1, #7

 lea x0, year
 ldrb w2, [x0]
 orr w1, w1, w2

 lea x0, date
 strh w1, [x0]

// Print the packed date:

 lea x0, packed
 vparm2 date
 vparm3 month
 vparm4 day
 vparm5 year
 bl printf

// Unpack the date and print it:

 lea x0, date
 ldrh w1, [x0]

 // Extract month:

 lsr w2, w1, #12
 lea x0, m
 strb w2, [x0]

 // Extract day:

 lsr w3, w1, #7
 and w3, w3, #0x1f
 lea x0, d
 strb w3, [x0]

Data Representation and Operations 91

 // Extract year:

 and w1, w1, #0x7f
 lea x0, y
 strb w1, [x0]

 lea x0, theDate
 vparm2 m
 vparm3 d
 vparm4 y
 bl printf

 b.al allDone

// Come down here if a bad day was entered:

badDay:
 lea x0, badDayStr
 bl printf
 b.al allDone

// Come down here if a bad month was entered:

badMonth:
 lea x0, badMonthStr
 bl printf
 b.al allDone

// Come here if a bad year was entered:

badYear:
 lea x0, badYearStr
 bl printf

allDone:
 add sp, sp, #64
 lea x0, saveLRMain
 ldr lr, [x0]
 ret // Returns to caller

Here’s the result of building and running this program:

$./build Listing2-4
$./Listing2-4
Calling Listing2-4:
Enter current month: 2
Enter current day: 4
Enter current year (last 2 digits only): 56
Packed date is 2238 = 02/04/56
The date is 02/04/56
Listing2-4 terminated

The infamous problems with Y2K (year 2000) taught everyone that
using a date format limited to 100 years (or even 127 years) would be quite

92 Chapter 2

foolish. If you’re too young to remember this fiasco, programmers in the
middle to late 1900s used to encode only the last two digits of the year in
their dates. When the year 2000 rolled around, these programs were inca-
pable of distinguishing dates like 2024 and 1924.

To avoid this problem and future-proof the packed-date format in
Listing 2-4, you can extend the format to 4 bytes packed into a double-word
variable, as shown in Figure 2-16. (As you’ll see in Chapters 3 and 4, you
should always try to create data objects whose length is an even power of
2—that is, 1 byte, 2 bytes, 4 bytes, 8 bytes, and so on—or you will pay a per-
formance penalty.)

151631 8 7 0

Month (1–12)Year (0–65535) Day (1–31)

Figure 2-16: The long packed-date format (4 bytes)

The month and day fields now consist of 8 bits each, so they can be
extracted as a byte object from the word. This leaves 16 bits for the year,
with a range of 65,536 years. By rearranging the bits so the year field is in
the HO bit positions, the month field is in the middle bit positions, and the
day field is in the LO bit positions, the long date format allows you to easily
compare two dates to see whether one date is less than, equal to, or greater
than another date. Consider the following code:

 lea x0, Date1 // Assume Date1 and Date2 are words.
 ldr x1, [x0] // Using the long packed-date format
 lea x0, Date2
 ldr x2, [x0]
 cmp x1, x2
 ble d1LEd2

 // Do something if Date1 > Date2.

d1LEd2:

Had you kept the different date fields in separate variables, or orga-
nized the fields differently, you would not have been able to compare Date1
and Date2 as easily as for the short packed-date format. Therefore, this
example demonstrates another reason for packing data even if you don’t
realize any space savings: it can make certain computations more conve-
nient or even more efficient (contrary to what normally happens when you
pack data).

Examples of practical packed data types abound. You could pack eight
Boolean values into a single byte, two BCD digits into a byte, and so on. A
classic example of packed data is the PSTATE register (see Figure 2-17).
This register packs four important Boolean objects, along with 12 impor-
tant system flags, into a single 32-bit register.

Data Representation and Operations 93

N Z C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UAO PAN SS D A I F 0 cEL SPSILV

Figure 2-17: The PSTATE register as packed Boolean data

You’ll commonly access the condition code flags by using the condi-
tional jump instructions. Occasionally, you may need to manipulate the
individual condition code bits in the PSTATE register. You can do this with
the msr (move to system register) and mrs (move system register) instructions

msr systemReg, reg
mrs reg, systemReg

where reg is one of the ARM’s 64-bit general-purpose registers and systemReg
is a special system register name. The system register of interest here is NZCV,
named after the condition code flags.

The following instruction copies bits 28 to 31 in the PSTATE register
into the corresponding bits in X0 and copies 0s to all the other bits in X0:

mrs x0, nzcv

This instruction copies bits 28 to 31 in X0 to the condition code bits in
PSTATE (without affecting any other bits in PSTATE):

msr nzcv, x0

If you want to explicitly set the carry flag, without affecting any other
condition code flags, you could do that as follows:

mrs x0, nzcv
orr x0, x0, #0x20000000 // Carry is in bit 29; set it.
msr nzcv, x0

This ORs a 1 bit into the carry flag in the PSTATE register.

	 2.13	 IEEE Floating-Point Formats
Back in 1976, when Intel planned to introduce a floating-point coproces-
sor for its new 8086 microprocessor, it hired the best numerical analyst it
could find to design a floating-point format. That person then hired two
other experts in the field, and the three of them—William Kahan, Jerome
Coonen, and Harold Stone—designed Intel’s floating-point format. They
did such a good job designing the KCS floating-point standard that the
Institute of Electrical and Electronics Engineers (IEEE) adopted it for its
floating-point format. That format has become the standard used by CPU
vendors, including Arm.

94 Chapter 2

The IEEE-754 standard single- and double-precision formats correspond
to C’s float and double types or FORTRAN’s real and double-precision types.
These same formats are available to ARM assembly language programmers.

2.13.1  Single-Precision Format
The single-precision format uses a one’s complement 24-bit mantissa, an 8-bit
excess-127 exponent, and a single sign bit. One’s complement notation consists
of a sign bit and an unsigned binary number, with the sign bit indicating
the sign of the binary number. The mantissa (the part of the number that
represents the significant digits) usually represents a value from 1.0 to just
under 2.0. The HO bit of the mantissa is always assumed to be 1 and repre-
sents a value just to the left of the binary point. (A binary point is the same
thing as a decimal point, except it appears in binary numbers rather than
decimal numbers.) The remaining 23 mantissa bits (the fraction) appear to
the right of the binary point.

Therefore, the mantissa represents the value:

1.mmmmmmm mmmmmmmm

The mmmm characters represent the 23 bits of the mantissa. Because the
HO bit of the mantissa is always 1, the single-precision format doesn’t actu-
ally store this bit within the 32 bits of the floating-point number. This HO
bit is known as an implied bit.

Because you are working with binary numbers, each position to the
right of the binary point represents a value (0 or 1) times a successive nega-
tive power of 2. The implied 1 bit is always multiplied by 20, which is 1. This
is why the mantissa is always greater than or equal to 1.0. Even if the other
mantissa bits are all 0s, the implied 1 bit always gives us the value 1.0. Of
course, even if you had an almost infinite number of 1 bits after the binary
point, they still would not add up to 2.0. This is why the mantissa can repre-
sent values in the range 1.0 to just under 2.0.

There is one exception to the implied bit always being 1: the IEEE
floating-point format supports denormalized values, where the HO bit is not 0.
However, this book generally ignores denormalized values.

Although there is an infinite number of values between 1.0 and 2.0,
you can represent only 8 million of them because the format uses a 23-bit
mantissa (with the implied 24th bit always being 1). This is the reason for
inaccuracy in floating-point arithmetic: you are limited to a fixed number
of bits in computations involving single-precision floating-point values.

As noted, the mantissa uses a one’s complement format rather than two’s
complement to represent signed values. This means that the 24-bit value of
the mantissa is simply an unsigned binary number, and the sign bit deter-
mines whether that value is positive or negative. One’s complement numbers
have the unusual property that there are two representations for 0.0 (with the
sign bit set or clear). Generally, this is important only to the person designing
the floating-point software or hardware system. This book assumes that the
value 0.0 always has the sign bit clear.

Data Representation and Operations 95

To represent values outside the range 1.0 to just under 2.0, the expo-
nent portion of the floating-point format comes into play. The floating-
point format raises 2 to the power specified by the exponent and then
multiplies the mantissa by this value. The exponent is 8 bits and is stored in
an excess-127 format. In excess-127 format, the exponent 0 is represented by
the value 127 (0x7F), negative exponents are values in the range 1 to 126,
and positive exponents are values in the range 128 to 254 (0 and 255 are
reserved for special cases). To convert an exponent to excess-127 format,
add 127 to the exponent value. The use of excess-127 format makes it easier
to compare floating-point values.

The single-precision floating-point format takes the form shown in
Figure 2-18.

31 23 16 8 071522

Sign
bit

The 24th mantissa bit is
implied and is always 1.

Mantissa bits1
Exponent
bits

Figure 2-18: The single-precision (32-bit) floating-point format

With a 24-bit mantissa, you will get approximately six and a half (deci-
mal) digits of precision (half a digit of precision means that the first six
digits can all be in the range 0 to 9, but the seventh digit can only be in
the range 0 to x, where x < 9 and is generally close to 5). Note, however,
that only six digits are guaranteed. With an 8-bit excess-127 exponent, the
dynamic range of single-precision floating-point numbers is approximately
2 ± 127, or about 10 ± 38. This dynamic range is the difference in size between
the smallest and largest positive values.

Although single-precision floating-point numbers are perfectly suitable
for many applications, the precision and dynamic range are somewhat lim-
ited and unsuitable for many financial, scientific, and other applications.
Furthermore, during long chains of computations, the limited accuracy of
the single-precision format may introduce serious errors.

2.13.2  Double-Precision Format
The double-precision format helps overcome the problems of single-precision
floating-point. Using twice the space, the double-precision format has an
11-bit excess-1,023 exponent and a 53-bit mantissa (with an implied HO bit
of 1), plus a sign bit. Double-precision floating-point values take the form
shown in Figure 2-19.

96 Chapter 2

63 52 8 0751

Sign
bit

Exponent
bits Mantissa bits1

......

Figure 2-19: The 64-bit double-precision floating-point format

The 53rd mantissa bit is implied and is always 1. The double-precision
format provides a dynamic range of about 10 ± 308 and at least 15 digits of
precision, sufficient for most applications.

	 2.14	 Normalized Floating-Point Values
To maintain maximum precision during computation, most computations
use normalized values. A normalized floating-point value is one whose HO
mantissa bit contains 1. Almost any nonnormalized value can be normal-
ized: shift the mantissa bits to the left and decrement the exponent until
a 1 appears in the HO bit of the mantissa. Remember, the exponent is a
binary exponent. Each time you increment the exponent, you multiply
the floating-point value by 2. Likewise, whenever you decrement the expo-
nent, you divide the floating-point value by 2. By the same token, shifting
the mantissa to the left one bit-position multiplies the floating-point value
by 2; likewise, shifting the mantissa to the right divides the floating-point
value by 2. Therefore, shifting the mantissa to the left one position and
decrementing the exponent does not change the value of the floating-point
number at all.

Keeping floating-point numbers normalized maintains the maximum
number of bits of precision for a computation. If the HO n bits of the man-
tissa are all 0s, the mantissa has that many fewer bits of precision available
for computation. Therefore, a floating-point computation will be more
accurate if it involves only normalized values.

In two important cases, a floating-point number cannot be normalized.
First, the floating-point value 0.0 can’t be normalized, because the repre-
sentation for 0.0 has no 1 bits in the mantissa. This, however, is not a prob-
lem because you can exactly represent the value 0.0 with only a single bit.

In the second case, you have some HO bits in the mantissa that are 0s,
but the biased exponent is also 0 (and you cannot decrement it to normal-
ize the mantissa). Rather than disallow certain small values, whose HO
mantissa bits and biased exponent are 0 (the most negative exponent pos-
sible), the IEEE standard allows special denormalized values to represent
these smaller values. (The alternative would be to underflow the values to 0.)
Although the use of denormalized values allows IEEE floating-point compu-
tations to produce better results than if underflow occurred, keep in mind
that denormalized values offer fewer bits of precision. Some texts use the
term subnormal to describe denormalized values.

Data Representation and Operations 97

2.14.1  Nonnumeric Values
The IEEE floating-point standard recognizes four special nonnumeric values:
–infinity, +infinity, and two special not-a-number (NaN) values. For each of
these special numbers, the exponent field is filled with all 1 bits.

If the exponent is all 1 bits and the mantissa is all 0 bits (excluding the
implied bit), then the value is infinity. The sign bit will be 0 for +infinity
and 1 for –infinity.

If the exponent is all 1 bits and the mantissa is not all 0 bits, the value
is an invalid number (known as a NaN in IEEE 754 terminology). NaNs
represent illegal operations, such as trying to take the square root of a
negative number.

Unordered comparisons occur whenever either operand (or both) is
a NaN. As NaNs have an indeterminate value, they are incomparable. Any
attempt to perform an unordered comparison typically results in an excep-
tion or some sort of error. Ordered comparisons, on the other hand, involve
two operands, neither of which is a NaN.

2.14.2  Gas Support for Floating-Point Values
Gas provides a couple of data declarations to support the use of floating-
point data in your assembly language programs. Gas floating-point con-
stants allow the following syntax: the constant begins with an optional +
or − symbol, denoting the sign of the mantissa (if this is not present, Gas
assumes that the mantissa is positive). This is followed by one or more deci-
mal digits, then a decimal point and zero or more decimal digits. These are
optionally followed by an e or E, which is in turn optionally followed by a
sign (+ or −) and one or more decimal digits.

The decimal point or the e/E must be present to differentiate a floating-
point literal constant from an integer or unsigned literal constant. Here are
some examples of legal floating-point literal constants:

1.234 3.75e2 -1.0 1.1e-1 1.e+4 0.1 -123.456e+300 +25.0e0

A floating-point literal constant must begin with a decimal digit, so you
must use, for example, 0.1 rather than .1 in your programs.

To declare a floating-point variable, use the .single or .double data types.
Aside from using these types to declare floating-point variables rather than
integers, their use is nearly identical to that of .byte, .word, .dword, and so on.
The following examples demonstrate these declarations and their syntax:

 .data

fltVar1: .single 0.0
fltVar1a: .single 2.7
pi: .single 3.14159
DblVar: .double 0.0
DblVar2: .double 1.23456789e+10
DPVar: .double -1.0e-104
IntAsFP: .double -123

98 Chapter 2

As usual, this book uses the C/C++ printf() function to print floating-
point values to the console output. Certainly, an assembly language routine
could be written to provide this same output, but the C stdlib provides a
convenient way to avoid writing that complex code (at least until Chapter 9).

Floating-point arithmetic is different from integer arithmetic; you can-
not use the ARM add and sub instructions to operate on floating-point val-
ues. This chapter presents only the floating-point formats; see Chapter 6 for
more information on floating-point arithmetic and general floating-point
operations.

In the meantime, let’s consider some other data formats.

	 2.15	 Binary-Coded Decimal Representation
Although the integer and floating-point formats cover most of the numeric
needs of an average program, in some special cases other numeric repre-
sentations are convenient. This section expands on the definition of the
BCD format presented earlier. Although the ARM CPU doesn’t provide
hardware support for BCD, it’s still a common format that some software
uses, with BCD arithmetic provided by programmer-written software
functions.

BCD values are a sequence of nibbles, with each nibble representing a
value in the range 0 to 9. With a single byte, you can represent values con-
taining two decimal digits, or values in the range 0 to 99. Figure 2-20 shows
the two BCD digits, represented by 4 bits each, in a byte.

7 6 5 4 3 2 1

HO nibble
(HO digits 0–9)

LO nibble
(LO digits 0–9)

0

Figure 2-20: Two-digit BCD data representation
in memory

As you can see, BCD storage isn’t particularly memory efficient. For
example, an 8-bit BCD variable can represent values in the range 0 to 99,
while that same 8 bits, when holding a binary value, can represent values in
the range 0 to 255. Likewise, a 16-bit binary value can represent values in the
range 0 to 65,535, while a 16-bit BCD value can represent only about one-
sixth of those values (0 to 9,999).

However, it’s easy to convert BCD values between the internal numeric
representation and their string representation, for example, using BCD
to encode multidigit decimal values in hardware, using a thumb wheel
or dial. For these two reasons, you’re likely to see people using BCD in
embedded systems (such as toaster ovens, calculators, alarm clocks, and
nuclear reactors) but rarely in general-purpose computer software.

Data Representation and Operations 99

Unfortunately, all BCD operations on ARM have to be done using
software functions, as BCD arithmetic is not built into the hardware on the
ARM. As a result, computations involving BCD arithmetic can run slowly.
Because the BCD data type is very specialized and used in only a few situa-
tions (for example, in embedded systems), this book won’t spend any more
time discussing it.

	 2.16	 Characters
Perhaps the most important data type on a personal computer is the char-
acter data type. Character refers to a human or machine-readable symbol
that is typically a nonnumeric entity. Specifically, a character is any symbol
that you can typically type on a keyboard (including symbols that may
require multiple keypresses to produce) or display on a video display.

Letters (alphabetic characters), punctuation symbols, numeric digits,
spaces, tabs, carriage returns (ENTER), other control characters, and other
special symbols are all characters. Numeric characters are distinct from num-
bers: the character 1 is different from the value 1. The computer (generally)
uses two internal representations for numeric characters (0, 1, . . . , 9) versus
the numeric values 0 to 9.

Most computer systems use a single- or multibyte sequence to encode
the various characters in binary form. Linux and macOS use either the
ASCII or Unicode encodings for characters. This section discusses the ASCII
and Unicode character sets and the character declaration facilities that Gas
provides.

2.16.1  The ASCII Character Encoding
The ASCII character set maps 128 textual characters to the unsigned inte-
ger values 0 to 127 (0 to 0x7F). Although the exact mapping of characters
to numeric values is arbitrary and unimportant, you must use a standard-
ized code for this mapping so that when you communicate with other pro-
grams and peripheral devices, you all speak the same “language.” ASCII is
a standardized code: if you use the ASCII code 65 to represent the charac-
ter A, then you know that a peripheral device (such as a printer) will cor-
rectly interpret this value as the character A whenever you transmit data to
that device.

Despite some major shortcomings, ASCII has become the standard for
data interchange across computer systems and programs. Most programs
can accept and produce ASCII data. Because you will be dealing with ASCII
characters in assembly language, I recommend you study the layout of the
character set and memorize a few key ASCII codes (for example, for 0, A, a,
and so on). See Appendix A for a list of all the ASCII character codes.

Today, Unicode (especially the UTF-8 encoding) is rapidly replacing
ASCII, because the ASCII character set is insufficient for handling interna-
tional alphabets and other special characters, as you’ll see in Chapter 14.
Nevertheless, most modern code still uses ASCII, so you should be familiar
with it.

100 Chapter 2

The ASCII character set is divided into four groups of 32 characters.
The first 32 characters, ASCII codes 0 to 0x1F (31), form a special set of
nonprinting characters, the control characters. They are called control
characters because they perform various printer/display control operations
rather than display symbols. Examples include carriage return, which positions
the cursor to the left side of the current line of characters; line feed, which
moves the cursor down one line on the output device; and backspace, which
moves the cursor back one position to the left. (Historically, carriage return
refers to the paper carriage used on typewriters: physically moving the car-
riage all the way to the right enabled the next character typed to appear
at the left side of the paper.) Unfortunately, different control characters
perform different operations on different output devices. Little standard-
ization exists among output devices. To find out exactly how a control char-
acter affects a particular device, consult its manual.

The second group of 32 ASCII character codes contains various punc-
tuation symbols, special characters, and the numeric digits. The most nota-
ble characters in this group include the space character (ASCII code 0x20)
and the numeric digits (ASCII codes 0x30 to 0x39).

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters A through Z lie in the
range 0x41 to 0x5A (65 to 90). Because there are only 26 alphabetic charac-
ters, the remaining 6 codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes represents
the lowercase alphabetic symbols, 5 additional special symbols, and another
control character (DELETE). The lowercase character symbols use the
ASCII codes 0x61 to 0x7A. If you convert the codes for the upper- and
lowercase characters to binary, you will notice that the uppercase symbols
differ from their lowercase equivalents in exactly one bit position. For
example, consider the character codes for E and e in Figure 2-21.

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1

0 1 1 0 0 1 0 1

E

e
7 6 5 4 3 2 1 0

Figure 2-21: The ASCII codes for E and e

The only place upper- and lowercase differ is in bit 5. Uppercase char-
acters always contain a 0 in bit 5; lowercase alphabetic characters always
contain a 1 in bit 5. You can use this fact to quickly convert between upper-
and lowercase. You can force an uppercase character to lowercase by setting
bit 5 to 1, or force a lowercase character to uppercase by setting bit 5 to 0.

Indeed, bits 5 and 6 determine which of the four groups in the ASCII
character set you’re in, as Table 2-12 shows. You could, for instance, convert
any upper- or lowercase (or corresponding special) character to its equiva-
lent control character by setting bits 5 and 6 to 0.

Data Representation and Operations 101

Table 2-12: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and punctuation

1 0 Uppercase and special

1 1 Lowercase and special

Consider the ASCII codes of the numeric digit characters in Table 2-13.

Table 2-13: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal

0 48 30h

1 49 31h

2 50 32h

3 51 33h

4 52 34h

5 53 35h

6 54 36h

7 55 37h

8 56 38h

9 57 39h

The LO nibble of the ASCII code is the binary equivalent of the repre-
sented number. By stripping away (that is, setting to 0) the HO nibble of a
numeric character, you can convert that character code to the correspond-
ing binary representation. Conversely, you can convert a binary value in the
range 0 to 9 to its ASCII character representation by simply setting the HO
nibble to 3. You can use the AND operation to force the HO bits to 0; like-
wise, you can use the OR operation to force the HO bits to 0b0011 (3).

Unfortunately, you cannot convert a string of numeric characters to its
equivalent binary representation by simply stripping the HO nibble from
each digit in the string. Converting 123 (0x31, 0x32, 0x33) in this fashion
yields 3 bytes, or 0x010203, but the correct value for 123 is 0x7B. The con-
versions described in the preceding paragraph work only for single digits.

2.16.2  Gas Support for ASCII Characters
Gas provides support for character variables and literals in your assembly
language programs. Character literal constants in Gas consist of a character
surrounded by a pair of apostrophes (or single quotes):

'A'

102 Chapter 2

Technically, a character constant in Gas consists of a single apostrophe
followed by a single character. Gas allows a second version consisting of a
character surrounded by apostrophes. However, the macOS assembler sup-
ports only the latter form, so this book uses only that form to ensure that all
example code will assemble on both systems.

To represent an apostrophe as a character constant, use the backslash
character followed by an apostrophe. For example:

'\''

You can also use the other escape character sequences in a character
constant. See section 1.7, “Declaring Memory Variables in Gas,” on page 16
for details.

To declare a character variable in a Gas program, use the .byte declara-
tion. For example, the following declaration demonstrates how to declare a
variable named UserInput:

 .data
UserInput: .byte 0

This declaration reserves 1 byte of storage that you could use to store
any character value. You can also initialize character variables as follows:

 .data
TheCharA: .byte 'A'
ExtendedChar: .byte 128 // Character code greater than 0x7F

Because character variables are 8-bit objects, you can manipulate them
as you would any 8-bit value. You can move character variables into registers
and store the LO byte of a register into a character variable.

	 2.17	 Gas Support for the Unicode Character Set
Unfortunately, ASCII supports only 128 character codes. Even if you extend
the definition to 8 bits (as IBM did on the original PC), you’re limited to
256 characters. This is far too small for modern multinational, multilingual
applications. Back in the 1990s, several companies developed an extension
to ASCII, known as Unicode, using a 2-byte character size. Therefore, the
original Unicode supported up to 65,536 character codes.

As well-thought-out as the original Unicode standard was, systems
engineers discovered that even 65,536 symbols were insufficient. Today,
Unicode defines 1,112,064 possible characters (code points), encoded using
a variable-length character format.

Unfortunately, Gas provides almost no support for Unicode text in a
source file. Certainly, if you have a text editor that supports editing UTF-8
source files, Gas will accept UTF-8 characters in character and string liter-
als. However, it probably won’t do much with Unicode beyond that (I haven’t
tried this, but I doubt Gas will accept UTF-16 or UTF-32 source files).

Data Representation and Operations 103

Chapter 14 covers Unicode format and implementation in much greater
detail.

	 2.18	 Machine Code
Gas translates human-readable source files into a special binary form
known as machine code. With many (non-RISC) CPUs, it is possible to work
in assembly language without knowing much about the underlying machine
code that the assembler produces. With RISC processors, such as the ARM,
you must have a basic understanding of the underlying machine code in
order to understand how to write decent assembly language source code.

Like most RISC CPUs, the ARM64 translates individual machine instruc-
tions into a single 32-bit value. This is one of the fundamental principles
behind RISC: instructions are always the same length on a given CPU, and
that length is almost always 32 bits. Variable-length instructions are verbo-
ten. However, if the instruction set supports immediate constants (which
the assembler encodes as part of the machine instruction), and you have
64-bit registers, how do you load a 64-bit immediate constant into a register
when the instructions are limited to 32 bits? The short answer is, “You don’t.”
You may recall from Chapter 1 that immediate constants were limited to a
very small range, and now you know why: the constants must be encoded
into a 32-bit instruction value, along with considerable other information.
This severely limits the size of immediate constants.

UNDER M Y T HUMB

The 32-bit variants of the ARM support a special 16-bit instruction-length mode
known as the Thumb instruction set. This was done to reduce the size of pro-
grams in cost-sensitive embedded applications. In fact, certain embedded
versions of the ARM support only the Thumb instruction set. However, Thumb
extensions are definitely non-RISC-like. The ARM64 CPUs do not support the
Thumb instruction set (while operating in 64-bit mode), as most ARM64 CPUs
have a fair amount of memory installed in the system.

Immediate constants aren’t the only thing you must encode within an
instruction’s 32-bit value. Every instruction operand will require a certain
number of bits to encode. For example, the ARM64 CPU has 32 general-
purpose registers. It takes 5 bits to encode 32 values. Therefore, each
register in an operand will consume 5 bits out of the 32 available for that
instruction. The following adds instruction will require at least 15 bits to
encode the three registers (as any general-purpose register is legal for the
destination, first-source, and second-source registers):

adds x0, x1, x2

104 Chapter 2

In addition to registers and constants, other pieces of information must
be encoded in an ARM instruction, such as the size of the operation (32 bits
versus 64 bits). Many instructions, like adds in the preceding example, allow
immediate constants (as the second source operand) in addition to reg-
isters. There must be some way to differentiate those two operand forms,
which take at least 1 bit. Many instructions provide an option to update
the flags at the end of the instructions’ execution, which takes another bit.
Many additional options exist that this book hasn’t even begun to cover.
We’re rapidly running out of bits.

RISC instructions must be not only fixed-length but also easy to decode
using hardware. This means that for all instructions, a certain number of
bits in fixed locations in the 32-bit instruction determine the type or clas-
sification of the instruction. Consider the basic instruction format for the
ARM64 shown in Figure 2-22.

31 16 8 0715232528
op0

Figure 2-22: The basic ARM instruction format

The op0 field (op0 is short for operation code 0, itself usually shortened to
opcode) specifies the instruction’s operation. In this example, this 4-bit field
divides the instruction set into seven components, as shown in Table 2-14.

Table 2-14: The op0 4-Bit Field in Instruction Encoding

op0 Encoding group or instruction page

0000
0001
0010
0011

Reserved/unallocated

1000
1001

Data processing instructions with immediate constants

1010
1011

Branches, exception-generating instructions, and system instructions

0100
0110
1100
1110

Loads and stores

0101
1101

Data processing instructions with registers

0111 Data processing: SIMD and floating-point instructions

1111 Data processing: SIMD and floating-point instructions

Consider the instructions in the second group in Table 2-14: data pro-
cessing instructions with immediate constants. This group uses the decod-
ing shown in Figure 2-23.

Data Representation and Operations 105

31 16 8 0715232528
op11 0 0

Figure 2-23: Encoding of data processing instructions with immediate constants

The 3 bits in op1 (note that bit 25 is shared with op0) can be decoded as
shown in Table 2-15.

Table 2-15: Instructions with op0 Equal to 0b100

op1 Decoding group or instruction page

000
001

PC-relative addressing mode instructions

010
011

Add/subtract immediate instructions

100 Logical immediate instructions

101 Move Wide immediate instructions

110 Bitfield instructions

111 Extract instructions

Now consider the add/subtract immediate instructions group from
Table 2-15. The full encoding for these instructions appears in Figure 2-24.

31 21 10 09232528
1 0 0 0 1Sopsf

Shift Immediate12

5 4

Regsrc1

Regdest

S suffix (set flags)

Opcode (add/subtract)

Size (32/64 bits)

Figure 2-24: Add/subtract immediate instructions

The add and subtract instructions are a classic example of a packed-
data field (as discussed in section 2.12, “Bit Fields and Packed Data,” on
page 85). The fields have the following meanings:

sf ​  ​Indicates the instruction size (variant). If 0, this is a 32-bit instruc-
tion and the registers specified by the Regsrc1 and Regdest fields are
32-bit registers. If 1, this is a 64-bit instruction, and the registers are
64-bit registers.

op (bit 30) ​  ​Is an extension of the opcode (bits 24 through 28). If this
bit is 0, the instruction is an add/adds instruction; if this bit is 1, it’s a
sub/subs instruction.

106 Chapter 2

S ​  ​Specifies whether there was an s suffix (for example, adds) on the
instruction. If this bit is 1, the instruction will update the condition
code flags after the execution of the instruction; if this bit is 0, no such
update takes place.

Shift ​  ​Specifies how the instruction treats the Immediate12 field. I’ll
discuss this field in greater detail shortly.

Immediate12 ​  ​Is a 12-bit unsigned integer value (0 to +4,096). This
instruction will zero-extend that value to the instruction’s size (32 or
64 bits).

Regsrc ​  ​Specifies the source register, the second operand for the
instruction.

Regdest ​  ​Specifies the destination register, the first operand for the
instruction.

The Shift field depends on the Immediate12 field and is a bit complex.
This field may contain 0b00 or 0b01 (0b10 and 0b11 are reserved values).
If this field contains 0b00, the instruction uses the zero-extended value
of the Immediate12 field as is. However, if this field contains 0b01, the
instruction first shifts the Immediate12 to the left by 12 bits and uses that
shifted value. This shifted form is useful when doing pointer arithmetic
and adding in page offsets (see Chapter 3 for an explanation of memory-
management pages).

If the add and subtract instructions are limited to a 12-bit immedi-
ate constant (possibly shifted to the left 12 bits), how do you add a 32- or
64-bit constant to a register? You can’t do it directly; instead, you have to
load that constant into another register and use that register as the sec-
ond source operand rather than an immediate constant. As I pointed out
earlier, the same problem arises with the mov instruction and immediate
constants. As with add and subtract, the mov instruction is limited to 32 bits,
meaning you cannot load a 32- or 64-bit constant into a register with a sin-
gle mov instruction. The operative word here is single. You can load a 32- or
64-bit constant into a register by using multiple mov instructions. The next
section discusses how to do this.

	 2.19	 Operand2
Most ARM data processing instructions (such as add and sub) require three
operands: a destination operand and two source operands. In the following
instruction, X0 is the destination operand, X1 is the first source operand,
and X2 is the second source operand:

add x0, x1, x2 // Computes X0 = X1 + X2

Thus far in this book, I’ve used registers and immediate constants as the
second source operand. However, the ARM CPUs support several formats for
this second operand, known as Operand2. These forms, shown in Table 2-16,
are extremely powerful, making Operand2 legendary on the ARM.

Data Representation and Operations 107

Table 2-16: Operand2 Allowable Fields

Operand2 Description

#immediate A 12-bit immediate value of 0–4,095 (used by arithmetic instruc-
tions) or a 16-bit immediate value (used by move instructions).

#pattern A constant that specifies a run of 0s and 1s. Used to generate a
bitmask for the logical instructions. For logical instructions only.

Wn or Xn One of the general-purpose registers (32- or 64-bit).

Wn shiftOp #imm The contents of a 32-bit register shifted the number of positions
specified by the #imm operand (0–31). shiftOp is lsl, lsr, asr,
or ror.

Xn shiftOp #imm The contents of a 64-bit register shifted the number of positions
specified by the #imm operand (0–63).

Wn extendOp #imm The contents of a 32-bit register are zero- or sign-extended and
then shifted to the left by the immediate value (0–31). This form is
not available for logical instructions, as sign extension doesn’t logi-
cally apply to those. extendOp is uxtb, uxth, uxtw, uxtx, sxtb, sxth,
sxtw, or sxtx.

Xn extendOp #imm The contents of a 64-bit register are zero- or sign-extended and
then shifted to the left by the immediate value (0–31). This form is
not available for logical instructions, as sign extension doesn’t logi-
cally apply to those.

The following sections describe each of these Operand2 forms.

2.19.1  #immediate
The immediate form of Operand2, or #immediate, is one of its more common
uses (the other being one of the 32 general-purpose registers). Because the
immediate operand is encoded as part of the 32-bit instruction value, it is
always significantly less than 32 bits in length. As you’ve seen, the arithmetic
instructions allow only a 12-bit unsigned integer as an immediate operand.
Other instructions allow different immediate operand sizes. For example,
the mov instruction allows 16-bit unsigned immediate operands.

Although many immediate constants you’ll encounter in programs will
fit into 12 or 16 bits, some values won’t. As noted earlier in this chapter, in
those situations you will have to load a register with the larger constant and
use that value in that register, rather than using an immediate constant.
See section 2.20, “Large Constants,” on page 111 to learn how to handle
this situation.

2.19.2  #pattern
The ARM logical instructions (such as and, orr, and eor) provide a 13-bit
immediate (#pattern) field encoded into the 32-bit instruction. However, this
is not a straightforward 13-bit immediate value. Instead, it’s a combination
of 3 separate bit fields that form a bitmask pattern. Chapter 12 describes the
use of these bitmasks in greater detail. Until then, understand that there are
some weird limitations on the type of immediate constants that the logical
instructions support.

108 Chapter 2

The Arm Compiler Armasm User Guide’s entry is difficult to under-
stand. Basically, it says that immediate constants for logical instructions
consist of binary values that contain a run (consecutive sequence) of 1 bits
followed by (and possibly preceded by) 0 bits. Each sequence can be 2, 4, 8,
16, 32, or 64 bits in length. The following are legal examples of such imme-
diate constants:

and x0, x0, #0b1
and x0, x0, #0b11
and x0, x0, #0b111
and x0, x0, #0b1110
and x0, x0, #0b11100

In each case, there is a single run of 1 bits, possibly surrounded by 0 bits.
The following examples are not legal immediate constants:

and x0, x0, #0b101
and x0, x0, #0b10101
and x0, x0, #0b1110111
and x0, x0, #0b101100

These examples are illegal because they contain multiple runs of 1 bits
within the same immediate constant.

The “vector of identical elements” phrase (from the Armasm Guide)
tells us that if the sequence is less than the register size (32 or 64 bits), the
instruction replicates the sequence throughout the register in order to fill
it to 32 or 64 bits. Therefore, it is possible to have multiple runs of 1 bits in
an immediate constant if there are identical sequences of 1s and 0s, where
each sequence is a multiple of 2, 4, 8, 16, or 32 bits in length. The following
are legal examples:

// This AND instruction contains 4 copies of the sequence
// 0b11110000:

 and w0, w0, #0b11110000111100001111000011110000

// This sequence is legal because it contains 16 copies of
// the 2-bit sequence 0b10:

 and w0, w0, #0b01010101010101010101010101010101

// This sequence is legal because it contains 2 copies of
// the 32-bit sequence 0b11111111111111110000000000000000:

 and x0, x0, #0xFFFF0000FFFF0000

However, if you want to use the “vector of identical elements” scheme,
you must provide a constant that completely fills the destination register.
The following example is illegal because it has two runs within 16 bits that
are not replicated throughout the HO 16 bits of the 32-bit W0 register:

Data Representation and Operations 109

and w0, w0, #0b1111000011110000

This scheme is confusing but generates the most common types of immedi-
ate constants with just a few bits, so the complexity is worth it.

If you accidentally supply an inappropriate constant, Gas will respond
with an error message such as error: expected compatible register or
logical immediate or error: immediate out of range at operand 3 -- 'and
w0,w0,#0b1111000011110000'.

2.19.3  Register
The most common form for Operand2 is one of the ARM’s general-purpose
registers (32 or 64 bits). Given that registers have appeared in most exam-
ples thus far, there’s no need to further discuss this form.

2.19.4  Shifted Register
Another Operand2 form combines an ARM register with a shift operation.
This form adds an extra operand to the instruction, consisting of one of the
shift operators in Table 2-17 along with a small immediate constant (in the
range 0 to n, where n is the size of the destination register).

Table 2-17: Operand2 Shift Operators

Operator Description

lsl #imm Logically shifts a copy of the Operand2 register value to the left imm bits
and uses the result.

lsr #imm Logically shifts a copy of the Operand2 register value to the right imm bits
and uses the result.

asr #imm Arithmetically shifts a copy of the Operand2 register value to the right
imm bits and uses the result.

ror #imm Logically rotates a copy of the Operand2 register value to the right
imm bits and uses the result. This form is available with only the logical
instructions.

As you’ll see in Chapter 4, using the shifted register Operand2 form
will prove handy when indexing into arrays and other data structures.

To use the shifted register Operand2 form, simply tack on an extra
operand to the end of the instruction’s operand list with one of the opera-
tors appearing in Table 2-17. Here are some examples:

add w0, w1, w2, lsl #4 // W0 = W1 + (W2 << 4)
sub x0, x1, x2, lsr #1 // X0 = X1 - (X2 >> 1)
add x0, x1, x2, asr #1 // X0 = X1 + (X2 asr 1)
and x0, x1, x2, ror #2 // X0 = X1 & (X2 ror 2)

As the comments indicate, each of these instructions shifts the value in
W2 or X2 before using that value as the second source operand.

110 Chapter 2

2.19.5  Extending Register
The last set of Operand2 forms provide zero and sign extension, along with
an optional logical shift left, of an Operand2 register. The basic instruction
syntax is

instr regdest, regsrc1, regsrc2, extendop #optional_imm

where extendop is one of the operators in Table 2-18. If the #optional_imm value
is not present, it defaults to 0.

Table 2-18: Extend Operators

Extend operator Description

uxtb #optional_imm Zero-extends the LO byte of regsrc2 to the size of regdest and regsrc1. The regsrc2
operand should be a word-sized register (Wn), regardless of the size of regdest and
regsrc1. (Gas seems to accept a dword register, substituting the corresponding word
register.) If the optional immediate value is present, it must be a value in the range
0–4 and will shift the result of the extension by the specified number of bits.

uxth #optional_imm Zero-extends the LO half word of regsrc2 to the size of regdest. The regsrc2 operand
should be a word-sized register (Wn), regardless of the size of regdest and regsrc1. If
the optional immediate value is present, it must be a value in the range 0–4 and will
shift the result of the extension by the specified number of bits.

uxtw #optional_imm Zero-extends the LO word of regsrc2 to the size of regdest. The regsrc2 operand should
be a word-sized register (Wn), regardless of the size of regdest and regsrc1. If the
optional immediate value is present, it must be a value in the range 0–4 and will
shift the result of the extension by the specified number of bits. Note that if all the
registers are words (Wn), then this operator is equivalent to lsl #optional_imm.

uxtx #optional_imm This operator is applicable only when all the registers are 64 bits. This is the default
condition if no extend (or shift) operator is present after an Operand2 register.

sxtb #optional_imm Sign-extends the LO byte of regsrc2 to the size of regdest and regsrc1. The regsrc2
operand should be a word-sized register (Wn), regardless of the size of regdest
and regsrc1. If the optional immediate value is present, it must be a value in the
range 0–4 and will shift the result of the extension by the specified number of bits.

sxth #optional_imm Sign-extends the LO half word of regsrc2 to the size of regdest. The regsrc2 operand
should be a word-sized register (Wn), regardless of the size of regdest and regsrc1.
If the optional immediate value is present, it must be a value in the range 0–4 and
will shift the result of the extension by the specified number of bits.

sxtw #optional_imm Sign-extends the LO word of regsrc2 to the size of regdest. The regsrc2 operand must
be a word-sized register (Wn), regardless of the size of regdest and regsrc1. If the
optional immediate value is present, it must be a value in the range 0–4 and will
shift the result of the extension by the specified number of bits. If all the registers are
words (Wn), this operator is equivalent to lsl #optional_imm. Note that uxtw is pre-
ferred over this form when all registers are word sized (both do the same thing with
word-sized registers).

sxtx #optional_imm This operator is applicable only when all the registers are 64 bits. This is effectively
the same as uxtx (uxtx is the preferred form).

lsl #optional_imm If the extend operator is redundant (uxtx/sxtx for double words, uxtw/sxtw for word
registers), you should use the lsl operator for clarity (it is the same operation).

The extension operators are very useful for mixed-sized arithmetic.
Chapter 8 discusses this when it covers operating on different-sized operands.

Data Representation and Operations 111

	 2.20	 Large Constants
At several points, this chapter has punted on the solution to dealing with
immediate constants that don’t fit into 12 or 16 bits. It’s time to rectify
that omission.

As mentioned, if you need a constant for an arithmetic or logical opera-
tion that won’t fit within the bits set aside for constants in the instruction’s
encoding, you’ll have to load that constant into a register and operate on
the register rather than directly using the constant. The drawback to this
scheme is that you’ll need at least one additional instruction, and often
more, to first load the constant into a temporary register so you can use that
value in an arithmetic operation. For example, suppose you want to add
the value 40,000 to the X1 register. The following instruction won’t work
because 40,000 won’t fit in 12 bits:

add x1, x1, #40000

However, since 40,000 will fit in 16 bits, you could do the following:

mov x0, #40000 // Works, because mov allows 16-bit consts
add x1, x1, x0 // Add 40000 to X1.

Sadly, your program will be a little larger (an extra 4 bytes for the mov
instruction) and a little slower (executing two instructions rather than
one), but it’s about as efficient as it’s going to get.

What if you want to add a constant that won’t fit into 16 bits (perhaps
400,000)? This problem has a couple of solutions. First, as you saw in
Chapter 1, a variant of the ldr instruction allows you to load any sized con-
stant into a register (32 or 64 bits). That form has the following syntax

ldr reg, =largeConstant

where reg is a general-purpose register (32- or 64-bit) and largeConstant is an
immediate value (literal or symbolic) that will fit in the specified register.
This instruction form will set aside storage (within the .text section, which
is read-only) and initialize that storage with the specified constant. When
the ldr instruction executes, it will load the contents of that memory loca-
tion into the specified register.

This single instruction is a convenient way to load a large constant into
a register. However, this approach has a couple of problems. First, accessing
memory on the ARM is a relatively slow process. Second, because Gas inserts
the constant into your .text section, it could affect the performance of other
code in your program; although this is rare and probably not worth worrying
about, it’s something to keep in mind.

Fortunately, you can load larger constants into a general-purpose reg-
ister in other ways. These techniques involve additional variants of the mov
instruction: movz, movk, and mvn.

112 Chapter 2

2.20.1  movz
The movz instruction (move, with zeroing) has the following syntax

movz regdest, #imm1
movz regdest, #imm1, lsl #imm2

where regdest is any general-purpose (32- or 64-bit) register, imm1 is a 16-bit
immediate constant, and imm2 is one of the four values 0, 16, 32, or 48
(0 is the default value, if the lsl #imm2 operand is not present).

The movz instruction will take the imm1 constant and shift it to the left
the number of bits specified by the imm2 constant (with 0s in all the other bit
positions, hence the with zeroing in the name). It will then move this shifted
constant into the destination register. The following three instructions do
exactly the same thing, loading the constant 122 into X0:

mov x0, #122
movz x0, #122
movz x0, #122, lsl #0

The difference between mov and movz is that mov will sign-extend the
immediate constant you supply, whereas movz will zero-extend the constant.
For values less than 0x8000, both will load the same constant into the desti-
nation register (in fact, the assembler may convert the movz instruction to mov
if both would produce the same result). Keep in mind that the shift value can
be only 0, 16, 32, or 48; you cannot specify an arbitrary bit-shift value for
this instruction.

The movz instruction is useful when you want to load a 16-bit value into
the HO half word of a 32-bit register, or one of the three HO half words
(1, 2, or 3) of a 64-bit register.

2.20.2  movk
Although the movz instruction allows you to move some values that are larger
than 65,535 into a register, it’s not a general solution for loading 32- and
64-bit constants into a register. The movk instruction (combined with movz
and mov) fulfills that role. The movk instruction (move and keep unaffected
bits) has a syntax very similar to movz:

movk regdest, #imm1 // Default is "lsl #0"
movk regdest, #imm1, lsl #imm2

The movk instruction will shift the immediate operand by 0, 16, 32, or 48 bits
and then merge that value into the destination register. (It does not zero
the other bit positions but instead preserves their original values.)

To load a 32-bit immediate constant into the W0 register, use the follow-
ing instruction sequence:

mov w0, #LO_16_bits
movk w0, #HO_16_bits, lsl #16

Data Representation and Operations 113

To load a full 64 bits into X0, use the following:

mov x0, #LO_16_bits
movk x0, #Bits_16_to_31, lsl #16
movk x0, #Bits_32_to_47, lsl #32
movk x0, #HO_16_bits, lsl #48

Most of the time, the immediate constant won’t require a full 64 bits, so
you might be able to get by with two or three instructions rather than the
full four. However, you’ll never need more than four instructions to load
a 64-bit constant into a register (and never more than two to load a 32-bit
constant).

2.20.3  movn
The movn (move not) instruction is another variant of mov that logically negates
the immediate constant before loading it into the destination register. The
syntax is the same as movz (swapping, of course, movn for movz):

movn regdest, #imm1 // Default shift is lsl #0.
movn regdest, #imm1, lsl #imm2

The movn instruction shifts the immediate constant by 0, 16, 32, or 48 bits
and then inverts the whole (32- or 64-bit) bit string before assigning it to the
destination register.

Consider the following example:

movn x1, #0xff, lsl 16

This instruction loads 0xFFFFFFFFFF00FFFF into the X1 register.
(0xFF shifts left 16 bit positions and then inverts all the bits.)

Particularly when loading negative constants into a register, the movn
instruction can help reduce the number of instructions needed to load a
64-bit constant. However, 32-bit constants, which don’t fit into 16 bits, will
generally take two instructions no matter what. This differs from the mvn
instruction in that it allows shifted immediate constants.

	 2.21	 Moving On
This chapter covered basic data types, representation, and operations on
those data types. This includes the decimal, binary, and hexadecimal num-
bering systems, and machine-level data including bits, nibbles, and so on.
It discussed logical operations on bits and bit strings, signed and unsigned
integer representation and sign and zero extension to expand the num-
ber of bits used by a number, as well as sign contraction and saturation to
reduce the number of bits used by a number. It also introduced floating-
point and BCD data formats and character data (including ASCII and
Unicode characters).

114 Chapter 2

This chapter also included information on machine instruction encod-
ing and presented ARM assembly language instructions to load and store
memory values, compare and branch instructions for controlling program
flow, and shift and rotate instructions. It described packing data into bit
fields, the Operand2 formats for constants and other operands, and how
to load large constants that won’t fit in the 32-bit instruction encoding into
a register.

In short, this chapter provided the tools and techniques you need for
manipulating various types of constants in assembly language programs.
While constants are an important part of any assembly language program,
being able to manipulate variable data is the basis of most computer sys-
tems. The next chapter discusses the ARM memory subsystem and how to
create and efficiently use memory-based variables.

	 2.22	 For More Information
•	 For general information about data representation and Boolean func-

tions, consider reading my book Write Great Code, Volume 1, 2nd edition
(No Starch Press, 2020), or a textbook on data structures and algorithms.

•	 ASCII and Unicode are both International Organization for Standard
ization (ISO) standards, and ISO provides reports for both character
sets. Generally, those reports cost money, but you can also find lots of
information about the ASCII and Unicode character sets by searching
for them by name on the internet. You can also read about Unicode at
https://www​.unicode​.org. Finally, Write Great Code, cited previously, con-
tains additional information on the history, use, and encoding of the
Unicode character set.

•	 For more on ARM CPUs, see https://developer​.arm​.com.

•	 To learn more on the IEEE floating-point single-precision format, see
https://en​.wikipedia​.org​/wiki​/Single​-precision​_floating​-point​_format.

•	 Find out more about the IEEE floating-point double-precision format at
https://en​.wikipedia​.org​/wiki​/Double​-precision​_floating​-point​_format.

T ES T YOURSEL F

	 1.	 What does the decimal value 9,384.576 represent (in terms of powers
of 10)?

	 2.	 Convert the following binary values to decimal:

a.	 1010

b.	 1100

c.	 0111

https://www.unicode.org
https://developer.arm.com
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Data Representation and Operations 115

d.	 1001

e.	 0011

f.	 1111

	 3.	 Convert the following binary values to hexadecimal:

a.	 1010

b.	 1110

c.	 1011

d.	 1101

e.	 0010

f.	 1100

g.	 1100_1111

h.	 1001_1000_1101_0001

	 4.	 Convert the following hexadecimal values to binary:

a.	 12AF

b.	 9BE7

c.	 4A

d.	 137F

e.	 F00D

f.	 BEAD

g.	 4938

	 5.	 Convert the following hexadecimal values to decimal:

a.	 A

b.	 B

c.	 F

d.	 D

e.	 E

f.	 C

	 6.	 How many bits are there in a:

a.	 Word

b.	 Qword

c.	 Half word

d.	 Dword

e.	 BCD digit

f.	 Byte

g.	 Nibble
(continued)

116 Chapter 2

	 7.	 How many bytes are there in a:

a.	 Word

b.	 Dword

c.	 Qword

d.	 Half word

	 8.	 How many different values can you represent with a:

a.	 Nibble

b.	 Byte

c.	 Half word

d.	 Bit

	 9.	 How many bits does it take to represent a hexadecimal digit?

10.	 How are the bits in a byte numbered?

11.	 Which bit number is the LO bit of a word?

12.	 Which bit number is the HO bit of a dword?

13.	 Compute the AND of the following binary values:

a.	 0 and 0

b.	 0 and 1

c.	 1 and 0

d.	 1 and 1

14.	 Compute the OR of the following binary values:

a.	 0 or 0

b.	 0 and 1

c.	 1 and 0

d.	 1 and 1

15.	 Compute the XOR of the following binary values:

a.	 0 and 0

b.	 0 and 1

c.	 1 and 0

d.	 1 and 1

16.	 The NOT operation is the same as XORing with what value?

17.	 Which logical operation would you use to force bits to 0 in a bit string?

18.	 Which logical operation would you use to force bits to 1 in a bit string?

19.	 Which logical operation would you use to invert all the bits in a bit string?

Data Representation and Operations 117

20.	 Which logical operation would you use to invert selected bits in
a bit string?

21.	 Which machine instruction will invert all the bits in a register?

22.	 What is the two’s complement of the 8-bit value 5 (00000101b)?

23.	 What is the two’s complement of the signed 8-bit value –2 (11111110)?

24.	 Which of the following signed 8-bit values are negative?

a.	 1111_1111b

b.	 0111_0001b

c.	 1000_0000b

d.	 0000_0000b

e.	 1000_0001b

f.	 0000_0001b

25.	 Which machine instruction takes the two’s complement of a value in a reg-
ister or memory location?

26.	 Which of the following 16-bit values can be correctly sign-contracted to
8 bits?

a.	 1111_1111_1111_1111

b.	 1000_0000_0000_0000

c.	 000_0000_0000_0001

d.	 1111_1111_1111_0000

e.	 1111_1111_0000_0000

f.	 0000_1111_0000_1111

g.	 0000_0000_1111_1111

h.	 0000_0001_0000_0000

27.	 What machine instruction provides the equivalent of an HLL goto
statement?

28.	 What is the syntax for a GNU statement label?

29.	 What flags are the condition codes?

30.	 Which condition code does beq test?

31.	 Which condition codes does blo test?

32.	 Which conditional branch instructions transfer control based on an
unsigned comparison?

33.	 Which conditional branch instructions transfer control based on a signed
comparison?

34.	 How does the lsl instruction affect the zero flag?

35.	 A shift left is equivalent to what arithmetic operation?
(continued)

118 Chapter 2

36.	 A shift right is equivalent to what arithmetic operation?

37.	 When performing a chain of floating-point addition, subtraction, multiplica-
tion, and division operations, which operations should you try to do first?

38.	 What is a normalized floating-point value?

39.	 How many bits does a (standard) ASCII character require?

40.	 What is the hexadecimal representation of the ASCII characters
0 through 9?

41.	 What delimiter character(s) does Gas use to define character constants?

Chapters 1 and 2 showed you how to declare
and access simple variables in an assem-

bly language program. This chapter fully
explains ARM memory access. You’ll learn how

to efficiently organize your variable declarations to
speed up access to their data. You’ll also learn about the
ARM stack and how to manipulate data on it.

This chapter discusses several important concepts, including the
following:

•	 Memory organization

•	 Memory access and the memory management unit

•	 Position-independent executables and address space layout
randomization

•	 Variable storage and data alignment

•	 Endianness (memory byte order)

3
M E M O R Y A C C E S S

A N D O R G A N I Z A T I O N

120 Chapter 3

•	 ARM memory addressing modes and address expressions

•	 Stack operations, return addresses, and preserving register data

This chapter will teach to you make efficient use of your computer’s
memory resources.

	 3.1	 Runtime Memory Organization
A running program uses memory in many ways, depending on the data’s
type. Here are some common data classifications you’ll find in an assembly
language program:

Code ​  Memory values that encode machine instructions (also known
as the text section under Linux and macOS).

Uninitialized static data ​  An area in memory set aside by the program
for uninitialized variables that exist the whole time the program runs;
the OS will initialize this storage area to 0s when it loads the program
into memory.

Initialized static data ​  A section of memory that also exists the whole
time the program runs. However, the OS loads values for all the vari-
ables appearing in this section from the program’s executable file, so
they have an initial value when the program first begins execution.

Read-only data ​  Similar to initialized static data, insofar as the OS
loads initial data for this section of memory from the executable file.
However, this section is marked read-only to prevent inadvertent modi-
fication of the data. Programs typically place constants and other
unchanging data in this section (the code section is also marked read-
only by the OS).

Heap ​  This special section of memory is designated to hold dynami-
cally allocated storage. Functions such as C’s malloc() and free() are
responsible for allocating and deallocating storage in the heap area.
Section 4.4.4, “Pointer Variables and Dynamic Memory Allocation,” on
page 178 discusses dynamic storage allocation in greater detail.

Stack ​  In this special section in memory, the program maintains local
variables for procedures and functions, program state information, and
other transient data. See section 3.9, “The Push and Pop Operations,”
on page 155 for more information about the stack section.

These are the typical sections you will find in common programs,
assembly language or otherwise. Smaller programs won’t use all these sec-
tions, though most programs have at least code, stack, and data sections.
Complex programs may create additional sections in memory for their
own purposes. Some programs may combine several of these sections. For
example, many programs will combine the code and read-only sections into
the same section in memory (as the data in both sections gets marked as
read-only). Some programs combine the uninitialized and initialized data

Memory Access and Organization 121

sections, initializing the uninitialized variables to 0. Combining sections
is generally handled by the linker program. See section 3.12, “For More
Information,” on page 167 concerning the GNU linker.

Linux and macOS tend to put different types of data into different sec-
tions (or segments) of memory. Although it is possible to reconfigure mem-
ory to your choice by running the linker and specifying various parameters,
one typical organization might be similar to that in Figure 3-1.

High addresses

Adrs=0x0 =

Stack

Heap

Code (.text section/program instructions)

Read-only data (.rodata section)

Static (.data) variables

Uninitialized storage (.bss section) variables

Reserved by OS (typically 128KB)

Figure 3-1: A Linux/macOS example runtime memory organization

This figure is just an example. Real programs will likely organize mem-
ory differently, especially when using address space layout randomization,
discussed later in this chapter.

The OS reserves the lowest memory addresses. Generally, your applica-
tion cannot access data (or execute instructions) at these low addresses.
One reason the OS reserves this space is to help trap NULL pointer refer-
ences: if you attempt to access memory location 0x0 (NULL), the OS will
generate a segmentation fault (also known as a general protection fault), mean-
ing you’ve accessed a memory location that doesn’t contain valid data.

The remaining six areas in the memory map hold different types of
data associated with your program. These sections of memory include the
stack section, the heap section, the .text (code) section, the .data section,
the .rodata (read-only data) section, and the .bss (uninitialized data) sec-
tion. Each of these memory sections corresponds to a type of data you can
create in your Gas programs. I will describe the .text, .data, .rodata, and
.bss sections in detail next. (The OS provides the stack and heap sections;
you don’t normally declare these two in an assembly language program, so
there isn’t anything more to discuss about them here.)

3.1.1  The .text Section
The .text section contains the machine instructions that appear in a
Gas program. Gas translates each machine instruction you write into a

122 Chapter 3

sequence of one or more word values. The CPU interprets these 32-bit word
values as machine instructions during program execution.

By default, when GCC/Gas/ld links your program, it tells the system
that your program can execute instructions and read data from the code
segment, but cannot write data to the code segment. The OS will generate a
segmentation fault if you attempt to store any data into the code segment.

3.1.2  The .data Section
You’ll typically put your variables in the .data section. In addition to declar-
ing static variables, you can embed lists of data into the .data declaration
section. You use the same technique to embed data into your .data section
that you use to embed data into the .text section: use the .byte, .hword,
.word, .dword, and so on, directives. Consider the following example:

 .data
bb: .byte 0
 .byte 1,2,3

u: .word 1
 .dword 5,2,10

c: .byte 0
 .byte 'a', 'b', 'c', 'd', 'e', 'f'

bn: .byte 0
 .byte true // Assumes true is defined as 1

Values that Gas places in the .data memory segment by using these
directives are written to the segment after the preceding variables. For
example, the byte values 1,2,3 are emitted to the .data section after bb’s
0 byte. Because there aren’t any labels associated with these values, you do
not have symbolic access to these values in your program. You can use the
indexed addressing modes (described later in this chapter) to access these
extra values.

3.1.3  Read-Only Data Sections
Gas does not provide a stand-alone directive for creating sections that hold
read-only constants. However, you can easily use the Gas .section directive
to create a generic read-only constant section as follows:

.section .rodata, ""

Most programs use the .rodata identifier, by convention, for read-only
data. For example, GCC uses this name for read-only constant sections. You
could use any identifier you choose here. For example, I often use the name ​
.const for constant sections. However, as GCC uses .rodata, I’ll stick to that
convention in this book. I’ll say more about the .section directive a little
later; for the time being, note that as long as the second argument is the
empty string, Gas will create a read-only data section by using this directive.

Memory Access and Organization 123

The .section .rodata section holds constants, tables, and other data that
your program cannot change during execution. This section is similar to
the .data section, with two differences:

•	 The .rodata section is defined with .section .rodata, "" rather
than .data.

•	 The system does not allow you to write data to variables in an .rodata
object while the program is running.

Here’s an example:

 .section .rodata, ""
pi: .single 3.141592653589793 // (rounded)
e: .single 2.718281828459045 // (rounded)
MaxU16: .hword 65535
MaxI16: .hword 32767

For many purposes, you can treat .rodata objects as literal constants.
However, because they are actually memory objects, they behave like read-
only .data objects. You cannot use an .rodata object anywhere a literal
constant is allowed. For example, you cannot use them as displacements (con-
stant offsets from a base pointer) in addressing modes (see section 3.6, “The
ARM Memory Addressing Modes,” on page 140), in constant expressions, or
as immediate values. In practice, you can use them anywhere that reading a
.data variable is legal.

L INU X V S. M ACOS: FORCED CODE A L IGNMEN T

ARM machine instructions must be aligned on a word (32-bit) boundary. The
ARM cannot physically address an instruction that is not so aligned. Therefore,
if you insert data into the .text section that is not a multiple of 4 bytes long,
any instructions following that data will be misaligned. You must always include
an .align 2 (or .balign 4) directive before any code appearing after data that
is not a multiple of 4 bytes long in the .text section.

The macOS assembler is so paranoid about this that it requires all symbols
appearing in the .text section to be aligned on a 4-byte boundary, and it will
generate an error if it encounters a label declaration (label:, where label rep-
resents any identifier) that is not associated with a word-aligned address. The
only way to correct this error is to insert an .align 2 (or .balign 4) directive
before the label declaration. This can create a problem for certain data decla-
rations in the .text section. Consider the following code:

 .align 2
bb: .byte 0
c: .byte 0

(continued)

124 Chapter 3

The macOS assembler will require both of these symbols to be word-
aligned (requiring an .align 2 directive between them), even if you don’t want
this. You might, for example, want c to immediately follow bb in memory. The
macOS assembler does not allow this. If you define a label, that label must be
aligned on a word boundary.

One solution is to avoid putting data in the .text section; just put your
read-only constants, such as .rodata, in their own section. However, there are
good reasons for wanting to put data in the .text section. In those situations,
you’ll have to work around this limitation when writing code for macOS.

As with the .data section, you may embed data values in the .rodata sec-
tion by using the .byte, .hword, .word, .dword, and so on, data declarations.
For example:

 .section .rodata, ""
roArray: .byte 0
 .byte 1, 2, 3, 4, 5
dwVal: .dword 1
 .dword 0

You can also declare constant values in the .text section. Data values
you declare in this section are also read-only objects, as Linux and macOS
write-protect the .text section. If you do place constant declarations in a
.text section, take care to place them in a location that the program will
not attempt to execute as code (such as after a b.al or ret instruction).
Unless you’re using data declarations to manually encode ARM machine
instructions (which would be rare and done only by expert programmers),
you don’t want your program to attempt to execute data as machine instruc-
tions; the result is usually undefined.

N O T E 	 Technically, the result of executing data in the .text section is well defined: the machine
will decode whatever bit pattern you place in memory as a machine instruction.
However, few people will be able to look at a piece of data and interpret its meaning
as a machine instruction.

3.1.4  The .bss Section
The .data section requires that you initialize objects, even if you simply
place a default value of 0 in the operand field. The .bss (block started by
symbol) section lets you declare variables that are always uninitialized when
the program begins running. This section begins with the .bss reserved
word and contains variable declarations whose initializers must always be 0.
Here is an example:

Memory Access and Organization 125

 .bss
UninitUns32: .word 0
i: .word 0
character: .byte 0
bb: .byte 0

The OS will initialize all .bss objects to 0 when it loads your program
into memory. However, it’s probably not a good idea to depend on this implicit
initialization. If you need an object initialized with 0, declare it in a .data
section and explicitly set it to 0.

Annoyingly, Gas requires you to explicitly provide an initializer of 0
when declaring variables in the .bss section. Good assembly language pro-
grammers don’t like doing this, because providing their source code with an
explicit value tells the reader that they are expecting that variable to contain
that value when the program runs. If the program explicitly isn’t expecting
the variable to be initialized, it would be nice to tell the reader that.

A very old convention to make this statement is to use the expression .-.
in the operand field of such declarations. For example:

 .bss
UninitUns32: .word .-.
i: .word .-.
character: .byte .-.
bb: .byte .-.

Gas substitutes the current value of the location counter (see section 3.2,
“Gas Storage Allocation for Variables,” on page 131) in place of the period (.).
The expression location_counter minus location_counter is equal to 0, which
satisfies the Gas requirements for initializers in the .bss section. This strange
syntax lets the reader know that you’re not explicitly expecting the variable to
be initialized with 0 when the program runs.

If .-. is too bizarre for your tastes (or you don’t want to have to type three
characters), I’ve often used something like this to get the same results:

 .equ _, 0 // "_" is a legitimate identifier
 .bss
UninitUns32: .word _
i: .word _
character: .byte _
bb: .byte _

This book tends to use the .-. form (when not explicitly specifying 0),
as there is historical precedence for it. This form has one drawback, how-
ever: it does not work for .qword declarations (this is a Gas limitation).

Variables you declare in the .bss section may consume less disk space
in the executable file for the program. This is because Gas writes out initial
values for .rodata and .data objects to the executable file, but it may use a

126 Chapter 3

compact representation for uninitialized variables you declare in the .bss
section. Note, however, that this behavior is dependent on the OS version
and object-module format.

3.1.5  The .section Directive
The .section directive allows you to create sections using any name you
please (the .rodata section is an example). The syntax for this directive is

.section identifier, flags

where identifier is any legal Gas identifier (it does not have to begin with
a period) and flags is a string surrounded by quotes. The contents of the
string vary by OS, but both Linux and macOS seem to support the follow-
ing characters:

b   �Section is a .bss section and will hold uninitialized data. All data
declarations must have a 0 initializer.

x   Section contains executable code.

w   Section contains writable data.

a   Section is allocatable (must be present for data sections).

d   Section is a data section.

The flags string may contain zero or more of these characters, though
certain flags (such as "b" and "x" or "d") are mutually exclusive. If the "w"
flag is not present in the string, the section will be read-only. Here are some
typical .section declarations:

.section aDataSection, "adw" // Typical data section

.section .const, "" // Like .rodata

.section .code, "x" // Code section (like .text)

Each unique section you define will be given its own block of memory
(such as the blocks that appear in Figure 3-1). The GNU linker/loader
will merge all sections with the same name when assigning them to blocks
of memory.

3.1.6  Declaration Sections
The .data, .rodata, .bss, .text, and other named sections may appear zero or
more times in your program. The declaration sections may appear in any
order, as the following example demonstrates:

 .data
i_static: .word 0

 .bss
i_uninit: .word .-.

Memory Access and Organization 127

 .section .rodata, ""
i_readonly: .word 5

 .data
j: .word 0

 .section .rodata, ""
i2: .word 9

 .bss
c: .byte .-.

 .bss
d: .word .-.

 .text

Code goes here.

The sections may appear in an arbitrary order, and a given declaration
section may appear more than once in your program. As noted previously,
when multiple declaration sections of the same type (for example, the three
.bss sections in the preceding example) appear in a declaration section of
your program, Gas combines them into a single group, in any order it pleases.

3.1.7  Memory Access and MMU Pages
The ARM’s memory management unit (MMU) divides memory into blocks
known as pages. The OS is responsible for managing pages in memory, so
application programs don’t typically worry about page organization. However,
when working with pages in memory, make sure you’re aware of whether the
CPU even allows access to a given memory location and whether it is read/
write or read-only (write-protected).

Each program section appears in memory in contiguous MMU pages.
That is, the .rodata section begins at offset 0 in an MMU page and sequen-
tially consumes pages in memory for all the data appearing in that section.
The next section in memory (perhaps .data) begins at offset 0 in the next
MMU page following the last page of the previous section. If that previous
section (for example, .rodata) does not consume an integral multiple of
4,096 bytes, padding space will be present between the end of that section’s
data and the end of its last page, to guarantee that the next section begins
on an MMU page boundary.

Each new section starts in its own MMU page because the MMU con-
trols access to memory by using page granularity. For example, the MMU
controls whether a page in memory is readable/writable or read-only. For
.rodata sections, you want the memory to be read-only. For the .data section,
you want to allow reads and writes. Because the MMU can enforce these
attributes only on a page-by-page basis, you cannot have .data section infor-
mation in the same MMU page as an .rodata section.

128 Chapter 3

Normally, all this is completely transparent to your code. Data you
declare in a .data (or .bss) section is readable and writable, and data in
an .rodata or .text section is read-only (.text sections are also executable).
Beyond placing data in a particular section, you don’t have to worry too
much about the page attributes.

You do need to worry about MMU page organization in memory in one
situation. Sometimes it is convenient to access (read) data beyond the end
of a data structure in memory. However, if that data structure is aligned
with the end of an MMU page, accessing the next page in memory could
be problematic. Some pages in memory are inaccessible; the MMU does not
allow reading, writing, or execution to occur on that page. Attempting to
do so will generate an ARM segmentation fault. This will typically crash your
program, unless you have an exception handler in place to handle segmen-
tation faults. If you have a data access that crosses a page boundary, and
the next page in memory is inaccessible, this will crash your program. For
example, consider a half-word access to a byte object at the very end of an
MMU page, as shown in Figure 3-2.

Offset 0×FFF
 in page xxxx

Offset 0×0000 in in
page xxxx + 1

Page boundary

Hword access crossing
page boundary

Figure 3-2: Half-word access at the end of a memory-management page

As a general rule, you should never read data beyond the end of a
data structure. If for some reason you need to do so, ensure that it is legal
to access the next page in memory. It goes without saying that you should
never write data beyond the end of a given data structure; this is always
incorrect and can create far more problems than just crashing your pro-
gram (including severe security issues).

3.1.8  PIE and ASLR
As noted in Chapter 1, macOS forces all code to use a position-independent
executables (PIE) form. Linux doesn’t absolutely require this, but it allows
you to write PIE code if you choose. There are two main reasons for PIE
code: shared libraries and security, which were covered in “Linux vs. macOS:
Position-Independent Executables” on page 23. However, as the behavior of
PIE code profoundly affects the way you write ARM assembly language, it is
worthwhile to spend a little more time discussing PIE, and especially address
space layout randomization (ASLR).

Memory Access and Organization 129

ASLR is an attempt by the OS to thwart various exploits (hacks) that try
to figure out where the code and data reside in an application. Prior to PIE
and ASLR, most OSes always loaded the executable code and data to the
same address in memory, making it easy for a hacker to patch or otherwise
mess with the executable program. By loading the code and data sections
into random memory locations, PIE/ASLR make it much more difficult for
exploits to tap into the executing code.

As a result of ASLR, the layout of an executing program in memory will
not actually look like that in Figure 3-1. For one given instance of a program
execution, it might look something like Figure 3-3.

High addresses

Adrs=0x0 =

Stack

Heap

Code (.text section/program instructions)

Read-only data (.rodata section)

Static (.data) variables

Uninitialized storage (.bss section) variables

Reserved by OS (typically 128KB)

Random space

Random space

Random space

Random space

Random space

Figure 3-3: A possible memory layout for one execution of an application

However, on the next run of the program, the sections will likely be
rearranged and placed at different locations in memory.

While PIE/ASLR makes it difficult for hackers to exploit your code,
it also plays havoc with the ARM’s instruction set. Consider the following
(legitimate) ARM ldr instruction:

ldr w0, someWordVar // Assume someWordVar is in .data

This would normally load the W0 register from the 32-bit variable
someWordVar found in the .data section. This particular instruction uses the
PC-relative addressing mode, which means that the instruction encodes an
offset from the address of the ldr instruction to the someWordVar variable in

130 Chapter 3

memory. However, if you assemble this program under macOS, you get the
following error:

error: unknown AArch64 fixup kind!

Under Linux (Ubuntu and Raspberry Pi OS seem to be different; your
mileage may vary), you get something like

relocation truncated to fit: R_AARCH64_LD_PREL_LO19 against `.data'

This is a real ARM64 instruction and should work. In fact

ldr reg, =constant

is just a special form of this instruction, and it does work.
The problem is due to the ARM 32-bit instruction length. If you look up

the encoding for the ldr instruction in the ARM reference manual, you’ll
discover that it sets aside 19 bits for the address of the memory location.
This turns out to be an offset (a distance in bytes) from the address of the ldr
instruction (that is, the value of the 19-bit field is added to the PC to get the
actual memory address). Because it’s referencing data in the .text section, and
everything is word-aligned in the text section, the 19-bit offset is actually a
word offset, not a byte offset. This effectively gives the ldr instruction another
2 bits (the LO 2 bits will always be 0). This effective 21-bit offset allows the ldr
instruction to access data at a location ±1MB around the ldr instruction.

Unfortunately, when accessing data in the .data section, which the OS
has been nice enough to place at a random address (probably farther than
1MB away), the 21-bit range of the ldr instruction won’t be sufficient. This
is why Gas complains about attempting to access a variable in the .data sec-
tion with the ldr instruction. As a bottom line, you can’t use that instruction
to directly access data unless that data is also in the .text section and isn’t
more than ±1MB away.

3.1.9  The .pool Section
The .pool section is a Gas pseudo-section in your program. As noted previ-
ously, the following instruction loads a large constant into a register by plac-
ing that constant somewhere in memory, then loading the contents of that
memory location into the destination register:

ldr reg, =largeConstant

In other words, this instruction is completely equivalent to either of the
following:

 ldr x0, a64_bit_constant
 ldr w0, a32_bit_constant
 .
 .
 .

Memory Access and Organization 131

// Somewhere in the .text section that will never
// be executed as code:

a64_bit_constant: .dword The_Actual_64bit_Constant_Value
a32_bit_constant: .word The_Actual_32bit_Constant_Value

Gas automatically figures out an appropriate place to put such con-
stants: near the instructions that reference them but out of the code path.

If you’d like to control the placement of these constants in your .text
section, you can use the .pool directive. Wherever you place this directive
in your .text section (and it must be in the .text section), Gas will emit the
constants it produces. Just make sure that if you put a .pool directive in
your code, you place it after an unconditional branch or return instruction
so that the program flow won’t attempt to execute that data as machine
instructions.

Normally, you don’t need to place a .pool directive in your source code,
since Gas will do a reasonable job of finding a location to place its data.
However, if you intend to also insert data of your own in the .text section,
you may want to insert the .pool directive and place your data declarations
immediately afterward. Note that the data after .pool is part of the .text sec-
tion, so you can continue to place machine instructions after the .pool.

	 3.2	 Gas Storage Allocation for Variables
Gas associates a current location counter with each of the declaration sections
(.text, .data, .rodata, .bss, and any other named sections). These location
counters initially contain 0. Whenever you declare a variable in one of these
sections (or write code in a code section), Gas associates the current value
of that section’s location counter with the label and bumps up the value of
that location counter by the size of the object you’re declaring.

For example, assume that the following is the only .data declaration sec-
tion in a program:

 .data
bb: .byte 0 // Location counter = 0, size = 1
s: .hword 0 // Location counter = 1, size = 2
w: .word 0 // Location counter = 3, size = 4
d: .dword 0 // Location counter = 7, size = 8
q: .qword 0 // Location counter = 15, size = 16
 // Location counter is now 31.

Variable declarations listed in a single .data section have contiguous
offsets (location counter values) into the .data section. Given the preceding
declaration, s will immediately follow bb in memory, w will immediately fol-
low s in memory, d will immediately follow w, and so on. These offsets aren’t
the actual runtime addresses of the variables. At runtime, the system loads
each section to a base address in memory. The linker and the OS add the
base address of the memory section to each of these location counter values

132 Chapter 3

(normally called displacements, or offsets) to produce the actual memory
address of the variables.

OBTA INING T HE CUR R EN T LOCAT ION COUN T ER VA LUE

If you ever want to use the current location counter value in your program, Gas
will substitute it for a single period (.) wherever a constant is allowed, as in the
following example:

.dword . // Stores the address of this dword in memory

You’d normally use the . operator to compute lengths of sections of code, using
something like the following:

lbl: .byte 0, 1, 2, 3, 4
lbl2: .hword 55
size: .word . - lbl

The . - lbl expression computes the number of bytes between the lbl
symbol and the size label. The . operator returns the location counter value at
the beginning of the .word directive and does not include the 4 bytes that .word
will emit to the output file.

Keep in mind that you may link other modules with your program (for
example, from the C stdlib) or even additional .data sections in the same
source file, and the linker has to merge the .data sections. Each individual
section (even when it has the same name as another section) has its own
location counter that starts from 0 when allocating storage for the variables
in the section. Hence, the offset of an individual variable may have little
bearing on its final memory address.

Gas allocates memory objects you declare in .rodata, .data, and .bss
sections in completely different regions of memory. Therefore, you cannot
assume that the following three memory objects appear in adjacent mem-
ory locations (indeed, they probably will not):

 .data
bb: .byte 0

 .section .rodata, ""
w: .word 0x1234

 .bss
d: .dword .-.

In fact, Gas will not even guarantee that variables you declare in sepa-
rate .data (or other) sections are adjacent in memory, even if there is noth-
ing between the declarations in your code. For example, you cannot assume

Memory Access and Organization 133

whether bb, w, and d are—or aren’t—in adjacent memory locations in the
following declarations:

 .data
bb: .byte 0

 .data
w: .word 0x1234

 .data
d: .dword 0

If your code requires these variables to consume adjacent memory loca-
tions, you must declare them in the same .data section.

	 3.3	 Little-Endian and Big-Endian Data Organization
As you learned in section 1.6.2, “The Memory Subsystem,” on page 14, the
ARM stores multibyte data types in memory, with the LO byte at the lowest
address in memory and the HO byte at the highest address (see Figure 1-6).
This type of data organization in memory is known as little endian. Little-
endian data organization, in which the LO byte comes first and the HO byte
comes last, is common in many modern CPUs. It is not, however, the only pos-
sible approach.

Big-endian data organization reverses the order of the bytes in memory.
The HO byte of the data structure appears first, in the lowest memory
address, and the LO byte appears in the highest memory address. Table 3-1
describes the memory organization for half words.

Table 3-1: Half-Word Object Memory Organization

Data byte Little endian Big endian

0 (LO byte) base + 0 base + 1

1 (HO byte) base + 1 base + 0

Table 3-2 describes the memory organization for words.

Table 3-2: Word Object Memory Organization

Data byte Little endian Big endian

0 (LO byte) base + 0 base + 3

1 base + 1 base + 2

2 base + 2 base + 1

3 (HO byte) base + 3 base + 0

134 Chapter 3

Table 3-3 describe the memory organization for double words.

Table 3-3: Dword Object Memory Organization

Data byte Little endian Big endian

0 (LO byte) base + 0 base + 7

1 base + 1 base + 6

2 base + 2 base + 5

3 base + 3 base + 4

4 base + 4 base + 3

5 base + 5 base + 2

6 base + 6 base + 1

7 (HO byte) base + 7 base + 0

Normally, you wouldn’t be too concerned with big-endian memory
organization on an ARM CPU. However, on occasion, you may need to
deal with data produced by a different CPU (or by a protocol, such as
Transmission Control Protocol/Internet Protocol, or TCP/IP) that uses
big-endian organization as its canonical integer format. If you were to
load a big-endian value in memory into a CPU register, the value would
be incorrect.

If you have a 16-bit big-endian value in memory and you load it into
a register, its bytes will be swapped. For 16-bit values, you can correct this
issue by using the rev16 instruction, which has the following syntax:

rev16 regdest, regsrc

Here, regdest and regsrc are any 32- or 64-bit general-purpose registers (both
must be the same size). This instruction will swap the 2 bytes in each of the
16-bit half-words in the source register; that is, this operates on hword0 and
hword1 in a 32-bit register and on hword0, hword1, hword2, and hword3 in a 64-bit
register. For example

ldr w1, =0x12345678
rev16 w1, w1

will produce 0x34127856 in the W1 register, having swapped bytes 0 and 1
as well as bytes 2 and 3.

If you have a 32-bit value in a register (32- or 64-bit), you can swap the
4 bytes in that register by using the rev32 instruction:

rev32 regdest, regsrc

Again, the registers can be 32- or 64-bit, but both must be the same
size. In a 32-bit register, this will swap bytes 0 and 3 as well as 1 and 2. In a

Memory Access and Organization 135

64-bit register, it will swap bytes 0 and 3, 1 and 2, 7 and 4, and 6 and 5 (see
Figure 3-4).

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Figure 3-4: Operation of the rev32 instruction

The rev instruction will swap bytes 7 and 0, 6 and 1, 5 and 2, and 4 and 3
in a 64-bit register (see Figure 3-5).

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Figure 3-5: Operation of the rev instruction

The rev instruction accepts only 64-bit registers.

	 3.4	 Memory Access
Section 1.6.2, “The Memory Subsystem,” on page 14 describes how the
ARM CPU fetches data from memory on the data bus. In an idealized CPU,
the data bus is the size of the standard integer registers on the CPU; there-
fore, you would expect the ARM CPUs to have a 64-bit data bus. In practice,
modern CPUs often make the physical data bus connection to main mem-
ory much larger in order to improve system performance. The bus brings
in large chunks of data from memory in a single operation and places that
data in the CPU’s cache, which acts as a buffer between the CPU and physi-
cal memory.

From the CPU’s point of view, the cache is memory. Therefore, when
the remainder of this section discusses memory, it’s generally talking about
data sitting in the cache. As the system transparently maps memory accesses
into the cache, we can discuss memory as though the cache were not present
and discuss the advantages of the cache as necessary.

On early processors predating the ARM, memory was arranged as an
array of bytes (8-bit machines, such as the Intel 8088), half words (16-bit
machines, such as the Intel 8086 and 80286), or words (32-bit machines, such
as the 32-bit ARM CPUs). On a 16-bit machine, the LO bit of the address did
not physically appear on the address bus. This means the addresses 126 and
127 put the same bit pattern on the address bus (126, with an implicit 0 in bit
position 0), as shown in Figure 3-6.

136 Chapter 3

16-bit
CPU

Memory

Address = 126

Data = Memory[126]
LO 8 bits
HO 8 bits

120
121
122
123
124
125
126
127
128
129

Figure 3-6: The address and data bus for 16-bit
processors

When reading a byte, the CPU uses the LO bit of the address to select
the LO byte or HO byte on the data bus. Figure 3-7 shows the process when
accessing a byte at an even address (126 in this figure).

16-bit
CPU

Memory

Address bus = 126

Byte data = Memory[126]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-7: Reading a byte from an even address on a 16-bit CPU

Figure 3-8 shows memory access for the byte at an odd address (127 in
this figure). Note that in both Figures 3-7 and 3-8, the address appearing
on the address bus is 126.

120
121
122
123
124
125
126
127
128
129

LO 8 bits

Memory

Address bus = 126

Byte data = Memory[127]

HO 8 bits

16-bit
CPU

Figure 3-8: Reading a byte from an odd address on a 16-bit CPU

Memory Access and Organization 137

What happens when this 16-bit CPU wants to access 16 bits of data at
an odd address? For example, suppose that in these figures, the CPU reads
the word at address 125. When the CPU puts address 125 on the address
bus, the LO bit doesn’t physically appear. Therefore, the actual address on
the bus is 124. If the CPU were to read the LO 8 bits off the data bus at this
point, it would get the data at address 124, not address 125.

Fortunately, the CPU is smart enough to figure out what’s going on
here: it extracts the data from the HO 8 bits on the data bus and uses this
as the LO 8 bits of the data operand. However, the HO 8 bits that the CPU
needs are not found on the data bus. The CPU has to initiate a second
read operation, placing address 126 on the address bus, to get the HO
8 bits (these will be sitting in the LO 8 bits of the data bus, but the CPU
can figure that out). It takes two memory cycles for this read operation to
complete. Therefore, the instruction reading the data from memory will
take longer to execute than it would have if the data had been read from
an address that was an integral multiple of 2 (16-bit alignment).

The same problem exists on 32-bit processors, except that the 32-bit
data bus allows the CPU to read 4 bytes at a time. Reading a 32-bit value
at an address that is not an integral multiple of 4 incurs the same perfor-
mance penalty. However, accessing a 16-bit operand at an odd address
doesn’t always guarantee an extra memory cycle—only addresses that,
when divided by 4, have a remainder of 3 incur the penalty. In particular,
if you access a 16-bit value (on a 32-bit bus) at an address where the LO
2 bits contain 0b01, the CPU can read the word in a single memory cycle,
as shown in Figure 3-9.

32-bit
CPU

Memory

Address bus = 124

32-bit data bus
Word data = Memory[125]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-9: Accessing a word on a 32-bit data bus

Modern ARM CPUs with cache systems have largely eliminated this
problem. As long as the data (1, 2, 4, or 8 bytes in size) is fully within a
cache line—a processor-defined number of bytes—no memory cycle penalty
occurs for an unaligned access. If the access does cross a cache-line bound-
ary, the CPU will run a little slower while it executes two memory opera-
tions to get (or store) the data.

138 Chapter 3

	 3.5	 Gas Support for Data Alignment
To write fast programs, you must ensure that you properly align data
objects in memory. Proper alignment means that the starting address for
an object is a multiple of a certain size—usually the size of an object, if the
object’s size is a power of 2 for values up to 32 bytes in length. For objects
greater than 32 bytes, aligning the object on an 8-, 16-, or 32-byte address
boundary is probably sufficient. For objects fewer than 16 bytes, aligning
the object at an address that is the next power of 2 greater than or equal to
the object’s size is usually fine.

As noted in the previous section, accessing data that is not aligned at
an appropriate address may require extra time. Therefore, if you want to
ensure that your program runs as rapidly as possible, you should try to
align data objects according to their size.

Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare a byte
variable, it will consume 1 byte of storage, and the next variable you declare
in that declaration section will have the address of that byte object plus 1. If
the byte variable’s address happens to be an even address, the variable follow-
ing that byte will start at an odd address. If that following variable is a half-
word, word, or dword object, its starting address will not be optimal.

In this section, we’ll explore ways to ensure that a variable is aligned
at an appropriate starting address based on its size. Consider the following
Gas variable declarations:

 .data
w: .word 0
bb: .byte 0
s: .hword 0
w2: .word 0
s2: .hword 0
b2: .byte 0
dw: .dword 0

The first .data declaration in a program places its variables at an
address that is an even multiple of 4,096 bytes. Whatever variable first
appears in that .data declaration is guaranteed to be aligned on a reason-
able address. Each successive variable is allocated at an address that is the
sum of the sizes of all the preceding variables, plus the starting address of
that .data section.

Therefore, assuming Gas allocates the variables in the previous example
at a starting address of 4096, it will allocate them at the following addresses:

 // Start Adrs Length
w: .word 0 // 4096 4
bb: .byte 0 // 4100 1
s: .hword 0 // 4101 2
w2: .word 0 // 4103 4
s2: .hword 0 // 4107 2
b2: .byte 0 // 4109 1
dw: .dword 0 // 4110 8

Memory Access and Organization 139

With the exception of the first variable (which is aligned on a 4KB
boundary) and the byte variables (whose alignment doesn’t matter), all
these variables are misaligned. The s, s2, and w2 variables start at odd
addresses, and the dw variable is aligned on an even address that is not a
multiple of 8 (word-aligned but not dword-aligned).

An easy way to guarantee that your variables are aligned properly is to
put all the dword variables first, the word variables second, the half-word
variables third, and the byte variables last in the declaration, as shown here:

 .data
dw: .dword 0
w: .word 0
w2: .word 0
s: .hword 0
s2: .hword 0
bb: .byte 0
b2: .byte 0

This organization produces the following addresses in memory:

 // Start Adrs Length
dw: .dword 0 // 4096 8
w2: .word 0 // 4104 4
w3: .word 0 // 4108 4
s: .hword 0 // 4112 2
s2: .hword 0 // 4114 2
bb: .byte 0 // 4116 1
b2: .byte 0 // 4117 1

These variables are all aligned at reasonable addresses.
Unfortunately, it is rarely possible for you to arrange your variables in

this manner. While many technical reasons make this alignment impossi-
ble, a good practical reason for not doing this is that it doesn’t let you orga-
nize your variable declarations by logical function (that is, you probably
want to keep related variables next to one another, regardless of their size).

To resolve this problem, Gas provides the .align and .balign directives.
As noted in section 1.2, “The Anatomy of an Assembly Language Program,”
on page 5, the .align argument is a value that will be raised to that power of
2, and the .balign’s operand is an integer that must be a power of 2 (1, 2, 4,
8, 16, and so on). These directives ensure that the next memory object will
be aligned to the specified size.

By default, these directives will pad the data bytes they skip with 0s; in a
.text section, Gas aligns the code by using nop (no-operation) instructions.
If you would like to use a different padding value, these two directives allow
a second operand:

.align pwr2Alignment, padValue

.balign alignment, padValue

140 Chapter 3

Here, padValue must be an 8-bit constant, which these directives will use as
the padding value. Gas also allows a third argument, which is the maximum
allowable padding; see the Gas documentation for more details.

The previous example could be rewritten, using the .align directive,
as follows:

 .data
 .align 2 // Align on 4-byte boundary.
w: .word 0
bb: .byte 0
 .align 1 // Align on 2-byte boundary.
s: .hword 0
 .align 2 // Align on 4-byte boundary.
w2: .word 0
s2: .hword 0
b2: .byte 0
 .align 3 // Align on 8-byte boundary.
dw: .dword 0

If Gas determines that an .align directive’s current address (location
counter value) is not an integral multiple of the specified value, Gas will
quietly emit extra bytes of padding after the previous variable declaration
until the current address in the .data section is a multiple of the specified
value. This makes your data larger by a few bytes, in exchange for faster
access to it. Since your data will grow only slightly larger when you use this
feature, this is probably a good trade-off.

As a general rule, if you want the fastest possible access, choose an
alignment value equal to the size of the object you want to align. That is,
align half words to even boundaries with an .align 1 statement, words to
4-byte boundaries with .align 2, double words to 8-byte boundaries with
.align 3, and so on. If the object’s size is not a power of 2, align it to the
next higher power of 2.

Data alignment isn’t always necessary, since the cache architecture
of modern ARM CPUs handles most misaligned data. Use the alignment
directives only with variables for which speedy access is absolutely critical.

	 3.6	 The ARM Memory Addressing Modes
For the most part, the ARM uses a very standard RISC load/store architecture.
This means that it accomplishes almost all memory access by using instruc-
tions that load registers from memory or store the value held in registers to
memory. The load and store instructions access memory by using memory
addressing modes, mechanisms the CPU uses to determine the address of a
memory location. The ARM memory addressing modes provide flexible
access to memory, allowing you to easily access variables, arrays, structs,
pointers, and other complex data types. Mastering ARM addressing modes
is an important step toward mastering ARM assembly language.

In addition to loads and stores, ARM uses atomic instructions. For the
most part, these are variations of the load and store instructions, with a few

Memory Access and Organization 141

extra bells and whistles needed for multiprocessing applications. Atomic
instructions are beyond the scope of this text; for more information, see the
ARM V8 reference manual.

Until now, this book has presented only two mechanisms for accessing
memory: the register-indirect addressing mode (for example, [X0]) intro-
duced in Chapter 1, and the PC-relative addressing mode discussed in
section 3.1.8, “PIE and ASLR,” on page 128. However, the ARM provides more
than half a dozen modes (depending on how you count them) for accessing
data in memory. The following sections describe each of these modes.

3.6.1  PC-Relative
The PC-relative addressing mode is useful only for fetching values from the
.text section, as the other sections will likely fall out of the ±1MB range of
this addressing mode. Therefore, it is much easier to directly access con-
stant data in the .text section than it would be in the .rodata section (or
another read-only section).

A couple of issues arise when using the PC-relative addressing mode in
the .text section. First, because the 19-bit offset buried in the 32-bit instruc-
tion encoding is shifted left 2 bits to produce a word offset (as discussed
earlier), you can load only word and double-word values when using this
addressing mode—no bytes or half words. For example, you can access byte
and half-word values in the .text section with the register-indirect address-
ing mode, but not with the PC-relative addressing mode.

When accessing data in the .text section by using the PC-relative
addressing mode, keep the following points in mind:

•	 Under macOS, all labels in the .text section must be aligned on a
4-byte boundary, even if the data associated with that label doesn’t
require such alignment (such as bytes and half words).

•	 Data values in the .text section cannot refer to other sections (for
example, pointer constants, discussed in Chapter 4). However, such
objects can refer to data within the .text section itself (this is important
for jump tables, covered in Chapter 7).

•	 The data must reside within ±1MB of the instruction(s) that reference
it. For example, you cannot create an array of data that exceeds 1MB.

•	 Only word and dword accesses are allowed when using the PC-relative
addressing mode.

•	 As the data resides in the .text section, it is read-only; you cannot put
variables in the .text section.

To use the PC-relative addressing mode, just reference the label you
used to declare the object in the .text section:

 ldr w0, wordVar
 .
 .
 .
wordVar: .word 12345

142 Chapter 3

Don’t forget that all data declarations you put in the .text section need
to be out of the execution path, preferably in the .pool section. (You’ll see
an exception to this rule in Chapter 5 when I discuss passing parameters in
the code stream.)

3.6.2  Register-Indirect
Up to this point, most examples in this book have used the register-indirect
addressing mode. Indirect means that the operand is not the actual address,
but that the operand’s value specifies the memory address to use. In a register-
indirect addressing mode, the value held in the register is the address of
the memory location to access. For example, the instruction

ldr x0, [x1]

tells the CPU to load X0’s value from the location whose address is cur-
rently in X1. The square brackets around X1 tell Gas to use the register-
indirect addressing mode.

The ARM has 32 forms of this addressing mode, one for each of the 32
general-purpose 64-bit registers (though X31 is not legal; use SP instead).
You cannot specify a 32-bit register in the square brackets when using an
indirect addressing mode.

Technically, you could load a 64-bit register with an arbitrary numeric
value and access that location indirectly by using the register-indirect
addressing mode:

ldr x1, =12345678
ldr x0, [x1] // Attempts to access location 12345678

Unfortunately (or fortunately, depending on how you look at it), this
will probably cause the OS to generate a segmentation fault because it’s not
always legal to access arbitrary memory locations. There are better ways to
load the address of an object into a register, as you’ll see shortly.

You can use the register-indirect addressing modes to access data ref-
erenced by a pointer, to step through array data, and, in general, whenever
you need to modify an object’s address while your program is running.

When using a register-indirect addressing mode, you refer to the value
of a variable by its numeric memory address (the value you load into a regis-
ter) rather than by the name of the variable. This is an example of using an
anonymous variable.

The aoaa​.inc include file provides the lea macro, which you can use to
take the address of a variable and put it into a 64-bit register:

lea x1, j

After executing this lea instruction, you can use the [x1] register-
indirect addressing mode to indirectly access the value of j (which is how
almost every example up to this point has accessed memory). In section 3.8,
“Getting the Address of a Memory Object,” on page 153, you’ll see how
the lea macro works.

Memory Access and Organization 143

3.6.3  Indirect-Plus-Offset
Consider the following data declaration, similar to other examples given in
this book:

bVar: .byte 0, 1, 2, 3

If you load X1 with the address of bVar, you can access that byte (0) by using
an instruction such as this:

ldrb w1, [x1] // Load byte at bVar (0) into W1.

To access the other 3 bytes following that 0 in memory, you can use the
indirect-plus-offset addressing mode. Here is the mode’s syntax:

[Xn|SP, #signed_expression]

Xn|SP means X0 to X30 or SP, and signed_expression is a small integer expres-
sion in the range –256 to +255. This particular addressing mode will
compute the sum of the address in Xn (n = 0 to 30, or SP) with the signed
constant and use that as the effective memory address (the memory address
to access).

For example, if X1 contains the address of bVar from the previous exam-
ple, the following instruction will fetch the byte just beyond bVar (that is, the
byte containing 1 in that example):

ldrb w0, [x1, #1] // Fetch byte at address X1 + 1.

Once again, the 32-bit instruction size severely limits the range of this
addressing mode (only 9 bits are available for the signed offset). If you
need a greater offset, you must explicitly add a value to the address in X1
(perhaps using a different register if you need to maintain the base address
in X1). For example, the following code does this using X2 to hold the
effective address:

add x2, x1, #2000 // Access location X1 + 2000.
ldrb w2, [x2]

This computes X2 = X1 + 2000 and loads W2 with the word at that address.

3.6.4  Scaled Indirect-Plus-Offset
The scaled indirect-plus-offset addressing mode is a somewhat more complex
variant of the indirect-plus-offset mode. It incorporates a 12-bit unsigned
constant into the instruction encoding that is scaled (multiplied) by 1, 2,
4, or 8, depending on the size of the data transfer. This provides a range
extension to the 9-bit signed offset of the indirect-plus-offset mode.

144 Chapter 3

This addressing mode uses the same syntax as the indirect-plus-offset
addressing mode, except that it doesn’t allow signed offsets:

[Xn|SP, #unsigned_expression]

For byte transfers (ldrb), the unsigned expression can be a value in
the range 0 to 0xFFF (4,095). For half-word transfers (ldrh), the unsigned
expression can be a value in the range 0 to 0x1FFE, but the offset must
be even. For word transfers (ldr), the unsigned expression must be in the
range 0 to 0x3FFC and must also be divisible by 4. For dword transfers, the
unsigned expression must be in the range 0 to 0x7FF8 and must be divis-
ible by 8. As you’ll see in Chapter 4, these numbers work great for accessing
elements of a byte, half-word, word, or double-word array.

Generally, the assembler will automatically select between the indirect-
plus-offset and scaled indirect-plus-offset addressing modes, based on the
value of the offset appearing in the addressing mode. Sometimes the choice
might be ambiguous. For example:

ldr w0, [X2, #16]

Here, the assembler could choose the scaled or unscaled versions of the
addressing mode. Typically, it would choose the scaled form. Its decision
shouldn’t matter to your code; either form will load the appropriate word in
memory into the W0 register.

If, for some reason, you wish to explicitly specify the unscaled address-
ing mode, you can do so using the ldur and stur instructions (load or store
register unscaled).

3.6.5  Pre-indexed
The pre-indexed addressing mode is very similar to the indirect-plus-offset
addressing mode, insofar as it combines a 64-bit register and a signed 9-bit
offset. However, this addressing mode copies the sum of the register and
offset into the register before accessing memory. In the end, it accesses the
same address as the indirect-plus-offset mode, but once the instruction fin-
ishes, the index register points into memory at the indexed location. This
mode is useful for stepping through arrays and other data structures by
incrementing the register after each access in a loop.

Here’s the syntax for the pre-indexed addressing mode:

[Xn|SP, #signed_expression]! // Xn|SP has the usual meaning.

The ! at the end of this sequence differentiates the pre-indexed address-
ing mode. As with the indirect-plus-offset mode, the signed_expression value
is limited—in this case, to 9 bits (–256 to +255).

Memory Access and Organization 145

The following code fragment uses this addressing mode:

bVar: .byte 0, 1, 2, 3
 .
 .
 .
 lea x0, bVar-1 // Initialize with adrs of bVar – 1.
 mov x1, 4
loop: ldrb w2, [x0, #1]!

 Do something with the byte in W2.

 subs x1, x1, #1
 bne loop

On the first iteration of this loop, the addressing mode adds 1 to X0 so
that it points at the first byte in the bVar array of 4 bytes. This also leaves X0
pointing at that first byte. On each successful iteration of the loop, X0 is
incremented by 1, accessing the next byte in the bVar array.

The subs instruction will set the Z flag when it decrements X1 down to 0.
When that happens, the bne (branch if Z = 0) instruction will fall through,
terminating the loop.

3.6.6  Post-Indexed
The post-indexed addressing mode is very similar to the pre-indexed
addressing mode, except it uses the value of the register as the memory
address before updating the register with the signed immediate value.
Here’s the syntax for the post-indexed addressing mode:

[Xn|SP], #signed_expression // Xn|SP has the usual meaning.

Again, the signed_expression is limited to 9 bits (–256 to +255).
The example of the previous section can be rewritten and slightly

improved by using the post-indexed addressing mode:

bVar: .byte 0, 1, 2, 3
 .
 .
 .
 lea x0, bVar
 mov x1, 4
loop: ldrb w2, [x0], #1

 Do something with the byte in W2.

 subs x1, x1, #1
 bne loop

This example starts with X0 pointing at bVar and ends with X0 pointing
at the first byte beyond the (four-element) bVar array. On the first iteration
of this loop, the ldr instruction first uses the value in X0, pointing at bVar,
then increments X0 after fetching the byte where X0 points.

146 Chapter 3

3.6.7  Scaled-Indexed
The scaled-indexed addressing mode contains two register components
(rather than a register and an immediate constant) that form the effective
address. The syntax for this mode is the following:

[Xn|SP, Xi]
[Xn|SP, Wi, extend]
[Xn|SP, Xi, extend]

The first form is the easiest to understand: it computes the effective
address (EA) by adding the values in Xn (or SP) and Xi. Generally, Xn (or
SP) is known as the base address, and the value in Xi is the index (which
must be X0 to X30 or XZR). The base address is the lowest memory address
of an object, and the index is an offset from that base address (much like
the immediate constants in the indirect-plus-offset addressing mode). This
is just a simple base + index addressing mode: no scaling takes place.

W H Y X N|SP, NOT X 31?

As noted in section 1.6, “The ARM64 CPU Architecture,” on page 11, the stack
pointer register, SP, is the same as X31. However, if you try to use X31 as the
base register in an addressing mode, Gas will report an error. This is because
the ARM64 CPU actually maps two separate registers to X31: SP and XZR (the
zero register). You use one of those register names rather than X31.

In addressing modes, the ARM does not allow you to use XZR as a base
register. You can, however, use SP as the base register. Conversely, XZR is
allowed as an index register (though it’s somewhat redundant to do so), and SP
is not allowed there.

The base + index form is useful in these situations:

•	 You have a pointer to an array object in a register (Xn, the base address),
and you want to access an element of that array by using an integer
index (typically in a memory variable). In this case, you would load the
index into the index register (Xi) and use the base + index mode to
access the actual element.

•	 You want to use the indirect-plus-offset addressing mode, but the offset
is outside the range –256 to +255. In this case, you can load the larger
offset into Xi and use the base + index addressing mode to access the
memory location regardless of the offset.

The second and third forms of the scaled-indexed addressing mode
provide an extension/scaling operation, which is quite useful for index-
ing into arrays whose element size is larger than a byte. Of these two

Memory Access and Organization 147

scaled-indexed modes, one uses a 32-bit register as the index register, and
the other uses a 64-bit register.

The 32-bit form is convenient because most of the time indices into an
array are held in a 32-bit integer variable. If you load that 32-bit integer into
a 32-bit register (Wi), you can easily use it as an index into an array with the

[Xn, Wi, extend]

form of the scaled-indexed addressing mode.
Ultimately, all effective addresses turn out to be 64 bits. In particular,

when the CPU adds Xn and Wi together, it must somehow extend the Wi
index value to 64 bits prior to adding them. The extend operator tells Gas
how to extend Wi to 64 bits.

The simplest forms of extend are the following:

[Xn|SP, Wi, uxtw]
[Xn|SP, Wi, sxtw]

The [Xn|SP, Wi, uxtw] form zero-extends Wi to 64 bits before adding
it to Xn, while the [Xn|SP, Wi, sxtw] form sign-extends Wi to 64 bits before
the addition.

Another form of the scaled-indexed addressing mode introduces the
scaled component. This form allows you to load elements from an array of
bytes, half words, words, or dwords scaled by the size of the array element
(1, 2, 4, or 8 bytes). These particular forms are not stand-alone addressing
modes that can be used with an arbitrary ldr or str instruction. Instead,
each addressing mode form is tied to a specific instruction size. The follow-
ing is the allowable syntax for the ldrb/ldrsb and strb instructions (Wd is a
32-bit destination register, and Ws is a 32-bit source register):

ldrb Wd, [Xn|SP, Wi, sxtw #0] // #0 is optional;
ldrb Wd, [Xn|SP, Wi, uxtw #0] // 0 is default shift.
ldrb Wd, [Xn|SP, Xi, lsl #0]

ldrsb Wd, [Xn|SP, Wi, sxtw #0]
ldrsb Wd, [Xn|SP, Wi, uxtw #0]
ldrsb Wd, [Xn|SP, Xi, lsl #0]

strb Ws, [Xn|SP, Wi, sxtw #0]
strb Ws, [Xn|SP, Wi, uxtw #0]
strb Ws, [Xn|SP, Xi, lsl #0]

These forms zero- or sign-extend Wi (or Xi) and add the result with Xn
to produce the EA. The previous instructions are equivalent to the follow-
ing (because the #0 is optional):

ldrb Wd, [Xn|SP, Wi, sxtw]
ldrb Wd, [Xn|SP, Wi, uxtw]
ldrb Wd, [Xn|SP, Xi]

148 Chapter 3

ldrsb Wd, [Xn|SP, Wi, sxtw]
ldrsb Wd, [Xn|SP, Wi, uxtw]
ldrsb Wd, [Xn|SP, Xi]

strb Ws, [Xn|SP, Wi, sxtw]
strb Ws, [Xn|SP, Wi, uxtw]
strb Ws, [Xn|SP, Xi]

For the ldrh/ldrsh and strh instructions, you can specify either the 0 (×1)
or 1 (×2) scale factor:

ldrh Wd, [Xn|SP, Wi, sxtw #1] // #0 is also legal, or
ldrh Wd, [Xn|SP, Wi, uxtw #1] // no immediate value (which
ldrh Wd, [Xn|SP, Xi, lsl #1] // defaults to 0).

ldrsh Wd, [Xn|SP, Wi, sxtw #1]
ldrsh Wd, [Xn|SP, Wi, uxtw #1]
ldrsh Wd, [Xn|SP, Xi, lsl #1]

strh Ws, [Xn|SP, Wi, sxtw #1]
strh Ws, [Xn|SP, Wi, uxtw #1]
strh Ws, [Xn|SP, Xi, lsl #1]

With a scaling factor of #1, these addressing modes compute Wi × 2 or
Xi × 2 (after any zero or sign extension) and then add the result with the
value in Xn to produce the EA. This scales the EA to access half-word values
(2 bytes per array element). If the scaling factor is #0, no scaling occurs, as
the scaling factor is 20. The preceding code must multiply Wi or Xi by an
appropriate scaling factor, if needed. Loading or storing half words allows a
scaling factor of only 0 or 1.

For the 32-bit ldr instruction (Wd is the destination register) and str
instruction (Ws is the 32-bit source register), the allowable scaling factors
are 0 (×1) or 2 (×4):

ldr Wd, [Xn|SP, Wi, sxtw #2] // #0 is also legal, or
ldr Wd, [Xn|SP, Wi, uxtw #2] // no immediate value (which
ldr Wd, [Xn|SP, Xi, lsl #2] // defaults to 0).

str Ws, [Xn|SP, Wi, sxtw #2]
str Ws, [Xn|SP, Wi, uxtw #2]
str Ws, [Xn|SP, Xi, lsl #2]

Finally, for the 64-bit ldr and str instructions, the allowable scaling fac-
tors are 0 (×1) and 3 (×8):

ldr Xd, [Xn|SP, Wi, sxtw #3] // #0 is also legal, or
ldr Xd, [Xn|SP, Wi, uxtw #3] // no immediate value (which
ldr Xd, [Xn|SP, Xi, lsl #3] // defaults to 0).

str Xs, [Xn|SP, Wi, sxtw #3]
str Xs, [Xn|SP, Wi, uxtw #3]
str Xs, [Xn|SP, Xi, lsl #3]

Memory Access and Organization 149

You’ll see the main uses for the scaled-indexed addressing modes in the
next chapter, when it discusses accessing elements of arrays.

	 3.7	 Address Expressions
Often, when accessing variables and other objects in memory, you will need
to access locations immediately before or after a variable rather than at
the address of the variable. For example, when accessing an element of an
array, or a field of a struct, the exact element or field is probably not at the
address of the variable itself. Address expressions provide a mechanism to
access memory at an offset from the variable’s address.

Consider the following legal Gas syntax for a memory address. This
isn’t a new addressing mode but simply an extension of the PC-relative
addressing mode:

varName + offset

This form computes its effective address by adding the constant offset
to the variable’s address. For example, the instruction

ldr w0, i + 4

loads the W0 register with the word in memory that is 4 bytes beyond the
i object (which, presumably, is in the .text section; see Figure 3-10).

W0
0x1003
0x1002
0x1001
0x1000 (address of i)

0x1004 (i + 4)
0x1005
0x1006
0x1007

ldr w0, i + 4

Figure 3-10: Using an address expression to access data beyond a variable

The offset value in this example must be a constant (for example, 3). If
Index is a word variable, then varName + Index is not a legal address expression.
If you wish to specify an index that varies at runtime, you must use one of
the indirect or scaled-indexed addressing modes. Also remember that the
offset in varName + offset is a byte address. This does not properly index into
an array of objects unless varName is an array of bytes.

150 Chapter 3

N O T E 	 The ARM CPU does not allow the use of the ldrb and ldrh instructions when using
the PC-relative addressing mode. You can only load words or double words when
using this addressing mode. Furthermore, because the instructions don’t encode the
LO 2 bits of the offset, any offset you specify using an address expression must be a
multiple of 4.

Until this point, the offset in the addressing mode examples has always
been a single numeric constant. However, Gas also allows a constant expres-
sion anywhere an offset is legal. A constant expression consists of one or more
constant terms manipulated by operators such as addition, subtraction,
multiplication, division, and a wide variety of others, as shown in Table 3-4.
Note that operators at the same precedence level are left-associative.

Table 3-4: Gas Constant Expression Operators

Operator Precedence Description

+ 3 Unary plus (no effect on expression)

- 3 Unary minus (negates expression)

* 2 Multiplication

/ 2 Division

<< 2 Shift left

>> 2 Shift right

| 1 Bitwise OR

& 1 Bitwise AND

^ 1 Bitwise XOR

! 1 Bitwise AND-NOT

+ 0 Addition

- 0 Subtraction

Most address expressions, however, involve only addition, subtraction,
multiplication, and sometimes division. Consider the following example:

ldr w0, X + 2*4

This instruction will move the byte at address X + 8 into the W0 register.
The value X + 2*4 is an address expression that is always computed at

compile time, never while the program is running. When Gas encounters
the preceding instruction, it calculates

2 × 4

on the spot and adds this result to the base address of X in the .text section.
Gas encodes this single sum (base address of X plus 8) as part of the instruc-
tion; it does not emit extra instructions (that would waste time) to compute
this sum for you at runtime. Because Gas computes the value of address

Memory Access and Organization 151

expressions at compile time, and therefore Gas cannot know the runtime
value of a variable while it is compiling the program, all components of the
expression must be constants.

Address expressions are useful for accessing the data in memory beyond
a variable, particularly when you’ve used directives like .byte, .hword, .word,
and so on in a .data or .text section to tack on additional values after a data
declaration. For example, consider the program in Listing 3-1 that uses
address expressions to access the four consecutive words associated with
memory object i (each word is 4 bytes apart in memory).

// Listing3-1.S
//
// Demonstrates address expressions

#include "aoaa​.inc"

 .data
saveLR: .dword 0
outputVal: .word 0

ttlStr: .asciz "Listing 3-1"
fmtStr1: .asciz "i[0]=%d "
fmtStr2: .asciz "i[1]=%d "
fmtStr3: .asciz "i[2]=%d "
fmtStr4: .asciz "i[3]=%d\n"

 .text
 .extern printf

 .align 2
i: .word 0, 1, 2, 3

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

// Here is the asmMain function:

 .global asmMain
asmMain:

// "Magic" instruction offered without
// explanation at this point:

 sub sp, sp, #256

152 Chapter 3

// Save LR so we can return to the C++
// program later:

 lea x0, saveLR
 str lr, [x0]

// Demonstrate the use of address expressions:

 lea x0, fmtStr1
 1 ldr w1, i + 0
 lea x2, outputVal
 str w1, [x2]
 vparm2 outputVal
 bl printf

 lea x0, fmtStr2
 2 ldr w1, i + 4
 lea x2, outputVal
 str w1, [x2]
 vparm2 outputVal
 bl printf

 lea x0, fmtStr3
 3 ldr w1, i + 8
 lea x2, outputVal
 str w1, [x2]
 vparm2 outputVal
 bl printf

 lea x0, fmtStr4
 4 ldr w1, i + 12
 lea x2, outputVal
 str w1, [x2]
 vparm2 outputVal
 bl printf

 lea x0, saveLR
 ldr lr, [x0]
 add sp, sp, #256
 ret

Loading W1 from location i + 0 fetches 0 from the word array 1. Loading
W1 from location i + 4 fetches 1 from the second word in the array, located
4 bytes beyond the first element 2. Loading W1 from location i + 8 fetches
2 from the third word in the array 3, located 8 bytes beyond the first ele-
ment. Loading W1 from location i + 12 fetches 3 from the fourth word in
the array 4, located 12 bytes beyond the first element.

Here’s the program’s output:

$./build Listing3-1
$./Listing3-1
Calling Listing3-1:
i[0]=0 i[1]=1 i[2]=2 i[3]=3
Listing3-1 terminated

Memory Access and Organization 153

Because the value at the address of i is 0, the output displays the four
values 0, 1, 2, and 3 as though they were array elements. The address expres-
sion i + 4 tells Gas to fetch the word appearing at i’s address plus 4. This is
the value 1, because the .word statement in this program emits the value 1 to
the .text segment immediately after the (word/4-byte) value 0. Likewise, for
i + 4 and i + 8, this program displays the values 2 and 3.

	 3.8	 Getting the Address of a Memory Object
Up to this point, this book has used the lea macro to obtain the address of
a memory object. Now that this chapter has provided the necessary prereq-
uisite information, instead of treating lea like a black box, it’s time to look
behind the curtains to see what this macro is doing for you.

The ARM CPU provides two instructions for computing the effective
address of a symbol in an assembly language program. The first is adr:

adr Xd, label

This instruction loads the 64-bit destination register (Xd) with the
address of the specified label. Because instruction encodings (operation
codes, or opcodes) are limited to 32 bits, a huge caveat is attached to adr:
it has room for only a 21-bit offset within the opcode, so label must be a
PC-relative address within ±1MB of the adr instruction. This effectively lim-
its adr to taking the address of symbols within the .text section.

To rectify this situation, the ARM CPU also provides the adrp (address
of a page) instruction. This instruction has roughly the same generic syntax
as adr:

adrp Xd, label

The instruction loads the address of the MMU page containing the
label into the destination register. By adding the offset of the label into that
page to the value in Xd, you can obtain the actual address of the memory
object, using code that looks something like this:

adrp Xd, label
add Xd, Xd, page_offset_of_label

At this point, Xd will contain the address of label.
This scheme has a couple of issues: first, computing the page offset of

the label symbol is done differently in macOS versus Linux. Second, when
you use the syntax just given to try the adrp instruction, you’ll find that Gas
rejects this on macOS.

Let’s first consider the Linux solutions to these problems, as they’re a
little simpler than those for macOS. If you’re not creating a PIE applica-
tion and the symbol is less than ±1MB away, you don’t have to use the adrp
instruction. Instead, you can get by with the single adr instruction. If the
data is more than ±1MB from the adr, you must use the adrp version. If you

154 Chapter 3

need to reference a memory object outside the .text section, you must use
the adrp/add sequence. Here’s the code to do this:

adrp x0, label
add x0, x0, :lo12:label

The :lo12: item is a special operator that tells Gas to extract the LO
12 bits of label’s relocatable address; this value is the index into a 4,096-
byte memory management page. For more information on this operator,
see section 3.12, “For More Information,” on page 167. Unfortunately, the
macOS assembler uses a completely different syntax to obtain the LO 12
bits of an address; you must use the following instead:

adrp x0, label@PAGE
add x0, x0, label@PAGEOFF

The lea macro resolves this issue, automatically expanding into the
appropriate sequence for whichever OS you’re using.

L INU X V S. M ACOS: A BSOLU T E A DDR ESSES

Apple’s macOS (and presumably, iOS, iPadOS, and so on) is far more restric-
tive about what you can and cannot do in a PIE program. Specifically, macOS
does not allow any absolute pointers in your .text section that reference other
sections. Linux, on the other hand, doesn’t have a problem with this at all, in
either PIE or non-PIE mode.

For example, say you’re working in Linux and have the following symbol in
your .data section:

var: .word 55

You can use the instruction

ldr x0, =var

to load the address of that symbol into X0. If you try to use this instruction in
macOS, however, the program will give the following complaint:

ld: Absolute addressing not allowed in arm64 code but used in
 'noPrint' referencing 'var'

Likewise, if you put the statement

ptrToVar: .dword var

in your .text section somewhere, Linux is perfectly happy with it, but macOS
will reject it, using roughly the same message.

Memory Access and Organization 155

Pointers into the .text section from other sections are perfectly acceptable
to Gas under macOS. Apparently, Apple thinks that the only way hackers are
going to determine your data memory location is by looking for addresses
buried in the executable code, while pointers in your .data, .rodata, and other
sections are immune to such attacks.

Ultimately, this means that you’ll need to use the adrp instruction (or the lea
macro) to obtain at least your first pointer out of the .text section. This makes
assembly language programming a touch more difficult under macOS than
under Linux. Fortunately, the lea macro helps smooth out these issues.

	 3.9	 The Push and Pop Operations
The ARM maintains a hardware stack in the stack segment of memory (for
which the OS reserves the storage). The stack is a dynamic data structure
that grows and shrinks according to certain needs of the program. It also
stores important information about the program, including local variables,
subroutine information, and temporary data.

The ARM CPU controls its stack via the SP register. When your pro-
gram begins execution, the OS initializes SP with the address of the last
memory location in the stack memory segment. Data is written to the stack
segment by pushing data onto the stack and popping it off the stack.

The ARM stack must always be 16-byte aligned—that is, the SP register
must always contain a value that is a multiple of 16. If you load the SP register
with a value that is not 16-byte aligned, the application will immediately termi-
nate with a bus error fault. One of the stack’s primary purposes is to provide a
temporary storage area where you can save things such as register values. You
will typically push a register’s value onto the stack, do some work (such as call-
ing a function) that uses the register, and then pop that value off the stack and
back into the register when you want to restore its value. However, the general-
purpose registers are only 64 bits (8 bytes); pushing a dword value on the stack
will not leave it 16-byte aligned, which will crash the system.

In this section, I’ll describe how to push and pop register values. Then
I’ll present three solutions to the problem of pushing dword values that
don’t leave the stack 16-byte aligned: wasting storage; pushing two registers
simultaneously; and reserving storage on the stack, then moving the regis-
ter’s data into this reserved area.

3.9.1  Using Double Loads and Stores
The ldp instruction will load two registers from memory simultaneously.
The generic syntax for this instruction is shown here:

ldp Xd1, Xd2, mem // mem is any addressing mode
ldp Wd1, Wd2, mem // except PC-relative.

156 Chapter 3

The first form will load Xd1 from the memory location specified by mem
and Xd2 from the memory location 8 bytes later. The second form will load Wd1
from the specified memory location and Wd2 from the location 4 bytes later.

The stp instruction has a similar syntax; it stores a pair of registers into
adjacent memory locations:

stp Xd1, Xd2, mem // Store Xd1 to mem, Xd2 to mem + 8.
stp Wd1, Wd2, mem // Store Wd1 to mem, Wd2 to mem + 4.
 // mem is any addressing mode except
 // PC-relative.

These instructions have many uses. With respect to using the stack,
however, the forms that load and store a pair of 64-bit registers will manipu-
late 16 bytes at a time—exactly what you need when pushing and popping
data on the stack.

3.9.2  Executing the Basic Push Operation
Many CPUs, such as the Intel x86-64, provide an explicit instruction that
will push a register onto the stack. Because of the 16-byte stack alignment
requirement, you can’t push a single 8-byte register onto the stack (without
creating a stack fault). However, if you’re willing to use 16 bytes of space on
the stack to hold a single register’s value, you can push that register’s value
on the stack with the following instruction:

str Xs, [sp, #-16]!

Remember, the pre-indexed addressing mode will first add –16 to SP
and then store Xs (the source register) at the new location pointed at by
SP. This store operation writes only to the LO 8 bytes of the 16-byte block
created by dropping SP down by 16 (wasting the HO 8 bytes). However, this
scheme keeps the CPU happy, so you won’t get a bus error.

This push operation does the following:

SP := SP - 16
[SP] := Xs

For example, assuming that SP contains 0x00FF_FFE0, the instruction

str x0, [sp, #-16]!

will set SP to 0x00FF_FFD0 and store the current value of X0 into memory
location 0x00FF_FFD0, as Figures 3-11 and 3-12 show.

Memory Access and Organization 157

Before the

 str x0, [sp, #-16]!

instruction

X0

SP

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

Figure 3-11: The stack segment before the str x0, [sp, #-16]! operation

After the str instruction, the stack looks like Figure 3-12.

After the

 str x0, [sp, #-16]!

instruction

SP

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stack

X0

Figure 3-12: The stack segment after the str x0, [sp, #-16]! operation

Although this wastes 8 bytes of space on the stack (shown at addresses
0x00FF_FFD8 through 0x00FF_FFDF), the usage is probably temporary,
and the stack space will be reclaimed when the program pops the data off
the stack later.

3.9.3  Executing the Basic Pop Operation
The pop operation can be handled using the post-indexed addressing
mode and a ldr instruction:

ldr Xd, [sp], #16

This instruction fetches the data from the stack, where SP is pointing,
and copies that data into the destination register (Xd). When the opera-
tion is complete, this instruction adjusts SP by 16, restoring it to its original
value (its value before the push operation). Figure 3-13 shows the stack
before the pop operation.

158 Chapter 3

Before the

ldr x0, [sp], #16

instruction

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stackSP

X0

Figure 3-13: Before the str operation

Figure 3-14 shows the stack organization after executing ldr.

After the

 ldr x0, [sp], #16

instruction

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stack

SP

X0 value from stack

Figure 3-14: After the pop operation

Popping a value does not erase the value in memory; it just adjusts the
stack pointer so that it points at the next value above the popped value.
However, never attempt to access a value you’ve popped off the stack. The
next time something is pushed onto the stack, the popped value will be
obliterated. Because your code isn’t the only thing that uses the stack (for
example, the OS uses the stack to do subroutines), you cannot rely on data
remaining in stack memory once you’ve popped it off the stack.

3.9.4  Preserving at Least Two Registers
If you need to preserve at least two registers, you can reclaim the wasted
space shown in Figures 3-11 and 3-12 by using the stp instruction rather
than str. The following code fragment demonstrates how to push and pop
both X0 and X7 simultaneously:

Memory Access and Organization 159

stp x0, x7, [sp, #-16]!
 .
 . // Use X0 and X7 for other purposes.
 .
ldp x0, x7, [sp], #16 // Restore X0 and X7.

The third way to push data on the stack is to drop SP down by a mul-
tiple of 16 bytes and then store the value into the stack area by indexing
off the SP register. The following code does basically the same thing as the
stp/ldp pair:

sub sp, sp, #16 // Make room for X0 and X7.
stp x0, x7, [sp]
 .
 . // Use X0 and X7 for other purposes.
 .
ldp x0, x7, [sp]
add sp, sp, #16

While this clearly takes more instructions (and, therefore, takes longer
to execute), it’s possible to reserve the stack storage only once within a func-
tion and reuse that space throughout the execution of the function. You’ll
see examples of this in Chapter 5.

3.9.5  Preserving Register Values on the Stack
As you’ve seen in previous examples, the stack is a great place to temporar-
ily preserve registers so they can be used for other purposes. Consider the
following program outline:

Some instructions that use the X20 register.

Some instructions that need to use X20, for a
different purpose than the above instructions.

Some instructions that need the original value in X20.

The push and pop operations are perfect for this situation. By insert-
ing a push sequence before the middle sequence, and a pop sequence
after the middle sequence, you can preserve the value in X20 across those
calculations:

Some instructions that use the X20 register.

 str x20, [sp, #-16]!

Some instructions that need to use X20, for a
different purpose than the above instructions.

160 Chapter 3

 ldr x20, [sp], #16

Some instructions that need the original value in X20.

This push sequence copies the data computed in the first sequence of
instructions onto the stack. Now the middle sequence of instructions can use
X20 for any purpose it chooses. After the middle sequence of instructions
finishes, the pop sequence restores the value in X20 so the last sequence of
instructions can use the original value in X20.

3.9.6  Saving Function Return Addresses on the Stack
Throughout the example programs up to this point, I’ve preserved the return
address appearing in the link register (LR) by using instructions like the
following:

lea x0, saveLR
str lr, [x0]
 .
 .
 .
lea x0, saveLR
ldr lr, [x0]
ret

I’ve also mentioned that this is a truly horrible way of preserving the
value in LR. It takes six instructions to accomplish (remember, lea expands
into two instructions), making it slower and bulkier than it needs to be.
This scheme also creates problems when you have one user-written function
calling another: all of a sudden, you need two separate saveLR variables, one
for each function. In the presence of recursion (see Chapter 5) or, worse,
multithreaded code, this mechanism fails completely.

Fortunately, saving return addresses in the stack is the perfect solution.
The stack’s LIFO structure (see the next section) completely emulates the way
(nested) function calls and returns work, and it takes only a single instruction
to push LR onto the stack or pop LR off the stack. The earlier code sequence
can be easily replaced by:

str lr, [sp, #-16]!
 .
 .
 .
ldr lr, [sp], #16
ret

Using the stack to save and restore the LR register is probably the most
common use of the stack. Chapter 5 discusses managing return addresses
and other function-related values in much greater depth.

Memory Access and Organization 161

	 3.10	 Pushing and Popping Stack Data
You can push more than one value onto the stack without first popping
previous values off the stack. However, the stack is a last-in, first-out (LIFO)
data structure, so you must be careful in the way you push and pop mul-
tiple values.

For example, suppose you want to preserve X0 and X1 across a block of
instructions. The following code demonstrates the obvious (but incorrect)
way to handle this:

str x0, [sp, #-16]!
str x1, [sp, #-16]!
 Code that uses X0 and X1 goes here.
ldr x0, [sp], #16
ldr x1, [sp], #16

Unfortunately, this code will not work properly! Figures 3-15 through 3-18
show the problem, with each box in these figures representing 8 bytes (note
the addresses). Because this code pushes X0 first and X1 second, the stack
pointer is left pointing at X1’s value on the stack.

X0 value

After the

 str x0, [sp, #-16]!

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

SP

Figure 3-15: The stack after pushing X0

Figure 3-16 shows the stack after pushing the second register (X1).

162 Chapter 3

X0 value

After the

str x1, [sp, #-16]!

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueSP

Figure 3-16: The stack after pushing X1

When the ldr x0, [sp], #16 instruction comes along, it removes the
value that was originally in X1 from the stack and places it in X0 (see
Figure 3-17).

X0 value

After the

ldr x0, [sp], #16

instruction 00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueX1 valueX0

SP

Figure 3-17: The stack after popping X0

Likewise, the ldr x1, [sp], #16 instruction pops the value that was origi-
nally in X0 into the X1 register. In the end, this code manages to swap the
values in the registers by popping them in the same order that it pushes
them (see Figure 3-18).

Memory Access and Organization 163

X0 value

After the

 ldr x1, [sp], #16

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueX1 valueX0

X0 valueX1

SP

Figure 3-18: The stack after popping X1

To rectify this problem, because the stack is a LIFO data structure, the
first thing you must pop is the last thing you push onto the stack. Therefore,
always pop values in the reverse order that you push them.

The correction to the previous code is shown here:

str x0, [sp, #-16]!
str x1, [sp, #-16]!
 Code that uses X0 and X1 goes here.
ldr x1, [sp], #16
ldr x0, [sp], #16

Also remember to always pop exactly the same number of bytes that you push.
In general, this means you’ll need exactly the same the number of pushes
and pops. If you have too few pops, you will leave data on the stack, which
may confuse the running program. If you have too many pops, you will
accidentally remove previously pushed data, often with disastrous results.

As a corollary, be careful when pushing and popping data within a loop. It’s
easy to put the pushes in a loop and leave the pops outside the loop (or
vice versa), creating an inconsistent stack. Remember, it’s the execution
of the push and pop operations that matters, not the number of push and
pop operations that appear in your program. At runtime, the number (and
order) of the push operations the program executes must match the num-
ber (and reverse order) of the pop operations.

Finally, remember that the ARM requires the stack to be aligned on a 16-byte
boundary. If you push and pop items on the stack (or use any other instruc-
tions that manipulate the stack), make sure that the stack is aligned on a
16-byte boundary before calling any functions or procedures that adhere to
the ARM requirements.

3.10.1  Removing Data from the Stack Without Popping It
You may often discover that you’ve pushed data you no longer need onto
the stack. Although you could pop the data into an unused register, there

164 Chapter 3

is an easier way to remove unwanted data from the stack: simply adjust the
value in the SP register to skip over the unwanted data on the stack.

Consider the following dilemma (in pseudocode, not actual assembly
language):

str x0, [sp, #-16]! // Push X0.
str x1, [sp, #-16]! // Push X1.

Some code that winds up computing some values we want
to keep in X0 and X1.

if(Calculation_was_performed) then

 // Whoops, we don't want to pop X0 and X1!
 // What to do here?

else

 // No calculation, so restore X1, X0.

 ldr x1, [sp], #16
 ldr x0, [sp], #16

endif;

Within the then section of the if statement, this code wants to remove
the old values of X0 and X1 without otherwise affecting any registers or
memory locations. How can you do this?

Because the SP register contains the memory address of the item on the
top of the stack, we can remove the item from the top by adding the size
of that item to the SP register. In the preceding example, we wanted to
remove two dword items from the top. We can easily accomplish this by add-
ing 16 to the stack pointer:

str x0, [sp, #-16]! // Push X0
str x1, [sp, #-16]! // Push X1

Some code that winds up computing some values we want to keep
into rax and rbx.

if(Calculation_was_performed) then

 // Remove unneeded X0/X1 values
 // from the stack.

 add sp, sp, #32

else

 // No calculation, so restore X1, X0.

Memory Access and Organization 165

 ldr x1, [sp], #16
 ldr x0, [sp], #16

endif;

Effectively, this code pops the data off the stack without moving it any-
where. This code is faster than two dummy pop operations, because it can
remove any number of bytes from the stack with a single add instruction.

Remember to keep the stack aligned on a quad-word (16-byte) bound-
ary. This means you should always add a constant that is a multiple of 16 to
SP when removing data from the stack.

3.10.2  Accessing Data Pushed onto the Stack Without Popping It
Once in a while, you’ll push data onto the stack and will want to get a copy of
that data’s value, or perhaps you’ll want to change that data’s value without
actually popping the data off the stack (that is, you wish to pop the data off
the stack at a later time). The ARM [SP, #±offset] addressing mode provides
the mechanism for this.

Consider the stack after the execution of the following instruction:

stp x0, x1, [sp, #-16]! // Push X0 and X1.

This produces the stack result shown in Figure 3-19.

X1 value
X0 value

SP + 40
SP + 32
SP + 24
SP + 16
SP + 8
SP + 0
SP – 8
SP – 16

SP

Figure 3-19: The stack after pushing X0 and X1

If you wanted to access the original X0 value without removing it from
the stack, you could cheat by popping the value, then immediately pushing
it again. Suppose, however, that you wish to access X1’s old value or another
value even farther up the stack. Popping all the intermediate values and
then pushing them back onto the stack is problematic at best, impossible
at worst.

However, as Figure 3-19 shows, each value pushed on the stack is at a
certain offset from the SP register in memory. Therefore, we can use the
[SP, #±offset] addressing mode to gain direct access to the value we are
interested in. In the preceding example, you can reload X1 with its original
value by using this single instruction:

ldr x1, [sp, #8]

166 Chapter 3

This code copies the 8 bytes starting at memory address SP + 8 into the
X1 register. This value just happens to be the previous value of X1 that was
pushed onto the stack. You can use this same technique to access other data
values you’ve pushed onto the stack.

Don’t forget that the offsets of values from SP into the stack change
every time you push or pop data. Abusing this feature can create code that
is hard to modify; using this feature throughout your code will make it dif-
ficult to push and pop other data items between the point where you first
push data onto the stack and the point where you decide to access that data
again using the [SP, #±offset] memory addressing mode.

The previous section pointed out how to remove data from the stack by
adding a constant to the SP register. That pseudocode example could prob-
ably be written more safely as this:

stp x0, x1, [sp, #-16]!

Some code that winds up computing some values we want
to keep into X0 and X1.

if(Calculation_was_performed) then

 // Overwrite saved values on the stack with
 // new X0/X1 values (so the pops that
 // follow won't change the values in X0/X1).

 stp x0, x1, [sp]

endif;
ldp x0, x1, [sp], #16

In this code sequence, the calculated result was stored over the top of
the values saved on the stack. Later, when the program pops the values, it
loads these calculated values into X0 and X1.

T HE “M AGIC” INS T RUC T IONS

In most of the example programs in this book so far, the following lines of code
have appeared in asmMain (and in other functions):

// "Magic" instruction offered without
// explanation at this point:

sub sp, sp, #256
 .
 .
 .
add sp, sp, #256

Memory Access and Organization 167

At this point, it should be clearer what this code is doing: reserving storage on
the stack (and removing that storage before returning from the function).

Chapter 5 covers this scheme in greater detail when it discusses local vari-
ables and parameter functions. For the time being, just know that the purpose of
these statements is to reserve storage on the stack for parameters being passed
to the printf() function via the vparmn macros.

	 3.11	 Moving On
This chapter discussed memory organization and access, and how to cre-
ate and access memory variables on the ARM CPU. It went over problems
that can occur when accessing data beyond the end of a data structure that
crosses over into a new MMU page, then discussed little- and big-endian
memory organizations and how to use the ARM memory addressing modes
and address expressions to access those memory objects in multiple ways.
You learned how to align data in memory to improve performance, how
to obtain the address of a memory object, and the purpose of the ARM
stack structure.

Thus far, this book has generally employed only basic data types such
as different-sized integers, characters, Boolean objects, and floating-point
numbers. Fancier data types, such as pointers, arrays, strings, and structs
are the subject of the next chapter.

	 3.12	 For More Information
•	 See https://ftp​.gnu​.org​/old​-gnu​/Manuals​/gas​-2​.9​.1​/html​_chapter​/as​_toc​.html

for details on the GNU assembler.

•	 Learn more about the GNU linker at https://ftp​.gnu​.org​/old​-gnu​/Manuals​/
ld​-2​.9​.1​/html​_mono​/ld​.html.

•	 For more about the macOS (LLVM) linker, see https://lld​.llvm​.org.

•	 Visit the ARM developer website at https://developer​.arm​.com for more on
ARM CPUs.

•	 Wikipedia offers an explanation of address space layout randomization
at https://en​.wikipedia​.org​/wiki​/Address​_space​_layout​_randomization.

•	 To better understand position-independent executables, see https://en​
.wikipedia​.org​/wiki​/Position​-independent​_code.

•	 For information on the :lo12: operator, see the “Assembly Expressions”
section in the document downloadable from https://developer​.arm​.com​/
documentation​/100067​/0612​/armclang​-Integrated​-Assembler.

https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_toc.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
https://lld.llvm.org
https://developer.arm.com
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Position-independent_code
https://developer.arm.com/documentation/100067/0612/armclang-Integrated-Assembler
https://developer.arm.com/documentation/100067/0612/armclang-Integrated-Assembler

168 Chapter 3

T ES T YOURSEL F

	 1.	 The PC-relative addressing mode indexes off which 64-bit register?

	 2.	 What does opcode stand for?

	 3.	 What type of data is the PC-relative addressing mode typically used for?

	 4.	 What is the address range of the PC-relative addressing mode?

	 5.	 In a register-indirect addressing mode, what does the register contain?

	 6.	 Which of the following registers is valid for use with the register-indirect
addressing mode?

a.	 W0

b.	 X0

c.	 XZR

d.	 SP

	 7.	 What instruction would you normally use to load the address of a memory
object into a register?

	 8.	 What is an effective address?

	 9.	 How would you align a variable in the .data section to an 8-byte
boundary?

10.	 What does MMU stand for?

11.	 What is an address expression?

12.	 What is the difference between a big-endian value and a little-endian
value?

13.	 If W0 contains a 32-bit big-endian value, what instruction could you use to
convert it to a little-endian value?

14.	 If W0 contains a 16-bit little-endian value, what instruction could you use
to convert it to a big-endian value?

15.	 If X0 contains a 64-bit big-endian value, what instruction could you use to
convert it to a little-endian value?

16.	 Explain, step by step, what the str x0, [sp, #-16]! instruction does.

17.	 Explain, step by step, what the ldr x0, [sp], #16 instruction does.

18.	 When using the push and pop operations to preserve registers, you must
always pop the registers in the ________ order that you pushed them.

19.	 What does LIFO stand for?

Chapter 2 discussed the basic format for
data in memory, and Chapter 3 covered how

a computer system physically organizes that
data in memory. This chapter completes that dis-

cussion by connecting the concept of data representation
to its actual physical representation. I’ll focus on three
main topics: constants, variables, and data structures.

This chapter doesn’t assume you’ve taken a formal course in data struc-
tures, though such experience would be useful. You’ll learn to declare and
use constants, scalar variables, integers, data types, pointers, arrays, structs,
and unions. Work to master these subjects before going on to the next
chapter. Declaring and accessing arrays, in particular, seem to present a
multitude of problems to beginning assembly language programmers, but
the rest of this text depends on your understanding of these data structures
and their memory representation. Do not try to skim over this material with
the expectation that you’ll pick it up as needed later; you’ll need to compre-
hensively understand it right away.

4
C O N S T A N T S , V A R I A B L E S ,

A N D D A T A T Y P E S

170 Chapter 4

	 4.1	 Gas Constant Declarations
Probably the first place to start is with constant declarations that allow you
to attach a name to a literal constant value. Gas provides four directives,
collectively known as equates, that let you define constants in your assembly
language programs. You’ve already seen the most common form, .equ:

.equ symbol, constantExpression

For example:

.equ MaxIndex, 15

Once you declare a symbolic constant in this manner, you may use the
symbolic identifier anywhere the corresponding literal constant is legal.
These constants are known as manifest constants—symbolic representations
that allow you to substitute the literal value for the symbol anywhere in
the program.

N O T E 	 Technically, you could also use CPP macros to define constants in Gas. See
Chapter 13 for more details.

Contrast this with .rodata objects: an .rodata value is a constant value,
because you cannot change it at runtime. However, a memory location
is associated with an .rodata declaration, and the OS, not the Gas assem-
bler, enforces the read-only attribute. Although the following instruction
sequence will crash your program when it runs, writing it is perfectly legal:

lea x0, ReadOnlyVar
str x1, [x0]

On the other hand, it is no more legal to write the following, using the
preceding declaration

str x1, MaxIndex

than it is to write this:

str x1, #15

In fact, both statements are equivalent: the compiler substitutes 15 for
MaxIndex whenever it encounters this manifest constant.

Constant declarations are great for defining magic numbers that could
change during program modification. Examples include constants like nl
(newline), maxLen, and NULL.

The GNU .set directive uses the following syntax:

.set label, expression

Constants, Variables, and Data Types 171

This is semantically equivalent to the following:

label = expression

Both the .set and = directives allow you to redefine a symbol previously
defined with these directives.

For example:

maxLen = 10

At this point in the code, Gas will replace maxLen with 10.

maxLen = 256

In this section of the code, maxLen gets replaced by 256.

You’ll see how to take advantage of this feature in Chapter 13, which dis-
cusses macros and the Gas compile-time language.

Note that .equ also allows you to redefine symbols in your source file.
These many synonyms for the same directive are Gas’s attempt to maintain
compatibility with multiple assemblers and assembler versions.

The final equate directive Gas offers is .equiv:

.equiv symbol, expression

Unlike the other three directives, .equiv will generate an error if the symbol
is already defined. This is therefore likely the safest equate to use, unless
you really need to redefine symbols in your program.

Expressions appearing in these equates are limited to 64 bits. If you
specify a value greater than 64 bits, the assembler will report an error.

	 4.2	 The Location Counter Operator
One very special constant you’ll frequently use is the current location coun-
ter value. As noted in the previous chapter, Gas will substitute the value of
the current section’s location counter in place of an individual period (.)
appearing in a constant expression. You could in theory use this operator to
embed a pointer to a variable within that variable itself:

ptrVar: .dword . // Stores the address of ptrVar in ptrVar

However, this isn’t especially useful. It’s a better idea to use the location
counter operator to compute offsets and lengths within a particular section.
If you subtract a label in a section from the location counter, the difference
is the (signed) distance from that point in the code to the specified label.
This allows you to compute string lengths, function lengths, and other val-
ues that involve measuring the byte distance within a section.

172 Chapter 4

Here’s an example that uses this technique to compute a string length:

someStr: .ascii "Who wants to manually count the characters"
 .asciz "in this string to determine its length?"
ssLen = .-someStr

This counts all the bytes Gas emits (including the zero-terminating byte) by
the two string directives. You can use this technique to compute the length
of any data object, not just the characters in a string.

Intuitively, there is a subtle difference between the location counter
constant (.) and a literal constant such as 0. The constant 0 will always have
the same value wherever it appears in the source file, whereas the location
counter constant will have a different value through the source file. An
HLL would associate a different type with these two types of constants.
The next sections discuss types in assembly language, including relocatable
types (the location counter is a relocatable type in assembly language).

	 4.3	 Data Types and Gas
Like most traditional (that is, 1960s-era) assemblers, Gas is completely type-
less. It relies on you, the programmer, to make sense of all the data types
you use in your program, via your choice of instructions. In particular, Gas
will be more than happy to accept any of the following statements:

 .text
 .align 2
wv: .word 0
 .
 .
 .
 ldr w0, wv // Yes, this one's "type correct."
 ldr x0, wv // Loads more data than is present

The second instruction loads 64 bits from a 32-bit variable. However,
Gas accepts this erroneous code and loads the 64 bits at the address you
specify, which might include the 32 bits just beyond the wv declaration
you’ve placed in your .text section.

Accessing data by using the wrong data type can lead to subtle defects
within your code. One advantage of (strongly typed) HLLs is that they
can catch most program errors resulting from the misuse of data types.
Assembly language, however, provides very little in the way of type check-
ing. Type checking is your responsibility in assembly language. Section 4.4,
“Pointer Data Types,” covers this issue next in great detail. Also see
“Relocatable and Absolute Expressions” on page 176, which describes one
of the few cases where Gas provides a small amount of type checking on
your code.

Constants, Variables, and Data Types 173

	 4.4	 Pointer Data Types
If you had a bad experience when you first encountered pointers in an
HLL, fear not: pointers are easier to deal with in assembly language. Any
problems you had with pointers probably had more to do with the linked-
list and tree data structures you were trying to implement with them.
Pointers, on the other hand, have many uses in assembly language that
have nothing to do with linked lists, trees, and other scary data structures.
Indeed, simple data structures like arrays and structs often involve the use
of pointers.

A pointer is a memory location whose value is the address of another
memory location. Unfortunately, HLLs like C/C++ tend to hide the simplic-
ity of pointers behind a wall of abstraction. This added complexity tends
to frighten programmers because they don’t understand what’s going on
behind the scenes.

To illuminate how pointers work, consider the following array declara-
tion in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is simple. M is an array
with 1,024 integers in it, indexed from M[0] to M[1023]. Each one of these
array elements can hold an integer value independent of the others. In
other words, this array gives you 1,024 integer variables, each of which you
refer to by number (the array index).

It’s easy to see that the statement M[0]:=100; is storing the value 100 into
the first element of the array M. The following two statements perform an
identical operation:

i := 0; (* Assume "i" is an integer variable. *)
M [i] := 100;

Indeed, you can use any integer expression in the range 0 to 1,023 as
an index into this array. The following statements still perform the same
operation as our single assignment to index 0:

i := 5; (* Assume all variables are integers. *)
j := 10;
k := 50;
M [i*j-k] := 100;

“Okay, so what’s the point?” you’re probably thinking. “Anything that
produces an integer in the range 0 to 1,023 is legal. So what?” Consider the
following code that adds an interesting layer of indirection:

M [1] := 0;
M [M [1]] := 100;

174 Chapter 4

With a little thought, you should see that these two instructions per-
form the exact same operation as the previous examples. The first state-
ment stores 0 into array element M[1]. The second statement fetches the
value of M[1], a legal array index, and uses that value (0) to control where it
stores the value 100.

If you’re willing to accept this as reasonable, you’ll have no problems
with pointers. If you were to change M to memory and imagine that this array
represents system memory, then M[1] is a pointer: that is, a memory location
whose value is the address (or index) of another memory location. Pointers
are easy to declare and use in an assembly language program; you don’t
even have to worry about array indices.

Okay, this section has used a Pascal array as an example of a pointer,
which is fine, but how do you use pointers in an ARM assembly language
program?

4.4.1  Pointer Usage in Assembly Language
An ARM64 pointer is a 64-bit value that may contain the address of another
variable. For a dword variable p that contains 0x1000_0000, p “points” at
memory location 0x1000_0000. To access the dword that p points at, you
could use code like the following:

lea x0, p // Load X0 with the
ldr x0, [x0] // value of pointer p.
ldr x1, [x0] // Fetch the data at which p points.

By loading the value of p into X0, this code loads the value 0x1000_0000
into X0 (assuming p contains 0x1000_0000). The second instruction loads
the X1 register with the dword starting at the location whose offset appears
in X0. Because X0 now contains 0x1000_0000, this will load X1 from loca-
tions 0x1000_0000 through 0x1000_0007.

Why not just load X1 directly from location 0x1000_0000, like this?

lea x1, varAtAddress1000_0000
ldr x1, [x1]

The primary reason not to do so is that this ldr instruction always loads
X1 from location varAtAddress1000_0000. You cannot change the address from
where it loads X1.

The former instructions, however, always load X1 from the location
where p is pointing. This is easy to change under program control. Consider
the following pseudocode instruction sequence:

 lea x0, i
 lea x1, p // Set p = address of i.
 str x0, [x1]

Some code that sets or clears the carry flag ...

 bcc skipSetp

Constants, Variables, and Data Types 175

 lea x0, j
 lea x1, p // Set p = address of j.
 str x0, [x1]
 .
 .
 .

skipSetp: // Assume both code paths wind up
 lea x0, p // down here.
 ldr x0, [x0] // Load p into X0.
 ldr x1, [x0] // X1 = i or j, depending on path here.

This short example demonstrates two execution paths through the
program. The first path loads the variable p with the address of the vari-
able i. The second path through the code loads p with the address of the
variable j. Both execution paths converge on the last two ldr instructions
that load X1 with i or j, depending on which execution path was taken. In
many respects, this is like a parameter to a procedure in an HLL like Swift.
Executing the same instructions accesses different variables depending on
whose address (i or j) winds up in p.

4.4.2  Pointer Declarations in Gas
Because pointers are 64 bits long, you could use the .dword directive to allo-
cate storage for your pointers:

 .data
bb: .byte .-. // Uninitialized
 .align 3
d: .dword .-. // Uninitialized
pByteVar: .dword bb // Initialized with the address of bb
pDWordVar: .dword d // Initialized with the address of d

This example demonstrates that it is possible to initialize as well as
declare pointer variables in Gas. You may specify addresses of static vari-
ables (.data, .rodata, and .bss objects) in the operand field of a .dword direc-
tive, so you can initialize only pointer variables with the addresses of static
objects by using this technique.

Remember that macOS does not allow you to take the address of a sym-
bol in the .text section because of the limitation of PIE code.

4.4.3  Pointer Constants and Expressions
Gas allows very simple constant expressions wherever a pointer constant is
legal. Pointer constant expressions take one of the following forms:

StaticVarName + PureConstantExpression
StaticVarName - PureConstantExpression

176 Chapter 4

The PureConstantExpression term is a numeric constant expression that
does not involve any pointer constants (an absolute constant, using Gas
terminology). This type of expression produces a memory address that
is the specified number of bytes before or after (- or +, respectively) the
StaticVarName variable in memory. The first two forms shown here are seman-
tically equivalent: both return a pointer constant whose address is the sum
of the static variable and the constant expression.

R ELOCATA BL E A ND A BSOLU T E E X PR ESSIONS

Gas divides constant expressions into two categories: relocatable and absolute.
Absolute expressions are those that Gas can evaluate to a numeric value during
assembly. Examples include the following:

5 8 + 2 * 3 (8 * 2) - 45 'A' 0xFFFF + 1 0xFFFE & 0xABCD

Relocatable expressions, on the other hand, involve symbolic names that refer-
ence memory locations in various sections of the program.

Expressions can have a mixture of absolute and relocatable components.
The class of the resulting expression (that is, relocatable or absolute) depends
on a few simple rules. If R is a relocatable expression (for example, a single
symbol) and A is an absolute expression, then:

•	 R + A is also a relocatable expression.

•	 R – A is also a relocatable expression.

•	 R1 – R2 is an absolute expression (both R1 and R2 must be in the same
section of memory).

•	 R1 + R2 is illegal.

Since you can create pointer constant expressions, it should come as
no surprise that Gas lets you define manifest pointer constants by using
equates. Listing 4-1 demonstrates how to do this.

// Listing4-1.S
//
// Pointer constant demonstration

#include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 4-1"
fmtStr: .ascii "pb's value is %p\n"
 .asciz "*pb's value is %d\n"

 .data
bb: .byte 0
 .byte 1, 2, 3, 4, 5, 6, 7

Constants, Variables, and Data Types 177

1 pb = bb + 2 // Address of "2" in bb

2 pbVar: .dword pb

pbValue: .word 0

 .text
 .align 2
 .extern printf

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

// Here is the asmMain function:

 .global asmMain
asmMain:
 sub sp, sp, #64 // Reserve space on stack.
 str lr, [sp, #56] // Save return address.

 lea x0, pbVar // Get pbVar.
 ldr x0, [x0]
 ldrb w0, [x0] // Fetch data at *pbVar.
 3 lea x1, pbValue // Save in pbValue for now.
 str w0, [x1]

// Print the results:

 lea x0, fmtStr
 4 vparm2 pbVar
 5 vparm3 pbValue
 bl printf

 ldr lr, [sp, #56] // Restore return address.
 add sp, sp, #64
 ret // Returns to caller

The equate pb = bb + 2 initializes the constant pb with the address of the
third element 1 (index 2) of the bb array. The pbVar: .dword pb declaration 2
creates a pointer variable (named pbVar) and initializes with the value of the
pb constant. Because pb is the address of bb[2], this statement initializes pbVar
with the address of bb[2]. The program stores the value held in pbVar into the
pbValue variable 3, then passes pbVar 4 and pbValue 5 to printf() to print their
values.

Here’s the build command and sample output:

$./build Listing4-1
$./Listing4-1
Calling Listing4-1:
pb's value is 0x411042

178 Chapter 4

*pb's value is 2
Listing4-1 terminated

The address that’s printed may vary on different machines and OSes.

4.4.4  Pointer Variables and Dynamic Memory Allocation
Pointer variables are the perfect place to store the return result from the
C stdlib malloc() function. This function returns the address of the storage
it allocates in the X0 register; therefore, you can store the address directly
into a pointer variable immediately after a call to malloc(). Listing 4-2 dem-
onstrates calls to the C stdlib malloc() and free() functions.

// Listing4-2.S
//
// Demonstration of calls
// to C stdlib malloc
// and free functions

#include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 4-2"
fmtStr: .asciz "Addresses returned by malloc: %p, %p\n"

 .data
ptrVar: .dword .-.
ptrVar2: .dword .-.

 .text
 .align 2
 .extern printf
 .extern malloc
 .extern free

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

// Here is the "asmMain" function:

 .global asmMain
asmMain:
 sub sp, sp, #64 // Space on stack
 str lr, [sp, #56] // Save return address.

// C stdlib malloc function
//
// ptr = malloc(byteCnt);

Constants, Variables, and Data Types 179

//
// Note: malloc has only a single parameter; it
// is passed in X0 as per ARM/macOS ABI.

 1 mov x0, #256 // Allocate 256 bytes.
 bl malloc
 lea x1, ptrVar // Store pointer into
 str x0, [x1] // ptrVar variable.

 mov x0, #1024 // Allocate 1,024 bytes.
 bl malloc
 lea x1, ptrVar2 // Store pointer into
 str x0, [x1] // ptrVar2 variable.

// Print the addresses of the two malloc'd blocks:

 lea x0, fmtStr
 vparm2 ptrVar
 vparm3 ptrVar2
 bl printf

// Free the storage by calling
// C stdlib free function.
//
// free(ptrToFree);
//
// Once again, the single parameter gets passed in X0.

 2 lea x0, ptrVar
 ldr x0, [x0]
 bl free

 lea x0, ptrVar2
 ldr x0, [x0]
 bl free

 ldr lr, [sp, #56] // Get return address.
 add sp, sp, #64 // Clean up stack.
 ret

Because malloc() 1 and free() 2 have only a single argument, you pass
those arguments to them in the X0 register. For the call to malloc(), you
pass an integer value specifying the amount of storage you want to allocate
on the heap. For free(), you pass the pointer to the storage (previously allo-
cated by malloc()) that you want to return back to the system.

Here’s the build command and sample output:

$./build Listing4-2
$./Listing4-2
Calling Listing4-2:
Addresses returned by malloc: 0x240b46b0, 0x240b47c0
Listing4-2 terminated

180 Chapter 4

As usual, the addresses you get will vary by OS and perhaps even by dif-
ferent runs of the program.

4.4.5  Common Pointer Problems
In most programming languages, programmers encounter five common
problems. Some of these errors will cause your programs to immediately
stop with a diagnostic message; other problems are subtler, yielding incor-
rect results or simply affecting the performance of your program without
otherwise reporting an error. These five problems are as follows:

•	 Using an uninitialized pointer (illegal memory access)

•	 Using a pointer that contains an illegal value (for example, NULL)

•	 Continuing to use malloc()’d storage after that storage has been freed

•	 Failing to free() storage once the program is finished using it

•	 Accessing indirect data using the wrong data type

The following subsections describe each of these problems, their
effects, and how to avoid them.

4.4.5.1  Illegal Memory Access Due to an Uninitialized Pointer

Beginning programmers often don’t realize that declaring a pointer vari-
able reserves storage only for the pointer itself; it does not reserve storage
for the data that the pointer references. Therefore, you’ll run into problems
if you attempt to dereference a pointer that does not contain the address of
a valid memory location. Listing 4-3 demonstrates this problem (don’t try to
compile and run this program; it will crash).

// Listing4-3.S
//
// Uninitialized pointer demonstration
// This program will not run properly.

#include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 4-3"
fmtStr: .asciz "Pointer value= %p\n"

 .data
1 ptrVar: .dword .-. // ".-." means uninitialized.

 .text
 .align 2
 .extern printf

// Return program title to C++ program:

 .global getTitle
getTitle:

Constants, Variables, and Data Types 181

 lea x0, ttlStr
 ret

// Here is the "asmMain" function:

 .global asmMain
asmMain:
 sub sp, sp, #64 // Stack storage
 str lr, [sp, #56] // Save return address.

 2 lea x0, ptrVar
 ldr x1, [x0] // Get ptrVar into X1.
 ldr x2, [x1] // Will crash the system

 ldr lr, [sp, #56] // Retrieve return adrs.
 add sp, sp, #64 // Restore stack.
 ret

Although variables you declare in the .data section are, technically, initial-
ized, static initialization still doesn’t initialize the pointer in this program 1
with a valid address (but instead with a 0, which is NULL).

Of course, there is no such thing as a truly uninitialized variable on
the ARM. There are variables that you’ve explicitly given an initial value,
and there are variables that happen to inherit whatever bit pattern was in
memory when storage for the variable was allocated. Much of the time,
these garbage bit patterns don’t correspond to a valid memory address.
Attempting to dereference such a pointer (that is, access the data in memory
at which it points 2) typically raises a memory access violation exception (seg-
mentation fault).

Sometimes, however, those random bits in memory just happen to
correspond to a valid memory location you can access. In this situation,
the CPU will access the specified memory location without aborting the
program. Although to a naive programmer this situation may seem prefer-
able to stopping the program, in reality this is far worse, since your defec-
tive program continues to run without alerting you to the problem. If you
store data through an uninitialized pointer, you may overwrite the values
of other important variables in memory. This defect can produce some
difficult-to-locate problems in your program.

4.4.5.2  Invalid Addresses

The second common problem is storing invalid address values into a pointer.
The previous problem is actually a special case of this second problem (with
garbage bits in memory supplying the invalid address, rather than you
producing it via a miscalculation). The effects are the same: if you attempt
to dereference a pointer containing an invalid address, you either will get
a memory access violation exception or will access an unexpected memory
location.

182 Chapter 4

4.4.5.3  The Dangling Pointer Problem

The third problem, continuing to use malloc()’d storage after that storage
has been freed, is also known as the dangling pointer problem. To understand
this problem, consider the following code fragment:

mov x0, #256
bl malloc // Allocate some storage.
lea x1, ptrVar
str x0, [x1] // Save address away in ptrVar.
 .
 . Code that uses the pointer variable ptrVar
 .
lea x0, ptrVar // Pass ptrVar's value to free.
ldr x0, [x0]
bl free // Free storage associated with ptrVar.
 .
 . Code that does not change the value in ptrVar
 .
lea x0, ptrVar
ldr x1, [x0]
strb w2, [x1]

This code allocates 256 bytes of storage and saves the address of that
storage in the ptrVar variable. It then uses this block of 256 bytes for a while
and frees the storage, returning it to the system for other uses.

Calling free() does not change the value of ptrVar in any way; ptrVar
still points at the block of memory allocated by malloc() earlier. The value
in ptrVar is a dangling pointer, or wild pointer—a pointer that is pointing at
deallocated storage. In this example, free() does not change any data in the
block allocated by malloc(), so upon return from free(), ptrVar still points at
the data stored into the block by this code. However, the call to free() tells
the system that the program no longer needs this 256-byte block of memory,
so the system can use this region of memory for other purposes.

The free() function cannot enforce the fact that you will never access
this data again; you are simply promising that you won’t. Of course, the pre-
ceding code fragment breaks this promise; as you can see in the last three
instructions, the program fetches the value in ptrVar and accesses the data it
points at in memory.

The biggest problem with dangling pointers is that you can often get
away with using them. As long as the system doesn’t reuse the storage you’ve
freed, a dangling pointer produces no ill effects. However, with each new
call to malloc(), the system may decide to reuse the memory released by
that previous call to free(). When this happens, any attempt to dereference
the dangling pointer may produce unintended consequences. The prob-
lems range from reading data that has been overwritten (by the new, legal
use of the data storage), to overwriting the new data, to, in the worst case,
overwriting system heap management pointers and likely crashing your
program. The solution is clear: never use a pointer value after you free the storage
associated with that pointer.

Constants, Variables, and Data Types 183

4.4.5.4  Memory Leaks

Of all the pointer problems listed at the beginning of this section, failing to
free allocated storage will probably have the least negative impact. The fol-
lowing code fragment demonstrates this problem:

mov x0, #256
bl malloc
lea x1, ptrVar
str x0, [x1]

Code that uses ptrVar
This code does not free up the storage
associated with ptrVar.

mov x0, #512
bl malloc
lea x1, ptrVar
str x0, [x1]

// At this point, there is no way to reference the original
// block of 256 bytes pointed at by ptrVar.

In this example, the program allocates 256 bytes of storage and refer-
ences it by using the ptrVar variable. Later, the program allocates another
block of bytes and overwrites the value in ptrVar with the address of this
new block. The former value in ptrVar is lost. Because the program no lon-
ger has this address value, there is no way to call free() to return the storage
for later use.

As a result, these 256 bytes of memory are no longer available to your
program. While this may seem like only a minor cost, imagine that this
code is in a repeating loop. With each execution of the loop, the program
loses another 256 bytes of memory, eventually exhausting the memory avail-
able on the heap. This problem is often called a memory leak, because it’s
as though the memory bits are leaking out of your computer during pro-
gram execution.

Memory leaks are far less damaging than dangling pointers. They cre-
ate only two problems: the danger of running out of heap space (which
ultimately may cause the program to abort, though this is rare) and perfor-
mance problems due to virtual memory page swapping. Nevertheless, you
should get in the habit of always freeing all storage after you have finished
using it. When your program quits, the OS reclaims all storage, including
the data lost via memory leaks. Therefore, memory lost via a leak is lost only
to your program, not to the whole system.

4.4.5.5  Lack of Type-Safe Access

Because Gas cannot and does not enforce pointer type checking, you can
load the address of a data structure into a register and access that data as
though it were a completely different type (often resulting in logic errors in
your program). For example, consider Listing 4-4.

184 Chapter 4

// Listing4-4.S
//
// Demonstration of lack of type
// checking in assembly language
// pointer access

#include "aoaa​.inc"

maxLen = 256

 .section .rodata, ""
ttlStr: .asciz "Listing 4-4"
prompt: .asciz "Input a string: "
fmtStr: .asciz "%d: Hex value of char read: %x\n"

 .data
valToPrint: .word .-.
bufIndex: .dword .-.
bufPtr: .dword .-.
bytesRead: .dword .-.

 .text
 .align 2
 .extern readLine
 .extern printf
 .extern malloc
 .extern free

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

// Here is the asmMain function:

 .global asmMain
asmMain:

 sub sp, sp, #64 // Reserve stack space.
 str lr, [sp, #56] // Save return address.

// C stdlib malloc function
// Allocate sufficient characters
// to hold a line of text input
// by the user:

 mov x0, #maxLen // Allocate 256 bytes.
 bl malloc
 lea x1, bufPtr // Save pointer to buffer.
 str x0, [x1]

Constants, Variables, and Data Types 185

// Read a line of text from the user and place in
// the newly allocated buffer:

 lea x0, prompt // Prompt user to input
 bl printf // a line of text.

 lea x0, bufPtr
 ldr x0, [x0] // Pointer to input buffer
 mov x1, #maxLen // Maximum input buffer length
 bl readLine // Read text from user.
 cmp x0, #-1 // Skip output if error.
 beq allDone
 lea x1, bytesRead
 str x0, [x1] // Save number of chars read.

// Display the data input by the user:

 mov x1, #0 // Set index to 0.
 lea x0, bufIndex
 str x1, [x0]
dispLp: lea x0, bufIndex // Get buffer index
 ldr x1, [x0] // into X1.
 lea x2, bufPtr // Get pointer to buffer.
 ldr x2, [x2]
 ldr w0, [x2, x1] // Read word rather than byte!
 lea x1, valToPrint
 str w0, [x1]
 lea x0, fmtStr
 vparm2 bufIndex
 vparm3 valToPrint
 bl printf

 lea x0, bufIndex // Increment index by 1.
 ldr x1, [x0]
 add x1, x1, #1
 str x1, [x0]

 lea x0, bytesRead // Repeat until
 ldr x0, [x0] // you've processed "bytesRead"
 cmp x1, x0 // bytes.
 blo dispLp

// Free the storage by calling
// C stdlib free function.
//
// free(bufPtr)

allDone:
 lea x0, bufPtr
 ldr x0, [x0]
 bl free

 ldr lr, [sp, #56] // Restore return address.
 add sp, sp, #64
 ret // Returns to caller

186 Chapter 4

Here are the commands to build and run the program in Listing 4-4:

$./build Listing4-4
$./Listing4-4
Calling Listing4-4:
Input a string: Hello world
0: Hex value of char read: 6c6c6548
1: Hex value of char read: 6f6c6c65
2: Hex value of char read: 206f6c6c
3: Hex value of char read: 77206f6c
4: Hex value of char read: 6f77206f
5: Hex value of char read: 726f7720
6: Hex value of char read: 6c726f77
7: Hex value of char read: 646c726f
8: Hex value of char read: 646c72
9: Hex value of char read: 646c
10: Hex value of char read: 64
11: Hex value of char read: 0
Listing4-4 terminated

Listing 4-4 reads data from the user as character values and then dis-
plays the data as double-word hexadecimal values. While assembly language
lets you ignore data types at will and automatically coerce the data without
any effort, this power is a double-edged sword. If you make a mistake and
access indirect data by using the wrong data type, Gas and the ARM may
not catch the mistake and your program may produce inaccurate results.
Therefore, you need to ensure that you use data consistently with respect to
data type when working with pointers and indirection in your programs.

This demonstration program has one fundamental flaw that could cre-
ate a problem for you: when reading the last two characters of the input
buffer, the program accesses data beyond the characters input by the
user. If the user inputs 255 characters (plus the zero-terminating byte that
readLine() appends), this program will access data beyond the end of the
buffer allocated by malloc(). In theory, this could cause the program to
crash. This is yet another problem that can occur when accessing data by
using the wrong type via pointers.

Despite all the problems that pointers suffer from, they are essential for
accessing common data structures such as arrays, structs, and strings. That’s
why this chapter discussed pointers prior to these other composite data types.
However, with the discussion of pointers out of the way, it’s time to look at
those other data types.

	 4.5	 Composite Data Types
Composite data types, also known as aggregate data types, are those that are
built up from other, generally scalar, data types. A string, for example, is
a composite data type, since it’s built from a sequence of individual char-
acters and other data. The following sections cover several of the more

Constants, Variables, and Data Types 187

important composite data types: character strings, arrays, multidimensional
arrays, structs, and unions.

	 4.6	 Character Strings
After integer values, character strings are probably the most common data
type that modern programs use. This section provides a couple definitions
of character strings (the ubiquitous zero-terminated string, the more effi-
cient length-prefixed string, and other combinations of the two) and dis-
cusses how to process those strings.

In general, a character string is a sequence of ASCII characters that pos-
sesses two main attributes: a length and character data. Different languages
use different data structures to represent strings. For assembly language
(at least, sans any library routines), you can choose to implement strings in
whichever format you want—perhaps based on the format’s compatibility
with an HLL or on a desire to produce faster string functions. All you need
do is create a sequence of machine instructions to process the string data in
whatever format the strings take.

It’s also possible for strings to hold Unicode characters. This section
uses ASCII in all the examples (because Gas does a better job of supporting
ASCII characters). The principles apply to Unicode as well, with an appro-
priate extension in the amount of storage you use.

4.6.1  Zero-Terminated Strings
Zero-terminated strings are the most common string representation in use
today, since this is the native string format for C, C++, and other languages.
A zero-terminated string consists of a sequence of zero or more ASCII charac-
ters ending with a 0 byte. For example, in C/C++, the string "abc" requires
4 bytes: the three characters a, b, and c, followed by a byte containing 0.

To create zero-terminated strings in Gas, simply use the .asciz direc-
tive. The easiest place to do this is in the .data section, using code like
the following:

 .data
zeroString: .asciz "This is the zero-terminated string"

Whenever a character string appears in the .asciz directive, as it does
here, Gas emits each character in the string to successive memory locations
and terminates the whole string with a 0 byte.

There are a couple of ways to accommodate a zero-terminated string
that’s longer than a single source line. First, you can use .ascii directives for
all but the last source code line in a long string. For example:

 .data
longZString: .ascii "This is the first line"
 .ascii "This is the second line"
 .asciz "This is the last line"

188 Chapter 4

The .asciz directive zero-terminates the entire string. However, if you prefer,
you can always use a .byte directive to explicitly add the zero-terminating
byte yourself:

 .data
longZString: .ascii "This is the first line"
 .ascii "This is the second line"
 .ascii "This is the last line"
 .byte 0

Use whichever scheme you like. Some people prefer the explicit .byte
directive because it’s easy to add and remove strings from the list without
having to worry about changing .ascii to .asciz (or vice versa).

Zero-terminated strings have two principal attributes: they are simple
to implement, and the strings can be any length. However, they also have a
few drawbacks. First, zero-terminated strings cannot contain the NUL char-
acter (whose ASCII code is 0). Generally, this isn’t a problem, but it does
create havoc once in a while. Second, many operations on zero-terminated
strings are somewhat inefficient. For example, to compute the length of
a zero-terminated string, you must scan the entire string looking for that
0 byte (counting characters up to the 0). The following program fragment
demonstrates how to compute the length of the preceding string:

 lea x1, longZString
 mov x2, x1 // Save pointer to string.
whileLp: ldrb w0, [x1], #1 // Fetch next char and inc X1.
 cmp w0, #0 // See if 0 byte.
 bne whileLp // Repeat while not 0.
 sub x0, x1, x2 // X0 = X1 - X2
 sub x0, x0, #1 // Adjust for extra increment.

// String length is now in X0.

This code saves the initial string address (in X2), then subtracts the
final pointer (just beyond the 0 byte) from the initial address to compute
the length. The extra sub (by 1) is present because we don’t normally
include the zero-terminating byte in the string’s length.

As you can see, the time it takes to compute the length of the string is
proportional to the length of the string; as the string gets longer, comput-
ing its length takes longer.

4.6.2  Length-Prefixed Strings
The length-prefixed string format overcomes some of the problems with
zero-terminated strings. Length-prefixed strings are common in languages
like Pascal; they generally consist of a length byte followed by zero or more
character values. The first byte specifies the string length, and the following
bytes (up to the specified length) are the character data. In a length-pre-
fixed scheme, the string "abc" would consist of 4 bytes: 3 (the string length)

Constants, Variables, and Data Types 189

followed by a, b, and c. You can create length-prefixed strings in Gas by
using code like the following:

 .data
lengthPrefixedString: .byte 3
 .ascii "abc"

Counting the characters ahead of time and inserting them into the
byte statement, as was done here, may seem like a major pain. Fortunately,
there are ways to have Gas automatically compute the string length for you.

Length-prefixed strings solve the two major problems associated with
zero-terminated strings. It is possible to include the NUL character in
length-prefixed strings, and those operations on zero-terminated strings
that are relatively inefficient (for example, string length) are more efficient
when using length-prefixed strings. However, length-prefixed strings have
their own drawbacks; most important, they are limited to a maximum of
255 characters in length (assuming a 1-byte length prefix).

Of course, if you have a problem with a string-length limitation of
255 characters, you can always create a length-prefixed string by using any
number of bytes for the length as you need. For example, the High-Level
Assembler (HLA) uses a 4-byte length variant of length-prefixed strings,
allowing strings up to 4GB long. (See section 4.11, “For More Information,”
on page 221 for more on the HLA.) In assembly language, you can define
string formats however you like.

To create length-prefixed strings in your assembly language programs,
you don’t want to manually count the characters in the string and emit that
length in your code. It’s far better to have the assembler do this kind of
grunt work for you by using the location counter operator (.), as follows:

 .data
lengthPrefixedString: .byte lpsLen
 .ascii "abc"
lpsLen = . - lengthPrefixedString - 1

The lpsLen operand subtracts 1 in the address expression because

. - lengthPrefixedString

also includes the length prefix byte, which isn’t considered part of the string
length.

Gas does not require you to define lpsLen before using it as the operand
field in the .byte directive. Gas is smart enough to go back and fill in the
value after it is defined in the equate statement.

4.6.3  String Descriptors
Another common string format is a string descriptor. A string descriptor is
typically a small data structure (see section 4.8, “Structs,” on page 212) that
contains several pieces of data describing a string.

190 Chapter 4

At a bare minimum, a string descriptor will probably have a pointer to
the actual string data and a field specifying the number of characters in the
string (that is, the string length). Other possible fields might include the
number of bytes currently occupied by the string, the maximum number
of bytes the string could occupy, the string encoding (for example, ASCII,
Latin-1, UTF-8, or UTF-16), and any other information the string data
structure’s designer could dream up.

By far, the most common descriptor format incorporates a pointer to the
string’s data and a size field specifying the number of bytes currently occu-
pied by that string data. Note that this particular string descriptor is not the
same thing as a length-prefixed string. In a length-prefixed string, the length
immediately precedes the character data itself. In a descriptor, the length and
a pointer are kept together, and this pair is (usually) separate from the charac-
ter data itself.

4.6.4  Pointers to Strings
Often, an assembly language program won’t directly work with strings
appearing in the .data (or .text, .rodata, or .bss) section. Instead, the pro-
gram will work with pointers to strings (including strings whose storage the
program has dynamically allocated with a call to a function like malloc()).
Listing 4-4 provided a simple (though broken) example. In such applica-
tions, your assembly code will typically load a pointer to a string into a base
register and then use a second (index) register to access individual charac-
ters in the string.

4.6.5  String Functions
Unfortunately, few assemblers provide a set of string functions you can call
from your assembly language programs. As an assembly language program-
mer, you’re expected to write these functions on your own. Fortunately, a
couple of solutions are available if you don’t quite feel up to the task.

The first set of string functions you can call, without having to write
them yourself, are the C stdlib string functions from the string.h header file
in C. Of course, you’ll have to use C strings (zero-terminated strings) in
your code when calling C stdlib functions, but this generally isn’t a big prob-
lem. Listing 4-5 provides examples of calls to various C string functions,
further described in Appendix E.

// Listing4-5.S
//
// Calling C stdlib string functions

#include "aoaa​.inc"

maxLen = 256
saveLR = 56

 .section .rodata, ""
ttlStr: .asciz "Listing 4-5"

Constants, Variables, and Data Types 191

prompt: .asciz "Input a string: "
fmtStr1: .asciz "After strncpy, resultStr='%s'\n"
fmtStr2: .asciz "After strncat, resultStr='%s'\n"
fmtStr3: .asciz "After strcmp (3), W0=%d\n"
fmtStr4: .asciz "After strcmp (4), W0=%d\n"
fmtStr5: .asciz "After strcmp (5), W0=%d\n"
fmtStr6: .asciz "After strchr, X0='%s'\n"
fmtStr7: .asciz "After strstr, X0='%s'\n"
fmtStr8: .asciz "resultStr length is %d\n"

str1: .asciz "Hello, "
str2: .asciz "World!"
str3: .asciz "Hello, World!"
str4: .asciz "hello, world!"
str5: .asciz "HELLO, WORLD!"

 .data
strLength: .dword .-.
resultStr: .space maxLen, .-.
resultPtr: .dword resultStr
cmpResult: .dword .-.

 .text
 .align 2
 .extern readLine
 .extern printf
 .extern malloc
 .extern free

// Some C stdlib string functions:
//
// size_t strlen(char *str)

 .extern strlen

// char *strncat(char *dest, const char *src, size_t n)

 .extern strncat

// char *strchr(const char *str, int c)

 .extern strchr

// int strcmp(const char *str1, const char *str2)

 .extern strcmp

// char *strncpy(char *dest, const char *src, size_t n)

 .extern strncpy

// char *strstr(const char *inStr, const char *search4)

 .extern strstr

192 Chapter 4

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

// Here is the "asmMain" function.

 .global asmMain
asmMain:
 sub sp, sp, #64 // Allocate stack space.
 str lr, [sp, #saveLR] // Save return address.

// Demonstrate the strncpy function to copy a
// string from one location to another:

 lea x0, resultStr // Destination string
 lea x1, str1 // Source string
 mov x2, #maxLen // Max number of chars to copy
 bl strncpy

 lea x0, fmtStr1
 vparm2 resultPtr
 bl printf

// Demonstrate the strncat function to concatenate str2 to
// the end of resultStr:

 lea x0, resultStr
 lea x1, str2
 mov x2, #maxLen
 bl strncat

 lea x0, fmtStr2
 vparm2 resultPtr
 bl printf

// Demonstrate the strcmp function to compare resultStr
// with str3, str4, and str5:

 lea x0, resultStr
 lea x1, str3
 bl strcmp
 lea x1, cmpResult
 str x0, [x1]

 lea x0, fmtStr3
 vparm2 cmpResult
 bl printf

 lea x0, resultStr
 lea x1, str4
 bl strcmp

Constants, Variables, and Data Types 193

 lea x1, cmpResult
 str x0, [x1]

 lea x0, fmtStr4
 vparm2 cmpResult
 bl printf

 lea x0, resultStr
 lea x1, str5
 bl strcmp
 lea x1, cmpResult
 str x0, [x1]

 lea x0, fmtStr5
 vparm2 cmpResult
 bl printf

// Demonstrate the strchr function to search for
// ',' in resultStr:

 lea x0, resultStr
 mov x1, #','
 bl strchr
 lea x1, cmpResult
 str x0, [x1]

 lea x0, fmtStr6
 vparm2 cmpResult
 bl printf

// Demonstrate the strstr function to search for
// str2 in resultStr:

 lea x0, resultStr
 lea x1, str2
 bl strstr
 lea x1, cmpResult
 str x0, [x1]

 lea x0, fmtStr7
 vparm2 cmpResult
 bl printf

// Demonstrate a call to the strlen function:

 lea x0, resultStr
 bl strlen
 lea x1, cmpResult
 str x0, [x1]

 lea x0, fmtStr8
 vparm2 cmpResult
 bl printf

194 Chapter 4

 ldr lr, [sp, #saveLR] // Restore return address.
 add sp, sp, #64 // Deallocate storage.
 ret // Returns to caller

Here’s the build command and sample output from Listing 4-5:

$./build Listing4-5
$./Listing4-5
Calling Listing4-5:
After strncpy, resultStr='Hello, '
After strncat, resultStr='Hello, World!'
After strcmp (3), W0 = 0
After strcmp (4), W0=-128
After strcmp (5), W0 = 128
After strchr, X0=', World!'
After strstr, X0='World!'
resultStr length is 13
Listing4-5 terminated

Of course, you could make a good argument that if all your assembly
code does is call a bunch of C stdlib functions, you should have written your
application in C in the first place. Most of the benefits of writing code in
assembly language happen only when you “think” in assembly language,
not C.

In particular, you can dramatically improve the performance of your
string function calls if you stop using zero-terminated strings and switch to
another string format (such as length-prefixed or descriptor-based strings
that include a length component). Chapter 14 presents some pure assembly
string functions for those who want to avoid the inefficiencies of using zero-
terminated strings with the C stdlib.

	 4.7	 Arrays
Along with strings, arrays are probably the most commonly used composite
data type. Yet most beginning programmers don’t understand their inter-
nal operation or their associated efficiency trade-offs. It’s surprising how
many novice (and even advanced!) programmers view arrays from a com-
pletely different perspective once they learn how to deal with arrays at the
machine level.

Abstractly, an array is an aggregate data type whose members (elements)
are all the same type. Selection of a member from the array is by an integer
index (or other ordinal type such as Boolean or character). Different indi-
ces select unique elements of the array. This book assumes that the integer
indices are contiguous, though this is by no means required. That is, if the
number x is a valid index into the array and y is also a valid index, with
x < y, then all i such that x < i < y are valid indices. Most HLLs use contiguous
array indices, and they are the most efficient to use, hence their use here.

Constants, Variables, and Data Types 195

Whenever you apply the indexing operator to an array, the result is the
specific array element chosen by that index. For example, A[i] chooses the
ith element from array A. There is no formal requirement that element i be
anywhere near element i + 1 in memory; the definition of an array is satis-
fied as long as A[i] always refers to the same memory location and A[i + 1]
always refers to its corresponding location (and the two are different).

As noted, this book assumes that array elements occupy contiguous
locations in memory. An array with five elements will appear in memory as
shown in Figure 4-1.

Low memory
addresses Base address of A

High memory
addresses

A[0] A[1] A[2] A[3] A[4]

Figure 4-1: An array layout in memory

The base address of an array is the address of that array’s first element
and always appears in the lowest memory location. The second array ele-
ment directly follows the first in memory, the third element follows the sec-
ond, and so on. Indices are not required to start at 0. They may start with
any number as long as they are contiguous. However, for the purposes of
discussion, this book starts all indices at 0.

To access an element of an array, you need a function that translates an
array index to the address of the indexed element. For a single-dimensional
array, this function is very simple:

Element_Address =
 Base_Address + ((Index - Initial_Index) × Element_Size)

Here, Initial_Index is the value of the first index in the array (which you can
ignore if it’s 0), and the value Element_Size is the size, in bytes, of an indi-
vidual array element (this may include padding bytes used to keep elements
properly aligned).

4.7.1  Declaring Arrays in Gas Programs
Before you can access elements of an array, you need to set aside storage for
that array. Fortunately, array declarations build on the declarations you’ve
already seen. To allocate n elements in an array, you would use a declara-
tion like the following in one of the variable declaration sections:

ArrayName: .fill n, element_size, initial_value

ArrayName is the name of the array variable, n is the number of array elements,
element_size is the size (in bytes) of a single element, and initial_value is the
initial value to assign to each array element. The element_size and initial
_value arguments are optional, defaulting to 1 and 0, respectively.

196 Chapter 4

For example, to declare an array of sixteen 32-bit words, you could use
the following:

wordArray: .fill 16, 4

This would set aside sixteen 4-byte words, each initialized with 0 (the default
initial value).

The value for element_size must not exceed 8; if it does, Gas will clip the
value to 8. For historical (Gas) reasons, you should limit the initial value to
32 bits; larger values are transformed in nonintuitive ways (and differently
on macOS and Linux). As a general rule, I strongly recommend defaulting
to 0 for each array element when using the .fill directive.

N O T E 	 If you use the .fill directive in a .bss section, the initial value must be absent or
set to 0.

An alternative to the .fill directive is .space

ArrayName: .space size, fill

where size is the number of bytes to allocate for the array and fill is an
optional 8-bit value that Gas will use to initialize each byte of the array. If
the fill argument is absent, Gas uses a default value of 0.

To declare an array of a type other than bytes, you must compute the
size argument as numberOfElements × elementSize. For example, to create a
16-element array of words, you could use the following declaration:

wordArray: .space 16 * (4) // word wordArray[16]

Because the fill argument is not present, Gas will initialize this array
with bytes containing 0s. I recommend putting parentheses around the ele-
ment size in the expression to better document your intent; this differenti-
ates the element size from the element count. As you’ll see in section 4.7.4,
“Implementing Multidimensional Arrays,” on page 203, the element count
could be an expression based on the size of each dimension.

To obtain the base address of these arrays, just use ArrayName or wordArray
in an address expression. If you prefer to initialize an array with different
values in each of the elements, you must manually supply those values in
the directives .byte, .hword, .word, .dword, and so on. Here’s a 16-word array
initialized with the values 0 to 15:

wordArray: .word 0, 1, 2, 3, 4, 5, 6, 7
 .word 8, 9, 10, 11, 12, 13, 14, 15

If you need to initialize a large array with different values, you’re best
off either writing an external program (perhaps in an HLL like C/C++) or
using Gas’s macro facilities to generate the array. I discuss this further in
Chapters 10 and 13.

Constants, Variables, and Data Types 197

4.7.2  Accessing Elements of a Single-Dimensional Array
To access an element of a zero-based array, use this formula:

Element_Address = Base_Address + index × Element_Size

If the array is located within your .text section (an array of constants),
or if you’re writing a Linux application and the array isn’t farther than
±1MB from your code that accesses the array, you can use the array’s name
for the Base_Address entry. This is because Gas associates the address of the
first element of an array with the name of that array.

Otherwise, you’ll need to load the base address of the array into a
64-bit register. For example:

lea x1, Base_Address

The Element_Size entry is the number of bytes for each array element. If
the object is an array of bytes, the Element_Size field is 1 (resulting in a very
simple computation). If each element of the array is a half word (or other
2-byte type), then Element_Size is 2, and so on. To access an element of the
wordArray array in the previous section, you’d use the following formula (the
size is 4 because each element is a word object):

Element_Address = wordArray + (index × 4)

The ARM code equivalent to the statement w0 = wordArray[index] is as
follows:

lea x1, index // Assume index is a 32-bit integer.
ldr w1, [x1] // Get index into W1.
lea x2, wordArray
ldr w0, [x2, w1, uxtw #2] // index * 4 and zero-extended

This instruction sequence does not explicitly compute the sum of the
base address plus the index times 4 (the size of a 32-bit integer element in
wordArray). Instead, it relies on the scaled-indexed addressing mode (the
uxtx #2 operand) to implicitly compute this sum. The instruction

ldr w0, [x2, w1, uxtw #2]

loads W0 from location X2 + W1 * 4, which is the base address plus index * 4
(because W1 contains index).

To multiply by a constant other than 1, 2, 4, or 8 (the immediate shift
constants possible with the scaled-indexed addressing mode), you’ll need to
use the lsl instruction to multiply by the element size (if multiplying by a
power of 2) or the mul instruction. You’ll see some examples in a bit.

The scaled-indexed addressing mode on the ARM is the natural address-
ing mode for accessing elements of a single-dimensional array. Make sure

198 Chapter 4

you remember to multiply the index by the size of an element; failure to do
so will produce incorrect results.

The examples in this section assume that the index variable is a 32-bit
value, which is common for array indices. To use a smaller integer, you’d
need to sign- or zero-extend it to 32 bits. To use a 64-bit integer, simply
adjust the scaled-indexed addressing mode to use a 64-bit index register
and use the shift-left scaling without zero or sign extension.

4.7.3  Sorting an Array of Values
When introducing arrays, books commonly introduce sorting the elements
of an array. To acknowledge this historical precedent, this section takes a
quick look at a simple sort in Gas. The program presented in this section
uses a variant of the bubble sort, which is great for short lists of data and lists
that are nearly sorted, but horrible for just about everything else. However,
a bubble sort is easy to implement and understand, which is why this and
other introductory texts continue to use it in examples.

Because of the relative complexity of Listing 4-6, I’ll insert comments
throughout the source code rather than explaining it at the end. We begin
by including aoaa​.inc, as usual.

// Listing4-6.S
//
// A simple bubble sort example

#include "aoaa​.inc"

Right away, let’s make some coding improvements as compared to many
of the previous examples in this book. Those examples, such as Listing 4-1,
used “magic” numbers, like 64 for the amount of stack space to allocate
and 56 for the offset into the stack allocation where I preserve the LR
register. I used these literal constants directly in the code to be as trans-
parent as possible; however, good programming style demands the use of
symbolic names in place of those magic numbers. The two equates below
accomplish this.

// Listing4-6.S (cont.)

stackAlloc = 64 // Space to allocate on stack
saveLR = 56 // Save LR here (index into stack frame).

The next couple of statements in the source file define offsets into the
stack frame (allocated storage on the stack) where the program can pre-
serve register values. In all the example programs so far, I’ve placed (global)
variables in memory locations. That’s not the appropriate paradigm for
RISC assembly language programming.

The ARM ABI reserves registers X19 through X28 for use as nonvolatile
(permanent) variable storage. Nonvolatile means you can call functions (like
printf()) without worrying about those registers’ values being changed. The

Constants, Variables, and Data Types 199

drawback to using nonvolatile registers is that you have to preserve their
values upon entry into your code. The following two equates specify the
offset into the stack allocation area for register preservation. This code will
use registers X19 and X20 as loop control variables:

// Listing4-6.S (cont.)

x19Save = saveLR - 8 // Save X19 here.
x20Save = x19Save - 8 // Save X20 here.

The remaining equates define other constants used in this code:

// Listing4-6.S (cont.)

maxLen = 256
true = 1
false = 0

Next come the usual read-only and writable data sections. In particular,
the .data section contains the sortMe array, which will be the subject of the
sorting operation. Also, this block of statements contains the getTitle func-
tion required by the c.cpp program:

// Listing4-6.S (cont.)

 .section .rodata, ""
ttlStr: .asciz "Listing 4-6"
fmtStr: .asciz "Sortme[%d] = %d\n"

 .data

// sortMe - A 16-element array to sort:

sortMe:
 .word 1, 2, 16, 14
 .word 3, 9, 4, 10
 .word 5, 7, 15, 12
 .word 8, 6, 11, 13
sortSize = (. - sortMe) / 4 // Number of elements

// Holds the array element during printing:

valToPrint: .word .-.
i: .word .-.

 .text
 .align 2
 .extern printf

// Return program title to C++ program:

 .global getTitle

200 Chapter 4

getTitle:
 lea x0, ttlStr
 ret

Now we get to the bubble-sort function itself:

// Listing4-6.S (cont.)
//
// Here's the bubble-sort function.
//
// sort(dword *array, qword count)
//
// Note: this is not an external (C)
// function, nor does it call any
// external functions, so it will
// dispense with some of the OS-calling-
// sequence stuff.
//
// array- Address passed in X0
// count- Element count passed in X1
//
// Locals:
//
// W2 is "didSwap" Boolean flag.
// X3 is index for outer loop.
// W4 is index for inner loop.

The bubble-sort function could just use register names like X0, X1, W2,
and X3 for all the local variables. However, the following #define statements
let you use more meaningful names. X5, X6, and X7 are pure temporaries
(no meaningful name is attached to them), so this code continues to use
the ARM register names for these temporary or local objects. Technically,
X0 through X7 are reserved for parameters. As the sort function has only
two parameters (array and count), it uses X2 through X7 as local variables
(which is fine, as these registers are volatile, according to the ARM ABI):

// Listing4-6.S (cont.)

#define array x0
#define count x1
#define didSwap w2
#define index x3

The count parameter just defined contains the number of array elements
(which will be 16 in the main program). Since it’s more convenient for this
to be a byte count rather than a (word) element count, the following code
multiplies count (X1) by 4, using a shift left by 2. Also, the loop executes count
–1 times, so this code also preps count by subtracting 1 from it:

Constants, Variables, and Data Types 201

// Listing4-6.S (cont.)

sort:
 sub count, count, #1 // numElements - 1

 lsl count, count, #2 // Make byte count.

The bubble sort works by making count – 1 passes through the array,
where count is the number of elements. On each pass, it compares each adja-
cent pair of array elements; if the first element is greater than the second
one, the program swaps them. At the end of each pass, one element winds
up being moved to its final position. As an optimization, if no swaps occur,
then all the elements are already in place, so the sort terminates:

// Listing4-6.S (cont.)
//
// Outer loop

outer: mov didSwap, #false

 mov index, #0 // Outer loop index
inner: cmp index, count // while outer < count - 1
 bhs xInner

 add x5, array, index // W5 = &array[index]
 ldr w6, [x5] // W6 = array[index]
 ldr w7, [x5, #4] // W7 = array[index + 1]
 cmp w6, w7 // If W5 > W
 bls dontSwap // then swap.

 // sortMe[index] > sortMe[index + 1], so swap elements.

 str w6, [x5, #4]
 str w7, [x5]
 mov didSwap, #true

dontSwap:
 add index, index, #4 // Next word
 b.al inner

// Exited from inner loop, test for repeat
// of outer loop:

xInner: cmp didSwap, #true
 beq outer

 ret

202 Chapter 4

The main program begins by preserving the nonvolatile registers (LR,
X19, and X20) that it uses:

// Listing4-6.S (cont.)
//
// Here is the asmMain function:

 .global asmMain
asmMain:

 sub sp, sp, #stackAlloc // Allocate stack space.
 str lr, [sp, #saveLR] // Save return address.
 str x19, [sp, #x19Save] // Save nonvolatile
 str x20, [sp, #x20Save] // X19 and X20.

Next, the main program calls the sort function to sort the array. As per
the ARM ABI, this program passes the first argument (the address of the
array) in X0 and the second argument (element count) in X1:

// Listing4-6.S (cont.)
//
// Sort the "sortMe" array:

 lea x0, sortMe
 mov x1, #sortSize // 16 elements in array
 bl sort

Once sort has finished, the program executes a loop to display the
16 values in the array. This loop uses the nonvolatile registers X19 and X20
to hold the base address of the array and the loop index, so these values
don’t have to be reloaded on each iteration of the loop. Because they are
nonvolatile, we know that printf() won’t disturb their values:

// Listing4-6.S (cont.)
//
// Display the sorted array.

 lea x19, sortMe
 mov x20, xzr // X20 = 0 (index)
dispLp: ldr w0, [x19, x20, lsl #2] // W0 = sortMe[X20]
 lea x1, valToPrint
 str w0, [x1]
 lea x1, i
 str x20, [x1]

 lea x0, fmtStr // Print the index
 vparm2 i // and array element
 vparm3 valToPrint // on this loop iteration.
 bl printf

 add x20, x20, #1 // Bump index by 1.
 cmp x20, #sortSize // Are we done yet?
 blo dispLp

Constants, Variables, and Data Types 203

Once the output is complete, the main program must restore the non-
volatile registers before returning to the C++ program:

// Listing4-6.S (cont.)

 ldr x19, [sp, #x19Save] // Restore nonvolatile
 ldr x20, [sp, #x20Save] // registers.
 ldr lr, [sp, #saveLR] // Restore rtn adrs.
 add sp, sp, #stackAlloc // Restore stack.
 ret // Returns to caller

You could slightly optimize this program by using the stp and ldp instruc-
tions to preserve both X19 and X20. To emphasize saving and restoring both
registers as independent operations, I didn’t make that optimization here.
However, you should get in the habit of optimizing your code in this manner
in order to reap the benefits of using assembly language.

Here’s the build command and output for Listing 4-6:

$./build Listing4-6
$./Listing4-6
Calling Listing4-6:
Sortme[0] = 1
Sortme[1] = 2
Sortme[2] = 3
Sortme[3] = 4
Sortme[4] = 5
Sortme[5] = 6
Sortme[6] = 7
Sortme[7] = 8
Sortme[8] = 9
Sortme[9] = 10
Sortme[10] = 11
Sortme[11] = 12
Sortme[12] = 13
Sortme[13] = 14
Sortme[14] = 15
Sortme[15] = 16
Listing4-6 terminated

As is typical for a bubble sort, this algorithm terminates if the inner-
most loop completes without swapping any data. If the data is already pre-
sorted, the bubble sort is very efficient, making only one pass over the data.
Unfortunately, if the data is not sorted (or, worst case, if the data is sorted
in reverse order), then this algorithm is extremely inefficient. Chapter 5
provides an example of a more efficient sorting algorithm, quicksort, in
ARM assembly language.

4.7.4  Implementing Multidimensional Arrays
The ARM hardware can easily handle single-dimensional arrays. Unfortu
nately, however, accessing elements of multidimensional arrays takes some
work and several instructions.

204 Chapter 4

Before discussing how to declare or access multidimensional arrays,
I’ll show you how to implement them in memory. First, how do you store a
multidimensional object into a one-dimensional memory space? Consider
for a moment a Pascal array of this form:

A:array[0..3,0..3] of char;

This array contains 16 bytes organized as four rows of four characters.
Somehow, you have to draw a correspondence with each of the 16 bytes in
this array and 16 contiguous bytes in main memory. Figure 4-2 shows one
way to do this.

Memory

0 1 2 3

0

1

2

3

Figure 4-2: Mapping a 4×4 array to sequential
memory locations

The actual mapping is not important as long as two things occur:
(1) each element maps to a unique memory location (no two entries in the
array occupy the same memory locations), and (2) the mapping is consis-
tent (a given element in the array always maps to the same memory loca-
tion). Therefore, you need a function with two input parameters (row and
column) that produces an offset into a linear array of 16 memory locations.

Any function that satisfies these constraints will work fine. Indeed, you
could randomly choose a mapping, as long as it’s consistent. However, you
really want a mapping that is efficient to compute at runtime and that works
for any size array (not just 4×4 or even limited to two dimensions). While
many possible functions fit this bill, two in particular are used by most pro-
grammers and HLLs: row-major ordering and column-major ordering.

4.7.4.1  Row-Major Ordering

Row-major ordering assigns successive elements, moving across the rows and
then down the columns, to successive memory locations. Figure 4-3 demon-
strates this mapping.

Constants, Variables, and Data Types 205

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 3

0

1

2

2

3

A:array[0..3, 0..3] of char;

Figure 4-3: Row-major ordering of array elements

ROW A ND COLUMN INDICES V S. NUMBERS

When discussing multidimensional arrays, it is easy to confuse row and column
numbers and indices. A row number is, quite literally, the number associated
with a row. In Figure 4-3, the row numbers are the values 0, 1, 2, and 3 to the
left of the 4×4 matrix, numbering each of the rows. Similarly, the column num-
bers are the values 0, 1, 2, and 3 at the top of the matrix, numbering each of
the columns.

An index into a row is the offset from the beginning of each row into the
elements of that row. For example, in row 1 in Figure 4-3, the element at
index 2 contains the value 6. Similarly, a column index is an index into a col-
umn (moving from top to bottom in Figure 4-3). The array element in column 2
at column index 3 is the value 14.

Here’s where confusion could occur: a column number is the same as a
row index; likewise, a row number is the same as a column index. When this
chapter presents the formulas for indexing into multidimensional arrays, be cog-
nizant of the difference between row and column numbers and indices.

Row-major ordering is the method most HLLs employ. It is easy to imple-
ment and use in machine language: you start with the first row (row 0) and
then concatenate the second row to its end. You then concatenate the third
row to the end of the list, then the fourth row, and so on (see Figure 4-4).

206 Chapter 4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

High addressesLow addresses

Figure 4-4: Another view of row-major ordering for a 4×4 array

The function that converts a list of index values into an offset is a slight
modification of the formula for computing the address of an element of
a single-dimensional array. The formula to compute the offset for a two-
dimensional row-major ordered array is as follows:

Element_Address =
 Base_Address +
 (colindex × row_size + rowindex) × Element_Size

As usual, Base_Address is the address of the first element of the array
(A[0][0] in this case), and Element_Size is the size of an individual element
of the array, in bytes. colindex is the leftmost index, and rowindex is the
rightmost index into the array. row_size is the number of elements in one
row of the array (4, in this case, because each row has four elements).
Assuming Element_Size is 1, this formula computes the following offsets
from the base address:

Column Row Offset
Index into Array
0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

Constants, Variables, and Data Types 207

For a three-dimensional array, the formula to compute the offset into
memory is the following:

Address =
 Base + ((depthindex × col_size + colindex) × row_size +
 rowindex) × Element_Size

col_size is the number of items in a column, and row_size is the number of
items in a row.

In C/C++, if you’ve declared the array as

type A[i][j][k];

then row_size is equal to k and col_size is equal to j.
For a four-dimensional array, declared in C/C++ as

type A[i][j][k][m];

the formula for computing the address of an array element is shown here:

Address =
 Base +
 (((LeftIndex × depth_size + depthindex) × col_size +
 colindex) × row_size + rowindex) × Element_Size

depth_size is equal to j, col_size is equal to k, and row_size is equal to m.
LeftIndex represents the value of the leftmost index.

By now you’re probably beginning to see a pattern. A generic formula
will compute the offset into memory for an array with any number of
dimensions; however, you’ll rarely use more than four.

Another convenient way to think of row-major arrays is as arrays of
arrays. Consider the following single-dimensional Pascal array definition

A: array [0..3] of sometype;

where sometype is the type sometype = array [0..3] of char; and A is a single-
dimensional array. Its individual elements happen to be arrays, but you can
safely ignore that for the time being.

Here is the formula to compute the address of an element in a single-
dimensional array:

Element_Address = Base + Index × Element_Size

In this case, Element_Size happens to be 4 because each element of A is an
array of four characters. Therefore, this formula computes the base address
of each row in this 4×4 array of characters (see Figure 4-5).

208 Chapter 4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(A[0][0])

(A[0][1])

(A[0][2])

(A[0][3])

Each element of A
is 4 bytes long.

A[0]

A[1]

A[2]

A[3]

Figure 4-5: Viewing a 4×4 array as an array of arrays

Of course, once you compute the base address of a row, you can reapply
the single-dimensional formula to get the address of a particular element.
While this doesn’t affect the computation, it’s probably a little easier to deal
with several single-dimensional computations rather than a complex multi-
dimensional array computation.

Consider a Pascal array defined as follows:

A:array [0..3, 0..3, 0..3, 0..3, 0..3] of char;

You can view this five-dimensional array as a single-dimensional array
of arrays. The following Pascal code provides such a definition:

type
 OneD = array[0..3] of char;
 TwoD = array[0..3] of OneD;
 ThreeD = array[0..3] of TwoD;
 FourD = array[0..3] of ThreeD;
var
 A: array[0..3] of FourD;

The size of OneD is 4 bytes. Because TwoD contains four OneD arrays, its size
is 16 bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is
four ThreeDs, so it is 256 bytes long. To compute the address of A[b, c, d, e, f],
you could use the following steps:

	 1.	Compute the address of A[b] as Base + b × size. Here size is 256 bytes. Use
this result as the new base address in the next computation.

	 2.	Compute the address of A[b, c] by the formula Base + c × size, where Base
is the value obtained in the previous step and size is 64. Use the result
as the new base in the next computation.

	 3.	Compute the base address of A [b, c, d] by Base + d × size, where Base
comes from the previous computation and size is 16. Use the result as
the new base in the next computation.

Constants, Variables, and Data Types 209

	 4.	Compute the address of A[b, c, d, e] with the formula Base + e × size,
using Base from the previous step and a size of 4. Use this value as the
base for the next computation.

	 5.	Finally, compute the address of A[b, c, d, e, f] by using the formula
Base + f × size, where Base comes from the previous computation and size
is 1 (obviously, you can ignore this final multiplication). The result you
obtain at this point is the address of the desired element.

One of the main reasons you won’t find higher-dimensional arrays in
assembly language is that assembly language emphasizes the inefficiencies
associated with such access. It’s easy to enter something like A[b, c, d, e, f]
into a Pascal program, not realizing what the compiler is doing with the
code. Assembly language programmers are not so cavalier—they see the
mess you wind up with when you use higher-dimensional arrays. Indeed,
good assembly language programmers try to avoid two-dimensional arrays
and often resort to tricks in order to access data in such an array when its
use becomes absolutely mandatory.

4.7.4.2  Column-Major Ordering

Column-major ordering is the other function HLLs frequently use to compute
the address of an array element. FORTRAN and various dialects of BASIC
(for example, older versions of Microsoft BASIC) use this method.

In row-major ordering, the rightmost index increases the fastest as you
move through consecutive memory locations. In column-major ordering,
the leftmost index increases the fastest. Pictorially, a column-major ordered
array is organized as shown in Figure 4-6.

A:array[0..3, 0..3] of char;

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]

9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

Memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 3

0

1

2

2

3

Figure 4-6: Column-major ordering of array elements

210 Chapter 4

The formula for computing the address of an array element when using
column-major ordering is similar to that for row-major ordering. You reverse
the indices and sizes in the computation.

For a two-dimensional column-major array:

Element_Address = Base_Address +
    (rowindex × col_size + colindex) × Element_Size

For a three-dimensional column-major array:

Address = Base + ((rowindex × col_size + colindex) ×
 depth_size + depthindex) × Element_Size

For a four-dimensional column-major array:

Address =
 Base + (((rowindex × col_size + colindex) × depth_size +
 depthindex) × Left_size + Leftindex) × Element_Size

The formulas for higher-dimension arrays progress in a like fashion.

4.7.4.3  Storage Allocation for Multidimensional Arrays

If you have an m×n array, it will have m × n elements and require m × n
× Element_Size bytes of storage. To allocate storage for an array, you must
reserve this memory. As usual, you can accomplish this task in several ways.
The most common way to declare a multidimensional array in Gas is to use
the .space directive:

ArrayName: .space size1 * size2 * size3 * ... * sizen * (Element_Size)

Here, size1 to sizen are the sizes of each of the dimensions of the array, and
(Element_Size) is the size (in bytes) of a single element. I recommend putting
parentheses around the Element_Size component of this expression to empha-
size that it is not another dimension in the multidimensional array.

For example, here is a declaration for a 4×4 array of characters:

GameGrid: .space 4 * 4 // Element_Size is 1.

Here is another example that shows how to declare a three-dimensional
array of strings (assuming the array holds 64-bit pointers to the strings):

NameItems: .space 2 * 3 * 3 * (8) // dword NameItems[2, 3, 3]

As with single-dimensional arrays, you may initialize every element of
the array to a specific value by following the declaration with the values of the
array constant. Array constants ignore dimension information; all that matters
is that the number of elements in the array constant corresponds to the num-
ber of elements in the actual array. The following example shows the GameGrid
declaration with an initializer:

Constants, Variables, and Data Types 211

GameGrid: .byte 'a', 'b', 'c', 'd'
 .byte 'e', 'f', 'g', 'h'
 .byte 'i', 'j', 'k', 'l'
 .byte 'm', 'n', 'o', 'p'

This example was laid out to enhance readability. Gas does not inter-
pret the four separate lines as representing rows of data in the array;
humans do, which is why it’s good to write the data in this manner. If you
have a large array, an array with really large rows, or an array with many
dimensions, there is little hope for winding up with something readable; in
this case, comments that carefully explain everything come in handy.

The use of a constant expression to compute the number of array ele-
ments rather than simply using the constant 16 (4 × 4) more clearly suggests
that this code is initializing each element of a 4×4 element array than does
the simple literal constant 16.

4.7.4.4  How to Access Elements of Multidimensional Arrays

To access elements of a multidimensional array, you’ll need to be able to
multiply two values; this is done using the mul (multiply) and madd (multiply
and add) instructions.

The mul and madd instructions have the following syntax

mul regd, reg1, regr // regd = regl * regr
madd regd, regl, regr, rega // regd = regl * regr + rega

where regd is the destination register (32 or 64 bits), regl and regr are source
registers (left- and right-hand operands), and rega is a third source operand.
These instructions perform the calculations described in the comments.

These instructions do not have a form with an s suffix and therefore do
not update the flags after their execution. An n-bit × n-bit multiplication
can produce a 2 × n bit result; however, these instructions maintain only
n bits in the destination register. Any overflow is lost. Sadly, these instruc-
tions do not allow immediate operands, though this would be useful.

The multiply instruction has several other variants that are used for
other purposes. These are covered in Chapter 6.

Now that you’ve seen the formulas for computing the address of a multi
dimensional array element, it’s time to see how to access elements of those
arrays with assembly language. The ldr, lsl, and mul/madd instructions make
short work of the various equations that compute offsets into multidimen-
sional arrays. First, consider a two-dimensional array:

 .data
i: .word .-.
j: .word .-.
TwoD: .word 4 * 8 * (4)
 .
 .
 .

212 Chapter 4

// To perform the operation TwoD[i,j] := 5;
// you'd use code like the following.
// Note that the array index computation is (i * 4 + j) * 4.

 lea x0, i
 ldr w0, [x0] // Clears HO bits of X0
 lsl x0, x0, #2 // Multiply i by 4.
 lea x1, j
 ldr w1, [x1]
 add w0, w0, w1 // W0 = i * 4 + j
 lea x1, TwoD // X1 = base
 mov w2, #5 // [TwoD + (i * 4 + j) * 4] = 5
 str w2, [x1, x0, lsl #2] // Scaled by 4 (element size)

Now consider a second example that uses a three-dimensional array:

 .data
i: .word .-.
j: .word .-.
k: .word .-.
ThreeD: .space 3 * 4 * 5 * (4) // word ThreeD[3, 4, 5]
 .
 .
 .
// To perform the operation ThreeD[i,j,k] := W7;
// you'd use the following code that computes
// ((i * 4 + j) * 5 + k) * 4 as the address of ThreeD[i,j,k].

 lea x0, i
 ldr w0, [x0]
 lsl w0, w0, #2 // Four elements per column
 lea x1, j // Add in j.
 ldr w1, [x1]
 add w0, w0, w1
 mov w1, #5 // Five elements per row
 lea x2, k
 ldr w2, [x2]
 madd w0, w0, w1, w2 // ((i * 4 + j) * 5 + k)
 lea x1, ThreeD
 str w7, [x1, w0, uxtw #2] // ThreeD[i,j,k] = W7

This code uses the madd instruction to multiply the value in W0 by 5 and
add in the k index at the same time. Because the lsl instruction can multi-
ply a register by only a power of 2, we must resort to a multiplication here.
While there are ways to multiply the value in a register by a constant other
than a power of 2, the madd instruction is more convenient, especially as it
handles an addition operation at the same time.

	 4.8	 Structs
Another major composite data structure is the Pascal record or C/C++/C#
struct. The Pascal terminology is probably better, because it tends to avoid
confusion with the more general term data structure. However, this book

Constants, Variables, and Data Types 213

uses the term struct, as C-based languages are more commonly used these
days. (Records and structures also go by other names in other languages,
but most people recognize at least one of these names.)

Whereas an array is homogeneous, with elements that are all the same
type, the elements in a struct can have different types. Arrays let you select
a particular element via an integer index. With structs, you must select an
element, known as a field, by offset (from the beginning of the struct).

The whole purpose of a struct is to let you encapsulate different, though
logically related, data into a single package. The Pascal record declaration
for a hypothetical student is a typical example:

student =
 record
 sName: string[64];
 Major: integer;
 SSN: string[11];
 Midterm1: integer;
 Midterm2: integer;
 Final: integer;
 Homework: integer;
 Projects: integer;
 end;

Most Pascal compilers allocate each field in a record to contiguous
memory locations. This means that Pascal will reserve the first 65 bytes for
the name, the next 2 bytes hold the Major code (assuming a 16-bit integer),
the next 12 bytes hold the Social Security number, and so on. (Strings
require an extra byte, in addition to all the characters in the string, to
encode the length.) The John variable declaration allocates 89 bytes of stor-
age laid out in memory, as shown in Figure 4-7 (assuming no padding or
alignment of fields).

John

sName
(65 bytes)

SSN
(12 bytes)

Midterm2
(2 bytes)

Homework
(2 bytes)

Major
(2 bytes)

Midterm1
(2 bytes)

Final
(2 bytes)

Projects
(2 bytes)

Figure 4-7: Student data structure in memory

If the label John corresponds to the base address of this record, the
sName field is at offset John + 0, the Major field is at offset John + 65, the SSN field
is at offset John + 67, and so on. In assembly language, if X0 holds the base
address of the John structure, you could access the Major field by using the
following instruction:

ldrh w0, [x0, #65]

This loads W0 with the 16-bit value at the address specified by John + 65.

214 Chapter 4

4.8.1  Dealing with Limited Gas Support for Structs
Unfortunately, Gas provides only the smallest amount of support for struc-
tures via the .struct directive (see “Linux .struct Directive” on page 217).
Even more unfortunately, the macOS assembler doesn’t support .struct.

To use structures under macOS and Linux together, you’ll need a way
to specify the offsets to all the fields of a structure for use in the register
indirect-plus-offset addressing mode (such as in the last example line of the
previous section). In theory, you could manually use equates to define all
the offsets:

.equ sName, 0

.equ Major, 65

.equ SSN, 67

.equ Mid1, 79

.equ Mid2, 81

.equ Final, 83

.equ Homework, 85

.equ Projects, 87

However, this is an absolutely horrible, error-prone, and difficult-to-
maintain approach. The ideal method would be to supply a structure name
(the type name) and a list of the field names and their types. From this, you’d
aim to get offsets for all the fields, plus the size of the entire structure (which
you can use with the .space directive to allocate storage for the structure).

The aoaa​.inc include file contains several macro definitions that can
help you declare and use structures in your assembly language source files.
These macros aren’t amazingly robust, but when used carefully, they get
the job done. Table 4-1 lists these macros and their arguments. Field names
must be unique throughout the program, not just in the structure defini-
tion. Also note that the struct/ends macros do not support nesting.

Table 4-1: The aoaa​.inc Macros for Defining Structures

Macro Argument(s) Description

struct name, offset Begin a structure definition. The offset field is optional and can be either
a (small) negative number or 0. The default (and most commonly used)
value is 0.

ends name Ends a structure definition. The name argument must match the name supplied
in the struct invocation.

byte name, elements Create a field of type byte. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

hword name, elements Create a field of type hword. name is the (unique) field name. elements is
optional (default value is 1) and specifies the number of array elements.

word name, elements Create a field of type word. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

dword name, elements Create a field of type dword. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

qword name, elements Create a field of type qword. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

Constants, Variables, and Data Types 215

Macro Argument(s) Description

single name, elements Create a field of type single. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

double name, elements Create a field of type double. name is the unique field name. elements is
optional (default value is 1) and specifies the number of array elements.

For strings, you’d specify either a dword field (to hold a pointer to the
field) or a byte field with a sufficient number of elements to hold all the
characters in the string.

The student example from the previous section could be encoded as
follows:

struct student
 byte sName, 65 // Includes zero-terminating byte
 hword Major
 byte SSN, 12 // Includes zero-terminating byte
 hword Midterm1
 hword Midterm2
 hword Final
 hword Homework
 hword Projects
ends student

You would declare a variable of type student like this:

student John

The ends macro automatically generates a macro with the same name as
the structure name, so you can use that like a directive to allocate sufficient
space to hold an instance of the structure type.

You could access fields of John as follows:

lea x0, John
ldrh w1, [x0, #Midterm1]
ldrh w2, [x0, #Midterm2]
ldrh w3, [x0, #Final] // And so on ...

This macro package has a couple of issues. First of all, the field names
must be unique throughout the assembly language source file (unlike stan-
dard structures, where the field names are local to the structure itself). As
a result, these structures tend to suffer from namespace pollution, which hap-
pens when you try to reuse some of the field names for other purposes. For
example, sName will likely be used again elsewhere in the source file, since it’s
a common identifier. A quick-and-dirty solution to this problem is to always
prefix the field names with the structure name and a period. For example:

struct student
 byte student.sName, 65
 hword student.Major

216 Chapter 4

 byte student.SSN, 12
 hword student.Midterm1
 hword student.Midterm2
 hword student.Final
 hword student.Homework
 hword student.Projects
ends student

This requires a bit more typing, but it resolves the namespace pollution
issue most of the time.

Consider the student John macro invocation/declaration given in this
section. This macro expands into

John: .fill student.size

where student.size is an extra field that the struct macro generates, specify-
ing the total size of the structure (in bytes).

The struct macro accepts a second (optional) parameter: the starting
offset for fields in the structure. By default, this is 0. If you supply a negative
number here, the directive/macro that struct generates works a little differ-
ently. Consider the following structure definition:

struct HLAstring, -4
word HLAstring.len
byte HLAstring.chars, 256
ends HLAstring

HLA strings are actually a bit different from the structure provided here,
but this does serve as a good example of negative starting offsets.

The HLAstring macro that struct generates does the following:

 HLAstring myString
 // Expands to
 .fill 4
myString: .fill 256

This expansion places the myString label after the first 4 bytes of the
beginning of the structure. This is because the HLAstring.len field’s offset
is –4, meaning that the length field starts 4 bytes before the base address
of the structure (and the structure variable’s name is always associated with
the base address). You’ll see some important uses for this feature in the
next chapter.

The struct macro does not allow positive offsets (values greater than 0).
It will generate an error at assembly time if you specify a positive value.

Constants, Variables, and Data Types 217

L INU X .S T RUC T DIR EC T I V E

The Gas .struct directive (available only under Linux) doesn’t begin a structure
definition in the sense of an HLL like C/C++. Instead, it begins a new section
(similar to .text, .data, or .section). However, rather than creating a memory
section that can be relocated in memory when the OS loads the program, the
.struct section is an absolute section located in memory at the address speci-
fied by constExpression. Furthermore, this is a phantom section, insofar as Gas
doesn’t actually write any data to the object file in response to this directive;
.struct exists only for the purpose of associating offsets with symbols created
within the section.

Consider the following simple example:

 .struct 0
f1: .byte 0
f2: .hword 0
f3: .word 0
f4: .dword 0
size = .

During assembly, Gas will set the location counter of the .struct section
to 0 (because of the 0 operand after .struct). Therefore, symbol f1 will have
the offset 0 associated with it, as it is the first symbol defined in the section.
Because f1 is a byte (and consumes 1 byte of memory), the location counter
advances to 1 when Gas encounters symbol f2. Therefore, f2 has the offset
2 associated with it. Similarly, f3 has the offset 3, and f4 has the offset 7 (the
offsets are the sums of the sizes of all the prior objects in the section). The sym-
bol size is given the value of the location counter at the end of the sequence, so
it has the value 15.

You can use the symbol names defined in a .struct section as offsets in
an address expression. For example, if you’ve defined the structure object s1 as
s1: .space size, you can access the f3 field of s1 as follows

lea x0, s1
ldr w0, [x0, #f1]

where #f1 is the offset into the struct from its base address (held in X0).

One issue with the struct macro is that it doesn’t provide a way to ini-
tialize the fields of the structure. To learn how to do that, keep reading.

4.8.2  Initializing Structs
The struct macro definitions do not provide any way to initialize the fields
of a structure at compile time. You’ll have to either assign the values at

218 Chapter 4

runtime or manually build up the structure variable by using Gas direc-
tives. For example:

John: .asciz "John Somebody" // sName
 .space 65 - (.-John) // Must be 65 bytes long!
 .hword 0 // Major
 .asciz "123-45-6578" // SSN-Exactly 12 bytes long
 .hword 75 // Midterm1
 .hword 82 // Midterm2
 .hword 90 // Final
 .hword 72 // Homework
 .hword 80 // Projects

This initializes the fields of the structure to the corresponding values.

4.8.3  Creating Arrays of Structs
A common pattern in program design is to create an array of structures.
To do so, create a struct type and multiply its size by the number of array
elements when declaring the array variable, as shown in the following
example:

numStudents = 30
 .
 .
 .
Class: .fill student.size * numStudents

To access an element of this array, use the standard array-indexing
techniques. Because class is a single-dimensional array, you’d compute the
address of an element of this array by using the formula baseAddress + index
× student.size. For example, to access an element of class, you’d use code
like the following:

// Access field Final, of element i of class:
// X1 := i * student.size + offset Final

 lea x1, i
 ldr x1, [x1]
 mov x2, #student.size
 mov x3, #student.Final
 madd x1, x1, x2, x3 // Include offset to field.
 lea x2, class
 ldrh w0, [x2, x1] // Accesses class[i].Final

You must sum in the offset to the field you want to access. Sadly, the
scaled-indexed addressing mode doesn’t include an offset component as
part of the addressing mode, but madd saves us an instruction by working in
this addition as part of the multiplication.

Naturally, you can create multidimensional arrays of structs as well,
using the row-major or column-major order functions to compute the

Constants, Variables, and Data Types 219

address of an element within such structs. The only real change is that the
size of each element is the size of the struct object:

 .data

numStudents = 30
numClasses = 2

// student Instructor[numClasses][numStudents]

Instructor: .fill numStudents * numClasses * (student.size)
whichClass: .dword 1
whichStudent: .dword 10
 .
 .
 .
// Access element [whichClass,whichStudent] of class
// and load Major into W0:

 lea x0, whichClass
 ldr x1, [x0]
 mov x2, #numStudents // X1 = whichClass * numStudents
 mul x1, x1, x2
 lea x0, whichStudent
 ldr x2, [x0] // X1 = (whichClass * numStudents +
 add x1, x1, x2 // numStudents)
 mov x2, #student.size // * sizeStudent + offset Major
 mov x3, #Major
 madd x1, x1, x2, x3

 lea x0, Instructor // W0 = Instructor[whichClass]
 ldrh w0, [x0, x1] // [whichStudent].Major

This demonstrates how to access fields of an array of structs.

4.8.4  Aligning Fields Within a Struct
To achieve maximum performance in your programs, or to ensure that
Gas structures properly map to records or structures in an HLL, you will
often need to be able to control the alignment of fields within a struct. For
example, you might want to ensure that a double-word field’s offset is a mul-
tiple of 4. You can use the salign macro to do this. The following creates a
structure with aligned fields:

struct tst
byte bb
salign 2 // Aligns offset to next 4-byte boundary
byte c
ends tst

As for the .align directive, the salign macro aligns the structure’s offset
to 2n, where n is the value specified as the salign argument. In this example,
c’s offset is set to 4 (the macro rounds up the field offset from 1 to 4).

220 Chapter 4

Field alignment is up to you when you’re creating your own structure vari-
ables. However, if you’re linking with code written in an HLL that uses struc-
tures, you’ll need to determine field alignment for that particular language.
Most modern HLLs use natural alignment: fields are aligned on a boundary
that is the size of that field (or an element of that field). The structure itself is
aligned at an address rounded to the size of the largest object in the structure.
See section 4.11, “For More Information,” on page 221 for appropriate links.

	 4.9	 Unions
Unions (in an HLL like C/C++) are similar to structures insofar as they cre-
ate an aggregate data type containing several fields. Unlike structures, how-
ever, the fields of a union all occupy the same offset in the data structure.

Programmers typically use unions for one of two reasons: to conserve
memory or to create aliases. Memory conservation is the intended use of
this data structure facility. To see how this works, consider the following
struct type:

struct numericRec
 word i
 word u
 dword q
ends numericRec

If you declare a variable, say n, of type numericRec, you access the fields
as n.i, n.u, and n.q. A struct assigns different offsets to each field, effec-
tively allocating separate storage to each field. A union, on the other hand,
assigns the same offset (typically 0) to each of these fields, allocating the
same storage to each.

For struct, then, numericRec.size is 16 because the struct contains two
word fields and a double-word field. The size of the corresponding union,
however, would be 8. This is because all the fields of a union occupy the
same memory locations, and the size of a union object is the size of the larg-
est field of that object (see Figure 4-8).

i u q

q

i, u

0 4 8

union variable

record/struct variable

Offset

Figure 4-8: The layout of a union versus a structure variable

Constants, Variables, and Data Types 221

Programs use unions for several purposes: preserving memory, overlay-
ing data types, and creating variant types (dynamically typed values whose
type can change during execution). Because you probably won’t use unions
that often in an assembly language program, I’ve not bothered creating
a union macro in the aoaa​.inc include file. However, if you really need a
union macro, you could take the information in Chapter 13 and the source
code to the struct macro in aoaa​.inc and write your own.

	 4.10	 Moving On
This chapter concludes the machine organization component of this book,
which dealt with the organization of memory, constants, data, and data
types. It discussed memory variables and data types, arrays, row-major and
column-major ordering, structs and unions, and strings, including zero-
terminated, length-prefixed, and descriptor-based strings. It also covered
issues you may encounter when using pointers, including uninitialized
pointers, illegal pointer values, dangling pointers, memory leaks, and type-
unsafe access.

Now it’s time to begin studying assembly language programming in ear-
nest. The next section of the book will begin discussing procedures and
functions (Chapter 5), arithmetic (Chapter 6), low-level control structures
(Chapter 7), and advanced arithmetic (Chapter 8).

	 4.11	 For More Information
•	 For additional information about data structure representation in

memory, consider reading my book Write Great Code, Volume 1, 2nd
edition (No Starch Press, 2020). For an in-depth discussion of data
types, consult a textbook on data structures and algorithms such as
Introduction to Algorithms, 3rd edition (MIT Press, 2009), by Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

•	 You can find information about the GNU assembler (including the
.struct directive) in the manual at https://ftp​.gnu​.org​/old​-gnu​/Manuals​/
gas​-2​.9​.1​/html​_chapter​/as​_toc​.html.

•	 As noted in Chapter 3, you can find more information about ARM
CPUs at the developer website at https://developer​.arm​.com. To learn
more about field alignment in particular, see https://developer​.arm​.com​/
documen​tation​/dui0491​/i​/C​-and​-C​-​-​-Implementation​-Details​/Structures
-​-unions​-​-enumerations​-​-and​-bitfields​?lang​=en.

•	 For more on dangling pointers, see https://en​.wikipedia​.org​/wiki​/Dangling​
_pointer.

•	 For more on the High-Level Assembler, see the online resources at my
website, https://www​.randallhyde​.com​/AssemblyLanguage​/HighLevelAsm​/.

https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_toc.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_toc.html
https://developer.arm.com
https://developer.arm.com/documentation/dui0491/i/C-and-C---Implementation-Details/Structures--unions--enumerations--and-bitfields?lang=en
https://developer.arm.com/documentation/dui0491/i/C-and-C---Implementation-Details/Structures--unions--enumerations--and-bitfields?lang=en
https://developer.arm.com/documentation/dui0491/i/C-and-C---Implementation-Details/Structures--unions--enumerations--and-bitfields?lang=en
https://en.wikipedia.org/wiki/Dangling_pointer
https://en.wikipedia.org/wiki/Dangling_pointer
https://www.randallhyde.com/AssemblyLanguage/HighLevelAsm/

222 Chapter 4

T ES T YOURSEL F

	 1.	 What is a manifest constant?

	 2.	 Which directive(s) would you use to create a manifest constant?

	 3.	 What is a constant expression, and how would you determine the number
of data elements in the operand field of a byte directive?

	 4.	 What is the location counter?

	 5.	 What operator returns the current location counter?

	 6.	 How would you compute the number of bytes between two declarations in
the .data section?

	 7.	 What is a pointer and how is it implemented?

	 8.	 How do you dereference a pointer in assembly language?

	 9.	 How do you declare pointer variables in assembly language?

10.	 What are the five common problems encountered when using pointers in a
program?

11.	 What is a dangling pointer?

12.	 What is a memory leak?

13.	 What is a composite data type?

14.	 What is a zero-terminated string?

15.	 What is a length-prefixed string?

16.	 What is a descriptor-based string?

17.	 What is an array?

18.	 What is the base address of an array?

19.	 Provide an example of an array declaration.

20.	 Describe how to create an array whose elements you initialize at
assembly time.

21.	 What is the formula for accessing elements of a:

a. Single-dimensional array dword A[10]?

b. Two-dimensional array word W[4, 8]?

c. Three-dimensional array double R[2, 4, 6]?

22.	 What is row-major order?

23.	 What is column-major order?

24.	 Provide an example of a two-dimensional array declaration (word array
W[4, 8]).

25.	 What is a struct (record)?

Constants, Variables, and Data Types 223

26.	 How do you declare a struct data structure?

27.	 How do you access fields of a struct?

28.	 What is a union?

29.	 What is the difference between the memory organization of fields in a
union versus those in a struct?

PART II
B A S I C A S S E M B LY L A N G U A G E

In a procedural programming language,
the basic unit of code is the procedure. A

procedure is a set of instructions that compute
a value or take an action, such as printing or

reading a character value. This chapter discusses how
Gas implements procedures, parameters, and local
variables. By the end of this chapter, you should be
well versed in writing your own procedures and func-
tions. You’ll also fully understand parameter passing
and the ARM application binary interface (ABI) call-
ing convention.

This chapter covers several topics, including the following:

•	 An introduction to assembly language programming style, along with
some aoaa​.inc macros to improve the readability of your programs

5
P R O C E D U R E S

228 Chapter 5

•	 Gas procedures/functions and their implementation (including the use
of the bl, br, and ret instructions), along with more aoaa​.inc macros to
allow the better declaration of procedures in your source files

•	 Activation records, automatic variables, local symbols, register preserva-
tion, and the ARM stack

•	 Various ways to pass parameters to a procedure, including pass by value
and pass by reference, and how to use procedure pointers and proce-
dural parameters

This chapter also discusses how to return function results to a caller
and how to call and use recursive functions.

	 5.1	 Assembly Language Programming Style
Up until this chapter, I’ve not stressed good assembly language program-
ming style for two reasons. First, this book assumes you’re already familiar
with the need for good programming style based on your experience with
HLLs. Second, the programs quoted up to this point have been relatively
trivial, and programming style doesn’t matter much with trivial code.
However, as you begin to write more advanced ARM assembly language
programs, style becomes more important.

As you can probably tell by now, ARM assembly language code is
nowhere near as readable as code written in an HLL such as C/C++, Java,
or Swift. Therefore, as an assembly language programmer, you must expend
extra effort to write assembly code that is as readable and maintainable as
possible. As I’ve pointed out, the GNU assembler was written not as a tool
for assembly language programmers but as a backend to the GCC com-
piler to process the compiler’s output. Because of this and the fact that Gas
attempted to absorb as many features as possible from a huge number of
assembly languages (for many CPUs, not just the ARM), writing high-quality
code with Gas is a difficult task.

Fortunately, you can use Gas’s macro processor (and ability to take advan-
tage of the CPP) to modify the Gas assembly language somewhat, accessing
features that can help improve your programming style. The aoaa​.inc include
file contains a fair number of predefined macros and symbol definitions to
help achieve this goal. Chapter 13 covers the contents of aoaa​.inc line by line
and explains how you can use these macros, and create macros of your own,
to improve the readability of your ARM assembly language programs.

When you write assembly language source files, feel free to include
aoaa​.inc in that code or incorporate any features from that code in your
assembly language source files. Even if you don’t require the cross-platform
portability offered by aoaa​.inc, its macros and other definitions can help
you write more readable and maintainable code. The aoaa​.inc header file is
open source and covered by the Creative Commons 4.0 Attribution license
(see section 5.12, “For More Information,” on page 290).

Procedures 229

As an example of using macros to make code more readable, consider
the ​.code macro from aoaa​.inc. It expands into the following two statements:

.text

.align 2

As a general rule, you should always ensure that the .text section is
aligned on a word boundary (code could get misaligned if you’ve declared
some data in the previous code section whose length is not a multiple of 4).
It’s good programming style to always align a .text section; just to be sure
an instruction begins at a proper address. Rather than clutter up your code
with a bunch of extra .align directives, I recommend using the ​.code direc-
tive to automatically handle the alignment. Having less clutter makes your
code easier to read.

The aoaa​.inc header file contains several additional macros I will pre
sent throughout the rest of this chapter that take the 1960s-style Gas syntax
and attempt to provide features found in more modern assemblers (such as
the Microsoft Macro Assembler, or MASM, and the HLA assemblers avail-
able for the x86 processor family). Using these features (such as formal
procedure declarations and local variable declarations) can help produce
easier-to-read assembly language source code.

Even when writing traditional assembly language source code, you can
follow certain rules to produce more readable code. Throughout this book,
I’ve generally organized assembly language statements as follows (braces
surround optional items and don’t appear in the actual source code):

{Label:} {{instruction} operands} {// Comment}

As a general rule, I try to put all label definitions in column 1 and to
line up all the instruction mnemonics in column 2. I try to start the oper-
ands in column 3. The exact number of spaces between these columns
is not important, but be sure that the mnemonics are generally lined up
together, in one column, and that the operands tend to start in the next
column. This is the traditional assembly language programming style and
the format that most assembly language programmers will want to see when
reading your code.

N O T E 	 For formatting reasons, this book often compresses the amount of space between the
columns and sometimes varies the position of each column within the same listing.
This was done to ensure source lines fit on one line within the book. In a normal
source file, you should try to keep all the columns aligned (two 4-character tab posi-
tions for column 2, column 3 around character position 16, and so on).

In general, don’t try to indent statements as you would blocks in an
HLL. Assembly language is not a block-structured language and does not
lend itself to the same indentation techniques that work well for block-
structured languages. If you need to set apart a sequence of statements,
the best approach is to insert two or more blank lines before and after that

230 Chapter 5

sequence of statements. Comments are also useful for differentiating two
separate, loosely coupled blocks of code.

Gas usually expects an entire assembly language instruction to reside
on a single line of source code. In theory, you could use the backslash char-
acter immediately before a newline character to break a single statement
across two lines:

b.al \
 targetLabel

However, there’s almost never a good argument for doing this. Keep your
instructions on a single line unless you have a really good reason to split
them across multiple lines (for example, if the source line becomes inordi-
nately long for some reason, which is rare). The label field is an exception
to this rule: labels may appear on a line by themselves even if they are asso-
ciated with the next machine instruction in the program.

Gas (under Linux) allows putting multiple assembly language instruc-
tions on the same line, separated by a semicolon. However, putting multiple
statements on the same source line is an even worse idea in assembly lan-
guage than it is in HLLs—don’t do it. In any case, the macOS assembler
does not support this feature.

With a few assembly language style guidelines out of the way, it’s time
to consider the main topic of this chapter: procedures (functions) in assem-
bly language.

	 5.2	 Gas Procedures
Most procedural programming languages implement procedures by using
the call/return mechanism. The code calls a procedure, the procedure per-
forms whatever actions it was written to do, and then the procedure returns
to the caller. The call and return operations provide the ARM’s procedure
invocation mechanism. The calling code calls a procedure with the bl instruc-
tion, and the procedure returns to the caller with the ret instruction. For
example, the following ARM instruction calls the C stdlib library printf()
function:

bl printf

Alas, the C stdlib does not supply all the routines you’ll need. Most of
the time, you’ll have to write your own Gas procedures. A basic Gas proce-
dure declaration takes the following form:

procName:
 Procedure statements
 ret

Technically, the procedure does not need to end with a ret instruction;
the ret could be somewhere in the middle of the procedure, with a b.al

Procedures 231

instruction at the end. However, it’s considered good programming style
to use a ret instruction (or an equivalent) as the last instruction of a proce-
dure’s body.

Procedure declarations appear in the .text section of your program. In
the preceding syntax example, procName represents the name of the proce-
dure you wish to define. This can be any valid (and unique) Gas identifier.

Here is a concrete example of a Gas procedure declaration. This pro-
cedure stores 0s into the 256 words at which X0 points upon entry into
the procedure:

zeroBytes:
 mov x1, #256*4 // 1,024 bytes = 256 words
repeatlp: subs x1, x1, #4
 str wzr, [x0, x1] // Store *after* subtraction!
 bne repeatlp // Repeat while X1 >= 0.
 ret

As you’ve probably noticed, this simple procedure doesn’t bother with
the “magic” instructions that add and subtract a value to and from the SP
register. Those instructions are a requirement of the ARM ABI when the
procedure will be calling other C/C++ code (or other code written in an
ARM ABI–compliant language). Because this little function doesn’t call any
other procedures, it doesn’t bother executing such code.

Also note that this code uses the loop index to count down from 1,024
down to 0 by 4, filling in the 256-word array backward (from end to begin-
ning) rather than filling it in from beginning to end. This is a common
technique in assembly language. Finally, this code decrements X1 by 4
before storing the 0 into memory. This is because the loop index (X1) is ini-
tialized just beyond the end of the array pointed at by X0. The str instruc-
tion does not affect the flags, so the bne instruction responds to the flags set
by the subs instruction.

You can use the ARM bl instruction to call this procedure. When,
during program execution, the code falls into the ret instruction, the pro-
cedure returns to whoever called it and begins executing the first instruc-
tion beyond bl. Listing 5-1 provides an example of a call to the zeroBytes
routine.

// Listing5-1.S
//
// Simple procedure call example

#include "aoaa​.inc"

stackSpace = 64
saveLR = 56

 .section .rodata, ""
ttlStr: .asciz "Listing 5-1"

232 Chapter 5

 .data
wArray: .space 256 * (4), 0xff // Fill with 0xFF.

 .text
 .align 2

// getTitle
//
// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

// zeroBytes
//
// Here is the user-written procedure
// that zeros out a 256-word buffer.
// On entry, X0 contains the address
// of the buffer.

zeroBytes:
 mov x1, #256 * 4
repeatlp: subs x1, x1, #4
 str wzr, [x0, x1] // Store *after* subtraction!
 bne repeatlp // Repeat while X1 != 0.
 ret

// Here is the asmMain function:

 .global asmMain
asmMain:
 sub sp, sp, #stackSpace // Reserve stack storage.
 str lr, [sp, #saveLR]

 lea x0, wArray
 bl zeroBytes

 ldr lr, [sp, #saveLR] // Restore return address.
 add sp, sp, #stackSpace // Clean up stack.
 ret // Returns to caller

I won’t bother with a build or run command, as this program doesn’t pro-
duce any real output beyond saying that it ran and terminated.

The Gas language doesn’t really have a syntactical concept of a pro-
gram component we think of as a procedure (or function). It has labels you
can call with the bl instruction, along with the ret instruction, which you
can use to return from a procedure. However, it has no syntactical entity
you can use to delineate one procedure from another in your assembly lan-
guage source file.

Procedures 233

So far, the few procedures in this book have delineated the code in the
procedure by using a label and a return statement. For example, the follow-
ing procedure begins with zeroBytes and ends with ret:

zeroBytes:
 mov x1, #256 * 4
repeatlp: subs x1, x1, #4
 str wzr, [x0, x1] // Store *after* subtraction!
 bge repeatlp // Repeat while X1 >= 0.
 ret

A comment immediately before the procedure might help separate it
from previous code. However, the person reading the code has to work to
differentiate the zeroBytes label from the repeatlp label. In fact, there’s
no reason you couldn’t use both labels as entry points for a procedure
(zeroBytes would always zero out 256 words starting at the address passed
in X0, and repeatlp would zero out the number of words specified in X1/4).
Of course, a procedure isn’t required to use just a single ret instruction (or
any at all, since there are other ways to return from a procedure). The last
instruction of a procedure also doesn’t have to be a ret. Therefore, relying
on a statement label and a ret instruction to delineate the procedure is not
always appropriate.

Though it’s always a good idea to put comments at the beginning and
end of your Gas procedures to clarify what’s happening, the best way to
solve this problem would be to use syntactical sugar—statements that clarify
meaning without generating any code—to delineate procedures. Although
Gas does not provide such statements, you can write your own macros for
the same purpose. The aoaa​.inc include file provides a couple of these
macros: proc and endp. Here is their syntax:

proc procedureName {, public} // Braces denote optional item.

 Body of the procedure

endp procedureName

Here, procedureName will be the name of the procedure, and you must sup-
ply the same name in the proc and endp statements. The , public argument
is optional, as denoted by the meta-symbol braces. If the public argument is
present, the proc macro will automatically generate a .global directive for
the procedure.

Here’s a very simple example of using the proc and endp macros with the
getTitle function:

proc getTitle, public
lea x0, ttlStr
ret
endp getTitle

234 Chapter 5

These macros generate the usual statements for the getTitle procedure:

 .global getTitle // Generated by public
getTitle: // Generated by proc
 lea x0, ttlStr
 ret

The endp macro doesn’t generate anything in the program. It simply
checks the identifier passed as an argument to ensure that it matches the
procedure’s name in the proc macro invocation.

Because the proc and endp statements neatly isolate a procedure’s body
from other code in the program, this book uses them for procedures from
this point forward. I suggest you take advantage of these macros to help
make your own future procedures more readable too.

Procedures and functions in an HLL provide useful features in the
form of local symbols. The next section covers the limited form of local
labels supported by Gas.

5.2.1  Gas Local Labels
Unlike HLLs, Gas does not support lexically scoped symbols. Labels you define
in a procedure are not limited in scope to that procedure. Except for one
special case, symbols you define in a Gas procedure, including those defined
with proc/endp, are visible throughout the source file.

However, Gas does support a limited form of local labels, which consist
of a single numeric digit followed by a colon (0: through 9:). In your code,
refer to these symbols by using Nb or Nf, where N is the digit (0 through 9).
A symbol of the form Nb references the previous N: label in the source file
(b is for backward). A symbol of the form Nf references the next N: symbol in
the source file (f is for forward).

Here’s an example of a Gas local label in the zeroBytes procedure
(rewritten from the previous section):

 proc zeroBytes
 mov x1, #256 * 4
0: subs x1, x1, #4
 str wzr, [x0, x1] // Store *after* subtraction!
 bne 0b // Repeat while X1 != 0.
 ret
 endp zeroBytes

Local labels are useful when there is no compelling reason to use a
more meaningful name. Be careful about using these local symbols, though.
When used sparingly, they help reduce the distraction of meaningless labels
in your program, but using too many will destroy the readability of your pro-
grams (“to which 0 label is this code jumping?”).

When you use local labels, your target label should be only a few
instructions away; if the code jumps any great distance, you run the risk
of inserting that same local label between the source and targets when

Procedures 235

enhancing your code later. This would produce undesirable consequences,
and Gas won’t notify you of the error.

5.2.2  bl, ret, and br
Once you can declare a procedure, the next problem is how to call (and
return from) a procedure. As you’ve seen many times throughout this book,
you call procedures by using bl and return from those procedures by using
ret. This section covers those instructions (as well as the br instruction) in
more detail, including the effects of their use.

The ARM bl instruction does two things: it copies the (64-bit) address
of the instruction immediately following the bl to the LR register, and then
it transfers control to the address of the specified procedure. The value that
bl copies to LR is known as the return address.

When a procedure wants to return to the caller and continue execution
with the first statement following the bl instruction, that procedure com-
monly returns to its caller by executing a ret instruction. The ret instruction
transfers control indirectly to that address held in the LR register (X30).

The ARM ret instruction takes two forms

ret
ret reg64

where reg64 is one of the ARM’s thirty-two 64-bit registers. If a 64-bit regis-
ter operand appears, the CPU uses the address held in that register as the
return address; if no register is present, the default is X30 (LR).

The ret instruction is actually a special case of the br (branch indirect
through register) instruction. The br syntax is

br reg64

where reg64 is one of the ARM’s thirty-two 64-bit registers. This instruction
also transfers control to the address held in the specified register. Whereas
the ret reg64 instruction provides a hint to the CPU that this is an actual
return-from-subroutine, the br reg64 instruction offers no such hint. In some
circumstances, the ARM can execute the code faster if it’s given the hint.
Chapter 7 covers some uses for the br instruction.

The following is an example of the minimal Gas procedure:

proc minimal
ret
endp minimal

If you call this procedure with the bl instruction, minimal will simply
return to the caller. If you fail to put the ret instruction in the procedure,
the program will not return to the caller upon encountering the endp state-
ment. Instead, the program will fall through to whatever code happens to
follow the procedure in memory.

236 Chapter 5

Listing 5-2 demonstrates this problem. The main program calls noRet,
which falls straight through to followingProc (printing the followingProc was
called message).

// Listing5-2.S
//
// A procedure without a ret instruction

#include "aoaa​.inc"

stackSpace = 64
saveLR = 56

 .section .rodata, ""
ttlStr: .asciz "Listing 5-2"
fpMsg: .asciz "followingProc was called\n"

 .code
 .extern printf

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// noRet
//
// Demonstrates what happens when a procedure
// does not have a return instruction

 proc noRet
 endp noRet

 proc followingProc
 sub sp, sp, #stackSpace
 str lr, [sp, #saveLR]

 lea x0, fpMsg
 bl printf

 ldr lr, [sp, #saveLR]
 add sp, sp, #stackSpace
 ret
 endp followingProc

// Here is the asmMain function:

 proc asmMain, public
 sub sp, sp, #stackSpace
 str lr, [sp, #saveLR]

Procedures 237

 bl noRet

 ldr lr, [sp, #saveLR]
 add sp, sp, #stackSpace
 ret
 endp asmMain

As you can see, there is no ret instruction in noRet, so when the main
program (asmMain) calls noRet, it will fall straight through into followingProc.
Here’s the build command and sample execution:

$./build Listing5-2
$./Listing5-2
Calling Listing5-2:
followingProc was called
Listing5-2 terminated

Although this behavior might be desirable in certain rare circumstances,
it usually represents a defect in most programs. Therefore, always remember
to explicitly return from the procedure by using the ret instruction.

	 5.3	 Saving the State of the Machine
Listing 5-3 attempts to print 20 lines of 40 spaces and an asterisk.

// Listing5-3.S
//
// Preserving registers (failure) example

#include "aoaa​.inc"

stackSpace = 64
saveLR = 56
saveX19 = 48

 .section .rodata, ""
ttlStr: .asciz "Listing 5-3"
space: .asciz " "
asterisk: .asciz "*, %d\n"

 .data
loopIndex: .word .-. // Used to print loop index value

 .code
 .extern printf

// getTitle
//
// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr

238 Chapter 5

 ret
 endp getTitle

// print40Spaces
//
// Prints out a sequence of 40 spaces
// to the console display

 proc print40Spaces
 sub sp, sp, #stackSpace
 str lr, [sp, #saveLR]

 mov w19, #40
printLoop: lea x0, space
 bl printf
 subs w19, w19, #1
 bne printLoop // Until W19 == 0
 ldr lr, [sp, #saveLR]
 add sp, sp, #stackSpace
 ret
 endp print40Spaces

// Here is the asmMain function:

 proc asmMain, public

 sub sp, sp, #stackSpace
 str lr, [sp, #saveLR] // Save return address.
 str x19, [sp, #saveX19] // Must preserve nonvolatile register.

 mov w19, #20
astLp: bl print40Spaces
 lea x0, loopIndex
 str w19, [x0]
 lea x0, asterisk
 vparm2 loopIndex
 bl printf
 subs w19, w19, #1
 bne astLp

 ldr x19, [sp, #saveX19]
 ldr lr, [sp, #saveLR]
 add sp, sp, #stackSpace
 ret // Returns to caller
 endp asmMain

Unfortunately, a subtle bug creates an infinite loop. The main program
uses the bne printLoop instruction to create a loop that calls Print40Spaces
20 times. This function uses W19 to count off the 40 spaces it prints, and
then returns with W19 containing 0. The main program prints an asterisk
and a newline, decrements W19, and then repeats because W19 isn’t 0 (it
will always contain –1 at this point).

Procedures 239

The problem here is that the print40Spaces subroutine doesn’t preserve
the W19 register. Preserving a register means you save it upon entry into
the subroutine and restore it before leaving. Had the print40Spaces sub-
routine preserved the contents of the W19 register, Listing 5-3 would have
functioned properly. There is no need to build and run this program; it just
runs in an infinite loop.

Consider the following code for print40Spaces:

 proc print40Spaces
 sub sp, sp, #stackSpace
 str lr, [sp, #saveLR]
 str x19, [sp, #saveX19]

 mov w19, #40
printLoop: lea x0, space
 bl printf
 subs w19, w19, #1
 bne printLoop // Until W19 == 0
 ldr lr, [sp, #saveLR]
 ldr x19, [sp, #saveX19]
 add sp, sp, #stackSpace
 ret
 endp print40Spaces

This variant of print40Spaces saves and restores X19 on the stack, along
with the LR register. Because X19 is a nonvolatile register (in the ARM
ABI), it is the responsibility of the callee (the procedure) to preserve it.

Note that print40Spaces uses X19 rather than one of the X0 to X15 reg-
isters specifically because it is nonvolatile. The printf() function does not
have to preserve X0 to X15 because they are volatile registers in the ARM
ABI. Any attempt to use those registers would have likely failed because
printf() doesn’t have to preserve their values.

In general, either the caller (the code containing the call instruction)
or the callee (the subroutine) can take responsibility for preserving the reg-
isters. When following the ARM ABI, it is the caller’s responsibility to pre-
serve volatile registers and the callee’s responsibility to preserve nonvolatile
registers. Of course, when writing your own procedures that won’t be called
by ABI-compliant functions and don’t call any ABI-compliant functions, you
can choose whichever register preservation scheme you prefer.

Listing 5-4 shows the corrected version of the program in Listing 5-3,
which properly preserves X19 in the call to print40Spaces.

// Listing5-4.S
//
// Preserving registers (successful) example

#include "aoaa​.inc"

stackSpace = 64
saveLR = 56
saveX19 = 48

240 Chapter 5

 .section .rodata, ""
ttlStr: .asciz "Listing 5-4"
space: .asciz " "
asterisk: .asciz "*, %d\n"

 .data
loopIndex: .word .-. // Used to print loop index value

 .code
 .extern printf

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// print40Spaces
//
// Prints out a sequence of 40 spaces
// to the console display

 proc print40Spaces
 sub sp, sp, #stackSpace
 str lr, [sp, #saveLR]
 str x19, [sp, #saveX19]

 mov w19, #40
printLoop: lea x0, space
 bl printf
 subs w19, w19, #1
 bne printLoop // Until W19 == 0
 ldr lr, [sp, #saveLR]
 ldr x19, [sp, #saveX19]
 add sp, sp, #stackSpace
 ret
 endp print40Spaces

// Here is the asmMain function:

 proc asmMain, public

 sub sp, sp, #stackSpace
 str lr, [sp, #saveLR] // Save return address.
 str x19, [sp, #saveX19] // Must preserve nonvolatile register.

 mov w19, #20
astLp: bl print40Spaces
 lea x0, loopIndex
 str w19, [x0]
 lea x0, asterisk
 vparm2 loopIndex
 bl printf

Procedures 241

 subs w19, w19, #1
 bne astLp

 ldr lr, [sp, #saveLR]
 ldr x19, [sp, #saveX19]
 add sp, sp, #stackSpace
 ret // Returns to caller
 endp asmMain

Here’s the build command and sample output for Listing 5-4:

$./build Listing5-4
$./Listing5-4
Calling Listing5-4:
 *, 20
 *, 19
 *, 18
 *, 17
 *, 16
 *, 15
 *, 14
 *, 13
 *, 12
 *, 11
 *, 10
 *, 9
 *, 8
 *, 7
 *, 6
 *, 5
 *, 4
 *, 3
 *, 2
 *, 1
Listing5-4 terminated

As you can see, this program executes properly without entering an infi-
nite loop.

Callee preservation has two advantages: space and maintainability. If
the callee (the procedure) preserves all affected registers, only one copy
of the str and ldr instructions exists—those that the procedure contains.
If the caller saves the values in the registers, the program needs a set of
preservation instructions around every call. This makes your programs not
only longer but also harder to maintain. It’s not easy to remember which
registers to save and restore on each procedure call.

On the other hand, a subroutine may unnecessarily preserve some reg-
isters if it preserves all the registers it modifies. If the caller is preserving the
registers, the subroutine doesn’t have to save registers it doesn’t care about.

One big problem with having the caller preserve registers is that your
program may change over time. You may modify the calling code or the
procedure to use additional registers. Such changes, of course, may change

242 Chapter 5

the set of registers that you must preserve. Worse still, if the modification
is in the subroutine itself, you will need to locate every call to the routine
and verify that the subroutine does not change any registers that the calling
code uses.

Assembly language programmers typically use a common convention
with respect to register preservation: unless there is a good reason (perfor-
mance) for doing otherwise, most programmers will preserve each register
that a procedure modifies (and doesn’t explicitly return a value in a modi-
fied register). This reduces the likelihood of defects occurring in a program
because a procedure modifies a register the caller expects to be preserved.
Of course, you could follow the rules concerning the ARM ABI with respect
to volatile and nonvolatile registers; however, such calling conventions
impose their own inefficiencies on both programmers and other programs.
This book generally adheres to the ARM ABI with respect to volatile and
nonvolatile registers, though many examples preserve all affected registers
in a procedure.

There’s more to preserving the environment than preserving registers.
You can also preserve variables and other values that a subroutine might
change.

	 5.4	 Call Trees, Leaf Procedures, and the Stack
Imagine a procedure, A, that calls two other procedures B and C. Also
assume that B calls two procedures D and E, and procedure C calls two
other procedures F and G. We can diagram this calling sequence by using a
call tree, as shown in Figure 5-1.

A

B C

D E GF

Figure 5-1: A call-tree diagram

This entire call graph is the tree, and the procedures at the bottom that
do not call any other procedures—in this case, D, E, F, and G—are known
as leaf procedures.

Leaf procedures are different from non-leaf procedures in ARM assem-
bly language because they can leave the return address in the LR register
rather than saving it to memory (the stack). As leaf procedures don’t make
any other calls via the bl instruction, the procedure won’t disturb the value
in LR upon entry into the procedure. (This assumes that the procedure
doesn’t explicitly modify LR, but generally, there is no good reason for
doing so.) Therefore, leaf procedures can be slightly more efficient than

Procedures 243

non-leaf procedures, as they are spared the need to preserve the value in
the LR register. Leaf procedures can also make full use of the volatile regis-
ter set without worrying about their values being scrambled during a call to
another procedure.

Non-leaf procedures must preserve the value in the LR register because
calls they make (via bl) will overwrite the value in LR. A procedure can pre-
serve LR in a few places: in another register, on a stack, or in a global mem-
ory location, as our examples did before Chapter 3 introduced the stack.

I’ve already pointed out that using global variables to preserve LR
is a poor choice in nearly every case. That scheme can handle only one
level of calls and completely fails when using recursion (see section 5.8,
“Recursion,” on page 277) or writing multithreaded applications. It’s also
slower, uses more code, and is less convenient to use than other schemes.

You could use another register to temporarily hold the return address
while calling another procedure. Of course, that register must be nonvola-
tile (or, at least, the procedure you’re calling must not modify that register’s
value) so that it will still contain the saved return address whenever the
procedure you call returns. Using a register to preserve LR like this is very
fast. Unfortunately, guaranteeing that other procedures won’t modify the
saved value often means you have to preserve that value in memory within
the second procedure to be called. Since you still have to write the value to
memory (and read it back), you may as well have saved LR directly to mem-
ory in the first place.

The most common place to save the return address in LR is on the
stack. Usually, one of the first instructions in a procedure will move the con-
tents of the LR register into the stack. This is typically done in one of two
ways. The first is to directly push the LR register onto the stack:

str lr, [sp, #-16]!

The second is to adjust the stack down in memory and store LR into the
storage area just created:

sub sp, sp, #someAmount // Make room for LR on stack.
str lr, [sp, #someOffset] // Store LR into space allocated on stack.

Here, someAmount is a multiple of 16 (or another value that keeps the stack
16-byte aligned), and someOffset is an index into the space just allocated on
the stack by the sub instruction.

Notice that the former example uses the pre-indexed addressing mode
to adjust SP downward and store LR into the vacated space (because of
stack alignment issues, this actually reserves 16 bytes, though it uses only
8 of them). The latter example uses the indirect-plus-offset addressing
mode to simply store the return address into the storage allocated by the sub
instruction. This book most commonly uses the latter form because the cost
of sub is often shared by other code that uses the stack.

Wasting 8 bytes by using the pre-indexed addressing mode won’t turn
out to be an issue. As you’ll see shortly, most of the time you’ll want to

244 Chapter 5

preserve the value of the FP register along with the return address, so you’ll
commonly use an stp instruction, like one of the following, that won’t waste
any memory:

stp fp, lr, [sp, #-16]!

or

sub sp, sp, #someAmount
stp fp, lr, [sp, #someOffset]

The following subsections cover the use of the stack in procedures,
including activation records, accessing data within activation records (local
and automatic variables as well as parameters), how the ARM ABI influ-
ences activation records and passing parameters, and how to build and
destroy activation records.

5.4.1  Activation Records
When you call a procedure, the program associates certain information with
that procedure call, including the return address, parameters, and automatic
local variables (which I’ll discuss in later sections). To do so, it uses a data
structure called an activation record, also known as a stack frame. The program
creates an activation record when calling (activating) a procedure, and the
data in the record is organized in a manner identical to structs.

This section covers traditional activation records created by a hypothet-
ical compiler, ignoring the parameter-passing conventions of the ARM ABI.
A later section of this chapter presents the ARM ABI conventions.

Construction of an activation record begins in the code that calls a
procedure. The caller makes room for the parameter data (if any) on the
stack and copies the data onto the stack. The bl instruction then passes the
return address into the procedure. At this point, construction of the activa-
tion record continues within the procedure itself. The procedure typically
pushes the value in LR onto the stack along with other registers and other
important state information, then makes room in the activation record for
local variables. The procedure might also update the FP register (X29) so
that it points at the base address of the activation record.

To see what a traditional activation record looks like, consider the fol-
lowing C++ procedure declaration:

void ARDemo(unsigned i, int j, unsigned k)
{
 int a;
 float r;
 char c;
 bool bb;

Procedures 245

 short w;
 .
 .
 .
}

Whenever a program calls this ARDemo procedure, it begins by pushing
the data for the parameters onto the stack. In the original C/C++ call-
ing convention (ignoring the ARM ABI), the calling code pushes all the
parameters onto the stack in the opposite order in which they appear in
the parameter list, from right to left. Therefore, the calling code pushes
first the value for the k parameter, then the value for the j parameter, and
finally the data for the i parameter (with possible padding for the param-
eters to keep the stack aligned).

Next, the program calls ARDemo. Immediately upon entry into the ARDemo
procedure, the stack contains these three items arranged as shown in
Figure 5-2. Since the program pushes the parameters in reverse order, they
appear on the stack in the correct order, with the first parameter at the low-
est address in memory.

Previous
stack

contents

SPi’s value

j’s value

k’s value

Figure 5-2: Stack organization immediately upon
entry into ARDemo

The first few instructions in ARDemo push the current values of LR and
FP onto the stack, then copy the value of SP into FP. Next, the code drops
the stack pointer down in memory to make room for the local variables.
This produces the stack organization shown in Figure 5-3.

246 Chapter 5

Previous
stack

contents

SP

k‘s value

j‘s value

i‘s value

Return address (LR)

Old FP value FP

a

r

c
bb

w

Possible padding

Figure 5-3: The activation record for ARDemo

Because local variables can be any size in the activation record, their
total storage might not be a multiple of 16 bytes. However, the entire block
of local variables must be a multiple of 16 bytes so that SP remains aligned
on a 16-byte boundary as required by the ARM CPU—hence the presence
of possible padding in Figure 5-3.

5.4.2  Objects in the Activation Record
To access objects in the activation record, you can use offsets from the FP
register to the desired object. The two items of immediate interest to you
are the parameters and the local variables. You can access the parameters
at positive offsets from the FP register; you can access the local variables at
negative offsets from the FP register, as Figure 5-4 shows (the figure assumes
that the i, j, and k parameters are all 64-bit integers with appropriate pad-
ding to 8 bytes each).

ARM specifically reserves the X29/FP register for use as a pointer to
the base of the activation record. This is why you should avoid using the FP
register for general calculations. If you arbitrarily change the value in the
FP register, you could lose access to the current procedure’s parameters and
local variables.

Procedures 247

Previous
stack

contents

k‘s value

j‘s value

i‘s value

Return address

Old FP value FP

a

r

c
bb

w

+0

–4

–8

–9
–10
–12

+8

+16

+24

+32

Offset from FP

Padding –16 SP

Figure 5-4: Offsets of objects in the ARDemo activation
record

The local variables are aligned on offsets that are equal to their native
size: chars are aligned on 1-byte addresses; shorts/hwords are aligned on
2-byte addresses; longs, ints, unsigned, and words are aligned on 4-byte
addresses; and so forth. In the ARDemo example, all the locals just happen to
be allocated on appropriate addresses (assuming a compiler allocates stor-
age in the order of declaration).

5.4.3  ARM ABI Parameter-Passing Conventions
The ARM ABI makes several modifications to the activation record model:

•	 The caller passes the first eight (non-floating-point) parameters in reg-
isters (X0 through X7) rather than on the stack.

•	 Parameters are always 8-byte values, either in registers or on the stack
(if the formal parameter is fewer than 8 bytes in size, the unused HO
bits are undefined).

•	 Structures and unions greater than 16 bytes in size are passed by value
on the stack above any other parameters, but with a pointer to the value
in the normal parameter position (in a register or on the stack). Structs
and unions that are 8 bytes (or fewer) are passed in a 64-bit register;
those that are 9 to 16 bytes are passed in two consecutive registers.

You must follow these conventions only when calling ARM ABI–compliant
code. For assembly language procedures that you write and call, you can use
any convention you like.

248 Chapter 5

Apple’s calling conventions for macOS (iOS, iPadOS, and so on) vary
a little from the standard ARM ABI. This will affect your assembly code if
you’re doing the following:

•	 Passing more than eight parameters to a procedure

•	 Passing parameters to a variadic procedure

When passing parameters on the stack—that is, when you’re passing
more than eight arguments to a function—Apple packs them on the stack,
meaning it doesn’t simply allocate 8 bytes for each parameter on the stack.
It does ensure that each value is aligned in memory on its natural size
(chars = 1 byte, half words = 2 bytes, words = 4 bytes, and so on).

Variadic procedures are those with a variable number of parameters, such
as the C printf() function. Apple passes all variadic parameters on the stack
and allocates 8 bytes for each parameter, regardless of type. This is the
purpose behind the vparm2, vparm3, . . . , macros in aoaa​.inc: calls to printf()
under macOS must pass the arguments on the stack, while the same calls
on Linux pass the first eight parameters in registers.

The vparm2, vparm3, and so on, macros automatically generate the appro-
priate code based on the OS (either putting the parameters in the stack or
passing them in registers).

5.4.4  Standard Entry Sequence
The caller of a procedure is responsible for allocating storage for parame-
ters on the stack and moving the parameter data to its appropriate location.
In the simplest case, this just involves moving the data onto the stack by
using str or stp instructions. It is the procedure’s responsibility to construct
the rest of the activation record. You can accomplish this by using the fol-
lowing assembly language standard entry sequence code:

stp fp, lr, [sp, #-16]! // Save LR and FP values.
mov fp, sp // Get activation record ptr in FP.
sub sp, sp, #NumVars // Allocate local storage.

The mov fp, sp instruction copies the current address held in SP into the
FP register. As SP is currently pointing at the old value of FP pushed on the
stack, FP will point at the original FP value after the execution of this instruc-
tion, as shown in Figure 5-4. When using the stp instruction in the standard
entry sequence, make sure to specify the FP register as the first argument
so that it is stored at location [SP] and LR is stored at location [SP, #8]. This
ensures that FP will point at the old FP value after the mov instruction.

In the third instruction, NumVars represents the number of bytes of local
variables needed by the procedure, a constant that should be a multiple
of 16 so that the SP register remains aligned on a 16-byte boundary. If the
number of bytes of local variables in the procedure is not a multiple of 16,
round up the value to the next higher multiple of 16 before subtracting
this constant from SP. Doing so will slightly increase the amount of stor-
age the procedure uses for local variables but will not otherwise affect the

Procedures 249

operation of the procedure. If the procedure doesn’t have any local vari-
ables or call any other functions, the

sub sp, sp, #NumVars

instruction isn’t necessary.
In theory, you could use any register to access the data in the stack

frame. However, the OS, and especially debugger applications, often depend
on the activation record being built with FP pointing at the old FP value in
the activation record.

If an ARM ABI–compliant program calls your procedure, the stack will
be aligned on a 16-byte boundary immediately prior to the execution of the
bl instruction. Pushing LR and FP onto the stack (before copying SP into
FP) adds another 16 bytes to the stack so that SP remains 16-byte aligned.
Therefore, assuming the stack was 16-byte aligned prior to the call, and the
number you subtract from SP is a multiple of 16, the stack will be 16-byte
aligned after allocating storage for local variables.

The ARDemo activation record from the previous section has only 12 bytes
of local storage. Therefore, subtracting 12 from SP for the local variables
will not leave the stack 16-byte aligned. The entry sequence in the ARDemo
program must subtract 16 (which will include 4 bytes of padding) to keep
the stack properly aligned (as shown in Figure 5-4).

A possible alternate entry code sequence that is equivalent to the ear-
lier example takes this form:

sub sp, sp, #numVars + 16 // Space for locals and SP/LR
stp fp, lr, [sp, #numVars]
add fp, sp, #numVars

The ARM ABI calling convention suggests saving the LR and FP values
below the local variables. However, it is often convenient to allocate parame-
ter space for additional procedure calls (from the current procedure) while
allocating local variables. If you save the LR and FP values at the bottom of
the activation record in memory, you will need an extra instruction to make
room for those parameters, and cleaning up the activation record will take
more effort when the procedure returns.

Because you’ll so often use the standard entry sequence, the aoaa​.inc
include file provides a macro to generate this sequence for you:

enter numVars

The single constant argument is the amount of stack space to allocate
(for local variables and other memory objects) in addition to the 16 bytes
set aside to preserve the LR and FP registers. This macro generates the fol-
lowing sequence of instructions for the entry sequence:

stp fp, lr, [sp, #-16]!
mov fp, sp
sub sp, sp, #(numVars + 15) & 0xFFFFFFFFFFFFFFF0

250 Chapter 5

The final expression involving numVars ensures that the space allocated
on the stack is a multiple of 16 bytes, to keep the stack 16-byte aligned.

5.4.5  Standard Exit Sequence
The standard exit sequence for an assembly language program is the
following:

mov sp, fp // Deallocates storage for all the local vars
ldp fp, lr, [sp], #16 // Pop FP and return address.
ret // Return to caller.

In the aoaa​.inc include file, the leave macro expands to the original
standard exit sequence.

	 5.5	 Local Variables
Procedures and functions in most HLLs let you declare local variables
(also known as automatic variables). The previous sections mentioned that
procedures maintain local variables in an activation record, but they didn’t
really define how to create and use them. This section (and the subsections
that follow) defines local variables and describes how to allocate storage for
them and use them.

Local variables possess two special attributes in HLLs: scope and life-
time. The scope of an identifier determines where that identifier is visible
(accessible) in the source file during compilation. In most HLLs, the scope
of a procedure’s local variable is the body of that procedure; the identifier
is inaccessible outside that procedure. Sadly, Gas does not support locally
scoped variables in a procedure, since Gas has no syntax to determine the
bounds of a procedure.

Whereas scope is a compile-time attribute of a symbol, lifetime is a run-
time attribute. The lifetime of a variable is a range of time, from that point
when storage is first bound to the variable until the point where the storage
is no longer available for that variable. Static objects (those you declare in
the .data, .rodata, .bss, and .text sections) have a lifetime equivalent to the
total runtime of the application. The program allocates storage for such
variables when the program first loads into memory, and those variables
maintain that storage until the program terminates.

Local variables, more properly known as automatic variables, have
their storage allocated upon entry into a procedure. That storage is then
returned for other use when the procedure returns to its caller. The name
automatic refers to the program automatically allocating and deallocating
storage for the variable on procedure invocation and return.

Under Linux, a procedure can access any global .data, .bss, or .rodata
object exactly the same way the main program accesses such variables:
by referencing the name, using the PC-relative addressing mode (sadly,
macOS’s PIE format doesn’t allow easy access to non-.text section objects).
Accessing global objects is convenient and easy. However, accessing global

Procedures 251

objects makes your programs harder to read, understand, and maintain, so
you should avoid using global variables within procedures.

Although accessing global variables within a procedure may sometimes
be the best solution to a given problem, you likely won’t be writing such
code at this point, so carefully consider your options before doing so. (An
example of a legitimate use of global variables might be when sharing data
between threads in a multithreaded application, a bit beyond the scope of
this chapter.)

This argument against accessing global variables does not apply to
other global symbols, however. It is perfectly reasonable to access global
constants, types, procedures, and other objects in your programs.

5.5.1  Low-Level Implementation of Automatic Variables
Your program accesses local variables in a procedure by using negative
offsets from the activation record base address (FP). Consider the Gas pro-
cedure in Listing 5-5, which is intended primarily to demonstrate the use of
local variables.

// Listing5-5.S
//
// Accessing local variables

#include "aoaa​.inc"

 .text

// local_vars
//
// Word a is at offset -4 from FP.
// Word bb is at offset -8 from FP.
//
// On entry, W0 and W1 contain values to store
// into the local variables a & bb (respectively).

 proc local_vars
 enter 8

 str w0, [fp, #-4] // a = W0
 str w1, [fp, #-8] // bb = W1

 // Additional code here that uses a & bb

 leave
 endp local_vars

This program isn’t runnable, so I won’t bother providing a build com-
mand for it. The enter macro will actually allocate 16 bytes of storage, rather
than the 8 specified by the argument (for locals a and bb), in order to keep
the stack 16-byte aligned.

The activation record for local_vars appears in Figure 5-5.

252 Chapter 5

Previous
stack

contents

Return address

Old FP value FP

a

bb

+0

–4

–8

+8

+16

Offset from FP

–12

–16

Space reserved to keep
stack 16-byte aligned

SP

Figure 5-5: The activation record for the local_vars
procedure

Of course, having to refer to the local variables by the numeric offset
from the FP register is truly horrible. This code is not only difficult to
read (Is [FP, #-4] the a or the bb variable?) but also hard to maintain. For
example, if you decide you no longer need the a variable, you’d have to go
find every occurrence of [FP, #-8] (accessing the bb variable) and change it
to [FP, #-4].

A slightly better solution is to create equates for your local variable
names. Consider the modification to Listing 5-5 shown in Listing 5-6.

// Listing5-6.S
//
// Accessing local variables #2

#include "aoaa​.inc"

 .code

// local_vars
//
// Demonstrates local variable access
//
// Word a is at offset -4 from FP.
// Word bb is at offset -8 from FP.
//
// On entry, W0 and W1 contain values to store
// into the local variables a & bb (respectively).

#define a [fp, #-4]
#define bb [fp, #-8]

 proc local_vars
 enter 8

Procedures 253

 str w0, a
 str w1, bb

 Additional code here that uses a & bb.

 leave
 endp local_vars

In Listing 5-6, the CPP replaces a and bb with the appropriate indirect-
plus-offset addressing mode to access those local variables on the stack.
This is considerably easier to read and maintain than the program in
Listing 5-5. However, this approach still requires some manual work to set
the local variable offsets in the #define statements, and modifying the code
(when adding or removing local variables) can create maintenance issues.
I’ll provide a better solution in the next section.

One big advantage to automatic storage allocation is that it efficiently
shares a fixed pool of memory among several procedures. For example, say
you call three procedures in a row, like this:

bl ProcA
bl ProcB
bl ProcC

In this example, ProcA allocates its local variables on the stack. Upon
return, ProcA deallocates that stack storage. Upon entry into ProcB, the pro-
gram allocates storage for ProcB’s local variables by using the same memory
locations just freed by ProcA. Likewise, when ProcB returns and the program
calls ProcC, ProcC uses the same stack space for its local variables that ProcB
recently freed up. This memory reuse makes efficient use of the system
resources and is probably the greatest advantage to using automatic variables.

Now that you’ve seen how assembly language allocates and deallocates
storage for local variables, it’s easy to understand why automatic variables
do not maintain their values between two calls to the same procedure.
Once the procedure returns to its caller, the storage for the automatic vari-
able is lost, and, therefore, the value is lost as well. Thus, you must always
assume that a local variable object is uninitialized upon entry into a procedure. If
you need to maintain the value of a variable between calls to a procedure,
you should use one of the static variable declaration types.

5.5.2  The locals Macro
Using equates to maintain local variable references is a lot of work.
Granted, it’s better than using magic numbers in all your local variable
references, but even when using equates, inserting and deleting local vari-
ables in a procedure takes time and effort. What would be really nice is a
declaration section that lets you declare your local variables in an HLL-like
fashion and leave it up to the assembler to maintain all the offsets into
the activation record. The aoaa​.inc header file provides a set of macros you

254 Chapter 5

can use to automate the creation of local variables. This section describes
those macros.

The activation record is a record (structure). In theory, you could use
the struct macro from Chapter 4 to define an activation record. However,
it’s easy enough to modify the struct/ends macros to create something even
better for local variables. To achieve that, the aoaa​.inc include file includes
two additional macros for declaring local variables: locals and endl. Use
these in a manner almost identical to the struct/ends macros

locals procName
 declarations (same as for struct)
endl procName

where procName is an identifier (usually the name of the procedure that the
local variables are associated with).

Like the ends macro, endl generates a symbol with the name procName.size
that is an equate set to the size of the local variable space. You can supply
this value to the enter macro to specify the amount of space to reserve for
the local variables:

 proc myProc

 locals myProc
 dword mp.ptrVar
 word mp​.counter
 byte mp​.inputChar
 salign 4
 word mp.endIndex
 endl myProc

 enter myProc.size

Insert procedure's body here.

 leave
 endp myProc

The locals/endl declarations create a set of equates whose values cor-
respond to the offsets of the symbols within an activation record. For exam-
ple, the symbols in the previous example have the following values:

mp.ptrVar ​  ​–8

mp​.counter ​  ​–12

mp​.inputChar ​  ​–13

mp.endIndex ​  ​–20

You can use these offsets with the [FP, #offset] addressing mode to ref-
erence these local variables in the activation record. For example:

Procedures 255

ldr w0, [fp, #mp​.counter]
ldr x1, [fp, #mp.ptrVar]
str w0, [x1]

This is a whole lot easier than accessing global variables in the .data section!
When allocating offsets for variables between the locals and endl mac-

ros, the declaration macros first decrease the offset counter by the size of
the variable’s declaration and then assign the decremented offset value to
the symbol. Specifying the salign directive will then adjust the offset to the
specified boundary (2n, where n is the salign operand’s value). The next
declaration will not use this offset, but rather it will first decrement the run-
ning offset counter by the size of the declaration and assign that offset to
the variable. In the earlier example, the salign directive set the running off-
set to –16 (because 13 bytes of variables were allocated at that point). The
following variable’s offset is –20, because mp.endIndex consumes 4 bytes.

As I mentioned earlier, Gas does not support the concept of lexically
scoped local variable names, which are private to a procedure. Therefore,
all symbols you declare within the locals/endl block are visible throughout
the source file. This can lead to namespace pollution, where you wind up
creating names in one procedure and cannot reuse those names in a differ-
ent procedure.

In the examples of this section, I use a convention that I continue
throughout this book to alleviate namespace pollution: I use local variable
names of the form proc.local, where proc is the procedure’s name (or an
abbreviation of the procedure’s name) and local is the specific local vari-
able name I want to use. For example, mp.ptrVar is the ptrVar local variable
within the myProc (mp) procedure.

	 5.6	 Parameters
Although many procedures are totally self-contained, most procedures
require input data and return data to the caller (parameters).

The first aspect to consider when discussing parameters is how we
pass them to a procedure. If you are familiar with Pascal or C/C++, you’ve
probably seen two ways to pass parameters: pass by value and pass by refer-
ence. Anything you can do with an HLL can be done in assembly language
(obviously, as HLL code compiles into machine code), but you have to pro-
vide the instruction sequence to access those parameters in an appropriate
fashion.

Another concern when dealing with parameters is where you pass them.
There are many places to pass parameters: in registers, on the stack, in the
code stream, in global variables, or a combination of these. The following
subsections cover several of the possibilities.

5.6.1  Passing by Value
A parameter passed by value is just that—the caller passes a value to the
procedure. Pass-by-value parameters are input-only parameters. You can

256 Chapter 5

pass them to a procedure, but the procedure cannot return values through
them. Consider this C/C++ function call:

CallProc(I);

If you pass I by value, CallProc() does not change the value of I, regard-
less of what happens to the parameter inside CallProc().

Because you must pass a copy of the data to the procedure, you should
use this method only for passing small objects like bytes, words, double
words, and quad words. Passing large arrays and records by value is ineffi-
cient, because you must create and pass a copy of the object to the procedure.

5.6.2  Passing by Reference
To pass a parameter by reference, you must pass the address of a variable
rather than its value. In other words, you must pass a pointer to the data.
The procedure must dereference this pointer to access the data. Passing
parameters by reference is useful when you must modify the actual param-
eter or when you pass large data structures between procedures. Because
pointers on the ARM are 64 bits wide, a parameter that you pass by refer-
ence will consist of a double-word value, typically in one of the general-
purpose registers.

You can use the lea macro to take the address of any static variable
you’ve declared in your .data, .bss, .rodata, or .text sections. Listing 5-7
demonstrates how to obtain the address of a static variable (staticVar) and
pass that address to a procedure (someFunc) in the X0 register.

// Listing5-7.S
//
// Demonstrate obtaining the address
// of a variable by using the lea instruction.

#include "aoaa​.inc"

 .data
staticVar: .word .-.

 .code
 .extern someFunc

 proc get_address
 enter 0
 lea x0, staticVar
 bl someFunc
 leave
 endp get_address

Calculating the address of a nonstatic variable is a bit more work.
Unfortunately, the adr and adrp instructions compute only the address of a
PC-relative memory access. If your variable is referenced by one of the other

Procedures 257

ARM addressing modes, you’ll have to manually compute the effective
address yourself.

Table 5-1 describes the process for effective address calculation. In the
table, the [Xn, #const] (scaled form) addressing mode describes a machine
encoding, not an assembler syntax. In source code, the scaled and unscaled
variants share the same syntax: [Xn, #const]. The assembler will pick the
correct machine encoding based on the value of the constant.

Table 5-1: Effective Address Calculations

Addressing mode Effective address Description

[Xn] Xn For the register-indirect addressing mode, the effective address
is just the value held in the register.

[Xn, #const] Xn + const For the indirect-plus-offset addressing mode, the sum of the Xn
register and the constant is the effective address. This assumes
the constant is –256 to +255 and the shift is 0.

[Xn, #const] Xn + const (scaled) For the scaled-indirect-plus-offset mode (where the scaling
factor is determined by the size of the data being loaded or
stored), the constant has to be multiplied by the size of the
memory operand prior to adding with the Xn register. For
strb/ldrb, the multiplier is 1; for strh/ldrh, the multiplier is 2;
for str/ldr (word register), the multiplier is 4; and for str/ldr
(dword register), the multiplier is 8. For strb/ldrb, the constant
must be in the range 0–4,096. For strh/ldrh, the constant must
be in the range 0–8,191 and must be an even number. For ldr/
str with a word-sized register operand, the constant must be in
the range 0–16,383 and must be a multiple of 4. For ldr/str
with a dword-sized register operand, the constant must be in
the range 0–32,767 and must be a multiple of 8.

[Xn, #const]! Xn + const For the pre-indexed addressing mode, the effective address is
the sum of the Xn register and the constant.

[Xn], #const Xn For the post-indexed addressing mode, the effective address is
just the value in the Xn register.

[Xn, Xm] Xn + Xm For the scaled-indexed addressing mode, with a scaling factor
of 1, the effective address is the sum of the two registers (sign-
or zero-extend Xm, if specified).

[Xn, Xm,
extend #s]

Xn + (Xm << s) For the scaled-indexed addressing mode with a shift exten-
sion, the effective address is the sum of Xn plus the value in Xm
shifted to the left s positions (with Xm zero- or sign-extended, if
specified).

Suppose that a procedure has a local variable and you want to pass that
on to a second procedure by reference. Because you access local variables by
using the [FP, #offset] addressing mode, the effective address is FP + offset.
You would have to use the following instruction to compute the address of
that variable (leaving the address in X0):

add x0, fp, #offset

Listing 5-8 demonstrates passing a local variable as a reference param-
eter to a procedure.

258 Chapter 5

// Listing5-8.S
//
// Demonstrate passing a local variable
// by reference to another procedure.

#include "aoaa​.inc"

 .data
staticVar: .word .-.

 .code
 .extern aSecondFunction

 proc demoPassLclByRef

 locals ga
 word ga.aLocalVariable
 endl ga

 enter ga.size
 add x0, fp, #ga.aLocalVariable // Pass parameter in X0.
 bl aSecondFunction

 leave
 endp demoPassLclByRef

Pass by reference is usually less efficient than pass by value. You must
dereference all pass-by-reference parameters on each access; this is slower
than simply using a value because it typically requires at least two instruc-
tions: one to fetch the address into a register and one to fetch the value
indirectly through that register.

However, when passing a large data structure, pass by reference is faster
because you do not have to copy the large data structure before calling the
procedure. Of course, you’d probably need to access elements of that large
data structure (such as an array) by using a pointer, so little efficiency is lost
when you pass large arrays by reference.

5.6.3  Using Low-Level Parameter Implementation
A parameter-passing mechanism is a contract between the caller and the
callee (the procedure). Both parties have to agree on where the parameter
data will appear and what form it will take (for example, value or address).

If your assembly language procedures are being called only by other
assembly language code that you’ve written, you control both sides of the
contract negotiation and get to decide where and how you’re going to pass
parameters. However, if external code is calling your procedure, or your
procedure is calling external code, your procedure will have to adhere to
whatever calling convention that external code uses.

Before discussing the particular calling conventions, this section con-
siders the situation of calling code that you’ve written (and, therefore,

Procedures 259

have complete control over its calling conventions). The following sections
describe the various ways you can pass parameters in pure assembly language
code (without the overhead associated with the ARM or macOS ABIs).

5.6.3.1  Passing Parameters in Registers

Having touched on how to pass parameters to a procedure, the next topic
to discuss is where to pass parameters. This depends on the size and num-
ber of those parameters. If you are passing a small number of parameters
to a procedure, the registers are an excellent place to pass them. If you
are passing a single parameter to a procedure, pass that data in X0, as
described in Table 5-2.

Table 5-2: Parameter Size and Location

Parameter size Location

Byte Pass a byte parameter in the LO byte of W0.

Half word Pass a halfword parameter in the LO half-word of W0.

Word Pass a word in W0.

Dword Pass a dword in X0.

> 8 bytes I suggest passing a pointer to the data structure in X0, or the value
in X0/X1 if 16 bytes or fewer.

When passing fewer than 32 bits in X0, the macOS ABI requires that
the value be zero- or sign-extended throughout the X0 register. The ARM
ABI does not require this. Of course, when passing data to a procedure
you’ve written in assembly language, it is up to you to define what must be
done with the HO bits. The safest course of action, portable everywhere,
is to zero-extend or sign-extend the value into the HO bits (depending on
whether the value is unsigned or signed).

If you need to pass more than 8 bytes as a parameter, you could also
pass that data in multiple registers (for example, under macOS and Linux,
the C/C++ compiler will pass a 16-byte structure in two registers). Whether
you pass the argument as a pointer or in multiple registers is up to you.

For passing parameters to a procedure in registers, the ARM ABI
reserves X0 to X7. Of course, in pure assembly language code (that won’t
call, or be called by, ARM ABI–compliant code), you can use whichever
registers you choose. However, X0 through X7 should probably be your first
choice unless you can provide a good reason for using other registers.

Eight parameters probably cover 95 percent of the procedures ever
written. If you are passing more than eight parameters to a pure assembly
procedure, nothing is stopping you from using additional registers (for
example, X8 through X15). Likewise, nothing is stopping you from passing
large objects in multiple registers, if you really want to do that.

260 Chapter 5

5.6.3.2  Passing Parameters in the Code Stream

You can also pass parameters in the code stream immediately after the bl
instruction. Consider the following print routine that prints a literal string
constant to the standard output device:

bl print
.asciz "This parameter is in the code stream..."

Normally, a subroutine returns control to the first instruction imme-
diately following the bl instruction. Were that to happen here, the ARM
would attempt to interpret the ASCII codes for "This..." as an instruction.
This would produce undesirable results. Fortunately, you can skip over this
string before returning from the subroutine.

One big issue arises with the design of the ARM CPU, however: all
instructions must be word-aligned in memory. Therefore, the parameter
data appearing in the code stream must be a multiple of 4 bytes long (I
chose the string in this example to contain 39 characters so that the zero-
terminating byte made the whole sequence 40 bytes).

So how do you gain access to these parameters? Easy: the return address
in LR points at them. Consider the implementation of print in Listing 5-9.

// Listing5-9.S
//
// Demonstrate passing parameters in the code stream

#include "aoaa​.inc"

 .text
 .pool
ttlStr: .asciz "Listing 5-9"
 .align 2

// getTitle
//
// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// print
//
// Here's the print procedure.
// It expects a zero-terminated string
// to follow the call to print:

rtnAdrs = 8 // Offset to rtn adrs from FP.

 proc print

Procedures 261

 1 locals print
 qword print.x0X1Save // Register save area.
 qword print.x2X3Save
 qword print.x4X5Save
 qword print.x6X7Save
 qword print.x8X9Save
 qword print.x10X11Save
 qword print.x12X13Save
 qword print.x14X15Save
 endl print

 enter print.size

// Assembly language convention--save all the registers
// whose values we change. Spares caller from having to
// preserve volatile registers.
// Note: this code calls ABI function write, so you must
// preserve all the volatile registers.

 stp x0, x1, [fp, #print.x0X1Save]
 stp x2, x3, [fp, #print.x2X3Save]
 stp x4, x5, [fp, #print.x4X5Save]
 stp x6, x7, [fp, #print.x6X7Save]
 stp x8, x9, [fp, #print.x8X9Save]
 stp x10, x11, [fp, #print.x10X11Save]
 stp x12, x13, [fp, #print.x12X13Save]
 stp x14, x15, [fp, #print.x14X15Save]

// Compute the length of the string immediately following
// the call to this procedure:

 2 mov x1, lr // Get pointer to string.
search4_0: ldrb w2, [x1], #1 // Get next char.
 cmp w2, #0 // At end of string?
 bne search4_0 // If not, keep searching.
 sub x2, x1, lr // Compute string length.

// LR now points just beyond the 0 byte. We need to
// make sure this address is 4-byte aligned:

 3 add x1, x1, #3
 and x1, x1, #-4 // 0xfff...fff0

// X1 points just beyond the 0 byte and padding.
// Save it as the new return address:

 4 str x1, [fp, #rtnAdrs]

// Call write to print the string to the console.
//
// write(fd, bufAdrs, len);
//
// fd in X0 (this will be 1 for stdout)
// bufAdrs in X1

262 Chapter 5

// len in X2

 5 mov x0, #1 // stdout = 1
 mov x1, lr // Pointer to string
 bl write

// Restore the registers we used:

 6 ldp x0, x1, [fp, #print.x0X1Save]
 ldp x2, x3, [fp, #print.x2X3Save]
 ldp x4, x5, [fp, #print.x4X5Save]
 ldp x6, x7, [fp, #print.x6X7Save]
 ldp x8, x9, [fp, #print.x8X9Save]
 ldp x10, x11, [fp, #print.x10X11Save]
 ldp x12, x13, [fp, #print.x12X13Save]
 ldp x14, x15, [fp, #print.x14X15Save]
 leave // Return to caller.
 endp print

// Here is the asmMain function:

 proc asmMain, public
 enter 64

// Demonstrate passing parameters in code stream
// by calling the print procedure:

 bl print
 7 .asciz "Hello, world!!\n"

 leave // Returns to caller
 endp asmMain

The print procedure 1 saves all the registers it modifies (even the vola-
tile registers, because the call to write() might overwrite them). This is a
normal assembly language convention, but it’s especially important for print
because you want to be able to print (debug) messages without saving regis-
ter values across your calls.

LR points at the string to print upon entry into the print procedure 2.
This code scans through that string to find the zero-terminating byte; this
scan produces both the length and the (approximate) return address.

Because code must be aligned on a 4-byte boundary, the return address
isn’t necessarily the byte after the zero-terminating byte. Instead, the code
may need to pad the end of string pointer by 1 to 3 bytes to advance to the
next word boundary in the .text section 3. Adding 3 and then ANDing
the result with 0xFFFFFFFFFFFFFFFC (-4) pads the return address up
to the appropriate boundary. The code then stores the return address over
the original on the stack 4.

Once you have the string length, you can call the C stdlib write function
to print it 5 (if the first argument is 0, this prints the string to the standard
output device). On exit, the code restores the registers you saved earlier 6.

Procedures 263

For this listing, I included two exclamation marks 7 so that the length
of the string (including the zero-terminating byte) is a multiple of four
characters. This ensures that the following instruction is aligned on a
4-byte boundary.

To avoid a bus fault, the length of the data following the call to print
must be a multiple of 4 bytes so that the next instruction is properly aligned
on a 4-byte boundary. The length of the string itself doesn’t have to be a
multiple of 4 bytes; arbitrary padding after the zero-terminating byte is
fine. Rather than counting the number of characters in the string, you
could use the Gas .p2align directive. This directive will pad the location
counter to a boundary that is a multiple of 2n bytes, where n is the (first)
value in the .p2align operand field. For example

.p2align 2

pads the location counter to the next word boundary.
Using the .p2align 2 directive, you can call the print procedure with an

arbitrary-length string as follows:

bl print
.asciz "Hello, world!\n"
.p2align 2

Remembering to put the .p2align 2 directive in the code can be dif-
ficult, not to mention that having to type it is a pain, and it clutters up your
code. To resolve this, the aoaa​.inc include file includes a wastr (word-aligned
string) macro that automatically adds the padding for you:

bl print
wastr "Hello, world!\n"

Besides showing how to pass parameters in the code stream, the print
routine also exhibits another concept: variable-length parameters (the length
of the string can be arbitrarily long). The string following the bl can be any
practical length. The zero-terminating byte marks the end of the parameter
list. You can handle variable-length parameters in two easy ways: either use
a special terminating value (like 0) or pass a special length value that tells
the subroutine the number of parameters you are passing. Both methods
have advantages and disadvantages.

Using a special value to terminate a parameter list requires that you
choose a value that never appears in the list. For example, print uses 0 as
the terminating value, so it cannot print the NUL character (whose ASCII
code is 0). Sometimes this isn’t a limitation. Specifying a length parameter
is another mechanism you can use to pass a variable-length parameter list.
While this doesn’t require any special codes or limit the range of possible
values that can be passed to a subroutine, setting up the length parameter
and maintaining the resulting code can be a real nightmare; this is espe-
cially true if the parameter list changes frequently.

264 Chapter 5

Despite the convenience afforded by passing parameters in the code
stream, this method also has disadvantages. First, if you fail to provide the
exact number of parameters the procedure requires, the subroutine will
get confused. Consider the print example. It prints a string of characters up
to a zero-terminating byte and then returns control to the first instruction
following that byte. If you leave off the zero-terminating byte, the print rou-
tine happily prints the following opcode bytes as ASCII characters until it
finds a 0 byte. Because 0 bytes often appear in the middle of an instruction,
the print routine might return control into the middle of another instruc-
tion, which will probably crash the machine.

On the ARM, you must ensure that the parameters you pass in the code
stream are a multiple of 4 bytes long. The instructions following the param-
eters must lie on a word boundary. Problems notwithstanding, however,
the code stream is an efficient place to pass parameters whose values do
not change.

5.6.3.3  Passing Parameters on the Stack

Most HLLs use the stack to pass a large number of parameters because
this method is fairly efficient. Although passing parameters on the stack
is slightly less efficient than doing so in registers, the register set is limited
(especially if you’re limiting yourself to the eight registers the ARM ABI sets
aside for this purpose). The stack, on the other hand, allows you to pass a
large amount of parameter data without difficulty. This is the reason that
most programs pass their parameters on the stack (at least, when passing
more than eight parameters).

To manually pass parameters on the stack, push them immediately
before calling the subroutine (just remember to keep the stack 16-byte
aligned). The subroutine then reads this data from the stack memory and
operates on it appropriately. Consider the following HLL function call:

CallProc(i,j,k);

Because keeping SP aligned on a 16-byte boundary is crucial, you
can’t simply push one argument at a time with a str instruction, nor can
you push values smaller than 32 bits. Assuming that i, j, and k are 32-bit
integers, you would need to somehow marshal them together into a 128-bit
package (including an extra 32 bits of unused data) and push 16 bytes onto
the stack. This is so inconvenient that ARM code almost never pushes indi-
vidual (or even pairs of) register values onto the stack.

The common solution in ARM assembly language is first to drop the
stack down by however many bytes you need (plus any padding, to make
sure the stack is aligned properly), and then to simply store your parameters
into the stack space so allocated. For example, to call CallProc, you might
use code like the following:

sub sp, sp, #16 // Allocate space for parameters.
str w0, [sp] // Assume i is in W0,

Procedures 265

str w1, [sp, #4] // j is in W1, and
str w2, [sp, #8] // k is in W2.
bl CallProc
add sp, sp, #16 // Caller must clean up stack.

The sub instruction allocates 16 bytes on the stack; you need only
12 for the three 32-bit parameters, but you must allocate 16 to keep the
stack aligned.

The three str instructions store the parameter data (which is pre-
sumed to be in W0, W1, and W2 by this code) into the 12 bytes from SP + 0
through SP + 11. The CallProc will simply ignore the extra 4 bytes allocated
on the stack.

In this example, the three 32-bit integers are packed into memory, each
consuming 4 bytes on the stack. So the i parameter is found at SP + 0, the
j parameter is found at SP + 4, and the k parameter is found at SP + 8 upon
entry into CallProc (see Figure 5-6).

Previous stack contents

k‘s current value

j‘s current value

i‘s current value SP

Garbage bits

SP + 16

+ 12

+ 8

+ 4

+ 0

Figure 5-6: Stack layout upon entry into CallProc

If your procedure includes the standard entry and exit sequences, you
may directly access the parameter values in the activation record by index-
ing off the FP register. Consider the layout of the activation record for
CallProc that uses the following declaration:

proc CallProc
enter 0 // No local variables
 .
 .
 .
leave
endp CallProc

At this point, i’s value can be found at [FP, #16], j’s value can be found
at [FP, #20], and k’s value can be found at [FP, #24] (see Figure 5-7).

266 Chapter 5

Previous stack contents

k‘s current value

j‘s current value

i‘s current value

SP, FP

Garbage bits

+ 24

+ 20

+ 16

+ 8

+ 0

Return address

FP’s old value

+ 28

FP + 32

Figure 5-7: CallProc activation record after standard entry
sequence

Within the CallProc procedure, you can access the parameter values
with these instructions:

ldr w0, [fp, #16]
ldr w1, [fp, #20]
ldr w2, [fp, #24]

Of course, using magic numbers such as these to reference the param-
eter offsets is still a bad idea. It would be far better to use equates or, even
better, create a declaration macro similar to struct and locals to define the
parameters for a procedure. The aoaa​.inc file contains just such a macro: args
(and enda). Listing 5-10 demonstrates the use of this macro.

// Listing5-10.S
//
// Accessing a parameter on the stack

#include "aoaa​.inc"

 .data
value1: .word 20
value2: .word 30
pVar: .word .-.

ttlStr: .asciz "Listing 5-10"
fmtStr1: .asciz "Value of parameter: %d\n"

 .code
 .extern printf

// getTitle
//
// Return program title to C++ program.

 proc getTitle, public
 lea x0, ttlStr

Procedures 267

 ret
 endp getTitle

// valueParm
//
// Passed a single parameter (vp.theParm) by value

 proc valueParm

 args vp // Declare the
 word vp.theParm // parameter.
 enda vp

 enter 64 // Alloc space for printf.

// vparms macro accepts only global variables.
// Must copy parameter to that global to print it:

 lea x0, fmtStr1
 ldr w1, [fp, #vp.theParm]
 lea x2, pVar
 str w1, [x2]
 vparm2 pVar
 bl printf

 leave
 ret
 endp valueParm

// Here is the asmMain function:

 proc asmMain, public
 enter 64

 lea x0, value1
 ldr w1, [x0]
 str w1, [sp] // Store parameter on stack.
 bl valueParm

 lea x0, value2
 ldr w1, [x0]
 str w1, [sp] // Store parameter on stack.
 bl valueParm

 leave
 endp asmMain

The args macro requires an argument list name, which can be the
procedure name or an abbreviation of it, and an optional second argu-
ment with a starting offset. The second argument defaults to 16, which is
an appropriate value if the procedure uses the standard entry sequence
(pushing the LR and FP registers on the stack). Offsets associated with the
parameters you declare are offsets from FP in the procedure.

268 Chapter 5

Here’s the build command and sample output for Listing 5-10:

% ./build Listing5-10
% ./Listing5-10
Calling Listing5-10:
Value of parameter: 20
Value of parameter: 30
Listing5-10 terminated

If your procedure does not use the standard entry sequence, you can
specify an explicit offset as the second argument. For example:

args procName, 0

If you aren’t pushing anything on the stack in the procedure (or allo-
cating local variables), 0 is a good value to use; then the offsets are SP based
rather than FP based.

5.6.3.4  Removing Parameters in Callee vs. Caller Stack Cleanup

When passing parameters on the stack, ultimately those parameters must
be removed from the stack. The ARM ABI specifies that the caller is respon-
sible for removing all parameters it pushes onto the stack. Most of the
example programs in this book thus far have (implicitly) done this.

Removing the parameters after every procedure call is slow and inef-
ficient. Fortunately, an easy optimization eliminates the need to allocate
and deallocate parameter storage for each function call. Upon entry into a
procedure, when allocating storage for local variables, include additional
storage to be used for parameters the procedure passes to other functions.
This, in fact, has been the whole purpose of the “magic stack allocation”
instructions at the beginning of most procedures in this book up to this
point. The examples thus far have typically reserved 64 or 256 bytes of stor-
age on the stack (enough for between eight and thirty-two 64-bit param-
eters, respectively).

Functions that pass parameters on the stack, such as printf() running
on macOS, can store data into this area prior to calling the function. Upon
return from the function, your code does not have to worry about cleaning
up the parameters. That stack space is now available for the next function
you want to call that requires stack parameters.

Ultimately, of course, the parameters must be deallocated from the
stack. That happens when the procedure executes the leave macro (or man-
ually copies FP into SP, which is part of leave’s expansion). When using enter
and leave to allocate this stack space for the parameters, along with any
local variables a procedure might need, you need to allocate and deallocate
the stack space only once, not for each individual procedure call.

If your procedure doesn’t have any local variables, you can easily allo-
cate stack space for parameters by using code like the following:

Procedures 269

proc myProc
enter 64 // Allocate 64 bytes for parameter usage.
 .
 .
 .
leave // Deallocate storage and returns.
endp myProc

If your procedure requires local variable storage, just specify the extra
stack space as a dummy local variable at the end of your locals declaration:

proc myProc

locals mp
word mp.local1
dword mp.local2
byte mp.local3
byte mp.stack, 64 // Allocate 64 bytes for parms.
endl mp

enter mp.size // Allocate locals and stack space.
 .
 .
 .
leave // Deallocate storage and returns.
endp myProc

Remember that enter always allocates a multiple of 16 bytes, so we know
that the stack storage will be aligned on a 16-byte boundary.

5.6.3.5  Passing Parameters to the C/C++ printf() Function

Under Linux, you pass the first eight printf() parameters in registers, just
as you would any other nonvariadic function. On macOS, those param-
eters are always passed on the stack, each occupying a dword. Until now,
this book has used the vparmsn macros to handle the difference in the way
parameters are passed (and, of course, to avoid dealing with the stack,
which the book hadn’t covered in the earlier chapters).

In this book, I strived to write code that is portable between Linux and
macOS, resorting to OS-specific code only as necessary; this was part of
the motivation for using the vparmsn macros when calling printf(). Now that
you’ve learned how these two OSes expect you to pass variadic parameters,
you’ll probably want to pass parameters in a more flexible manner than
using the vparmsn macros. Nevertheless, there is great benefit (at least for the
source code in this book) to writing portable code. Fortunately, with a little
sleight of hand, it is possible to directly pass the parameters to printf() with-
out using vparmsn and still have the code assemble and run on both OSes.

The first rule is to load each printf() argument into X0 through X7.
This puts the arguments into the locations where Linux expects them.
Once the arguments are in these registers, you’ll also store them into the

270 Chapter 5

stack storage area at SP + 0, SP + 8, SP + 16, . . . , SP + 56 (which is where
macOS expects them). Here’s a typical call to printf() printing the values in
X0, X5, and X7:

locals mp
Byte mp.stack, 24
endl mp
 .
 .
 .
enter mp.size
 .
 .
 .
mov x1, x0 // Put data in appropriate registers first.
mov x2, x5
mov x3, x7
lea x0, fmtStr
str x1, [sp] // For macOS, store the arguments
str x2, [sp, #8] // onto the stack in their
str x3, [sp, #16] // appropriate locations.
bl printf // Then call printf.

Strictly speaking, the str instructions aren’t necessary when running
under Linux. To allow the creation of slightly more efficient code, I’ve pro-
vided the following mstr macro in the aoaa​.inc include file:

mstr register, memory

This macro assembles to nothing under Linux and to the correspond-
ing str instruction under macOS. If you rewrite the former code by using
mstr, it will not generate any excess code under Linux:

locals mp
Byte mp.stack, 24
endl mp
 .
 .
 .
enter mp.size
 .
 .
 .
mov x1, x0 // Put data in appropriate registers first.
mov x2, x5
mov x3, x7
lea x0, fmtStr
mstr x1, [sp] // For macOS, store the arguments
mstr x2, [sp, #8] // onto the stack in their
mstr x3, [sp, #16] // appropriate locations.
bl printf // Then call printf.

Procedures 271

Of course, if you’re writing code only for Linux and don’t care at all
about macOS portability, you can drop the mstr instructions altogether to
remove some clutter.

5.6.4  Accessing Reference Parameters on the Stack
Because you pass the addresses of objects as reference parameters, access-
ing the reference parameters within a procedure is slightly more difficult
than accessing value parameters, as you must dereference the pointers to
the reference parameters.

Consider Listing 5-11, which demonstrates a single pass-by-reference
parameter.

// Listing5-11.S
//
// Accessing a reference parameter on the stack

#include "aoaa​.inc"

 .data
value1: .word 20
value2: .word 30

ttlStr: .asciz "Listing 5-11"
fmtStr1: .asciz "Value of reference parameter: %d\n"

 .code
 .extern printf

// getTitle
//
// Return program title to C++ program.

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// refParm
//
// Expects a pass-by-reference parameter on the stack

 proc refParm

 args rp
 dword rp.theParm
 enda rp

 enter 64 // Alloc space for printf.

 lea x0, fmtStr1
 1 ldr x1, [fp, #rp.theParm]
 ldr w1, [x1]

272 Chapter 5

 2 mstr x1, [sp]
 bl printf

 leave
 endp refParm

// Here is the asmMain function:

 proc asmMain, public
 enter 64

// Pass the address of the arguments on the
// stack to the refParm procedure:

 3 lea x0, value1
 str x0, [sp] // Store address on stack.
 bl refParm

 lea x0, value2
 str x0, [sp] // Store address on stack.
 bl refParm

 leave

 endp asmMain

The refParm procedure fetches the reference parameter (a 64-bit
pointer) into X1 1 and then immediately dereferences this pointer by
fetching the 32-bit word at the address in X1. The mstr macro 2 stores the
second parameter onto the stack (under macOS). To pass a variable by ref-
erence to refParm 3, you must compute its effective address and pass that.

Here is the build command and sample output for the program in
Listing 5-11:

$./build Listing5-11
$./Listing5-11
Calling Listing5-11:
Value of reference parameter: 20
Value of reference parameter: 30
Listing5-11 terminated

As you can see, accessing (small) pass-by-reference parameters is a little
less efficient than accessing value parameters, because you need an extra
instruction to load the address into a 64-bit pointer register (not to mention
that you have to reserve a 64-bit register for this purpose). If you access ref-
erence parameters frequently, these extra instructions can really begin to
add up, reducing the efficiency of your program.

Furthermore, it’s easy to forget to dereference a reference parameter
and use the address of the value in your calculations. Therefore, unless you
really need to affect the value of the actual parameter, you should use pass
by value to pass small objects to a procedure.

Procedures 273

Passing large objects, like arrays and records, is where using reference
parameters becomes efficient. When passing these objects by value, the call-
ing code has to make a copy of the actual parameter; if it is a large object,
the copy process can be inefficient. Because computing the address of a
large object is just as efficient as computing the address of a small scalar
object, no efficiency is lost when passing large objects by reference. Within
the procedure, you must still dereference the pointer to access the object,
but the efficiency loss due to indirection is minimal when you contrast this
with the cost of copying that large object.

Listing 5-12 demonstrates how to use pass by reference to initialize an
array of structures.

// Listing5-12.S
//
// Passing a large object by reference

#include "aoaa​.inc"

NumElements = 24

// Here's the structure type:

 struct Pt
 byte pt.x
 byte pt.y
 ends Pt

 .data

ttlStr: .asciz "Listing 5-12"
fmtStr1: .asciz "refArrayParm[%d].x=%d"
fmtStr2: .asciz "refArrayParm[%d].y=%d\n"

 .code
 .extern printf

// getTitle
//
// Return program title to C++ program.

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// refAryParm
//
// Passed the address of an array of Pt structures
// Initializes each element of that array

 proc refAryParm

274 Chapter 5

 args rap
 dword rap.ptArray // Reference parameter
 enda rap

 enter 0 // No stack space needed!

// Get the base address of the array into X1:

 1 ldr x1, [fp, #rap.ptArray]

// While X0 < NumElements, initialize each
// array element. x = X0/8, y = X0 % 8:

 mov x0, xzr // Index into array.
ForEachEl: cmp x0, #NumElements // While we're not done
 bhs LoopDone

// Compute address of ptArray[X0].
// Element adrs = base address (X1) + index (X19) * size (2):

 2 add x3, x1, x0, lsl #1 // X3 = X1 + X0 * 2

// Store index / 8 into x field:

 lsr x2, x0, #3 // X2 = X0 / 8
 strb w2, [x3, #pt.x] // ptArray[X0].x = X0/8

// Store index % 8 (mod) into y field:

 and x2, x0, #0b111 // X2 = X0 % 8
 strb w2, [x3, #pt.y] // ptArray[X0].y = X0 % 8

// Increment index and repeat:

 add x0, x0, #1
 b.al ForEachEl

LoopDone: leave
 endp refAryParm

// Here is the asmMain function:

 proc asmMain, public

// Easier to access local variables than globals, so let's
// make everything a local variable:

 locals am
 word saveX19
 byte Pts, NumElements * (Pt.size)
 byte stackSpace, 64
 endl am

 enter am.size // Reserve space.

Procedures 275

 str x19, [fp, #saveX19] // Save nonvolatile reg.

// Initialize the array of points:

 3 add x0, fp, #Pts // Compute address of Pts.
 str x0, [sp] // Pass address on stack.
 bl refAryParm

// Display the array:

 mov x19, xzr // X19 is loop counter.
dispLp: cmp x19, #NumElements
 bhs dispDone

// Print the x field:

 lea x0, fmtStr1
 mov x1, x19
 mstr x1, [sp]
 add x3, fp, #Pts // Get array base address.
 add x3, x3, x19, lsl #1 // Index into array.
 ldrb w2, [x3, #pt.x] // Get ptArray[X0].x.
 mstr x2, [sp, #8]
 bl printf

// Print the y field:

 lea x0, fmtStr2
 mov x1, x19
 mstr x1, [sp]
 add x3, fp, #Pts // Get array base address.
 add x3, x3, x19, lsl #1 // Index into array.
 ldrb w2, [x3, #pt.y] // Get ptArray[X0].x.
 mstr x2, [sp, #8]
 bl printf

// Increment index and repeat:

 add x19, x19, #1
 b.al dispLp

dispDone:
 ldr x19, [fp, #saveX19] // Restore X19.
 leave
 endp asmMain

The code computes the address of the Pts array and passes this array
(by reference) to the refAryParm procedure 3. It loads this address into X1 1
and uses this pointer value as the base address of the array that refAryParm
processes 2.

Here’s the build command and sample output:

$./build Listing5-12
$./Listing5-12

276 Chapter 5

Calling Listing5-12:
refArrayParm[0].x=0 refArrayParm[0].y=0
refArrayParm[1].x=0 refArrayParm[1].y=1
refArrayParm[2].x=0 refArrayParm[2].y=2
refArrayParm[3].x=0 refArrayParm[3].y=3
refArrayParm[4].x=0 refArrayParm[4].y=4
refArrayParm[5].x=0 refArrayParm[5].y=5
refArrayParm[6].x=0 refArrayParm[6].y=6
refArrayParm[7].x=0 refArrayParm[7].y=7
refArrayParm[8].x=1 refArrayParm[8].y=0
refArrayParm[9].x=1 refArrayParm[9].y=1
refArrayParm[10].x=1 refArrayParm[10].y=2
refArrayParm[11].x=1 refArrayParm[11].y=3
refArrayParm[12].x=1 refArrayParm[12].y=4
refArrayParm[13].x=1 refArrayParm[13].y=5
refArrayParm[14].x=1 refArrayParm[14].y=6
refArrayParm[15].x=1 refArrayParm[15].y=7
refArrayParm[16].x=2 refArrayParm[16].y=0
refArrayParm[17].x=2 refArrayParm[17].y=1
refArrayParm[18].x=2 refArrayParm[18].y=2
refArrayParm[19].x=2 refArrayParm[19].y=3
refArrayParm[20].x=2 refArrayParm[20].y=4
refArrayParm[21].x=2 refArrayParm[21].y=5
refArrayParm[22].x=2 refArrayParm[22].y=6
rRefArrayParm[23].x=2 refArrayParm[23].y=7
Listing5-12 terminated

This output shows how the refAryParm procedure initialized the array.

	 5.7	 Functions and Function Return Results
Functions are procedures that return a result to the caller. In assembly lan-
guage, few syntactical differences exist between a procedure and a func-
tion. This is why aoaa​.inc doesn’t provide a specific macro declaration for a
function. Nevertheless, semantic differences exist; although you can declare
them the same way in Gas, you use them differently.

Procedures are a sequence of machine instructions that fulfill a task.
The end result of the execution of a procedure is the accomplishment of
that activity. Functions, on the other hand, execute a sequence of machine
instructions specifically to compute a value to return to the caller. Of course,
a function can perform an activity as well, and procedures can undoubtedly
compute values, but the main difference is that the purpose of a function is
to return a computed result; procedures don’t have this requirement.

In assembly language, you don’t specifically define a function by using
special syntax. In Gas, everything is a procedure. A section of code becomes
a function when the programmer explicitly decides to return a function
result via the procedure’s execution.

The registers are the most common place to return function results.
The strlen() routine in the C stdlib is a good example of a function that
returns a value in one of the CPU’s registers. It returns the length of the
string (whose address you pass as a parameter) in the X0 register.

Procedures 277

By convention, programmers try to return 8-, 16-, and 32-bit results
in the W0 register and 64-bit values in the X0 register. This is where most
HLLs return these types of results, and it’s where the ARM ABI states that
you should return function results. The exception is floating-point values;
I discuss floating-point function results in Chapter 6.

There is nothing particularly sacred about the W0/X0 register. You can
return function results in any register if it’s more convenient to do so. Of
course, if you’re calling an ARM ABI–compliant function, such as strlen(),
you have no choice but to expect the function’s return result in the X0 reg-
ister. The strlen() function returns an integer in X0, for example.

If you need to return a function result that is larger than 64 bits, you
obviously must return it somewhere other than in X0 (which can hold only
64-bit values). For values slightly larger than 64 bits (for example, 128 bits
or maybe even as many as 256 bits), you can split the result into pieces and
return those parts in two or more registers. It is not uncommon to see func-
tions returning 128-bit values in the X1:X0 register pair. Just keep in mind
that these schemes are not ARM ABI compliant, so they’re practical only
when calling code you’ve written.

If you need to return a large object as a function result (say, an array of
1,000 elements), you obviously are not going to be able to return the function
result in the registers. When returning function results greater than 64 bits,
the ARM ABI specifies that the caller allocate storage for the result and pass
a pointer to that storage in X8. The function places the result in that storage,
and the caller retrieves the data from that location upon return.

	 5.8	 Recursion
Recursion occurs when a procedure calls itself. The following, for example,
is a recursive procedure:

proc Recursive
enter 0
bl Recursive
leave
endp Recursive

Of course, the CPU will never return from this procedure. Upon entry
into Recursive, this procedure will immediately call itself again, and control
will never pass to the end of the procedure. In this case, runaway recursion
results in a logical infinite loop that produces stack overflow, at which point
the OS will raise an exception and stop the program.

Like a looping structure, recursion requires a termination condition in
order to stop infinite recursion. Recursive could be rewritten with a termina-
tion condition as follows:

 proc Recursive
 enter 0

278 Chapter 5

 subs x0, x0, #1
 beq allDone
 bl Recursive
allDone:
 leave
 endp Recursive

This modification to the routine causes Recursive to call itself the num-
ber of times appearing in the X0 register. On each call, Recursive decre-
ments the X0 register by 1 and then calls itself again. Eventually, Recursive
decrements X0 to 0 and returns from each call until it returns to the origi-
nal caller.

So far in this section, there hasn’t been a real need for recursion. After
all, you could efficiently code this procedure as follows:

 proc Recursive
 enter 0
iterLp:
 subs x0, x0, #1
 bne iterLp
 leave
 endp Recursive

Both of these last two examples would repeat the body of the proce-
dure the number of times passed in the X0 register. (The latter version will
do it considerably faster because it doesn’t have the overhead of the bl/ret
instructions.) As it turns out, you cannot implement only a few recursive
algorithms in an iterative fashion. However, many recursively implemented
algorithms are more efficient than their iterative counterparts, and most of
the time the recursive form of the algorithm is much easier to understand.

The quicksort algorithm is probably the most famous algorithm that usu-
ally appears in recursive form. Listing 5-13 shows a Gas implementation of
this algorithm.

// Listing5-13.S
//
// Recursive quicksort

#include "aoaa​.inc"

numElements = 10

 .data
ttlStr: .asciz "Listing 5-13"
fmtStr1: .asciz "Data before sorting: \n"
fmtStr2: .ascii "%d" // Use nl and 0 from fmtStr3
fmtStr3: .asciz "\n"
fmtStr4: .asciz "Data after sorting: \n"
fmtStr5: .asciz "ary=%p, low=%d, high=%d\n"

theArray: .word 1,10,2,9,3,8,4,7,5,6

Procedures 279

 .code
 .extern printf

// getTitle
//
// Return program title to C++ program.

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// quicksort
//
// Sorts an array using the quicksort algorithm
//
// Here's the algorithm in C, so you can follow along:
//
// void quicksort(int a[], int low, int high)
// {
// int i,j,Middle;
// if(low < high)
// {
// Middle = a[(low + high)/2];
// i = low;
// j = high;
// do
// {
// while(a[i] <= Middle) i++;
// while(a[j] > Middle) j--;
// if(i <= j)
// {
// swap(a[i],a[j]);
// i++;
// j--;
// }
// } while(i <= j);
//
// // Recursively sort the two subarrays:
//
// if(low < j) quicksort(a,low,j);
// if(i < high) quicksort(a,i,high);
// }
// }
//
// Args:
// X19 (_a): Pointer to array to sort
// X20 (_lowBnd): Index to low bound of array to sort
// X21 (_highBnd): Index to high bound of array to sort
//
// Within the procedure body, these registers
// have the following meanings:
//
// X19: Pointer to base address of array to sort

280 Chapter 5

// X20: Lower bound of array (32-bit index)
// X21: Higher bound of array (32-bit index)
//
// X22: index (i) into array
// X23: index (j) into array
// X24: Middle element to compare against
//
// Create definitions for variable names as registers
// to make the code more readable:

#define array x19
#define lowBnd x20
#define highBnd x21
#define i x22
#define j x23
#define middle w24

 proc quicksort

 locals qsl
 dword qsl.saveX19
 dword qsl.saveX20
 dword qsl.saveX21
 dword qsl.saveX22
 dword qsl.saveX23
 dword qsl.saveX24
 dword qsl.saveX0
 byte qsl.stackSpace, 32
 endl qsl

 enter qsl.size

// Preserve the registers this code uses:

 str x0, [fp, #qsl.saveX0]
 str x19, [fp, #qsl.saveX19]
 str x22, [fp, #qsl.saveX22]
 str x23, [fp, #qsl.saveX23]
 str x24, [fp, #qsl.saveX24]

 cmp lowBnd, highBnd
 bge endif3

 mov i, lowBnd // i = low
 mov j, highBnd // j = high

// Compute a pivotal element by selecting the
// physical middle element of the array:
//
// Element address = ((i + j) / 2) * 4 (4 is element size)
// = ((i + j) * 2)

 add x0, i, j
 lsr x0, x0, #1

Procedures 281

// Middle = ary[(i + j) / 2]:

 ldr middle, [array, x0, lsl #2]

// Repeat until the i and j indices cross each
// other (i works from the start toward the end
// of the array, j works from the end toward the
// start of the array):

rptUntil:

// Scan from the start of the array forward,
// looking for the first element greater or equal
// to the middle element:

 sub i, i, #1 // To counteract add, below
while1: add i, i, #1 // i = i + 1
 ldr w1, [array, i, lsl #2]
 cmp middle, w1 // While middle <= ary[i]
 bgt while1

// Scan from the end of the array backward, looking
// for the first element that is less than or equal
// to the middle element:

 add j, j, #1 // To counteract sub, below
while2: sub j, j, #1 // j = j - 1
 ldr w1, [array, j, lsl #2]
 cmp middle, w1 // while middle >= a[j]
 blt while2

// If you've stopped before the two pointers have
// passed over each other, you have two
// elements that are out of order with respect
// to the middle element, so swap these two elements:

 cmp i, j // If i <= j
 bgt endif1

 ldr w0, [array, i, lsl #2]
 ldr w1, [array, j, lsl #2]
 str w0, [array, j, lsl #2]
 str w1, [array, i, lsl #2]

 add i, i, #1
 sub j, j, #1

endif1: cmp i, j // Until i > j
 ble rptUntil

// The code has just placed all elements in the array in
// their correct positions with respect to the middle
// element of the array. Unfortunately, the
// two halves of the array on either side of the pivotal

282 Chapter 5

// element are not yet sorted. Call quicksort recursively
// to sort these two halves if they have more than one
// element in them (if they have zero or one elements,
// they are already sorted).

 cmp lowBnd, j // If lowBnd < j
 bge endif2

 // Note: a is still in X19,
 // Low is still in X20.

 str highBnd, [fp, #qsl.saveX21]
 mov highBnd, j
 bl quicksort // (a, low, j)
 ldr highBnd, [fp, #qsl.saveX21]

endif2: cmp i, highBnd // If i < high
 bge endif3

 // Note: a is still in X19,
 // High is still in X21.

 str lowBnd, [fp, #qsl.saveX20]
 mov lowBnd, i
 bl quicksort // (a, i + 1, high)
 ldr lowBnd, [fp, #qsl.saveX20]

// Restore registers and leave:

endif3:
 ldr x0, [fp, #qsl.saveX0]
 ldr x19, [fp, #qsl.saveX19]
 ldr x22, [fp, #qsl.saveX22]
 ldr x23, [fp, #qsl.saveX23]
 ldr x24, [fp, #qsl.saveX24]
 leave
 endp quicksort

// printArray
//
// Little utility to print the array elements

 proc printArray

 locals pa
 dword pa.saveX19
 dword pa.saveX20
 endl pa

 enter pa.size
 str x19, [fp, #pa.saveX19]
 str x20, [fp, #pa.saveX20]

 lea x19, theArray
 mov x20, xzr

Procedures 283

whileLT10: cmp x20, #numElements
 bge endwhile1

 lea x0, fmtStr2
 ldr w1, [x19, x20, lsl #2]
 mstr w1, [sp]
 bl printf

 add x20, x20, #1
 b.al whileLT10

endwhile1: lea x0, fmtStr3
 bl printf

 ldr x19, [fp, #pa.saveX19]
 ldr x20, [fp, #pa.saveX20]
 leave
 endp printArray

// Here is the asmMain function:

 proc asmMain, public

 locals am
 dword am.savex19
 dword am.savex20
 dword am.savex21
 byte am.stackSpace, 64
 endl am

 enter am.size

 str array, [fp, #am.saveX19]
 str lowBnd, [fp, #am.saveX20]
 str highBnd, [fp, #am.saveX21]

// Display unsorted array:

 lea x0, fmtStr1
 bl printf
 bl printArray

// Sort the array:

 lea array, theArray
 mov lowBnd, xzr // low = 0
 mov highBnd, #numElements - 1 // high = 9
 bl quicksort // (theArray, 0, 9)

// Display sorted results:

 lea x0, fmtStr4
 bl printf
 bl printArray

284 Chapter 5

 ldr array, [fp, #am.saveX19]
 ldr lowBnd, [fp, #am.saveX20]
 ldr highBnd, [fp, #am.saveX21]
 leave
 endp asmMain

Here’s the build command and output for Listing 5-13:

$./build Listing5-13
$./Listing5-13
Calling Listing5-13:
Data before sorting:
1
10
2
9
3
8
4
7
5
6

Data after sorting:
1
2
3
4
5
6
7
8
9
10

Listing5-13 terminated

This output shows the contents of the array prior to sorting and after
the quicksort procedure has sorted the array.

	 5.9	 Procedure Pointers and Procedural Parameters
The ARM bl instruction supports an indirect form: blr. This instruction has
the following syntax:

blr reg64 // Indirect call through reg64

This instruction fetches the address of a procedure’s first instruction from
this specified register. It is equivalent to the following pseudo-instructions:

add lr, pc, #4 // Set LR to return address (PC is pointing at mov).
mov pc, reg64 // Transfer control to specified procedure.

Procedures 285

Gas treats procedure names like static objects. Therefore, you can com-
pute the address of a procedure by using the lea macro along with the pro-
cedure’s name. For example

lea x0, procName

loads the address of the very first instruction of the procName procedure into
X0. The following code sequence winds up calling the procName procedure:

lea x0, procName
blr x0

Because the address of a procedure fits in a 64-bit object, you can store
such an address into a double-word variable; in fact, you can initialize a
double-word variable with the address of a procedure by using code like the
following:

 proc p
 .
 .
 .
 endp p
 .
 .
 .
 .data
ptrToP:
 .dword p
 .
 .
 .
 lea x0, ptrToP
 ldr x0, [x0]
 blr x0 // Calls p if ptrToP has not changed

Note that although macOS does not allow you to initialize a dword vari-
able in the .text section with the address of an object outside the .text sec-
tion, it will allow you to initialize a pointer (in any section) with the address
of some code within the .text section.

As with all pointer objects, you should not attempt to indirectly call a
procedure through a pointer variable unless you’ve initialized that variable
with an appropriate address. You can initialize a procedure pointer variable
in two ways: you can create dword variables with initializers in the .data,
.text, and .rodata sections, or you can compute the address of a routine
(as a 64-bit value) and store that 64-bit address directly into the procedure
pointer at runtime. The following code fragment demonstrates both ways to
initialize a procedure pointer:

 .data
ProcPointer: .dword p // Initialize ProcPointer with
 // the address of p.

286 Chapter 5

 .
 .
 .
 lea x0, ProcPointer
 ldr x0, [x0]
 blr x0 // First invocation calls p.

// Reload ProcPointer with the address of q:

 lea x0, q
 lea x1, ProcPointer
 str x0, [x1]
 .
 .
 .
 lea x0, ProcPointer
 ldr x0, [x0]
 blr x0 // This invocation calls q.

Although all the examples in this section use static variable declarations
(.data, .text, .bss, and .rodata), you aren’t limited to declaring simple proce-
dure pointers in the static variable declaration sections. You can also declare
procedure pointers (which are just dword variables) as local variables, pass
them as parameters, or declare them as fields of a record or a union.

Procedure pointers are also invaluable in parameter lists. Selecting
one of several procedures to call by passing the address of a procedure is a
common operation. A procedural parameter is just a double-word parameter
containing the address of a procedure, so passing a procedural parameter
is really no different from using a local variable to hold a procedure pointer
(except, of course, that the caller initializes the parameter with the address
of the procedure to call indirectly).

	 5.10	 A Program-Defined Stack
Using the pre- and post-indexed addressing modes, along with one of the
ARM’s 64-bit registers, it is possible to create software-controlled stacks that
don’t use the SP register. Since the ARM CPU provides a hardware stack
pointer register, it may not be obvious why you’d consider using another
stack. As you’ve learned, one limitation of the ARM’s hardware stack is that
it must be 16-byte aligned at all times. Return addresses and other values
you might want to preserve on the stack are generally 8 bytes or smaller. For
example, you cannot push the LR register onto the stack by itself without
causing a bus error fault. However, if you create your own stack, you won’t
have this issue.

Perhaps you’re wondering why anyone would ever want to use a second
stack in their programs. If the normal hardware stack works fine, why add the
complexity of a second stack? Having two stacks is useful in several situations.
Particularly, coroutines, generators, and iterators can make use of an extra
stack pointer. See section 5.12, “For More Information,” on page 290 for a
Wikipedia link on this subject. Of course, as just pointed out, not having to

Procedures 287

16-byte align the stack pointer is another good reason for using a program-
defined stack.

Creating your own stack has two drawbacks: you must dedicate one of
the ARM’s registers for this purpose, and you must explicitly allocate stor-
age for that stack yourself (the OS automatically allocates the hardware
stack when it runs your program).

You can easily allocate storage in the .data segment. A typical stack will
have at least 128 to 256 bytes of storage. The following is a simple example
that allocates a 256-byte stack:

 .data
smallStk: .fill 256
endSmallStk:

You may need more than 256 bytes of storage if you use automatic
variables in your procedures; see section 5.4.1, “Activation Records,” on
page 244 and section 5.5, “Local Variables,” on page 250.

Normally, stacks start at the end of their allocated space in memory and
grow downward toward smaller memory addresses. Having the endSmallStk
label at the end of the stack in this example gives you a handle with which
to initialize your stack pointer.

Because the ARM uses SP for its hardware stack pointer, you must use
a different register for your program-defined stack pointer. This needs to
be a nonvolatile register—you don’t want a function call like printf() to
mess with your stack. As X30 is already used for LR and X29 is reserved for
FP (see Chapter 1), X28 is a good choice for a user-defined stack pointer
(USP). You can initialize it to point at the end of smallStk as follows:

#define usp x28 // Use a reasonable name for the user SP.
 .
 .
 .
 lea usp, endSmallStk

This leaves USP pointing just beyond the end of the stack, which is
exactly what you want; the stack pointer should point at the current top of
the stack, and when the stack is empty, as it is after initialization, the stack
pointer isn’t pointing at a valid stack address.

To push and pop data on the stack, use the same str and ldr instruc-
tions, along with the pre-indexed and post-indexed addressing modes, just
as you would with the hardware stack. The only differences are that you
specify the USP register (X28) and you don’t have to keep the stack aligned
to 16 bytes (in fact, you technically don’t have to keep it aligned to any-
thing, but it will be faster if you keep it word or dword aligned). Here’s how
you can push the LR register into the user stack and pop it off:

str lr, [usp, #-8]! // Pre-decrement addressing mode
 .
 .
 .

288 Chapter 5

ldr lr, [usp], #8 // Post-increment addressing mode
ret

Listing 5-14 is a rewrite of Listing 5-4 using a software stack.

// Listing5-14.S
//
// Demonstrating a software stack

#include "aoaa​.inc"

#define usp x28 // Program-defined stack pointer

stackSpace = 64 // Space on the HW stack
saveLRUSP = 48 // 16 bytes to hold LR and USP

 .section .rodata, ""
ttlStr: .asciz "Listing 5-14"
space: .asciz " "
asterisk: .asciz "*, %ld\n"

 .data
loopIndex: .dword .-. // Used to print loop index value

// Here's the software-based stack this program will use
// to store return addresses and the like:

 .align 3
smallStk: .fill 256, .-.
endSmallStk:

 .code
 .extern printf

// getTitle
//
// Return program title to C++ program.

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// print40Spaces
//
// Prints out a sequence of 40 spaces
// to the console display

 proc print40Spaces
 1 stp lr, x19, [usp, #-16]! // Preserve LR and X19.

 mov w19, #40
printLoop: lea x0, space
 bl printf

Procedures 289

 subs w19, w19, #1
 bne printLoop // Until w19 == 0

 2 ldp lr, x19, [usp], #16 // Restore LR and X19.
 ret
 endp print40Spaces

// Here is the asmMain function:

 proc asmMain, public
 3 sub sp, sp, #stackSpace // HW stack space
 stp lr, usp, [sp, #saveLRUSP] // Save on HW stack.

 4 lea usp, endSmallStk // Initialize USP.
 5 str x19, [usp, #-16]! // Save X19 on SW stk.

 mov x19, #20
astLp: bl print40Spaces
 lea x0, loopIndex
 str x19, [x0]
 lea x0, asterisk
 vparm2 loopIndex
 bl printf
 subs x19, x19, #1
 bne astLp

 6 ldr x19, [usp], #16 // Restore from SW stack.
 7 ldp lr, usp, [sp, #saveLRUSP]
 add sp, sp, #stackSpace
 ret // Returns to caller
 endp asmMain

Upon entry into print40Spaces, the code pushes LR and X19 onto the
software stack 1, using an stp instruction to save both registers at the same
time. The pre-indexed addressing mode decrements USP by 16; then this
instruction stores the two 8-bit registers on the software stack. Just before
returning, print40Spaces restores the LR and X19 registers from the software
stack 2, using an lpd instruction and the post-indexed addressing mode.

Although this program demonstrates using a software-controlled stack,
it must still use the hardware stack for a couple of purposes. In particular,
the printf() function will push its return address (and parameters, as it
turns out) onto the hardware stack. Therefore, the main program sets up
storage space on the hardware stack for this purpose 3. The program must
also preserve the USP register (X28) before initializing it to point at the
end of the smallStack data area. The space just allocated on the hardware
stack is the perfect place for this. As long as the code is saving USP there, it
may as well save LR at the same time, since you must always write 16 bytes to
the hardware stack.

Once the code has preserved USP’s value (because it is a nonvolatile
register), the next step is to initialize USP with the address of the end of
the smallStack memory buffer 4. Loading the address of endSmallStk into

290 Chapter 5

USP accomplishes this. Once the stack is initialized, the code can use it; for
example, this statement pushes nonvolatile register X19 onto the software
stack 5 (to preserve it for the C++ program).

Before leaving, the code pops the X19 nonvolatile register off the soft-
ware stack to restore its value 6. Finally, the main program restores USP
and LR from the hardware stack (and cleans up allocated storage) before
returning to the C++ code 7.

Just to prove it really works, here’s the build command and sample out-
put for the program in Listing 5-14:

$./build Listing5-14
$./Listing5-14
Calling Listing5-14:
 *, 20
 *, 19
 *, 18
 *, 17
 *, 16
 *, 15
 *, 14
 *, 13
 *, 12
 *, 11
 *, 10
 *, 9
 *, 8
 *, 7
 *, 6
 *, 5
 *, 4
 *, 3
 *, 2
 *, 1
Listing5-14 terminated

As you can see, Listing 5-14 produces the same output as Listing 5-4.

	 5.11	 Moving On
This chapter covered considerable material, including an introduction to
assembly language programming style, basic Gas procedure syntax, local
labels, calling and returning from procedures, register preservation, acti-
vation records, function results, and more. Armed with this information,
you’re ready to learn how to write functions that calculate arithmetic results
in the next chapter.

	 5.12	 For More Information
•	 For more details on the Creative Commons 4.0 Attribution license, see

https://creativecommons​.org​/licenses​/by​/4​.0​/.

https://creativecommons.org/licenses/by/4.0/

Procedures 291

•	 The ARM developer site has more on the AARCH64 (ARM64) calling
convention and ABI at https://github.com/ARM-software/abi-aa/releases.

•	 Wikipedia provides a useful entry on coroutines, generators, and itera-
tors at https://en​.wikipedia​.org​/wiki​/Coroutine.

T ES T YOURSEL F

	 1.	 Explain, step by step, how the bl instruction works.

	 2.	 Explain, step by step, how the ret instruction works.

	 3.	 What is the main disadvantage of caller preservation?

	 4.	 What is the main problem with callee preservation?

	 5.	 What is an activation record?

	 6.	 What register usually points at an activation record, providing access to
the data in that record?

	 7.	 What is the standard entry sequence for a procedure (the instructions)?

	 8.	 What is the standard exit sequence for a procedure (the instructions)?

	 9.	 What is an automatic variable?

10.	 When does the system allocate storage for an automatic variable?

11.	 What value does a pass-by-value parameter pass to a function?

12.	 What value does a pass-by-reference parameter pass to a function?

13.	 When passing four integer parameters to a function, where does the ARM
ABI state those parameters are to be passed?

14.	 When passing more than eight parameters to a function, where does the
ARM ABI state the parameters will be passed?

15.	 What is the difference between a volatile and nonvolatile register in the
ARM ABI?

16.	 Which registers are volatile in the ARM ABI?

17.	 Which registers are nonvolatile in the ARM ABI?

18.	 When passing parameters in the code stream, how does a function access
the parameter data?

19.	 What is the best way to pass a large array to a procedure?

20.	 Where is the most common place to return a function result?

21.	 What is a procedural parameter?

22.	 How would you call a procedure passed as a parameter to a function/
procedure?

23.	 If a procedure has local variables, what is the best way to preserve regis-
ters within that procedure?

https://github.com/ARM-software/abi-aa/releases
https://en.wikipedia.org/wiki/Coroutine

This chapter discusses arithmetic computa-
tion in assembly language, including floating-

point arithmetic on the ARM processor and
architectural support for real arithmetic. By the

end of this chapter, you should be able to translate
arithmetic expressions and assignment statements from
HLLs like Pascal, Swift, and C/C++ into ARM assem-
bly language. You’ll learn to pass floating-point values
as parameters to procedures and return real values as
function results.

	 6.1	 Additional ARM Arithmetic Instructions
Before learning to encode arithmetic expressions in assembly language, you
should learn the rest of the arithmetic instructions in the ARM instruction

6
A R I T H M E T I C

294 Chapter 6

set. Previous chapters have covered most of the arithmetic and logical
instructions, so this section covers the remaining few.

6.1.1  Multiplication
Chapter 4 provided a brief introduction to multiplication with the mul and
madd instructions. As a reminder, those instructions are as follows:

mul Xd, Xs1, Xs2 // Xd = Xs1 * Xs2
madd Xd, Xs1, Xs2, Xs3 // Xd = Xs1 * Xs2 + Xs3

As long as overflow doesn’t occur, these instructions produce correct
results for both unsigned and signed multiplications.

These instructions multiply two 64-bit integers and produce a 64-bit
result. The multiplication of two n-bit numbers can actually produce a
2 × n–bit result, meaning that multiplying two 64-bit registers could pro-
duce up to a 128-bit result. These instructions ignore any overflow and keep
only the LO 64 bits of the product (Chapter 8 discusses how to produce a
full 128-bit result, if you require that).

You can also specify 32-bit registers for these two instructions:

mul Wd, Ws1, Ws2 // Wd = Ws1 * Ws2
madd Wd, Ws1, Ws2, Ws3 // Wd = Ws1 * Ws2 + Ws3

These instructions produce 32-bit results, ignoring any overflow. There
are two additional multiplication instructions: multiply and subtract, and
multiply and negate:

msub Wd, Ws1, Ws2, Ws3 // Wd = Ws1 * Ws2 - Ws3
msub Xd, Xs1, Xs2, Xs3 // Xd = Xs1 * Xs2 + Xs3
mneg Wd, Ws1, Ws2 // Wd = -(Ws1 * Ws2)
mneg Xd, Xs1, Xs2 // Xd = -(Xs1 * Xs2)

As with the previous instructions, these multiplications ignore any over-
flow beyond 32 or 64 bits.

The ARM does not provide multiplication instructions that affect the
condition code flags. These instructions have no s-suffix versions.

6.1.2  Division and Modulo
The ARM64 CPU provides only two division instructions:

sdiv Xd, Xs1, Xs2 // Xd = Xs1 / Xs2 (signed division)
udiv Xd, Xs1, Xs2 // Xd = Xs1 / Xs2 (unsigned division)

Unlike with multiplication, you must use separate instructions for
signed and unsigned integer values.

Division has two special cases that you must consider: division by 0 and
dividing the smallest negative number by –1 (which would, mathemati-
cally, produce an overflow). A division by 0 produces 0 as the result, with no

Arithmetic 295

indication of the problem. A signed division (sdiv) of 0x8000000000000000
(the smallest 64-bit negative number) by 0xFFFFFFFFFFFFFFFF (–1) will
produce the result 0x8000000000000000, also without indication of an error.
You’ll get similar results for the 32-bit division: 0x80000000 / 0xFFFFFFFF.
You must explicitly test for these operands before the division to catch these
errors.

There’s no single instruction to compute the remainder after a division
operation on the ARM64 CPU. You can compute the remainder by combin-
ing a division and a multiplication operation:

mod(x0, x1) = x0 - (x0 / x1) * x1

Alternatively, you can compute the same result by using the following
two instructions:

udiv x2, x0, x1
msub x3, x2, x1, x0

After this sequence, X2 and X3 hold the following values

x2 = x0 / x1
x3 = x0 % x1 // % is C modulo (remainder) operator.

thus providing the modulo in X3.

6.1.3  cmp Revisited
As noted in section 2.10.4, “cmp and Corresponding Conditional Branches,”
on page 78, the cmp instruction updates the ARM’s flags according to the
result of the subtraction operation (LeftOperand - RightOperand). Based on
the way the ARM sets the flags, you can read this instruction as “compare
LeftOperand to RightOperand.” You can test the result of the comparison by
using conditional branch instructions (see Chapter 2 for the conditional
branches or Chapter 7 for more on control structure implementations).

A good place to start when exploring cmp is to look at exactly how it
affects the flags. Consider the following cmp instruction:

cmp w0, w1

This instruction performs the computation W0 – W1 and sets the flags
depending on the result of the computation. The flags are set as follows:

Z ​  ​The zero flag is set if and only if W0 = W1. This is the only time
W0 – W1 produces a zero result. Hence, you can use the zero flag to test
for equality or inequality.

N ​  ​The negative (sign) flag is set to 1 if the result is negative. You
might think this flag would be set if W0 is less than W1, but this isn’t
always the case. If W0 = 0x7FFFFFFFh and W1 = –1 (0xFFFFFFFF), then
subtracting W1 from W0 produces 0x80000000, which is negative (so

296 Chapter 6

the negative flag will be set). For signed comparisons, at least, the nega-
tive flag doesn’t contain the proper status. For unsigned operands, con-
sider W0 = 0xFFFFFFFF and W1 = 1. Here, W0 is greater than W1, but
their difference is 0xFFFFFFFEh, which is still negative. As it turns out,
the negative flag and the overflow flag, taken together, can be used for
comparing two signed values.

V ​  ​The overflow flag is set after a cmp operation if the difference of
W0 and W1 produces a signed overflow or underflow. As mentioned
previously, the sign and overflow flags are both used when performing
signed comparisons.

C ​  ​The carry flag is set after a cmp operation if subtracting W1 from W0
requires a borrow (unsigned overflow or underflow). This occurs only
when W0 is less than W1, where W0 and W1 are both unsigned values.

Table 6-1 shows how the cmp instruction affects the flags after compar-
ing to unsigned or signed values.

Table 6-1: Condition Code Settings After cmp

Flag Unsigned result Signed result

Zero (Z) Equality/inequality Equality/inequality

Carry (C) Left ≥ right (C = 1)
Left < right (C = 0)

No meaning

Overflow (V) No meaning See discussion in this section

Sign (N) No meaning See discussion in this section

Given that the cmp instruction sets the flags in this fashion, you can test
the comparison of the two signed operands with the following flags:

cmp Left, Right

For signed comparisons, the N and V flags, taken together, have the fol-
lowing meanings:

•	 If [N != V], then Left < Right for a signed comparison.

•	 If [N == V], then Left ≥ Right for a signed comparison.

To understand why these flags are set in this manner, consider the
32-bit examples in Table 6-2. The values easily sign-extend to 64 bits, and
the results are the same.

Table 6-2: Sign and Overflow Flag Settings After Subtraction (32-Bit Values)

Left Minus Right N V

0xFFFFFFFF (–1) – 0xFFFFFFFE (–2) 0 0

0x80000000 (–2 billion+) – 0x000000001 0 1

0xFFFFFFFE (–2) – 0xFFFFFFFF (–1) 1 0

0x7FFFFFFF (2 billion+) – 0xFFFFFFFF (–1) 1 1

Arithmetic 297

Remember, the cmp operation is really a subtraction; therefore, the
first example in Table 6-2 computes (–1) – (–2), which is +1. The result is
positive, and an overflow did not occur, so both the N and V flags are 0.
Because (N == V), Left is greater than or equal to Right.

The cmp instruction would compute (–2,147,483,648) – (+1), which
is (–2,147,483,649), in the second example. Because a 32-bit signed inte-
ger cannot represent this value, the value wraps around to 0x7FFFFFFF
(+2,147,483,647) and sets the overflow flag. The result is positive (at least as
a 32-bit value), so the CPU clears the negative flag. Because (N == V) here,
Left is less than Right.

In the third example, cmp computes (–2) – (–1), which produces (–1).
No overflow occurred, so the V is 0; the result is negative, so N is 1. Because
(N != V), Left is less than Right.

In the final example, cmp computes (+2,147,483,647) – (–1). This pro-
duces (+2,147,483,648), setting the overflow flag. Furthermore, the value
wraps around to 0x80000000 (−2,147,483,648), so the negative flag is set as
well. Because (N == V) is 0, Left is greater than or equal to Right.

The cmn (compare negative) instruction compares its first source oper-
and against a negated second operand; like cmp, it sets the flags and ignores
the result. It is also, like cmp, an alias for a different instruction, add:

add wzr, Ws1, Ws2
add xzr, Xs1, Xs2

This is because cmp is equivalent to a sub instruction, using WZR/XZR
as the destination register; when comparing a negated value, you get the
expression left – (–right), which is mathematically equivalent to left + right.

Using add as a synonym for cmn has one issue: add doesn’t set the carry flag
properly if the second (right) operand is 0. As a result, you cannot use the
unsigned condition codes (hs, hi, ls, or lo) after a cmn instruction if there is
any possibility that the right operand is 0. This shouldn’t generally be a prob-
lem because, by definition, you are using cmn to compare signed values and
you should be using signed conditionals after the use of the instruction.

Arguably the main reason for the existence of cmn is that Operand2
immediate values must be in the range 0 to 4,095. You cannot compare a
register against a negative immediate value by using the cmp instruction.
The cmn instruction is also limited to constants in the range 0 to 4,095, but
it will negate the immediate value before the comparison, allowing negative
constants in the range –1 to –4,095 (–0 is still 0).

6.1.4  Conditional Instructions
In the original, 32-bit ARM architecture, most of the data manipulation
instructions were conditional. You could execute an instruction, such as
add, conditionally, based on PSTATE condition code flag settings. Alas, the
4 bits required to test the 16 possible conditions (same as the conditional
branch instructions) were needed for other encodings in 64-bit mode.
Nevertheless, condition instruction execution is useful, so the ARM64 kept
a few of the more commonly used condition instructions.

298 Chapter 6

The first condition instruction is csel (conditional select)

csel Wd, Ws1, Ws2, cond // if(cond) then Wd = Ws1 else Wd = Ws2
csel Xd, Xs1, Xs2, cond // if(cond) then Xd = Xs1 else Xd = Xs2

where cond is one of the following condition specifications

cs, cc, eq, ne, mi, pl, vs, vc, hs, hi, ls, lo, gt, ge, lt, le

which have the same meanings as for the conditional branch instructions.
The aoaa​.inc include file provides definitions for the following opposite

conditions:

nhs, nhi, nls, nlo, ngt, nge, nlt, nle

These are synonyms for lo, ls, hi, hs, le, lt, ge, and gt, respectively.
As its name suggests, the csel instruction selects one of the two source

operands to copy into the destination register, based on the current flag
settings. For example, the following instruction

csel x0, x1, x2, eq

copies X1 into X0 if the zero flag is set; otherwise, it copies X2 into X0.
The csinc instruction allows for a conditional select (if true condition)

or increment (if false condition) operation:

csinc Wd, Ws1, Ws2, cond // if(cond) then Wd = Ws1 else Wd = Ws2 + 1
csinc Xd, Xs1, Xs2, cond // if(cond) then Xd = Xs1 else Xd = Xs2 + 1

Using the predefined macro cinc is sometimes more convenient:

cinc Wd, Ws1, cond // csinc Wd, Ws1, Ws1, invert(cond)
cinc Xd, Xs1, cond // csinc Xd, Xs1, Xs1, invert(cond)

That is, cinc increments and copies the source into the destination if
the condition is true; otherwise, it just copies the source without increment-
ing it. Of course, the source and destination registers can be the same if
you simply want to conditionally increment a specific register. Note that the
conditions for the cinc macros are reversed from the csinc instruction.

The next two conditional instructions are csinv and csneg, which condi-
tionally invert or negate values:

csinv Wd, Ws1, Ws2, cond // if(cond) then Wd = Ws1 else Wd = not Ws2
csinv Xd, Xs1, Xs2, cond // if(cond) then Xd = Xs1 else Xd = not Xs2
csneg Wd, Ws1, Ws2, cond // if(cond) then Wd = Ws1 else Wd = -Ws2
csneg Xd, Xs1, Xs2, cond // if(cond) then Xd = Xs1 else Xd = -Xs2

There are also cinv and cneg macros that take only a single source oper-
and (like cinc). The cset and csetm macros are variants of csinc and cinv:

Arithmetic 299

cset Wd, cond // if(cond) then Wd = 1 else Wd = 0
cset Xd, cond // if(cond) then Xd = 1 else Xd = 0
csetm Wd, cond // if(cond) then Wd = -1 else Wd = 0
csetm Xd, cond // if(cond) then Xd = -1 else Xd = 0

The cset macro is equivalent to cinc with WZR or XZR as both source
operands, and csetm is equivalent to cinv with WZR or XZR as the source
operands. These macros are useful for setting a register to a Boolean value
(either true/–1 or false/0) based on the condition codes.

Finally, the ARM also supports two conditional compare instructions,
ccmp and ccmn (conditional compare negative), each with a few forms:

ccmp Wd, Ws, #nzcv4, cond
ccmp Xd, Xs, #nzcv4, cond
ccmp Wd, #imm5, #nzcv4, cond
ccmp Xd, #imm5, #nzcv4, cond
ccmn Wd, Ws, #nzcv4, cond
ccmn Xd, Xs, #nzcv4, cond
ccmn Wd, #imm5, #nzcv4, cond
ccmp Xd, #imm5, #nzcv4, cond

Whereas ccmp compares by subtracting the second operand from the
first, ccmn compares by adding the second operand to the first. These
instructions test the provided condition (cond). If it is false, these instruc-
tions copy the 4-bit immediate value #nzcv4 directly into the condition codes
(bit 3 to N, bit 2 to Z, bit 1 to C, and bit 0 to V).

If the condition specified by cond is true, these instructions compare
the destination register to the source operand (register or 5-bit unsigned
immediate value) and set the condition code bits based on the comparison.
As you’ll see later in this chapter, the conditional comparisons are useful
for evaluating complex Boolean expressions.

	 6.2	 Memory Variables vs. Registers
Before jumping into converting arithmetic expressions into assembly lan-
guage statements, let’s also wrap up the discussion of variables from the last
five chapters. As I’ve pointed out many times, the ARM is based on a load/
store architecture. The ARM has been blessed with many general-purpose
registers that you can use in lieu of memory locations for your more com-
monly used variables. With careful planning, you should be able to keep
most of your often-used variables in registers.

Consider the following C/C++ statement and its conversion to ARM
assembly language:

x = y * z;

// Conversion to ARM assembly if x, y, and z are 32-bit
// memory variables in the .data section:

lea x0, y // Remember, lea expands to two instructions.
ldr w0, [x0]

300 Chapter 6

lea x1, z
ldr w1, [x1]
mul w0, w0, w1
lea x1, x
str w0, [x1]

If you keep x, y, and z in registers W19, W20, and W21, respectively, the
translation of that expression into assembly language would be

mul x19, x20, x21

which is one-tenth the size and much faster than the conversion just given.
On RISC CPUs like the ARM, it’s a much better idea to keep variables

in registers rather than in memory. Your job as an assembly language pro-
grammer is to carefully choose the variables you keep in registers versus
the (less often used) values you will have to maintain in memory. You can
do this by counting the number of times you access a variable during execu-
tion and keep the most-frequently accessed variables in registers, leaving
the least-frequently accessed variables in memory.

6.2.1  Volatile vs. Nonvolatile Register Usage
If you are adhering to the ARM ABI in your assembly code, you must also
be cognizant of the difference between volatile and nonvolatile registers
in your procedures. Using nonvolatile registers has a cost: if you modify a
nonvolatile register’s value, you must preserve the register’s original value
within a procedure. This generally involves allocating storage in the proce-
dure’s activation record, storing the nonvolatile register’s value on entry to
the procedure, and restoring the register’s value before returning.

Using volatile registers means you’re spared the expense and storage
required to preserve them. However, volatile registers may have their con-
tents disturbed if you make calls to other procedures, which aren’t known
to explicitly preserve the volatile registers. Because it is the caller’s respon-
sibility to preserve any volatile register contents across other function calls,
you may as well use a nonvolatile register (assuming one is available) if
you’re making calls to other functions within your procedures.

This assumes, of course, that the functions you’re calling adhere to the
ARM ABI conventions. If, for example, you’re calling assembly language
functions that preserve all register values they modify, you don’t have to
worry about preserving those registers, even if the ARM ABI considers
them volatile.

6.2.2  Global vs. Local Variables
If you have to use memory—because you don’t have sufficient register
resources available or because you have a large data structure to manipu-
late that won’t fit in registers—you can locate the variables you must

Arithmetic 301

maintain in memory. You can put them in either a global, static data section
(such as .data, .bss, and so on) or in an activation record you’ve created for
your current procedure.

When you learned to program in an HLL, you were probably taught
to avoid using global variables in your programs. That advice applies even
more in ARM assembly language, especially when programming under
macOS. Under macOS, as you’ve seen many times, accessing global data
is more expensive than accessing local data in an activation record. To
fetch a 32-bit variable from global (.data) memory requires code such as
the following:

lea x0, globalVariable // Remember, this is two instructions.
ldr w0, [x0]

Fetching data from a local variable takes only a single instruction
(assuming the variable’s offset into the activation record is relatively small):

ldr w0, [fp, #localVariable]

That means accessing local variables takes one-third the number of
instructions it takes to access global variables.

Of course, if you’re running under Linux and don’t need your assembly
code to run under macOS as well, you can also access global variables by
using a single instruction and the PC-relative addressing mode:

ldr w0, globalVariable

Just keep in mind that the data must sit within ±1MB of this instruction.
Blowing past this limit is pretty easy when writing larger applications.

Local variables are not without their own limitations. In general, the
activation record has a limit of about ±256 bytes of storage, a little more if
you can use the scaled-indirect-plus-offset addressing mode with half-word,
word, and double-word variables. Fortunately, you’ll rarely surpass that
number of bytes of scalar (non-array/nonstructure) variables in a single pro-
cedure. If you do require more space, you’ll have to compute the effective
address of the variable within the activation record, which winds up taking
as many instructions as accessing global variables.

6.2.3  Easy Access to Global Variables
To make it just as easy to access global variables in a .data or .bss section as
it is to access local variables within an activation record, you can create a
static activation record. Local variables are easy to access because you use
the indirect-plus-offset (or scaled indirect-plus-offset) addressing mode to
index off the FP register. What if you had the equivalent of FP pointing into
a static data section? Although the ARM doesn’t provide an SB (static base)
register, nothing is stopping you from creating your own:

#define SB X28

302 Chapter 6

I chose to use X28 in this example, since it’s a nonvolatile register in the
ARM ABI and is right below the FP (X29) register.

Listing 6-1 demonstrates using the SB register (X28) to efficiently
access global variables.

// Listing6-1.S
//
// Demonstrate using X28 as a "static base"
// register to conveniently access global
// variables.

 #include "aoaa​.inc"

#define sb X28 // Use X28 for SB register.

// Declaration of global variables:

 struct globals_t
 word g1
 dword g2
 hword g3
 byte g4,128
 ends globals_t

 .data

 globals_t globals // Global variables go here.

 .text
 .pool
ttlStr: wastr "Listing 6-1"

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

 proc asmMain, public

 locals am
 dword saveSB // Save X28 here.
 byte stackSpace, 64 // Generic stack space
 endl am

 enter am.size // Reserve space for locals.
 str sb, [fp, #saveSB] // Preserve SB register.
 lea sb, globals // Initialize with address.

 mov w0, #55 // Just demonstrate the
 str w0, [sb, #g1] // use of the static
 add x0, x0, #44 // base record in the
 str x0, [sb, #g2] // .data section.

Arithmetic 303

 and w0, w0, #0xff
 strh w0, [sb, #g3]

 ldr sb, [fp, #saveSB] // Restore SB register.
 leave // Return to caller.
 endp asmMain

Keep in mind that the [sb, #offset] addressing mode is limited to
±256 bytes (or up to 1KB when using the scaled indirect-plus-offset modes),
so it’s best to keep nonscalar (composite) variables outside the static record.

As written, the globals record in Listing 6-1 provides access to only
256 bytes of storage (because all the struct field offsets are positive or 0).
The following declaration starts the offsets at –256, providing an additional
256 bytes of storage in the static record:

struct globals_t, -256
word g1
dword g2
hword g3
byte g4,128
ends globals_t

However, if you do this, you must adjust the value you load into SB
appropriately, as shown here

lea sb, globals+256 // Initialize with address.

so that SB will point into the correct place in the globals_t structure.

	 6.3	 Arithmetic Expressions
The biggest shock to beginners facing assembly language for the first time
will likely be the lack of familiar arithmetic expressions. Arithmetic expres-
sions in most HLLs look similar to their algebraic equivalents. For example,
in C you could write the following algebraic-like statement:

x = y * z;

In assembly language, you’ll need several statements to accomplish this
same task if these variables are sitting in memory locations (assume they’re
local variables):

ldr w0, [fp, #y]
ldr w1, [fp, #z]
mul w0, w0, w1
str w0, [fp, #x]

// If you can keep x, y, and z in registers:

mul x0, x1, x2 // Assume x = X0, y = X1, and z = X2.

304 Chapter 6

Obviously, the HLL version is much easier to type, read, and under-
stand. Although a lot of typing is involved, converting an arithmetic expres-
sion into assembly language isn’t difficult. By attacking the problem in
steps, the same way you would solve the problem by hand, you can easily
break any arithmetic expression into an equivalent sequence of assembly
language statements.

6.3.1  Simple Assignments
The easiest expressions to convert to assembly language are simple assign-
ments, which copy a single value into a variable and take one of two forms:

variable = constant

or

var1 = var2

If your variables are sitting in registers, converting these statements to
assembly language is simple:

mov variable, #constant // Assumption: constant fits in 16 bits.
mov var1, var2

This mov instruction copies the source constant or register into the des-
tination register.

If the constant is too large, you’ll either have to use the movk sequence
(see section 2.20.2, “movk,” on page 112) or the constant form of ldr:

ldr register, =constant

If the source variable is in memory, you must use the ldr instruction to
fetch the data from memory, as shown in the following examples:

ldr register, [fp, #offset] // Assuming a local variable
ldr register, [sb, #offset] // Assuming variable is in static record

lea reg64, GlobalVariable // Global variable in arbitrary memory
ldr register, [reg64]

If the destination is a memory variable, you must first load the source
variable or constant into a register (if it isn’t already in a register) and use
the str instruction to store the value into the memory variable:

str register, [fp, #offset]
str register, [sb, #offset]

lea reg64, GlobalVariable
str register, [reg64]

Arithmetic 305

Clearly, the most efficient code occurs when both variables are in a reg-
ister or the destination is a register and the source value is a small constant,
in which case a single mov instruction suffices.

6.3.2  Simple Expressions
The next level of complexity is a simple expression, which takes the form

var1 = term1 op term2;

where var1 is a variable, term1 and term2 are variables or constants, and op is
an arithmetic operator (addition, subtraction, multiplication, and so on).
Most expressions take this form. It should come as no surprise, then, that
the ARM architecture was optimized for just this type of expression.

Assuming var1, term1, and term2 are all in registers, a typical conversion
for this type of expression takes the form

op var1, term1, term2

where op is the mnemonic that corresponds to the specified operation (for
example, + is add, – is sub, and so forth).

Note that the simple expression

var1 = const1 op const2;

is easily handled with a compile-time expression and a single mov instruc-
tion. For example, to compute

var1 = 5 + 3;

you would use the single instruction:

mov var1, #5 + 3

If term2 is a (small enough) constant, you can typically use an instruc-
tion of the following form:

op var1, term1, #constant

Exceptions exist, however. Certain instructions, such as mul and udiv/
sdiv, do not allow immediate operands. In such cases, you’ll need to use the
two instructions

mov someReg, #constant
op var1, term1, someReg

where someReg is an available temporary register.

306 Chapter 6

If term1 is a constant and term2 is a register, you can get away with sim-
ply swapping the two source operands in the instruction for commutative
operations. For example

x0 = 25 + x1;

becomes this:

add x0, x1, #25

For noncommutative operations, such as subtraction and division, this
scheme doesn’t work. You may have to load the constant into a register prior
to the operation.

Of course, if the constant is too large (generally 12 bits for arithmetic
instructions), you’ll have to first load that constant into a register by using
the mov, movk, or ldr instructions.

If your terms are memory variables rather than registers (or constants),
you will need to use the ldr instruction to move the memory variable(s) into
register(s) prior to the operation. Likewise, if the destination variable is in
memory, you will have to use a str instruction to store the value after the
operation is complete. For example

x = y + z; // x, y, and z are all 32-bit memory variables.

becomes this:

ldr w0, [fp, #y] // Assuming y is a local variable
ldr w1, [sb, #z] // Assuming z is in the static base record
add w2, w0, w1
lea x3, globalVar // Assuming globalVar is a global variable
str w2, [x3] // in the .data section

Here are some examples of common simple expressions (assume x, y,
and z are in W0, W1, and W2):

// x = y + z; // Signed or unsigned

 add w0, w1, w2

// x = y - z; // Signed or unsigned

 sub w0, w1, w2

// x = y * z; // Signed or unsigned

 mul w0, w1, w2

// x = y / z; // Unsigned div

 udiv w0, w1, w2

Arithmetic 307

// x = y / z; // Signed div

 sdiv w0, w1, w2

// x = y % z; // Unsigned remainder

 udiv x0, x1, x2
 msub x0, x0, x2, x1

// x = y % z; // Signed remainder

 sdiv x0, x1, x2
 msub x0, x0, x2, x1

If any of the operands are memory variables, you will first have to load
them into registers by using the ldr instruction. If any operands are con-
stants, follow the guidelines from the previous section.

6.3.3  Complex Expressions
A complex expression is any arithmetic expression involving more than two
terms and one operator. Such expressions are commonly found in pro-
grams written in an HLL. Complex expressions may include parentheses
to override operator precedence, function calls, array accesses, and so on.
This section outlines the rules for converting such expressions.

Complex expressions that are easy to convert to assembly language
involve three terms and two operators. Here’s an example:

w = w - y - z;

Clearly, the straightforward assembly language conversion of this state-
ment requires two sub instructions. However, even with an expression as
simple as this, the conversion is not trivial. You can convert the preceding
statement into assembly language in two ways (assume w is in W0, y is in W1,
and z is in W2):

sub w0, w0, w1
sub w0, w0, w2

or

sub w3, w1, w2
sub w0, w0, w3

Both methods can produce different results, with the first conversion
largely adhering to C language semantics. The problem is associativity. The
second sequence in the preceding example computes w = w - (y - z), which
is not the same as w = (w - y) - z. The placement of the parentheses around
the subexpressions can affect the result.

308 Chapter 6

Precedence, the order in which operations occur, is another issue.
Consider this expression:

x = w * y + z;

Once again, you can evaluate this expression in one of two ways:

x = (w * y) + z;

or

x = w * (y + z);

By now, you’re probably thinking that this explanation is crazy—
everyone knows the correct way to evaluate these expressions is to use the
former form. However, this isn’t always correct. The APL programming
language, for example, evaluates expressions solely from right to left and
does not give one operator precedence over another. The “correct” method
depends entirely on how you define precedence in your arithmetic system.

Consider this expression:

x op1 y op2 z

If op1 takes precedence over op2, this evaluates to (x op1 y) op2 z. Otherwise,
if op2 takes precedence over op1, the expression evaluates to x op1 (y op2 z).
Depending on the operators and operands involved, these two computations
could produce different results.

Most HLLs use a fixed set of precedence rules to describe the order
of evaluation in an expression involving two or more different operators.
Such programming languages usually compute multiplication and division
before addition and subtraction. Those that support exponentiation (for
example, FORTRAN and BASIC) usually compute that before multiplica-
tion and division. These rules are intuitive because most people learn them
before high school.

When converting expressions into assembly language, you must be sure
to compute the subexpression with the highest precedence first. The fol-
lowing example demonstrates this technique (assuming multiplication has
higher precedence than addition):

// w = x + y * z; // Assume w = W0, x = W1, y = W2, and z = W3.

mul w4, w2, w3 // W4 = W2 * W3
add w0, w1, w4 // W0 = W1 + (W2 * W3)

If two operators appearing within an expression have the same prece-
dence, use the associativity rules to determine the order of evaluation. Most
operators are left-associative, meaning that they evaluate from left to right.
Addition, subtraction, multiplication, and division are all left-associative.
A right-associative operator evaluates from right to left. The exponentiation

Arithmetic 309

operator in FORTRAN is a good example of a right-associative operator.
For instance:

2**2**3

is equal to

2**(2**3)

not

(2**2)**3

The precedence and associativity rules determine the order of evalua-
tion. Indirectly, these rules tell you where to place parentheses in an expres-
sion to determine the order of evaluation. Of course, you can always use
parentheses to override the default precedence and associativity. However,
the ultimate point is that your assembly code must complete certain opera-
tions before others to correctly compute the value of a given expression.
The following examples demonstrate this principle:

// w = x - y - z // Assume w = W0, x = W1, y = W2, and z = W3.

sub w0, w1, w2 // Evaluate from left to right.
sub w0, w0, w3 // W0 = (x - y) - z

// w = x + y * z

mul w0, w2, w3 // Must compute y * z first.
add w0, w0, w1 // W0 = (W2 * W3) + W1 (commutative)

or, even better

madd w0, w2, w3, w1 // W0 = (W2 * W3) + W1

// w = x / y - z

sdiv w0, w1, w2 // Division has highest precedence.
sub w0, w0, w3 // W0 = (W1 / W2) - W3

// w = x * y * z

mul w0, w1, w2 // Commutative, so order doesn't matter.
mul w0, w0, w3

The associativity rule has one exception: if an expression involves mul-
tiplication and division, it is generally better to perform the multiplication
first. For example, given an expression of the form

w = x / y * z; // Note: this is (x / y) * z, not x / (y * z).

310 Chapter 6

it is usually better to compute x * z and then divide the result by y, rather
than dividing x by y and multiplying the quotient by z. Doing the multiplica-
tion first increases the accuracy of the computation. Remember, (integer)
division often produces an inexact result. For example, if you compute 5 / 2,
you will get the value 2, not 2.5. Computing (5 / 2) × 3 produces 6. However,
computing (5 × 3) / 2 gives you the value 7, which is a little closer to the real
quotient (7.5).

Therefore, if you encounter an expression of the form

w = x / y * z; // Assume w = W0, x = W1, y = W2, and z = W3.

you can usually convert it to the following assembly code:

mul w0, w1, w3 // w = x * z
sdiv w0, w0, w2 // w = (x * z) / y

If the multiplication will likely produce an overflow, computing the
division operation first may be better.

If the algorithm you’re encoding depends on the truncation effect of
the division operation, you cannot use this trick to improve the algorithm.
The moral of the story is that you should always make sure you fully under-
stand any expression you are converting to assembly language. If the seman-
tics dictate that you must perform the division first, do so.

Consider the following statement:

w = x - y * z; // Assume w = W0, x = W1, y = W2, and z = W3.

Because subtraction is not commutative, you cannot compute y * x
and then subtract x from this result. Rather than use a straightforward
multiplication-and-subtraction sequence, you’ll have to use a temporary
register to hold the product. For example, the following two instructions
use W4 as a temporary:

mul w4, w2, w3 // temp = y * z
sub w0, w1, w4 // w = x - (y * z)

As your expressions increase in complexity, the need for temporaries
grows. Consider the following C statement:

w = (a + bb) * (y + z);

Following the normal rules of algebraic evaluation, compute the subex-
pressions inside the parentheses first (that is, the two subexpressions with
the highest precedence) and set their values aside. When you’ve computed
the values for both subexpressions, you can compute their product. One
way to deal with a complex expression like this is to reduce it to a sequence
of simple expressions whose results wind up in temporary variables. For
example, you can convert the preceding single expression into the follow-
ing sequence:

Arithmetic 311

temp1 = a + bb;
temp2 = y + z;
w = temp1 * temp2;

Since converting simple expressions to assembly language is easy, it’s
now a snap to compute the former complex expression in assembly, as
shown in the following code:

// Assume w = W0, y = W1, z = W2, a = W3, and bb = W4.

add w5, w3, w4 // temp1 (W5) = a + bb
add w6, w1, w2 // temp2 (W6) = y + z
mul w0, w5, w6 // w = temp1 * temp2

Here’s yet another example of a complex arithmetic conversion:

x = (y + z) * (a - bb) / 10;

You can convert this to a set of four simple expressions:

temp1 = (y + z)
temp2 = (a - bb)
temp1 = temp1 * temp2
x = temp1 / 10

You can convert these four expressions into the following assembly lan-
guage statements:

// Assume x = W0, y = W1, z = W2, a = W3, and bb = W4.

add w5, w1, w2 // temp1 (W5) = y + z
sub w6, w3, w4 // temp2 (W6) = a - bb
mul w5, w5, w6 // temp1 = temp1 * temp2
mov w6, #10 // Need a temp to hold constant 10.
sdiv w0, w5, w6 // x = temp1 / 10

Most important, make sure you keep temporary values in registers for
efficiency. Use memory locations to hold temporaries only if you’ve run out
of registers.

In short, as you’ve seen, converting a complex expression to assembly
language is a little different from solving the expression by hand. Instead of
computing the result at each stage of the computation, you write the assem-
bly code that computes the result.

6.3.4  Commutative Operators
If op represents an operator, that operator is commutative if the following
relationship is always true:

(A op B) = (B op A)

312 Chapter 6

As you learned in the previous section, commutative operators are
easy to translate because the order of their operands is immaterial, which
lets you rearrange a computation, often making it easier or more efficient.
Often, rearranging a computation allows you to use fewer temporary vari-
ables. Whenever you encounter a commutative operator in an expression,
check whether you can use a better sequence to improve the size or speed
of your code.

Table 6-3 lists the commutative operators typically found in HLLs.

Table 6-3: Commutative Dyadic (Two-Operand) Operators

Pascal C/C++ and similar Description

+ + Addition

* * Multiplication

and && or & Logical or bitwise AND

or || or | Logical or bitwise OR

xor ^ Logical or bitwise exclusive-OR

= == Equality

<> != Inequality

Table 6-4 lists many of the noncommutative operators.

Table 6-4: Noncommutative Dyadic Operators

Pascal C/C++ and similar Description

- - Subtraction

/ or div / Division

mod % Remainder (modulo)

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal

If you encounter any other operator types, check the associated HLL
definition for the operators to determine whether they are commutative or
noncommutative and determine their precedence and associativity.

	 6.4	 Logical Expressions
Consider the following logical (Boolean) expression from a C/C++ program:

bb = ((x == y) && (a <= c)) || ((z - a) != 5);

Here, bb is a Boolean variable, and the remaining variables are all integers.

Arithmetic 313

Though it takes only a single bit to represent a Boolean value, most
assembly language programmers allocate a whole byte or even a word to
represent Boolean variables. Most programmers (and, indeed, some pro-
gramming languages like C) choose 0 to represent false and anything else
to represent true. Some people prefer to represent true and false with 1
and 0, respectively, and not allow any other values. Others select all 1 bits
(0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF, 0xFFFF, or 0xFF) for true and
0 for false. You could also use a positive value for true and a negative value
for false.

All these mechanisms have their advantages and drawbacks. Using
only 0 and 1 to represent false and true offers two big advantages. First, the
cset instruction produces this result, so this scheme is compatible with that
instruction. Second, the ARM logical instructions (and, orr, eor, and, to a
lesser extent, mvn) operate on these values exactly as you would expect. If
you have two Boolean variables a and bb, the following instructions perform
the basic logical operations on these two variables:

// d = a AND bb; // Assume d = W0, a = W1, and bb = W2.

and w0, w1, w2

// d = a || bb;

orr w0, w1, w2

// d = a XOR bb;

eor w0, w1, w2

// bb = NOT a;
//
// (NOT 0) does not equal 1.
// The AND instruction corrects this problem.

mvn w2, w1
and w2, w2, #1

// Here's an alternative solution (for NOT) using EOR:

eor w2, w1, #1 // Inverts bit 0

The mvn instruction will not properly compute logical negation. The bit-
wise NOT of 0 is 0xFF (assuming a byte value), and the bitwise NOT of 1 is
0FEh. Neither result is 0 or 1. However, ANDing the result with 1 gives you
the proper result. You can implement the NOT operation more efficiently
by using the eor instruction (as shown in the last eor example just given)
because it affects only the LO bit.

Using 0 for false and anything else for true has a lot of subtle advan-
tages. The test for true or false is often implicit in the execution of any
logical instruction. However, this mechanism has a major downside: you

314 Chapter 6

cannot always use the ARM and, orr, eor, and mvn instructions to implement
the Boolean operations of the same name. Consider the two values 0x55
and 0xAA. They’re both nonzero, so they both represent the value true.
However, if you logically AND 0x55 and 0xAA together using the ARM
and instruction, the result is 0. True AND true should produce true, not
false. Although you can account for situations like this, it usually requires
a few extra instructions and is somewhat less efficient when computing
Boolean operations.

A system that uses nonzero values to represent true and 0 to represent
false is an arithmetic logical system. A system that uses two distinct values like
0 and 1 to represent false and true is called a Boolean logical system, or simply
a Boolean system. You can use either system as convenient. Consider this
Boolean expression:

bb = ((x == y) and (a <= d)) || ((z - a) != 5);

The resulting simple expressions might be as follows:

// Assume bb = W0, x = W1, y = W2, a = W3, d = W4, and z = W5.

cmp w1, w2
cset w6, eq // temp1 (W6) = x == y

cmp w3, w4
cset w7, le // temp2 (W7) = a <= d
and w6, w6, w7 // temp1 = (x == y) && (a <= d)

sub w7, w5, w3 // temp2 = z - a
cmp w7, #5
cset w7, ne // temp2 = (z - a) != 5

orr w0, w6, w7 // W0 = temp1 || temp2

When working with Boolean expressions, don’t forget that you might be
able to optimize your code by simplifying it with algebraic transformations.
In Chapter 7, you’ll also see how to use control flow to calculate a Boolean
result, which can be a bit more efficient than using the methods taught by
the examples in this section.

	 6.5	 Conditional Comparisons and Boolean Expressions
The conditional comparison instruction, ccmp, is quite useful for encoding
complex Boolean expressions in assembly language. Consider the following
Boolean expression:

bb = (x == y) && (a <= d)

Using the logic from the previous section, you could translate this into
the following assembly language code:

Arithmetic 315

// Assume bb = W0, x = W1, y = W2, a = W3, and d = W4.

cmp w1, w2
cset w5, eq // temp1 (W5) = x == y

cmp w3, w4
cset w6, le // temp2 (W6) = a <= d
and w0, w5, w6 // bb = (x == y) && (a <= d)

By using the conditional comparison instruction, you can keep the tem-
porary values in the condition code flags to shorten your code:

cmp w1, w2
ccmp w3, w4, #0, eq
cset w0, le

The first cmp instruction sets the Z flag if x is equal to y. If that condition
is false, the whole logical expression must return false. If it’s true, this code
has to test whether a is less than or equal to d.

Assuming that x does not equal y, the Z flag will be clear after the first
cmp instruction. In that case, the ccmp instruction will not compare W3 (a) to
W4 (d) but will load the flags with 0b0000 instead (because the ccmp instruc-
tion compares only the first two operands if the condition, eq, is true; at this
point, it is not). Because all the flags are clear (meaning N == V and Z != 1),
the le condition for the cset is false; therefore, that instruction will store a 0
into W0 (bb), exactly what you want.

On the other hand, if x is equal to y, the eq condition for the ccmp
instruction will be true and will compare the value of W3 (a) to W4 (d). If a
is less than or equal to d, the N, V, and Z flags will be set in such a way that
the cset instruction moves a 1 into W0. Otherwise, cset will move a 0 into
W0, which is again exactly what you want. This sequence with only three
instructions does the work of the earlier sequence with five instructions, a
huge win.

6.5.1  Implementing Conjunction Using ccmp
Consider this C/C++ logical expression:

(a cc1 bb) && (c cc2 d)

In general, to convert this expression containing the logical conjunction
operator (&&) into ARM assembly using conditional comparison instructions,
you would use the following five steps:

	 1.	Compare the operands on the left-hand side of the conjunction opera-
tor, cc1 (see Table 6-5).

	 2.	Immediately after the first comparison, execute a ccmp instruction, sup-
plying cc1 as the conditional field.

316 Chapter 6

	 3.	Choose the corresponding #nzcv encoding from the opposite column in
Table 6-5 to match cc2. The full ccmp instruction should be:

ccmp c, d, #nzcvop, cc1

	 4.	The last instruction in the sequence should test cc2, as in the following
example:

cset x0, cc2

	 5.	If cc1 fails, the ccmp instruction will set the flags to the #nzcvop value and
not compare c against d. Since you want the Boolean expression to yield
false in this situation, choose an #nzcvop value that is the opposite of cc2
so that the following test (for example, cset) produces a false result. If
cc1 is true upon executing the ccmp instruction, ccmp will compare c and d
and set the flags.

Table 6-5: Conditional Operators, Opposites, and NZCV Settings

C/C++ Operator #nzcv Opposite #nzcvop

== eq 0b0100 ne 0b0000

!= ne 0b0000 eq 0b0100

> (unsigned) hi 0b0010 ls 0b0100

>= (unsigned) hs 0b0110 lo 0b0000

< (unsigned) lo 0b0000 hs 0b0110

<= (unsigned) ls 0b0100 hi 0b0010

> (signed) gt 0b0000 le 0b0101

>= (signed) ge 0b0100 lt 0b0001

< (signed) lt 0b0001 ge 0b0100

<= (signed) le 0b0101 gt 0b0000

Same as hs cs 0b0010 cc 0b0000

Same as lo cc 0b0000 cs 0b0010

N/A vs 0b0001 vc 0b0000

N/A vc 0b0000 vs 0b0001

N/A mi 0b1000 pl 0b0000

N/A pl 0b0000 mi 0b1000

Because keeping the flag settings for the third ccmp operand straight in
your mind is difficult and error-prone, the aoaa​.inc include file contains sev-
eral defines to make it easy to choose these values, as well as some defines
for opposite conditions. Table 6-6 lists these defines and their values.

Arithmetic 317

Table 6-6: NZCV Constant Defines

Condition Define Value

eq cceq 0b0100 (nZcv)

ne ccne 0b0000 (nzcv)

hi cchi 0b0010 (nzCv)

hs cchs 0b0110 (nZCv)

lo cclo 0b0000 (nzcv)

ls ccls 0b0100 (nZcv)

gt ccgt 0b0000 (nzcv)

ge ccge 0b0100 (nZcv)

lt cclt 0b0001 (nzcV)

le ccle 0b0101 (nZcV)

cs cccs 0b0010 (nzCv)

cc cccc 0b0000 (nzcv)

vs ccvs 0b0001 (nzcV)

vc ccvc 0b0000 (nzcV)

mi ccmi 0b1000 (Nzcv)

pl ccpl 0b0000 (nzcv)

Table 6-7 lists some common antonyms (opposite conditions).

Table 6-7: NZCV Antonym Constants

Condition Define Same as

Not hi ccnhi ccls

Not hs ccnhs cclo

Not lo ccnlo cchs

Not ls ccnls cchi

Not gt ccngt ccle

Not ge ccnge cclt

Not lt ccnlt ccge

Not le ccnle ccgt

Using these symbols instead of constants for the immediate ccmp
instruction operand can make your code easier to read and understand.

Sometimes specifying the opposite condition in one of the conditional
instructions can create confusion. It’s easy to think that the opposite of
“less than” is “greater than” when it’s actually “greater than or equal,” for
example. To help reduce this confusion, the aoaa​.inc include file also pro-
vides defines for several opposite conditions, as listed in Table 6-8.

318 Chapter 6

Table 6-8: Opposite Condition Defines

Condition Opposite define

lo nlo (same as hs)

ls nls (same as hi)

hi nhi (same as ls)

hs nhs (same as lo)

gt ngt (same as le)

ge nge (same as lt)

lt nlt (same as ge)

le nle (same as gt)

By using the aoaa​.inc definitions, you can make your code easier to read
and understand.

6.5.2  Implementing Disjunction Using ccmp
The conditional comparison can also be used to simulate disjunction (logi-
cal OR). Consider the following expression:

bb = (x == y) || (a <= d)

Here’s the translation of this expression to assembly language:

cmp w1, w2
ccmp w3, w4, #0b0100, ne // 0b0100 is .Z.. or use #cceq
cset w0, le // or #ccle

Notice how the conditional compare instruction tests for the not equal
condition. If x is equal to y, you don’t need to do this comparison. In that
case, the ccmp instruction will load 0b0100 into the condition codes, which
sets Z to 1 and clears all the other flags. When the cset instruction tests for
less than or equal, the equal condition (Z = 1) exists, setting W0 (bb) to 1.
Comparing a and d plays no role in the computation of bb’s value.

If x does not equal y, the ne condition will exist when the program exe-
cutes the ccmp instruction. Therefore, ccmp will compare a and d and set the
condition code bits on the basis of that comparison. At that point, the cset
instruction will set bb’s value based on the comparison of a and d.

The following algorithm describes how to convert an expression
containing disjunction into ARM assembly language using a conditional
comparison:

(a cc1 bb) || (c cc2 d)

Here are the four steps to follow for this conversion:

	 1.	Compare the operands on the left-hand side of the disjunction opera-
tor (operator is cc1).

Arithmetic 319

	 2.	Immediately after the first cmp instruction, execute a ccmp instruc-
tion, supplying the opposite of cc1 as the conditional field (return to
Table 6-5 to find the opposite conditions).

	 3.	Choose the corresponding #nzcv encoding from the regular column in
Table 6-5 to match cc2. The full ccmp instruction should be as follows:

ccmp c, d, #nzcv, opposite(cc1)

	 4.	The last instruction in the sequence should test cc2. For example:

cset x0, cc2

If cc1 succeeds, the ccmp instruction will set the flags to the #nzcvop value
and not compare c against d, because you’ve chosen the opposite of cc1 for
the ccmp condition. As you want the Boolean expression to yield true in this
situation, choose an #nzcvop value that is the same as cc2 so that the following
test (for example, cset) produces a true result. If cc1 is false upon executing
the ccmp instruction, ccmp will compare c and d and set the flags appropriate
for the following test.

6.5.3  Handling Complex Boolean Expressions
You can extend the Boolean expressions by adding additional ccmp instruc-
tions to the sequence. Just keep in mind that, at least in C/C++, conjunction
has higher precedence than disjunction, so you must modify your order
of evaluation to handle conjunction first when expressions contain both
operators.

Also note that the ccmp scheme uses complete Boolean evaluation (mean-
ing it evaluates every subterm of the Boolean expression), whereas the C++
programming language uses short-circuit Boolean evaluation (which may not
compute all subterms). Chapter 7 covers these two forms in greater detail,
but for now, just know that the two forms may produce different results.

	 6.6	 Machine and Arithmetic Idioms
An idiom is an idiosyncrasy (a peculiarity). Several arithmetic operations
and ARM instructions have idiosyncrasies that you can take advantage
of when writing assembly language code. Some people refer to the use of
machine and arithmetic idioms as tricky programming that you should always
avoid in well-written programs. While it is wise to avoid tricks just for the
sake of tricks, many machine and arithmetic idioms are well known and
commonly found in assembly language programs. This section provides an
overview of the idioms you’ll see most often.

6.6.1  Multiplying Without mul
When multiplying by a constant, you can sometimes write equivalent code
by using shifts, additions, and subtractions in place of multiplication

320 Chapter 6

instructions. Although performance differs little between using a mul
instruction and other arithmetic instructions, some addressing mode vari-
ants involving shifts can spare you an extra multiply instruction.

Remember, a lsl instruction computes the same result as multiplying the
specified operand by 2. Shifting to the left two bit positions multiplies the
operand by 4. Shifting to the left three bit positions multiplies the operand
by 8. In general, shifting an operand to the left n bits multiplies it by 2n. You
can multiply any value by a constant by using a series of shifts and additions
or shifts and subtractions. For example, to multiply the W0 register by 10,
you need only multiply it by 8 and then add 2 times the original value. That
is, 10 × W0 = 8 × W0 + 2 × W0. Use the following code to accomplish this:

lsl w0, w0, #1 // W0 = W0 * 2
add w0, w0, w0, lsl #2 // W0 = (W0 * 2) + (W0 * 8)

The first instruction multiplies W0 by 2, so when the second instruction
shifts W0 2 bits to the left, it’s actually shifting the original W0 value to the
left by 3 bits.

Looking at the instruction timings, you’ll see that the multiply instruc-
tion executes at the same speed as the lsl or add instructions, so this second
sequence isn’t faster. However, if you have to load the constant 10 into a
register to do the multiplication by 10, this sequence is no slower. If you’ve
already done the shift as part of another calculation, this sequence could
turn out to be faster.

You can also use subtraction with shifts to perform a multiplication
operation. Consider the following multiplication by 7:

sub w0, w0, w0, lsl #3 // Actually computes W0 * (-7)
neg w0, w0 // Fix sign.

Beginning assembly language programmers commonly make the error
of subtracting or adding 1 or 2 rather than W0 × 1 or W0 × 2. The following
does not compute W0 × 7:

lsl w0, w0, #3
sub w0, w0, #1

Rather, this code computes (8 × W0) – 1, which is entirely different
(unless, of course, W0 = 1). Beware of this pitfall when using shifts, addi-
tions, and subtractions to perform multiplication operations.

The Operand2 addressing mode variations, particularly those involving
lsl, are quite useful for combining shifts along with other arithmetic opera-
tions. For example, consider the following pair of instructions:

lsl w0, w0, #3
add w1, w1, w0

Arithmetic 321

You can easily replace this by a single instruction:

add w1, w1, w0, lsl #3

Because RISC CPUs, such as the ARM, tend to execute most instruc-
tions in a single CPU clock cycle, using strength-reduction optimizations like
substituting shifts and adds for multiplication rarely pays off. Generally, a
single shift instruction (for a multiplication by a power of 2) may produce
better results than mul; beyond that, it’s unlikely to improve the speed,
unless you need those shifts and adds for other calculations.

6.6.2  Dividing Without sdiv or udiv
Just as the lsl instruction is useful for simulating a multiplication by a
power of 2, the lsr and asr instructions can simulate a division by a power
of 2. Unfortunately, you cannot easily use shifts, additions, and subtractions
to perform division by an arbitrary constant. Therefore, this trick is useful
only when dividing by powers of 2. Also, don’t forget that the asr instruction
rounds toward negative infinity, unlike the sdiv instruction, which rounds
toward 0.

On the ARM64 CPU, the division instructions tend to take about twice
as long as other instructions to execute. Therefore, if you can simulate a
division by a power of 2 by using a single shift-right instruction, your code
will run a little faster. You can also divide by a value by multiplying by its
reciprocal. This is usually faster than division, since the multiply instruction
is faster than the divide instruction.

To multiply by a reciprocal when dealing with integers, you must cheat.
If you want to multiply by 1/10, there is no way you can load the value 1/10
into an ARM integer register prior to performing the multiplication. It
won’t work to multiply 1/10 by 10, perform the multiplication, and divide
the result by 10 to get the final result. In fact, this would make performance
worse, because you’re now doing a multiplication by 10 as well as a division
by 10. However, suppose you multiply 1/10 by 65,536 (6,554), perform the
multiplication, and then divide by 65,536. Consider the following code that
divides W0 by 10:

mov w1, #6554
mul w0, w0, w1
lsr w0, w0, #16 // Division by 65,536

This code leaves W0 / 10 in the W0 register. To understand how this
works, consider what happens when you use the mul instruction to multiply
W0 by 65,536 (0x1_0000). This moves the LO half word of W0 into the HO
half word and sets the LO half word to 0 (a multiplication by 0x1_0000 is
equivalent to a shift left by 16 bits). Multiplying by 6,554 (65,536 divided
by 10) puts W0 divided by 10 into the HO half word of the W0 register.

Multiplying by a reciprocal works well only when dividing by a constant,
such as 10. While you could coerce the calculation with multiple instruc-
tions to divide a register by a nonconstant value, the udiv/sdiv instructions

322 Chapter 6

would certainly be faster by that point; it’s questionable whether multiply-
ing by a reciprocal is faster than a division.

6.6.3  Implementing Modulo-N Counters with AND
To implement a counter variable that counts up to 2n – 1 and then resets to 0,
use the following code

add w0, w0, #1
and w0, w0, #nBits

where nBits is a binary value containing n bits of 1s right-justified in the
number. For example, to create a counter that cycles from 0 to 15 (24 – 1),
you could use the following:

add w0, w0, #1
and w0, w0, #0b1111

6.6.4  Avoiding Needlessly Complex Machine Idioms
The machine idioms you’ve just learned work well to improve performance
on older complex instruction set computers (CISCs) that typically take a
varying number of CPU clock cycles to execute each instruction. Complex
instructions like division can take upward of 50 clock cycles on an x86 CPU,
for example. RISC CPUs, such as the ARM, try to execute instructions in
one clock cycle. While the ARM doesn’t always achieve this (sdiv and udiv
are a little slower, for example), the additional time required doesn’t justify
replacing the instruction with a long sequence of other instructions.

Using machine idioms makes your code harder to read and under-
stand. If using a machine idiom offers no clear performance benefit, stick
with using easier-to-understand code. Those who work on your project
afterward (including yourself, in the future) will thank you.

	 6.7	 Floating-Point and Finite-Precision Arithmetic
Before discussing how the ARM CPU implements floating-point arithmetic,
it is worthwhile to first describe the mathematical theory behind floating-
point arithmetic and the problems you will encounter when using it. This
section presents a simplified model to explain floating-point arithmetic and
why you cannot apply standard algebraic rules to calculations involving it.

6.7.1  Basic Floating-Point Terminology
Integer arithmetic does not let you represent fractional numeric values.
Therefore, modern CPUs support an approximation of real arithmetic:
floating-point arithmetic. To represent real numbers, most floating-point for-
mats employ scientific notation and use a certain number of bits to repre-
sent a mantissa and a smaller number of bits to represent an exponent.

Arithmetic 323

For example, in the number 3.456e+12, the mantissa consists of 3.456,
and the exponent digits are 12. Because the number of bits is fixed in
computer-based representations, computers can represent only a certain
number of digits (known as significant digits) in the mantissa. For example,
if a floating-point representation could handle only three significant
digits, then the fourth digit in 3.456e+12 (the 6) could not be accurately
represented with that format, as three significant digits can represent only
3.45e+12 or 3.46e+12 correctly.

Because computer-based floating-point representations also use a finite
number of bits to represent the exponent, that exponent also has a limited
range of values, approximately ranging from 10 ± 38 for the single-precision
format to about 10 ± 308 for the double-precision format. This is known as
the dynamic range of the value. Denormalized numbers (which I’ll define
shortly) can represent values as small as ±4.94066 × 10–324.

6.7.2  Limited-Precision Arithmetic and Accuracy
A big problem with floating-point arithmetic is that it does not follow the
standard rules of algebra. Normal algebraic rules apply only to infinite-
precision arithmetic. Therefore, if you translate an algebraic formula into
code, that code might produce different results from what you would (math-
ematically) expect. This can introduce defects in your software.

Consider the simple statement x = x + 1, where x is an integer. On any
modern computer, this statement follows the normal rules of algebra as
long as overflow does not occur. That is, this statement is valid only for certain
values of x (minint ≤ x < maxint). Most programmers do not have a problem
with this because they are well aware that integers in a program do not fol-
low the standard algebraic rules (for example, 5 / 2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any
of the (integer) values above the maximum integer or below the minimum
integer. Floating-point values suffer from this same problem, only worse.
After all, integers are a subset of real numbers. Therefore, the floating-point
values must represent the same infinite set of integers. However, an infinite
number of real values exist between any two integer values. In addition to
having to limit your values between a maximum and minimum range, you
cannot represent all the values between any pair of integers either.

To demonstrate the impact of limited-precision arithmetic, this chapter
adopts a simplified decimal floating-point format for our examples. This
format provides a mantissa with three significant digits and a decimal expo-
nent with two digits. The mantissa and exponents are both signed values, as
shown in Figure 6-1.

e ±±

Figure 6-1: A floating-point
format

324 Chapter 6

When adding and subtracting two numbers in scientific notation,
you must adjust the two values so that their exponents are the same.
Multiplication and division don’t require the exponents to be the same;
instead, the exponent after a multiplication is the sum of the two operand
exponents, and the exponent after a division is the difference of the divi-
dend and divisor’s exponents.

For example, when adding 1.2e1 and 4.5e0, you must adjust the values
so that they have the same exponent. One way to do this is to convert 4.5e0
to 0.45e1 and then add, producing 1.65e1. Because the computation and
result require only three significant digits, you can compute the correct
result via the representation shown in Figure 6-1.

However, suppose you want to add the two values 1.23e1 and 4.56e0.
Although both values can be represented using the three-significant-digit
format, the computation and result do not fit into three significant digits.
That is, 1.23e1 + 0.456e1 requires four digits of precision in order to com-
pute the correct result of 1.686, so you must either round or truncate the
result to three significant digits. Rounding generally produces the most
accurate result, so round the result to obtain 1.69e1.

In fact, the rounding does not occur after adding the two values
together (that is, producing the sum 1.686e1 and then rounding this to
1.69e1), but rather when converting 4.56e0 to 0.456e1, because four digits
of precision are required to maintain the value 0.456e1. Therefore, during
the conversion, you have to round 0.456e1 to 0.46e1 so that the result fits
into three significant digits. The sum of 1.23e1 and 0.46e1 then produces
the final rounded sum of 1.69e1.

As you can see, the lack of precision (the number of digits or bits main-
tained in a computation) affects the accuracy (the correctness of the com-
putation). In the addition/subtraction example, you could round the result
because you maintained four significant digits during the calculation (spe-
cifically, when converting 4.56e0 to 0.456e1). If your floating-point calcula-
tion had been limited to three significant digits during computation, you
would have had to truncate the last digit of the smaller number, obtaining
0.45e1 and producing a sum of 1.68e1, a value that is even less accurate.

To improve the accuracy of floating-point calculations, it is useful to
maintain one or more extra digits for use during the calculation, such as
the extra digit used to convert 4.56e0 to 0.456e1. Extra digits available
during a computation are known as guard digits (or guard bits in the case
of a binary format). They greatly enhance accuracy during a long chain
of computations.

6.7.3  Errors in Floating-Point Calculations
In a sequence of floating-point operations, errors can accumulate and
greatly affect the computation itself. For example, suppose you were to add
1.23e3 to 1.00e0. Adjusting the numbers so their exponents are the same
before the addition produces 1.23e3 + 0.001e3. The sum of these two val-
ues, even after rounding, is 1.23e3. This might seem perfectly reasonable;

Arithmetic 325

after all, you can maintain only three significant digits, so adding in a small
value shouldn’t affect the result at all.

However, suppose you were to add 1.00e0 to 1.23e3 ten times (though
not in the same calculation, where guard digits could maintain the fourth
digit during the calculation). The first time you add 1.00e0 to 1.23e3, you
get 1.23e3. You get this same result the second, third, fourth . . . and tenth
times you add 1.00e0 to 1.23e3. On the other hand, had you added 1.00e0
to itself 10 times, then added the result (1.00e1) to 1.23e3, you would have
gotten a different result, 1.24e3. Keep in mind this important guideline for
limited-precision arithmetic:

When performing complex operations, watch the order of evaluation, as it
can affect the accuracy of the result.

You’ll get more accurate results if the relative magnitudes (the expo-
nents) are close to one another when adding and subtracting floating-point
values. If you’re performing a chain calculation involving addition and sub-
traction, attempt to group the values appropriately.

When computing addition and subtraction, you can also wind up with
false precision. Consider the computation 1.23e0 – 1.22e0, which produces
0.01e0. Although the result is mathematically equivalent to 1.00e – 2, this
latter form suggests that the last two digits are exactly 0. Unfortunately,
you have only a single significant digit at this time (remember, the original
result was 0.01e0, and those two leading 0s were significant digits). Indeed,
some floating-point unit (FPU) or software packages might actually insert
random digits (or bits) into the LO positions. This highlights a second
important rule concerning limited-precision arithmetic:

When subtracting two numbers with the same signs (or adding two num-
bers with different signs), be aware that the result may contain high-order
significant digits (bits) that are 0. This reduces the number of significant
digits (bits) by a like amount in the final result. If possible, try to arrange
your calculations to avoid this.

By themselves, multiplication and division do not produce particularly
poor results. However, they tend to multiply any error that already exists in
a value. For example, if you multiply 1.23e0 by 2 when you should be mul-
tiplying 1.24e0 by 2, the result is even less accurate. This leads to a third
important rule for working with limited-precision arithmetic:

When performing a chain of calculations involving addition, subtraction,
multiplication, and division, try to perform the multiplication and division
operations first.

Often, by applying normal algebraic transformations, you can arrange
a calculation so the multiply and divide operations occur first. For example,
suppose you want to compute x * (y + z). Normally, you would add y and z
together and multiply their sum by x. However, your results will be a little
more accurate if you transform x * (y + z) to get x * y + x * z and compute
the result by performing the multiplications first. Of course, the drawback

326 Chapter 6

is that you must now perform two multiplications rather than one, so the
result may be slower.

Multiplication and division have their own problems. When multiply-
ing two very large or very small numbers, it is quite possible for overflow or
underflow to occur. The same situation occurs when dividing a small num-
ber by a large number, or dividing a large number by a small (fractional)
number. This brings us to a fourth rule to follow when multiplying or divid-
ing values:

When multiplying and dividing sets of numbers, try to arrange the multi-
plications so that they multiply large and small numbers together; likewise,
try to divide numbers that have the same relative magnitudes.

6.7.4  Floating-Point Value Comparisons
Given the inaccuracies present in any computation (including converting
an input string to a floating-point value), you should never compare two
floating-point values to see if they are equal. In a binary floating-point for-
mat, different computations that produce the same (mathematical) result
may differ in their least significant bits. For example, 1.31e0 + 1.69e0 should
produce 3.00e0. Likewise, 1.50e0 + 1.50e0 should also produce 3.00e0.
However, if you were to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0),
you might find out that these sums are not equal to each other.

The test for equality succeeds if and only if all bits (or digits) in the two
operands are exactly the same. Because this is not necessarily true after two
different floating-point computations that should produce the same result,
a straight test for equality may not work. Instead, use the following test:

if Value1 >= (Value2 - error) and Value1 <= (Value2 + error) then ...

Another common way to handle this same comparison is to use a state-
ment of this form:

if abs(Value1 - Value2) <= error then ...

In these statements, error should be a value slightly greater than the
largest amount of error that will creep into your computations. The exact
value will depend on the particular floating-point format you use. In short,
follow this final rule:

When comparing two floating-point numbers, always compare one value
to see whether it is in the range given by the second value plus or minus a
small error value.

Many other little problems can occur when using floating-point values.
This book points out only some of the major problems and will make you
aware that you cannot treat floating-point arithmetic like real arithmetic
because of the inaccuracies present in limited-precision arithmetic. A good
text on numerical analysis or even scientific computing can help fill in the

Arithmetic 327

details. If you plan to work with floating-point arithmetic in any language,
take the time to study the effects of limited-precision arithmetic on your
computations (see section 6.13, “For More Information,” on page 352).

Now that you’ve seen the theory behind floating-point arithmetic, we’ll
review the ARM’s implementation of floating-point.

	 6.8	 Floating-Point Arithmetic on the ARM
When the ARM CPU was first designed, floating-point arithmetic was
among the set of “complex” instructions that RISC CPUs avoided. Those
who required floating-point arithmetic were forced to implement it in
software. As time passed, it became clear that high-performance systems
required fast floating-point arithmetic, so it was added to the ARM’s
instruction set.

The ARM64 supports the IEEE single- and double-precision floating-
point formats (see section 2.13, “IEEE Floating-Point Formats,” on page 93),
as well as a 16-bit half-precision floating-point format that appeared in later
revisions of the IEEE standard. To support floating-point arithmetic, the
ARM provides an extra set of registers and augments the instruction set
with suitable floating-point instructions. Originally, these types of instruc-
tions were handled by coprocessors—separate chips that handled floating-
point instructions (while the main CPU handled integer operations). In the
ARM64 architecture, the FPU is built into the main CPU’s integrated circuit.

The following subsections introduce the floating-point register set, the
floating-point status register, and the floating-point control register. These
are the programmer-visible components of the floating-point hardware on
the ARM CPU.

6.8.1  Neon Registers
To support floating-point arithmetic, the ARM64 provides a second set of
32 registers specifically tailored to hold floating-point and other values.
These are known as the Neon registers because, in addition to supporting sca-
lar floating-point (FP) arithmetic, they also support vector arithmetic using
the Neon instruction set extensions, covered in Chapter 11.

The 32 main FP/Neon registers are 128 bits each. Just as the general-
purpose registers are divided into two sets based on their size (Wn and Xn),
the FP/Neon registers are broken into five groups based on their size:

V0 to V31 ​  ​�The 128-bit vector registers (for Neon instructions), also ref-
erenced as Q0 to Q31, the qword registers. The Vn names
support special syntax for vector operations.

D0 to D31 ​  ​The 64-bit double-precision floating-point registers.

S0 to S31 ​     ​The 32-bit single-precision floating-point registers.

H0 to H31 ​ ​The 16-bit half-precision floating-point registers.

B0 to B31 ​  ​The 8-bit byte registers.

328 Chapter 6

In addition to the 32 main registers, this set includes two special-
purpose floating-point registers: the floating-point status register (FPSR)
and the floating-point control register (FPCR), shown in Figure 6-2. You’ll
learn more about these registers in the following subsections.

0127

V0
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31

FPCR

FPSR

Figure 6-2: The FP/Neon registers

The Bn, Hn, Sn, Dn, and Vn registers overlay one another, as shown in
Figure 6-3.

Arithmetic 329

0127
Vn
Dn
Sn, S(n + 1)
Hn
Bn

7153163

Figure 6-3: The FP/Neon register overlays

For historical reasons, the even-numbered single-precision registers
(S0, S2, . . . , S30) are mapped to bits 0 through 31 in D0 through D15, and
the odd-numbered single-precision registers are mapped to bits 32 through
64. No Sn registers are mapped to D16 through D31 (see Figure 6-4).

063

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

S0S1
S2S3
S4S5
S6S7
S8S9

S10S11
S12S13
S14S15
S16S17
S18S19
S20S21
S22S23
S24S25
S26S27
S28S29
S30S31

Figure 6-4: How Sn registers overlay Dn
registers

The following sections concentrate mainly on the Dn and Sn register
sets. This book doesn’t discuss half-precision floating-point arithmetic in

330 Chapter 6

depth, as it’s used mainly by graphics processing units (GPUs) and certain
graphics routines. The floating-point hardware doesn’t actually work with
half-precision values—it only allows you to convert between half- and single-
or double-precision values.

Most of the ARM floating-point instructions operate on the Dn or Sn
registers. This chapter collectively refers to these registers as Fn, mean-
ing you can substitute any double- or single-precision register for Fn. I will
also note exceptions as needed. Vector registers (Vn) are the subject of
Chapter 11.

6.8.2  Control Register
The floating-point control register (FPCR) specifies how certain floating-point
operations take place. Although this register is 32 bits, only 6 bits are used,
as you can see in Figure 6-5.

031 15192223242526

FZ16

Rmode

AHP

DN

FZ

. . .

Figure 6-5: The FPCR layout

Table 6-9 describes the meaning of each of these bits.

Table 6-9: FPCR Bits

Bit(s) Name Description

19 FZ16 Flush-to-zero mode for half-precision arithmetic. 0 = disabled,
1 = enabled. This replaces denormalized values with 0. The result
may not be as precise, but the instructions may execute faster.

22, 23 Rmode Rounding mode: 00 = round to nearest, 01 = round to +infinity,
10 = round to –infinity, 11 = truncate (round toward 0).

24 FZ Flush-to-zero mode for single- and double-precision arithmetic.

25 DN Default NaN (not a number) mode. 0 = disable default NaN
mode, 1 = enable. When disabled, NaNs propagate through
arithmetic operations; when enabled, invalid operations return the
default NaN.

26 AHP Alternate half-precision bit. Enables (1) alternate half-precision
mode or (0) IEEE half-precision mode.

For the most part, you’ll leave all these bits set to 0. Setting Rmode to
0b11 is a reasonable change when you want to truncate rather than round a
floating-point calculation.

To manipulate the FPCR register, use the mrs (move system to register)
and msr (move register to system) instructions, specifying FPCR as the sys-
tem register:

Arithmetic 331

mrs Xn, FPCR // Copies FPCR to Xn
msr FPCR, Xn // Copies Xn to FPCR

For example, to clear all the (defined) bits in the FPCR, you’d use the
following instructions:

mrs x0, fpcr
mov x1, #0xffff // Load 0xf836ffff into X1, which is
movk x1, #0xf836, lsl #16 // not a valid logical instr immediate value.
and x0, x0, x1 // Must put it in a register.
msr fpcr, x0

Set the rounding mode to truncate with the following instructions:

mrs x0, fpcr
orr x0, x0, #0x00c00000 // Is valid logical instr immediate value
msr fpcr, x0

The default FPCR settings are unknown on a warm reset, so you should
always initialize this register before performing floating-point operations.

6.8.3  Status Register
The FPSR holds status information about ARM floating-point hardware.
Reading this register provides the current floating-point status, while writ-
ing to it allows you to clear exception conditions. Although this is a 32-bit
register, only 11 bits are defined and, in fact, only 7 of those are used in
64-bit mode (see Figure 6-6).

031 5262730 29 28 123467

N Z C V QC IDC IXC UFC OFC DZC IOC. . .

Figure 6-6: The FPSR layout

Table 6-10 describes the purpose of each of the bits in the FPSR.

Table 6-10: FPSR Bits

Bit(s) Name Definition

0 IOC Invalid operation cumulative flag. This bit is set when the result
of an operation has no mathematical value or cannot be
represented.

1 DZC Division by zero cumulative flag. This bit is set when a division
by zero occurs.

2 OFC Overflow cumulative flag. This bit is set when a floating-point
operation causes an overflow situation.

(continued)

332 Chapter 6

Bit(s) Name Definition

3 UFC Underflow cumulative flag. This bit is set when underflow occurs
during an arithmetic operation.

4 IXC Inexact cumulative flag. This bit is set (often!) when a floating-
point operation produces an inexact result.

7 IDC Input denormal cumulative flag. This bit is set when a denormal-
ized input operand is replaced in the computation by a zero.

27 QC Saturation cumulative flag. This flag is set when a saturation
instruction clips a value. See Chapter 11 for a discussion of the
saturating instructions.

28–31 N, C, Z, V These flags are used only in 32-bit mode. In 64-bit mode, the
floating-point comparisons and other instructions directly set the
N, Z, C, and V flags in the PSTATE register.

You can read and write the FPSR with the mrs and msr instructions, using
FPSR as the system register name. Read the FPSR to determine if any floating-
point exceptions have occurred, and write the FPSR to clear the exception
bits (by writing 0s to the affected bits in the register). For example the follow-
ing code clears the Invalid Operation Cumulative flag in the FPSR:

mrs x0, FPSR
and x0, x0, #-2 // Clear IOC bit (-2 is 0xFFFF...FE).
msr FPSR, x0

	 6.9	 Floating-Point Instructions
The FPU adds many instructions to the ARM instruction set. I will classify
these as data movement instructions, conversions, arithmetic instructions,
comparisons, and miscellaneous instructions. This section describes each
instruction in these categories.

6.9.1  FPU Data Movement Instructions
The data movement instructions transfer data between the internal FPU reg-
isters and memory. The instructions in this category are ldr/ldur, str/stur,
ldp/ldnp, stp/stnp, and fmov.

6.9.1.1  ldr/ldur and str/stur

The ldr and str instructions load one of the FPU registers from a memory
location, using the normal memory addressing modes. The ldur/stur
instructions force an unscaled load or store operation, for cases where
the assembler might choose a scaled indirect-plus-offset mode. Generally,
rather than using ldur/stur, you’d let the assembler pick the appropriate
underlying machine coding for you.

Table 6-10: FPSR Bits (continued)

Arithmetic 333

You can specify any of the FPU register names when using this instruc-
tion. For example, the following code loads the specified floating-point reg-
isters from memory:

ldr q0, [x0] // Loads 128 bits from memory
ldr d0, [x0] // Loads 64 bits from memory
ldr s0, [x0] // Loads 32 bits from memory
ldr b0, [x0] // Loads 8 bits from memory

6.9.1.2  ldp/ldnp and stp/stnp

The ldp and stp instructions work similarly to their integer counterparts
with floating-point registers: they load or store a pair of registers at a time.
These instructions do not support the Hn or Bn registers; you can load only
word, dword, or qword FPU registers using these instructions.

The following examples demonstrate loading 256, 128, and 64 bits from
memory:

ldp q0, q1, [x0] // Loads 256 bits from memory
ldp d0, d1, [x0] // Loads 128 bits from memory
ldp s0, s1, [x0] // Loads 64 bits from memory

The ldnp and stnp instructions do nontemporal loads and stores. This
informs the CPU that you don’t intend to access the specified memory loca-
tion again in the near future, so the CPU won’t copy the data into its cache
(a convenient example of what you can do in assembly and not in an HLL).
This can improve performance by helping to prevent a situation known as
thrashing, in which the CPU constantly moves data in and out of the cache
memory.

6.9.1.3  fmov

The fmov instruction transfers data between two like-sized floating-point
registers (where both registers are either 32 or 64 bits), or between a 32- or
64-bit general-purpose (GP) register and a like-sized floating-point register.
Here is the allowable syntax for this instruction:

fmov Sd, Sn // Move data between two 32-bit FP registers.
fmov Dd, Dn // Move data between two 64-bit FP registers.
fmov Sd, Wn // Move data from a 32-bit GP to an FP register.
fmov Wd, Sn // Move data from a 32-bit FP to a GP register.
fmov Dd, Xn // Move data from a 64-bit GP to an FP register.
fmov Xd, Dn // Move data from a 64-bit FP to a GP register.

Moving a general-purpose register into a floating-point register does
not convert an integer value in the GP register to a floating-point value;
such an fmov operation assumes that the GP register contains the bit pattern
for a floating-point number. Likewise, moving a floating-point register into
a general-purpose register does not convert the floating-point value into
an integer.

334 Chapter 6

6.9.1.4  fmov with Immediate Operand

The ARM provides an fmov instruction that allows a very limited immediate
operand. The syntax is as follows

fmov Sd, #fimm
fmov Dd, #fimm

where fimm is a floating-point constant from a very small set of possible val-
ues. The allowable values are ±n / 16 × 2m, where 16 ≤ n ≤ 31 and –3 ≤ m ≤ 4.
This means you can represent values such as 1.0 or –2.0 but cannot repre-
sent 1.2345e5.

You cannot represent the value 0.0 with this immediate form. However,
you can load 0.0 into a floating-point register by using one of the following
two instructions:

fmov Sd, wzr
fmov Dd, xzr

If you want to load an arbitrary floating-point constant into a register,
you will have to stick that constant into a memory location, using the .single
or .double directive, and load the register from that location. Unfortunately,
the ldr instruction doesn’t accept floating-point immediate operands:

ldr d0, =10.0 // Generates an error

Fortunately, the PC-relative addressing mode does work, so you can
access memory locations you’ve initialized in your .text section (preferably
in the .pool area), as the following example demonstrates:

 .code
 .pool
fp10: .double 10.0
 .
 .
 .
 ldr d0, fp10

By adding the .pool directive, Gas can embed other assembler-generated
constants in this area too.

6.9.2  FPU Arithmetic Instructions
The ARM CPU provides a large set of floating-point instructions that oper-
ate on single-precision and double-precision floating-point values. As for
the integer operations, most of these instructions require three (floating-
point) register operands: a destination, a left source, and a right source.

Table 6-11 lists the syntax for the arithmetic instructions. In this table,
Fd, Fn, Fm, and Fa represent floating-point registers and can be Sn or Dn

Arithmetic 335

(n = 0 to 31), depending on the precision of the instruction. For a given
instruction, all registers must be the same size (32 or 64 bits).

Table 6-11: Floating-Point Arithmetic Instructions

Instruction Operands Description

fadd Fd, Fn, Fm Fd = Fn + Fm

fsub Fd, Fn, Fm Fd = Fn – Fm

fmul Fd, Fn, Fm Fd = Fn × Fm

fnmul Fd, Fn, Fm Fd = –(Fn × Fm)

fmadd Fd, Fn, Fm, Fa Fd = Fa + Fn × Fm

fmsub Fd, Fn, Fm, Fa Fd = Fa – Fn × Fm

fnmadd Fd, Fn, Fm, Fa Fd = –(Fa + Fn × Fm)

fnmsub Fd, Fn, Fm, Fa Fd = –(Fa – Fn × Fm)

fdiv Fd, Fn, Fm Fd = Fn / Fm

fmax Fd, Fn, Fm Fd = max(Fn, Fm), NaN if either operand is NaN

fmaxnm Fd, Fn, Fm Fd = max(Fn, Fm), number if other operand is (quiet) NaN

fmin Fd, Fn, Fm Fd = min(Fn, Fm), NaN if either operand is NaN

fminnm Fd, Fn, Fm Fd = min(Fn, Fm), number if other operand is (quiet) NaN

fabs Fd, Fn Fd = fabs(Fn), absolute value

fneg Fd, Fn Fd = –Fn

fsqrt Fd, Fn Fd = sqrt(Fn)

Many operations can raise an exception of one sort or another. For
example, fdiv can set the DZC flag in the FPSR if a division by 0 occurs.
Some operations, such as fsqrt, can produce an invalid result—for example,
when trying to take the square root of a negative number. After a sequence
of floating-point instructions, check the FPSR to see if the result obtained
is valid. The FPSR bits are sticky and will remain set once an exception
occurs; this allows you to check for an error at the end of a chain of calcula-
tions, rather than after each floating-point instruction.

SIGN A L ING V S. QUIE T N A NS

NaNs come in two varieties: signaling and quiet. When a quiet NaN occurs, the
operations set the result to NaN (a special floating-point value; see section 2.14.1,
“Nonnumeric Values,” on page 97). Any further operations quietly propagate
this value throughout the calculation so that the final result remains NaN.

Signaling NaNs, on the other hand, can raise an exception when the bad
calculation occurs. This functionality can be enabled or disabled with the DN
bit (bit 25) in the FPCR.

(continued)

336 Chapter 6

When exceptions are enabled, the CPU invokes a special trap handler any
time an exception occurs. When disabled, the CPU will set only the status bits
and pass NaNs through the calculation as an indication that an exception hap-
pened. The exception handler is generally provided by the OS and enabled via
OS system calls; writing an exception handler to deal with this situation is beyond
the scope of this book. Fortunately, exception processing is normally turned off by
default, and you must explicitly test for exceptions by reading the FPSR.

6.9.3  Floating-Point Comparisons
The ARM provides a floating-point compare and a conditional compare
instruction. Both have a couple of forms

fcmp Fd, Fs
fcmpe Fd, Fs
fcmp Fd, #0.0
fcmpe Fd, #0.0

fccmp Fd, Fs, #nzcv, cond
fccmpe Fd, Fs, #nzcv, cond

where nzcv and cond have the same meanings they did with the ccmp instruction.
The instructions with the e suffix raise an exception if either operand

is NaN during the comparison. Dealing with exceptions raised by these
instructions is beyond the scope of this book, so subsequent example code
uses just the forms without the e suffix.

The fcmp instruction will compare an FPU register against either
another FPU register or the immediate constant 0.0. If you need to com-
pare against any other floating-point constant, you’ll have to first load that
into a register. Note that fccmp doesn’t provide a form that allows a compari-
son against 0.0 (although you can copy XZR or WZR into another FPU reg-
ister and compare against that).

6.9.3.1  Comparison Logic

The fcmp instruction sets the (PSR, not FPSR) condition code bits N, Z, C,
and V in response to the comparison, allowing you to use the conditional
branches and other conditional instructions to test the result of the com-
parison. However, the behavior of the settings is a bit different from integer
comparisons. First of all, there aren’t unsigned and signed comparisons
(floating-point values are always signed); second, floating-point compari-
sons can be unordered.

Unordered comparisons occur when one or both of two values you’re
comparing are NaN, since two values are incomparable under those

Arithmetic 337

circumstances. At best, you can say they are not equal to each other; it’s
safer simply to say the result is unordered and leave it at that. Generally, if
the result of a comparison is unordered, something is seriously wrong and
you’ll want to take corrective action.

One way to avoid this issue is to use the fcmpe form, which can generate
an exception, and leave it up to the exception handler to deal with unor-
dered values. However, as noted earlier, dealing with those exceptions is
beyond the scope of this book, so I recommend sticking with fcmp.

The fcmp instruction sets the N, Z, V, and C flags in such a way that you
can test them for ordered and unordered results after a comparison. The
good news is that you can handle unordered and ordered comparisons by
using normal conditional branch and other instructions. The bad news
is that the fcmp results slightly change the definition of those conditional
branch instructions. Table 6-12 describes how fcmp sets the flags.

Table 6-12: Flags Set by fcmp

Condition Meaning

EQ Equal

NE Not equal, or unordered

GE Greater than or equal

LT Less than, or unordered

GT Greater than

LE Less than or equal, or unordered

HI Greater than, or unordered

HS/CS Greater than or equal, or unordered

LO/CC Less than

LS Less than or equal

MI Less than

PL Greater than or equal, or unordered

VS Unordered

VC Ordered

Two points in Table 6-12 are easy to miss:

•	 The fcmp instruction sets the V flag if the comparison is unordered.

•	 Both signed and unsigned tests are used for floating-point compari-
sons, which are intrinsically signed values.

You’ll notice that GE and GT are ordered comparisons, while LE and
LT handle unordered comparisons. Likewise, LS and LO are ordered com-
parisons, while HI and HS also handle unordered comparisons. At first
glance, this might seem weird; why not make one set (signed or unsigned)
ordered and the other set unordered?

338 Chapter 6

However, you want the two opposite tests (for example, LE and GT,
or LT and GE) to handle all possible outcomes. One of the outcomes is
unordered. Therefore, one of the opposite comparisons needs to handle
unordered so that the two tests in each pair provide total coverage of
the conditionals (the same logic applies to HI-LS and HS-LO). You can
always test the overflow flag (V) to see whether a comparison is ordered
or unordered.

6.9.3.2  Conditional Comparisons

The conditional floating-point comparison instruction, fccmp, is the floating-
point analog to the integer conditional comparison instruction. You can
use it to reduce complex Boolean expressions involving conjunction (AND)
and disjunction (OR), as noted earlier (see section 6.5, “Conditional
Comparisons and Boolean Expressions,” on page 314).

6.9.3.3  Comparison for Equality

As discussed in section 6.7, “Floating-Point and Finite-Precision Arithmetic,”
on page 322, you should be very careful about comparing two floating-point
values (especially for equality). Minor inaccuracies in two calculations that
would produce the same result using infinite-precision real arithmetic may
yield different results when using limited-precision floating-point arithmetic.
If you want to compare two values for equality, compute their difference and
determine whether the absolute value of their difference is within an accept-
able error range.

The real question is how to determine an acceptable range for the error.
Because the difference between these (presumably equal) floating-point val-
ues will manifest itself in the LO bits of the mantissa, the error value should
be something corresponding to a 1 bit in one of those positions.

Listing 6-2 demonstrates how to calculate this error value.

// Listing6-2.S
//
// Demonstrate comparing two floating-point
// values for equality by using a difference
// and error range comparison.

 #include "aoaa​.inc"

// The following bit mask will keep the
// exponent bits in a 64-bit double-precision
// floating-point value. It zeros out the
// remaining sign and mantissa bits.

1 maskFP = 0x7FF0000000000000

// bits is the number of bits you want to
// mask out at the bottom of the mantissa.
// It must be greater than 0:

Arithmetic 339

2 bits = 4
bitMask = (1 << bits)-1

// expPosn is the position of the first
// exponent bit in the double-precision
// format:

expPosn = 52

 .text
 .pool
ttlStr: wastr "Listing 6-2"
fmtStr: wastr "error for (%24.16e) = %e\n"
difMsg: wastr "Difference:%e\n"
values: wastr "Value1=%23.16e, Value2=%23.16e\n"
eqMsg: wastr "Value1 == Value2\n"
neMsg: wastr "Value1 != Value2\n"

// When value2 is somewhere between
// 8e-323 and 9e-323, the
// comparison becomes not equal:

value1: .double 1.0e-323
value2: .double 9e-323

// Generic values to compare:

// value1: .double 1.2345678901234567
// value2: .double 1.234567890123456

// getTitle
//
// Return pointer to program title
// to the C++ code:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// computeError
//
// Given a double-precision floating-point
// value in D0, this function computes an
// error range value for use in comparisons.
// If the difference between two FP values
// (one of which is the value passed in D0)
// is less than the error range value, you
// can consider the two values equal.

 3 proc computeError

 // Preserve all registers this code
 // modifies:

 locals ce

340 Chapter 6

 qword ce.saveX01
 byte stack, 64
 endl ce

 enter ce.size
 stp x0, x1, [fp, #ce.saveX01]

 // Move the FP number into X0 so you can mask
 // bits:

 fmov x0, d0

 // Generate mask to extract exponent:

 4 and x0, x0, #maskFP // Extract exponent bits.
 lsr x1, x0, #expPosn // Put exponent in bits 0-10.

 // We need to normalize the value,
 // if possible:

 5 cmp x1, #(expPosn - bits - 1)
 blo willBeDenormal

 // If the result won't be a subnormal
 // (denormalized value), then set
 // the mantissa bits to all 0s
 // (plus the implied 1 bit) and
 // decrement the exponent to move
 // the "bits" position up to the
 // implied bit:

 6 sub x1, x1, #expPosn-bits // Adjust exponent.
 lsl x0, x1, #expPosn // Put exponent back.
 b.al allDone

// If the result will be denormalized, handle that
// situation down here:

7 willBeDenormal:
 mov x0, #bitMask
 lsl x0, x0, x1 // Shift as much as you can.

allDone:
 fmov d0, x0 // Return in D0.
 ldp x0, x1, [fp, #ce.saveX01]
 leave
 endp computeError

///
//
// Here's the asmMain procedure:

 proc asmMain, public

 locals am
 double am.error

Arithmetic 341

 double am.diff
 byte am.stackSpace, 64
 endl am

 enter am.size

// Display the values you're going to compare:

 ldr d0, value1
 str d0, [sp]
 ldr d1, value2
 str d1, [sp, #8]
 lea x0, values
 bl printf

// Compute the error value:

 ldr d0, value1
 bl computeError
 str d0, [fp, #am.error]

// Print the error value:

 str d0, [sp, #8]
 ldr d1, value1
 str d1, [sp]
 lea x0, fmtStr
 bl printf

// Compute the difference of the
// two values you're going to compare
// and print that difference:

 ldr d0, value1
 ldr d1, value2
 fsub d0, d0, d1
 str d0, [fp, #am.diff]
 str d0, [sp]
 lea x0, difMsg
 bl printf

// Compare the difference of the two
// numbers against the error range.

 ldr d1, [fp, #am.error]
 ldr d0, [fp, #am.diff]
 fabs d0, d0 // Must be abs(diff)!
 fcmp d0, d1
 ble isEqual

// Print whether you should
// treat these values as equal:

 lea x0, neMsg
 b.al printIt

342 Chapter 6

isEqual:
 lea x0, eqMsg
printIt:
 bl printf

 leave // Return to caller.
 endp asmMain

The mask 0x7FF0_0000_0000_0000 1, when ANDed with a double-precision
floating-point value, will strip out the mantissa and sign bits, leaving the
exponent in bit positions 52 to 62 (11-bit exponent).

The bits constant 2 in this listing determines the number of LO bits in
the mantissa that the code will eliminate when generating the error value
(this is currently 4 bits, so the 4 LO bits of the mantissa become insignifi-
cant, but in most cases it should be 2 to 3 bits for single-precision and 3 to
4 bits for double-precision comparisons). Once the computeError function
generates the error value, the main program uses that error to compare
a couple of floating-point numbers and report whether they should be
treated as equal (their difference is less than the error value) or not equal
(their difference is greater). The bitMask value is just a string of 1 bits (4 in
Listing 6-2).

The procedure computeError 3 is passed a floating-point value in D0.
This function computes an error value for that floating-point number
such that if it is compared with a second number, their difference will be
less than the error value if they should be considered equal. This function
returns the error value in the D0 register.

To compute the error value, computeError begins by shifting the expo-
nent down to bits 0 to 10 so that it is easier to work with 4. If the exponent
is less than 52 – 5 bits, the error value will turn out to be a subnormal
(denormalized) number. The code determines whether the error value will
be normalized or subnormal 5.

If the result will be a normalized number, the code generates the error
value by 52 bits (47 if bits is 4) and then shifts the exponent back into its
proper location 6. The mantissa and sign bits will all be 0; however, the
implied bit for double-precision numbers will be 1, because the exponent is
not 0.

If the error value will turn out to be subnormal, the code sets the expo-
nent to 0, denoting a denormalized value, and shifts the bitMask value to
the left the number of bit positions specified by the exponent minus the
bits value 7.

Here’s the build command and sample output for Listing 6-2:

$./build Listing6-2
$./Listing6-2
Calling Listing6-2:
Value1 = 9.8813129168249309e-324, Value2 = 8.8931816251424378e-323
error for (7.4109846876186982e-323) = 9.881313e-324
Difference:-7.905050e-323
Value1 != Value2
Listing6-2 terminated

Arithmetic 343

This demonstrates that the difference between Value1 and Value2 is defi-
nitely outside the error range allowed for this comparison.

6.9.3.4  Conditional Select Instruction

Although the ARM does not support all the conditional instructions pres-
ent in the integer instruction set, it does support the most often used condi-
tional instruction: conditional select, or fcsel. The fcsel instruction has the
following syntax:

fcsel Fd, Ft, Ff, cond

This instruction will test the condition and copy Ft to Fd if the condition
is true, or it will copy Ff to Fd if the condition is false.

6.9.4  Floating-Point Conversion Instructions
The ARM instruction set includes a wide variety of instructions that con-
vert between various floating-point formats and between signed/unsigned
integers and floating-point formats. Certain CPUs even support conver-
sions between floating-point and fixed-point formats. This section describes
these conversions.

6.9.4.1  fcvt

The fcvt instruction converts between the three supported floating-point
formats (half-, single-, and double-precision). This is one of the few instruc-
tions that supports the Hn registers (ldr and str are the others). The syntax
for this instruction is the following:

fcvt Hd, Ss
fcvt Hd, Ds
fcvt Sd, Hs
fcvt Sd, Ds
fcvt Dd, Hs
fcvt Dd, Ss

These instructions convert their source operand to the type of the des-
tination operand and copy the converted data into that operand. Of course,
not all conversions can happen without error—be aware that converting
a larger-size format to a smaller-size format can produce underflow and
underflow exceptions. You might want to consider checking the FPSR after
such an operation:

fcvt s0, d1
mrs x0, FPSR
mov w1, #0x8c
ands w0, w0, w1 // UFC, OFC, and IDC bits
bne badCvt

344 Chapter 6

This code demonstrates checking the UFC, OFC, and IDC bits to see if
an error occurred after the conversion.

6.9.4.2  Conversion Between Floating-Point and Integer

The instructions in Table 6-13 convert between various floating-point
(single- and double-precision) and integer formats. The syntax for these
instructions is as follows

fcvt{m}{s|u} Rd, Fn

where m is a, m, n, p, or z that specifies a rounding mode (see Table 6-13,
where FP = floating-point, SI = signed integer, and UI = unsigned integer).
Fn represents any single- or double-precision floating-point register, and Rd
represents any general-purpose register (Wd or Xd).

Table 6-13: The fcvt{m}{s|u} Conversion Instructions

Instruction Description

fcvtas Convert FP to SI; round away from 0.

fcvtau Convert FP to UI; round away from 0.

fcvtms Convert FP to SI; round toward –infinity (floor function).

fcvtmu Convert FP to UI; round toward –infinity (floor function).

fcvtns Convert FP to SI; round to even (standard IEEE rounding).

fcvtnu Convert FP to UI; round to even (standard IEEE rounding).

fcvtps Convert FP to SI; round toward +infinity (ceil function).

fcvtpu Convert FP to UI; round toward +infinity (ceil function).

fcvtzs Convert FP to SI; round toward 0 (truncation).

fcvtzu Convert FP to SI; round toward 0 (truncation).

In addition to converting floating-point values to integers, the ARM
provides two instructions that convert integers to floating-point values:

scvtf Fd, Rd // Same register meanings as for fcv*
ucvtf Fd, Rd // instructions

The scvtf instruction converts a signed integer to a floating-point value,
and the ucvtf instruction converts an unsigned integer to floating-point.
Note that some integer values cannot be exactly represented by a single- or
double-precision value. For example, a double-precision floating-point value
has a 56-bit mantissa, so it cannot precisely represent all 64-bit integers.

6.9.4.3  Fixed-Point Conversions

Some 64-bit ARM CPUs support conversion between a fixed-point binary
value and a floating-point value. These instructions take the following forms:

Arithmetic 345

fcvtzs Rd, Fs, #bits
fcvtzu Rd, Fs, #bits
scvtf Fd, Rs, #bits
ucvtf Fd, Fs, #bits

Here, bits is the number of bits to the right of the binary point in the
general-purpose register. It is a constant from 0 to one less than the size of
the general-purpose register. For example, in a 64-bit register, a value of 32
would provide you with 32 bits to the left and right of the binary point in
the fixed-point number.

6.9.4.4  Rounding

The ARM provides several floating-point rounding instructions. They are
similar in nature to the floating-point-to-integer conversion insofar as they
round a real number to an integral value. However, these instructions pro-
duce not binary integer values but rather floating-point results that just hap-
pen to be integer numbers (or, rather, the floating-point representation of
those integer numbers).

These instructions all take a pair of floating-point registers as operands.
Both registers must be the same size (single- or double-precision). The generic
syntax is as follows:

frint{m} Fd, Fs // Both registers must be Sn or Dn.

The instruction descriptions appear in Table 6-14.

Table 6-14: The frint{m} Instructions

Instruction Description

frinta Round away from 0.

frinti Round using the Rmode setting in the FPCR.

frintm Round toward –infinity.

frintn Normal rounding, exactly 0.5 rounds to nearest even value.

frintp Round toward +infinity.

frintx Round using FPCR mode; raise an exception if value was not
originally an integer.

frintz Round toward 0.

Now that you’ve reviewed the floating-point conversion instructions, I’ll
show you how to use floating-point instructions in code that interfaces with
other programs.

346 Chapter 6

	 6.10	 The ARM ABI and Floating-Point Registers
The ARM ABI considers V0 through V7 and V16 through V31 to be volatile.
The caller must preserve these registers across procedure calls if it requires
that they retain their values across a call.

Registers V8 through V15 are nonvolatile. A callee must preserve
these registers within a procedure if it modifies their values. Of course, the
advantage of these registers is that once a procedure preserves them (for
its caller), it does not have to worry about modification to these registers by
any functions it calls.

Callers pass the first eight floating-point parameters in registers to a
procedure. When passing a combination of integer and floating-point param-
eters, the caller passes the non-floating-point parameters in the general-
purpose registers (X0 to X7) and the floating-point arguments in the
floating-point registers. If the number of floating-point parameters exceeds
eight, the caller passes the floating-point parameters on the stack.

Parameters are assigned the next available register, not a register num-
ber based on the parameter’s position in the parameter list. Consider the
following C function prototype:

void p
(
 int i,
 double d,
 int j,
 int k,
 double e,
 int l,
 double f,
 double g,
 double h
);

The ARM ABI would associate the registers in Table 6-15 with these
formal parameters:

Table 6-15: Parameter Assignments to Registers

Register Parameter

X0 i

D0 d

X1 j

X2 k

D1 e

X3 l

D2 f

D3 g

D4 h

Arithmetic 347

If a function passes a floating-point parameter by reference, the address
of that floating-point value is passed in the next available general-purpose
register (no floating-point registers for pass-by-reference parameters).

If a function returns a floating-point result, it returns that value in D0
(or S0, if the language supports returning single-precision floats as function
return results). See Chapter 11 for details on returning vectors (multiple
floating-point values) as function results (hint: V0). If a function returns an
array of floating-point values, the caller must allocate storage for that array
and pass a pointer to that array in X8. The function will store the results
into that storage before returning.

	 6.11	 Using C Standard Library Math Functions
Although the ARM instruction set provides a set of machine instructions
that compute basic arithmetic operations, it does not have instructions
for computing complex mathematical functions such as sine, cosine, and
tangent. You could (with the appropriate knowledge) write these functions
yourself in assembly language, but a much simpler solution is available:
call functions that are already written for you. In particular, the C stdlib
contains many useful mathematical functions you can use. This section
describes how to call several of them.

As a sample program that demonstrates passing floating-point values to
functions, Listing 6-3 makes calls to various C stdlib <math.h> functions (spe-
cifically sin(), cos(), and tan()). Each of these functions accepts a double-
precision parameter and returns a double-precision result.

// Listing6-3.S
//
// Demonstrates calling various C stdlib
// math functions

#include "aoaa​.inc"

 .text
 .extern sin // C stdlib functions
 .extern cos // this program calls
 .extern tan

 .pool
ttlStr: wastr "Listing 6-3"

// Format strings for each of the outputs:

piStr: wastr "%s(pi) = %20.14e\n"
pi2Str: wastr "%s(pi/2) = %20.14e\n"
pi4Str: wastr "%s(pi/4) = %20.14e\n"
pi8Str: wastr "%s(pi/8) = %20.14e\n\n"

// Function names (printed as %s argument
// in the format strings):

sinStr: wastr "sin"

348 Chapter 6

cosStr: wastr "cos"
tanStr: wastr "tan"

// Sample values to print for each
// of the functions:

pi: .double 3.141592653588979
pi2: .double 1.5707963267949
pi4: .double 0.7853981639745
pi8: .double 0.39269908169872

// getTitle
//
// Return pointer to program title
// to the C++ code.

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// Trampolines to the C stdlib math functions.
// These are necessary because lea can't take
// the address of a function that could be
// very far away (as the dynamic libraries
// probably are).
//
// Note: Must use real "b" instruction here
// rather than "b.al" because external
// functions are likely out of range.

 1 proc sinVeneer
 b sin
 endp sinVeneer

 proc cosVeneer
 b cos
 endp cosVeneer

 proc tanVeneer
 b tan
 endp tanVeneer

// doPi(char *X0, func X1)
//
// X0- Contains the address of a function
// that accepts a single double and
// returns a double result.
// X1- Contains the address of a string
// specifying the function name.
//
// This function calls the specified function

Arithmetic 349

// passing PI divided by 1, 2, 4, and 8 and
// then prints the result that comes back.

 2 proc doPi

 locals dp
 dword dp.saveX1
 dword dp.saveX0
 dword dp.saveX19
 byte dp.stackSpace, 64
 endl dp

 // Set up activation record and save register values:

 enter dp.size
 stp x0, x1, [fp, #dp.saveX0] // X1 -> saveX1, too
 str x19, [fp, #dp.saveX19] // Preserve nonvolatile.

 mov x19, x0 // Keep address in nonvolatile.

 // Call the function for various values
 // of pi/n:

 3 ldr d0, pi
 blr x19 // Call function.
 mstr d0, [sp, #8] // Save func result as parm.
 ldr x1, [fp, #dp.saveX1]
 mstr x1, [sp]
 lea x0, piStr
 bl printf

 ldr d0, pi2
 blr x19 // Call function.
 mstr d0, [sp, #8]
 lea x0, piStr
 ldr x1, [fp, #dp.saveX1]
 mstr x1, [sp]
 lea x0, pi2Str
 bl printf

 ldr d0, pi4
 blr x19 // Call function.
 mstr d0, [sp, #8]
 lea x0, piStr
 ldr x1, [fp, #dp.saveX1]
 mstr x1, [sp]
 lea x0, pi4Str
 bl printf

 ldr d0, pi8
 blr x19 // Call function.
 mstr d0, [sp, #8]
 lea x0, piStr
 ldr x1, [fp, #dp.saveX1]

350 Chapter 6

 mstr x1, [sp]
 lea x0, pi8Str
 bl printf

 // Restore nonvolatile register
 // and return:

 ldr x19, [fp, #dp.saveX19]
 leave
 endp doPi

///
//
// Here's the asmMain procedure:

 proc asmMain, public
 enter 64 // Generic entry

 // Load X0 with the address
 // of the veneer (trampoline) function
 // that calls the C stdlib math function,
 // load X1 with the function's name,
 // then call doPi to call the function
 // and print the results:

 4 lea x0, sinVeneer // SIN(x) output
 lea x1, sinStr
 bl doPi

 lea x0, cosVeneer // COS(x) output
 lea x1, cosStr
 bl doPi

 lea x0, tanVeneer // TAN(x) output
 lea x1, tanStr
 bl doPi

 leave // Return to C/C++ code.
 endp asmMain

This program calls the sin(), cos(), and tan() functions indirectly—the
address of the particular function is passed as a parameter to the doPi pro-
cedure. Unfortunately, macOS’s PIE functionality prevents you from taking
the address of such a function by using the lea macro, because there is no
telling where the OS will load the dynamically linked (shared) library at
runtime; it could be farther away than the ±4GB allowed by lea. Therefore,
this code creates trampolines for these functions that the OS can patch to
transfer control to wherever the functions are sitting in memory 1. These
trampolines are necessary only for macOS; though they will work with
Linux code, Linux allows you to take the address of the C stdlib functions
with lea.

Arithmetic 351

The doPi function 2 saves the values of X0, X1, and X19 in the activa-
tion record. Preserving X19 is necessary because this is a nonvolatile regis-
ter. Saving X0 and X1 is necessary because the procedure needs their values
across calls to printf(), and these registers are volatile.

The body of the doPi calls the appropriate function (sin(), cos(), or
tan()) four times with the values π, π/2, π/4, and π/8, and it then displays
the result these functions return 3. Note how doPi calls the function indi-
rectly by using the blr instruction—the address of the function was origi-
nally passed to doPi in the X0 register.

The main procedure loads the address of the trampoline (veneer)
function into X0, along with a string pointer, and calls doPi to compute the
values and print the results 4. (Trampolines and veneers are explained
further in Chapter 7.) Loading the address of the trampoline functions into
X0 is necessary only under macOS; with Linux, you can load the address of
the sin(), cos(), or tan() function directly and spare the minor inefficiency
of having to jump through the trampoline function.

Here’s the build command and sample output for Listing 6-3:

$./build -math Listing6-3
$./Listing6-3
Calling Listing6-3:
sin(pi) = 8.14137986335080e-13
sin(pi/2) = 1.00000000000000e+00
sin(pi/4) = 7.07106781594585e-01
sin(pi/8) = 3.82683432365086e-01

cos(pi) = -1.00000000000000e+00
cos(pi/2) = -3.49148133884313e-15
cos(pi/4) = 7.07106780778510e-01
cos(pi/8) = 9.23879532511288e-01

tan(pi) = -8.14137986335080e-13
tan(pi/2) = -2.86411383293069e+14
tan(pi/4) = 1.00000000115410e+00
tan(pi/8) = 4.14213562373090e-01

Listing6-3 terminated

You’ll notice one difference between this build command and most of
the others in the book: the -math argument. This tells Linux to link in the
C stdlib math library functions (macOS automatically links this in). Without
the -math option, you’ll get a linker error when you try to build the program.

The C stdlib contains many double-precision functions you might find
useful. Check them out online for more details. Many of these functions
are unnecessary in assembly language, as they correspond to one or two
machine instructions. Nevertheless, the library contains complex functions
that you wouldn’t want to write yourself.

You may find various functions online that purport to be faster than
those in the C stdlib. Be careful about using them because they tend to be

352 Chapter 6

notoriously inaccurate. Unless you’re well grounded in numerical analysis,
don’t try to write these functions yourself.

	 6.12	 Moving On
This chapter covered a lot of material: the remaining arithmetic instruc-
tions (including multiplication, division, and remainder, as well as cmp and
the various conditional instructions), maintaining variables in registers
rather than memory locations, and the proper use of volatile and nonvola-
tile registers. It also discussed creating structures to provide efficient access
to global variables, converting arithmetic and logical expressions (integer
and floating-point) to their machine instruction equivalents, and calling
functions written in C/C++.

Armed with this information, you can now convert arithmetic expressions
in an HLL such as C/C++ to ARM assembly language. The only basic skill
missing from your programming repertoire is a good understanding of con-
trol structures in assembly language, which you’ll learn in the next chapter.

	 6.13	 For More Information
•	 My book Write Great Code, Volume 1 (No Starch Press, 2020), includes

sections on the cache and thrashing.

•	 Reference Wikipedia for details on fixed-point arithmetic: https://en​
.wikipedia​.org​/wiki​/Fixed​-point​_arithmetic.

•	 You can learn more about limited-precision arithmetic from the follow-
ing resources:

	• A Central Connecticut State University tutorial in the form of an
interactive questionnaire: https://chortle​.ccsu​.edu​/assemblytutorial​/
Chapter​-29​/ass29​_10​.html.

	• Python documentation on the topic: https://docs​.python​.org​/3​/tutorial​/
floatingpoint​.html.

•	 For more information on writing better code using floating-point arith-
metic, see the following post on the Society of Actuaries website: https://
www​.soa​.org​/news​-and​-publications​/newsletters​/compact​/2014​/may​/com​-2014​
-iss51​/losing​-my​-precision​-tips​-for​-handling​-tricky​-floating​-point​-arithmetic.

•	 Wikipedia documents the C stdlib math functions at https://en​.wikipedia​
.org​/wiki​/C​_mathematical​_functions.

•	 If you insist on writing your own transcendental functions, you might
try to locate a copy of the following book (long out of print), the “bible”
of transcendental functions: Computer Approximations, by John F. Hart,
E.W. Cheney, and Charles L. Lawson (Krieger Publishing, 1978).

https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://chortle.ccsu.edu/assemblytutorial/Chapter-29/ass29_10.html
https://chortle.ccsu.edu/assemblytutorial/Chapter-29/ass29_10.html
https://docs.python.org/3/tutorial/floatingpoint.html
https://docs.python.org/3/tutorial/floatingpoint.html
https://www.soa.org/news-and-publications/newsletters/compact/2014/may/com-2014-iss51/losing-my-precision-tips-for-handling-tricky-floating-point-arithmetic
https://www.soa.org/news-and-publications/newsletters/compact/2014/may/com-2014-iss51/losing-my-precision-tips-for-handling-tricky-floating-point-arithmetic
https://www.soa.org/news-and-publications/newsletters/compact/2014/may/com-2014-iss51/losing-my-precision-tips-for-handling-tricky-floating-point-arithmetic
https://en.wikipedia.org/wiki/C_mathematical_functions
https://en.wikipedia.org/wiki/C_mathematical_functions

Arithmetic 353

T ES T YOURSEL F

1.	 How does the cmp instruction affect the zero flag?

2.	 How does the cmp instruction affect the carry flag, with respect to an
unsigned comparison?

3.	 How does the cmp instruction affect the negative and overflow flags, with
respect to a signed comparison?

4.	 Convert the following expressions to assembly language (assume all vari-
ables are signed 32-bit integers):

x = x + y
x = y - z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)
x = (y == z) && (t != 0)

5.	 Compute the following expressions without using a mul instruction (assume
all variables are signed 32-bit integers):

x = x * 2
x = y * 5
x = y * 8

6.	 Compute the following expressions without using a udiv or sdiv instruction
(assume all variables are unsigned 64-bit integers):

x = x / 2
x = y / 8
x = z / 10

7.	 Convert the following expressions to assembly language (assume all vari-
ables are double-precision floating-point values):

x = x + y
x = y - z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)

8.	 Convert the following expressions to assembly language by using floating-
point instructions. Assume bb is a 1-byte Boolean variable and x, y, and z
are .double floating-point variables:

bb = x < y
bb = x >= y && x < z

The examples in this book up to this point
have created assembly control structures in

an ad hoc manner. Now it’s time to formalize
how to control the operation of your assembly

language programs. By the time you finish this chapter,
you should be able to convert HLL control structures
into assembly language control statements.

Control structures in assembly language consist of conditional branches
and indirect jumps. This chapter discusses those instructions and how
to emulate HLL control structures such as if...else, switch, and loop
statements. This chapter also discusses labels, the targets of conditional
branches and jump statements, as well as the scope of labels in an assembly
language source file.

7
L O W - L E V E L C O N T R O L

S T R U C T U R E S

356 Chapter 7

	 7.1	 Statement Labels
Before discussing the jump instructions and how to use them to emulate
control structures, an in-depth discussion of assembly language statement
labels is necessary. Labels in an assembly language program stand in as sym-
bolic names for addresses. Referring to a position in your code by using a
name such as LoopEntry is far more convenient than using a numeric address
such as 0xAF1C002345B7901E. For this reason, assembly language low-level
control structures make extensive use of labels within source code (see
section 2.10, “Control-Transfer Instructions,” on page 74).

You can do three operations on code labels: transfer control to a label
via a conditional or unconditional jump instruction, call a label via the bl
instruction, and take the address of a label. The last of these is useful when
you want to indirectly transfer control to that address at a later point in
your program.

The following code sequence demonstrates how to take the address of a
label in your program by using the lea macro:

stmtLbl:
 .
 .
 .
 lea x0, stmtLbl
 .
 .
 .
stmtLbl2:

Because addresses are 64-bit quantities, you’ll typically load an address
into a 64-bit general-purpose register by using the lea instruction. Also see
section 7.5, “Taking the Address of Symbols in Your Code,” on page 364 for
more information about taking the address of a label in your programs.

	 7.2	 Initializing Arrays with Statement Labels
Gas allows you to initialize double-word objects with the addresses of state-
ment labels. The code fragment in Listing 7-1 demonstrates how to do this.

// Listing7-1.S
//
// Initializing qword values with the
// addresses of statement labels

#include "aoaa​.inc"

 .data
 .align 3 // Align on dword boundary.
lblsInProc: .dword globalLbl1, globalLbl2 // From procWLabels

 .code

Low-Level Control Structures 357

// procWLabels
//
// Just a procedure containing private (lexically scoped)
// and global symbols. This really isn't an executable
// procedure.

 proc procWLabels

globalLbl1: b.al globalLbl2
globalLbl2:
 ret
 endp procWLabels

 .pool
 .align 3 // dword align
dataInCode: .dword globalLbl2, globalLbl1

You might recall that pointers in the .text section cannot refer to objects
outside that section; however, it is perfectly legitimate for pointers in other
sections (such as .data) to refer to symbols in the .text section.

As addresses on the ARM are 64-bit quantities, you will typically use the
.dword directive, as in the previous examples, to initialize a data object with
the address of a statement label.

	 7.3	 Unconditional Transfer of Control
The b.al (branch) instruction unconditionally transfers control to another
point in the program. This instruction has three forms: two PC-relative
branches and an indirect jump. These instructions take the following forms:

b label // Range is ±128MB.
b.al label // Range is ±1MB.
br reg64

The first two instructions are PC-relative branches, which you’ve seen in
various sample programs up to this point. For PC-relative branches, you
normally specify the target address by using a statement label. The label
appears either on the same line as an executable machine instruction or by
itself on a line preceding it. The direct jump is completely equivalent to a
goto statement in an HLL.

Here’s an example of a direct jump that transfers control to a label else-
where in the program:

 statements
 b laterInPgm // Or b.al laterInPgm
 .
 .
 .
laterInPgm:
 statements

358 Chapter 7

Unlike HLLs, for which your instructors usually forbid you to use goto
statements, you will find that the use of the b/b.al instruction in assembly
language is essential.

	 7.4	 Register-Indirect Branches
The third form of the br reg64 branch instruction given earlier is a register-
indirect jump instruction that transfers control to the instruction whose
address appears in the specified 64-bit general-purpose register. To use the
br instruction, you must load a 64-bit register with the address of a machine
instruction prior to the execution of br. When several paths, each loading
the register with a different address, converge on the same br instruction,
control transfers to an appropriate location determined by the path up to
that point.

Listing 7-2 reads a string of characters from the user that contain an
integer value. It uses strtol() to convert that string to a binary integer value.
This C stdlib function doesn’t do the best job of reporting an error, so this
program tests the return results to verify a correct input and uses register-
indirect jumps to transfer control to different code paths based on the result.

The first part of Listing 7-2 contains constants, variables, external dec-
larations, and the (usual) getTitle() function.

// Listing7-2.S
//
// Demonstrate indirect jumps to
// control flow through a program.

#include "aoaa​.inc"

maxLen = 256
EINVAL = 22 // "Magic" C stdlib constant, invalid argument
ERANGE = 34 // Value out of range

 .data
buffer: .fill 256, 0 // Input buffer

 .text
 .pool
ttlStr: wastr "Listing 7-2"

fmtStrA: wastr "value=%d, error=%d\n"

fmtStr1: .ascii "Enter an integer value between "
 wastr "1 and 10 (0 to quit): "

badInpStr: .ascii "There was an error in readLine "
 wastr "(ctrl-D pressed?)\n"

invalidStr: wastr "The input string was not a proper number\n"

Low-Level Control Structures 359

rangeStr: .ascii "The input value was outside the "
 wastr "range 1-10\n"

unknownStr: .ascii "The was a problem with strToInt "
 wastr "(unknown error)\n"

goodStr: wastr "The input value was %d\n"

fmtStr: wastr "result:%d, errno:%d\n"

// getTitle
//
// Return pointer to program title
// to the C++ code.

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

The next section of Listing 7-2 is the strToInt function, a wrapper around
the C stdlib strtol() function that does a more thorough job of handling
erroneous inputs from the user. See the comments for the function’s return
values:

// Listing7-2.S (cont.)
//
// strToInt
//
// Converts a string to an integer, checking for errors
//
// Argument:
// X0- Pointer to string containing (only) decimal
// digits to convert to an integer
//
// Returns:
// X0- Integer value if conversion was successful.
// X1- Conversion state. One of the following:
// 0- Conversion successful
// 1- Illegal characters at the beginning of the
// string (or empty string)
// 2- Illegal characters at the end of the string
// 3- Value too large for 32-bit signed integer

 proc strToInt

 locals sti
 dword sti.saveX19
 dword sti.endPtr
 word sti.value
 byte sti.stackSpace, 64

360 Chapter 7

 endl sti

 enter sti.size

 mov x19, x0 // Save, so you can test later.

// X0 already contains string parameter for strtol,
// X1 needs the address of the string to convert, and
// X2 needs the base of the conversion (10).

 1 add x1, fp, #sti.endPtr
 mov x2, #10 // Decimal conversion
 bl strtol

// On return:
//
// X0- Contains converted value, if successful
// endPtr-Pointer to 1 position beyond last char in string
//
// If strtol returns with endPtr == strToConv, then there were no
// legal digits at the beginning of the string.

 mov x1, #1 // Assume bad conversion.
 ldr x2, [fp, #sti.endPtr] // Is startPtr = endPtr?
 cmp x19, x2
 beq returnValue

// If endPtr is not pointing at a 0 byte, you have
// junk at the end of the string.

 mov x1, #2 // Assume junk at end.
 ldrb w3, [x2] // Byte at endPtr.
 cmp x3, #0 // Is it zero?
 bne returnValue // Return error if not 0.

// If the return result is 0x7fff_ffff or 0x8000_0000
// (max long and min long, respectively), and the C
// global _errno variable contains ERANGE, you have
// a range error.

 str w0, [fp, #sti.value] // Get C errno value.
 2 getErrno // Magic macro
 mov x2, x0
 ldr w0, [fp, #sti.value]

 mov x1, 0 // Assume good input.
 cmp w2, #ERANGE // errno = out of range?
 bne returnValue
 mov x1, #3 // Assume out of range.

 mov x2, 0xffff
 movk x2, 0x7fff, lsl #16

 cmp w0, w2
 beq returnValue

Low-Level Control Structures 361

 mvn w2, w2 // W2 = 0x8000_0000
 cmp w0, w2
 beq returnValue

// If you get to this point, it's a good number.

 mov x0, #0

returnValue:
 leave
 endp strToInt

The strtol() 1 function expects a pointer to an end-of-string pointer
variable. The strToInt procedure reserved space for this pointer in the acti-
vation record. This code computes the address of that pointer variable to
pass on to the strtol() function.

Retrieving the C errno variable 2 is done differently in macOS and Linux
(or, more likely, in Clang versus GCC). The getErrno macro in the aoaa​.inc
include file generates the appropriate code for the two systems. It returns
errno in X0.

The final section of Listing 7-2 is the main program and the most inter-
esting part of the code, because it demonstrates how to call the strToInt
function:

// Listing7-2.S (cont.)
//
// Here's the asmMain procedure:

 proc asmMain, public

 locals am
 dword am.saveX19 // Nonvolatile
 byte am.stackSpace, 64
 endl am

 enter am.size
 str x19, [fp, #am.saveX19] // Must preserve X19.

// Prompt the user to enter a value
// from 1 to 10:

repeatPgm: lea x0, fmtStr1
 bl printf

// Get user input:

 lea x0, buffer
 mov x1, #maxLen
 bl readLine

 lea x19, badInput // Initialize state machine.
 1 ands w0, w0, w0 // X0 is -1 on bad input.

362 Chapter 7

 bmi hadError // Only neg value readLine returns.

// Call strtoint to convert string to an integer and
// check for errors:

 lea x0, buffer // Ptr to string to convert
 bl strToInt
 lea x19, invalid
 cmp w1, #1
 beq hadError
 cmp w1, #2
 beq hadError

 lea x19, range
 cmp w1, #3
 beq hadError

 lea x19, unknown
 cmp w1, #0
 bne hadError

// At this point, input is valid and is sitting in X0.
//
// First, check to see if the user entered 0 (to quit
// the program):

 2 ands x0, x0, x0 // Test for zero.
 beq allDone

// However, we need to verify that the number is in the
// range 1-10:

 lea x19, range
 cmp x0, #1
 blt hadError
 cmp x0, #10
 bgt hadError

// Pretend a bunch of work happens here dealing with the
// input number:

 lea x19, goodInput

// The different code streams all merge together here to
// execute some common code (for brevity, we'll pretend that happens;
// no such code exists here):

hadError:

// At the end of the common code (which mustn't mess with
// X19), separate into five code streams based
// on the pointer value in X19:

 3 br x19

Low-Level Control Structures 363

// Transfer here if readLine returned an error:

badInput: lea x0, badInpStr
 bl printf
 b.al allDone

// Transfer here if there was a nondigit character
// in the string:

invalid: lea x0, invalidStr
 bl printf
 b.al repeatPgm

// Transfer here if the input value was out of range:

range: lea x0, rangeStr
 bl printf
 b.al repeatPgm

// Shouldn't ever get here. Happens if strToInt returns
// a value outside the range 0-3:

unknown: lea x0, unknownStr
 bl printf
 b.al repeatPgm

// Transfer down here on a good user input:

goodInput: mov w1, w0
 lea x0, goodStr
 mstr w1, [sp]
 bl printf
 b.al repeatPgm

// Branch here when the user selects "quit program" by
// entering the value 0:

allDone: ldr x19, [fp, #am.saveX19] // Must restore before returning.
 leave

 endp asmMain

The main function loads the X19 register with the address of code to
execute based on the strToInt return results. The strToInt function returns
one of the following states (see the comments in the previous code for an
explanation):

•	 Valid input

•	 Illegal characters at the beginning of the string

•	 Illegal characters at the end of the string

•	 Range error

364 Chapter 7

The program then transfers control to different sections of asmMain
based on the value held in X19, which specifies the type of result strToInt
returns.

The readline function returns –1 1 if there was an error reading the
line of text from the user, which typically occurs when the end of the file is
detected. This is the only negative value that readline returns, so rather than
test for –1, this code just checks to see if readline returned a negative value.
The test is a little sneaky, but it’s a standard trick; anytime you AND a value
with itself, you get the original value back. In this case, the code uses the
ands instruction, which also sets the Z flag if the value was 0 and sets the N
flag if the number was negative 2. Therefore, testing the N flag afterward
checks for an error condition. Note that a cmp x0, #0 instruction would serve
this same purpose.

Once again, this code uses the ands instruction 2 to compare the result
against 0. This time, it’s actually checking for the value 0 (via the Z flag) by
using the beq instruction immediately afterward. This is where the program
in Listing 7-2 demonstrates using the br (branch indirect through register)
instruction to implement the logic 3.

Here’s the build command and a sample run of Listing 7-2:

$./build Listing7-2
$./Listing7-2
Calling Listing7-2:
Enter an integer value between 1 and 10 (0 to quit): a123
The input string was not a proper number
Enter an integer value between 1 and 10 (0 to quit): 123a
The input string was not a proper number
Enter an integer value between 1 and 10 (0 to quit): 1234567890123
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): -1
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): 11
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): 5
The input value was 5
Enter an integer value between 1 and 10 (0 to quit): 0
Listing7-2 terminated

This sample run demonstrates several bad inputs, including non
numeric inputs, out-of-range values, a legitimate value, and entering 0 to
exit the program.

	 7.5	 Taking the Address of Symbols in Your Code
Listing 7-2 computed the address of various symbols throughout the .text
section in order to load those addresses into a register for later use.
Obtaining the runtime address of a symbol in the program is a common
operation in assembly language programs, because this is how you access
data (and code) indirectly via a register.

Low-Level Control Structures 365

This chapter covers control structures, and this section discusses obtain-
ing addresses of statement labels in the program. Much of the information
in this section is review material from earlier chapters in this book, but I’ve
pulled it together here for reference purposes and extended the discussion.

7.5.1  Revisiting the lea Macro
Listing 7-2 used the lea macro to initialize 64-bit registers with the address of
a location to jump to via the br instruction. This has been the go-to macro for
obtaining the address of a symbol throughout this book. However, remember
that lea is a macro and that

lea x0, symbol

translates into this:

// Under macOS:

 adrp x0, symbol@PAGE
 add x0, x0, symbol@PAGEOFF

// Under Linux:

 adrp x0, symbol
 add x0, x0, :lo12:symbol

The two-instruction sequence allows the lea macro to compute the
address of a PC-relative symbol anywhere in a ±4GB range. The adr instruc-
tion can also compute the address of a symbol but it supports only a ±1MB
range (see section 1.8.1, “ldr, str, adr, and adrp,” on page 23).

When taking the address of nearby statement labels in the .text section,
it is going to be more efficient to use the adr instruction:

adr x0, symbol

The only time this will fail is if your .text section is very large and the
symbol is more than 1MB away from the adr instruction. The main reason
for using the lea macro is to obtain the address of a symbol that is in a dif-
ferent section (especially on macOS, whose PIE/ASLR policy will likely
locate that section farther than ±1MB away).

If the symbol/memory location whose address you wish to compute is
farther than ±4GB away from the current instruction, you’ll have to use one
of the approaches in the following sections to obtain its address.

7.5.2  Statically Computing the Address of a Symbol
Since memory addresses are 64 bits, and the .dword directive allows you to
initialize a dword object with a 64-bit value, shouldn’t it be possible to ini-
tialize such an object with the 64-bit address of another symbol in the pro-
gram? The answer depends on the OS you’re running under.

366 Chapter 7

Under Linux, it is perfectly legal (even when running PIE code) to do
the following

varPtr: .dword variable

where variable is the name of a symbol appearing in a .data, .bss, .rodata,
or .text section. When Linux loads the executable program into memory,
it will automatically patch this dword memory location with the address of
that symbol in memory (wherever Linux has loaded it). Depending on the
section, you might be able to directly load the contents of this location in
the X0 register by using the following instruction, assuming that the symbol
is within the PC-relative range of the ldr instruction:

ldr x0, varPtr

Sadly, this scheme may not work under macOS, where you’re not allowed
to use absolute addresses in your .text section. If you move varPtr to the
.data section, macOS will accept the pointer initialization but will reject the
ldr instruction with the same complaint about an illegal absolute address. Of
course, you could use the lea macro to load the address of varPtr into X0 and
then fetch variable’s address by using the [X0] addressing mode; however,
at that point, you may as well use the lea instruction to load the address of
variable directly into X0. In any case, you’re back to the ±4GB limitation of
the lea macro.

You can get around the absolute address limitation of macOS by using
a relative address rather than an absolute address. A relative address is just
an offset from a fixed point in memory (for example, a PC-relative address
is an offset from the address held in the PC register). You can create a self-
relative 64-bit pointer by using the following statement:

varPtr: .dword variable-. // "." is same as "varPtr" here.

This initializes this 64-bit memory location with the distance (in bytes)
from the varPtr object to the desired memory location (variable). This is
known as a self-relative pointer because the offset is from the pointer variable
itself. As it turns out, macOS’s assembler is perfectly happy with this address
expression (even in the .text section) because it is not an absolute address.

M ACOS A ND INIT I A L IZED POIN T ERS

MacOS does not allow 64-bit absolute addresses within the .text section. They
can’t point into the .text section or at other sections. No absolute addresses,
absolutely.

This restriction does not exist in other sections. You can have initialized
64-bit pointers in a .data section or in an .rodata section. Those pointers can

Low-Level Control Structures 367

even point at addresses within the .text section. I don’t know why absolute
pointers are allowed in these other sections but not the .text section, but I
suspect that an exploit took advantage of a pointer in the .text section that
doesn’t work if the pointer is in other sections.

Of course, you cannot simply load these 64 bits into a register and address
the memory location at which they point. The value is an offset, not an
address. However, if you add the address of varPtr to its contents, this will
give you the address of variable, as demonstrated in the following code:

adr x0, varPtr // Assume varPtr is in .text and nearby.
ldr x1, varPtr // Get varPtr address and contents, then
add x0, x0, x1 // add them together for variable's address.

This sequence solves the problem with addresses under macOS and
happens to work just fine under Linux as well. Because this sequence
will work under both OSes, this book adopts this scheme when fetching
addresses from variables in memory.

Under macOS, this sequence requires varPtr to be in the same .text
section as the instructions. Otherwise, macOS will complain that varPtr is
an absolute address and will reject this code. Because I’ve written this book
assuming the code will generally work under Linux and macOS, I will keep
such labels in the .text section.

A single ldr instruction will also work fine under Linux, so if you’re
writing Linux-only code, the single ldr is more efficient.

7.5.3  Dynamically Computing the Address of a Memory Object
Computing the address of a nonstatic memory object is a bit more involved
than doing the same for static (.data, .bss, .text, .rodata, and so on) memory
objects.

Because every ARM machine instruction is exactly 32 bits in length,
you can view a .text section containing nothing but machine instructions
as an array of words, where the value in each word just happens to be the
encoding of a machine instruction. (This view isn’t 100 percent accurate; if
the .text section contains data as well as instructions, there are limitations to
how far you can go with treating the .text section as an array of instructions.
However, if you limit yourself to those areas that contain only instructions,
everything will be fine.)

With this in mind, it is possible to manipulate the values in the .text
section by using the techniques for arrays from section 4.7, “Arrays,” on
page 194. This includes techniques such as indexing into arrays and com-
puting the effective address of array elements.

368 Chapter 7

N O T E 	 Section 5.6.2, “Passing by Reference,” on page 256 describes a procedure for comput-
ing the effective address of an object you reference via the ARM’s various addressing
modes. For data objects, see that discussion.

Consider the following instruction sequence of arbitrary instructions
cut from Listing 7-2:

goodInput: mov w1, w0
 lea x0, goodStr
 mstr w1, [sp]
 bl printf
 b.al repeatPgm

The label goodInput is the base address of an array of five words contain-
ing the five instructions in this short sequence. You can, of course, take
the base address of this array by using the adr instruction (or lea if this
sequence is too far away). Once you have this base address in a register
(such as X0), you can use the array-indexing calculation to compute the
address of a particular entry in the array:

element_address = base_address + index × element_size

The element_size value is 4, as each instruction is 32 bits. Index 0 specifies
the mov instruction, index 1 specifies the adr instruction, and so on.

Given an index value in X1, you can transfer control directly to one of
these five instructions by using the following code:

adr x0, goodInput
add x0, x0, x1, lsl #2
br x0

The add instruction multiplies the index (X1) by 4 before adding it to
the base address. This computes the byte address of the specified instruc-
tion in the sequence; then br transfers control to the instruction.

In many respects, this is similar to a switch or case statement, where
a unique case is associated with each instruction in the sequence. This
chapter considers such control structures in section 7.6.7, “switch...case
Statements,” on page 389. In the meantime, just know that you can dynami-
cally compute the address of one of the instructions in this sequence by
using normal effective address calculations.

7.5.4  Working with Veneers
In the rare case you need to branch to a location beyond the range of the
conditional branch instructions, you can use an instruction sequence such
as the following

 bccopposite skipJmp
 lea x16, destLbl

Low-Level Control Structures 369

 br x16
skipJmp:

where bccopposite is the opposite of the branch you want to take. This oppo-
site branch skips over the code that transfers control to the target location.
This provides you with the 4GB range of the lea macro, which should be
sufficient if you’re branching to code in your program. The opposite con-
ditional branch transfers control to the normal fall-though point in the code
(the code you’d normally fall through to if the condition is false). If the
condition is true, control transfers to a memory-indirect jump that jumps to
the original target location via a 64-bit pointer.

This sequence is known as a veneer (or a trampoline), because a program
jumps to this point to move even further in the program—much like jump-
ing on a trampoline lets you jump higher and higher. Veneers are use-
ful for call and unconditional jump instructions that use the PC-relative
addressing mode (and thus are limited to a ±1MB range around the current
instruction). You’ll rarely use veneers to transfer to another location within
your program, since it’s unlikely you’ll write assembly language programs
that large.

Note the use of the X16 register in this example. The ARM ABI reserves
registers X16 and X17 for dynamic linking and veneer use. You’re free to
use these two as volatile registers with the expectation that their contents
may be changed upon executing a branch instruction (of any kind, though
generally a bl instruction). Compilers and linkers will typically modify an
out-of-range branch instruction to transfer code to a nearby veneer, which
then transfers control the full distance to the actual destination. When cre-
ating your own veneers, it makes sense to use these registers as temporaries
for that purpose.

Branching to code outside this range generally means you’re transfer-
ring control to a function in a shared (or dynamically linked) library. See
the appropriate documentation for your OS for details on such libraries.

Table 7-1 lists the opposite conditions; refer to Table 2-11 on page 82
for the available opposite branch macros in aoaa​.inc.

Table 7-1: Opposite Conditions

Branch condition Opposite

eq ne

ne eq

hi ls

hs lo

lo hs

ls hi

gt le

ge lt

(continued)

370 Chapter 7

Branch condition Opposite

lt ge

le gt

cs cc

cc cs

vs vc

vc vs

mi pl

pl mi

If the destination location is beyond the ±4GB range of the lea macro,
you’ll need to create a 4-byte pointer (offset) to the actual location and use
code such as the following:

 adr x16, destPtr
 ldr x17, destPtr
 add x16, x16, x17
 br x16
destPtr:
 .dword destination-. // Same as "destination-destPtr"

This particular sequence is sufficiently useful that the aoaa​.inc include
file provides a macro that expands to it:

goto destination

If you need to call a procedure that’s more than ±4GB away, you could
emit similar code:

 adr x16, destPtr
 ldr x17, destPtr
 add x16, x16, x17
 blr x16
 b.al skipAdrs
destPtr:
 .dword destination-.
skipAdrs:

However, it’s easier to do this:

 bl veneer
 .
 .
 .
veneer:
 goto destination

Table 7-1: Opposite Conditions (continued)

Low-Level Control Structures 371

With the discussion of veneers out of the way, the next section can dis-
cuss how to implement HLL-like control structures in assembly language.

	 7.6	 Implementing Common Control Structures
		 in Assembly Language

This section shows you how to implement HLL-like control structures such
as decisions, loops, and other control constructs by using pure assembly lan-
guage. It concludes by showing some ARM instructions designed for creat-
ing common loops.

Throughout many of the following examples, this chapter assumes that
various variables are local variables in the activation record (indexed off of
the FP register) or static/global variables indexed off the SB (X28) register.
We presume that appropriate structure declarations have been made for all
the variable’s identifiers and that the FP/SB registers have been properly
initialized to point at these structures.

7.6.1  Decisions
In its most basic form, a decision is a branch within the code that switches
between two possible execution paths based on a certain condition. Normally
(though not always), conditional instruction sequences are implemented
with the conditional jump instructions. Conditional instructions corre-
spond to the following if...then...endif statement in an HLL:

if(expression) then
 statements
endif;

To convert this to assembly language, you must write statements that
evaluate the expression and then branch around the statements if the result
is false. For example, if you had the C statements

if(aa == bb)
{
 printf("aa is equal to bb\n");
}

you could translate this to assembly as follows:

 ldr w0, [fp, #aa] // Assume aa and bb are 32-bit integers.
 ldr w1, [fp, #bb]
 cmp w0, w1
 bne aNEb // Use opposite branch to skip then
 lea x0, aIsEqlBstr // " aa is equal to bb\n".
 bl printf
aNEb:

372 Chapter 7

In general, conditional statements may be broken into three basic cat-
egories: if statements, switch...case statements, and indirect jumps. Next,
you’ll learn about these program structures, how to use them, and how to
write them in assembly language.

7.6.2  if...then...else Sequences
The most common conditional statements are the if...then...endif and
if...then...else...endif statements. These two statements take the form
shown in Figure 7-1.

if...then...else...endif if...then...endif

Test for a condition

False True False True

Test for a condition

Execute this block
of statements if the
condition is true

Execute this block
of statements if the
condition is false

Execute this block
of statements if the
condition is true

Continue execution
down here after the
completion of the
then or if skipping

the then block

Continue execution
down here after the
completion of the
then or else blocks

Figure 7-1: The if...then...else...endif and if...then...endif statements

The if...then...endif statement is just a special case of the if...then...
else...endif statement (with an empty else block). The basic implementa-
tion of an if...then...else...endif statement in ARM assembly language
looks something like this

 Sequence of statements to test a condition
 bcc ElseCode;

 Sequence of statements corresponding to the THEN block

 b.al EndOfIf

Low-Level Control Structures 373

ElseCode:
 Sequence of statements corresponding to the ELSE block

EndOfIf:

where bcc represents a conditional branch instruction (typically the oppo-
site branch of the condition being tested).

For example, suppose you want to convert the C/C++ statement into
assembly language:

if(aa == bb)
 c = d;
else
 bb = bb + 1;

To do so, you could use the following ARM code:

 ldr w0, [fp, #aa] // aa and bb are 32-bit integers
 ldr w1, [fp, #bb] // in the current activation record.
 cmp w0, w1
 bne ElseBlk // Use opposite branch to goto else.
 ldr w0, [sb, #d] // Assume c and d are 32-bit static
 str w0, [sb, #c] // variables in the static base
 b.al EndOfIf // structure (pointed at by SB).

ElseBlk:
 ldr w0, [fp, #bb]
 add w0, w0, #1
 str w0, [fp, #bb]

EndOfIf:

For simple expressions like (aa == bb), generating the proper code for
an if...then...else...endif statement is easy. Should the expression become
more complex, the code complexity increases as well. Consider the follow-
ing C/C++ if statement:

if(((x > y) && (z < t)) || (aa != bb))
 c = d;

To convert a complex if statement such as this one, break it into a
sequence of three if statements as follows (assuming the use of short-
circuit evaluation; see section 7.6.5, “Short-Circuit vs. Complete Boolean
Evaluation,” on page 382 for details):

if(aa != bb)
 c = d;
else if(x > y)
 if(z < t)
 c = d;

374 Chapter 7

This conversion comes from the following C/C++ equivalences:

if(expr1 && expr2) stmt;

is equivalent to

if(expr1) if(expr2) stmt;

and

if(expr1 || expr2) stmt;

is equivalent to

if(expr1) stmt;
else if(expr2) stmt;

In assembly language, the former if statement becomes the following:

// if(((x > y) && (z < t)) || (aa != bb))
// c = d;
//
// Assume x = W0, y = W1, z = W2, t = W3, aa = W4, bb = W5, c = W6, and d = W7
// and all variables are signed integers.

 cmp w4, w5 // (aa != bb)?
 bne DoIf
 cmp w0, w1 // (x > y)?
 bngt EndOfIf // Not greater than
 cmp w2, w3 // (z < t)?
 bnlt EndOfIf // Not less than
DoIf:
 mov w6, w7 // c = d
EndOfIf:

Note the use of opposite branches to suggest that falling through is the
main condition to consider.

The biggest problem with complex conditional statements in assembly
language is trying to figure out what you’ve done after you’ve written the
code. HLL expressions are much easier to read and comprehend, so well-
written comments are essential for clear assembly language implementa-
tions of if...then...else...endif statements. The following code shows an
elegant implementation of the preceding example:

// if(((x > y) && (z < t)) || (aa != bb))
// c = d;
//
// Assume x = W0, y = W1, z = W2, t = W3, aa = W4, bb = W5, c = W6,
// and d = W7.
//
// Implemented as:

Low-Level Control Structures 375

//
// if (aa != bb) then goto DoIf

 cmp w4, w5 // (aa != bb)?
 bne DoIf

// if not (x > y) then goto EndOfIf

 cmp w0, w1 // (x > y)?
 bngt EndOfIf // Not greater than

// if not (z < t) then goto EndOfIf

 cmp w2, w3 // (z < t)?
 bnlt EndOfIf // Not less than

// true block:

DoIf:
 mov w6, w7 // c = d
EndOfIf:

Whenever you’re working in assembly language, don’t forget to step
back for a moment and see if you can rethink the solution in assembly lan-
guage rather than playing “human C/C++ compiler.” When working with a
complex Boolean expression, your first thought should be, “Can I use the
conditional compare instruction to resolve this?” The following example
does just that:

// if(((x > y) && (z < t)) || (aa != bb))
// c = d;
//
// Assume x = W1, y = W2, z = W3, t = W4, aa = W5, bb = W6, c = W0, and d = W7.

 cmp w1, w2 // x > y ? gt : ngt (C ternary ?: op)
 ccmp w3, w4, #ccnlt, gt // x > y ? gt : ngt
 ccmp w5, w6, #ccne, nlt // nlt ? (a != bb ? ne : nne) : ne
 csel w0, w7, w0, ne // if(ne) c = d

The cmp instruction sets the flags for (x > y). The first ccmp instruction
sets the flags to simulate a signed ge (not less than) if (x <= y) or based on
the comparison of (z < t) if (x > y). After executing the first ccmp instruc-
tion, N ≠ V if (x > y) && (z < t).

Upon executing the second ccmp instruction, if N ≠ V (meaning signed
less than), the code just sets NZCV to simulate ne and doesn’t bother com-
paring aa and bb (because the left-hand side of the disjunction operator is
already true, there is no need to evaluate the third parenthetical expres-
sion). Setting Z = 0 means the csel instruction will copy d to c (based on the
ne condition).

If N = V when executing the second ccmp instruction, the ge condition
is true, which means that the conjunction operation yielded false and you

376 Chapter 7

must test to see if aa does not equal bb. That will set the flags appropriately
for the csel instruction. Listing 7-3 demonstrates the execution of this con-
ditional comparison code.

// Listing7-3.S
//
// Demonstrate the ccmp instruction
// handling complex Boolean expressions.

#include "aoaa​.inc"

 .data

xArray: .word -1, 0, 1,-1, 0, 1,-1, 0, 1, 1
yArray: .word -1,-1,-1, 0, 0, 0, 1, 1, 1, 0
zArray: .word -1, 0, 1,-1, 0, 1,-1, 0, 1, 0
tArray: .word 0, 0, 0, 1, 1, 1,-1,-1,-1, 1
aArray: .word 0, 0, 0,-1,-1,-1, 1, 1, 1, 1
bArray: .word -1, 0, 1,-1, 0, 1,-1, 0, 1, 1
size = 10

 .text
 .pool
ttlStr: wastr "Listing 7-3"
fmtStr1: .ascii "((x > y) && (z < t)) || (aa != bb)\n"
 .ascii " x y z t aa bb Result\n"
 wastr "-- -- -- -- -- -- ------\n"
fmtStr2: wastr "%2d %2d %2d %2d %2d %2d %2d\n"

// getTitle
//
// Return pointer to program title
// to the C++ code:

 proc getTitle, public
 adr x0, ttlStr
 ret
 endp getTitle

///
//
// Here's the asmMain procedure:

 proc asmMain, public

 locals am
 qword saveX1920
 qword saveX2122
 qword saveX2324
 dword saveX25
 byte stackSpace, 64
 endl am

Low-Level Control Structures 377

 enter am.size

// Save nonvolatile registers and initialize
// them to point at xArray, yArray, zArray,
// tArray, aArray, and bArray:

 stp x19, x20, [fp, #saveX1920]
 stp x21, x22, [fp, #saveX2122]
 stp x23, x24, [fp, #saveX2324]
 str x25, [fp, #saveX25]

#define x x19
#define y x20
#define z x21
#define t x22
#define aa x23
#define bb x24

 lea x, xArray
 lea y, yArray
 lea z, zArray
 lea t, tArray
 lea aa, aArray
 lea bb, bArray

 lea x0, fmtStr1
 bl printf

// Loop through the array elements
// and print their values along
// with the result of
// ((x > y) && (z < t)) || (aa != bb)

 mov x25, #0
rptLp: ldr w1, [x, x25, lsl #2] // W1 = x[X25]
 ldr w2, [y, x25, lsl #2] // W2 = y[X25]
 ldr w3, [z, x25, lsl #2] // W3 = z[X25]
 ldr w4, [t, x25, lsl #2] // W4 = t[X25]
 ldr w5, [aa, x25, lsl #2] // W5 = aa[X25]
 ldr w6, [bb, x25, lsl #2] // W6 = bb[X25]

 cmp w1, w2
 ccmp w3, w4, #ccnlt, gt
 ccmp w5, w6, #ccne, nlt
 cset w7, ne

 lea x0, fmtStr2
 mstr w1, [sp]
 mstr w2, [sp, #8]
 mstr w3, [sp, #16]
 mstr w4, [sp, #24]
 mstr w5, [sp, #32]
 mstr w6, [sp, #40]
 mstr w7, [sp, #48]

378 Chapter 7

 bl printf
 add x25, x25, #1
 cmp x25, #size
 blo rptLp

// Restore nonvolatile register values
// and return:

 ldp x19, x20, [fp, #saveX1920]
 ldp x21, x22, [fp, #saveX2122]
 ldp x23, x24, [fp, #saveX2324]
 ldr x25, [fp, #saveX25]

 leave
 endp asmMain

Here’s the build command and sample output for Listing 7-3:

$./build Listing7-3
$./Listing7-3
Calling Listing7-3:
((x > y) && (z < t)) || (aa != bb)
 x y z t aa bb Result
-- -- -- -- -- -- ------
-1 -1 -1 0 0 -1 1
 0 -1 0 0 0 0 0
 1 -1 1 0 0 1 1
-1 0 -1 1 -1 -1 0
 0 0 0 1 -1 0 1
 1 0 1 1 -1 1 1
-1 1 -1 -1 1 -1 1
 0 1 0 -1 1 0 1
 1 1 1 -1 1 1 0
 1 0 0 1 1 1 1
Listing7-3 terminated

The output shows the truth table for the given expression.

7.6.3  Complex if Statements Using Complete Boolean Evaluation
Many Boolean expressions involve conjunction (AND) or disjunction (OR)
operations. You can convert such Boolean expressions into assembly lan-
guage in two ways: using complete Boolean evaluation or using short-circuit
Boolean evaluation. This section discusses complete Boolean evaluation, and
the next discusses short-circuit Boolean evaluation.

Conversion via complete Boolean evaluation is almost identical to
converting arithmetic expressions into assembly language, as covered in
section 6.4, “Logical Expressions,” on page 312. However, for Boolean eval-
uation, you do not need to store the result in a variable; once the evaluation
of the expression is complete, you check whether you have a false (0) or
true (1, or nonzero) result to take whatever action the Boolean expression
dictates. Remember that only the ands instruction sets the zero flag; there is

Low-Level Control Structures 379

no orrs instruction. Consider the following if statement and its conversion
to assembly language using complete Boolean evaluation:

// if(((x < y) && (z > t)) || (aa != bb))
// Stmt1 ;
//
// Assume all variables are 32-bit integers and are local
// variables in the activation record.

 ldr w0, [fp, #x]
 ldr w1, [fp, #y]
 cmp w0, w1
 cset w7, lt // Store x < y in W7.
 ldr w0, [fp, #z]
 ldr w1, [fp, #t]
 cmp w0, w1
 cset w6, gt // Store z > t in W6.
 and w6, w6, w7 // Put (x < y) && (z > t) into W6.
 ldr w0, [fp, #aa]
 ldr w1, [fp, #bb]
 cmp w0, w1
 cset w0, ne // Store aa != bb into W0.
 orr w0, w0, w6 // Put (x < y) && (z > t) ||
 cmp w0, #0 // (aa != bb) into W0.
 beq SkipStmt1 // Branch if result is false.

 Code for Stmt1

SkipStmt1:

This code computes a Boolean result in the W0 register and then, at the
end of the computation, tests this value to see whether it contains true or
false. If the result is false, this sequence skips over the code associated with
Stmt1. The important thing is that the program will execute every instruc-
tion that computes this Boolean result (up to the beq instruction).

By now you should recognize that we can improve this code by using
the ccmp instruction:

 ldr w0, [fp, #x]
 ldr w1, [fp, #y]
 cmp w0, w1
 ldr w0, [fp, #z]
 ldr w1, [fp, #t]
 ccmp w0, w1, #ccngt, lt
 ldr w0, [fp, #aa]
 ldr w1, [fp, #bb]
 ccmp w0, w1, #cceq, gt
 beq SkipStmt1 // Branch if result is false.

 Code for Stmt1

SkipStmt1:

380 Chapter 7

The code is still a bit longer than usual, but this is the result of using
memory variables rather than registers for everything in this example. Even
though this example uses the ccmp instruction, the code still executes each
and every instruction in the sequence, even if the condition becomes false
early on and could never become true.

7.6.4  Short-Circuit Boolean Evaluation
If you are willing to expend a little more effort (and your Boolean expres-
sion doesn’t depend on side effects), you can often convert a Boolean
expression to a faster sequence of assembly language instructions by using
short-circuit Boolean evaluation. This approach attempts to determine whether
an expression is true or false by executing only some of the instructions
that would compute the complete expression.

Consider the expression aa && bb. Once you determine that aa is false,
there is no need to evaluate bb because there is no way the expression
can be true. If bb represents a complex subexpression rather than a single
Boolean variable, it should be clear that evaluating only aa is more efficient.

As a concrete example, consider the subexpression ((x < y) && (z > t)).
Once you determine that x is not less than y, there is no need to check
whether z is greater than t because the expression will be false regardless of
the values of z and t. The following code fragment shows how to implement
short-circuit Boolean evaluation for this expression:

// if((x < y) && (z > t)) then ...

 ldr w0, [fp, #x]
 ldr w1, [fp, #y]
 cmp w0, w1
 bnlt TestFails
 ldr w0, [fp, #z]
 ldr w1, [fp, #t]
 cmp w0, w1
 bngt TestFails

 Code for THEN clause of IF statement

TestFails:

The code skips any further testing once it determines that x is not less
than y. Of course, if x is less than y, the program has to test z to see if it is
greater than t; if not, the program skips over the then clause. Only if the pro-
gram satisfies both conditions does the code fall through to the then clause.

For the logical OR operation, the technique is similar. If the first sub-
expression evaluates to true, there is no need to test the second operand.
Whatever the second operand’s value is at that point, the full expression
still evaluates to true. The following example demonstrates the use of short-
circuit evaluation with disjunction (||):

Low-Level Control Structures 381

// if(W0 < 'A' || W0 > 'Z')
// then printf("Not an uppercase char");
// endif;

 cmp w0, #'A'
 blo ItsNotUC
 cmp w0, #'Z'
 bnhi ItWasUC

ItsNotUC:
 Code to process W0 if it's not an uppercase character

ItWasUC:

Because the conjunction and disjunction operators are commutative,
you can evaluate the left or right operand first if it is more convenient to
do so.

Be aware that some expressions depend on the leftmost subexpression
evaluating one way in order for the rightmost subexpression to be valid;
if(x != NULL && x -> y) is a common test in C/C++, for example.

As one last example in this section, consider the full Boolean expres-
sion from the previous section:

// if(((x < y) && (z > t)) || (aa != bb)) Stmt1 ;

 ldr w0, [sb, #aa] // Assume aa and bb are globals.
 ldr w1, [sb, #bb]
 cmp w0, w1
 bne DoStmt1
 ldr w0, [fp, #x] // Assume x, y, z, and t
 ldr w1, [fp, #y] // are all locals.
 cmp w0, w1
 bnlt SkipStmt1
 ldr w0, [fp, #z]
 ldr w1, [fp, #t]
 cmp w0, w1
 bngt SkipStmt1

DoStmt1:
 Code for Stmt1

SkipStmt1:

The code in this example evaluates aa != bb first, because it is shorter
and faster, and the remaining subexpression last. This is a common tech-
nique assembly language programmers use to write better code.

This assumes, of course, that all comparisons are equally likely to be
true or false. If you can predict that the subexpression aa != bb will be false
the vast majority of the time, it would be best to test that condition last.

382 Chapter 7

7.6.5  Short-Circuit vs. Complete Boolean Evaluation
When using complete Boolean evaluation, every statement in the sequence
for that expression will execute; short-circuit Boolean evaluation, on the
other hand, may not require the execution of every statement associated
with the Boolean expression. As you’ve seen in the previous two sections,
code based on short-circuit evaluation is often shorter and possibly faster.

However, short-circuit Boolean evaluation may not produce the correct
result in some cases. Given an expression with side effects (changes to vari-
ables within the expression), short-circuit Boolean evaluation will produce
a different result than complete Boolean evaluation. Consider the following
C/C++ example:

if((x == y) && (++z != 0)) Stmt;

Using complete Boolean evaluation, you might generate the following:

 ldr w0, [fp, #x] // See if x == y.
 ldr w1, [fp, #y]
 cmp w0, w1
 ldr w2, [fp, #z]
 add w2, w1, 1 // ++z
 str w2, [fp, #z]
 ccmp w2, #0, #cceq, eq
 beq SkipStmt

 Code for Stmt

SkipStmt:

The ccmp instruction compares the incremented value of z against 0, but
only if x is equal to y. If x is not equal to y, the ccmp instruction sets the Z flag
to 1 so that control transfers to SkipStmt with the following beq instruction.

Using short-circuit Boolean evaluation, you might generate the follow-
ing code:

 ldr w0, [fp, #x] // See if x == y.
 ldr w1, [fp, #y]
 cmp w0, w1
 bne SkipStmt
 ldr w2, [fp, #z]
 adds w2, w1, 1 // ++z -- sets Z flag if z
 str w2, [fp, #z] // becomes 0.
 beq SkipStmt // See if incremented z is 0.

 Code for Stmt

SkipStmt:

Low-Level Control Structures 383

A subtle but important difference exists between these two conversions:
if x is equal to y, the first version still increments z and compares it to 0 before
it executes the code associated with Stmt. The short-circuit version, on the
other hand, skips the code that increments z if it turns out that x is equal
to y. Therefore, the behavior of these two code fragments is different if x is
equal to y.

Neither implementation is wrong; depending on the circumstances, you
may or may not want the code to increment z if x is equal to y. However, it
is important to realize that these two schemes produce different results, so
you can choose an appropriate implementation if the effect of this code on
z matters to your program.

Many programs take advantage of short-circuit Boolean evaluation and
rely on the program not evaluating certain components of the expression.
The following C/C++ code fragment demonstrates perhaps the most com-
mon example that requires short-circuit Boolean evaluation:

if(pntr != NULL && *pntr == 'a') Stmt;

If it turns out that pntr is NULL, the expression is false, and there is
no need to evaluate the remainder of the expression. This statement relies
on short-circuit Boolean evaluation for correct operation. Were C/C++ to
use complete Boolean evaluation, the second half of the expression would
attempt to dereference a NULL pointer, when pntr is NULL.

Consider the translation of this statement using complete Boolean
evaluation:

// Complete Boolean evaluation:

 ldr x0, [fp, #pntr]
 cmp x0, #0 // Check to see if X0 is 0 (NULL is 0).
 cset w1, ne // w1 = pntr != NULL
 ldrb w0, [x0] // Get *pntr into W0.
 cmp w0, #'a'
 cset w2, eq
 ands w1, w1, w2
 beq SkipStmt

 Code for Stmt

SkipStmt:

If pntr contains NULL (0), this program will attempt to access the data at
location 0 in memory via the ldrb w0, [x0] instruction. Under most OSes,
this will cause a memory access fault (segmentation fault).

Now consider the short-circuit Boolean conversion:

 ldr x0, [fp, #pntr] // See if pntr contains NULL (0)
 cmp x0, #0 // and immediately skip past Stmt
 beq SkipStmt // if this is the case.

384 Chapter 7

 ldrb w0, [x0] // If we get to this point, pntr
 cmp w0, #'a' // contains a non-NULL value, so see
 bne SkipStmt // if it points at the character 'a'.

 Code for Stmt

SkipStmt:

In this example, the problem with dereferencing the NULL pointer
doesn’t exist. If pntr contains NULL, this code skips over the statements that
attempt to access the memory address that pntr contains.

7.6.6  Efficient Implementation of if Statements in Assembly Language
Encoding if statements efficiently in assembly language takes a little
more thought than simply choosing short-circuit evaluation over complete
Boolean evaluation. To write code that executes as quickly as possible in
assembly language, you must carefully analyze the situation and generate
the code appropriately. The following paragraphs provide suggestions you
can apply to your programs to improve their performance.

7.6.6.1  Knowing Your Data

Programmers often mistakenly assume that data is random. In reality, data
is rarely random, and if you know the types of values that your program
commonly uses, you can write better code. To see how, consider the follow-
ing C/C++ statement:

if((aa == bb) && (c < d)) ++i;

Because C/C++ uses short-circuit evaluation, this code will test whether
aa is equal to bb. If so, it will test whether c is less than d. If you expect aa to
be equal to bb most of the time but don’t expect c to be less than d most of
the time, this statement will execute slower than it should. Consider the fol-
lowing Gas implementation of this code:

 ldr w0, [fp, #aa]
 ldr w1, [fp, #bb]
 cmp w0, w1
 bne DontIncI

 ldr w0, [fp, #c]
 ldr w1, [fp, #d]
 cmp w0, w1
 bnlt DontIncI

 ldr w0, [sb, #i]
 add w0, w0, #1
 str w0, [sb, #i]

DontIncI:

Low-Level Control Structures 385

As you can see, if aa is equal to bb most of the time and c is not less
than d most of the time, you will have to execute the first eight instructions
nearly every time in order to determine that the expression is false. Now
consider the following implementation that takes advantage of this knowl-
edge and the fact that the && operator is commutative:

 ldr w0, [fp, #c]
 ldr w1, [fp, #d]
 cmp w0, w1
 bnlt DontIncI

 ldr w0, [fp, #aa]
 ldr w1, [fp, #bb]
 cmp w0, w1
 bne DontIncI

 ldr w0, [sb, #i]
 add w0, w0, #1
 str w0, [sb, #i]

DontIncI:

The code first checks whether c is less than d. If most of the time c is not
less than d, this code determines that it has to skip to the label DontIncI after
executing only three instructions in the typical case, compared with seven
instructions in the previous example.

Optimizations like this are much more obvious in assembly language
than in an HLL, one of the main reasons assembly programs are often
faster than their HLL counterparts. The key here is to understand the
behavior of your data so you can make intelligent decisions.

7.6.6.2  Rearranging Expressions

Even if your data is random, or you can’t determine how the input values
will affect your decisions, rearranging the terms in your expressions may
still be beneficial. Some calculations take far longer to compute than oth-
ers. For example, computing the remainder is slower than a simple cmp
instruction. Therefore, if you have a statement like the following, you may
want to rearrange the expression so that the cmp comes first:

if((x % 10 = 0) && (x != y)) ++x;

Converted directly to assembly code, this if statement becomes the
following:

 ldr w1, [fp, #x] // Compute x % 10.
 mov w2, #10
 udiv w0, w1, w2
 msub w0, w0, w2, w1
 cmp w0, #0
 bne SkipIf

386 Chapter 7

 ldr w0, [fp, #x]
 ldr w1, [fp, #y]
 cmp w0, w1
 beq SkipIf

 add w0, w0, #1 // ++x
 str w0, [fp, #x]

SkipIf:

The remainder computation is expensive (about one-third the speed
of most of the other instructions in this example). Unless it is three times
more likely that the remainder is 0 rather than x is equal to y, it would be
better to do the comparison first and the remainder calculation afterward:

 ldr w1, [fp, #x] // Compute x % 10.
 ldr w1, [fp, #y]
 cmp w0, w1
 beq SkipIf

 ldr w1, [fp, #x]
 mov w2, #10
 udiv w0, w1, w2
 msub w0, w0, w2, w1
 cmp w0, #0
 bne SkipIf

 add w1, w1, #1 // ++x
 str w1, [fp, #x]

SkipIf:

The && and || operators are commutative in the mathematical sense
that if you evaluate that left or right side first, the logical result is the same.
In terms of execution, they are not commutative because the order of evalu-
ation may cause the code to skip the evaluation of the second subexpres-
sion; in particular, these operators may not be commutative if side effects
occur within the expression. This example works fine because there are no
side effects or possible exceptions being shielded by the reordered evalua-
tion of the && operator.

7.6.6.3  Destructuring Code

Structured code is sometimes less efficient than unstructured code because
it introduces code duplication or extra branches that might not be present
in unstructured code. Most of the time, this is tolerable because unstruc-
tured code is difficult to read and maintain; sacrificing some performance
in exchange for maintainable code is often acceptable. In certain instances,
however, you may need all the performance you can get and might choose
to compromise the readability of your code.

Low-Level Control Structures 387

In HLLs, you can often get away with writing structured code because
the compiler will optimize it, producing unstructured machine code.
Unfortunately, when writing in assembly language, the machine code you
get is exactly equivalent to the assembly code you write.

Taking previously written structured code and rewriting it in an unstruc-
tured fashion to improve performance is known is destructuring code. The
difference between unstructured code and destructured code is that
unstructured code was written that way in the first place; destructured code
started out as structured code and was purposefully written in an unstruc-
tured fashion to make it more efficient. Pure unstructured code is usually
hard to read and maintain. Destructured code isn’t quite as bad because
you limit the damage (unstructuring the code) to only those sections where
it is absolutely necessary.

One classic way to destructure code is to use code movement, physically
moving sections of code elsewhere in the program. You move code that your
program rarely uses out of the way of code that executes most of the time.

Code movement can improve the efficiency of a program two ways.
First, a branch that is taken is more expensive (time-consuming) than a
branch that is not taken. If you move the rarely used code to another spot
in the program and branch to it on the rare occasion the branch is taken,
most of the time you will fall straight through to the code that executes
most frequently. Second, sequential machine instructions consume cache
storage. If you move rarely executed statements out of the normal code
stream to another section of the program that is rarely loaded into cache,
this will improve the cache performance of the system.

For example, consider the following pseudo C/C++ statement:

if(See_If_an_Error_Has_Occurred)
{
 Statements to execute if no error
}
else
{
 Error-handling statements
}

In normal code, you don’t expect errors to be frequent. Therefore, you
would typically expect the then section of the preceding if to execute far
more often than the else clause. The preceding code could translate into
the following assembly code:

 cmp See_If_an_Error_Has_Occurred, #true
 beq HandleTheError

 Statements to execute if no error

 b.al EndOfIf

388 Chapter 7

HandleTheError:
 Error-handling statements
EndOfIf:

If the expression is false, this code falls through to the normal state-
ments and then jumps over the error-handling statements. Instructions that
transfer control from one point in your program to another (for example,
b.al instructions) tend to be slow. It is much faster to execute a sequen-
tial set of instructions than to jump all over the place in your program.
Unfortunately, the preceding code doesn’t allow this.

One way to rectify this problem is to move the else clause of the code
somewhere else in your program. You could rewrite the code as follows:

 cmp See_If_an_Error_Has_Occurred, #true
 beq HandleTheError

 Statements to execute if no error

EndOfIf:

 // At some other point in your program (typically after a b.al
 // or ret instruction), you would insert the following code:

HandleTheError:
 Error-handling statements
 b.al EndOfIf

The program isn’t any shorter. The b.al you removed from the original
sequence winds up at the end of the else clause. However, because the else
clause rarely executes, moving the b.al instruction from the then clause
(which executes frequently) to the else clause is a big performance win,
because the then clause executes using only straight-line code. This tech-
nique is surprisingly effective in many time-critical code segments.

7.6.6.4  Calculating Rather than Branching

On the ARM processor, branches are expensive compared to many other
instructions. For this reason, it is sometimes better to execute more instruc-
tions in a sequence than fewer instructions that involve branching.

For example, consider the simple assignment w0 = abs(w0). Unfortunately,
no ARM instruction computes the absolute value of an integer. The obvious
way to handle this is with an instruction sequence that uses a conditional
jump to skip over the neg instruction (which creates a positive value in W0 if
W0 was negative):

 cmp w0, #0
 bpl ItsPositive

 neg w0, w0

ItsPositive:

Low-Level Control Structures 389

Now consider the following sequence that will also do the job:

 cmp w0, #0
 cneg w0, w0, mi

Not only is the instruction set shorter, it also doesn’t involve any branches, so
it runs faster. This demonstrates why it’s good to know the instruction set!

Another example of calculation versus branching that you’ve seen
is using the ccmp instruction to handle conjunction and disjunction in a
Boolean expression (see section 7.6.5, “Short-Circuit vs. Complete Boolean
Evaluation,” on page 382). Though they tend to execute more instructions
than short-circuit evaluation, no branching is involved, and this often
equates to faster-running code.

Sometimes calculation without branching isn’t possible. For certain
types of branches (in particular, multiway branches), you can combine cal-
culations with a single branch to handle complex operations, as discussed
in the next section.

7.6.7  switch...case Statements
The C/C++ switch statement takes the following form:

 switch(expression)
 {
 case const1:
 Code to execute if
 expression equals const1

 case const2:
 Code to execute if
 expression equals const2
 .
 .
 .
 case constn:
 Code to execute if
 expression equals constn

 default: // Note that the default section is optional.
 Code to execute if expression
 does not equal any of the case values

 }

When this statement executes, it checks the value of the expression
against the constants const1 to constn. If it finds a match, the corresponding
statements execute.

C/C++ places a few restrictions on the switch statement. First, it allows
only an integer expression (or something whose underlying type can be an
integer). Second, all the constants in the case clauses must be unique. The

390 Chapter 7

next few subsections describe the semantics of the switch statement and
various implementations and clarify the reasons for the restrictions.

7.6.7.1  switch Statement Semantics

Most introductory programming texts introduce the switch...case statement
by explaining it as a sequence of if...then...elseif...else...endif state-
ments. They might claim that the following two pieces of C/C++ code are
equivalent:

switch(w0)
{
 case 0: printf("i=0"); break;
 case 1: printf("i=1"); break;
 case 2: printf("i=2"); break;
}

if(w0 == 0)
 printf("i=0");
else if(w0 == 1)
 printf("i=1");
else if(w0 == 2)
 printf("i=2");

While semantically these two code segments may be the same, their
implementation is usually different. Whereas the if...then...elseif...
else...endif chain does a comparison for each conditional statement in the
sequence, the switch statement normally uses an indirect jump to transfer
control to any one of several statements with a single computation.

7.6.7.2  if...else Implementation of switch

The switch (and if...else...elseif) statements could be written in assembly
language with the following code:

// if...then...else...endif form:

 ldr w0, [fp, #i]
 cmp w0, #0 // Check for 0.
 bne Not0

 Code to print "i = 0"

 b.al EndCase

Not0:
 cmp w0, #1
 bne Not1

 Code to print "i = 1"

 b.al EndCase

Low-Level Control Structures 391

Not1:
 cmp w0, #2
 bne EndCase

 Code to print "i = 2"

EndCase:

This code takes longer to determine that the last case should execute
than it does to determine whether the first case executes. This is because
the if...else...elseif version implements a linear search through the case
values, checking them one at a time from first to last until it finds a match.

7.6.7.3  Indirect Jump switch Implementation

A faster implementation of the switch statement is possible by using an indi-
rect jump table (a table containing target addresses to jump to). This imple-
mentation uses the switch expression as an index into a table of addresses;
each address points at the target case’s code to execute. The following
example demonstrates the use of a jump table:

// Indirect jump version

 ldr w0, [fp, #i] // Zero-extends into X0!
 1 adr x1, JmpTbl
 2 ldr x0, [x1, x0, lsl #3]
 3 add x0, x0, x1
 br x0

JmpTbl: .dword Stmt0-JmpTbl, Stmt1-JmpTbl, Stmt2-JmpTbl

Stmt0:

 Code to print "i = 0"

 b.al EndCase

Stmt1:

 Code to print "i = 1"

 b.al EndCase

Stmt2:

 Code to print "i = 2"

EndCase:

To use the scaled-indexed addressing mode, this code begins by
loading the address of the jump table (JmpTbl) into X1 1. Because JmpTbl

392 Chapter 7

is in the .text section (and nearby), the code uses the PC-relative address-
ing mode.

The code fetches the ith entry from JmpTbl 2. Because each entry in the
jump table is 8 bytes long, the code must multiply the index (i, which is in X0)
by 8, which the lsl #3 argument handles. The base address (in X1) plus
index times 8 gives the address of the appropriate entry in JmpTbl.

Because the entries in JmpTbl are offsets rather than absolute addresses
(remember, macOS doesn’t allow absolute addresses in the .text section),
you must convert the offset to an absolute address by adding in the base
address of the jump table 3 (as each entry in the table is an offset from the
base address). The following br instruction transfers control to the appro-
priate case in the switch statement.

To begin, a switch statement requires that you create an array of point-
ers, with each element containing the address of a statement label in your
code; those labels must be attached to the sequence of instructions to
execute for each case in the switch statement. As noted in the code annota-
tions, macOS does not allow absolute addresses here, so the code uses off-
sets from the base address of the jump table, which also works for Linux. In
this example, the JmpTbl array, initialized with the offsets of the statement
labels Stmt0, Stmt1, and Stmt2, serves this purpose. You must place the jump-
table array in a location that will never be executed as code (such as imme-
diately after a br instruction, as in this example).

The program loads the W0 register with the value of i (assuming i is
a 32-bit unsigned integer, the ldr instruction zero-extends W0 into X0). It
then uses this value as an index into the JmpTbl array (W1 holds the base
address of the JmpTbl array) and transfers control to the 8-byte address
found at the specified location. For example, if W0 contains 0, the br x0
instruction will fetch the double word at address JmpTbl+0 (W0 × 8 = 0).
Because the first double word in the table contains the offset of Stmt0, the
br instruction transfers control to the first instruction following the Stmt0
label. Likewise, if i (and therefore, W0) contains 1, then the indirect br
instruction fetches the double word at offset 8 from the table and transfers
control to the first instruction following the Stmt1 label (because the offset
of Stmt1 appears at offset 8 in the table). Finally, if i (W0) contains 2, then
this code fragment transfers control to the statements following the Stmt2
label because it appears at offset 16 in the JmpTbl table.

As you add more (consecutive) cases, the jump-table implementation
becomes more efficient (in terms of both space and speed) than the if...
elseif form. Except for simple cases, the switch statement is almost always
faster, and usually by a large margin. As long as the case values are consecu-
tive, the switch statement version is often smaller as well.

7.6.7.4  Noncontiguous Jump-Table Entries and Range Limiting

What happens if you need to include nonconsecutive case labels or can’t be
sure the switch value doesn’t go out of range? With the C/C++ switch state-
ment, such an occurrence will transfer control to the first statement after
the switch statement (or to a default case, if one is present in the switch).

Low-Level Control Structures 393

However, this doesn’t happen in the example in the previous section. If
variable i does not contain 0, 1, or 2, executing the previous code produces
undefined results. For example, if i contains 5 when you execute the code,
the indirect br instruction will fetch the dword at offset 40 (5 × 8) in JmpTbl
and transfer control to that offset. Unfortunately, JmpTbl doesn’t have six
entries, so the program will fetch the value of the sixth double word follow-
ing JmpTbl and use that as the target offset, which will often crash your pro-
gram or transfer control to an unexpected location.

The solution is to place a few instructions before the indirect br to ver-
ify that the switch selection value is within a reasonable range. In the previ-
ous example, you’d want to verify that the value of i is in the range 0 to 2
before executing the br instruction. If the value of i is outside this range,
the program should simply jump to the endcase label, which corresponds to
dropping down to the first statement after the entire switch statement. The
following code provides this modification:

 ldr w0, [fp, #i] // Zero-extends into X0!
 cmp w0, #2 // Default case if i > 2
 bhi EndCase
 adr x1, JmpTbl
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

JmpTbl: .dword Stmt0-JmpTbl, Stmt1-JmpTbl, Stmt2-JmpTbl

Stmt0:

 Code to print "i = 0"

 b.al EndCase

Stmt1:

 Code to print "i = 1"

 b.al EndCase

Stmt2:

 Code to print "i = 2"

EndCase:

Although this code handles the problem of selection values being out-
side the range 0 to 2, it still suffers from two severe restrictions:

•	 The cases must start with the value 0. That is, the minimum case con-
stant has to be 0.

•	 The case values must be contiguous.

394 Chapter 7

Solving the first problem is easy, and you deal with it in two steps. First,
you compare the case selection value against a lower and upper bound
before determining whether the case value is legal, as shown in the follow-
ing example:

// SWITCH statement specifying cases 5, 6, and 7:
// WARNING: This code does *NOT* work.
// Keep reading to find out why.

 ldr w0, [fp, #i] // Zero-extends into X0!
 cmp w0, #5 // Verify i is in the range
 blo EndCase // 5 to 7 before indirect
 cmp w0, #7 // branch executes.
 bhi EndCase
 adr x1, JmpTbl
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

JmpTbl: .dword Stmt5-JmpTbl, Stmt6-JmpTbl, Stmt7-JmpTbl

Stmt5:
 Code to print "i = 5"

 b.al EndCase

Stmt6:
 Code to print "i = 6"

 b.al EndCase

Stmt7:
 Code to print "i = 7"

EndCase:

This code adds a pair of extra instructions, cmp and blo, to test the selec-
tion value to ensure it is in the range 5 to 7. If not, control drops down to
the EndCase label; otherwise, control transfers via the indirect br instruction.
Unfortunately, as the comments point out, this code is broken.

Consider what happens if variable i contains the value 5: the code will
verify that 5 is in the range 5 to 7 and then will fetch the dword at offset
40 (5 × 8) and jump to that address. As before, however, this loads 8 bytes
outside the bounds of the table and does not transfer control to a defined
location. One solution is to subtract the smallest case selection value from
W0 before executing the br instruction, as shown in the following example:

// SWITCH statement specifying cases 5, 6, and 7:

 ldr w0, [fp, #i] // Zero-extends into X0!
 subs w0, w0, #5 // Subtract smallest range.
 blo EndCase // Subtract sets flags same as cmp!

Low-Level Control Structures 395

 cmp w0, #7-5 // Verify in range 5 to 7.
 bhi EndCase
 adr x1, JmpTbl
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

JmpTbl: .dword Stmt5-JmpTbl, Stmt6-JmpTbl, Stmt7-JmpTbl

Stmt5:
 Code to print "i = 5"

 b.al EndCase

Stmt6:
 Code to print "i = 6"

 b.al EndCase

Stmt7:
 Code to print "i = 7"

EndCase:

By subtracting 5 from the value in W0, the code forces W0 to take on
the value 0, 1, or 2 prior to the br instruction. Therefore, case-selection
value 5 jumps to Stmt5, case-selection value 6 transfers control to Stmt6, and
case-selection value 7 jumps to Stmt7.

This code has one piece of trickery: the subs instruction serves double
duty. It not only adjusts the lower bound of the switch expression down to 0
but also serves as the comparison against 5 for the lower bound. Remember,
the cmp instruction sets the flags the same way as the subs instruction.
Therefore, subtracting 5 is the same as comparing against 5 as far as the
flag settings are concerned. When comparing the value in W0 against 7, the
code must actually compare against 2 because we’ve subtracted 5 from the
original index value.

You can handle cases that don’t start with 0 in another way:

// SWITCH statement specifying cases 5, 6, and 7:

 ldr w0, [fp, #i] // Zero-extends into X0!
 cmp w0, #5 // Verify the index is in
 blo EndCase // the range 5 to 7.
 cmp w0, #7
 bhi EndCase
 adr x1, JmpTbl - 5*8 // Base address - 40
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

396 Chapter 7

JmpTbl: .dword Stmt5-JmpTbl, Stmt6-JmpTbl, Stmt7-JmpTbl

Stmt5:

 Code to print "i = 5"

 b.al EndCase

Stmt6:

 Code to print "i = 6"

 b.al EndCase

Stmt7:

 Code to print "i = 7"

EndCase:

This example subtracts 40 (5 × 8) from the base address of the jump
table when loading that base address into X1. The index is still in the range
5 to 7, yielding an offset of 40 to 56 into the table; however, because the
base address is now specified 40 bytes before the actual table, the array-
indexing calculation properly indexes into the jump-table entries.

The C/C++ switch statement provides a default clause that executes if
the case-selection value doesn’t match any of the case values. The following
switch statement includes a default clause:

switch(expression)
{

 case 5: printf("expression = 5"); break;
 case 6: printf("expression = 6"); break;
 case 7: printf("expression = 7"); break;
 default:
 printf("expression does not equal 5, 6, or 7");
}

Implementing the equivalent of the default clause in pure assembly lan-
guage is easy: just use a different target label in the blo and bhi instructions
at the beginning of the code. The following example implements a switch
statement similar to the preceding one:

// SWITCH statement specifying cases 5, 6, and 7:

 ldr w0, [fp, #i] // Zero-extends into X0!
 cmp w0, #5 // Verify the index is in
 blo DefaultCase // the range 5 to 7.
 cmp w0, #7

Low-Level Control Structures 397

 bhi DefaultCase
 adr x1, JmpTbl - 5 * 8 // Base address - 40
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

JmpTbl: .dword Stmt5-JmpTbl, Stmt6-JmpTbl, Stmt7-JmpTbl

Stmt5:

 Code to print "i = 5"

 b.al EndCase

Stmt6:

 Code to print "i = 6"

 b.al EndCase

Stmt7:

 Code to print "i = 7"

 b.al EndCase

DefaultCase:

 Code to print "expression does not equal 5, 6, or 7"

EndCase:

The second restriction noted earlier, that the case values need to be
contiguous, is easy to handle by inserting extra entries into the jump table.
Consider the following C/C++ switch statement:

switch(i)
{
 case 1: printf("i = 1"); break;
 case 2: printf("i = 2"); break;
 case 4: printf("i = 4"); break;
 case 8: printf("i = 8"); break;
 default:
 printf("i is not 1, 2, 4, or 8");
}

The minimum switch value is 1, and the maximum value is 8. Therefore,
the code before the indirect br instruction needs to compare the value in i
against 1 and 8. If the value is from 1 to 8, it’s still possible that i might
not contain a legal case-selection value. However, because the br instruc-
tion indexes into a table of double words, the table must have eight double-
word entries.

398 Chapter 7

To handle the values from 1 to 8 that are not case-selection values, sim-
ply put the statement label of the default clause (or the label specifying the
first instruction after the end of the switch if there is no default clause) in
each of the jump-table entries that don’t have a corresponding case clause.
The following code demonstrates this technique:

// SWITCH statement specifying cases 1, 2, 4, and 8:

 ldr w0, [fp, #i] // Zero-extends into X0!
 cmp w0, #1 // Verify the index is in
 blo DefaultCase // the range 1 to 8.
 cmp w0, #8
 bhi DefaultCase
 adr x1, JmpTbl - 1 * 8 // Base address - 8
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

JmpTbl: .dword Stmt1-JmpTbl
 .dword Stmt2-JmpTbl
 .dword DefaultCase-JmpTbl // Case 3
 .dword Stmt4-JmpTbl
 .dword DefaultCase-JmpTbl // Case 5
 .dword DefaultCase-JmpTbl // Case 6
 .dword DefaultCase-JmpTbl // Case 7
 .dword Stmt8-JmpTbl

Stmt1:

 Code to print "i = 1"

 b.al EndCase

Stmt2:

 Code to print "i = 2"

 b.al EndCase

Stmt4:

 Code to print "i = 4"

 b.al EndCase

Stmt8:

 Code to print "i = 8"

 b.al EndCase

DefaultCase:

Low-Level Control Structures 399

 Code to print "expression does not equal 1, 2, 4, or 8"

EndCase:

This code uses cmp instructions to ensure that the switch value is in the
range 1 to 8 and transfers control to the DefaultCase label if this is the case.

7.6.7.5  Sparse Jump Tables

The current implementation of the switch statement has a problem. If the
case values contain nonconsecutive entries that are widely spaced, the jump
table could become exceedingly large. The following switch statement
would generate an extremely large code file:

switch(i)
{
 case 1: Stmt1 ;
 case 100: Stmt2 ;
 case 1000: Stmt3 ;
 case 10000: Stmt4 ;
 default: Stmt5 ;

}

In this situation, your program will be much smaller if you implement
the switch statement with a sequence of if statements rather than using an
indirect jump statement. However, the size of the jump table does not nor-
mally affect the execution speed of the program. If the jump table contains
2 entries or 2,000, the switch statement will execute the multiway branch
in a constant amount of time. The if statement implementation requires a
linearly increasing amount of time for each case label appearing in the case
statement.

One of the biggest advantages to using assembly language over an HLL
like Swift or C/C++ is that you get to choose the actual implementation of
statements like switch. In some instances, you can implement a switch state-
ment as a sequence of if...then...elseif statements, you can implement
it as a jump table, or you can use a hybrid of the two. The following code
examples demonstrate combining if...then...elseif and jump-table imple-
mentations for the same control structure:

switch(i)
{
 case 0: Stmt0 ;
 case 1: Stmt1 ;
 case 2: Stmt2 ;
 case 100: Stmt3 ;
 default: Stmt4 ;

}

400 Chapter 7

That code could become the following:

 ldr w0, [fp, #i]
 cmp w0, #100 // Special case 100
 beq DoStmt3
 cmp w0, #2
 bhi DefaultCase
 adr x1, JmpTbl
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0
 .
 .
 .

Some switch statements have sparse cases, but the cases are often
grouped into contiguous clusters. Consider the following C/C++ switch
statement:

switch(expression)
{
 case 0:

 Code for case 0

 break;

 case 1:

 Code for case 1

 break;

 case 2:

 Code for case 2

 break;

 case 10:

 Code for case 10

 break;

 case 11:

 Code for case 11

 break;

 case 100:

Low-Level Control Structures 401

 Code for case 100

 break;

 case 101:

 Code for case 101

 break;

 case 103:

 Code for case 103

 break;

 case 1000:

 Code for case 1000

 break;

 case 1001:

 Code for case 1001

 break;

 case 1003:

 Code for case 1003

 break;

 default:

 Code for default case

 break;
} // End switch.

You can convert a switch statement that consists of widely separated
groups of (nearly) contiguous cases to assembly language code using one
jump-table implementation for each contiguous group, then use compari-
son instructions to determine which jump-table instruction sequence to
execute. Here’s one possible implementation of the previous C/C++ code:

// Assume expression has been computed and is sitting in X0
// at this point ...

 cmp x0, #100
 blo try0_11
 cmp x0, #103

402 Chapter 7

 bhi try1000_1003
 adr x1, jt100 - 100*8
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

jt100: .dword case100-jt100, case101-jt100
 .dword default-jt100, case103-jt100

try0_11: cmp x0, #11 // Handle cases 0-11 here.
 bhi default
 adr x1, jt0_11
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0

jt0_11: .dword case0-jt0_11, case1-jt0_11, case2-jt0_11
 .dword default-jt0_11, default-jt0_11
 .dword default-jt0_11, default-jt0_11
 .dword default-jt0_11, default-jt0_11
 .dword default-jt0_11, case10-jt0_11, case11-jt0_11

try1000_1003:
 cmp x0, #1000
 blo default
 cmp x0, #1003
 bhi default
 adr x1, jt1000 - 1000*8
 ldr x0, [x1, x0, lsl #3]
 add x0, x0, x1
 br x0
jt1000: .dword case1000-jt1000, case1001-jt1000
 .dword default-jt1000, case1003-jt1000
 .
 .
 .
 Code for the actual cases here

This code sequence combines groups 0 to 2 and 10 to 11 into a single
group (requiring seven additional jump-table entries) in order to save hav-
ing to write an additional jump-table sequence. For a set of cases this sim-
ple, it’s easier to just use compare-and-branch sequences, but I’ve simplified
this example to demonstrate multiple jump tables.

7.6.7.6  Other switch Statement Alternatives

What happens if the cases are too sparse to do anything but compare the
expression’s value case by case? In this situation, the code is not necessarily
doomed to being translated into the equivalent of an if...elseif...else...
endif sequence. However, before considering other alternatives, remem-
ber that not all if...elseif...else...endif sequences are created equal.
Look back at the last example in the previous section (the sparse switch

Low-Level Control Structures 403

statement). A straightforward implementation might have been something
like this:

if(unsignedExpression <= 11)
{
 Switch for 0 to 11.
}
else if(unsignedExpression >= 100 && unsignedExpression <= 103)
{
 Switch for 100 to 103.
}
else if(unsignedExpression >= 1000 && unsignedExpression <= 1003)
{
 Switch for 1000 to 1003.
}
else
{
 Code for default case
}

Instead, the former implementation first tests against the value 100
and branches based on the comparison being less than (cases 0 to 11) or
greater than (cases 1000 to 1001), effectively creating a small binary search
that reduces the number of comparisons. It’s hard to see the savings in the
HLL code, but in assembly code you can count the number of instructions
that would be executed in the best and worst cases and see an improvement
over the standard linear search approach of simply comparing the values in
the cases in the order they appear in the switch statement. (Of course, if you
have many groups in a sparse switch statement, a binary search will be much
faster, on average, than a linear search.)

If your cases are too sparse (no meaningful groups at all), such as the 1, 10,
100, 1,000, 10,000 example given in section 7.6.7.5, “Sparse Jump Tables,” on
page 399, you can’t reasonably implement the switch statement by using a jump
table. Rather than devolving into a straight linear search, which can be slow, a
better solution is to sort your cases and test them by using a binary search.

With a binary search, you first compare the expression value against the
middle case value. If it’s less than the middle value, you repeat the search
on the first half of the list of values; if it’s greater than the middle value, you
repeat the test on the second half of the values; if it’s equal, obviously you
drop into the code to handle that test. The following code shows the binary
search version of the 1, 10, 100, . . . example:

// Assume expression has been calculated into X0.

 cmp x0, #100
 blo try1_10
 bhi try1000_10000

 Code to handle case 100

 b.al AllDone

404 Chapter 7

try1_10:
 cmp x0, #1
 beq case1
 cmp x0, #10
 bne defaultCase

 Code to handle case 10

 b.al AllDone
case1:
 Code to handle case 1

 b.al AllDone

try1000_10000:
 cmp x0, #1000
 beq case1000
 mov x1, #10000 // cmp can't handle 10000.
 cmp x0, x1
 bne defaultCase

 Code to handle case 10,000

 b.al AllDone

case1000:

 Code to handle case 1,000

 b.al AllDone

defaultCase:

 Code to handle defaultCase

AllDone:

The techniques presented in this section have many possible alterna-
tives. For example, one common solution is to create a table containing a
set of records, with each record entry a two-tuple containing a case value
and a jump address. Rather than having a long sequence of compare
instructions, a short loop can sequence through all the table elements,
searching for the case value and transferring control to the corresponding
jump address if a match occurs. This scheme is slower than the other tech-
niques in this section, but it can be much shorter than the traditional if...
elseif...else...endif implementation. With a little effort, you could use a
binary search if the table is sorted.

7.6.7.7  Jump-Table Size Reductions

All the switch statement examples up to this point have used double-word
arrays for the jump table. With a 64-bit offset, these jump tables can

Low-Level Control Structures 405

transfer control to any location in the ARM’s address space. In reality, this
range is almost never necessary. Most offsets will be relatively small num-
bers (often less than ±128, or ±32,767). This means that the HO bits of the
jump-table entries will likely be all 0s or all 1s (if the offset is negative).
With a slight modification to the instructions that transfer control through
the jump table, cutting the size of the table in half is easy:

 adr x1, JmpTbl
 ldr w0, [x1, x0, lsl #2] // X4 for 32-bit entries
 add x0, x1, w0, sxtw // Sign-extend W0 to 64 bits.
 br x0

JmpTbl: .word Stmt1-JmpTbl, ...

This example has three modifications to the other examples in this
chapter:

•	 The scaled-indexed addressing mode (ldr instruction) scales the index
(in X0) by 4 instead of 8 (because we’re accessing elements of a word
array rather than a dword array).

•	 The add instruction sign-extends W0 to 64 bits before adding the value
with X1.

•	 The jump table contains word entries instead of dword entries.

This modification limits the range of the case labels to ±2GB around
the jump table, rather than the full 64-bit address space—hardly a limita-
tion for most programs. In exchange for this limit, the jump table is now
half its original size.

Before you get the sneaky idea of reducing the size of the table entries
to 16 bits (giving you a ±32K range), be aware that neither macOS’s nor
Linux’s object code format—Mach-O and the Executable Linkable Format
(ELF), respectively—supports 16-bit relocatable offsets; 32-bit offsets are
the best you can do.

	 7.7	 State Machines and Indirect Jumps
Another control structure commonly found in assembly language programs
is the state machine. In basic terms, a state machine is a piece of code that
keeps track of its execution history by entering and leaving certain states. A
state machine uses a state variable to control program flow. The FORTRAN
programming language provides this capability with the assigned goto state-
ment. Certain variants of C, such as GNU’s GCC from the Free Software
Foundation, provide similar features. In assembly language, the indirect
jump can implement state machines.

In one sense, all programs are state machines. The CPU registers and
values in memory constitute the state of that machine. However, this chap-
ter uses a much more constrained definition. For most purposes, only a sin-
gle variable (or the value in the PC register) will denote the current state.

406 Chapter 7

For a concrete example of a state machine, suppose you have a proce-
dure and want to perform one operation the first time you call it, a differ-
ent operation the second time you call it, something else the third time you
call it, and then something new again on the fourth call. After the fourth
call, the code repeats these four operations in order. For example, say you
want the procedure to add W0 and W1 the first time, subtract them on the
second call, multiply them on the third, and divide them on the fourth. You
could implement this procedure as shown in Listing 7-4.

// Listing7-4.S
//
// A simple state machine example

#include "aoaa​.inc"

1 #define state x19

 .code
 .extern printf

ttlStr: wastr "Listing 7-4"
fmtStr0: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 5, W21 = 6\n"

fmtStr0b: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 1, W21 = 2\n"

fmtStrx: .ascii "Back from StateMachine, "
 wastr "state=%d, W20=%d\n"

fmtStr1: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 50, W21 = 60\n"

fmtStr2: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 10, W21 = 20\n"

fmtStr3: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 50, W21 = 5\n"

// getTitle
//
// Return pointer to program title
// to the C++ code.

 proc getTitle, public
 adr x0, ttlStr
 ret
 endp getTitle

// State machine is a leaf procedure. Don't bother
// to save LR on stack.
//

Low-Level Control Structures 407

// Although "state" is technically a nonvolatile
// register, the whole point of this procedure
// is to modify it, so we don't preserve it.
// Likewise, X20 gets modified by this code,
// so it doesn't preserve its value either.

 proc StateMachine
 cmp state, #0
 bne TryState1

// State 0: Add W21 to W20 and switch to state 1:

 add w20, w20, w21
 add state, state, #1 // State 0 becomes state 1.
 b.al exit

TryState1:
 cmp state, #1
 bne TryState2

// State 1: Subtract W21 from W20 and switch to state 2:

 sub w20, w20, w21
 add state, state, 1 // State 1 becomes state 2.
 b.al exit

TryState2: cmp state, #2
 bne MustBeState3

// If this is state 2, multiply W21 by W20 and switch to state 3:

 mul w20, w20, w21
 add state, state, #1 // State 2 becomes state 3.
 b.al exit

// If it isn't one of the preceding states, we must be in
// state 3, so divide W20 by W21 and switch back to state 0.

MustBeState3:
 sdiv w20, w20, w21
 mov state, #0 // Reset the state back to 0.

exit: ret
 endp StateMachine

///
//
// Here's the asmMain procedure:

 proc asmMain, public

 locals am
 dword saveX19
 dword saveX2021

408 Chapter 7

 byte stackSpace, 64
 endl am

 enter am.size

// Save nonvolatile registers and initialize
// them to point at xArray, yArray, zArray,
// tArray, aArray, and bArray:

 2 str state, [fp, #saveX19]
 stp x20, x21, [fp, #saveX2021]
 3 mov state, #0

// Demonstrate state 0:

 lea x0, fmtStr0
 mov x1, state
 mstr x1, [sp]
 bl printf

 mov x20, #5
 mov x21, #6
 bl StateMachine

 4 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate state 1:

 lea x0, fmtStr1
 mov x1, state
 bl printf

 mov x20, #50
 mov x21, #60
 bl StateMachine

 5 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate state 2:

 lea x0, fmtStr2
 mov x1, state
 mstr x1, [sp]
 bl printf

Low-Level Control Structures 409

 mov x20, #10
 mov x21, #20
 bl StateMachine

 6 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate state 3:

 lea x0, fmtStr3
 mov x1, state
 mstr x1, [sp]
 bl printf

 mov x20, #50
 mov x21, #5
 bl StateMachine

 7 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate back in state 0:

 lea x0, fmtStr0b
 mov x1, state
 mstr x1, [sp]
 bl printf

 mov x20, #1
 mov x21, #2
 bl StateMachine

 8 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Restore nonvolatile register values
// and return.

 ldr state, [fp, #saveX19]
 ldp x20, x21, [fp, #saveX2021]
 leave // Return to C/C++ code.
 endp asmMain

410 Chapter 7

This code uses X19 to maintain the state variable 1. The main pro-
gram preserves X19 (and X20) 2 and then initializes the state machine
to state 0 3. The code then makes successive calls to the state machine
functions and prints the results from state 0 4, 1 5, 2 6, and 3 7. After
executing in state 3, the code returns to state 0 and prints the result 8.

Here’s the build command and program output:

$./build Listing7-4
$./Listing7-4
Calling Listing7-4:
Calling StateMachine, state=0, W20 = 5, W21 = 6
Back from StateMachine, state=1, W20 = 11
Calling StateMachine, state=1, W20 = 50, W21 = 60
Back from StateMachine, state=2, W20=-10
Calling StateMachine, state=2, W20 = 10, W21 = 20
Back from StateMachine, state=3, W20 = 200
Calling StateMachine, state=3, W20 = 50, W21 = 5
Back from StateMachine, state=0, W20 = 10
Calling StateMachine, state=0, W20 = 1, W21 = 2
Back from StateMachine, state=1, W20 = 3
Listing7-4 terminated

Technically, the StateMachine procedure is not the state machine. Instead,
the variable state and the cmp/bne instructions constitute the state machine.
The procedure is little more than a switch statement implemented via the
if...then...elseif construct. The only unique thing is that it remembers how
many times it has been called (or rather, how many times, modulo 4, it has
been called) and behaves differently depending on the number of calls.

While this is a correct implementation of the desired state machine, it is
not particularly efficient. The astute reader may recognize that this code
could be made a little faster by using an actual switch statement rather than
the if...then...elseif...endif implementation. However, an even better
solution exists.

It’s common to use an indirect jump to implement a state machine
in assembly language. Rather than having a state variable that contains a
value like 0, 1, 2, or 3, we could load the state variable with the address of
the code to execute upon entry into the procedure. By simply jumping to
that address, the state machine could save the tests needed to select the
proper code fragment. Consider the implementation in Listing 7-5 using
the indirect jump.

// Listing7-5.S
//
// An indirect jump state machine example

#include "aoaa​.inc"

#define state x19

Low-Level Control Structures 411

 .code
 .extern printf

ttlStr: wastr "Listing 7-5"
fmtStr0: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 5, W21 = 6\n"

fmtStr0b: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 1, W21 = 2\n"

fmtStrx: .ascii "Back from StateMachine, "
 wastr "state=%d, W20=%d\n"

fmtStr1: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 50, W21 = 60\n"

fmtStr2: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 10, W21 = 20\n"

fmtStr3: .ascii "Calling StateMachine, "
 wastr "state=%d, W20 = 50, W21 = 5\n"

// getTitle
//
// Return pointer to program title
// to the C++ code.

 proc getTitle, public
 adr x0, ttlStr
 ret
 endp getTitle

// State machine is a leaf procedure. Don't bother
// to save LR on stack.
//
// Although "state" is technically a nonvolatile
// register, the whole point of this procedure
// is to modify it, so we don't preserve it.
// Likewise, x20 gets modified by this code,
// so it doesn't preserve its value either.

 proc StateMachine
 1 br state // Transfer control to current state.

// State 0: Add W21 to W20 and switch to state 1:

state0:
 add w20, w20, w21
 2 adr state, state1 // Set next state.
 ret

// State 1: Subtract W21 from W20 and switch to state 2:

state1:
 sub w20, w20, w21

412 Chapter 7

 adr state, state2 // Switch to state 2.
 ret

// If this is state 2, multiply W21 by W20 and switch to state 3:

state2:
 mul w20, w20, w21
 adr state, state3 // Switch to state 3.
 ret

// If it isn't one of the preceding states, we must be in
// state 3, so divide W20 by W21 and switch back to state 0.

state3:
 sdiv w20, w20, w21
 adr state, state0
 ret
 endp StateMachine

///
//
// Here's the asmMain procedure:

 proc asmMain, public

 locals am
 dword saveX19
 dword saveX2021
 byte stackSpace, 64
 endl am

 enter am.size

// Save nonvolatile registers and initialize
// them to point at xArray, yArray, zArray,
// tArray, aArray, and bArray:

 str state, [fp, #saveX19]
 stp x20, x21, [fp, #saveX2021]

// Initialize state machine:

 3 adr state, state0

// Demonstrate state 0:

 lea x0, fmtStr0
 mov x1, state
 mstr x1, [sp]
 bl printf

Low-Level Control Structures 413

 mov x20, #5
 mov x21, #6
 bl StateMachine

 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate state 1:

 lea x0, fmtStr1
 mov x1, state
 bl printf

 mov x20, #50
 mov x21, #60
 bl StateMachine

 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate state 2:

 lea x0, fmtStr2
 mov x1, state
 mstr x1, [sp]
 bl printf

 mov x20, #10
 mov x21, #20
 bl StateMachine

 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate state 3:

 lea x0, fmtStr3
 mov x1, state
 mstr x1, [sp]
 bl printf

414 Chapter 7

 mov x20, #50
 mov x21, #5
 bl StateMachine

 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Demonstrate back in state 0:

 lea x0, fmtStr0b
 mov x1, state
 mstr x1, [sp]
 bl printf

 mov x20, #1
 mov x21, #2
 bl StateMachine

 lea x0, fmtStrx
 mov x1, state
 mov x2, x20
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Restore nonvolatile register values
// and return:

 ldr state, [fp, #saveX19]
 ldp x20, x21, [fp, #saveX2021]
 leave // Return to C/C++ code.
 endp asmMain

This code has the same structure as Listing 7-4. The main difference is
that this code assumes that the target address of the state machine is in X19
rather than a state number.

The br instruction at the beginning of the StateMachine procedure 1
transfers control to the location pointed at by the state variable (X19). The
first time you call StateMachine, it points at the state0 label. Thereafter, each
subsection of code sets the state variable to point at the appropriate succes-
sor code. Within each state of the state machine 2, the code sets X19 to the
address of the next entry point of the state machine (rather than setting
a state number). The main program initializes the state machine with the
address of the State0 label 3 rather than the value 0. Otherwise, this main
program is largely the same as in Listing 7-4.

Low-Level Control Structures 415

Here’s the build command and program output:

$./build Listing7-5
$./Listing7-5
Calling Listing7-5:
Calling StateMachine, state=4196420, W20 = 5, W21 = 6
Back from StateMachine, state=4196432, W20 = 11
Calling StateMachine, state=4196432, W20 = 50, W21 = 60
Back from StateMachine, state=4196444, W20=-10
Calling StateMachine, state=4196444, W20 = 10, W21 = 20
Back from StateMachine, state=4196456, W20 = 200
Calling StateMachine, state=4196456, W20 = 50, W21 = 5
Back from StateMachine, state=4196420, W20 = 10
Calling StateMachine, state=4196420, W20 = 1, W21 = 2
Back from StateMachine, state=4196432, W20 = 3
Listing7-5 terminated

This output demonstrates that Listing 7-5 behaves in a manner similar
to Listing 7-4.

	 7.8	 Loops
Loops represent the final basic control structure (sequences, decisions, and
loops) that make up a typical program. Most HLLs have implied loop struc-
tures hidden away. For example, consider the BASIC statement if A$ = B$
then 100. This if statement compares two strings and jumps to statement
100 if they are equal. In assembly language, you would need to write a loop
to compare each character in A$ to the corresponding character in B$ and
then jump to statement 100 if and only if all the characters matched. (The
C stdlib provides the strcmp routine that compares the strings for you, effec-
tively hiding the loop. However, if you were to write this function yourself,
the looping nature of the operation would be obvious.)

Program loops consist of three components: an optional initialization
component, an optional loop-termination test, and the body of the loop.
The order in which you assemble these components can dramatically affect
the loop’s operation. Three permutations of these components appear fre-
quently in programs: while loops, repeat...until loops (do...while in C/C++),
and infinite loops (for example, for(;;) in C/C++). This section covers those
three loop types along with C-style for loops (definite loops), register usage
in loops, and breaking out of loops.

7.8.1  while
The most generic loop is the while loop. In C/C++, it takes the following form:

while(expression) statement(s);

In the while loop, the termination test appears at the beginning of the
loop. As a direct consequence of the position of the termination test, the

416 Chapter 7

body of the loop may never execute if the Boolean expression is always
false.

Consider the following C/C++ while loop:

i = 0;
while(i < 100)
{
 ++i;
}

The i = 0; statement is the initialization code for this loop. i is a loop-
control variable, because it controls the execution of the body of the loop.
i < 100 is the loop-termination condition: the loop will not terminate as
long as i is less than 100. The single statement ++i; (increment i) is the loop
body that executes on each loop iteration.

A C/C++ while loop can be easily synthesized using if and goto state-
ments. For example, you may replace the previous C while loop with the fol-
lowing C code:

i = 0;
WhileLp:
if(i < 100)
{
 ++i;
 goto WhileLp;
}

More generally, you can construct any while loop as follows:

Optional initialization code

UniqueLabel:
if(not_termination_condition)
{
 Loop body
 goto UniqueLabel;
}

Therefore, you can use the techniques from earlier in this chapter to
convert if statements to assembly language and add a single b.al instruction
to produce a while loop. The example in this section translates to the follow-
ing pure ARM assembly code:

 mov w0, #0
WhileLp:
 cmp w0, #100
 bnlt WhileDone

Low-Level Control Structures 417

 Loop body

 add w0, w0, #1 // ++i
 b.al WhileLp

WhileDone:

GCC will actually convert most while statements to different ARM
code than this section presents. The reason for the difference appears in
section 7.9.1, “Moving the Termination Condition to the End of a Loop,” on
page 428, which explores how to write more efficient loop code.

7.8.2  repeat...until
The repeat...until loop, also called the do...while loop in C, tests for the
termination condition at the end of the loop rather than at the beginning.
In Pascal, the repeat...until loop takes the following form:

Optional initialization code
repeat

 Loop body

until(termination_condition);

This is comparable to the following C/C++ do...while loop:

Optional initialization code
do
{
 Loop body

}while(not_termination_condition);

This sequence executes the initialization code, then executes the loop
body, and finally tests a condition to see whether the loop should repeat. If
the Boolean expression evaluates to false, the loop repeats; otherwise, the
loop terminates. In the repeat...until loop, the termination test appears
at the end of the loop and, as a direct consequence, the loop body always
executes at least once.

Like the while loop, the repeat...until loop can be synthesized with an
if statement and a b.al (branch). The following is an example of just such
an implementation:

Initialization code
SomeUniqueLabel:

 Loop body

if(not_the_termination_condition) goto SomeUniqueLabel;

418 Chapter 7

Based on the material presented in the previous sections, you can easily
synthesize repeat...until loops in assembly language, as shown in the follow-
ing simple example:

 repeat (* Pascal code *)

 write('Enter a number greater than 100:');
 readln(i);

 until(i > 100);

// This translates to the following if/jmp code:

 RepeatLabel:

 write('Enter a number greater than 100:');
 readln(i);

 if(i <= 100) then goto RepeatLabel;

// It also translates into the following assembly code:

RepeatLabel:

 bl print
 wastr "Enter a number greater than 100: "
 bl readInt // Function to read integer from user

 cmp w0, #100 // Assume readInt returns integer in W0.
 bngt RepeatLabel

The repeat...until loop has a slightly more efficient implementation
because it combines the loop termination test and the branch back to the
beginning of the loop.

7.8.3  forever/endfor
If while loops test for termination at the beginning of the loop and repeat...
until and do...while loops check for termination at the end of the loop, the
only place left to test for termination is in the middle of the loop. The C/C++
high-level for(;;) loop, combined with the break statement, provides this
capability. The C/C++ infinite loop takes the following form:

for(;;)
{
 Loop body

}

There is no explicit termination condition. The for(;;) construct forms
an infinite loop. A break statement usually handles loop termination. Consider
the following C++ code that employs a for(;;) construct:

Low-Level Control Structures 419

for(;;)
{
 cin >> character;
 if(character == '.') break;
 cout << character;

}

Converting a for(;;) loop to pure assembly language is easy: all you
need is a label and a b.al instruction. The break statement in this example is
also nothing more than a b.al instruction (or conditional jump). The pure
assembly language version of the preceding code looks something like the
following:

foreverLabel:

 bl getchar // Assume it returns char in W0.
 cmp w0, #'.'
 beq ForIsDone

 bl putcchar // Assume this prints the char in W0.
 b.al foreverLabel

ForIsDone:

As you can see, the forever loop has a very simple implementation.

7.8.4  for
The standard for loop is a special form of the while loop that repeats the
loop body a specific number of times, which is known as a definite loop. In
C/C++, the for loop takes the following form:

for(Initialization_Stmt; Termination_Expression; inc_Stmt)
{
 statements

}

This is equivalent to the following:

Initialization_Stmt;
while(Termination_Expression)
{
 statements

 inc_Stmt;

}

Traditionally, programs use the for loop to process arrays and other
objects accessed in sequential order. You normally initialize a loop-control

420 Chapter 7

variable with the initialization statement, then use the loop-control variable
as an index into the array (or other data type), as shown in the following
example:

for(i = 0; i < 7; ++i)
{
 printf("Array Element = %d /n", SomeArray[i]);

}

To convert this to pure assembly language, begin by translating the for
loop into an equivalent while loop:

i = 0;
while(i < 7)
{
 printf("Array Element = %d \n", SomeArray[i]);
 ++i;
}

Now, using the techniques from section 7.8.1, “while,” on page 415,
translate the code into pure assembly language:

 mov x19, #0 // Use X19 to hold loop index.
WhileLp: cmp x19, #7
 bnlt EndWhileLp

 lea x0, fmtStr // fmtStr = "Array Element = %d\n"
 lea x1, SomeArray
 ldr w1, [x1, x19, lsl #2] // SomeArray is word array.
 mstr x1, [sp]
 bl printf

 add x19, x19, #1 // ++i
 b.al WhileLp;

EndWhileLp:

This is a fairly efficient implementation of a while loop in assembly
language, though for for loops that execute a fixed number of times, you
might consider using the cbnz instruction (see section 7.8.6, “ARM Looping
Instructions,” on page 425).

7.8.5  break and continue
The C/C++ break and continue statements both translate into a single b.al
instruction. The break statement exits the loop that immediately contains
the break statement; the continue statement restarts the loop that contains
the continue statement.

To convert a break statement to pure assembly language, just emit a
goto/b.al instruction that transfers control to the first statement following

Low-Level Control Structures 421

the end of the loop to exit. You can do this by placing a label after the loop
body and jumping to that label. The following code fragments demonstrate
this technique for the various loops:

// Breaking out of a FOR(;;) loop:

for(;;)
{
 stmts

 // break;
 goto BreakFromForever;

 stmts
}
BreakFromForever:

// Breaking out of a FOR loop:

for(initStmt; expr; incStmt)
{
 stmts

 // break;
 goto BrkFromFor;

 stmts
}
BrkFromFor:

// Breaking out of a WHILE loop:

while(expr)
{
 stmts

 // break;
 goto BrkFromWhile;

 stmts
}
BrkFromWhile:

// Breaking out of a REPEAT...UNTIL loop (do...while is similar):

repeat
 stmts

 // break;
 goto BrkFromRpt;

 stmts
until(expr);
BrkFromRpt:

422 Chapter 7

In pure assembly language, convert the appropriate control structures
to assembly and replace the goto with a b.al instruction.

The continue statement is slightly more complex than the break state-
ment. The implementation is still a single b.al instruction; however, the
target label doesn’t wind up going in the same spot for each of the loops.
Figures 7-2 through 7-5 show where the continue statement transfers control
for each of the loops.

Figure 7-2 shows the for(;;) loop with a continue statement.

for(;;)
{
 stmts
 continue;
 stmts

}

Figure 7-2: The continue destination and
the for(;;) loop

Figure 7-3 shows the while loop with a continue statement.

while(expr)
{
 stmts
 continue;
 stmts

}

Figure 7-3: The continue destination and
the while loop

Figure 7-4 shows a C/C++ for loop with a continue statement.

for(initStmt; expr; incStmt)
{
 stmts
 continue;
 stmts

}

Figure 7-4: The continue destination and the for loop

Note in Figure 7-4 that the continue statement forces the execution of
incStmt and then transfers control to the test for loop termination.

Figure 7-5 shows a repeat...until loop with a continue statement.

Low-Level Control Structures 423

repeat

 stmts
 continue;
 stmts

until(expr);

Figure 7-5: The continue destination and the repeat...
until loop

The following code fragments demonstrate how to convert the continue
statement into an appropriate b.al instruction for each of these loop types:

// for(;;)/continue/endfor
// Conversion of forever loop with continue
// to pure assembly:
// for(;;)
// {
// stmts
// continue;
// stmts
// }
//
// Converted code:

foreverLbl:

 stmts

 // continue;
 b.al foreverLbl

 stmts

 b.al foreverLbl

// while/continue/endwhile
// Conversion of while loop with continue
// into pure assembly:
//
// while(expr)
// {
// stmts
// continue;
// stmts
// }
//
// Converted code:

whlLabel:

 Code to evaluate expr

424 Chapter 7

 bcc EndOfWhile // Skip loop on expr failure.

 stmts

 // continue;
 b.al whlLabel // Jump to start of loop on continue.

 stmts

 b.al whlLabel // Repeat the code.
EndOfWhile:

// for/continue/endfor
// Conversion for a for loop with continue
// into pure assembly:
//
// for(initStmt; expr; incStmt)
// {
// stmts
// continue;
// stmts
// }
//
// Converted code:

 initStmt
ForLpLbl:

 Code to evaluate expr

 bcc EndOfFor // Branch if expression fails.

 stmts

 // continue;
 b.al ContFor // Branch to incStmt on continue.

 stmts

ContFor:

 incStmt

 b.al ForLpLbl

EndOfFor:

// repeat​.​.​.continue​.​.​.until
// repeat
// stmts
// continue;
// stmts

Low-Level Control Structures 425

// until(expr);
//
// do
// {
// stmts
// continue;
// stmts
//
// }while(!expr);
//
// Converted code:

RptLpLbl:

 stmts

 // continue;
 b.al ContRpt // Continue branches to termination test.

 stmts

ContRpt:

 Code to test expr

 bcc RptLpLbl // Jumps if expression evaluates false.

In each case, the b.al instruction transfers control to the point in the
loop where it will test the loop condition and increment the loop control
variable (for for loops), or to the beginning of the loop’s body.

7.8.6  ARM Looping Instructions
The ARM CPU provides four machine instructions that are useful for cre-
ating loops. These instructions violate the RISC principle of “an instruc-
tion does only one thing,” but they are quite handy even if they are a little
“CISCy.”

The first two instructions test a register’s value and branch if that regis-
ter is equal to, or not equal to, 0. The two instructions are cbz (compare and
branch if zero) and cbnz (compare and branch if not zero). Their syntax is

cbz wn, label
cbz xn, label
cbnz wn, label
cbnz xn, label

where Xn and Wn are the register to compare against 0 and label is a state-
ment label within ±1MB of the current instruction.

These instructions are equivalent to the following:

cmp wn, wzr // cbz wn, label
beq label

426 Chapter 7

cmp xn, xzr // cbz xn, label
beq label

cmp wn, wzr // cbnz wn, label
bne label

cmp xn, xzr // cbnz xn, label
bne label

Another useful pair of instructions are tbz (test bit for 0 and branch)
and tbnz (test bit for not 0 and branch). These instructions test a bit in a
register and branch based on that bit’s value (0 or nonzero). The syntax for
these instructions is

tbz wn, #imm6, label
tbz xn, #imm6, label
tbnz wn, #imm6, label
tbnz xn, #imm6, label

where Xn and Wn are the register to test, imm6 is a bit number in the range
0–63 for 64-bit registers and 0–31 for 32-bit registers, and label is a state-
ment label within ±32KB of the current instruction. The tbz instruction
branches to the label if the specified bit in the register is 0, while the tbnz
instruction branches if the bit is not 0.

7.8.7  Register Usage and Loops
Given that the ARM accesses registers more efficiently than memory loca-
tions, registers are the ideal spot to place loop-control variables (especially
for small loops). However, registers are a limited resource, despite the many
registers available on the ARM. Unlike with memory, you cannot place
much data in the registers.

Loops present a special challenge for registers. Registers are perfect for
loop-control variables because they’re efficient to manipulate and can serve
as indexes into arrays and other data structures (a common use for loop-
control variables). However, the limited availability of registers often creates
problems when using registers in this fashion. This is especially true if you
call other functions/procedures within the loops, which limits you to using
nonvolatile registers for loop control variables. Consider the following code
with nested loops that will not work properly because it attempts to reuse a
register (X19) that is already in use, leading to the corruption of the outer
loop’s loop-control variable:

 mov w19, #8
loop1:
 mov w19, #4
loop2:
 stmts

Low-Level Control Structures 427

 subs w19, w19, #1
 bne loop2

 subs w19, w19, #1
 bne loop1

The intent here was to create a set of nested loops, one loop inside
another. The inner loop (loop2) should repeat four times for each of the
eight executions of the outer loop (loop1). Unfortunately, both loops use the
same register as a loop-control variable. Therefore, this will form an infinite
loop. Because W19 is always 0 upon encountering the second subs instruc-
tion, control will always transfer to the loop1 label (because decrementing 0
produces a nonzero result).

The solution is to save and restore the W19 register or to use a different
register in place of W19 for the outer loop; the following code demonstrates
preserving W19 across the execution of the loop:

 mov w19, #8
loop1:
 str w19, [sp, #-16]! // Push onto stack.
 mov w19, #4
loop2:
 stmts

 subs w19, w19, #1
 bne loop2

 ldr w19, [sp], #16 // Pop off the stack.
 subs w19, w19, #1 // Decrement W19.
 bne loop1

or

 mov w19,#8
loop1:
 mov w20, #4
loop2:
 stmts

 subs w20, w20, #1
 bne loop2

 subs w19, w19, #1
 bne loop1

Register corruption is one of the primary sources of bugs in loops in
assembly language programs, so always keep an eye out for this problem.

Until this point, this chapter has mainly focused on the correct imple-
mentation of various types of loops in assembly language. The next section
begins discussing how to write loops efficiently in assembly language.

428 Chapter 7

	 7.9	 Loop Performance Improvements
Because loops are the primary source of performance problems within a
program, they are also the place to look when attempting to speed up your
software. A treatise on how to write efficient programs is beyond the scope
of this chapter, but you should be aware of the following concepts when
designing loops in your programs. They’re all aimed at removing unneces-
sary instructions from your loops in order to reduce the time it takes to
execute a single iteration of the loop.

7.9.1  Moving the Termination Condition to the End of a Loop
As you may have noticed, the repeat...until loop is slightly more efficient
than a while loop. This is because repeat...until manages to combine the
loop’s Boolean test along with the branch back to the beginning of the loop.
You can improve the other loops to be slightly more efficient. Consider the
following flow graphs for the three types of loops presented earlier:

repeat...until loop:
 Initialization code
 Loop body
 Test for termination and branch back if necessary.
 Code following the loop

while loop:
 Initialization code
 Loop-termination test
 Loop body
 Jump back to test.
 Code following the loop

forever/endfor loop:
 Initialization code
 Loop body part 1
 Loop-termination test
 Loop body part 2
 Jump back to loop body part 1
 Code following the loop

The repeat...until loop is the simplest of the bunch. This is reflected in
the assembly language implementation of these loops. Consider the follow-
ing semantically identical repeat...until and while loops:

// Example involving a while loop:

 mov w0, w1
 sub w0, w0, #20

// while(W0 <= W1)

Low-Level Control Structures 429

whileLp: cmp w0, w1
 bnle endwhile

 stmts

 add w0, w0, #1
 b.al whileLp
endwhile:

// Example involving a repeat...until loop:

 mov w0, w1
 sub w0, w0, #20
repeatLp:

 stmts

 add w0, w0, #1
 cmp w0, w1
 bngt repeatLp

Testing for the termination condition at the end of the loop allows
you to remove a b.al instruction from the loop, which can be significant if
the loop is nested inside other loops. Given the definition of the loop, you
can easily see that the loop will execute exactly 20 times, which suggests
that the conversion to a repeat...until loop is trivial and always possible.
Unfortunately, it’s not always quite this easy.

Consider the following C code:

while(w0 <= w1)
{
 stmts

 ++w0;
}

In this example, you don’t know what W0 contains upon entry into the
loop. Therefore, you cannot assume that the loop body will execute at least
once. This means you must test for loop termination before executing the
body of the loop. The test can be placed at the end of the loop with the
inclusion of a single b.al instruction:

 b.al WhlTest
TopOfLoop:

 stmts

 add w0, w0, #1
WhlTest: cmp w0, w1
 ble TopOfLoop

430 Chapter 7

Although the code is as long as the original while loop, the b.al instruc-
tion executes only once rather than on each repetition of the loop.
However, the slight gain in efficiency is obtained via a slight loss in read-
ability, so be sure to comment it. The second code sequence is also closer to
spaghetti code than the original implementation. Such is often the price of
a small performance gain. Carefully analyze your code to ensure that such
a performance boost is worth the loss of clarity.

7.9.2  Executing the Loop Backward
Because of the nature of the flags on the ARM, loops that repeat from a
number down to (or up to) 0 are more efficient than loops that execute
from 0 to another value. Compare the following C/C++ for loop and the
comparable assembly language code:

for(j = 1; j <= 8; ++j)
{
 stmts
}

// Conversion to pure assembly (as well as using a
// REPEAT...UNTIL form):

mov w0, #1 // Assume j = W0.
ForLp:

 stmts

 add w0, w0, #1
 cmp w0, #8
 ble ForLp

Now consider another loop that also has eight iterations but runs its
loop-control variable from 8 down to 1 rather than from 1 up to 8, thereby
saving a comparison on each repetition of the loop:

 mov w0, #8 // Assume j = W0.
LoopLbl:

 stmts

 subs w0, w0, #1
 bne LoopLbl

Saving the execution time of the cmp instruction on each iteration of the
loop may result in faster code. Unfortunately, you cannot force all loops to
run backward. However, with a little effort and some coercion, you should
be able to write many for loops so that they operate backward.

The previous example worked out well because the loop ran from 8 down
to 1. The loop terminated when the loop-control variable became 0. What
happens if you need to execute the loop when the loop-control variable goes

Low-Level Control Structures 431

to 0? For example, suppose that the preceding loop needed to range from
7 down to 0. As long as the lower bound is nonnegative, you can substitute
the bpl instruction in place of the bne instruction in the earlier code:

 mov w0, #7 // Assume j = W0.
LoopLbl:

 stmts

 subs w0, w0, #1
 bpl LoopLbl

This loop will repeat eight times, with W0 (j) taking on the values 7 to 0.
When W0 decrements 0 to –1, it sets the sign flag and the loop terminates.

Keep in mind that some values may look positive but are actually nega-
tive. If the loop-control variable is a word, values in the range 2,147,483,648
to 4,294,967,295 are negative in the two’s complement system. Therefore,
initializing the loop-control variable with any 32-bit value in this range (or,
of course, 0) terminates the loop after a single execution. This can get you
into trouble if you’re not careful.

7.9.3  Eliminating Loop-Invariant Calculations
A loop-invariant computation is a calculation that appears within a loop that
always yields the same result. You needn’t do such computations inside the
loop but can instead compute them outside the loop and reference the
value of the computations inside the loop. The following C code demon-
strates an invariant computation:

for(i = 0; i < n; ++i)
{
 k = (j - 2) + i
 Other code
}

Because j never changes throughout the execution of this loop, the
subexpression j - 2 can be computed outside the loop:

jm2 = j - 2;
for(i = 0; i < n; ++i)
{

 k = jm2 + i;
 Other code
}

This translates to the following assembly code, which moves the invari-
ant calculation outside the loop:

 ldr w19, [fp, #j]
 sub w19, w19, #2

432 Chapter 7

 mov w20, #0 // Assume W20 = i.
lp: cmp w20, #n
 bnlt loopDone
 add w21, w19, w20 // k = jm2 + i
 add w20, w20, #1

 Other code

 b.al lp
loopDone:

7.9.4  Unraveling Loops
For small loops—those whose bodies are composed of just a few statements—​
the overhead required to process the loop may constitute a significant per-
centage of the total processing time. For example, consider the following
Pascal code and its associated ARM assembly language code:

 for i := 3 downto 0 do A[i] := 0;

 mov w19, #3 // Assume i = W19.
 add x20, fp, #A // LEA X20,A, assuming A is local.
LoopLbl:
 str wzr, [x20, x19, lsl #2]
 subs w19, w19, #1
 bpl LoopLbl

Three instructions execute on each repetition of the loop. Only one
instruction is doing the desired operation (moving a 0 into an element of A).
The remaining two instructions control the loop. Therefore, it takes 12
instructions to do the operation logically required by 4.

While we could make many improvements to this loop based on the
information presented thus far, consider carefully exactly what it is that
this loop is doing: it’s storing four 0s into A[0] through A[3]. A more effi-
cient approach is to use four str instructions to accomplish the same task.
For example, if A is an array of words, the following code initializes A much
faster than the preceding code:

str wzr, [fp, #A + 0]
str wzr, [fp, #A + 4]
str wzr, [fp, #A + 8]
str wzr, [fp, #A + 12]

Although this is a simple example, it shows the benefit of loop unraveling
(also known as loop unrolling), which consists of repeating the loop’s body
as source code for each iteration of the loop. If this simple loop appeared
buried inside a set of nested loops, the 3:1 instruction reduction could pos-
sibly double the performance of that section of your program. (It would be
criminal not to mention at this point that you could cut this down to two

Low-Level Control Structures 433

instructions by storing XZR, a double word, into A + 0 and A + 8, though that
is a different optimization.)

Of course, you cannot unravel all loops. Loops that execute a variable
number of times are difficult to unravel because there is rarely a way to deter-
mine at assembly time the number of loop iterations. Therefore, unraveling a
loop is a process best applied to loops that execute a known number of times,
with the number of times known at assembly time.

Even if you repeat a loop a fixed number of iterations, it may not be a
good candidate for loop unraveling. Loop unraveling produces impressive
performance improvements when the number of instructions controlling
the loop (and handling other overhead operations) represents a significant
percentage of the total number of instructions in the loop. Had the previ-
ous loop contained 36 instructions in the body (exclusive of the 3 overhead
instructions), the performance improvement would be, at best, only 10 per-
cent, compared with the 300 to 400 percent it now enjoys.

Therefore, the costs of unraveling a loop—all the extra code that must
be inserted into your program—quickly reach a point of diminishing returns
as the body of the loop grows larger or as the number of iterations increases.
Furthermore, entering that code into your program can become quite a
chore. Therefore, loop unraveling is a technique best applied to small loops.

7.9.5  Using Induction Variables
This section introduces optimizations based on induction variables. An
induction variable is one whose value depends entirely on the value of
another variable. Consider the following Pascal loop:

for i := 0 to 255 do csetVar[i] := [];

Here the program is initializing each element of an array of charac-
ter sets to the empty set. The straightforward code to achieve this is the
following:

 str wzr, [fp, #i]
 lea x20, csetVar
FLp:

 // Assume that each element of a csetVar
 // array contains 16 bytes (256 bits).

 ldr w19, [fp, #i]
 lsl w19, w19, #4 // i * 16 (element size)

 // Set this element to the empty set (all 0 bits).

 str xzr, [x20, x19] // Fill in first 8 bytes.
 add x20, x20, #8
 str xzr, [x20, x19] // Initialize second 8 bytes.
 sub x20, x20, #8

434 Chapter 7

 ldr w19, [fp, #i]
 add w19, w19, #1
 str w19, [fp, #i]
 cmp w19, #256 // Quit if at end of array.
 blo FLp

Although unraveling this code will still improve performance, it will
take 2,304 instructions to accomplish this task—too many for all but the
most time-critical applications. However, you can reduce the execution time
of the loop’s body by using induction variables.

In the preceding example, the index into the array csetVar tracks the
loop-control variable; it’s always equal to the value of the loop-control vari-
able times 16. Because i doesn’t appear anywhere else in the loop, there is
no sense in performing the computations on i. Why not operate directly on
the array index value? Furthermore, because the scaled-indexed addressing
mode doesn’t support an integer offset component, the code is constantly
adding 8 to or subtracting 8 from X20 to initialize the second half of each
character set element. This computation can also be worked into the induc-
tion of the loop control variable. The following code demonstrates this
technique:

 lea x20, csetVar
 add x19, x20, #255 * 16 // Compute array ending address.
FLp:

 // Set current element to the empty set (all 0 bits).

 str xzr, [x20] // Fill in first 8 bytes.
 str xzr, [x20, #8] // Fill in second 8 bytes.

 add w20, x20, #16 // Move on to next element.
 cmp x20, x19
 blo FLp

The induction that takes place in this example occurs when the code
initializes the loop control variable with the address of the array (moved
into X20 for efficiency) and then increments it by 16 on each iteration of
the loop rather than by 1. This allows the code to use the indirect-plus-
offset addressing mode (rather than the scaled-indexed addressing mode),
as no shift is required. Once the code can use the indirect-plus-offset mode,
it can drop the addition and subtraction of the loop control variable in
order to access the second half of each character set array element.

	 7.10	 Moving On
After mastering the material in this chapter and the chapters up to this
point, you should be capable of translating many HLL programs into
assembly code.

Low-Level Control Structures 435

This chapter covered several concepts concerning the implementa-
tion of loops in assembly language. It discussed statement labels, including
working with their addresses, efficiently representing pointers to labels
in your programs, using unconditional and indirect branches, working
with veneers, and transferring control to statements beyond the range
of the ARM branches. It then covered decisions: how to implement if...
then...else...elseif, switch statements, state machines in assembly lan-
guage, Boolean expressions, and complete/short-circuit evaluation. It also
described how to utilize 32-bit PC-relative addresses to reduce jump-table
(and pointer) sizes. Finally, this chapter described various kinds of loops,
improving loop performance, and the special ARM machine instructions
that support loop construction.

You’re now prepared to start writing some serious assembly language
code. Starting with the next chapter, you’ll learn some intermediate assem-
bly language programming that enables you to write code that is difficult or
impossible to write in HLLs.

	 7.11	 For More Information
•	 My book Write Great Code, Volume 2, 2nd edition (No Starch Press,

2020) provides a good discussion of the implementation of various
HLL control structures in low-level assembly language. It also discusses
optimizations such as induction, unrolling, strength reduction, and so
on that apply to optimizing loops.

T ES T YOURSEL F

	 1.	 What are the typical mechanisms for obtaining the address of a label
appearing in a program?

	 2.	 What is the form of the indirect branch instruction?

	 3.	 What is a state machine?

	 4.	 What is a trampoline?

	 5.	 Explain the difference between short-circuit and complete Boolean
evaluation.

	 6.	 Convert the following if statements to assembly language sequences by
using complete Boolean evaluation (assume all variables are unsigned
32-bit integer values):

a.	

if(x == y || z > t)
{
 Do something.
}

(continued)

436 Chapter 7

b.	

if(x != y && z < t)
{
 then statements
}
else
{
 else statements
}

7.	 Convert the preceding statements (a) and (b) to assembly language by
using short-circuit Boolean evaluation, assuming all variables are signed
16-bit integer values.

8.	 Convert the following switch statements to assembly language (assume all
variables are unsigned 32-bit integers):

a.	

switch(s)
{
 case 0: case 0 code break;
 case 1: case 1 code break;
 case 2: case 2 code break;
 case 3: case 3 code break;
}

b.	

switch(t)
{
 case 2: case 2 code break;
 case 4: case 4 code break;
 case 5: case 5 code break;
 case 6: case 6 code break;
 default: default code
}

9.	 Convert the following while loops to assembly code (assume all variables
are signed 32-bit integers):

a.	

while(i < j)
{
 Code for loop body
}

do
{

Low-Level Control Structures 437

 Code for loop body
} while(i != j);

b.	

do
{
 Code for loop body, part a
 if(m != 5) continue;
 Code for loop body, part b
 if(n == 6) break;
 Code for loop body, part c
} while(i < j && k > j);

c.	

for(int i = 0; i < 10; ++i)
{
 Code for loop body
}

PART III
A D V A N C E D A S S E M B LY L A N G U A G E

This chapter covers extended-precision
arithmetic and arithmetic on operands of

different sizes. By the end of this chapter, you
should know how to apply arithmetic and logical

operations to integer operands of any size, including
those larger than 64 bits, and how to convert operands
of different sizes into a compatible format.

	 8.1	 Extended-Precision Operations
Assembly language does not limit the size of integer operations, a major
advantage over HLLs (which typically rely on functions, written in assembly
language, to handle extended-precision arithmetic). For example, the stan-
dard C programming language defines four integer sizes: short int, int, long
int, and long long int. On the PC, these are often 16-, 32-, and 64-bit integers.

Although the ARM machine instructions limit you to processing 32- or
64-bit integers with a single instruction, you can use multiple instructions

8
A D V A N C E D A R I T H M E T I C

442 Chapter 8

to process integers of any size. This section describes how to extend vari-
ous arithmetic and logical operations from 32 or 64 bits to as many bits as
you please.

8.1.1  Addition
The ARM add/adds instruction adds two 32- or 64-bit numbers. After the
execution of adds, the ARM carry flag is set if you have an overflow out
of the HO bit of the sum. You can use this information to do extended-
precision addition operations. (This book uses multidigit and multibyte as
synonyms for extended precision.)

Consider the way you manually perform a multidigit addition opera-
tion, as shown in Figure 8-1.

Step 1: Add the least significant digits together

 289
+ 456 produces

 289
+ 456

5 with carry 1

5

Step 2: Add the next significant digits plus carry

 1 (carry)
 289
+ 456 produces

 1 (carry)
 289
+ 456

45 with carry 1

45

Step 3: Add the most significant digits together

 1 (carry)
 289
+ 456 produces

 1 (carry)
 289
+ 456

745

Figure 8-1: Multidigit addition

The ARM handles extended-precision arithmetic the same way, except
instead of adding the numbers a digit at a time, it adds them together a
word or double word at a time, breaking a larger operation into a sequence
of smaller ones. For example, consider the three-double-word (192-bit)
addition operation in Figure 8-2.

Advanced Arithmetic 443

Step 1: Add the least significant dwords together

Step 2: Add the middle dwords together

(plus carry, if any)

(plus carry, if any)

C

CStep 3: Add the most significant dwords together

Figure 8-2: Adding two 192-bit objects together

Since the ARM processor family is capable of adding together at most
64 bits at a time (using general-purpose registers), the operation must pro-
ceed in blocks of 64 bits or fewer, according to the following steps:

	 1.	Add the two LO double words together just as you would add the two
LO digits of a decimal number together in the manual algorithm, using
the adds instruction. If there is a carry out of the LO addition, adds sets
the carry flag to 1. Otherwise, it clears the carry flag.

	 2.	Add together the second pair of double words in the two 192-bit values,
plus the carry out of the previous addition (if any), using the adcs (add
with carry) instruction. The adcs instruction uses the same syntax as
adds and performs almost the same operation:

adcs dest, source1, source2 // dest := source1 + source2 + C

		 The only difference is that adcs adds in the value of the carry flag
along with the source operands. It sets the flags the same way adds does
(including setting the carry flag if there is an unsigned overflow). This
is exactly what we need in order to add together the middle two double
words of our 192-bit sum.

	 3.	Add the HO double words of the 192-bit value with the carry out of
the sum of the middle two quad words by using adcs. (You could also
use a plain adc instruction if you don’t need the flag settings after
the instruction.)

444 Chapter 8

To summarize, the adds instruction adds the LO double words together,
and adcs adds all other double-word pairs together. At the end of the extended-
precision addition sequence, the carry flag indicates unsigned overflow
(if set), a set overflow flag indicates signed overflow, and the sign flag
indicates the sign of the result. The zero flag doesn’t have any real mean-
ing at the end of the extended-precision addition; it simply means that the
sum of the two HO double words is 0 and does not indicate that the whole
result is 0.

For example, suppose you have two 128-bit values you wish to add
together, defined as follows:

 .data
X: .qword 0
Y: .qword 0

Say you want to store the sum in a third variable Z, which is also a
qword. The following ARM code will accomplish this task:

lea x0, X
ldr x3, [x0] // Add together the LO 64 bits
lea x1, Y // of the numbers and store the
ldr x4, [x1] // result into the LO dword of Z.
adds x5, x3, x4
lea x2, Z
str x5, [x2]

ldr x3, [x0, #8] // Add together the HO 64 bits (with
ldr x4, [x1, #8] // carry) and store the result into
adcs x5, x3, x4 // the HO dword of Z.
str x5, [x2, #8]

The first seven instructions add the LO double words of X and Y
together and store the result into the LO double word of Z. The last four
instructions add the HO double words of X and Y together, along with the
carry from the LO word, and store the result in the HO double word of Z.

You can extend this algorithm to any number of bits by using adcs to
add in the higher-order values. For example, to add together two 256-bit
values declared as arrays of four double words, you could use code like
the following:

 .data
BigVal1: .space 4*8 // Array of four double words
BigVal2: .space 4*8
BigVal3: .space 4*8 // Holds the sum
 .
 .
 .
 lea x0, BigVal1
 lea x1, BigVal2
 lea x2, BigVal3

Advanced Arithmetic 445

 ldr x4, [x0] // BigVal1[0]
 ldr x5, [x1] // BigVal2[0]
 adds x6, x4, x5
 str x6, [x2] // BigVal3[0]

 ldr x4, [x0, #8] // BigVal1[1]
 ldr x5, [x1, #8] // BigVal2[1]
 adcs x6, x4, x5
 str x6, [x2, #8] // BigVal3[1]

 ldr x4, [x0, #16] // BigVal1[2]
 ldr x5, [x1, #16] // BigVal2[2]
 adcs x6, x4, x5
 str x6, [x2, #16] // BigVal3[2]

 ldr x4, [x0, #24] // BigVal1[3]
 ldr x5, [x1, #24] // BigVal2[3]
 adcs x6, x4, x5
 str x6, [x2, #24] // BigVal3[3]

This produces a 256-bit sum and stores it in the memory location
BigVal3.

8.1.2  Subtraction
The ARM also performs multibyte subtraction the same way you would
manually, except that it subtracts whole words or double words at a time
rather than decimal digits. Use the subs instruction on the LO word or
double word and the sbc/sbcs (subtract with carry) instruction on the
HO values.

The following example demonstrates a 128-bit subtraction using the
64-bit registers on the ARM:

 .data
Left: .qword .-.
Right: .qword .-.
Diff: .qword .-.
 .
 .
 .
 lea x0, Left
 ldr x3, [x0]
 lea x1, Right
 ldr x4, [x1]
 subs x5, x3, x4
 lea x2, Diff
 str x5, [x2]

 ldr x3, [x0, #8]
 ldr x4, [x1, #8]
 sbcs x5, x3, x4
 str x5, [x2, #8]

446 Chapter 8

The following example demonstrates a 256-bit subtraction:

 .data
BigVal1: .space 4*8 // Array of four dwords
BigVal2: .space 4*8
BigVal3: .space 4*8
 .
 .
 .

// Compute BigVal3 := BigVal1 - BigVal2.

 lea x0, BigVal1
 lea x1, BigVal2
 lea x2, BigVal3

 ldr x4, [x0] // BigVal1[0]
 ldr x5, [x1] // BigVal2[0]
 subs x6, x4, x5
 str x6, [x2] // BigVal3[0]

 ldr x4, [x0, #8] // BigVal1[1]
 ldr x5, [x1, #8] // BigVal2[1]
 sbcs x6, x4, x5
 str x6, [x2, #8] // BigVal3[1]

 ldr x4, [x0, #16] // BigVal1[2]
 ldr x5, [x1, #16] // BigVal2[2]
 sbcs x6, x4, x5
 str x6, [x2, #16] // BigVal3[2]

 ldr x4, [x0, #24] // BigVal1[3]
 ldr x5, [x1, #24] // BigVal2[3]
 sbcs x6, x4, x5
 str x6, [x2, #24] // BigVal3[3]

This produces a 256-bit difference and stores it in the memory location
BigVal3.

8.1.3  Comparisons
Unfortunately, there’s no “compare with carry” instruction that you can use
to perform extended-precision comparisons. However, you can compare
extended-precision values by using just a cmp instruction.

Consider the two unsigned values 0x2157 and 0x1293. The LO bytes of
these two values do not affect the outcome of the comparison. Simply com-
paring the HO bytes, 0x21 with 0x12, tells you that the first value is greater
than the second.

You must look at both bytes of a pair of values if the HO bytes are equal.
In all other cases, comparing the HO bytes tells you everything you need
to know about the values. This is true for any number of bytes, not just two.
The following code compares two signed 128-bit integers by comparing

Advanced Arithmetic 447

their HO double words first and comparing their LO double words only if
the HO quad words are equal:

// This sequence transfers control to location "IsGreater" if
// DwordValue > DwordValue2. It transfers control to "IsLess" if
// DwordValue < DwordValue2. It falls through to the instruction
// following this sequence if DwordValue = DwordValue2.
// To test for inequality, change the "IsGreater" and "IsLess"
// operands to "NotEqual" in this code.

 ldr x0, [fp, #DwordValue+8] // Get HO dword.
 ldr x1, [fp, #DwordValue2 + 8]
 cmp x0, x1
 bgt IsGreater
 blt IsLess

 ldr x0, [fp, #DwordValue+0] // If HO qwords equal,
 ldr x1, [fp, #DwordValue2 + 0]  // then we must compare
 cmp x0, x1 // the LO dwords.
 bgt IsGreater
 blt IsLess

// Fall through to this point if the two values are equal.

To compare unsigned values, use the bhi and blo instructions in place of bgt
and blt.

You can synthesize any comparison from the preceding sequence, as
shown in the following examples that demonstrate signed comparisons;
just substitute bhi, bhs, blo, and bls for bgt, bge, blt, and ble (respectively) if
you want unsigned comparisons. Each of the following examples assumes
these declarations:

locals lcl
oword OW1
oword OW2
byte stkSpace, 64
endl lcl

The following code implements a 128-bit test to see if OW1 < OW2 (signed).
Control transfers to the IsLess label if OW1 < OW2. Control falls through to the
next statement (label NotLess) if this is not true:

 ldr x0, [fp, #OW1 + 8] // Gets HO dword
 ldr x1, [fp, #OW2 + 8]
 cmp x0, x1
 bgt NotLess
 blt IsLess

 ldr x0, [fp, #OW1 + 0] // Fall through to here if the HO
 ldr x1, [fp, #OW2 + 0] // dwords are equal.
 cmp x0, x1
 blt IsLess
NotLess:

448 Chapter 8

Here is a 128-bit test to see if OW1 <= OW2 (signed). This code jumps to
IsLessEQ if the condition is true:

 ldr x0, [fp, #OW1 + 8] // Gets HO dword
 ldr x1, [fp, #OW2 + 8]
 cmp x0, x1
 bgt NotLessEQ
 blt IsLessEQ

 ldr x0, [fp, #OW1 + 0] // Fall through to here if the HO
 ldr x1, [fp, #OW2 + 0] // dwords are equal.
 cmp x0, x1
 ble IsLessEQ
NotLessEQ:

This is a 128-bit test to see if OW1 > OW2 (signed). It jumps to IsGtr if this
condition is true:

 ldr x0, [fp, #OW1 + 8] // Gets HO dword
 ldr x1, [fp, #OW2 + 8]
 cmp x0, x1
 bgt IsGtr
 blt NotGtr

 ldr x0, [fp, #OW1 + 0] // Fall through to here if the HO
 ldr x1, [fp, #OW2 + 0] // dwords are equal.
 cmp x0, x1
 bgt IsGtr
NotGtr:

The following is a 128-bit test to see if OW1 >= OW2 (signed). This code
jumps to label IsGtrEQ if this is the case:

 ldr x0, [fp, #OW1 + 8] // Gets HO dword
 ldr x1, [fp, #OW2 + 8]
 cmp x0, x1
 bgt IsGtrEQ
 blt NotGtrEQ

 ldr x0, [fp, #OW1 + 0] // Fall through to here if the HO
 ldr x1, [fp, #OW2 + 0] // dwords are equal.
 cmp x0, x1
 bge IsGtrEQ
NotGtrEQ:

Here is a 128-bit test to see if OW1 == OW2 (signed or unsigned). This code
branches to the label IsEqual if OW1 == OW2. It falls through to the next instruc-
tion if they are not equal:

 ldr x0, [fp, #OW1 + 8] // Gets HO dword
 ldr x1, [fp, #OW2 + 8]

Advanced Arithmetic 449

 cmp x0, x1
 bne NotEqual

 ldr x0, [fp, #OW1 + 0] // Fall through to here if the HO
 ldr x1, [fp, #OW2 + 0] // dwords are equal.
 cmp x0, x1
 beq IsEqual
NotEqual: // Fall through to here if not equal.

The following is a 128-bit test to see if OW1 != OW2 (signed or unsigned).
This code branches to the label IsNotEqual if OW1 != OW2. It falls through to
the next instruction if they are equal:

ldr x0, [fp, #OW1 + 8] // Gets HO dword
ldr x1, [fp, #OW2 + 8]
cmp x0, x1
bne NotEqual

ldr x0, [fp, #OW1 + 0] // Fall through to here if the HO
ldr x1, [fp, #OW2 + 0] // dwords are equal.
cmp x0, x1
bne NotEqual

// Fall through to here if they are equal.

To generalize the preceding code for objects larger than 128 bits, start
the comparison with the objects’ HO double words and work your way down
to their LO double words, as long as the corresponding double words are
equal. The following example compares two 256-bit values to see if the first
is less than or equal (unsigned) to the second:

 locals cmp256
 dword Big1, 4
 dword Big2, 4
 endl cmp256
 .
 .
 .
 ldr x0, [fp, #Big1 + 24]
 ldr x1, [fp, #Big2 + 24]
 cmp x0, x1
 blo isLE
 bhi notLE

 ldr x0, [fp, #Big1 + 16]
 ldr x1, [fp, #Big2 + 16]
 cmp x0, x1
 blo isLE
 bhi notLE

450 Chapter 8

 ldr x0, [fp, #Big1 + 8]
 ldr x1, [fp, #Big2 + 8]
 cmp x0, x1
 blo isLE
 bhi notLE

 ldr x0, [fp, #Big1 + 0]
 ldr x1, [fp, #Big2 + 0]
 cmp x0, x1
 bnls notLE
isLE:

 Code to execute if Big1 <= Big2
 .
 .
 .
notLE:

 Code to execute if Big1 > Big2

Presumably, there is a branch immediately before the notLE label to skip
over the code to execute if Big1 > Big2.

8.1.4  Multiplication
Although 64 × 64-bit multiplication (or one of the smaller variants) is usu-
ally sufficient, sometimes you may want to multiply larger values. Use the
ARM single-operand umul and smul instructions for extended-precision
multiplication operations, using the same techniques that you employ when
manually multiplying two values.

You likely perform multidigit multiplication by hand using the method
shown in Figure 8-3.

Advanced Arithmetic 451

15 (5 × 3)

(40 × 20)
(40 × 3)

(40 × 100)

5535

Step 1: Multiply 5 × 3

 123
× 45

15
100

Step 2: Multiply 5 × 2

 123
× 45

15
100
500

Step 3: Multiply 5 × 1

 123
× 45

(5 × 20)
(5 × 100)

15
100
500
120

Step 4: Multiply 4 × 3

 123
× 45

15
100
500
120
800

Step 5: Multiply 4 × 2

 123
× 45

15
100
500
120
800

4000

Step 6: Multiply 4 × 1

 123
× 45

15
100
500
120
800

+ 4000

Step 7: Add partial products together

 123
× 45

Figure 8-3: Multidigit multiplication

The ARM does extended-precision multiplication in the same manner,
but with words and double words rather than digits, as shown in Figure 8-4.

452 Chapter 8

Step 1: Multiply the LO words Step 2: Multiply D × A

Step 3: Multiply C × B

Step 5: Compute sum of partial products

Step 4: Multiply C × A

A B

C

D x B

D

A B

C

D × B

D × A

C × B

D × A

C × B

C × A

D × A

C × B

C × A

AB × CD

D

A B

C

D × B

D

A B

C

D × B

D

A B

C

D x B

D x A

D

Figure 8-4: Extended-precision multiplication

When performing an extended-precision multiplication, remember
that you must also perform an extended-precision addition at the same
time. Adding up all the partial products requires several additions.

The umul and smul instructions you’ve seen thus far multiply two n-bit
operands (32 or 64 bits), producing an n-bit result, ignoring any overflow.
You can’t easily use these instructions for multiprecision multiplication
operations. Fortunately, the ARM CPU provides two sets of extended-
precision multiplication instructions that will do the job: one set for 32 × 32
multiplications (producing a 64-bit result), and a second set for 64 × 64 mul-
tiplications (producing a 128-bit result).

Here are the instructions that produce 64-bit results:

smull Xdest, Wsrc1, Wsrc2 // Xdest = Wsrc1 * Wsrc2 (signed long)
umull Xdest, Wsrc1, Wsrc2 // Xdest = Wsrc1 * Wsrc2 (unsigned long)

smnegl Xdest, Wsrc1, Wsrc2 // Xdest = -(Wsrc1 * Wsrc2)
umnegl Xdest, Wsrc1, Wsrc2 // Xdest = -(Wsrc1 * Wsrc2)

Advanced Arithmetic 453

smaddl Xdest, Wsrc1, Wsrc2, Xsrc3 // Xdest = (Wsrc1 * Wsrc2) + Xsrc3
umaddl Xdest, Wsrc1, Wsrc2, Xsrc3 // Xdest = (Wsrc1 * Wsrc2) + Xsrc3

smsubl Xdest, Wsrc1, Wsrc2, Xsrc3 // Xdest = (Wsrc1 * Wsrc2) - Xsrc3
umsubl Xdest, Wsrc1, Wsrc2, Xsrc3 // Xdest = (Wsrc1 * Wsrc2) - Xsrc3

The smull (signed multiply long) and umull (unsigned multiply long)
instructions multiply the 32-bit registers to produce a 64-bit result, storing
the result in the 64-bit destination register. The smnegl and umnegl also mul-
tiply two 32-bit values but negate the 64-bit result before storing it in the
destination register.

The smaddl/umaddl and smsubl/umsubl instructions multiply their 32-bit
operands, producing a 64-bit result, then add or subtract a 64-bit register
from the result before storing the result into the 64-bit destination register.
You could use the smaddl/umaddl instruction, for example, to multiply C × B
and simultaneously add in D × A in Figure 8-4.

The 32 × 32 multiplication instructions are less useful than they seem
because the existing mxxx instructions will accept 64-bit operands (produc-
ing a 64-bit result). You can easily zero- or sign-extend a 32-bit value into
a 64-bit register and use the standard multiply instructions to achieve the
same result as the long multiply instructions.

You could use the 32-bit long multiply instructions to synthesize larger
multiplications (for example, a 128-bit multiplication). However, the ARM
provides two additional instructions that are better suited for this: smulh and
umulh (signed and unsigned multiply high):

smulh Xdest, Xsrc1, Xsrc2 // Xdest = (Xsrc1 * Xsrc2) asr 64
umulh Xdest, Xsrc1, Xsrc2 // Xdest = (Xsrc1 * Xsrc2) lsr 64

These instructions multiply the two 64-bit source operands and store
the HO 64 bits of the 128-bit result into the destination register. The stan-
dard mul instruction produces the LO 64 bits of the result, so between the
mul and smulh/umulh instructions, you can compute the full 128-bit result:

// Multiply X0 × X1, producing a 128-bit result in X3:X2
// (unsigned).

 mul x2, x0, x1
 umulh x3, x0, x1

For signed multiplication, simply substitute smulh for umulh.
To multiply larger values together, you can use the mul, umulh, and smulh

instructions to implement the algorithm depicted in Figure 8-4. Listing 8-1
demonstrates how to multiply two 128-bit values (producing a 256-bit result)
by using 64-bit instructions.

// Listing8-1.S
//
// 128-bit multiplication

454 Chapter 8

#include "aoaa​.inc"

 .code
 .extern printf

ttlStr: wastr "Listing 8-1"

fmtStr1: .ascii "%016lx_%016lx * %016lx_%016lx = \n"
 wastr " %016lx_%016lx_%016lx_%016lx\n"

op1: .qword 0x10001000100010001000100010001000
op2: .qword 0x10000000000000000000000000000000

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// mul128
//
// Multiplies two unsigned 128-bit values passed on the stack by
// doing a 128x128-bit multiplication, producing a 256-bit
// result
//
// Stores result to location pointed at by X8

 1 proc mul128

 args a128
 qword m128.mp // Multiplier
 qword m128.mc // Multiplicand
 enda a128

 locals m128
 qword m128.saveX01
 qword m128.saveX23
 qword m128.saveX45
 qword m128.saveX67
 byte stkSpace, 64
 endl m128

 enter m128.size

 2 stp x0, x1, [fp, #m128.saveX01] // Preserve
 stp x2, x3, [fp, #m128.saveX23] // these
 stp x4, x5, [fp, #m128.saveX45] // register
 stp x6, x7, [fp, #m128.saveX67] // values.

// Load operands into registers:

 3 ldr x0, [fp, #m128.mp]
 ldr x1, [fp, #m128.mp+8]

Advanced Arithmetic 455

 ldr x2, [fp, #m128.mc]
 ldr x3, [fp, #m128.mc+8]

// X5:X4 = X0 * X2

 mul x4, x0, x2
 umulh x5, x0, x2

// X6:X7 = X1 * X2, then X5 = X5 + X7 (and save carry for later):

 mul x7, x1, x2
 umulh x6, x1, x2
 adds x5, x5, x7

// X7 = X0 * X3, then X5 = X5 + X7 + C (from earlier):

 mul x7, x0, x3
 adcs x5, x5, x7
 umulh x7, x0, x3
 adcs x6, x6, x7 // Add in carry from adcs earlier.

// X7:X2 = X3 * X1

 mul x2, x3, x1
 umulh x7, x3, x1

 adc x7, x7, xzr // Add in C from previous adcs.
 adds x6, x6, x2 // X6 = X6 + X2
 adc x7, x7, xzr // Add in carry from adds.

// X7:X6:X5:X4 contains 256-bit result at this point:

 4 stp x4, x5, [x8] // Save result to location
 stp x6, x7, [x8, #16] // pointed at by X8.

 ldp x0, x1, [fp, #m128.saveX01] // Restore
 ldp x2, x3, [fp, #m128.saveX23] // saved
 ldp x4, x5, [fp, #m128.saveX45] // registers.
 ldp x6, x7, [fp, #m128.saveX67]
 leave
 endp mul128

// Here is the asmMain function:

 proc asmMain, public
 locals am
 oword product
 byte stkSpace, 128
 endl am

 enter am.size

 str xzr, [fp, #product]

456 Chapter 8

// Test the mul128 function:

 5 lea x2, op1
 ldp x0, x1, [x2]
 stp x0, x1, [sp]

 lea x2, op2
 ldp x0, x1, [x2]
 stp x0, x1, [sp, #16]
 add x8, fp, #product
 bl mul128

// Print the result:

 6 lea x0, op1 // Note: display HO
 ldr x1, [x0, #8] // dwords first so the
 mstr x1, [sp] // values appear normal.

 ldr x2, [x0]
 mstr x2, [sp, #8]

 lea x0, op2
 ldr x3, [x0, #8]
 mstr x3, [sp, #16]
 ldr x4, [x0]
 mstr x4, [sp, #24]

 ldr x5, [fp, #product+24]
 mstr x5, [sp, #32]

 ldr x6, [fp, #product+16]
 mstr x6, [sp, #40]

 ldr x7, [fp, #product+8]
 mstr x7, [sp, #48]

 ldr x0, [fp, #product]
// Under macOS, all arguments must be on stack for printf,
// under Linux, only eighth argument is on stack.

EightthArg = 56 // For macOS
//EightthArg = 0 // For Linux

 str x0, [sp, #EighthArg]

 lea x0, fmtStr1
 bl printf

 leave // Returns to caller
 endp asmMain

Advanced Arithmetic 457

The mul128 procedure 1 multiplies two 128-bit values passed on the
stack (note that this is not ARM ABI–compliant). Although X0 through X7
are volatile in the ARM ABI, this function is nice and preserves those regis-
ters 2. The code loads the two 128-bit values from the stack into the X1:X0
and X3:X2 register pairs 3. The 128-bit multiplication algorithm follows, as
described in the program comments.

The code stores the 256-bit result into the memory location passed to
this function in the X8 register 4; then the mul128 function restores the pre-
served registers and returns to the caller. The main program calls mul128 5
and displays the result (in hexadecimal form) 6.

Here’s the build command and output from Listing 8-1:

$./build Listing8-1
$./Listing8-1
Calling Listing8-1:
1000100010001000_1000100010001000 * 1000000000000000_0000000000000000 =
 0100010001000100_0100010001000100_0000000000000000_1000100010001000
Listing8-1 terminated

The code works only for unsigned operands. To multiply two signed
values, you must change the umulh instructions to smulh.

Listing 8-1 is fairly straightforward because it is possible to keep the
partial products in various registers. If you need to multiply larger values
together, you will need to maintain the partial products in temporary
(memory) variables. Other than that, the algorithm that Listing 8-1 uses
generalizes to any number of words.

8.1.5  Division
You cannot synthesize a general n-bit ​/ m -bit division operation by using
the sdiv and udiv instructions. A generic extended-precision division requires
a sequence of shift and subtract operations, which takes quite a few instruc-
tions and runs much slower. This section presents the algorithm for
extended-precision division.

As with multiplication, the best way to understand how the computer
performs division is to study how you were probably taught to do long divi-
sion by hand. Consider the steps you’d take to manually divide 3,456 by 12,
as shown in Figure 8-5.

458 Chapter 8

12 Step 1: 12 goes into 34
two times

3456
24

12 Step 2: Subtract 24 from 34
to get 10 and drop down the 5

3456
22

24
105

12 Step 3: 12 goes into 105
eight times

3456
28

24
105
 96

105
 96

96

12 Step 4: Subtract 96 from 105
to get 9 and drop down the 6

3456
28

24

12 Step 5: 12 goes into 96
exactly eight times

3456
28

24
105
 96

96
96

105
 96

96
96

0

12 Step 6: Therefore, 12 goes
into 3,456 exactly 288 times

3456
288

24

Figure 8-5: Manual digit-by-digit division operation

This algorithm is easier in binary because you don’t have to guess at
each step how many times 12 goes into the remainder, nor do you have to
multiply 12 by your guess to obtain the amount to subtract. At each step in
the binary algorithm, the divisor goes into the remainder exactly zero or
one times. For example, Figure 8-6 shows how to divide 27 by 3 in binary
(that is, dividing 11011 by 11).

Advanced Arithmetic 459

11 Step 1: 11 goes into 11
one time

11011
11

11 Step 2: Subtract the 11,
producing 0, and bring
down the 0

11011
11

11
00

11 Step 3: 11 goes into 00
zero times

11011
10

11
00
00

00
00

01

11 Step 4: Subtract out the 0
and bring down the 1

11011
10

11

11 Step 5: 11 goes into 01
zero times

11011
100

11
00
00

01
00

00
00

01
00

11

11 Step 6: Subtract out the zero
and bring down the 1

11011
100

11

11 Step 7: 11 goes into 11
exactly one time

11011
1001

11
00
00

01
00

11

00
00

01
00

11
11
00

11 Step 8: This produces the
final result of 1,001

11011
1001

11

Figure 8-6: Longhand division in binary

The following algorithm implements this binary division operation in a
way that computes the quotient and the remainder at the same time:

Quotient := Dividend;
Remainder := 0;
for i := 1 to NumberBits do

 Remainder:Quotient := Remainder:Quotient LSL 1;
 if Remainder >= Divisor then

 Remainder := Remainder - Divisor;
 Quotient := Quotient + 1;

 endif
endfor

460 Chapter 8

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and
Dividend variables. LSL is the shift-left operator. The statement Quotient :=
Quotient + 1; sets the LO bit of Quotient to 1 because this algorithm previ-
ously shifted Quotient 1 bit to the left. Listing 8-2 implements this algorithm.

// Listing8-2.S
//
// 128-bit by 128-bit division

#include "aoaa​.inc"

 .data

// op1 is a 128-bit value. Initial values were chosen
// to make it easy to verify the result.

op1: .qword 0x2000400060008000A000C000E0001000
op2: .qword 2
op3: .qword 0xEEEECCCCAAAA88886666444422221111
result: .qword 0
remain: .qword 0

 .code
 .extern printf

ttlStr: wastr "Listing 8-2"
fmtStr1: .ascii "quotient = "
 wastr "%016lx_%016lx\n"

fmtStr2: .ascii "remainder = "
 wastr "%016lx_%016lx\n"

fmtStr3: .ascii "quotient (2) = "
 wastr "%016lx_%016lx\n"

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// div128
//
// This procedure does a general 128 / 128 division operation
// using the following algorithm (all variables are assumed
// to be 128-bit objects):
//
// Quotient := Dividend
// Remainder := 0
// for i := 1 to NumberBits do
//
// Remainder:Quotient := Remainder:Quotient SHL 1

Advanced Arithmetic 461

// if Remainder >= Divisor then
//
// Remainder := Remainder - Divisor
// Quotient := Quotient + 1
//
// endif
// endfor
//
// Data passed:
//
// 128-bit dividend, by reference in X0
// 128-bit divisor, by reference in X1
//
// Data returned:
//
// Pointer to 128-bit quotient in X8
// Pointer to 128-bit remainder in X9

 1 proc div128

#define remainderL x10
#define remainderH x11
#define dividendL x12
#define dividendH x13
#define quotientL dividendL
#define quotientH dividendH
#define divisorL x14
#define divisorH x15

 locals d128
 dword saveX0
 qword saveX1011
 qword saveX1213
 qword saveX1415
 byte stkSpace, 64
 endl d128

quotient = dividend // Alias to dividend

 enter d128.size // Set up activation record.

// Preserve registers div128 modifies:

 2 str x0, [fp, #saveX0]
 stp x10, x11, [fp, #saveX1011]
 stp x12, x13, [fp, #saveX1213]
 stp x14, x15, [fp, #saveX1415]

// Initialize remainder with 0:

 3 mov remainderL, #0
 mov remainderH, #0

462 Chapter 8

// Copy the dividend to local storage:

 ldp dividendL, dividendH, [x0]

// Copy the divisor to local storage:

 ldp divisorL, divisorH, [x1]

 mov w0, #128 // Count off bits in W0.

// Compute Remainder:Quotient := Remainder:Quotient LSL 1
//
// Note: adds x, x, x is equivalent to lsl x, x, #1
// adcs x, x, x is equivalent to rol x, x, #1
// (if rol existed)
//
// The following four instructions perform a 256-bit
// extended-precision shift (left) dividend through
// remainder:

 repeatLp: adds dividendL, dividendL, dividendL
 adcs dividendH, dividendH, dividendH
 adcs remainderL, remainderL, remainderL
 adc remainderH, remainderH, remainderH

// Do a 128-bit comparison to see if the remainder
// is greater than or equal to the divisor:

 cmp remainderH, divisorH
 bhi isGE
 blo notGE

 cmp remainderL, divisorL
 bhi isGE
 blo notGE

// Remainder := Remainder - Divisor

isGE: subs remainderL, remainderL, divisorL
 sbc remainderH, remainderH, divisorH

// Quotient := Quotient + 1:

 adds quotientL, quotientL, #1
 adc quotientH, quotientH, xzr

// Repeat for 128 bits:

notGE: subs w0, w0, #1
 bne repeatLp

// Okay, copy the quotient (left in the Dividend variable)
// and the remainder to their return locations:

 4 stp quotientL, quotientH, [x8]
 stp remainderL, remainderH, [x9]

Advanced Arithmetic 463

// Restore the registers div128 modified:

 5 ldr x0, [fp, #saveX0]
 ldp x10, x11, [fp, #saveX1011]
 ldp x12, x13, [fp, #saveX1213]
 ldp x14, x15, [fp, #saveX1415]
 leave // Return to caller.
 endp div128

// Here is the asmMain function:

 proc asmMain, public

 locals am
 byte am.stkSpace, 64
 endl am

 enter am.size // Sets up activation record

// Test the div128 function:

 6 lea x0, op1
 lea x1, op2
 lea x8, result
 lea x9, remain
 bl div128

// Print the results:

 ldr x1, [x8, #8] // X8 still points at result.
 mstr x1, [sp]
 ldr x2, [x8]
 mstr x2, [sp, #8]

 lea x0, fmtStr1
 bl printf

 lea x9, remain // Assume printf munged X9,
 ldr x1, [x9, #8] // must reload.
 mstr x1, [sp]
 ldr x2, [x9]
 mstr x2, [sp, #8]

 lea x0, fmtStr2
 bl printf

// Test the div128 function (again):

 lea x0, op3
 lea x1, op2
 lea x8, result
 lea x9, remain
 bl div128

464 Chapter 8

// Print the results:

 ldr x1, [x8, #8] // X8 still points at result.
 mstr x1, [sp]
 ldr x2, [x8]
 mstr x2, [sp, #8]

 lea x0, fmtStr3
 bl printf

 lea x9, remain // Must reload
 ldr x1, [x9, #8] // (because of printf).
 mstr x1, [sp]
 ldr x2, [x9]
 mstr x2, [sp, #8]

 lea x0, fmtStr2
 bl printf

 leave // Returns to caller
 endp asmMain

The div128 function 1 is a 128 × 128-bit division operation that simul-
taneously produces the quotient and the remainder. Unlike the extended-
precision multiplication given earlier, this function passes its arguments by
reference (in X0 and X1) rather than by value on the stack. It stores the
128-bit quotient in the location pointed at by X8 and the remainder in the
location pointed at by X9. As in the multiplication code, the div128 func-
tion 2 preserves all the volatile registers it modifies.

Next is the division algorithm 3, as described in the program comments.
The code stores the quotient and remainder away 4 and then restores the
preserved registers 5. The main program 6 demonstrates the div128 func-
tion with a pair of calls, along with the code to display the results.

Here’s the build command and program output:

$./build Listing8-2
$./Listing8-2
Calling Listing8-2:
quotient = 1000200030004000_5000600070000800
remainder = 0000000000000000_0000000000000000
quotient (2) = 7777666655554444_3333222211110888
remainder = 0000000000000000_0000000000000001
Listing8-2 terminated

This code does not check for division by 0 (it will produce the quotient
0xFFFF_FFFF_FFFF_FFFF if you attempt to divide by 0). It handles only
unsigned values and is very slow, a couple of orders of magnitude worse
than the sdiv/udiv instructions. To handle division by 0, check the divisor
against 0 prior to running this code and return an appropriate error code if
the divisor is 0. To deal with signed values, note the signs, take the operands’

Advanced Arithmetic 465

absolute values, do the unsigned division, and then fix the sign afterward
by setting the result negative if the operand signs were different.

8.1.6  Negation
The neg instruction doesn’t provide a generic extended-precision form.
However, a negation is equivalent to subtracting a value from 0, so you can
easily simulate an extended-precision negation by using the subs and sbcs
instructions.

The following code provides a simple way to negate a (320-bit) value by
subtracting that value from 0, using an extended-precision subtraction:

ldr x0, [fp, #value320]
subs x0, xzr, x0
str x0, [fp, #value320]

ldr x0, [fp, #value320 + 8]
sbcs x0, xzr, x0
str x0, [fp, #value320 + 8]

ldr x0, [fp, #value320 + 16]
sbcs x0, xzr, x0
str x0, [fp, #value320 + 16]

ldr x0, [fp, #value320 + 24]
sbcs x0, xzr, x0
str x0, [fp, #value320 + 24]

ldr x0, [fp, #value320 + 32]
sbcs x0, xzr, x0
str x0, [fp, #value320 + 32]

You can extend this algorithm to any number of bits (or reduce it to fewer
bits) by using the scheme I presented for extended-precision subtraction.

8.1.7  AND
Performing an n -byte AND operation is easy: simply AND the corre-
sponding bytes between the two operands, saving the result. For example,
to perform the AND operation with all operands 128 bits long, you could
use the following code:

ldp x0, x1, [fp, #source1]
ldp x2, x3, [fp, #source2]
and x2, x2, x0
and x3, x3, x1
stp x2, x3, [fp, #dest]

To extend this technique to any number of dwords, logically AND the cor-
responding dwords together in the operands.

466 Chapter 8

When testing the flags after an AND sequence, remember that the ands
instruction will set the flags only for that particular portion of the AND
sequence. If you convert the last and to an ands instruction, it will properly
set the N flag but will not properly set the Z flag. To set the Z flag (indicat-
ing a 0 result for the entire 128 bits), you can use ccmp (conditional com-
pare) to test the Z flag from the ands instruction and compare X2 with 0
(see section 6.1.4, “Conditional Instructions,” on page 297):

ldp x0, x1, [fp, #source1]
ldp x2, x3, [fp, #source2]
and x2, x2, x0
ands x3, x3, x1
stp x2, x3, [fp, #dest]
ccmp x2, #0, 0b0100, eq // Sets Z if X3 == 0 && X2 == 0

If you need to test both the N and Z flags after this sequence, consider
using the tbz/tbnz instructions to test the HO bit of register X3, which con-
tains the sign bit.

8.1.8  OR
Multibyte logical OR operations are performed in the same way as multi
byte AND operations: you OR the corresponding bytes in the two operands
together. For example, to logically OR two 256-bit values, use the follow-
ing code:

ldp x0, x1, [fp, #source1]
ldp x2, x3, [fp, #source1 + 16]
ldp x4, x5, [fp, #source2]
ldp x6, x7, [fp, #source2 + 16]

orr x0, x0, x4
orr x1, x1, x5
orr x2, x2, x6
orr x3, x3, x7

stp x0, x1, [fp, #dest]
stp x2, x3, [fp, #dest+16]

Remember that the orr instruction does not affect any flags (and there
is no orrs instruction). If you need to test the zero flag after an extended-
precision OR, you must compare all the resulting double words to 0.

You can also use the Vn registers to perform extended-precision logi-
cal operations, up to 128 bits at a time. See section 11.13, “Use of SIMD
Instructions in Real Programs,” on page 699 for more details.

8.1.9  XOR
As with other logical operations, extended-precision XOR operations will
XOR the corresponding bytes in the two operands to obtain the extended-
precision result. The following code sequence operates on two 128-bit

Advanced Arithmetic 467

operands, computes their exclusive-OR, and stores the result into a 128-bit
variable:

ldp x0, x1, [fp, #source1]
ldp x2, x3, [fp, #source2]
eor x2, x2, x0
eor x3, x3, x1
stp x2, x3, [fp, #dest]

The comment about the zero flag in the previous section applies here,
as well as the comment about Vn registers.

8.1.10  NOT
The mvn instruction inverts all the bits in the specified operand. Perform an
extended-precision NOT by executing the mvn instruction on all the affected
operands. For example, to perform a 128-bit NOT operation on the value
in X1:X0, execute the following instructions:

mvn x0, x0
mvn x1, x1

If you execute the mvn instruction twice, you wind up with the origi-
nal value. Also, exclusive-ORing a value with all 1s (such as 0xFF, 0xFFFF,
0xFFFF_FFFF, or 0xFFFF_FFFF_FFFF_FFFF) performs the same operation
as the mvn instruction.

8.1.11  Shift Operations
Extended-precision shift operations on the ARM are somewhat problem-
atic. Traditionally, the way you accomplish an extended-precision shift is to
shift a bit out of one register into the carry flag, then rotate that carry bit
into another register. Unfortunately, the ARM doesn’t provide such instruc-
tions, so a different approach is necessary.

The exact approach depends on two things, as described in the follow-
ing subsections: the number of bits to shift and the direction of the shift.

8.1.11.1  Shift Left

A 128-bit lsl (logical shift left) takes the form shown in Figure 8-7.

0

0

1234

6465666768

C

127

63

...

...

Figure 8-7: The 128-bit shift-left operation

468 Chapter 8

To accomplish this with machine instructions, you must first shift the
LO dword to the left (for example, using the lsls instruction) and capture
the output from bit 63 (conveniently, the carry flag does this for us). Next,
shift this bit into the LO bit of the HO dword while simultaneously shifting
all the other bits to the left (and capturing the output by using the carry
flag). No instruction specifically rotates the carry flag into a register, but
you can use the magic instruction adc/adcs to do this if you supply appropri-
ate operands.

Remember, a shift left is the same thing as a multiplication by 2. Adding
a value to itself is the very definition of a multiplication by 2. Therefore, the
lsls and adds instructions can both shift an operand to the left, moving the
overflow bit into the carry flag. In order for adds to behave like a shift-left
operation, you must supply the same operand in both source positions:

adds x0, x0, x0 // Same as lsl x0, x0, #1

The adcs instruction (with the same operands) will also shift all the bits
to the left one position and shift the carry flag into bit 0 (as well as shift the
HO bit into the carry flag at the end of the operation). This is, effectively, a
single-bit rotate-through-carry-left operation, as illustrated in Figure 8-8.

HO bit 4 3 2 1 0

...

C

Figure 8-8: The rotate-through-carry-left operation

You can use the adds and adcs instructions to implement a 128-bit shift.
For example, to shift the 128-bit quantity in X1:X0 one position to the left,
use the following instructions:

adds x0, x0, x0
adcs x1, x1, x1

The adds instruction shifts a 0 into bit 0 of the 128-bit operand and
shifts bit 63 into the carry flag. The adcs instruction then shifts the carry
flag into bit 64 and shifts bit 127 into the carry flag, giving you exactly the
result you want, as shown in Figure 8-9.

Advanced Arithmetic 469

HO bit 4 3 2 1 0

... 0

HO bit 4 3 2 1 0

...

C

C

LO dword

HO dword

Figure 8-9: Extended-precision shift left using adds/adcs

Using this technique, you can shift an extended-precision value only
1 bit at a time. You cannot shift an extended-precision operand several bits
by using a register, nor can you specify a constant value greater than 1 when
using this technique.

To perform a shift left on an operand larger than 128 bits, use addi-
tional adcs instructions. An extended-precision shift-left operation always
starts with the least-significant double word, and each succeeding adcs
instruction operates on the next-most-significant double word. For example,
to perform a 192-bit shift-left operation on a memory location, you could
use the following instructions:

adds x0, x0, x0
adcs x1, x1, x1
adcs x2, x2, x2

If you need to shift your data by 2 or more bits, you can either repeat
the preceding sequence the desired number of times for a constant number
of shifts or place the instructions in a loop to repeat them a certain number
of times. For example, the following code shifts the 192-bit value in X0, X1,
and X2 to the left by the number of bits specified in W3:

ShiftLoop:
 adds x0, x0, x0
 adcs x1, x1, x1
 adcs x2, x2, x2
 subs w3, w3, #1
 bne ShiftLoop

The only problem with this multibit shift is that it can run rather slowly
when shifting more than a few bits to the left. In general, we say that this
algorithm is O(n), meaning the runtime is proportional to the number of
bits we shift to the left.

470 Chapter 8

An instruction to shift multiple bits simultaneously, as the lsl instruc-
tion can do, would help solve this problem. If a rol instruction existed, you
could use it to shift the 128 bits in X1:X0 to the left 8 bits:

rol x2, x0, #8 // Shift HO 8 bits into LO 8
and x2, x2, #0xFF // bits and clear other bits.
lsl x0, x0, #8 // Shift X0 8 bits.
lsl x1, x1, #8 // Shift X1 8 bits.
orr x1, x1, x2 // Merge in LO 8 bits.

Unfortunately, the ARM CPU’s instruction set has no rol instruction;
however, you can use the ror instruction to do anything a rol instruction
would do. For any bit shift that occurs in the range 1–63, rol(n) is equivalent
to ror((64 - n) % 64), where rox(n) means “rotate left/right n bits.” For the
special case of rol(0), ror(0) ((64 - 0) % 64) is 0) will also rotate the value 0
bits. Therefore, you can replace the previous noncompiling code with this:

ror x2, x0, #64-8 // Shift HO 8 bits into LO 8
and x2, x2, #0xFF // bits and clear other bits.
lsl x0, x0, #8 // Shift X0 8 bits.
lsl x1, x1, #8 // Shift X1 8 bits.
orr x1, x1, x2 // Merge in LO 8 bits.

When n is greater than 2 or 3, this sequence will execute much faster
than the adds/adcs loop given earlier.

Figures 8-10 through 8-14 show the operations for this extended-
precision shift left.

63 0

127 64

...

...

Figure 8-10: Extended-precision shift left using ror, before the shift

In Figure 8-11, the algorithm makes a temporary copy of bits 0 to 63
and rotates the value to the left by 8 bits.

63 0
...

127 64
...

63 0
...

Temporary
copy

Figure 8-11: Step 1: Making a temporary copy and shifting bits

Advanced Arithmetic 471

Figure 8-12 shows shifting the original value to the left 8 bits (which
clears the LO bits) and clearing the HO temporary bits (via an AND
operation).

63

127

63

0

64

0
Temporary
copy

...

...

...

Figure 8-12: Step 2: Shifting and clearing bits

Figure 8-13 shows the merging of the temporary and HO dwords (OR
operation).

63

127

63

0

64

0 Temporary
copy

...

...

...

Figure 8-13: Step 3: Merging the temporary and HO dwords

Figure 8-14 shows the result after the shift.

63 0
...

127 64
...

Figure 8-14: Step 4: After the shift

To implement a variable extended-precision shift-left operation, the
code needs to generate a bitmask to clear the LO bits (the and instructions
in the previous code). As it turns out, you can generate the mask for an
n-bit shift by using the following code:

mov x3, #1
lsl x3, x3, x4 // Assume X4 contains the shift count.
sub x3, x3, #1 // Generates 1 bits in positions 0 to (n-1)
and x2, x2, x3 // Clears unused bits of X2

The trick here is that lsl(n) produces 2n. Then, 2n – 1 is all 1 bits from
bit 0 to position n – 1.

472 Chapter 8

8.1.11.2  Shift Right and Arithmetic Shift Right

Unfortunately, no trick like using the adds/adcs instructions allows you
to perform a rotate through carry right operation (shifting all the bits right
through the carry, and shifting the original carry back into the HO bit).
Therefore, to do an extended-precision shift right (or arithmetic shift right),
you must use the ror instruction again. Here’s an example that shifts a
128-bit value in X1:X0 to the right 8 bits:

ror x2, x1, #8 // Shifts bits 64-71 into HO
and x2, x2, #0xFF << 56 // 8 bits and clears bits 64-119
lsr x1, x1, #8 // Shifts X1 8 bits
lsr x0, x0, #8 // Shifts X0 8 bits
orr x0, x0, x2 // Merges in bits 56-63

The code for the extended-precision arithmetic shift-right operation
is similar:

ror x2, x1, #8 // Shifts bits 64-71 into HO
and x2, x2, #0xFF << 56 // 8 bits and clears bits 64-119
asr x1, x1, #8 // Arithmetic shift X1 8 bits
lsr x0, x0, #8 // Shifts X0 8 bits
orr x0, x0, x2 // Merges in bits 56-63

In this case, you substitute an asr instruction for the lsr on the HO
dword. Note that you continue to use a lsr instruction on the LO dword; lsr
is necessary to shift 0s into the HO bits so that the orr instruction properly
merges the bits shifted out of the HO dword.

As a last example, here’s a 192-bit arithmetic shift right that shifts the
bits in X2:X1:X0 to the right 4 bits:

ror x3, x2, #4 // Temp copy holding bits 128-131
And x3, x3, #0xF << 60 // Clears all but HO 4 bits of temp
asr x2, x2, #4 // Arithmetic shift right X2 4 bits
ror x4, x2, #4 // Temp (2) copy holding bits 64-67
And x4, x4, #0xF << 60 // Clears all but HO 4 bits of temp2
lsr x2, x2, #4 // Shifts the original 3 dwords 4 bits
lsr x1, x1, #4
lsr x0, x0, #4
orr x1, x1, x3 // Merges in bits 124-127
orr x0, x0, x4 // Merges in bits 60-63

The Neon instructions allow you to shift 128-bit values left and right;
see Chapter 11 for details.

	 8.2	 Operating on Different-Size Operands
Occasionally, you may need to do a computation on a pair of operands that
are not the same size (mixed-size, or mixed-mode, arithmetic). For example,
you may need to add a word and a double word together or subtract a byte

Advanced Arithmetic 473

value from a word value. To do so, extend the smaller operand to the size
of the larger operand, then operate on two same-size operands. For signed
operands, sign-extend the smaller operand to the same size as the larger
operand; for unsigned values, zero-extend the smaller operand. This works
for any operation.

The following examples demonstrate adding a byte variable, a half-
word variable, and a dword variable:

locals lcl
byte var1
hword var2
align 3
dword var3
endl lcl
 .
 .
 .
// Unsigned addition (8-bit + 16-bit addition
// producing a 16-bit result):

ldrb w0, [fp, #var1] // Zero-extends byte to 32 bits
ldrh w1, [fp, #var2] // Zero-extends hword to 32 bits
add w0, w0, w1 // Adds 32 bits
strh w0, [fp, #var2] // Store LO 16 bits in var2.

// Signed addition (8-bit + 16-bit addition
// producing a 16-bit result):

ldrsb w0, [fp, #var1] // Sign-extends byte to 32 bits
ldrsh w1, [fp, #var2] // Sign-extends hword to 32 bits
add w0, w0, w1 // Adds 32 bits
strh w0, [fp, #var2] // Store LO 16 bits in var2.

In both cases, the byte variable is loaded into the W0 register, extended
to 32 bits, and then added with the half-word operand (also extended to
32 bits).

All these examples add a byte value to a half-word value. By zero- or
sign-extending the operands to the same size, you can easily add any two
different-size variables together.

As a last example, consider adding an 8-bit signed value to a qword
(128-bit) value:

ldrsb x0, [fp, #var1] // Sign-extends byte to 64 bits
asr x1, x0, #63 // Sneaky sign-extend to 128 bits
ldp x2, x3, [fp, #var3]
adds x2, x2, x0 // Adds LO dwords
adc x3, x3, x1 // Adds HO dwords
stp x2, x3, [fp, #var3]

The trick in this code is the asr instruction. This instruction sign-
extends X0 into X1:X0 by copying the sign bit in X0 throughout X1 (an

474 Chapter 8

arithmetic shift right by 63 bits effectively copies bit 63 into bits 0–62). Once
X0 has been sign-extended into X1, you have a 128-bit value in X1:X0 that
you can add to the 128-bit value in variable var3.

The previous examples in this chapter assumed that the different-size
operands were memory variables. They used the ldrb/ldrsb and ldrh/ldrsh
instructions to zero- and sign-extend 8- and 16-bit operands to 32 bits (which
could also extend their operands to 64 bits by supplying a 64-bit register).
Although these examples did not demonstrate mixing 32- and 64-bit oper-
ands, you could also have used the ldrsw instruction to sign-extend 32 bits
to 64.

If your operands are already in registers (not memory), you can use the
uxtb/uxth/uxtw and sxtb/sxth/sxtw instructions to zero- or sign-extend the
operands. For example, the following code sign-extends the 32-bit value in
W0 to 128 bits:

// Assume 8-bit value is in W0 and 128-bit value is in X3:X2.
// Add byte in W0 to 128-bit value in X3:X2.

sxtb x0, w0 // Sign-extends byte to 64 bits
asr x1, x0, #63 // Sneaky sign-extend to 128 bits
adds x2, x2, x0 // Adds LO dwords
adc x3, x3, x1 // Adds HO dwords

When adding smaller values to 32- or 64-bit registers that don’t require
sign-extending the smaller value to 128 bits or more, you can use the sign-
extension modifiers for Operand2 in arithmetic instructions to zero- and
sign-extend the smaller values to the larger size:

// Add 8-bit unsigned value in W0 to 32-bit value in W1:

add w1, w1, w0, uxtb #0

// Add 8-bit signed value in W0 to 32-bit value in W1:

add w1, w1, w0, sxtb #0

// Add 16-bit unsigned value in W0 to 32-bit value in W1:

add w1, w1, w0, uxth #0

// Add 16-bit signed value in W0 to 32-bit value in W1:

add w1, w1, w0, sxth #0

// Add 32-bit unsigned value in W0 to 64-bit value in X1:

add x1, x1, w0, uxtw #0

// Add 32-bit signed value in W0 to 64-bit value in X1:

add x1, x1, w0, sxtw #0

Advanced Arithmetic 475

To add bytes and half words to 64-bit dwords, just change the W1 regis-
ters to X1 in this code.

	 8.3	 Moving On
Extended-precision arithmetic is difficult or impossible in HLLs but is fairly
easy in assembly language. This chapter described the extended-precision
arithmetic, comparison, and logical operations in ARM assembly language.
It concluded by discussing mixed-mode (mixed-size) arithmetic, where the
operands have differing sizes.

Armed with the information from this chapter, it’s easy to handle arith-
metic and logical operations that are difficult to achieve in most HLLs. The
next chapter, which covers numeric-to-string conversions, will use these
extended-precision operations when converting values larger than 64 bits.

	 8.4	 For More Information
•	 One arithmetic feature missing from the ARM instruction set is decimal

arithmetic (base-10), meaning if the need arises, you’ll have to perform
that arithmetic in software. Though most of the code is in C, visit the
General Decimal Arithmetic site if you want to implement decimal
arithmetic: https://speleotrove​.com​/decimal​/.

•	 Donald Knuth’s The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (Addison-Wesley Professional, 1997) contains lots of useful
information about decimal arithmetic and extended-precision arithme-
tic, though the text is generic and describes how to do this in MIXAL
assembly language rather than ARM assembly language.

T ES T YOURSEL F

Assume all variables are unsigned integers and are local in the current activa-
tion record.

1.	 Provide the code to compute x = y + z, assuming the following:

a.	 x, y, and z are 128-bit integers.

b.	 x and y are 96-bit integers, and z is a 64-bit integer.

c.	 x, y, and z are 48-bit integers.

2.	 Provide the code to compute x = y – z, assuming the following:

a.	 x, y, and z are 192-bit integers.

b.	 x, y, and z are 96-bit integers.

(continued)

https://speleotrove.com/decimal/

476 Chapter 8

3.	 Provide the code to compute x = y × z, assuming x, y, and z are 128-bit
unsigned integers.

4.	 Assuming x and y are unsigned 128-bit integers, convert the following to
assembly language:

a.	 if(x == y) then code

b.	 if(x < y) then code

c.	 if(x > y) then code

d.	 if(x != y) then code

5.	 Assuming x and y are signed 128-bit integers, convert the following to
assembly language:

a.	 x = –x

b.	 x = –y

6.	 Assuming x, y, and z are all 128-bit integer values, convert the following
to assembly language:

a.	 x = y & z (bitwise logical AND)

b.	 x = y | z (bitwise logical OR)

c.	 x = y ^ z (bitwise logical XOR)

d.	 x = ~y (bitwise logical NOT)

e.	 x = y << 1 (bitwise shift left)

f.	 x = y >> 1 (bitwise shift right)

7.	 Assuming x and y are signed 128-bit values, convert x = y >> 1 to assem-
bly language (bitwise arithmetic shift right).

8.	 Provide the assembly code to rotate the 128-bit value in x through the
carry flag (left by 1 bit).

This chapter discusses basic conversions
between various numeric formats, including

integer to decimal string, integer to hexadeci-
mal string, floating-point to string, hexadeci-

mal string to integer, decimal string to integer, and real
string to floating-point. It also covers error handling
for string-to-numeric conversions, as well as perfor-
mance enhancements. Finally, it introduces standard-
precision conversions (for 8-, 16-, 32-, and 64-bit integer
formats) and extended-precision conversions (for exam-
ple, 128-bit integer/string conversions).

In this chapter, you’ll begin to solve problems directly in assembly lan-
guage, rather than translating a solution from an HLL as you did in previ-
ous chapters. Some examples here first present code that solves a problem
with an HLL-based solution, then provide an optimized assembly language

9
N U M E R I C C O N V E R S I O N

478 Chapter 9

solution. This should help you learn to solve assembly language problems
without relying on HLLs, thereby producing higher-quality programs.

	 9.1	 Converting Numeric Strings to Values
Up to this point, this book has relied on the C stdlib to perform numeric
I/O (writing numeric data to the display and reading numeric data from
the user). However, the library doesn’t provide extended-precision numeric
I/O facilities (and even 64-bit numeric I/O is questionable; this book has
been using a GCC extension to printf() to do 64-bit numeric output).
Therefore, it’s time to break down how to do numeric I/O in assembly
language.

Because most OSes support only character or string input and output,
you won’t actually do numeric I/O. Instead, you’ll write functions that con-
vert between numeric values and strings, then do string I/O. The examples
in this section work with 64-bit (non-extended-precision) and 128-bit values,
but the algorithms are general and extend to any number of bits.

9.1.1  Numeric Values to Hexadecimal Strings
In this section, you’ll learn to convert numeric values (bytes, half words,
words, double words, and so on) to a character string containing the equiv-
alent hexadecimal characters for the value. To begin, you need a function
that converts a 4-bit nibble into a single ASCII character in the range '0' to
'9' or 'A' to 'F'. In an HLL such as C, you could write this as follows:

// Assume nibbleIn is in the range 0-15:

charOut = nibbleIn + '0';
if(charOut > '9') charOut = charOut + ('A' - '9' - 1);

You can convert any numeric value in the range 0 to 9 to its corre-
sponding ASCII character by ORing the numeric value with '0' (0x30).
Unfortunately, this maps numeric values in the range 0xA through 0xF
to 0x3A through 0x3F, so the C code checks to see if it produces a value
greater than 0x3A and adds 7 ('A' – '9' – 1) to produce a final character
code in the range 0x41 to 0x46 ('A' through 'F').

With a function that converts a nibble to the appropriate ASCII char-
acter, you can convert bytes, half words, and so on by taking all the nibbles
in the number and calling the function on each one to produce the cor-
responding output character. However, because ARM assembly language
programs generally deal with objects no smaller than a byte, it’s more
straightforward and efficient to write a function that converts a byte value
to two ASCII characters. Let’s call this function btoh (byte to hex).

Listing 9-1 shows a straightforward btoh implementation. This function
expects a single-byte value in X1 (ignoring bits 8 to 63 in X1) and returns
the two characters in bits 0 to 15 of X1. Listing 9-1 converts a C algorithm
into assembly language by using the techniques described in Chapter 7.

Numeric Conversion 479

// Listing9-1.S

#include "aoaa​.inc"

 proc btoh_simple
 and x1, x1, #0xFF // Ensure only 8 bits.
 mov x0, x1 // Save LO nibble.

 // Process the HO nibble:

 1 lsr x1, x1, #4 // Move HO nibble to LO posn.
 orr x1, x1, #'0' // Convert to 0x30 to 0x3F.
 cmp x1, #'9' // See if 0x3A to 0x3F.
 bls le9as
 add x1, x1, #7 // Convert 0x3A to 0x3F to
 le9as: // 'A' through 'F'.

 // Process the LO nibble:

 2 and x0, x0, #0xF // Strip away HO nibble.
 orr x0, x0, #'0' // Convert to 0x30 to 0x3F.
 cmp x0, #'9' // See if 0x3A to 0x3F.
 bls le9bs
 add x0, x0, #7 // Convert 0x3A to 0x3F to
 le9bs: // 'A' through 'F'.
 // Merge the 2 bytes into X1.

 orr x1, x1, x0, lsl #8
 ret
 endp btoh_simple

This function returns the character corresponding to the HO nibble
in bits 0 through 7 1 and the character corresponding to the LO nibble in
bits 8 through 15 2. This is because you’ll generally use this function to
build up character strings containing the converted hexadecimal value.
Character strings are inherently big-endian, with the most significant digit
appearing in the lowest memory address (so the number will be read from
left to right when you print the string). Returning the two characters
swapped in X1 allows you to store the two characters as a half-word value
into memory by using a single instruction.

You may be wondering why btoh_simple passes the value to convert in X1
rather than X0 (the standard “first argument” location). This is in anticipa-
tion of functions that will output the characters to a memory buffer (string).
For those string-based functions, X0 will contain the address of the buffer.

Because Listing 9-1 is basically hand-compiled C/C++ code, the perfor-
mance will be about the same as (or worse than) the code produced by an
optimizing C/C++ compiler processing the C code given earlier. To write
faster code in assembly language, you’ll first need to measure the perfor-
mance of two functions to determine which one is faster. While you can
do so with many software tools (performance analyzers, or profilers), I’ve
employed a simple solution: write a main program that calls the function

480 Chapter 9

many times, then use the Unix time command line utility to measure the
amount of time the program takes to run. Listing 9-2 shows such a pro-
gram, for example.

// Listing9-2.S

#include "aoaa​.inc"

Include both simple and other code here necessary for a working program.

 proc asmMain, public

 locals am // Preserve the X20 and
 dword saveX20 // X21 registers that
 dword saveX21 // this program uses
 byte stackspace, 64 // as loop-control
 endl am // variables.

 enter am.size // Create activation record.

 str x20, [fp, #saveX20] // Preserve nonvolatile
 str x21, [fp, #saveX21] // registers.

// Outer loop executes 10,000,000 times:

 ldr x20, =10000000
outer:

// Inner loop executes 256 times, once for each byte value.
// It just calls the btoh_*** function and ignores the
// return value. Do this to measure the speed of the
// function.

#define funcToCall btoh_x1 // btoh_x1, btoh2, btoh_nob, or btoh_simple

 mov x21, #256
inner: add x1, x20, #-1
 bl funcToCall
 adds x21, x21, #-1
 bne inner
 adds x20, x20, #-1
 bne outer

 mov x1, #0x9a // Value to test
 mov x6, x1 // Save for later.
 bl funcToCall

 // Print btoh_*** return result:

 and x2, x1, #0xff // Print HO nibble first.
 mstr x2, [sp, #8]
 lsr x3, x1, #8 // Print LO nibble second.

Numeric Conversion 481

 mstr x3, [sp, #16]
 mov x1, x6 // Retrieve save value.
 mstr x1, [sp]
 lea x0, fmtStr1
 bl printf
 ldr x21, [fp, #saveX21] // Restore nonvolatile
 ldr x20, [fp, #saveX20] // registers.
 leave
 ret

 endp asmMain

An advanced software engineer might find several faults with this tech-
nique for measuring the executing time of some code. However, it is simple,
is easy to understand and use, and doesn’t require any special software
tools. While the measurements it produces are not perfect, it’s good enough
for most purposes.

Here’s the build command and sample output (using the Unix time com-
mand to time the running of the program):

$./build Listing9-2
$ time ./Listing9-2
Calling Listing9-2:
Value=9a, as hex=9A
Listing9-2 terminated
./Listing9-2 3.49s user 0.01s system 98% cpu 3.542 total

On my Mac mini M1, this took about 3.5 seconds to run. (Obviously,
this will vary by system; for example, on a Raspberry Pi 3, it took about
37 seconds.)

As noted in Chapter 7, branches tend to run slower than straight-line
code. Listing 9-2 uses branches to handle cases when the converted char-
acter is '0' through '9' or 'A' through 'F'. I wrote a version using the csel
instruction to differentiate these two cases after ORing or adding '0' to the
nibble value. The code ran in 2.5 seconds (on a Mac mini M1). However,
this was achieved by not preserving the X1 and X2 registers. Saving X1
and X2 to memory and restoring them increased the execution time to
4.68 seconds.

You’ve just discovered a big time sink in ARM assembly code: accessing
memory is very slow (and the ldp/stp instructions are much slower than the
ldr/str instructions). This is why Arm defined nonvolatile registers, so you
don’t have to preserve certain working registers in memory. Nevertheless,
preserving volatile registers is sometimes worthwhile to ensure that pro-
grams are correct. Assembly language code can quickly become complex,
and having a function stomp on registers you forgot to save in your calling
code can lead to long debugging sessions. A fast program with defects is
never as good as a slower program that works properly.

When writing 32-bit ARM code for a Raspberry Pi 400 (for the second
volume of this series), I discovered that using a 256-element lookup table
(with each element containing the two characters corresponding to the

482 Chapter 9

hexadecimal value) was faster than the standard algorithm. When I tried
that approach in 64-bit ARM assembly, the runtime was 4.6 seconds. Once
again, memory accesses (at least on the Apple M1 CPU) are expensive. On
a different system, such as a Pi 3, 4, or 5, you will get different results.

Once you can convert a single byte to a pair of hexadecimal characters,
creating a string, output to the display is straightforward. We can call the
btoh (byte to hex) function for each byte in the number and store the corre-
sponding characters away in a string. With this function, you can write
btoStr (byte to string), hwtoStr (half word to string), wtoStr (word to string),
and dtoStr (double word to string) functions. This chapter expands several
of the lower-level functions (btoStr, hwtoStr, and wtoStr) and uses procedure
calls to the smaller functions for the larger-sized conversions (dtoStr). In
Chapter 13, I discuss macros that will provide another way to easily expand
these functions.

The approach this book takes is to try to write fast conversion code. If
you would prefer to save space rather than increase speed, see the following
“Reducing Code Size” box for details.

R EDUCING CODE SIZE

To reduce code size and make these functions easier to write, you can code
hwtoStr to call btoStr twice (and concatenate their output), code wtoStr to call
hwtoStr twice, code dtoStr to call wtoStr twice, and so on. This produces func-
tions with just a few instructions each, but the performance suffers. For example,
assuming you’ve written the functions in this fashion, consider a call to dtoStr:
it calls wtoStr twice; wtoStr calls hwtoStr twice, which calls btoStr twice (which
ultimately calls the btoh function). This means that dtoStr makes 22 total calls.
As most of these (except possibly btoh) are higher-level functions, they should
preserve any registers they modify. If each function saves a couple of registers,
this results in 28 writes to, and 28 reads from, memory to preserve and restore
the register values. As you saw with the btoh function, preserving registers can
be expensive.

A higher-performance alternative, albeit requiring more code, is to call
btoh (with no register preservation) as many times as necessary to convert each
of the data types to the appropriately sized string. The higher-level function can
preserve the registers exactly once and make multiple calls to btoh (such as the
high-performance btoh_x1 function that doesn’t preserve registers). Within that
function (for example, dtoStr), it is aware that btoh might wipe out X0 and X1;
the higher-level function preserves those registers, so its caller doesn’t have to,
and treats them as volatile across calls to btoh. This way, the registers are saved
and restored only once across the call to the higher-level function.

Another possible performance improvement is to ditch the btoh function
entirely and expand it inline in the higher-level functions. Before software engi-
neers recoil in horror from this suggestion, remember these are very low-level
functions that are generally part of a library rather than an application program

Numeric Conversion 483

(other than via linking in the appropriate library). For low-level library code,
optimization generally pays off handsomely. For those with doubts, consider
using macros (see Chapter 13), which give you the benefit of straight-line effi-
cient code along with the structured nature of procedure calls.

All the binary-to-hexadecimal string functions will accept two param-
eters: a value to convert in the X1 register, and a pointer to a string buffer to
hold the string result in X0. These functions will assume that the buffer
is sufficiently large to hold the string result: btoStr requires a 3-character
buffer, hwtoStr requires a 5-character buffer, wtoStr requires a 9-character
buffer, and dtoStr requires a 17-character buffer. Each byte in the value
requires two characters in the buffer. In addition to the character data, the
buffer must also include 1 byte for the zero-terminating byte. The caller is
responsible for ensuring that the buffer is large enough.

To implement these four hexadecimal-to-string functions, I’ll start by
writing four hexadecimal-to-buffer functions. There are two differences
between the *tobuf and *tostr functions (where the * indicates a substitu-
tion of b, hw, w, or d, as per regular expression syntax):

•	 The *tobuf functions do not preserve any registers. They modify the
values in X0 and X2.

•	 The *tobuf functions leave X0 pointing at the zero-terminating byte at
the end of the string, which is often useful; the *tostr functions pre-
serve X0’s value (pointing at the first character of the output buffer).

I will also take this opportunity to introduce another assembly lan-
guage feature: multiple entry points to a function. The btobuf, htobuf, wtobuf,
and dtobuf functions all contain common code. Listing 9-3 merges all these
functions into a single function (dtobuf) with separate entry points into the
code sequence for the other three functions.

// Listing9-3.S

 Usual header code snipped

// dtobuf
//
// Convert a dword to a string of 16 hexadecimal digits.
//
// Inputs:
// X0- Pointer to the buffer. Must have at least
// 17 bytes available.
// X1- Value to convert
//
// Outputs:
// X0- Points at zero-terminating byte at the end
// of the converted string
//

484 Chapter 9

// Note: This function does not preserve any registers.
// It is the caller's responsibility to preserve
// registers.
//
// Registers modified: X0, X2

 proc dtobuf

#define AtoF ('A'-'9'-1)

 // Process the HO nibble:

 1 lsr x2, x1, #60
 orr w2, w2, #'0' // Convert to 0x30 to 0x3F.
 cmp w2, #'9' // See if 0x3A to 0x3F.
 bls dec15 // Skip if 0 to 9.
 add w2, w2, #AtoF // If it was A to F
 dec15:
 strb w2, [x0], #1 // Store byte to memory.

 // Process nibble 14:

 lsr x2, x1, #56 // See comments for HO nibble.
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec14
 add w2, w2, #AtoF
dec14: strb w2, [x0], #1

 // Process nibble 13:

 lsr x2, x1, #52
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec13
 add w2, w2, #AtoF
dec13: strb w2, [x0], #1

 // Process nibble 12:

 lsr x2, x1, #48
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec12
 add w2, w2, #AtoF
dec12: strb w2, [x0], #1

 // Process nibble 11:

 lsr x2, x1, #44
 and x2, x2, 0xf

Numeric Conversion 485

 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec11
 add w2, w2, #AtoF
dec11: strb w2, [x0], #1

 // Process nibble 10:

 lsr x2, x1, #40
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec10
 add w2, w2, #AtoF
dec10: strb w2, [x0], #1

 // Process nibble 9:

 lsr x2, x1, #36
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec9
 add w2, w2, #AtoF
dec9: strb w2, [x0], #1

 // Process nibble 8:

 lsr x2, x1, #32
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec8
 add w2, w2, #AtoF
dec8: strb w2, [x0], #1

// Entry point for wtobuf
//
// wtobuf
//
// Convert a word to a string of 8 hexadecimal digits.
//
// Inputs:
// X0- Pointer to the buffer. Must have at least
// 9 bytes available.
// X1- Value to convert
//
// Outputs:
// X0- Points at zero-terminating byte at the end
// of the converted string
//
// Note: This function does not preserve any registers.
// It is the caller's responsibility to preserve
// registers.

486 Chapter 9

//
// Registers modified: X0, X2

2 wtobuf:
 // Process nibble 7:

 lsr x2, x1, #28 // See comments for nibble 15.
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec7
 add w2, w2, #AtoF
dec7: strb w2, [x0], #1

 // Process nibble 6:

 lsr x2, x1, #24
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec6
 add w2, w2, #AtoF
dec6: strb w2, [x0], #1

 // Process nibble 5:

 lsr x2, x1, #20
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec5
 add w2, w2, #AtoF
dec5: strb w2, [x0], #1

 // Process nibble 4:

 lsr x2, x1, #16
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec4
 add w2, w2, #AtoF
dec4: strb w2, [x0], #1

// Entry point for htobuf:
//
// htobuf
//
// Convert a half word to a string of 4 hexadecimal digits.
//
// Inputs:
// X0- Pointer to the buffer. Must have at least
// 5 bytes available.
// X1- Value to convert

Numeric Conversion 487

//
// Outputs:
// X0- Points at zero-terminating byte at the end
// of the converted string
//
// Note: This function does not preserve any registers.
// It is the caller's responsibility to preserve
// registers.
//
// Registers modified: X0, X2

3 htobuf:
 // Process nibble 3:

 lsr x2, x1, #12 // See comments for nibble 15.
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec3
 add w2, w2, #AtoF
dec3: strb w2, [x0], #1

 // Process nibble 2:

 lsr x2, x1, #8
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec2
 add w2, w2, #AtoF
dec2: strb w2, [x0], #1

// Entry point for btobuf:
//
// btobuf
//
// Convert a byte to a string of two hexadecimal digits.
//
// Inputs:
// X0- Pointer to the buffer. Must have at least
// 3 bytes available.
// X1- Value to convert
//
// Outputs:
// X0- Points at zero-terminating byte at the end
// of the converted string
//
// Note: This function does not preserve any registers.
// It is the caller's responsibility to preserve
// registers.
//
// Registers modified: X0, X2

488 Chapter 9

 // Process nibble 1:

4 btobuf:
 lsr x2, x1, #4 // See comments for nibble 15.
 and x2, x2, 0xf
 orr w2, w2, #'0'
 cmp w2, #'9'
 bls dec1
 add w2, w2, #AtoF
dec1: strb w2, [x0], #1

 // Process LO nibble:

 and x2, x1, 0xf
 orr x2, x2, #'0'
 cmp w2, #'9'
 bls dec0
 add w2, w2, #AtoF
dec0: strb w2, [x0], #1

 strb wzr, [x0] // Zero-terminate.
 ret
 endp dtobuf

The dtobuf function begins by processing the HO nibble (nibble 15) of
the dword 1. For performance reasons, this code uses an unrolled loop,
processing each nibble individually. Each nibble uses the standard algo-
rithm for converting a binary value to a hexadecimal character.

After this code processes the HO eight hex digits, you’ll notice an
entry point for the wtobuf function 2. Code calling wtobuf transfers control
into the middle of the dtobuf function (literally). This works because dtobuf
doesn’t push anything onto the stack or otherwise alter the environment
that would require special work by wtobuf on entry. Likewise, entry points
for htobuf 3 and btobuf 4 are at nibbles 3 and 1, respectively. By merging
these functions into a single section of code, you save all the code that
would be used for wtobuf, htobuf, and btobuf.

I made several failed attempts at optimizing this code. First, I tried
saving 8 bytes in a register and wrote the data to memory a dword at a
time rather than a byte at a time. This ran slower (on my Mac mini M1).
I also tried eliminating branches in the code by using csel instructions.
Surprisingly, that code ran slower too. I even tried using a ubfx instruction
(see Chapter 12), which still ran slower than the code with branches. I timed
these versions on a Mac mini M1 and a Raspberry Pi 400. While the tim-
ings on the two machines varied greatly, the relative performance of the
three algorithms remained the same (the branch version was always faster).
Sometimes, getting clever with different algorithms can hurt you. That’s why
you should always test the performance of your code (preferably on mul-
tiple architectures).

With the *tobuf functions out of the way, writing the *toStr functions
is relatively easy. The *toStr functions simply call the *tobuf functions and

Numeric Conversion 489

preserve the registers that the *tobuf functions modify. Listing 9-4 provides
the code for these functions (note that Listing9-4.S, from the online files,
also includes the code for the dtobuf function; to avoid redundancy, I’ve
removed that code from the listing).

// Listing9-4.S
//
// btoStr, htoStr, wtoStr, and dtoStr functions
// Also includes btobuf, htobuf, wtobuf, and
// dtobuf functions

 #include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 9-4"

 .data

// Buffer space used by main program

buffer: .space 256,0

 .code
 .extern printf

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

1 Insert the code for dtobuf here. See Listing 9-3.

// btoStr-
//
// Inputs:
//
// X0- Pointer to buffer that will hold the result
// (must allocate at least 3 bytes for buffer)
// X1- Value to print (in LO byte)
//
// Outputs:
//
// Buffer pointed at by X0 receives the two-character
// conversion of the value in X1 to a hexadecimal string.
//
// Preserves all registers.

 2 proc btoStr

 str x2, [sp, #-16]!
 stp x0, lr, [sp, #-16]!

490 Chapter 9

 bl btobuf

 // Restore registers and return:

 ldp x0, lr, [sp], #16
 ldr x2, [sp], #16
 ret
 endp btoStr

// htoStr
//
// Inputs:
//
// X0- Pointer to buffer that will hold the result
// (must allocate at least 5 bytes for buffer)
// X1- Value to print (in LO hword)
//
// Outputs:
//
// Buffer pointed at by X0 receives the four-character
// conversion of the hword value in X1 to a hexadecimal string.
//
// Preserves all registers

 3 proc htoStr

 str x2, [sp, #-16]!
 stp x0, lr, [sp, #-16]!

 bl htobuf

 // Restore registers and return:

 ldp x0, lr, [sp], #16
 ldr x2, [sp], #16
 ret
 endp htoStr

// wtoStr
//
// Inputs:
//
// X0- Pointer to buffer that will hold the result
// (must allocate at least 9 bytes for buffer)
// X1- Value to print (in LO word)
//
// Outputs:
//
// Buffer pointed at by X0 receives the eight-character
// conversion of the word value in X1 to a hexadecimal string.
//
// Preserves all registers

 4 proc wtoStr

Numeric Conversion 491

 str x2, [sp, #-16]!
 stp x0, lr, [sp, #-16]!

 bl wtobuf

 // Restore registers and return:

 ldp x0, lr, [sp], #16
 ldr x2, [sp], #16
 ret
 endp wtoStr

// dtoStr
//
// Inputs:
//
// X0- Pointer to buffer that will hold the result
// (must allocate at least 17 bytes for buffer)
// X1- Value to print
//
// Outputs:
//
// Buffer pointed at by X0 receives the 16-character
// conversion of the dword value in X1 to a hexadecimal string.
//
// Preserves all registers

 5 proc dtoStr

 str x2, [sp, #-16]!
 stp x0, lr, [sp, #-16]!

 bl dtobuf

 // Restore registers and return:

 ldp x0, lr, [sp], #16
 ldr x2, [sp], #16
 ret
 endp dtoStr

// Utility functions to print bytes, hwords, words, and dwords:

pbStr: wastr "Byte=%s\n"

 proc pByte

 locals pb
 qword pb.saveX0X1
 byte pb.buffer, 32
 byte pb.stkSpace, 64
 endl pb

 enter pb.size
 stp x0, x1, [fp, #pb.saveX0X1]

492 Chapter 9

 mov x1, x0
 add x0, fp, #pb.buffer // lea x0, stkSpace
 bl btoStr

 lea x0, pbStr
 add x1, fp, #pb.buffer
 mstr x1, [sp]
 bl printf

 ldp x0, x1, [fp, #pb.saveX0X1]
 leave
 endp pByte

phStr: wastr "Hword=%s\n"

 proc pHword

 locals ph
 qword ph.saveX0X1
 byte ph.buffer, 32
 byte ph.stkSpace, 64
 endl ph

 enter ph.size
 stp x0, x1, [fp, #ph.saveX0X1]

 mov x1, x0
 add x0, fp, #ph.buffer // lea x0, stkSpace
 bl htoStr

 lea x0, phStr
 add x1, fp, #ph.buffer
 mstr x1, [sp]
 bl printf

 ldp x0, x1, [fp, #ph.saveX0X1]
 leave
 endp pHword

pwStr: wastr "Word=%s\n"

 proc pWord

 locals pw
 qword pw.saveX0X1
 byte pw.buffer, 32
 byte pw.stkSpace, 64
 endl pw

 enter pw.size
 stp x0, x1, [fp, #pw.saveX0X1]

 mov x1, x0
 add x0, fp, #pw.buffer // lea x0, stkSpace
 bl wtoStr

Numeric Conversion 493

 lea x0, pwStr
 add x1, fp, #pw.buffer
 mstr x1, [sp]
 bl printf

 ldp x0, x1, [fp, #pw.saveX0X1]
 leave
 endp pWord

pdStr: wastr "Dword=%s\n"

 proc pDword

 locals pd
 qword pd.saveX0X1
 byte pd.buffer, 32
 byte pd.stkSpace, 64
 endl pd

 enter pd.size
 stp x0, x1, [fp, #pd.saveX0X1]

 mov x1, x0
 add x0, fp, #pd.buffer // lea x0, stkSpace
 bl dtoStr

 lea x0, pdStr
 add x1, fp, #pd.buffer
 mstr x1, [sp]
 bl printf

 ldp x0, x1, [fp, #pd.saveX0X1]
 leave
 endp pDword

// Here is the asmMain function:

 proc asmMain, public

 // Local storage:

 locals am
 byte stackspace, 64
 endl am

 enter am.size // Create activation record.

 ldr x0, =0x0123456789abcdef
 bl pByte
 bl pHword
 bl pWord
 bl pDword

 leave

494 Chapter 9

 ret

 endp asmMain

As noted, I’ve pulled the dtobuf function out of this listing; insert that
code 1. The btoStr function 2 saves the X0, X2, and LR registers on the
stack (the registers that will be modified by calls to the *tobuf functions),
calls the btobuf function to write the two hex digits to the buffer pointed
at by X0, then restores the registers and returns. The code does largely the
same for htoStr 3, wtoStr 4, and dtoStr 5, the only difference being the
conversion function they call.

Here’s the build command and sample output for the program in
Listing 9-4:

$./build Listing9-4
$./Listing9-4
Calling Listing9-4:
Byte=EF
Hword=CDEF
Word=89ABCDEF
Dword=0123456789ABCDEF
Listing9-4 terminated

As the assembly code appearing in this book calls C/C++ standard
library functions for I/O, these binary-to-hexadecimal-string functions will
all produce zero-terminated C-compatible strings. They are easy enough
to modify to produce other string formats, if need be. See Chapter 14 for
more on string functions.

9.1.2  Extended-Precision Hexadecimal Values to Strings
Extended-precision hexadecimal-to-string conversion is easy: it’s simply an
extension of the normal hexadecimal conversion routines from the previ-
ous section. For example, Listing 9-5 is a 128-bit hexadecimal conversion
function, qtoStr, which expects a pointer to a 128-bit value in X2:X1 and
a pointer to a buffer in X0. Listing9-5.S is largely based on Listing9-4.S; to
avoid redundancy, I’ve included just the qtoStr function here.

// Listing9-5.S
//
// qtoStr
//
// Inputs:
//
// X0- Pointer to buffer that will hold the result
// (must allocate at least 33 bytes for buffer)
// X2:X1- Value to print
//
// Outputs:
//

Numeric Conversion 495

// Buffer pointed at by X0 receives the 32-character
// conversion of the dword value in X2:X1 to a hexadecimal string.
//
// Preserves all registers

 proc qtoStr

 str x2, [sp, #-16]!
 stp x0, lr, [sp, #-16]!
 str x1, [sp, #-16]! // Save for later.

 mov x1, x2 // Convert HO dword first.
 bl dtobuf
 ldr x1, [sp], #16 // Restore X1 value.
 bl dtobuf

 // Restore registers and return:

 ldp x0, lr, [sp], #16
 ld4 x2, [sp], #16
 ret
 endp qtoStr

The function in Listing 9-5 calls dtobuf twice to convert the 128-bit
qword value to a string by converting first the HO dword, then the LO
dword, and concatenating their results. To extend this conversion to any
number of bytes, simply convert the HO bytes down to the LO bytes of the
large object.

9.1.3  Unsigned Decimal Values to Strings
Decimal output is a little more complicated than hexadecimal output
because, unlike for hexadecimal values, the HO bits of a binary number
affect the LO digits of the decimal representation. Therefore, you must cre-
ate the decimal representation for a binary number by extracting one deci-
mal digit at a time from the number.

The most common solution for unsigned decimal output is to succes-
sively divide the value by 10 until the result becomes 0. The remainder after
the first division is a value in the range 0 to 9, which corresponds to the LO
digit of the decimal number. Successive divisions by 10 (and their corre-
sponding remainder) extract successive digits from the number.

Iterative solutions to this problem generally allocate storage for a
string of characters large enough to hold the entire number. The code then
extracts the decimal digits in a loop and places them in the string one by
one. At the end of the conversion process, the routine prints the characters
in the string in reverse order (remember, the divide algorithm extracts the
LO digits first and the HO digits last, the opposite of the way you need to
print them).

This section employs a recursive solution because it is a little more elegant.
This solution begins by dividing the value by 10 and saving the remainder
in a local variable. If the quotient is not 0, the routine recursively calls

496 Chapter 9

itself to output any leading digits first. On return from the recursive call
(which outputs all the leading digits), the recursive algorithm outputs the
digit associated with the remainder to complete the operation. For exam-
ple, here’s how the operation works when printing the decimal value 789:

	 1.	Divide 789 by 10. The quotient is 78, and the remainder is 9.

	 2.	Save the remainder (9) in a local variable and recursively call the rou-
tine with the quotient.

	 3.	Recursive entry 1: divide 78 by 10. The quotient is 7, and the remain-
der is 8.

	 4.	Save the remainder (8) in a local variable and recursively call the rou-
tine with the quotient.

	 5.	Recursive entry 2: divide 7 by 10. The quotient is 0, and the remain-
der is 7.

	 6.	Save the remainder (7) in a local variable. Because the quotient is 0,
don’t call the routine recursively.

	 7.	Output the remainder value saved in the local variable (7). Return to
the caller (recursive entry 1).

	 8.	Return to recursive entry 1: output the remainder value saved in the
local variable in recursive entry 1 (8). Return to the caller (original
invocation of the procedure).

	 9.	Original invocation: output the remainder value saved in the local vari-
able in the original call (9). Return to the original caller of the output
routine.

Listing 9-6 provides an implementation of this recursive algorithm for
64-bit unsigned integers.

// Listing9-6.S
//
// u64toBuf function

 #include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 9-6"
fmtStr1: .asciz "Value(%llu) = string(%s)\n"

 .align 3
qwordVal: .dword 0x1234567890abcdef
 .dword 0xfedcba0987654321

 .data
buffer: .space 256,0

 .code
 .extern printf

// Return program title to C++ program:

Numeric Conversion 497

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// u64ToStr
//
// Converts a 64-bit unsigned integer to a string
//
// Inputs:
// X0- Pointer to buffer to receive string
// X1- Unsigned 64-bit integer to convert
//
// Outputs:
// Buffer- Receives the zero-terminated string
//
// Buffer must have at least 21 bytes allocated for it.
// This function preserves all registers.

 1 proc u64ToStr
 stp x0, x1, [sp, #-16]!
 stp x2, x3, [sp, #-16]!
 str lr, [sp, #-16]!

 bl u64ToBuf

 ldr lr, [sp], #16
 ldp x2, x3, [sp], #16
 ldp x0, x1, [sp], #16
 ret
 endp u64ToStr

// u64ToBuf
//
// Converts a 64-bit unsigned integer to a string
//
// Inputs:
// X0- Pointer to buffer to receive string
// X1- Unsigned 64-bit integer to convert
//
// Outputs:
// X0- Points at zero-terminating byte
// Buffer- Receives the zero-terminated string
//
// Buffer must have at least 21 bytes allocated for it.
//
// Caller must preserve X0, X1, X2, and X3!

 2 proc u64ToBuf
 cmp x1, xzr // See if X1 is 0.
 bne u64ToBufRec

 // Special case for zero, just write
 // "0" to the buffer. Leave X0 pointing

498 Chapter 9

 // at the zero-terminating byte.

 mov w1, #'0'
 strh w1, [x0], #1 // Also emits zero byte
 ret
 endp u64ToBuf

// u64ToBufRec is the recursive version that handles
// nonzero values:

 3 proc u64ToBufRec
 stp x2, lr, [sp, #-16]! // Preserve remainder.

 // Divide X1 by 10 and save quotient and remainder:

 4 mov x2, #10
 udiv x3, x1, x2 // X3 = quotient
 msub x2, x3, x2, x1 // X2 = remainder

 // Make recursive call if quotient is not 0:

 cmp x3, xzr
 beq allDone

 5 mov x1, x3 // Set up for call.
 bl u64ToBufRec

 // When this function has processed all the
 // digits, write them to the buffer. Also
 // write a zero-terminating byte, in case
 // this is the last digit to output.

6 allDone: orr w2, w2, #'0' // Convert to char.
 strh w2, [x0], #1 // Bump pointer after store.
 7 ldp x2, lr, [sp], #16
 ret
 endp u64ToBufRec

// Here is the "asmMain" function.

 proc asmMain, public

 enter 64 // Reserve space on stack.

// Test u64ToBuf:

 mov x1, 0xFFFF
 movk x1, 0xFFFF, lsl #16
 movk x1, 0xFFFF, lsl #32
 movk x1, 0xFFFF, lsl #48
 lea x0, buffer
 bl u64ToStr

 lea x2, buffer

Numeric Conversion 499

 mstr x2, [sp, #8]
 mov x1, 0xFFFF
 movk x1, 0xFFFF, lsl #16
 movk x1, 0xFFFF, lsl #32
 movk x1, 0xFFFF, lsl #48
 mstr x1, [sp]
 lea x0, fmtStr1
 bl printf

 leave
 ret
 endp asmMain

The u64toStr function 1 is a facade that preserves the registers while
calling the u64ToBuf procedure. The u64ToBuf function 2 handles the special
case when X1 contains 0 (the recursive code terminates when the result
is 0). If X1 is 0 upon entry, this code immediately writes a '0' character to
the output buffer, increments X0, and returns. If X1 is nonzero, it transfers
control to the recursive u64toBufRec function 3 to process the value. For
performance reasons, u64ToBufRec preserves only X2 (which contains the
remainder value on recursive calls) and LR.

The recursive function computes the quotient and remainder 4. The
quotient is left in X3, and the remainder is in X2. If the quotient was non-
zero, there are still more HO digits to process: copy the quotient into X1
and make the recursive call to u64toBufRec 5. On the return from the recur-
sive call 6 (or if the recursive call was skipped), all HO digits have been
emitted to the buffer, so convert the current digit to a character and add
it to the end of the buffer. Note that the post-increment addressing mode
automatically increments X0 to point at the zero-terminated byte emitted
by the strh instruction. The code restores the value in X2 7, in the event
that this was a recursive call.

Here’s the build command and sample output for Listing 9-6:

$./build Listing9-6
$./Listing9-6
Calling Listing9-6:
Value(18446744073709551615) = string(18446744073709551615)
Listing9-6 terminated

Unlike hexadecimal output, there’s no need to provide a byte-size,
hword-size, or word-size numeric-to-decimal-string conversion function.
Simply zero-extending the smaller values to 64 bits is sufficient. Unlike the
hexadecimal conversions, no leading zeros are emitted by the u64toStr func-
tion, so the output is the same for all sizes of variables (64 bits and smaller).

This code has several opportunities for optimization. Since decimal-to-
string conversions are common (most program output uses this function)
and the algorithm is not as fast as hexadecimal conversion, optimizing this
code is probably worthwhile.

It’s easy enough to get rid of the recursion and do an iterative version
of u64toStr. This eliminates the need to preserve the registers and return

500 Chapter 9

address on multiple recursive calls (typically, one recursive call for each
digit converted) and having to build the activation record on each call.
Listing 9-7 takes this one step further, unraveling the loop (up to 20 itera-
tions, one for each possible digit).

// Listing9-7.S
//
// u64toStr function (nonrecursive, straight-line
// code version)

 #include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 9-7"
fmtStr1: .asciz "low=%s, "
fmtStr2: .asciz "hi=%s\n"

loData: .dword 0, 1, 10, 100, 1000, 10000, 100000
 .dword 1000000, 10000000, 100000000
 .dword 1000000000, 10000000000, 100000000000
 .dword 1000000000000, 10000000000000
 .dword 100000000000000, 1000000000000000
 .dword 10000000000000000, 100000000000000000
 .dword 1000000000000000000, 10000000000000000000
 .equ dataCnt, .-loData

hiData: .dword 9, 9, 99, 999, 9999, 99999, 999999
 .dword 9999999, 99999999, 999999999
 .dword 9999999999, 99999999999, 999999999999
 .dword 9999999999999, 99999999999999
 .dword 999999999999999, 9999999999999999
 .dword 99999999999999999, 999999999999999999
 .dword 9999999999999999999
 .dword -1

 .data
buffer: .space 256, 0

 .code
 .extern printf

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// u64ToBuf
//
// Converts a 64-bit unsigned integer to a string
//
// Inputs:
// X0- Pointer to buffer to receive string
// X1- Unsigned 64-bit integer to convert

Numeric Conversion 501

//
// Outputs:
// Buffer- Receives the zero-terminated string
// X0- Points at zero-terminating byte in string
//
// Buffer must have at least 21 bytes allocated for it.
// Note: Caller is responsible for preserving X0-X7!

 1 proc u64ToBuf

 2 mov x4, #10
 mov x5, xzr
 mov x6, xzr
 mov x7, xzr

 // Handle the LO digit here:

 3 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8
 cmp x2, #0
 beq allDone1

 // Handle the 10's digit here:

 4 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8
 cmp x1, #0
 beq allDone2

 // Handle the 100's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8
 cmp x2, #0
 beq allDone3

 // Handle the 1000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8
 cmp x1, #0
 beq allDone4

 // Handle the 10,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder

502 Chapter 9

 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8
 cmp x2, #0
 beq allDone5

 // Handle the 100,000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8
 cmp x1, #0
 beq allDone6

 // Handle the 1,000,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x6, x3, #'0'
 cmp x2, #0
 beq allDone7

 // Handle the 10,000,000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x1, #0
 beq allDone8

 // Handle the 100,000,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x2, #0
 beq allDone9

 // Handle the 1,000,000,000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x1, #0
 beq allDone10

 // Handle the 10,000,000,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder

Numeric Conversion 503

 orr x3, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x2, #0
 beq allDone11

 // Handle the 100,000,000,000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x1, #0
 beq allDone12

 // Handle the 1,000,000,000,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x2, #0
 beq allDone13

 // Handle the 10,000,000,000,000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x1, #0
 beq allDone14

 // Handle the 100,000,000,000,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x7, x3, #'0'
 orr x6, x3, x6, lsl #8
 cmp x2, #0
 beq allDone15

 // Handle the 1,000,000,000,000,000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x7, x3, x7, lsl #8
 cmp x1, #0
 beq allDone16

 // Handle the 10,000,000,000,000,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder

504 Chapter 9

 orr x3, x3, #'0'
 orr x7, x3, x7, lsl #8
 cmp x2, #0
 beq allDone17

 // Handle the 100,000,000,000,000,000's digit here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x7, x3, x7, lsl #8
 cmp x1, #0
 beq allDone18

 // Handle the 1,000,000,000,000,000,000's digit here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x7, x3, x7, lsl #8
 cmp x2, #0
 beq allDone19

 5 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x7, x3, x7, lsl #8

allDone20: str x7, [x0], #6
 str x6, [x0], #8
 str x5, [x0], #7
 ret

 // When this function has processed all the
 // digits, write them to the buffer. Also
 // write a zero-terminating byte, in case
 // this is the last digit to output.

6 allDone1: strh w5, [x0], #1
 ret

 allDone2: strh w5, [x0], #2
 strb wzr, [x0]
 ret

 allDone3: str w5, [x0], #3
 ret

 allDone4: str w5, [x0], #4
 strb wzr, [x0]
 ret

 allDone5: str x5, [x0], #4
 lsr x5, x5, #32

Numeric Conversion 505

 strh w5, [x0], #1
 ret

 allDone6: str w5, [x0], #4
 lsr x5, x5, #32
 strh w5, [x0], #2
 strb wzr, [x0]
 ret

7 allDone7: strb w6, [x0], #1
 str x5, [x0], #7
 ret

 allDone8: strh w6, [x0], #2
 str x5, [x0], #7 // Writes an extra garbage byte
 ret

 allDone9: str w6, [x0], #3
 str x5, [x0], #7
 ret

 allDone10:
 str w6, [x0], #4
 str x5, [x0], #7
 ret

 allDone11:
 str x6, [x0], #5
 str x5, [x0], #7
 ret

 allDone12:
 str x6, [x0], #6
 str x5, [x0], #7
 ret

 allDone13:
 str x6, [x0], #7
 str x5, [x0], #7
 ret

 allDone14:
 str x6, [x0], #8
 str x5, [x0], #7
 ret

8 allDone15:
 strb w7, [x0], #1
 str x6, [x0], #8
 str x5, [x0], #7
 ret

 allDone16:
 strh w7, [x0], #2
 str x6, [x0], #8

506 Chapter 9

 str x5, [x0], #7
 ret

 allDone17:
 str w7, [x0], #3
 str x6, [x0], #8
 str x5, [x0], #7
 ret

 allDone18:
 str w7, [x0], #4
 str x6, [x0], #8
 str x5, [x0], #7
 ret

 allDone19:
 str x7, [x0], #5
 str x6, [x0], #8
 str x5, [x0], #7
 ret
 endp u64ToBuf

// u64ToStr
//
// Version of u64ToBuf that preserves the registers

 9 proc u64ToStr
 stp x0, x1, [sp, #-16]! // Preserve registers.
 stp x2, x3, [sp, #-16]!
 stp x4, x5, [sp, #-16]!
 stp x6, x7, [sp, #-16]!
 str lr, [sp, #-16]!
 bl u64ToBuf
 ldr lr, [sp], #16
 ldp x6, x7, [sp], #16 // Restore registers.
 ldp x4, x5, [sp], #16
 ldp x2, x3, [sp], #16
 ldp x0, x1, [sp], #16
 ret
 endp u64ToStr

// Here is the asmMain function:

 proc asmMain, public

 locals am
 qword am.x20_x21
 dword am.x22
 byte stk, 64
 endl am

 enter am.size // Create act rec.

Numeric Conversion 507

 // Preserve nonvolatile registers:

 stp x20, x21, [fp, #am.x20_x21]
 str x22, [fp, #am.x22]

 lea x20, loData
 lea x21, hiData
 mov x22, xzr
 loop:
 lea x0, buffer
 ldr x1, [x20, x22, lsl #3]
 bl u64ToStr

 lea x0, fmtStr1
 lea x1, buffer
 mstr x1, [sp]
 bl printf

 lea x0, buffer
 ldr x1, [x21, x22, lsl #3]
 bl u64ToStr

 lea x0, fmtStr2
 lea x1, buffer
 mstr x1, [sp]
 bl printf

 add x22, x22, #1
 cmp x22, #(dataCnt / 8)
 blo loop

 ldr x22, [fp, #am.x22]
 ldp x20, x21, [fp, #am.x20_x21]

 leave
 endp asmMain

The u64ToBuf function 1 is a variant of u64ToStr that doesn’t preserve
any registers. It stomps on X0 through X7, and the caller is responsible for
saving any registers it needs preserved.

This function initializes X4 with the constant 10 2, because each digit
conversion will divide and multiply by this constant, which must be in a
register. Reserving X4 for this constant spares the code from having to
reload the constant all the time. This code zeros out X5, X6, and X7, which
will hold the characters of the converted string; this also initializes the
zero-terminating byte (which can be in various locations in these registers,
depending on the number of output digits).

The function converts the binary number to a string of digits by using
the same basic “divide and remainder” algorithm as did the program in
Listing 9-6 3. The function divides the value by 10; the remainder is a
value in the range 0 to 9 that the function converts to the corresponding
ASCII character. The code shifts the converted digit into its final output

508 Chapter 9

position in the X5, X6, or X7 register. Digits 1 through 6, the HO digits,
wind up in X5; digits 7 through 14 in X6; and digits 15 through 20 in X7.
Zero bytes fill in all the unused digit positions. For example, if the number
has only three digits, X6 and X7 will contain 0, and bits 24 through 63 in
X5 will all contain 0.

A separate sequence of divide/remainder instructions is used for each
possible output digit in the conversion (hence the name expanded/straight-
line code) 4. The sequence is roughly the same for each digit conversion,
though two variants alternate between the value in X1 and X2, as the
quotient from the division becomes the value to divide in the next step.
Whenever the quotient becomes 0, the conversion is complete, and control
transfers to a different location to write the converted digits to the buffer.
Only a single branch in the function will be taken, as these branches fall
through to the next instruction sequence until the conversion is complete.
Additionally, these digit conversion sequences may place the converted digit
into a different output register based on the digit’s final position.

If the code falls all the way through to digit 20, there is no test for a
0 result; the quotient will always be 0 at that point, so the function simply
stores away the digits into the buffer and returns 5.

If the number has six digits or fewer, the function writes the characters
in X5 to the buffer 6. X5 will always contain the LO digits of the number.
By placing a maximum of six characters in X5, the HO 2 bytes of X5 will
always be 0 (and provide the zero-terminating byte for larger strings). For
numbers with fewer than six digits, the code must explicitly write a zero-
terminating byte to the buffer. For values with 7 to 14 digits, the function
writes out registers X6 and X5 (in that order) to the buffer 7. X5 provides
the zero-terminating byte, so the code doesn’t need to explicitly write any
0 bytes. For values with 15 or more digits, the code writes out the data in
registers X7, X6, and X5 (X5 provides the zero-terminating byte) 8.

The actual u64ToStr function 9 is a short facade that preserves all the
register values across a call to u64ToBuf. By breaking u64ToStr into these two
functions, it is possible to call u64ToBuf directly if you want to leave X0 point-
ing at the end of the string (though you must preserve X1 through X7 if
necessary). Also, putting the register preservation code in u64ToStr allows
the u64ToBuf code to avoid restoring registers before all the ret instructions
(or avoid yet another branch to code that handles restoring the registers).

Here’s the build command and sample output from Listing 9-7:

$./build Listing9-7
$ time ./Listing9-7
Calling Listing9-7:
low=0, hi=9
low=1, hi=9
low=10, hi=99
low=100, hi=999
low=1000, hi=9999
low=1000, hi=9999
low=100000, hi=999999
low=1000000, hi=9999999

Numeric Conversion 509

low=10000000, hi=99999999
low=100000000, hi=999999999
low=1000000000, hi=9999999999
low=10000000000, hi=99999999999
low=100000000000, hi=999999999999
low=1000000000000, hi=9999999999999
low=10000000000000, hi=99999999999999
low=100000000000000, hi=999999999999999
low=1000000000000000, hi=9999999999999999
low=10000000000000000, hi=99999999999999999
low=100000000000000000, hi=999999999999999999
low=1000000000000000000, hi=9999999999999999999
low=10000000000000000000, hi=18446744073709551615
Listing9-7 terminated

I modified both versions of u64toStr in order to time their execution.
For the recursive version, I got the following timing on my Mac mini:

Listing9-7a 404.58s user 0.42s system 99% cpu 6:46.25 total

For the straight-line code, the runtime was as follows:

Listing9-7a 173.60s user 0.15s system 99% cpu 2:53.78 total

The latter code ran about 2.3 times faster than the recursive version, a big win.
I also created a version of u64ToStr that first counted the number of out-

put digits (using a binary search), then branched to the appropriate code
to convert exactly that many digits. Alas, the code ran slightly slower than
Listing 9-7. I also tried a variant that emitted the HO digits first (dividing by
1e+19, the successively lower values by 10). It was a little faster than the digit
count version, and a little slower than Listing 9-7. I’ve included the source
code for both experiments in the online files for your perusal.

9.1.4  Signed Integer Values to Strings
To convert a signed integer value to a string, first check whether the num-
ber is negative. If it is, emit a hyphen (-) character and negate the value,
then call the u64toStr function to finish the job. Listing 9-8 shows the rel-
evant code.

// Listing9-8.S

Code taken from Listing 9-7 goes here.

// i64ToStr
//
// Converts a signed 64-bit integer to a string
// If the number is negative, this function will
// print a '-' character followed by the conversion
// of the absolute value of the number.
//

510 Chapter 9

// Inputs:
//
// X0- Pointer to buffer to hold the result.
// Buffer should be capable of receiving
// as many as 22 bytes (including zero-
// terminating byte).
// X1- Signed 64-bit integer to convert
//
// Outputs:
//
// Buffer- Contains the converted string

 proc i64ToStr

 locals i64
 dword i64.x0
 byte i64.stk, 32
 endl i64

 enter i64.size

 // Need to preserve X1 in
 // case this code negates it.

 str x1, [fp, #i64.x0]

 cmp x1, #0
 bpl isPositive

 mov w1, #'-' // Emit '-'
 strb w1, [x0], #1

 // Negate X0 and convert
 // unsigned value to integer:

 ldr x1, [fp, #i64.x0]
 neg x1, x1

isPositive: bl u64ToStr
 ldr x1, [fp, #i64.x0]
 leave
 endp i64ToStr

Code taken from Listing 9-7 goes here.

Listing 9-8 shows only the i64ToStr function (the rest of the program is
taken from Listing 9-7). The full source code is available online.

9.1.5  Extended-Precision Unsigned Integers to Strings
The only operation in the entire string-conversion algorithm that requires
extended-precision arithmetic is the divide-by-10 operation. Listing 9-9
implements a 128-bit decimal output routine utilizing this technique.

Numeric Conversion 511

I modified the div128 algorithm from Chapter 8 to do an explicit divide-
by-10 operation (speeding div128 up a little) and modified the recursive con-
version routine from Listing 9-6 to perform the conversion.

// Listing9-9.S
//
// u128toStr function

 #include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 9-9"
fmtStr1: .asciz "Value = %s\n"

qdata: .qword 1
 .qword 21
 .qword 302
 .qword 4003
 .qword 50004
 .qword 600005
 .qword 7000006
 .qword 80000007
 .qword 900000008
 .qword 1000000009
 .qword 11000000010
 .qword 120000000011
 .qword 1300000000012
 .qword 14000000000013
 .qword 150000000000014
 .qword 1600000000000015
 .qword 17000000000000016
 .qword 180000000000000017
 .qword 1900000000000000018
 .qword 20000000000000000019
 .qword 210000000000000000020
 .qword 2200000000000000000021
 .qword 23000000000000000000022
 .qword 240000000000000000000023
 .qword 2500000000000000000000024
 .qword 26000000000000000000000025
 .qword 270000000000000000000000026
 .qword 2800000000000000000000000027
 .qword 29000000000000000000000000028
 .qword 300000000000000000000000000029
 .qword 3100000000000000000000000000030
 .qword 32000000000000000000000000000031
 .qword 330000000000000000000000000000032
 .qword 3400000000000000000000000000000033
 .qword 35000000000000000000000000000000034
 .qword 360000000000000000000000000000000035
 .qword 3700000000000000000000000000000000036
 .qword 38000000000000000000000000000000000037
 .qword 300000000000000000000000000000000000038
 .qword 340282366920938463463374607431768211455
qcnt = (.-qdata)/16

512 Chapter 9

 .data
buffer: .space 256,0

 .code
 .extern printf

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// div10
//
// This procedure does a general 128-bit / 10 division operation
// using the following algorithm (assume all variables except
// Remainder are 128-bit objects; Remainder is 64 bits):
//
// Quotient := Dividend;
// Remainder := 0;
// for i := 1 to NumberBits do
//
// Remainder:Quotient := Remainder:Quotient SHL 1;
// if Remainder >= 10 then
//
// Remainder := Remainder - 10;
// Quotient := Quotient + 1;
//
// endif
// endfor
//
// Data passed:
//
// 128-bit dividend in X6:X5
//
// Data returned:
//
// 128-bit quotient in X6:X5
// 64-bit remainder in X4
//
// Modifies X1

 1 proc div10

#define remainder x4
#define dividendL x5
#define dividendH x6
#define quotientL dividendL
#define quotientH dividendH

// Initialize remainder with 0:

 mov remainder, #0

Numeric Conversion 513

// Copy the dividend to local storage:

 mov w1, #128 // Count off bits in W0.

// Compute Remainder:Quotient := Remainder:Quotient LSL 1
//
// Note: adds x, x, x is equivalent to lsl x, x, #1
// adcs x, x, x is equivalent to rol x, x, #1
// (if rol existed)
//
// The following four instructions perform a 256-bit
// extended-precision shift (left) dividend through
// remainder.

repeatLp: adds dividendL, dividendL, dividendL
 adcs dividendH, dividendH, dividendH
 adc remainder, remainder, remainder

// Do a comparison to see if the remainder
// is greater than or equal to 10:

 cmp remainder, #10
 blo notGE

// Remainder := Remainder - Divisor

isGE: sub remainder, remainder, #10

// Quotient := Quotient + 1

 adds quotientL, quotientL, #1
 adc quotientH, quotientH, xzr

// Repeat for 128 bits:

notGE: subs w1, w1, #1
 bne repeatLp

 ret // Return to caller.
 endp div10

// u128toStr:
//
// Converts a 128-bit unsigned integer to a string
//
// Inputs:
// X0- Pointer to buffer to receive string
// X1- Points at the unsigned 128-bit integer to convert
//
// Outputs:
// Buffer- Receives the zero-terminated string
//
// Buffer must have at least 40 bytes allocated for it.

514 Chapter 9

 2 proc u128toStr
 stp x0, x1, [sp, #-16]!
 stp x4, x5, [sp, #-16]!
 stp x6, lr, [sp, #-16]!

 ldp x5, x6, [x1] // Test value for 0.
 orr x4, x5, x6
 cmp x4, xzr // Z = 1 if X6:X5 is 0.
 bne doRec128

 // Special case for zero, just write
 // "0" to the buffer

 mov w4, #'0'
 strb w4, [x0], #1
 b.al allDone2

doRec128: bl u128toStrRec // X6:X5 contain value.

 // Restore registers:

allDone2: strb wzr, [x0] // Zero-terminating byte
 ldp x6, lr, [sp], #16
 ldp x4, x5, [sp], #16
 ldp x0, x1, [sp], #16
 ret
 endp u128toStr

// u128toStrRec is the recursive version that handles
// nonzero values.
//
// Value to convert is passed in X6:X5.

 3 proc u128toStrRec
 stp x4, lr, [sp, #-16]!

 // Convert LO digit to a character:

 bl div10 // Quotient -> X6:X5, Rem -> W4

 // Make recursive call if quotient is not 0:

 orr lr, x5, x6 // Use LR as a temporary.
 cmp lr, #0
 beq allDone

 // New value is quotient (X6:X5) from above:

 bl u128toStrRec

 // When this function has processed all the
 // digits, write them to the buffer:

allDone: orr w4, w4, #'0' // Convert to char.
 strb w4, [x0], #1 // Bump pointer after store.

Numeric Conversion 515

 // Restore state and return:

 ldp x4, lr, [sp], #16 // Restore prev char.
 ret
 endp u128toStrRec

// Here is the asmMain function.

 proc asmMain, public

 locals am
 dword am.x2021
 byte stk, 64
 endl am

 enter am.size // Reserve space on stack.

 stp x20, x21, [fp, #am.x2021]

 lea x20, qdata
 mov x21, #qcnt
loop: mov x1, x20
 lea x0, buffer
 bl u128toStr

 lea x1, buffer
 mstr x1, [sp]
 lea x0, fmtStr1
 bl printf

 add x20, x20, #16 // Next value to convert
 subs x21, x21, #1
 bne loop

 ldp x20, x21, [fp, #am.x2021]
 leave
 ret
 endp asmMain

The code includes an optimized version of the 128-bit division function
that divides a number by 10 1. This is followed by the nonrecursive entry
point for u128toStr, which handles 0 as a special case and calls the recursive
version for all other values 2, and the recursive code for u128toStr 3. As
these functions are nearly identical to the recursive 64-bit string output
functions, refer to that code (in Listing 9-6) for more details.

One issue with the u128toStr function is that it is much slower than
the other numeric-to-string functions. This is all due to the performance
of the div10 subroutine. Because the 128-bit divide-by-10 algorithm is so
slow, I won’t bother improving the performance of the u128toStr conversion
function. Unless you can come up with a very high-performance div10 sub-
routine (perhaps using multiplication by a reciprocal; see section 9.6, “For
More Information,” on page 603), trying to optimize u128toStr is probably

516 Chapter 9

a waste of time. Fortunately, this function likely won’t be called often, so its
performance won’t matter much.

Here’s the build command and sample output from Listing 9-9:

$./build Listing9-9
$./Listing9-9
Calling Listing9-9:
Value = 1
Value = 21
Value = 302
Value = 4003
Value = 50004
Value = 600005
Value = 7000006
Value = 80000007
Value = 900000008
Value = 1000000009
Value = 11000000010
Value = 120000000011
Value = 1300000000012
Value = 14000000000013
Value = 150000000000014
Value = 1600000000000015
Value = 17000000000000016
Value = 180000000000000017
Value = 1900000000000000018
Value = 20000000000000000019
Value = 210000000000000000020
Value = 2200000000000000000021
Value = 23000000000000000000022
Value = 240000000000000000000023
Value = 2500000000000000000000024
Value = 26000000000000000000000025
Value = 270000000000000000000000026
Value = 2800000000000000000000000027
Value = 29000000000000000000000000028
Value = 300000000000000000000000000029
Value = 3100000000000000000000000000030
Value = 32000000000000000000000000000031
Value = 330000000000000000000000000000032
Value = 3400000000000000000000000000000033
Value = 35000000000000000000000000000000034
Value = 360000000000000000000000000000000035
Value = 3700000000000000000000000000000000036
Value = 38000000000000000000000000000000000037
Value = 300000000000000000000000000000000000038
Value = 340282366920938463463374607431768211455
Listing9-9 terminated

I will leave it to you to create a 128-bit signed-integer conversion func-
tion, since the code is almost identical to i64toStr (see Listing 9-8); you just
have to supply 128-bit negation and comparison operations. As a hint, for
the comparison, just check the HO dword to see if the sign bit is set.

Numeric Conversion 517

9.1.6  Formatted Conversions
The code in the previous sections converted signed and unsigned integers
to strings by using the minimum number of necessary character positions.
To create nicely formatted tables of values, you will need to write functions
that provide appropriate padding in front of the string of digits before actu-
ally emitting the digits. Once you have the “unformatted” versions of these
routines, implementing the formatted versions is easy.

The first step is to write iSize and uSize routines that compute the
minimum number of character positions needed to display the value. One
algorithm to accomplish this is similar to the numeric string conversion
routines. The only difference is that you initialize a counter to 0 upon entry
into the routine and increment this counter rather than outputting a digit
on each recursive call. (Don’t forget to increment the counter inside iSize
if the number is negative; you must allow for the output of the minus sign.)
After the calculation is complete, these routines should return the size of
the operand in the X0 register.

However, thanks to its use of recursion and division, such a conversion
scheme is slow. A brute-force conversion using a binary search is shown in
Listing 9-10.

// Listing9-10.S
//
// u64Size function: Computes the size
// of an unsigned 64-bit integer (in
// print positions)

 #include "aoaa​.inc"

 .section .rodata, ""
ttlStr: .asciz "Listing 9-10"
fmtStr: .asciz "Value = %llu, size=%d\n"

// Values to test the u64Size function:

dVals: .dword 1
 .dword 10
 .dword 100
 .dword 1000
 .dword 10000
 .dword 100000
 .dword 1000000
 .dword 10000000
 .dword 100000000
 .dword 1000000000
 .dword 10000000000
 .dword 100000000000
 .dword 1000000000000
 .dword 10000000000000
 .dword 100000000000000
 .dword 1000000000000000
 .dword 10000000000000000

518 Chapter 9

 .dword 100000000000000000
 .dword 1000000000000000000
 .dword 10000000000000000000
dCnt = (.-dVals) / 8

 .code
 .extern printf

// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// u64Size
//
// Counts the number of output positions
// required for an integer-to-decimal-
// string conversion
//
// Uses a binary search to quickly
// count the digits required by a value
//
// Input:
// X1- Unsigned integer to count
//
// Output:
// X1- Digit count
//
// Table of digit counts and values:
//
// 1: 1
// 2: 10
// 3: 100
// 4: 1,000
// 5: 10,000
// 6: 100,000
// 7: 1,000,000
// 8: 10,000,000
// 9: 100,000,000
// 10: 1,000,000,000
// 11: 10,000,000,000
// 12: 100,000,000,000
// 13: 1,000,000,000,000
// 14: 10,000,000,000,000
// 15: 100,000,000,000,000
// 16: 1,000,000,000,000,000
// 17: 10,000,000,000,000,000
// 18: 100,000,000,000,000,000
// 19: 1,000,000,000,000,000,000
// 20: 10,000,000,000,000,000,000

 1 proc u64Size
 stp x0, x2, [sp, #-16]!

Numeric Conversion 519

 2 mov x2, x1
 ldr x0, =1000000000 // 10: 1,000,000,000
 cmp x2, x0
 bhs ge10

 ldr x0, =10000
 cmp x2, x0
 bhs ge5

 // Must be 1 to 4 digits here:

 mov x1, #1
 cmp x2, #1000
 cinc x1, x1, hs
 cmp x2, #100
 cinc x1, x1, hs
 cmp x2, #10
 cinc x1, x1, hs
 ldp x0, x2, [sp], #16
 ret

// Must be 5 to 9 digits here:

ge5: ldr x0, =1000000 // 7: 1,000,000
 cmp x2, x0
 bhs ge7

 // Must be 5 or 6 digits:

 mov x1, #5
 ldr x0, =100000 // 6: 100,000
 cmp x2, x0
 cinc x1, x1, hs
 ldp x0, x2, [sp], #16
 ret

// Must be 7 to 9 digits here:

ge7: mov x1, #7
 ldr x0, =10000000 // 8: 10,000,000
 cmp x2, x0
 cinc x1, x1, hs
 ldr x0, =100000000 // 9: 100,000,000
 cmp x2, x0
 cinc x1, x1, hs
 ldp x0, x2, [sp], #16
 ret

// Handle 10 or more digits here:

ge10: ldr x0, =100000000000000 // 15: 100,000,000,000,000
 cmp x2, x0
 bhs ge15

520 Chapter 9

 // 10 to 14 digits here:

 ldr x0, =1000000000000 // 13: 1,000,000,000,000
 cmp x2, x0
 bhs ge13

 // 10 to 12 digits here:

 mov x1, #10
 ldr x0, =10000000000 // 11: 10,000,000,000
 cmp x2, x0
 3 cinc x1, x1, hs
 ldr x0, =100000000000 // 12: 100,000,000,000
 cmp x2, x0
 cinc x1, x1, hs
 ldp x0, x2, [sp], #16
 ret

// 13 or 14 digits here:

ge13: mov x1, #13
 ldr x0, =10000000000000 // 14: 10,000,000,000,000
 cmp x2, x0
 cinc x1, x1, hs
 ldp x0, x2, [sp], #16
 ret

// 15 to 20 digits here:

ge15: ldr x0, =100000000000000000 // 18: 100,000,000,000,000,000
 cmp x2, x0
 bhs ge18

 // 15, 16, or 17 digits here:

 mov x1, #15
 ldr x0, =1000000000000000 // 16: 1,000,000,000,000,000
 cmp x2, x0
 cinc x1, x1, hs
 ldr x0, =10000000000000000 // 17: 10,000,000,000,000,000
 cmp x2, x0
 cinc x1, x1, hs
 ldp x0, x2, [sp], #16
 ret

// 18 to 20 digits here:

ge18: mov x1, #18
 ldr x0, =1000000000000000000 // 19: 1,000,000,000,000,000,000
 cmp x2, x0
 cinc x1, x1, hs
 ldr x0, =10000000000000000000 // 20 digits
 cmp x2, x0
 cinc x1, x1, hs

Numeric Conversion 521

 ldp x0, x2, [sp], #16
 ret
 endp u64Size

The actual u64Size function 1 uses a binary search algorithm to quickly
scan through all the possible values to determine the digit count. It begins
by dividing the search space in half, by comparing the input value (moved
to X2) against a 10-digit value 2. In the usual binary search fashion, the two
sections of code will test for numbers with 1 to 9 digits and 10 to 20 digits.
In each of those ranges, the search is (roughly) broken into halves again
and again until the algorithm zeros in on the exact number of digits. When
the code gets down to 2 to 4 digits, it uses some straight-line code and a
series of cinc instructions to rapidly handle the last few cases without exe-
cuting a branch 3.

Here’s the build command and sample output:

$./build Listing9-10
$./Listing9-10
Calling Listing9-10:
Value = 1, size=1
Value = 10, size=2
Value = 100, size=3
Value = 1000, size=4
Value = 10000, size=5
Value = 100000, size=6
Value = 1000000, size=7
Value = 10000000, size=8
Value = 100000000, size=9
Value = 1000000000, size=10
Value = 10000000000, size=11
Value = 100000000000, size=12
Value = 1000000000000, size=13
Value = 10000000000000, size=14
Value = 100000000000000, size=15
Value = 1000000000000000, size=16
Value = 10000000000000000, size=17
Value = 100000000000000000, size=18
Value = 1000000000000000000, size=19
Value = 10000000000000000000, size=20
Listing9-10 terminated

For signed integers, add the function in Listing 9-11 to the code in
Listing 9-10 (find a full Listing 9-11 in the book’s downloadable code files at
https://artofarm​.randallhyde​.com).

// Listing9-11.S
//
// i64Size:
//
// Computes the number of character positions that
// the i64toStr function will emit

https://artofarm.randallhyde.com

522 Chapter 9

 proc i64Size
 str lr, [sp, #-16]!

 cmp x1, #0 // If less than zero,
 bge isPositive // negate and treat
 // like an uns64.
 neg x1, x1

 bl u64Size
 add x1, x1, #1 // Adjust for "-".
 ldr lr, [sp], #16
 ret

isPositive: bl u64Size
 ldr lr, [sp], #16
 ret
 endp i64Size

For extended-precision size operations, the binary search approach
quickly becomes unwieldy (64 bits is bad enough). The best solution is to
divide your extended-precision value by a power of 10 (say, 1e+16). This will
reduce the size of the number by 16 digits. Repeat this process as long as
the quotient is greater than 64 bits, keeping track of the number of times
you’ve divided the number by 1e+16. When the quotient fits into 64 bits
(19 or 20 digits), call the 64-bit u64Size function and add in the number of
digits you eliminated with the division operation (16 for each division by
1e+16). I’ll leave this implementation to you.

Once you have the i64Size and u64Size routines, writing the formatted
output routines u64toStrSize or i64toStrSize is easy. On initial entry, these rou-
tines call the corresponding i64Size/u64Size routine to determine the number
of character positions for the number. If the value that the i64Size/u64Size
routine returns is greater than or equal to the value of the minimum size
parameter (passed into u64toStrSize or i64toStrSize), no other formatting is
necessary. If the value of the parameter size is greater than the value i64Size/
u64Size returns, the program must compute the difference between these
two values and emit that many spaces (or other filler characters) to the out-
put string before the numeric conversion (assuming right-justification of the
value, which is what this chapter presents).

Listing 9-12 shows the utoStrSize/itoStrSize functions (full source code
appears online); here, I omit everything but the utoStrSize/itoStrSize func-
tions themselves.

// Listing9-12.S (partial)
//
// u64ToSizeStr
//
// Converts an unsigned 64-bit integer to
// a character string, using a minimum field
// width
//

Numeric Conversion 523

// Inputs:
// X0- Pointer to buffer to receive string
//
// X1- Unsigned 64-bit integer to convert
// to a string
//
// X2- Minimum field width for the string
// (maximum value is 1,024). Note: if
// the minimum field width value is less
// than the actual output size of the
// integer, this function will ignore
// the value in X2 and use the correct
// number of output positions for the
// value.
//
// Outputs:
//
// Buffer- Receives converted characters.
// Buffer must be at least 22 bytes
// or X1 + 1 bytes long.

 1 proc u64ToStrSize
 stp x0, lr, [sp, #-16]!
 stp x1, x2, [sp, #-16]!
 stp x23, x24, [sp, #-16]!
 stp x25, x26, [sp, #-16]!

 // Initialize x25 and x26 with
 // appropriate functions to call:

 lea x25, u64Size
 lea x26, u64ToStr

 b.al toSizeStr
 endp u64ToStrSize

///
//
// i64ToStrSize:
//
// Just like u64ToStrSize, but handles signed integers
//
// Inputs:
// X0- Pointer to buffer to receive string
//
// X1- Signed 64-bit integer to convert
// to a string
//
// X2- Minimum field width for the string
// (maximum value is 1,024). Note: if
// the minimum field width value is less
// than the actual output size of the
// integer, this function will ignore
// the value in X2 and use the correct

524 Chapter 9

// number of output positions for the
// value.
//
// Note: Don't forget that if the number
// is negative, the '-' consumes
// an output position.
//
// Outputs:
// Buffer- Receives converted character.
// Buffer must be at least 22 bytes
// or X2 + 1 bytes long.

 2 proc i64ToStrSize
 stp x0, lr, [sp, #-16]!
 stp x1, x2, [sp, #-16]!
 stp x23, x24, [sp, #-16]!
 stp x25, x26, [sp, #-16]!

 // Initialize x25 and x26 with
 // appropriate functions to call:

 lea x25, i64Size
 lea x26, i64ToStr

 b.al toSizeStr // Technically, this could just fall through.
 endp i64ToStrSize

///
//
// toSizeStr:
//
// Special function to handle signed and
// unsigned conversions for u64ToSize and i64ToSize

 3 proc toSizeStr

 mov x24, x1 // Save for now.
 4 blr x25 // Compute size of number.

 // Compute difference between actual size
 // and desired size. Set to the larger of
 // the two:

 5 cmp x2, x1
 csel x23, x2, x1, ge

 // Just as a precaution, limit the
 // size to 1,024 characters (including
 // the zero-terminating byte):

 mov x2, #1023 // Don't count 0 byte here.
 cmp x23, x2
 csel x23, x23, x2, ls

Numeric Conversion 525

 // Compute the number of spaces to emit before
 // the first digit of the number:

 subs x23, x23, x1
 beq spacesDone

 // Emit that many spaces to the buffer:

 6 mov x1, #0x2020
 movk x1, #0x2020, lsl #16
 movk x1, #0x2020, lsl #32
 movk x1, #0x2020, lsl #48
 b.al tst8

 // Handle sequences of eight spaces:

whl8: str x1, [x0], #8
 sub x23, x23, #8
tst8: cmp x23, #8
 bge whl8

 // If four to seven spaces, emit four
 // spaces here:

 cmp x23, #4
 blt try2
 str w1, [x0], #4
 sub x23, x23, #4

 // If two or three spaces, emit two
 // here:

try2: cmp x23, #2
 blt try1
 strh w1, [x0], #2
 sub x23, x23, #2

 // If one space left, emit it here:

try1: cmp x23, #1
 blt spacesDone
 strb w1, [x0], #1

 // Okay, emit the digits here:

spacesDone: mov x1, x24 // Retrieve value.
 7 blr x26 // XXXToStr

 ldp x25, x26, [sp], #16
 ldp x23, x24, [sp], #16
 ldp x1, x2, [sp], #16
 ldp x0, lr, [sp], #16
 ret
 endp toSizeStr

526 Chapter 9

///
//
// printSize
//
// Utility used by the main program to
// compute sizes and print them

 8 proc printSize

 locals ps
 dword stk, 64
 endl ps

 enter ps.size

 mov x6, x1
 lea x0, buffer
 blr x27 // Call XXXToStrSize.

 mov x1, x6
 mstr x1, [sp]
 mstr x2, [sp, #8]
 lea x3, buffer
 mstr x3, [sp, #16]
 lea x0, fmtStr
 bl printf

 leave
 endp printSize

values: .dword 1, 10, 100, 1000, 10000, 100000, 1000000
 .dword 10000000, 100000000, 1000000000, 10000000000
 .dword 100000000000, 1000000000000, 10000000000000
 .dword 100000000000000, 1000000000000000
 .dword 10000000000000000, 100000000000000000
 .dword 1000000000000000000, 10000000000000000000
 .dword 0x7fffffffffffffff
 .set valSize, (.-values)/8

negValues: .dword -1, -10, -100, -1000, -10000, -100000, -1000000
 .dword -10000000, -100000000, -1000000000, -10000000000
 .dword -100000000000, -1000000000000, -10000000000000
 .dword -100000000000000, -1000000000000000
 .dword -10000000000000000, -100000000000000000
 .dword -1000000000000000000, -10000000000000000000
 .dword 0x8000000000000000

sizes: .word 5, 6, 7, 8, 9, 10, 15, 15, 15, 15
 .word 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30

///
//
// Here is the asmMain function:

Numeric Conversion 527

 9 proc asmMain, public

 locals am
 qword am.x26x27
 qword am.x24x25
 byte am.stk, 64
 endl am

 enter am.size // Activation record
 stp x26, x27, [fp, #am.x26x27]
 stp x24, x25, [fp, #am.x24x25]

// Test unsigned integers:

 lea x27, u64ToStrSize
 lea x24, values
 lea x25, sizes
 mov x26, #valSize
tstLp: ldr x1, [x24], #8
 ldr w2, [x25], #4
 bl printSize
 subs x26, x26, #1
 bne tstLp

 lea x27, i64ToStrSize
 lea x24, negValues
 lea x25, sizes
 mov x26, #valSize
ntstLp: ldr x1, [x24], #8
 ldr w2, [x25], #4
 bl printSize
 subs x26, x26, #1
 bne ntstLp

 ldp x26, x27, [fp, #am.x26x27]
 ldp x24, x25, [fp, #am.x24x25]
 leave
 endp asmMain

The u64toStrSize function 1 simply loads up X25 and X26 with appro-
priate addresses and branches to the generic toSizeStr function to handle
the real work. The i64ToStrSize function 2 does the same thing for signed
integer conversions.

The toSizeStr function 3 handles the real work. First, it calls the
appropriate toSize function (whose address was passed in X25) to compute
the minimum number of print positions the value will require 4. It then
computes the number of fill characters required in front of the digits to
right-justify the number in the output field 5. It emits the required number
of filler characters 6 before outputting the numeric string 7. Probably
the only thing worth noting here is that the code attempts to output eight
spaces at a time in order to improve performance, as long as there are at
least eight padding characters, then four, then two, and finally one.

528 Chapter 9

The printSize procedure 8 is a little utility function that the asmMain
procedure uses to display values, and the asmMain procedure 9 tests the
u64ToStrSize and i64ToStrSize procedures.

Here’s the build command and sample output for Listing 9-12 (remem-
ber that the actual main program appears only in the online source code):

$./build Listing9-12
$./Listing9-12
Calling Listing9-12:
 1: 5=' 1'
 10: 6=' 10'
 100: 7=' 100'
 1000: 8=' 1000'
 10000: 9=' 10000'
 100000: 10=' 100000'
 1000000: 15=' 1000000'
 10000000: 15=' 10000000'
 100000000: 15=' 100000000'
 1000000000: 15=' 1000000000'
 10000000000: 20=' 10000000000'
 100000000000: 20=' 100000000000'
 1000000000000: 20=' 1000000000000'
 10000000000000: 20=' 10000000000000'
 100000000000000: 20=' 100000000000000'
 1000000000000000: 25=' 1000000000000000'
 10000000000000000: 25=' 10000000000000000'
 100000000000000000: 25=' 100000000000000000'
 1000000000000000000: 25=' 1000000000000000000'
-8446744073709551616: 25=' 10000000000000000000'
 9223372036854775807: 30=' 9223372036854775807'
 -1: 5=' -1'
 -10: 6=' -10'
 -100: 7=' -100'
 -1000: 8=' -1000'
 -10000: 9=' -10000'
 -100000: 10=' -100000'
 -1000000: 15=' -1000000'
 -10000000: 15=' -10000000'
 -100000000: 15=' -100000000'
 -1000000000: 15=' -1000000000'
 -10000000000: 20=' -10000000000'
 -100000000000: 20=' -100000000000'
 -1000000000000: 20=' -1000000000000'
 -10000000000000: 20=' -10000000000000'
 -100000000000000: 20=' -100000000000000'
 -1000000000000000: 25=' -1000000000000000'
 -10000000000000000: 25=' -10000000000000000'
 -100000000000000000: 25=' -100000000000000000'
-1000000000000000000: 25=' -1000000000000000000'
 8446744073709551616: 25=' 8446744073709551616'
-9223372036854775808: 30=' -9223372036854775808'
Listing9-12 terminated

The output is value:size='conversion'.

Numeric Conversion 529

	 9.2	 Converting Floating-Point Values to Strings
Thus far, this chapter has dealt with converting integer numeric values to
character strings (typically for output to the user). This section discusses
converting floating-point values to a string, which is just as important.

Converting floating-point values to strings can take one of two forms:

•	 Decimal notation conversion (such as ±xxx.yyy format)

•	 Exponential (or scientific) notation conversion (such as ±x.yyyyye±zz
format)

Regardless of the final output format, you’ll need two distinct opera-
tions to convert a value in floating-point form to a character string. First,
you must convert the mantissa to an appropriate string of digits. Second,
you convert the exponent to a string of digits.

However, this isn’t a simple case of converting two integer values to a dec-
imal string and concatenating them (with an e between the mantissa and
exponent). First of all, the mantissa is not an integer value; it is a fixed-point
fractional binary value. Simply treating it as an n-bit binary value (where
n is the number of mantissa bits) will almost always result in an incorrect
conversion. Second, while the exponent is, more or less, an integer value, it
represents a power of 2, not a power of 10. Displaying that power of 2 as an
integer value is not appropriate for decimal floating-point representation.
These two issues (fractional mantissa and binary exponent) are the source
of the major complications associated with converting a floating-point value
to a string.

N O T E 	 The exponent is actually a biased-exponent value. However, that’s easy to convert to
a signed binary integer.

Double-precision floating-point values have a 53-bit mantissa (including
the implied bit). This is not a 53-bit integer. Instead, those 53 bits represent
a value from 1.0 to slightly less than 2.0. (See section 2.13, “IEEE Floating-
Point Formats,” on page 93 for more details on the IEEE 64-bit floating-
point format.) The double-precision format can represent numbers from 0
to about 5 × 10–324 (around ±1 × 10±308 using normalized values).

To output the mantissa in decimal form with approximately 16 digits of
precision, successively multiply or divide the floating-point value by 10 until
the number is from 1e+15 to just less than 1e+16 (that is, 9.9999 . . . e+15).
Once the exponent is in the appropriate range, the mantissa bits form a
16-digit integer value (no fractional part), which can be converted to a deci-
mal string to obtain the 16 digits that make up the mantissa value.

To convert the exponent to an appropriate decimal string, track the
number of multiplications or divisions by 10. For each division by 10, add 1
to the decimal exponent value; for each multiplication by 10, subtract 1
from the decimal exponent value. At the end of the process, subtract 16 from
the decimal exponent value (as this process produces a value whose expo-
nent is 16) and convert the decimal exponent value to a string.

530 Chapter 9

The conversions in the following sections assume that you always want
to produce a mantissa with 16 significant digits. To produce formatted out-
put with fewer significant digits, see section 9.2.4, “Double-Precision Values
to Strings,” on the next page.

9.2.1  Floating-Point Exponent to String of Decimal Digits
To convert the exponent to a string of decimal digits, use the following
algorithm:

	 1.	If the number is 0.0, directly produce the mantissa output string of
"0000000000000000" (notice the space at the beginning of the string), set
the exponent to 0, and you’re done. Otherwise, continue with the
following steps.

	 2.	Initialize the decimal exponent to 0.

	 3.	If the exponent is negative, emit a hyphen (-) character and negate the
value; if it is positive, emit a space character.

	 4.	If the value of the (possibly negated) exponent is less than 1.0, skip to
step 8.

	 5.	Positive exponents: Compare the number against successively smaller
powers of 10, starting with 10 + 256, then 10 + 128, then 10 + 64, then . . . ,
then 100. After each comparison, if the current value is greater than the
power of 10, divide by that power of 10 and add the power-of-10 expo-
nent (256, 128, . . . , 0) to the decimal exponent value.

	 6.	Repeat step 5 until the exponent is 0 (that is, the value is in the range
1.0 ≤ value < 10.0).

	 7.	Skip to step 10.

	 8.	Negative exponents: Compare the number against successful larger pow-
ers of 10 starting with 10–256, then, 10–128, then 10–64, then . . . , then 100.
After each comparison, if the current value is less than the power of 10,
divide by that power of 10 and subtract the power-of-10 exponent (256,
128, . . . , 0) from the decimal exponent value.

	 9.	Repeat step 8 until the exponent is 0 (that is, the value is in the range
1.0 ≤ value < 10.0).

	10.	At this point, the exponent value is a reasonable number that can be
converted to an integer value by using standard unsigned-to-string con-
versions (see section 9.1.3, “Unsigned Decimal Values to Strings,” on
page 495).

9.2.2  Floating-Point Mantissa to String of Digits
To convert the mantissa to a string of digits, you can’t simply treat the 53-bit
mantissa produced in the previous section as an integer value, since it still
represents an integer from 1.0 to just less than 2.0. However, if you multiply
that floating-point value (which has been converted to a value from 1.0 to
slightly less than 10.0) by 10+15, this effectively produces an integer with the
digits shifted to the left 15 print positions (16 digits being the number of

Numeric Conversion 531

output digits possible with a double-precision value). You can then convert
this “integer” to a string. The result will consist of the 16 mantissa digits. To
convert the mantissa to a string, do the following:

	 1.	Multiply the value produced by the exponent calculation in the previ-
ous section by 1e+15. This produces a number with the decimal digits
shifted to the left by 15 print positions.

	 2.	Grab the 52-bit mantissa and OR in an implicit bit 52 equal to 1, and
zero-extend this 53-bit value to 64 bits.

	 3.	Convert the resulting 64-bit value to a string by using the unsigned
integer-to-string function given earlier in this chapter (see section 9.1.3,
“Unsigned Decimal Values to Strings,” on page 495).

9.2.3  Strings in Decimal and Exponential Format
To produce a decimal string (rather than a number in exponential form),
the remaining task is to properly place the decimal point into the string
of digits. If the exponent is greater than or equal to 0, you need to insert
the decimal point in position exponent + 1, starting from the first mantissa
digit produced in the previous section. For example, if the mantissa con-
version produced 1234567890123456 and the exponent is 3, then you would
insert a decimal point before the character at index 4 (3 + 1), yielding
1234.567890123456 as the result.

If the exponent is greater than 16, insert exponent – 16 zero characters
at the end of the string (or return an error if you don’t want to allow con-
versions of values larger than 1e+16 to decimal form). If the exponent is
less than 0, insert 0. followed by abs(exp) – 1 zero characters in front of the
string of digits. If the exponent is less than –16 (or another arbitrary value),
you might elect to return an error or automatically switch to exponen-
tial form.

Producing exponential output is slightly easier than decimal output.
Always insert a decimal point between the first and second characters in
the converted mantissa string and then follow the string with e±xxx, where
±xxx is the exponent value’s string conversion. For example, if the mantissa
conversion produces 1234567890123456 and the exponent is –3, the result-
ing string will be 1.234567890123456e-003 (note the leading 0s on the expo-
nent digits).

9.2.4  Double-Precision Values to Strings
This section presents the code that will convert a double-precision value to
a string in either decimal or exponential form, with separate functions for
the two output formats. As Listing 9-13 is rather long, I’ve broken it into
pieces and annotated each section.

// Listing9-13.S
//
// Floating-point (double) to string conversion
//

532 Chapter 9

// Provides both exponential (scientific notation)
// and decimal output formats
 #include "aoaa​.inc"

 1 .section .rodata, ""
ttlStr: .asciz "Listing 9-13"
fmtStr1: .asciz "r64ToStr: value='%s'\n"
fmtStr2: .asciz "fpError: code=%lld\n"
fmtStr3: .asciz "e64ToStr: value='%s'\n"
newlines: .asciz "\n\n"
expStr: .asciz "\n\nTesting e64ToStr:\n\n"

// r10str_1: A global character array that will
// hold the converted string

 2 .data
r64str_1: .space 32, 0

 .code
 .extern printf

// tenTo15: Used to multiply a value from 1.0
// to less than 2.0 in order to convert the mantissa
// to an actual integer

3 tenTo15: .double 1.0e+15

// potPos, potNeg, and expTbl:
//
// Power of 10s tables (pot) used to quickly
// multiply or divide a floating-point value
// by powers of 10. expTbl is the power-of-
// 10 exponent (absolute value) for each of
// the entries in these tables.

4 potPos: .double 1.0e+0
 .double 1.0e+1
 .double 1.0e+2
 .double 1.0e+4
 .double 1.0e+8
 .double 1.0e+16
 .double 1.0e+32
 .double 1.0e+64
 .double 1.0e+128
 .double 1.0e+256
expCnt = (.-potPos) / 8

potNeg: .double 1.0e-0
 .double 1.0e-1
 .double 1.0e-2
 .double 1.0e-4
 .double 1.0e-8
 .double 1.0e-16
 .double 1.0e-32

Numeric Conversion 533

 .double 1.0e-64
 .double 1.0e-128
 .double 1.0e-256

expTbl: .dword 0
 .dword 1
 .dword 2
 .dword 4
 .dword 8
 .dword 16
 .dword 32
 .dword 64
 .dword 128
 .dword 256

// Maximum number of significant digits for
// a double-precision value:

5 maxDigits = 16

// Return program title to C++ program:

 6 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

As is typical for sample programs in this chapter, Listing 9-13 begins
with a read-only data section 1 containing the program’s title string and
various format strings used by printf() calls in the main program. The
single data variable in this program is r64str_1 2, a 32-byte character string
used to hold the converted string. The program is responsible for ensuring
that all conversions will fit into 32 bytes.

Listing 9-13 places several read-only constants in the ​.code section so
the program can directly access these constants by using the PC-relative
addressing mode (rather than using multiple instructions to take the
address of the object and access it indirectly). The first such constant is
tenTo15 3, which holds the value 1.0e+15. The conversion code uses this
constant to multiply a floating-point value in the range 1.0 to slightly less
than 10.0 by 1e+15, thereby obtaining a value slightly less than 1e+16 when
converting the mantissa to an integer value.

The potPos, potNeg, and expTbl tables 4 contain the positive and negative
powers of 10 (pot) tables used to multiply the floating-point value by vari-
ous powers of 10 when massaging the value into the range 1.0 to 10.0. The
expTbl contains the absolute value of the exponent corresponding to the
same entry in the potPos and potNeg tables. The code adds or subtracts this
value from the accumulated decimal exponent while converting the man-
tissa to the range 1.0 to 10.0.

The maxDigits manifest constant 5 specifies the number of significant
digits supported by this conversion code (16 digits for double-precision

534 Chapter 9

floating-point numbers). Finally, this code section contains the ubiquitous
getTitle function 6 that returns the address of the program’s title string to
the C++ shell code.

The following code converts a floating-point value to a string:

// Listing9-13.S (cont.)
//
// u53toStr
//
// Converts a 53-bit unsigned integer to a string containing
// exactly 16 digits (technically, it does 64-bit arithmetic,
// but is limited to 53 bits because of the 16-digit output
// format)
//
// Inputs:
// X0- Pointer to buffer to receive string
// X1- Unsigned 53-bit integer to convert
//
// Outputs:
// Buffer- Receives the zero-terminated string
// X0- Points at zero-terminating byte in string
//
// Buffer must have at least 17 bytes allocated for it.
//
// This code is a bit simplified from the u64toStr function
// because it always emits exactly 16 digits
// (never any leading 0s).

 1 proc u53toStr

 stp x1, x2, [sp, #-16]!
 stp x3, x4, [sp, #-16]!
 str x5, [sp, #-16]!

 mov x4, #10 // Mul/div by 10 using X4
 mov x5, xzr // Holds string of 8 chars

 // Handle LO digit here. Note that the LO
 // digit will ultimately be moved into
 // bit positions 56-63 of X5 because numeric
 // strings are, intrinsically, big-endian (with
 // the HO digit appearing first in memory).

 2 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // The following is an unrolled loop
 // (for speed) that processes the
 // remaining 15 digits.
 //

Numeric Conversion 535

 // Handle digit 1 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 2 here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 3 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 4 here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 5 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 6 here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 7 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Store away LO 8 digits:

 str x5, [x0, #8]
 mov x5, xzr

536 Chapter 9

 // Handle digit 8 here:

 3 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 9 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 10 here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 11 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 12 here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 13 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 14 here:

 udiv x2, x1, x4 // X2 = quotient
 msub x3, x2, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 // Handle digit 15 here:

 udiv x1, x2, x4 // X1 = quotient
 msub x3, x1, x4, x2 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

Numeric Conversion 537

 // Store away HO 8 digits:

 str x5, [x0]
 strb wzr, [x0, #maxDigits]! // Zero-terminating byte

 ldr x5, [sp], #16
 ldp x3, x4, [sp], #16
 ldp x1, x2, [sp], #16
 ret
 endp u53toStr

The u53ToStr function 1 is responsible for converting a 53-bit unsigned
integer to a string of exactly 16 digits. In theory, this code could have used
the u64toSizeStr function from Listing 9-12 to convert the 53-bit value (zero-
extended to 64 bits) into a string. However, the conversion of floating-point
mantissa to string always produces a 16-character string (with leading 0s,
if necessary), so the decimal integer-to-string conversion can be more effi-
cient than the u64toSizeStr function, which could produce variable-length
strings. To prioritize saving space, if you’re already using the u64toSizeStr
function in your code, you could remove u53ToStr and substitute a call to
u64toSizeStr (specifying '0' as the fill character).

The conversion algorithm u53ToStr uses is straightforward and brute-
force: it converts the LO eight digits to a sequence of eight characters and
emits them 2, then converts the HO eight digits to a sequence of eight
characters and emits them 3. It both cases, it uses the divide-by-10 and
remainder of division-by-10 algorithms to convert each digit to a character
(see the discussion of u64ToStr in Listing 9-6 for more details).

This function is used by FPDigits to convert the mantissa to a string of
decimal digits:

// Listing9-13.S (cont.)
//
// FPDigits
//
// Used to convert a floating-point value
// in D0 to a string of digits
//
// Inputs:
// D0- Double-precision value to convert
// X0- Pointer to buffer to receive chars
//
// Outputs:
// X0- Still points at buffer
// X1- Contains exponent of the number
// X2- Contains sign (space or '-')

 proc FPDigits
 str lr, [sp, #-16]!
 str d0, [sp, #-16]!
 stp d1, d2, [sp, #-16]!
 stp x22, x23, [sp, #-16]!

538 Chapter 9

 stp x24, x25, [sp, #-16]!
 stp x26, x27, [sp, #-16]!

 mov x2, #' ' // Assume sign is +.

#define fp1 d2 // D2 holds 1.0.

 fmov fp1, #1.0

 // Special case for 0.0:

 1 fcmp d0, #0.0
 bne d0not0

 // Check for -0.0:

 2 fmov x1, d0
 ands x1, x1, #0x8000000000000000
 beq posZero
 mov x2, #'-'

posZero:
 mov x1, #0x3030
 movk x1, #0x3030, lsl #16
 movk x1, #0x3030, lsl #32
 movk x1, #0x3030, lsl #48
 str x1, [x0]
 str x1, [x0, #8]
 mov x1, #0 // Exponent = 0

 // For debugging purposes, zero-terminate this
 // string (the actual code just grabs 16 bytes,
 // so this isn't strictly necessary):

 strb w0, [x0, #16]
 b.al fpdDone

// If the number is nonzero, deal with it here. Note
// that the flags were set by comparing D0 to 0.0 earlier.

3 d0not0: bge fpIsPositive // See if positive or negative.

 // If negative, negate and change the sign
 // character to '-'.

 fabs d0, d0
 mov x2, #'-'

// Get the number from 1.0 to <10.0 so you can figure out
// what the exponent is. Begin by checking to see if you have
// a positive or negative exponent.

fpIsPositive:
 mov x1, xzr // Initialize exponent.

Numeric Conversion 539

 4 fcmp d0, fp1
 bge posExp

 // The value is in the range 0.0 to 1.0,
 // exclusive, at this point. That means this
 // number has a negative exponent. Multiply
 // the number by an appropriate power of 10
 // until you get it in the range 1 through 10.

 lea x27, potNeg
 lea x26, potPos
 lea x25, expTbl
 mov x24, #expCnt

// Search through the potNeg table until you find a power
// of 10 that is less than the value in D0:

cmpNegExp:
 5 subs x24, x24, #1
 blt test1 // Branch if X24 < 1.

 ldr d1, [x27, x24, lsl #3] // D1 = potNeg[X24 * 8]
 fcmp d1, d0 // Repeat while
 ble cmpNegExp // table <= value.

 // Eliminate the current exponent indexed by
 // X24 by multiplying by the corresponding
 // entry in potPos:

 ldr x22, [x25, x24, lsl #3] // X22 = expTbl[X24 * 8]
 sub x1, x1, x22
 ldr d1, [x26, x24, lsl #3] // D1 = potPos[X24 * 8]
 fmul d0, d0, d1
 b.al cmpNegExp

// If you get to this point, you've indexed through
// all the elements in the potNeg and it's time to stop.
//
// If the remainder is *exactly* 1.0, you can branch
// on to InRange1_10; otherwise, you still have to multiply
// by 10.0 because you've overshot the mark a bit.

test1: fcmp d0, fp1
 beq inRange1_10

 fmov d1, #10.0
 fmul d0, d0, d1
 sub x1, x1, #1 // Decrement exponent.
 b.al inRange1_10

// At this point, you have a number that is 1 or greater.
// Once again, your task is to get the value from 1.0 to <10.0.

540 Chapter 9

posExp:
 lea x26, potPos
 lea x25, expTbl
 mov x24, #expCnt

6 cmpPosExp: subs x24, x24, #1
 blt inRange1_10 // If X24 < 1

 ldr d1, [x26, x24, lsl #3] // D1 = potPos[X24 * 8]
 fcmp d1, d0
 bgt cmpPosExp

 ldr x22, [x25, x24, lsl #3] // X22 = expTbl[X24 * 8]
 add x1, x1, x22
 fdiv d0, d0, d1
 b.al cmpPosExp

// Okay, at this point the number is in the range 1 <= x < 10.
// Let's multiply it by 1e+15 to put the most significant digit
// into the 16th print position, then convert the result to
// a string and store away in memory.

7 inRange1_10:
 ldr d1, tenTo15
 fmul d0, d0, d1
 fcvtau x22, d0 // Convert to unsigned integer.

 // Convert the integer mantissa to a
 // string of digits:

 stp x0, x1, [sp, #-16]!
 mov x1, x22
 bl u53toStr
 ldp x0, x1, [sp], #16

fpdDone:
 ldp x26, x27, [sp], #16
 ldp x24, x25, [sp], #16
 ldp x22, x23, [sp], #16
 ldp d1, d2, [sp], #16
 ldr d0, [sp], #16
 ldr lr, [sp], #16
 ret
 endp FPDigits

FPDigits converts an arbitrary double-precision mantissa to a string of
decimal digits. It assumes that the floating-point value to convert is held in
the D0 register and that X0 contains a pointer to the buffer that will hold
the string conversion. This function also converts the binary (power-of-2)
exponent to a decimal integer, returns the exponent value in the X1 regis-
ter, and returns the value’s sign (a space character, indicating a nonnegative
value, or -) in the X2 register.

Numeric Conversion 541

FPDigits begins by first checking for the special case of 0.0 1. If D0 con-
tains 0, this function initializes the string buffer to 0000000000000000 (sixteen
0 characters) and returns with X0 containing 0 and X2 containing a space
character. The code checks for the special case of -0.0 and returns X2 con-
taining a minus sign if the result is -0.0 2. Next, FPDigits checks the sign
of the floating-point value and sets X2 to a '-', if appropriate 3. The code
also initializes the decimal exponent accumulator (held in X0) to 0.

After setting the sign, the FPDigits function checks the floating-point
value’s exponent to see if it is positive or negative 4. The code handles
values with positive or negative exponents independently. If the exponent
is negative, the cmpNegExp loop searches through the potNeg table looking for
the value that is greater than the value in D0 5. When the loop finds such
a value, it multiplies D0 by that entry in potNeg and then subtracts the cor-
responding entry in expTbl from the decimal exponent value held in X1. The
cmpNegExp loop repeats this process until the value in D0 is greater than 1.0.
Whenever the result isn’t greater than 1.0, the code multiplies the value in
D0 by 10.0, because the code needs to adjust for the multiplication by 0.1
that has taken place. If, on the other hand, the exponent was positive 6, the
cmpPosExp loop does the same task but divides by entries in the potPos table
and adds the corresponding entry in expTbl to the decimal exponent value
held in X1.

Once the cmpPosExp or cmpNegExp loop gets the value into the range 1.0 to
just less than 10.0, it multiplies the value by 1015 and converts it to an integer
(in X22) 7. Then FPDigits calls the u53toStr function to convert this inte-
ger to a string of exactly 16 digits. The function returns the sign character
(space for nonnegative values, '-' for negative values) in X2 and the decimal
exponent in X1.

Note that FPDigits converts only the mantissa to a string of digits. This
is the base code used by the r64ToStr and e64ToStr functions that convert
floating-point values into recognizable strings. Before presenting those
functions, there is one utility function to explain: chkNaNINF.

Certain floating-point operations produce invalid results. The IEEE
754 floating-point standard defines three special values to represent these
invalid results: NaN (not a number), +INF (infinity), and -INF (negative infin-
ity). Because the ARM floating-point hardware can produce these results,
it is important that the conversions of floating-point to string handle these
three special values. NaN, +INF, and -INF all have an exponent value contain-
ing 0x7FF (and no other valid values use this exponent). If the exponent is
0x7FF and the mantissa bits are all 0s, the value is +INF or -INF (determined
by the sign bit). If the mantissa is nonzero, the value is NaN (and you can
ignore the sign bit). The chkNaNINF function checks for these values and out-
puts the strings NaN, INF, or -INF if the number is invalid:

// Listing9-13.S (cont.)
//
// chkNaNINF
//
// Utility function used by r64ToStr and e64ToStr to check

542 Chapter 9

// for NaN and INF
//
// Inputs:
// D0- Number to check against NaN and INF
// X19- Field width for output
// X21- Fill character
// X22- (outBuf) Pointer to output buffer
// X25- Return address to use if number is invalid
//
// Outputs:
// Buffer- Will be set to the string NaN, INF,
// or -INF if the number is not valid
//
// Note: Modifies value in X0

 proc chkNaNINF

 // Handle NaN and INF special cases:

 1 fmov x0, d0
 lsr x0, x0, #52
 and x0, x0, #0x7ff
 cmp x0, #0x7ff
 blo notINFNaN

 // At this point, it's NaN or INF. INF has a
 // mantissa containing 0, NaN has a nonzero
 // mantissa:

 2 fmov x0, d0
 ands x0, x0, #0x000fffffffffffff
 beq isINF

 // Is NaN here:

 3 ldr w0, ='N' + ('a' << 8) + ('N' << 16)
 str w0, [x22]
 mov x0, #3
 b.al fillSpecial

 // INF can be positive or negative. Must output a
 // '-' character if it is -INF:

4 isINF: fmov x0, d0
 ands x0, x0, #0x8000000000000000 // See if -INF.
 bne minusINF

 ldr w0, ='I' + ('N' << 8) + ('F' << 16)
 str w0, [x22]
 mov x0, #3
 b.al fillSpecial

5 minusINF: ldr w0, ='-' + ('I' << 8) + ('N' << 16) + ('F' << 24)
 str w0, [x22]

Numeric Conversion 543

 strb wzr, [x22, #4]
 mov x0, #4

// For NaN and INF, fill the remainder of the string, as appropriate:

6 fillSpecial:
 b.al whlLTwidth

fsLoop: strb w21, [x22, x0]
 add x0, x0, #1
 whlLTwidth:
 cmp x0, x19
 blo fsLoop
 7 mov lr, x25 // Return to alternate address.

notINFNaN: ret
 endp chkNaNINF

The code moves the floating-point value in D0 into X0 and then checks
the exponent bits to see if they contain 0x7FF 1. If the exponent does not
contain this value, the procedure returns to the caller (using the return
address in LR).

If the exponent bits are 0x7FF, the code checks the mantissa to see if it
is 0 or nonzero 2. If it’s nonzero, the code emits the character string NaN to
the buffer pointed at by X22 3. If the mantissa is nonzero, the code checks
whether the sign bit is set 4. If not, this code emits INF to the output buffer.
If the sign bit is set, the code emits -INF to the output buffer 5.

In all three cases (NaN, INF, or -INF), the code transfers to fillSpecial 6,
where it adds sufficient padding characters (the padding character is in
W21, and the field width is in X19). Rather than return to the caller, this
code transfers control to the address held in X25 7. The caller (r64ToStr
or e64ToStr) loads the invalid value return address into X25 prior to call-
ing chkNaNINF. I could have set a flag, such as the carry flag, and tested it on
return. However, I wanted to demonstrate another way to achieve this, and
this approach is slightly more elegant (though arguably less readable).

With chkNaNINF out of the way, it’s time to take a look at the r64ToStr
function that the user calls to convert floating-point values into strings:

// Listing9-13.S (cont.)
//
// r64ToStr
//
// Converts a REAL64 floating-point number to the
// corresponding string of digits. Note that this
// function always emits the string using decimal
// notation. For scientific notation, use the e10ToBuf
// routine.
//
// On entry:
//
// D0- (r64) Real64 value to convert

544 Chapter 9

//
// X0- (outBuf) r64ToStr stores the resulting
// characters in this string.
//
// X1- (fWidth) Field width for the number (note
// that this is an *exact* field width, not a
// minimum field width)
//
// X2- (decDigits) # of digits to display after the
// decimal pt
//
// X3- (fill) Padding character if the number of
// digits is smaller than the specified field
// width
//
// X4- (maxLength) Maximum string length
//
// On exit:
//
// Buffer contains the newly formatted string. If the
// formatted value does not fit in the width specified,
// r64ToStr will store "#" characters into this string.
//
// Carry- Clear if success, set if an exception occurs.
// If width is larger than the maximum length of
// the string specified by buffer, this routine
// will return with the carry set.
//
//***

 proc r64ToStr

 // Local variables:

 locals rts
 qword rts.x0x1
 qword rts.x2x3
 qword rts.x4x5
 qword rts.x19x20
 qword rts.x21x22
 qword rts.x23x24

 dword rts.x25
 byte rts.digits, 80
 byte rts.stk, 64
 endl rts

 enter rts.size

 // Use meaningful names for the nonvolatile
 // registers that hold local/parameter values:

 #define fpVal d0
 #define fWidth x19 // chkNaNINF expects this here.

Numeric Conversion 545

 #define decDigits x20
 #define fill w21 // chkNaNINF expects this here.
 #define outBuf x22 // chkNaNINF expects this here.
 #define maxLength x23
 #define exponent x24
 #define sign w25
 #define failAdrs x25 // chkNaNINF expects this here.

 // Preserve registers:

 stp x0, x1, [fp, #rts.x0x1]
 stp x2, x3, [fp, #rts.x2x3]
 stp x4, x5, [fp, #rts.x4x5]
 stp x19, x20, [fp, #rts.x19x20]
 stp x21, x22, [fp, #rts.x21x22]
 stp x23, x24, [fp, #rts.x23x24]
 str x25, [fp, #rts.x25]

 // Move parameter values to nonvolatile
 // storage:

 mov outBuf, x0
 mov fWidth, x1
 mov decDigits, x2
 mov fill, w3
 mov maxLength, x4

 // First, make sure the number will fit into
 // the specified string.

 cmp fWidth, maxLength
 bhs strOverflow

 // If the width is 0, return an error:

 cmp fWidth, #0
 beq valOutOfRange

 // Handle NaN and INF special cases.
 // Note: if the value is invalid, control
 // transfers to clcAndRet rather than simply
 // returning.

 1 lea failAdrs, clcAndRet
 bl chkNaNINF

 // Okay, do the conversion. Begin by
 // processing the mantissa digits:

 add x0, fp, #rts.digits // lea x0, rts.digits
 2 bl FPDigits // Convert r64 to string.
 mov exponent, x1 // Save away exponent result.
 mov sign, w2 // Save mantissa sign char.

546 Chapter 9

// Round the string of digits to the number of significant
// digits you want to display for this number. Note that
// a maximum of 16 digits are produced for a 53-bit value.

 3 cmp exponent, #maxDigits
 ble dontForceWidthZero
 mov x0, xzr // If the exponent is negative or
 // too large, set width to 0.
dontForceWidthZero:
 add x2, x0, decDigits // Compute rounding position.
 cmp x2, #maxDigits
 bhs dontRound // Don't bother if a big #.

 // To round the value to the number of
 // significant digits, go to the digit just
 // beyond the last one you are considering (X2
 // currently contains the number of decimal
 // positions) and add 5 to that digit.
 // Propagate any overflow into the remaining
 // digit positions.

 add x2, x2, #1 // Index + 1 of last sig digit
 ldrb w0, [x1, x2] // Get that digit.

 add w0, w0, #5 // Round (for example, +0.5)
 cmp w0, #'9'
 bls dontRound

 mov x0, #('0' + 10) // Force to 0.
whileDigitGT9:
 sub w0, w0, #10 // Sub out overflow,
 strb w0, [x1, x2] // carry, into prev
 subs x2, x2, #1 // digit (until first
 bmi hitFirstDigit // digit in the #).

 ldrb w0, [x1, x2] // Increment previous
 add w0, w0, #1 // digit.
 strb w0, [x1, x2]

 cmp w0, #'9' // Overflow if > '9'
 bhi whileDigitGT9
 b.al dontRound

hitFirstDigit:

 // If you get to this point, you've hit the
 // first digit in the number, so you have to
 // shift all the characters down one position
 // in the string of bytes and put a "1" in the
 // first character position.

 4 mov x2, #maxDigits // Max digits in value
repeatUntilX2eq0:

Numeric Conversion 547

 ldrb w0, [x1, x2]
 add x2, x2, #1
 strb w0, [x1, x2]
 subs x2, x2, #2
 bne repeatUntilX2eq0

 mov w0, #'1'
 strb w0, [x1, x2]

 add exponent, exponent, #1 // Increment exponent because
 // you added a digit.

dontRound:

 // Handle positive and negative exponents separately.

 5 mov x5, xzr // Index into output buf.
 cmp exponent, #0
 bge positiveExponent

 // Negative exponents:
 // Handle values from 0 to 1.0 here (negative
 // exponents imply negative powers of 10).
 //
 // Compute the number's width. Since this
 // value is from 0 to 1, the width
 // calculation is easy: it's just the number of
 // decimal positions they've specified plus
 // 3 (since you need to allow room for a
 // leading "-0."). X2 = number of digits to emit
 // after "."

 mov x4, #4
 add x2, decDigits, #3
 cmp x2, x4
 csel x2, x2, x4, hs // If X2 < X4, X2 = X4

 cmp x2, fWidth
 bhi widthTooBig

 // This number will fit in the specified field
 // width, so output any necessary leading pad
 // characters. X3 = number of padding characters
 // to output.

 6 sub x3, fWidth, x2
 b.al testWhileX3ltWidth

whileX3ltWidth:
 strb fill, [outBuf, x5]
 add x5, x5, #1 // Index
 add x2, x2, #1 // Digits processed
testWhileX3ltWidth:
 cmp x2, fWidth
 blo whileX3ltWidth

548 Chapter 9

 // Output " 0." or "-0.", depending on
 // the sign of the number:

 strb sign, [outBuf, x5]
 add x5, x5, #1
 mov w0, #'0'
 strb w0, [outBuf, x5]
 add x5, x5, #1
 mov w0, #'.'
 strb w0, [outBuf, x5]
 add x5, x5, #1
 add x3, x3, #3

 // Now output the digits after the decimal point:

 mov x2, xzr // Count the digits here.
 add x1, fp, #rts.digits // lea x1, rts.digits

// If the exponent is currently negative, or if
// you've output more than 16 significant digits,
// just output a 0 character.

repeatUntilX3geWidth:
 mov x0, #'0'
 adds exponent, exponent, #1
 bmi noMoreOutput

 cmp x2, #maxDigits
 bge noMoreOutput

 ldrb w0, [x1]
 add x1, x1, #1

noMoreOutput:
 strb w0, [outBuf, x5]
 add x5, x5, #1 // Index
 add x2, x2, #1 // Digits processed
 add x3, x3, #1 // Digit count
 cmp x3, fWidth
 blo repeatUntilX3geWidth
 b.al r64BufDone

// If the number's actual width was bigger than the width
// specified by the caller, emit a sequence of '#' characters
// to denote the error.

7 widthTooBig:

 // The number won't fit in the specified field
 // width, so fill the string with the "#"
 // character to indicate an error.

 mov x2, fWidth
 mov w0, #'#'

Numeric Conversion 549

fillPound: strb w0, [outBuf, x5]
 add x5, x5, #1 // Index
 subs x2, x2, #1
 bne fillPound
 b.al r64BufDone

// Handle numbers with a positive exponent here.
//
// Compute # of print positions consumed by output string.
// This is given by:
//
// Exponent // # of digits to left of "."
// + 2 // Sign + 1's digit
// + decDigits // Add in digits right of "."
// + 1 // If there is a decimal point

8 positiveExponent:

 mov x3, exponent // Digits to left of "."
 add x3, x3, #2 // sign posn
 cmp decDigits, #0 // See if any fractional
 beq decPtsIs0 // part.

 add x3, x3, decDigits // Digits to right of "."
 add x3, x3, #1 // Make room for the "."

decPtsIs0:

 // Make sure the result will fit in the
 // specified field width.

 cmp x3, fWidth
 bhi widthTooBig
 beq noFillChars

 // If the actual number of print positions
 // is less than the specified field width,
 // output leading pad characters here.

 subs x2, fWidth, x3
 beq noFillChars

fillChars: strb fill, [outBuf, x5]
 add x5, x5, #1
 subs x2, x2, #1
 bne fillChars

noFillChars:

 // Output the sign character:

 strb sign, [outBuf, x5]
 add x5, x5, #1

550 Chapter 9

 // Okay, output the digits for the number here:

 mov x2, xzr // Counts # of output chars
 add x1, fp, #rts.digits // lea x1, rts.digits

 // Calculate the number of digits to output
 // before and after the decimal point:

 add x3, decDigits, exponent
 add x3, x3, #1 // Always one digit before "."

// If we've output fewer than 16 digits, go ahead
// and output the next digit. Beyond 16 digits,
// output 0s.

repeatUntilX3eq0:

 mov w0, #'0'
 cmp x2, #maxDigits
 bhs putChar

 ldrb w0, [x1]
 add x1, x1, #1

putChar: strb w0, [outBuf, x5]
 add x5, x5, #1

 // If the exponent decrements down to 0,
 // output a decimal point:

 cmp exponent, #0
 bne noDecimalPt

 cmp decDigits, #0
 beq noDecimalPt

 mov w0, #'.'
 strb w0, [outBuf, x5]
 add x5, x5, #1

noDecimalPt:
 sub exponent, exponent, #1 // Count down to "." output.
 add x2, x2, #1 // # of digits thus far
 subs x3, x3, #1 // Total # of digits to output
 bne repeatUntilX3eq0

// Zero-terminate string and leave:

r64BufDone: strb wzr, [outBuf, x5]
9 clcAndRet: msr nzcv, xzr // clc = no error
 b.al popRet

strOverflow:
 mov x0, #-3 // String overflow
 b.al ErrorExit

Numeric Conversion 551

valOutOfRange:
 mov x0, #-1 // Range error
a ErrorExit: mrs x1, nzcv
 orr x1, x1, #(1 << 29)
 msr nzcv, x1 // stc = error
 strb wzr, [outBuf] // Just to be safe

 // Change X0 on return:

 str x0, [fp, #rts.x0x1]

popRet:
 ldp x0, x1, [fp, #rts.x0x1]
 ldp x2, x3, [fp, #rts.x2x3]
 ldp x4, x5, [fp, #rts.x4x5]
 ldp x19, x20, [fp, #rts.x19x20]
 ldp x21, x22, [fp, #rts.x21x22]
 ldp x23, x24, [fp, #rts.x23x24]
 ldr x25, [fp, #rts.x25]
 leave
 endp r64ToStr

The r64ToStr function converts the floating-point value in D0 to a string
in standard decimal form, supporting output field widths, number of digits
after the decimal point, and fill character for leading positions that would
normally be blank.

After appropriate initialization, r64ToStr first checks for the values NaN
(not a number), INF (infinity), and -INF (minus infinity) 1; these values
require special nonnumeric output strings, which must still be padded to
fWidth characters. The r64ToStr calls FPDigits to convert the mantissa to a
string of decimal digit characters (and obtain the power-of-10 exponent in
integer form) 2. The next step is to round the number based on the num-
ber of digits to appear after the decimal point 3. This code computes the
index into the string produced by FPDigits one character beyond the num-
ber of digits specified by the decDigits parameter. It fetches this character
(which will be '0' through '9') and adds 5 to its ASCII code. If the result is
greater than the ASCII code of '9', the code has to bump the previous digit
in the string by 1. Of course, if that character contains '9', overflow will
occur and the carry has to ripple through to previous digit(s). If the carry
ripples all the way to the first character of the string, the code must shift all
the characters one position to the right and insert a '1' at the beginning of
the string 4.

Next, the code emits the characters associated with the final decimal
string. The algorithm splits into two sections 5, with one section handling
positive (and 0) exponents and the other handling negative exponents. For
negative exponents, the code will emit any fill characters, the sign of the
number (still held in X2), and the decDigits digits from the mantissa string
conversion 6. If the field width and decDigits are sufficiently large, the code
will simply output the '0' character for all characters beyond the 16th sig-
nificant digit. If the number of output digits would exceed the field width

552 Chapter 9

the caller passes, the widthTooBig code 7 will emit # characters to indicate a
formatting error (the standard HLL approach to format errors in floating-
point conversions).

The code handles floating-point conversions of values greater than or
equal to 1.0 (positive exponents) 8. This code emits necessary padding
characters and the value’s sign, then calculates the position of the decimal
point in the output string and rounds the last digit throughout the string,
as previously described. It then outputs the characters returned by FPDigits
up to that position. Finally, it outputs the decimal point, followed by the
remaining fractional digits. If it turns out that the code cannot fit the num-
ber into the field width (and decimal digits) specified, it transfers control to
widthTooBig to produce the error string.

To notify the caller of possible errors, this code clears the carry flag
upon return 9 if the conversion was successful, or sets the carry flag on
return if there was an error a. This allows the caller to easily test for success/
failure with a single bcs or bcc instruction after the call to r64ToStr.

The final output format handled by Listing 9-13 is exponential (sci-
entific) form. Two functions handle this conversion: expToBuf and e64ToStr.
The former handles the formatting of the exponent portion of the out-
put string:

// Listing9-13.S (cont.)
//
// expToBuf
//
// Unsigned integer to buffer
// Used to output up to three-digit exponents
//
// Inputs:
//
// X0- Unsigned integer to convert
// X1- Exponent print width 1-3
// X2- Points at buffer (must have at least 4 bytes)
//
// Outputs:
//
// Buffer contains the string representing the converted
// exponent.
//
// Carry is clear on success, set on error.

 proc expToBuf
 stp x0, lr, [sp, #-16]!
 stp x1, x3, [sp, #-16]!
 stp x4, x5, [sp, #-16]!

 mov x5, xzr // Initialize output string.
 mov x4, #10 // For division by 10

// Verify exponent digit count is in the range 1-3:

Numeric Conversion 553

 1 cmp x1, #1
 blo badExp
 cmp x1, #3
 bhi badExp

// Verify the actual exponent will fit in the number of digits:

 2 cmp x1, #2
 blo oneDigit
 beq twoDigits

 // Must be 3:

 cmp x0, #1000
 bhs badExp

// Convert three-digit value to a string:

 3 udiv x1, x0, x4 // X1 = quotient
 msub x3, x1, x4, x0 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 udiv x0, x1, x4 // X0 = quotient
 msub x3, x0, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 udiv x1, x0, x4 // X1 = quotient
 msub x3, x1, x4, x0 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

 b.al outputExp

// Single digit is easy:

oneDigit:
 4 cmp x0, #10
 bhs badExp

 orr x5, x0, #'0'
 b.al outputExp

// Convert value in the range 10-99 to a string
// containing two characters:

twoDigits:
 5 cmp x0, #100
 bhs badExp

 udiv x1, x0, x4 // X1 = quotient
 msub x3, x1, x4, x0 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

554 Chapter 9

 udiv x0, x1, x4 // X0 = quotient
 msub x3, x0, x4, x1 // X3 = remainder
 orr x3, x3, #'0'
 orr x5, x3, x5, lsl #8

// Store the string into the buffer (includes a 0
// byte in the HO positions of W5):

outputExp:
 6 str w5, [x2]
 ldp x4, x5, [sp], #16
 ldp x1, x3, [sp], #16
 ldp x0, lr, [sp], #16
 msr nzcv, xzr // clc = no error
 ret
 leave

badExp:
 ldp x4, x5, [sp], #16
 ldp x1, x3, [sp], #16
 ldp x0, lr, [sp], #16
 mrs x0, nzcv
 orr x0, x0, #(1 << 29)
 msr nzcv, x0 // stc = error
 mov x0, #-1 // Value out of range ...
 ret
 endp expToBuf

The expToBuf function produces a string of exactly one, two, or three digits
(based on the parameters the caller passes in X0 and X1). The expToBuf func-
tion begins by verifying that the exponent digit count is within range 1 and
that the actual exponent will fit in the number of digits specified 2. The code
branches to three separate output conversion code sequences if the exponent
output is three digits (the normal case 3), one digit 4, or two digits 5. The
code stores those characters into the buffer where X2 points 6.

The function returns the error status in the carry flag, returning with
the carry clear for a successful operation, or the carry set if the exponent is
too large or the converted number will not fit in the number of character
positions that X1 specifies. Other than this, expToBuf is basically a switch
statement (implemented using if...then...else logic) that has three cases:
one for each exponent size (one, two, or three characters).

The e64ToStr function handles the conversion from double-precision to
string using exponential format:

// Listing9-13.S (cont.)
//
// e64ToStr
//
// Converts a REAL64 floating-point number to the
// corresponding string of digits. Note that this

Numeric Conversion 555

// function always emits the string using scientific
// notation; use the r64ToStr routine for decimal notation.
//
// On entry:
//
// D0- (e64) Double-precision value to convert
//
// X0- (buffer) e64ToStr stores the resulting characters in
// this buffer.
//
// X1- (width) Field width for the number (note that this
// is an *exact* field width, not a minimum
// field width)
//
// X2- (fill) Padding character if the number is smaller
// than the specified field width
//
// X3- (expDigs) Number of exponent digits (2 for real32
// and 3 for real64)
//
// X4- (maxLength) Maximum buffer size
//
// On exit:
//
// Buffer contains the newly formatted string. If the
// formatted value does not fit in the width specified,
// e64ToStr will store "#" characters into this string.
//
// Carry- Clear if no error, set if error.
// If error, X0 is
// -3 if string overflow
// -2 if bad width
// -1 if value out of range
//
//---
//
// Unlike the integer-to-string conversions, this routine
// always right-justifies the number in the specified
// string. Width must be a positive number; negative
// values are illegal (actually, they are treated as
// *really* big positive numbers that will always raise
// a string overflow exception).
//
//***

 proc e64ToStr

#define e2sWidth x19 // chkNaNINF expects this here.
#define e2sExp x20
#define e2sFill x21 // chkNaNINF expects this here.
#define e2sBuffer x22 // chkNaNINF expects this here.
#define e2sMaxLen x23
#define e2sExpDigs x24

556 Chapter 9

#define e2sSign w25
#define eFailAdrs x25 // chkNaNINF expects this here.
#define e2sMantSz x26

 locals e2s
 qword e2s.x1x2
 qword e2s.x3x4
 qword e2s.x5x19
 qword e2s.x20x21
 qword e2s.x22x23
 qword e2s.x24x25
 qword e2s.x26x27
 dword e2s.x0
 dword e2s.d0
 byte e2s.digits, 64
 byte e2s.stack, 64
 endl e2s

 // Build activation record and preserve registers:

 enter e2s.size
 str x0, [fp, #e2s.x0]
 stp x1, x2, [fp, #e2s.x1x2]
 stp x3, x4, [fp, #e2s.x3x4]
 stp x5, x19, [fp, #e2s.x5x19]
 stp x20, x21, [fp, #e2s.x20x21]
 stp x22, x23, [fp, #e2s.x22x23]
 stp x24, x25, [fp, #e2s.x24x25]
 stp x26, x27, [fp, #e2s.x26x27]
 str d0, [fp, #e2s.d0]

 // Move important data to nonvolatile registers:

 mov e2sBuffer, x0
 mov e2sWidth, x1
 mov e2sFill, x2
 mov e2sExpDigs, x3
 mov e2sMaxLen, x4

 // See if the width is greater than the buffer size:

 cmp e2sWidth, e2sMaxLen
 bhs strOvfl

 strb wzr, [e2sBuffer, e2sWidth] // Zero-terminate str.

// First, make sure the width isn't 0:

 1 cmp e2sWidth, #0
 beq valOutOfRng

// Just to be on the safe side, don't allow widths greater
// than 1024:

Numeric Conversion 557

 cmp e2sWidth, #1024
 bhi badWidth

// Check for NaN and INF:

 2 lea failAdrs, exit_eToBuf // Note: X25, used before
 bl chkNaNINF // e2sSign (also X25)

// Okay, do the conversion:

 3 add x0, fp, #e2s.digits // lea x1, e2s.digits
 bl FPDigits // Convert D0 to digit str.
 mov e2sExp, x1 // Save away exponent result.
 mov e2sSign, w2 // Save mantissa sign char.

// Verify that there is sufficient room for the mantissa's sign,
// the decimal point, two mantissa digits, the "E",
// and the exponent's sign. Also add in the number of digits
// required by the exponent (2 for single, 3 for double).
//
// -1.2e+00 :real4
// -1.2e+000 :real8

 4 add x2, e2sExpDigs, #6 // Minimum number of posns
 cmp x2, e2sWidth
 bls goodWidth

// Output a sequence of "#...#" chars (to the specified width)
// if the width value is not large enough to hold the
// conversion:

 mov x2, e2sWidth
 mov x0, #'#'
 mov x1, e2sBuffer
fillPnd: strb w0, [x1]
 add x1, x1, #1
 subs x2, x2, #1
 bne fillPnd
 b.al exit_eToBuf

// Okay, the width is sufficient to hold the number; do the
// conversion and output the string here:

goodWidth:
 // Compute the # of mantissa digits to display,
 // not counting mantissa sign, decimal point,
 // "E", and exponent sign:

 5 sub e2sMantSz, e2sWidth, e2sExpDigs
 sub e2sMantSz, e2sMantSz, #4

 // Round the number to the specified number of
 // print positions. (Note: since there are a
 // maximum of 16 significant digits, don't

558 Chapter 9

 // bother with the rounding if the field width
 // is greater than 16 digits.)

 cmp e2sMantSz, #maxDigits
 bhs noNeedToRound

 // To round the value to the number of
 // significant digits, go to the digit just
 // beyond the last one you are considering (e2sMantSz
 // currently contains the number of decimal
 // positions) and add 5 to that digit.
 // Propagate any overflow into the remaining
 // digit positions.

 add x1, e2sMantSz, #1
 add x2, fp, #e2s.digits // lea x2, e2s.digits
 ldrb w0, [x2, x1] // Get least sig digit + 1.
 add w0, w0, #5 // Round (for example, +0.5).
 cmp w0, #'9'
 bhi whileDigGT9
 b.al noNeedToRound

// Sneak this code in here, after a branch, so the
// loop below doesn't get broken up.

firstDigitInNumber:

 // If you get to this point, you've hit the
 // first digit in the number, so you have to
 // shift all the characters down one position
 // in the string of bytes and put a "1" in the
 // first character position.

 ldr x0, [x2, #8]
 str x0, [x2, #9]
 ldr x0, [x2]
 str x0, [x2, #1]

 mov x0, #'1' // Store '1' in 1st
 strb w0, [x2] // digit position.

 // Bump exponent by 1, as the shift did
 // a divide by 10.

 add e2sExp, e2sExp, #1
 b.al noNeedToRound

// Subtract out overflow and add the carry into the previous
// digit (unless you hit the first digit in the number):

whileDigGT9:
 sub w0, w0, #10
 strb w0, [x2, x1]
 subs x1, x1, #1
 bmi firstDigitInNumber

Numeric Conversion 559

 // Add in carry to previous digit:

 ldrb w0, [x2, x1]
 add w0, w0, #1
 strb w0, [x2, x1]
 cmp w0, #'9' // Overflow if char > '9'
 bhi whileDigGT9

noNeedToRound:
 add x2, fp, #e2s.digits // lea x2, e2s.digits

// Okay, emit the string at this point. This is pretty easy,
// since all you really need to do is copy data from the
// digits array and add an exponent (plus a few other simple chars).

 6 mov x1, #0 // Count output mantissa digits.
 strb e2sSign, [e2sBuffer], #1

// Output the first character and a following decimal point
// if there are more than two mantissa digits to output.

 ldrb w0, [x2]
 strb w0, [e2sBuffer], #1
 add x1, x1, #1
 cmp x1, e2sMantSz
 beq noDecPt

 mov w0, #'.'
 strb w0, [e2sBuffer], #1

noDecPt:

// Output any remaining mantissa digits here.
// Note that if the caller requests the output of
// more than 16 digits, this routine will output 0s
// for the additional digits.

 b.al whileX2ltMantSizeTest

whileX2ltMantSize:

 mov w0, #'0'
 cmp x1, #maxDigits
 bhs justPut0

 ldrb w0, [x2, x1]

justPut0:
 strb w0, [e2sBuffer], #1
 add x1, x1, #1

whileX2ltMantSizeTest:

 cmp x1, e2sMantSz
 blo whileX2ltMantSize

560 Chapter 9

// Output the exponent:

 7 mov w0, #'e'
 strb w0, [e2sBuffer], #1
 mov w0, #'+'
 mov w4, #'-'
 neg x5, e2sExp

 cmp e2sExp, #0
 csel w0, w0, w4, ge
 csel e2sExp, e2sExp, x5, ge

 strb w0, [e2sBuffer], #1

 mov x0, e2sExp
 mov x1, e2sExpDigs
 mov x2, e2sBuffer
 bl expToBuf
 bcs error

exit_eToBuf:
 msr nzcv, xzr // clc = no error
 ldr x0, [fp, #e2s.x0]

returnE64:
 ldp x1, x2, [fp, #e2s.x1x2]
 ldp x3, x4, [fp, #e2s.x3x4]
 ldp x5, x19, [fp, #e2s.x5x19]
 ldp x20, x21, [fp, #e2s.x20x21]
 ldp x22, x23, [fp, #e2s.x22x23]
 ldp x24, x25, [fp, #e2s.x24x25]
 ldp x26, x27, [fp, #e2s.x26x27]
 ldr d0, [fp, #e2s.d0]
 leave

strOvfl: mov x0, #-3
 b.al error

badWidth: mov x0, #-2
 b.al error

valOutOfRng:
 mov x0, #-1
error:
 mrs x1, nzcv
 orr x1, x1, #(1 << 29)
 msr nzcv, x1 // stc = error
 b.al returnE64

 endp e64ToStr

Converting the mantissa to a string is very similar to the routine in
r64ToStr, though exponential form is a little easier, as the format always
places the decimal point immediately after the first mantissa digit. As with

Numeric Conversion 561

r64ToStr, e64ToStr begins by checking the input parameters to see if they are
valid 1 (returning with the carry flag set and an error code in X0 if an error
occurred). After parameter validation, the code checks for NaN or INF 2. It
then calls FPDigits to convert the mantissa to a string of digits 3 (held in a
local buffer). This call also returns the sign of the value as well as a decimal
integer exponent.

After calculating the decimal exponent value, the e64ToStr function
checks whether the converted value will fit into the space specified by the
Width input parameter 4. If the converted number would be too large,
e64ToStr emits a string of # characters to denote an error.

Note that this situation is not considered an error in the sense of return-
ing the carry flag set. If the caller specifies an insufficient field width, the
function still succeeds in creating a string conversion; that string just hap-
pens to be filled with # characters. The carry flag is set, on error, when
e64ToStr cannot produce an output string.

After verifying that the string will fit in the specified field width, the
e64ToStr function rounds the result to the specified number of decimal dig-
its 5. This algorithm is identical to that used by r64ToStr. Next, the code
outputs the mantissa digits 6. Again, this is similar to the way r64ToStr
works, except that the decimal point is always placed after the first digit
(no need to calculate its position). Finally, the code emits e followed by the
exponent’s sign character 7 and then calls expToBuf to convert the exponent
to a one-, two-, or three-digit character sequence (specified by the expDigs
parameter the caller passes in X3).

The remaining code in Listing 9-13 provides utility functions used by
the main program to display data (r64Print and e64Print), along with the
asmMain procedure that demonstrates floating-point output using the func-
tions in this section:

// Listing9-13.S (cont.)
//
 proc r64Print

 stp x0, x1, [sp, #-16]!
 stp x2, x3, [sp, #-16]!
 stp x4, x5, [sp, #-16]!
 stp x6, x7, [sp, #-16]!
 stp x8, lr, [sp, #-16]!
 sub sp, sp, #64

 lea x0, fmtStr1
 lea x1, r64str_1
 mstr x1, [sp]
 bl printf

 add sp, sp, #64
 ldp x8, lr, [sp], #16
 ldp x6, x7, [sp], #16
 ldp x4, x5, [sp], #16
 ldp x2, x3, [sp], #16

562 Chapter 9

 ldp x0, x1, [sp], #16
 ret
 endp r64Print

 proc e64Print
 stp x0, x1, [sp, #-16]!
 stp x2, x3, [sp, #-16]!
 stp x4, x5, [sp, #-16]!
 stp x6, x7, [sp, #-16]!
 stp x8, lr, [sp, #-16]!
 sub sp, sp, #64

 lea x0, fmtStr3
 lea x1, r64str_1
 mstr x1, [sp]
 bl printf

 add sp, sp, #64
 ldp x8, lr, [sp], #16
 ldp x6, x7, [sp], #16
 ldp x4, x5, [sp], #16
 ldp x2, x3, [sp], #16
 ldp x0, x1, [sp], #16
 ret
 endp e64Print

Note that these functions preserve all the nonvolatile registers because
printf() can modify them.

The asmMain function is a typical demonstration program for the floating-
point string-conversion functions. It calls the r64ToStr and e64ToStr func-
tions with various input parameters to demonstrate the use of these
functions:

// Listing9-13.S (cont.)
//
1 r64_1: .double 1.234567890123456
 .double 0.0000000000000001
 .double 1234567890123456.0
 .double 1234567890.123456
 .double 99499999999999999.0
 .dword 0x7ff0000000000000
 .dword 0xfff0000000000000
 .dword 0x7fffffffffffffff
 .dword 0xffffffffffffffff
 .double 0.0
 .double -0.0
fCnt = (. - r64_1)

rSizes: .word 12, 12, 2, 7, 0, 0, 0, 0, 0, 2, 2

e64_1: .double 1.234567890123456e123
 .double 1.234567890123456e-123
e64_3: .double 1.234567890123456e1

Numeric Conversion 563

 .double 1.234567890123456e-1
 .double 1.234567890123456e10
 .double 1.234567890123456e-10
 .double 1.234567890123456e100
 .double 1.234567890123456e-100
 .dword 0x7ff0000000000000
 .dword 0xfff0000000000000
 .dword 0x7fffffffffffffff
 .dword 0xffffffffffffffff
 .double 0.0
 .double -0.0
eCnt = (. - e64_1)

eSizes: .word 6, 9, 8, 12, 14, 16, 18, 20, 12, 12, 12, 12, 8, 8
expSizes: .word 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2

// Here is the asmMain function:

 proc asmMain, public

 locals am
 dword am.x8x9
 dword am.x27
 byte am.stk, 64
 endl am

 enter am.size // Activation record
 stp x8, x9, [fp, #am.x8x9]
 str x27, [fp, #am.x27]

// F output

 mov x2, #16 // decDigits
fLoop:
 ldr d0, r64_1
 lea x0, r64str_1 // Buffer
 mov x1, #30 // fWidth
 mov x3, #'.' // Fill
 mov x4, 32 // maxLength
 bl r64ToStr
 bcs fpError
 bl r64Print
 subs x2, x2, #1
 bpl fLoop

 lea x0, newlines
 bl printf

 lea x5, r64_1
 lea x6, rSizes
 mov x7, #fCnt/8
f2Loop: ldr d0, [x5], #8
 lea x0, r64str_1 // Buffer
 mov x1, #30 // fWidth

564 Chapter 9

 ldr w2, [x6], #4 // decDigits
 mov x3, #'.' // Fill
 mov x4, #32 // maxLength
 bl r64ToStr
 bcs fpError
 bl r64Print
 subs x7, x7, #1
 bne f2Loop

// E output

 lea x0, expStr
 bl printf

 lea x5, e64_1
 lea x6, eSizes
 lea x7, expSizes
 mov x8, #eCnt/8
eLoop:
 ldr d0, [x5], #8
 lea x0, r64str_1 // Buffer
 ldr w1, [x6], #4 // fWidth
 mov x2, #'.' // Fill
 ldr w3, [x7], #4 // expDigits
 mov x4, #32 // maxLength
 bl e64ToStr
 bcs fpError
 bl e64Print
 subs x8, x8, #1
 bne eLoop
 b.al allDone

fpError:
 mov x1, x0
 lea x0, fmtStr2
 mstr x1, [sp]
 bl printf

allDone:
 ldp x8, x9, [fp, #am.x8x9]
 ldr x27, [fp, #am.x27]
 leave
 endp asmMain

Listing 9-13 places the floating-point constant values in the code sec-
tion rather than a read-only data section 1, making it easier to modify
them when looking at the main program.

The following is the build command and sample output for Listing 9-13:

% ./build Listing9-13
% 1G
Calling Listing9-13:
r64ToStr: value='........... 1.2345678901234560'

Numeric Conversion 565

r64ToStr: value='............ 1.234567890123456'
r64ToStr: value='............. 1.23456789012345'
r64ToStr: value='.............. 1.2345678901234'
r64ToStr: value='............... 1.234567890123'
r64ToStr: value='................ 1.23456789012'
r64ToStr: value='................. 1.2345678901'
r64ToStr: value='.................. 1.234567890'
r64ToStr: value='................... 1.23456789'
r64ToStr: value='.................... 1.2345678'
r64ToStr: value='..................... 1.234567'
r64ToStr: value='...................... 1.23456'
r64ToStr: value='....................... 1.2345'
r64ToStr: value='........................ 1.234'
r64ToStr: value='......................... 1.23'
r64ToStr: value='.......................... 1.2'
r64ToStr: value='............................ 1'

r64ToStr: value='............... 1.234567890123'
r64ToStr: value='............... 0.000000000000'
r64ToStr: value='.......... 1234567890123456.00'
r64ToStr: value='........... 1234567890.1234560'
r64ToStr: value='............ 99500000000000000'
r64ToStr: value='INF '
r64ToStr: value='-INF '
r64ToStr: value='NaN '
r64ToStr: value='NaN '
r64ToStr: value='......................... 0.00'
r64ToStr: value='.........................-0.00'

Testing e64ToStr:

e64ToStr: value='######'
e64ToStr: value=' 1.2e-123'
e64ToStr: value=' 1.2e+01'
e64ToStr: value=' 1.23456e-01'
e64ToStr: value=' 1.2345678e+10'
e64ToStr: value=' 1.234567890e-10'
e64ToStr: value=' 1.2345678901e+100'
e64ToStr: value=' 1.234567890123e-100'
e64ToStr: value='INF '
e64ToStr: value='-INF '
e64ToStr: value='NaN '
e64ToStr: value='NaN '
e64ToStr: value=' 0.0e+00'
e64ToStr: value='-0.0e+00'
Listing9-13 terminated

This output demonstrates double-precision floating-point output. If you
want to convert a single-precision value to a string, first convert the single-
precision value to double-precision and use this code to translate the result-
ing double-precision value to a string.

566 Chapter 9

	 9.3	 String-to-Numeric Conversions
The routines converting numeric values to strings, and strings to numeric
values, have two fundamental differences. First of all, numeric-to-string
conversions generally occur without possibility of error (assuming you have
allocated a sufficiently large buffer so that the conversion routines don’t
write data beyond the end of the buffer). String-to-numeric conversions, on
the other hand, must handle the real possibility of errors like illegal charac-
ters and numeric overflow.

A typical numeric input operation consists of reading a string of char-
acters from the user and then translating this string of characters into an
internal numeric representation. For example, in C++ a statement like
cin >> i32; reads a line of text from the user and converts a sequence of
digits appearing at the beginning of that line of text into a 32-bit signed
integer (assuming i32 is a 32-bit int object). The cin >> i32; statement skips
over certain characters, like leading spaces, in the string that may appear
before the actual numeric characters. The input string may also contain
additional data beyond the end of the numeric input (for example, it is pos-
sible to read two integer values from the same input line), and therefore the
input conversion routine must determine where the numeric data ends in
the input stream.

Typically, C++ achieves this by looking for a character from a set of
delimiter characters. The delimiter character set could be something as
simple as any character that is not a numeric digit; or the set could be the
whitespace characters (space, tab, and so on) along with perhaps a few
other characters such as a comma (,) or another punctuation character.
For the sake of example, the code in this section assumes that any leading
spaces or tab characters (ASCII code 9) may precede the first numeric digit
and that the conversion stops on the first non-digit character it encounters.
Possible error conditions are as follows:

•	 No numeric digits at all at the beginning of the string (following any
spaces or tabs).

•	 The string of digits is a value that would be too large for the intended
numeric size (for example, 64 bits).

It will be up to the caller to determine whether the numeric string ends
with an invalid character upon return from the function call.

9.3.1  Decimal Strings to Integers
The basic algorithm to convert a string containing decimal digits to a num-
ber is the following:

	 1.	Initialize an accumulator variable to 0.

	 2.	Skip any leading spaces or tabs in the string.

	 3.	Fetch the first character after the spaces/tabs.

Numeric Conversion 567

	 4.	If the character is not a numeric digit, return an error. If the character
is a numeric digit, fall through to step 5.

	 5.	Convert the numeric character to a numeric value (using AND 0xf).

	 6.	Set the accumulator = (accumulator × 10) + current numeric value.

	 7.	If overflow occurs, return and report an error. If no overflow occurs,
fall through to step 8.

	 8.	Fetch the next character from the string.

	 9.	If the character is a numeric digit, go back to step 5; otherwise, fall
through to step 10.

	10.	Return success, with the accumulator containing the converted value.

For signed integer input, you use this same algorithm with the follow-
ing modifications:

•	 If the first non-space/tab character is a hyphen (-), set a flag denoting
that the number is negative and skip the - character. If the first charac-
ter is not -, clear the flag.

•	 At the end of a successful conversion, if the flag is set, negate the inte-
ger result before returning (you must check for overflow on the negate
operation).

Listing 9-14 implements the conversion algorithm; I’ve again broken
this listing into several sections to better annotate it. The first section con-
tains the usual format strings, along with various sample strings the main
program uses to test the strtou and strtoi functions.

// Listing9-14.S
//
// String-to-numeric conversion

 #include "aoaa​.inc"

false = 0
true = 1
tab = 9

 .section .rodata, ""
ttlStr: .asciz "Listing 9-14"
fmtStr1: .ascii "strtou: String='%s'\n"
 .asciz " value=%llu\n"

fmtStr2: .ascii "Overflow: String='%s'\n"
 .asciz " value=%llx\n"

fmtStr3: .ascii "strtoi: String='%s'\n"
 .asciz " value=%lli\n"

unexError: .asciz "Unexpected error in program\n"

568 Chapter 9

value1: .asciz " 1"
value2: .asciz "12 "
value3: .asciz " 123 "
value4: .asciz "1234"
value5: .asciz "1234567890123456789"
value6: .asciz "18446744073709551615"
OFvalue: .asciz "18446744073709551616"
OFvalue2: .asciz "999999999999999999999"

ivalue1: .asciz " -1"
ivalue2: .asciz "-12 "
ivalue3: .asciz " -123 "
ivalue4: .asciz "-1234"
ivalue5: .asciz "-1234567890123456789"
ivalue6: .asciz "-18446744073709551615"
OFivalue: .asciz "18446744073709551616"
OFivalue2: .asciz "-18446744073709551616"

 .code
 .extern printf

//
//
// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

This program doesn’t have any static, writable data; all variable data is
kept in registers or in local variables.

The following code is the strtou function, which converts strings con-
taining decimal digits to an unsigned integer:

// Listing9-14.S (cont.)
//
//
//
// strtou
//
// Converts string data to a 64-bit unsigned integer
//
// Input:
//
// X1- Pointer to buffer containing string to convert
//
// Outputs:
//
// X0- Contains converted string (if success), error code
// if an error occurs
//
// X1- Points at first char beyond end of numeric string
// If error, X1's value is restored to original value.

Numeric Conversion 569

// Caller can check character at [X1] after a
// successful result to see if the character following
// the numeric digits is a legal numeric delimiter.
//
// C- (carry flag) Set if error occurs, clear if
// conversion was successful. On error, X0 will
// contain 0 (illegal initial character) or
// 0ffffffffffffffffh (overflow).

 proc strtou

 str x5, [sp, #-16]!
 stp x3, x4, [sp, #-16]!
 stp x1, x2, [sp, #-16]!

 mov x3, xzr
 mov x0, xzr
 mov x4, #10 // Used to mul by 10

 // The following loop skips over any whitespace (spaces and
 // tabs) that appear at the beginning of the string:

 1 sub x1, x1, #1 // Incremented below
skipWS: ldrb w2, [x1, #1]! // Fetch next (first) char.
 cmp w2, #' '
 beq skipWS
 cmp w2, #tab
 beq skipWS

 // If you don't have a numeric digit at this
 // point, return an error.

 2 cmp w2, #'0' // Note: '0' < '1' < ... < '9'
 blo badNumber
 cmp w2, #'9'
 bhi badNumber

// Okay, the first digit is good. Convert the string
// of digits to numeric form.
//
// Have to check for unsigned integer overflow here.
// Unfortunately, madd does not set the carry or
// overflow flag, so you have to use umulh to see if
// overflow occurs after a multiplication and do
// an explicit add (rather than madd) to add the
// digit into the accumulator (X0).

3 convert: umulh x5, x0, x4 // Acc * 10
 cmp x5, xzr
 bne overflow
 and x2, x2, #0xf // Char -> numeric in X2
 mul x0, x0, x4 // Can't use madd!
 adds x0, x0, x2 // Add in digit.
 bcs overflow

570 Chapter 9

 4 ldrb w2, [x1, #1]! // Get next char.
 cmp w2, #'0' // Check for digit.
 blo endOfNum
 cmp w2, #'9'
 bls convert

// If you get to this point, you've successfully converted
// the string to numeric form. Return without restoring
// the value in X1 (X1 points at end of digits).

5 endOfNum: ldp x3, x4, [sp], #16 // Really X1, X2
 mov x2, x4
 ldp x3, x4, [sp], #16
 ldr x5, [sp], #16

 // Because the conversion was successful, this
 // procedure leaves X1 pointing at the first
 // character beyond the converted digits.
 // Therefore, we don't restore X1 from the stack.

 msr nzcv, xzr // clr c = no error
 ret

// badNumber- Drop down here if the first character in
// the string was not a valid digit.

6 badNumber: mov x0, xzr
errorRet: mrs x1, nzcv // Return error in carry flag.
 orr x1, x1, #(1 << 29)
 msr nzcv, x1 // Set c = error.

 ldp x1, x2, [sp], #16
 ldp x3, x4, [sp], #16
 ldr x5, [sp], #16
 ret

// overflow- Drop down here if the accumulator overflowed
// while adding in the current character.

overflow: mov x0, #-1 // 0xFFFFFFFFFFFFFFFF
 b.al errorRet
 endp strtou

On entry into strtou, the X1 register points at the first character of the
string to convert. This function begins by skipping over any whitespace
characters (spaces and tabs) in the string, leaving X1 pointing at the first
non-space/non-tab character 1.

After any whitespace characters, the first character must be a decimal
digit, or strtou must return a conversion error. Therefore, after finding a
non-whitespace character, the code checks to see that the character is in
the range '0' to '9' 2.

After verifying that the first character is a digit, the code enters the
main conversion loop 3. Normally, you’d just convert the character to an

Numeric Conversion 571

integer (by ANDing with 0xF), multiply the accumulator in X0 by 10, and
add in the character’s value. This could be done using two instructions:

and x2, x2, #0xf
madd x0, x0, x4, x2 // X4 contains 10.

The only problem is that you cannot detect overflow by using these
two instructions (something that the strtou function must do). To detect
an overflow due to the multiplication by 10, the code must use the umulh
instruction and check the result for 0 (if it is not 0, overflow occurs) 3. If
the umulh result is 0, the code can multiply the accumulator (X0) by 10 with-
out fear of overflow. Of course, overflow can still occur when adding the
character’s value to the product of X0 and 10, so you still cannot use madd;
instead, you must multiply the accumulator by 10, then use the adds instruc-
tion to add in the character value and check the carry flag immediately
thereafter.

The convert loop repeats this process until either an overflow occurs
or it encounters a nondigit character. Once it encounters a nondigit char-
acter 4, the converted integer value is in the X0 register, and the function
returns with the carry clear. Note that if the conversion is successful, the
strtou function does not restore the X1 register; instead, it returns with X1
pointing at the first nondigit character 5. It is the caller’s responsibility to
check this character to see if it is legitimate.

In the event of an overflow or an illegal starting character, the function
returns with the carry flag set and an error code in X0 6.

The following code is the strtoi procedure, which is the signed-integer
version of the strtou procedure:

// Listing9-14.S (cont.)
//
// strtoi
//
// Converts string data to a 64-bit signed integer
//
// Input:
//
// X1- Pointer to buffer containing string to convert
//
// Outputs:
//
// X0- Contains converted string (if success), error code
// if an error occurs
//
// X1- Points at first char beyond end of numeric string.
// If error, X1's value is restored to original value.
// Caller can check character at [X1] after a
// successful result to see if the character following
// the numeric digits is a legal numeric delimiter.
//
// C- (carry flag) Set if error occurs, clear if
// conversion was successful. On error, X0 will

572 Chapter 9

// contain 0 (illegal initial character) or
// -1 (overflow).

tooBig: .dword 0x7fffffffffffffff

 proc strtoi

 locals si
 qword si.saveX1X2
 endl si

 enter si.size

 // Preserve X1 in case you have to restore it;
 // X2 is the sign flag:

 stp x1, x2, [fp, #si.saveX1X2]

 // Assume you have a nonnegative number:

 mov x2, #false

// The following loop skips over any whitespace (spaces and
// tabs) that appear at the beginning of the string:

 1 sub x1, x1, #1 // Adjust for +1 below.
skipWSi: ldrb w0, [x1, #1]!
 cmp w0, #' '
 beq skipWSi
 cmp w0, #tab
 beq skipWSi

 // If the first character you've encountered is
 // '-', then skip it, but remember that this is
 // a negative number:

 2 cmp w0, #'-'
 bne notNeg
 mov w2, #true
 add x1, x1, #1 // Skip '-'

3 notNeg: bl strtou // Convert string to integer.
 bcs hadError

 // strtou returned success. Check the negative
 // flag and negate the input if the flag
 // contains true:

 4 cmp w2, #true
 bne itsPosOr0

 negs x0, x0
 bvs overflowi
 ldr x2, [fp, #si.saveX1X2+8]

Numeric Conversion 573

 msr nzcv, xzr // clr c = no error
 leave

// Success, so don't restore X1:

itsPosOr0:
 ldr x2, tooBig
 cmp x0, x2 // Number is too big.
 bhi overflowi
 ldr x2, [fp, #si.saveX1X2+8]
 msr nzcv, xzr // clr c = no error
 leave

// If you have an error, you need to restore RDI from the stack:

overflowi: mov x0, #-1 // Indicate overflow.
hadError:
 mrs x2, nzcv // Return error in carry flag.
 orr x2, x2, #(1 << 29)
 msr nzcv, x2 // Set c = error.
 ldp x1, x2, [fp, #si.saveX1X2]
 leave
 endp strtoi

The strtoi function converts a string containing a signed integer to the
corresponding value in X0. The code begins by eliminating whitespace 1,
then checks for a '-' character 2. The function maintains a “negative
flag” in the X2 register (0 = nonnegative, 1 = negative). After skipping the
optional sign character, the code calls the strtou function to convert the fol-
lowing string to an unsigned value 3.

Upon return from strtou, the strtoi function checks the sign flag in
X2 and negates the number if it’s supposed to be negative 4. In both cases
(negative or nonnegative), the code also checks for an overflow condition
and returns an error if an overflow occurred.

As for strtou, the strtoi function does not restore X1 if the conversion
was successful. However, it will restore X1 if an overflow occurred or if
strtou reported an error.

When you call strtou to convert the string to an integer, strtoi will allow
an arbitrary amount of whitespace between the minus sign and the first
digit of a string representing a negative number. If this is a problem for you,
modify strtou to skip whitespace and then call a subservient routine to do
the conversion; next, have strtoi call that subservient routine (which will
return an illegal initial character error, if appropriate) in place of strtou.

The asmMain function demonstrates calling the strtou and strtoi
functions:

// Listing9-14.S (cont.)
//
//
//

574 Chapter 9

// Here is the asmMain function:

 proc asmMain, public

 locals am
 byte am.shadow, 64
 endl am

 enter am.size

// Test unsigned conversions:

 lea x1, value1
 bl strtou
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr1
 lea x1, value1
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, value2
 bl strtou
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr1
 lea x1, value2
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, value3
 bl strtou
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr1
 lea x1, value3
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, value4
 bl strtou
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr1
 lea x1, value4
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

Numeric Conversion 575

 lea x1, value5
 bl strtou
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr1
 lea x1, value5
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, value6
 bl strtou
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr1
 lea x1, value6
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, OFvalue
 bl strtou
 bcc UnexpectedError
 cmp x0, xzr // Nonzero for overflow
 beq UnexpectedError

 mov x2, x0
 lea x0, fmtStr2
 lea x1, OFvalue
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, OFvalue2
 bl strtou
 bcc UnexpectedError
 cmp x0, xzr // Nonzero for overflow
 beq UnexpectedError

 mov x2, x0
 lea x0, fmtStr2
 lea x1, OFvalue2
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

// Test signed conversions:

 lea x1, ivalue1
 bl strtoi
 bcs UnexpectedError

 mov x2, x0

576 Chapter 9

 lea x0, fmtStr3
 lea x1, ivalue1
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, ivalue2
 bl strtoi
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr3
 lea x1, ivalue2
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, ivalue3
 bl strtoi
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr3
 lea x1, ivalue3
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, ivalue4
 bl strtoi
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr3
 lea x1, ivalue4
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, ivalue5
 bl strtoi
 bcs UnexpectedError

 mov x2, x0
 lea x0, fmtStr3
 lea x1, ivalue5
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, ivalue6
 bl strtoi
 bcs UnexpectedError

Numeric Conversion 577

 mov x2, x0
 lea x0, fmtStr3
 lea x1, ivalue6
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, OFivalue
 bl strtoi
 bcc UnexpectedError
 cmp x0, xzr // Nonzero for overflow
 beq UnexpectedError

 mov x2, x0
 lea x0, fmtStr2
 lea x1, OFivalue
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x1, OFivalue2
 bl strtoi
 bcc UnexpectedError
 cmp x0, xzr // Nonzero for overflow
 beq UnexpectedError

 mov x2, x0
 lea x0, fmtStr2
 lea x1, OFivalue2
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 b.al allDone

UnexpectedError:
 lea x0, unexError
 bl printf

allDone: leave // Returns to caller
 endp asmMain

The asmMain function in Listing 9-14 is a typical test program; it converts
various strings appearing in the read-only data section to their correspond-
ing integer values and displays them. It also tests a couple of overflow condi-
tions to verify that the routines properly handle overflow.

The following is the build command and sample output for the program
in Listing 9-14:

% ./build Listing9-14
% ./Listing9-14
Calling Listing9-14:
strtou: String=' 1'
 value=1

578 Chapter 9

strtou: String='12 '
 value=12
strtou: String=' 123 '
 value=123
strtou: String='1234'
 value=1234
strtou: String='1234567890123456789'
 value=1234567890123456789
strtou: String='18446744073709551615'
 value=18446744073709551615
Overflow: String='18446744073709551616'
 value=ffffffffffffffff
Overflow: String='999999999999999999999'
 value=ffffffffffffffff
strtoi: String=' -1'
 value=-1
strtoi: String='-12 '
 value=-12
strtoi: String=' -123 '
 value=-123
strtoi: String='-1234'
 value=-1234
strtoi: String='-1234567890123456789'
 value=-1234567890123456789
strtoi: String='-18446744073709551615'
 value=1
Overflow: String='18446744073709551616'
 value=ffffffffffffffff
Overflow: String='-18446744073709551616'
 value=ffffffffffffffff
Listing9-14 terminated

For an extended-precision string-to-numeric conversion, simply modify
the strtou function to include an extended-precision accumulator, then
do an extended-precision multiplication by 10 (rather than a standard
multiplication).

9.3.2  Hexadecimal Strings to Numeric Form
As was the case for numeric output, hexadecimal input is the easiest
numeric input routine to write. The basic algorithm for converting hexa-
decimal strings to numeric form is the following:

	 1.	Initialize an accumulator value to 0.

	 2.	For each input character that is a valid hexadecimal digit, repeat steps 3
through 6; skip down to step 7 when the character is not a valid hexa-
decimal digit.

	 3.	Convert the hexadecimal character to a value in the range 0 to 15
(0h to 0Fh).

Numeric Conversion 579

	 4.	If the HO 4 bits of the accumulator value are nonzero, raise an
exception.

	 5.	Multiply the current value by 16 (that is, shift left 4 bits).

	 6.	Add the converted hexadecimal digit value to the accumulator.

	 7.	Check the current input character to ensure that it is a valid delimiter.
Raise an exception if it is not.

Listing 9-15 implements this hexadecimal input routine for 64-bit
values.

// Listing9-15.S
//
// Hexadecimal-string-to-numeric conversion

 #include "aoaa​.inc"

false = 0
true = 1
tab = 9

 .section .rodata, ""
ttlStr: .asciz "Listing 9-15"
fmtStr1: .ascii "strtoh: String='%s' "
 .asciz "value=%llx\n"

fmtStr2: .asciz "Error, str='%s', x0=%lld\n"

fmtStr3: .ascii "Error, expected overflow: x0=%llx, "
 .asciz "str='%s'\n"

fmtStr4: .ascii "Error, expected bad char: x0=%llx, "
 .asciz "str='%s'\n"

hexStr: .asciz "1234567890abcdef"
hexStrOVFL: .asciz "1234567890abcdef0"
hexStrBAD: .asciz "x123"

 .code
 .extern printf

///
//
// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

///
//

580 Chapter 9

// strtoh:
//
// Converts string data to a 64-bit unsigned integer
//
// Input:
//
// X1- Pointer to buffer containing string to convert
//
// Outputs:
//
// X0- Contains converted string (if success), error code
// if an error occurs
//
// X1- Points at first char beyond end of hexadecimal string.
// If error, X1's value is restored to original value.
// Caller can check character at [X1] after a
// successful result to see if the character following
// the hexadecimal digits is a legal delimiter.
//
// C- (carry flag) Set if error occurs, clear if
// conversion was successful. On error, X0 will
// contain 0 (illegal initial character) or
// -1 = 0xffffffffffffffff (overflow).

 proc strtoh

 stp x3, x4, [sp, #-16]!
 stp x1, x2, [sp, #-16]!

 // This code will use the value in X3 to test
 // whether overflow will occur in X0 when
 // shifting to the left 4 bits:

 mov x3, 0xF000000000000000
 mov x0, xzr // Zero out accumulator.

 // 0x5f is used to convert lowercase to
 // uppercase:

 mov x4, 0x5f

// The following loop skips over any whitespace (spaces and
// tabs) that appear at the beginning of the string:

 sub x1, x1, #1 // Because of inc below
skipWS: ldrb w2, [x1, #1]!
 cmp w2, #' '
 beq skipWS
 cmp w2, #tab
 beq skipWS

 // If you don't have a hexadecimal digit at this
 // point, return an error:

Numeric Conversion 581

 1 cmp w2, #'0' // Note: '0' < '1' < ... < '9'
 blo badNumber
 cmp w2, #'9'
 bls convert
 and x2, x2, x4 // Cheesy LC -> UC conversion
 cmp w2, #'A'
 blo badNumber
 cmp w2, #'F'
 bhi badNumber
 sub w2, w2, #7 // Maps 41h..46h -> 3ah..3fh

 // Okay, the first digit is good. Convert the
 // string of digits to numeric form:

2 convert: ands xzr, x3, x0 // See if adding in the current
 bne overflow // digit will cause an overflow.

 and x2, x2, #0xf // Convert to numeric in X2.

 // Multiply 64-bit accumulator by 16 and add in
 // new digit:

 3 lsl x0, x0, #4
 add x0, x0, x2 // Never overflows

 // Move on to next character:

 ldrb w2, [x1, #1]!
 cmp w2, #'0'
 blo endOfNum
 cmp w2, #'9'
 bls convert

 and x2, x2, x4 // Cheesy LC -> UC conversion
 cmp x2, #'A'
 blo endOfNum
 cmp x2, #'F'
 bhi endOfNum
 sub x2, x2, #7 // Maps 41h..46h -> 3ah..3fh
 b.al convert

// If you get to this point, you've successfully converted
// the string to numeric form:

endOfNum:

 // Because the conversion was successful, this
 // procedure leaves X1 pointing at the first
 // character beyond the converted digits.
 // Therefore, don't restore X1 from the stack.

 ldp x3, x2, [sp], #16 // X3 holds old X1
 ldp x3, x4, [sp], #16
 msr nzcv, xzr // clr c = no error
 ret

582 Chapter 9

// badNumber- Drop down here if the first character in
// the string was not a valid digit.

badNumber: mov x0, xzr
 b.al errorExit

overflow: mov x0, #-1 // Return -1 as error on overflow.
errorExit:
 mrs x1, nzcv // Return error in carry flag.
 orr x1, x1, #(1 << 29)
 msr nzcv, x1 // Set c = error.

 ldp x1, x2, [sp], #16
 ldp x3, x4, [sp], #16
 ret
 endp strtoh

///
//
// Here is the asmMain function:

 proc asmMain, public

 locals am
 byte am.stack, 64
 endl am

 enter am.size

 // Test hexadecimal conversion:

 lea x1, hexStr
 bl strtoh
 bcs error

 mov x2, x0
 lea x1, hexStr
 lea x0, fmtStr1
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 // Test overflow conversion:

 lea x1, hexStrOVFL
 bl strtoh
 bcc unexpected

 mov x2, x0
 lea x0, fmtStr2
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

Numeric Conversion 583

// Test bad character:

 lea x1, hexStrBAD
 bl strtoh
 bcc unexp2

 mov x2, x0
 lea x0, fmtStr2
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 b.al allDone

unexpected: mov x3, x0
 lea x0, fmtStr3
 mstr x1, [sp]
 mstr x2, [sp, #8]
 mstr x3, [sp, #16]
 bl printf
 b.al allDone

unexp2: mov x3, x0
 lea x0, fmtStr4
 mstr x1, [sp]
 mstr x2, [sp, #8]
 mstr x3, [sp, #16]
 bl printf
 b.al allDone

error: mov x2, x0
 lea x0, fmtStr2
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

allDone: leave
 endp asmMain

The strtoh function is similar to strtou, except that it tests for hexadeci-
mal digits 1 (rather than just decimal digits), tests the HO 4 bits to deter-
mine whether an overflow occurs 2 (much easier than the decimal case),
and multiplies by the hexadecimal radix (16) rather than by 10 3.

Here’s the build command and sample output for the program in
Listing 9-15:

% ./build Listing9-15
% ./Listing9-15
Calling Listing9-15:
strtoh: String='1234567890abcdef' value=1234567890abcdef
Error, str='1234567890abcdef0', x0=-1
Error, str='x123', x0 = 0
Listing9-15 terminated

584 Chapter 9

For hexadecimal string conversions that handle numbers greater than
64 bits, you have to use an extended-precision shift left by 4 bits. Listing 9-16
demonstrates the necessary modifications to the strtoh function for a
128-bit conversion.

// Listing9-16.S
//
// 128-bit Hexadecimal-string-to-numeric conversion

 #include "aoaa​.inc"

false = 0
true = 1
tab = 9

 .section .rodata, ""
 tlStr: .asciz "Listing 9-16"

fmtStr1: .asciz "strtoh128: value=%llx%llx, String='%s'\n"

hexStr: .asciz "1234567890abcdeffedcba0987654321"

 .code
 .extern printf

///
//
// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

///
//
// strtoh128
//
// Converts string data to a 128-bit unsigned integer
//
// Input:
//
// X2- Pointer to buffer containing string to convert
//
// Outputs:
//
// X1:X0- Contains converted string (if success), error code
// if an error occurs
//
// X2- Points at first char beyond end of hexadecimal
// string. If error, X2's value is restored to
// original value.
// Caller can check character at [X2] after a

Numeric Conversion 585

// successful result to see if the character following
// the hexadecimal digits is a legal delimiter.
//
// C- (carry flag) Set if error occurs, clear if
// conversion was successful. On error, X0 will
// contain 0 (illegal initial character) or
// -1 = 0xffffffffffffffff (overflow).

 proc strtoh128

 stp x4, x5, [sp, #-16]!
 stp x2, x3, [sp, #-16]!

 // This code will use the value in X4 to test
 // whether overflow will occur in X1 when
 // shifting to the left 4 bits:

 mov x4, 0xF000000000000000
 mov x0, xzr // Zero out LO accumulator.
 mov x1, xzr // Zero out HO accumulator.

 // 0x5f is used to convert lowercase to
 // uppercase:

 mov x5, 0x5f

// The following loop skips over any whitespace (spaces and
// tabs) that appear at the beginning of the string:

 sub x2, x2, #1 // Because of inc below
skipWS: ldrb w3, [x2, #1]!
 cmp w3, #' '
 beq skipWS
 cmp w3, #tab
 beq skipWS

 // If you don't have a hexadecimal digit at this
 // point, return an error:

 cmp w3, #'0' // Note: '0' < '1' < ... < '9'
 blo badNumber
 cmp w3, #'9'
 bls convert
 and x3, x3, x5 // Cheesy LC -> UC conversion
 cmp w3, #'A'
 blo badNumber
 cmp w3, #'F'
 bhi badNumber
 sub w3, w3, #7 // Maps 41h..46h -> 3ah..3fh

 // Okay, the first digit is good. Convert the
 // string of digits to numeric form:

convert: ands xzr, x4, x1 // See whether adding in the current
 bne overflow // digit will cause an overflow.

586 Chapter 9

 and x3, x3, #0xf // Convert to numeric in X3.

 // Multiply 128-bit accumulator by 16 and add in
 // new digit (128-bit extended-precision shift
 // by 4 bits):

 1 lsl x1, x1, #4 // 128 bits shifted left 4 bits
 orr x1, x1, x0, lsr #60
 lsl x0, x0, #4
 add x0, x0, x3 // Never overflows

 // Move on to next character:

 ldrb w3, [x2, #1]!
 cmp w3, #'0'
 blo endOfNum
 cmp w3, #'9'
 bls convert

 and x3, x3, x5 // Cheesy LC -> UC conversion
 cmp x3, #'A'
 blo endOfNum
 cmp x3, #'F'
 bhi endOfNum
 sub x3, x3, #7 // Maps 41h..46h -> 3ah..3fh
 b.al convert

// If you get to this point, you've successfully converted
// the string to numeric form:

endOfNum:

 // Because the conversion was successful, this
 // procedure leaves X2 pointing at the first
 // character beyond the converted digits.
 // Therefore, we don't restore X2 from the stack.

 ldp x4, x3, [sp], #16 // X4 holds old X2.
 ldp x4, x5, [sp], #16
 msr nzcv, xzr // clr c = no error

 ret

// badNumber- Drop down here if the first character in
// the string was not a valid digit.

badNumber: mov x0, xzr
 b.al errorExit

overflow: mov x0, #-1 // Return -1 as error on overflow.
errorExit:

Numeric Conversion 587

 mrs x1, nzcv // Return error in carry flag.
 orr x1, x1, #(1 << 29)
 msr nzcv, x1 // Set c = error.
 ldp x2, x3, [sp], #16
 ldp x4, x5, [sp], #16
 ret
 endp strtoh128

///
//
// Here is the asmMain function:

 proc asmMain, public

 locals am
 byte am.stack, 64
 endl am

 enter am.size

// Test hexadecimal conversion:

 lea x2, hexStr
 bl strtoh128

 lea x3, hexStr
 mov x2, x0
 lea x0, fmtStr1
 mstr x1, [sp]
 mstr x2, [sp, #8]
 mstr x3, [sp, #16]
 bl printf

allDone: leave
 endp asmMain

This code works similarly to that in Listing 9-15. The main difference
is the 128-bit shift left by 4 bits 1 in Listing 9-16. The code shifts X0 to the
right 60 bits, then ORs this into X1 after shifting it to the left 4 bits, which
shifts 4 bits from X0 into X1.

Here’s the build command and sample output for Listing 9-16:

% ./build Listing9-16
% ./Listing9-16
Calling Listing9-16:
strtoh128: value=1234567890abcdeffedcba0987654321, String='1234567890abcdeffedcba0987654321'
Listing9-16 terminated

The hexadecimal-string-to-numeric function worked as expected.

588 Chapter 9

9.3.3  String to Floating-Point
Converting a string of characters representing a floating-point number to
the 64-bit double format is slightly easier than the double-to-string conver-
sion that appeared earlier in this chapter. Because decimal conversion (with
no exponent) is a subset of the more general scientific notation conversion,
if you can handle scientific notation, you get decimal conversion for free.
Beyond that, the basic algorithm is to convert the mantissa characters to an
integer form in order to convert to floating-point, then read the (optional)
exponent and adjust the double exponent accordingly. The algorithm for the
conversion is the following:

	 1.	Begin by stripping away any leading space or tab characters (and any
other delimiters).

	 2.	Check for a leading plus (+) or minus (-) sign character. Skip it if one
is present. Set a sign flag to true if the number is negative (false if
nonnegative).

	 3.	Initialize an exponent value to –16. The algorithm will create an inte-
ger value from the mantissa digits in the string. As double-precision
floats support a maximum of 16 significant digits, initializing the expo-
nent to –16 accounts for this.

	 4.	Initialize a significant-digit-counter variable that counts the number of
significant digits processed thus far to 16.

	 5.	If the number begins with any leading 0s, skip over them (do not
change the exponent or significant digit counters for leading 0s to the
left of the decimal point).

	 6.	If the scan encounters a decimal point after processing any leading 0s,
go to step 11; otherwise, fall through to step 7.

	 7.	For each nonzero digit to the left of the decimal point, if the significant
digit counter is not 0, multiply the integer accumulator by 10 and add in
the numeric equivalent of the digit. This is the standard integer conver-
sion. (If the significant digit counter is 0, the algorithm has already pro-
cessed 16 significant digits and will ignore any additional digits, since
the double format cannot represent more than 16 significant digits.)

	 8.	For each digit to the left of the decimal point, increment the exponent
value (originally initialized to –16) by 1.

	 9.	If the significant digit counter is not 0, decrement the significant digit
counter (which will also provide the index into the digit string array).

	10.	If the first nondigit encountered is not a decimal point, skip to step 14.

	11.	Skip over the decimal point character.

	12.	For each digit encountered to the right of the decimal point, continue
adding the digits to the integer accumulator as long as the significant
digit counter is not 0. If the significant digit counter is greater than 0,
decrement it. Also decrement the exponent value.

Numeric Conversion 589

	13.	If the algorithm hasn’t encountered at least one decimal digit by this
point, report an illegal character exception and return.

	14.	If the current character is not e or E, go to step 20. Otherwise, skip over
the e or E character and continue with step 15. (Note that some string
formats also allow d or D to denote a double-precision value. You can
also choose to allow this, and possibly check the range of the value if
the algorithm encounters e or E versus d or D.)

	15.	If the next character is + or -, skip over it. Set a flag to true if the sign
character is -; set it to false otherwise (note that this exponent sign flag
is different from the mantissa sign flag set earlier in this algorithm).

	16.	If the next character is not a decimal digit, report an error.

	17.	Convert the string of digits starting with the current decimal digit char-
acter to an integer.

	18.	Add the converted integer to the exponent value that was initialized to
–16 at the start of this algorithm.

	19.	If the exponent value is outside the range –324 to +308, report an out-
of-range exception.

	20.	Convert the mantissa, which is currently an integer, to a floating-point
value.

	21.	Take the absolute value of the exponent, preserving the exponent’s
sign. This value will be 9 bits or less.

	22.	If the exponent was positive, then for each set bit in the exponent, mul-
tiply the current mantissa value by 10 raised to the power specified by
that bit’s position. For example, if bits 4, 2, and 1 are set, multiply the
mantissa value by 1016, 104, and 102.

	23.	If the exponent was negative, then for each set bit in the exponent,
divide the current mantissa value by 10 raised to the power specified
by that bit’s position. For example, if bits 4, 3, and 2 are set, divide the
mantissa value by 1016, 108, and 104 (starting with the larger values and
working your way down).

	24.	If the mantissa is negative (the first sign flag set at the beginning of the
algorithm), negate the floating-point number.

Listing 9-17 provides an implementation of this algorithm, explained
section by section. The first part is typical for the sample programs in this
book, containing some constant declarations, static data, and the getTitle
function.

// Listing9-17.S
//
// Real string to floating-point conversion

 #include "aoaa​.inc"

false = 0
true = 1
tab = 9

590 Chapter 9

 .section .rodata, ""
ttlStr: .asciz "Listing 9-17"
fmtStr1: .asciz "strToR64: str='%s', value=%e\n"
errFmtStr: .asciz "strToR64 error, code=%ld\n"

1 fStr1a: .asciz " 1.234e56"
fStr1b: .asciz "\t-1.234e+56"
fStr1c: .asciz "1.234e-56"
fStr1d: .asciz "-1.234e-56"
fStr2a: .asciz "1.23"
fStr2b: .asciz "-1.23"
fStr2c: .asciz "001.23"
fStr2d: .asciz "-001.23"
fStr3a: .asciz "1"
fStr3b: .asciz "-1"
fStr4a: .asciz "0.1"
fStr4b: .asciz "-0.1"
fStr4c: .asciz "0000000.1"
fStr4d: .asciz "-0000000.1"
fStr4e: .asciz "0.1000000"
fStr4f: .asciz "-0.1000000"
fStr4g: .asciz "0.0000001"
fStr4h: .asciz "-0.0000001"
fStr4i: .asciz ".1"
fStr4j: .asciz "-.1"
fStr5a: .asciz "123456"
fStr5b: .asciz "12345678901234567890"
fStr5c: .asciz "0"
fStr5d: .asciz "1."
fStr6a: .asciz "0.000000000000000000001"

 2 .align 3
values: .dword fStr1a, fStr1b, fStr1c, fStr1d
 .dword fStr2a, fStr2b, fStr2c, fStr2d
 .dword fStr3a, fStr3b
 .dword fStr4a, fStr4b, fStr4c, fStr4d
 .dword fStr4e, fStr4f, fStr4g, fStr4h
 .dword fStr4i, fStr4j
 .dword fStr5a, fStr5b, fStr5c, fStr5d
 .dword fStr6a
 .dword 0

3 PotTbl: .double 1.0e+256
 .double 1.0e+128
 .double 1.0e+64
 .double 1.0e+32
 .double 1.0e+16
 .double 1.0e+8
 .double 1.0e+4
 .double 1.0e+2
 .double 1.0e+1
 .double 1.0e+0

 .data
r8Val: .double 0.0

Numeric Conversion 591

 .code
 .extern printf

///
//
// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

The read-only section contains various test strings that this program
will convert into floating-point values 1. These test strings were carefully
chosen to test most of the (successful) paths through the strToR64 function.
To reduce the size of the main program, Listing 9-17 processes these strings
in a loop. The array of pointers 2 points at each of the test strings, with a
NULL pointer (0) marking the end of the list. The main program will iter-
ate through these pointers in a loop to test the input strings.

The PotTbl (powers-of-10 table) array 3 contains various powers of 10.
The strToR64 function uses this table to convert a decimal exponent (in inte-
ger format) to an appropriate power of 10:

// Listing9-17.S (cont.)
//
// strToR64
//
// On entry:
//
// X0- Points at a string of characters that represent a
// floating-point value
//
// On return:
//
// D0- Converted result
// X0- On return, X0 points at the first character this
// routine couldn't convert (if no error).
//
// C- Carry flag is clear if no error, set if error.
// X7 is preserved if an error, X1 contains an
// error code if an error occurs (else X1 is
// preserved).

 proc strToR64

 locals sr
 qword sr.x1x2
 qword sr.x3x4
 qword sr.x5x6
 qword sr.x7x0
 dword sr.d1
 byte sr.stack, 64 // Not really needed, but ...

592 Chapter 9

 endl sr

 enter sr.size

// Defines to give registers more
// meaningful names:

1 #define mant x1 // Mantissa value
#define sigDig x2 // Mantissa significant digits
#define expAcc x2 // Exponent accumulator
#define sign w3 // Mantissa sign
#define fpExp x4 // Exponent
#define expSign w5 // Exponent sign
#define ch w6 // Current character
#define xch x6 // Current character (64 bits)
#define ten x7 // The value 10

 // Preserve the registers this
 // code modifies:

 2 stp x1, x2, [fp, #sr.x1x2]
 stp x3, x4, [fp, #sr.x3x4]
 stp x5, x6, [fp, #sr.x5x6]
 stp x7, x0, [fp, #sr.x7x0]
 str d1, [fp, #sr.d1]

 // Useful initialization:

 mov fpExp, xzr // X3 Decimal exponent value
 mov mant, xzr // X0 Mantissa value
 mov sign, wzr // W2 Assume nonnegative.

 // Initialize sigDig with 16, the number of
 // significant digits left to process.

 mov sigDig, #16 // X1

 // Verify that X0 is not NULL.

 cmp x0, xzr
 beq refNULL

The strToR64 function uses #define statements 1 to create meaningful,
more readable names for the local variables it maintains in various registers.

Although this function uses only registers X0 through X7 and D1
(which are all volatile in the ARM ABI), this function preserves all the reg-
isters it modifies 2. In assembly language, it’s always good programming
style to preserve modified registers. This code does not preserve X0 (assum-
ing a successful conversion) because it returns X0 pointing at the end of
the (successfully) converted string as a function result. Note that this code
returns the main function result in D0.

After function initialization, the strToR64 function begins by skipping
all whitespace (spaces and tabs) at the beginning of the string:

Numeric Conversion 593

// Listing9-17.S (cont.)

 sub x0, x0, #1 // Will inc'd in loop
whileWSLoop:
 ldrb ch, [x0, #1]! // W5
 cmp ch, #' '
 beq whileWSLoop
 cmp ch, #tab
 beq whileWSLoop

This code exits with ch (W6) containing the first non-whitespace char-
acter and X0 pointing at that character in memory.

Immediately after any whitespace characters, the string may optionally
contain a single + or -character. This code skips either of these characters
(if present) and sets the mantissa sign flag (sign) to 1 if a - character is
present:

// Listing9-17.S (cont.)

 // Check for + or -

 cmp ch, #'+'
 beq skipSign

 cmp ch, #'-'
 cinc sign, sign, eq // W2
 bne noSign

skipSign: ldrb ch, [x0, #1]! // Skip '-'
noSign:

Immediately after a sign character (or if there isn’t an optional sign
character), the string must contain a decimal digit character or a decimal
point. This code tests for one of these two conditions and reports a conver-
sion error if the condition fails:

// Listing9-17.S (cont.)

 1 sub ch, ch, #'0' // Quick test for '0' to '9'
 cmp ch, #9
 bls scanDigits // Branch if '0' to '9'

 2 cmp ch, #'.'-'0' // Check for '.'
 bne convError

 // If the first character is a decimal point,
 // the second character needs to be a
 // decimal digit.

 3 ldrb ch, [x0, #1]! // W5 Skip period.
 cmp ch, #'0'
 blo convError

594 Chapter 9

 cmp ch, #'9'
 bhi convError
 b.al whileDigit2

This code uses a common trick to compare for a character in the range
'0' through '9'. It subtracts the ASCII code for '0' from the character 1.
If the character was in the range '0' to '9', this translates its value to the
range 0 to 9. A single unsigned comparison against the value 9 tells us
whether the character value was in the range '0' to '9'. If so, this code
transfers control to the code that will process digits to the left of the deci-
mal point.

Because the code has subtracted '0' from the character’s ASCII code, it
cannot simply compare the character against a period. The cmp ch, #'.'-'0'
instruction correctly compares the character against a period by subtract-
ing the character code for '0' from '.' 2. If the character was a period, the
code will verify that the following character is also a digit 3.

Next, the code starting at scanDigits processes the mantissa digits to the
left of the decimal point (if present):

// Listing9-17.S (cont.)
//
// Scan for digits at the beginning of the number:

scanDigits: mov ten, #10 // X7 used to multiply by 10
 add ch, ch, #'0' // Restore character.
 whileADigit:
 sub ch, ch, #'0' // Quick way to test for
 cmp ch, #10 // a range and convert
 bhs notDigit // to an integer

 // Ignore any leading 0s in the number.
 // You have a leading '0' if the mantissa is 0
 // and the current character is '0'.

 1 cmp mant, xzr // Ignore leading 0s.
 ccmp ch, #0, #0, eq
 beq Beyond16

 // Each digit to the left of the decimal
 // point increases the number by an
 // additional power of 10. Deal with that
 // here.

 2 add fpExp, fpExp, #1

 // Save all the significant digits but ignore
 // any digits beyond the 16th digit.

 3 cmp sigDig, xzr // X1
 beq Beyond16

 // Count down the number of significant digits.

 sub sigDig, sigDig, #1

Numeric Conversion 595

 // Multiply the accumulator (mant) by 10 and
 // add in the current digit. Note that ch
 // has already been converted to an integer.

 4 madd mant, mant, ten, xch // X0, X6, X5

 // Because you multiplied the exponent by 10,
 // you need to undo the increment of fpExp.

 5 sub fpExp, fpExp, #1

Beyond16: ldrb ch, [x0, #1]! // Get next char.
 b.al whileADigit

This code skips over leading 0s by noting that if the mantissa value is 0
and the current character is '0', it’s a leading 0 1. For each mantissa digit
the code fetches, it adjusts the mantissa value by multiplying the mantissa
by 10 and adding in the numeric equivalent of the digit 4. However, if
the loop processes more than 16 significant digits 3, it does not add in
the character to the mant accumulator (because double-precision objects
support a maximum of 16 significant digits). If the input string exceeds
16 significant digits, the code increments the fpExp variable 2 to track the
eventual exponent of the number. The code undoes this increment 5 if the
mantissa was multiplied by 10 (in which case the exponent does not need to
be incremented).

The next section of code handles the digits after a decimal point:

// Listing9-17.S (cont.)
//
// If you encountered a nondigit character,
// check for a decimal point:

notDigit:
 cmp ch, #'.'-'0' // See if a decimal point.
 bne whileDigit2

// Okay, process any digits to the right of the decimal point.
// If this code falls through from the above, it skips the
// decimal point.

getNextChar:
 ldrb ch, [x0, #1]! // Get the next character.
whileDigit2:
 sub ch, ch, #'0'
 cmp ch, #10
 bhs noDigit2

 // Ignore digits after the 16th significant
 // digit but don't count leading 0s
 // as significant digits:

 1 cmp mant, xzr // Ignore leading 0s.
 ccmp ch, wzr, #0, eq

596 Chapter 9

 ccmp sigDig, xzr, #0, eq // X2
 beq getNextChar

 // Each digit to the right of the decimal point decreases
 // the number by an additional power of 10. Deal with
 // that here.

 2 sub fpExp, fpExp, #1

 // Count down the number of significant digits:

 sub sigDig, sigDig, #1

 // Multiply the accumulator (mant) by 10 and
 // add in the current digit. Note that ch
 // has already been converted to an integer:

 Madd mant, mant, ten, xch // X1, X7, X6
 b.al getNextChar

The code is similar to the digits to the left, except that it decrements
the running exponent value for each digit 2. This is because the mantissa
is being maintained as an integer, and the code continues to insert the frac-
tional digits into the mantissa by multiplying by 10 and adding in the digit’s
value. Should the total number of significant digits exceed 16 (not including
leading 0s 1), this function ignores any further digits.

Next up is processing the string’s optional exponent:

// Listing9-17.S (cont.)

1 noDigit2:
 mov expSign, wzr // W5 Initialize exp sign.
 mov expAcc, xzr // X2 Initialize exponent.
 cmp ch, #'e'-'0'
 beq hasExponent
 cmp ch, #'E'-'0'
 bne noExponent

2 hasExponent:
 ldrb ch, [x0, #1]! // Skip the "E".
 cmp ch, #'-' // W6
 cinc expSign, expSign, eq // W5
 beq doNextChar_2
 cmp ch, #'+'
 bne getExponent

doNextChar_2:
 ldrb ch, [x0, #1]! // Skip '+' or '-'.

// Okay, you're past the "E" and the optional sign at this
// point. You must have at least one decimal digit.

Numeric Conversion 597

3 getExponent:
 sub ch, ch, #'0' // W5
 cmp ch, #10
 bhs convError

 mov expAcc, xzr // Compute exponent value in X2.
ExpLoop: ldrb ch, [x0], #1
 sub ch, ch, #'0'
 cmp ch, #10
 bhs ExpDone

 madd expAcc, expAcc, ten, xch // X2, X7, X6
 b.al ExpLoop

// If the exponent was negative, negate your computed result:

4 ExpDone:
 cmp expSign, #false // W5
 beq noNegExp

 neg expAcc, expAcc // X2

noNegExp:

// Add in the computed decimal exponent with the exponent
// accumulator:

 5 add fpExp, fpExp, expAcc // X4, X2

noExponent:

// Verify that the exponent is from -324 to +308 (which
// is the maximum dynamic range for a 64-bit FP value):

 6 mov x5, #308 // Reuse expSign here.
 cmp fpExp, x5
 bgt voor // Value out of range
 mov x5, #-324
 cmp fpExp, x5
 blt voor
 7 ucvtf d0, mant // X1

This code first checks for an e or E character denoting the start of an
exponent 1. If the string has an exponent, the code checks for an optional
sign character 2. If a - character is present, the code sets expSign to 1 (default
is 0) to specify a negative exponent.

After processing the exponent sign, the code expects decimal digits 3
and converts these digits to an integer (held in the expAcc variable). If
expSign is true (nonzero), the code negates the value in expAcc 4. The expo-
nent code then adds expAcc to the exponent value obtained when processing
the mantissa digits to obtain the actual exponent value 5.

Finally, the code checks the exponent to verify it’s in the range –324 to
+308 6. This is the maximum dynamic range of a 64-bit double-precision

598 Chapter 9

floating-point value. If the exponent is out of this range, the code returns a
value-out-of-range error.

At this point, the code has completely processed the string data, and
the X0 register points at the first byte in memory that is not part of the
floating-point value. To convert the mantissa and exponent values from
integers into a double-precision value, first convert the mantissa value (in
mant) to a floating-point value by using the ucvtf instruction 7.

Next, processing the exponent is somewhat tricky. The fpExp variable
contains the decimal exponent, but this is an integer value representing a
power of 10. You must multiply the value in D0 (the mantissa) by 10fpExp, but
unfortunately, the ARM instruction set does not provide an instruction that
computes 10 raised to some integer power. You’ll have to write your own
code to do this:

// Listing9-17.S (cont.)
//
// Okay, you have the mantissa into D0. Now multiply
// D0 by 10 raised to the value of the computed exponent
// (currently in fpExp).
//
// This code uses power-of-10 tables to help make the
// computation a little more accurate.
//
// You want to determine which power of 10 is just less than the
// value of our exponent. The powers of 10 you are checking are
// 10**256, 10**128, 10**64, 10**32, and so on. A slick way to
// check is by shifting the bits in the exponent
// to the left. Bit #8 is the 256 bit, so if this bit is set,
// your exponent is >= 10**256. If not, check the next bit down
// to see if your exponent >= 10**128, and so on.

 mov x1, -8 // Initial index into power-of-10 table
 cmp fpExp, xzr // X4
 bpl positiveExponent

 1 // Handle negative exponents here:

 neg fpExp, fpExp
 lsl fpExp, fpExp, #55 // Bits 0..8 -> 55..63
 lea x6, PotTbl

 2 whileExpNE0:
 add x1, x1, #8 // Next index into PotTbl.
 adds fpExp, fpExp, fpExp // (LSL) Need current POT?
 bcc testExp0

 ldr d1, [x6, x1]
 fdiv d0, d0, d1

testExp0: cmp fpExp, xzr
 bne whileExpNE0
 b.al doMantissaSign

Numeric Conversion 599

// Handle positive exponents here.

3 positiveExponent:
 lea x6, PotTbl
 lsl fpExp, fpExp, #55 // Bits 0..8 -> 55..63
 b.al testExpis0_2

whileExpNE0_2:
 add x1, x1, #8
 adds fpExp, fpExp, fpExp // (LSL)
 bcc testExpis0_2

 ldr d1, [x6, x1]
 fmul d0, d0, d1

testExpis0_2:
 cmp fpExp, xzr
 bne whileExpNE0_2

This code uses two nearly identical sections of code to handle negative 1
and positive 3 exponents. The difference between the two pieces of code is
the choice of an fdiv instruction (for negative exponents) or an fmul instruc-
tion (for positive exponents). Each section contains a loop 2 that steps
through each entry of the PotTbl (powers-of-10) table. The exponent is a
9-bit value, as the maximum unsigned exponent value is 324, which fits in
9 bits or fewer.

For each set bit in this integer, the code must multiply the floating-point
result by the corresponding power of 10 from PotTbl. For example, if bit 9
is set, multiply or divide the mantissa by 10256 (the first entry in PotTbl); if
bit 8 is set, multiply or divide the mantissa by 10128 (the second entry in
PotTbl), . . . ; if bit 0 is set, multiply or divide the mantissa by 100 (the last
entry in PotTbl). The two loops in the code accomplish this by moving the
9 bits into the HO positions of fpExp, then shifting the bits out one at a time
and doing the multiplication (for positive exponents) or division (for nega-
tive exponents) if the carry flag is set, using successive entries from PotTbl.

Next, the code negates the value if it was negative (the flag is held in
the sign variable) and returns the floating-point value to the caller in the
D0 register:

// Listing9-17.S (cont.)

doMantissaSign:
 cmp sign, #false // W3
 beq mantNotNegative

 fneg d0, d0

// Successful return here. Note: does not restore X0
// on successful conversion.

600 Chapter 9

mantNotNegative:
 msr nzcv, xzr // clr c = no error
 ldp x1, x2, [fp, #sr.x1x2]
 ldp x3, x4, [fp, #sr.x3x4]
 ldp x5, x6, [fp, #sr.x5x6]
 ldr x7, [fp, #sr.x7x0]
 ldr d1, [fp, #sr.d1]
 leave

On a successful conversion, this function returns X0 pointing at the
first character beyond the floating-point string. This code does not restore
X0 to its original value on a successful conversion.

The last part of the strToR64 function is the error-handling code:

// Listing9-17.S (cont.)
//
// Error returns down here. Returns error code in X0:

refNULL: mov x1, #-3
 b.al ErrorExit

convError: mov x1, #-2
 b.al ErrorExit

voor: mov x1, #-1 // Value out of range
 b.al ErrorExit

illChar: mov x1, #-4

// Note: on error, this code restores X0.

ErrorExit:
 str x1, [fp, #sr.x1x2] // Return error code in X1.
 mrs x1, nzcv // Return error in carry flag.
 orr x1, x1, #(1 << 29)
 msr nzcv, x1 // Set c = error.
 ldp x1, x2, [fp, #sr.x1x2]
 ldp x3, x4, [fp, #sr.x3x4]
 ldp x5, x6, [fp, #sr.x5x6]
 ldp x7, x0, [fp, #sr.x7x0]
 ldr d1, [fp, #sr.d1]
 leave

 endp strToR64

Each error returns a special error code in X1. So this code does not
restore X1 upon return. Unlike the successful return, the error return code
will restore X0 to its original value.

Finally, the asmMain function consists of a loop that processes each of
the strings by using the pointers found in the values array. It simply steps
through each pointer, passing it along to strToR64, until it encounters a
NULL (0) value:

Numeric Conversion 601

// Listing9-17.S (cont.)

// Here is the asmMain function:

 proc asmMain, public

 locals am
 dword am.x20
 byte stack, 64
 endl am

 enter am.size
 str x20, [fp, #am.x20]

// Test floating-point conversion:

 lea x20, values
ValuesLp: ldr x0, [x20]
 cmp x0, xzr
 beq allDone
 bl strToR64

 lea x0, fmtStr1
 ldr x1, [x20]
 mstr x1, [sp]
 mstr d0, [sp, #8]
 bl printf
 add x20, x20, #8
 b.al ValuesLp

allDone: ldr x20, [fp, #am.x20]
 leave
 endp asmMain

Here’s the build command and sample output for Listing 9-17:

% ./build Listing9-17
% ./Listing9-17
Calling Listing9-17:
strToR64: str=' 1.234e56', value=1.234000e+56
strToR64: str=' -1.234e+56', value=-1.234000e+56
strToR64: str='1.234e-56', value=1.234000e-56
strToR64: str='-1.234e-56', value=-1.234000e-56
strToR64: str='1.23', value=1.230000e+00
strToR64: str='-1.23', value=-1.230000e+00
strToR64: str='001.23', value=1.230000e+00
strToR64: str='-001.23', value=-1.230000e+00
strToR64: str='1', value=1.000000e+00
strToR64: str='-1', value=-1.000000e+00
strToR64: str='0.1', value=1.000000e-01
strToR64: str='-0.1', value=-1.000000e-01
strToR64: str='0000000.1', value=1.000000e-01
strToR64: str='-0000000.1', value=-1.000000e-01
strToR64: str='0.1000000', value=1.000000e-01

602 Chapter 9

strToR64: str='-0.1000000', value=-1.000000e-01
strToR64: str='0.0000001', value=1.000000e-07
strToR64: str='-0.0000001', value=-1.000000e-07
strToR64: str='.1', value=1.000000e-01
strToR64: str='-.1', value=-1.000000e-01
strToR64: str='123456', value=1.234560e+05
strToR64: str='12345678901234567890', value=1.234568e+19
strToR64: str='0', value=0.000000e+00
strToR64: str='1.', value=1.000000e+00
strToR64: str='0.000000000000000000001', value=1.000000e-17
Listing9-17 terminated

It would be interesting to modify the real-to-string and string-to-real
programs to perform a “round-trip” conversion from real to string to real, to
see whether you get roughly the same result back that you put in. (Because
of rounding and truncation errors, you won’t always get the same exact value
back, but it should be close.) I will leave it up to you to try this out.

	 9.4	 Other Numeric Conversions
This chapter has presented the more common numeric conversion algo-
rithms: decimal integer, hexadecimal integer, and floating-point. Other
conversions are sometimes useful. For example, some applications might
need octal (base-8) conversions or conversions in an arbitrary base. For
bases 2 through 9, the algorithm is virtually the same as for decimal integer
conversions, except that rather than dividing by 10 (and taking the remain-
der), you divide by the desired base. Indeed, it would be fairly simple to
write a generic function to which you pass the radix (base) to get the appro-
priate conversion.

Of course, base-2 output is nearly trivial because the ARM CPU stores
values internally in binary. All you need do is shift bits out of the number
(into the carry flag) and output a 0 or 1 based on the state of the carry.
Base-4 and base-8 conversions are also fairly simple, working with groups of
2 or 3 bits (respectively).

Some floating-point formats do not follow the IEEE standard. To handle
these cases, write a function that converts such formats to the IEEE form,
if possible, then use the examples from this chapter to convert between
floating-point and string. If you need to work with such formats directly,
the algorithms in this chapter should prove sufficiently general and easy to
modify for your use.

	 9.5	 Moving On
This long chapter covered two main topics: converting numeric values
to strings and converting strings to numeric values. For the former, this
chapter covered numeric-to-hexadecimal conversion (bytes, hwords, words,
dwords, and qwords), numeric-to-unsigned decimal conversion (64- and
128-bit), and numeric-to-signed decimal conversion (64- and 128-bit). It

Numeric Conversion 603

also discussed formatted conversion for controlling the output format when
doing numeric-to-string conversions, and formatted floating-point-to-string
conversions for decimal and exponential formats, as well as computing the
number of print positions a conversion requires.

While discussing string-to-numeric conversions, this chapter covered
converting unsigned decimal strings to numeric forms, signed decimal
strings to numeric forms, hexadecimal strings to numeric forms, and floating-
point strings to double-precision numeric forms. Finally, the chapter briefly
discussed other possible numeric output formats.

Although this book will continue to use the C printf() function for for-
matted output, you can use the procedures in this chapter to avoid relying
on C when writing your own assembly code. These procedures also form
the basis for an assembly language library you can use to simplify writing
assembly code.

	 9.6	 For More Information
•	 Donald Knuth’s The Art of Computer Programming, Volume 2: Seminumerical

Algorithms, 3rd edition (Addison-Wesley Professional, 1997) contains
lots of useful information about decimal arithmetic and extended-
precision arithmetic, though the text is generic and doesn’t describe
how to do this in ARM assembly language.

•	 For more information on division via multiplication by a reciprocal, see
the University of Iowa tutorial at http://homepage​.cs​.uiowa​.edu​/~jones​/bcd​/
divide​.html.

T ES T YOURSEL F

	 1.	 How many hexadecimal digits will hwtoStr produce?

	 2.	 Explain how to use qToStr to write a 128-bit hexadecimal output routine.

	 3.	 How do you write a signed decimal-to-string conversion if you’re given a
function that does an unsigned decimal-to-string conversion?

	 4.	 What are the parameters for the u64toSizeStr function?

	 5.	 What string will u64toSizeStr produce if the number requires more print
positions than specified by the minimum field-width parameter?

	 6.	 What are the parameters for the r64ToStr function?

	 7.	 What string will r64ToStr produce if the output won’t fit in the string size
specified by the fWidth argument?

	 8.	 What are the arguments to the e64ToStr function?

	 9.	 What is a delimiter character?

10. What are two possible errors that could occur during a string-to-numeric
conversion?

http://homepage.cs.uiowa.edu/~jones/bcd/divide.html
http://homepage.cs.uiowa.edu/~jones/bcd/divide.html

In the early days of assembly language pro-
gramming, replacing expensive computa-

tions with table lookups was a common way to
improve program performance. Today, memory

speeds in modern systems limit the performance gains
that can be obtained by using table lookups. However,
for very complex calculations, this is still a viable tech-
nique for writing high-performance code.

This chapter discusses how to use table lookups to speed up or reduce
the complexity of computations, demonstrating the space and speed trade-
offs involved.

	 10.1	 Using Tables in Assembly Language
To an assembly language programmer, a table is an array containing initial-
ized values that do not change after they’re created. In assembly language,

10
T A B L E L O O K U P S

606 Chapter 10

you can use tables for a variety of purposes: computing functions, control-
ling program flow, or simply looking up data. In general, tables provide a
fast mechanism for performing an operation, at the expense of space in
your program (the extra space holds the tabular data).

In this section, we’ll explore some of the many possible uses of tables in
an assembly language program. Keep in mind that because tables typically
contain initialized data that does not change during program execution,
the .section .rodata, "" section is a good place to put your table objects.

10.1.1  Function Computation via Table Lookup
A simple-looking HLL arithmetic expression can be equivalent to a con-
siderable amount of ARM assembly language code and may therefore be
expensive to compute. Assembly language programmers often precompute
many values and use a table lookup of those values to speed up their pro-
grams, which is easier and often more efficient.

Consider the following Pascal statement:

if (character >= 'a') and (character <= 'z') then
 character := chr(ord(character) - 32);

This if statement converts the character variable’s value from lowercase
to uppercase if the character is in the range a to z. Comparable assembly
code requires a total of seven machine instructions, as follows:

 mov w1, #'z'
 ldrb w0, [fp, #character] // Assume "character" is local.
 cmp w0, #'a'
 1 ccmp w0, w1, #0b0010, hs
 bhi notLower
 2 eor w0, w0, #0x20
notLower:
 strb w0, [fp, #character]

The NZCV constant 0b0010 sets the carry flag and clears the 0 so that
the branch will be taken if W0 is less than 'a' (if W0 is less than 'a', the
carry is set and the zero flag is clear, which is “higher or same” without the
same component, so just higher) 1. Note that the conditional compare
instruction allows only 5-bit immediate constants; this is why the code loads
the character constant 'z' into W1 and conditionally compares against W1.

The usual method for converting lowercase to uppercase is to clear
bit 5 of the ASCII character code. However, and w0, w0, #0x5F is not a legal
instruction because 0x5F is not a legal logical constant. This code uses the
eor (exclusive-OR) instruction to invert bit 5 2. Because this bit is guaran-
teed to be set at this point (bit 5 is set for all lowercase characters), the eor
instruction will clear this bit.

The lookup table solution uses only four instructions:

lea x1, xlatTbl
ldrb w0, [fp, #character]

Table Lookups 607

ldrb w0, [x1, w0, uxt2 #0]
strb w0, [fp, #character]

The conversion logic is completely buried in the lookup table (xlatTbl).
This is a 256-byte array; each index contains the index value (element 0
contains the value 0, element 1 contains the value 1, and so on) except for
the indices corresponding to the ASCII codes for the lowercase characters
(indices 97 through 122). Those particular array elements contain the
ASCII codes for the uppercase characters (values 65 through 90).

Note that if you can guarantee that you’ll load only 7-bit ASCII charac-
ters into this code, you can get by with a 128-byte (rather than a 256-byte)
array.

Here’s a typical (128-byte) lookup table that converts lowercase charac-
ters to uppercase:

xlatTbl: .byte 0,1,2,3,4,5,6,7
 .byte 8,9,10,11,12,13,14,15
 .byte 16,17,18,19,20,21,22,23
 .byte 24,25,26,27,28,29,30,31
 .byte 32,33,34,35,36,37,38,39
 .byte 40,41,42,43,44,45,46,47
 .byte 48,49,50,51,52,53,54,55
 .byte 56,57,58,59,60,61,62,63
 .byte 64
 .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 .byte 91,92,93,94,95,96
 .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 .byte 123,124,125,126,127

If you want a full 256-byte table, elements 128 through 255 would contain
the values 128 through 255.

The ldrb w0, [x1, w0, uxtw #0] instruction loads W0 with the byte at the
index specified by the (original) value held in W0, assuming X1 holds the
address of xlatTbl. If W0 holds a non-lowercase character code, that index
into the table will load the same value into W0 (so this instruction does not
change W0’s value if it is not a lowercase letter). If W0 contains a lowercase
letter, the index into this table fetches the ASCII code of the corresponding
uppercase character.

Listing 10-1 demonstrates these two forms of case conversion: if...eor
and table lookup.

// Listing10-1.S
//
// Lowercase-to-uppercase conversion

 #include "aoaa​.inc"

 .section .rodata, ""

ttlStr: .asciz "Listing 10-1"

608 Chapter 10

textStr: .ascii "abcdefghijklmnopqrstuvwxyz\n"
 .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ\n"
 .asciz "0123456789\n"

// Translation table to convert lowercase to uppercase:

xlatTbl: .byte 0, 1, 2, 3, 4, 5, 6, 7
 .byte 8, 9, 10, 11, 12, 13, 14, 15
 .byte 16, 17, 18, 19, 20, 21, 22, 23
 .byte 24, 25, 26, 27, 28, 29, 30, 31
 .byte 32, 33, 34, 35, 36, 37, 38, 39
 .byte 40, 41, 42, 43, 44, 45, 46, 47
 .byte 48, 49, 50, 51, 52, 53, 54, 55
 .byte 56, 57, 58, 59, 60, 61, 62, 63
 .byte 64
 .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 .byte 91, 92, 93, 94, 95, 96
 .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 .byte 123, 124, 125, 126, 127

// Various printf format strings this program uses:

fmtStr1: .asciz "Standard conversion:\n"
fmtStr2: .asciz "\nConversion via lookup table:\n"
fmtStr: .asciz "%c"

 .code
 .extern printf

//
//
// Return program title to C++ program:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

//
//
// Here is the asmMain function:

 proc asmMain, public

 locals am
 dword am.x20
 dword am.x21
 byte am.shadow, 64
 endl am

 enter am.size
 str x20, [fp, #am.x20]
 str x21, [fp, #am.x21]

Table Lookups 609

// Print first title string:

 lea x0, fmtStr1
 bl printf

// Convert textStr to uppercase using
// standard "if and EOR" operation:

 lea x20, textStr // String to convert
 mov x21, #'z' // CCMP doesn't like #'z'.
 b.al testNot0

// Check to see if W1 is in the range 'a'..'z'. If so,
// invert bit 5 to convert it to uppercase:

stdLoop: cmp w1, #'a'
 ccmp w1, w21, #0b0010, hs
 bhi notLower
 eor w1, w1, #0x20
notLower:

// Print the converted character:

 lea x0, fmtStr
 mstr x1, [sp]
 bl printf

// Fetch the next character from the string:

testNot0: ldrb w1, [x20], #1
 cmp w1, #0
 bne stdLoop

// Convert textStr to uppercase by using
// a lookup table. Begin by printing
// an explanatory string before the
// output:

 lea x0, fmtStr2
 bl printf

// textStr is the string to convert.
// xlatTbl is the lookup table that will convert
// lowercase characters to uppercase:

 lea x20, textStr
 lea x21, xlatTbl
 b.al testNot0a

// Convert the character from lowercase to
// uppercase via a lookup table:

xlatLoop: ldrb w1, [x21, w1, uxtw #0]

610 Chapter 10

// Print the character:

 lea x0, fmtStr
 mstr x1, [sp]
 bl printf

// Fetch the next character from the string:

testNot0a: ldrb w1, [x20], #1
 cmp w1, #0
 bne xlatLoop

allDone: ldr x20, [fp, #am.x20]
 ldr x21, [fp, #am.x21]
 leave // Returns to caller
 endp asmMain

Here’s the build command and sample output for Listing 10-1:

% ./build Listing10-1
% ./Listing10-1
Calling Listing10-1:
Standard conversion:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

Conversion via lookup table:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
Listing10-1 terminated

I didn’t attempt to time the two versions, because the call to printf()
dominates the execution time of the two algorithms. However, because the
table-lookup algorithm accesses memory on each character (to fetch a byte
from the lookup table), the process is no shorter even though it uses fewer
instructions. The lookup table adds 128 bytes (or 256 bytes) to the size of
the program’s code.

Using a lookup table for a simple computation such as lowercase-to-
uppercase conversion carries little benefit. But as the complexity of the
computation increases, the table lookup algorithm could become faster.
Consider the following code that swaps cases (converts lowercase to upper-
case and uppercase to lowercase):

// If it's lowercase, convert it to uppercase:

 mov w1, #'z'
 ldrb w0, [fp, #character] // Assume "character" is local.
 cmp w0, #'a'
 ccmp w0, w1, #0b0010, hs

Table Lookups 611

 bhi notLower
 eor w0, w0, #0x20
 b.al allDone

// If it's uppercase, convert it to lowercase:

notLower:
 mov w1, #'Z'
 cmp w0, #'A'
 ccmp w0, w1, #0b0010, hs
 bhi allDone
 eor w0, w0, #0x20

allDone:
 strb w0, [fp, #character]

The lookup-table version is almost identical to Listing 10-1. Only the
values in the lookup table change:

 lea x1, xlatTbl2
 ldrb w0, [fp, #character]
 ldrb w0, [x1, w0, uxtw #0]
 strb w0, [fp, #character]

The xlatTbl2 array will contain the lowercase ASCII codes at the indi-
ces corresponding to the uppercase characters, in addition to having the
uppercase ASCII codes at the indices corresponding to the lowercase ASCII
codes.

This case-conversion algorithm still might not be complex enough to
justify using a lookup table to improve performance. However, it demon-
strates that as the complexity of the algorithm increases (taking longer to
execute without a lookup table), the lookup table algorithm’s execution
time remains constant.

10.1.2  Function Domains and Ranges
Functions computed via table lookup have a limited domain, the set of pos-
sible input values they accept. This is because each element in the domain
of a function requires an entry in the lookup table. For example, the pre-
vious uppercase/lowercase conversion functions have the 256-character
extended ASCII character set as their domain. A function such as sin() or
cos() accepts the (infinite) set of real numbers as possible input values. You
won’t find it very practical to implement a function via table lookup whose
domain is the set of real numbers, because you must limit the domain to a
small set.

Most lookup tables are quite small, usually 10 to 256 entries. Rarely
do they grow beyond 1,000 entries. Most programmers don’t have the
patience to create and verify the correctness of a 1,000-entry table (but see
section 10.1.4, “Table Generation,” on page 615 for a discussion of generat-
ing tables programmatically).

612 Chapter 10

Another limitation of functions based on lookup tables is that the ele-
ments in the domain must be fairly contiguous. Table lookups use the input
value to a function as an index into the table and return the value at that
entry in the table. A function that accepts values 0, 100, 1,000, and 10,000
would require 10,001 elements in the lookup table because of the range of
input values. You cannot, therefore, efficiently create such a function via a
table lookup. This section on tables assumes throughout that the domain of
the function is a fairly contiguous set of values.

The range of a function is the set of possible output values it produces.
From the perspective of a table lookup, a function’s range determines the
size of each table entry. For example, if a function’s range is the integer val-
ues 0 through 255, each table entry requires a single byte; if the range is
0 through 65,535, each table entry requires 2 bytes, and so on.

The best functions you can implement via table lookups are those whose
domain and range are always 0 to 255 (or a subset of this range). Any such
function can be computed using the same two instructions:

lea x1, table
ldrb w0, [x1, w0, uxtw #0]

The only thing that changes is the lookup table. The uppercase/lowercase
conversion routines presented earlier are good examples of such functions.

Lookup tables become slightly less efficient if the domain or range is
not 0 to 255. If the domain of a function is outside 0 to 255 but the range
of the function falls within this set of values, your lookup table will require
more than 256 entries, but you can represent each entry with a single byte.
Therefore, the lookup table can be an array of bytes. The C/C++ function
invocation

B = Func(X);

where Func is

byte Func(word parm) { ... }

which is easily converted to the following ARM code:

lea x1, FuncTbl
ldr w0, X // Using appropriate addressing mode
ldrb w0, [x1, w0, uxtw #0]
strb w0, B // Using appropriate addressing mode

This code loads the function parameter into W0, uses this value (in
the range 0 to maxParmValue) as an index into the FuncTbl table, fetches the
byte at that location, and stores the result into B. Obviously, the table must
contain a valid entry for each possible value of X (up to maxParmValue). For
example, suppose you want to map a cursor position on an 80 × 25 text-based
video display in the range 0 to 1,999 (an 80 × 25 video display has 2,000
character positions) to its X (0 to 79) or Y (0 to 24) coordinate on the screen.

Table Lookups 613

You could compute the X coordinate via this function

X = Posn % 80;

and the Y coordinate with this formula:

Y = Posn / 25;

The following code, which realizes these two functions via table lookup,
may improve the performance of your code, particularly if you access the
table frequently and it is sitting in the processor’s cache:

lea x2, xTbl
lea x3, yTbl
ldr w4, Posn // Using an appropriate addressing mode
ldrb w0, [x2, w4, uxtw #0] // Get X.
ldrb w1, [x3, w4, uxtw #0] // Get Y.

Given appropriate values in xTbl and yTbl, this will leave the x-coordinate in
W0 and the y-coordinate in W1.

If the domain of a function is within 0 to 255 but the range is outside
this set, the lookup table will contain 256 or fewer entries, but each entry
will require 2 or more bytes. If both the range and domains of the function
are outside 0 to 255, each entry will require 2 or more bytes, and the table
will contain more than 256 entries.

Recall from Chapter 4 that the formula for indexing into a single-
dimensional array (of which a table is a special case) is as follows:

Element_Address = Base + Index × Element_Size

If elements in the range of the function require 2 bytes, you must mul-
tiply the index by 2 before indexing into the table. Likewise, if each entry
requires 3, 4, or more bytes, the index must be multiplied by the size of each
table entry before being used as an index into the table. For example, sup-
pose you have a function F(x), defined by the following C/C++ declaration:

short F(word x) { ... } // short is a half word (16 bits).

You can create this function by using the following ARM code (and, of
course, the appropriate table named F):

lea x1, F
ldrh w0, x // Using an appropriate addressing mode
ldrh w0, [x1, w0, uxtw #1] // Shift left does multiply by 2.

Any function whose domain is small and mostly contiguous is a good
candidate for computation via table lookup. In some cases, noncontiguous
domains are acceptable as well, as long as the domain can be coerced into
an appropriate set of values (a previously discussed example is processing

614 Chapter 10

switch statement expressions). Such operations are called conditioning and
are the subject of the next section.

10.1.3  Domain Conditioning
Domain conditioning is taking a set of values in the domain of a function and
massaging them so that they are more acceptable as inputs to that function.
Consider the following function:

sin x = sin x|(x∈[-2π,2π])

This says that the (computer) function sin(x) is equivalent to the (math-
ematical) function sin x where:

-2π <= x <= 2π

As you know, sine is a circular function, which will accept any real-value
input. The formula used to compute sine, however, accepts only a small set
of these values. This range limitation doesn’t present any real problems;
by simply computing sin(y mod (2π)), you can compute the sine of any input
value. Modifying an input value so that you can easily compute a function
is called conditioning the input. The preceding example computed (x % 2) * pi
and used the result as the input to the sin() function. This truncates x to
the domain sin() needs without affecting the result.

You can apply input conditioning to table lookups as well. In fact,
scaling the index to handle word entries is a form of input conditioning.
Consider the following C/C++ function:

short val(short x)
{
 switch (x)
 {
 case 0: return 1;
 case 1: return 1;
 case 2: return 4;
 case 3: return 27;
 case 4: return 256;
 }
 return 0;
}

This function computes a value for x in the range 0 to 4 and returns 0
if x is outside this range. Since x can take on 65,536 values (being a 16-bit
hword), creating a table containing 65,536 hwords where only the first five
entries are nonzero seems to be quite wasteful. However, you can still com-
pute this function by using a table lookup if you use input conditioning.
The following assembly language code presents this principle:

 mov w0, #0 // Result = 0, assume x > 4
 ldrh w1, [fp, #x] // Assume x is local.

Table Lookups 615

 cmp w1, #4 // See if in the range 0 to 4.
 bhi outOfRange
 lea x2, valTbl // Address of lookup table
 ldrh w0, [x2, w1, uxtw #1] // index * 2 (half-word table)
outOfRange:

This code checks whether x is outside the range 0 to 4. If so, it manually
sets W0 to 0; otherwise, it looks up the function value through the valTbl
table. With input conditioning, you can implement several functions that
would otherwise be impractical to do via table lookup.

10.1.4  Table Generation
One big problem with using table lookups is creating the table in the first
place. This is particularly true if the table has many entries. Figuring out
the data to place in the table, then laboriously entering the data, and finally
checking that data to make sure it is valid is a time-consuming and boring
process.

For many tables, there is no way around this. For other tables, however,
you can use the computer to generate the table for you. I’ll explain this by
example. Consider the following modification to the sine function:

sin(x) × r = ⟨ [x ∈ 0,359]⟩(r × (1000 × sin x))
1000

This states that x is an integer in the range 0 to 359 (degrees) and that
r must be an integer. The computer can easily compute this with the follow-
ing code:

lea x1, Sines // Table of 16-bit values
ldr w0, [fp, #x] // Assume x is local.
ldrh w0, [x1, w0, uxtw #1] // index * 2 for half words
ldrh w2, [fp, #r] // Assume r is local.
sxth x0, w0
sxth x2, w2
smul w0, w0, w2 // r *(1000 * sin(x))
mov w2, #1000
sdiv x0, x0, x2 // r *(1000 * sin(x))/ 1000

Note that integer multiplication and division are not associative.
You cannot remove the multiplication by 1,000 and the division by 1,000
because they appear to cancel each other out. Furthermore, this code must
compute this function in exactly this order.

All you need to complete this function is Sines, a table containing
360 values corresponding to the sine of the angle (in degrees) times 1,000.
The C/C++ program in Listing 10-2 generates this table.

// Listing10-2.cpp
//
// g++ -o Listing10-2 Listing10-2.c -lm
//

616 Chapter 10

// GenerateSines
//
// A C program that generates a table of sine values for
// an assembly language lookup table

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char **argv)
{
 FILE *outFile;
 int angle;
 int r;

 // Open the file:

 outFile = fopen("sines​.inc", "w");

 // Emit the initial part of the declaration to
 // the output file:

 fprintf
 (
 outFile,
 "Sines:" // sin(0) = 0
);

 // Emit the Sines table:

 for(angle = 0; angle <= 359; ++angle)
 {
 // Convert angle in degrees to an angle in
 // radians using:
 //
 // radians = angle * 2.0 * pi / 360.0;
 //
 // Multiply by 1000 and store the rounded
 // result into the integer variable r.

 double theSine =
 sin
 (
 angle * 2.0 *
 3.14159265358979323846 /
 360.0
);
 r = (int) (theSine * 1000.0);

 // Write out the integers eight per line to the
 // source file.
 // Note: If (angle AND %111) is 0, then angle
 // is divisible by 8 and you should output a
 // newline first.

Table Lookups 617

 if((angle & 7) == 0)
 {
 fprintf(outFile, "\n\t.hword\t");
 }
 fprintf(outFile, "%5d", r);
 if ((angle & 7) != 7)
 {
 fprintf(outFile, ",");
 }

 } // endfor
 fprintf(outFile, "\n");

 fclose(outFile);
 return 0;

} // end main

Compiling and running the program in Listing 10-2 produces the file
sines​.inc containing the following text (truncated for brevity):

Sines:
 .hword 0, 17, 34, 52, 69, 87, 104, 121
 .hword 139, 156, 173, 190, 207, 224, 241, 258
 .hword 275, 292, 309, 325, 342, 358, 374, 390
 .hword 406, 422, 438, 453, 469, 484, 499, 515
 .hword 529, 544, 559, 573, 587, 601, 615, 629
 .hword 642, 656, 669, 681, 694, 707, 719, 731
 .hword 743, 754, 766, 777, 788, 798, 809, 819
 .
 .
 .
 .hword -529, -515, -500, -484, -469, -453, -438, -422
 .hword -406, -390, -374, -358, -342, -325, -309, -292
 .hword -275, -258, -241, -224, -207, -190, -173, -156
 .hword -139, -121, -104, -87, -69, -52, -34, -17

Obviously, writing the C program that generated this data is much eas-
ier than entering and verifying this data by hand. You can also use Pascal/
Delphi, Java, C#, Swift, or another HLL to write the table-generation pro-
gram. Because the program will execute only once, its performance is not
an issue.

Once you run the table-generation program, the only step left is to cut
and paste the table from the file (sines​.inc in this example) into the program
that will actually use the table (or, alternatively, use the #include "sines​.inc"
directive to include the text in your source file).

	 10.2	 Table-Lookup Performance
In the early days of PCs, table lookups were a preferred way to do high-
performance computations. Today, it is common for a CPU to be 10 to

618 Chapter 10

100 times faster than main memory. As a result, using a table lookup may
not be faster than doing the same calculation with machine instructions.
However, the on-chip CPU cache memory subsystems operate at near-CPU
speeds. Therefore, table lookups can be cost-effective if your table resides
in cache memory on the CPU. This means that the way to get good perfor-
mance from table lookups is to use small tables (because the cache has only
so much room) and to use tables whose entries you reference frequently (so
the tables stay in the cache).

Ultimately, the best way to determine whether a table lookup is faster
than a calculation is to write both versions of the code and time them.
Although the “10 million loop and time” approach is probably good enough
for coarse measurements, you might also want to find and use a decent pro-
filer program that will produce much better timing results. See “For More
Information” for additional details.

	 10.3	 Moving On
Using table lookups to optimize applications has grown out of favor as
CPU speeds have increased and memory access times have not kept pace.
Nevertheless, this short chapter covered the instances when table lookups
are still useful. It began with a discussion of basic table lookup operations,
then covered domain conditioning and using software to automatically gen-
erate tables. It concluded with a few notes on how to decide whether table
lookups are the right choice for a particular project.

On modern CPUs, multiple cores and SIMD instruction sets are the
common way of improving application performance. The next chapter
discusses the ARM Neon/SIMD instruction set and how you can use it to
improve program performance.

	 10.4	 For More Information
•	 Donald Knuth’s The Art of Computer Programming, Volume 3: Searching and

Sorting, 2nd edition (Addison-Wesley Professional, 1998), contains a lot
of useful information about searching for data in tables.

•	 See my book Write Great Code, Volume 1, 2nd edition (No Starch Press,
2020) or the electronic version of The Art of Assembly Language at https://
www​.randallhyde​.com for details concerning the operation of cache mem-
ory and how you can optimize its use.

•	 For information on profiler programs, see “Getting Started with dot-
Trace on macOS and Linux” by Maarten Balliauw at https://blog​.jetbrains​
.com​/dotnet​/2023​/02​/22​/getting​-started​-with​-dottrace​-on​-macos​-and​-linux.
You can also check out “13 Profiling Software to Debug Application
Performance Issue” by Amrita Pathak at https://geekflare​.com​/application​
-profiling​-software​/.

https://www.randallhyde.com
https://www.randallhyde.com
https://blog.jetbrains.com/dotnet/2023/02/22/getting-started-with-dottrace-on-macos-and-linux
https://blog.jetbrains.com/dotnet/2023/02/22/getting-started-with-dottrace-on-macos-and-linux
https://geekflare.com/application-profiling-software/
https://geekflare.com/application-profiling-software/

Table Lookups 619

T ES T YOURSEL F

1.	 What is the domain of a function?

2.	 What is the range of a function?

3.	 Provide the code that implements the following functions (using pseudo-C
prototypes and f as the table name):

a.	 byte f(byte input)

b.	 halfword f(byte input)

c.	 byte f(word input)

d.	 word f(word input)

4.	 What is domain conditioning?

5.	 Why might table lookups not be effective on modern processors?

This chapter discusses the vector instruc-
tions on the ARM. This special class of

instructions provides parallel processing,
traditionally known as single-instruction, multiple-

data (SIMD) instructions because, quite literally, a single
instruction operates on several pieces of data concur-
rently. As a result of this concurrency, SIMD instruc-
tions can often execute several times faster (in theory,
as much as 32 to 64 times faster) than the comparable
single-instruction, single-data (SISD) instructions that com-
pose the standard ARM instruction set.

Vector instructions, also known as the Neon instruction set or ARM
Advanced SIMD, provide an extension to the standard scalar instructions.
While a scalar instruction operates on a single piece of data at a time, the
Neon instructions simultaneously operate on a vector (a fancy name for an
array) of data objects.

11
N E O N A N D S I M D P R O G R A M M I N G

622 Chapter 11

This chapter covers a brief history of SIMD instructions, then discusses
the ARM Neon architecture (including the vector registers) and Neon data
types. The majority of this chapter then covers the Neon instruction set. A
complete treatise on SIMD programming is beyond the scope of this book;
however, it wouldn’t do to write this chapter without at least a few SIMD
programming examples in order to demonstrate the benefits of SIMD pro-
gramming, so this chapter concludes with examples that show a bitonic sort
and a numeric-to-hex-string conversion.

	 11.1	 The History of SIMD Instruction Extensions
The Neon instruction set extensions were added to the ARM instruction set
long after the ARM was created. Arm created Neon to counter competition
from the Intel x86 CPU family. To understand why the Neon instruction
set is so radically different from the standard instruction set, you have to
understand the history of SIMD (vector) instruction sets.

The first vector computers were supercomputers such as the CDC
Star-100, Texas Instruments Advanced Scientific Computer (ASC), and
Cray computers, which could operate on a vector of data with a single
instruction. These vector computers were the precursor to the early SIMD
computers such as the Thinking Machines CM-1 and CM-2. Ultimately,
supercomputers moved away from the SIMD approach when Intel intro-
duced SIMD features on its low-cost i860 (and, later, Pentium processors).

The Intel Multimedia Extensions (MMX) instruction set was the first
widely adopted desktop SIMD architecture. Intel added parallel integer
arithmetic instructions to the venerable x86 instruction set to accelerate
digital audio processing and other digital signal processing applications.
The PowerPC followed this with the much more capable AltiVec architec-
ture (which included support for single-precision floating-point values).
Intel then produced the SSE2 and SSE3, AVX, AVX2, and AVX-512 SIMD
instruction architectures (which now include full double-precision floating-
point support).

Intel’s approach to adding vector instructions to its x86 series CPUs was
a bit hackneyed. Given the limited transistor budgets on CPUs in the mid-
dle 1990s, Intel added a few vector instructions (MMX) in its early Pentium
processors and then extended the SIMD instruction set as its CPUs became
larger and had more transistors available to implement advanced features.
This evolution produced a bit of a kludge, with new sets of instructions rep-
licating and obsoleting older instructions (with the newer instruction set’s
ability to handle more data or handle data differently).

By the time ARM added SIMD instructions via its Neon Advanced SIMD
instructions, Intel had gone through multiple generations of SIMD instruc-
tions; Arm was able to cherry-pick the more interesting and useful instruc-
tions from Intel’s set, leaving behind all the kruft and legacy instructions. For
this reason, the Neon instruction set is considerably more compact and much
easier to understand than Intel’s MMX/SSE/AVX instruction sets.

Neon and SIMD Programming 623

	 11.2	 Vector Registers
The ARM provides 32 main FP/Neon registers that are 128 bits each, bro-
ken into five groups based on their size:

•	 V0 to V31, the 128-bit vector registers (for Neon instructions), also ref-
erenced as Q0 to Q31, the qword registers; the Vn names support spe-
cial syntax for vector operations

•	 D0 to D31, the 64-bit double-precision floating-point registers

•	 S0 to S31, the 32-bit single-precision floating-point registers

•	 H0 to H31, the 16-bit half-precision floating-point registers

•	 B0 to B31, the 8-bit byte registers

Figure 11-1 shows the vector register layout.

0127

V0
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31

FPCR

FPSR

Figure 11-1: The FP/Neon registers

624 Chapter 11

The Bn, Hn, Sn, Dn, and Vn registers overlay one another, as shown in
Figure 11-2.

0127
Vn
Dn
Sn, S(n + 1)
Hn
Bn

7153163

Figure 11-2: Byte, half-word, single, double, and vector
register overlays

See Chapter 6 for more information about the scalar floating-point Dn,
Sn, and Hn registers. Keep in mind, however, that if you mix vector and
floating-point operations in your code, the instructions share the same reg-
ister set.

Figures 11-1 and 11-2 give the impression that the Vn registers are
128-bit registers (which, presumably, you can manipulate as a single 128-bit
value). In fact, the Vn registers are vectors containing sixteen 8-bit, eight
16-bit, four 32-bit, two 64-bit, or (single) 128-bit values, as Figure 11-3
shows.

0127
Vn
Vn.2d[i] //i = 0 or 1
Vn.4s[i] //i = 0 to 3
Vn.8h[i] //i = 0 to 7
Vn.16b[i] //i = 0 to 15

715316395 4779111

Figure 11-3: Vector register overlays

When an instruction operates on a particular element of a vector regis-
ter, you reference that element by using one of the following register names
(in all cases, n represents a vector register number in the range 0 to 31):

•	 Vn or Qn when referencing the whole 128-bit register

•	 Vn.B when treating the whole register as an array of 16 bytes

•	 Vn.H when treating the whole register as an array of eight half words

•	 Vn.S when treating the whole register as an array of four words (single-
precision values)

•	 Vn.D when treating the whole register as an array of two dwords (double-
precision values)

•	 Vn.2D[0] or Vn.2D[1] when referencing 64-bit double-precision in bit
positions 0 to 63 or 64 to 127, respectively

•	 Vn.4S[0], Vn.4S[1], Vn.4S[2], Vn.4S[3] when accessing a 32-bit single-
precision value in bit positions 0 to 31, 32 to 63, 64 to 95, or 96 to 127,
respectively

Neon and SIMD Programming 625

•	 Vn.8H[0], Vn.8H[1], . . . , Vn.8H[7] when accessing a 16-bit half-word
value in bit positions 0 to 15, 16 to 31, . . . , 112 to 127, respectively

•	 Vn.16B[0], Vn.16B[1], . . . , Vn.16B[15] when accessing an 8-bit byte in
bit positions 0 to 7, 8 to 16, . . . , 120 to 127

The exact name to choose will depend on the instruction and situation.
You’ll see examples of these registers in use in the next section, “Vector
Data Movement Instructions,” particularly section 11.3.4, “Vector Load and
Store,” on page 632.

Figures 11-2 and 11-3 showed the five basic types associated with the
data in a vector register: bytes, half words, single-precision values, double-
precision values, and 128-bit qwords. In fact, the 32-bit (single) and 64-bit
(double) fields support both floating-point (single and double) and integer
(word and dword) types, bringing the total number of types to seven.

Except for the special 128-bit case, the vector registers contain arrays
of bytes, half words, words, and qwords. For reasons you’ll learn when this
chapter discusses vector operations, each element of the array is known as
a lane. When performing operations using two vector registers, the CPU
generally computes results by using the operands in corresponding lanes
in the two source registers and stores the result in the corresponding lane
in a destination register. For example, suppose that V1 contains 2.0 in the
HO 64 bits (lane 1) and 1.0 in the LO 64 bits (lane 0), and that V2 contains
20.0 in lane 1 and 10.0 in lane 0. Summing these two vector registers and
storing the result in V3 produces 22.0 in lane 1 and 11.0 in lane 0.

Although the vector registers generally contain arrays of data (when
performing SIMD operations), don’t forget that the floating-point regis-
ters (Dn and Sn) overlay the vector registers as well. When doing normal
floating-point operations (see Chapter 6), these registers contain a single
value rather than an array of values. These single values are known as scalars.

Very few operations treat an entire 128-bit Neon register as a scalar
value. Those that do (mainly load and store instructions) use the name Qn
to denote a scalar value rather than Vn (a vector value).

	 11.3	 Vector Data Movement Instructions
Move instructions are the most common integer and floating-point instruc-
tions you’ll use in the Neon instruction set. In this section, you’ll learn how
to use these instructions to move data between registers, load constants into
Neon registers, and load and store vector registers to and from memory.

11.3.1  Data Movement Between Registers
You can use the mov instruction to move data between vector registers.
Unfortunately, the obvious syntax won’t work:

mov v0, v1 // Generates a syntax error

626 Chapter 11

The mov instruction copies elements of a vector into a vector register.
It can copy data between two vector registers or data between a general-
purpose (Xn or Wn) register and a vector register. The exact syntax
depends on how much data you’re copying and the location of the source
and destination registers (vector or general-purpose).

Moving data from a 32-bit general-purpose register (Wm) into a vector
register (Vn) uses one of the following syntaxes:

mov Vn.B[i], Wm // Inserts LO byte of Wm into Vn[i] (i = 0 to 15)
mov Vn.H[i], Wm // Inserts LO hword of Wm into Vn[i] (i = 0 to 7)
mov Vn.S[i], Wm // Inserts Wm into Vn[i] (i = 0 to 3)

The index i must be a literal integer constant, as demonstrated in the
following examples:

mov v0.b[15], w0 // Copy LO byte of W0 into lane 15 of V0.
mov v1.h[0], w2 // Copy LO hword of W2 into lane 0 of W1.
mov v2.s[2], w1 // Copy W1 into lane 2 of V2.

Moving data from a 64-bit general-purpose register (Xm) into a vector
register (Vn) uses the following syntax:

mov Vn.D[i], Xm // Inserts Xm into Vn[i] (i = 0 to 1)

I’ve used the word inserts in these examples because the mov instruction
copies only the byte, hword, word, or dword into the vector register at the
index that i specifies. It does not affect the other data in Vn. For example

mov v0.b[4], w0

inserts only the LO byte from W0 into lane 4 in the V0 register; it leaves all
other bytes in V0 unchanged. Moving bytes, hwords, and words is possible
only when using the Wm register; if you use Xm in the instruction, you can
move only 64 bits. The type specification for the vector register is S (single-
precision) for 32 bits and D (double-precision) for 64 bits. You use this des-
ignation even when copying 32-bit and 64-bit integers.

N O T E 	 The ARM instruction ins (insert) is a synonym for mov when copying data from
a general-purpose register to a vector register—yet another reason for saying these
instructions insert data rather than saying they copy data.

The previous examples copy the value from a 32- or 64-bit general-
purpose register into a vector register. You can also copy data from one
vector register (Vn) to another (Vm) by using the following syntax:

mov Vm.8B, Vn.8B // Copy 64 bits.
mov Vm.16B, Vn.16B // Copy 128 bits.

Neon and SIMD Programming 627

These instructions copy 64 bits (8 bytes, four half words, two words, or
a single dword) or 128 bits (16 bytes, eight half words, four words / single-
precision values, or two dwords / double-precision values) from one vector
register to another. In theory, you should be able to enter something like
mov v1, v0 or mov q1, q0 to move the contents of the 128-bit vector register
V0 (Q0) into V1 (Q1). Sadly, Gas does not accept this syntax, so you’ll have
to use one of the previous four instructions, as in the following example:

mov v0.16b, v1.16b // Copies V1 to V2

You can also extract a single byte from one vector register and insert it
in an arbitrary lane in another vector register, using the following syntax

mov Vm.B[i1], Vn.B[i2]

where i2 is the index of a byte in the source vector and i1 is the destination
index. Both indices must be in the range 0 to 15.

You can also extract a half word from one vector and insert that into
another:

mov Vm.H[i1], Vn.H[i2]

The rules are the same for bytes, except that the two index values must
be in the range 0 to 7.

You can copy words (single-precision values) and dwords (double-
precision values) by using the following syntax:

mov Vm.S[i1], Vn.S[i2] // i1 and i2 must be in range 0 to 3.
mov Vm.D[i3], Vn.D[i4] // i3 and i4 must be in range 0 to 1.

Here’s an example that copies the LO dwords of V0 and V1 merges
them into the two dwords in V2:

mov v2.d[0], v0.d[0]
mov v2.d[1], v1.d[0]

Thus far, I’ve described how to move data from a general-purpose reg-
ister to a vector register and between two vector registers. The only missing
combination is moving data from a vector register to a general-purpose reg-
ister, handled by the following mov, umov, and smov instructions:

mov Wn, Vm.S[i0] // Copies 32 bits
mov Xn, Vm.D[i1] // Copies 64 bits

umov Wn, Vm.B[i1] // Zero-extends byte to 32 bits
umov Wn, Vm.H[i2] // Zero-extends hword to 32 bits
umov Xn, Vm.D[i3] // Copies 64 bits

smov Wn, Vm.B[i5] // Sign-extends byte to 32 bits
smov Wn, Vm.H[i6] // Sign-extends hword to 32 bits

628 Chapter 11

smov Xn, Vm.B[i5] // Sign-extends byte to 64 bits
smov Xn, Vm.H[i6] // Sign-extends hword to 64 bits
smov Xn, Vm.S[i7] // Sign-extends word to 64 bits

There are no 8- or 16-bit zero extensions to 64 bits. Zero-extending into
Wn automatically zero-extends all the way through the upper 32 bits of Xn.
Here are some examples of these instructions:

mov w0, v0.s[0] // Copy lane 0 (word) of V0 to W0.
mov x1, v7.d[1] // Copy lane 1 (dword) of V7 to X1.
umov w0, v1.b[2] // Copy and zero-extend V1[2] byte to W0.
smov x1, v0.s[3] // Copy and sign-extend V0[3] (word) to X1.

Remember that smov x1, v0.s[3] is moving an integer value, even though
the specified type is S (single-precision).

11.3.2  Vector Load Immediate Instructions
The ARM CPU provides a limited set of instructions that allow you to load
certain immediate constants into a vector register. The integer versions of
these instructions allow only an unsigned 8-bit immediate operand that can
be used as is or shifted to the left 1, 2, or 3 bytes (filling vacated positions
with 0s or 1s). Furthermore, these immediate instructions copy the data
into every lane of a byte array, half-word array, or word array. The floating-
point versions of these instructions allow a limited set of floating-point
constants (the same limitations as for scalar floating-point constants; see
section 6.9.1.4, “fmov with Immediate Operand,” on page 334).

The standard move immediate instruction is movi

movi Vn.size, #uimm8
movi Vn.size, #uimm8, lsl #c // size = 4H, 8H, 2S, or 4S
movi Vn.size, #uimm8, msl #c // size = 2S or 4S
movi Vn.2D, #uimm64
movi Dn, #uimm64

where size is 16B, 8B, 4H, 8H, 2S, or 4S; uimm8 is an 8-bit constant; and
uimm64 is either 0 or 0xFFFFffffFFFFffff. The lsl #c component is optional for
instructions with 4H, 8H, 2S, and 4S sizes. The msl #c option is optional
for 2S and 4S sizes. The movi instructions initialize all lanes in the vector
register, or just the lanes in the LO 64 bits, with the specified immediate
constant. The following paragraphs describe the specific variants of each of
these instructions.

The movi Vn.8B, #uimm8 instruction fills each of the LO 8 bytes of Vn with
the specified constant and the HO 64 bits of the register with 0s. For example

movi v0.8b, #0x80

loads 0x80808080 into V0.
The movi Vn.16B, #uimm8 instruction fills all 16 bytes of Vn with the speci-

fied constant. Each lane receives a copy of the uimm8 value.

Neon and SIMD Programming 629

The movi Vn.4H, #uimm8 instruction fills the four hword lanes in the LO
64 bits of Vn with a copy of the uimm8 constant, and fills the HO 64 bits of Vn
with 0. Because this instruction accepts only 8-bit immediate constants, the
HO 8 bits of each half-word lane will contain 0s. For example

movi v1.4h, #1

loads 0x0001000100010001 into V1.
The movi Vn.4H, #uimm8, lsl #0 instruction is identical to movi Vn.4H,

#uimm8. If the shift constant is #8, this instruction shifts the immediate con-
stant to the left eight positions before storing it into the four half-word
lanes (in the LO 64 bits of Vn). In this case, the LO 8 bits of each of these
lanes will contain 0s. For example

movi v1.4h, #1, lsl #8

loads 0x0100010001000100 into V1.
The movi Vn.8H, #uimm8 and movi Vn.8H, #uimm8, lsl #c instructions do

the same thing as the 4H instructions, except that they store the immediate
constant (shifted by 0 or 8 bits) into all eight lanes of the Vn register.

The movi Vn.2S, #uimm8 instruction fills the two word (single-precision)
lanes in the LO 64 bits of Vn with a copy of the uimm8 constant, and fills the
HO 64 bits of Vn with 0. Because this instruction accepts only 8-bit immedi-
ate constants, the HO 24 bits of each word lane will contain 0s. Although
the type specification is S, this instruction assigns integer constants, not
floating-point constants, to the lanes. If the optional shift clause is present
(movi Vn.2S, #uimm8, lsl #c, where c is 0, 8, 16, or 24), this instruction will
shift the 8-bit constant by the specified number of bits before storing the
constant into the two lanes. Here are a few examples:

movi v3.2s, #1 // Loads 0x0000000100000001 into V3
movi v4.2s, #1, lsl #8 // Loads 0x0000010000000100 into V4
movi v5.2s, #1, lsl #16 // Loads 0x0001000000010000 into V5
movi v6.2s, #1, lsl #24 // Loads 0x0100000001000000 into V6

The movi Vn.2S, #uimm8, msl #c instruction is almost identical to its
lsl counterpart, except it shifts 1 bits rather than 0 bits into the vacated
positions during the shift-left operation. The shift count is limited to 8 or
16 rather than 0, 8, 16, and 24 (an annoying inconsistency). For example

movi v5.2s, #1, msl #16

loads 0x0001FFFF0001FFFF into V5.
The movi Vn.4S, #uimm8 instruction fills the four word (single-precision)

lanes in Vn with a copy of the uimm8 constant. Otherwise, this instruction
(and the variant with shifting) behaves identically to the 2S version.

The movi Vn.2D, #uimm64 instruction loads one of two constants (0 or –1)
into the two dword lanes of the Vn register. Once again, keep in mind that

630 Chapter 11

these are integer constants, not floating-point constants, despite the use of
the 2D type specifier.

The second move immediate instruction is mvni (move and not immedi-
ate). It supports the following syntax

mvni Vn.size, #uimm8 {, (lsl | msl) #c}

where size and uimm8 have the same meanings as given for movi.
The operations are the same as for movi, except that mvni inverts all the

bits before storing them into the lanes of the Vn destination register. The
HO 64 bits of Vn still receive 0s for the 4H and 2S type specifiers, as shown
in the following examples:

mvni v2.4h, #1, lsl #8 // Loads 0xFEFFfeffFEFFfeff into V2
mvni v4.2s, #2, msl #8 // Loads 0xFFFFFD00fffffd00 into V4

Note the absence of the 2D types for the mvni instruction. These instruc-
tions are unnecessary because the two allowable movi uimm64 constants are
already the inverse of each other. If you want inverted bits, just use the other
uimm64 constant (0 versus –1) with the movi instruction.

The third form of the move immediate instruction, fmov, allows you to
load certain floating-point constants into the lanes of a vector register. The
allowable syntax is the following:

fmov Vn.2S, #fimm
fmov Vn.4S, #fimm
fmov Vn.2D, #fimm

The floating-point immediate constant (fimm) must be a value defined by

±n ÷ 16 × 2r

where 16 ≤ n ≤ 31 and –3 ≤ r ≤ 4. You cannot represent 0.0 with this formula;
if you need to load 0.0 into the lanes of a vector register, just load the integer
constant 0 into those lanes by using the movi instruction (all 0 bits is 0.0):

fmov v0.2s, #1.0 // Loads [0.0, 0.0, 1.0, 1.0] into V0
fmov v0.2d, #2.0 // Loads [2.0, 2.0] into V0

The move immediate instructions load only certain constant values
into the vector registers. The following are the exact values you can load as
immediate floating-point constants (Gas will accept only these values):

 0.1250000 0.1328125 0.1406250 0.1484375
 0.1562500 0.1640625 0.1718750 0.1796875
 0.1875000 0.1953125 0.2031250 0.2109375
 0.2187500 0.2265625 0.2343750 0.2421875
 0.2500000 0.2656250 0.2812500 0.2968750

Neon and SIMD Programming 631

 0.3125000 0.3281250 0.3437500 0.3593750
 0.3750000 0.3906250 0.4062500 0.4218750
 0.4375000 0.4531250 0.4687500 0.4843750
 0.5000000 0.5312500 0.5625000 0.5937500
 0.6250000 0.6562500 0.6875000 0.7187500
 0.7500000 0.7812500 0.8125000 0.8437500
 0.8750000 0.9062500 0.9375000 0.9687500
 1.00 1.0625 1.125 1.1875
 1.25 1.3125 1.375 1.4375
 1.50 1.5625 1.625 1.6875
 1.75 1.8125 1.875 1.9375
 2.00 2.1250 2.250 2.3750
 2.50 2.6250 2.750 2.8750
 3.00 3.1250 3.250 3.3750
 3.50 3.6250 3.750 3.8750
 4.00 4.2500 4.500 4.7500
 5.00 5.2500 5.500 5.7500
 6.00 6.2500 6.500 6.7500
 7.00 7.2500 7.500 7.7500
 8.0 8.5 9.0 9.5
10.0 10.5 11.0 11.5
12.0 12.5 13.0 13.5
14.0 14.5 15.0 15.5
16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0
24.0 25.0 26.0 27.0
28.0 29.0 30.0 31.0

Based on the way programs typically use the Neon registers, this is a
reasonable set of values, which can be encoded into a 32-bit instruction
opcode. To load larger or different constants, see section 11.3.4, “Vector
Load and Store,” on the next page.

11.3.3  Register or Lane Value Duplication
The dup instruction allows you to duplicate a value held in a general-purpose
register or in a single lane of a vector register, throughout all the lanes in a
vector register. This instruction supports the following forms:

dup Vn.2D, Xm // Copy Xm into lanes 0-1 (64 bits each) in Vn.

dup Vn.8B, Wm // LO 8 bits of Wm to lanes 0-7 in Vn
dup Vn.16B, Wm // LO 8 bits of Wm to lanes 0-15 in Vn

dup Vn.4H, Wm // LO 16 bits of Wm to lanes 0-3 in Vn
dup Vn.8H, Wm // LO 16 bits of Wm to lanes 0-7 in Vn

dup Vn.2S, Wm // Wm to lanes 0-1 in Vn
dup Vn.4S, Wm // Wm to lanes 0-3 in Vn

dup Vn.8B, Vm.B[i1] // Dup Vm lane i1 through lanes 0-7 in Vn.
dup Vn.16B, Vm.B[i2] // Dup Vm lane i2 through lanes 0-15 in Vn.

632 Chapter 11

dup Vn.4H, Vm.H[i3] // Dup Vm lane i3 through lanes 0-3 in Vn.
dup Vn.8H, Vm.H[i4] // Dup Vm lane i4 through lanes 0-7 in Vn.

dup Vn.2S, Vm.S[i5] // Dup Vm lane i5 through lanes 0-1 in Vn.
dup Vn.4S, Vm.S[i6] // Dup Vm lane i6 through lanes 0-3 in Vn.

dup Vn.2D, Vm.D[i7] // Dup Vm lane i7 through lanes 0-1 in Vn.

The first instruction in each pair duplicates only data in the LO 64 bits
of Vn; the second instruction of each pair copies a full 128 bits. The two
single instructions copy 128 bits.

11.3.4  Vector Load and Store
The mov, movi, mvni, fmov, and dup instructions can move data between vector
registers and between general-purpose and vector registers, and can load
constants into vector registers. However, they don’t allow you to load a regis-
ter from memory or store the value held in a vector register to memory. The
Neon instruction set provides several load and store instructions to handle
these tasks.

Because the load and store instructions are the most fundamental, this
section considers them first. To load or store an entire 128-bit vector register,
use the following syntax

ldr Qn, memory
str Qn, memory

where memory is one of the usual ARM memory addressing modes (same as
for the scalar ldr and str instructions). Note the use of Qn to denote the
register (rather than Vn). This is one of the few places the Qn register is
legal (one wonders why they didn’t just use Vn). These instructions will load
or store a full 16 bytes, that is, 128 bits.

The stp instructions also allow vector register (Qn) operands:

ldp Qn, Qm, memory
stp Qn, Qm, memory

Note that n and m in these instructions don’t have to be consecutive
numbers but can be any arbitrary value in the range 0 to 31.

11.3.5  Interleaved Load and Store
The Neon instruction set provides load and store instructions that load data
into a single lane across multiple vector registers. These instructions load
interleaved data from memory into one, two, three, or four vector registers.
The load (ld1, ld2, ld3, and ld4) and store (st1, st2, st3, and st4) instructions
support non-interleaved data, pairs of interleaved data, triplets of interleaved
data, and quad-interleaved data, respectively. The following subsections
describe these types of interleaved load and store instructions.

Neon and SIMD Programming 633

11.3.5.1  Interleaved Load and Store Addressing Modes

The interleaved load and store instructions access memory, but they do not
support the full set of ARM memory addressing modes, just three

instr {register_list}, [Xn]
instr {register_list}, [Xn], Xm
instr {register_list}, [Xn], #imm

where instr is one of ldn/stn and register_list is a comma-separated set of
Qn registers that the load and store instructions will use when loading data
from, or storing data to, memory. (The following sections discuss register
_list at greater length.)

The standard register-indirect addressing mode is[Xn]. The ldn/stn
instructions will access the data at the memory address held in general-
purpose register Xn.

The [Xn], Xm addressing mode computes its effective address as the
sum of the values in Xn and Xm. This is a post-increment addressing mode;
immediately after accessing the specified memory address, this mode adds
the value of Xm to Xn.

The [Xn], #imm addressing mode is also a post-increment addressing
mode, which computes its effective address as the sum of Xn + imm, then adds
the immediate constant to Xn after referencing the address. The immedi-
ate value is limited to the constants 1, 2, 4, 8, 16, 32, 48, or 64, where the
register_list operand(s) determines the value you must use. The following
sections describe the allowable immediate constants for each version of
the instruction.

11.3.5.2  ld1/st1

The ld1 instruction loads one to four registers with data from sequential
(non-interleaved) memory locations. With a single vector register, the syn-
tax for this instruction is the following

ld1 {Vn.8B}, memory
ld1 {Vn.16B}, memory
ld1 {Vn.B}[index], memory

ld1 {Vn.4H}, memory
ld1 {Vn.8H}, memory
ld1 {Vn.H}[index], memory

ld1 {Vn.2S}, memory
ld1 {Vn.4S}, memory
ld1 {Vn.S}[index], memory

ld1 {Vn.2D}, memory
ld1 {Vn.D}[index], memory

634 Chapter 11

where memory is one of the following:

[Xn]
[Xn], Xm
[Xn], #imm

The imm operand, if present, must match the size of the register oper-
and. That is, for B it must be 1; for 8B, 8; for 16B, 16; for H, 2; and so on.

The ld1 instruction with the {Vn.8B} register list operand loads 8 bytes
into the LO 64 bits of Vn, while the {Vn.16B} register list operand loads
16 bytes.

With a 4H or 2S type specification, the ld1 register also loads 64 bits
(four hwords or two words) into the LO 64 bits of Vn. With an 8H or 4S
type, the ld1 instruction loads 128 bits into Vn. Although the 8B, 4H, and
2S types and the 16B, 8H, 4S, and 2D types seem to be interchangeable
(they load the same amount of data into Vn), you should aim to pick the
most appropriate type for the data you’re manipulating. Not only does this
improve your documentation, but also the internal microarchitecture of the
ARM CPU might be able to optimize its operations better based on the type
of data you are using.

With the bare B, H, S, or D type specification, the ld1 instruction loads
a single lane in Vn with data from memory. This operation does not affect
the data in the other lanes in Vn. This is the most important variant of the
ld1 instruction because it allows you to build up data in a vector register one
lane at a time from different locations in memory.

Why does the ld1 instruction require braces around the vector register
specification? The destination operand of this instruction is actually a reg-
ister list. You can specify one to four registers in this list, as shown in the
following examples:

ld1 {v1.8b}, [x0]
ld1 {v1.8b, v2.8b}, [x0]
ld1 {v1.8b, v2.8b, v3.8b}, [x0]
ld1 {v1.8b, v2.8b, v3.8b, v4.8b}, [x0]

The registers that may appear in this list have two restrictions:

•	 They must be consecutively numbered registers (with V0 being the suc-
cessor to V31).

•	 The type specifications must be identical for all registers in the list.

If you have two or more consecutively numbered registers in a list, you
can use the shorthand

{Vn.t - V(n + m).t}

Neon and SIMD Programming 635

where m is 1, 2, or 3, and t is one of the usual vector types, as shown in the
following examples:

ld1 {v1.8b}, [x0]
ld1 {v1.8b - v2.8b}, [x0]
ld1 {v1.8b - v3.8b}, [x0]
ld1 {v1.8b - v4.8b}, [x0]

When you specify more than one register in the list, the ld1 instruction
will load values from consecutive locations into the register. For example,
the following code will load V0 from the 16 bytes at the address held in X0,
V1 from the 16 bytes at X0 + 16, and V2 from the 16 bytes at X0 + 32:

ld1 {v0.16b, v1.16b, v2.16b}, [x0]

The st1 instruction supports an identical instruction syntax (except, of
course, you substitute the st1 mnemonic for ld1). It stores the contents of
the register(s) or lanes from those registers into the specified memory loca-
tion. Here is an example that demonstrates storing the values in V0 and V1
to the location specified by X0:

st1 {v0.16b, v1.16b}, [x0]

This instruction stores the value in V0 at the address held in X0, and
the value in V1 to address X0 + 16.

11.3.5.3  ld2/st2

The ld2 and st2 instructions load and store interleaved data. These two
instructions use the following syntax

ld2 {Vn.t1, V(n + 1).t1}, memory
ld2 {Vn.t2, V(n + 1).t2}[index], memory
st2 {Vn.t1, V(n + 1).t1}, memory
st2 {Vn.t2, V(n + 1).t2}[index], memory

where the register list must contain exactly two registers, and their register
numbers must be consecutive. The t1 size is 8B, 16B, 4H, 8H, 2S, 4S, or
2D, while t2 is B, H, S, or D. The literal constant index is an appropriate
lane number for the type’s size (0 to 15 for B, 0 to 7 for H, 0 to 3 for S,
and 0 to 1 for D). Finally, memory is one of the addressing modes described
in section 11.3.5.1, “Interleaved Load and Store Addressing Modes,” on
page 633.

The variants with index (which load a single lane into the two registers)
load the first register’s lane from the specified memory address and load the
second register’s lane n bytes later (where n is the size of the lane, in bytes).

The ld2 instruction with the t1 type specification (8B, 16B, 4H, 8H,
and so on), meanwhile, loads the two registers one value at a time (of the

636 Chapter 11

specified type: B, H, S, or D), alternating destination lanes between the two
registers. For example

ld2 {v0.8b, v1.8b}, [x0]

loads the LO 8 bytes of V0 from memory locations X0, X0 + 2, X0 + 4, X0 + 6,
X0 + 8, X0 + 10, X0 + 12, and X0 + 14. It loads the LO 8 bytes of V1 from loca-
tions X0 + 1, X0 + 3, X0 + 5, X0 + 7, X0 + 9, X0 + 11, X0 + 13, and X0 + 15. This
deinterleaves the data in memory, loading the even bytes into V0 and the
odd bytes into V1. Figure 11-4 shows how ld2 extracts interleaved data from
X0 and stores the deinterleaved results in V0 and V1.

X0

V0

V1

Figure 11-4: The ld2 deinterleaving operation

If you specify the half-word type (4H or 8H), the ld2 instruction dein-
terleaves 16-bit values (even and odd half words). This is particularly useful
for deinterleaving digital audio tracks that interleave left and right channels
(16 bits per sample).

If you specify 2S/4S or 2D, this instruction will deinterleave words or
dwords. For example, if you have an array of floating-point complex numbers,
the ld2 instruction can deinterleave the real and imaginary components.

Because ld2 deinterleaves pairs of objects, the register list must contain
exactly two registers. The assembler will reject any other number of registers
in the list.

The st2 instruction uses the same syntax (except, of course, substituting
st2 for ld2). This instruction stores data lanes of the specified type from two
registers into memory, interleaving the data between the two registers. The
store operation is basically reversing the arrows in Figure 11-4 (that is, copy-
ing the data from V0 and V1 into X0, interleaving the two data sets).

11.3.5.4  ld3/st3

The ld3 and st3 instructions behave in a similar fashion to ld2/st2, except
that they (de)interleave three objects in memory rather than two, and the
register list must contain exactly three registers.

A common example of using the ld3/st3 instructions is to (de)inter-
leave red, green, blue (RGB) values consisting of 3 bytes—an 8-bit red, 8-bit
green, and 8-bit blue value—in memory. Using the ld3 instruction, you can

Neon and SIMD Programming 637

deinterleave an array of 3-byte RGB values into separate red, green, and
blue byte arrays. You can use the st3 instruction to interleave red, green,
and blue values into an RGB array.

11.3.5.5  ld4/st4

Finally, as you’ve probably figured out by now, the ld4 instruction copies
four consecutive values from memory and stores those values into the same
lane of the four registers specified by the four-element register list:

ld4 {v4.d, v5.d, v6.d, v7.d}[0], [x0]

This instruction copies the four dwords starting at the address held in
X0 into lane 0 of V4, V5, V6, and V7, respectively. Figure 11-5 diagrams how
this ld4 instruction operates.

X0 points here Memory

V4

V5

V6

V7

Lane 0Lane 1Lane 2Lane 3

Figure 11-5: The ld4 instruction operation

The ld4/st4 instructions are useful for (de)interleaving data in memory
that consists of an array of four objects. For example, suppose that you have
an array of CMYK (cyan-magenta-yellow-black) color pixels in memory,
arranged as shown in Figure 11-6.

LO byte HO byte

Cyan YellowMagenta Black

Figure 11-6: CMYK pixel layout in memory

638 Chapter 11

When submitting an image to a printing service, you generally need to
provide color separations—that is, four separate images consisting only of
the cyan pixels, magenta pixels, yellow pixels, and black pixels. Therefore,
you’ll need to extract all the cyan pixels from the full-color image and
create a separate image for that; likewise for the magenta, yellow, and
black pixels.

You can use the ld4 instruction to extract the cyan, magenta, yellow,
and black values from the original image and place those pixels in four sep-
arate vector registers. For example, assuming X0 points at the first CMYK
pixel (32 bits) in memory

ld4 {v0.b - v3.b}[0], [x0]

will extract the 4 bytes pointed at by X0 and distribute them into lane 0 of
V0 (cyan), V1 (magenta), V2 (yellow), and V3 (black). If you add 4 to X0 and
repeat this instruction, specifying lane 1 instead of lane 0, this will separate
the second pixel into lane 1 of V0–V4. Repeat this 14 more times and you’ll
have 16 cyan pixels in V0, 16 magenta pixels in V1, 16 yellow pixels in V2,
and 16 black pixels in V3. You can then store away these four registers into
the graphic image area that will hold the four-color separations. Repeat this
process for all the pixels in the four-color image and you’ll have your color
separations.

Of course, you can use the 8B and 16B types to process 8 or 16 pixels
concurrently:

ld4 {v0.16b - v3.16b}, [x0]

This instruction copies 64 bytes into V0, V1, V2, and V3, with every
fourth byte going into successive lanes in the four registers: V0 gets bytes
at offsets i % 4, V1 gets bytes at offsets (i % 4) + 1, and so on, where i is the
byte index into memory.

11.3.5.6  ldnr

The ld1, ld2, ld3, and ld4 instructions load the lanes of one to four registers
with successive values in memory, deinterleaving an array of interleaved
objects (bytes, hwords, words, or dwords). The ld1r, ld2r, ld3r, and ld4r
instructions also deinterleave an interleaved object, but the memory object
is a single object that the instruction replicates through all lanes in the vec-
tor register(s).

The syntax for these instructions is the same as for the ldn instructions
with the addition of the r suffix on the mnemonic:

ld1r {Vn.t}, memory
ld2r {Vn.t, V(n + 1).t}, memory
ld3r {Vn.t, V(n + 1).t, V(n + 2).t}, memory
ld4r {Vn.t, V(n + 1).t, V(n + 2).t, V(n + 3).t}, memory

Neon and SIMD Programming 639

The .t represents a lane type (more on this in a moment), and memory
is the usual ldn addressing modes. You can also use the range syntax

Vn.t - V(n + m).t

when specifying two or more registers in the list.
For these instructions, allowable types are 8B, 16B, 4H, 8H, 2S, 4S,

and 2D. These type specifications do the following when used with the ld1r
instruction:

•	 8B loads the first 8 lanes of Vn with a copy of the byte found at memory,
replicating that byte in each lane.

•	 16B loads all 16 lanes of Vn with a copy of the byte found at memory, repli-
cating that byte in each lane.

•	 4H loads the first 4 lanes of Vn, replicating the hword found at memory.

•	 8H loads all 8 lanes of Vn, replicating the hword found at memory.

•	 2S loads the first 2 lanes of Vn, replicating the word found at memory.

•	 4S loads all 4 lanes of Vn, replicating the word found at memory.

•	 2D loads the 2 dword lanes of Vn, replicating the dword found at memory.

The ld1r instruction fetches only a single lane value from memory and
writes it to all the lanes of the destination register. The ld2r instruction
fetches two lane objects from successive memory locations and replicates
the first value throughout the first register and the second value throughout
the second. The ld3r instruction fetches three lane objects from memory
and replicates them through the first, second, and third registers, respec-
tively. Finally, the ld4r instruction fetches four lane objects from memory
and uses them to initialize the lanes of the four registers.

11.3.6  Register Interleaving and Deinterleaving
The ldn/stn and ldnr instructions operate between memory and the vector
registers. When you want the ability to interleave and deinterleave data
appearing in vector registers, leaving the result in a vector register, use the
trn1, trn2, zip1, zip2, uzip1, uzip2, and ext instructions.

11.3.6.1  trn1 and trn2

The trn1 and trn2 (transpose) instructions—so called because you can use
them to transpose the elements of a 2 × 2 matrix (or larger arrays with a lit-
tle effort)—extract data from two source registers and interleave that data
into a destination register. These instructions use the following syntax

trn1 Vd.t, Va.t, Vb.t
trn2 Vd.t, Va.t, Vb.t

where t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D. The d (destination), a, and b
items are register numbers in the range 0 to 31. These register numbers are

640 Chapter 11

arbitrary (they don’t have to be consecutive values, as is the case for the
ldn/stn and ldnr instructions).

The trn1 instruction copies the data from even-numbered lanes in Va.t
into the corresponding lanes in Vd.t, and data from even-numbered lanes
in Vb.t into the odd lanes in Vd.t, while ignoring the odd-numbered lanes in
Va.t and Vb.t. For example, consider the following instruction:

trn1 v0.4s, v2.4s, v4.4s

This instruction interleaves the alternate bytes in V2 and V4, leaving
the result in V0, as shown in Figure 11-7.

V2

V0

V4

Lane 0123

Figure 11-7: The trn1 v0.4s, v2.4s, v4.4s operation

The trn2 instruction copies the values in the odd lanes in Va.t and Vb.t
into alternating lanes in Vd.t, as shown in Figure 11-8 (similar to trn1 except
that it swaps the source locations).

V2

V0

V4

Lane 0123

Figure 11-8: The trn2 v0.4s, v2.4s, v4.4s operation

Consider the 2×2 matrix of double-precision values held in V2 and V3
as shown in Figure 11-9 (note the positions of the array elements, which is
different from what you would normally expect).

Neon and SIMD Programming 641

V2

V3

Lane 01

M[0,0]M[0,1]

M[1,0]M[1,1]

Figure 11-9: A 2×2 matrix held in V2 and V3

The following two instructions will transpose this matrix, leaving the
result in V0 and V1:

trn1 v0.2d, v2.2d, v3.2d
trn2 v1.2d, v2.2d, v3.2d

Of course, trn1 and trn2 are generally useful for rearranging and inter-
leaving values in the vector registers, even if you aren’t transposing 2×2
matrices.

11.3.6.2  zip1 and zip2

The zip1 and zip2 instructions are similar to trn1 and trn2 insofar as they
produce an interleaved result from data taken from two source registers.
The name zip comes from zipper: the instruction interleaves lanes just like a
zipper interleaves the two halves of the connector. Except for the mnemon-
ics, the syntax is identical to trn1 and trn2

zip1 Vd.t, Va.t, Vb.t
zip2 Vd.t, Va.t, Vb.t

where t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D (all types must be the same
in the instruction).

The zipn and trnn instructions differ in the way they select the source
lanes to interleave. The zip1 instruction interleaves lane values taken from
the beginning of the source registers (consuming half the lanes of each
source register and ignoring the remaining lanes). See Figure 11-10 for
an example.

V1

V0

V2

Lane 0123

Figure 11-10: The zip1 v0.4s, v1.4s, v2.4s operation

642 Chapter 11

The zip2 instruction works similarly except that it processes the second
half of the lanes in the source registers. Figure 11-11 shows an example.

V1

V0

V2

Lane 0123

Figure 11-11: The zip2 v0.4s, v1.4s, v2.4s operation

As you can see from these figures, the zip1 and zip2 instructions are
typically what you would use to create interleaved data using only registers.

11.3.6.3  uzp1 and uzp2

The uzp1 and uzp2 (unzip1 and unzip2) instructions are the inverse of zip1
and zip2. They take interleaved data in two source registers and produce
deinterleaved data in the destination register. Their syntax is the same as
that of the trnn and zipn instructions:

uzp1 Vd.t, Va.t, Vb.t
uzp2 Vd.t, Va.t, Vb.t

As usual, t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D.
The uzp1 instruction copies the even lanes from Va.t into the first half of

Vd.t, then appends the even lanes of Vb.t to the end of Vd.t. See Figure 11-12
for an example.

V1

V0

V2

Lane 0123

Figure 11-12: The uzp1 v0.4s, v1.4s, v2.4s operation

Neon and SIMD Programming 643

The uzp2 instruction copies the odd lanes from the source registers.
Figure 11-13 shows an example of the uzp2 instruction in action.

V1

V0

V2

Lane 0123

Figure 11-13: The uzp2 v0.4s, v1.4s, v2.4s operation

If the type specifier is 64 bits (8B, 4H, or 2S), the uzp1 and uzp2 instruc-
tions leave 0s in the HO lanes of the destination register.

11.3.6.4  ext

The ext (extract) instruction creates an 8- or 16-byte vector from n bytes in
one vector and 8-n (or 16-n) bytes from a second vector. This instruction
allows you to extract an 8- or 16-byte vector from across two vectors. The
syntax for this instruction is as follows

ext Vd.8B, Vs1.8B, Vs2.8B, #n
ext Vd.16B, Vs1.16B, Vs2.16B, #n

where n is a starting index, Vd is the destination register, and Vs1 and Vs2 are
the source registers.

The ext Vd.8B, Vs1.8B, Vs2.8B, #n instruction fetches the LO n bytes from
Vs2 and copies them to the HO n bytes of the LO 64 bits in Vd. It also extracts
the LO 8-n bytes from Vs1 and copies them to the LO 8-n bytes of Vd. For an
example of ext, see Figure 11-14.

V2

V0

V1

Lane 07816

Figure 11-14: The ext v0.8B, v1.8B, v2.8B, #2
instruction

644 Chapter 11

The ext Vd.16B, Vs1.16B, Vs2.16B, #n instruction fetches the LO n bytes
from Vs2 and copies them to the HO n bytes of Vd. It also extracts the
LO 16-n bytes from Vs1 and copies them to the LO 16-n bytes of Vd (see
Figure 11-15 for an example).

V2

V0

V1

Lane 07816

Figure 11-15: The ext v0.16B, v1.16B, v2.16B, #5
instruction

This instruction supports only the 8B and 16B types. You can easily
extract hwords, words, or dwords by choosing an appropriate index value
(n) that includes all the objects you want to extract.

11.3.7  Table Lookups with tbl and tbx
The tbl and tbx (table lookup) instructions allow you to exchange all the
byte values in one register with values taken from a lookup table containing
up to 64 entries. The syntax for these instructions is

tbl Vd.8B, {table_list}, Vs.8B
tbl Vd.16B, {table_list}, Vs.16B
tbx Vd.8B, {table_list}, Vs.8B
tbl Vd.16B, {table_list}, Vs.16B

where table_list is a list of one to four (consecutively numbered) registers,
all of which must have a 16B type attached to them. (You can also use the
Vn.t - Vm.t syntax, where m > n and m < (n + 4).) This list of registers provides
a lookup table that contains 16, 32, 48, or 64 entries. The LO byte of the
first register is index 0 in the table; the HO byte of the last register is index
15, 31, 47, or 63 into the table.

The tbl instruction fetches each byte from the source register (Vs.t)
and uses its value as an index into the lookup table. It fetches the byte at
that index from the table and copies it to the corresponding location in the
destination register—that is, the same byte index from which the source
byte was taken; so this is equivalent to Vd[i] = table[Vs[i]]. If the value
is out of range (greater than 15, 31, 47, or 63, depending on the size of the
table), the tbl instruction stores a 0 into the corresponding location in the
destination register. The tbx instruction works similarly to tbl, except that it

Neon and SIMD Programming 645

leaves the destination location unchanged if the source value is out
of range.

For very small tables (64 entries or fewer), you can use tbl and tbx to
implement lookup tables as described in Chapter 10. However, the main
purpose of these two instructions is to provide arbitrary vector permuta-
tions like the trn1/trn2, zip1/zip2, uzp1/uzp2, and ext instructions. Suppose,
for example, that you want to reverse the positions of all 16 bytes in a vector
register (swapping indices 0 and 15, 1 and 14, 2 and 13, 3 and 12, and so on).
Figure 11-16 shows a 16-byte endian swap operation, where the double-
ended arrows point to the two locations where the bytes are exchanged.

Lane 07815

Figure 11-16: A 16-byte endian swap

If you load a vector register with the following 16-byte value

0x000102030405060708090a0b0c0d0e0f

and then use this value in the source register for the tbl (or tbx) instruc-
tion, tbl (or tbx) will swap the bytes in a single 16-byte register supplied
as the table_list, storing the reversed bytes in the destination register.
Assuming you’ve loaded this value into V0, the following instruction will
swap the bytes in {V1}, placing the results in V2:

tbl v2.16b, {v1.16b}, v0.16b

After you load V1 with the bytes to be swapped and execute this instruc-
tion, V2 will contain the swapped values.

To use tbl or tbx as a vector permutation instruction, load the permuta-
tion indexes into the source register (V0 in this example). The indices will
always be values in the range 0 to 15, to select specific entries in table_list.
For a true permutation, each of the values (0 to 15) will appear exactly once
in the source register, and there will always be a single register in the table
_list. Because you’re limiting the values in the source register to the range
0 to 15, the table index values are always in range, so you can use either tbl
or tbx. Both work exactly the same when the values are not out of range.

Of course, you can use any permutation you like by specifying differ-
ent values in the source register. As with the ext instruction, tbl and tbx
support only the 8B and 16B lane types. However, it’s easy enough to syn-
thesize other types (for permutations, anyway) by choosing the positions
of the source register lane values to permute hwords, words, and dwords.
Obviously, for table lookup operations (rather than permutations), you’re

646 Chapter 11

limited to 8-bit values, so hword, word, and dword types don’t make any
sense.

11.3.8  Endian Swaps with rev16, rev32, and rev64
The rev16, rev32, and rev64 instructions are similar to their scalar counter
parts rev16, rev32, and rev (see section 3.3, “Little-Endian and Big-Endian
Data Organization,” on page 133), except, of course, they operate on the
lanes in a vector source register rather than on a general-purpose integer
register. Here is their syntax:

rev16 Vd.t1, Vs.t1 // Swap the bytes in the half-word lanes.
rev32 Vd.t2, Vs.t2 // Swap the bytes in the word lanes.
rev64 Vd.t1, Vs.t3 // Swap the bytes in the double-word lanes.

The legal types and lane counts for these instructions appear in
Table 11-1.

Table 11-1: Legal Types and Lane Counts
for rev* Instructions

t Type and lane count

t1 8B, 16B

t2 8B, 16B, 4H, or 8H

t3 8B, 16B, 4H, 8H, 2S, or 4S

If the lane count and type is 8B, 4H, or 2S, the instruction operates
only on the LO 64 bits of the source register (and clears the HO 64 bits of
the destination register). If the lane count and type is 16B, 8H, or 4S, these
instructions operate on the full 128 bits of the source register.

	 11.4	 Vertical and Horizontal Operations
Up to this point, vector operations have been vertical, meaning they’ve oper-
ated on the same lane across multiple registers (which, when stacked as
appearing in most figures thus far, show a vertical operational direction).
Consider the following vector addition instruction:

add v0.16b, v1.16b, v2.16b

As for the scalar addition operation (for example, add w0, w1, w2), this
instruction adds the values of two source registers (V1.16B and V2.16B),
producing a sum in the destination register. However, this is not a 128-bit
addition operation, but rather an 8-bit operation repeated 16 times. Vector
operations typically operate on a lane-by-lane basis, performing multiple
small operations in parallel. For this particular instruction, the CPU adds
together 16 byte values, producing 16 independent byte results. This is the

Neon and SIMD Programming 647

magic behind SIMD programming: the ability to do 16 times as much work
with a single instruction (so it should run about 16 times faster than run-
ning these 16-byte additions individually).

Figure 11-17 shows the lane-by-lane operation of the add instruction
with the lane-by-lane addition following the arrow directions.

Lane 01n – 1 2n – 2

+

=

Vs1

Vs2

Vd

...

...

...

Figure 11-17: Lane-by-lane operations

Lane-by-lane operations are independent of one another, meaning that
if any carries, overflows, or other exceptional conditions occur, such anom-
alies are limited in scope to a single lane. Because there is only a single
set of NVZC condition code flags, vector instructions cannot (and do not)
affect these flags. If an unsigned carry out of one lane occurs (such as when
adding 255 + 1 in a byte lane), the sum wraps around with no indication of
overflow or underflow. In general, you must handle overflows completely
differently from the way you’d handle them when doing scalar arithmetic.
This chapter covers some strategies for doing so when discussing saturation
in later sections.

Certain vector instructions provide horizontal operations, also known as
reducing operations. Rather than operating lane by lane between two registers,
these operations operate on all the lanes within a single vector register, pro-
ducing a scalar result. For example, the addv instruction will produce the sum
of all the lanes in a single vector register.

	 11.5	 SIMD Logical Operations
Because logical (Boolean) operations are computed on a bitwise basis, vec-
tor logical operations are unique insofar as you can use them to perform
128 individual bit operations. Whether you treat the source operands as six-
teen 1-byte values or as one 128-byte value, the result is the same. For that
reason, the vector logical operations support only two types: 8B (for 64-bit
operands) and 16B (for 128-bit operands). If you really want to operate on
4H or 2S operands, just specify 8B; you’ll get the same result. Likewise, for
8H, 4S, or 2D operands, specifying 16B produces the same result.

The Neon instruction set supports eight logical instructions, as shown
in Table 11-2. Here, t is 8B or 16B, Vd is the destination register, Vs1 is the
left source register, and Vs2 is the right source register (Vs is the only source
register for the not instruction).

648 Chapter 11

Table 11-2: Neon Logical Instructions

Mnemonic Syntax Description

and and Vd.t, Vs1.t, Vs2.t Vd = Vs1 & Vs2
orr orr Vd.t, Vs1.t, Vs2.t Vd = Vs1 | Vs2
orn orn Vd.t, Vs1.t, Vs2.t Vd = Vs1 | ~(Vs2)

eor eor Vd.t, Vs1.t, Vs2.t Vd = Vs1 ^ Vs2
bic bic Vd.t, Vs1.t, Vs2.t Vd = Vs1 & ~(Vs2) (bit clear)

bif bif Vd.t, Vs1.t, Vs2.t Bit insert if false

bit bit Vd.t, Vs1.t, Vs2.t Bit insert if true

bsl bsl Vd.t, Vs1.t, Vs2.t Bitwise select

not not Vd.t, Vs.t    Vd = ~Vs

The and, orr, and eor instructions do the usual logical operations (same as
scalar) and require no further explanation. The orn instruction is similar to
bic insofar as it inverts the second source operand prior to the OR operation.

The bic (bit clear) instruction clears all the bits in the value of Vs1 in the
positions containing 1s in Vs2. It stores the result in Vd. Note that there is no
need for a bis (bit set) instruction, because orr will set bits in Vd.

The bif (bit insert if false) and bit (bit insert if true) instructions are
unusual insofar as they use three operands in their computation (rather
than using a function of two inputs and storing the result in a third oper-
and). The bif instruction copies the bits from Vs1 to Vd wherever the corre-
sponding bit in Vs2 contains a 0. In the bit positions where Vs2 contains a 1, this
instruction leaves the corresponding bit in Vd unchanged. The bit instruc-
tion works similarly, except it copies the bits when the corresponding bit in
Vs2 contains a 1 (rather than 0).

The bsl (bit select) instruction selects bits from Vs1 or Vs2 (and copies
them to Vd) based on the original contents of Vd. If Vd originally contained
a 1 in a particular bit position, bsl selects the corresponding bit from Vs1.
Otherwise, it selects the bit from Vs2.

The not instruction inverts all the bits in the source register and stores
the result into the destination register. This instruction is different from the
other logical instructions, having only a single source operand.

The Neon instruction set supports a few special immediate versions
of the orr and bic instructions

orr Vd.t, #imm
orr Vd.t, #imm, lsl #shift
bic Vd.t, #imm
bic Vd.t, #imm, lsl #shift

where imm is an unsigned 8-bit immediate value; the type (t) is 2S, 4S, 4H,
or 8H; and shift is 0 or 8 if t is 4H/8H and 0, 8, 16, or 24 if t is 2S or 4S. If
shift is not specified, it is assumed to be 0. These instructions require the
H and S types rather than the B types, since they replicate the immediate
value through the bytes in the lanes in Vd.t.

Neon and SIMD Programming 649

	 11.6	 SIMD Shift Operations
Shift instructions are generally considered to be logical operations.
However, from a vector point of view, they are more correctly thought of
as arithmetic operations because shift operations can produce overflows.
Vector shift operations handle overflows in one of four ways:

•	 Ignoring any carry out of the shift operation (truncation)

•	 Saturating the shift result

•	 Rounding the result

•	 Providing an extended shift operation whose destination operand is
larger than the source register

This section describes these various shift operations.

N O T E 	 The Neon instruction set uses mnemonics based on shr and shl for shift left and shift
right. This is in contrast to the lsl, lsr, and asr instructions that the scalar integer
instruction set uses. I cannot think of a good reason they did it this way; it would
have made the instruction set easier to learn had they stuck to a consistent naming
convention.

11.6.1  Shift-Left Instruction
The shl instruction shifts each lane of a vector register to the left the speci-
fied number of bits. This instruction shifts 0s into the (vacated) LO bits.
Any carry out of the HO bit of the lane is lost. The syntax is as follows

shl Vd.8B, Vs.8B, #imm
shl Vd.16B, Vs.16B, #imm
shl Vd.4H, Vs.4H, #imm
shl Vd.8H, Vs.8H, #imm
shl Vd.2S, Vs.2S, #imm
shl Vd.4S, Vs.4S, #imm
shl Vd.2D, Vs.2D, #imm

where Vd is the destination register and Vs is the source register. The imme-
diate count value must be in the ranges appearing in Table 11-3 (based on
the specified type). The assembler will report an error if an immediate shift
value is outside these ranges.

Table 11-3: Valid shl Shift Values

Type Shift range

8B/16B 0 to 7

4H/8H 0 to 15

2S/4S 0 to 31

2D 0 to 63

650 Chapter 11

There is also a scalar shl instruction that operates on the LO dword of a
vector register, with the following syntax

shl Dd, Ds, #imm

where Dd is the destination scalar register and Ds is the source register (cor-
responding to the LO 64 bits of Vd and Vs). The imm shift count must be in the
range 0 to 63. Note that this instruction will zero out the HO 64 bits of Dd.

To shift the lanes by a variable number of bits, see section 11.6.9, “Shift
by a Variable Number of Bits,” on page 657.

11.6.2  Saturating Shift Left
The saturating shift-left instructions uqshl, sqshl, and sqshlu shift the lanes
in a vector to the left the specified number of bit positions. If an overflow
(whether signed or unsigned) occurs, these instructions saturate the result
to the largest (signed or unsigned) value depending on the instruction. The
syntax for these instructions is as follows

uqshl Vd.t, Vs.t, #imm
uqshl Vd.t, Vs.t, Vc.t
sqshl Vd.t, Vs.t, #imm
sqshl Vd.t, Vs.t, Vc.t
sqshlu Vd.t, Vs.t, #imm
sqshlu Vd.t, Vs.t, Vc.t

where Vd is the destination register, Vs is the source register, imm is an appro-
priate immediate shift constant or Vc contains a shift count in the LO byte,
and t is type 8B, 16B, 4H, 8H, 2S, 4S, or 2D. The t specification must be the
same for Vd and Vs.

The shift value’s range depends on the lane type; see Table 11-3 in the
previous section for the legal immediate values. For immediate values, the
assembler will report an error if the shift constant is out of range. For the reg-
ister shift count variants, if the LO byte contains an out-of-range value, then
the instruction will always saturate the result if a lane contains a nonzero value
(see the discussion of saturation that follows). The uqshl instruction shifts val-
ues to the left one bit position, storing the result in the corresponding lane in
the destination register. If the HO bit is set (before the shift), this instruction
stores all 1 bits (the maximum unsigned value) in the destination lane. For
example, if a lane contains 0x7F in V1, the corresponding lane will contain
0xFE (0x7F shifted left one position) after the execution of the following:

uqshl v0.16b, v1.16b, #1

However, if a source lane contains the value 0x80 through 0xFF, then
shifting it to the left one position produces 0xFF in the destination lane. In
general, if anything other than 0 bits are shifted out of a source lane, the
corresponding destination lane will contain 0xFF.

The sqshl instruction is a signed saturation shift-left operation. For
signed values, an overflow will occur during a left shift if the H two bits of a

Neon and SIMD Programming 651

lane contain different values. For negative source values (the HO bit is set),
overflow saturates to a result with the HO bit set and all other bits contain-
ing 0s (for example, with hword types, 0xa000 will saturate to 0x8000).

The sqshlu instruction is similar to sqshl, except that it treats the desti-
nation as an unsigned value. Positive (and 0) source values will shift to the
left exactly like the uqshl instruction, while negative source values (with the
HO bit set) will saturate to 0.

There are also scalar versions of the uqshl, sqshl, and sqshlu instructions

uqshl Rd, Rs, #imm
sqshl Rd, Rs, #imm
sqshlu Rd, Rs, #imm

where Rn (n = d or s) is one of the registers Bn, Hn, Sn, or Dn, and d, s, and
imm have the usual meanings and limitations. Unlike the plain shl instruc-
tion, these instructions allow byte, hword, and word registers, as well as
dword registers.

As for the vector instructions, the uqshl instructions do an unsigned
saturation. If any bits are shifted out of the HO bit of the source register,
these instructions set the destination (Bn, Hn, Sn, or Dn) to all 1 bits. These
instructions zero-extend the result through the rest of the vector register
containing Rd.

The sqshl instruction does a signed saturation, leaving the result in the
destination (scalar) register. This instruction zeros out the remaining HO
bits of the corresponding vector register (that is, all the HO bits beyond the
size of the scalar register).

The sqshlu instruction does a shift on a signed source value but satu-
rates it to an unsigned value (negative results saturate to 0, just as with the
vector register versions of this instruction).

11.6.3  Shift-Left Long
The shift-left long instructions sshll, sshll2, ushll, and ushll2 provide a mech-
anism to handle overflow during a shift operation. These instructions sign-
or zero-extend the value in a lane to twice its size and then perform the left
shift on the double-sized source, storing the result into the (double-sized)
destination lane. The syntax for these instructions is

ushll Vd.t2, Vs.t, #imm
sshll Vd.t2, Vs.t, #imm

where t2 is the double-sized type and can be 8H, 4S, or 2D; t is the original
type and can be 8B, 4H, or 2S. imm is the shift count and should be in the
range 0 to n – 1, where n is the number of bits in the t type.

The ushll instruction zero-extends the values in the source lanes to twice
their size, shifts the zero-extended result by the specified number of bits, and
stores the result into the corresponding (double-sized) destination lanes. The
sshll instruction sign-extends the source lane values to twice their size, then
shifts the results and stores them in the double-sized destination lanes.

652 Chapter 11

Because these instructions double the size of their values, they operate
only on the LO 64 bits of the source register (lanes 0 to 7 for bytes, 0 to 3 for
hwords, and 0 to 1 for words). These instructions ignore the HO 64 bits of
the source register.

To handle the upper 64 bits of the source register, the ARM provides
the ushll2 and sshll2 instructions:

ushll2 Vd.t4, Vs.t3, #imm
sshll2 Vd.t4, Vs.t3, #imm

These accomplish the same operations as the ushll and sshll instruc-
tions, except that they take their source operands from the HO 64 bits
rather than the LO 64 bits. To indicate this, the t4/t3 type pairs must be
8H/16B, 4S/8H, or 2D/4S. The imm shift values must match the source lane
size in bits (0 to 15 for 8H/16B, 0 to 31 for 4S/8H, and 0 to 63 for 2D/4S).

The ushll, ushll2, sshll, and sshll2 instructions have no scalar versions.
Just use the vector versions and zero out the HO bits yourself if you need
this operation.

11.6.4  Shift and Insert
The sli and sri instructions allow you to shift a source operand a certain
number of bits and then (using other instructions) insert other bits into the
locations (0 bits) vacated by the shift operation. Here’s the syntax for these
instructions

sli Vd.t, Vs.t, #imm
sri Vd.t, Vs.t, #imm

where t is the usual set of types: 8B, 16B, 4H, 8H, 2S, 4S, or 2D. For sli, imm
is the shift count, which must be in the range 0 to n – 1, where n is bit size of
a lane. For sri, the immediate value is a count in the range 1 to n.

The sli instruction shifts each lane in Vs.t to the left the specified num-
ber of bits. It then logically ORs the n - imm LO bits of Vd.t into the result
(replacing the 0s that were shifted in) and stores the result back into Vd.t, as
shown in Figure 11-18.

Vs

0s

Shift-left operation

Original Vd

Vd

Figure 11-18: The sli instruction operation

Neon and SIMD Programming 653

For example, to shift in 1 bits rather than 0 bits, you could load the des-
tination register with all 1 bits, then execute the sli instruction, as shown in
the following code:

movi v0.16b, #0xff
movi v1.4s, #0x1
sli v0.4s, v1.4s, #4

This produces 0x0000001f0000001f0000001f0000001f in V0.
The sri instruction shifts each lane in Vs.t to the right the specified

number of bits, then logically ORs the n - imm HO bits of Vd.t into the result
(replacing the 0s that were shifted in), then stores the result back into Vd.t,
as shown in Figure 11-19.

0s

Shift-right operation

Vs

Original Vd

Vd

Figure 11-19: The sri instruction operation

The scalar versions of the sli and sri instructions have the following
syntax:

sli Dd, Ds, #imm // imm = 0 to 63
sri Dd, Ds, #imm // imm = 1 to 64

These instructions operate on the LO 64 bits of the specified vector
register (Dn) and zero out the HO 64 bits of the destination register.

11.6.5  Signed and Unsigned Shift Right
Because an arithmetic shift left and a logical shift left are essentially the
same operation, the ARM uses a single instruction for both operations:
shl. However, the logical and arithmetic shifts are different for right shifts.
Therefore, the Neon instruction set provides two instructions, sshr and ushr,
for signed and unsigned shift right (respectively, arithmetic shift right and
logical shift right).

As noted in Chapter 2, a shift-left operation is the same as a multiplica-
tion by 2. Shift-right operations are approximately the same as a division
by 2. I say approximately because the behaviors of signed and unsigned
numbers are somewhat different. For example, when you shift the value 1

654 Chapter 11

to the right one position, you get a 0 result. If you shift the signed value –1
(all 1 bits) to the right by using an arithmetic shift right, however, the result
is –1. In one case, the shift rounds toward 0, while in the other it rounds away
from 0. Neither case is particularly correct or incorrect, but not being able
to choose the rounding direction can be a problem.

With scalar instructions, you can reverse this rounding effect by adding
the carry flag to the result after the shift:

asr x0, x0, #1
adc x0, x0, xzr // -1 -> 0 and 1 -> 1

Because the vector operations don’t track carries out of a shift in the
carry flag, you don’t have the option of correcting for this. The Neon
instruction set therefore provides the rounding shift instructions srshr and
urshr, which will add in the carry for you.

The syntax for the Neon shift-right instructions is shown here:

ushr Vd.t, Vs.t, #imm // Unsigned (logical) shift right
urshr Vd.t, Vs.t, #imm // Unsigned rounding shift right
sshr Vd.t, Vs.t, #imm // Signed (arithmetic) shift right
srshr Vd.t, Vs.t, #imm // Signed rounding shift right

The allowable types for the vector registers are the usual 8B, 16B, 4H,
8H, 2S, 4S, or 2D. The rounding variants (with the r as the second charac-
ter in the mnemonic) add the carry flag back into the destination lane after
the shift operation.

The sshr, srshr, ushr, and urshr instructions also have scalar versions:

sshr Dd, Ds, #imm
srshr Dd, Ds, #imm
ushr Dd, Ds, #imm
urshr Dd, Ds, #imm

These instructions operate on the LO 64 bits of the vector registers speci-
fied by Dd (destination) and Ds (source). The imm shift operand must be a value
in the range 1 to 64. They will zero out the HO 64 bits of the corresponding
Vd register. Otherwise, they are identical to their vector components.

11.6.6  Accumulating Shift Right
The accumulating shift-right instructions have the following syntax:

usra Vd.t, Vs.t, #imm
ursra Vd.t, Vs.t, #imm
ssra Vd.t, Vs.t, #imm
srsra Vd.t, Vs.t, #imm

These instructions are largely the same as the shift-right instructions,
but they add their shifted values to the corresponding destination lanes
(rather than just storing the shift lane values).

Neon and SIMD Programming 655

11.6.7  Narrowing Shift Right
The shrn, shrn2, rshrn, and rshrn2 instructions provide the converse opera-
tions to the shll and shll2 instructions. Rather than double the size of the
operands when shifting, they halve (“narrow”) the size. The syntax for these
instructions is as follows

shrn Vd.t1, Vs.t2, #imm
shrn2 Vd.t3, Vs.t4, #imm
rshrn Vd.t1, Vs.t2, #imm
rshrn2 Vd.t3, Vs.t4, #imm

where:

t1 is 8B, 4H, or 2S

t2 is 8H, 4S, or 2D

t3 is 8B, 16B, 4H, 8H, 2S, or 4S

t4 is 8H, 4S, or 2D

The shrn instruction shifts each lane right the specified number of bits
(shifting 0s in from the left); extracts the LO 8, 16, or 32 bits (depending
on size of t1); and stores the result into the same lane number in the des-
tination register. The shrn instruction ignores (truncates) any HO bits left
in the shift operation that don’t fit in the destination lane (which, recall, is
half the size of the source lane). This instruction zeros out the HO 64 bits
of the destination register.

The shrn2 instruction performs the exact same operation but stores the
results in the HO 64 bits.

The rshrn and rshrn2 instructions do the same thing as shrn and shrn2,
respectively, but round the shifted result before narrowing it. The rshrn
instruction also clears the upper half of the destination register.

Because the narrowing shift-right instructions throw away all but the
LO bits that fit in the destination lane, you might think a separate set of
instructions must extract the HO bits after the shift operation. There’s no
need for such instructions, though; just add 8, 16, or 32 to your shrn, shrn2,
rshurn, or rshrn2 shift count to extract the HO bits.

11.6.8  Saturating Shift Right with Narrowing
The standard narrowing shift instructions truncate any HO bits when nar-
rowing the result to half the source lane size. The saturating shift-right
instructions will saturate the shifted value if it does not fit in the destina-
tion lane. Table 11-4 gives the syntax for these instructions.

656 Chapter 11

Table 11-4: Lane-by-Lane Saturating Shift Right with Narrowing Instructions

Mnemonic Syntax Description

uqshrn uqshrn Vd.t1, Vs.t2, #imm Unsigned shift right by imm bits with narrowing. Stores
data into LO 64 bits of Vd.

uqrshrn uqrshrn Vd.t1, Vs.t2, #imm Unsigned shift right by imm bits with narrowing and
rounding. Stores data into LO 64 bits of Vd.

sqshrn sqshrn Vd.t1, Vs.t2, #imm Signed shift right by imm bits with narrowing. Stores data
into LO 64 bits of Vd.

sqrshrn sqrshrn Vd.t1, Vs.t2, #imm Signed shift right by imm bits with narrowing and round-
ing. Stores data into LO 64 bits of Vd.

sqshrun sqshrun Vd.t1, Vs.t2, #imm Signed shift right by imm bits with narrowing and satura-
tion to an unsigned number. Stores data into LO 64 bits
of Vd.

sqrshrun sqrshrun Vd.t1, Vs.t2, #imm Signed shift right by imm bits with narrowing, rounding,
and saturation to an unsigned number. Stores data into
LO 64 bits of Vd.

uqshrn2 uqshrn2 Vd.t3, Vs.t4, #imm Unsigned shift right by imm bits with narrowing. Stores
data into HO 64 bits of Vd.

uqrshrn2 uqrshrn2 Vd.t3, Vs.t4, #imm Unsigned shift right by imm bits with narrowing and
rounding. Stores data into HO 64 bits of Vd.

sqshrn2 sqshrn2 Vd.t3, Vs.t4, #imm Signed shift right by imm bits with narrowing. Stores data
into HO 64 bits of Vd.

sqrshrn2 sqrshrn2 Vd.t3, Vs.t4, #imm Signed shift right by imm bits with narrowing and
rounding. Stores data into HO 64 bits of Vd.

sqshrun2 sqshrun2 Vd.t3, Vs.t4, #imm Signed shift right by imm bits with narrowing and
saturation to an unsigned number. Stores data into
HO 64 bits of Vd.

sqrshrun2 sqrshrun2 Vd.t3, Vs.t4, #imm Signed shift right by imm bits with narrowing, rounding,
and saturation to an unsigned number. Stores data into
HO 64 bits of Vd.

Table 11-5 lists the legal types and lane counts for the saturating shift-
right instructions appearing in Table 11-4.

Table 11-5: Saturating Shift-Right Types and Lane Counts

t Legal types and lane counts

t1/t2 8B/8H, 4H/4S, or 2S/2D

t3/t4 16B/8H, 8H/4S, or 4S/2D

The instructions with the 2 suffix store their narrowed results into the
HO 64 bits of the destination register. Those without this suffix will zero
out the HO 64 bits of the destination register.

The uqrshrn, sqrshrn, uqrshrn2, and sqrshrn2 instructions round the shifted
result before saturating the value (if saturation is necessary). Rounding con-
sists of adding the last bit shifted out of the source lane back into the value.

Neon and SIMD Programming 657

The instructions with the s prefix operate on signed values, while those
with the u prefix operate on unsigned values. Unsigned values saturate to
all 1 bits (if the unsigned value will not fit in the destination lane size), but
signed values will saturate to either a HO bit of 1 with other bits 0s, or a HO
bit of 0 with all other bits containing 1s.

The sqrshrun and sqrshrun2 instructions do the following:

•	 Perform an arithmetic shift-right operation by the specified number of bits

•	 Round the result by adding the last bit shifted out back into the result

•	 Saturate the result to the maximum unsigned value (all 1 bits) if the
result will not fit into the destination lane; negative values saturate to 0

•	 Store the saturated result into the destination lane

The sqrshrun instruction stores the results in the LO 64 bits of the desti-
nation register; sqrshrun2 stores the results in the HO 64 bits of the destina-
tion register.

These instructions also have scalar versions:

sqshrn Bd, Hs, #imm
sqshrn Hd, Ss, #imm
sqshrn Sd, Ds, #imm

uqshrn Bd, Hs, #imm
uqshrn Hd, Ss, #imm
uqshrn Sd, Ds, #imm

sqrshrn Bd, Hs, #imm
sqrshrn Hd, Ss, #imm
sqrshrn Sd, Ds, #imm

uqrshrn Bd, Hs, #imm
uqrshrn Hd, Ss, #imm
uqrshrn Sd, Ds, #imm

sqshrun Bd, Hs, #imm
sqshrun Hd, Ss, #imm
sqshrun Sd, Ds, #imm

sqrshrun Bd, Hs, #imm
sqrshrun Hd, Ss, #imm
sqrshrun Sd, Ds, #imm

Note that these instructions clear the upper bits (beyond the specified
scalar register) of the underlying vector register.

11.6.9  Shift by a Variable Number of Bits
To shift a lane by a variable number of bits, use one of the following
instructions

sshl Vd.t, Vs.t, Vc.t
ushl Vd.t, Vs.t, Vc.t

658 Chapter 11

sqshl Vd.t, Vs.t, Vc.t
uqshl Vd.t, Vs.t, Vc.t
srshl Vd.t, Vs.t, Vc.t
urshl Vd.t, Vs.t, Vc.t
sqrshl Vd.t, Vs.t, Vc.t
uqrshl Vd.t, Vs.t, Vc.t

where t is the usual 8B, 16B, 4H, 8H, 2S, 4S, or 2D.
Vc.t holds the signed shift count in the LO byte. For positive values (in

the range 0 to 0x7F), the instruction shifts the bits in a lane the number
of bit positions to the left. For negative values (0xFF to 0x80; –1 to –128),
the instruction shifts the bits to the right, despite using a shl mnemonic.
See Table 11-6 for legal ranges when specifying the shift count by using
a register.

Table 11-6: Legal Vc.t Shift Ranges

Type Unsigned (SHL) Signed (SHR)

8B/16B 0 to 7 –1 to –7

4H/8H 0 to 15 –1 to –15

2S/4S 0 to 31 –1 to –31

2D 0 to 63 –1 to –63

Values outside the ranges listed in Table 11-6 will produce the results
shown in Table 11-7.

Table 11-7: Result of Shift If Count Exceeds Allowable Range

Shift
instruction

Positive count,
positive overflow

Positive count,
negative overflow

Negative count,
positive value

Negative count,
negative value

sshl 0 0 0 –1 (all 1 bits)

ushl 0 0 0 0

sqshl HO bit 0, all others 1
(for example, 0x7F)

HO bit 1, all others 0
(for example, 0x80)

0 –1 (all 1 bits)

uqshl All 1 bits (for example,
0xff)

All 1 bits (for example,
0xff)

0 0

srshl 0 0 0 0 (–1 + carry)

urshl 0 0 0 1 (0 + carry)

sqshl HO bit 0, all others 1
(for example, 0x7F)

HO bit 1, all others 0
(for example, 0x80)

0 –1 (all 1 bits)

uqshl –1 (all 1 bits) –1 (all 1 bits) 0 0

sqrshl HO bit 0, all others 1
(for example, 0x7F)

HO bit 1, all others 0
(for example, 0x80)

0 0 (–1 + carry)

uqrshl –1 (all 1 bits) –1 (all 1 bits) 0 1 (0 + carry)

Neon and SIMD Programming 659

Using shf (for shift) in these instructions would probably have been a
better choice then shl, since that name better matches the operation. Just
keep in mind that the value in the LO byte of Vc.t is a signed integer and
negative values indicate a right shift.

The Neon shl instruction also has some scalar saturating versions

sqshl Rd, Rs, Rc
uqshl Rd, Rs, Rc
sqrshl Rd, Rs, Rc
uqrshl Rd, Rs, Rc

where R represents one of the scalar register names (B, H, S, or D). These
instructions shift the value in the scalar register Rs the number of bit posi-
tions specified by the LO byte of Rc and store the shifted result in Rd. Rc is
treated as a signed number; positive values shift Rs left, while negative val-
ues shift Rs right. If an overflow (signed or unsigned, as appropriate) occurs
during the shift, these instructions set Rd to the maximum positive signed
or unsigned value.

If the shift count is negative for the sqshl instruction, the CPU performs
an arithmetic shift-right operation, which will replicate the HO bit when
shifting to the right. Positive (and 0) source values will saturate to 0, and
negative source values will saturate to –1 (all 1 bits).

The sqrshl and uqrshl instructions are special rounding versions of the
saturating shift instructions. During a shift-right operation (that is, when
Rc is negative), these instructions round the result by adding 1 if the last bit
shifted out was a 1 bit.

	 11.7	 SIMD Arithmetic Operations
The Neon instruction set includes several common arithmetic operations,
including addition, subtraction, and multiplication. The only surprise is
that there is no division operation; instead, you’ll have to compute the
reciprocal and multiply by that value (using the instructions provided to
estimate reciprocals).

11.7.1  SIMD Addition
Neon provides a wide set of instructions that add lanes (ignoring overflow),
add and saturate (when overflow occurs), or perform horizontal additions.

11.7.1.1  Vector Addition

The Neon instruction set provides several instructions you can use to add
integer and floating-point values in lanes within the vector registers, as
listed in Table 11-8. These instructions compute Vd = Vl + Vr, where Vd is the
destination, Vl is the left operand, and Vr is the right operand.

660 Chapter 11

Table 11-8: Neon Addition Instructions

Instruction
mnemonic Syntax Description

add add Vd.t1, Vl.t1, Vr.t1 Computes lane-by-lane integer sum

fadd fadd Vd.t2, Vl.t2, Vr.t2 Computes lane-by-lane floating-point sum

sqadd sqadd Vd.t1, Vl.t1, Vr.t1 Computes lane-by-lane signed integer sum, with saturation

uqadd uqadd Vd.t1, Vl.t1, Vr.t1 Computes lane-by-lane unsigned integer sum, with saturation

saddl saddl Vd.t3, Vl.t4, Vr.t4 Computes lane-by-lane signed integer sum, with long
extension

uaddl uaddl Vd.t3, Vl.t4, Vr.t4 Computes lane-by-lane unsigned integer sum, with long
extension

saddl2 saddl2 Vd.t5, Vl.t6, Vr.t6 Computes lane-by-lane signed integer sum, with long
extension

uaddl2 uaddl2 Vd.t5, Vl.t6, Vr.t6 Computes lane-by-lane unsigned integer sum, with long
extension

saddw saddw Vd.t3, Vl.t3, Vr.t4 Computes lane-by-lane signed integer sum, with wide
extension

uaddw uaddw Vd.t3, Vl.t3, Vr.t4 Computes lane-by-lane unsigned integer sum, with wide
extension

saddw2 saddw2 Vd.t5, Vl.t6, Vr.t6 Computes lane-by-lane signed integer sum, with wide
extension

uaddw2 uaddw2 Vd.t5, Vl.t6, Vr.t6 Computes lane-by-lane unsigned integer sum, with wide
extension

addhn addhn Vd.t4, Vl.t3, Vr.t3 Computes lane-by-lane addition with narrowing

raddhn raddhn Vd.t4, Vl.t3, Vr.t3 Computes lane-by-lane addition with rounding and
narrowing

addhn2 addhn2 Vd.t6, Vl.t5, Vr.t5 Computes lane-by-lane addition with narrowing (uses HO bits)

raddhn2 raddhn2 Vd.t6, Vl.t5, Vr.t5 Computes lane-by-lane addition with rounding and narrow-
ing (uses HO bits)

shadd shadd Vd.t7, Vl.t7, Vr.t7 Computes lane-by-lane signed addition with halving

uhadd uhadd Vd.t7, Vl.t7, Vr.t7 Computes lane-by-lane unsigned addition with halving

srhadd srhadd Vd.t7, Vl.t7, Vr.t7 Computes lane-by-lane signed addition with rounding
and halving

urhadd urhadd Vd.t7, Vl.t7, Vr.t7 Computes lane-by-lane unsigned addition with rounding
and halving

addp addp Vd.t1, Vl.t1, Vr.t1 Adds vector pairwise

faddp faddp Vd.t2, Vl.t2, Vr.t2 Adds vector floating-point pairwise

saddlp saddlp Vd.t8, Vl.t9 Adds vector pairwise, signed long integer

uaddlp uaddlp Vd.t8, Vl.t9 Adds vector pairwise, unsigned long integer

saddalp saddalp Vd.t8, Vl.t9 Adds vector pairwise and accumulates, signed long integer

uaddalp uaddalp Vd.t8, Vl.t9 Adds vector pairwise and accumulates, unsigned long
integer

Neon and SIMD Programming 661

Table 11-9 lists the legal types for the addition and subtraction
instructions.

Table 11-9: Legal Types for Vector Addition and Subtraction

t Legal types

t1 8B, 16B, 4H, 8H, 2S, 4S, or 2D

t2 2S, 4S, or 2D

t3/t4 8H/8B, 4S/4H, or 2D/2S

t5/t6 8H/16B, 4S/8H, or 2D/4S

t7 8B, 16B, 4H, 8H, 2S, or 4S

t8/t9 4H/8B, 8H/16B, 2S/4H, 4S/8H, 1D/2S, or 2D/4S

The remainder of this section describes each of the addition instruc-
tions in Table 11-8 in greater detail.

The add instruction, with vector register operands, does a lane-by-lane
addition. Any overflow (signed or unsigned) is ignored, with the sum hold-
ing the LO bits of the result. If the type is 8B, 4H, or 2S, the add instruction
adds only the lanes in the LO 64 bits of the registers, zeroing out the HO
64 bits of the destination register. Figure 11-20 provides an example of a
16B lane-by-lane addition.

Vs1

Vs2 2

Vd

+

=

Figure 11-20: 16B lane-by-lane addition using add
Vd.16b, Vs1.16b, Vs2.16b

The fadd instruction, with vector register operands, adds two- or four-
lane single-precision values together, or a pair of double-precision floating-
point values. With 2S types, the fadd instruction clears the HO 64 bits of the
destination register.

The sqadd and uqadd instructions do a lane-by-lane addition (signed
and unsigned, respectively), except they saturate their results in the case of
overflow (or underflow, when adding signed numbers). As with add, those
instructions that take 64-bit source operands produce a 64-bit result and
zero out the HO 64 bits of the destination register.

The saddl and uaddl instructions take the lanes in the LO 64 bits of
the source registers, sign- or zero-extend these values to twice their size,

662 Chapter 11

compute the sum, and store the results in the full destination register (with
double-sized lanes). The destination register type must be specified as twice
the size of the source register types (see Figure 11-21). Because the sum of
two n-bit numbers requires no more than n + 1 bits, these instructions will
produce the correct result without any possibility of overflow or underflow.

+

=

Vs1

Vs2

Vd

Figure 11-21: A uaddl operation (uaddl Vd.4s, Vs1.4h,
Vs2.4h)

The saddl2 and uaddl2 instructions also sign- or zero-extend the values
in the lanes in one-half of the source register and produce a sum in the full
128 bits of the destination register. However, the saddl2 and uaddl2 instruc-
tions compute the sum of the lanes in the HO 64 bits of the source registers
(see Figure 11-22).

+

=

Vs1

Vs2

Vd

Figure 11-22: A saddl2 operation (saddl2 Vd.4s, Vs1.8h,
Vs2.8h)

Although the saddl2 and uaddl2 instructions’ source operands are only
64 bits, you must specify the 128-bit types (16B, 8H, 4S) as the source type
because the instruction retrieves the data from the upper 64 bits of a
128-bit value.

The saddw, uaddw, saddw2, and uaddw2 instructions allow you to produce the
sum of two operands whose sizes are different. The saddw and uaddw instruc-
tions expect the second source operand’s type to be half the size of the first
source and the destination operands’ types, though you specify the same
number of lanes for all three operands. These instructions will sign- or

Neon and SIMD Programming 663

zero-extend (respectively) the lanes in the second source operand to the
size of the other two, compute the sum, and then store the data into the
destination lanes (see Figure 11-23).

1

+

=

Vs2

Vs1

Vd

Figure 11-23: A uaddw operation (uaddw Vd.4s, Vs1.4s,
Vs2.4h)

The saddw2 and uaddw2 instructions also sign- or zero-extend the second
source operand, but they operate on the HO 64 bits rather than the LO
64 bits (see Figure 11-24). You must specify double the number of lanes for
the second operand so that the instruction will operate on the full 128 bits
of the second source operand.

+

=

Vs2

Vs1

Vd

Figure 11-24: A saddw2 operation (saddw2 Vd.4s, Vs1.4s,
Vs2.4h)

Overflow (underflow) is possible when using the saddw, uaddw, saddw2, and
uaddw2 instructions (for example, when adding 0xFFFF with 0x01). These
instructions will ignore the overflow and keep the LO bits of the result.

The addhn (vector add with narrowing) and raddhn (vector add, round,
and narrow) instructions add the specified lanes together, then narrow the
result by keeping only the HO bits. These instructions’ destination type is
half the size of the source types. For example, if you add half-word lanes
together, the narrowing additions will keep only the HO byte of the results.

The raddhn instruction rounds the result before storing it into the
destination register. If the LO half of the result contains a 1 in its HO bit

664 Chapter 11

position, raddhn increments the HO byte by 1; otherwise, it returns the same
result as addhn. Consider the following instruction:

raddhn v0.8b, v1.8h, v2.8h

If V2 contained 0x00010001 and V1 contained 0xFE7FFE7F, then V0 would
contain 0xFFFF after execution of this instruction. Had V1 contained
0xFE7EFE7E, though, V0 would contain 0xFEFE afterward.

Overflow can still occur during the execution of addhn and raddhn.
Adding half words 0xFFFF and 0x0001 together will produce 0x00 in the
corresponding destination byte lane.

The addhn2 and raddhn2 instructions also compute add and narrowing
(with rounding, if specified); however, they store their results in the HO
64 bits of the destination register and leave the LO 64 bits of the destina-
tion unchanged. Because these instructions operate on the HO 64 bits
of the destination, the destination’s lane count must be twice that of the
source registers. For example

addhn2 v0.16b, v1.8h, v2.8h

adds the LO 8 half words of V1 and V2 and stores the HO 8-bit result
of each lane addition into the HO 8 bytes of V0 (leaving the LO 8 bytes
untouched). You must specify the destination register’s type as 16B, even
though this instruction stores only 8 bytes into the register.

The shadd, uhadd, srhadd, and urhadd instructions add a pair of lanes
together, shift right by 1 (with optional rounding, for those instructions
containing an r), and store the result into the destination lane. As usual, the
instructions beginning with an s handle signed values, while the instructions
beginning with a u handle unsigned values. Because an addition of n bits
never produces more than n + 1 bits, and a division by 2 is the same as a shift
right by 1 bit, these instructions never produce an overflow. Consider the
addition of the two largest single-byte values, 0xFF + 0xFF = 0x1FE. Shifting
this sum to the right 1 bit gives you 0xFF, which fits just fine into 8 bits. Even
with rounding, overflow will not occur.

These instructions are especially handy for processing digital audio. For
example, suppose you want to mix together two 16-bit audio tracks. Simply
summing the hwords from the two tracks will boost the volume by 3 deci-
bels (dB) (equivalent to doubling the digital value). Halving the result after
the sum reduces this volume increase by 3 dB. The urhadd instruction would
be ideal for mixing these tracks as it would divide the result by 2, averaging
the values of the two tracks.

11.7.1.2  Pairwise Addition

Thus far, all the addition operations have operated on corresponding lanes
in the source operands, producing a result that the instructions store in
the same lane in the destination register. This is known as a vertical addition
because the data flows vertically from register to register, as shown previously

Neon and SIMD Programming 665

in Figure 11-20. On occasion, you may want to produce the sum of adjacent
elements within a vector rather than the elements in corresponding lanes of
two vectors (horizontal addition). You can accomplish this with the pairwise
addition instructions from Table 11-8.

The pairwise addition instructions, as their name suggests, add adja-
cent pairs of lanes in vectors. Because the result requires half the number
of lanes that are present in the source, the pairwise additions produce a
single vector result from two source registers. Consider the following exam-
ple that pairwise-adds the half words in V1 and V2, producing the pairwise
sum in V0:

addp v0.4s, v2.4s, v1.4s

This instruction computes the following results:

V0[0] = V2[0] + V2[1]

V0[1] = V2[2] + V2[3]

V0[2] = V1[0] + V1[1]

V0[3] = V1[2] + V1[3]

Figure 11-25 diagrams this operation.

+++

V2V1

V0

+

Figure 11-25: The addp v0.4s, v2.4s, v1.4s instruction

This instruction also has a floating-point version that adds adjacent
single- or double-precision values in a pair of vectors: faddp. For example,
the following instruction performs the same operation as the previous addp
integer example but adds adjacent single-precision floating-point values
rather than 32-bit integer values:

faddp v0.4s, v1.4s, v2.4s

The addp instruction ignores any overflow during the addition. To
produce a correct result, use the saddlp and uaddlp instruction (signed and
unsigned pairwise add long) to sign- or zero-extend the lane values prior
to the addition. The syntax for these two instructions is different from that
of the other addition instructions: there are only two register operands
(a source and a destination register). For example, because the follow-
ing instruction doubles the size of the result to place in the destination

666 Chapter 11

operand and sums adjacent elements of the source operand, there is no
need for a second register operand:

saddlp v0.2d, v1.4s

Note that the destination register type size must be twice that of the
source, and the number of lanes must be half that of the source.

The uaddalp and saddalp instructions are functionally similar to uaddlp and
saddlp, but rather than simply storing the pairwise sum into the destination
lanes, they add the sum to the value already present in the destination lanes.

11.7.1.3  Vector Saturating Accumulate

The Neon instruction set includes two instructions that sum the lanes of
a source vector into the corresponding lanes of a destination vector. The
instructions are

usqadd Vd.t, Vs.t // Add lanes of Vs to Vd.
suqadd Vd.t, Vs.t // Add lanes of Vs to Vd.

where t is 8B, 4H, or 2S when operating on the LO 64 bits of the registers,
or 16B, 8H, 4S, or 2D when operating on all 128 bits. The 64-bit variants
will clear the HO 64 bits of Vd.

These instructions are unusual in that they allow you to add (with satu-
ration) an unsigned input into a signed value or add a signed number into
an unsigned value (usually instructions operate on only one type of data).

The usqadd instruction adds a signed value in the source lanes to the
unsigned value in the corresponding destination lanes. Should the sum
exceed the maximum (unsigned) value for the destination lane’s size, this
instruction will saturate the lane to the maximum value. Should the sum go
negative, this instruction saturates the destination lane to 0. For example, if
a half-word destination lane contains 0xFFF0 and the corresponding source
lane contains 0xFF, the usqadd instruction (with a 4H or 8H type) will pro-
duce 0xFFFF in the destination lane. On the other hand, if the destination
lane contains 0x08 and the source lane contains 0xFFF0 (–16), then their
sum will produce 0 in the destination lane.

The suqadd instruction is the converse operation: it adds an unsigned
source operand to a signed destination operand, saturating to the maxi-
mum signed value. For example, if a destination half-word lane contains
0x7FF0 and the corresponding source lane contains 0x00FF, their sum will
produce 0x7FFF, the maximum signed value. Note that if the destination
operand contains 0xFFFF (–1) and the source operand is 0x0002, you wind
up with 0x0001 in the destination lane (–1 + 2 = 1).

The usqadd and suqadd instructions also have scalar variants

usqadd Rd, Rs // Add Rs to Rd.
suqadd Rd, Rs // Add Rs to Rd.

where Rd and Rs are one of the scalar registers Bn, Hn, Sn, or Dn.

Neon and SIMD Programming 667

The suqadd instruction will always produce the maximum signed value
when overflowing, as you can’t reduce the value by adding an unsigned
number to it.

11.7.1.4  Horizontal Add

The addv (add across vector) instruction produces the sum of all the lanes
in a single source vector register and leaves the result in a scalar element
of another vector register (this is known as reduction). The syntax for this
instruction is as follows

addv Rd, Vs.t

where R is the destination register and is one of Bn, Hn, or Sn. The legal vec-
tor register type and lane count depend on the scalar register; Table 11-10
lists the valid types.

Table 11-10: Valid Vector Register Types for addv

Scalar register (Rd) Valid lane count and types

Bd 8B or 16B

Hd 4H or 8H

Sd 4S

This instruction is useful for summing up the elements of an array.
Unfortunately, the destination scalar type must be the same as the source
lanes’ type, and any overflow is ignored. There is no instruction that will
zero- or sign-extend the sum to a double-sized result. Therefore, it’s advis-
able to zero- or sign-extend the vector elements to the next larger size prior
to executing addv if overflow is possible. You can accomplish this by using
the saddlp or uaddlp instruction to add adjacent pairs and sign- or zero-
extend (respectively), then use the addv instruction to sum the resulting
double-sized lanes.

The addvl instruction is part of the ARM scalable vector extensions (SVE),
which are beyond the scope of this book. While you might expect addvl to
be a long version of the addv instruction, it actually does something com-
pletely different. See the ARM SVE documentation for more details.

11.7.1.5  Scalar Saturating and Scalar Pairwise Addition

The Neon instruction set also provides a couple of saturating scalar addi-
tion instructions

sqadd Rd, Rs1, Rs2
uqadd Rd, Rs1, Rs2

where R represents one of the scalar register names B, H, S, or D. These
instructions operate on the 8-, 16-, 32-, or 64-bit signed or unsigned integer

668 Chapter 11

values found in the LO bits of the specified V register (see Figure 11-2 for
the correspondence between the Vn, Bn, Hn, Sn, and Dn registers). These
instructions do the same thing as their vector counterparts, except, of
course, they operate only on a scalar value rather than doing a lane-by-lane
vector operation.

The following are the scalar variants of the addp and faddp instructions:

addp Dd, Vs.2D
faddp Sd, Vs.2S
faddp Dd, Vs.2D

Note the limited lane count and type support of these instructions.
The addp instruction ignores (discards) any overflow from the addition of

the two dword elements from the source vector. The addpl and addpl2 instruc-
tions have no scalar versions. Use the actual addpl and addpl2 instructions
(with a second vector containing 0s) if you need an extended-precision ver-
sion of this instruction.

11.7.2  Subtraction
While there aren’t quite as many Neon instructions for subtraction as there
are for addition, most of the addition instructions have a subtraction com-
plement. Table 11-11 provides the syntax for the various vector subtraction
instructions and associated data types; these instructions generally compute
Vd = Vl – Vr (exceptions as noted), where Vd = destination, Vl = left operand,
and Vr = right operand.

Table 11-11: Neon Subtraction Instructions

Instruction
mnemonic Syntax Description

sub sub Vd.t1, Vl.t1, Vr.t1 Computes lane-by-lane integer difference

fsub fsub Vd.t2, Vl.t2, Vr.t2 Computes lane-by-lane floating-point difference

uqsub uqsub Vd.t1, Vl.t1, Vr.t1 Computes lane-by-lane unsigned integer subtraction with
saturation

sqsub sqsub Vd.t1, Vl.t1, Vr.t1 Computes lane-by-lane signed integer subtraction with
saturation

usubl usubl Vd.t3, Vl.t4, Vr.t4 Computes lane-by-lane unsigned long integer subtraction

ssubl ssubl Vd.t3, Vl.t4, Vr.t4 Computes lane-by-lane signed long integer subtraction

usubl2 usubl2 Vd.t5, Vl.t6, Vr.t6 Computes lane-by-lane unsigned long integer subtraction of
the HO half of Vr

ssubl2 ssubl2 Vd.t5, Vl.t6, Vr.t6 Computes lane-by-lane signed long integer subtraction of the
HO half of Vr

usubw usubw Vd.t3, Vl.t3, Vr.t4 Computes lane-by-lane unsigned wide integer subtraction

ssubw ssubw Vd.t3, Vl.t3, Vr.t4 Computes lane-by-lane signed wide integer subtraction

usubw2 usubw2 Vd.t5, Vl.t4, Vr.t6 Computes lane-by-lane unsigned wide integer subtraction
involving the upper half of Vl

Neon and SIMD Programming 669

Instruction
mnemonic Syntax Description

ssubw2 ssubw2 Vd.t5, Vl.t5, Vr.t6 Computes lane-by-lane signed wide integer subtraction
involving the upper half of Vl

subhn subhn Vd.t4, Vl.t3, Vr.t3 Computes lane-by-lane subtraction with narrowing

rsubhn rsubhn Vd.t4, Vl.t3, Vr.t3 Computes lane-by-lane subtraction with rounding and
narrowing

subhn2 subhn2 Vd.t6, Vl.t5, Vr.t5 Computes lane-by-lane subtraction with narrowing (uses
HO bits)

rsubhn2 rsubhn2 Vd.t6, Vl.t5, Vr.t5 Computes lane-by-lane subtraction with rounding and nar-
rowing (uses HO bits)

uhsub uhsub Vd.t7, Vl.t7, Vr.t7 Computes lane-by-lane unsigned subtraction with halving

shsub shsub Vd.t7, Vl.t7, Vr.t7 Computes lane-by-lane signed subtraction with halving

The behavior of these instructions is very similar to their addition coun-
terparts, except, of course, that they subtract the values in the lanes rather
than adding them. See the previous section for more details.

There is also a saturating scalar subtraction instruction:

sqsub Rd, Rs1, Rs2
uqsub Rd, Rs1, Rs2

That subtracts the two source scalar registers (Bn, Hn, Sn, or Dn), pro-
ducing a scalar result.

11.7.3  Absolute Difference
In addition to the normal subtraction instructions, the Neon instruction
set includes several instructions that compute the difference of the values
in corresponding lanes and then compute the absolute value of this differ-
ence. These instructions are handy for computing distances and other vec-
tor (as in physics) calculations.

Table 11-12 lists the available absolute difference instructions. In the
Syntax column, Vd = destination, Vl = left operand, and Vr = right oper-
and. Each instruction generally computes Vd = abs(Vl – Vr), unless other-
wise noted.

Table 11-12: Neon Absolute Difference Instructions

Instruction
mnemonic Syntax Description

uabd uabd Vd.t1, Vl.t1, Vr.t1 Vector unsigned absolute difference; lanes contain unsigned
values.

sabd sabd Vd.t1, Vl.t1, Vr.t1 Vector signed absolute difference; lanes contain signed values.

(continued)

670 Chapter 11

Instruction
mnemonic Syntax Description

uaba uaba Vd.t1, Vl.t1, Vr.t1 Vector unsigned absolute difference and accumulate; Vd =
Vd + abs(Vl – Vr), where lanes contain unsigned values.

saba saba Vd.t1, Vl.t1, Vr.t1 Vector signed absolute difference and accumulate; Vd =
Vd + abs(Vl – Vr), where lanes contain signed values.

uabdl uabdl Vd.t2, Vl.t3, Vr.t3 Vector unsigned absolute difference long; lanes contain
unsigned values.

sabdl sabdl Vd.t2, Vl.t3, Vr.t3 Vector signed absolute difference long; lanes contain signed
values.

uabal uabal Vd.t2, Vl.t3, Vr.t3 Vector unsigned absolute difference long and accumulate;
Vd = Vd + abs(Vl – Vr), where lanes contain unsigned values.

sabal sabal Vd.t2, Vl.t3, Vr.t3 Vector signed absolute difference long and accumulate;
Vd = Vd + abs(Vl – Vr), where lanes contain signed values.

uabdl2 uabdl2 Vd.t4, Vl.t5,
Vr.t5

Vector unsigned absolute difference long; lanes contain
unsigned values. Uses HO 64 bits of Vl and Vr.

sabdl2 sabdl2 Vd.t4, Vl.t5 Vr.t5 Vector signed absolute difference long; lanes contain signed
values. Uses HO 64 bits of Vl and Vr.

uabal2 uabal2 Vd.t4, Vl.t5,
Vr.t5

Vector unsigned absolute difference long and accumulate;
Vd = Vd + abs(Vl – Vr), where lanes contain unsigned values.
Uses HO 64 bits of Vl and Vr.

sabal2 sabal2 Vd.t4, Vl.t5,
Vr.t5

Vector signed absolute difference long and accumulate;
Vd = Vd + abs(Vl – Vr), where lanes contain signed values.
Uses HO 64 bits of Vl and Vr.

fabd fabd Vd.t6, Vl.t6, Vr.t6 Vector floating-point absolute difference; lanes contain floating-
point values.

fabd fabd Sd, Sl, Sr Scalar single-precision floating-point absolute difference;
Sd = abs(Sl – Sr).

fabd fabd Dd, Dl, Dr Scalar double-precision floating-point absolute difference;
Dd = abs(Dl – Dr).

Table 11-13 lists the legal types for the absolute difference instructions.

Table 11-13: Legal Types for Absolute Difference
Instructions

t Legal types

t1 8B, 16B, 4H, 8H, 2S, or 4S

t2/t3 8H/8B, 4S/4H, or 2D/2S

t4/t5 8H/16B, 4S/8H, or 2D/4S

t6 2S, 4S, or 2D

The uabd and sabd instructions compute the difference of each lane,
take the absolute value of the difference, and store the result into the
destination lane. Although the two instructions operate on unsigned and

Table 11-12: Neon Absolute Difference Instructions (continued)

Neon and SIMD Programming 671

signed source operands (respectively), the result is always an unsigned
value. Effectively, these are just variants of the sub instruction that take the
absolute value of the result. As long as you treat the result as an unsigned
number (particularly in the case of the sabd instruction), these instructions
will not produce an overflow (underflow).

The uaba and saba instructions add the absolute value of the difference
to the corresponding lane in the destination register. If an overflow occurs
(on the addition), these instructions store the LO bits (the lane size) into
the corresponding destination lane. For signed operations, if Vl contains
the most negative value (for example, 0x80 for a byte) and Vr contains 0,
overflow occurs and the instruction winds up adding that most negative
value to the destination lane.

The suffix-l and suffix-l2 variants of these instructions compute a
long calculation. The uabdl and sabdl instructions first zero- or sign-extend
(respectively) the lane values to twice the lanes’ size, then compute the
absolute value of the difference and store the result into the corresponding
double-sized lane. The uabdl2 and sabdl2 instructions do the same thing but
grab the lane data from the HO 64 bits of the source operands (refer back
to Figures 11-21 and 11-22 and substitute the appropriate instruction to see
how this works).

The fabd instruction computes the absolute difference of two floating-
point values. With vector register operands, it processes two double-precision
or four single-precision floating-point values at a time. This instruction also
supports scalar operations (single- or double-precision) by specifying the
Dn or Sn registers as operands. Unfortunately, there is no floating-point
absolute difference and accumulate instruction. You can simulate this
instruction by following an fabd instruction with an fadd instruction (using
a spare vector register to hold the temporary result from fabd).

11.7.4  Vector Multiplication
The Neon instruction set includes several instructions that compute the
product of corresponding lanes in the vector register (both integer and
floating-point products). The standard vector multiply instructions appear
in Table 11-14. Note that Vl is the left source operand and Vr is the right
source operand.

Table 11-14: Neon Vector Multiply Instructions

Mnemonic Syntax Description

mul mul Vd.t1, Vl.t1, Vr.t1 Multiplication: Vd = Vl × Vr. Ignores overflow, keeps LO bits of
result (lane by lane).

mla mla Vd.t1, Vl.t1, Vr.t1 Multiply and accumulate: Vd = Vd + Vl × Vr. Ignores overflow,
keeps LO bits of result (lane by lane).

mls mls Vd.t1, Vl.t1, Vr.t1 Multiply and subtract: Vd = Vd − Vl × Vr. Ignores overflow,
keeps LO bits of result (lane by lane).

(continued)

672 Chapter 11

Mnemonic Syntax Description

smull smull Vd.t2, Vl.t3,
Vr.t3

Signed extended multiplication: Vd = Vl × Vr. Multiplies LO half
of Vl by Vr and stores extended-precision result in the lanes of
Vd (double lane size, lane-by-lane result).

umull umull Vd.t2, Vl.t3,
Vr.t3

Unsigned extended multiplication: Vd = Vl × Vr. Multiplies LO
half of Vl by Vr and stores extended-precision result in the lanes
of Vd (double lane size, lane-by-lane result).

smull2 smull2 Vd.t4, Vl.t5,
Vr.t5

Signed extended multiplication: Vd = Vl × Vr. Multiplies HO half
of Vl by Vr and stores extended-precision result in the lanes of
Vd (double lane size, lane-by-lane result).

umull2 umull2 Vd.t4, Vl.t5,
Vr.t5

Unsigned extended multiplication: Vd = Vl × Vr. Multiplies HO
half of Vl by Vr and stores extended-precision result in the lanes
of Vd (double lane size, lane-by-lane result).

smlal smlal Vd.t2, Vl.t3,
Vr.t3

Signed extended multiply and accumulate: Vd = Vd + Vl × Vr.
Multiplies LO half of Vl by Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

umlal umlal Vd.t2, Vl.t3,
Vr.t3

Unsigned extended multiply and accumulate: Vd = Vd + Vl × Vr.
Multiplies LO half of Vl by Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

smlal2 smlal2 Vd.t4, Vl.t5,
Vr.t5

Signed extended multiply and accumulate: Vd = Vd + Vl × Vr.
Multiplies HO half of Vl by Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

umlal2 umlal2 Vd.t4, Vl.t5,
Vr.t5

Unsigned extended multiply and accumulate: Vd = Vd + Vl × Vr.
Multiplies HO half of Vl by Vr and adds extended-precision
result in the lanes of Vd (double lane size, lane-by-lane result).

smlsl smlsl Vd.t2, Vl.t3,
Vr.t3

Signed extended multiply and subtract: Vd = Vd – Vl × Vr.
Multiplies LO half of Vl by Vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

umlsl umlsl Vd.t2, Vl.t3,
Vr.t3

Unsigned extended multiply and subtract: Vd = Vd – Vl × Vr.
Multiplies LO half of Vl by Vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

smlsl2 smlsl2 Vd.t4, Vl.t5,
Vr.t5

Signed extended multiply and subtract: Vd = Vd – Vl × Vr.
Multiplies HO half of Vl by Vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

umlsl2 umlsl2 Vd.t4, Vl.t5,
Vr.t5

Unsigned extended multiply and subtract: Vd = Vd – Vl × Vr.
Multiplies HO half of Vl by Vr and subtracts this from the
extended-precision value in the lanes of Vd (double lane size,
lane-by-lane result).

fmul fmul Vd.t6, Vl.t6, Vr.t6 Floating-point multiply: Vd = Vl × Vr. Multiplies the floating-point
values in the Vl and Vr lanes and stores the product into the cor-
responding Vd lanes (lane by lane).

fmulx fmulx Vd.t6, Vl.t6,
Vr.t6

Floating-point multiply: Vd = Vl × Vr. Multiplies the floating-point
values in the Vl and Vr lanes and stores the product into the
corresponding Vd lanes (lane by lane). This variant handles the
case where one source operand is 0 and the other is ±∞,
producing the value ±2 (–2 if –∞, +2 otherwise).

Table 11-14: Neon Vector Multiply Instructions (continued)

Neon and SIMD Programming 673

Mnemonic Syntax Description

fmla fmla Vd.t6, Vl.t6, Vr.t6 Floating-point multiply and accumulate: Vd = Vd + Vl × Vr
(lane by lane).

fmls fmls Vd.t6, Vl.t6, Vr.t6 Floating-point multiply and subtract: Vd = Vd – Vl × Vr
(lane by lane).

Table 11-15 lists the legal types for the instructions appearing in
Table 11-14.

Table 11-15: Legal Types for Vector Multiply Instructions

t Types Notes

t1 8B, 16B, 4H, 8H, 2S, or 4S 8B, 4S, and 2S operate only on LO 64 bits.

t2/t3 8H/8B, 4S/4H, or 2D/2S t3 lanes are taken from the LO 64 bits.

t4/t5 8H/16B, 4S/8H, or 2D/4S t5 lanes are taken from the HO 64 bits.

t6 2S, 4S, or 2D

There are also pmul, pmull, and pmull2 (polynomial multiplication) instruc-
tions. However, polynomial multiplication isn’t a traditional multiply opera-
tion, and a discussion of this is beyond the scope of this book. See the Arm
documentation for more details on these instructions.

11.7.4.1  Vector Saturating Multiplication and Double

The vector saturating multiplication and double instructions build on the
standard multiply, multiply and accumulate, and multiply and subtract
instructions to produce an extended precision (long) result that doubles
the product and saturates the result. The instructions in this set appear in
Table 11-16 and compute Vd = saturate({Vd ± }(Vl × Vr) × 2), where Vd is the
destination operand, Vl is the left operand, and Vr is the right operand;
{Vd ± } indicates that Vd ± is an optional source operand.

Table 11-16: Vector Multiply and Double with Saturation Instructions

Mnemonic Syntax Description

sqdmull sqdmull Vd.t1, Vl.t2, Vr.t2 Vd = (Vl × Vr) × 2 (lane by lane)

sqdmlal sqdmlal Vd.t1, Vl.t2, Vr.t2 Vd = Vd + (Vl × Vr) × 2 (lane by lane)

sqdmlsl sqdmlsl Vd.t1, Vl.t2, Vr.t2 Vd = Vd − (Vl × Vr) × 2 (lane by lane)

sqdmull2 sqdmull2 Vd.t3, Vl.t4, Vr.t4 Vd = (Vl × Vr) × 2 (lane by lane, HO 64 bits of source)

sqdmlal2 sqdmlal2 Vd.t3, Vl.t4, Vr.t4 Vd = Vd + (Vl × Vr) × 2 (lane by lane, HO 64 bits)

sqdmlsl2 sqdmlsl2 Vd.t3, Vl.t4, Vr.t4 Vd = Vd – (Vl × Vr) × 2 (lane by lane, HO 64 bits)

sqdmull sqdmull Vd.t5, Vl.t6, Vr.t7[x] Vd = (Vl × Vr) × 2 (Vl lanes × Vr[x] scalar)

sqdmlal sqdmlal Vd.t5, Vl.t6, Vr.t7[x] Vd = Vd + (Vl × Vr) × 2 (Vl lanes × Vr[x] scalar)

(continued)

674 Chapter 11

Mnemonic Syntax Description

sqdmlsl sqdmlsl Vd.t5, Vl.t6, Vr.t7[x] Vd = Vd – (Vl × Vr) × 2 (Vl lanes × Vr[x] scalar)

sqdmull2 sqdmull2 Vd.t8, Vl.t9, Vr.t10[x] Vd = (Vl × Vr) × 2 (Vl lanes × Vr[x] scalar, HO 64 bits)

sqdmlal2 sqdmlal2 Vd.t8, Vl.t9, Vr.t10[x] Vd = Vd + (Vl × Vr) × 2 (Vl lanes × Vr[x] scalar, HO
64 bits)

sqdmlsl2 sqdmlsl2 Vd.t8, Vl.t9, Vr.t10[x] Vd = Vd – (Vl × Vr) × 2 (Vl lanes × Vr[x] scalar, HO
64 bits)

The legal types and lane counts appear in Table 11-17.

Table 11-17: Legal Types and Lane Counts for
Vector Multiply and Double with Saturation

t Types and lane counts

t1/t2 4S/4H, or 2D/2S

t3/t4 4S/8H, or 2D/4S

t5/t6/t7 4S/4H/H, or 2D/2S/S

t8/t9/t10 4S/8H/H, or 2D/4S/S

These instructions all sign-extend their source operands to twice their
size and multiply them to produce a product. They then multiply this prod-
uct by 2. The standard multiply variants saturate and store this product into
the corresponding destination lane. The multiply and accumulate variants
add the product (multiplied by 2) to the destination and saturate the result.
The multiply and subtract variants subtract the product (multiplied by 2)
from the destination and saturate the result.

The instructions without a 2 suffix extract their lanes from the LO 64 bits
of the first source register, while those with a 2 suffix extract their lanes from
the HO 64 bits of the second source register.

The last six instructions in Table 11-16 multiply the lanes in Vl by a scalar
value selected from one of the lanes in Vr (selected by the [x] index operator).
Here, x must be an appropriate value for the source type (0 to 7 for bytes,
0 to 3 for half words, or 0 to 1 for words). For the last six forms, if t10 is H,
then the Vr register number (r) must be in the range 0 to 15.

A couple of “short” versions of the sqdmul* instructions don’t double the
type size in the destination register: sqdmulh and sqrdmulh. These instruc-
tions also multiply their source operands, double the result, and saturate
it. However, they store only the HO 64 bits of the result into the destina-
tion lane (with saturation and possible rounding). Table 11-18 lists these
instructions.

Table 11-16: Vector Multiply and Double with Saturation Instructions (continued)

Neon and SIMD Programming 675

Table 11-18: Saturating Multiply and Double Instructions, HO Bits

Mnemonic Syntax Description

sqdmulh sqdmulh Vd.t1, Vl.t1, Vr.t1 Lane-by-lane multiply, double, saturate, and keep HO
half of product.

sqrdmulh sqrdmulh Vd.t1, Vl.t1, Vr.t1 Lane-by-lane multiply, double, round, saturate, and
keep HO half of product.

sqdmulh sqdmulh Vd.t2, Vl.t3, Vr.t4[x] Multiply the lanes in Vl by the scalar selected by Vr[x];
double the result, saturate, and keep the HO half
of the product.

sqrdmulh sqrdmulh Vd.t2, Vl.t3, Vr.t4[x] Multiply the lanes in Vl by the scalar selected by Vr[x];
double the result, round, saturate, and keep the HO
half of the product.

sqdmulh sqdmulh Rd, Rl, Rr Scalar version of sqdmulh.

sqrdmulh sqrdmulh Rd, Rl, Rr Scalar version of sqrdmulh.

In this table, t1 is 4H, 8H, 2S, or 4S. For the 4H and 2S types, the
instruction works only with the LO 64 bits of the registers; the 8H and 4S
types use all 128 bits.

The type specification t2/t3/t4 is 4H/4H/H, 8H/8H/H, 2S/2S/S, or
4S/S; the 4H and 2S types work with the LO 64 bits of the registers, and the
8H and 4S types work on all 128 bits of the registers. If the type is H, Vr’s
register number must be in the range 0 to 15.

If the [x] index appears after Vr.t4, the instruction multiplies the lanes
in Vl by the scalar value extracted from lane x of Vr, which must be an
appropriate value for the source type (0 to 7 for bytes, 0 to 3 for half words,
or 0 to 1 for words).

These instructions have two scalar variants. R (in Rd, Rl, and Rr) must be
H or S. For example

sqdmulh h0, h1, h2

computes H0 = saturate(H1 × H2 × 2).

11.7.4.2  Vector Multiplication by a Scalar Element

The Neon instruction set provides several instructions that multiply all the
elements of a vector by a single scalar value, as listed in Table 11-19.

Table 11-19: Vector Multiply by Scalar Instructions

Mnemonic Syntax Description

mul mul Vd.t1, Vl.t1, Vr.t2[x] Multiply integer vector element by scalar value. Multiply
each lane in Vl by Vr[x] (scalar value) and store the prod-
uct into the corresponding lane in Vd (that is, for each
lane i, Vd[i] = Vl[i] × Vr[x]).

mla mla Vd.t1, Vl.t1, Vr.t2[x] Multiply vector elements by a scalar and accumulate. For
each lane i, Vd[i] = Vd[i] + Vl[i] × Vr[x].

(continued)

676 Chapter 11

Mnemonic Syntax Description

mls mls Vd.t1, Vl.t1, Vr.t2[x] Multiply vector elements by a scalar and subtract. For
each Iane i, Vd[i] = –d[i] – Vl[i] × Vr[x].

smull smull Vd.t3, Vl.t4, Vr.t5[x] Signed vector multiply by scalar, long. Sign-extend the
(LO) lanes in Vl to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only
the LO 64 bits of Vl.

smlal smlal Vd.t3, Vl.t4, Vr.t5[x] Signed vector multiply by scalar and accumulate, long.
Similar to smull, but sums the product into Vd rather than
just storing it into Vd.

smlsl smlsl Vd.t3, Vl.t4, Vr.t5[x] Signed vector multiply by scalar and subtract, long. Similar
to smull, but subtracts the product from Vd rather than just
storing it into Vd.

smull2 smull2 Vd.t6, Vl.t7, Vr.t8[x] Signed vector multiply by scalar, long. Sign-extend the
(HO) lanes in Vl to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only
the HO 64 bits of Vl.

smlal2 smlal2 Vd.t6, Vl.t7, Vr.t8[x] Signed vector multiply by scalar and accumulate, long
(HO source). Similar to smull2, but sums the product into
Vd rather than just storing it into Vd.

smlsl2 smlsl2 Vd.t6, Vl.t7, Vr.t8[x] Signed vector multiply by scalar and subtract, long (HO
source). Similar to smull2, but subtracts the product from
Vd rather than just storing it into Vd.

umull umull Vd.t3, Vl.t4, Vr.t5[x] Unsigned vector multiply by scalar, long. Zero-extend the
(LO) lanes in Vl to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only
the LO 64 bits of Vl.

umlal umlal Vd.t3, Vl.t4, Vr.t5[x] Unsigned vector multiply by scalar and accumulate, long.
Similar to umull, but sums the product into Vd rather than
just storing it into Vd.

umlsl umlsl Vd.t3, Vl.t4, Vr.t5[x] Unsigned vector multiply by scalar and subtract, long.
Similar to umull, but subtracts the product from Vd rather
than just storing it into Vd.

umull2 umull2 Vd.t6, Vl.t7, Vr.t8[x] Unsigned vector multiply by scalar, long. Zero-extend the
(HO) lanes in Vl to twice their size, multiply by Vr[x], and
store the result into the double-sized lane in Vd. Uses only
the HO 64 bits of Vl.

umlal2 umlal2 Vd.t6, Vl.t7, Vr.t8[x] Unsigned vector multiply by scalar and accumulate, long
(HO source). Similar to umull2, but sums the product into
Vd rather than just storing it into Vd.

umlsl2 umlsl2 Vd.t6, Vl.t7, Vr.t8[x] Unsigned vector multiply by scalar and subtract, long (HO
source). Similar to umull2, but subtracts the product from Vd
rather than just storing it into Vd.

fmul fmul Vd.t9, Vl.t10, Vr.t11[x] Floating-point vector multiply by scalar. Multiply each lane
in Vl by Vr[x] (scalar value) and store the product into the
corresponding lane in Vd (that is, for each lane i,
Vd[i] = Vl[i] × Vr[x]).

Table 11-19: Vector Multiply by Scalar Instructions (continued)

Neon and SIMD Programming 677

Mnemonic Syntax Description

fmulx fmulx Vd.t9, Vl.t10, Vr.t11[x] Like fmul, except it’s a special variant that handles the case
where one source operand is 0 and the other is ±∞. This
produces the value ±2 (–2 if –∞, +2 otherwise).

fmla fmla Vd.t9, Vl.t10, Vr.t11[x] Floating-point vector multiply by scalar and accumulate.
Multiply each lane in Vl by Vr[x] (scalar value) and add
the product into the corresponding lane in Vd (that is, for
each lane i, Vd[i] = Vd[i] + Vl[i] × Vr[x]).

fmls fmls Vd.t9, Vl.t10, Vr.t11[x] Floating-point vector multiply by scalar and subtract.
Multiply each lane in Vl by Vr[x] (scalar value) and sub-
tract the product from the corresponding lane in Vd (that is,
for each lane i, Vd[i] = Vd[i] – Vl[i] × Vr[x]).

Table 11-20 lists the legal types and lane counts for the instructions in
Table 11-19.

Table 11-20: Legal Types and Lane Counts for Vector Multiply by Scalar

t Legal types and lane counts

t1/t2 4H/H, 8H/H, 2S/S, or 4S/S

t3/t4/t5 4S/4H/H or 2D/2S/S

t6/t7/t8 4S/8H/H, or 2D/4S/S

t9/t10/t11 2S/2S/S, 4S/S, or 2D/D

Figure 11-26 shows the basic operation of the mul, mla, mls, fmul, fmla, and
fmls instructions.

Vr [x]Vl

Multiply by Vr[x]; then store, add,
or subtract, depending on instruction.=

Lane x... ...

Vd

Figure 11-26: Vector multiply by scalar operation

Figure 11-27 shows the basic operation of the smull, umull, smlal, umlal,
smlsl, and umlsl instructions.

678 Chapter 11

r

d

Lane

smull and umull store
product into Vd.

smlal and umlal add
product into Vd.
smlsl and umlsl
subtract product from Vd.

Lane x Vr

Vl

Vd

Figure 11-27: Vector multiply by scalar, long (LO bits)

Figure 11-28 shows the basic operation of the smull2, umull2, smlal2,
umlal2, smlsl2, and umlsl2 instructions.

Lane xVr

Vl

Vd

smull2 and umull2 store
product into Vd.

smlal2 and umlal2 add
product into Vd.
smlsl2 and umlsl2
subtract product from Vd.

Figure 11-28: Vector multiply by scalar, long (HO bits)

Because the product of two n-bit numbers fits into 2n bits, the smul/smul2
and umul/umul2 instructions will not produce an overflow. However, keep in
mind that an addition or subtraction after the multiplication could require
an additional bit (2n + 1 bits). Should that occur, these instructions will
ignore the overflow and keep the LO bits.

11.7.4.3  Scalar Multiplication by a Vector Element

The Neon instruction set provides variants of the fmul instructions that mul-
tiply a scalar register (Sn or Dn) by a vector element (Vn[x]), storing the result
back into a scalar register. Table 11-21 lists the syntax for these instructions,
where Fl is the left source operand and Vr is the right source operand.

Table 11-21: Floating-Point Scalar Multiplication by Vector Element Instructions

Mnemonic Syntax Description

fmul fmul Fd, Fl, Vr.t[x] Fd = Fl × Vr.t[x]

fmulx fmulx Fd, Fl, Vr.t[x] Fd = Fl × Vr.t[x]. Handles case where Fl = 0.0
and Vr.t is ±∞, which produces ±2.0.

fmla fmla Fd, Fl, Vr.t[x] Fd = Fd + Fl × Vr.t[x]

fmls fmls Fd, Fl, Vr.t[x] Fd = Fd – Fl × Vr.t[x]

Neon and SIMD Programming 679

Registers Fd and Fl are each one of the scalar floating-point registers
(Sn or Dn). Type t must be a matching size (S or D). If the type is single-
precision (Sn), then Vr must be a register in the range V0 to V15.

These multiplication instructions have no integer equivalents.

11.7.5  Vector Division
The Neon instruction set does not provide any instructions to perform inte-
ger division on vectors. It does, however, provide an instruction to perform
floating-point division on lanes in a pair of vectors

fdiv Vd.t, Vl.t, Vr.t // Computes Vd = Vl / Vr (lane by lane)

where t is 2S, 4S, or 2D. (A division by zero produces NaN in the destina-
tion lane.)

Because floating-point division is rather slow, especially when iterated
over all the lanes, the Neon instruction set includes a pair of instructions
that will compute the reciprocal of a floating-point value. Multiplication
by a reciprocal is usually much faster than division. If you’re dividing by a
constant, you can precompute the reciprocal value at assembly time and use
that (no runtime cost). If the value is a variable that you cannot compute at
assembly time, you can use the frecpe instruction to approximate the recipro-
cals of all the lanes in a vector register

frecpe Vd.t, Vs.t

where t is 2S, 4S, or 2D (2S operates on the LO 64 bits of the registers).
There is a scalar version of frecpe

frecpe Rd, Rs

where Rd and Rs are either Sn or Dn.
The frecpe instruction produces a reciprocal approximation that is

within 8 bits of the correct value—not great, but good enough for quick-
and-dirty calculations. If you need better accuracy, use the frecps instruc-
tion (same syntax except for the mnemonic) to compute another step in
the Newton-Raphson reciprocal approximation algorithm, using code like
the following:

// Compute V0.4S = V1.4S / V2.4S by computing the reciprocal
// of V2 and multiplying V1 by this reciprocal value:

 frecpe v3.4s, v2.4s // Get first approximation.
 frecps v0.4s, v1.4s, v3.4s // *** Refinement step
 fmul v3.4s, v3.4s, v0.4s // *** Refinement step (cont.)

// Repeat "Refinement step" as many times as desired here.

 fmul v0.4s, v1.4s, v3.4s // Compute quotient.

680 Chapter 11

The more times you repeat the refinement step, the more accurate
your result will be. However, at some point, the cost of executing all these
floating-point instructions will exceed the time consumed by a single fdiv
instruction, so take care because using frecps has diminishing returns.

There is a urecpe instruction for estimating fixed-point reciprocals, but
fixed-point arithmetic is beyond this scope of this book. To learn more, see
the ARM Architecture Reference Manual, linked in section 11.15, “For
More Information,” on page 700.

11.7.6  Sign Operations
The Neon instruction set includes four instructions that allow you to negate
or take the absolute values of the lanes in a vector register

abs Vd.t1, Vs.t1
neg Vd.t1, Vs.t1
sqabs Vd.t1, Vs.t1
sqneg Vd.t1, Vs.t1
fabs Vd.t2, Vs.t2
fneg Vd.t2, Vs.t2

where t1 represents the usual integer types (8B, 16B, 4H, 8H, 2S, 4S, or 2D)
and t2 represents the usual floating-point types (2S, 4S, and 2D). The 8B,
4H, and 2S types reference only the LO 64 bits of the vector register.

The abs and fabs instructions compute the absolute values of each of
the lanes in the source register, storing the result into the destination reg-
ister. Obviously, abs works on (signed) integer values, while fabs works on
floating-point values.

The neg and fneg instruction negate (change the sign of) the source lanes,
leaving the negated result in the corresponding destination lane. As expected,
neg works on signed integers, and fneg works on floating-point values.

The sqabs and sqneg instructions are special saturating variants of the
abs and neg instructions that never overflow. The most negative value (for
example, 0x80 for byte values) will overflow when you take its absolute value
or negate it; in both cases, you wind up with the same value. The sqabs and
sqneg instruction will produce the maximum positive value (for example,
0x7F for byte values) if you attempt to negate it or take its absolute value.

The abs, neg, sqabs, and sqneg instructions also have scalar versions, as
shown in Table 11-22. For abs and neg, Rd and Rs can be only Dn; for sqabs and
sqneg, Rd and Rs are one of the scalar registers Bn, Hn, Sn, or Dn.

Table 11-22: Scalar Sign Operations

Mnemonic Syntax Description

abs abs Rd, Rs Rd = abs(Rs)

neg neg Rd, Rs Rd = –Rs

sqabs sqabs Rd, Rs Rd = abs(Rs), saturated to maximum signed value

sqneg sqneg Rd, Rs Rd = –Rs, saturated to signed range

Neon and SIMD Programming 681

The instructions in Table 11-22 operate on the scalar value in the speci-
fied register.

11.7.7  Minimum and Maximum
The Neon instruction set provides several instructions that will select the
minimum or maximum value from corresponding lanes in two vector regis-
ters and store that value into the corresponding lane of a destination regis-
ter, as shown in Table 11-23.

Table 11-23: Vector Min and Max Instructions

Mnemonic Syntax Description

smin smin Vd.t1, Vl.t1, Vr.t1 Vd = min(Vl, Vr) (signed integer values)

smax smax Vd.t1, Vl.t1, Vr.t1 Vd = max(Vl, Vr) (signed integer values)

umin umin Vd.t1, Vl.t1, Vr.t1 Vd = min(Vl, Vr) (unsigned integer values)

umax umax Vd.t1, Vl.t1, Vr.t1 Vd = max(Vl, Vr) (unsigned integer values)

fmin fmin Vd.t2, Vl.t2, Vr.t2 Vd = min(Vl, Vr) (floating-point values)

fmax fmax Vd.t2, Vl.t2, Vr.t2 Vd = max(Vl, Vr) (floating-point values)

fminnm fminnm Vd.t2, Vl.t2, Vr.t2 Vd = min(Vl, Vr) (floating-point values)

fmaxnm fmaxnm Vd.t2, Vl.t2, Vr.t2 Vd = max(Vl, Vr) (floating-point values)

In this table, t1 must be 8B, 16B, 4H, 8H, 2S, or 4S. If t1 is 8B, 4H, or
2S, the instructions operate only on the lanes in the LO 64 bits of the vec-
tor registers; if it is 16B, 8H, or 4S, the instructions operate on all 128 bits
of the vector registers.

The type t2 must be 2S, 4S, or 2D. If it is 2S, the instructions operate
only on the LO 64 bits of the vector registers; otherwise, they operate on
the entire 128 bits.

The fmin and fmax instructions return NaN if either (or both) of the
corresponding source lanes contain a NaN. The fminnm and fmaxnm instruc-
tions, on the other hand, return the numeric value if one lane contains a
valid number and the other contains a NaN. If both lanes contain a valid
floating-point value, all four instructions behave the same and return the
minimum or maximum value (as appropriate).

11.7.7.1  Pairwise Minimum and Maximum

The minimum and maximum instructions also have pairwise variants,
as shown in Table 11-24, where t1 and t2 are the same as for the lane-by-
lane instructions.

682 Chapter 11

Table 11-24: Pairwise Minimum and Maximum Instructions

Mnemonic Syntax Description Operates on

sminp sminp Vd.t1, Vl.t1, Vr.t1 Vd = pairwise_min(Vl, Vr) Signed integers

smaxp smaxp Vd.t1, Vl.t1, Vr.t1 Vd = pairwise_max(Vl, Vr) Signed integers

uminp uminp Vd.t1, Vl.t1, Vr.t1 Vd = pairwise_min(Vl, Vr) Unsigned integers

umaxp umaxp Vd.t1, Vl.t1, Vr.t1 Vd = pairwise_max(Vl, Vr) Unsigned integers

fminp fminp Vd.t2, Vl.t2, Vr.t2 Vd = pairwise_min(Vl, Vr) Floating-point values

fmaxp fmaxp Vd.t2, Vl.t2, Vr.t2 Vd = pairwise_max(Vl, Vr) Floating-point values

fminnmp fminnmp Vd.t2, Vl.t2, Vr.t2 Vd = pairwise_min(Vl, Vr) Floating-point values

fmaxnmp fmaxnmp Vd.t2, Vl.t2, Vr.t2 Vd = pairwise_max(Vl, Vr) Floating-point values

The pairwise topology is the same as for the addp instruction (see
Figure 11-29 for a uminp example).

V1V2

V0

uminp V0.4s, V1.4s, V2.4s

min min min min

Figure 11-29: Pairwise minimum and maximum operations

There are also a set of pairwise-scalar floating-point minimum and
maximum instructions, as shown in Table 11-25, where Rd/t must be Sn/2S
or Dn/2D.

Table 11-25: Pairwise-Scalar Floating-Point Minimum and Maximum
Instructions

Mnemonic Syntax Description

fmaxp fmaxp Rd, Vs.t Rd = max(Vs)

fmaxnmp fmaxnmp Rd, Vs.t Rd = max(Vs) (choose number over NaN)

fminp fminp Rd, Vs.t Rd = min(Vs)

fminnmp fminnmp Rd, Vs.t Rd = min(Vs) (choose number over NaN)

These instructions have no integer versions.

11.7.7.2  Horizontal Minimum and Maximum

The horizontal minimum and maximum instructions select the minimum
or maximum value within a single vector, as shown in Table 11-26.

Neon and SIMD Programming 683

Table 11-26: Horizontal (Across Vector) Minimum and Maximum Instructions

Mnemonic Syntax Description

sminv sminv Rd, Vs.t1 Extract minimum signed lane value from Vs and store into Rd.

smaxv smaxv Rd, Vs.t1 Extract maximum signed lane value from Vs and store into Rd.

uminv uminv Rd, Vs.t1 Extract minimum unsigned lane value from Vs and store into Rd.

umaxv umaxv Rd, Vs.t1 Extract maximum unsigned lane value from Vs and store into Rd.

fminv fminv Sd, Vs.t2 Extract minimum real lane value from Vs and store into Sd.

fmaxv fmaxv Sd, Vs.t2 Extract maximum real lane value from Vs and store into Rd.

fminnmv fminnmv Sd, Vs.t2 Extract minimum real lane value from Vs and store into Sd.

fmaxnmv fmaxnmv Sd, Vs.t2 Extract maximum real lane value from Vs and store into Rd.

In this table, Rd/t1 is B/8B, B/16B, H/4H, H/8H, or S/4S. If t1 is 8B, or
4H, the instruction operates only on the lanes in the LO 64 bits of Vs. For
floating-point minimum and maximum, only single-precision operands are
legal; t2 must be 2S or 4S (operating on the LO 64 bits or the full 128 bits
of the source register). As for the standard fmin and fmax instructions, the nm
variants differ insofar as they return the numeric value if one of the oper-
ands is NaN.

	 11.8	 Floating-Point and Integer Conversions
The Neon instruction set provides several instructions to convert between
floating-point and integer (or fixed-point) formats. Section 6.9.4, “Floating-
Point Conversion Instructions,” on page 343 provided examples of these
conversion instructions when operating on scalar registers; the following
subsections present the vector equivalents.

11.8.1  Floating-Point to Integer
The Neon instruction set provides vector equivalents of the fcvt* instruc-
tions that convert floating-point values to their integer equivalents, as
shown in Table 11-27.

Table 11-27: Floating-Point to Integer Conversion Instructions

Mnemonic Syntax Description

fcvtns fcvtns Vd.t, Vs.t Round to nearest signed integer. Exactly one-half
rounds to nearest even integer.

fcvtas fcvtas Vd.t, Vs.t Round to nearest signed integer. Exactly one-half
rounds away from zero.

fcvtps fcvtps Vd.t, Vs.t Round toward +∞ (signed integer).

fcvtms fcvtms Vd.t, Vs.t Round toward –∞ (signed integer).

fcvtzs fcvtzs Vd.t, Vs.t Round toward 0 (signed integer).

(continued)

684 Chapter 11

Mnemonic Syntax Description

fcvtnu fcvtnu Vd.t, Vs.t Round to nearest unsigned integer. Exactly one-half
rounds to nearest even integer.

fcvtau fcvtau Vd.t, Vs.t Round to nearest unsigned integer. Exactly one-half
rounds away from 0.

fcvtpu fcvtpu Vd.t, Vs.t Round toward +∞ (unsigned integer).

fcvtmu fcvtmu Vd.t, Vs.t Round toward –∞ (unsigned integer).

fcvtzu fcvtzu Vd.t, Vs.t Round toward 0 (unsigned integer).

In this table, t is 2S (which uses only the LO 64 bits of the vector regis-
ters), 4S, or 2D. The source operand is always assumed to contain floating-
point values (single- or double-precision), and the destination lanes will
receive signed or unsigned integer values (words or dwords). Note that
when converting negative floating-point values to unsigned integers, the
conversion saturates the conversion to 0.0.

The fcvtz* instruction also has some fixed-point variants:

fcvtzs Vd.t, Vs.t, #imm
fcvtzu Vd.t, Vs.t, #imm

The imm operand specifies the number of fractional bits to maintain in
the fixed-point value (this must be 1 to 31 for single-precision or word types
and 1 to 63 for double-precision or dword types). Because integer opera-
tions are somewhat faster than floating-point calculations, sometimes it is
faster to convert operands to fixed-point, do a chain of calculations, then
convert the result back to floating-point. However, this book doesn’t cover
fixed-point arithmetic in depth, so I won’t discuss this technique any fur-
ther. See section 11.15, “For More Information,” on page 700 for additional
information.

11.8.2  Integer to Floating-Point
The ucvtf and scvtf instructions convert 32- and 64-bit integers to single-
and double-precision values, respectively. Their syntax is roughly the same
as that of fcvt*:

scvtf Vd.t, Vs.t
ucvtf Vd.t, Vs.t

As with fcvt*, t must be 2S, 4S, or 2D (2S converts only the LO 64 bits).
Because double-precision values have only a 56-bit mantissa and single-

precision values have only a 24-bit mantissa, you cannot exactly represent
certain 32- and 64-bit integers as single- or double-precision floating-point
values. In those cases, the scvtf and ucvtf instructions produce the closest
approximation. However, keep in mind that executing *cvtf followed by an
fcvt* instruction may not return the exact same integer.

Table 11-27: Floating-Point to Integer Conversion Instructions (continued)

Neon and SIMD Programming 685

11.8.3  Conversion Between Floating-Point Formats
The Neon instruction set provides three instructions that will convert a
small floating-point format to a larger form, or a larger form to a smaller
form. This is one of the few instructions in the ARM instruction set that
supports half-precision (16-bit) floating-point numbers. Table 11-28 shows
the available instructions.

Table 11-28: Floating-Point Conversion Instructions

Mnemonic Syntax
Description
Lane-by-lane conversion

fcvtl fcvtl Vd.t1, Vs.t2 Convert from a smaller size to the next larger
size by using the LO 64 bits of the source
register.

fcvtl2 fcvtl2 Vd.t3, Vs.t4 Convert from a smaller size to the next larger
size by using the upper 64 bits of the source
register (does not affect the LO bits of the
destination register).

fcvtn fcvtn Vd.t5, Vs.t6 Convert from a larger size to a smaller size by
using the LO 64 bits of the destination register.

fcvtn2 fcvtn2 Vd.t7, Vs.t8 Convert from a larger size to a smaller size by
using the HO 64 bits of the destination register
(does not affect the LO bits of the destination
register).

fcvtxn fcvtxn Vd.2S, Vs.2D Like fcvtn, except rounding is different (see text).

fcvtxn2 fcvtxn2 Vd.4S, Vs.2D Like fcvtn2, except rounding is different (see text).

The legal types and lane counts for the instructions in Table 11-28
appear in Table 11-29, where H = 16-bit half-precision floating-point,
S = 32-bit single-precision floating-point, and D = 64-bit double-precision
floating-point.

Table 11-29: Legal Types and Lane Counts
for Floating-Point Conversions

t Types and lane counts

t1/t2 4S/4H or 2D/2S

t3/t4 4S/8H or 2D/4S

t5/t6 4H/4S or 2S/2D

t7/t8 8H/4S or 4S/2D

Conversion from a smaller size to a larger size always produces an exact
result. Conversion from a larger size down to a smaller size may require
rounding the result to fit in the smaller size (worst case, overflow or under-
flow will occur if the larger value cannot be represented at all in the smaller
floating-point format).

686 Chapter 11

When rounding larger values to fit into a smaller format, the fcvtn and
fcvtn2 instructions use the standard IEEE-754 round-to-nearest-even algo-
rithm. In some cases, this may not produce the best result. For example,
it is generally better to round to the nearest odd when converting a half-
precision value to a double-precision value (which requires two steps:
convert half-precision to single-precision, then convert single-precision to
double-precision). The fcvtxn and fcvtxn2 instructions employ this non-IEEE
rounding scheme to produce better results.

11.8.4  Floating-Point Values Rounded to the Nearest Integral
Certain algorithms require rounding a floating-point value to an integer
but require the result to be maintained in the floating-point format. The
frint* instructions listed in Table 11-30 provide this capability.

Table 11-30: Rounding a Floating-Point Value to an Integral Value

Mnemonic Syntax
Description
Lane-by-lane rounding operation

frintn frintn Vd.t, Vs.t Round to nearest integer. Exactly one-half rounds
to nearest even integer.

frinta frinta Vd.t, Vs.t Round to nearest integer. Exactly one-half rounds
away from 0.

frintp frintp Vd.t, Vs.t Round toward +∞.

frintm frintm Vd.t, Vs.t Round toward –∞.

frintz frintz Vd.t, Vs.t Round toward 0.

frinti frinti Vd.t, Vs.t Round using FPCR rounding mode.

frintx frintx Vd.t, Vs.t Round using FPCR rounding mode with
exactness test.

In this table, t must be 2S, 4S, or 2D. If it is 2S, these instructions use
only the LO 64 bits of the registers.

The frintx instruction generates a floating-point inexact result excep-
tion if the rounded result is not equal to the original source value. You
won’t normally use this instruction unless you have an appropriate excep-
tion handler in place.

	 11.9	 Vector Square-Root Instructions
The Neon instruction set provides two instructions for computing the
square root of a floating-point value and computing (and refining) an
estimate of the reciprocal of the square root of a floating-point value.
Table 11-31 lists these instructions.

Neon and SIMD Programming 687

Table 11-31: Vector Square Root Instructions

Mnemonic Syntax
Description
Lane-by-lane operation

fsqrt fsqrt Vd.t, Vs.t Compute square root of source and store
into destination

frsqrte frsqrte Vd.t, Vs.t First step of Newton-Raphson approxima-
tion of the reciprocal of the square root

frsqrts frsqrts Vd.t, Vs1.t, Vs2.t Additional steps of the Newton-Raphson
approximation

In the table, t must be 2S, 4S, or 2D. If it’s 2S, these instructions oper-
ate on the lanes in the LO 64 bits of the vector registers.

These three instructions also have scalar versions

fsqrt Rd, Rs
frsqrte Rd, Rs
frsqrts Rd, Rs1, Rs2

where Rd and Rs are one of the floating-point scalar registers Sn or Dn.
Note that the frsqrts instruction multiplies corresponding floating-

point values in the lanes of the two source registers, subtracts each of the
products from 3.0, divides these results by 2.0, and places the results into
the destination register.

	 11.10	 Vector Comparisons
Vector comparisons are fundamentally different from normal (general-
purpose register) comparisons. When comparing general-purpose registers
(or even individual floating-point scalar values), the ARM CPU sets the con-
dition codes based on the result of the comparison; the code following the
comparison then tests those condition codes, using a conditional branch, for
example. This scheme doesn’t work when comparing vector elements because
the CPU always performs multiple comparisons in parallel. There’s only one
set of condition codes, so the CPU cannot put the results of multiple compari-
sons into the condition codes, meaning vector comparisons require a differ-
ent mechanism to make the comparison results available to the program.

Rather than a generic comparison that produces less than, greater
than, or equal results simultaneously (in the condition codes), a vector
comparison asks for a specific comparison, such as, “Are the elements of
this vector greater than the elements of another vector?” The result is true
or false for each lane-by-lane comparison. A vector comparison will store
the true or false result into the corresponding lanes of a destination vector.
Vector comparisons use all 0 bits in a lane to represent false and all 1 bits in
a lane to represent true.

Neon has two general sets of vector comparison instructions: one for
integer comparisons and another for floating-point comparisons. The fol-
lowing subsections discuss each of these forms.

688 Chapter 11

11.10.1  Vector Integer Comparisons
Table 11-32 lists the generic vector integer compare instructions, where t is
8B, 16B, 4H, 8H, 2S, 4S, or 2D. For the 8B, 4H, and 2S types, these instruc-
tions operate only on the LO 64 bits of the registers and clear the HO
64 bits of the destination register.

Table 11-32: Vector Integer Comparison Instructions

Mnemonic Syntax
Description
Lane-by-lane comparison

cmeq cmeq Vd.t, Vl.t, Vr.t Signed or unsigned comparison for equality

cmhs cmhs Vd.t, Vl.t, Vr.t Unsigned comparison for greater than or
equal (Vd = Vl ≥ Vr)

cmhi cmhi Vd.t, Vl.t, Vr.t Unsigned comparison for greater than
(Vd = Vl > Vr)

cmge cmge Vd.t, Vl.t, Vr.t Signed comparison for greater than or equal
(Vd = Vl ≥ Vr)

cmgt cmgt Vd.t, Vl.t, Vr.t Signed comparison for greater than
(Vd = Vl > Vr)

There is no cmne instruction. You can invert all the bits in the destina-
tion register (using the not instruction) if you need this comparison, or you
can use 0 bits to imply true and 1 bits to imply false. Likewise, there are no
cmls, cmlo, cmle, or cmlt instructions; you can derive these from cmgt, cmge,
cmhs, or cmhi by reversing the operands.

These instructions have scalar variants, as shown in Table 11-33, where
Rd, Rl, and Rr must be Dn.

Table 11-33: Scalar Integer Comparison Instructions

Mnemonic Syntax
Description
Scalar register comparison

cmeq cmeq Rd, Rl, Rr Signed or unsigned comparison for equality

cmhs cmhs Rd, Rl, Rr Unsigned comparison for greater than or equal
(Rd = Rl ≥ Rr)

cmhi cmhi Rd, Rl, Rr Unsigned comparison for greater than (Rd = Rl > Rr)

cmge cmge Rd, Rl, Rr Signed comparison for greater than or equal
(Rd = Rl ≥ Rr)

cmgt cmgt Rd, Rl, Rr Signed comparison for greater than (Rd = Rl > Rr)

A special set of vector comparison instructions exists to compare the
lanes of a single vector against 0. This saves setting up a register to contain
all 0s for this common case. The available instructions perform only signed
comparisons (it doesn’t make much sense to compare unsigned values
against 0). Table 11-34 lists these instructions.

Neon and SIMD Programming 689

Table 11-34: Signed Vector Comparisons Against 0

Mnemonic Syntax
Description
Lane-by-lane comparison against 0

cmeq cmeq Vd.t, Vl.t, #0 Signed comparison for lanes equal to 0

cmge cmge Vd.t, Vl.t, #0 Signed comparison for lanes greater than
or equal to 0

cmgt cmgt Vd.t, Vl.t, #0 Signed comparison for lanes greater than 0

cmle cmle Vd.t, Vl.t, #0 Signed comparison for lanes less than or
equal to 0

cmlt cmlt Vd.t, Vl.t, #0 Signed comparison for lanes less than 0

The type t must be 8B, 16B, 4H, 8H, 2S, 4S, or 2D. For the 8B, 4H, and
2S types, these instructions operate only on the LO 64 bits of the registers
and clear the HO 64 bits of the destination register. The only legal immedi-
ate constant is 0 with these instructions.

Table 11-35 lists the scalar versions of these instructions.

Table 11-35: Scalar Vector Comparisons Against 0

Mnemonic Syntax
Description
Scalar register comparison against 0

cmeq cmeq Rd, Rl, #0 Signed comparison for register equal to 0

cmge cmge Rd, Rl, #0 Signed comparison for register greater than
or equal to 0

cmgt cmgt Rd, Rl, #0 Signed comparison for register greater than 0

cmle cmle Rd, Rl, #0 Signed comparison for register less than
or equal to 0

cmlt cmlt Rd, Rl, #0 Signed comparison for register less than 0

In this table, Rd, Rl, and Rr must be Dn.

11.10.2  Vector Floating-Point Comparisons
You can also compare floating-point values in the vector registers’ lanes.
Table 11-36 lists the various fcm* instructions available for this purpose,
where t is 2S, 4S, or 2D. If t is 2S, these instructions use only the LO 64 bits
of the registers.

Table 11-36: Vector Floating-Point Comparison Instructions

Mnemonic Syntax
Description
Lane-by-lane comparison

fcmeq fcmeq Vd.t, Vl.t, Vr.t Floating-point comparison for equality

fcmge fcmge Vd.t, Vl.t, Vr.t Floating-point comparison (Vd = Vl ≥ Vr)

fcmgt fcmgt Vd.t, Vl.t, Vr.t Floating-point comparison (Vd = Vl > Vr)

690 Chapter 11

Table 11-37 lists variants of the fcm* instructions that compare the lanes
in a vector register against 0.0, where t is 2S, 4S, or 2D. If t is 2S, these
instructions use only the LO 64 bits of the registers.

Table 11-37: Vector Floating-Point Comparison Against 0.0

Mnemonic Syntax
Description
Lane-by-lane comparison against 0.0

fcmeq fcmeq Vd.t, Vl.t, #0 Floating-point comparison for register equal to 0.0

fcmge fcmge Vd.t, Vl.t, #0 Floating-point comparison for register greater than
or equal to 0.0

fcmgt fcmgt Vd.t, Vl.t, #0 Floating-point comparison for register greater
than 0.0

fcmle fcmle Vd.t, Vl.t, #0 Floating-point comparison for register less than or
equal to 0.0

fcmlt fcmlt Vd.t, Vl.t, #0 Floating-point comparison for register less than 0.0

Note that the immediate constant is 0 (versus 0.0), even though this is a
floating-point comparison. The only legal operand for this instruction is #0.

As for the integer comparisons, the fcm* instructions provide a set of
scalar instructions that also store true (all 1 bits) or false (all 0 bits) into the
destination register (in contrast to the fcmp instructions that set the condi-
tion code flags). Table 11-38 lists the scalar versions of these instructions,
where Rd, Rl, and Rr must be Sn or Dn.

Table 11-38: Scalar Variants of the Vector Floating-Point Comparisons

Mnemonic Syntax
Description
Scalar register comparison (including against 0.0)

fcmeq fcmeq Rd, Rl, Rr Floating-point comparison for equality

fcmge fcmge Rd, Rl, Rr Floating-point comparison (Rd = Rl ≥ Rr)

fcmgt fcmgt Rd, Rl, Rr Floating-point comparison (Rd = Rl > Rr)

fcmeq fcmeq Rd, Rl, #0 Floating-point comparison for register equal to 0.0

fcmge fcmge Rd, Rl, #0 Floating-point comparison for register greater than
or equal to 0.0

fcmgt fcmgt Rd, Rl, #0 Floating-point comparison for register greater than 0.0

fcmle fcmle Rd, Rl, #0 Floating-point comparison for register less than or
equal to 0.0

fcmlt fcmlt Rd, Rl, #0 Floating-point comparison for register less than 0.0

Neon has a couple of additional floating-point comparisons: fac* (vec-
tor floating-point absolute value compare). These instructions compare the
absolute values of corresponding lanes in the source vector register and set
the destination register accordingly. Table 11-39 lists these instructions.

Neon and SIMD Programming 691

Table 11-39: Floating-Point Absolute-Value Comparisons

Mnemonic Syntax Description

facge facge Vd.t, Vl.t, Vr.t Floating-point comparison (Vd = abs(Vl)
≥ abs(Vr))

facgt facgt Vd.t, Vl.t, Vr.t Floating-point comparison (Vd = abs(Vl)
> abs(Vr))

There is no faceq instruction, since there’s no need for one; just use
fcmeq.

The fac* instructions also have scalar versions, listed in Table 11-40.

Table 11-40: Scalar Floating-Point Absolute-Value Comparisons

Mnemonic Syntax Description

facge facge Rd, Rl, Rr Floating-point comparison (Rd = abs(Rl) ≥ abs(Rr))

facgt facgt Rd, Rl, Rr Floating-point comparison (Rd = abs(Rl) > abs(Rr))

Note that Rd, Rl, and Rr must be Sn or Dn.

11.10.3  Vector Bit Test Instructions
The Neon instruction set provides a vector version of the tst instruction,
cmtst, which has the following syntax

cmtst Vd.t, Vl.t, Vr.t

where t can be 8B, 16B, 4H, 8H, 2S, 4S, or 2D. If t is 8B, 4H, or 2S, this
instruction operates only on the LO 64 bits of the source registers and
clears the HO 64 bits of the destination register.

This instruction does a lane-by-lane logical AND operation between
Vl and Vr. If the result is nonzero, it stores all 1 bits into the corresponding
destination lane. Otherwise, it stores all 0s into the destination lane.

This instruction also has a scalar version:

cmtst Dd, Dl, Dr

This form supports only 64-bit register operands (Dn).

11.10.4  Vector Comparison Results
Throughout your programming experience, including with HLLs, you’ve
probably become accustomed to using the result of comparisons (such as
Boolean expressions) to divert control flow (such as with an if/then/else
statement). Vector comparisons present a completely different paradigm
because the lanes in a comparison could all produce different results.
What’s the best way to deal with this?

First, consider the easy stuff: complex Boolean expressions involving
ANDs, ORs, and other logical operators. Because the vector comparisons

692 Chapter 11

compute convenient results (all 1s or all 0s), it’s easy to compute something
like this:

(V1 > V2) AND (V3 < V4) // Assume unsigned 8H lanes.

Consider the following code:

cmhi v0.4h, v1.4h, v2.4h
cmhi v5.4h, v4.4h, v3.4h // Same as cmlo v5.4h, v3.4h, v4.4h
and v0.8b, v0.8b, v5.8b // (assuming cmlo existed)

This leaves the result of the previous Boolean calculation (0x0000 or 0xFFFF)
in the LO 64 bits of the V0 register (lanes 0 to 3; remember that the and
instruction allows only 8B and 16B types, but they produce the same result as
4H would if it were a legal type).

You can use similar instruction sequences for OR, NOT, and any of the
other logical vector operations (see Table 11-2). Such calculations will use
complete Boolean evaluation.

N O T E 	 Short-circuit evaluation doesn’t make sense for vector operations; see section 7.6.3,
“Complex if Statements Using Complete Boolean Evaluation,” on page 378 for more
information on complete Boolean evaluation.

If you absolutely, positively must branch to some locations based on
the result of all the vector comparisons, keep in mind that the number of
branch locations increases exponentially with the number of lanes (spe-
cifically, its 2n different possibilities, where n is the number of lanes). For
example, if you execute the following instruction

cmeq v0.4h, v1.4h, v2.4h

then the LO 64 bits of V0 will contain four Boolean values, yielding 16 com-
binations of the four comparisons. It’s ugly, but you could create a jump table
(see section 7.6.7.3, “Indirect Jump switch Implementation,” on page 391)
with 16 entries and then transfer control by using code like the following

ldr q3, mask // mask: .hword 0b1000, 0b100, 0b10, 0b1
cmeq v0.4h, v1.4h, v2.4h
and v0.8b, v0.8b, v3.8b // Keep 1 bit of each lane.
addv h0, v0.4h // Merge the bits into H0.
umov w0, v0.h[0]
adr x1, JmpTbl
ldr x0, [x1, x0, lsl #3]
add x0, x0, x1
br x0

where mask is

mask: .dword 0x0008000400020001

Neon and SIMD Programming 693

and JmpTbl is a 16-entry .dword table with the offset to the labels to jump to,
based on all the combinations of true and false for four lane comparisons.
This code moves bit 0 of lane 0 into bit 0 of X0, bit 0 of lane 1 into bit 1 of
X0, bit 0 of lane 2 into bit 2 of X0, and bit 0 of lane 3 into bit 3 of X0. This
forms a 4-bit index (16 possible values) into JmpTbl.

Theoretically, you could create a jump table with 16 entries and write
code to transfer control, but this would be so ugly it’s not an option worth
seriously considering.

Sometimes you don’t need to know the particular configuration of
matches in a vector comparison, only whether any matches exist at all. For
example, suppose you were looking for a 0 byte in a string of characters
(such as when computing the length of a zero-terminating string). You
could load 16 characters at a time from the string and search for a 0 byte by
comparing all of them against 0:

cmeq v0.16b, v1.16b, #0 // Assume V1 contains 16 chars.

This instruction sets the particular lane in V0 to 0xFF, corresponding
to any lane in V1 that contains a 0 byte. You can use the following sequence
to check whether there were any 0 bytes at all:

cmeq v0.16b, v1.16b, #0 // Check for a 0 byte.
addv b0, v0.16b // Sum comparison bytes.
umov w0, v0.b[0] // Put sum where you can compare it.
cmp w0, #0 // See if there were any 0 bytes.
beq noZeroBytes // No 0s, go fetch 16 more bytes.

In the SIMD paradigm, an ideal solution would be to do calculations
in parallel and use masks to disable certain calculations. For example, sup-
pose you have a vector of 32-bit integers to which you would like to add
another vector’s lanes, with the caveat that you don’t want to add anything
if a particular lane contains a value greater than 16 bits (0xFFFF). Consider
the following code:

// Add V1.S to V0.S, but don't add a value to a particular
// lane in V0 if its value exceeds 0xFFFF.
//
// Note: Assume V2 contains 0x0000FFFF0000ffff0000FFFF0000ffff.

 // no cmls v3.4s, v0.4s, v2.4s, so use the following:

 cmhi v3.4s, v2.4s, v0.4s

 and v4.16b, v1.16b, v3.16b
 add v0.4s, v0.4s, v4.4s

The and instruction sets dword lanes greater than 0xFFFF to 0 so that
they will have no impact on the final lane sums.

694 Chapter 11

	 11.11	 A Sorting Example Using SIMD Code
Sorting data is a common vector solution. Listing 11-1 demonstrates a sim-
ple sort of eight elements by using a vectorized bitonic sorting algorithm.

// Listing11-1.S
//
// Demonstrates a simple bitonic sort
// of eight elements, using vector instructions

 #include "aoaa​.inc"
 .text

 .pool
ttlStr: wastr "Listing 11-1"

// Format strings for printf:

fmtPV: wastr " %016llx %016llx"
nl: wastr "\n"

// Sample data to sort
// (eight unsigned 32-bit integers
// to be loaded into vector
// registers):

qval1: .word 8, 7, 6, 4
qval2: .word 3, 2, 1, 0

// Lookup tables for TBL instruction,
// used to move around integers
// within the vector registers
//
// TBL works with bytes; the following
// constants map 32-bit integers to
// a block of 4 bytes in the
// vector registers:

_a = 0x03020100
_b = 0x07060504
_c = 0x0b0a0908
_d = 0x0f0e0d0c

_e = 0x13121110
_f = 0x17161514
_g = 0x1b1a1918
_h = 0x1f1e1d1c

_e1 = 0x03020100 // Special case
_f1 = 0x07060504 // for single-
_g1 = 0x0b0a0908 // register lists
_h1 = 0x0f0e0d0c

lut1: .word _f1, _e1, _h1, _g1
lut2: .word _a, _f, _c, _h

Neon and SIMD Programming 695

lut3: .word _b, _e, _d, _g
lut4: .word _h1, _g1, _f1, _e1
lut5: .word _a, _b, _g, _h
lut6: .word _c, _d, _f, _e
lut7: .word _a, _e, _b, _f
lut8: .word _c, _g, _d, _h
lut9: .word _a, _e, _b, _f
lut10: .word _c, _g, _d, _h

// Usual function that returns
// a pointer to the name of this
// program in the X0 register:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// printV
//
// Prints the two 128-bit values sitting
// on the top of the stack (prior to call)
// as hexadecimal values:

 proc printV

 locals p
 qword p.v0
 qword p.v1
 qword p.v2
 qword p.v3
 qword p.v4
 byte p.stk, 64
 endl p

 enter p.size

 // Preserve vector registers
 // (this program uses them):

 str q0, [fp, #p.v0]
 str q1, [fp, #p.v1]
 str q2, [fp, #p.v2]
 str q3, [fp, #p.v3]
 str q4, [fp, #p.v4]

 // Print the first value on
 // the stack:

 ldr w1, [fp, #16]
 ldr w2, [fp, #20]
 ldr w3, [fp, #24]
 ldr w4, [fp, #28]
 lea x0, fmtPV
 mstr x1, [sp]

696 Chapter 11

 mstr x2, [sp, #8]
 mstr x3, [sp, #16]
 mstr x4, [sp, #24]
 bl printf

 // Print the second value on
 // the stack:

 ldr w1, [fp, #32]
 ldr w2, [fp, #36]
 ldr w3, [fp, #40]
 ldr w4, [fp, #44]
 lea x0, fmtPV
 mstr x1, [sp]
 mstr x2, [sp, #8]
 mstr x3, [sp, #16]
 mstr x4, [sp, #24]
 bl printf

 lea x0, nl
 bl printf

 ldr q0, [fp, #p.v0]
 ldr q1, [fp, #p.v1]
 ldr q2, [fp, #p.v2]
 ldr q3, [fp, #p.v3]
 ldr q4, [fp, #p.v4]
 leave
 endp printV

// Here's the main program:

 proc asmMain, public

 // Reserve stack space for parameters:

 locals am
 byte am.stk, 64
 endl am

 enter am.size

 // Load the values to sort
 // into V0 and V1:

 ldr q0, qval1
 ldr q1, qval2

 // Bitonic sort of eight
 // elements:

 // Step 1:

 umin v2.4s, v0.4s, v1.4s
 umax v3.4s, v0.4s, v1.4s

Neon and SIMD Programming 697

 // Step 2:

 ldr q4, lut1
 tbl v3.16b, {v3.16b}, v4.16b

 umin v0.4s, v2.4s, v3.4s
 umax v1.4s, v2.4s, v3.4s
 ldr q4, lut2
 tbl v2.16b, {v0.16b, v1.16b}, v4.16b
 ldr q4, lut3
 tbl v3.16b, {v0.16b, v1.16b}, v4.16b

 // Step 3:

 umin v0.4s, v2.4s, v3.4s
 umax v1.4s, v2.4s, v3.4s

 // Step 4:

 ldr q4, lut4
 tbl v1.16b, {v1.16b}, v4.16b

 umin v2.4s, v0.4s, v1.4s
 umax v3.4s, v0.4s, v1.4s

 ldr q4, lut5
 tbl v0.16b, {v2.16b, v3.16b}, v4.16b
 ldr q4, lut6
 tbl v1.16b, {v2.16b, v3.16b}, v4.16b

 uminp v2.4s, v0.4s, v1.4s
 umaxp v3.4s, v0.4s, v1.4s

 ldr q4, lut7
 tbl v0.16b, {v2.16b, v3.16b}, v4.16b
 ldr q4, lut8
 tbl v1.16b, {v2.16b, v3.16b}, v4.16b

 umin v2.4s, v0.4s, v1.4s
 umax v3.4s, v0.4s, v1.4s

 // Merge results:

 ldr q4, lut9
 tbl v0.16b, {v2.16b, v3.16b}, v4.16b
 ldr q4, lut10
 tbl v1.16b, {v2.16b, v3.16b}, v4.16b

 str q0, [sp]
 str q1, [sp, #16]
 bl printV

 leave // Return to caller.
 endp asmMain

698 Chapter 11

Here’s the build command and the sample output for Listing 11-1:

% ./build Listing11-1
% ./Listing11-1
Calling Listing11-1:
00000000 00000001 00000002 00000003 00000004 00000006 00000007 00000008
Listing11-1 terminated

As you can see, this code properly sorted the data.

	 11.12	 A Numeric-to-Hex-String Example Using SIMD Code
Listing 11-2 is a Neon example of something you should be familiar with:
Chapter 9’s dtoStr function that converts a dword into a hexadecimal string.
It’s a practical example of converting existing code to SIMD.

// Listing11-2.S

Usual source file information at the beginning of the file,
deleted for brevity

// dtoStr
//
// Converts the dword passed in X1 to 16
// hexadecimal digits (stored into buffer pointed
// at by X0; buffer must have at least 24 bytes
// available)

 .equ convert0toA, 'A' - ('0' + 10) // val + '0' to val + 'A'
 .equ invert0ToA, ~convert0toA & 0xFF // Invert the bits for BIC.

 proc dtoStr
 stp q0, q1, [sp, #-32]! // Preserve registers.

 rev x1, x1 // Reverse bytes (for output).
 mov v0.d[0], x1 // Set V0 to the LO nibbles
 rev x1, x1 // and V1 to the HO nibbles,
 ushr v1.8b, v0.8b, #4 // also, restore X1.
 bic v0.4h, #0xf0
 bic v0.4h, #0xf0, lsl #8

 zip1 v0.16b, v1.16b, v0.16b // Interleave the HO and LO nibbles.

 orr v0.8h, #0x30 // Convert binary to ASCII,
 orr v0.8h, #0x30, lsl #8 // note only 0-9 will be correct.

 movi v1.16b, #'9' // Determine which bytes
 cmgt v1.16b, v0.16b, v1.16b // should be A-F.

 bic v1.8h, #invert0ToA // Update bytes that should be A-F.
 bic v1.8h, #invert0ToA, lsl #8
 add v0.16b, v0.16b, v1.16b

Neon and SIMD Programming 699

 str q0, [x0] // Output the string.
 strb wzr, [x0, #16]

 ldp q0, q1, [sp], #32 // Restore registers.
 ret
 endp dtoStr

Here’s the build command and the sample output for Listing 11-2:

% ./build Listing11-2
% ./Listing11-2
Calling Listing11-2:
Value(fedcba9876543210) = string(FEDCBA9876543210)
Listing11-2 terminated

If you were to time this code, you’d find that it runs significantly faster
than the scalar code in Chapter 9.

	 11.13	 Use of SIMD Instructions in Real Programs
If you’ve read through this chapter but aren’t sure how to apply SIMD
instructions in real programs, don’t feel like you’re missing something.
SIMD might as well stand for “SIMD Instruction sets are Massively Difficult
to use.” Although ARM’s Neon instruction set is a bit more general-purpose
than, say, Intel’s SSE/AVX extensions, SIMD instructions were created to
accelerate the execution of very specific algorithms. I like to paraphrase a
line from this book’s technical reviewer, Tony Tribelli, with respect to SIMD
instructions’ applicability: “I look at a particular SIMD instruction and ask
myself, ‘What benchmark was this instruction created for?’ ” That is, it often
seems like SIMD instructions were added to the instruction set to make
one benchmark program run faster and make the ARM CPU look better,
though the instruction probably isn’t useful outside the context of that
benchmark.

In many respects, this statement is dead on: many SIMD instructions
were created to solve one particular problem, and their applicability beyond
that solution is merely coincidental. If you can’t figure out how to use a
given instruction, you probably haven’t yet discovered the problem it was
originally created to address.

If nothing else, the vector registers’ lanes are a good place to store tem-
porary values when you’re already using all the general-purpose registers.
You can use the mov instruction to copy data between a general-purpose
register and a lane in a vector register; this is much faster than spilling the
register to memory.

If you really want to use the Neon instruction set for high-performance
computing, see section 11.15, “For More Information,” on the next page,
or search “SIMD parallel algorithms” or “SIMD vector algorithms” on the
internet.

700 Chapter 11

	 11.14	 Moving On
This lengthy chapter covered many instructions. It began with a brief his-
tory of SIMD instruction sets; covered the vector registers on the ARM; dis-
cussed SIMD data types, lanes, and scalar operations; and then presented
the Neon instruction set. This chapter ended with a pair of short examples
that demonstrated bitonic sorting and numeric-to-hexadecimal-string con-
version using the vector registers. These constitute useful ways to use the
SIMD instructions on the ARM. Although SIMD instructions aren’t often
applicable in general programs, with a little thought you should be able to
use them to speed up your code in certain situations.

A couple of the remaining chapters will employ SIMD instructions to
improve performance. Chapter 12 uses Neon instructions to improve the
performance of various bit operations, while Chapter 14 uses Neon instruc-
tions to implement fast memory move operations. You can apply what you’ve
learned in this chapter to algorithms you’ve learned in previous chapters
that could benefit from using SIMD instructions, such as the numeric-to-
hex-string code. I’ll leave it to you to implement these changes.

	 11.15	 For More Information
•	 For more information on fixed-point arithmetic and other Neon

instructions and data types, consult the ARM Architecture Reference
Manual at https://developer​.arm​.com​/documentation​/ddi0487​/latest.

•	 For more on ARM scalable vector extensions (SVEs), see the documen
tation at https://developer​.arm​.com​/documentation​/102476​/0001​/SVE​
-architecture​-fundamentals.

•	 ARM offers a guide on implementing fixed-point arithmetic on 32-bit
CPUs at https://developer​.arm​.com​/documentation​/dai0033​/a.

•	 Those interested in vector sorting with ARM SVE can reference “A Fast
Vectorized Sorting Implementation Based on the ARM Scalable Vector
Extension (SVE)” by Bérenger Bramas for one implementation: https://
arxiv​.org​/pdf​/2105​.07782​.pdf.

•	 See the Vector Sorting Algorithms page of the CMSIS DSP Software
Library for more on vector sorting with ARM: https://arm​-software​.github​
.io​/CMSIS​_5​/DSP​/html​/group​_​_Sorting​.html.

•	 The ARM documentation also provides more detail on vector sorting
on Neon at https://developer​.arm​.com​/documentation​/den0018​/a​/NEON​
-Code​-Examples​-with​-Optimization​/Median​-filter​/Basic​-principles​-and​-bitonic​
-sorting.

•	 “Fast and Robust Vectorized In-Place Sorting of Primitive Types” by
Mark Blacher, Joachim Giesen, and Lars Kühne at https://drops​.dagstuhl​
.de​/opus​/volltexte​/2021​/13775​/pdf​/LIPIcs​-SEA​-2021​-3​.pdf covers quick sort-
ing with vector instructions (written for AVX2, but easily translatable to
Neon) using the bitonic sorting algorithm.

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/102476/0001/SVE-architecture-fundamentals
https://developer.arm.com/documentation/102476/0001/SVE-architecture-fundamentals
https://developer.arm.com/documentation/dai0033/a
https://arxiv.org/pdf/2105.07782.pdf
https://arxiv.org/pdf/2105.07782.pdf
https://arm-software.github.io/CMSIS_5/DSP/html/group__Sorting.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__Sorting.html
https://developer.arm.com/documentation/den0018/a/NEON-Code-Examples-with-Optimization/Median-filter/Basic-principles-and-bitonic-sorting
https://developer.arm.com/documentation/den0018/a/NEON-Code-Examples-with-Optimization/Median-filter/Basic-principles-and-bitonic-sorting
https://developer.arm.com/documentation/den0018/a/NEON-Code-Examples-with-Optimization/Median-filter/Basic-principles-and-bitonic-sorting
https://drops.dagstuhl.de/opus/volltexte/2021/13775/pdf/LIPIcs-SEA-2021-3.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/13775/pdf/LIPIcs-SEA-2021-3.pdf

Neon and SIMD Programming 701

•	 See the master’s thesis “A Study of the Use of SIMD Instructions for
Two Image Processing Algorithms” by Eric Welch at https://scholarworks​
.rit​.edu​/cgi​/viewcontent​.cgi​?article​=3686&context​=theses for a discussion of
SIMD image processing algorithms.

•	 Another master’s thesis on SIMD signal processing algorithms is
“Performance Optimization of Signal Processing Algorithms for SIMD
Architectures” by Sharan Yagneswar, which can be found at https://www​
.diva​-portal​.org​/smash​/get​/diva2:1138490​/FULLTEXT01​.pdf.

T ES T YOURSEL F

	 1.	 What is a lane?

	 2.	 What is the difference between a scalar instruction and a vector
instruction?

	 3.	 What instruction would you use to move the data from a 32-bit general-
purpose integer register into the LO 32 bits of a vector register?

	 4.	 What instruction would you use to move the data from a 64-bit general-
purpose integer register into the LO 64 bits of a vector register?

	 5.	 What instruction would you use to arbitrarily rearrange the bytes in a vec-
tor register?

	 6.	 What instruction would you use to take a byte, word, dword, or qword in
a general-purpose register and insert it somewhere in a vector register?

	 7.	 If you want to shift the two qwords in a vector register n bit positions to the
left, what instruction would you use?

	 8.	 What is the difference between a vertical addition and a horizontal
addition?

	 9.	 How can you set all the bits in the V0 register to 0?

10.	 How can you set all the bits in the V0 register to 1?

https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=3686&context=theses
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=3686&context=theses
https://www.diva-portal.org/smash/get/diva2:1138490/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1138490/FULLTEXT01.pdf

Manipulating bits in memory is perhaps the
feature for which assembly language is most

famous. Even the C programming language,
known for bit manipulation, doesn’t provide as

complete a set of bit-manipulation operations.
This chapter discusses how to manipulate strings of bits in memory and

registers by using ARM assembly language. It begins with a review of the
bit-manipulation instructions covered thus far, introduces a few new instruc-
tions, then reviews information on packing and unpacking bit strings in
memory, which is the basis for many bit-manipulation operations. Finally,
this chapter discusses several bit-centric algorithms and their implementa-
tion in assembly language.

	 12.1	 What Is Bit Data, Anyway?
Bit manipulation refers to working with bit data, data types consisting of
strings of bits that are noncontiguous or are not multiples of 8 bits long.
Generally, these bit objects will not represent numeric integers, although I
will not place this restriction on bit strings.

12
B I T M A N I P U L A T I O N

704 Chapter 12

A bit string is a contiguous sequence of 1 or more bits. It does not have
to start or end at any special point. For example, a bit string could start in
bit 7 of one byte in memory and continue through to bit 6 of the next byte
in memory. Likewise, a bit string could begin in bit 30 of W0, consume the
upper 2 bits of W0, and then continue from bit 0 through bit 17 of W1. In
memory, the bits must be physically contiguous (that is, bit numbers always
increase except when crossing a byte boundary, and at byte boundaries the
memory address increases by 1 byte). In registers, if a bit string crosses a
register boundary, the application defines the continuation register, but the
bit string always continues in bit 0 of that second register.

A bit run is a sequence of bits with all the same value. A run of 0s is a bit
string that contains all 0s, and a run of 1s is a bit string containing all 1s.
The first set bit in a bit string is the bit position of the first bit containing a
1 in a bit string—that is, the first 1 bit following a possible run of 0s. A simi-
lar definition exists for the first clear bit. The last set bit is the last bit position
in a bit string that contains 1s; the remainder of the string forms an unin-
terrupted run of 0s. A similar definition exists for the last clear bit.

A bit set is a collection of bits, not necessarily contiguous, within a larger
data structure. For example, bits 0 to 3, 7, 12, 24, and 31 in a double word
form a set of bits. Typically, we will deal with bit sets that are part of a con-
tainer object (the data structure that encapsulates the bit set) that is no more
than about 32 or 64 bits in size, though this limit is completely artificial. Bit
strings are special cases of bit sets.

A bit offset is the number of bits from a boundary position (usually a
byte boundary) to the specified bit. As noted in Chapter 2, these bits are
numbered starting from 0 at the boundary location.

A mask is a sequence of bits used to manipulate certain bits in another
value. For example, the bit string 0b0000_1111_0000, when used with
the and instruction, masks away (clears) all bits except bits 4 through 7.
Likewise, if you use the same value with the orr instruction, it can set bits 4
through 7 in the destination operand. The term mask derives from the use
of these bit strings with the and instruction, where the 1 and 0 bits behave
like masking tape when you’re painting something: they pass through cer-
tain bits unchanged while masking out (clearing) the other bits.

Armed with these definitions, you’re ready to start manipulating
some bits!

	 12.2	 Instructions That Manipulate Bits
Let’s begin by reviewing the instructions this book has covered so far that
manipulate bits, along with introducing a few additional bit-manipulation
instructions.

Bit manipulation generally consists of six activities: setting bits, clear-
ing bits, inverting bits, testing and comparing bits, extracting bits from a bit
string, and inserting bits into a bit string. The most basic bit-manipulation
instructions are the and/ands bic, orr, orn, eor, mvn (not), tst, and shift and
rotate instructions. This section discusses these instructions, concentrating
on how to use them to manipulate bits in memory or registers.

Bit Manipulation 705

12.2.1 � Isolating, Clearing, and Testing Bits
The and/ands instruction provides the ability to clear bits in a bit sequence.
This instruction is especially useful for isolating a bit string or a bit set that
is merged with other, unrelated data (or, at least, data that is not part of
the bit string or bit set). For example, if a bit string consumes bit positions
12 through 24 of the W0 register, you can isolate this bit string by using the
following instruction to set all other bits in W0 to 0:

and w0, w0, 0b1111111111111000000000000

Figure 12-1 shows the result of this instruction.

X X X XXXX S S SS S S SS S S S S S X X X X X X X X X X X X

0 0 0 0 0 0 0 1 11 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 S SS S S S S S S S S S S 0 0 0 0 0 0 0 0 0 0 0 0

Original value in W0

Bit mask

Final value in W0

Figure 12-1: Isolating a bit string by using the and instruction

Once you’ve cleared the unneeded bits in a set of bits, you can often
operate on the bit set in place. For example, to see whether the string of bits
in positions 12 through 24 of W0 contains 0x2F3, you could use the follow-
ing code:

mov w1, #0x2f3
lsl w1, w1, #12 // Make it 0x2f3000.
and w0, w0, #0b1111111111111000000000000
cmp w0, w1 // 0b0001011110011000000000000

You cannot use the immediate constant 0x2F3000 with the cmp instruc-
tion, so this code first loads that constant into W1 and compares W0 against
W1. You also can’t use movz to load 0x2F3 preshifted to the left 12 bits because
movz allows only shifts of 0, 16, 32, or 48 bits; likewise, 0x2F3 is not a logical
immediate pattern, so you can’t use a mov instruction with 0x2F3000.

N O T E 	 The instruction mov w1, #logical_pattern is equivalent to orr w1, wzr,
#logical_pattern.

To make the constants you use in conjunction with this value easier to
deal with, you can use the lsr instruction to align the bit string with bit 0
after you’ve masked it, like this:

and w0, w0, #0b1111111111111000000000000
lsr w0, w0, #12
cmp w0, #0x2F3

706 Chapter 12

The plain and instruction does not affect any condition code flags. Use
the ands variant if you would like to update the N and Z flags based on the
result of the AND operation, remembering that this instruction always clears
the carry and overflow flags.

If you want to capture the result of the ands operation in the N and Z
flags but don’t want to keep the logical result, you can use the tst instruc-
tion. This is equivalent to (and an alias of) ands supplying WZR or XZR as
the destination register (which throws away the result).

Don’t forget that you can also use the and instruction with the vector
registers (both vector and scalar operations); just keep in mind that the vec-
tor and instruction doesn’t affect the flags (there is no ands variant).

Because tst is an alias of ands, and there is no vector ands instruction,
the Neon instruction set provides this cmtst instruction

cmtst Vd.t, Vd.t, Vd.t

where t is 8B, 16B, 4H, 8H, 2S, 4S, or 2D (8B, 4H, and 2S types operate on
the LO 64 bits of Vn, while the others operate on all 128 bits).

This instruction logically ANDs each lane in Vd.t with Vd.t. If the result
is not 0, cmtst sets the destination lane to all 1s; if the result is 0, it sets the
destination lane to all 0s. You can use the result as a bitmask for further vec-
tor (bit) operations.

12.2.2  Setting and Inserting Bits
The orr instruction is especially useful for inserting a bit set into another bit
string (in general-purpose or vector registers), using the following steps:

	 1.	Clear all the bits surrounding your bit set in the source operand.

	 2.	Clear all the bits in the destination operand where you wish to insert
the bit set.

	 3.	OR the bit set and destination operand together.

For example, suppose you have a value in bits 0 to 11 of W0 that you
wish to insert into bits 12 to 23 of W1 without affecting any of the other bits
in W1. You would begin by stripping out bits 12 and higher from W0, then
strip out bits 12 to 23 in W1. Next, you would shift the bits in W0 so the bit
string occupied bits 12 to 23 of W0. Finally, you’d OR the value in W0 into
W1, as shown in the following code:

and w0, w0, #0xFFF // Strip all but bits 0 to 11 from W0.
bic w1, w1, 0xFFF000 // Clear bits 12 to 23 in W1.
lsl w0, w0, 12 // Move bits 0 through 11 to 12 through 23 in W0.
orr w1, w1, w0 // Merge the bits into W1.

Figure 12-2 shows the result of these four instructions.

Bit Manipulation 707

W1:

W0:

Step 1

X X X X X X X Y YY Y Y Y Y Y Y Y YY X X X X X X XX X X X XY

U U U U U U U U UU U U U U U U U UU A A A A A A AA A A A AU

W1:

W0:

Step 2

X X X X X X X X YY Y Y Y Y Y Y Y YY X X X X X X XX X X X XY

O O O O O O O O OO O O O O O O O OO A A A A A A AA A A A AO

W1:

W0:

Step 3

X X X X X X X X 00 0 0 0 0 0 0 0 00 X X X X X X XX X X X X0

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 A A A A A A AA A A A A0

W1:

W0:

Step 4

0 0 0 0 0 0 0 A AA A A A A A A A AA 0 0 0 0 0 0 00 0 0 0 0A

X X X X X X X 0 00 0 0 0 0 0 0 0 00 X X X X X X XX X X X X0

W1:

W0:

Final result

X X X X X X X A AA A A A A A A A AA X X X X X X XX X X X XA

0 0 0 0 0 0 0 A AA A A A A A A A AA 0 0 0 0 0 0 00 0 0 0 0A

Figure 12-2: Inserting bits 0 to 11 of W0 into bits 12 to 23 of W1

Step 1 in Figure 12-2 clears the U bits in W0. After clearing the U bits,
step 2 masks out the destination bit field (Y). Step 3 shifts the A bits (bits 0
to 11 in W0) 12 positions to the left to align them with the destination bit

708 Chapter 12

field. Step 4 ORs the value in W0 with the value in W1, leaving the final
result in W1.

In Figure 12-2, the desired bits (AAAAAAAAAAAA) form a bit string. However,
this algorithm still works fine even if you’re manipulating a noncontigu-
ous set of bits—you just have to create a bitmask with 1s in the appropriate
places.

When working with bitmasks, it is incredibly poor programming style to
use literal numeric constants, as in the past few examples. I’ve used “magic
numbers” thus far because the examples have been simple and using literal
constants is clearer in this context. However, you should always create sym-
bolic constants in Gas. Combining these with constant expressions allows
you to produce code that is much easier to read and maintain. The previous
example code is more properly written as the following:

StartPosn = 12;
BitMask = 0xFFF << StartPosn // Mask occupies bits 12 to 23.
 .
 .
 .
 lsl w0, w0, #StartPosn // Move into position.
 and w0, w0, #BitMask // Strip all but bits 12 to 23.
 and w1, w1, #~BitMask // Clear bits 12 to 23 in W1.
 orr w1, w1, w0 // Merge the bits into W1.

The use of the compile time NOT operator (~) for the bitmask inver-
sion saves having to create another constant in the program that must
be changed anytime you modify the BitMask constant. Maintaining two
separate symbols whose values are dependent on each other is not good
practice.

Of course, in addition to merging one bit set with another, the orr
instruction is also useful for forcing bits to 1 in a bit string. By setting vari-
ous bits in a source operand to 1, you can use the orr instruction to force
the corresponding bits in the destination operand to 1.

You can use the orn (OR NOT) instruction to insert a 1 bit in a destina-
tion everywhere there is a 0 bit in the source. Other than that, the instruc-
tion behaves identically to orr.

If the and w1, w1, #~BitMask cannot be assembled because Gas will not
accept the immediate constant, use bic w1, w1, #BitMask instead, as described
in the next section.

12.2.3  Clearing Bits
Whereas the orr instruction is useful for setting bits in a register, the bic
instruction clears them

bic Rd, Rl, Rr // Rd = Rl && ~Rr
bics Rd, Rl, Rr // Also affects condition codes

where Rd, Rl, and Rr are all Wn or Xn. The bics instruction sets the N and
Z condition codes based on the value left in Rd. Everywhere a 1 bit appears

Bit Manipulation 709

in Rr, the bic instruction will clear the corresponding bit in Rl (storing the
result into Rd).

The vector version of this instruction allows you to clear arbitrary bits
in a 64- or 128-bit vector register

bic Vd.t, Vl.t, Vr.t

where t = 8B for 64 bits and t = 16B for 128 bits. This instruction also has an
immediate version

bic Vd.t, #imm8
bic Vd.t, #imm8, lsl #shift

where t = 4H for 64 bits and t = 8H for 128 bits, or t = 2S for 64 bits and
t = 4S for 128 bits. The optional shift value can be 0 or 8 for half-word lanes,
or 0, 8, 16, or 24 for word lanes.

12.2.4  Inverting Bits
The eor instruction allows you to invert selected bits in a bit set (in general-
purpose or vector registers). If you want to invert all the bits in a destination
operand, the mvn (not) instruction is more appropriate; however, to invert
selected bits while not affecting others, eor is the way to go.

The eor instruction lets you manipulate known data in just about any
way imaginable. For example, if you know that a field contains 0b1010, you
can force that field to 0 by XORing it with 0b1010. Similarly, you can force it
to 0b1111 by XORing it with 0b0101.

Although this might seem like a waste because you can easily force
this 4-bit string to 0 or all 1s by using and or orr, the eor instruction has two
advantages. First, you are not limited to forcing the field to all 0s or all 1s;
you can set these bits to any of the 16 valid combinations via eor. Second, if
you need to manipulate other bits in the destination operand at the same
time, and or orr may not be able to do the job.

For example, suppose one field contains 0b1010, which you want to
force to 0, while another field in the same operand contains 0b1000, and
you wish to increment that field by 1 (that is, set it to 0b1001). You cannot
accomplish both operations with a single and or orr instruction, but you can
do so with a single eor instruction: just XOR the first field with 0b1010 and
the second field with 0b0001. However, note that this trick works only if you
know the current value of a bit set within the destination operand.

The eon (exclusive–OR NOT) works just like eor, except that it inverts
bits in the destination wherever a 0 bit appears in the right source operand.

12.2.5  Shift and Rotate
The shift and rotate instructions are another group you can use to manipu-
late and test bits. The standard and Neon instruction sets provide a wide

710 Chapter 12

range of shift and rotate instructions that allow you to rearrange bit data as
needed:

asr ​  ​Integer arithmetic shift right

lsl ​  ​Integer logical shift left

lsr ​  ​Integer logical shift right

ror ​  ​Integer rotate right

shl ​  ​Vector or scalar shift left or right

ushl, sshl, ushr, and sshr ​  ​Vector or scalar shift right

sli ​  ​Vector or scalar shift left and insert

sri ​  ​Vector or scalar shift right and insert

In addition to these generic shifts and rotates, specialized variants satu-
rate, round, narrow, and extend. Generally, those specialized instructions
aren’t as useful for bit manipulation.

The integer shift and rotate instructions (those that operate on general-
purpose registers) are quite useful for moving bits into their final position
when constructing bit strings from multiple sources. As you saw in section 2.12,
“Bit Fields and Packed Data,” on page 85, you can use the shift and rotate
instructions (along with the logical instructions) to pack and unpack data.

However, the biggest problem with the shift and rotate instructions is
that they don’t provide an option to set the condition codes. For example,
on many other CPUs (including the 32-bit ARM instruction set), the last
bit shifted out of a register during a shift or rotate instruction winds up in
the carry flag. The instructions typically set the Z and N flags, based on the
final result. This is convenient for many operations, particularly those that
use a loop to process each bit in the register; you could, for example, shift
the bits out of a register by using a shift-right instruction, capture the out-
put bit in the carry (using bcc or bcs to test the bit), and also be able to test
the zero flag to see whether any more (set) bits are left in the register. This
is not possible (with a single shift or rotate instruction) on the ARM.

This rule has one exception. Although the shifts do not affect the carry
flag, the adds instruction does. Using an instruction such as

adds w0, w0, w0

is equivalent to a shift left (by 1 bit) on W0, setting all the condition code
flags (including capturing the bit shifted out of bit 31 in the carry flag).
The adcs instruction behaves like a “rotate through carry by 1 bit” instruc-
tion (see section 8.1.11.1, “Shift Left,” on page 467). Because Chapters 2
and 8 covered the use of the shift instructions to insert and extract bit data
(packed fields), this chapter doesn’t consider that further.

The vector shift instructions warrant further discussion because they
include interesting variants (sli and sri) and don’t provide rotate instruc-
tions. Simulating a vector rotate left takes three instructions:

Bit Manipulation 711

// Simulate rol v1.4s, v1.4s, #4:

 ushr v2.4s, v1.4s, #28 // HO 4 bits to 0:3
 shl v1.4s, v1.4s, #4 // Bits 0:27 to 4:31
 orr v1.16b, v1.16b, v2.16b // Merge in LO bits.

The biggest problem with this code is that it takes an extra register to
hold a temporary result.

Here are the instructions to implement a vector rotate right:

// Simulate ror v1.4s, v1.4s, #4:

 shl v2.4s, v1.4s, #28 // Bits 0:3 to 28:31
 ushr v1.4s, v1.4s, #4 // Bits 4:31 to 0:27
 orr v1.16b, v1.16b, v2.16b // Merge bits.

See section 11.6.4, “Shift and Insert,” on page 652 for more information
about the sli and sri instructions.

Because the vector shift instructions operate only on lanes, you cannot
directly shift all 128 bits of a vector register with a single instruction. With
five instructions, however, you can pull it off:

// Simulate shl for 128 bits:

 ushr v2.2d, v1.2d, #60 // Save bits 60:63.
 mov v2.b[8], v2.b[0] // Move into HO dword.
 mov v2.b[0], wzr // No mask at original
 Shl v1.4s, v1.4s, #4 // Shift bits left.
 orr v1.16b, v1.16b, v2.16b // Merge bits 60:63.

I’ll leave it up to you to do the shift-right operation, which is just a
straightforward modification of the shl code.

12.2.6  Conditional Instructions
The csel, csinc/cinc, csinv/cinv, cset, and csetm instructions are also useful for
manipulating bits. In particular, cset and csetm can help you initialize a regis-
ter with 0, 1, or all 1 bits based on the condition codes. All these instructions
are useful for dealing with operations that have set the condition codes (see
section 12.3, “Flag Modification by Arithmetic and Logical Instructions,” on
page 715). These conditional instructions have no vector equivalents.

12.2.7  Counting Bits
The cls and clz instructions allow you to count leading 1 and 0 bits (lead-
ing means from the HO bit position down to the LO bit position). The cnt
instruction (population count) counts all the set bits in the byte lanes in a
(vector) register. The syntax for these instructions is

cls Rd, Rs
clz Rd, Rs

712 Chapter 12

cls Vd.t1, Vs.t1
clz Vd.t1, Vs.t1
cnt Vd.t2, Vs.t2

where Rd and Rs are Wn or Xn; t1 is 8B, 16B, 4H, 8H, 2S, or 4S; and t2 is
8B or 16B. For the vector instructions, if the operand is 8B, 4H, or 2S, the
instruction operates only on the LO 64 bits of the vector register.

The cls instruction (general-purpose register form) counts the num-
ber of leading sign bits in Rs and stores this count into Rd. This instruction
counts the number of bits (below the HO bit) that match the HO bit. Note
that the sign (HO) bit is not included in the count.

The clz instruction works the same way but counts the number of lead-
ing 0 bits including the sign bit. To count the actual number of leading
1 bits (including the HO sign bit), invert the source register value and use
the clz instruction to count 0 bits.

The vector versions of the cls and clz instructions count the number of
leading 1s or 0s in each lane of the source register, in the same manner as
the scalar versions, and stores this count into the corresponding lane of the
destination register.

The cnt instruction counts the number of set bits in each byte (lane) of
the source register and stores the bit count into the corresponding lane
of the destination register. To find the total population (bit) count for the
vector register (64 or 128 bits), use the addv instruction to sum up all the
bytes within the destination register. To compute the population count for
hwords, words, or dwords, use an addp instruction to add the pairs of bytes
(to produce hword counts). You can use a second addp instruction (again,
on pairs of bytes, producing an array of byte results) to count the pairs of
hwords, producing word counts, and so on.

12.2.8  Bit Reversal
The rbit instruction reverses the bits in its source operand and stores the
reversed result into the destination operand. The syntax is as follows:

rbit Wd, Ws
rbit Xd, Xs
rbit Vd.t, Vs.t // t = 8B or 16B

With 32-bit register operands, this instruction swaps the bits in posi-
tions 0 and 31, 1 and 30, 2 and 29, . . . , and 15 and 16. With 64-bit oper-
ands, rbit swaps the bits in positions 0 and 63, 1 and 62, 2 and 61, . . . , and
31 and 32. With vector operands, it reverses the bits in each byte lane of the
source vector register, storing the results into the corresponding byte lane
in the destination vector register.

The vector variant of this instruction reverses only the bits in byte lanes.
To reverse the bits in a 16-, 32-, or 64-bit object, also execute an 8-bit lane
rev16, rev32, or rev64 instruction (before or) after the rbit. For example, the
following two instructions reverse all the bits in a 64-bit vector register:

Bit Manipulation 713

rbit v1.16b, v1.16b // Do a 2D bit reversal; first bits,
rev64 v1.16b, v1.16b // then bytes.

You would use similar code (with rev32) to reverse the bits in two double-
words in a vector register.

12.2.9  Bit Insertion and Selection
The bif (bit insert if false), bit (bit insert if true), and bsl (bit select)
instructions allow you to manipulate individual bits in a vector register.
These instructions have the following syntax:

bif Vd.t, Vs.t, Vm.t // t = 8B (64 bits) or 16B (128 bits)
bit Vd.t, Vs.t, Vm.t // Vd = dest, Vs = source, Vm = mask
bsl Vd.t, Vs1.t, Vs0.t

The bif instruction first considers the mask register; everywhere a 0 bit
appears in Vm, the instruction copies the corresponding bit in Vs (source) to
the same bit position in Vd (destination). Everywhere a 1 appears in Vm, the
bif instruction leaves the corresponding bit in Vd unchanged.

The bit instruction does the same thing as bif, except it copies bits on
the opposite condition (where there is a 1 in Vm).

The bsl instruction uses the (original) bits in Vd to select the corre-
sponding bit in Vs1 or Vs0. Everywhere a 1 appears in Vd, bsl will copy the
corresponding bit from Vs1 to Vd; everywhere a 0 appears in Vd, bsl will copy
the corresponding bit from Vs0 to Vd.

12.2.10  Bit Extraction with ubfx
The ubfx instruction allows you to extract any number of bits from a posi-
tion in a source register, moving those bits to bit 0 in the destination regis-
ter. The syntax is

ubfx Rd, Rs, #lsb, #len

where Rd and Rs are both either Wn or Xn, lsb is the starting bit position for
the extraction, and len is the size of the bit string to extract. The sum of lsb
and len must not exceed the register size.

The ubfx instruction extracts len bits from Rs, starting at bit position lsb.
It stores this bit string into Rd (at bit 0) and zeros out the HO bits of Rd. For
example

ubfx x0, x1, #8, #16

copies bits 8 through 23 from X1 to bits 0 through 15 in X0 (and zeros out
bits 16 through 63 in X0).

714 Chapter 12

12.2.11  Bit Movement with ubfiz
The ubfiz (unsigned bit field insert in zero) copies bits from the LO bits of a
source register to any other position in the destination register, as the con-
verse of the ubfx instruction. The syntax for this instruction is

ubfiz Rd, Rs, #posn, #len

where Rd and Rs are both either Wn or Xn, posn is the destination loca-
tion where bit 0 from Rs will be moved, and len is the size of the bit string.
For example

ubfiz w1, w0, #12, #8

copies bits 0 through 7 from W0 to bits 12 through 19 in W1.

12.2.12  Bit Movement with ubfm
The ubfm instruction (unsigned bit field move) copies the LO bits from a
source register to an arbitrary position in the destination register (and puts
0s everywhere else in the destination register). The syntax is

ubfm Rd, Rs, #immr, #imms

where Rd and Rs are both either Wn or Xn, immr and imms are values in the
range 0 to 31 for 32-bit operations or 0 to 63 for 64-bit operations. This
instruction does one of two operations based on the values of immr and imms:

•	 If immr ≤ imms, take bits immr through imms and rotate right by immr.

•	 If immr > imms, take imms + 1 LO bits and rotate right by immr.

The ubfm instruction is the basis for many instructions (aliases) in the
ARM instruction set: lsl Rd, Rs, #shift is equivalent to

ubfm Rd, Rs, #(Rsize - shift) % Rsize, #Rsize - 1 - shift

where Rsize is the register size (32 or 64).

Meanwhile, lsr Rd, Rs, #shift is equivalent to

ubfm Rd, Rs, #shift, #Rsize - 1 // Rsize is register size.

and ubfiz Rd, Rs, #lsb, #width is equivalent to

ubfm Rd, Rs, #(Rsize-lsb) % Rsize, #width - 1

where Rsize is the register size (32 or 64). Finally, ubfx Rd, Rs, #lsb, #width is
equivalent to

ubfm Rd, Rs, #lsb, #lsb + width - 1

Bit Manipulation 715

where lsb is the LO bit of the bit string to move and width is the number of
bits to move.

12.2.13  Bit Extraction with extr
The extr instruction allows you to extract a bit string across a pair of regis-
ters, using the syntax

extr Rd, Rl, Rr, #posn

where Rd, Rl, and Rr are all Wn or Xn, and posn is a constant in the range 0 to
the register size – 1 (31 or 63).

This instruction begins by concatenating the Rl and Rr registers to form
a 64- or 128-element bit string. It then extracts 32 or 64 bits (depending on
the register sizes) from this string, starting at bit position posn.

N O T E 	 The ror (immediate) instruction is an alias of extr obtained by setting Rl and Rr to
the same register.

12.2.14  Bit Testing with tbz and tbnz
The tbz (test bit zero) and tbnz (test bit not zero) instructions allow you to
branch to a location based on whether a particular bit is set in a register,
using the following syntax:

tbz Rs, #imm, target // Rs = Wn or Xn, imm = 0 to 31 (Wn) or
tbnz Rs, #imm, target // 0 to 63 (Xn). target is a stmt label.

These instructions test the bit specified by imm in Rs to see if it is a 0 or a 1.
The tbz instruction transfers control to the specified target label if it is 0
(falling through if it is 1), while tbnz transfers control to the specified target
label if it is 1 (falling through if it is 0).

You can use these instructions to turn any register into a 32- or 64-bit
“pseudo condition code register,” allowing you to branch based on whether
a particular bit in that register is set or clear. Though no instructions will
automatically set or clear these “condition codes,” you can use any of the
bit-manipulation instructions in this chapter to manipulate those pseudo
condition codes.

Don’t forget that you can also use the cbz (compare and branch if zero)
and cbnz (compare and branch if not zero) instructions to compare a reg-
ister against 0 and transfer control if it is (cbz), or is not (cbnz), equal to 0.
This is useful after instructions such as addv, orr, or other instructions that
don’t set the Z flag, to see if they’ve produced a zero (or nonzero) result.

	 12.3	 Flag Modification by Arithmetic and
		 Logical Instructions

In the previous sections, the instructions manipulated bits in general-
purpose and vector registers. Although the PSR is not a general-purpose

716 Chapter 12

register, remember that the ands, bics, and tst instructions set the N and Z
flags based on the computed result. If the HO (sign) bit of the result is 1,
these instructions set the N flag; if the result is 0, these instructions set the
Z flag. Otherwise, they clear the flags.

You can also use the adds, adcs, subs, sbcs, negs, ngcs, cmp, ccmp, and ccmn
instructions to set the flags. In particular, keep in mind that

adds Rd, Rn, Rn // R = X or W

shifts the value in Rn to the left one bit and moves the (original) HO bit into
the carry flag. This instruction sets the overflow flag if the two original HO
bits contain 0b01 or 0b10. It sets the negative flag if the resulting HO bit is 1.
Finally, of course, it sets the zero flag if the result of the addition is 0.

Also note that the instruction

adcs Rn, Rn, Rn // R = X or W

is equivalent to a “rotate left Rn 1 bit through the carry flag” instruction. You
can use this to set the carry flag based on the HO bit of Rn and capture the
previous carry flag value into the LO bit of Rn.

Keep in mind that only the arithmetic and logical instructions that
operate on general-purpose registers (and have the s suffix) affect the flags.
In particular, the vector instructions do not affect the flags.

While it’s not an arithmetic or logical instruction, the mrs (move register
to status) instruction, with the destination field NZCV, sets all the flags to
the values found in bits 28–31 of the general-purpose register. This provides
a quick way to create a multiway branch from 4 bits. Consider the following
code (taken from section 11.10.4, “Vector Comparison Results,” on page 691):

 lea r3, mask // 0x0008000400020001
 ldr q3, [r3]
 cmeq v0.4h, v1.4h, v2.4h
 and v0.8b, v0.8b, v3.8b // Keep LO bit of each lane.
 addv h0, v0.4h // Merge the bits into H0.
 umov w0, v0.h[0]
 lsl w0, w0, #28
 mrs x0, nzcv

Now you can test N, Z, C, and V flags to see if lanes 3, 2, 1, or 0 (respec-
tively) in V1 were equal to the corresponding lanes in V2.

This section has provided a generic introduction to setting the condi-
tion code flags to capture a bit value. Because instructions with an s suffix
affect the flags differently, it is important to discuss how instructions affect
the individual condition code flags; the following sections handle that task.

12.3.1  The Zero Flag
The zero flag (Z) setting is one of the most important results produced by
the ands instruction. Indeed, programs reference this flag so often after

Bit Manipulation 717

the ands instruction that ARM added a separate tst instruction whose main
purpose is to logically AND two results and set the flags without otherwise
affecting either instruction operand.

N O T E 	 Technically, tst is not a new instruction, but rather an alias for ands when the desti-
nation register is WZR or XZR.

The zero flag can be used to check three things after the execution
of an ands or tst instruction: whether a particular bit in an operand is set,
whether at least one of several bits in a bit set is 1, and whether an operand
is 0. The first use case is actually a special instance of the second, in which
the bit set contains only a single bit. The following paragraphs explore each
of these uses.

To test whether a particular bit is set in a given operand, ands or tst an
operand with a constant value containing a single set bit you wish to test.
This clears all the other bits in the operand, leaving a 0 in the bit position
under test if the operand contained a 0 in that bit position and a 1 if it con-
tained a 1. Because all other bits in the result are 0, the entire result will be
0 if that particular bit is 0; the entire result will be nonzero if that bit posi-
tion contains a 1. The ARM CPU reflects this status in the zero flag (Z = 1
indicates a 0 bit; Z = 0 indicates a 1 bit). The following instruction sequence
demonstrates how to test if bit 4 is set in W0:

 tst w0, 0b10000 // Check bit #4 to see if it is 0/1.
 bne bitIsSet

 Do this if the bit is clear.
 .
 .
 .
bitIsSet: // Branch here if the bit is set.

You can also use the ands and tst instructions to see whether any one of
several bits is set. Simply supply a constant that has a 1 in all the positions
you want to test (and 0s everywhere else). ANDing an operand with such a
constant will produce a nonzero value if one or more of the bits in the oper-
and under test contain a 1. The following example tests whether the value
in W0 contains a 1 in bit positions 1 and 2:

 tst w0, 0b0110
 beq noBitsSet

 Do whatever needs to be done if one of the bits is set.

noBitsSet:

You cannot use a single ands or tst instruction to see whether all the
corresponding bits in the bit set are equal to 1. To accomplish this, you
must first mask out the bits that are not in the set and then compare the

718 Chapter 12

result against the mask itself. If the result is equal to the mask, all the bits
in the bit set contain 1s. You must use the ands instruction for this operation
because the tst instruction does not modify the result. The following exam-
ple checks whether all the bits in a bit set (bitMask) are equal to 1:

 ldr w1, =bitMask // Assume not valid immediate const.
 ands w0, w0, w1
 cmp w0, w1
 bne allBitsArentSet

// All the bit positions in W0 corresponding to the set
// bits in bitMask are equal to 1 if we get here.

 Do whatever needs to be done if the bits match.

allBitsArentSet:

Of course, once you stick the cmp instruction in there, you don’t really
have to check whether all the bits in the bit set contain 1s. You can check for
any combination of values by specifying the appropriate value as the oper-
and to cmp.

The tst and ands instructions will set the zero flag in the preceding code
sequences only if all the bits in W0 (or other destination operand) have 0s
in the positions where 1s appear in the constant operand. This suggests
another way to check for all 1s in the bit set: invert the value in W0 prior to
using the ands or tst instruction. In this case, if the zero flag is set, you know
that the (original) bit set contained all 1s. For example, the following code
checks whether any bits specified by 1s in a bitmask are nonzero:

 ldr w1, =bitMask // Assume not valid immediate const.
 mvn w0, w0
 tst w0, w1
 bne NotAllOnes

// At this point, W0 contained all 1s in the bit positions
// occupied by 1s in the bitMask constant.

 Do whatever needs to be done at this point.

NotAllOnes:

The previous paragraphs all suggest that the bitMask (the source oper-
and) is a constant, but you can use a variable or other register too. Simply
load that variable or register with the appropriate bitmask before you exe-
cute the tst, ands, or cmp instructions in the preceding examples.

12.3.2  The Negative Flag
The tst and ands instructions will also set the negative flag (N, also known
as the sign flag) if the HO bit of the result is set. This allows you to test two
individual bits in a register, assuming one of those bits is the HO bit. When

Bit Manipulation 719

using these instructions, the mask value must contain a 1 in the HO bit as
well as in the bit position of the other bit you want to test. After executing
the tst or ands instruction, you must check the N flag before testing the Z
flag (as the Z flag will be clear if the HO bit was set).

If the HO bit is set and you also want to see whether the other bit is set,
you must test that other bit again (or use the cmp instruction, as in the previ-
ous section).

12.3.3  The Carry and Overflow Flags
The logical instructions (ands and tst) that affect the flags always clear the
carry and overflow flags. However, the arithmetic instructions (adds, adcs,
subs, sbcs, negs, ngcs, cmp, ccmp, and ccmn) modify these flags. In particular,
when the two source operands are the same, adds and adcs shift the HO bit
of the (original) source into the carry flag.

Negating the most negative value (for example, the word value
0x80000000) will set the overflow flag:

orr w1, wzr, #0x80000000 // mov x1, #0x80000000
negs w1, w1 // Sets V (and N) flags

Refer to the ARM AARCH64 documentation to determine how the
various instructions affect the carry and overflow flags. Note that many
instructions will not affect these two flags (especially the overflow flag) even
though they affect the N and Z flags.

	 12.4	 Packing and Unpacking Bit Strings
Inserting a bit string into an operand and extracting a bit string from an
operand are common operations. Chapter 2 provided simple examples of
packing and unpacking such data; this section formally describes how to
do this, now that you’ve learned more instructions and have more tools to
work with.

12.4.1  Inserting One Bit String into Another
For the purposes of this chapter, I will assume that we’re dealing with bit
strings that fit within a byte, half-word, word, or double-word operand.
Large bit strings that cross object boundaries require additional processing;
I discuss bit strings that cross double-word boundaries later in this section.

When packing and unpacking a bit string, you must consider its start-
ing bit position and length. The starting bit position is the bit number of the
LO bit of the string in the operand. The length is the number of bits in
the string.

To insert (pack) data into a destination operand, start with a bit string
of the appropriate length that is right-justified (starts in bit position 0) and
zero-extended to 8, 16, 32, or 64 bits. Next, insert this data at the appropri-
ate starting position in another operand that is 8, 16, 32, or 64 bits wide.

720 Chapter 12

The destination bit positions are not guaranteed to contain any particu-
lar value.

The first two steps (which can occur in any order) are to clear out the
corresponding bits in the destination operand and shift a copy of the bit
string so that the LO bit begins at the appropriate bit position. The third step
is to OR the shifted result with the destination operand. This inserts the bit
string into the destination operand. Figure 12-3 diagrams this process.

Destination:

Source:

Step 1: Insert YYYY into the positions occupied by DDDD in the
 destination operand. Begin by shifting the source
 operand to the left five bits.

X X X X X X X D D D D X X X X X

0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y

Destination:

Source:

Step 2: Clear out the destination bits using the and or bic instruction.

X X X X X X X D D D D X X X X X

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

Destination:

Source:

Step 3: OR the two values together.

X X X X X X X 0 0 0 0 X X X X X

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

Destination:

Source:

Final result appears in the destination operand.

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

X X X X X X X Y Y Y Y X X X X X

Figure 12-3: Inserting a bit string into a destination operand

Bit Manipulation 721

The following three instructions insert a bit string of known length
into a destination operand, as shown in Figure 12-3. These instructions
assume that the source bit string is in W1 (with 0s in positions outside the
bit string) and the destination operand is in W0:

lsl w1, w1, #5
bic w0, w0, #0b111100000
orr w0, w0, w1

For the special case when the destination bit position and bit string
length are constants (known at assembly time), the ARM CPU provides an
instruction to handle bit insertion for you: bfi (bit field insert). It has the
following syntax

bfi Rd, Rs, #posn, #len

where Rd and Rs are both either Wn or Xn. The sum of posn and len must not
exceed the register size (32 for Wn and 64 for Xn).

The bfi instruction takes the LO len bits of Rs and inserts them into the
destination register (Rd) starting at bit position posn. Consider the instruction

bfi w0, w1, #12, #16

assuming W0 contained 0x33333333 (the destination value) and W1 con-
tained 0x1200 (the insertion value). This would leave 0x31200333 in W0.

If you don’t know the length and the starting position while writing the
program (that is, you have to calculate them at runtime), you must use sev-
eral instructions to do a bit-string insertion. Suppose you have two values—
a starting bit position for the field you’re inserting and a nonzero length
value—and that the source operand is in W1 and the destination operand
is in W0. The mergeBits procedure in Listing 12-1 demonstrates how to insert
a bit string from W1 into W0.

// Listing12-1.S
//
// Demonstrate inserting bit strings into a register.
//
// Note that this program must be assembled and linked
// with the "LARGEADDRESSAWARE:NO" option.

#include "aoaa​.inc"

 .text
 .pool

ttlStr: wastr "Listing 12-1"

722 Chapter 12

// Sample input data for the main program:

Value2Merge:
 .dword 0x12, 0x1e, 0x5555
 .dword 0x1200, 0x120

MergeInto:
 .dword 0xffffffff, 0, 0x12345678
 .dword 0x33333333, 0xf0f0f0f

LenInBits: .dword 5, 9, 16, 16, 12
szLenInBits = (.-LenInBits)/8

StartPosn: .dword 7, 4, 4, 12, 18

// Format strings used to print results:

fmtstr1: wastr "merge(%x, "
fmtstr2: wastr "%x, "
fmtstr3: wastr "%d) = "
fmtstr4: wastr "%x\n"
fmtstr: wastr "Here I am!\n"

// getTitle
//
// Returns a pointer to the program's name
// in X0:

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

// MergeBits(Val2Merge, MergeWith, Start, Length)
//
// Length (LenInBits[i]) value is passed in X3.
// Start (StartPosn[i]) is passed in X2.
// Val2Merge (Value2Merge[i]) and MergeWith (MergeInto[i])
// are passed in X1 and X0.
//
// mergeBits result is returned in X0.

 proc mergeBits

 locals mb
 qword mb.x1x2
 qword mb.x3x4
 byte mb.stk, 64
 endl mb

 enter mb.size

 stp x1, x2, [fp, #mb.x1x2]
 stp x3, x4, [fp, #mb.x3x4]

Bit Manipulation 723

 // Generate mask bits
 // 1 in bits 0 to n - 1:

 1 mov x4, #1
 lsl x4, x4, x3 // Compute 2**n.
 sub x4, x4, #1 // 2**n - 1

 // Position mask bits to target location:

 2 lsl x4, x4, x2

 // Mask out target bits:

 3 bic x0, x0, x4

 // Merge the bits:

 4 lsl x1, x1, x2
 orr x0, x0, x1

 // Restore registers and return:

 ldp x3, x4, [fp, #mb.x3x4]
 ldp x1, x2, [fp, #mb.x1x2]
 leave
 endp mergeBits

// Here is the asmMain function:

 5 proc asmMain, public

 locals am
 qword am.x20x21
 qword am.x22x23
 dword am.x24
 byte am.stk, 256
 endl am

 enter am.size
 stp x20, x21, [fp, #am.x20x21]
 stp x22, x23, [fp, #am.x22x23]
 str x24, [fp, #am.x24]

 // The following loop calls mergeBits as
 // follows
 //
 // mergeBits
 // (
 // Value2Merg[i],
 // MergeInto[i],
 // StartPosn[i],
 // LenInBits[i]);
 //
 // where "i" runs from 4 down to 0.

724 Chapter 12

 //
 // Index of the last element in the arrays:

 mov x20, #szLenInBits - 1

testLoop:

 // Fetch the Value2Merge element and write
 // its value to the display while it is
 // handy:

 lea x1, Value2Merge
 ldr x1, [x1, x20, lsl #3]
 mstr x1, [sp]
 lea x0, fmtstr1
 mov x22, x1 // Save for later.
 bl printf

 // Fetch the MergeInto element and write
 // its value to the display:

 lea x1, MergeInto
 ldr x1, [x1, x20, lsl #3]
 mstr x1, [sp]
 mov x21, x1 // Save for later.
 lea x0, fmtstr2
 bl printf

 // Fetch the StartPosn element and write
 // its value to the display:

 lea x1, StartPosn
 ldr x1, [x1, x20, lsl #3]
 mstr x1, [sp]
 mov x23, x1 // Save for later.
 lea x0, fmtstr2
 bl printf

 // Fetch the LenInBits element and write
 // its value to the display:

 lea x1, LenInBits
 ldr x1, [x1, x20, lsl #3]
 mstr x1, [sp]
 mov x24, x1 // Save for later.
 lea x0, fmtstr3
 bl printf

 // Call MergeBits:
 // (
 // Value2Merge,
 // MergeInto,
 // StartPosn,
 // LenInBits
 //);

Bit Manipulation 725

 mov x0, x21
 mov x1, x22
 mov x2, x23
 mov x3, x24
 bl mergeBits

 // Display the function result (returned in
 // X0. For this program, the results are
 // always 32 bits, so it prints only the LO
 // 32 bits of X0):

 mov x1, x0
 mstr x1, [sp]
 lea x0, fmtstr4
 bl printf

 // Repeat for each element of the array:

 subs x20, x20, #1
 bpl testLoop

allDone:
 ldp x20, x21, [fp, #am.x20x21]
 ldp x22, x23, [fp, #am.x22x23]
 ldr x24, [fp, #am.x24]
 leave
 endp asmMain

The mergeBits function is where the merging occurs. This code begins
by generating a mask containing all 1 bits from location 0 to n – 1, where n
is the length of the bit string to insert 1. The code uses a simple mathemat-
ical trick to generate these bits: if you compute 2n and then subtract 1 from
this value, the resulting value contains 1 bits in positions 0 to n – 1. After
generating this mask, the code positions the mask bits to the position where
mergeBits will insert the bit string 2. It then masks out (sets to 0) those bit
positions in the destination location 3.

To complete the merge, mergeBits moves the bits to merge to the proper
position and ORs those bits into the destination location (which contains
0s at that point) 4. The mergeBits function assumes that the source bits
(the bits to merge) form a bit string that is exactly n bits long (n being the
value passed in X3) and is located in bit positions 0 to n – 1. Note that if
you need to handle bit-insertion values that might have 1 bits in positions
n or greater, you should logically AND the value to merge (passed in X1)
with the bitmask after shifting it 4. The version of mergeBits in Listing 12-1
assumes that the val2Merge argument (X1) doesn’t contain any extra 1 bits.

The asmMain function 5 is a loop that steps through the ValueToMerge,
MergeInto, LenInBits, and StartPosn arrays. This loop fetches these four values,
prints them, and then calls the mergeBits function to merge the ValueToMerge
entry into MergeInto. The LenInBits element contains the size (in bits) to
merge, and the value from the StartPosn array is the bit position where the
merger should take place.

726 Chapter 12

Here’s the build command and sample output for Listing 12-1:

% ./build Listing12-1
% ./Listing12-1
CallingListing 12-1:
merge(120, f0f0f0f, 12, 12) = 4830f0f
merge(1200, 33333333, c, 16) = 31200333
merge(5555, 12345678, 4, 16) = 12355558
merge(1e, 0, 4, 9) = 1e0
merge(12, ffffffff, 7, 5) = fffff97f
Listing12-1 terminated

The mergeBits function is very general, allowing you to specify the bit
string length and the destination position as variable parameter values. If
the length and destination position values are constants within your code
(a common special case), you can use a more efficient way to insert bits
from one register into another: the bfm (bit field move) instruction. This
instruction has the syntax

bfm Rd, Rs, #rotate, #bitposn

where Rd and Rs are both either Wn or Xn, rotate is the number of rotate-
right positions, and bitposn is the leftmost bit in the source (starting at bit 0)
to move.

This instruction rotates (a copy of) the LO bitposn bits in Rs the speci-
fied number of bit positions, then replaces the corresponding bits in Rd with
these rotated bits.

N O T E 	 The bfi instruction is an alias of bfm with a slight modification to the meaning of the
two immediate operands (see the ARM documentation for more details).

The examples in this section assume that the bit string appears com-
pletely within a double-word (or smaller) object. This will always be the case
if the bit string is less than or equal to 64 bits in length. However, if the
length of the bit string plus its starting position (modulo 8) within an object
is greater than 64, the bit string will cross a double-word boundary within
the object.

Inserting such bit strings requires up to three operations: one to extract
the start of the bit string (up to the first double-word boundary), one to copy
whole double words (assuming the bit string is so long it consumes several
double words), and one to copy leftover bits in the last double word at the end
of the bit string. I’ll leave the implementation of this operation as an exercise
for you.

12.4.2  Extracting a Bit String
The previous section described how to insert one bit string into another.
This section covers the converse operation: extracting a bit string from a
larger string.

Bit Manipulation 727

The bfxil (bit field extract and insert at low end) instruction extracts
any number of bits (at any position) from a source register and copies those
bits to the LO bit positions of a destination register. Its syntax is

bfxil Rd, Rs, #posn, #len

where Rd and Rs are either Wn or Xn . The sum of posn and len must not
exceed the register size (32 for Wn and 64 for Xn), and posn must be less
than the register size.

This instruction extracts len bits, starting at bit number posn, from Rs
and inserts them into the LO len bits of Rd. It does not affect the other bits
(at bit positions len and higher) in Rd. Generally, you’ll want to set Rd to 0
before using this instruction, as shown in the following example:

mov w0, wzr // Extract bits 5 through 12 from W1
bfxil w0, w1, #5, #8 // and store them in W0.

Like the bfi instruction, bfxil supports only immediate constants for
the posn and len operands. If you need to specify variables for either (or
both) of these arguments, you must write an extractBits function (similar to
mergeBits in the previous section). The following instructions do the actual
bit extraction in extractBits:

// Generate mask bits
// 1 in bits 0 to n - 1:

mov x4, #1
lsl x4, x4, x3 // Compute 2**n.
sub x4, x4, #1 // 2**n - 1

// Position mask bits to target location:

lsl x4, x4, x2

// Extract the target bits:

and x1, x1, x4

// Right-justify the bits to bit 0:

lsr x0, x1, x2

This leaves the extracted bits in the LO bit positions of X0.

12.4.3  Clearing a Bit Field
The Gas assembler provides an alias of the bfm instruction that you can use
to clear bits in a register: bfc (bit field clear). Its syntax is

bfc Rd, #posn, #len

728 Chapter 12

where Rd is Wn or Xn and posn and len have the same meanings and restric-
tions as the bfi instruction. If you supply a len field of 1, you can clear indi-
vidual bits (specified by a bit number) with bfc.

The bfc instruction zeros out len bits starting at bit position posn in Rd. It
is equivalent to the following instruction

bfi Rd, Rzr, #posn, #len // Rzr = WZR or XZR

where Rd is Wd or Xd, as appropriate.
The bfc instruction is available only on ARMv8.2-a and later CPUs,

not on Raspberry Pi (3 and 4) and other lower-end systems. (Note that the
Raspberry Pi 5 does support this instruction.)

12.4.4  Using bfm
The bfxil and bfi (as well as bfc) instructions are actually aliases for the
instruction bfm:

bfm Rd, Rs, #immr, #imms

Like the ubfm instruction, they do two operations based on the values of immr
and imms:

•	 If immr ≤ imms, take bits immr through imms from Rs and rotate right by
immr, merging with the existing bits in Rd.

•	 If immr > imms, take imms + 1 LO bits from Rs and rotate right by immr,
merging with the existing bits in Rd.

For example

ldr w0, =0xffffffff
mov w1, #0x2
bfm w0, w1, #4, #2

produces 0xAFFFFFFF in W0.
The bfi instruction is equivalent to the following:

bfm Rd, Rs, #(-posn % 64), #(len-1)

The bfxil instruction is equivalent to this:

bfm Rd, Rs, #posn, #(len+posn-1)

Generally, you would use these aliases rather than the bfm mnemonic.

	 12.5	 Common Bit Operations
You’ll encounter many bit-manipulation design patterns in assembly lan-
guage programs. This section covers some of the more common algorithms
and patterns.

Bit Manipulation 729

12.5.1  Coalescing Bit Sets and Distributing Bit Strings
Inserting and extracting bit sets is only a little different from inserting and
extracting bit strings if the “shape” of the bit set you’re inserting (or result-
ing bit set you’re extracting) is the same as the shape of the bit set in the
main object. The shape of a bit set is the distribution of the bits in the set,
ignoring the starting bit position of the set. A bit set that includes bits 0, 4,
5, 6, and 7 has the same shape as a bit set that includes bits 12, 16, 17, 18,
and 19 because the distribution of the bits is the same.

The code to insert or extract this bit set is nearly identical to that of the
previous sections; the only difference is the mask value you use. For exam-
ple, to insert this bit set starting at bit 0 in W0 into the corresponding bit set
starting at position 12 in W1, you could use the following code:

ldr w2, =0b11110001000000000000 // Bit set mask in posn.
lsl w0, w0, #12 // Move src bits into posn.
and w0, w0, w2 // Mask out source bits.
bic w1, w1, w2 // Clear out destination bits.
orr w1, w1, w0 // Merge bit set into W1.

However, suppose you have five bits in bit positions 0 through 4 in W0
and want to merge them into bits 12, 16, 17, 18, and 19 in W1. Somehow you
have to distribute the bits in W0 prior to logically ORing the values into W1;
that is, you have to move the bits from positions 0 to 4 into positions 12, 16,
17, 18, and 19.

The converse operation, coalescing bits, extracts the bits from various
bit positions and packs them (coalesces them) into the LO bit positions of
a destination location. The following code demonstrates how to distribute
the bits in a bit string according to the values in a bitmask:

// W0- Contains the source value to insert the bits into
// W1- Contains the bits to insert, justified against bit 0
// W2- Counter (size of register, 32 in this case)
// W3- Bitmap; 1s specify bits to copy, 0 specifies bits
// to preserve

 mov w2, #32 // Number of bits to rotate
 b.al DistLoop

CopyToW0:
 extr w0, w1, w0, #1
 lsr w1, w1, #1
 cbz w2, Done
DistLoop:
 1 sub w2, w2, #1
 tst w3, #1
 lsr w3, w3, #1
 bne CopyToW0

 2 ror w0, w0, #1
 cbnz w2, DistLoop
Done:

730 Chapter 12

The main entry point to this loop is DistLoop. It begins by decrement-
ing the loop counter held in W2 1. This code will check the value in W2 to
see if the loop is done a little later. Next, the tst instruction checks whether
bit 0 of the bitmap contains a 1. If it does, the code needs to copy a bit from
the LO bit position of W1 into W0; otherwise, it keeps the current bit value.

The bne instruction transfers control to CopyToW0 if it needs to copy a bit
from W1; otherwise, it falls through to 2 if it’s going to keep the current bit
in W0. The ror instruction rotates the existing W0 LO bit into the HO bit
position (after 32 iterations of this loop, the bit winds up back in its origi-
nal position). After the ror, the code checks whether the loop has executed
32 times (the cbnz instruction). If so, the code exits; otherwise, it repeats.

If the LO bit of W3 was a 1, control transfers to the CopyToW0 label, which
is responsible for shifting the (current) LO bit of W1 into W0. The code at
CopyToW0 uses the extr instruction to grab bit 0 from W1 and place it in bit 31
of W0 (shifting bits 1 to 31 in W0 down 1 bit). The lsr w1, w1, #1 instruction
removes the used bit from W1 and places the next bit to merge into W1 in
bit position 0. After a quick check to see whether the loop is complete, the
code falls down into DistLoop and repeats.

N O T E 	 This code would be a bit simpler if the ARM had an instruction that would rotate
a register right by one bit through the carry flag. However, since no such instruction
exists, this code has to simulate it by using extr.

The general algorithm for coalescing bits is a tad more efficient than
general distribution. Here’s the code that will extract bits from W1 via the
bitmask in W3 and leave the result in W0:

// W0- Destination register
// W1- Source register
// W3- Bitmap with 1s representing bits to copy to W0

 mov w0, wzr // Clear destination register.
 b.al ShiftLoop

ShiftInW0:
 extr w0, w0, w1, #31
 1 lsl w1, w1, #1

ShiftLoop:
 2 tst w3, #0x80000000
 lsl w3, w3, #1
 bne ShiftInW0 // W3 HO bit was set.

 3 lsl w1, w1, #1
 cbnz w3, ShiftLoop

As with the distribution code, the coalescing code loops through the
bits, copying one bit at a time from W1 to W0 wherever there are 1 bits in
the bitmap 2. The extr instruction creates a 32-bit string from bit 31 of W1
and bits 0 to 30 of W0, then puts the result into W0. On each loop iteration,

Bit Manipulation 731

the code shifts the bits in W1 one position to the left 1 3 so that the next
bit to (possibly) move into W0 is in the HO bit position. Unlike the distribu-
tion code, this code will terminate after it processes all the 1 bits present in
the bitmap.

Another way to coalesce bits is via table lookup. By grabbing a byte of
data at a time (so your tables don’t get too large), you can use that byte’s
value as an index into a lookup table that coalesces all the bits down to bit 0.
Finally, you can merge the bits at the low end of each byte together. This
may produce a more efficient coalescing algorithm in certain cases. The
implementation is left to you.

12.5.2  Creating Packed Arrays of Bit Strings
Though far less efficient, it is possible to create arrays of elements whose size
is not a multiple of 8 bits. The drawback is that calculating the “address” of
an array element and manipulating it involves a lot of extra work. This sec-
tion presents a few examples of packing and unpacking array elements that
are an arbitrary number of bits long.

Why would you want arrays of bit objects? The answer is simple: space.
If an object consumes only 3 bits, you can get 2.67 times as many elements
into the same space if you pack the data rather than allocating a whole byte
for each object. For very large arrays, this can result in substantial savings.
Of course, the cost of saving space is speed: you must execute extra instruc-
tions to pack and unpack the data, slowing access to it.

The calculation for locating the bit offset of an array element in a large
block of bits is almost identical to the standard array access:

Element_Address_in_bits =
 Base_address_in_bits + index × element_size_in_bits

Once you calculate the element’s address in bits, you must convert it
to a byte address (because you must use byte addresses when accessing
memory) and extract the specified element. Because the base address of
an array almost always starts on a byte boundary, you can use the following
equations to simplify this task:

Byte_of_1st_bit =
 Base_Address + (index × element_size_in_bits) / 8

Offset_to_1st_bit =
 (index × element_size_in_bits) % 8

For example, suppose you have an array of 200 3-bit objects declared as
follows:

AO3Bobjects:
 .space (200 * 3)/8 + 2 // "+2" handles truncation.

732 Chapter 12

The constant expression in the preceding dimension reserves space for
enough bytes to hold 600 bits (200 elements, each 3 bits long). As the com-
ment notes, the expression adds 2 extra bytes at the end to ensure you don’t
lose any odd bits and to allow you to access 1 byte beyond the end of the
array when storing data to the array. (Losing odd bits wouldn’t occur in this
example because 600 is evenly divisible by 8, but in general you can’t count
on this; adding 2 extra bytes usually won’t hurt.)

Now suppose you want to access the ith 3-bit element of this array. You
can extract these bits with the following code:

// Extract the ith group of 3 bits in AO3Bobjects
// and leave this value in W0:

 mov w2, wzr // Put i / 8 remainder here.
 ldr w0, [fp, #i] // Get the index into the array.

 mov w4, #3
 mul w0, w0, w4 // W0 = W0 * 3 (3 bits/element)
 ubfiz w2, w0, #0, #3 // W2 = LO 3 bits of W0
 lsr w0, w0, #3 // W0 / 8 -> W0 and W0 % 8 -> W2

// Okay, fetch the word containing the 3 bits you want to
// extract. You have to fetch a word because the last bit or two
// could wind up crossing the byte boundary (that is, bit
// offset 6 and 7 in the byte).

 lea x1, AO3Bobjects

 ldrh w0, [x1, x0] // Fetch 16 bits.
 lsr w0, w0, w2 // Move bits down to bit 0.
 And w0, w0, #0b111 // Remove the other bits.

Inserting an element into the array is a little more difficult. In addition
to computing the base address and bit offset of the array element, you must
also create a mask to clear out the bits in the destination where you’re going
to insert the new data. The following code inserts the LO 3 bits of W0 into
the ith element of the AO3Bobjects array:

Masks:
 .hword ~ 0b0111, ~ 0b00111000
 .hword ~ 0b000111000000, ~ 0b1110
 .hword ~ 0b01110000, ~ 0b001110000000
 .hword ~ 0b00011100, ~ 0b11100000
 .
 .
 .

// Get the index into the array (assume i is a local variable):

 ldr w1, [fp, #i]

// Use LO 3 bits as index into Masks table:

Bit Manipulation 733

 and w2, w1, #0b111
 lea x4, Masks
 ldrh w4, [x4, w2, uxtw #1] // Get bitmask.

// Convert index into the array into a bit index.
// To do this, multiply the index by 3:

 mov w3, #3
 mul w1, w1, w3

// Divide by 8 to get the byte index into W1
// and the bit index (the remainder) into W2:

 and w2, w1, #0b111
 lsr w1, w1, #3

// Grab the bits and clear those you're inserting:

 lea x5, AO3Bobjects
 ldrh w6, [x5, w1, uxtw #0]
 and w3, w4, w6

// Put your 3 bits in their proper location:

 lsl w0, w0, w2

// Merge bits into destination:

 orr w3, w3, w0

// Store back into memory:

 strh w3, [x5, w1, uxtw #0]

Assuming AO3Bobjects contained all 0s, i contained 5, and W0 (the value
to insert) was 7 upon executing this code, the first couple of bytes would
contain 0x38000 after the execution of this code sequence. Because each ele-
ment is 3 bits, the array looks like

000 000 000 000 000 111 000 000 000 000 00 ...

where bit 0 is the leftmost bit. Flipping the 32 bits around to make them
more readable, and grouping them in blocks of 4 bits to make it easy to con-
vert to hexadecimal, we get

0000 0000 0000 0011 1000 0000 0000 0000

which is 0x38000.
This code uses a lookup table (Masks) to generate the masks needed to

clear out the appropriate position in the array. Each element of this array
contains all 1s, except for three 0s in the position you need to clear for a

734 Chapter 12

given bit offset. Note the use of the NOT operator (~) to invert the con-
stants in the table.

12.5.3  Searching for Bits
A common bit operation is to locate the end of a run of bits. A special case
of this operation is to locate the first (or last) set or clear bit in a 16-, 32-, or
64-bit value. This section explores ways to handle this special case.

First set bit means the first bit in a value, scanning from bit 0 toward the
high-order bit, which contains a 1. A similar definition exists for the first
clear bit. The last set bit is the first bit in a value, scanning from the high-
order bit toward bit 0, which contains a 1. Likewise, a similar definition
exists for the last clear bit.

One obvious way to scan for the first or last bit is to use a shift instruc-
tion in a loop and count the number of iterations before you shift out a
1 (or 0). The number of iterations specifies the position. Here’s some sam-
ple code that checks for the first set bit (from bit 0) in W0 and returns that
bit position in W1:

 mov w1, #31 // Count off the bit positions in W1.
TstLp: adds w0, w0, w0 // Check whether the current bit
 // position contains a 1.
 bcs Done // Exit loop if it does.
 subs w1, w1, #1 // Decrement your bit position counter by 1.
 bpl TstLp // Exit after 32 iterations.
Done:

Note that this code returns –1 in W1 if W0 has no set bits.
Searching for the first (or last) set bit is such a common operation that

Arm added an instruction specifically to accelerate this process: clz (count
leading 0 bits). In particular, the clz instruction counts the number of lead-
ing 0s, which tells you the position of the most significant set bit. Consider
the following code:

clz w0, w0
sub w0, w0, #31
neg w0, w0

This code computes the bit position of the 1 in the highest position in
W0 (leaving the result in W0). This produces –1 if W0 contains 0 (no lead-
ing set bits).

Don’t forget that cls doesn’t count leading set bits but leading sign bits.
To count the number of leading (HO) bits containing 1s, invert the number
and use clz to count the leading 0 bits. To count the number of trailing 0
or 1 bits (that is, a bit run of 0s or 1s starting at the LO bit position), use the
rbit instruction to reverse the bits and then count the HO bits you’re inter-
ested in.

Bit Manipulation 735

12.5.4  Merging Bit Strings
Another common bit string operation is to produce a single bit string by
merging, or interleaving, bits from two sources. For example, the following
code sequence creates a 32-bit string by merging alternate bits from two
16-bit strings:

 mov w2, #16
 lsl w0, w0, #16 // Put LO 16 bits in the HO
 lsl w1, w1, #16 // bit positions.
MergeLp: extr w3, w3, w0, #31 // Shift a bit from W0 into W3.
 Extr w3, w3, w1, #31 // Shift a bit from W1 into W3.
 lsl w0, w0, #1 // Move on to the next bit in
 lsl w1, w1, #1 // W0 and W1.
 subs w2, w2, #1 // Repeat 16 times.
 bne MergeLp

This particular example merges two 16-bit values together, alternat-
ing their bits in the result value. For a faster implementation of this code,
unroll the loop to eliminate one-third of the instructions.

With a few slight modifications, you can merge four 8-bit values together,
or merge other bit sets from the source strings. For example, the following
code copies bits 0 to 5 from W0, bits 0 to 4 from W1, bits 6 to 11 from W0,
bits 5 to 15 from W1, and finally bits 12 to 15 from W0:

bfi w3, w0, #0, #6 // W0[0:5] to W3[0:5]
bfi w3, w1, #6, #5 // W1[0:4] to W3[6:10]
lsr w0, w0, #6
bfi w3, w0, #11, #6 // W0[6:11] to W3[11:16]
lsr w1, w1, #5
bfi w3, w1, #17, #11 // W1[5:15] to W3[17:27]
lsr w0, w0, #6
bfi w3, w0, #28, #4 // W0[12:15] to W3[28:31]

This code produces the result in W3, extracting the bits from W0 and W1.

12.5.5  Scattering Bits from a Bit String
You can also extract and distribute bits in a bit string among multiple desti-
nations, known as scattering bits. The following code takes the 32-bit value in
W0 and distributes alternate bits among the LO 16 bits in the W1 and W3
registers:

 ldr w0, =0x55555555
 mov w3, wzr
 mov w1, wzr
 mov w2, #16 // Count the loop iterations.
ExtractLp: adds w0, w0, w0 // Extract odd bits to W3.
 adc w3, w3, w3
 adds w0, w0, w0 // Extract even bits to W1.
 adc w1, w1, w1

736 Chapter 12

 subs w2, w2, #1 // Repeat 16 times.
 bne ExtractLp

This code produces 0xffff in W1 and 0x0000 in W0.

12.5.6  Searching for a Bit Pattern
Another bit-related operation you may need is the ability to search for
a particular bit pattern in a string of bits. For example, you might want
to locate the bit index of the first occurrence of 0b1011 starting at a par-
ticular position in a bit string. This section explores simple algorithms to
accomplish this task.

To search for a particular bit pattern, you must know four details:

•	 The pattern

•	 The length of that pattern

•	 The bit string to search through, known as the source

•	 The length of the bit string that you’re searching

The basic idea behind the search is to create a mask based on the length
of the pattern and to mask a copy of the source with this value. You can then
directly compare the pattern with the masked source for equality. If they
are equal, you’re finished; if not, increment a bit position counter, shift the
source one position to the right, and try again. You repeat the operation
[length(source) – length(pattern)] times. The algorithm fails if it does not detect
the bit pattern after that number of attempts, because it has exhausted all
the bits in the source operand that could match the pattern’s length.

Listing 12-2 searches for a 4-bit pattern.

// Listing12-2.S
//
// Demonstration of bit string searching

 #include "aoaa​.inc"

 .text
 .pool
ttlStr: wastr "Listing 12-2"
noMatchStr:
 wastr "Did not find bit string\n"

matchStr:
 wastr "Found bit string at posn %d\n"

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

 proc asmMain, public

Bit Manipulation 737

 locals am
 word pattern
 word source
 word mask
 byte am.stk, 64
 endl am

 enter am.size

 // Initialize the local variables this code
 // will use:

 mov w0, #0b1011110101101100
 str w0, [fp, #source]
 mov w0, #0b1011
 str w0, [fp, #pattern]
 mov w0, #0b1111
 str w0, [fp, #mask]

 // Here's the code that will search for the
 // pattern in the source bit string:

 mov w2, #28 // 28 attempts because 32 - 4 = 28
 // (len(src) - len(pat))
 ldr w3, [fp, #mask] // Mask for the comparison.
 ldr w0, [fp, #pattern] // Pattern to search for
 and w0, w0, w3 // Mask unnecessary bits in W0.
 ldr w1, [fp, #source] // Get the source value.
ScanLp: mov w4, w1 // Copy the LO 4 bits of W1.
 and w4, w4, w3 // Mask unwanted bits.
 cmp w0, w4 // See if you match the pattern.
 beq Matched
 sub w2, w2, #1 // Repeat specified number of times.
 lsr w1, w1, #1
 cbnz w1, ScanLp

// Do whatever needs to be done if you failed to
// match the bit string:

 lea x0, noMatchStr
 bl printf
 b.al Done

// If you get to this point, you matched the bit string.
// You can compute the position in the original source as 28 - W2.

Matched:
 mov x1, #28
 sub x1, x1, x2
 mstr x1, [sp]
 lea x0, matchStr
 bl printf
Done:
 leave // Return to caller.
 endp asmMain

738 Chapter 12

Here’s the build command and sample output for Listing 12-2:

% ./build Listing12-2
% ./Listing12-2
Calling Listing12-2:
Found bit string at posn 2
Listing12-2 terminated

As you can see, this program properly located the bit pattern in the
source.

BIT-S T R ING SCA NNING A ND S T R ING M ATCHING

Bit-string scanning is a special case of string matching. String matching is a
well-studied problem in computer science, and many of the algorithms you can
use for it are applicable to bit-string matching as well.

These algorithms are beyond the scope of this chapter, but as a preview
of how this works, you’d execute a function passing the pattern and the cur-
rent source as parameters and use the result as an index into a lookup table to
determine the number of bits you can skip. These algorithms let you skip several
bits, rather than shifting only once for each iteration of the scanning loop, as
the previous algorithm does.

	 12.6	 Moving On
Assembly language is well known for its powerful bit-manipulation capabili-
ties, difficult to replicate in an HLL. This chapter described those capabili-
ties for the 64-bit ARM CPU. It began with definitions useful for describing
bit operations, then introduced a bevy of instructions that manipulate bit
data. This chapter also discussed using the condition code flags in the PSR
as bit data, along with the instructions to manipulate those flags, specifi-
cally the negative (N), zero (Z), carry (C), and overflow (V) flags.

After discussing the basic set of bit-manipulation instructions, this
chapter covered applications of those instructions, including packing and
unpacking bit strings, inserting one bit string into another, extracting a bit
string from a source string, coalescing and distributing bits, working with
packed arrays of bits, searching for bit strings, merging bit strings, and scat-
tering bits from a bit string.

For the most part, this chapter concludes the discussion of new ARM
assembly language instructions. The remaining chapters discuss the appli-
cation of these instructions and various software-engineering topics. The
next chapter, for example, focuses on macros you can use to simplify your
assembly language programs.

Bit Manipulation 739

	 12.7	 For More Information
•	 The ultimate book on bit twiddling is Hacker’s Delight, 2nd edition, by

Henry S. Warren Jr. (Addison-Wesley Professional, 2012). While this
book uses the C programming language for examples, almost all the
concepts it discusses apply to assembly language programs as well.

T ES T YOURSEL F

	 1.	 What general instruction(s) would you use to clear bits in a register?

	 2.	 What instruction could use you to clear a bit, specified by a bitmask con-
taining 1s where you want 0s in the destination register?

	 3.	 What general instruction would you use to set bits in a register?

	 4.	 What general instruction would you use to invert (selected) bits in a
register?

	 5.	 What general instruction would you use to test a bit (or group of bits) for 0
or 1 in a register?

	 6.	 What single instruction could you use to extract a run of bits from a
register?

	 7.	 What single instruction could you use to position and insert a run of bits in
a register?

	 8.	 What instruction allows you to search for the most-significant set bit in a
register?

	 9.	 How would you search for the last clear bit in a register (that is, the lowest-
order bit containing a 0)?

10.	 What instruction can you use to count the number of bits in each byte of a
vector register?

This chapter discusses the Gas compile-time
language (CTL), including its macro expan-

sion facilities. A macro, the CTL equivalent of
a procedure, is an identifier that the assembler

will expand into additional text. This allows you to
abbreviate large amounts of code with a single identi-
fier. Gas’s macro facility is a computer language inside
a computer language; that is, you can write short pro-
grams inside a Gas source file whose purpose is to gen-
erate other Gas source code to be assembled by Gas.

The Gas CTL consists of macros, conditionals (if statements), loops,
and other statements. This chapter covers many Gas CTL features and
how you can use them to reduce the effort needed to write assembly lan-
guage code.

13
M A C R O S A N D T H E G A S

C O M P I L E - T I M E L A N G U A G E

742 Chapter 13

	 13.1	 The Gas Compile-Time Language Interpreter
Gas is actually two languages rolled into a single program. The runtime
language is the standard ARM/Gas assembly language you’ve been reading
about in the previous chapters. This is called the runtime language because
the programs you write execute when you run the executable file. Gas con-
tains an interpreter for a second language, the Gas CTL.

Gas source files contain instructions for both the Gas CTL and the
runtime program, and Gas executes the CTL program during assembly
(compilation). Once Gas completes assembly, the CTL program terminates.
Figure 13-1 shows the relationship between compile-time and runtime with
respect to the Gas assembler and your assembly language source code.

Compile time

Runtime

Actions produced by the executing object code
produced by the assembler

Executable file

Gas assembler and
compile-time interpreter

Assembled
source
code

CTL output
assembled
by Gas

CTL
expansion/
execution

Actions produced by
the interpretation of the
compile-time language
during compilation

Figure 13-1: Compile-time versus runtime execution

The CTL application is not a part of the runtime executable that Gas
emits, although the CTL application can write part of the runtime program
for you. In fact, this is the major purpose of the CTL. Using automatic code
generation, the CTL gives you the ability to emit repetitive code easily and
elegantly. By learning how to use the Gas CTL and applying it properly, you
can potentially develop assembly language applications as rapidly as HLL
applications (even faster because Gas’s CTL lets you create very HLL, or
VHLL, constructs).

	 13.2	 The C/C++ Preprocessor
The Gas CTL consists of two separate language processors: the Gas built-in
macro processor and the C/C++ preprocessor (CPP). As noted in Chapter 1,

Macros and the Gas Compile-Time Language 743

standard Gas assembly language source files use the .s suffix. However, if
you specify .S as the suffix, Gas will run the source file through the CPP
prior to processing the file (see Figure 13-2). The CPP emits a temporary
source file (with the .s suffix), which the Gas assembler then assembles into
object code.

source.S C preprocessor

source.s tmp.s

Gas assembler

Figure 13-2: C preprocessor processing
by Gas

It is extremely important to remember that the CPP runs independently
of Gas and prior to it assembling the assembly language source file. In par-
ticular, Gas’s macro processing takes place after the CPP runs. Therefore,
you cannot use Gas statements, symbols, or Gas macros to affect the opera-
tion of the CPP. Later in this chapter, I’ll point out the areas where you
must take care when mixing the macro facilities of the two languages. This
section describes the various features of the CPP.

13.2.1  The #warning and #error Directives
When writing macros by using CPP, you’ll sometimes encounter a problem
(such as a bad parameter argument) that you’ll want to report as an error
or a diagnostic message during the assembly process. To do so, you can use
the #warning and #error diagnostic statements with the following syntax:

#error arbitrary text
#warning arbitrary text

These statements must appear on a source line by themselves; nothing
other than whitespace (spaces and tabs) should appear on the line before
the # character. (Technically, whitespace is allowed to appear between the #
and the error or the warning tokens, but good programming style dictates
keeping them together.)

During assembly (or, more precisely, while CPP is processing the source
file), the system should display a diagnostic message and print the line
containing the #error or #warning statement, including all the arbitrary text
up to the end of the line. By convention, most programmers surround the
error or warning message (the arbitrary text) in quotes, but this isn’t abso-
lutely necessary.

744 Chapter 13

If CPP encounters any #error statements, it will terminate the assem-
bly after CPP is done scanning the source file, without running the Gas
assembler to assemble that file. In this case, you will need to modify the
source file as necessary to eliminate the error message before Gas even gets
a chance to process the file (and, for example, report on any errors in the
assembly language source code).

If the CPP encounters any #warning statements, it will print the appropri-
ate message during assembly but will allow assembly to proceed after the
CPP is done preprocessing the source file. Hence, you can use the #warning
statement to display arbitrary text during the assembly and preprocess-
ing process.

13.2.2  Compile-Time Constant Definition with CPP
You can use the CPP #define statement to create constant definitions in your
source file:

#define identifier arbitrary_text

When CPP processes the source file, it will replace any following occur-
rences of identifier by arbitrary_text. Programmers commonly use this
statement, for example, to define manifest (named) constants in their
source file, as in the following example:

#define pi 3.14159

In an assembly language program, you would normally use the .equ,
.set, or = directives to define named constants, as in the following example:

maxCnt = 10

However, various bugs in Gas might not allow you to use these constants
the way you like. Consider the following:

pi = 3.14159
 .
 .
 .
 .double pi

If you try to assemble this, Gas will complain that 3.14159 is not a valid
constant and that pi is not a valid floating-point constant. (The Clang
assembler under macOS will accept pi = 3.14159 but will still complain that
pi is not a valid floating-point constant.) However, if you replace this with

#define pi 3.14159
 .
 .
 .
 .double pi

Macros and the Gas Compile-Time Language 745

then Gas will assemble the code just fine because CPP will preprocess the
source file and replace each occurrence of pi with 3.14159. Therefore, when
Gas actually sees the source file, it will find

 .double 3.14159

which is perfectly acceptable. This is a good example of why it helps to use
CPP in your Gas source files: it provides you with capabilities, such as real
constant definitions, that you wouldn’t normally have with Gas alone.

Because CPP does a textual replacement of the defined identifier wher-
ever it finds that identifier (outside of a string or character constant), you’re
not limited to using #define for numeric constants. You can supply character
constants, string constants, or even arbitrary text (including nothing) after
the #define:

#define hw "Hello, World!"

You could even do something like the following if you really prefer the
xor mnemonic over the eor mnemonic:

#define xor eor
 .
 .
 .
 xor x1, x0, x2

Although redefining instruction mnemonics like this is generally con-
sidered poor programming practice, ARM does it all over the place with its
“instruction aliases.” If it’s good enough for the ARM, there is no reason
you can’t do it if it makes your code more readable to you.

Another important use of the #define statement is to create symbols
that the CPP can recognize. The CPP is blissfully unaware of all identifiers
appearing in your source file, except those you create with the #define state-
ment. As you’ll see starting in the next section, you’ll sometimes want to use
various expressions in a CPP CTL statement involving named constants.
Those named constants must be defined with the #define statement, not one
of Gas’s equate directives.

13.2.3  CPP Compile-Time Expressions
Certain CPP statements allow simple arithmetic expressions involving
constants. The arithmetic operators are the usual C arithmetic operators,
including these:

+ - * / % == != < <= > >= ! ~ && || & | << >>

Note that CPP supports only (signed) 64-bit integer and character
expressions and will report an error if you attempt to use floating-point or

746 Chapter 13

string constants. You can use a named constant in a CPP CTL expression as
long as you’ve previously declared that name with a #define statement.

You can use the following CPP built-in function in CPP CTL expressions:

defined(identifier)

This function returns 1 if the identifier was previously defined in a
#define statement; it returns 0 if no such definition exists (note that you can
also use the GCC -D identifier=value command line option to define symbols).
The defined() function recognizes only symbols defined in a #define statement,
a good example of the “important use” mentioned in the preceding section.
If you pass a normal Gas assembly language identifier here, the function will
return 0 even if the definition occurred earlier in the source file.

13.2.4  Conditional Assembly
The CPP provides several statements that allow you to make decisions when
processing the source file. Here are those directives:

#if expression
 .
 .
 .
#elif expression // This is optional and may appear multiple times.
 .
 .
 .
#else // This is optional.
 .
 .
 .
#endif

#ifdef identifier
 .
 .
 .
#else // This is optional.
 .
 .
 .
#endif

#ifndef identifier
 .
 .
 .
#else // This is optional.
 .
 .
 .
#endif

Macros and the Gas Compile-Time Language 747

During preprocessing, CPP will evaluate expression. If it yields a nonzero
value (true), the #if or #elif (else if) statements will process the text up to
the next #elif, #else, or #endif statement.

If expression evaluates to false, CPP will skip over the following text (up
to the next #elif, #else, or #endif statement) and will not write that text to
the temporary output file. Therefore, Gas will not assemble that text during
the assembly phase.

Remember that this conditional processing happens during prepro-
cessing (assembly), not at runtime. This is not a generic if/then/elseif/
else/endif statement you’d find in an HLL. The conditional compilation
statements control whether the instructions will actually appear in the final
object code, activity that should be familiar to anyone who has used condi-
tional compilation in an HLL such as C/C++.

The #ifdef statement is equivalent to the following:

#if defined(identifier)
 .
 .
 .
#endif

The CPP checks the identifier to see whether it was previously defined
with a #define statement (or the -D command line option). If so, CPP pro-
cesses the text after the #if (or #ifdef) and up to the #endif (or up to an
#elif or #else statement, if present).

The #ifndef (if not defined) statement is equivalent to this:

#if !defined(identifier)
 .
 .
 .
#endif

The #ifdef and #ifndef statements are common in code that is written
for different execution environments. Consider the following example:

#ifdef isMacOS

 Code written for macOS

#else

 Assume the code was written for Linux or Pi OS.

#endif

Prior to this point, if the following statement appeared, then the for-
mer code would compile the section for macOS:

#define isMacOS

748 Chapter 13

Had this definition not appeared, the code would compile the Linux or
Pi OS code.

Another common use of conditional assembly is to introduce debug-
ging and testing code into your programs. As a typical debugging tech-
nique, many Gas programmers insert print statements at strategic points,
enabling them to trace through their code and display important values
at various checkpoints. A big problem with this technique, however, is that
they must remove the debugging code prior to completing the project.
Moreover, programmers often forget to remove some debugging state-
ments, creating defects in the final program. Finally, after removing a
debugging statement, these programmers often discover that they need
that same statement to debug a different problem at a later time. Hence,
they must constantly insert and remove the same statements over and
over again.

Conditional assembly provides a solution to this problem. By defining
a symbol (say, debug) to control debugging output in your program, you can
activate or deactivate all debugging output by modifying a single line of
source code, as the following code fragment demonstrates:

// Uncomment to activate debug output or -D debug on the command line.

// #define debug
 .
 .
 .
 #ifdef debug

 #warning *** DEBUG build

 mov x1, [fp, #i]
 mstr x1, [sp]
 lea x0, debugMsg
 bl printf

 #else

 #warning *** RELEASE build

 #endif

As long as you surround all debugging output statements with an #if
statement like the one in the preceding code, you don’t have to worry
about debugging output accidentally appearing in your final application.
Commenting out the debug symbol definition will automatically disable
all such output (or, better yet, just use the -D debug command line option to
turn on output when you want it). Likewise, you can leave the debugging
statements from your programs in your code even after they’ve served their
immediate purpose, since conditional assembly makes them easy to deacti-
vate. Later, if you decide you need to view this same debugging information
during assembly, you can reactivate it by defining the debug symbol.

Macros and the Gas Compile-Time Language 749

13.2.5  CPP Macros
Previously, this chapter used the #define statement to define compile-time
constants, a special case of a macro definition. This section describes CPP
macro definitions and expansion in more depth, including a discussion of
macro parameters, variable argument lists, and other CPP macro definition
features. By using this information, you will be able to create and use CPP
macros in your Gas assembly language source files.

13.2.5.1  Functional Macros

A macro is a mechanism that CPP uses to replace an identifier with arbi-
trary text. When defining constants with #define, you’re telling CPP to
replace every following occurrence of that identifier with the text, which
happens to be the constant.

However, CPP provides a second type of macro, the functional macro,
which behaves more like a (compile-time) function supporting an arbi-
trary number of arguments. The following example demonstrates a single-
argument macro:

#define lcl(arg1) [fp, #arg1]
 .
 .
 .
 ldr w0, lcl(varName)

This last statement expands to

 ldr w0, [fp, #varName]

because the macro lcl expands to [fp, #varName]. The CPP calls these
functional macros because their invocation resembles a function call in the
C programming language.

13.2.5.2  CPP Macro Arguments

Functional macros support an arbitrary number of arguments. You can
specify zero arguments thusly

#define zeroArgs() text

where zeroArgs() will expand into the specified text.
This is a difference between the following two macro declarations that

manifests when you invoke them:

#define noArgs text1
#define zeroArgs() text2

You invoke the first macro with noArgs and the second macro with zeroArgs().
If the macro declaration has an empty set of parentheses, the macro

750 Chapter 13

invocation must also include the empty parentheses. You can use this dec-
laration scheme to differentiate between constant declarations and macro
declarations.

You can also specify two or more arguments in a #define statement:

#define twoArgs(arg1, arg2) text to expand

The following is an example of a twoArgs() invocation:

mov w0, twoArgs(1, 2)

When invoking twoArgs(), you must supply exactly two parameters, or Gas
will report an error. In general, the number of arguments you supply in
a macro invocation must exactly match the parameter list in the #define
declaration.

When CPP is processing a macro invocation, it usually separates actual
parameters by scanning for commas. It ignores commas appearing in string
or character constants, or in expressions surrounded by parentheses or
square brackets:

 singleArg("Strings can contain commas, that's okay!")
 singleArg(',') // Also okay
 singleArg((1,2)) // (1,2) is a single argument.

From CPP’s perspective, each of these macro invocations has a single
argument.

13.2.5.3  Macro Argument Expansion Issues

As any experienced C programmer knows, you must be careful when
specifying macro parameters to avoid unintended consequences during
expansion, especially if they involve arithmetic expressions. Consider the
following macro:

#define reserve(amt) amt + 1

Now consider the following macro invocation:

.space reserve(Size) * 2 // Size is a constant.

The expectation here is to reserve twice as much space as the reserve()
macro would normally specify. However, consider the actual expansion of
this macro:

.space Size + 1 * 2

Gas’s arithmetic rules specify that multiplication has a higher prece-
dence than addition, so this expands to Size + 2 rather than (Size + 1) × 2,
the desired expansion. C programmers work around this issue by always

Macros and the Gas Compile-Time Language 751

surrounding macro expansions (that expand to arithmetic expressions)
with parentheses, and they always surround the macro parameters them-
selves with parentheses, as shown in the following example:

#define reserve(amt) ((amt) + 1)

This usually resolves the issue of a macro expansion in the middle of an
arithmetic expression.

For the same reason, it’s generally a good idea to enclose any expres-
sion you pass as a macro argument in parentheses:

.space reserve((Size + 5)) * 2

Because the expansion could produce unintended consequences based
on operator precedence (for example, suppose the reserve definition were
amt * 2, which would expand to Size + 5 * 2 if you didn’t surround the actual
parameter expression with parentheses).

13.2.5.4  Variable Argument Lists

CPP provides a mechanism for specifying a variable number of parameters:

#define varArgs(...) text to expand

To reference the arguments, use the predefined __VA_ARGS__ symbol
(which begins and ends with two underscores). The CPP will substitute the
entire set of arguments in place of __VA_ARGS__. This includes all the commas
appearing in the varying argument list. Consider the following macro defini-
tion and invocation:

#define bytes(...) __VA_ARGS__
 .
 .
 .
 .byte bytes(1, 2, 3, 4)

The .byte statement expands to the following:

.byte 1, 2, 3, 4

A varying argument list allows zero actual parameters, so the invocation
bytes() is perfectly legal (and will expand to the empty string, given the pre-
vious definition). Therefore

.byte bytes()

will expand to

.byte

752 Chapter 13

which, interestingly enough, will not produce an error (Gas does not gener-
ate any code for this statement).

Although the expansion of the entire argument list is sometimes useful,
you’ll much more often need to pick off individual arguments in the vary-
ing argument list, as discussed in the following two sections.

13.2.5.5  Macro Composition and Recursive Macros

CPP does not support recursive macro invocations. If a macro’s name
appears in the expansion text, CPP will simply emit that name as text to be
assembled by Gas. This is unfortunate because recursion would be very use-
ful for handling iteration, as CPP doesn’t provide any looping constructs.
In section 13.2.5.9, “Iteration with Macros,” on page 757, I’ll provide a work-
around; in the meantime, I will discuss how CPP handles macro expansion
when one macro invokes another.

Consider the following macro definitions and invocations:

#define inc(x) ((x)+1)
#define mult(y) ((y)*2)
 .
 .
 .
 .byte mult(inc(5))

When CPP encounters a macro invocation within the parameter list of
another macro invocation, it will expand the parameter before passing that
text on to the enclosing macro invocation. The expansion of the .byte state-
ment happens in two steps:

.byte mult(((5) + 1)) // First step

and then

.byte (((5) + 1) * 2) // Second step

which, of course, is equal to:

.byte 12

Now consider the following example:

#define calledMacro(x) mov w0, x
#define callingMacro(y) calledMacro(y)
 .
 .
 .
 callingMacro(5)

When CPP encounters the macro invocation at the end of this example,
it will expand callingMacro(5) to the following text:

No Starch Press
Cross-Out

Macros and the Gas Compile-Time Language 753

 calledMacro(5)

CPP will then expand this macro to the following:

 mov w0, 5

As long as CPP continues to find a macro invocation in the expanded text
(except for a recursive invocation), it will continue to expand those invoca-
tions, regardless of how many iterations this process requires.

N O T E 	 The #define calledMacro(x) mov w0, x macro should really be #define calledMacro(x)
mov w0, #x using the syntax presented thus far in this book. However, the # is a CPP
operator (stringify, described a little later) that will turn the actual parameter 5 into
the string "5". Fortunately, Gas accepts a plain constant in place of #constant for the
immediate addressing mode in this example.

13.2.5.6  Macro Definition Limitations

The syntax for a CPP macro is the following

#define identifier(parameters) text to expand \n

where (parameters) is optional and \n represents a newline character. CPP
does not allow any newline characters within text to expand. Therefore, a
macro can expand only to a single line of text.

CPP does allow macro definitions like the following

#define multipleLines(parms) text1 \
 text2 \
 .
 .
 .
 textn

which spreads a macro definition across n lines in the source file. Each line,
except the last, must be terminated with a backslash character (\) immedi-
ately followed by a newline character.

Although this macro is physically split across multiple source lines, it
is still a single line of text because the CPP will delete all the newline char-
acters following the backslash characters. Therefore, you cannot create a
macro like the following:

#define printi(i) \
 lea x0, iFmtStr \
 lea x1, i \
 ldr x1, [x1] \
 mstr x1, [sp] \

754 Chapter 13

 bl printf
 .
 .
 .
 printi(var)

This macro definition won’t work because CPP will expand all the
assembly language statements on a single line (with spaces between them),
generating a syntax error. Sadly, Gas doesn’t seem to provide a general
mechanism for supplying multiple assembly statements on the same line.
Therefore, you cannot use CPP macros that expand to multiple assembly
language statements. (Fortunately, Gas macros do allow this, as you’ll learn
in section 13.3.4, “Gas Macros,” on page 765.)

N O T E 	 On some CPUs, Gas allows the use of the semicolon (;) character to put multiple
statements on the same line. However, the ARM treats semicolons as line comment
characters; one semicolon is equivalent to two forward slashes (//). Your mileage
may vary with Gas; for example, under Pi OS you can use the semicolon as a state-
ment separator.

CPP’s single-line macro definitions have another serious drawback: you
cannot incorporate CPP’s conditional compilation statements (such as #if)
into a macro, since the conditional compilation statements must appear at
the beginning of a source line. This is unfortunate, as the ability to make
decisions in a macro would be useful. Fortunately, there are a couple of
workarounds.

First, you can put macro definitions within conditional compilation
sequences, as shown in the following example:

#ifdef isMacOS
#define someMacro text to expand if macOS
#else
#define someMacro text to expand if not macOS
#endif

This sequence has two macros, only one of which will be defined within a
given assembly. You can therefore put the (presumably) macOS-only code
in the first macro definition and the Linux code in the second definition.

Using two separate macro definitions like this will work in some, but
not all, instances; sometimes you really do need the ability to put condi-
tional text within a macro expansion. I’ll provide a second workaround to
address this need in section 13.2.5.8, “Conditional Macros,” on page 756.

13.2.5.7  Text Concatenation and the Stringify Operator

CPP provides two special operators for manipulating textual data: the con-
catenation operator and the stringify operator. This section describes those
two operators.

A token is an entity, such as an identifier or operator, recognized by the
C/C++ language. The CPP concatenation operator (##) combines two tokens in

Macros and the Gas Compile-Time Language 755

a macro, forming a single token. For example, within a macro body, the fol-
lowing text produces the single token identifier:

ident ## ifier

Any amount of whitespace may appear between the tokens and the
operator. CPP will remove all the whitespace and join the two tokens
together—as long as the result is a legal C/C++ token. If a macro parameter
identifier appears on either side of the ## operator, CPP will expand that
parameter to the actual parameter’s text before doing the concatenation.
Alas, if you pass another macro as the parameter, CPP does not properly
expand the parameter:

#define one 1
#define _e e
#define produceOne(x) on ## x
 .
 .
 .
 produceOne(_e) // Expands to on_e

As a sneaky workaround to this problem, you can create a concatena-
tion macro to create the identifier for later expansion:

#define produceOne 1
#define concat(x, y) x ## y

 mov w0, #concat(produce, One)

This will generate the statement

mov w0, #produceOne

which then expands to this:

mov w0, #1

Section 13.8, “For More Information,” on page 792 includes links to
sites that describe CPP’s text concatenation operator more fully.

N O T E 	 The concatenation operator is legal only within a CPP macro. The CPP will ignore
everywhere else in the source file, leaving it up to Gas to handle it (which generally
produces an error, as ## is not a legal token in ARM assembly language).

The second CPP operator is the stringify operator (#), which you can use
within a macro body as follows

parmID

where parmID is the name of one of the macro parameters. The stringify
operator will expand the parameter and convert it to a string by surrounding

756 Chapter 13

the text with quotes. This is why the earlier #define calledMacro(x) mov w0, #x
macro did not work properly—it stringified the argument rather than leav-
ing it as an integer constant.

13.2.5.8  Conditional Macros

Although you cannot include conditional compilation directives (#if, #else,
and so on) inside macro bodies, it is possible to create conditional macros
by pulling some tricks with the CPP (otherwise known as abusing CPP).
Here’s an example of a conditional macro that implements an if . . . then
macro expansion you can use to select a particular expansion based on
other definitions in your source code:

if_else(expression) (true expansion) (false expansion)

The (true expansion) and (false expansion) are compile-time expres-
sions. The if_else macro will evaluate expression; if it evaluates to a nonzero
value, this statement will be replaced by (true expansion). If expression evalu-
ates to false, this statement will be replaced by (false expression). Here’s a
simple example:

.asciz if_else(MacOS) ("macOS") ("LinuxOS")

If MacOS is nonzero, this produces the string "macOS"; otherwise, it produces
the string "LinuxOS".

The if_else macro is quite complex, and I won’t describe how it works
here; it is C rather than assembly language, which puts it beyond the scope
of this text. See section 13.8, “For More Information,” on page 792 for
resources on this topic. Here’s the implementation of if_else from one of
those resources, by Jonathan Heathcote:

#define _secondArg_(a, b, ...) b

#define _is_probe_(...) _secondArg_(__VA_ARGS__, 0)
#define _probe_() ~, 1

#define _cat_(a, b) a ## b

#define _not_(x) _is_probe_(_cat_(_not_, x))
#define _not_0 _probe_()

#define _bool_(x) _not_(_not_(x))

#define if_else(condition) _if_else_(_bool_(condition))
#define _if_else_(condition) _cat_(_if_ , condition)

#define _if_1(...) __VA_ARGS__ _if_1_else
#define _if_0(...) _if_0_else

#define _if_1_else(...)
#define _if_0_else(...) __VA_ARGS__

Macros and the Gas Compile-Time Language 757

Unlike the conditional compilation directives, you can embed the
if_else macro into the bodies of other macros. Consider the following code:

#define macStr(x) if_else(x) ("macOS")("Linux")

Invoking this macro yields the string "macOS" or "Linux", depending on the
compile-time value of the parameter.

13.2.5.9  Iteration with Macros

The __VA_ARGS__ feature in CPP is useful for passing a group of arguments
as a single argument. However, it would be nicer if we could process each
argument in a varying parameter list one at a time by iterating through
the list in order. Unfortunately, the CPP doesn’t provide any statements to
support iteration. Because CPP doesn’t support recursion, we can’t even
(directly) use recursion to handle iteration.

However, if you abuse the CPP a bit, a limited form of recursion is pos-
sible, as this section demonstrates. The ultimate goal of this section is to
create a macro, let’s call it map, that will execute a single-argument macro on
each argument in a varying parameter list. Ideally, you’d call map thusly

map(macroName, arg1, arg2, ..., argn)

and the map function would generate n calls to macroName:

 macroName(arg1)
 macroName(arg2)
 .
 .
 .
 macroName(argn)

The following set of macros, along with the if_else macro from the previ-
ous section, provides this functionality (also from Heathcote; see section 13.8,
“For More Information,” on page 792 for implementation details):

// Include the macro definitions for if_else from
// the previous section here.

#define _firstArg_(a, ...) a

#define _empty_()

#define eval(...) eval1024(__VA_ARGS__)
#define eval1024(...) eval512(eval512(__VA_ARGS__))
#define eval512(...) eval256(eval256(__VA_ARGS__))
#define eval256(...) eval128(eval128(__VA_ARGS__))
#define eval128(...) eval64(eval64(__VA_ARGS__))
#define eval64(...) eval32(eval32(__VA_ARGS__))
#define eval32(...) eval16(eval16(__VA_ARGS__))
#define eval16(...) eval8(eval8(__VA_ARGS__))

758 Chapter 13

#define eval8(...) eval4(eval4(__VA_ARGS__))
#define eval4(...) eval2(eval2(__VA_ARGS__))
#define eval2(...) eval1(eval1(__VA_ARGS__))
#define eval1(...) __VA_ARGS__

#define _defer1(m) m _empty_()
#define _defer2(m) m _empty_ _empty_()()
#define _defer3(m) m _empty_ _empty_ _empty_()()()
#define _defer4(m) m _empty_ _empty_ _empty_ _empty_()()()()

#define _has_args(...) _bool_(_firstArg_(_end_of_args __VA_ARGS__)())
#define _end_of_args() 0

#define map(m, _firstArg_, ...) \
 m(_firstArg_) \
 if_else(_has_args(__VA_ARGS__))(\
 _defer2(_map)()(m, __VA_ARGS__) \
)(\
 /* Do nothing, just terminate */ \
)
#define _map() map

The eval macro provides a limited amount of recursion on the macro
you pass as an argument (up to 1,024 levels of recursion, which will allow
for a varying parameter listing containing up to 1,024 entries). In order for
the map macro to recurse, you must enclose it in an eval invocation. Consider
the following example:

#define inc(x) (x+1),
 .
 .
 .
 .byte eval(map(inc, 1, 2, 3, 4, 5, 6, 7)) 9

The comma at the end of the inc macro is required because the invo-
cations of inc will emit expressions of the form (1 + 1), (2 + 1), . . . , (7 + 1)
on the same line. The .byte directive requires commas between these
expressions.

Also note that the value 9 appears after the eval invocation. This is
because the last expression, (7 + 1), will have a comma after it, so this state-
ment must supply the last value manually. It would be possible to modify
the map macro to emit this comma for all but the last argument, or you
could modify the inc macro to check for a special sentinel value (such as
a negative number) to terminate the list (without emitting the value or
the comma).

13.2.5.10  Command Line Defines

If you look back at the build shell script in section 1.10.1, “Assembling
Programs Under Multiple OSes,” on page 36, you’ll see that GCC has a
command line parameter that specifies the OS in use:

Macros and the Gas Compile-Time Language 759

-D isLinux=1 (for Linux and Pi OS)
-D isMacOS=1 (for macOS)

These command line parameters are roughly equivalent to the follow-
ing two statements:

#define isLinux 1
#define isMacOS 1

In many instances, you can refer to these definitions in your source file
exactly as though you had placed these #define statements at the beginning
of the file.

As noted, these parameters are roughly equivalent—not exactly
equivalent—to the #define statements. Within macro bodies, these symbols
might not be expanded as normal defined symbols would be. To use these
symbols in macro bodies, it’s generally a good idea to explicitly create some
#define symbols by using code such as the following, then refer to myIsLinux
and myIsMacOS within your macros:

#ifdef isLinux
 #define myIsLinux 1
 #define myIsMacOS 0
#else
 #define myIsLinux 0
 #define myIsMacOS 1
#endif

If you are compiling your Gas source files directly from the command
line via gcc, you can define other symbols by using the -D command line
option. See the GCC documentation for details. Note that the build script
will not pass -D arguments to GCC, but you can easily modify build if you
want to define other symbols.

13.2.5.11  The CPP #undef Statement

The CPP allows you to forget a defined symbol by using the #undef statement

#undef identifier

where identifier is a symbol previously defined with a #define statement. (If
the symbol is undefined upon #undef execution, CPP will simply ignore the
statement.)

Undefining a symbol allows you to redefine it (for example, to give it
another value). If you attempt to redefine a symbol without first undefining
it, CPP will report an error.

760 Chapter 13

	 13.3	 Components of the Gas CTL
Gas’s CTL facilities are closer (than CPP) to what most assembly language
programmers expect from a macro expansion system. Although CPP’s
macro facilities are useful for certain purposes, macro assembly program-
ming generally requires a much more powerful macro system. Therefore,
learning Gas’s macro facilities is essential. This section covers the compo-
nents of the Gas CTL.

13.3.1  Errors and Warnings During Assembly
The Gas .err directive is similar to CPP #error. During assembly, Gas will
display an error message (printing the source line containing the .err state-
ment). Gas will not generate an object file if it encounters an .err directive.
For example, the following generates an error message at runtime:

.err

Gas also supports the .error directive. Its syntax is shown here:

.error "String error message"

The operand must be a string constant surrounded by quotes. During
assembly, Gas will display the specified error message and will not generate
an object file if it encounters an .error directive in the source file.

Gas also supports a .warning directive similar to the CPP #warning state-
ment, with the following syntax:

.warning "String warning message"

Again, the operand must be a string constant surrounded by quotes.
If Gas encounters the .warning directive during assembly, it will display the
specified warning message. If no errors are in the source files, only warn-
ings, Gas will generate an object file. You can therefore use the .warning
directive as an assembly-time print statement.

Keep in mind the difference between the CPP #warning and #error state-
ments and the Gas .warning and .error directives: the CPP statements exe-
cute during the preprocessor pass, prior to the assembly process, while the
Gas directives execute after the preprocessor pass, during assembly. If there
are any #error statements that execute, CPP will terminate the assembly pro-
cess without running the assembler (so the Gas directives won’t execute in
that situation).

13.3.2  Conditional Assembly
Gas also supports a set of conditional assembly (or conditional compilation)
directives similar to CPP’s #if/#endif statements. The basic directives are
as follows:

Macros and the Gas Compile-Time Language 761

.if expression1

 Statements to assemble if expression is nonzero

.elseif expression2 // Optional, may appear multiple times

 Statements to assemble if expression2 is nonzero

.else // Optional, but only one instance is legal

 Statements to assemble if expression1, expression2, ...
 and so on, were all 0

.endif

As a general rule, you should prefer Gas’s conditional assembly direc-
tives in your source file over the CPP conditional compilation statements.
Only use CPP’s conditional compilation statements when conditionally
processing source code that contains other CPP statements (such as #define
statements), or testing whether a symbol has been defined in CPP with the
#ifdef or #ifndef statement. You cannot test whether a CPP symbol has been
defined by using Gas’s conditional assembly statements because all CPP
symbols will be expanded (and won’t be present) when Gas is assembling
the source file.

The Boolean expression appearing after .if or .elseif must be an abso-
lute expression (see “Relocatable and Absolute Expressions” on page 176).
Within conditional assembly expressions, false is a zero result and true is
anything else.

Gas supports several variants of the .if directive:

.ifdef symbol ​  ​Assembles the following section if symbol is defined prior
to that point in the source file. CPP symbols (created with #define) are
expanded prior to assembly, so their use may not work as expected in
this directive.

.ifb text ​  ​Assembles the following section if the operand field is blank.
You generally use this directive to test for a blank macro parameter
(text is typically a macro parameter name that could expand to the
empty string).

.ifc text1, text2 ​  ​Compares text1 to text2 and assembles the following
section if they are equal. The string comparison ignores any whitespace
around the text. The string text1 comprises all characters from the first
non-whitespace character after .ifc up to the first comma. The string
text2 is all text after the comma (ignoring leading whitespace) up to the
end of the line (also ignoring whitespace at the end of the line). If you
need to include whitespace in the string, you may optionally surround
the strings with apostrophes (single quotes). Generally, you would use
this statement to compare two macro parameter expansions to see if
the parameters are equal.

762 Chapter 13

.ifeq expression ​  ​Assembles the following code if expression is equal to 0.

.ifeqs "string1", "string2" ​  ​Assembles the following code if the two
strings are equal. The strings must be surrounded by double quotes.

.ifge expression ​  ​Assembles the following code if expression is greater
than or equal to 0.

.ifgt expression ​  ​Assembles the following code if expression is greater
than 0.

.ifle expression ​  ​Assembles the following code if expression is less than
or equal to 0.

.iflt expression ​  ​Assembles the following code if expression is less than 0.

.ifnb text ​  ​Assembles the following section if the operand field is not
blank. You generally use this directive to test for a nonblank macro
parameter (text is typically a macro parameter name).

.ifnc text1, text2 ​  ​Compares text1 to text2 and assembles the follow-
ing section if they are not equal. The string comparison ignores any
whitespace around the text. The string text1 comprises all characters
from the first non-whitespace character after .ifnc up to the first
comma. The string text2 is all text after the comma (ignoring leading
whitespace) up to the end of the line (also ignoring whitespace at the
end of the line). If you need to include whitespace in the string, you
may optionally surround the strings with apostrophes (single quotes).
Generally, you would use this statement to compare two macro param-
eter expansions to see if the parameters are not equal.

.ifndef symbol, .ifnotdef symbol ​  ​Assembles the following section if symbol
is not defined prior to that point in the source file. Note that CPP sym-
bols (created with #define) get expanded prior to assembly, so their use
may not work as expected in this directive. The .ifnotdef directive is a
synonym for .ifndef.

.ifne expression ​  ​Assembles the following code if expression is not equal
to 0. This directive is a synonym for .if.

.ifnes "string1", "string2" ​  ​Assembles the following code if the two strings
are not equal. The strings must be surrounded by double quotes.

Conditional assembly statements in Gas may appear anywhere an
instruction mnemonic is legal. Typically, they appear on a line by them-
selves, though it is legal (if unusual) for a label to appear on the same line.
In that case, the label will be associated with the next instruction or direc-
tive that emits code.

As you can see, Gas provides a wide variety of conditional assembly
statements that are quite a bit more powerful and flexible than the CPP
conditional compilation statements. This is another reason to use Gas’s con-
ditional assembly statements over CPP’s.

Macros and the Gas Compile-Time Language 763

13.3.3  Compile-Time Loops
Unlike CPP, Gas’s CTL provides three looping constructs to easily gener-
ate data and unroll loops: .rept, .irp, and .irpc. The following subsections
describe these directives.

13.3.3.1  .reptendr

The .rept directive repeats a block of statements a fixed number of times.
The syntax for this compile-time loop is the following:

.rept expression

 Statements to repeat

.endr

Gas will evaluate expression and repeat the block of statements between
the .rept and .endr directives the specified number of times. If expression
evaluates to 0, Gas will ignore all the statements up to the .endr, generating
no code.

The following example will initialize a 32-element byte array with the
values 0 through 31:

.set i, 0 // Initialize array element value.

.rept 32

.byte i

.set i, i + 1 // Increment array element value.

.endr

You aren’t limited to data values in a .rept loop but can use .rept to
unroll loops as well:

// Zero out an eight-dword array:

 .set ofs, 0
 .rept 8
 str xzr, [x0, #ofs]
 .set ofs, ofs + 8
 .endr

This is equivalent to the following code

 str xzr, [x0, #0]
 str xzr, [x0, #8]
 str xzr, [x0, #16]
 str xzr, [x0, #24]
 str xzr, [x0, #32]
 str xzr, [x0, #40]
 str xzr, [x0, #48]
 str xzr, [x0, #56]

which unrolls the loop eight times.

764 Chapter 13

13.3.3.2  .irpendr

The .irp (indefinite repeat) looping directive takes the following form:

.irp identifier, comma-separated-list-of-values
 .
 .
 .
.endr

This loop repeats for each item in comma-separated-list-of-values. In the
body of the loop, you can refer to the current value by using \identifier; the
following example

.irp i, 0, 1, 2, 3

.byte \i

.endr

is equivalent to

.byte 0

.byte 1

.byte 2

.byte 3

which unrolls the loop for each .irp argument.

13.3.3.3  .irpcendr

The third compile-time looping construct, .irpc, is similar to .irp but pro-
cesses a string of text rather than a list of values:

.irpc identifier, text
 .
 .
 .
.endr

Here, identifier is a symbol that will take on the value of each character in
the string specified by text. Note that text is a bare sequence of characters;
do not surround it by double or single quotes unless you want the .irpc loop
to process those punctuation marks along with the other characters in the
string. The .irpc loop will execute once for each character in the string,
and \identifier will expand to that character on each iteration. For example

.irpc x, acde

.byte '\x'

.endr

expands to this:

Macros and the Gas Compile-Time Language 765

.byte 'a'

.byte 'c'

.byte 'd'

.byte 'e'

Note that \identifier expands even within character and string con-
stants (as '\x' did in this example). In this example, had you not enclosed
\x in single quotes, the .irpc loop would have expanded to

.byte a

.byte c

.byte d

.byte e

which would have generated an error if the symbols a, c, d, and e were not
defined somewhere in the program (I conveniently skipped b, which would
have expanded to a branch instruction mnemonic).

13.3.4  Gas Macros
Gas provides macro facilities via the .macro and .endm directives. The syntax
for a macro definition is as follows

.macro identifier { parameter_list }

 Statements to expand on macro invocation

.endm

where the { and } characters mean the parameter list is optional (you don’t
include these characters in the macro definition). The following subsections
describe the various components of a Gas macro, along with important
semantic information concerning macros.

13.3.4.1  Macro Parameters

Macro parameters can take one of the following four forms:

identifier ​  ​This first form, just a simple identifier, is the most common.
Unless you supply one of the suffixes appearing in the other three
options, this syntax tells Gas that the parameter is optional. If you do
not supply an appropriate actual parameter value when invoking the
macro, Gas will substitute the empty string (a blank parameter) when
expanding the parameter in the macro’s body.

identifier=expression ​  ​Like the first form, this specifies a parameter that
can be optional, except that Gas will give the identifier the value of the
expression rather than an empty string if the macro invocation doesn’t
supply a parameter value.

766 Chapter 13

identifier:req ​  ​Specifies that the macro argument must be supplied
when invoking the macro; if it is missing, Gas will respond with an
error message.

identifier:vararg ​  ​Allows for a varying parameter list (zero or more
arguments separated by commas). Gas will expand this macro param-
eter to the entire list of values, including the commas separating
the values.

In standard Gas syntax, a space separates the macro name and the first
parameter (if any). I’ve found that with the ARM assembler, sneaking in a
comma works fine too (your mileage may vary).

Within a macro body, use a token of the form \identifier—where
identifier is one of the macro’s declared formal parameters—to expand a
parameter. For example, the following macro demonstrates the expansion
of the value argument:

.macro oneByte value

.byte \value

.endm
 .
 .
 .
oneByte 1 // Expands to .byte 1

A macro definition can have zero or more parameters. If you supply
more than one parameter, you must separate each formal parameter with
a comma. Additionally, if you specify a vararg parameter, it must be the last
parameter declared in the .macro statement. Here’s an example of a slightly
complex macro:

.macro bytes yy:req, zz=0, tt, ss:vararg

.byte \yy

.byte \zz

.byte \tt

.byte \ss

.endm

When you invoke this macro, you must supply at least one actual param-
eter (because yy is a required parameter). For example

bytes 5

expands to this:

.byte 5

.byte 0 // Because zz expands to 0 by default

.byte // Argument tt expands to the empty string.

.byte // Argument ss also expands to the empty string.

Macros and the Gas Compile-Time Language 767

Note that if a data directive such as .byte does not have any operands, Gas
will ignore that statement and not generate any code to the object file.

Here’s another invocation of bytes that demonstrates full argument
expansion

bytes 5, 4, 3, 2, 1, 0

which expands to:

.byte 5 // yy expansion

.byte 4 // zz expansion

.byte 3 // tt expansion

.byte 2, 1, 0 // ss expansion

This example worked out well because the .byte directive allows comma-
separated operands. However, what if you want to expand a vararg parame-
ter where comma-separated operands are not legal? Consider the following
macro:

.macro addVals theVals:vararg
add x0, x0, #\theVals
.endm

An invocation of addVals such as

addVals 1, 2

will generate an error because

add x0, x0, #1, 2

is syntactically incorrect. You can solve this problem by using an .irp loop
inside the macro to process a vararg parameter:

.macro addVals theVals:vararg

.irp valToAdd, \theVals
add x0, x0, #\valToAdd
.endr
.endm

The addVals 1, 2 invocation will now emit the following:

add x0, x0, #1
add x0, x0, #2

Gas will expand a macro just about anywhere it appears within a macro
body. Consider the following macro:

.macro select which
lea x1, var\which

768 Chapter 13

ldr w1, [x1]
.endm

Assuming you’ve defined the var0 and var1 symbols somewhere, the
invocation select 0 generates the following

lea x1, var0
ldr w1, [x1]

while the invocation select 1 generates this:

lea x1, var1
ldr w1, [x1]

Suppose you want to supply the prefix of the name, rather than the
suffix, as the macro argument in this example. A first attempt at this
won’t work:

.macro select2 which
lea x1, \whichvar
ldr w1, [x1]
.endm

The problem, of course, is that Gas interprets \whichvar as the expan-
sion of a parameter named whichvar. To separate a parameter name from
the following text, use the \() token:

.macro select2 which
lea x1, \which\()var
ldr w1, [x1]
.endm

An invocation such as select2 my will now properly expand to

lea x1, myvar
ldr w1, [x1]

which creates the name myvar, as intended.

13.3.4.2  Macro Parameters with String Constants

Gas’s macros have a “feature” that can bite you if you’re not careful: if you
pass a string constant as a formal parameter, Gas will strip the quotes from
the string when expanding that parameter. For example, consider the fol-
lowing macro and invocation:

.macro myStr theStr

.asciz \theStr

Macros and the Gas Compile-Time Language 769

.endm
 .
 .
 .
myStr "hello"

This expands to the following:

.asciz hello

Unless you’ve defined the symbol hello with an appropriate value, this
will generate an error. The correct way to do this is as follows:

.macro myStr theStr

.asciz "\theStr"

.endm
 .
 .
 .
myStr "hello"

This code properly generates the following:

.asciz "hello"

One possible use for this is passing parameters that contain commas
and whitespace as a single argument to a macro. I will leave it up to you to
figure out other abuses of this “feature” in Gas. Personally, I consider it a
bug, and I’d be afraid to use this feature because Gas could remove this
behavior in a future version of the assembler.

13.3.4.3  Recursive Macros

Unlike CPP, Gas fully supports recursive macros. Consider the following
example (adapted from the Gas manual):

.macro sum from=0, to=5

.long \from

.ifgt \to-\from
sum "(\from+1)",\to
.endif
.endm

A macro invocation of the form sum 0, 5 generates the following code:

.long 0

.long 1

.long 2

.long 3

.long 4

.long 5

770 Chapter 13

The sum macro uses conditional assembly statements to prevent endless
recursion. Though you could more easily iterate over five values by using
the .rept (or .irp) directives, sometimes recursion is a better solution than
iteration.

The .irp and .rept directives are a better fit for simple iteration. Recursion
is better for processing recursive data structures, such as lists and trees, passed
as macro arguments, or if you need to reverse the arguments passed to a
macro (I give an example of this in the next section).

13.3.4.4  The .exitm Directive

The .exitm directive allows you to prematurely terminate the expansion of a
macro. Its syntax is as follows:

.exitm

When Gas encounters .exitm during a macro expansion, it immediately
stops the expansion and ignores the rest of the macro’s body. Of course, just
placing an .exitm directive in the middle of a macro body (other than for
testing purposes) is not especially useful—why write the rest of the macro
body if it’s going to be ignored? Instead, you’ll generally find an .exitm
macro inside a conditional assembly block like the following:

.macro reverse first, args:vararg

.ifb \first

.exitm // Quit recursion if no more arguments.

.endif
reverse \args
.byte \first
.endm

The .exitm directive terminates recursion when the argument list is
empty. The recursive invocation passes all but the first argument to reverse.
As you may already have guessed, this macro will generate the bytes specified
as parameters in reverse order to the file. For example, reverse 0, 1, 2, 3
generates

.byte 3

.byte 2

.byte 1

.byte 0

reversing the arguments passed to the reverse macro.

13.3.4.5  The \@ Operator

Within a macro, Gas will convert the token \@ to a string of digits specifying
the total number of macros it has expanded during assembly. You can use
this operator, typically along with the \() token, to create macro-local sym-
bols. The following macro provides a trivial example of this usage:

Macros and the Gas Compile-Time Language 771

 .macro lclsym sym
 b a\()\@
a\()\@:
 .endm

Multiple expansions of this macro generate a unique symbol by suffix-
ing a string of digits to the end of a.

13.3.4.6  The .purgem Directive

The .purgem directive deletes a previously defined Gas macro. It is similar to
the CPP #undef statement. Normally, if you try to redefine a Gas macro, Gas
will generate an error. Use the .purgem directive to delete the macro if you
want to redefine it.

Note that Gas will generate an error if you attempt to purge a macro
that has not already been defined. Unfortunately, the .ifdef (and compa-
rable) conditional assembly statement does not recognize macro symbols;
so there is no way to check whether a macro has been defined before using
the .purgem directive; you have to ensure that the macro symbol exists prior
to using this directive.

	 13.4	 The aoaa​.inc Header File
Throughout this book, I’ve used the aoaa​.inc header file in examples with-
out discussing what it contains. Now that you’ve been introduced to CPP
and Gas macro and CTL facilities, the time has come to fulfill my prom-
ise in Chapter 1 that I would explain, section by section, how this header
file works.

I’ll go over the source code for aoaa​.inc piece by piece, in order to
annotate and explain each of its components. The first section is the usual
header that appears at the beginning of an include file:

// aoaa​.inc
//
// "Magic" header file for The Art of ARM Assembly
// that smooths over the differences between Linux
// and macOS
//
// Assertions:
//
// Either isMacOS or isLinux has been
// defined in the source file (using #define) prior
// to including this source file. This source file
// must be included using #include "aoaa​.inc"
// NOT using the Gas ​.include directive.

To begin, the aoaa​.inc header file assumes that the source file that
includes aoaa​.inc is being assembled using the build shell script. Among
other things, the build script will include one of the following command

772 Chapter 13

line options on the gcc command line that assembles the source file, as
appropriate for the OS under which you’re running GCC (and Gas):

-D isMacOS=1

-D isLinux=1

Because these symbols are defined for use by CPP (not Gas), the source
file must have a .S suffix, and you must run the CPP on this file, meaning
you need to assemble the file by running the gcc executable rather than the
as (Gas) executable.

The next section of the source file handles multiple inclusions:

// aoaa​.inc (cont.)
//
#ifndef aoaa_inc
#define aoaa_inc 0

This #ifndef and #define sequence is the standard way to prevent prob-
lems if a program includes a header file more than once. The first time CPP
includes this file, the symbol aoaa_inc will not be defined; therefore, CPP
will process the text after the #ifndef statement. The very next statement
defines the aoaa_inc symbol. Should the assembly source file that included
aoaa​.inc include it a second time, the aoaa_inc symbol will be defined, so
CPP will ignore everything up to the matching #endif (which happens to be
at the end of the source file).

As the earlier comment states, you must include the aoaa​.inc header file
by using the CPP statement #include, rather than Gas’s ​.include directive.
This is because the aoaa​.inc file contains several CPP statements (including
#ifndef), and CPP will never see the aoaa​.inc file if you include it via ​.include.
Remember, Gas statements are processed long after CPP has executed
and quit.

Next, the aoaa​.inc header file sets up defines for various symbols to
handle macOS- and Linux-specific code:

// aoaa​.inc (cont.)
//
// Make sure all OS symbols are
// defined and only one of them
// is set to 1:

#ifndef isMacOS
 #define isMacOS (0)
#else
 #undef isMacOS
 #define isMacOS (1)
#endif

#ifndef isLinux
 #define isLinux (0)
#else
 #undef isLinux

Macros and the Gas Compile-Time Language 773

 #define isLinux (1)
#endif

// Make sure exactly one of the OS symbols is set to 1:

#if (isMacOS+isLinux) != 1
 #error "Exactly one of isMacOS or isLinux," \
 " must be 1"
#endif

This block of conditional compilation statements ensures that both
isLinux and isMacOS are defined and are given appropriate values for the OS.
The command line parameters supplied by the build script will define only
one of these two symbols. These statements ensure that both are defined
and are assigned appropriate Boolean values (0 for false, 1 for true).

Next up, the aoaa​.inc header file defines some symbols required under
macOS:

// aoaa​.inc (cont.)
//
// Do macOS-specific stuff here:

#if isMacOS

 // Change all the C global function
 // names to include a leading underscore
 // character, as required by macOS (these
 // definitions allow you to use all the
 // same names in example programs in
 // macOS and Linux). This list includes
 // all the C stdlib functions used by
 // AoAA example code.

 #define asmMain _asmMain
 #define acos _acos
 #define asin _asin
 #define atan _atan
 #define cos _cos
 #define exp _exp
 #define exp2 _exp2
 #define getTitle _getTitle
 #define free _free
 #define log _log
 #define log2 _log2
 #define log10 _log10
 #define malloc _malloc
 #define pow _pow
 #define printf _printf
 #define readLine _readLine
 #define sin _sin
 #define sqrt _sqrt
 #define strcat _strcat
 #define strchr _strchr

774 Chapter 13

 #define strcmp _strcmp
 #define strcpy _strcpy
 #define strlen _strlen
 #define strncat _strncat
 #define strncpy _strncpy
 #define strstr _strstr
 #define strtol _strtol
 #define tan _tan
 #define write _write

 #define __errno_location ___error

Under macOS, external symbols like the C stdlib function names have
a leading underscore. Under Linux, the symbols appear without the under-
score. The #define statements in the previous code snippet replace several
common C stdlib function names with the underscore-prefixed version.
This allows calls in this book to use consistent names under both macOS
and Linux.

These defines work only for the C stdlib functions appearing in this list.
If you decide to call other stdlib functions (or use other external symbols),
you’ll have to explicitly supply the underscore prefix character or add addi-
tional #define statements to this list.

The lea macro also has a macOS-specific implementation:

// aoaa​.inc (cont.)
//
// lea (Load Effective Address) macro.
// Correctly loads the address of
// a memory object into a register, even
// on machines that use position-independent
// executables (PIE):

.macro lea, reg, mem
 adrp \reg,\mem@PAGE
 add \reg, \reg, \mem@PAGEOFF
.endm

As noted in Chapters 1 and 7, the lea macro expands to two instructions
that load the address of a symbol into a 64-bit register. The main reason for
including this macro (rather than explicitly writing these two instructions
everywhere lea appears in this book) is that the two instructions are slightly
different, depending on whether the code is being assembled for macOS or
Linux. This version of the lea macro generates the code for macOS.

Next up are the mstr, mstrb, and mstrh macros, which also have macOS-
specific implementations:

// aoaa​.inc (cont.)
//
// mstr Assembles to a str instruction under macOS
// mstrb
// mstrh

Macros and the Gas Compile-Time Language 775

.macro mstr, operands:vararg
str \operands
.endm

.macro mstrb, operands:vararg
strb \operands
.endm

.macro mstrh, operands:vararg
strh \operands

Linux and macOS handle varying parameter lists differently. Under
Linux, you continue to pass the first eight parameters in X0 through X7,
while under macOS, you pass them both in the registers and on the stack.
The mstr, mstrb, and mstrh macros expand to code that stores a register onto
the stack when operating under macOS (as you’ll see shortly, the Linux ver-
sions expand to nothing).

The Clang assembler (the macOS version of Gas) does not support the
.dword directive; the following macro implements this for macOS. Under
macOS, the aoaa​.inc header file therefore includes a macro to supply this
missing directive, mapping it to the equivalent .quad directive:

// aoaa​.inc (cont.)
//
// macOS's assembler doesn't have .dword,
// define it here:

.macro .dword, value:vararg
 .quad \value
.endm

Earlier chapters used the vparmn macros to pass variables to the printf()
function. Because the API for varying parameters differs between macOS
and Linux, there are separate definitions for the two OSes. Here is their
macOS implementation:

// aoaa​.inc (cont.)
//
// Macros to load parameters 2..8 onto
// the stack for macOS when calling
// a variadic (variable parameter list)
// function, such as printf().
//
// Note that parameter 1 still goes into X0.

.macro vparm2, mem
lea x1, \mem
ldr x1, [x1]
str x1, [sp]
.endm

776 Chapter 13

.macro vparm3, mem
lea x2, \mem
ldr x2, [x2]
str x2, [sp, #8]
.endm

.macro vparm4, mem
lea x3, \mem
ldr x3, [x3]
str x3, [sp, #16]
.endm

.macro vparm5, mem
lea x4, \mem
ldr x4, [x4]
str x4, [sp, #24]
.endm

.macro vparm6, mem
lea x5, \mem
ldr x5, [x5]
str x5, [sp, #32]
.endm

.macro vparm7, mem
lea x6, \mem
ldr x6, [x6]
str x6, [sp, #40]
.endm

.macro vparm8, mem
lea x7, \mem
ldr x7, [x7]
str x7, [sp, #48]
.endm .endm

Next come the Linux-specific implementations of these macros:

// aoaa​.inc (cont.)

#elif isLinux == 1

 // Do Linux (no-PIE)-specific stuff here:

 .macro lea, reg, mem
 adrp \reg,\mem
 add \reg, \reg, :lo12:\mem
 .endm

 // mstr assembles to nothing under Linux
 // mstrb
 // mstrh

 .macro mstr, operands:vararg
 .endm

Macros and the Gas Compile-Time Language 777

 .macro mstrb, operands:vararg
 .endm

 .macro mstrh, operands:vararg
 .endm

 .macro vparm2, mem
 lea x1, \mem
 ldr x1, [x1]
 .endm

 .macro vparm3, mem
 lea x2, \mem
 ldr x2, [x2]
 .endm

 .macro vparm4, mem
 lea x3, \mem
 ldr x3, [x3]
 .endm

 .macro vparm5, mem
 lea x4, \mem
 ldr x4, [x4]
 .endm

 .macro vparm6, mem
 lea x5, \mem
 ldr x5, [x5]
 .endm

 .macro vparm7, mem
 lea x6, \mem
 ldr x6, [x6]
 .endm

 .macro vparm8, mem
 lea x7, \mem
 ldr x7, [x7]
 .endm

#endif #endif

There are no #define statements for stdlib functions because Linux
doesn’t require the underscore prefix character on external names. As for
the parameter-related functions, Linux passes the first eight arguments of a
varying parameter list only in the registers, not on the stack. The mstr, mstrb,
and mstrh macros thus expand to nothing, while the vparmn macros expand
to code without storing data on the stack.

778 Chapter 13

The remainder of the source file is common to both macOS and Linux.
First, the aoaa​.inc header file contains a few .global directives to specify pub-
lic names for use by the C/C++ program that calls the assembly file:

// aoaa​.inc (cont.)
//
// Global declarations:

.global asmMain

.global getTitle

.global readLine

.global printf

 The printf definition, strictly speaking, isn’t necessary; it’s really just
an external declaration, and undefined symbols are external by default.
I added it simply because almost every sample program in this book calls
the printf() function.

Gas doesn’t actually provide a .qword directive. The .qword macro renames
.octa to .qword to be consistent with .word and .dword:

// aoaa​.inc (cont.)
//
// Generic code for all OSes:

// Gas doesn't have a .qword
// directive. Map .qword to .octa:

.macro .qword, value:vararg
 .octa \value
.endm

Next up in aoaa​.inc are the definitions needed for the structure defini-
tion macros:

// aoaa​.inc (cont.)
//
// Macros for structure definitions:

__inStruct = 0
__inArgs = 0
__inLocals = 0
__dir = 1

The __inStruct, __inArgs, __inLocals, and __dir compile-time variables
maintain information needed to declare structure fields, parameters, and
local variables by using the struct, args, and locals macros. The __in* vari-
ables are Booleans that track whether the program is currently defining
a structure, a parameter list, or a set of local variables. Only one of these
fields may contain true (nonzero) at a time, though they can all be 0 if
you’re not declaring the field of any of these objects.

Macros and the Gas Compile-Time Language 779

The __dir variable is either 1 or –1. This determines whether successive
declarations in these objects have increasing (when __dir is +1) or decreas-
ing (when __dir is –1) offsets. Structures and parameters have increasing
offsets, while locals have decreasing offsets.

With those compile-time constants out of the way, here are the actual
struct, args, and locals macros:

// aoaa​.inc (cont.)

 1 .macro struct name, initialOffset=0
__inStruct = 1
__inLocals = 0
__inArgs = 0
__struct_offset = \initialOffset
\name\().base = \initialOffset
__dir = 1
 .if \initialOffset > 0
 .err
 error struct offset must be negative or 0
 .endif
 .endm

 2 .macro args name, initialOffset=16
__inStruct = 0
__inLocals = 0
__inArgs = 1
__struct_offset = \initialOffset
\name\().base = \initialOffset
__dir = 1
 .endm

 3 .macro locals name
__inStruct = 0
__inLocals = 1
__inArgs = 0
__struct_offset = 0
__dir = -1
 .endm

The struct, args, and locals macros allow you to define structures
(records), parameter lists (arguments), and local variables. These macros
set up some compile-time variables that track the base address of the object,
as well as the direction, positive or negative, by which offsets are assigned to
fields of the object.

The struct macro 1 creates structures (records) by associating a field
offset with each member of the structure. The struct macro itself simply ini-
tializes the __inStruct, __dir, and name.base compile-time variables that main-
tain information needed when declaring fields of the structure (where name
is the user-supplied structure name). The __struct_offset CTL maintains a
“location counter” within the structure. By default, the struct macro initial-
izes this with 0. However, the person invoking struct can specify a negative

780 Chapter 13

value if they would like to specify that the first fields of the structure appear
in memory before the structure’s base address. The __dir CTL is initialized
with 1 because successive fields in a structure have increasing offsets within
the structure.

The args macro 2 declares parameter lists for a function or procedure,
fundamentally the same operation as creating a structure; you are defining
part of the activation record, after all. The only real difference is that the
starting offset is 16 (this is the offset of the first parameter in the activation
record, using the base address specified by the FP register; the saved FP
value and the return address consume the double words at offsets 0 and 8,
respectively). Because parameters follow in higher addresses, the __dir field
is initialized with 1.

The locals macro 3 declares local variables allocated on the stack
below the address held in the FP register. Because successive declarations
appear at lower addresses in memory, this macro initializes the __dir field
with –1.

The macros for the matching ends, enda, and endl statements appear
later in the listing. The following sections describe the data declaration
macros that can appear inside a structure:

// aoaa​.inc (cont.)

 .macro salign, size
__salign = 0xFFFFFFFFFFFFFFFF - ((1 << \size)-1)
__struct_offset = (__struct_offset + (1 << \size)-1) & __salign
 .endm

The salign macro, which should appear only in a struct, args, or locals
declaration, adjusts the __struct_offset value (the location counter) so that
it is aligned at an offset that is a power of 2 (the power of 2 is specified by
the parameter). This macro achieves its purpose by creating a bitmask con-
taining size 0s in the LO bits and 1s in the remaining HO bits. Logically
ANDing __struct_offset with this value produces an offset that is aligned to
the designed value.

The following macros provide the byte, hword, word, dword, qword, oword,
single, and double directives for use in structures:

// aoaa​.inc (cont.)

 .macro byte, name, elements=1
 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + \elements
 .else
__struct_offset = __struct_offset + \elements
\name = -__struct_offset
 .endif
 .endm

 .macro hword, name, elements=1

Macros and the Gas Compile-Time Language 781

 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + ((\elements)*2)
 .else
__struct_offset = __struct_offset + ((\elements)*2)
\name = -__struct_offset
 .endif
 .endm

 .macro word, name, elements=1
 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + ((\elements)*4)
 .else
__struct_offset = __struct_offset + ((\elements)*4)
\name = -__struct_offset
 .endif
 .endm

 .macro dword, name, elements=1
 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + ((\elements)*8)
 .else
__struct_offset = __struct_offset + ((\elements)*8)
\name = -__struct_offset
 .endif
 .endm

 .macro qword, name, elements=1
 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + ((\elements)*16)
 .else
__struct_offset = __struct_offset + ((\elements)*16)
\name = -__struct_offset
 .endif
 .endm

 .macro oword, name, elements=1
 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + ((\elements)*32)
 .else
__struct_offset = __struct_offset + ((\elements)*32)
\name = -__struct_offset
 .endif
 .endm

 .macro single, name, elements=1
 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + ((\elements)*4)
 .else

782 Chapter 13

__struct_offset = __struct_offset + ((\elements)*4)
\name = -__struct_offset
 .endif
 .endm

 .macro double, name, elements=1
 .if __dir > 0
\name = __struct_offset
__struct_offset = __struct_offset + ((\elements)*8)
 .else
__struct_offset = __struct_offset + ((\elements)*8)
\name = -__struct_offset
 .endif
 .endm

Each macro declares a single scalar or array variable of the specified
type (you can specify an array by providing a second argument with the
number of elements).

These macros will bump the current location counter, __struct_offset,
by the size of the variable and assign that offset to the declared name. If
__dir is negative (locals declarations), the macro first decrements the loca-
tion counter, then assigns the offset to the name; if __dir is positive, the
macro assigns the offset and increments the location counter value.

Here are the ends, enda, and endl macros:

// aoaa​.inc (cont.)
//
// Generate name.size and name.offset constants
// specifying total structure size and the offset
// just beyond the last field.
//
// Also create a macro to be used to declare
// structure variables.

 .macro ends, name
__inStruct = 0
\name\().size = __struct_offset-\name\().base
\name\().offset = __struct_offset
 .macro \name, varName
 .if \name\().base < 0
 .space __struct_offset-(\name\().base)
 .endif
\varName:
 .if __struct_offset > 0
 .fill __struct_offset
 .endif

 .endm
 .endm

 .macro enda, name
__inArgs = 0

Macros and the Gas Compile-Time Language 783

\name\().size = __struct_offset-\name\().base
 .endm

 .macro endl, name
__inLocal = 0
\name\().size = __struct_offset
 .endm

The ends, enda, and endl macros complete a declaration begun by struct,
args, or locals. They set to false the Boolean variable that is tracking an
open structure, parameter list, or local variables declaration, then set the
name.size equate to the total size of the declarations. The ends macro also
defines a macro that you can use to declare structure objects in your code.

The wastr macro emits a word-aligned string to memory. Here is its
implementation:

// aoaa​.inc (cont.)
//
// Macro to emit a string that is padded with bytes
// so that it consumes a multiple of 4 bytes in memory:

 .macro wastr, theStr
 .asciz "\theStr"
 .p2align 2
 .endm

This macro is mainly used in .text sections because you must keep all
code and labels word-aligned within those sections. Quotes must surround
the macro parameter expansion because Gas will strip off the quotes you sup-
ply in the actual parameter (see section 13.3.4.2, “Macro Parameters with
String Constants,” on page 768).

The proc and endp macros provide syntactical sugar for declaring proce-
dures in an assembly language source file. Here is their implementation:

// aoaa​.inc (cont.)
//
// Macros for declaration procedures/functions:

public = 1
 .macro proc pName:req, isPublic=0

// If "public" argument is present, emit
// global statement.

 .if \isPublic
 .global _\pName
 .global \pName
 .endif

\pName\().isOpenProcDCL = 1
\pName:
_\pName:
 .endm

784 Chapter 13

 .macro endp pName:req
 .ifndef \pName\().isOpenProcDCL
 .err
 .err "Not an open procedure"
 .else
 .if \pName\().isOpenProcDCL
 .else
 .err
 .err "endp name does not match last proc name"
 .endif
 .endif
\pName\().isOpenProcDCL = 0
 .endm

Other than emitting the procedure name and (if isPublic is 1) the .global
directive, this macro doesn’t really do much.

The public equate allows you to specify public as a second argument to
this macro to tell the assembler to make the symbol global (that is, public).
Technically, you could just pass 1 as the second argument, but public is
more readable.

The ​.code macro simply expands to .text and ensures that the location
counter is aligned on a word (4-byte) boundary:

// aoaa​.inc (cont.)
//
// Sanity for ARM code:

 .macro .code
 .text
 .align 2
 .endm

The enter and leave macros provide the standard entry and stan-
dard exit sequences for a procedure (see section 5.4.4, “Standard Entry
Sequence,” on page 248 and section 5.4.5, “Standard Exit Sequence,” on
page 250 for more details):

// aoaa​.inc (cont.)
//
// Assembly standard entry sequence:

 .macro enter, localsSize
 stp fp, lr, [sp, #-16]!
 mov fp, sp
 .if \localsSize > 0
 sub sp, sp, #((\localsSize)+15) & 0xFFFFFFFFFFFFFFF0
 .endif
 .endm

// Assembly standard exit sequence:

 .macro leave
 mov sp, fp

Macros and the Gas Compile-Time Language 785

 ldp fp, lr, [sp], #16
 ret
 .endm

In rare circumstances, the b (branch) and b.al (branch always) instruc-
tions may generate an out-of-range error when the target location is too far
away from the instruction. In those situations, you can use the goto macro
to transfer control anywhere in the 64-bit address range of the ARM CPU:

// aoaa​.inc (cont.)
//
// goto
//
// Transfers control to the specified label
// anywhere in the 64-bit address space:

 .macro goto, destination
 adr x16, 0f
 ldr x17, 0f
 add x16, x16, x17
 br x16
0:
 .dword \destination-0b
 .endm

The goto macro modifies the values held in the X16 and X17 registers.
The ARM API reserves these registers for exactly this purpose, so this is
permissible. However, you should always remember that this macro modi-
fies X16 and X17.

The C stdlib provides the magic pointer __errno_location to return a
pointer to C’s errno variable in X0. The getErrno macro expands to a func-
tion call that retrieves this value and returns it in W0:

// aoaa​.inc (cont.)
//
// getErrno
//
// Retrieves C errno value and returns
// it in X0:

 .extern __errno_location
 .macro getErrno
 bl __errno_location
 ldr w0, [x0]
 .endm

786 Chapter 13

The ccne through ccnle equates define useful bit patterns for use by the
ccmp instruction:

// aoaa​.inc (cont.)
//
// Constants to use in the immediate field of
// ccmp:

// NZCV
 .equ ccne, 0b0000 // Z = 0
 .equ cceq, 0b0100 // Z = 1
 .equ cchi, 0b0010 // C = 1
 .equ cchs, 0b0110 // Z = 1, C = 1
 .equ cclo, 0b0000 // Z = 0, C = 0
 .equ ccls, 0b0100 // Z = 1, C = 0
 .equ ccgt, 0b0000 // Z = 0, N = V
 .equ ccge, 0b0100 // Z = 1, N = V
 .equ cclt, 0b0001 // Z = 0, N! = V
 .equ ccle, 0b0101 // Z = 1, N! = V

 .equ cccs, 0b0010 // C = 1
 .equ cccc, 0b0000 // C = 0
 .equ ccvs, 0b0001 // V = 1
 .equ ccvc, 0b0000 // V = 0
 .equ ccmi, 0b1000 // N = 1
 .equ ccpl, 0b0000 // N = 0

 .equ ccnhi, 0b0100 // Not HI = LS, Z = 1, C = 0
 .equ ccnhs, 0b0000 // Not HS = LO, Z = 0, C = 0
 .equ ccnlo, 0b0110 // Not LO = HS, Z = 1, C = 1
 .equ ccnls, 0b0010 // Not LS = HI, C = 1

 .equ ccngt, 0b0101 // Not GT = LE, Z = 1, N! = V
 .equ ccnge, 0b0001 // Not GE = LT, Z = 0, N! = V
 .equ ccnlt, 0b0100 // Not LT = GE, Z = 1, N = V
 .equ ccnle, 0b0000 // Not LE = GT, Z = 0, N = V

The opposite branches are useful when writing code to simulate HLL-
like control structures such as if/then/else statements:

// aoaa​.inc (cont.)
//
// Opposite conditions (useful with all conditional instructions)

#define nhi ls
#define nhs lo
#define nlo hs
#define nls hi
#define ngt le
#define nge lt
#define nlt ge
#define nle gt

Macros and the Gas Compile-Time Language 787

// Opposite branches

 .macro bnlt, dest
 bge \dest
 .endm

 .macro bnle, dest
 bgt \dest
 .endm

 .macro bnge, dest
 blt \dest
 .endm

 .macro bngt, dest
 ble \dest
 .endm

 .macro bnlo, dest
 bhs \dest
 .endm

 .macro bnls, dest
 bhi \dest
 .endm

 .macro bnhs, dest
 blo \dest
 .endm

 .macro bnhi, dest
 bls \dest
 .endm

#endif // aoaa_inc

The #endif statement terminates the #ifndef statement appearing at the
very beginning of the source file.

	 13.5	 Generating Macros by Another Macro
You can use one macro to write another, as the following code demonstrates:

// Variant of the proc macro that deals
// with procedures that have varying
// parameter lists. This macro creates
// a macro named "_name" (where name is
// the procedure name) that loads all
// but the first parameters into registers
// X1..X7 and stores those values onto
// the stack.
//
// Limitation: maximum of seven arguments

 .macro varProc pName:req

788 Chapter 13

// Create a macro specifically for this func:

 .macro _\pName parms:vararg
reg = 1
 .irp parm, \parms
 .irpc rnum, 1234567
 .if reg==\rnum
 lea x\rnum, \parm
 ldr x\rnum, [x\rnum]
 mstr x\rnum, [sp, #(reg-1)*8]
 .endif
 .endr
reg = reg + 1
 .endr
 bl \pName
 .endm

// Finish off the varProc macro (just like
// the proc macro from aoaa​.inc):

\pName\().isOpenProcDCL = 1
\pName:
 .endm

As the comment states, this variant of the proc macro creates a new
varProc macro you can use to invoke the procedure with HLL-like syntax.
Consider the following invocation of this macro:

// Demonstrate the varProc macro
// (creates a macro name _someFunc
// that will load parameters and
// then branch to printf):

 varProc someFunc
 b printf
 endp someFunc

This expands to the following code:

 .macro _someFunc, parms:vararg
reg = 1
 .irp parm, \parms
 .irpc rnum, 1234567
 .if reg==\rnum
 lea x\rnum, \parm
 ldr x\rnum, [x\rnum]
 mstr x\rnum, [sp, #(reg-1)*8]
 .endif
 .endr
reg = reg + 1
 .endr
 bl someFunc
 .endm

Macros and the Gas Compile-Time Language 789

Invoke the _someFunc macro as follows:

 lea x0, fmtStr
 _someFunc i, j

This generates the following code

 lea x0, fmtStr

// Macro expansion:

 lea x1, i
 ldr x1, [x1]
 lea x2, j
 ldr x2, [x2]
 bl someFunc

and then generates someFunc branches to printf, essentially making this a
call to the printf() function.

You could have written a macro to invoke printf() directly (handling
the arguments), but you’d have to write such a macro for every function you
want to call using HLL-like syntax. Having the varProc macro automatically
write this macro spares you this repetitive task.

The varProc macro has the severe limitation that its parameters must
be global memory locations (no register, local variables, or other types of
memory operands). While this macro may not be especially useful, it serves
to demonstrate how one macro can write another. I’ll leave it as an exercise
for you to expand this macro to handle other types of operands.

Note that if a macro creates another macro, it must use an undefined
name when creating the new macro. The examples in this section achieved
this by having the invoker supply the new macro name as an argument to
the macro that creates the new macro. It is also possible to use the .purgem
directive to delete the new macro’s name prior to creating it. However,
keep in mind that the macro name must already exist when using .purgem to
delete it. On the first invocation of the creating macro, this could be a prob-
lem since the macro to create might not exist on the first invocation. This is
easily remedied by providing an empty macro prior to the first invocation of
the creating macro:

.macro createdMacro
 Empty body
.endm

.macro createMacro

.purgem createdMacro

.macro createdMacro

 Macro body

790 Chapter 13

.endm // createdMacro
 .
 .
 .
.endm

Because createdMacro already exists on the first invocation of createMacro,
the .purgem statement will not generate an error message. After the first
invocation, future invocations of createMacro will delete the version of
createdMacro created in the previous invocation.

	 13.6	 Choosing Between Gas Macros and CPP Macros
Glancing at the GNU CPP documentation (https://gcc​.gnu​.org​/onlinedocs​/
cpp​/), you’ll find that the GNU folks suggest using the Gas built-in macro
facilities rather than the CPP. If the people who wrote CPP and Gas suggest
using the Gas macro processor rather than CPP, shouldn’t you take that
suggestion seriously?

If you could use only one macro processor, you could make a strong
case for using the Gas macro processor rather than CPP. CPP is not a very
powerful macro processor, and macro abuse by C/C++ programmers has
given it a bad reputation. Gas’s macro processor, in many respects, is clearly
superior. Gas’s macro facilities would make the better choice between
the two.

However, who says you have to use only one or the other? Why not
both? CPP and Gas each have strengths and weaknesses that tend to be
complementary. Although Gas’s macro facilities are more powerful than
CPP’s, compared with other assemblers out there—such as the Microsoft
Macro Assembler (MASM) or the High-Level Assembler (HLA)—Gas’s
macro facilities aren’t particularly impressive. Anything you can use to
boost the power of Gas’s macros is a good thing. CPP also has some neat
features that Gas lacks (such as functional-style macro invocations), and
Gas, of course, has many features that CPP lacks (such as multiline macro
definitions). If you’re careful, using both macro processors gives you abili-
ties above and beyond those of either. That’s a good thing, so combining
the power of CPP and Gas is something I wholeheartedly recommend.

Given that you have two CTLs available to you when compiling a Gas
source file (at least when using a .S suffix), which CTL constructs should
you use? Most of the time, it doesn’t matter much; if either CTL would work,
the choice is up to you, though sticking with Gas’s CTL is probably the saf-
est choice if all other factors are equal. However, because the two have dif-
fering capabilities, at times you might need to pick one over the other.

For example, CPP’s macro definitions look like functions and can appear
almost anywhere (outside of comments) in the source file. They are great for
writing address expression functions. The following code demonstrates the
use of functional-style CPP macros:

mov x0, #cppMacro(0, x)

https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/

Macros and the Gas Compile-Time Language 791

In this example, a Gas macro wouldn’t work because Gas macros don’t sup-
port functional-style invocations.

On the other hand, CPP macros are limited to producing a single
line of text. Therefore, Gas macros are necessary when you want to emit a
sequence of instructions:

lea x0, someLabel // Expands to two instructions!

Also note that CPP macros can cause you problems if you attempt to use
the # symbol (stringify in CPP, immediate operand in Gas) in your macro
expansion.

Gas also supports a richer set of conditional assembly statements, along
with CTL looping statements. This makes Gas more appropriate for macros
that emit a large amount of data or a large number of statements. I gener-
ally prefer CPP macros for simple address expression functions and use Gas
macros when I need to expand the macro to actual statements.

Deciding whether to use CPP statements versus Gas’s .set, .equ, and =
directives for simple constant declarations is less clear-cut. For simple inte-
ger constants, Gas’s equate directives work fine. For nonintegral values, CPP
works better. The following example demonstrates defining string constants
with CPP macros:

#define aStr "Hello, World!" // This works.
// .set aStr, "Hello, World!" // This does not.

 .asciz aStr

For integer expressions, Gas’s equates tend to work better:

// #define a (a+1) // Generally doesn't work as expected
 .set a, a+1 // Works fine (assuming some previous definition of a)

Finally, always keep in mind that CPP processes its CTL statements in
a preprocessing pass before assembly takes place, meaning CPP is blissfully
unaware of symbols and other tokens specific to the assembly language
source file. For example:

a: .byte 0
 .
 .
 .
#ifdef a // a is undefined to CPP; it's a Gas symbol.
 .
 .
 .
#endif

792 Chapter 13

 .ifdef a // a is defined to Gas's conditional assembly.
 .
 .
 .
 .endif

The #ifdef symbol would believe that the symbol a is undefined (even
though it was defined earlier in the Gas source file). Remember, CPP condi-
tional compilation statements know only about symbols created with #define
statements.

	 13.7	 Moving On
The Gas and CPP CTLs greatly expand the capabilities of the Gas assem-
bler. Using these facilities, including constant definitions, macro defini-
tions, conditional compilation and assembly, and so on, can reduce the
effort you need to write assembly language source code.

This chapter covered the basic information you need to employ the Gas
and CPP CTLs in your assembly language source files, beginning with a
discussion of CPP. The second half of this chapter discussed the Gas CTL,
including the error and warning directives, conditional assembly, compile-
time looping directives, and Gas macros. Next, this chapter described the
internal source code for the aoaa​.inc header file that you’ve used extensively
since Chapter 1. The chapter concluded by contrasting the CPP CTL and
the Gas macro facilities, discussing when you should pick one system over
the other.

Now that this book has described the Gas CTL, its example code will
begin to use the macro facilities, starting in the next chapter.

	 13.8	 For More Information
•	 You can review the GNU CPP documentation at https://gcc​.gnu​.org​/

onlinedocs​/cpp​/.

•	 Find the Gas documentation (including macros) at https://ftp​.gnu​.org​/old​
-gnu​/Manuals​/gas​-2​.9​.1​/html​_node​/as​_toc​.html. For more on Gas macros
in particular, see https://ftp​.gnu​.org​/old​-gnu​/Manuals​/gas​-2​.9​.1​/html​_node​/
as​_107​.html.

•	 For information on advanced CPP macros, check out “C Pre-Processor
Magic” by Jonathan Heathcote at http://jhnet​.co​.uk​/articles​/cpp​_magic and
https://github​.com​/18sg​/uSHET​/blob​/master​/lib​/cpp​_magic​.h.

•	 You can check the C Preprocessor Tricks, Tips, and Idioms GitHub
site to find CPP tricks: https://github​.com​/pfultz2​/Cloak​/wiki​/C​-Preprocessor​
-tricks,​-tips,​-and​-idioms.

•	 Find the Boost CPP library at https://www​.boost​.org​/doc​/libs​/1​_57​_0​/libs​/
preprocessor​/doc​/index​.html.

https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_node/as_toc.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_node/as_toc.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_node/as_107.html
https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_node/as_107.html
http://jhnet.co.uk/articles/cpp_magic
https://github.com/18sg/uSHET/blob/master/lib/cpp_magic.h
https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
https://www.boost.org/doc/libs/1_57_0/libs/preprocessor/doc/index.html
https://www.boost.org/doc/libs/1_57_0/libs/preprocessor/doc/index.html

Macros and the Gas Compile-Time Language 793

•	 Embedded Artistry has an article on “Exploiting the Preprocessor for
Fun and Profit” by Klemens Morgenstern: https://embeddedartistry​.com​/
blog​/2020​/07​/27​/exploiting​-the​-preprocessor​-for​-fun​-and​-profit​/.

•	 Learn more about macro metaprogramming from Thomas Mailund’s
blog at https://mailund​.dk​/posts​/macro​-metaprogramming​/.

T ES T YOURSEL F

	 1.	 What does CTL stand for?

	 2.	 When do CTL programs execute?

	 3.	 What directive would you use to print a message (not an error) during pre-
processing (CPP)?

	 4.	 What directive would you use to print a message (not an error) during
assembly?

	 5.	 What directive would you use to print an error message during CPP
preprocessing?

	 6.	 What directive would you use to print an error message during assembly?

	 7.	 What directive would you use to create a CPP CTL variable?

	 8.	 What directive(s) could you use to create a Gas CTL variable?

	 9.	 What are the CPP conditional compilation directives?

10.	 What are the Gas conditional assembly directives?

11.	 What macro could you use to create preprocessor-time loops?

12.	 What directive(s) could you use to create assembly-time loops?

13.	 What directive would you use to extract the characters from a macro
parameter object in a loop?

14.	 What directive(s) do you use to define a CPP macro?

15.	 What directive(s) do you use to define a Gas macro?

16.	 How do you invoke a macro in a Gas source file?

17.	 How do you specify macro parameters in a CPP macro declaration?

18.	 How do you specify macro parameters in a Gas macro declaration?

19.	 How do you specify that a Gas macro parameter is required?

20.	 How do you specify that a Gas macro parameter is optional?

21.	 How do you specify a variable number of CPP macro arguments?

22.	 How do you specify a variable number of Gas macro arguments?

23.	 Explain how you can manually test whether a Gas macro parameter is
present (without using the :req suffix).

24.	 What Gas directive would you use (generally inside a conditional assem-
bly sequence) to immediately terminate macro expansion without process-
ing any additional statements in the macro?

https://embeddedartistry.com/blog/2020/07/27/exploiting-the-preprocessor-for-fun-and-profit/
https://embeddedartistry.com/blog/2020/07/27/exploiting-the-preprocessor-for-fun-and-profit/
https://mailund.dk/posts/macro-metaprogramming/

A string is a collection of values stored in con-
tiguous memory locations. Strings are usu-

ally arrays of bytes, half words, words, dwords,
or quad words. Some CISC CPUs, such as the

Intel x86-64, support instructions that operate directly
on strings of data. However, the ARM does not provide
instructions for this purpose, as string operations tend
to be complex and violate RISC design guidelines.
Nevertheless, it is possible to operate on string data
structures by using discrete ARM instructions.

Although the ARM CPU does not support string-specific instructions,
string operations are still an important function that CPUs must perform.
This chapter discusses how to work with strings when using ARM assem-
bly language. First off, this chapter describes how to call functions in the
C stdlib to implement string operations. These functions are well written

14
S T R I N G O P E R A T I O N S

796 Chapter 14

(typically in assembly language) and provide a high-performance imple-
mentation, as long as you are using zero-terminated strings. As noted
throughout this book, however, zero-terminated strings are not the most
suitable string data structure for high-performance string operations.
Therefore, this chapter describes a better string format that allows you to
write faster string functions.

Of course, the problem with a new string implementation is that the C
stdlib functions don’t support it, so this chapter also describes how to imple-
ment various string functions that support the new string format. Finally,
this chapter concludes by discussing Unicode strings and string functions.

	 14.1	 Zero-Terminated Strings and Functions
Chapter 4 briefly introduced the string data type, discussing zero-terminated
strings (commonly used in C/C++ and languages derived from them),
length-prefixed strings, string descriptors, and other string forms. As noted
there, the zero-terminated string is the most common string form in use
today. In particular, Linux (Pi OS) and macOS generally use zero-terminated
strings for API functions to which you pass or receive string data. Therefore,
you’ll often use zero-terminated strings in your ARM assembly language
programs running under these OSes. This section describes the issues with
zero-terminated strings and how to call functions in the C stdlib that sup-
port zero-terminated strings.

The main problem with zero-terminated strings is performance. Such
strings often require scanning over every character in the string to perform
simple operations such as computing the string length. For example, the
following code computes the length of a string named longZString:

 lea x1, longZString
 mov x2, x1 // Save pointer to string.
whileLp: ldrb w0, [x1], #1 // Fetch next char and inc X1.
 cmp w0, #0 // See if 0 byte.
 bne whileLp // Repeat while not 0.
 sub x0, x1, x2 // X0 = X1 - X2
 sub x0, x0, #1 // Adjust for extra increment.

// String length is now in X0.

If longZString is indeed very long, this code sequence can take a long
time to execute.

Length-prefixed strings (see section 4.6.2, “Length-Prefixed Strings,”
on page 188) solve this problem by including the string’s current length
along with the data. Any string function that uses the string’s length will
operate much more efficiently because it doesn’t have to first scan the
entire string to determine its length. If you get to choose the string format
to use in your assembly language code, choosing a data type that includes
the length as part of the string’s data can dramatically improve string-
processing performance.

String Operations 797

Unfortunately, you don’t always get to choose the string format to use
in your code. Sometimes external datasets, applications, or OSes force the
zero-terminated string format on you (for example, OS API calls generally
require zero-terminated strings).

It is possible to improve the performance of naive string functions such
as the string-length code given earlier. In particular, the code at whileLp
processes a single byte per iteration of the loop. Because the ARM64 CPU
is capable of processing 8 bytes at a time in general-purpose registers (and
16 bytes at a time in vector registers), you might wonder whether it’s possible
to do better than one character per loop iteration. After all, if you can pro-
cess 16 bytes per loop iteration (rather than 1), the function should run
16 times faster, right?

The answer is a qualified yes. The first caveat is that processing 16 bytes
per iteration is more complex and will require more than three instructions
in the loop body. Expecting a 16-times improvement is therefore overly
optimistic; 4 to 8 times faster is probably a more reasonable expectation but
still worth achieving.

The second caveat is that processing 16 characters at a time requires
loading 16 bytes from memory on each iteration, meaning that for many
strings you’ll have to read data from memory beyond the end of the string.
Thus, it’s possible to read beyond the end of an MMU page in memory
containing the string, which could lead to a memory protection fault (see
section 3.1.7, “Memory Access and MMU Pages,” on page 127). While such a
situation is rare, it nevertheless represents a defect in your code that could
crash your application.

One last issue, while not as lethal as an illegal memory access, is that
loading 16 bytes of data from memory into a vector register works best if
the data is aligned on a 16-byte boundary. Unfortunately, a zero-terminated
string is not guaranteed to begin on such a boundary in memory.

If you have complete control of string placement in memory, you can
arrange for strings to always begin on a 16-byte boundary. Likewise, you
can always include padding at the end of the strings so you’re guaranteed
to be able to read at least 15 bytes beyond the end of the string’s data,
thereby avoiding the MMU page-boundary problem. Unfortunately, few
programs have such tight control over their strings that they can guarantee
this arrangement in memory. For example, if an OS returns a pointer to a
string, it may violate alignment and padding requirements.

As a general rule, I recommend calling C stdlib functions if you’re
going to manipulate zero-terminated (C) strings. In the past, C stdlib func-
tions were written in C, and even with the best optimizing compilers it was
easy enough for a good assembly language programmer to write faster code
than the compiler produced. However, modern C stdlib string code is typi-
cally written in assembly language (by an expert programmer) and is often
much better than any code you would write yourself. The GNU C stdlib for
AARCH64, for example, has the following functions written in handcoded

798 Chapter 14

assembly language (see section 14.6, “For More Information,” on page 859
for more on these):

strcpy

strchr

strchrnul

strcmp

strcpy

strlen

strncmp

strnlen

strrchr

The following is the GNU C stdlib strlen.S source file (slightly modified
for formatting and comments):

// strlen.S
//
// Copyright (C) 2012-2022 Free Software Foundation, Inc.
// This file is part of the GNU C Library. The GNU C
// Library is free software; you can redistribute it
// and/or modify it under the terms of the GNU Lesser
// General Public License as published by the Free
// Software Foundation; either version 2.1 of the License,
// or (at your option) any later version. The GNU C
// Library is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details. You should have received a
// copy of the GNU Lesser General Public License along
// with the GNU C Library. If not, see
// <https://www​.gnu​.org​/licenses​/>.

#include <sysdep.h>

// Assumptions:
//
// ARMv8-a, AArch64, Advanced SIMD
// MTE compatible

1 #define srcin x0
#define result x0

#define src x1
#define synd x2
#define tmp x3
#define shift x4

#define data q0
#define vdata v0
#define vhas_nul v1

String Operations 799

#define vend v2
#define dend d2

// Core algorithm: For each 16-byte chunk, calculate a
// 64-bit nibble mask value with 4 bits per byte. This code
// take 4 bits of every comparison byte with shift right
// and narrow by 4 instruction. Since the bits in the
// nibble mask reflect the order in which things occur in
// the original string, counting trailing 0s identifies
// exactly which byte matched.

// On input, X0 contains a pointer to a zero-terminated string.
// On return, X0 contains the string length.

STRLEN:
 2 bic src, srcin, 15
 ld1 {vdata.16b}, [src]
 cmeq vhas_nul.16b, vdata.16b, 0
 lsl shift, srcin, 2
 shrn vend.8b, vhas_nul.8h, 4 /* 128 -> 64 */
 fmov synd, dend
 lsr synd, synd, shift
 cbz synd, zloop

 3 rbit synd, synd
 clz result, synd
 lsr result, result, 2
 ret

 .p2align 5
zloop:
 4 ldr data, [src, 16]!
 cmeq vhas_nul.16b, vdata.16b, 0
 umaxp vend.16b, vhas_nul.16b, vhas_nul.16b
 fmov synd, dend
 cbz synd, zloop

 5 shrn vend.8b, vhas_nul.8h, 4 /* 128 -> 64 */
 sub result, src, srcin
 fmov synd, dend
 rbit synd, synd
 clz tmp, synd
 add result, result, tmp, lsr 2
 ret

The defines 1 give the registers meaningful names within the func-
tion. Personally, I prefer to see the register names with comments describ-
ing their contents rather than redefined registers, to make it easier to avoid
reusing registers, but this is certainly an acceptable style, especially for
C library code that uses the ARM ABI.

As noted earlier, code that operates on 16 bytes at a time (as this ver-
sion of strlen() does) has to deal with two issues: aligning data on a 16-byte
boundary and preventing data access beyond the end of the MMU page
containing the string. This code achieves both of those requirements by

800 Chapter 14

using the bic instruction 2 to set the LO 4 bits of the string pointer to 0.
Setting the LO 4 bits to 0 will align the pointer on the 16-byte boundary on
or before the beginning of the string. Note that src (X1) might now point
at up to 15 characters before the actual start of the string (which might
contain some 0 bytes; this function will deal with that issue later). Because
MMU pages always begin on a 4,096-byte boundary (which are also 16-byte
boundaries), adjusting the pointer to the beginning of the 16-byte bound-
ary will never produce a memory access outside the MMU page containing
the start of the string.

Another advantage to aligning the pointer on a 16-byte boundary is
that you don’t have to worry about accidental illegal memory accesses at the
end of the MMU page. Because 4,096 is divisible by 16, loading 16 bytes at a
time on 16-byte boundaries will never produce a memory access that crosses a
page boundary. If the zero-terminating byte is anywhere within those 16 bytes,
reading data to the end of the 16-byte block is safe. Clearing the LO 4 bits of
the pointer thus allows safe memory accesses within an MMU page.

The problem with aligning the src pointer to a 16-byte boundary is that
doing so may change the pointer to point at memory before the start of the
string. While this won’t create MMU page fault problems, it might cause the
code to incorrectly compute the string’s length. At the very least, you don’t
want to count any extra bytes before the start of the string, nor do you want
to terminate the string-length calculation, because 0s appear in those ear-
lier bytes.

Fortunately, the code handles this in a clever way 2. First, the ld1
instruction starts the process by loading 16 bytes from the aligned address
in src. The cmeq instruction then locates every 0 byte in those 16, then stores
0xFF in the corresponding bytes of V1 (vhas_null) and 0s everywhere else.

The shrn instruction shifts the compare mask bits to the right 4 bit posi-
tions. The even bytes now contain two comparison masks in the LO and
HO nibbles, and the “narrowing” component of the instruction extracts
those even bytes and packs them into the LO 8 bytes of V2 (for a total of
16 nibbles), which the fmov instruction copies into X2.

The lsl instruction (which I skipped discussing in the previous para-
graph) is part of the code that deals with extra bytes appearing in the
16-byte block prior to the string. This multiplies the original address by 4;
this will be an index into the nibbles held in X2, where the string will actu-
ally start (using only the LO 6 bits of the shifted value). The lsr instruction
shifts the nibble mask to the right by the number of bits held in the LO
6 bits of X4 (shift). This removes the cmeq nibble masks from X2 for the
bytes that appear before the start of the string. These lsl and lsr instruc-
tions allow the algorithm to ignore the (possible) extra bytes in the 16-byte
block before the string.

The resulting value in X2 will contain 0b1111 nibbles everywhere a
0 byte appears in the portion of the string held in V0 (vdata), and 0b0000
in all the other nibbles. In particular, X2 will contain 0 if there were no 0
bytes in the string in V0. If X2 contains 0 (meaning no 0 bytes), the string’s
terminating 0 byte must appear later in the string; in that case, the cbz
instruction transfers control to label zloop.

String Operations 801

If X2 does not contain 0, a 0b1111 nibble indicates the position of a 0 byte
in the string. The rbit (reverse bits) instruction 3 reverses all the bits in
X2, and the clz instruction counts the number of leading 0s. Because each
byte in the string is marked by 4 bits in X2, the count in X0 (result) is four
times the length of the string. The lsr instruction shifts this count right by
2, which divides the bit count by 4, producing the string length.

The function then returns this length to the caller in X0. This code
handles the case where the string appears in the first block of bytes loaded
into V0 (vdata). If the string is sufficiently long that the code must fetch
another block of 16 bytes from memory, the function transfers control
to the code 4. The code at zloop is responsible for processing blocks of
16 characters, where the first byte read from memory is part of the string
(unlike the previous code, where the first 1–15 bytes might not be part of
the string). This loop rapidly scans through blocks of 16 bytes, looking for
the first one that contains a 0. As this loop takes five instructions to process
16 bytes (versus three instructions to process a single byte in the original
string-length example), you would expect it to run approximately eight
times faster than the single-byte-at-a-time code.

Once the loop finds a 0 byte somewhere in a block of 16 bytes 5, it deter-
mines the position of the 0 byte (using the same technique as earlier 2 3),
adds the distance from the start of the string to the current 16-byte block,
then adds the number of nonzero bytes in the current 16-byte block.

Although this code is tricky and complex, computing the length of a
zero-terminated string is a common operation, so it’s worth the optimiza-
tion work. You would be hard-pressed to improve on this algorithm when
writing your own code.

Again, because the glibc (GNU Library for C) authors have spent con-
siderable time optimizing their ARM string functions, I highly recommend
calling the C stdlib functions if they are appropriate for your application.

	 14.2	 A String Format for Assembly Language
		 Programmers

As mentioned many times in this book, the zero-terminated string is not
the best string data type to use if you want to write the highest-performing
code. Choosing a string format that incorporates the length, and possibly
other information, as well as providing data alignment for the string data,
can improve performance in many cases. This section introduces a sample
format that provides these improvements.

The string format discussed in this section is based on the HLA string
format (see section 4.6.2, “Length-Prefixed Strings,” on page 188). HLA
strings consist of two 32-bit length values followed by the character data and a
zero-terminating byte. A string “variable” is just a pointer object that points
to the first character of the string (or to a zero-terminating byte, if the string
is empty).

The current length of the string (character count, not including the
zero-terminating byte) appears at address ptr-4, and a maximum allocated

802 Chapter 14

space (for characters) value appears at address ptr-8 (where ptr is the
pointer to the character data). Both length values are unsigned 32-bit val-
ues, supporting strings up to 4GB in length. For HLA, string objects are
always aligned on a 4-byte boundary and the storage allocated for the string
(and 0 byte) is always a multiple of 4 bytes.

For strings on a 64-bit CPU, a few changes are appropriate. First, the
4-byte maximum length and current length fields can remain. You prob-
ably don’t need strings that can hold more than four billion characters. The
alignment should be on a 16-byte boundary, allowing the use of Neon vec-
tor registers to efficiently process 16 bytes at a time from memory. Finally,
storage allocated for strings should always be a multiple of 16 bytes (to pre-
vent problems when reading bytes beyond the end of the string). Here’s a
first pass at a structure that defines this string type:

struct string, -8
word string.maxlen
word string.len
byte string.chars // Note: up to 4GB chars
ends string

With this struct declaration and a pointer to a string object in X0, you
can access the fields of the string as follows:

ldr w1, [x0, #string.maxlen] // Fetch the maxlen field.
ldr w2, [x0, #string.len] // Fetch the current length.

Note that X0 points directly at the first character of the string (if it isn’t
empty), so you can reference the character data by using [x0] directly (you
don’t need to use the string.chars field name, which turns out to be 0, anyway).

If you would actually like to allocate storage for string data, or initial-
ize some string storage with character data, the following two macros are
useful (as a first approximation, with a minor modification to appear in the
next section):

 .macro str.buf strName, maxSize
 .align 4 // Align on 16-byte boundary.
 .word \maxSize
 .word 0
\strName: .space ((\maxSize+16) & 0xFFFFFFF0), 0
 .endm

 .macro str.literal strName, strChars
 .align 4 // Align on 16-byte boundary.
 .word len_\strName // string.maxlen
 .word len_\strName // string.len

 // Emit the string data and compute the
 // string's length:

\strName: .ascii "\strChars"
len_\strName= .-\strName

String Operations 803

 .byte 0 // Zero-terminating byte

 // Ensure object is multiple of 16 bytes:

 .align 4
 .endm

The str.buf macro will allocate storage for a string that can hold a maxi-
mum of maxSize characters (plus a zero-terminating byte). The .align directive
ensures that the object begins on a 16-byte boundary (24). It initializes the
first word of the structure (string.maxlen) with maxSize passed as the argument.
It creates an empty string by initializing the second 4 bytes (the string.len
field) with 0. Finally, it allocates sufficient storage for maxSize + 1 characters
(for the string data and a zero-terminating byte, initializing them to zeros)
and additional storage to ensure that the whole data structure (including the
string.maxlen and string.len fields) consumes a multiple of 16 bytes.

Here’s an example use of the str.buf macro:

str.buf myString, 100 // Maximum of 100 chars in string

The str.literal macro also creates string buffers, but instead of initial-
izing it with the empty string, you can specify a string literal in the macro:

str.literal hwStr, "Hello, World!\n"

Note that str.literal will initialize both the string.maxlen and string.len
fields with the actual size of the string literal you supply.

This string data type has one small issue. Although the entire struc-
ture is aligned on a 16-byte boundary—and the whole structure is a mul-
tiple of 16 bytes long, at least when you create the buffers with the str.buf
and str.literal macros—the first character of string data is actually at an
address that is not a multiple of 16 (though it is a multiple of 8). To process
string data 16 bytes at a time, you must either make a special case of the
first 8 bytes or add another 8 bytes to the beginning of the structure (some
additional fields or just 8 padding bytes). In the next section, you’ll see a
modification of these two macros that adds an extra field for this purpose.

14.2.1  Dynamic String Allocation
As long as you use only the str.buf and str.literal macros to allocate stor-
age for string variables, you don’t have to worry about alignment and MMU
page issues; your string data structures will always be allocated on a 16-byte
boundary (because of the .align 4 statement) and will always be a multiple
of 16 bytes long. However, if you want to dynamically allocate storage for
your strings (using the C stdlib malloc() function, for example), you must
deal with data alignment and padding issues yourself.

The C stdlib malloc() function makes no promises about the storage it
allocates, other than it will return a pointer to at least the amount of storage
you’ve requested if the function succeeds. In particular, the C stdlib doesn’t

804 Chapter 14

make any guarantees about the alignment of the storage you’ve requested.
Also, malloc() may allocate a few bytes more than you’ve requested, but you
can never count on this. If you want your storage to be allocated on a cer-
tain byte boundary (such as a 16-byte boundary), you’ll have to handle this
yourself.

M A L LOC() A ND MEMORY A L IGNMEN T

Although the C stdlib doesn’t address data alignment of the storage you’ve
requested, I’ve run some experiments on macOS and Linux (64-bit), and it
appears that both OSes always allocate storage on 16-byte boundaries. I
tested this by calling malloc() 256 times, allocating 1, 2, 3, . . . , 256 bytes of
storage. I logically OR’d all the resulting pointers together. The result had 0s in
the LO 4 bits (meaning all return pointers were 16-byte aligned). It’s therefore
probably justified to assume that all calls to malloc() on these machines return
a 16-byte-aligned block memory.

That being said, there is no guarantee that this will be true for every ver-
sion of malloc() you might call. If you want to live dangerously, you can assume
16-byte alignment on the returned blocks, but I’d recommend you always check
the return value to verify this.

If you can’t guarantee that malloc() returns a properly aligned block,
you can create a str.alloc function that does this for you:

	 1.	On entry, add 16 to the requested storage size to make room for any
needed padding bytes.

	 2.	Call the malloc() function with the new allocation size.

	 3.	Save the pointer that malloc() returns (you will need it to free the stor-
age later).

	 4.	Add 15 to the pointer and clear the LO 4 bits of the sum; then add 16
so the pointer contains the address of the first character position in the
string.

	 5.	Set the maxlen field as appropriate.

	 6.	Initialize the len field to 0.

	 7.	Store a zero-terminating byte at the first character position (to create
an empty string).

	 8.	Return the pointer to the first character position as the str.malloc result.

A function that deallocates the string storage is much simpler: all you
need to do is fetch the allocated pointer (saved during the str.alloc call),
then call the C stdlib free() function to free the storage. From where do you
retrieve the allocated pointer value? The best place to keep it is within the

String Operations 805

string object data structure itself, as accomplished in the following modifi-
cation of the string structure:

struct string, -16
dword string.allocPtr // At offset -16
word string.maxlen // At offset -8
word string.len // At offset -4
byte string.chars // At offset 0

// Note: characters in string occupy offsets
// 0 ... in this structure.

ends string

The header fields now consume 16 bytes, so the string.chars field will
start on a 16-byte aligned boundary (assuming the whole structure is on a
16-byte boundary).

Before providing the code to implement str.alloc and str.free, I’ll
introduce one other useful string constructor function that str.alloc will
use: str.bufInit. Its purpose is similar to the str.buf macro insofar as it ini-
tializes a memory buffer to hold a string object, but while you use str.buf
to declare a static object in memory during assembly, str.bufInit allows
you to initialize a block of memory at runtime. The str.bufInit function
does the following:

•	 Adjusts the pointer passed to it so that the address held in the pointer is
16-byte aligned (adding 0 to 15 to the pointer’s value if it is not already
16-byte aligned).

•	 Initializes the string.allocPtr field to 0 (NULL) to differentiate the buffer
from one created by str.alloc.

•	 Computes the string.maxlen field value based on the buffer size passed
to the function, subtracting any padding bytes needed to achieve
16-byte alignment, as well as the 16 bytes required by the header field
and any additional bytes needed to ensure that the whole structure is a
multiple of 16 bytes long.

•	 Initializes the string.len field to 0 and stores a zero-terminating byte at
the beginning of the character buffer area.

Before presenting the implementation of these string functions, a quick
sidetrack is necessary to present the volatile_save structure the code will use
to preserve registers. This structure appears in the aoaa​.inc header file and
takes the following form:

// Structure to hold the volatile registers saved by functions
// that call C stdlib funcs
//
// Note: size of this structure must be a multiple of 16 bytes!

 struct volatile_save
 qword volatile_save.x0x1

806 Chapter 14

 qword volatile_save.x2x3
 qword volatile_save.x4x5
 qword volatile_save.x6x7
 qword volatile_save.x8x9
 qword volatile_save.x10x11
 qword volatile_save.x12x13
 qword volatile_save.x14x15
 qword volatile_save.v0
 qword volatile_save.v1
 qword volatile_save.v2
 qword volatile_save.v3
 qword volatile_save.v4
 qword volatile_save.v5
 qword volatile_save.v6
 qword volatile_save.v7
 qword volatile_save.v8
 qword volatile_save.v9
 qword volatile_save.v10
 qword volatile_save.v11
 qword volatile_save.v12
 qword volatile_save.v13
 qword volatile_save.v14
 qword volatile_save.v15
 ends volatile_save

Listing 14-1 contains the str.alloc and str.free functions, as well as
updates to the str.buf and str.literal macros (to handle the string.allocPtr
field). The listing uses the string structure (I gave earlier in this section)
that includes the string.allocPtr field. For strings whose storage is allocated
dynamically, this field will contain the allocation pointer that str.free will
use when deallocating the string’s storage. For string objects that were not
created on the heap, this field will contain NULL (0). This structure is the
first major piece of code appearing in the listing.

// Listing14-1.S
//
// String initialization, allocation, and deallocation functions and macros

 #include "aoaa​.inc"

// Assembly language string data structure:

 struct string, -16
 dword string.allocPtr // At offset -16
 word string.maxlen // At offset -8
 word string.len // At offset -4
 byte string.chars // At offset 0

 // Note: characters in string occupy offsets
 // 0 ... in this structure.

 ends string

String Operations 807

The str.buf and str.literal macros contain minor modifications (to the
macros with the same name given earlier in this chapter) that include stor-
age for the allocPtr field:

// Listing14-1.S (cont.)
//
// str.buf
//
// Allocate storage for an empty string
// with the specified maximum size:

 .macro str.buf strName, maxSize
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word \maxSize // Maximum string size
 .word 0 // Current string length
\strName: .space ((\maxSize+16) & 0xFFFFFFF0), 0
 .endm

// str.literal
//
// Allocate storage for a string buffer and initialize
// it with a string literal:

 .macro str.literal strName, strChars
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word len_\strName // string.maxlen
 .word len_\strName // string.len

 // Emit the string data and compute the
 // string's length:

\strName: .ascii "\strChars"
len_\strName= .-\strName
 .byte 0 // Zero-terminating byte

 // Ensure object is multiple of 16 bytes:

 .align 4
 .endm

Note that both of these macros will initialize this field to NULL (0).
The next section of the listing is the code section, beginning with the

usual getTitle function:

// Listing14-1.S (cont.)

 .code
 .global malloc
 .global free

ttlStr: wastr "Listing14-1"

808 Chapter 14

// Standard getTitle function
// Returns pointer to program name in X0

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

Next, the str.bufInit function initializes a memory buffer for use as a
string variable:

// Listing14-1.S (cont.)
//
// str.bufInit
//
// Initializes a raw memory buffer for use as an assembly
// language string object
//
// On entry:
//
// X0- Pointer to the first byte of a buffer
// W1- Buffer length
//
// On return:
//
// X0- Pointer to string variable object
// X1- Maximum string length
//
// Carry flag clear if success, set if error

 proc str.bufInit

 locals str_bufInit_l
 dword str_bufInit_l.saveX2
 byte str_bufInit_l.stkSpace, 64
 endl str_bufInit_l

 enter str_bufInit_l.size
 str x2, [fp, #str_bufInit_l.saveX2]

 // Clear HO 32 bits of X1:

 1 and x1, x1, #0xFFFFFFFF

 // Ensure that the pointer is aligned
 // on a 16-byte boundary:

 2 add x2, x0, #15
 bic x2, x2, #0xf

 // Point X2 at the start of the
 // character data:

String Operations 809

 3 add x2, x2, #string.chars-string.allocPtr

 // Compute the new maxlen value:

 4 sub x0, x2, x0
 subs x1, x1, x0
 bmi str.bufInit.bad

 // Force maxlen to be a multiple of 16:

 5 bic x1, x1, #0xf

 // Error if maxlen is 0:

 cbz x1, str.bufInit.bad

 // Initialize the string struct fields:

 6 str xzr, [x2, #string.allocPtr] // NULL
 str w1, [x2, #string.maxlen]
 str wzr, [x2, #string.len] // Empty str
 strb wzr, [x2, #string.chars] // 0 byte

 mov x0, x2 // Return str ptr in X0.

 ldr x2, [fp, #str_bufInit_l.saveX2]
 adds xzr, xzr, xzr // Clear the carry flag.
 leave

// Error return (sets the carry flag):

str.bufInit.bad:
 ldr x2, [fp, #str_bufInit_l.saveX2]
 cmp x2, #0 // Set the carry flag.
 leave
 endp str.bufInit

This function expects a pointer to the buffer in X0 along with the buf-
fer length in W1. It initializes the fields of the string object and returns
a pointer to the string object in X0. The code begins by clearing the HO
32 bits of X1, so the code can work with 64-bit values 1. It then adjusts the
pointer passed in X0 to make it 16-byte aligned, by adding 16 and clear-
ing the LO 4 bits of the sum 2. This adjusts X0 to point at the next higher
16-byte aligned address if it wasn’t already so aligned.

Next, the code adjusts the pointer to contain the address of the first
byte of character data in the string (so that the other fields have negative
offsets from the pointer) 3. It then computes the new maxlen value by sub-
tracting out the padding bytes (for 16-byte alignment) and the size of the
fields preceding the character data 4. The function returns an error if this
difference is a negative value.

The code ensures that the length of the character data is a multiple of
16 bytes (possibly further reducing the maxlen size) by clearing the LO 4 bits

810 Chapter 14

of the length value 5. The function returns an error if the maxlen value
turns out to be 0.

Finally, the code initializes the fields of the string object (producing an
empty string) 6. Note that

adds xzr, xzr, xzr

clears the carry flag (successful return) because adding 0 to anything never
produces an unsigned overflow (carry). Also note that

cmp x2, #0

always sets the carry flag because the carry will be set after a comparison if
the left value is greater than or equal to (higher than or the same as) the
right value. Of course, for unsigned values, any value will always be greater
than or equal to 0.

Two functions in Listing 14-1, str.alloc and str.free, will call the C
stdlib malloc() and free() functions. The str.alloc and str.free functions
preserve all registers they modify that don’t contain explicit return values.
However, because the malloc() and free() functions follow the ARM ABI,
they are allowed to overwrite values in the volatile register set. To preserve
the register values, the str.alloc and str.free functions must preserve the
volatile registers by using the volatile_save structure.

Up next is the str.alloc function:

// Listing14-1.S (cont.)
//
// str.alloc
//
// Allocates storage for an assembly language string
// object on the heap (C stdlib malloc heap)
//
// On entry:
//
// W0- Maximum string length for string object
//
// On exit:
//
// X0- Pointer to string object (NULL if error)
//
// Carry clear if successful, set if error

 proc str.alloc

 locals str_alloc
 dword str_alloc.maxlen // Really only a word
 dword str_alloc.saveX1
 salign 4 // 16-byte align vsave
 1 byte str_alloc.vsave, volatile_save.size
 byte str_alloc.stkSpace, 64
 endl str_alloc

String Operations 811

 enter str_alloc.size

 // Preserve X1 and point it at the
 // volatile_save.x0x1 entry in str_alloc.vsave:

 str x1, [fp, #str_alloc.saveX1]

 // Load X1 with the effective address of
 // str_alloc.vsave (which will be the
 // volatile_save.x0x1 element):

 2 add x1, fp, #str_alloc.vsave

 // Preserve all the volatile registers (call to
 // malloc may change these). Note that X1 is
 // currently pointing at volatile_save.x0x1 in
 // str_alloc.vsave (volatile_save). You don't know
 // that you *have* to save all the registers (it's
 // unlikely malloc will modify them all), but just
 // to be safe ...

 // The following code stores away X2, ..., X15 and
 // V0..V15 in successive memory locations in the
 // volatile_save structure. X1 was already preserved,
 // and it returns the result in X0.

 3 stp x2, x3, [x1, #16]!
 stp x4, x5, [x1, #16]!
 stp x6, x7, [x1, #16]!
 stp x8, x9, [x1, #16]!
 stp x10, x11, [x1, #16]!
 stp x12, x13, [x1, #16]!
 stp x14, x15, [x1, #16]!

 str q0, [x1, #16]!
 str q1, [x1, #16]!
 str q2, [x1, #16]!
 str q3, [x1, #16]!
 str q4, [x1, #16]!
 str q5, [x1, #16]!
 str q6, [x1, #16]!
 str q7, [x1, #16]!
 str q8, [x1, #16]!
 str q9, [x1, #16]!
 str q10, [x1, #16]!
 str q11, [x1, #16]!
 str q12, [x1, #16]!
 str q13, [x1, #16]!
 str q14, [x1, #16]!
 str q15, [x1, #16]!

 // Save maxlen value for now:

 str w0, [fp, #str_alloc.maxlen]

812 Chapter 14

 // Force maxlen to be a multiple of 16 and
 // add in 16 extra bytes so you can ensure
 // that the storage is 16-byte aligned.
 // Also add in the size of the string.struct
 // fields:

 4 add x0, x0, #31 + (string.chars-string.allocPtr)
 and x0, x0, #0xffffffff // Fix at 32 bits.
 bic x0, x0, #0xf // Force to multiple of 16.

 // Call C stdlib malloc function to allocate the
 // storage:

 5 bl malloc
 cmp x0, x0 // Set carry flag on error.
 cbz x0, str.alloc.bad // Error if NULL return.

 mov x1, x0 // Save allocation pointer.

 // Adjust pointer to point at start of characters
 // in string struct and 16-byte align the pointer:

 6 add x0, x0, #15+(string.chars-string.allocPtr)
 bic x0, x0, #0xf

 // Initialize the string struct fields:

 str x1, [x0, #string.allocPtr] // Save alloc ptr.
 ldr w2, [fp, #str_alloc.maxlen]
 str w2, [x0, #string.maxlen] // Save maxlen.
 str wzr, [x0, #string.len] // Empty string.
 strb wzr, [x0, #string.chars] // Zero terminator

 // Restore all the volatile general-
 // purpose registers:

 adds xzr, xzr, xzr // Clear carry for success.

str.alloc.bad:

 // Restore all the volatile registers.
 // From this point forward, the code must
 // not change the carry flag.

 7 add x1, fp, #str_alloc.vsave
 ldp x2, x3, [x1, #16]!
 ldp x4, x5, [x1, #16]!
 ldp x6, x7, [x1, #16]!
 ldp x8, x9, [x1, #16]!
 ldp x10, x11, [x1, #16]!
 ldp x12, x13, [x1, #16]!
 ldp x14, x15, [x1, #16]!

String Operations 813

 ldr q0, [x1, #16]!
 ldr q1, [x1, #16]!
 ldr q2, [x1, #16]!
 ldr q3, [x1, #16]!
 ldr q4, [x1, #16]!
 ldr q5, [x1, #16]!
 ldr q6, [x1, #16]!
 ldr q7, [x1, #16]!
 ldr q8, [x1, #16]!
 ldr q9, [x1, #16]!
 ldr q10, [x1, #16]!
 ldr q11, [x1, #16]!
 ldr q12, [x1, #16]!
 ldr q13, [x1, #16]!
 ldr q14, [x1, #16]!
 ldr q15, [x1, #16]!

 ldr x1, [fp, #str_alloc.saveX1]

 leave
 endp str.alloc

The local variable declaration str_alloc.vsave (type volatile_save 1)
will hold the preserved values of the volatile registers. Unfortunately, this
structure is so large that you cannot directly access fields by using the
[FP, #offset] addressing mode. Therefore, the code computes the address
of the volatile_save.x0x1 field into X1 and stores successive registers into
the block pointed at by X1 2. This code must initialize X1 prior to storing
anything in str_alloc.vsave, so it first preserves X1 in a different local vari-
able. Because the function returns the result in X0 and has to save X1 in a
different location, this code doesn’t actually use the volatile_save.x0x1 field
of str_alloc.vsave.

The code saves all the volatile registers except X0 and X1 3. It uses the
pre-increment addressing mode, so it skips over the volatile_save.x0x1 field
when writing the X2 and X3 registers to the structure.

Next, the code computes a string allocation size by adding 16 to maxlen
(to cover the extra fields in the string data structure) 4; it also adjusts the
allocation size to be a multiple of 16 (greater than or equal to the requested
size plus 16). This ensures that the character data area is a multiple of
16 bytes long, so string-handling code can manipulate 16 bytes at a time
without worrying about accessing data beyond the allocated storage.

The call to malloc() 5 allocates the storage for the string object. This
code checks for a NULL (0) return result and returns an error if malloc()
fails. On success, the code initializes the fields of the string object and then
returns a pointer to the object in X0 (with the carry clear on a successful
call) 6. Finally, the code restores all the volatile registers (except X0, which
contains the function result) 7.

814 Chapter 14

Next, the code includes the str.free function:

// Listing14-1.S (cont.)
//
// str.free
//
// Deallocates storage for an assembly language string
// object that was previously allocated via str.alloc
//
// On entry:
//
// W0- Pointer to string object to deallocate

 proc str.free

 locals str_free
 dword str_free.maxlen // Really a word
 dword str_free.saveX1
 salign 4 // 16-byte align vsave
 byte str_free.vsave, volatile_save.size
 byte str_free.stkSpace,64
 endl str_free

 enter str_free.size

 // Preserve X1:

 str x1, [fp, #str_free.saveX1]

 // Load X1 with the effective address of
 // str_alloc.vsave (which will be the
 // volatile_save.x0x1 element):

 add x1, fp, #str_free.vsave

 // Preserve all the volatile registers (call to free
 // may change these):

 1 stp x2, x3, [x1, #16]!
 stp x4, x5, [x1, #16]!
 stp x6, x7, [x1, #16]!
 stp x8, x9, [x1, #16]!
 stp x10, x11, [x1, #16]!
 stp x12, x13, [x1, #16]!
 stp x14, x15, [x1, #16]!

 str q0, [x1, #16]!
 str q1, [x1, #16]!
 str q2, [x1, #16]!
 str q3, [x1, #16]!
 str q4, [x1, #16]!
 str q5, [x1, #16]!
 str q6, [x1, #16]!
 str q7, [x1, #16]!

String Operations 815

 str q8, [x1, #16]!
 str q9, [x1, #16]!
 str q10, [x1, #16]!
 str q11, [x1, #16]!
 str q12, [x1, #16]!
 str q13, [x1, #16]!
 str q14, [x1, #16]!
 str q15, [x1, #16]!

 // Fetch the allocation pointer from the
 // string struct data type:

 2 ldr x1, [x0, #string.allocPtr]

 // Make sure it's not NULL (non-allocated
 // pointer):

 3 cbz x1, str.free.done

 // Defensive code, set the allocPtr field to
 // NULL:

 str xzr, [x0, #string.allocPtr]

 // Deallocate the storage:

 4 mov x0, x1
 bl free

str.free.done:

 // Restore the volatile register before
 // returning:

 add x1, fp, #str_free.vsave
 5 ldp x2, x3, [x1, #16]!
 ldp x4, x5, [x1, #16]!
 ldp x6, x7, [x1, #16]!
 ldp x8, x9, [x1, #16]!
 ldp x10, x11, [x1, #16]!
 ldp x12, x13, [x1, #16]!
 ldp x14, x15, [x1, #16]!

 ldr q0, [x1, #16]!
 ldr q1, [x1, #16]!
 ldr q2, [x1, #16]!
 ldr q3, [x1, #16]!
 ldr q4, [x1, #16]!
 ldr q5, [x1, #16]!
 ldr q6, [x1, #16]!
 ldr q7, [x1, #16]!
 ldr q8, [x1, #16]!
 ldr q9, [x1, #16]!
 ldr q10, [x1, #16]!

816 Chapter 14

 ldr q11, [x1, #16]!
 ldr q12, [x1, #16]!
 ldr q13, [x1, #16]!
 ldr q14, [x1, #16]!
 ldr q15, [x1, #16]!

 ldr x1, [fp, #str_free.saveX1]
 leave
 endp str.free

The str.free function also calls a C stdlib function and therefore must
preserve all the volatile registers. In fact, the preservation code 1 5 makes
up the bulk of the statements in this function.

The caller passes the address of an assembly string object in the X0 reg-
ister to this function. However, this is not the address that the code passes
to the C stdlib free() function; instead, this code fetches the address found
in the string.allocPtr field to pass on to free() 2.

Before actually calling free(), the code first checks whether this pointer
value is NULL 3. A NULL string.allocPtr value means that the string wasn’t
originally allocated with a call to str.alloc. If that’s the case, str.free simply
returns (without registering an error), allowing code to call this function
on dynamically and statically allocated objects. This is sometimes conve-
nient when an arbitrary string pointer has been passed to a function that
frees the storage without knowing how the storage was originally created.

Finally, the str.free function calls the free() function 4 to return the
storage to the heap.

Here’s a main program example (along with some data) that tests the
functions appearing in Listing 14-1:

// Listing14-1.S (cont.)
//
// Some read-only strings:

fmtStr: wastr "hwStr=%s"
fmtStr2: wastr "hwDynamic=%s"
fmtStr3: wastr "strBufInit error\n"

 str.literal hwLiteral, "Hello, world!\n"

///
//
// Main program to test the code:

 proc asmMain, public

 locals lcl
 qword hwStr
 qword hwDynamic
 byte hwBuffer, 256
 byte stkSpace, 64
 endl lcl

String Operations 817

 enter lcl.size // Reserve space for locals.

 // Demonstrate call to str.bufInit:

 // Initialize hwBuffer as a string object and
 // save pointer in hwStr:

 add x0, fp, #hwBuffer
 mov x1, #256 // Buffer size
 bl str.bufInit
 str x0, [fp, #hwStr]

 // Force copy of hwLiteral into hwStr:

 lea x2, hwLiteral
 ldr w3, [x2, #string.len] // Get length.
 str w3, [x0, #string.len] // Save hwStr len.

 // Cheesy string copy. You know the length is less
 // than 16 bytes and both string objects have a
 // minimum of 16 character locations available.

 ldr q0, [x2] // Copy "Hello, world!\n" string.
 str q0, [x0]

 // Now, hwStr contains a copy of hwLiteral.
 // Print hwStr (because the assembly language
 // string format always includes a zero-terminating
 // byte, you can just call printf to print the string).
 // Note that X0 still contains the hwStr pointer.

 mov x1, x0
 lea x0, fmtStr
 mstr x1, [sp]
 bl printf

 // Demonstrate call to str.alloc and str.free:

 mov x0, #256 // String size
 bl str.alloc
 bcs badAlloc
 str x0, [fp, #hwDynamic]

 // Force copy of hwLiteral into hwDynamic:

 lea x2, hwLiteral
 ldr w3, [x2, #string.len] // Get length.
 str w3, [x0, #string.len] // Save hwDynamic len.

 // Cheesy string copy. You know the length is less
 // than 16 bytes and both string objects have a
 // minimum of 16 character locations available.

818 Chapter 14

 ldr q0, [x2] // Copy "Hello, world!\n" string.
 str q0, [x0]

 // Now hwDynamic contains a copy of hwLiteral.
 // Print hwDynamic (because the assembly language
 // string format always includes a zero-terminating
 // byte, you can just call printf to print the string).
 // Note that X0 still contains the hwDynamic pointer.

 mov x1, x0
 lea x0, fmtStr2
 mstr x1, [sp]
 bl printf

 // Free the string storage:

 ldr x0, [fp, #hwDynamic]
 bl str.free

AllDone: leave

badAlloc: lea x0, fmtStr3
 bl printf
 leave
 endp asmMain

The asmMain function provides a few simple examples of calls to the
str.alloc, str.free, and str.bufInit functions.

Here’s the build command for Listing 14-1 and the sample program
output:

% ./build Listing14-1
% ./Listing14-1
Calling Listing14-1:
hwStr=Hello, world!
hwDynamic=Hello, world!
Listing14-1 terminated

As you can see, this code properly copied the static string to the dynam-
ically allocated string.

14.2.2  String Copy Function
Listing 14-1 demonstrates the lack of perhaps the most important string
function of all: one that copies character data from one string to another.
This section presents str.cpy, the second-most-used string function (after
string length, in my experience), which makes a copy of the data in one
string variable and stores that data in a second string variable.

The str.cpy function must do the following:

String Operations 819

•	 Compare the length of the source string against the maximum length
of the destination string and return an error if the source string will
not fit in the destination string variable.

•	 Copy the len field from the source string to the destination string.

•	 Copy len + 1 characters from the source string to the destination string,
which will also copy the zero-terminating byte.

Listing 14-2 provides the implementation of this function.

// Listing14-2.S
//
// A str.cpy string copy function

 #include "aoaa​.inc"

// Assembly language string data structure:

 struct string, -16
 dword string.allocPtr // At offset -16
 word string.maxlen // At offset -8
 word string.len // At offset -4
 byte string.chars // At offset 0

 // Note: characters in string occupy offsets
 // 0 ... in this structure

 ends string

// str.buf
//
// Allocate storage for an empty string
// with the specified maximum size:

 .macro str.buf strName, maxSize
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word \maxSize
 .word 0
\strName: .space ((\maxSize+16) & 0xFFFFFFF0), 0
 .endm

// str.literal:
//
// Allocate storage for a string buffer and initialize
// it with a string literal:

 .macro str.literal strName, strChars
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word len_\strName // string.maxlen
 .word len_\strName // string.len

820 Chapter 14

 // Emit the string data and compute the
 // string's length:

\strName: .ascii "\strChars"
len_\strName= .-\strName
 .byte 0 // Zero-terminating byte

 // Ensure object is multiple of 16 bytes:

 .align 4
 .endm

///

 .data
 str.buf destination, 256
 str.literal source, "String to copy"

///

 .code
 .global malloc
 .global free

ttlStr: wastr "Listing14-2"

// Standard getTitle function
// Returns pointer to program name in X0

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

///
//
// str.cpy
//
// Copies the data from one string variable to another.
//
// On entry:
//
// X0- Pointer to source string (string struct variable)
// X1- Pointer to destination string
//
// On exit:
//
// Carry flag clear if no errors; carry is set if
// the source string will not fit in the destination.

 proc str.cpy

 locals str_cpy
 qword str_cpy.saveV0

String Operations 821

 qword str_cpy.saveX2X3
 dword str_cpy.saveX4
 byte str_cpy.stkSpace,64 // Not actually needed
 endl str_cpy

 enter str_cpy.size

 // Preserve X2 ... X4 and V0:

 str q0, [fp, #str_cpy.saveV0]
 stp x2, x3, [fp, #str_cpy.saveX2X3]
 str x4, [fp, #str_cpy.saveX4]

 // Ensure the source will fit in the destination
 // string object:

 1 ldr w4, [x0, #string.len]
 ldr w3, [x1, #string.maxlen]
 cmp w4, w3
 bhi str.cpy.done // Note: carry is set.

 // Set the length of the destination string
 // to the length of the source string:

 2 str w4, [x1, #string.len]

 // X4 contains the number of characters to copy.
 // While this is greater than 16, copy 16 bytes
 // at a time from source to dest:

 3 mov x2, x0 // Preserve X0 and X1.
 mov x3, x1
cpy16: ldr q0, [x2], #16
 str q0, [x3], #16
 subs w4, w4, #16
 bhi cpy16

// At this point, you have fewer than 16 bytes to copy. If
// W4 is not 0, just copy 16 remaining bytes (you know,
// because of the string data structure, that if you have at
// least 1 byte left to copy, you can safely copy
// 16 bytes):

 4 beq setZByte // Skip if 0 bytes.

 ldr q0, [x2]
 str q0, [x3]

// Need to add a zero-terminating byte to the end of
// the string. Note that maxlen does not include the
// 0 byte, so it's always safe to append the 0
// byte to the end of the string.

822 Chapter 14

setZByte: ldr w4, [x0, #string.len]
 5 strb wzr, [x1, w4, uxtw]

 adds wzr, wzr, wzr // Clears the carry

str.cpy.done:
 ldr q0, [fp, #str_cpy.saveV0]
 ldp x2, x3, [fp, #str_cpy.saveX2X3]
 ldr x4, [fp, #str_cpy.saveX4]
 leave
 endp str.cpy

///
//
// A read-only format string:

fmtStr: wastr "source='%s', destination='%s'\n"

///
//
// Main program to test the code:

 proc asmMain, public

 locals lcl
 byte stkSpace, 64
 endl lcl

 enter lcl.size // Reserve space for locals.

 lea x0, source
 lea x1, destination
 bl str.cpy

 mov x2, x1
 mov x1, x0
 lea x0, fmtStr
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

AllDone: leave
 endp asmMain

The str.cpy function is straightforward and efficient, almost entirely
because of the design of the string data type (in particular, the align-
ment and padding requirements of the string). The code first checks to
ensure that the current length of the source string is less than or equal to
the maximum length allowed for the destination string 1. If the source
string’s length is too large, control transfers to the end of the function and
it returns. The comparison will set the carry flag if the source length is
“higher or same” as the destination maximum length. Therefore, this com-
parison automatically sets the carry flag to indicate a string overflow error

String Operations 823

if it branches because the string.len field is higher than the string.maxlen
field. Because the new destination string will be a copy of the source string,
the code then sets the destination string.len field to the source string’s
length 2.

The code is responsible for copying the character data from the source
string to the destination string 3. This is a repeat...until loop, so it always
copies 16 bytes, even if the string length is 0. That’s okay because the string
data type always ensures that the character storage area is a multiple of
16 bytes long (including space for a zero-terminating byte). This loop may
end up copying just the zero-terminating byte and 15 bytes of garbage data,
but it will not access memory beyond the end of the string object’s storage.

For each of the 16 bytes the loop copies 3, the code decrements the
length counter (W4) by 16. The subs instruction sets the flags exactly as a
cmp instruction would, so the bhi instruction repeats the loop as long as the
value in W4 is greater than 16 (prior to the subs instruction). If the string’s
length is a multiple of 16 bytes long, this loop will terminate after copying
the last 16 bytes of the string (when W4 decrements to 0). In this situation,
the beq instruction 4 transfers control to the code that will append the
zero-terminating byte.

If the string’s length is not an integral multiple of 16, subtracting 16
will produce a result greater than 0 but less than 16 (meaning some charac-
ters remain left to copy from the source to the destination). Therefore, the
code will fall through to the ldr/str instructions and copy the remaining
bytes of the string (plus some garbage bytes).

Finally, the code will store a zero-terminating byte to the end of the
string 5 in the event the previous ldr/str instructions didn’t copy that byte
along with the character data.

N O T E 	 Technically, the beq instruction in Listing 14-2 is unnecessary. If the string’s length
is an exact multiple of 16 bytes long, at least 1 additional byte must be copied: the
zero-terminating byte. Therefore, the data structure is guaranteed to contain at least
16 additional bytes, so falling through to the next pair of load and store instructions
won’t create a problem. As an interesting experiment, you might determine whether
removing the beq instruction improves or hurts the algorithm’s performance.

Here’s the build command and sample program output for the code in
Listing 14-2:

% ./build Listing14-2
% ./Listing14-2
Calling Listing14-2:
source='String to copy', destination='String to copy'
Listing14-2 terminated

Although this string is shorter than 16 characters long and doesn’t fully
test str.cpy, I’ve run this program with different source strings to verify that
it works for larger strings.

824 Chapter 14

14.2.3  String Comparison Function
After copying strings, comparing strings is the string function you’ll likely
use most often. To compare two character strings, use the following steps:

	 1.	Extract a character at corresponding indices from both strings.

	 2.	Compare the two characters. If they are not equal, the comparison is
complete and the result of the string comparison is the result of this
character comparison (not equal, less than, or greater than). If they are
equal and not zero, repeat step 1.

	 3.	If the two characters are both 0 bytes, the comparison is finished, and
the two strings are equal.

This algorithm works for zero-terminated strings (and, because they
are also zero-terminated, for the assembly language string format given in
this chapter). Note that the comparison algorithm does not use the string-
length value.

Here’s a naive version of this string comparison in ARM64 assembly
language that assumes X0 and X1 point at the string data to compare:

cmpLp:
 ldrb w2, [x0], #1
 ldrb w3, [x1], #1
 cmp w2, w3
 bne strNE
 cbnz w2, cmpLp

// At this point, the strings are equal.
 .
 .
 .
strNE:
 // At this point, the strings are not equal.

As you saw with the strlen() function, processing multiple bytes at once
using 64- or 128-bit registers is usually much faster. Can you improve per-
formance by using vector registers? The big problem with this is that vector
comparisons check for a specific comparison (lt, le, eq, ne, gt, or ge). They
don’t set the condition code flags, so you can use the conditional branches,
which is what most programmers would prefer. That being the case, com-
paring eight characters at a time using 64-bit general-purpose registers is
probably the best solution.

Given the efficiency of the glibc strlen() function, you might wonder
whether its strcmp() function is also good. Listing 14-3 presents this func-
tion, with its operation explained in the comments.

// Listing14-3.S
//
// GNU glibc strcmp function
//

String Operations 825

// Copyright (C) 2013 ARM Ltd.
// Copyright (C) 2013 Linaro.
//
// This code is based on glibc cortex strings work originally
// authored by Linaro and relicensed under GPLv2 for the
// Linux kernel. The original code can be found @
//
// http://bazaar​.launchpad​.net​/~linaro​-toolchain​-dev/
// cortex-strings/trunk/
//
// files/head:/src/aarch64/
//
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General Public
// License version 2 as published by the Free Software
// Foundation.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program. If not, see
// <http://www​.gnu​.org​/licenses​/>.

#include <linux/linkage.h>
#include <asm/assembler.h>

// Compare two strings
//
// Parameters:
// X0 - Const string 1 pointer
// X1 - Const string 2 pointer
//
// Returns:
// X0 - An integer less than, equal to, or greater
// than zero if S1 is found, respectively, to be
// less than, to match, or to be greater than S2

#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080

// Parameters and result

src1 .req x0
src2 .req x1
result .req x0

826 Chapter 14

// Internal variables

data1 .req x2
data1w .req w2
data2 .req x3
data2w .req w3
has_nul .req x4
diff .req x5
syndrome .req x6
tmp1 .req x7
tmp2 .req x8
tmp3 .req x9
zeroones .req x10
pos .req x11

strcmp:
 eor tmp1, src1, src2
 mov zeroones, #REP8_01
 tst tmp1, #7
 b.ne .Lmisaligned8
 ands tmp1, src1, #7
 b.ne .Lmutual_align

// NUL detection works on the principle that (X - 1) &
// (~X) & 0x80 (=> (X - 1) & ~(X | 0x7f)) is nonzero if
// a byte is 0, and can be done in parallel across the
// entire word.

.Lloop_aligned:
 ldr data1, [src1], #8
 ldr data2, [src2], #8
.Lstart_realigned:
 sub tmp1, data1, zeroones
 orr tmp2, data1, #REP8_7f
 eor diff, data1, data2 // Nonzero if differences found
 bic has_nul, tmp1, tmp2 // Nonzero if NUL terminator
 orr syndrome, diff, has_nul
 cbz syndrome, .Lloop_aligned
 b .Lcal_cmpresult
.Lmutual_align:

// Sources are mutually aligned but are not currently at
// an alignment boundary. Round down the addresses and
// then mask off the bytes that precede the start point:

 bic src1, src1, #7
 bic src2, src2, #7
 lsl tmp1, tmp1, #3 // Bytes beyond alignment -> bits
 ldr data1, [src1], #8
 neg tmp1, tmp1 // (Bits to align) - 64
 ldr data2, [src2], #8
 mov tmp2, #~0

 lsr tmp2, tmp2, tmp1 // Shift (tmp1 & 63)
 orr data1, data1, tmp2
 orr data2, data2, tmp2

String Operations 827

 b .Lstart_realigned
.Lmisaligned8:

// Get the align offset length to compare per byte first.
// After this process, one string's address will be
// aligned.

 and tmp1, src1, #7
 neg tmp1, tmp1
 add tmp1, tmp1, #8
 and tmp2, src2, #7
 neg tmp2, tmp2
 add tmp2, tmp2, #8
 subs tmp3, tmp1, tmp2
 csel pos, tmp1, tmp2, hi // Choose the maximum.
.Ltinycmp:
 ldrb data1w, [src1], #1
 ldrb data2w, [src2], #1
 subs pos, pos, #1
 ccmp data1w, #1, #0, ne // NZCV = 0b0000
 ccmp data1w, data2w, #0, cs // NZCV = 0b0000
 b.eq .Ltinycmp
 cbnz pos, 1f // Find the null or unequal ...
 cmp data1w, #1
 ccmp data1w, data2w, #0, cs
 b.eq .Lstart_align // The last bytes are equal.
1:
 sub result, data1, data2
 ret
.Lstart_align:
 ands xzr, src1, #7
 b.eq .Lrecal_offset

 // Process more leading bytes to make str1 aligned:

 add src1, src1, tmp3
 add src2, src2, tmp3

 // Load 8 bytes from aligned str1 and nonaligned str2:

 ldr data1, [src1], #8
 ldr data2, [src2], #8
 sub tmp1, data1, zeroones
 orr tmp2, data1, #REP8_7f
 bic has_nul, tmp1, tmp2
 eor diff, data1, data2 // Nonzero if differences found
 orr syndrome, diff, has_nul
 cbnz syndrome, .Lcal_cmpresult

 // How far is the current str2 from the alignment boundary?

 and tmp3, tmp3, #7
.Lrecal_offset:
 neg pos, tmp3

828 Chapter 14

.Lloopcmp_proc:

// Divide the 8 bytes into two parts. First, adjust the src
// to the previous alignment boundary, load 8 bytes from
// from the SRC2 alignment boundary, then compare with the
// relative bytes from SRC1. If all 8 bytes are equal,
// start the second part's comparison. Otherwise, finish
// the comparison. This special handle can guarantee all
// the accesses are in the thread/task space in order to
// avoid overrange access.

 ldr data1, [src1,pos]
 ldr data2, [src2,pos]
 sub tmp1, data1, zeroones
 orr tmp2, data1, #REP8_7f
 bic has_nul, tmp1, tmp2
 eor diff, data1, data2 // Nonzero if differences found
 orr syndrome, diff, has_nul
 cbnz syndrome, .Lcal_cmpresult

 // The second part of the process:

 ldr data1, [src1], #8
 ldr data2, [src2], #8
 sub tmp1, data1, zeroones
 orr tmp2, data1, #REP8_7f
 bic has_nul, tmp1, tmp2
 eor diff, data1, data2 // Nonzero if differences found
 orr syndrome, diff, has_nul
 cbz syndrome, .Lloopcmp_proc
.Lcal_cmpresult:

// Reverse the byte order as big-endian, so CLZ can find
// the most significant 0 bits:

 rev syndrome, syndrome
 rev data1, data1
 rev data2, data2

 clz pos, syndrome

// The MS-nonzero bit of the syndrome marks either the
// first bit that is different or the top bit of the
// first 0 byte. Shifting left now will bring the
// critical information into the top bits.

 lsl data1, data1, pos
 lsl data2, data2, pos

// But you need to zero-extend (char is unsigned) the value
// and then perform a signed 32-bit subtraction:

 lsr data1, data1, #56
 sub result, data1, data2, lsr #56
 ret

String Operations 829

The majority of the complexity is due to the code being written to
handle string data that is not aligned to an 8-byte boundary. This string-
comparison code could be written more simply if it could assume that the
source and destination strings were always aligned on an 8-byte boundary.
Because the assembly language string object is, by definition, always aligned
on a 16-byte boundary, it is possible to write a more efficient comparison
function for those strings. Listing 14-4 provides such a str.cmp function.

// Listing14-4.S
//
// A str.cmp string comparison function

 #include "aoaa​.inc"

// Assembly language string data structure:

 struct string, -16
 dword string.allocPtr // At offset -16
 word string.maxlen // At offset -8
 word string.len // At offset -4
 byte string.chars // At offset 0

 // Note: characters in string occupy offsets
 // 0 ... in this structure.

 ends string

// str.buf
//
// Allocate storage for an empty string
// with the specified maximum size:

 .macro str.buf strName, maxSize
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word \maxSize
 .word 0
\strName: .space ((\maxSize+16) & 0xFFFFFFF0), 0
 .endm

// str.literal
//
// Allocate storage for a string buffer and initialize
// it with a string literal:

 .macro str.literal strName, strChars
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word len_\strName // string.maxlen
 .word len_\strName // string.len

830 Chapter 14

 // Emit the string data and compute the
 // string's length:

\strName: .ascii "\strChars"
len_\strName= .-\strName
 .byte 0 // Zero-terminating byte

 // Ensure object is multiple of 16 bytes:

 .align 4
 .endm

///

 .data
 str.buf destination, 256
 str.literal left, "some string"
 str.literal right1, "some string"
 str.literal right2, "some string."
 str.literal right3, "some string"
 str.literal right4, ""
 str.literal right5, "t"
 str.literal right6, " "

 str.literal left2, "some string 16.."
 str.literal right7, "some string 16.."
 str.literal right8, "some string 16."
 str.literal right9, "some string 16..."

///

 .code
 .global malloc
 .global free

ttlStr: wastr "Listing14-4"

// Standard getTitle function
// Returns pointer to program name in X0

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

///
//
// str.cmp
//
// Compares two string objects
//
// On entry:
//
// X0- Pointer to left string

String Operations 831

// X1- Pointer to right string
//
// left op right
//
// Where op is the string comparison operation
//
// On exit:
//
// Condition code flags contain state of comparison

 proc str.cmp

 locals str_cmp
 qword str_cmp.saveX2X3
 dword str_cmp.saveX4X5
 dword str_cmp.saveX6X7
 byte str_cmp.stkSpace,64
 endl str_cmp

 enter str_cmp.size

 // Preserve X2 ... X7:

 1 stp x2, x3, [fp, #str_cmp.saveX2X3]
 stp x4, x5, [fp, #str_cmp.saveX4X5]
 stp x6, x7, [fp, #str_cmp.saveX6X7]

 mov x2, x0 // Preserve X0 and X1.
 mov x3, x1

 // Compute the minimum of the string lengths:

 2 ldr w6, [x2, #string.len]
 ldr w7, [x3, #string.len]
 cmp w6, w7
 csel w6, w6, w7, hs
 b.al cmpLen

cmp8:
 3 ldr x4, [x2], #8
 ldr x5, [x3], #8
 rev x4, x4
 rev x5, x5
 cmp x4, x5
 bne str.cmp.done
cmpLen:
 4 subs w6, w6, #8 // Also compares W6 to 8
 bhs cmp8

 // Fewer than eight characters left (and more
 // than zero). Cheapest to just compare them
 // one at a time:

 5 adds w6, w6, #8
 beq str.cmp.done // If lens are equal

832 Chapter 14

cmp1:
 6 ldrb w4, [x2], #1
 ldrb w5, [x3], #1
 cmp w4, w5
 bne str.cmp.done
 subs w6, w6, #1
 bne cmp1

 // At this point, the strings are equal
 // through the length of the shorter
 // string. The comparison is thus based
 // on the result of comparing the lengths
 // of the two strings.

cmpLens:
 7 ldr w6, [x0, #string.len] // Fetch left len.
 cmp w6, w7 // Right len

str.cmp.done:
 ldp x2, x3, [fp, #str_cmp.saveX2X3]
 ldp x4, x5, [fp, #str_cmp.saveX4X5]
 ldp x6, x7, [fp, #str_cmp.saveX6X7]
 leave
 endp str.cmp

///
//
// Some read-only strings:

ltFmtStr: wastr "Left ('%s') is less than right ('%s')\n"
gtFmtStr: wastr "Left ('%s') is greater than right ('%s')\n"
eqFmtStr: wastr "Left ('%s') is equal to right ('%s')\n"

///
//
// prtResult
//
// Utility function to print the result of a string
// comparison

 8 proc prtResult

 mov x2, x1
 mov x1, x0
 mstr x1, [sp]
 mstr x2, [sp, #8]
 beq strsEQ
 bhi strGT

 // Must be LT at this point

 lea x0, ltFmtStr
 b printf

String Operations 833

strsEQ: lea x0, eqFmtStr
 b printf

strGT: lea x0, gtFmtStr
 b printf

 endp prtResult

///
//
// Main program to test the code:

 proc asmMain, public

 locals lcl
 byte stkSpace, 64
 endl lcl

 enter lcl.size // Reserve space for locals.

 lea x0, left
 lea x1, right1
 bl str.cmp
 bl prtResult

 lea x0, left
 lea x1, right2
 bl str.cmp
 bl prtResult

 lea x0, left
 lea x1, right3
 bl str.cmp
 bl prtResult

 lea x0, left
 lea x1, right4
 bl str.cmp
 bl prtResult

 lea x0, left
 lea x1, right5
 bl str.cmp
 bl prtResult

 lea x0, left
 lea x1, right6
 bl str.cmp
 bl prtResult

 lea x0, left2
 lea x1, right7
 bl str.cmp
 bl prtResult

834 Chapter 14

 lea x0, left2
 lea x1, right8
 bl str.cmp
 bl prtResult

 lea x0, left2
 lea x1, right9
 bl str.cmp
 bl prtResult

AllDone: leave
 endp asmMain

The str.cmp function does not modify the X0 or X1 registers, but it will
modify X2 through X7, so this code begins by preserving these register val-
ues 1. It then copies the values in X0 and X1 into X2 and X3 (respectively),
which it will use in the code.

When comparing the strings, str.cmp will compare only to the length
of the shorter string. The code computes the minimum length of the two
strings 2, leaving the result in W6. If the two strings are equal to the length
of the shorter string, the shorter string is considered less than the longer
string.

The cmp8 loop compares the characters in the string 8 bytes at a time 3.
Strings are intrinsically a big-endian data structure, meaning the lower-order
bytes in the string have the most-significant values. Therefore, you cannot
simply load 8 successive bytes into a pair of 64-bit registers and compare
those registers; that would produce a little-endian comparison result. To
resolve this issue, the code executes two rev instructions to swap the bytes in
the two 64-bit registers prior to comparing them, resulting in a big-endian
comparison.

After comparing the two dwords, the code branches to the return code
if those dwords are not equal. At that point, the ARM condition codes will
hold the result of the comparison. If the two dwords are equal, the cmp8
loop must repeat until it has exhausted all the characters or finds a pair of
dwords that are not equal. The code subtracts 8 from W6 and repeats if the
value prior to the subtraction was greater than or equal to 8 (remember,
subs and cmp set the flags the same way) 4.

Because this code subtracts 8 from W6 before comparing the corre-
sponding characters, if W6 winds up with 0, eight characters still remain to
compare. That’s why this code repeats even when subtracting 8 produces a
0 result.

If the code falls down to 5, the W6 contains a negative result. The code
adds 8 to this value to determine the number of characters it must still pro-
cess. If the result is 0, the strings are the same length and all characters in
the string are equal; in that case, the code exits (with the flags already con-
taining appropriate values). If the result is nonzero, the code processes the
remaining characters in the two strings one character at a time 6. (Four
instructions per character, for an average of four characters per string,

String Operations 835

assuming random string lengths, is usually faster than attempting to zero
out the excess bytes and compare 8 bytes at a time.)

If the code transfers or drops through to cmpLens 7, the strings were
equal to the length of the shorter string. At this point, the code determines
the result of the comparison by comparing the strings’ lengths.

The main program compares several strings to test the str.cmp function.
The prtResult function 8 is a short utility function that prints the result of
the comparisons.

N O T E 	 This code would be slightly more efficient if it preserved X0 and X1 rather than X2
and X3, then used X0 and X1 rather than X2 and X3. However, I left X0 and X1
alone because during development I used printf() to print some debugging messages.
Feel free to change this code to use X0/X1 rather than X2/X3 if the two extra instruc-
tions (those that move X0 and X1 into X2 and X3) bother you.

As was the case for the glibc strcmp() function, the str.cmp function
expects pointers to the two strings to compare in X0 and X1. The left string
is X0, and the right string is X1. Left and right have to do with their position
in a comparison expression. The following example demonstrates the posi-
tions of the two strings in an if statement:

if(leftStr <= rightStr) then ...

The strcmp() function returns a result in X0 indicating the result of
the comparison:

•	 If X0 is negative, the left string (X0) is less than the right string (X1).

•	 If X0 is 0, the two strings are equal.

•	 If X0 is positive, the left string is greater than the right string.

The str.cmp function, on the other hand, returns the comparison result
in the condition code flags, so you can use the conditional branch instruc-
tions upon return to test the result.

Here’s the build command and sample output for Listing 14-4:

% ./build Listing14-4
% ./Listing14-4
Calling Listing14-4:
Left ('some string') is equal to right ('some string')
Left ('some string') is less than right ('some string.')
Left ('some string') is greater than right ('some string')
Left ('some string') is greater than right ('')
Left ('some string') is less than right ('t')
Left ('some string') is greater than right (' ')
Left ('some string 16..') is equal to right ('some string 16..')
Left ('some string 16..') is greater than right ('some string 16.')
Left ('some string 16..') is less than right ('some string 16..')
Listing14-4 terminated

As you can see, str.cmp returned the proper results for the test strings.

836 Chapter 14

14.2.4  Substring Function
The last ASCII example I’ll provide in this chapter is the substring function
str.substr. A typical substring function extracts a portion of the characters
from a string, creating a new string from the substring. It typically has four
parameters: a pointer to a source string, an index into the substring where
the extraction is to begin, a length specifying the number of characters to
copy from the source, and a pointer to a destination string.

The substring operation has several issues:

•	 You can’t assume that the source characters are aligned on a 16-byte
boundary.

•	 The specified starting index might be beyond the length of the source
string.

•	 The specified substring length might extend beyond the end of the
source string.

•	 The length of the substring might exceed the maximum length of the
destination string.

The first issue is often impossible to deal with. Most of the time, either
the source characters or the destination characters will have an unaligned
address. The str.substr code in this section will choose to keep the destina-
tion address aligned on a 16-byte boundary (which it gets by default). The
function must carefully check the length while copying data to ensure that
it doesn’t read any data beyond the end of the source-string data structure.

You can handle the second issue in two ways: either return an error
code without copying any data or simply store an empty string into the des-
tination. This latter solution is often the most convenient, and I rely on it in
this section’s code.

Likewise, there are two ways to handle the third issue: either return
an error code without copying any data or copy all the characters from the
starting index to the end of the source string into the destination string.
Once again, the latter solution is often the most convenient, and the
str.substr code relies on it.

The fourth issue is a bit more problematic. The str.substr code could
truncate the string it copies, but this situation usually indicates a serious
error on the part of the application (string overflow). Therefore, str.substr
will return a flag in the carry to indicate success or failure.

N O T E 	 If you prefer to return an error status for the second and third issues listed here, you
can easily modify str.substr to accomplish this.

Listing 14-5 provides the str.substr function and a sample main pro-
gram that tests it.

// Listing14-5.S
//
// A str.substr substring function

String Operations 837

 #include "aoaa​.inc"

// Assembly language string data structure:

 struct string, -16
 dword string.allocPtr // At offset -16
 word string.maxlen // At offset -8
 word string.len // At offset -4
 byte string.chars // At offset 0

 // Note: characters in string occupy offsets
 // 0 ... in this structure

 ends string

// str.buf
//
// Allocate storage for an empty string
// with the specified maximum size:

 .macro str.buf strName, maxSize
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word \maxSize
 .word 0
\strName: .space ((\maxSize+16) & 0xFFFFFFF0), 0
 .endm

// str.literal
//
// Allocate storage for a string buffer and initialize
// it with a string literal:

 .macro str.literal strName, strChars
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word len_\strName // string.maxlen
 .word len_\strName // string.len

 // Emit the string data and compute the
 // string's length:

\strName: .ascii "\strChars"
len_\strName= .-\strName
 .byte 0 // Zero-terminating byte

 // Ensure object is multiple of 16 bytes:

 .align 4
 .endm

///

838 Chapter 14

 .data
fmtStr: .ascii "Source string:\n\n"
 .ascii " 1111111111222222222233333\n"
 .ascii "01234567890123456789012345678901234\n"
 .asciz "%s\n\n"

 str.buf smallDest, 32
 str.literal dest, "Initial destination string"

// 1111111111222222222233333
// 01234567890123456789012345678901234
str.literal source, "Hello there, world! How's it going?"

///

 .code

ttlStr: wastr "listing14-5"

// Standard getTitle function
// Returns pointer to program name in X0

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

///
//
// str.substr
//
// Extracts a substring
//
// On entry:
//
// X0- Pointer to source string
// W1- Starting index into source string
// W2- Length of substring
// X3- Destination string
//
// On exit:
//
// Carry clear on success and result stored at X3
//
// If the substring will not fit in X3, return with
// the carry set (and no data copied).

 proc str.substr

 locals str_substr
 qword str_substr.saveV0
 qword str_substr.saveX0X1
 qword str_substr.saveX2X3
 qword str_substr.saveX6X7

String Operations 839

 byte str_substr.stkSpace,64 // Not needed
 endl str_substr

 enter str_substr.size

 // Preserve X0 ... X7 and V0:

 str q0, [fp, #str_substr.saveV0]
 stp x0, x1, [fp, #str_substr.saveX0X1]
 stp x2, x3, [fp, #str_substr.saveX2X3]
 stp x6, x7, [fp, #str_substr.saveX6X7]

 // Handle the exceptional conditions:
 //
 // 1. Index >= source.len (return empty string)

 1 ldr w6, [x0, #string.len]
 cmp w1, w6
 bhs returnEmpty

 // 2. Index + substr length > source length
 // If so, reduce the length to match the end
 // of the string:

 2 add w7, w1, w2 // W7 = index + substr length
 cmp w6, w7
 csel w6, w6, w7, ls // W6 = min(source len, sum)
 sub w6, w6, w1 // W6 = actual length

 // 3. Substr length > destination maxlen
 // (fail):

 3 ldr w7, [x3, #string.maxlen]
 cmp w6, w7 // Carry set if
 bhi str.sub.exit // W6 >= W7.

 // At this point, W6 contains the actual number of
 // characters to copy from the source
 // to the destination. This could be less than the
 // length passed in W2 if the index + substr length
 // exceeded the length of the source string.

 4 str w6, [x3, #string.len] // Save as dest len.

 // Point X0 at the first character of the substring
 // to copy to the destination string (base address
 // plus starting index):

 5 add x0, x0, w1, uxtw
 b.al test16

840 Chapter 14

 // Copy the substring 16 bytes at a time:

copy16:
 6 ldr q0, [x0], #16 // Get bytes to copy.
 str q0, [x3], #16 // Store into dest.

 // Decrement the number of characters to copy by
 // 16. Quit if the result is negative (meaning
 // fewer than 16 characters were left to
 // copy). Remember, subs sets the flags the same
 // as cmp, so the following compares the value in
 // W6 against 16 and branches to copy16 if
 // 16 or more characters are left to copy:
test16:
 subs w6, w6, #16
 bhs copy16

 // W6 has gone negative. Need to add 16 to determine
 // the number of bytes left to copy:

 7 add w6, w6, #16 // Now W6 contains 0 to 15.

 // Switch statement based on the number of characters
 // left to copy in the substring. Handle as a special
 // case each of the 0 ... 15 bytes to copy:

 and x6, x6, #0xFFFFFFFF // Zero-extend to 64 bits.
 adr x7, JmpTbl
 ldr w6, [x7, x6, lsl #2] // *4 for 32-bit entries
 add x7, x7, w6, sxtw // Sign-extend to 64 bits.
 br x7

JmpTbl: .word str.sub.success-JmpTbl // _0bytesToCopy
 .word _1byteToCopy-JmpTbl
 .word _2bytesToCopy-JmpTbl
 .word _3bytesToCopy-JmpTbl
 .word _4bytesToCopy-JmpTbl
 .word _5bytesToCopy-JmpTbl
 .word _6bytesToCopy-JmpTbl
 .word _7bytesToCopy-JmpTbl
 .word _8bytesToCopy-JmpTbl
 .word _9bytesToCopy-JmpTbl
 .word _10bytesToCopy-JmpTbl
 .word _11bytesToCopy-JmpTbl
 .word _12bytesToCopy-JmpTbl
 .word _13bytesToCopy-JmpTbl
 .word _14bytesToCopy-JmpTbl
 .word _15bytesToCopy-JmpTbl

// Special case copying 1-15 bytes:

8 _14bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8

String Operations 841

_6bytesToCopy:
 ldr w7, [x0], #4
 str w7, [x3], #4

_2bytesToCopy:
 ldrh w7, [x0], #2
 strh w7, [x3], #2
 b.al str.sub.success

_13bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8

_5bytesToCopy:
 ldr w7, [x0], #4
 str w7, [x3], #4
 ldrb w7, [x0], #1
 strb w7, [x3], #1
 b.al str.sub.success

_12bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8

_4bytesToCopy:
 ldr w7, [x0], #4
 str w7, [x3], #4
 b.al str.sub.success

_11bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8
 ldrh w7, [x0], #2
 strh w7, [x3], #2
 ldrb w7, [x0], #1
 strb w7, [x3], #1
 b.al str.sub.success

_10bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8
 ldrh w7, [x0], #2
 strh w7, [x3], #2
 b.al str.sub.success

_9bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8
 ldrb w7, [x0], #1
 strb w7, [x3], #1
 b.al str.sub.success

_8bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8
 b.al str.sub.success

842 Chapter 14

_15bytesToCopy:
 ldr x7, [x0], #8
 str x7, [x3], #8

_7bytesToCopy:
 ldr w7, [x0], #4
 str w7, [x3], #4

_3bytesToCopy:
 ldrh w7, [x0], #2
 strh w7, [x3], #2

_1byteToCopy:
 ldrb w7, [x0], #1
 strb w7, [x3], #1

// Branch here after copying all string data.
// Need to add a zero-terminating byte to the
// end of the destination string:

str.sub.success:
 9 strb wzr, [x3] // Zero-terminating byte
 adds wzr, wzr, wzr // Clear carry for success.

str.sub.exit:
 ldr q0, [fp, #str_substr.saveV0]
 ldp x0, x1, [fp, #str_substr.saveX0X1]
 ldp x2, x3, [fp, #str_substr.saveX2X3]
 ldp x6, x7, [fp, #str_substr.saveX6X7]
 leave

// Special case where the code just returns an empty string:

returnEmpty:
 a strh wzr, [x3, #string.len]
 b.al str.sub.success

 endp str.substr

///
//
// testSubstr
//
// Utility function to test call to str.substr
//
// On entry:
// X0, X1, X2, X3 -- str.substr parameters

successStr: wastr "substr('%s', %2d, %3d)= '%s'\n"
failureStr: wastr "substr('%s', %2d, %3d) failed\n"

 proc testSubstr

 locals testSS
 byte testSS.stkspace, 64
 endl testSS

String Operations 843

 enter testSS.size

 lea x5, successStr
 bl str.substr
 bcc success
 lea x5, failureStr

success:
 mov x4, x3
 mov x3, x2
 mov x2, x1
 mov x1, x0
 mov x0, x5
 mstr x1, [sp]
 mstr x2, [sp, #8]
 mstr x3, [sp, #16]
 mstr x4, [sp, #24]
 bl printf
 leave
 endp testSubstr

///
//
// Main program to test the code:

 proc asmMain, public

 locals lcl
 byte stkSpace, 64
 endl lcl

 enter lcl.size // Reserve space for locals.

 lea x0, fmtStr
 lea x1, source
 mstr x1, [sp]
 bl printf

 lea x0, source
 mov x1, #0
 mov x2, #11
 lea x3, dest
 bl testSubstr

 lea x0, source
 mov x1, #20
 mov x2, #15
 lea x3, dest
 bl testSubstr

 lea x0, source
 mov x1, #20
 mov x2, #20
 lea x3, dest
 bl testSubstr

844 Chapter 14

 lea x0, source
 mov x1, #40
 mov x2, #20
 lea x3, dest
 bl testSubstr

 lea x0, source
 mov x1, #0
 mov x2, #100
 lea x3, smallDest
 bl testSubstr

AllDone: leave
 endp asmMain

The str.substr function begins by finding any special cases it must han-
dle. It first checks whether the starting index value is beyond the end of the
source string; if so, the function returns the empty string as the result 1.
Next, the code checks whether the starting index plus the substring length
would extend beyond the end of the source string; if so, it adjusts the length
to reach to the end of the source string (and no farther) 2. Finally, if the
substring length is greater than the maximum length of the destination
string, str.substr immediately returns with the carry flag set to indicate an
error condition 3.

If none of the special cases exist, the code can successfully copy a sub-
string into the destination string. str.substr begins this process by setting
the length of the destination string to the length of the substring 4. The
code then copies the substring data starting at the index position, begin-
ning by adding the value of the index to the string pointer 5.

The loop copies 16 bytes at a time using the V0 vector register (Q0) 6,
as long as there are 16 or more bytes left to copy. When fewer than 16 bytes
are left to copy, the code drops down to 7 and adds 16 to the remaining
length value (because the loop subtracted 16 one too many times).

After adding 16, W6 will contain a value in the range 0 to 15, the number
of bytes left to copy. The code could have executed a simple loop to copy the
remaining bytes one at a time to the destination, but that would be somewhat
slow. Instead, I chose to execute a (simulated) switch statement to transfer
control to one of 16 labels 8 where the code exists to carry out a straight-
line, brute-force copy of the necessary bytes. (To reduce code size, I’ve inter-
leaved these sections as much as possible, sharing various code sequences.)

Once they copy the necessary number of bytes, all these code sequences
converge 9 (also the location where the switch code transfers if 0 bytes are
left to copy). This code appends a zero-terminating byte to the end of the
string, clears the carry flag, and returns to the caller.

The code handles the special case in which str.substr returns an empty
string because the index value was greater than the length of the source
string a. This code sets the length of the destination string to 0, then trans-
fers to 9 to zero-terminate the string and return success. The asmMain func-
tion calls a special helper function (testSubstr) to perform various tests and
print the results.

String Operations 845

It is very unlikely that the start of the substring will lie on a 16-byte
boundary. Therefore, when the function in Listing 14-5 fetches 16 bytes
at a time from the source string, it will probably be an unaligned memory
access (which is slower). Without writing a lot of code, you can’t do much
about this other than accept that execution will be slightly slower. Because
the accesses may not be aligned on a 16-byte boundary, it is important
that this code copies only the specified number of bytes (never reading
beyond the end of the source string) to ensure it doesn’t access an inappro-
priate memory page.

Here is the build command and sample output for the program in
Listing 14-5:

% ./build Listing14-5
% ./Listing14-5
Calling Listing14-5:
Source string:

 1111111111222222222233333
01234567890123456789012345678901234
Hello there, world! How's it going?

substr('Hello there, world! How's it going?', 0, 11)= 'Hello there'
substr('Hello there, world! How's it going?', 20, 15)= 'How's it going?'
substr('Hello there, world! How's it going?', 20, 20)= 'How's it going?'
substr('Hello there, world! How's it going?', 40, 20)= ''
substr('Hello there, world! How's it going?', 0, 100) failed
Listing14-5 terminated

While this isn’t an exhaustive test by any means, this output is sufficient
to show the basic operation of str.substr.

14.2.5  More String Functions
Of course, any decent string library has many additional string functions.
A str.len function is the most obvious function missing thus far. The imple-
mentation of this function should be fairly obvious: just fetch the string.len
field from the string data structure. Even ignoring this oversight, however,
there are dozens of other string functions you might want to use (the HLA
standard library, for example, provides over 200 string functions).

Unfortunately, this book doesn’t have room to describe a complete set
of string library functions. After reading this chapter, you should possess
the skills needed to implement any string functions you need on your own.
See section 14.6, “For More Information,” on page 859 for further resources
to help you do so.

	 14.3	 The Unicode Character Set
All code examples up to this point in this book have assumed that strings in
assembly language consist of sequences of ASCII characters, largely because

846 Chapter 14

Gas doesn’t directly support Unicode. However, Linux and macOS systems
generally work with Unicode (though ASCII is a subset of Unicode). Now
that you’ve seen how to implement string functions for ASCII characters, it’s
time to expand on Chapter 2’s cursory introduction to Unicode and discuss
string functions for Unicode strings.

14.3.1  Unicode History
A few decades back, engineers at Aldus Corporation, NeXT, Sun Micro
systems, Apple Computer, IBM, Microsoft, the Research Libraries Group,
and Xerox realized that their new computer systems with bitmaps and user-
selectable fonts could display far more than 256 characters at one time. At
the time, double-byte character sets (DBCSs) were the most common solution.

DBCSs had a couple of issues, however. First, as they were typically
variable-length encodings, they required special library code; common
character or string algorithms that depended on fixed-length character
encodings would not work properly with them. Second, no consistent
standard existed; different DBCSs used the same encoding for different
characters.

To avoid these compatibility problems, the engineers sought a different
solution. They came up with the Unicode character set, which originally
used a 2-byte character size. Like DBCSs, this approach still required spe-
cial library code (existing single-byte string functions would not always work
with 2-byte characters). Other than changing the size of a character, how-
ever, most existing string algorithms would still work with 2-byte characters.
The Unicode definition included all the (known or living) character sets at
the time, giving each character a unique encoding, to avoid the consistency
problems that plagued differing DBCSs.

The original Unicode standard used a 16-bit word to represent each
character. Therefore, Unicode supported up to 65,536 character codes—a
huge advance over the 256 possible codes representable with an 8-bit byte.
Furthermore, Unicode is upward compatible from ASCII. If the HO 9 bits
of a Unicode character’s binary representation contain 0, the LO 7 bits use
the standard ASCII code. (ASCII is a 7-bit code, so if the HO 9 bits of a
16-bit Unicode value are all 0, the remaining 7 bits are an ASCII encoding
for a character.) If the HO 9 bits contain a nonzero value, the 16 bits form
an extended character code, above and beyond the ASCII character set.

You may be wondering why so many character codes are necessary.
When Unicode was first being developed, certain Asian character sets con-
tained 4,096 characters. The Unicode character set even provided codes
you could use to create an application-defined character set. Approximately
half of the 65,536 possible character codes have been defined, and the
remaining character encodings are reserved for future expansion.

Today, Unicode is a universal character set, long replacing ASCII and
older DBCSs. All modern OSes (including macOS, Windows, Linux, Pi
OS, Android, and Unix), all web browsers, and most modern applications
provide Unicode support. The Unicode Consortium, a nonprofit corpora-
tion, maintains the Unicode standard. By maintaining the standard, the

String Operations 847

consortium helps guarantee that a character you write on one system will
display as you expect on a different system or application.

14.3.2  Code Points and Code Planes
Alas, as well-thought-out as the original Unicode standard was, its cre-
ators couldn’t have anticipated the subsequent explosion in characters.
Emojis, astrological symbols, arrows, pointers, and a wide variety of sym-
bols introduced for the internet, mobile devices, and web browsers—along
with a desire to support historic, obsolete, and rare scripts—have greatly
expanded the Unicode symbol repertoire.

In 1996, systems engineers discovered that 65,536 symbols were insuf-
ficient. Rather than require 3 or 4 bytes for each Unicode character, those
in charge of the Unicode definition gave up on trying to create a fixed-
size representation of characters and allowed for opaque (and multiple)
encodings of Unicode characters. Today, Unicode defines 1,112,064 code
points, far exceeding the 2-byte capacity originally set aside for Unicode
characters.

A Unicode code point is simply an integer value associated with a particu-
lar character symbol; you can think of it as the Unicode equivalent of the
ASCII code for a character. The convention for Unicode code points is to
specify the value in hexadecimal with a U+ prefix. For example, U+0041 is
the Unicode code point for the letter A.

Blocks of 65,536 characters are known as a multilingual plane  in
Unicode. The first multilingual plane, U+000000 to U+00FFFF, roughly
corresponds to the original 16-bit Unicode definition; the Unicode stan-
dard calls this the Basic Multilingual Plane (BMP). Planes 1 (U+010000 to
U+01FFFF), 2 (U+020000 to U+02FFFF), and 14 (U+0E0000 to U+0EFFFF)
are supplementary planes. Plane 3 (U+030000 to U+03FFFF) is the Tertiary
Ideographic Plane (see https://unicode​.org​/roadmaps​/tip​/). Unicode reserves
planes 4 through 13 for future expansion and planes 15 and 16 for user-
defined character sets.

The Unicode standard defines code points in the range U+000000
to U+10FFFF. Note that 0x10ffff is 1,114,111, which is where most of the
1,112,064 characters in the Unicode character set come from; the remain-
ing 2,048 values form the surrogate code points.

14.3.3  Surrogate Code Points
As noted earlier, Unicode began life as a 16-bit (2-byte) character set encod-
ing. When it became apparent that 16 bits were insufficient to handle all
the possible characters that existed at the time, an expansion was neces-
sary. As of Unicode v2.0, the Unicode Consortium extended the definition
of Unicode to include multiword characters. Now Unicode uses surrogate
code points (U+D800 through U+DFFF) to encode values larger than
U+FFFF, as shown in Figure 14-1.

https://unicode.org/roadmaps/tip/

848 Chapter 14

1 1 0 1 1

Unit 1

0 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10

1 1 0 1 1

Unit 2

1 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Figure 14-1: Surrogate code-point encoding for Unicode planes 1–16

The two words, unit 1 (high surrogate) and unit 2 (low surrogate),
always appear together. The unit 1 value with HO bits 0b110110 specifies
the upper 10 bits (b10 through b19) of the Unicode scalar, and the unit 2
value with HO bits 0b110111 specifies the lower 10 bits (b0 through b9) of
the Unicode scalar. Therefore, the value of bits b16 to b19 plus 1 specifies
Unicode planes 1 through 16. Bits b0 through b15 specify the Unicode sca-
lar value within the plane.

Note that surrogate codes appear only in the BMP. None of the other
multilingual planes contain surrogate codes. Bits b0 through b19 extracted
from the unit 1 and 2 values always specify a Unicode scalar value (even if
the values fall in the range U+D800 through U+DFFF).

14.3.4  Glyphs, Characters, and Grapheme Clusters
Each Unicode code point has a unique name. For example, U+0045 has the
name LATIN CAPITAL LETTER A. The symbol A is not the name of the
character. A is a glyph, a series of strokes (one horizontal and two slanted
strokes) that a device draws in order to represent the character.

Many glyphs exist for the single Unicode character LATIN CAPITAL
LETTER A. For example, a Times Roman A and a Times Roman Italic A
have different glyphs, but Unicode doesn’t differentiate between them (or
between the A character in any two different fonts). The character LATIN
CAPITAL LETTER A remains U+0045 regardless of the font or style you
use to draw it.

The term character has a simple meaning when working with ASCII.
The character code 0x41 corresponds to the LATIN CAPITAL LETTER A,
which has a consistent representation when it appears on a display screen;
in particular, a one-to-one correspondence exists between ASCII character
codes and the symbol a user expects to see on the display. The situation is
dramatically more complex when working with Unicode. There’s a differ-
ence between what you’d normally call a character and the definition of a
Unicode character (scalar in Unicode terminology). For example, consider
the following Swift code:

import Foundation
let eAccent :String = "e\u{301}"
print(eAccent)
print("eAccent​.count​=\(eAccent​.count)")
print("eAccent​.utf16​.count​=\(eAccent​.utf16​.count)")

String Operations 849

This section uses the Swift programming language for examples
because it is one of the first programming languages that attempts to do
Unicode right (though a huge performance hit results from it). Assembly,
on the other hand, requires the programmer to handle everything manu-
ally and isn’t the best tool for many Unicode examples. I explain how
to translate this to assembly code in section 14.4, “Unicode in Assembly
Language,” on page 853.

The Swift syntax for specifying a Unicode scalar value within a string is
"\u{hex}", where hex is a hexadecimal value, as in "\u{301}". In this example,
301 is the hexadecimal code for the combining acute accent character. The first
print() statement prints the character, producing é on the output, as you
expect. The second print() statement prints the number of characters Swift
determines are present in the string—in this case, 1. The third print() state-
ment prints the number of elements (UTF-16 elements, discussed further
later in this section) in the string. In this case, that number is 2, because the
string holds 2 words of UTF-16 data.

In this example, is é one character or two? Internally (assuming UTF-
16 encoding), the computer sets aside 4 bytes of memory for this single
character (two 16-bit Unicode scalar values). On the screen, however, the
output takes only one character position and looks like a single character
to the user. When this character appears within a text editor and the cursor
is immediately to the right of the character, the user expects that pressing
backspace will delete it. From the user’s perspective, then, this is a single
character (as Swift reports when you print the count attribute of the string).

In Unicode, however, a character is largely equivalent to a code point.
In Unicode terminology, when you talk about symbols that an application
displays to an end user, you refer to them not as characters but as grapheme
clusters. These are sequences of one or more Unicode code points that com-
bine to form a single language element (that is, something that appears as a
single character to the user on the display, such as é).

14.3.5  Normal Forms and Canonical Equivalence
The Unicode character é actually existed on personal computers long
before Unicode came along: it’s part of the original IBM PC character set
and of the Latin-1 character set (used, for example, on old DEC terminals).
Unicode uses the Latin-1 character set for the code points in the range
U+00A0 to U+00FF, and U+00E9 just happens to correspond to the é char-
acter. Therefore, you can modify the earlier program as follows:

import Foundation
let eAccent :String = "\u{E9}"
print(eAccent)
print("eAccent​.count​=\(eAccent​.count)")
print("eAccent​.utf16​.count​=\(eAccent​.utf16​.count)")

850 Chapter 14

The outputs from this program are as follows:

é
eAccent​.count​=1
eAccent​.utf16​.count​=1

Ouch! You now have a couple of strings that all produce é but contain
a different number of code points. Imagine how this complicates program-
ming strings containing Unicode characters. For example, if you try to com-
pare the following three strings (Swift syntax), what will the result be?

let eAccent1 :String = "\u{E9}"
let eAccent2 :String = "e\u{301}"

To the user, both strings look the same on the screen. However, they
clearly contain different values. If you compare them to see whether they
are equal, will the result be true or false?

Ultimately, that depends on which string libraries you’re using. Most
current string libraries would return false if you compared these strings for
equality. Many languages’ string libraries simply report that both strings
are unequal.

The two Unicode/Swift strings "\{E9}" and "e\{301}" should produce
the same output on the display. Therefore, they are canonically equivalent
according to the Unicode standard. Some string libraries won’t report any
of these strings as being equivalent. Some, like the one accompanying
Swift, will handle small canonical equivalences (such as "\{E9}" == "e\{301}")
but not arbitrary sequences that should be equivalent. (This is probably a
good balance of correctness versus efficiency; it can be computationally
expensive to handle all the weird cases that won’t normally happen, such as
"e\{301}\{301}".)

Unicode defines normal forms for Unicode strings. One aspect of nor-
mal form is to replace canonically equivalent sequences with an equivalent
sequence—for example, replace "e\u{309}" with "\u{E9}" or vice versa (the
shorter form is usually preferable). Some Unicode sequences allow multiple
combining characters. Often, the order of the combining characters is
irrelevant to producing the desired grapheme cluster. However, comparing
two such characters is easier if the combining characters are in a specified
order. Normalizing Unicode strings may also produce results whose com-
bining characters always appear in a fixed order, thereby improving the effi-
ciency of string comparisons.

14.3.6  Encodings
As of Unicode 2.0, the standard supports a 21-bit character space capable of
handling over a million characters (though most of the code points remain
reserved for future use). Rather than use a fixed-size 3-byte (or worse,
4-byte) encoding to allow the larger character set, the Unicode Consortium
allows different encodings: UTF-32, UTF-16, and UTF-8 (UTF stands for

String Operations 851

Unicode Transformation Format). Each of these three encodings comes with
advantages and disadvantages.

UTF-32 uses 32-bit integers to hold Unicode scalars. The advantage
to this scheme is that a 32-bit integer can represent every Unicode scalar
value in only 21 bits. Programs that require random access to characters in
strings—without having to search for surrogate pairs—and other constant-
time operations are usually possible when using UTF-32. The obvious
drawback to UTF-32 is that each Unicode scalar value requires 4 bytes of
storage—twice that of the original Unicode definition and four times that
of ASCII characters.

It may seem that using two or four times as much storage (over ASCII and
the original Unicode) is a small price to pay. After all, modern machines have
several orders of magnitude more storage than they did when Unicode first
appeared. However, that extra storage has a huge impact on performance,
because those additional bytes quickly consume cache storage. Furthermore,
modern string-processing libraries often operate on character strings 8 bytes
at a time (on 64-bit machines). With ASCII characters, that means a given
string function can process up to eight characters concurrently; with UTF-32,
that same string function can operate on only two characters concurrently.
As a result, the UTF-32 version will run four times slower than the ASCII ver-
sion. Ultimately, even Unicode scalar values are insufficient to represent all
Unicode characters (that is, many Unicode characters require a sequence of
Unicode scalars), so using UTF-32 doesn’t solve the problem.

As the name suggests, the second encoding format that Unicode sup-
ports, UTF-16, uses 16-bit (unsigned) integers to represent Unicode values.
To handle scalar values greater than 0xFFFF, UTF-16 uses the surrogate-
pair scheme to represent values in the range 0x010000 to 0x10FFFF.
Because the vast majority of useful characters fit into 16 bits, most UTF-16
characters require only 2 bytes. For those rare cases where surrogates are
necessary, UTF-16 requires two words (32 bits) to represent the character.

The last encoding, and unquestionably the most popular, is UTF-8.
The UTF-8 encoding is forward-compatible from the ASCII character set.
In particular, all ASCII characters have a single-byte representation (their
original ASCII code, where the HO bit of the byte containing the character
contains a 0 bit). If the UTF-8 HO bit is 1, UTF-8 requires 1 to 3 additional
bytes to represent the Unicode code point.

Table 14-1 provides the UTF-8 encoding schema, where the x bits are
the Unicode point bits.

Table 14-1: UTF-8 Encoding

Bytes
Bits for
code point

First code
point

Last code
point Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+00 U+7F 0xxxxxxx

2 11 U+80 U+7FF 110xxxxx 10xxxxxx

3 16 U+800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

852 Chapter 14

For multibyte sequences, byte 1 contains the HO bits, byte 2 contains
the next HO bits (LO bits compared to byte 1), and so on. For example, the
2-byte sequence (0b11011111, 0b10000001) corresponds to the Unicode sca-
lar 0b0000_0111_1100_0001 (U+07C1).

UTF-8 encoding is probably the most common encoding in use, since
most web pages use it. Most C stdlib string functions will operate on UTF-8
text without modification (although some can produce malformed UTF-8
strings if the programmer isn’t careful).

Different languages and OSes default to using different encodings.
For example, macOS and Windows tend to use UTF-16 encoding, whereas
most Unix systems use UTF-8. Some variants of Python use UTF-32 as
their native character format. By and large, though, most programming
languages use UTF-8 because they can continue to use older ASCII-based
character-processing libraries to process UTF-8 characters.

14.3.7  Combining Characters
Although UTF-8 and UTF-16 encodings are much more compact than
UTF-32, the CPU overhead and algorithmic complexities of dealing with
multibyte (or multiword) character sets complicates their use, introducing
bugs and performance issues. Despite the issues of wasting memory, espe-
cially in the cache, why not simply define characters as 32-bit entities and be
done with it? This seems like it would simplify string-processing algorithms,
improving performance and reducing the likelihood of defects in the code.

The problem with this theory is that you cannot represent all possible
grapheme clusters with only 21 bits (or even 32 bits) of storage. Many graph-
eme clusters consist of several concatenated Unicode code points. Here’s an
example from Chris Eidhof and Ole Begemann’s Advanced Swift, version 3.0
(CreateSpace, 2017):

let chars: [Character] = [
 "\u{1ECD}\u{300}",
 "\u{F2}\u{323}",
 "\u{6F}\u{323}\u{300}",
]
print(chars)

Each of these Unicode grapheme clusters produces the same output:
ò. , (a character from the Yoruba character set). The character sequence
(U+1ECD, U+300) is an o. followed by a combining acute. The character
sequence (U+F2, U+323) is an ò followed by a combining dot. The character
sequence (U+6F, U+323, U+300) is an o followed by a combining dot, followed
by a combining acute.

The Swift string comparisons treat all four strings as equal:

print("\u{1ECD} + \u{300} = \u{1ECD}\u{300}")
print("\u{F2} + \u{323} = \u{F2}\u{323}")
print("\u{6F} + \u{323} + \u{300} = \u{6F}\u{323}\u{300}")
print("\u{6F} + \u{300} + \u{323} = \u{6F}\u{300}\u{323}")
print(chars[0] == chars[1]) // Outputs true.

String Operations 853

Print(chars[0] == chars[2]) // Outputs true.
print(chars[0] == chars[3]) // Outputs true.
Print(chars[1] == chars[2]) // Outputs true.
print(chars[1] == chars[3]) // Outputs true.
Print(chars[2] == chars[3]) // Outputs true.

No single Unicode scalar value will produce this character. You must
combine at least two Unicode scalars (or as many as three) to produce this
grapheme cluster on the output device. Even UTF-32 encoding would still
require two (32-bit) scalars to produce this particular output.

Emojis present another challenge that can’t be solved using UTF-32.
Consider the Unicode scalar U+1F471. This prints an emoji of a person with
blond hair. If you add a skin-color modifier, you obtain (U+1F471, U+1F3FF),
which produces a person with a dark skin tone and blond hair. In both
cases, a single character displays on the screen. The first example uses a
single Unicode scalar value, but the second example requires two. There is
no way to encode this with a single UTF-32 value.

The bottom line is that certain Unicode grapheme clusters require
multiple scalars, no matter how many bits you assign to the scalar (it’s
possible to combine 30 or 40 scalars into a single grapheme cluster, for
example). That means you’re stuck dealing with multiword sequences to
represent a single “character,” regardless of how hard you try to avoid it.
This is why UTF-32 has never really taken off: it doesn’t solve the problem
of random access into a string of Unicode characters. When normalizing
and combining Unicode scalars, using UTF-8 or UTF-16 encodings is
more efficient.

Again, most languages and OSes today support Unicode in one form
or another (typically using UTF-8 or UTF-16 encoding). Despite the obvi-
ous problems with dealing with multibyte character sets, modern programs
need to deal with Unicode strings rather than simple ASCII strings.

	 14.4	 Unicode in Assembly Language
As noted in section 2.17, “Gas Support for the Unicode Character Set,” on
page 102), Gas doesn’t provide especially good support for Unicode strings.
If you have a text editor that allows you to enter Unicode text into a source
file, you might be able to type non-ASCII UTF-8 characters into a string
constant and have Gas accept them. In general, though, the safest way to
insert non-ASCII Unicode characters into an assembly language source
file is to use hexadecimal constants. This section describes how to output
Unicode characters from a console application and provides a brief intro-
duction to Unicode string functions.

14.4.1  Writing Console Applications with UTF-8 Characters
To be able to print strings containing UTF-8 characters, you must ensure
that your OS is able to accept them. This is generally accomplished by using

854 Chapter 14

the C stdlib setlocale() function. Unfortunately, the parameter list varies by
locale, so I can’t provide a universal example that works everywhere. For US
English, I typically use the following function call:

setlocale(LC_ALL, "en_US.UTF-8");

The exact string for the second parameter will vary based on the coun-
try and language. You can search online for a description of the setlocale()
function for more details about calling this function (or see section 14.6,
“For More Information,” on page 859). The following Linux/macOS com-
mand will list the available locale strings for your system:

locale -a

Here are some of the strings produced by this command under macOS
(on a Mac mini M1):

C en_NZ.ISO8859-1 it_IT
POSIX en_NZ.ISO8859-15 it_IT.ISO8859-1
af_ZA en​_NZ​.US​-ASCII it_IT.ISO8859-15
af_ZA.ISO8859-1 en_NZ.UTF-8 it_IT.UTF-8
af_ZA.ISO8859-15 en_US ja_JP

Many entries snipped ...

zh_TW.Big5
zh_TW.UTF-8

See “For More Information” for an explanation of the locale string
format.

You could call setlocale() from your assembly language code, but I’ve
found it more convenient to modify the c.cpp program that the build script
uses. The following shows this modification:

// c-utf8.cpp
//
// (Rename to c.cpp to use with build script.)
//
// Generic C++ driver program to demonstrate returning function
// results from assembly language to C++. Also includes a
// "readLine" function that reads a string from the user and
// passes it on to the assembly language code.
//
// Need to include stdio.h so this program can call "printf"
// and stdio.h so this program can call strlen.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <locale.h>

String Operations 855

// extern "C" namespace prevents "name mangling" by the C++
// compiler.

extern "C"
{
 // asmMain is the assembly language code's "main program":

 void asmMain(void);

 // getTitle returns a pointer to a string of characters
 // from the assembly code that specifies the title of that
 // program (which makes this program generic and usable
 // with a large number of sample programs in "The Art of
 // ARM Assembly Language").

 char *getTitle(void);

 // C++ function that the assembly
 // language program can call:

 int readLine(char *dest, int maxLen);

};

// readLine reads a line of text from the user (from the
// console device) and stores that string into the destination
// buffer the first argument specifies. Strings are limited in
// length to the value specified by the second argument
// (minus 1).
//
// This function returns the number of characters actually
// read, or -1 if there was an error.
//
// Note that if the user enters too many characters (maxlen or
// more), this function returns only the first maxlen - 1
// characters. This is not considered an error.

int readLine(char *dest, int maxLen)
{
 // Note: fgets returns NULL if there was an error, else
 // it returns a pointer to the string data read (which
 // will be the value of the dest pointer).

 char *result = fgets(dest, maxLen, stdin);
 if(result != NULL)
 {
 // Wipe out the newline character at the
 // end of the string:

 int len = strlen(result);
 if(len > 0)
 {
 dest[len - 1] = 0;
 }

856 Chapter 14

 return len;
 }
 return -1; // If there was an error
}

int main(void)
{
 // Get the assembly language program's title:

 char *title = getTitle();

 setlocale(LC_ALL, "en_US.UTF-8");
 asmMain();
 printf("%s terminated\n", title);
}

Listing 14-6 presents a trivial program that demonstrates example text
output containing UTF-8, to be compiled and linked with c-utf8.cpp. This
example prints the UTF-8 sequence U+65 (lowercase e) followed by U+301
(combining acute accent character).

// Listing14-6.S
//
// Simple program to demonstrate UTF-8 output

 #include "aoaa​.inc"

 .data
fmtStr: .ascii "Unicode='"

 // e followed by U+301 (0xCC, 0x81 in UTF-8)

 .ascii "e"
 .byte 0xCC, 0x81

 .asciz "'\n"

 .code
ttlStr: wastr "Listing14-6.S"

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

 proc asmMain, public

 locals lcl
 qword saveX20_X21
 byte stkSpace, 64
 endl lcl

 enter lcl.size // Reserve space for locals.

String Operations 857

 lea x0, fmtStr
 bl printf

AllDone: leave
 endp asmMain

Note that the UTF-8 encoding for U+301 requires 2 bytes

1 1 0 b11 b10 b9 b8 b7, 1 0 b6 b5 b4 b3 b2 b1 b0

where B11 down to B0 is 0x301 or 0b011_0000_0001. Therefore, the two
UTF-8 bytes are 0b1100_1100 (0xCC) and 0b10000001 (0x81).

Here’s the build command and sample output for Listing 14-6 (assum-
ing that c-utf8.cpp has been renamed to c.cpp):

% ./build Listing14-6
% ./Listing14-6
Unicode='é'
Listing14-6.S terminated

As you can see, the character sequence e, 0xcc, 0x89 produces the
accented é character.

14.4.2  Using Unicode String Functions
As long as you stick with UTF-8 encoding, character string functions that
operate on ASCII strings will mostly work with Unicode strings. You should
be aware of a few issues, though:

•	 Unless you keep strings in a canonical form, some string comparisons
may report that two strings are not equal when, in fact, they would
appear equal to the reader.

•	 String comparison for less than and greater than will likely produce non-
intuitive results because ASCII comparisons don’t work well in the face
of Unicode scalars whose values consume 2 or more bytes.

•	 A string-length calculation (when using zero-terminated or the assem-
bly language string data type) will report the number of bytes in the
string, not the number of characters (scalars or glyphs). Unless the
string contains only ASCII characters, the length calculation will be
wrong. The only reasonable way to count characters in a Unicode string
is to process each glyph one at a time and count the glyphs.

•	 Functions that accept indices into a string generally require glyph indi-
ces, not byte indices. For example, the str.substr function given earlier
could extract a substring containing a portion of a glyph at the begin-
ning of the string, or chop a glyph in half at the end of the string, if the
index and length parameters aren’t carefully chosen. Functions that
insert glyphs into a string or delete characters from a string will suffer
from this same problem.

858 Chapter 14

Because of these issues (and more), it’s dangerous to use ASCII-based
string functions on Unicode and UTF-8 strings. It goes without saying that
ASCII-based functions will not work on UTF-16 or UTF-32 encodings of
Unicode characters.

Section 14.6, “For More Information,” on the next page provides links
to several string libraries (mostly written on C/C++) that process Unicode
strings. The International Components for Unicode (UCI) library is impor-
tant to consider, since it’s the library provided by the Unicode Consortium.
At the time of writing, this library (ICU74.2) claims the following support:

•	 The latest version of the Unicode standard

•	 Character set conversions with support for over 220 code pages

•	 Locale data for more than 300 locales

•	 Language-sensitive text collation (sorting) and searching based on the
Unicode Collation Algorithm (ISO 14651)

•	 Regular expression matching and Unicode sets

•	 Transformations for normalization, upper- and lowercase, script trans-
literations (50+ pairs)

•	 Resource bundles for storing and accessing localized information

•	 Date/number/message formatting and parsing of culture-specific
input/output formats

•	 Calendar-specific date and time manipulation

•	 Text boundary analysis for finding character, word, and sentence
boundaries

Although this isn’t a complete set of string functions you’d expect
in a typical programming language, it does provide all the basic opera-
tions needed to correctly implement a full set of functions. Also keep in
mind that Unicode string functions aren’t particularly fast. Unfortunately,
because of the design of the Unicode character set (and multibyte charac-
ter sets in general), you have to process each and every character in a string
to accomplish mundane tasks. Only a few functions, like str.cpy, can work
without scanning over every character in the string.

	 14.5	 Moving On
This chapter covered string data structures (zero-terminated and special
assembly language strings), calling C stdlib string functions from assembly,
writing assembly language–based string functions, and using the Unicode
character set (and Unicode string functions).

The next chapter discusses managing large projects in assembly lan-
guage, particularly how to create library modules, which will prove useful
for combining several string functions into a single library module.

String Operations 859

	 14.6	 For More Information
•	 The official Unicode website is the main source for information about

all things concerning the Unicode standard. This is the closest thing to
an official Unicode library: https://icu​.unicode​.org​/home.

•	 GNU offers a Unicode string library at https://www​.gnu​.org​/software​/
libunistring​/manual​/libunistring​.html.

•	 You can find the source code for the functions from the GNU C stdlib
for AARCH64 discussed in this chapter at https://github​.com​/bminor​/glibc​/
tree​/master​/sysdeps​/aarch64.

•	 For the GitHub repository containing the source code for the glibc
string functions written in ARM assembly, see https://github​.com​/ARM​
-software​/optimized​-routines​/tree​/master​/string​/aarch64. You can study this
code to learn advanced string-handling tricks in assembly language.

•	 For help writing ARM string-handling functions in assembly language,
you can post questions to a forum I’ve set up at https://forums​.randall​
hyde​.com.

•	 For a list of various Unicode string libraries, see https://unicodebook​
.readthedocs​.io​/libraries​.html#libunistring.

•	 Wikipedia offers more detail on Unicode code points at https://en​.wikipedia
.org/wiki​/Unicode#General​_Category​_property.

•	 My website links to information on the HLA string library (x86): https://
www​.randallhyde​.com​/AssemblyLanguage​/HighLevelAsm​/HLADoc​/index​.html.

•	 ARM Developer assembly language string library source code can be
found at https://developer​.arm​.com​/documentation​/102620​/0100​/Optimized​
-string​-routines​-​-​-libastring.

•	 For more on the setlocale() function, see https://man7​.org​/linux​/man​
-pages​/man3​/setlocale​.3​.html. For an explanation of the locale string for-
mat, see https://docs​.oracle​.com​/javase​/8​/docs​/api​/java​/util​/Locale​.html (or
search for locale function).

T ES T YOURSEL F

1.	 What is a zero-terminated string?

2.	 Why are zero-terminated string functions so slow (in general)?

3.	 How does the string assembly language type presented in this chapter
generally improve the performance of string functions? Name at least three
reasons.

4.	 Why can’t the str.substr function copy the source data on a 16-byte
boundary?

5.	 Why are most Unicode string functions intrinsically slow?

https://icu.unicode.org/home
https://www.gnu.org/software/libunistring/manual/libunistring.html
https://www.gnu.org/software/libunistring/manual/libunistring.html
https://github.com/bminor/glibc/tree/master/sysdeps/aarch64
https://github.com/bminor/glibc/tree/master/sysdeps/aarch64
https://github.com/ARM-software/optimized-routines/tree/master/string/aarch64
https://github.com/ARM-software/optimized-routines/tree/master/string/aarch64
https://forums.randallhyde.com
https://forums.randallhyde.com
https://unicodebook.readthedocs.io/libraries.html#libunistring
https://unicodebook.readthedocs.io/libraries.html#libunistring
https://en.wikipedia.org/wiki/Unicode#General_Category_property
https://en.wikipedia.org/wiki/Unicode#General_Category_property
https://www.randallhyde.com/AssemblyLanguage/HighLevelAsm/HLADoc/index.html
https://www.randallhyde.com/AssemblyLanguage/HighLevelAsm/HLADoc/index.html
https://developer.arm.com/documentation/102620/0100/Optimized-string-routines---libastring
https://developer.arm.com/documentation/102620/0100/Optimized-string-routines---libastring
https://man7.org/linux/man-pages/man3/setlocale.3.html
https://man7.org/linux/man-pages/man3/setlocale.3.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html

Most assembly language source files are not
stand-alone programs. In general, you must

call various standard library or other rou-
tines that are not defined in your main program

because attempting to write such code as part of your
application would be far too much work (and poor pro-
gramming practice).

For example, the ARM doesn’t provide machine instructions like read,
write, or put for doing I/O operations. The functions in this book contain
thousands of lines of source code to accomplish these operations. For small
programs, working with a single source file is fine, but for large programs,
this gets cumbersome. Programming would be formidable if you had to
merge these thousands of lines of code into your simple programs, which
would then compile slowly. Furthermore, once you’ve debugged and tested
a large section of your code, continuing to assemble that same code when
you make a small change to another part of your program is a waste of

15
M A N A G I N G C O M P L E X P R O J E C T S

862 Chapter 15

time. Imagine having to wait 20 or 30 minutes on a fast PC to assemble a
program after making a one-line change!

Programming in the large is the term software engineers have coined to
describe the processes, methodologies, and tools for reducing the develop-
ment time of large software projects. While everyone has their own idea of
what “large” is, separate compilation is one of the more popular techniques
that support programming in the large. First, you break your large source
files into manageable chunks. Then you compile the separate files into
object code modules. Finally, you link the object modules together to form
a complete program. If you need to make a small change to one of the mod-
ules, you need to reassemble only that one module rather than the entire
program.

This chapter describes the tools that Gas and your OS provide for
separate compilation and how to effectively employ these tools in your
programs.

	 15.1	 The .include Directive
The ​.include directive, when encountered in a source file, switches program
input from the current file to the file specified in the operand field of the
include directive. Section 1.5, “The aoaa​.inc Include File,” on page 10
described the ​.include directive as a way to include code from separate
source files into the current assembly, allowing you to construct text files
containing common constants, types, source code, and other Gas items into
the assembly. As noted in that section, the syntax for the ​.include directive is

​.include "filename"

where filename must be a valid filename.
By this book’s convention, Gas include files have a ​.inc (include) suffix.

Gas, however, does not require include files to have this suffix; any filename
containing Gas assembly language source will work. Gas merges the speci-
fied file into the compilation at the point of the ​.include directive. You can
nest ​.include statements inside files you include; that is, a file being included
into another file during assembly may itself include a third file.

Using the ​.include directive by itself does not provide separate compi-
lation. You could use ​.include to break up a large source file into separate
modules and join these modules together when you compile your file. The
following example would include the print​.inc and getTitle​.inc files during
the compilation of your program:

​.include "print​.inc"
​.include "getTitle​.inc"

Your program will now benefit from modularity. Alas, you will not save
any development time. The ​.include directive inserts the source file at the
point of the ​.include during compilation, exactly as though you had typed

Managing Complex Projects 863

that code yourself. Gas still has to compile the code, and that takes time.
If you are including a large number of source files (such as a huge library)
into your assembly, the compilation process could take forever.

In general, you should not use the ​.include directive to include source
code as shown in the previous example, as this code won’t allow you to take
advantage of separate compilation. Instead, use the ​.include directive to
insert a common set of constants, types, external procedure declarations,
and other such items into a program. Typically, an assembly language
include file does not contain any machine code (outside of a macro; see
Chapter 13 for details). The purpose of using ​.include files in this manner
will become clearer after you see how the external declarations work (see
section 15.3, “Assembly Units and External Directives,” on the next page).

If your assembly language source files have a .S suffix, you can also use
the #include "filename" directive to include a source file. This is generally
preferable because you can use the CPP directives in such include files (you
can’t in a standard ​.include file). The rest of this chapter assumes the use of
the #include directive rather than ​.include.

	 15.2	 Ignoring Duplicate Include Operations
As you begin to develop sophisticated modules and libraries, you will
eventually discover a big problem: some header files need to include other
header files. Technically, this is fine in and of itself, but issues arise when
one header file includes another, and that second header file includes
another, and so on, such that the final header file includes the first
header file.

There are two problems with a header file indirectly including itself.
First, this creates an infinite loop in the compiler. The compiler will happily
go on about its business including all these files over and over again until
it runs out of memory or another error occurs. Second, when Gas includes
a header file for the second time, it starts complaining bitterly about dupli-
cate symbol definitions. After all, the first time it reads the header file, it
processes all the declarations in that file; the second time around, it views
all those symbols as duplicate symbols.

The standard technique for resolving recursively included files, well-
known to C/C++ programmers, is to use conditional assembly to have Gas
ignore the content of an include file. (See Chapter 13 for a discussion of
conditional assembly for CPP and the Gas CTL.) The trick is to place an
#ifdef (if defined) statement around all statements in the include file.
Specify an undefined symbol as the #ifdef operand (I tend to use the
include file’s filename, substituting underlines for periods). Then, immedi-
ately after the #ifdef statement, define that symbol; using a numeric equate
and assigning the symbol the constant 1 is typical. Here’s an example of
this #ifdef usage in action:

#ifdef myinclude_inc // Filename: myinclude​.inc
#define myinclude_inc 1

864 Chapter 15

 Put all the source code lines for the include file here.

// The following statement should be the last nonblank line
// in the source file:

#endif // myinclude_inc

If you attempt to include myinclude​.inc a second time, the #ifdef direc-
tive will cause Gas (actually, the CPP) to skip over all the text up to the cor-
responding #endif directive, thus avoiding the duplicate definition errors.

	 15.3	 Assembly Units and External Directives
An assembly unit is the assembly of a source file plus any files it directly or
indirectly includes. An assembly unit produces a single .o (object) file after
assembly. The linker takes multiple object files (produced by Gas or other
compilers, such as GCC) and combines those object files into a single exe-
cutable file. The main purpose of this section, and, indeed, this whole chap-
ter, is to describe how these assembly units (.o files) communicate linkage
information to one another during the linking process. Assembly units are
the basis for creating modular programs in assembly language.

To use Gas’s assembly unit facilities, you must create at least two source
files. One file contains a set of variables and procedures used by the second.
The second file uses those variables and procedures without knowing how
they’re implemented.

Technically, the #include directive provides you with all the facilities you
need to create such modular programs. You can create several modules, each
containing a specific routine, and include those modules, as necessary,
in your assembly language programs by using the #include directive. However,
if you use this method, including a routine you’ve debugged in a compilation
will still waste time because Gas must recompile bug-free code whenever you
assemble the main program. A much better solution is to preassemble the
debugged modules and link the object code modules together, using Gas’s
.global and .extern directives, which this section covers.

All the programs appearing in this book up to this point have been sep-
arately assembled modules that happen to link with a C/C++ main program
rather than another assembly language module. In every program thus far,
the assembly language “main program” has been named asmMain, which is
nothing but a C++-compatible function that the generic c.cpp program has
called from its main program. For example, consider the body of asmMain
from Listing 1-3 on page 9 (for Linux and Pi OS systems):

// Listing1-3.S
//
// A simple Gas module that contains
// an empty function to be called by
// the C++ code in Listing 1-2.

Managing Complex Projects 865

 .text

// Here is the asmMain function:

 .global asmMain
 .align 2 // Guarantee 4-byte alignment.
asmMain:

// Empty function just returns to C++ code:

 ret // Returns to caller

This .global asmMain statement has been included in every program that
has had an asmMain function without any definition or explanation. It’s now
time to deal with that oversight.

Normal symbols in a Gas source file are private to that particular source
file and are inaccessible from other source files (that don’t directly include
the file containing those private symbols, of course). That is, the scope of
most symbols in a source file is limited to those lines of code within that
particular source file and any files it includes. The .global directive tells
Gas to make the specified symbol global to the assembly unit—accessible by
other assembly units during the link phase. By placing the .global asmFunc
statement in the example programs appearing throughout this book, these
sample programs have made the asmMain symbol global to the source file
containing them so that the c.cpp program can call the asmMain function.

As you may recall, macOS requires an underscore prefix in front of the
global name. This means you would use .global _asmMain and _asmMain: if you
wanted this source file to assemble under macOS. The aoaa​.inc header file
resolves this issue in a portable fashion, but the code from Listing1-3.S does
not include aoaa​.inc.

Simply making a symbol public is insufficient to use that symbol in
another source file. The source file that wants to use the symbol must also
declare that symbol as external. This notifies the linker that it will have to
patch in the address of a public symbol whenever the file with the external
declaration uses that symbol. For example, the c.cpp source file defines the
asmMain symbol as external in the following lines of code (for what it’s worth,
this declaration also defines the external symbol getTitle):

// extern "C" namespace prevents
// "name mangling" by the C++
// compiler.

extern "C"
{
 // Here's the external function,
 // written in assembly language,
 // that this program will call:

 void asmMain(void);
 int readLine(char *dest, int maxLen);
};

866 Chapter 15

In this example, readLine is actually a C++ function defined in the c.cpp
source file. C/C++ does not have an explicit public declaration. Instead, if
you supply the source code for a function in a source file that declares that
function to be external, C/C++ will automatically make that symbol public
by virtue of the external declaration.

When you place an .extern directive in your program, Gas treats that
declaration the same as any other symbol declaration. If the symbol already
exists, Gas will generate a symbol redefinition error. Generally, you should
place all external declarations near the beginning of the source file to avoid
any scoping / forward reference issues.

Technically speaking, using the .extern directive is optional, as Gas
assumes that any symbol you use that is not defined in a source file is an
external symbol. The linker will report actual undefined symbols if it
fails to find a symbol when linking in all the other object code modules.
However, it is good programming style to explicitly define your external
symbols with .extern in order to make your intentions clear to others read-
ing your source code.

Because the .global directive does not actually define the symbol, its
placement is not as critical as the .extern directive’s is. Some programmers
put all the global declarations at the beginning of a source file; others put
the global declaration right before the definition of the symbol (as I’ve
done with the asmMain symbol in most of the same programs). Either is fine.

Because a public symbol from one source file can be used by many
assembly units, a problem develops: you have to replicate the .extern direc-
tive in all the files that use that symbol. For a small number of symbols,
this is not much of an issue. However, as the number of external symbols
increases, maintaining all these external symbols across multiple source
files becomes burdensome.

The Gas solution is the same as the C/C++ solution: header files. These
are simply include files containing external (and other) declarations that
are common among multiple assembly units. Header files get their name
from the fact that the include statement that injects their code into a source
file usually appears at the beginning (the “head”) of the source file that
uses them. This turns out to be the primary use of include files in Gas.

	 15.4	 Creating a String Library with Separate Compilation
Chapter 14 provided several examples of string-handling functions along
with macros and the string structure. The problem with these functions
and declarations is that they must be cut and pasted into any source file
that wants to use them. It would be far better to create a header file con-
taining the macros, structures, and external symbol definitions and then
compile the individual functions into .o files to link with those programs
that want to use those functions. This section describes how to create link-
able object modules for these string functions.

The header file for the strings library is strings​.inc:

Managing Complex Projects 867

// strings​.inc
//
// String function header file for the assembly
// language string format

#ifndef strings_inc
#define strings_inc 1

// Assembly language string data structure:

 struct string, -16
 dword string.allocPtr // At offset -16
 word string.maxlen // At offset -8
 word string.len // At offset -4
 byte string.chars // At offset 0

 // Note: characters in string occupy offsets
 // 0 ... in this structure.

 ends string

// str.buf
//
// Allocate storage for an empty string
// with the specified maximum size:

 .macro str.buf strName, maxSize
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word \maxSize
 .word 0
\strName: .space ((\maxSize+16) & 0xFFFFFFF0), 0
 .endm

// str.literal
//
// Allocate storage for a string buffer and initialize
// it with a string literal:

 .macro str.literal strName, strChars
 .align 4 // Align on 16-byte boundary.
 .dword 0 // NULL ptr for allocation ptr
 .word len_\strName // string.maxlen
 .word len_\strName // string.len

 // Emit the string data and compute the
 // string's length:

\strName: .ascii "\strChars"
len_\strName= .-\strName
 .byte 0 // Zero-terminating byte

868 Chapter 15

 // Ensure object is multiple of 16 bytes:

 .align 4
 .endm

// str.len
//
// Return the length of the string pointed at by X0.
// Returns length in X0

 .macro str.len
 ldr w0, [x0, #string.len]
 .endm

// External declarations:

 .extern str.cpy
 .extern str.cmp
 .extern str.substr
 .extern str.bufInit
 .extern str.alloc
 .extern str.free

// This would be a good place to include external
// declarations for any string functions you write.

#endif

The source file for the str.cpy function is in str.cpy.S:

// str.cpy.S
//
// A str.cpy string copy function

 #include "aoaa​.inc"
 1 #include "strings​.inc"

 .code

///
//
// str.cpy
//
// Copies the data from one string variable to another
//
// On entry:
//
// X0- Pointer to source string (string struct variable)
// X1- Pointer to destination string
//
// On exit:
//
// Carry flag clear if no errors, carry is set if
// the source string will not fit in the destination.

Managing Complex Projects 869

 2 proc str.cpy, public

 locals str_cpy
 qword str_cpy.saveV0
 qword str_cpy.saveX2X3
 dword str_cpy.saveX4
 byte str_cpy.stkSpace,64
 endl str_cpy

 enter str_cpy.size

 // Preserve X2 ... X4 and V0:

 str q0, [fp, #str_cpy.saveV0]
 stp x2, x3, [fp, #str_cpy.saveX2X3]
 str x4, [fp, #str_cpy.saveX4]

 // Ensure the source will fit in the destination
 // string object:

 ldr w4, [x0, #string.len]
 ldr w3, [x1, #string.maxlen]
 cmp w4, w3
 bhi str.cpy.done // Note: carry is set.

 // Set the length of the destination string
 // to the length of the source string.

 str w4, [x1, #string.len]

 // X4 contains the number of characters to copy;
 // while this is greater than 16, copy 16 bytes
 // at a time from source to dest:

 mov x2, x0 // Preserve X0 and X1.
 mov x3, x1

cpy16: ldr q0, [x2], #16
 str q0, [x3], #16
 subs w4, w4, #16
 bhi cpy16

// At this point, you have fewer than 16 bytes to copy. If
// W4 is not 0, just copy 16 remaining bytes (you know,
// because of the string data structure, that if you have at
// least 1 byte left to copy, you can safely copy
// 16 bytes):

 beq setZByte // Skip if 0 bytes.

 ldr q0, [x2]
 str q0, [x3]

// Need to add a zero-terminating byte to the end of
// the string. Note that maxlen does not include the

870 Chapter 15

// 0 byte, so it's always safe to append the 0
// byte to the end of the string.

setZByte: ldr w4, [x0, #string.len]
 strb wzr, [x1, w4, uxtw]

 adds wzr, wzr, wzr // Clears the carry

str.cpy.done:
 ldr q0, [fp, #str_cpy.saveV0]
 ldp x2, x3, [fp, #str_cpy.saveX2X3]
 ldr x4, [fp, #str_cpy.saveX4]
 leave
 endp str.cpy

The str.cpy.S source file is created by including the strings​.inc header
file 1 and cutting and pasting the str.cpy function 2 from Listing 14-2
on page 819. Note the public argument after the proc macro. This causes
the proc macro to emit a .global directive for the str.cpy symbol so that the
function is available to other source files.

The str.cmp.S, str.substr.S, str.alloc.S, str.free.S, and str.bufInit.S source files
are created from their corresponding functions (in Chapter 14) in a similar
fashion. I won’t include those source files here because they are redundant
and consume too much space, but you can find copies in the online source
files at https://artofarm​.randallhyde​.com.

If you try to use the usual build command to assemble any of these
modules, you get an error from the system complaining about missing sym-
bols. This is because these modules are not stand-alone assembly language
programs. In the following section, I describe the correct way to build these
library modules; in the meantime, here are some cheesy commands that
will assemble these files without error (though there will be a warning):

./build -c str.cpy

./build -c str.cmp

./build -c str.substr

./build -c str.bufInit

./build -c str.alloc

./build -c str.free

This will assemble the files without running the linker (-c means compile
only), generating the files str.cpy.o, str.cmp.o, str.substr.o, str.bufInit.o, str.alloc.o,
and str.free.o, respectively. Of course, the next question is how to link these
files with an application program. Listing 15-1 is an amalgamation of vari-
ous asmMain functions from Chapter 14 that make calls to the str.cpy, str.cmp,
and str.substr functions.

// Listing15-1.S
//
// A program that calls various string functions

 #include "aoaa​.inc"

https://artofarm.randallhyde.com

Managing Complex Projects 871

 #include "strings​.inc"

///

 .data

 str.buf destination, 256
 str.literal src, "String to copy"
 str.literal left, "some string"
 str.literal right1, "some string"
 str.literal right2, "some string."
 str.literal right3, "some string"

 str.buf smallDest, 32
 str.literal dest, "Initial destination string"

// 1111111111222222222233333
// 01234567890123456789012345678901234
str.literal source, "Hello there, world! How's it going?"

fmtStr: .asciz "source='%s', destination='%s'\n"
ltFmtStr: .asciz "Left ('%s') is less than right ('%s')\n"
gtFmtStr: .asciz "Left ('%s') is greater than right ('%s')\n"
eqFmtStr: .asciz "Left ('%s') is equal to right ('%s')\n"

successStr: .asciz "substr('%s', %2d, %3d)= '%s'\n"
failureStr: .asciz "substr('%s', %2d, %3d) failed\n"

///

 .code
ttlStr: wastr "Listing15-1"

// Standard getTitle function
// Returns pointer to program name in X0

 proc getTitle, public
 lea x0, ttlStr
 ret
 endp getTitle

///
//
// prtResult
//
// Utility function to print the result of a string
// comparison:

 proc prtResult

 mov x2, x1
 mov x1, x0
 mstr x1, [sp]
 mstr x2, [sp, #8]

872 Chapter 15

 beq strsEQ
 bhi strGT

 // Must be LT at this point.

 lea x0, ltFmtStr
 b printf

strsEQ: lea x0, eqFmtStr
 b printf

strGT: lea x0, gtFmtStr
 b printf

 endp prtResult

///
//
// testSubstr
//
// Utility function to test call to str.substr
//
// On entry:
// X0, X1, X2, X3 -- str.substr parameters

 proc testSubstr

 locals testSS
 byte testSS.stkspace, 64
 endl testSS

 enter testSS.size

 lea x5, successStr
 bl str.substr
 bcc success
 lea x5, failureStr

success:
 mov x4, x3
 mov x3, x2
 mov x2, x1
 mov x1, x0
 mov x0, x5
 mstr x1, [sp]
 mstr x2, [sp, #8]
 mstr x3, [sp, #16]
 mstr x4, [sp, #24]
 bl printf
 leave
 endp testSubstr

///

Managing Complex Projects 873

//
// Main program to test the code:

 proc asmMain, public

 locals lcl
 byte stkSpace, 64
 endl lcl

 enter lcl.size // Reserve space for locals.

 lea x0, src
 lea x1, destination
 bl str.cpy

 mov x2, x1
 mov x1, x0
 lea x0, fmtStr
 mstr x1, [sp]
 mstr x2, [sp, #8]
 bl printf

 lea x0, left
 lea x1, right1
 bl str.cmp
 bl prtResult

 lea x0, left
 lea x1, right2
 bl str.cmp
 bl prtResult

 lea x0, left
 lea x1, right3
 bl str.cmp
 bl prtResult

 lea x0, source
 mov x1, #0
 mov x2, #11
 lea x3, dest
 bl testSubstr

 lea x0, source
 mov x1, #20
 mov x2, #15
 lea x3, dest
 bl testSubstr

 lea x0, source
 mov x1, #20
 mov x2, #20

874 Chapter 15

 lea x3, dest
 bl testSubstr

 lea x0, source
 mov x1, #40
 mov x2, #20
 lea x3, dest
 bl testSubstr

 lea x0, source
 mov x1, #0
 mov x2, #100
 lea x3, smallDest
 bl testSubstr

AllDone: leave
 endp asmMain

If you try to build this program with the following command

./build Listing15-1

the system will complain that it cannot locate the symbols str.cpy, str.cmp,
and str.substr in the object files provided. Unfortunately, the build shell
script doesn’t support linking in multiple object modules (other than the
c.cpp and the specified file’s object files). Therefore, you must specify an
explicit g++ command to process all the files:

g++ -DisMacOS c.cpp Listing15-1.S str.cpy.o str.cmp.o str.substr.o -o Listing15-1

The -DisMacOS command line argument should be changed to -DisLinux
when compiling the code under Linux or Pi OS (rather than macOS). As
you may recall from section 1.10.1, “Assembling Programs Under Multiple
OSes,” on page 36, the build shell script determines the OS and emits a
g++ command line define (the -Dxxxx option) to make the OS known to
the assembly source file (and, especially, the aoaa​.inc header file). As this
g++ command will attempt to assemble the Listing15-1.S source file (which
includes aoaa​.inc), the command line must include a definition of either
isMacOS or isLinux, or the assembly will fail.

This g++ command will compile c.cpp, assemble Listing15-1.S, and link
their object files together with the str.cpy.o, str.cmp.o, and str.substr.o object
files. This assumes, of course, that you’ve already assembled the str.*.S
source files and that their object files are sitting in the current directory.
The sample program in Listing 15-1 does not call the str.alloc, str.free, or
str.bufInit functions, so there was no need to link in their respective object
code files, though doing so would not have generated an error.

Here’s the full set of commands needed to build all these files and gen-
erate and run the Listing 15-1 executable:

Managing Complex Projects 875

% g++ -c -DisMacOS str.cpy.S
% g++ -c -DisMacOS str.cmp.S
% g++ -c -DisMacOS str.substr.S
% g++ -DisMacOS c.cpp Listing15-1.S str.cpy.o str.cmp.o str.substr.o -o Listing15-1
% ./Listing15-1
Calling Listing15-1:
source='String to copy', destination='String to copy'
Left ('some string') is equal to right ('some string')
Left ('some string') is less than right ('some string.')
Left ('some string') is greater than right ('some string')
substr('Hello there, world! How's it going?', 0, 11)= 'Hello there'
substr('Hello there, world! How's it going?', 20, 15)= 'How's it going?'
substr('Hello there, world! How's it going?', 20, 20)= 'How's it going?'
substr('Hello there, world! How's it going?', 40, 20)= ''
substr('Hello there, world! How's it going?', 0, 100) failed
listing15-1 terminated

Granted, that’s a lot of typing in order to compile and link a simple
source file. You could remedy this by putting all the commands into a text
file and executing them as a shell script (similar to the build script), but
there’s a better way: makefiles.

	 15.5	 Introducing Makefiles
The build file used throughout this book has been far more convenient
than the manual commands needed to build the example of the previous
section. Unfortunately, the build mechanism that build supports is good for
only a few fixed source files. While you could easily construct a shell script
to compile all the files in a large assembly project, it would largely defeat
the purpose of using separate assembly, as running the script file would
reassemble every source file in the project. Although you can use complex
command line functions to avoid some of this, it’s easier to use makefiles.

A makefile is a script in a language (designed in early releases of Unix)
that specifies how to execute a series of commands based on certain condi-
tions. In its simplest form, a makefile can behave exactly like a shell script;
you can list a sequence of commands in a text file and have the make pro-
gram execute them. Of course, there would be no benefit over using a shell
script if you did this; you should take advantage of make’s features if you’re
going to use makefiles.

The make program is an executable, just like Gas (as) or GCC. As make is
not a part of the Linux or macOS system, you must obtain a make program
before you can use it. Fortunately, make comes preinstalled on most Linux
and macOS distributions (if you can run GCC, you can certainly run make).
Execute it from a command line as follows:

make optionalArguments

If you execute make on a command line without any arguments, make
will search for a file named Makefile and attempt to process the commands

876 Chapter 15

in that file. For many projects, this is very convenient. If you put all your
source files in a single directory (potentially with subdirectories) along with
a single makefile (named Makefile), you can then change into that directory
and execute make, building the project with minimal fuss.

If you like, you can use a different filename than Makefile. Rather than
simply placing the filename after make on the command line, however, you
must preface the filename with the make -f option as follows:

make -f mymake.mak

You don’t need to give your filename the .mak extension, but this is a
popular convention when using makefiles with custom names.

The make program provides many command line options, and you can
list common ones by using --help. You can look up make documentation
online (or type man make from the command line) for a description of the
other command line options, but most of them are advanced and unneces-
sary for most tasks.

Of course, to make practical use of make, you need to create makefiles.
The following subsections describe the make scripting language and some
common conventions for makefiles.

15.5.1  Basic Makefile Syntax
A makefile is a standard ASCII text file containing a sequence of lines (or a
set of multiple occurrences of this sequence) as follows:

target: dependencies
 commands

All components of this code—target, dependencies, and commands—are
optional. The target item is an identifier or filename of some sort that, if
present, must begin in column 1 of its source line. The dependencies item is a
list of filenames on which the target depends in order to be built properly.
The commands item is a list of one or more command line commands, which
must have at least one tab character in front of them.

Consider the following makefile, which builds a set of string library
functions (note that a tab appears before each g++ command):

all:
 g++ -c -DisMacOS str.cpy.S
 g++ -c -DisMacOS str.cmp.S
 g++ -c -DisMacOS str.substr.S
 g++ -DisMacOS c.cpp Listing15-1.S str.cpy.o str.cmp.o \
 str.substr.o -o Listing15-1

If these commands appear in a file named Makefile and you execute
make, they will execute exactly as the command line interpreter would have
executed them, had they appeared in a shell script.

Managing Complex Projects 877

Consider the following modification of the previous makefile:

executable:
 g++ -c -DisMacOS Listing15-1.S
 g++ -DisMacOS c.cpp Listing15-1.o str.cpy.o str.cmp.o str.substr.o -o Listing15-1

library:
 g++ -c -DisMacOS str.cpy.S
 g++ -c -DisMacOS str.cmp.S
 g++ -c -DisMacOS str.substr.S

This separates the build commands into two groups: one specified by
the executable label and another specified by the library label.

If you run make without any command line options, it will execute only
the commands appearing after the first target in the file. Therefore, in this
example, if you run make by itself, it will assemble Listing15-1.S, compile c.cpp,
and attempt to link (the resulting) c.obj with str.cpy.o, str.cmp.o, str.substr.o, and
Listing15-1.o. Assuming you had previously compiled the string functions,
this should successfully produce the Listing15-1 executable (without having
to recompile the string functions).

To convince make to process the commands after the library target, you
must specify the target name as a make command line argument:

make library

This make command compiles str.cpy.S, str.cmp.S, and str.substr.S. If you
execute this command once (and never change the string functions there-
after), you need only execute the make command by itself to generate the
executable file. You can also use make executable if you want to explicitly
state that you are building the executable.

The ability to specify which targets you want to build on the command
line is useful. However, as your projects get larger, with many source files
and library modules, keeping track of which source files you need to recom-
pile all the time can be burdensome and error-prone. If you’re not careful,
you’ll forget to compile an obscure library module after you’ve made changes
to it and wonder why the application is still failing. The make dependencies
option helps you avoid these problems by allowing you to automate the
build process.

A list of one or more whitespace-separated dependencies can follow a
target in a makefile:

target: dependency1 dependency2 dependency3 ...

Dependencies are either target names (of targets appearing in that
makefile) or filenames. If a dependency is a target name (that is not also a
filename), make will go execute the commands associated with that target.
Consider the following makefile (if compiling under Linux or Pi OS, be

878 Chapter 15

sure to change the -DisMacOS command line option to -DisLinux in this exam-
ple and all that follow):

executable:
 g++-c -DisMacOS Listing15-1.S
 g++-DisMacOS c.cpp Listing15-1.o str.cpy.o str.cmp.o str.substr.o -o Listing15-1

library:
 g++ -c -DisMacOS str.cpy.S
 g++-c -DisMacOS str.cmp.S
 g++-c -DisMacOS str.substr.S

all: library executable

The all target in this code does not have any commands associated
with it. Instead, the all target depends on the library and executable targets,
so it will go execute the commands associated with those targets, beginning
with library. This is because the library object files must be built before the
associated object modules can be linked into the executable program). The
all identifier is a common target in makefiles. Indeed, it is often the first or
second target to appear in a makefile.

If a target: dependencies line becomes too long to be readable (make
doesn’t care much about line length), you can break the line into multiple
lines by putting a backslash character (\) as the last character on a line. The
make program will combine source lines that end with a backslash with the
next line in the makefile. The backslash must be the very last character on
the line; whitespace characters (tabs and spaces) are not allowed to follow
the backslash.

Target names and dependencies can also be filenames. Specifying a
filename as a target name is generally done to tell the make system how to
build that particular file. For example, you could rewrite the current exam-
ple as follows:

executable:
 g++ -c -DisMacOS Listing15-1.1
 g++ -DisMacOS c.cpp Listing15-1.o str.cpy.o str.cmp.o str.substr.o -o Listing15-1

library: str.cpy.o str.cmp.o str.substr.o

str.cpy.o:
 g++ -c -DisMacOS str.cpy.S

str.cmp.o:
 g++ -c -DisMacOS str.cmp.S

str.substr.o:
 g++ -c -DisMacOS str.substr.S

all: library executable

When dependencies are associated with a target that is a filename, you
can read the target: dependencies statement as “target depends on dependencies.”

Managing Complex Projects 879

When processing a command, make compares the modification date/time-
stamp of the files specified as target and dependency filenames.

If the date/time of the target is older than any of the dependencies (or
the target file doesn’t exist), make will execute the commands after the target.
If the target file’s modification date/time is later (newer) than all of the
dependent files, make will not execute the commands. If one of the depen-
dencies after a target is itself a target elsewhere, make will first execute that
command (to see if it modifies the target object, changing its modification
date/time, and possibly causing make to execute the current target’s com-
mands). If a target or dependency is just a label (not a filename), make will
treat its modification date/time as older than any file.

Consider the following modification to the running makefile example:

Listing15-1:Listing15-1.o str.cpy.o str.cmp.o str.substr.o
 gcc -DisMacOS c.cpp Listing15-1.o str.cpy.o str.cmp.o str.substr.o -o Listing15-1

Listing15-1.o:
 g++ -c -DisMacOS Listing15-1.S

str.cpy.o:
 g++ -c -DisMacOS str.cpy.S

str.cmp.o:
 g++ -c -DisMacOS str.cmp.S

str.substr.o:
 g++ -c -DisMacOS str.substr.S

This code has removed all and library targets, as they turn out to be
unnecessary, and changed executable to Listing15-1, the final target execut-
able file.

Because str.cpy.o, str.cmp.o, str.substr.o, and Listing15-1.o are all tar-
gets (as well as filenames), make will first go process those targets. After that,
make will compare the modification date/time of Listing15-1 against that of
the four object files. If Listing15-1 is older than any of those object files, make
will execute the command following the Listing15-1 target line (to compile
c.cpp and link it with the object files). If Listing15-1 is newer than its depen-
dent object files, make will not execute the command.

The same process happens, recursively, for each of the dependent
object files following the Listing15-1 target. While processing the Listing15-1
target, make will also process the str.cpy.o, str.cmp.o, str.substr.o, and
Listing15-1.o targets (in that order). In each case, make compares the modi-
fication date/time of the .o file with the corresponding .S file. If the .o file is
newer than the .S file, make returns to processing the Listing15-1 target with-
out doing anything; if the .o file is older than the .S file (or doesn’t exist),
make executes the corresponding g++ command to generate a new .o file.

If Listing15-1 is newer than all the .o files (and they are all newer than
the .S files), then executing make simply reports that Listing15-1 is up-to-date,
but it will not execute any of the commands in the makefile. If any of the
files are out-of-date (because they’ve been modified), this makefile will
compile and link only the files necessary to bring Listing15-1 up-to-date.

880 Chapter 15

The makefiles have a pretty serious defect thus far: they are missing
an important dependency. Since all the .S files include the aoaa​.inc file, a
change to aoaa​.inc could possibly require a recompilation of these .S files.
Listing 15-2 adds this dependency to the Listing15-2.mak makefile, and it
also demonstrates how to include comments in a makefile by using the
character at the beginning of a line.

Listing15-2.mak
#
makefile for Listing15-1

Listing15-1:Listing15-1.o str.cpy.o str.cmp.o str.substr.o
 gcc -DisMacOS c.cpp Listing15-1.o str.cpy.o str.cmp.o str.substr.o -o Listing15-1

Listing15​-1​.o:aoaa​.inc Listing15-1.S
 gcc -c -DisMacOS Listing15-1.S

str​.cpy​.o:aoaa​.inc str.cpy.S
 gcc -c -DisMacOS str.cpy.S

str​.cmp​.o:aoaa​.inc str.cmp.S
 gcc -c -DisMacOS str.cmp.S

str​.substr​.o:aoaa​.inc str.substr.S
 gcc -c -DisMacOS str.substr.S

Here’s an example of executing make (under macOS):

% make -f Listing15-2.mak
gcc -c -DisMacOS Listing15-1.S
gcc -c -DisMacOS str.cpy.S
gcc -c -DisMacOS str.cmp.S
gcc -c -DisMacOS str.substr.S
gcc -DisMacOS c.cpp Listing15-1.o str.cpy.o str.cmp.o str.substr.o -o Listing15-1

To execute this command under Linux or Pi OS, don’t forget to change
all the -DisMacOS command line options to -DisLinux in the makefile and
make sure all commands have a tab in column 1. If you want to be able to
automatically compile the code for any OS, simply steal the code from the
build script that sets up a shell variable with the appropriate command line
option, as shown in Listing 15-3.

Listing15-3.mak
#
makefile for Listing15-1 with dependencies that will
automatically set up the define for the OS

1 unamestr=`uname`

Listing15-1:Listing15-1.o str.cpy.o str.cmp.o str.substr.o
 gcc -D$(unamestr) c.cpp Listing15-1.o str.cpy.o str.cmp.o \
 str.substr.o -o Listing15-1

Managing Complex Projects 881

Listing15​-1​.o:aoaa​.inc Listing15-1.S
 2 gcc -c -D$(unamestr) Listing15-1.S

str​.cpy​.o:aoaa​.inc str.cpy.S
 gcc -c -D$(unamestr) str.cpy.S

str​.cmp​.o:aoaa​.inc str.cmp.S
 gcc -c -D$(unamestr) str.cmp.S

str​.substr​.o:aoaa​.inc str.substr.S
 gcc -c -D$(unamestr) str.substr.S

The first statement 1 is an example of a makefile macro (or variable).
The OS command uname will display the OS (kernel) name. Under Linux
systems, this will be replaced by the string Linux, and on macOS systems by
the string Darwin (the internal name of the macOS kernel).

Makefile macros use deferred execution. This means that the macro
unamestr actually contains the text `uname` and that the uname command will
execute in place when the make program expands the unamestr macro. The
make program will expand the -D$(unamestr) command line option, produc-
ing -D`uname` 2. The backticks (`) tell make to execute the command and
replace it with the text printed by the command: the OS kernel name.

The only issue is that the uname command prints Linux or Darwin, so
the -D command defines one of these two symbols. The build script trans-
lates these strings to isMacOS and isLinux. I originally did this because the
symbol Linux would likely appear in a Linux-based assembly language
program. Unfortunately, the symbol translation trick didn’t work out in a
makefile, so I modified aoaa​.inc to accept Linux and Darwin as well as inLinux
and inMacOS. I modified aoaa​.inc to do the translation and undefine Linux or
Darwin, should those symbols get used:

// Makefiles define the symbols Darwin (for macOS)
// and Linux (for Linux) rather than isMacOS and
// isLinux. Deal with that here:

#ifdef Darwin
 #define isMacOS (1)
 #undef isLinux
 #undef Darwin
#endif
#ifdef Linux
 #define isLinux (1)
 #undef isMacOS
 #undef Linux
#endif

Here’s the execution of the make command to build the code for
Listing 15-3 (assuming no object files were already created):

% make -f Listing15-3.mak
g++ -c -D`uname` Listing15-1.S

882 Chapter 15

g++ -c -D`uname` str.cpy.S
g++ -c -D`uname` str.cmp.S
g++ -c -D`uname` str.substr.S
g++ -D`uname` c.cpp Listing15-1.o str.cpy.o str.cmp.o \
 str.substr.o -o Listing15-1

Note that -D`uname` is translated to either -DLinux or -DDarwin, depending
on the OS.

15.5.2  Make Clean and Touch
One common target you will find in most professionally made makefiles is
clean, which deletes an appropriate set of files to force the entire system to
be remade the next time you execute the makefile. This command typically
deletes all the .o and executable files associated with the project.

Listing 15-4 provides an example clean target for the makefile appear-
ing in Listing 15-3.

Listing15-4.mak
#
makefile for listing15-1 with dependencies that will
automatically set up the define for the OS
#
Demonstrates the clean target

unamestr=`uname`

Listing15-1:Listing15-1.o str.cpy.o str.cmp.o str.substr.o
 gcc -D$(unamestr) c.cpp listing15-1.o str.cpy.o str.cmp.o \
 str.substr.o -o Listing15-1

Listing15​-1​.o:aoaa​.inc Listing15-1.S
 gcc -c -D$(unamestr) Listing15-1.S

str​.cpy​.o:aoaa​.inc str.cpy.S
 gcc -c -D$(unamestr) str.cpy.S

str​.cmp​.o:aoaa​.inc str.cmp.S
 gcc -c -D$(unamestr) str.cmp.S

str​.substr​.o:aoaa​.inc str.substr.S
 gcc -c -D$(unamestr) str.substr.S

clean:
 rm str.cpy.o
 rm str.cmp.o
 rm str.substr.o
 rm Listing15-1.o
 rm c.o
 rm Listing15-1

Managing Complex Projects 883

Issuing the command

% make -f Listing15-4.mak clean

will delete all the executable and object code files associated with the project.
To force the recompilation of a single file (without manually editing

and modifying it), you can use the Unix utility touch. This program accepts
a filename as its argument and updates the modification date/time of the
file (without otherwise modifying the file). For example, after building
Listing15-1.S using the makefile in Listing 15-4, were you to execute the
command

touch Listing15-1.S

and then re-execute the makefile in Listing 15-4, make would reassemble the
code in Listing15-1.S, recompile c.cpp, and produce a new executable.

	 15.6	 Generating Library Files with the Archiver Program
Many common projects reuse code the developers created long ago, or
code from a source outside the developer’s organization. These libraries
of code are relatively static: they rarely change during the development
of a project that uses them. In particular, you would not usually incorpo-
rate the building of the libraries into a given project’s makefile. A specific
project might list the library files as dependencies in the makefile, but the
assumption is that the library files are built elsewhere and supplied as a
whole to the project.

Beyond that, there is one major difference between a library and a set
of object code files: packaging. Dealing with a myriad of separate object
files becomes troublesome when you’re working with large sets of library
object files. A library may contain tens, hundreds, or even thousands
of object files. Listing all these object files (or even just the ones a project
uses) is a lot of work and can lead to consistency errors.

The common way to deal with this problem is to combine object files
into a separate package (file) known as a library file. Under Linux and
macOS, library files typically have a .a suffix (where a stands for archive).
For many projects, you will be given a library file that packages together
a specific library module. You supply this file to the linker when building
your program, and the linker automatically picks out the object modules it
needs from the library. This is an important point: including a library while
building an executable does not automatically insert all the code from that
library into the executable. The linker is smart enough to extract only the
object files it needs and to ignore the object files it doesn’t use (remember, a
library is just a package containing a bunch of object files).

How do you create a library file? The short answer is, “By using the
archiver program (ar).” Here is its basic syntax

ar rcs libname.a list-of-.o-files

884 Chapter 15

where libname.a is the name of the library file you want to produce and
list-of-.o-files is a (space-separated) list of object filenames you want to
collect together into the library. For example, here’s the command to com-
bine the print.o and getTitle.o files into a library module (aoaalib.a):

ar rcs aoaalib.a getTitle.o print.o

The rcs component is actually a series of three command options. The
r option tells the command to replace existing (if present) object files in the
archive; c says to create the archive (you generally don’t specify this option
if you are adding object files to an existing archive file); and s says to add an
index to the archive file, or update the index if it already exists. (For more ar
command line options, see section 15.9, “For More Information,” on page 887.)

Once you have a library module, you can specify it on a linker (or ld
or gcc) command line just as you would an object file. For example, if you
build a strings.a library module to hold the str.cpy.o, str.cmp.o, str.substr.o,
str.bufInit.o, str.free.o, and str.alloc.o object files, and you want to link strings.a
with the program in Listing 15-1, you could use the following command:

g++ -DisMacOS c.cpp Listing15-1.S strings.a -o Listing15-1

Listing 15-5 is an example of a makefile that will build the strings.a
library file.

Listing15-5.mak
#
makefile to build the string.a library file

unamestr=`uname`

strings.a:str.cpy.o str.cmp.o str.substr.o str.bufInit.o \
 str.alloc.o str.free.o
 ar rcs strings.a str.cpy.o str.cmp.o str.substr.o \
 str.bufInit.o str.alloc.o str.free.o

str​.cpy​.o:aoaa​.inc str.cpy.S
 g++ -c -D$(unamestr) str.cpy.S

str​.cmp​.o:aoaa​.inc str.cmp.S
 g++ -c -D$(unamestr) str.cmp.S

str​.substr​.o:aoaa​.inc str.substr.S
 g++ -c -D$(unamestr) str.substr.S

str​.bufInit​.o:aoaa​.inc str.bufInit.S
 g++ -c -D$(unamestr) str.bufInit.S

str​.free​.o:aoaa​.inc str.free.S
 g++ -c -D$(unamestr) str.free.S

str​.alloc​.o:aoaa​.inc str.alloc.S
 g++ -c -D$(unamestr) str.alloc.S

Managing Complex Projects 885

clean:
 rm -f strings.a
 rm -f str.cpy.o
 rm -f str.cmp.o
 rm -f str.substr.o
 rm -f str.bufInit.o
 rm -f str.alloc.o
 rm -f str.free.o

Listing 15-6 modifies the Listing 15-5 makefile that builds the code by
using the strings.a library module.

Listing15-6.mak
#
makefile that uses the string.a library file

unamestr=`uname`

Listing15-1:Listing15-1.o strings.a
 g++ -D$(unamestr) c.cpp Listing15-1.o strings.a -o Listing15-1

Listing15​-1​.o:aoaa​.inc Listing15-1.S
 g++ -c -D$(unamestr) Listing15-1.S

lib:
 rm -f strings.a
 rm -f str.*.o
 make -f Listing15-5.mak

clean:
 rm -f Listing15-1
 rm -f c.o
 rm -f Listing15-1.o

Note that the clean command does not delete the library files. If you
want a clean library build, just specify the lib command line option when
running make:

make -f Listing15-6.mak lib

As a general rule, you build the library code independently of the appli-
cation code. Most of the time, the library is prebuilt, and you don’t have
to rebuild it. However, strings.a must be a dependency of the application,
because if the library changes, you’ll probably need to rebuild the applica-
tion as well.

One more Unix utility is useful for processing library files: nm (names).
The nm utility will list all the global names found in a library module. For
example, the command

nm strings.a

886 Chapter 15

lists all the (global) symbols found in the strings.a library file (it’s rather
long, so I won’t provide the printout here).

	 15.7	 Managing the Impact of Object Files
		 on Program Size

The basic unit of linkage in a program is the object file. When combining
object files to form an executable, the linker will take all the data from a
single object file and merge it into the final executable. This is true even if
the main program doesn’t call all the functions (directly or indirectly) in the
object module or use all the data in that object file. If you put 100 routines
in a single assembly language source file and compile them into an object
module, the linker will therefore include the code for all 100 routines in your
final executable, even if you use only one of them.

To avoid this situation, you can break those 100 routines into 100 sepa-
rate object modules and combine the resulting 100 object files into a single
library. When the linker processes that library file, it will pick out the single
object file containing the function the program uses and incorporate only
that file into the final executable.

Generally, this is far more efficient than linking in a single object file
with 100 functions buried in it. However, in some cases, there are good rea-
sons to combine multiple functions into a single object file. First, consider
what happens when the linker merges an object file into an executable. To
ensure proper alignment, whenever the linker takes a section/segment (for
example, the ​.code section) from an object file, it adds sufficient padding so
that the data in that section is aligned on that section’s specified alignment
boundary. Most sections have a default 16-byte section alignment. This
means that the linker will align each section from the object file it links on
a 16-byte boundary.

Normally, this isn’t much of a problem, especially if your procedures
are large. However, if those 100 procedures are all really short (a few bytes
each), you wind up wasting a lot of space. Granted, on modern machines,
a few hundred bytes of wasted space isn’t a big deal. Still, it might be more
practical to combine several of these procedures into a single object module
(even if you don’t call all of them) to fill in some of the wasted space. Look
for elements that are naturally paired or otherwise used together or have
a dependency, such as alloc and free. Don’t go overboard, though. Once
you’ve gone beyond the alignment, whether you’re wasting space because
of padding or wasting space because you’re including code that never gets
called, you’re still wasting space.

	 15.8	 Moving On
If you write large applications in assembly language, you’ll want to break
the source code into various modules and automate building the applica-
tion from those modules. This chapter began by discussing Gas’s mecha-
nisms for sharing external and public symbols between modules. It then

Managing Complex Projects 887

introduced the make application for building applications from multiple
source files, then covered how to build library modules by using the linker
and archiver applications.

One large source of library code is the OS kernel (macOS, Linux, or Pi
OS). However, don’t link OS library functions into your applications; that
code is already present in memory when your application runs. To call an OS
function, you use an OS API invocation sequence. The next chapter discusses
how to call OS functions in the Linux (Pi OS) and macOS (Darwin) kernels.

	 15.9	 For More Information
•	 For information about makefiles, check out the following websites:

	• Computer Hope: https://www​.computerhope​.com​/unix​/umake​.htm

	• GNU make: https://www​.gnu​.org​/software​/make/

	• Wikipedia: https://en​.wikipedia​.org​/wiki​/Make​_(software)

•	 Also check out the following books on make:

	• Robert Mecklenburg, Managing Projects with GNU Make: The Power
of GNU Make for Building Anything, 3rd edition (O’Reilly Media,
2004). You can also access this book online at https://www​.oreilly​.com​/
openbook​/make3​/book​/index​.csp.

	• John Graham-Cumming, The GNU Make Book, 1st edition (No
Starch Press, 2015)

	• Andrew Oram and Steve Talbott, Managing Projects with Make
(O’Reilly & Associates, 2004)

•	 See https://man7​.org​/linux​/man​-pages​/man1​/ar​.1​.html for a complete list of
the ar command line options. You can also enter ar --help or man ar for
online help.

T ES T YOURSEL F

1.	 What statement(s) would you use to prevent recursive include files?

2.	 What is an assembly unit?

3.	 What directive would you use to tell Gas that a symbol is global and vis-
ible outside the current source file?

4.	 What directive(s) would you use to tell Gas to use a global symbol from
another object module?

5.	 What is the basic makefile syntax?

6.	 What is a makefile-dependent file?

7.	 What does a makefile clean command typically do?

8.	 What is a library file?

https://www.computerhope.com/unix/umake.htm
https://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/Make_(software)
https://www.oreilly.com/openbook/make3/book/index.csp
https://www.oreilly.com/openbook/make3/book/index.csp
https://man7.org/linux/man-pages/man1/ar.1.html

Until now, this book has relied upon a C/C++
main program to call the example code writ-

ten in assembly language. While this is prob-
ably the biggest use of assembly language in the

real world, it is also possible to write stand-alone code
(no C/C++ main program) in assembly language. In
this chapter, you’ll learn how to write such stand-alone
programs.

For the purposes of this book, stand-alone assembly language program
means that the assembly language code contains an actual main program
(not asmMain, which is just a function that a C++ program calls). Such a pro-
gram does not make any C/C++ stdlib calls; the only external calls to code
outside the application itself are OS API function calls.

N O T E 	 Some readers might take the term stand-alone to mean that an assembly language
program makes no external function calls, not even to an OS, and handles all I/O at
the hardware level within the application itself. That’s an appropriate definition for
embedded systems, but not the definition I use in this book.

16
S T A N D - A L O N E A S S E M B LY

L A N G U A G E P R O G R A M S

890 Chapter 16

Technically, your assembly code will always be called by a C/C++ pro-
gram. That’s because the OS itself is written in C/C++, with a tiny bit of
assembly code. When the OS transfers control to your assembly code, this
is not much different from a C/C++ main program calling your assembly
code. Nevertheless, “pure” assembly applications have some clear advan-
tages: you’re not dragging along the C/C++ library code and application
runtime system, so your programs can be smaller and you won’t have exter-
nal naming conflicts with C/C++ public names.

This chapter covers OS system calls for macOS and Linux (including Pi
OS). It begins by explaining how to maintain portability in your code, given
that system calls are not portable between OSes. It then introduces the con-
cept of system calls for these two OSes. After discussing the svc (supervisor
call) instruction used to make calls to OS API functions, it provides two
examples: a stand-alone “Hello, world!” application and a file I/O applica-
tion. Finally, it points out that macOS frowns on direct system calls and
expects you to interface to the OS via C library function calls.

	 16.1	 Portability Issues with System Calls
While most of the example programs appearing in this book so far are
portable between macOS and Linux, system API calls vary by OS. Code in
the previous chapters ignored this issue by calling C/C++ stdlib functions
that handled the low-level OS details, but the example code in this chapter
makes OS-specific calls. Therefore, portability won’t happen automatically.
You have four options for handling this issue:

•	 Ignore portability and write a given example program only for macOS
or only for Linux. In general, I take this approach when writing code
specific to an OS.

•	 Write two (nonportable) versions of the same program: one for Linux
and one for macOS.

•	 Write a single program that uses conditional assembly to include
OS-specific code, as necessary.

•	 Create two wrapper files, one that has macOS versions of OS calls and
another that has Linux version, and include the appropriate wrapper
with your main (portable) code.

The appropriate mechanism to use depends on your application. If you
are not interested in writing portable assembly code that will work across
OSes (the most common case when writing assembly applications), you’ll
use the first approach and write code just for the OS you are targeting.

If you do want your assembly application to run on macOS and Linux,
your approach will depend on the size of the application. If the applica-
tion is relatively small, writing two OS-specific variants is not that difficult
(though maintenance may be an issue, as you’ll have to maintain two sepa-
rate versions of the application). If the application is large, or you expect to

Stand-Alone Assembly Language Programs 891

upgrade and maintain it frequently, the third or fourth approach is prob-
ably better. A single application that uses conditional assembly to deal with
OS-specific issues is usually much easier to maintain and expand than two
separate applications, and using wrapper code makes it easier to maintain
the code for each specific OS.

There is a fifth approach: write all your OS-dependent code in C/C++
and call assembly functions that deal with the non-OS-specific functional-
ity. That’s how all the example programs in this book have been written.

It should go without saying that the code in this chapter does not use
the build script to compile/assemble the example applications. The build
script assumes the use of the c.cpp main program (and the whole point of
this chapter is to stop using that code). Therefore, each example program
in this chapter includes a makefile that builds the code.

	 16.2	 Stand-Alone Code and System Calls
The first example program in this book, Listing 1-1 on page 5, is a stand-
alone program. Here it is as Listing 16-1, with a couple of changes, for the
sake of discussion.

// Listing16-1.S
//
// Comments consist of all text from a //
// sequence to the end of the line.
// The .text directive tells MASM that the
// statements following this directive go in
// the section of memory reserved for machine
// instructions (code).

 .text

// Here is the main function.
// (This example assumes that the
// assembly language program is a
// stand-alone program with its own
// main function.)
//
// Under macOS, the main program
// must have the name _main
// beginning with an underscore.
// Linux systems generally don't
// require the underscore.
//
// The .global _main statement
// makes the _main procedure's name
// visible outside this source file
// (needed by the linker to produce
// an executable).

892 Chapter 16

 1 .global _main // This is the macOS entry point.
 2 .global main // This is the Linux entry point name.

// The .align 2 statement tells the
// assembler to align the following code
// on a 4-byte boundary (required by the
// ARM CPU). The 2 operand specifies
// 2 raised to this power (2), which
// is 4.

 .align 2

// Here's the actual main program. It
// consists of a single ret (return)
// instruction that simply returns
// control to the operating system.

1 _main:
2 main:
 3 ret

I’ve made two changes to this code compared with that in Listing 1-1.
At both instances of 1 and 2, I’ve introduced a new symbol, main (and
_main). This is because Linux requires the main program to be named
main, whereas macOS requires the name _main. Were you to attempt to com-
pile Listing 1-1 under Linux, you would get something like an undefined
reference to `main` message. Rather than mess around with conditional
assembly (or write two separate versions of Listing 16-1), I simply include
both symbols in the source file. Linux largely ignores the _main symbol,
and macOS ignores the main symbol; the program happily compiles under
either OS.

Listing 16-1 consists of a single instruction: ret 3. On entry, the LR
register contains a return address that transfers control back to the OS.
Therefore, this program (should you actually execute it) returns immedi-
ately to the OS.

Although returning to the OS via a ret instruction works (particularly
if building this code with GCC), this isn’t the standard way to return to
Linux or macOS. Instead, an application should make a call to the exit()
API function. To call a system API function, a program must load a func-
tion number into a register, load appropriate parameters into the param-
eter registers (X0 through X7), and then execute the supervisor (OS) call
instruction svc #OSint, where OSint is 0 for Linux and 0x80 for macOS.

N O T E 	 In reality, macOS seems to ignore the immediate constant following the svc instruc-
tion. Many online examples use the value 0 as the svc operand (and personal experi-
ments show that it works). However, the macOS source code seems to use 0x80 as the
constant, so I recommend using this value under macOS.

Stand-Alone Assembly Language Programs 893

Under Linux, you load the system call number into the X8 register,
while under macOS you load this into X16. I’ve added the following state-
ments in aoaa​.inc to handle this:

#if isMacOS

 // Under macOS, the system call number
 // goes into X16:

 #define svcReg x16
 #define OSint 0x80

#else

 // Under Linux, the system call number
 // is passed in X8:

 #define svcReg x8
 #define OSint 0

#endif

Under both Linux and macOS, the exit function expects a single inte-
ger parameter in the X0 register holding the program’s return code (gener-
ally this is 0 if no errors occurred while running the program). The only
question remaining is, “What is the system call number for exit()?” Under
Linux, the code is 93, while under macOS it’s 1 (I’ll discuss how I deter-
mined these magic numbers in section 16.3, “The svc Interface and OS
Portability,” on the next page). Listing 16-2 provides a very simple assembly
application that immediately returns to the OS and that you can compile
for macOS or Linux.

// Listing16-2.S
//
// Simple shell program that calls exit()

 1 #include "aoaa​.inc"

 // Specify OS-dependent return code:

 2 #ifdef isMacOS
 #define exitCode 1
 #else
 #define exitCode 93
 #endif

 .text
 .global _main
 .global main
 .align 2

894 Chapter 16

_main:
main:
 3 mov x0, #0 // Return success.
 4 mov svcReg, exitCode
 5 svc #OSint

Listing 16-2 includes aoaa​.inc 1 in order to generate an error if the
OS symbol (Linux or Darwin) is not defined on the command line (which
aoaa​.inc translates to isLinux or isMacOS), as well as to obtain the OSint and
svcReg constants.

The program uses conditional assembly to generate the different code
needed for macOS or Linux, setting the constant exitCode equal to the OS’s
exit function number 2. This function loads X0 with 0 3 to indicate suc-
cess when it returns. It then loads the exitCode function number into the OS’s
function number parameter register 4 (svcReg is X8 under Linux and X16
under macOS, as defined in aoaa​.inc, as per the previous example). Finally,
the code issues the supervisor call instruction to call the OS 5. Because of
the nature of this call, the svc instruction never returns control back to the
program, so there is no need for a ret instruction.

Here’s the makefile to build the program in Listing 16-2:

Listing16-2.mak
#
makefile to build the Listing16-2 file

unamestr=`uname`

Listing16-2:
 g++ -D$(unamestr) Listing16-2.S -o Listing16-2

clean:
 rm -f Listing16-2.o
 rm -f Listing16-2

To build and run this program, enter the following commands into the
shell program:

% make -f Listing16-2.mak
g++ -D`uname` Listing16-2.S -o Listing16-2
% ./Listing16-2

The program returns without producing any output, as expected.

	 16.3	 The svc Interface and OS Portability
Both macOS and Linux use the supervisor call instruction (svc) to make
API calls to the OS. However, the exact calling sequence varies considerably
between the two OSes. This section clarifies the differences between them
with respect to the functions (the API) that they support—in particular,
regarding call numbers, parameters, and error handling.

Stand-Alone Assembly Language Programs 895

Although both OSes are Unix based (and share many POSIX-compliant
functions), each has its own set of OS-specific functions that may have no
equivalence on the other system. Even the common (for example, POSIX)
functions may expect different arguments and produce different return
results, meaning you must be especially careful when attempting to write
assembly code that is portable between these two OSes. This is a good exam-
ple of how using wrappers to localize OS system calls can help improve the
portability and maintainability of your code.

16.3.1  Call Numbers
As noted earlier, the function call number values differ between OSes, as
does the location where you pass the call numbers (X8 for Linux, X16 for
macOS). It’s easy enough to overcome the register location issue by using
a #define (or .req directive). However, the function call number values are
completely OS dependent.

The sys/syscall.h file is a header file that contains definitions for all
the system API call numbers. (You can include it in an assembly language
source file even though it’s a C header file.) This file is generally installed
on your system when you install your C compiler (GCC or Clang) and is typ-
ically found in the default include path used by the compiler. See the GCC
or Xcode documentation for more details.

Although #include <sys/syscall.h> will work on both Linux and macOS,
the actual definitions may appear in a different file elsewhere in the com-
piler’s directory tree, with an appropriate #include inside sys/syscall.h leading
to the actual file.

Here are a few lines from sys/syscall.h on a macOS machine:

#ifdef __APPLE_API_PRIVATE
#define SYS_syscall 0
#define SYS_exit 1
#define SYS_fork 2
#define SYS_read 3
#define SYS_write 4
#define SYS_open 5
#define SYS_close 6
#define SYS_wait4 7
 .
 .
 .

The #ifdef statement in this code is a warning that Apple considers
the svc API interface to be undocumented and private, as discussed in the
“Using svc Under macOS” box on the next page.

On my macOS system, I used the Unix find command to locate sys/
syscall.h buried deep in the Xcode directory path /Library/Developer/
CommandLineTools/SDK/ . . . , but your mileage may vary.

896 Chapter 16

USING S VC UNDER M ACOS

While using the svc interface to the OS is perfectly acceptable under Linux,
using svc to call system functions is considered an undocumented or private API
call under macOS. Apple does not guarantee that such calls will continue to
work in future versions of macOS. Furthermore, if you attempt to sell an applica-
tion in the App Store that contains such calls, Apple may reject your application
because it uses undocumented APIs.

According to Apple, the correct way to make such API calls is through the
use of system libraries. For example, you should call the _exit() function rather
than loading 1 into X16 and executing svc. I’ll have more to say about this subject
in section 16.6, “Calling System Library Functions Under macOS,” on page 926).

Under Debian Linux, #include <sys/syscall.h> includes /usr/include/asm
-generic/unistd.h (again, use the Unix find command if this file isn’t present
at this location). Here are a few lines from that file, sorted to match the
order of the statements in the macOS syscall.h file:

#define __NR_exit 93
__SYSCALL(__NR_exit, sys_exit)
#define __NR_read 63
__SYSCALL(__NR_read, sys_read)
#define __NR_write 64
__SYSCALL(__NR_write, sys_write)
#define __NR_openat 56
__SYSCALL(__NR_openat, sys_openat)
#define __NR_close 57
__SYSCALL(__NR_close, sys_close)
 .
 .
 .

As you can see, the function names, the constant names, and the func-
tion call numbers in the two files don’t agree. For example, Linux generally
prefers openat() over the open() function. Fortunately, macOS also provides
openat(), so it’s possible to use the same function on both OSes. However,
the symbolic names macOS and Linux use for the same functions are quite
different, which means including sys/syscall.h isn’t a portable solution. You’ll
still have to provide your own local names that map to the corresponding
Linux and macOS names (suggestion: use two syscall wrapper .S files, one
for Mac and one for Linux, to resolve these problems).

Unfortunately, the sys/syscall.h header files don’t provide the parameter
lists for the various functions. You can find the parameter information
for Linux at https://arm​.syscall​.sh. For example, consider the entry for the
exit() function:

https://arm.syscall.sh

Stand-Alone Assembly Language Programs 897

name reference x8 x0 x1 x2 x3 x4 x5
exit man/ cs/ 5D int error_code -- -- -- -- --

This line tells you that X8 must contain 0x5D (93) and X0 must contain
the exit code (error_code). Linux system calls have a maximum of six param-
eters (X0 through X5), but exit() uses only one of them (in addition to the
function call number in X8).

On macOS, you must use the macOS call number (1 for exit) and load
that call number into X16. The parameters are generally the same for
equivalent macOS functions, subject (of course) to the differences in the
Linux versus macOS ABI (see section 16.8, “For More Information,” on
page 930 for the set of system calls).

16.3.2  API Parameters
As a general rule, all the system calls have well-defined names and param-
eter lists, which you can find online by searching for the function’s name or
by using the man command at the command line. For example, the openat()
call has the following parameters (from the Linux man page):

int openat(int dfd, const char *pathname, int flags, mode_t mode);

The openat code (57 in Linux, 463 under macOS) goes in X8 (Linux)
or X16 (macOS), a directory descriptor goes in X0, a pointer to the file-
name (pathname) goes in X1, and the flags get passed in X2 (an optional
mode parameter can be passed in X3). You choose the parameter registers
according to the ARM ABI.

To create code that’s portable between macOS and Linux, you can use
the following conditional assembly at the beginning of your source file to
select the constants based on the OS:

 #include "aoaa​.inc"
 #include <sys/syscall.h>

#if isMacOS

 #define sys_openat SYS_openat
 #define sys_read SYS_read
 #define sys_close SYS_close

#elif isLinux

 #define sys_openat __NR_openat
 #define sys_read __NR_read
 #define sys_close __NR_close

#endif

From this point forward, you can use the symbols sys_* on either OS.
Of course, if you don’t require portability between the two OSes, you can

898 Chapter 16

simply include sys/syscall.h and use the SYS_* or _NR_* symbols as appropriate
for your OS choice.

16.3.3  API Error Handling
One other big difference between macOS and Linux API calls is in the way
they return an indication of an error. For macOS API calls, the error sta-
tus is returned in the carry flag (C = 1 for error, C = 0 for no error). If the
carry flag is set, macOS returns an error code in the X0 register. Linux, on
the other hand, returns –1 in X0 if there is an error; you must then fetch
the actual error code from the errno variable (as shown in Listing 7-2 on
page 358, for example).

Dealing with error return values in portable code could be problem-
atic. One solution is to use a set of wrapper functions to handle errors in
an OS-specific fashion for each OS. I’ve chosen to create a small macro to
translate the error return status to a common value on both macOS and
Linux:

 .macro checkError

 #if isMacOS

 // If macOS, convert the error code to be
 // compatible with Linux (carry set is
 // error flag and X0 is error code):

 1 bcc 0f
 2 neg x0, x0

 #elif isLinux

 // If Linux, fetch the errno error code
 // (if return value is -1), negate it,
 // and return that as the error code:

 3 cmp x0, #-1
 bne 0f
 4 getErrno
 neg x0, x0

 #endif
0:
 .endm

Under macOS, if the carry is clear 1, then this macro does nothing (no
error). If there is an error (carry set), the macro negates the value in X0 2
(which is currently a positive error code).

Under Linux, an error is indicated by returning –1 in X0, in which case
the code has to retrieve the actual error code from the errno variable. If the
API function returns –1 3, the code fetches errno’s value 4 (which is a posi-
tive number) and negates it.

Stand-Alone Assembly Language Programs 899

This macro assumes that the API function will return a nonnegative
result in X0 if there is no error, so it returns a negation of the actual error
code if there was an error. This will provide a sign-consistent set of values
you can test for under either OS.

Although the checkError macro produces a portable set of error codes,
do not assume that the two OSes will produce exactly the same error
codes for any given situation. They are more likely to produce slightly differ-
ent error codes under the same circumstances. At the very least, you should
be able to handle any error return code that either the macOS or Linux
man pages list for a given API function (yet another argument for using a
wrapper function to handle error codes in portable code).

You can lift the appropriate defines from the errno.h file (or other files it
may include); this will allow you to refer to Unix-compatible constant names
like EPERM or EACCES in your assembly source code. Don’t forget that the
checkError macro negates the error code, so you have to compare against
negated errno.h constants (for example, -EPERM or -EACCES).

	 16.4	 A Stand-Alone “Hello, World!” Program
By convention, the first “real” program to try when writing a stand-alone
assembly program is “Hello, world!” Under Linux and macOS, you can use
the system write() function to write a string to the standard output device,
as shown in Listing 16-3.

// Listing16-3.S
//
// A stand-alone "Hello, world!" program

 #include "aoaa​.inc"
 1 #include <sys/syscall.h>

 // Specify OS-dependent return code:

 #if isMacOS

 2 #define exitCode SYS_exit
 #define sys_write SYS_write

 #else

 3 #define exitCode __NR_exit
 #define sys_write __NR_write

 #endif

 .data
hwStr: .asciz "Hello, world!\n"
hwSize = .-hwStr

900 Chapter 16

 .text
 .global _main
 .global main
 .align 2

_main:
main:

 4 mov x0, #1 // stdout file handle
 lea x1, hwStr // String to print
 mov x2, #hwSize // Num chars to print
 mov svcReg, #sys_write
 svc #OSint // Call OS to print str.

 5 mov svcReg, #exitCode
 mov x0, #0
 svc #OSint // Quit program.

In Listing 16-3, the #include statement loads in the operating-specific
constant names for the API function call values 1. The code defines the
system call constants for macOS 2. As the write symbol was already defined
in the aoaa​.inc header file (the name of the C stdlib write() function), I’ve
used sys_write to overcome namespace pollution. Likewise, the code defines
the Linux system call constants 3.

Calling the system API write() function prints Hello, world! 4. This
call expects a pointer to the string in X1, the string length in X2, and a file
descriptor value in X0. For the stdout device, the file descriptor is 1. Finally,
I include the usual program termination code 5.

Note that the C stdlib write() function is nothing more than facade
code that directly calls the Linux write() API function. If we were willing
to link with C code, we could have accomplished the same thing by calling
write(), but doing so would defeat the purpose of this chapter.

Here’s the makefile that will build the program in Listing 16-3:

Listing16-3.mak
#
makefile to build the Listing16-3 file

unamestr=`uname`

Listing16-3:
 g++ -D$(unamestr) Listing16-3.S -o Listing16-3

clean:
 rm -f Listing16-3.o
 rm -f Listing16-3

Here are the commands to build and run the program, along with the
sample output:

Stand-Alone Assembly Language Programs 901

% make -f Listing16-3.mak clean
rm -f Listing16-3.o
rm -f Listing16-3
% make -f Listing16-3.mak
g++ -D`uname` Listing16-3.S -o Listing16-3
% ./Listing16-3
Hello, world!

Note that the program did not print Calling Listing16-3 nor Listing16-3
terminated. That output is produced by the c.cpp main() function, which this
code is not using.

	 16.5	 A Sample File I/O Program
File I/O has been conspicuously absent from the book thus far. While read-
ing and writing file data is easily achieved using the C stdlib functions such
as fopen, fclose, and fprintf, the Linux and macOS APIs provide many use-
ful functions (on which the C stdlib is built) for this purpose. This section
describes a few of these functions:

open ​  ​Open (or create) a file for reading, writing, or appending.

read ​  ​Read data from an open file.

write ​  ​Write data to an open file.

close ​  ​Close an open file.

For the purposes of this example, I’ll implement these calls as a files
library consisting of three source modules:

volatile.S ​  ​A pair of utility functions that save and restore all the vola-
tile registers

stdio.S ​  ​A set of I/O routines that write data to the stdout device and
read data from the stdin device (console I/O)

files.S ​  ​A set of routines for opening, reading, writing, and closing files

I’ve put these files in a files subdirectory, along with a files.mak makefile
that will assemble these files and put them in a file.a archive file. Here’s the
makefile:

files.mak
#
makefile to build the files library

unamestr=`uname`

files.a:files.o stdio.o volatile.o
 ar rcs files.a files.o stdio.o volatile.o
 1 cp files.a ..

files.o:files.S files​.inc .​.​/aoaa​.inc
 g++ -c -D$(unamestr) files.S

902 Chapter 16

stdio.o:stdio.S files​.inc .​.​/aoaa​.inc
 g++ -c -D$(unamestr) stdio.S

volatile.o:volatile.S files​.inc .​.​/aoaa​.inc
 g++ -c -D$(unamestr) volatile.S

clean:
 rm -f files.o
 rm -f volatile.o
 rm -f stdio.o
 rm -f files.a

After this makefile successfully builds the source files (and combines
them into the file.a archive file) 1, it copies file.a into the parent directory,
where the application that uses files.a appears.

Before discussing the file library’s source files, I’ll present the files​.inc
header file, since it contains definitions that both the library and applica-
tion source code will use:

// files​.inc
//
// Header file that holds the files library
// globals and constants

 #include "​.​.​/aoaa​.inc" // Get isMacOS and isLinux.
1 #if isMacOS
#define __APPLE_API_PRIVATE
#endif
 #include <sys/syscall.h>

 #if isMacOS

2 sys_Read = SYS_read
sys_Write = SYS_write
sys_Open = SYS_openat
sys_Close = SYS_close
AT_FDCWD = -2

#define O_CREAT 00000200

 #else

3 sys_Read = __NR_read
sys_Write = __NR_write
sys_Open = __NR_openat
sys_Close = __NR_close
AT_FDCWD = -100

#define O_CREAT 00000100

 #endif

// Handles for the stdio files:

Stand-Alone Assembly Language Programs 903

4 stdin = 0
stdout = 1
stderr = 2

// Other useful constants:

cr = 0xd // Carriage return (ENTER)
lf = 0xa // Line feed/newline char
bs = 0x8 // Backspace

// Note the following are octal (base 8) constants!
// (Leading 0 indicates octal in Gas.)
//
// These constants were copied from fcntl.h.

5 #define S_IRWXU (00700)
#define S_RDWR (00666)
#define S_IRUSR (00400)
#define S_IWUSR (00200)
#define S_IXUSR (00100)
#define S_IRWXG (00070)
#define S_IRGRP (00040)
#define S_IWGRP (00020)
#define S_IXGRP (00010)
#define S_IRWXO (00007)
#define S_IROTH (00004)
#define S_IWOTH (00002)
#define S_IXOTH (00001)
#define S_ISUID (0004000)
#define S_ISGID (0002000)
#define S_ISVTX (0001000)

#define O_RDONLY 00000000
#define O_WRONLY 00000001
#define O_RDWR 00000002
#define O_EXCL 00000200
#define O_NOCTTY 00000400
#define O_TRUNC 00001000
#define O_APPEND 00002000
#define O_NONBLOCK 00004000
#define O_DSYNC 00010000
#define FASYNC 00020000
#define O_DIRECT 00040000
#define O_LARGEFILE 00100000
#define O_DIRECTORY 00200000
#define O_NOFOLLOW 00400000
#define O_NOATIME 01000000
#define O_CLOEXEC 02000000

// Macro to test an error return
// value from an OS API call:

 6 .macro file.checkError

 #if isMacOS

904 Chapter 16

 // If macOS, convert the error code to be
 // compatible with Linux (carry set is
 // error flag, and X0 is error code):

 bcc 0f
 neg x0, x0

 #elif isLinux

 // If Linux, fetch the errno error code
 // (if return value is -1), negate it,
 // and return that as the error code:

 cmp x0, #-1
 bne 0f
 getErrno
 neg x0, x0

 #endif
0:
 .endm

 7 .extern saveVolatile
 .extern restoreVolatile

 .extern file.write
 .extern file.read
 .extern file.open
 .extern file.openNew
 .extern file.close

 .extern stdout.puts
 .extern stdout.newLn

 .extern stdin.read
 .extern stdin.getc
 .extern stdin.readln

As mentioned earlier, the macOS SYS_* symbols appear inside an #ifdef
block that hides the definitions if the symbol __APPLE_API_PRIVATE is not
defined. Therefore, when including the sys/syscall.h header file under
macOS, files​.inc needs to define the symbol __APPLE_API_PRIVATE so that all the
SYS_* labels will be processed by the CPP 1.

The files​.inc header then defines various symbols whose values differ by
OS (in particular, the API function call numbers) 2 3. This conditional
assembly block also defines the O_CREAT symbol, which is different for the
two OSes.

Next, the header defines various constants that will be useful in both
the library source code and in applications that link against the library 4.
The stdin, stdout, and stderr constants are the Unix file descriptor values
for the standard input device, the standard output device, and the standard

Stand-Alone Assembly Language Programs 905

error (output) device, respectively. The library uses cr, lf, and bs as ASCII
character code constants.

I’ve then inserted several #define statements lifted from fcntl.h 5 (yet
another C/C++ header file containing useful API constant definitions;
you’ll usually find it in the same directory as syscall.h). These constants are
used with the openat() function when creating a new file (you supply these
constants for the mode parameter). As with errno.h, you cannot simply include
fcntl.h because Gas will not be able to process the C/C++ statements that
appear in it.

As previously discussed, the library uses the file.checkError macro 6
after svc instructions to check error return results. Finally, the code includes
external definitions for all the functions that appear in the files.a library 7.

16.5.1  volatiles.S Functions
The volatiles.S source file contains two functions that save and restore all the
volatile registers, saveVolatile and restoreVolatile:

// volatiles.S
//
// saveVolatile and restoreVolatile functions used
// to preserve volatile registers

 #include "​.​.​/aoaa​.inc"
 #include "files​.inc"

 .code
 .align 2

// saveVolatile
//
// A procedure that will save all the volatile
// registers at the location pointed at by FP

 proc saveVolatile, public
 stp x0, x1, [fp], #16
 stp x2, x3, [fp], #16
 stp x4, x5, [fp], #16
 stp x6, x7, [fp], #16
 stp x8, x9, [fp], #16
 stp x10, x11, [fp], #16
 stp x12, x13, [fp], #16
 stp x14, x15, [fp], #16
 stp q0, q1, [fp], #32
 stp q2, q3, [fp], #32
 stp q4, q5, [fp], #32
 stp q6, q7, [fp], #32
 stp q8, q9, [fp], #32
 stp q10, q11, [fp], #32
 stp q12, q13, [fp], #32
 stp q14, q15, [fp], #32

906 Chapter 16

 ret
 endp saveVolatile

// restoreVolatile
//
// A procedure that will restore all the volatile
// registers from the location pointed at by FP

 proc restoreVolatile, public
 ldp x0, x1, [fp], #16
 ldp x2, x3, [fp], #16
 ldp x4, x5, [fp], #16
 ldp x6, x7, [fp], #16
 ldp x8, x9, [fp], #16
 ldp x10, x11, [fp], #16
 ldp x12, x13, [fp], #16
 ldp x14, x15, [fp], #16
 ldp q0, q1, [fp], #32
 ldp q2, q3, [fp], #32
 ldp q4, q5, [fp], #32
 ldp q6, q7, [fp], #32
 ldp q8, q9, [fp], #32
 ldp q10, q11, [fp], #32
 ldp q12, q13, [fp], #32
 ldp q14, q15, [fp], #32
 ret
 endp restoreVolatile

These functions simply store the registers into successive locations at
the address held in the FP register. It is the caller’s responsibility to pre-
serve FP and load it with the address of the volatile_save structure before
calling saveVolatile or restoreVolatile. As you can see in volatiles.S, this code
does not preserve the value in the FP register.

The purpose behind saveVolatile and restoreVolatile is to overcome
the fact that the OS API calls can modify the volatile register set. It’s good
assembly language programming style to always preserve register values
unless you are explicitly returning a result in a register. The volatiles.S func-
tions allow you to conform to this style even when calling low-level API
functions that trash the volatile registers.

The one downside of these functions is that you never know which
volatile registers a given API function might modify, so you have to pre-
serve them all, even if the API function changes only a few. This, sadly,
introduces inefficiency into the code; reading and writing memory is not
especially fast. However, not having to worry about volatile registers in your
assembly language code is worth the slight efficiency loss. (Moreover, file
I/O is usually a relatively slow process to begin with, so if you’re frequently
calling file I/O functions, saving and restoring the registers is probably a
very small percentage of the running time.)

Stand-Alone Assembly Language Programs 907

The aoaa​.inc header file contains the following structure to define the
layout of the registers saved by saveVolatile and loaded by restoreVolatile:

struct volatile_save
qword volatile_save.x0x1
qword volatile_save.x2x3
qword volatile_save.x4x5
qword volatile_save.x6x7
qword volatile_save.x8x9
qword volatile_save.x10x11
qword volatile_save.x12x13
qword volatile_save.x14x15
qword volatile_save.v0
qword volatile_save.v1
qword volatile_save.v2
qword volatile_save.v3
qword volatile_save.v4
qword volatile_save.v5
qword volatile_save.v6
qword volatile_save.v7
qword volatile_save.v8
qword volatile_save.v9
qword volatile_save.v10
qword volatile_save.v11
qword volatile_save.v12
qword volatile_save.v13
qword volatile_save.v14
qword volatile_save.v15
ends volatile_save

Because this structure is rather large, saveVolatile and restoreVolatile
do not refer to the individual fields. The offsets to certain members of this
structure are too large to encode in the addressing mode offset field of a
32-bit load instruction. Nevertheless, these structures do document where
saveVolatile and restoreVolatile place the data.

16.5.2  files.S File I/O Functions
The files.S source file contains the file I/O functions in the library. Because
this file is rather long, I’ll break it into pieces and discuss each section in
turn. (I won’t include the parameter values you pass to these functions; these
are well documented online, or you can use the Unix man command for the
read(), write(), open(), openat(), and close() functions.)

Most of the files.S functions are facade code—that is, they exist to
change the environment or parameters of another function (in this case,
the OS API functions). These functions preserve volatile registers so that
the caller doesn’t have to worry about their preservation; in a few cases
(open calls), they automatically set up certain default parameters for the
caller; or, in the event of an error, they modify the return codes to pro-
duce a consistent result across OSes. The file.write function demonstrates

908 Chapter 16

providing a uniform interface (across OSes), preserving the volatile regis-
ters, and returning a consistent error code:

// files.S
//
// File I/O functions:

 #include "​.​.​/aoaa​.inc"
 #include "files​.inc"

 .code
 .align 2

// file.write
//
// Write data to a file handle.
//
// X0- File handle
// X1- Pointer to buffer to write
// X2- Length of buffer to write
//
// Returns:
//
// X0- Number of bytes actually written
// or -1 if there was an error

 proc file.write, public

 locals fw_locals
 qword fw_locals.saveX0
 1 byte fw_locals.volSave, volatile_save.size
 byte fw_locals.stkspace, 64
 2 dword fw_locals.fpSave
 endl fw_locals

 enter fw_locals.size

 // Preserve all the volatile registers because
 // the OS API write function might modify them.
 //
 // Note: Because fw_locals.volSave is at the
 // bottom of the activation record, SP just
 // happens to be pointing at it right now.
 // Use it to temporarily save FP so you can
 // pass the address of fw_locals.volSave to
 // saveVolatile in the FP register.

 3 str fp, [sp] // fw_locals.fpSave
 add fp, fp, #fw_locals.volSave
 bl saveVolatile
 ldr fp, [sp] // Restore FP.

 // Okay, now do the write operation (note that
 // the sys_Write arguments are already sitting

Stand-Alone Assembly Language Programs 909

 // in X0, X1, and X2 upon entry into this
 // function):

 4 mov svcReg, #sys_Write
 svc #OSint

 // Check for error return code:

 5 file.checkError

 // Restore the volatile registers, except
 // X0 (because we return the function
 // result in X0):

 6 str x0, [fp, #fw_locals.saveX0] // Return value.
 str fp, [sp] // fw_locals.fpSave
 add fp, fp, #fw_locals.volSave
 bl restoreVolatile
 ldr fp, [sp] // Restore FP.
 ldr x0, [fp, #fw_locals.saveX0]
 leave
 endp file.write

In the activation record, file.write reserves space for the volatile regis-
ter save area 1 and the special variable fw_locals.fpSave 2. The code will
use this variable to preserve the FP register across calls to saveVolatile and
restoreVolatile. Note that fw_locals.fpSave appears last in the activation
record, so it will be located on the top of the stack when file.write builds
the activation record. This is a temporary variable that will not be used
when system calls use the space on the top of the stack (assuming they do).

Next, file.write saves all the volatile registers to the volatile save area
(fw_locals.volSave) 3. Because saveVolatile expects FP pointing at the save
area, this code saves FP to the top of the stack (which just happens to be
the location of the fw_locals.fpSave variable), loads FP with the address of
the fw_locals.volSave structure, calls saveVolatile, and then restores FP upon
return.

Note that the code could not reference the fw_locals.fpSave variable
by using the [FP, #fw_locals.fpSave] addressing mode. First, the size of the
activation record is too large, and the offset of fw_locals.fpSave cannot be
encoded into a 32-bit instruction. Second, FP is not pointing at the activa-
tion record upon return from saveVolatile, so the [FP, #fw_locals.fpSave]
addressing mode would reference the wrong location (even if the offset
weren’t too large).

The code then actually calls the API function 4. This code is almost
trivial, because all the parameters the write() function requires are already
in the appropriate registers, as they were passed into file.write in those
registers.

The code checks for an error and massages the value in X0 if an error
occurred during the write operation 5. The file.write function restores
the registers previously saved to fw_locals.volSave 6. The code and

910 Chapter 16

explanation are almost identical to that at 3, with one exception: the value
in X0. Because this code returns a function result in X0 and restoreVolatile
will restore X0 to its original value, this code has to save and restore X0
across the call to restoreVolatile. Because the variable fw_locals.saveX0
appears in the activation record before fw_locals.volSave, there is no prob-
lem with the offset when using the [FP, #fw_locals.saveX0] addressing mode;
only the variables appearing after fw_locals.volSave will have offsets too
large to use in the addressing mode.

The file.read function is almost identical to the file.write function:

// files.S (cont.)
//
// file.read
//
// Read data from a file handle.
//
// X0- File handle
// X1- Pointer to buffer receive data
// X2- Length of data to read
//
// Returns:
//
// X0- Number of bytes actually read
// or negative value if there was an error

 proc file.read, public

 locals fr_locals
 qword fr_locals.saveX0
 byte fr_locals.volSave, volatile_save.size
 byte fr_locals.stkspace, 64
 dword fr_locals.fpSave
 endl fr_locals

 enter fr_locals.size

 // Preserve all the volatile registers because
 // the OS API read function might modify them.
 //
 // Note: Because fr_locals.volSave is at the
 // bottom of the activation record, SP just
 // happens to be pointing at it right now.
 // Use it to temporarily save FP so we can
 // pass the address of fr_locals.volSave to
 // saveVolatile in the FP register.

 str fp, [sp] // fr_locals.fpSave
 add fp, fp, #fr_locals.volSave
 bl saveVolatile
 ldr fp, [sp] // Restore FP.

 // Okay, now do the read operation (note that
 // the sys_Read arguments are already sitting

Stand-Alone Assembly Language Programs 911

 // in X0, X1, and X2 upon entry into this
 // function):

 mov svcReg, #sys_Read
 svc #OSint

 // Check for error return code:

 file.checkError

 // Restore the volatile registers, except
 // X0 (because we return the function
 // result in X0):

 str x0, [fp, #fr_locals.saveX0] // Return value.
 str fp, [sp] // fr_locals.fpSave
 add fp, fp, #fr_locals.volSave
 bl restoreVolatile
 ldr fp, [sp] // Restore FP.
 ldr x0, [fp, #fr_locals.saveX0]
 leave
 endp file.read

The only real difference between file.read and file.write is the func-
tion number loaded into the svcReg register.

Next, files.S provides the code for the file.open function:

// files.S (cont.)
//
// file.open
//
// Open existing file for reading or writing.
//
// X0- Pointer to pathname string (zero-terminated)
// X1- File access flags
// (O_RDONLY, O_WRONLY, or O_RDWR)
//
// Returns:
//
// X0- Handle of open file (or negative value if there
// was an error opening the file)

 proc file.open, public

 locals fo_locals
 qword fo_locals.saveX0
 byte fo_locals.volSave, volatile_save.size
 byte fo_locals.stkspace, 64
 dword fo_locals.fpSave
 endl fo_locals

 enter fo_locals.size

912 Chapter 16

 // Preserve all the volatile registers because
 // the OS API open function might modify them:

 str fp, [sp] // fo_locals.fpSave
 add fp, fp, #fo_locals.volSave
 bl saveVolatile
 ldr fp, [sp] // Restore FP.

 // Call the OS API open function:

 1 mov svcReg, #sys_Open
 mov x2, x1
 mov x1, x0
 mov x0, #AT_FDCWD
 mov x3, #S_RDWR // Mode, usually ignored
 svc #OSint

 // Check for error return code:

 file.checkError

 // Restore the volatile registers, except
 // X0 (because we return the function
 // result in X0):

 str x0, [fp, #fo_locals.saveX0] // Return value.
 str fp, [sp] // fo_locals.fpSave
 add fp, fp, #fo_locals.volSave
 bl restoreVolatile
 ldr fp, [sp] // Restore FP.
 ldr x0, [fp, #fo_locals.saveX0]
 leave
 endp file.open

The file.open function is identical to file.write and file.read, except for
the call to the OS API function 1. Instead of calling the API open() func-
tion, file.open calls the API openat() function, a more modern version of
open(). Here are the C/C++ prototypes for these two functions:

int open(const char *pathname, int flags);
int openat(int dirfd, const char *pathname, int flags);

The openat() function has one extra parameter, int dirfd. This compli-
cates matters because file.open expects the same parameters as the open()
function; therefore, upon entry to file.open, the parameters are sitting in
the wrong registers for a call to openat().

This is easily fixed by moving X1 to X2 and X0 to X1, then loading X0
with the value AT_FDCWD to make the openat() function behave like open() 1.
The open() and openat() functions have an optional third or fourth param-
eter (respectively) that lets you set the permissions when creating a new file.
The file.open function is intended for opening existing files, so you don’t
normally specify that extra parameter when calling it. However, just in case

Stand-Alone Assembly Language Programs 913

the caller specifies O_CREAT in X1, this code sets X3 to a reasonable value
(read and write permissions for everyone).

The file.openNew function is a variant of file.open used to create new
files:

// files.S (cont.)
//
// file.openNew
//
// Creates a new file and opens it for writing
//
// X0- Pointer to filename string (zero-terminated)
//
// Returns:
//
// X0- Handle of open file (or negative if there
// was an error creating the file)

 proc file.openNew, public

 locals fon_locals
 qword fon_locals.saveX0
 byte fon_locals.volSave, volatile_save.size
 byte fon_locals.stkspace, 64
 dword fon_locals.fpSave
 endl fon_locals

 enter fon_locals.size

 // Preserve all the volatile registers because
 // the OS API open function might modify them:

 str fp, [sp] // fon_locals.fpSave
 add fp, fp, #fon_locals.volSave
 bl saveVolatile
 ldr fp, [sp] // Restore FP.

 // Call the OS API open function:

 mov svcReg, #sys_Open
 mov x2, #O_CREAT+O_WRONLY+O_EXCL
 mov x1, x0
 mov x0, #AT_FDCWD
 mov x3, #S_RDWR // User/Group has RW perms.
 svc #OSint

 // Check for error return code:

 file.checkError

 // Restore the volatile registers, except
 // X0 (because we return the function

914 Chapter 16

 // result in X0):

 str x0, [fp, #fon_locals.saveX0] // Return value.
 str fp, [sp] // w_locals.fpSave
 add fp, fp, #fon_locals.volSave
 bl restoreVolatile
 ldr fp, [sp] // Restore FP.
 ldr x0, [fp, #fon_locals.saveX0]
 leave
 endp file.openNew

The only difference between file.openNew and file.open is that file
.openNew expects just a single parameter (the pathname in X0) and automati-
cally supplies the flag values (O_CREAT+O_WRONLY+O_EXCL) for the call to openat().

The file.close function is the final file I/O function in the files.S
source file:

// files.S (cont.)
//
// file.close
//
// Closes a file specified by a file handle
//
// X0- Handle of file to close

 proc file.close, public

 locals fc_locals
 qword fc_locals.saveX0
 byte fc_locals.volSave, volatile_save.size
 byte fc_locals.stkspace, 64
 dword fc_locals.fpSave
 endl fc_locals

 enter fc_locals.size

 // Preserve all the volatile registers because
 // the OS API open function might modify them:

 str fp, [sp] // fc_locals.fpSave
 add fp, fp, #fc_locals.volSave
 bl saveVolatile
 ldr fp, [sp] // Restore FP.

 // Call the OS API close function (handle is
 // already in X0):

 mov svcReg, #sys_Close
 svc #OSint

 // Check for error return code:

 file.checkError

Stand-Alone Assembly Language Programs 915

 // Restore the volatile registers, except
 // X0 (because we return the function
 // result in X0):

 str x0, [fp, #fc_locals.saveX0] // Return value.
 str fp, [sp] // w_locals.fpSave
 add fp, fp, #fc_locals.volSave
 bl restoreVolatile
 ldr fp, [sp] // Restore FP.
 ldr x0, [fp, #fc_locals.saveX0]
 leave
 endp file.close

The file.close function expects a file descriptor in X0 (returned by a
successful call to file.open or file.openNew) and passes that descriptor along
to the API close() function. Otherwise, it’s similar in form to the file.read
and file.write functions.

16.5.3  stdio.S Functions
The last source file in the files library is the stdio.S file. This module con-
tains functions you can use to read and write strings on the console (stan-
dard I/O) device. Again, because of its size, I’ve broken this source file into
more easily digestible pieces.

First, the stdout.puts function writes a (zero-terminated) string to the
standard output device (usually the display console):

// stdio.S
//
// Standard input and standard output functions:

 #include "​.​.​/aoaa​.inc"
 #include "files​.inc"
 #include <sys/syscall.h>

 .code
 .align 2

// stdout.puts
//
// Outputs a zero-terminated string to standard output device
//
// X0- Address of string to print to standard output

 proc stdout.puts, public

 locals lcl_puts
 1 qword lcl_puts.saveX0X1
 dword lcl_puts.saveX2
 byte lcl_puts.stkSpace, 64
 endl lcl_puts

 enter lcl_puts.size

916 Chapter 16

 stp x0, x1, [fp, #lcl_puts.saveX0X1]
 str x2, [fp, #lcl_puts.saveX2]

 mov x1, x0

// Compute the length of the string:

2 lenLp: ldrb w2, [x1], #1
 cbnz w2, lenLp
 sub x2, x1, x0 // Compute length

 // Call file_write to print the string:

 3 mov x1, x0
 mov x0, #stdout
 bl file.write

 // Return to caller:

 ldr x2, [fp, #lcl_puts.saveX2]
 ldp x0, x1, [fp, #lcl_puts.saveX0X1]
 leave
 endp stdout.puts

Note that this code does not preserve all the volatile registers 1, because
the stdout.puts function does not directly call an OS API function that might
modify the registers. Therefore, this function preserves only the actual regis-
ters it uses.

This function will call file.write to write the string to the standard out-
put device. The file.write function requires three parameters: a file descrip-
tor (the stdout constant works fine for the descriptor value), the address of
the data (string) to write, and a length value. Although stdout.put has the
address of the string in X0, there is no length parameter. Therefore this
code computes the length of the zero-terminated string whose address
appears in X0 2.

N O T E 	 Scanning the string a byte at a time is a lame way to compute string length, but I’ve
done so here because it is simpler than the alternative. If this really bothers you, you
can link in the C stdlib strlen() function. However, keep in mind that making the
system call and drawing all those pixels on the screen to print the string is many
orders of magnitude slower than this string-length calculation, so you won’t save
much time by using faster string-length computation code.

Once the length is computed, the stdout.put function calls file.write to
actually print the string to the standard output device 3. After restoring
the few registers this code changed, the function returns.

Technically, file.write could return an error code (which stdout.puts
ignores and doesn’t return to its caller). However, the likelihood of such
an error is low, so this code ignores errors. One likely problem could be if
standard output were redirected to a disk file and there was an issue writing

Stand-Alone Assembly Language Programs 917

to the disk, so this bug is worth addressing if this routine finds its way into
production code; I chose not to address this here to keep the code cleaner
(and because of the extremely low probability of occurrence).

The stdout.newLn function is identical to stdout.puts, except that it writes
a fixed string (a newline character) to the standard output device:

// stdio.S (cont.)
//
// stdout.newLn
//
// Outputs a newline sequence to the standard output device:

stdout.nl: .ascii "\n"
nl.len = .-stdout.nl
 .byte 0
 .align 2

 proc stdout.newLn, public
 locals lcl_nl
 qword lcl_nl.saveX0X1
 dword lcl_nl.saveX2
 byte lcl_nl.stkSpace, 64
 endl lcl_nl

 enter lcl_nl.size
 stp x0, x1, [fp, #lcl_nl.saveX0X1]
 str x2, [fp, #lcl_nl.saveX2]

 lea x1, stdout.nl
 mov x2, #nl.len
 mov x0, stdout
 bl file.write

 ldr x2, [fp, #lcl_nl.saveX2]
 ldp x0, x1, [fp, #lcl_nl.saveX0X1]
 leave
 endp stdout.newLn

The stdin.read function is the input complement to stdout.write:

// stdio.S (cont.)
//
// stdin.read
//
// Reads data from the standard input
//
// X0- Buffer to receive data
// X1- Buffer count (note that data input will
// stop on a newline character if that
// comes along before X1 characters have
// been read)
//

918 Chapter 16

// Returns:
//
// X0- Negative value if error, bytes read if successful

 proc stdin.read, public
 locals sr_locals
 qword sr_locals.saveX1X2
 byte sr_locals.stkspace, 64
 dword sr_locals.fpSave
 endl sr_locals

 enter sr_locals.size
 stp x1, x2, [fp, #sr_locals.saveX1X2]

 // Call the OS API read function:

 1 mov svcReg, #sys_Read
 mov x2, x1
 mov x1, x0
 mov x0, #stdin
 svc #OSint

 file.checkError

 ldp x1, x2, [fp, #sr_locals.saveX1X2]
 leave
 endp stdin.read

When you pass stdin.read a buffer’s address and size, it will read up to
that number of characters from the standard input device (usually the key-
board) and place those characters into the buffer. This function will stop
reading characters when it either reads the specified number of characters
or encounters a newline character (line feed) in the input.

The twist to this otherwise straightforward code is that it has to move
the address and byte count around 1 prior to calling the OS read() func-
tion. This is because the buffer address needs to go in X1 and X2 when call-
ing read(), and the function has to load the standard input file descriptor
into X0.

The stdin.getc function is a one-character version of stdin.read:

// stdio.S (cont.)
//
// stdin_getc
//
// Read a single character from the standard input.
// Returns character in X0 register

 proc stdin.getc, public
 locals sgc_locals
 qword sgc_locals.saveX1X2
 1 byte sgc_buf, 16
 byte sgc_locals.stkspace, 64
 endl sgc_locals

Stand-Alone Assembly Language Programs 919

 enter sgc_locals.size
 stp x1, x2, [fp, #sgc_locals.saveX1X2]

 // Initialize return value to all 0s:

 2 str xzr, [fp, #sgc_buf]

 // Call the OS API read function to read
 // a single character:

 mov svcReg, #sys_Read
 mov x0, #stdin
 3 add x1, fp, #sgc_buf
 mov x2, #1
 svc #OSint

 4 file.checkError
 cmp x0, #0
 bpl noError

 // If there was an error, return the
 // error code in X0 rather than a char:

 str x0, [fp, #sgc_buf]

noError:
 ldp x1, x2, [fp, #sgc_locals.saveX1X2]
 5 ldr x0, [fp, #sgc_buf]
 leave

 endp stdin.getc

The stdin.getc function returns the character it reads in X0 rather than
placing it in a buffer. This function has to reserve storage for a buffer 1
because the call to the API read() function requires a buffer. Technically,
the buffer needs to be only eight characters long, but this function reserves
16 bytes just to help keep the stack 16-byte aligned. This code initializes
the first 8 bytes of the buffer to 0 2. The function will actually return all
8 bytes (even though the read operation stores only a single byte into the
buffer). This function computes the address of the buffer to pass to the API
read() function 3.

If, somehow, the call to the API read() function returns an error, the code
will store the negative error return code into the first 8 bytes of the buffer 4.
Before returning, stdin.getc loads the 8 bytes at the beginning of the buffer
into X0 and returns that value (this is either the single character plus seven
0s, a UTF-8 value, or the 8-byte negative error code) 5.

N O T E 	 The stdin.get function does not read a single character from the keyboard and then
immediately return to the caller. Instead, the OS will read a whole line of text from the

920 Chapter 16

keyboard and return the first character of that line. Successive calls to stdin.get will
read the remaining characters from that internal OS buffer. This is standard Unix
behavior, not a specific feature of this function.

The last function in the stdio.S file is stdin.readln:

// stdio.S (cont.)
//
// stdin.readln
//
// Reads a line of text from the user.
// Automatically processes backspace characters
// (deleting previous characters, as appropriate).
// Line returned from function is zero-terminated
// and does not include the ENTER key code (carriage
// return) or line feed.
//
// X0- Buffer to place line of text read from user
// X1- Maximum buffer length
//
// Returns:
//
// X0- Number of characters read from the user
// (does not include ENTER key)

 proc stdin.readln, public
 locals srl_locals
 qword srl_locals.saveX1X2
 dword srl_locals.saveX3
 byte srl_buf, 16
 byte srl_locals.stkspace, 64
 endl srl_locals

 enter srl_locals.size
 stp x1, x2, [fp, #srl_locals.saveX1X2]
 str x3, [fp, #srl_locals.saveX3]

 mov x3, x0 // Buf ptr in X3
 mov x2, #0 // Character count
 cbz x1, exitRdLn // Bail if zero chars.

 sub x1, x1, #1 // Leave room for 0 byte.
readLp:
 1 bl stdin.getc // Read 1 char from stdin.

 cmp w0, wzr // Check for error.
 bmi exitRdLn

 2 cmp w0, #cr // Check for newline code.
 beq lineDone

 cmp w0, #lf // Check for newline code.
 beq lineDone

Stand-Alone Assembly Language Programs 921

 3 cmp w0, #bs // Handle backspace character.
 bne addChar

// If a backspace character came along, remove the previous
// character from the input buffer (assuming there is a
// previous character):

 cmp x2, #0 // Ignore BS character if no
 beq readLp // chars in the buffer.
 sub x2, x2, #1
 b.al readLp

// If a normal character (that we return to the caller),
// add the character to the buffer if there is room
// for it (ignore the character if the buffer is full):

4 addChar: cmp x2, x1 // See if you're at the
 bhs readLp // end of the buffer.
 strb w0, [x3, x2] // Save char to buffer.
 add x2, x2, #1
 b.al readLp

// When the user presses the ENTER key (or line feed)
// during input, come down here and zero-terminate the string:

lineDone:
 5 strb wzr, [x3, x2]

exitRdLn: mov x0, x2 // Return char cnt in X0.
 ldp x1, x2, [fp, #srl_locals.saveX1X2]
 ldr x3, [fp, #srl_locals.saveX3]
 leave
 endp stdin.readln

This function, intended mainly for interactive use, reads a line of text
from the keyboard with a modicum of editing (handling backspace charac-
ters), placing those characters into a buffer. In many respects, it works just
like stdin.read, except that pressing BACKSPACE deletes a character from the
input buffer rather than returning the backspace ASCII code as a character
of the buffer.

This function repeatedly calls stdin.getc 1, reading one character at a
time. If stdin.getc returns an error (a negative return value), this function
immediately returns, passing the error code on to its caller.

The code checks whether the input line is complete by comparing the
character against the ASCII codes for a carriage return or newline (line
feed) 2. If the character matches one of these two, the code exits the loop.

The stdin.readln function then checks for a backspace character 3.
If it is a backspace, this function will delete the previous character from
the input buffer (if there was one). If the character is not a backspace, the
code branches down to 4, where it appends the character to the end of
the buffer.

922 Chapter 16

When the function finds a carriage return or line feed in the input
stream, it transfers control to 5, where it zero-terminates the string and
returns the number of characters actually read in the X0 register.

Beyond processing backspace characters, there are two additional dif-
ferences between reading a line of text with stdin.readln and simply calling
stdin.read. First, stdin.readln will zero-terminate the string read into the
buffer. Second, stdin.readln does not place the newline character (or car-
riage return) in the buffer.

16.5.4  File I/O Demo Application
The simple application in Listing 16-4 demonstrates the use of the file.a
library.

// Listing16-4.S
//
// File I/O demonstration:

 #include "aoaa​.inc"
 #include "files/files​.inc"
 #include <sys/syscall.h>

 #if isMacOS

// Map main to "_main" as macOS requires
// underscores in front of global names
// (inherited from C code, anyway).

#define main _main
sys_Exit = SYS_exit

 #else

sys_Exit = __NR_exit

 #endif

 .data

// Buffer to hold line of text read from user:

inputLn: .space 256, (0)
inputLn.len = .-inputLn

// Buffer to hold data read from a file:

fileBuffer: .space 4096, (0)
fileBuffer.len = .-fileBuffer

// Prompt the user for a filename:

prompt: .ascii "Enter (text) filename:"
prompt.len = .-prompt
 .byte 0

Stand-Alone Assembly Language Programs 923

// Error message string:

badOpenMsg: wastr "Could not open file\n"

OpenMsg: wastr "Opening file: "

 .code

// Here is the asmMain function:

 proc main, public
 locals am
 dword am​.inHandle
 byte am_stkSpace, 64
 endl am

 enter am.size

// Get a filename from the user:

 1 lea x0, prompt
 bl stdout.puts

 lea x0, inputLn
 mov x1, #inputLn.len
 bl stdin.readln
 cmp x0, #0
 bmi badOpen

 lea x0, OpenMsg
 bl stdout.puts
 lea x0, inputLn
 bl stdout.puts
 bl stdout.newLn

// Open the file, read its contents, and display
// the contents to the standard output device:

 2 lea x0, inputLn
 mov x1, #O_RDONLY
 bl file.open
 cmp x0, xzr
 ble badOpen

 str x0, [fp, #am​.inHandle]

// Read the file 4,096 bytes at a time:

readLoop:
 3 ldr x0, [fp, #am​.inHandle]
 lea x1, fileBuffer
 mov x2, fileBuffer.len
 bl file.read

924 Chapter 16

 // Quit if there was an error or
 // file.read read 0 bytes:

 cmp x0, xzr
 ble allDone

 // Write the data just read to the
 // stdout device:

 4 mov x2, x0 // Bytes to write
 lea x1, fileBuffer
 mov x0, #stdout
 bl file.write
 b.al readLoop

badOpen: lea x0, badOpenMsg
 bl stdout.puts

allDone:
 5 ldr x0, [fp, #am​.inHandle]
 bl file.close

 // Return error code 0 to the OS:

 mov svcReg, #sys_Exit
 mov x0, #0
 svc #OSint
 endp main

This program begins by prompting the user to enter a filename 1. It
reads this filename from the user and then echoes the filename to the dis-
play. The program opens the file and saves away the file handle that file
.open returns 2. If an error occurred opening the file, the program drops
down to the badOpen label, prints an error message, and quits.

Next, the program continuously reads a block of (up to) 4,096 bytes
until the end of the file is reached (or another error occurs) 3. When read-
ing from a file, the file.read function will read the full 4,096 bytes, ignoring
any newline characters (it stops on newlines only when reading from the
standard input). If this function reads 0 bytes from the input, it has reached
the end of the file, and the loop exits.

The code then writes the bytes read to the standard output device 4,
using the return value from file.read as the byte count on the call to file
.write. This is because the last block of bytes read from the file might not
be 4,096 bytes in length; if it read fewer than 4,096 bytes, the next read will
return 0 bytes and the operation will be complete. Once the program com-
pletes, it closes the file and quits 5.

Here’s the makefile that will build the program in Listing 16-4:

Listing16-4.mak
#
makefile to build the Listing16-4.S file

Stand-Alone Assembly Language Programs 925

unamestr=`uname`

Listing16-4:Listing16-4.S aoaa​.inc files/files​.inc files.a
 cd files; make -f files.mak; cd ..
 g++ -D$(unamestr) -o Listing16-4 Listing16-4.S files.a

clean:
 rm -f Listing16-4.o
 rm -f Listing16-4
 rm -f file.a
 cd files; make -f files.mak clean; cd ..

Here’s a sample build operation and execution of the program:

% make -f Listing16-4.mak clean
rm -f Listing16-4.o
rm -f Listing16-4
rm -f file.a
cd files; make -f files.mak clean; cd ..
rm -f files.o
rm -f volatile.o
rm -f stdio.o
rm -f files.a
% make -f Listing16-4.mak
cd files; make -f files.mak; cd ..
g++ -c -D`uname` files.S
g++ -c -D`uname` stdio.S
g++ -c -D`uname` volatile.S
ar rcs files.a files.o stdio.o volatile.o
cp files.a ..
g++ -D`uname` -o Listing16-4 Listing16-4.S files.a
% ./Listing16-4
Enter (text) filename:Listing16-4.mak
Opening file: Listing16-4.mak
listing16-4.mak
#
makefile to build the Listing16-4.S file.

unamestr=`uname`

Listing16-4:Listing16-4.S aoaa​.inc files/files​.inc files.a
 cd files; make -f files.mak; cd ..
 g++ -D$(unamestr) -o Listing16-4 Listing16-4.S files.a

clean:
 rm -f Listing16-4.o
 rm -f Listing16-4
 rm -f file.a
 cd files; make -f files.mak clean; cd ..

I’ve used the Listing16-4.mak text file as the input for this run of the
program.

926 Chapter 16

	 16.6	 Calling System Library Functions Under macOS
As I mentioned earlier, Apple frowns on applications that make direct
calls to the macOS kernel via the svc instruction. The company claims the
proper way to make those calls is via the C library code Apple has provided.
This chapter has shown you the low-level calls because, well, that was the
purpose of this chapter; if you’re the one writing the C library code (or
similar library code that interfaces to the OS), you need to know this infor-
mation. However, I would be remiss if I didn’t show you how Apple recom-
mends interfacing applications with macOS.

I’ve created a variant of the files.a library, stored in the files-macOS direc-
tory in the online source code set, that links in the kernel read(), write(),
open(), and close() functions. To avoid redundancy, I don’t print all that
code in this chapter, but I’ll list the file.write function here to give you an
idea of the simplicity of the change:

// file.write
//
// Write data to a file handle.
//
// X0- File handle
// X1- Pointer to buffer to write
// X2- Length of buffer to write
//
// Returns:
//
// X0- Number of bytes actually written
// or -1 if there was an error

 proc file.write, public
 locals fw_locals
 qword fw_locals.saveX0
 byte fw_locals.volSave, volatile_save.size
 byte fw_locals.stkspace, 64
 dword fw_locals.fpSave
 endl fw_locals

 enter fw_locals.size

 // Preserve all the volatile registers because
 // the OS API write function might modify them.
 //
 // Note: because fw_locals.volSave is at the
 // bottom of the activation record, SP just
 // happens to be pointing at it right now.
 // Use it to temporarily save FP so you can
 // pass the address of w_locals.volSave to
 // saveVolatile in the FP register.

 str fp, [sp] // fw_locals.fpSave
 add fp, fp, #fw_locals.volSave
 bl saveVolatile
 ldr fp, [sp] // Restore FP.

Stand-Alone Assembly Language Programs 927

 // Okay, now do the write operation (note that
 // the write arguments are already sitting
 // in X0, X1, and X2 upon entry into this
 // function):

 1 bl _write

 // Check for error return code:

 file.checkError

 // Restore the volatile registers, except
 // X0 (because we return the function
 // result in X0):

 str x0, [fp, #fw_locals.saveX0] // Return value.
 str fp, [sp] // w_locals.fpSave
 add fp, fp, #fw_locals.volSave
 bl restoreVolatile
 ldr fp, [sp] // Restore FP.
 ldr x0, [fp, #fw_locals.saveX0]
 leave
 endp file.write

The only difference between this version of file.write and the version in
the original files.a library is that I’ve replaced the svc instruction sequence
with a call to the _write() function 1.

The new files.a library also includes a couple of changes to the files​.inc
header file. The most important change is to the file.checkError macro:

 .macro file.checkError

 cmp x0, #-1
 bne 0f
 getErrno
 neg x0, x0
0:
 .endm

The macOS _write() function returns –1 when an error occurs, since
C code can’t test the carry flag. Therefore, I modified file.checkError to
handle errors the same way Linux does.

I had to build the files-macOS library first (to create a new version of file.a,
replacing the version that made direct OS calls), then made Listing16-4.S
by using the file.a library from files-macOS. The program ran the same as the
original file I/O example from the previous section.

In theory, you could use this same approach with Linux, creating
slightly more portable code between the two OSes. However, the svc API
interface under Linux is well defined and documented, so there is no rea-
son not to call the API functions directly.

928 Chapter 16

	 16.7	 Creating Assembly Applications Without GCC
Throughout this chapter, I’ve continued to use GCC to assemble and link
the assembly language files. That’s because most of the example code in
this chapter includes aoaa​.inc, and that file depends on the CPP. You might
view this approach with suspicion, thinking GCC might be sneaking some
C code into your program. And you would be right: even when you build a
“pure” assembly language program with GCC, it links in some code to set
up the environment prior to the execution of your program (so that if you
do call any C library code, the environment has been set up for it).

Generally, such extra code is of little consequence—it executes once, is
fairly fast, and doesn’t take up that much space. However, if you are an abso-
lute purist and you want to execute only the code you’ve written, you can do
so with a little extra work. You just won’t be able to use aoaa​.inc, and you’ll
have to write non-portable code specifically for macOS or Linux.

Listing 16-5 is a “pure” assembly language program written for Linux.

1 // Listing16-5.s
//
// A truly stand-alone "Hello, world!" program
// written for Linux

 .text
 2 .global _start
 .align 2
hwStr: .asciz "Hello, world!\n"
hwSize = .-hwStr
 .align 2

3 _start:

 mov x0, #1 // stdout file handle
 adr x1, hwStr // String to print
 mov x2, #hwSize // Num chars to print
 mov X8, #64 // __NR_write
 svc #0 // Call OS to print str.

 mov X8, #93 // __NR_exit
 mov x0, #0
 svc #0 // Quit program.

Please note that this filename must have a lowercase .s suffix 1; you will
not be compiling this using GCC, so you won’t be using CPP with this code.
Under Linux, the default program entry point is named _start. Therefore, this
code declares _start as a global symbol 2 and uses _start as the entry point
for the program 3. I got away with using main (or _main) in earlier examples
in this chapter because the C code that GCC links in supplies the _start label
and transfers control to main (or _main); however, as we’re giving up the GCC-
generated code, we have to explicitly supply the _start label.

To assemble, link, and run this program, use the following Linux
commands:

Stand-Alone Assembly Language Programs 929

as -o Listing16-5.o Listing16-5.s
ld -s -o Listing16-5 Listing16-5.o
./Listing16-5
Hello, world!

To make this program run under macOS, you must first modify the
source code to use the appropriate macOS API constants, as shown in
Listing 16-6.

// Listing16-6.s
//
// A truly stand-alone "Hello, world!" program
// written for macOS

 .text
 .global _start
 .global _main // Later versions of macOS require this name.
 .align 2
hwStr: .asciz "Hello, world!\n"
hwSize = .-hwStr
 .align 2

_start:
_main:

 mov x0, #1 // stdout file handle
 adr x1, hwStr // String to print
 mov x2, #hwSize // Num chars to print
 mov X16, #4 // SYS_write
 svc #0x80 // Call OS to print str.

 mov X16, #1 // SYS_exit
 mov x0, #0
 svc #0x80 // Quit program.

 svc #0 // Quit program.

Assembling the code is similar to Linux (note that the program name
suffix is also a lowercase .s):

as -arch arm64 -o Listing16-6.o Listing16-6.s

Linking the program, however, is a bit more complex:

ld -macos_version_min 12.3.0 -o HelloWorld Listing16-6.o \
 -lSystem -syslibroot `xcrun -sdk macosx --show-sdk-path` -arch arm64

It’s best to use a makefile when building pure assembly files under
macOS; manually typing these commands every time you want to build the
application can be quite tedious!

930 Chapter 16

As you can see, the linker (ld) command still links in a bunch of C code
(libSystem). There’s no other way (that I know of) to avoid this, which is why
I’m perfectly happy letting GCC do all this work for me.

N O T E 	 Apple isn’t kidding when it warns you against writing code like this. Between the time
I first wrote this “Hello, World!” and the time this chapter was reviewed, Apple made
changes to its system that broke the program. In particular, the linker now expects
the program to be named _main rather than _start, and the command line for ld has
some subtle changes. Moral of the story: stick with GCC (Clang) to do all this work
for you.

	 16.8	 For More Information
•	 You can find the system call numbers for Linux at https://github​.com​/

torvalds​/linux​/blob​/v4​.17​/include​/uapi​/asm​-generic​/unistd​.h.

•	 Find the system call numbers for macOS at https://github​.com​/opensource​
-apple​/xnu​/blob​/master​/bsd​/kern​/syscalls​.master or https://opensource​.apple​
.com​/source​/xnu​/xnu​-1504​.3​.12​/bsd​/kern​/syscalls​.master.

T ES T YOURSEL F

1.	 What is the purpose of the svc instruction?

2.	 What is the svc operand for Linux?

3.	 What is the svc operand for macOS?

https://github.com/torvalds/linux/blob/v4.17/include/uapi/asm-generic/unistd.h
https://github.com/torvalds/linux/blob/v4.17/include/uapi/asm-generic/unistd.h
https://github.com/opensource-apple/xnu/blob/master/bsd/kern/syscalls.master
https://github.com/opensource-apple/xnu/blob/master/bsd/kern/syscalls.master
https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master
https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master

PART IV
R E F E R E N C E M A T E R I A L S

Binary Hex Decimal Character

0000_0000 00 0 NUL

0000_0001 01 1 ctrl-A

0000_0010 02 2 ctrl-B

0000_0011 03 3 ctrl-C

0000_0100 04 4 ctrl-D

0000_0101 05 5 ctrl-E

0000_0110 06 6 ctrl-F

0000_0111 07 7 bell

0000_1000 08 8 backspace

0000_1001 09 9 tab

0000_1010 0A 10 line feed

0000_1011 0B 11 ctrl-K

0000_1100 0C 12 form feed

0000_1101 0D 13 return

0000_1110 0E 14 ctrl-N

A
T H E A S C I I C H A R A C T E R S E T

(continued)

934 Appendix A

Binary Hex Decimal Character

0000_1111 0F 15 ctrl-O

0001_0000 10 16 ctrl-P

0001_0001 11 17 ctrl-Q

0001_0010 12 18 ctrl-R

0001_0011 13 19 ctrl-S

0001_0100 14 20 ctrl-T

0001_0101 15 21 ctrl-U

0001_0110 16 22 ctrl-V

0001_0111 17 23 ctrl-W

0001_1000 18 24 ctrl-X

0001_1001 19 25 ctrl-Y

0001_1010 1A 26 ctrl-Z

0001_1011 1B 27 esc (ctrl-[)

0001_1100 1C 28 ctrl-\

0001_1101 1D 29 crtl-]

0001_1110 1E 30 ctrl-^

0001_1111 1F 31 ctrl-_

0010_0000 20 32 space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41)

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

The ASCII Character Set 935

Binary Hex Decimal Character

0011_0011 33 51 3

0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

(continued)

936 Appendix A

Binary Hex Decimal Character

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

0101_1011 5B 91 [

0101_1100 5C 92 \

0101_1101 5D 93]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

The ASCII Character Set 937

Binary Hex Decimal Character

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127 del

A

AARCH64
The 64-bit variant of the ARM architecture. Also known as ARM64.

address
The numeric index associated with a memory location.

address bus
A set of electronic signals that hold a binary address of a memory element.

address space layout randomization (ASLR)
The use of random load addresses for program modules (to reduce the pos-
sibility of hacks and exploits in the code).

alternate half-precision control bit (AHP)
A bit in the floating-point control register that selects an alternative half-
precision format (different from the IEEE half-precision format).

application binary interface (ABI)
A set of rules that allows interaction between programming languages
and systems. Includes rules for passing parameters, data types, and other
features.

B
G L O S S A R Y

940 Appendix B

ARM
Advanced RISC machines (originally an acronym for Acorn RISC machine).

ASCII
American Standard Code for Information Interchange (a standardized
character set).

assembler
A compiler for an assembly language.

B

.bss
A block started by a symbol; a data area in the program containing unini-
tialized data (that usually doesn’t consume space in the executable file).

C

cache
The high-speed memory sitting between the CPU and main memory to
improve system performance.

control bus
A set of electronic signals from the CPU that control activities such as read-
ing, writing, and generating wait states.

D

data bus
A set of electronic signals from the CPU that transfer data between CPU
and external devices (such as memory or I/O).

default NaN enable (DN)
When default NaN is enabled (FPSCR[25]), any operation that generates a
NaN result returns the default NaN value.

denormalized numbers
Floating-point numbers with an exponent of 0 and no implied HO mantissa
bit. Denormalized numbers offer less precision than normalized numbers,
but the alternative is setting the value to 0 upon underflow.

E

effective address (EA)
The final memory address computed for an addressing mode (generally
involving addition, subtraction, and shifting).

equate
An assembler directive that associates a value with a symbolic name.

Glossary 941

F

facade code
The code around a call to a function to modify the behavior of that func-
tion (such as adjusting input and output values, checking for range limits,
and other such operations).

flags
Boolean variables that indicate the state of a system. Generally, this term is
associated with the condition code flags in the PSTATE register.

floating-point status and control register
The FPSCR contains the status flags that are set by floating-point opera-
tions, and it contains the status flags that control the operation of various
floating-point instructions.

floating-point unit (FPU)
The (optional on some CPUs) hardware that is responsible for computing
floating-point arithmetic operations.

frame pointer
A special register used to access parameters, local variables, and other items
in an activation record.

G

Gas
GNU assembler.

general-purpose registers
Special memory cells accessible to user applications, used for most integer
and address calculations on ARM CPUs.

H

high-level language (HLL)
Programming language that allows developers to create software that is
independent of the underlying machine architecture.

high-order (HO)
Most significant.

I

idiom
A peculiarity of an instruction or operation. For example, shifting a
binary number one bit position to the left is the same as multiplying by 2.

942 Appendix B

input/output (I/O)
Data provided to a CPU from outside sources (inputs) or presented to the
outside world by the CPU (outputs).

integrated development environment (IDE)
Generally consists of two or more programs combined into a single tool. At
the very least, an IDE will include a text editor and a compiler. Most IDEs also
include a debugger, build (make) system, and other file management tools.

L

last in, first out (LIFO)
An access mechanism whereby the last object inserted into a list will be the
first object removed from the list. CPU stacks use this mechanism to pre-
serve and restore data and return addresses.

ld
A linker program (loader).

lexically scoped symbols
Symbols that are visible only within a particular block where they are defined.
For example, in an HLL, symbols defined within a function or procedure are
local to that function/procedure and are not visible outside it.

link register (LR)
Holds the return address after a bl instruction so the target (of bl) function
or procedure can return to the caller.

low-order (LO)
Least significant.

M

machine code
The binary instruction encoding for each assembly language instruction.

manifest constant
A symbolic name in a program that is textually replaced by its associated
value.

memory management unit (MMU)
The hardware in the CPU that controls access to memory (protection) and
remaps memory addresses (typically to allow safe multitasking).

N

natural boundary
An object’s address that is a multiple of that object’s size.

Glossary 943

nonvolatile registers
Registers that must be preserved across a function call.

not a number (NaN)
A special floating-point value that represents an illegal result (other than
infinity) from a floating-point operation.

O

operating system (OS)
The software that controls computer operations, such as scheduling tasks,
executing applications, and providing access to I/O devices.

operation code (opcode)
A numeric value that encodes a machine instruction.

P

position-independent executables (PIE)
Code that can execute at any address in memory without modification
(relocation).

processor state register (PSTATE)
A special register that holds the condition code flags, interrupt masks, and
other miscellaneous processor control bits.

program counter
A special register that holds the memory address of the currently executing
instruction.

program-counter relative (PC-relative) addressing
Memory addresses based on an offset from the current instruction.

R

reduced instruction set computer (RISC)
Read as “reduced-instruction set computer” (not “reduced instruction-set
computer”). In a RISC machine, the CPU designer creates instructions that
do as little as possible in order to simplify the hardware needed to imple-
ment those instructions. In theory, this allows the designer to create faster
CPUs at a lower cost (though the Intel x86 series demonstrates that non-
RISC CPUs can have these attributes).

registers
Specialized memory components built directly into the CPU and accessible
by most machine instructions.

944 Appendix B

S

single instruction, multiple data (SIMD)
A SIMD instruction operates on multiple pieces of data concurrently. For
example, a SIMD add instruction may perform as many as 16 different addi-
tion operations in parallel. Though SIMD instructions are more difficult to
use than single-instruction, single-data instructions (for example, typical
ARM assembly instructions), they have the potential for executing applica-
tion much faster.

stack pointer register (SP)
A special register that references a hardware stack in memory.

subnormal
See denormalized numbers.

system bus
A collection of electronic signals comprising the address, data, and control
buses.

T

token
A string of characters that has special meaning to a compiler. Examples
include operators, reserved words, identifiers, literal constants, and other
punctuation.

trampoline
See veneer.

V

veneer
A special code sequence to extend the range of a control-transfer instruc-
tion beyond the normal displacement allowed by an instruction; also known
as a trampoline.

volatile registers
Registers that don’t have to be preserved across a function call.

W

WZR
32-bit zero register.

X

XZR
64-bit zero register.

To compile ARM assembly language source
files (including those in this book) on your

computer, you will need the Gas assembler
and other tools installed. The assembler is part of

the GNU C compiler suite, so if you install that package
on your system, you’ll get the assembler as well. Since
the installation instructions differ by OS, this appendix
will help you locate and install the files you need on
your machine.

Before attempting to install any software, check to see whether that
software is already installed by issuing the following commands:

as --version
gcc --help

C
I N S T A L L I N G A N D U S I N G G A S

946 Appendix C

If these commands print a help message for Gas and GCC, the assem-
bler (and GCC) are already installed on your system, and you’re good to
go. However, if either command complains that the file is not found (or
otherwise does not print the help screen), skip to the section for your OS to
install GCC and Gas.

	 C.1	 macOS
To write assembly code on an Apple Silicon machine (such as an Mx class
machine or even an iPad or iPhone), you must install Apple’s Xcode devel-
opment platform on your Mac. Go to the Apple App Store and then locate,
download, and install Xcode. This is a very large file (many gigabytes) and
will take a while to download. After you run the installer, you should be
able to compile the assembly code in this book.

Technically, when installing Xcode, you’re installing Apple’s LLVM
Clang compiler and Clang assembler, not GCC and Gas. However, these
tools are mostly compatible with GCC and Gas (and can certainly handle
all the source code appearing in this book). The two assemblers have occa-
sional syntax differences, and the aoaa​.inc file was created to help smooth
over those differences (review the aoaa​.inc source code if you are interested
in seeing some of them). Various comments throughout this book also
point out the differences between Gas and the Clang assembler (for exam-
ple, see the discussion of the lea macro in section 3.8, “Getting the Address
of a Memory Object,” on page 153).

	 C.2	 Linux
Many Linux installations come with GCC and Gas already installed. If you
are running Debian/Ubuntu Linux or Raspberry Pi OS, enter gcc --version
at the command line; if the shell doesn’t respond with an error but instead
prints information on GCC, you’re all set.

If you do need to install GCC and Gas, the first step, as with any Linux
installation (this book assumes a Debian/Ubuntu installation), is to update
your system:

sudo apt update

Note that this requires an account with sudo privileges.
Next, install the build-essential package with the following command:

sudo apt install build-essential

This installs several programs, including gcc, Gas, make, and ld. Verify that the
system has properly installed these tools by using the following command:

gcc --version

Installing and Using Gas 947

This should print the version information for GCC if it has been properly
installed.

Optionally, you can install the man pages for GCC and the other tools
by using the following command:

sudo apt-get install manpages-dev

If you are using a different variant of Linux, please consult the docu-
mentation for your distribution or search for installation instructions
online to install GCC.

The Bourne-again shell, otherwise known as
the Bourne shell or bash, is a Unix shell inter-

preter. Bash is an upgraded version of the ven-
erable Unix sh (shell) program, the default shell

program in Unix System 7.
Bash is the typical shell used in Linux systems (though other shells

are available, such as zsh and csh). Most Linux and macOS shell pro-
grams are roughly compatible with one another for simple command line
activities, but they differ in their support for sophisticated shell program-
ming purposes.

All the programming examples throughout this text run GCC and
the Gas assembler via shell commands given by a bash command line.
Therefore, you should have at least a small amount of bash knowledge in
order to understand the basic commands in this book. This appendix gives
instructions for using bash, including descriptions of its more common
commands, but this discussion largely applies to other shell interpreters
as well.

D
T H E B A S H S H E L L I N T E R P R E T E R

950 Appendix D

To avoid having to refer to specific OS or distribution names, I’ll use
the name Unix in this appendix to refer to the underlying system (at the
time of this writing, Unix is a registered trademark of The Open Group).

	 D.1	 Running Bash
The bash shell interpreter is an application similar to other Unix applica-
tions. To use it, you must first execute the bash application. On text-based
Unix systems, some sort of shell application will run after you log in to the
system. You can set up your system to automatically run bash (or any other
shell program).

On GUI-based Linux systems or on macOS systems, you usually have to
run a terminal program to start a shell interpreter. In either case, you’ll typ-
ically be presented with a command prompt when the shell application runs.
This should be $ or #, depending on whether you’re logged in as a normal
user or root, respectively; some shells display a % prompt. After printing the
command prompt, the shell will wait for you to type a command.

At this point, you’re running a shell interpreter, though it might not
be bash; it could be the standard sh shell or another shell (for example,
the macOS terminal application runs zsh). Though most shells will behave
approximately the same, to ensure you’re running bash, type the following
line (followed by ENTER) after the command prompt:

$ bash

This will ensure that you’re running the bash application so that all the
comments in this appendix will apply. You can terminate this instance of
bash and return to the original shell by executing the exit command from
the command line.

	 D.2	 Command Lines
The previous example (bash) is an instance of a command given to a shell
interpreter. Commands consist of a line of text entered after a command
prompt (typically via the keyboard) and take the following form:

commandName optionalCommandLineArguments optionalRedirection

This whole line of code is known as a command line, which consists of
three components: a command (usually a single word, such as bash in the
previous example), followed by optional command line arguments, and,
finally, optional redirection or piping operands.

The command is the name of a built-in bash command or the name
of an executable application (or shell script). For example, the command
could be the name of an assembled assembly language source file you’ve
just created.

The Bash Shell Interpreter 951

D.2.1  Command Line Arguments
Command line arguments are strings of characters separated by spaces or tabs
that bash will pass along to the application. The exact syntax of these com-
mand line arguments is application dependent. Some simple applications
(including the assembly language examples in this book) may completely
ignore any command line arguments; others may require very specific argu-
ments and report an error if they are not syntactically correct.

Some applications define two types of command line arguments: options
and arguments. Historically, command line options consist of a dash (-) pre-
fix followed by a single character, or a double dash (--) prefix followed by
a sequence of characters. For example, the bash command supports
the option

bash --help

which displays help information and then terminates without running the
bash interpreter.

In contrast, an actual command line argument is typically a filename
or other word (or string) that the application will use as an input value.
Consider the following command line:

bash script

In this example, bash will start a second instance of itself and read a set
of commands (one per line of text) from the script file and execute those
commands as though they had been typed from the keyboard. The build
script file that appeared on page 38 is a good example of a shell script.

Because bash uses spaces or tabs to separate command line arguments,
problems arise if you want to specify a single argument that contains such
delimiters, characters that separate items on the command line. Fortunately,
bash provides a syntax that allows you to include such delimiters on the
command line: if you surround a command line argument with quotation
marks, bash will pass everything within the quotes to the application as a
single command line argument.

For example, if a command requires a filename and the filename you
wish to use contains spaces, you can pass that filename to the command
as follows:

command "filename with spaces"

Bash will not include the quotes as part of the argument it passes to the
command. If you need to pass a quote character as part of a command line
argument, precede the quote with a backslash character (\). For example,
consider the following command:

command "argument containing \"quotes\""

952 Appendix D

This passes argument containing "quotes" as a single argument to command.
As you will see later in this appendix, you can also surround a com-

mand line argument with single quotes (apostrophe characters). The differ-
ence has to do with variable expansion.

D.2.2  Redirection and Piping Arguments
Bash programs (and Unix-like OSes in general) provide a standard input
device, a standard output device, and a standard error device.

The standard input device is usually the console keyboard. If a program
reads data from the standard input device, the program will halt until the
user types a line of text from the keyboard.

The standard output device is the console display. If an application writes
data to the standard output device, the system will display it on the display
screen. The standard error device also defaults to the console display, so
data written to the standard error device is also written to the display.

The bash shell provides the ability to redirect input and output by using
special arguments on the command line. I/O redirection typically allows
you to specify a filename. When redirecting the standard input device, the
application will read lines of text from a file (rather than from the key-
board). When redirecting the standard output, the application will write
data to a text file rather than to the console display.

To redirect the standard input from a file, use a command line argu-
ment of the form

command <InputFile

where InputFile is the name of a file containing text to be read by the appli-
cation. Whenever the application command would normally read a line of
text from the keyboard, it will instead read that line of text from the speci-
fied file.

To redirect the standard output to a file, use the following command
line syntax:

command >OutputFile

Any output normally written to the standard output device (the display)
will be written to the specified file (OutputFile). This syntax will delete the
contents of any existing file named OutputFile and replace its contents with
the output of the command application.

A variation of output redirection will append a program’s output to the
end of an existing file rather than replacing its contents. To use output redi-
rection this way, use this syntax:

command >>OutputFile

Note that redirecting the standard output device does not change the
standard error output device. If you’ve redirected the standard output to a

The Bash Shell Interpreter 953

file and an application writes data to the standard error device, that output
still appears on the console display. You can redirect the standard error
device by using the following syntax:

command 2>ErrorOutput

The 2> tells bash to redirect the output sent to file handle 2. Under
Unix-style systems, handle 0 is reserved for the standard input, handle 1 is
reserved for the standard output, and handle 2 is reserved for the standard
error output device. Sticking the handle number in front of the > specifies
which output to redirect.

If you like, you can also redirect the standard output by using this
syntax:

command 1>OutputFile

The final form of I/O redirection is the pipe, which connects the stan-
dard output from one application to the standard input of a second applica-
tion. This allows the second application to read, as input, the output from
the first application. Here’s the syntax for a pipe redirection:

command1 OptionalCommand1Arguments | command2 OptionalCommand2Arguments

This tells bash to redirect the output from command1 as the input to command2.

	 D.3	 Directories, Pathnames, and Filenames
When you run bash, it will default to a current directory in the OS’s file
structure. Unix calls this the current working directory. Whenever you run
bash (for example, when you first log in), the current working directory is
typically your home directory (as determined by the OS). For example, on
my Debian system, this is /home/rhyde (under macOS, it’s /Users/rhyde).

When you specify a filename on the command line that does not con-
tain any slash characters, bash or the application will assume that file exists
in the executable path supplied to the system. A pathname consists of a
sequence of one or more directory names, separated by slashes, ending with
a filename. A relative pathname begins with a directory name; the system
looks for that directory within the current working directory. For example,
dir1/dir2/filename specifies a file (filename) appearing in dir1 in the current
working directory and within dir2, which is itself within dir1. An absolute
pathname begins with a slash followed by the outermost root directory. For
example, /home/rhyde/x.txt specifies the file x.txt appearing in the /home/rhyde
directory (my home directory under Debian).

The tilde special character (~) is shorthand for the current user’s home
directory. Therefore, ~/x.txt is another way for me to specify /home/rhyde/x.txt
on my Debian system. This scheme also works in macOS, so it’s a useful way
to specify user directory paths in a system-independent fashion.

954 Appendix D

The special character period (.), by itself, is shorthand for the current
working directory. The double-period sequence (..) is shorthand for the
directory that contains the current working directory (the parent directory).
For example, ../x.txt refers to the file named x.txt in the parent directory. On
Linux-based systems, to execute an application from the current working
directory, you must specify ./filename rather than just filename (unless you’ve
placed ./ in your execution path).

Some Unix commands allow you to specify multiple filenames on the
command line. Such commands often allow the use of wildcard characters
to specify multiple names. Unix supports a rich set of regular expressions
when specifying wildcards, one of which you’ll commonly use: the asterisk (*).
Bash will match any number of characters (zero or more) in place of the
asterisk. Therefore, the filename *.txt will match any file ending with the
four-character sequence .txt (this includes .txt by itself).

	 D.4	 Built-in and External Bash Commands
Bash supports two types of commands: built-in and external. Built-in commands
exist as part of the bash application itself; a function inside the bash source
code handles the given built-in command. External commands correspond
to executable programs separate from bash that bash will load and execute
(then take control back from those programs when they terminate). Built-in
commands are always available when you run bash, but external commands
may or may not be available, depending on the presence of the executable
code for those commands. You can assume that the commands appearing in
the following subsections are all external, unless otherwise noted.

The assembly language example programs in this book are examples of
external commands. When you enter something like

./Listing1-5

at the command line, bash will locate the Listing1-5 executable in the cur-
rent working directory (./) and attempt to execute that code.

For security reasons, bash will not automatically execute a program in
the current working directory unless you explicitly prepend the characters
./ to the executable’s name. Bash assumes that program names without
explicit path information can be found in the execution path. The execution
path (see section D.6.1, “Defining Shell Script Variables and Values,” on
page 961) is a list of directories where bash will search for an executable
program you specify without explicit path information. Usually, bash will
look in places such as /bin, /usr/bin, and /sbin for executable programs.

To enable bash to execute programs from your current working direc-
tory without having to prefix the executable filename with the ./ charac-
ters, you can add ./ to your execution path. However, there are some very
good security reasons for not doing this. For more on this, see section D.8,
“For More Information,” on page 968.

The Bash Shell Interpreter 955

	 D.5	 Basic Unix Commands
It would be impossible to describe all Unix commands in this appendix.
That would take a large book by itself. This section describes several com-
mands useful to those developing assembly language programs, along with
some of their options and parameters. For information on additional bash
commands, check out section D.8, “For More Information,” on page 968.

D.5.1  man
If you know the name of the command but are unsure about the syntax for
its command line parameters and options, you can use the man command to
learn about it. This command brings up the manual page for a (supported)
command, with the syntax

man CommandName

where CommandName is the name of the command whose manual page you
would like to read. For example, the following brings up the manual page
for the man command itself:

man man

You can use man, with the command names listed in the following sub-
sections, to learn additional information about each.

D.5.2  cd or chdir
You can set the current working directory by using the cd (change direc-
tory) command (chdir is an alias of this command). The standard syntax is

cd DirectoryPath

where DirectoryPath is a relative or absolute path to a directory in the file
system. Unix will report an error if the directory does not exist or if this is
the name of a file rather than a directory.

If you specify the cd command without any arguments, it will switch to
the current user’s home directory. This is equivalent to entering the follow-
ing on the command line:

cd ~

The cd and chdir commands are built into bash.

D.5.3  pwd
The pwd (print working directory) command prints the path to the current
working directory. Bash is generally set up to print the current working
directory as part of the command line prompt; if this is the case for your

956 Appendix D

system, you probably won’t need to use pwd. This is also an internal bash
command.

D.5.4  ls
The ls (list directory) command prints a directory listing to the standard
output. When used with no options, it displays the contents of the current
directory.

When printing the directory listing to the display, ls defaults to a
multicolumn format. If you direct the output to a file, by redirecting the
standard output or by using a pipe, the command prints the listing in a
single-column format.

If you supply a directory path as an argument, the ls command will
display the contents of the specified directory (assuming it exists). If you
specify a pathname to a file as an argument, the ls command will display
only that filename (again, assuming that file exists in the specified path).

By default, the ls command will not display filenames that begin with
a period. Unix treats such files as hidden. If you want to display such file-
names, use the -a command line option:

ls -a

By default, the ls command lists only the filenames and directory
names in the specified directory. If you specify the -l (long) option, the ls
command will display additional information about each file:

$ ls -l
total 3256
-rw-r--r--@ 1 rhyde staff 168089 Dec 29 20xx encoder.pdf
-rw-r--r--@ 1 rhyde staff 1492096 Dec 27 20xx mcp23017.png

The first column in the listing specifies the file permissions. The next
three provide a link count and ownership information, followed by file size
and modification date and time, followed by the filename.

D.5.5  file
Unlike macOS and Windows, Unix does not associate a specific data type
with a file. You can use the Unix file command to determine a file type for
a particular file:

file pathname

The file command will respond with its best guess as to the type of the
file specified by pathname.

D.5.6  cat, less, more, and tail
To view the contents of a text file, you can display that file in its entirety
using the cat (catenate) command

The Bash Shell Interpreter 957

cat pathname

where pathname is the path to the name of the file you wish to display.
The problem with cat is that it tries to write the entire file to the dis-

play, all at once. Many files are larger than can be displayed on the screen at
one time, so cat ends up displaying only the last few lines of the file; more-
over, very large files may take a while to display their contents. If you would
like to be able to page through a file one screenful at a time, you can use
the more and less commands:

more pathname
less pathname

The more command is now obsolete but is still available to handle older
script files that contain it. It displays a pageful of text and allows you to scroll
through the file a line at a time (by pressing ENTER) or a page at a time (by
pressing the spacebar). The big drawback to more is that you can view only
forward in a file; after information scrolls off the screen, it is lost.

The less command (whose name comes from the phrase less is more) is
an upgraded version of more that allows you to scroll forward and backward
in a page. Most people use the less command rather than more because of
the additional features (such as being able to use the arrow keys to consis-
tently scroll up and down a line at a time).

If you want to view only the last few lines of a large file, use the tail
command:

tail pathname

By default, tail prints the last 10 lines of the file. You can use the -n xxxx
command line option, where xxxx is a decimal numeric value, to specify a
different line count. For example

tail -n 20 x.txt

displays the last 20 lines of the file x.txt.

D.5.7  mv
The mv (move) command has the following syntax:

mv SourcePath DestinationPath

SourcePath is the pathname of the file you want to move or rename, and
DestinationPath is the final destination path where you want the file moved
(or the new name you want to use for the file).

To rename a file in the current directory, mv takes the form

mv OldName NewName

958 Appendix D

where OldName is the existing filename you want to change and NewName is the
new filename you want to rename the file. These are both simple filenames
(no directory path components). Note that NewName must be different from
OldName.

To move a file from one directory to another, either the SourcePath
or DestinationPath (or both) must contain a directory component. The
SourcePath must contain a filename component at the end of the pathname
(the name of the file to move). For the DestinationPath, a filename at the end
is optional. If the DestinationPath is the name of a directory (rather than a
file), mv will move the source file into the destination directory and use the
same filename as the original source file. If there is a filename at the end of
DestinationPath, then mv will change the filename while it is moving it.

You can use wildcard characters with mv, subject to the following restric-
tions: wildcard characters may appear only in the source pathname, and
the destination path must be a directory, not an actual filename.

D.5.8  cp
The cp command has the following syntax:

cp SourcePath DestinationPath

This command will make a copy of the file specified by SourcePath, using the
name DestinationPath for the copy. If both pathnames are simple filenames
(that is, you’re making a copy of a file in the current directory), the two file-
names must be different.

The cp command accepts wildcard characters in the source operand. If
wildcard characters are present, the destination must be a directory path.
The cp command will copy all files matching the wildcard designation to
the specified directory.

If both source and destination operands specify a directory, use the
-R (recursive) command line option. This will copy all the files from the
source directory to a directory by the same name in the destination direc-
tory (creating the new directory in the destination if it is not already pres-
ent); it will also recursively copy any subdirectories in the source directory
into similarly named subdirectories in the destination.

D.5.9  rm
The rm command removes (deletes) a file from a directory, using the follow-
ing syntax:

rm pathname

The pathname argument must be a path to an individual file, not a direc-
tory. To delete a directory and all the files in it, use the following command:

rm -R DirectoryPath

The Bash Shell Interpreter 959

This will recursively delete all files and subdirectories in DirectoryPath,
then delete the directory specified by DirectoryPath.

To delete all the files in a directory without removing the directory
itself, use the following command:

rm -R DirectoryPath/*

Be very careful when using wildcard characters in an rm command.
Depending on the current working directory, the following command could
delete everything on your storage devices:

rm -R *

There is also an rmdir command you can use to remove empty directo-
ries. However, the rm -R directory command is easier to use for this purpose.

D.5.10  mkdir
The mkdir command creates a new (empty) directory, using the syntax

mkdir DirectoryPath

where DirectoryPath specifies the pathname to a directory that does not
already exist. If DirectoryPath is an actual pathname, all subdirectory names
up to the final name in the path must exist; the final directory name (after
the last /) must not exist. If you specify a simple directory name (no path),
bash will create the directory in the current working directory.

The mkdir command supports a -p command line option that will create
all nonexistent directories in the path.

D.5.11  date
The date command displays the current date and time. You can also use this
command to set the Unix real-time clock. Run man date for the details.

D.5.12  echo
The echo command prints the text on the remainder of the command line
(subject to some expansions by bash) to the standard output device. For
example

echo hello, world!

will write hello, world! to the standard output. You’ll use this command
most often in scripts or to display the value of various shell variables.

D.5.13  chmod
Although Unix files do not have a specific type, the directory does maintain
whether a file is readable, writable, or executable by the owner of the file, a

960 Appendix D

group associated with the file, or anyone (standard Unix permissions). The
chmod command allows you to set (or clear) permission mode bits for a par-
ticular file.

The basic syntax for chmod is

chmod options pathname

where pathname is the path to the file whose mode you want to change, and
the options parameter(s) specifies the new permissions.

The options argument is either an octal (base-8) number (typically
three digits) or a special string to set the permissions. Unix has three
permission categories: owner/user, group, and other. The owner category
applies to the user who created the file in the first place. The group category
covers any groups that the user belongs to (and other users may belong to).
The other category covers everyone else.

In addition to the three categories, Unix has three main types of
permissions: permission to read a file, permission to write data to a file (or
delete it), and permission to execute a file (this generally applies to object
code or shell scripts).

A typical chmod option consists of a string of one to three characters
from the set {ugo} followed by a plus or minus character (+ or -, not ±), fol-
lowed by a single character from the set {rwx}. For example, u+r enables user
read access, u+x enables execution permission, and ugo-x removes execution
privileges for all categories. Note that the ls -l command will list the user,
group, and other permissions for a given file.

You can also specify the permissions for the three categories as a three-
digit octal number, where each digit represents the three rwx bits for users
(HO digit), groups (middle digit), and other (LO digit). For example, 755
specifies read/write/execute permissions for the user (1112 = 78), read and
execute permissions for the group, and other (1012 = 58). Note that 755 is a
typical set of permissions you would assign to a publicly usable script file.

	 D.6	 Shell Scripts
A shell script is a text file that bash will interpret as a sequence of com-
mands to execute, exactly as though each line in the text file were entered
from the keyboard while running bash. For those with Microsoft Windows
experience, this is similar to a batch file. This section discusses using shell
variables and values, using special built-in shell variables, and creating your
own bash shell scripts.

The bash interpreter is a full-fledged programming language that sup-
ports conditional and looping constructs as well as the sequential execution
of commands on the command line. It supports if...elif...else statements,
a case statement (similar to C’s switch statement), and various loops (while,
for, and so on). It also supports functions, local variables, and other fea-
tures typically found in HLLs. Going into detail on these topics is beyond
the scope of this book. See Ryan’s Tutorials in section D.8, “For More
Information,” on page 968 for details beyond what this section covers.

The Bash Shell Interpreter 961

D.6.1  Defining Shell Script Variables and Values
Bash allows you to define shell variables. A shell variable is a name (think:
programming language identifier) to which you can assign some text. For
example, the following bash command assigns the text ls to list:

list=ls

You can tell bash to expand a shell variable name to its associated text
by prefixing the name with a $ character. For example

$list

expands to

ls

which will display the current directory listing.
Normally, you would not use shell variables to create aliases of existing

commands, as the alias command is better suited to the job. Instead, you
would use shell variables to keep track of paths, options, and other informa-
tion commonly used on the command line.

Bash supplies several predefined shell variables, including the following:

$HOME ​  ​Contains the path to the current user’s home directory

$HOSTNAME ​  ​Contains the machine’s name

$PATH ​  ​Contains a list of directory paths, separated by colons (:), that
bash will search through when searching for an external command’s
executable file

$PS1 ​  ​Contains a string that bash will print as the command line prompt

$PWD ​  ​Contains the current working directory

For a complete list of predefined shell variables, and for more details on
the $PS1 variable in particular, see section D.8, “For More Information,” on
page 968.

Shell variables to which you assign values will retain those values during
the execution of the current bash shell. Often, when executing shell scripts,
a second bash shell begins execution, and any variable values created or
modified in that execution will be lost when that shell terminates. To avoid
this problem, use the built-in export command:

export variable name=value

This command will make the variable assignment visible to parent shells.
Typically, you must use export when assigning values in a shell script that
you want to retain after the shell script completes.

You can define shell variables in a script file, just as you can when inter-
actively typing commands at the command line. As noted earlier, however,

962 Appendix D

any variable values defined in a shell script are lost when the shell termi-
nates. This is because bash will make a copy of the execution environment
(including all the shell variable values) when it starts a shell script. Any
changes or additions you make, such as creating new variables or modify-
ing existing ones, affect only the copy of the environment. When the shell
script terminates, it deletes the copy of the environment and reverts to the
original environment. The export command tells bash to export the variable
assignment to the parent environment (as well as applying to the current
local environment).

Values assigned to a shell variable are generally treated as text. Because
the bash interpreter breaks up command lines by using spaces or other
delimiters, the string of text you assign to a script variable must consist of a
single word (that is, a sequence of characters surrounded by delimiters). If
you want to include delimiter (and other) characters within the value, you
must surround the text value with quotes or apostrophes, as in the follow-
ing example:

value1="Value containing delimiters (spaces)"
value2='Another value with delimiters'

Bash will expand the text inside double quotes (") and will maintain
the text as is inside single quotes ('). Consider the following example:

aVariable="Some text"
value3="aVariable=$aVariable"
value4='aVariable=$aVariable'
echo $value3
echo $value4

Executing this sequence will produce the following output:

aVariable=Some Text
aVariable=$aVariable

Bash expands $aVariable inside the string enclosed in double quotes but
will not expand it inside the string enclosed in single quotes.

You might see strings surrounded by grave accent characters (`), com-
monly called backticks in Unix. Originally, such strings surrounded a com-
mand that the shell would execute, then substitute the textual output of the
program in place of the backticked string. This syntax has been deprecated
in modern shells. To capture the output of a command and assign it to a
variable, use $(command), as in the following example:

dirListing=$(ls)

This creates a string consisting of the listing of the current working
directory and assigns that string to the dirListing variable.

The Bash Shell Interpreter 963

D.6.2  Defining Special Shell Variables
In addition to the shell variables a script inherits from the parent environ-
ment, bash also defines certain shell variables that might prove useful in
shell scripts you write. These special variables begin with $ and typically
deal with command line parameters passed to the script (see Table D-1).

Table D-1: Special Shell Variables

Variable Description

$0 Expands to the pathname of the shell script file.

$1 through $n Expands to the first, second, . . . , nth command line argument.

$# Expands to a decimal number specifying the parameter count.

$* Expands to a string containing all the command line parameters.
Generally used to pass the parameters on to another command. To
assign this command line parameter-list string to a shell variable,
use $* to capture the text as a single string.

$@ Similar to $*, except this variant puts quotes around each argument.
Useful if the original arguments may have been quoted and could
contain spaces or other delimiter characters. It’s best to invoke this
as $@ as well.

See the references in section D.8, “For More Information,” on page 968
for more details on these features.

D.6.3  Writing Your Own Shell Scripts
Consider the following text, from a file named lsPix:

cd $HOME/Pictures
ls

If you were to execute this shell script via the following command, bash
would switch to the Pictures subdirectory in the user’s home directory, dis-
play the directory listing, and the return control to bash:

bash lsPix

Entering bash in front of a shell script to execute it can become annoy-
ing if you commonly execute certain shell scripts. Fortunately, Unix (via
shells such as sh, bash, or zsh) provides a mechanism to specify the shell
script directly as a command: make the script file executable. You can use
the chmod command to accomplish this:

chmod 755 lsPix

This sets the permissions to RWX (readable, writable, and executable)
for the owner and R-X (readable and executable) for members of the group
and other users.

964 Appendix D

Note that the build script (used throughout this book) has been made
executable via a chmod 777 build command (this allows everyone to modify
the file). That is why you need to enter only ./build at the beginning of the
command line rather than bash build.

When making a bash shell script executable, also add the following
statement to the beginning of the shell script file:

#! /bin/bash

The shebang (#!) sequence tells bash that this is a shell script and pro-
vides the path to the shell interpreter to execute for this command. (The
interpreter would be bash in this case, but you could specify a different
shell interpreter, such as /bin/sh, if you really wanted.) If you don’t know the
path to the bash interpreter, execute the Unix command which bash to print
the path you need. The inclusion of the shebang on the first line also allows
the file lspix command to identify the file as a shell script rather than a
simple ASCII text file.

Once you’ve added this line to lsPix and made the file executable, you
need to enter only the following at the command line to execute the script:

./lsPix

The # character is normally used to create comments in a shell script.
With the exception of the shebang in the first line, the bash interpreter will
ignore all the text from a # symbol to the end of the line.

It’s important to understand that shell scripts execute in their own copy
of bash. Therefore, any changes they make to the bash environment—such
as setting the current working directory with the cd command or chang-
ing shell variable values—are lost when the script terminates. For example,
when this lsPix script terminates, the current working directory will return
to its original directory; it will not be $HOME/Pictures (unless it happened
to be $HOME/Pictures prior to executing lsPix).

	 D.7	 The build Script
Shell scripts are useful for automating manual activities. For example, this
book uses the build script to assemble/compile most of the example pro-
grams. The following listing presents the build script and describes how it
works; I’ll explain the full script section by section.

As with any good shell script, the build script begins with the shebang
that defines the shell interpreter to use (bash in this case):

#!/bin/bash
#
build
#
Automatically builds an Art of ARM Assembly
example program from the command line.

The Bash Shell Interpreter 965

#
Usage:
#
build {options} fileName
#
(no suffix on the filename.)
#
options:
#
-c: Assemble .S file to object code only.
-pie: On Linux, generate a PIE executable.

fileName=""
compileOnly=" "
pie="-no-pie"
cFile="c.cpp"
lib=" "

The script also defines several variables (filename, compileOnly, pie, cFile,
and lib) that it will use to specify GCC command line options when assem-
bling and compiling the source files.

The next section of the script processes command line parameters
found on the build command line:

1 while [[$# -gt 0]]
do

 key="$1"
 case $key in

 -c)
 compileOnly='-c'
 2 shift
 ;;

 -pie)
 pie='-pie'
 shift
 ;;

 -math)
 math='-lm'
 shift
 ;;

 *)
 fileName="$1"
 shift
 ;;
 esac
done

966 Appendix D

The while loop processes each command line argument individually 1.
The Boolean expression $# -gt 0 returns true as long as there are one or
more command line arguments ($# is the number of arguments).

The body of the loop sets the key local variable equal to the value of
the first command line parameter ($1). It then executes a case statement
that compares this argument against the options -c, -pie, and -math. If the
argument matches one of these, the script sets appropriate local variables
to values that note the presence of these options. If the case expression
doesn’t match any of these, the default case (*) sets the filename variable to
the value of the command line argument.

At the end of each case, you’ll notice a shift statement 2. This state-
ment shifts all the command line parameters to the left one position (delet-
ing the original $1 argument), setting $1 = $2, $2 = $3, . . . and decrementing
the parameter count ($#) by one. This sets up the while loop for the next
iteration to process the remaining command line parameters.

The next section sets up the objectFile variable that the script expands
as part of the gcc command line:

If -c option was provided, assemble only the .S
file and produce a .o output file.
#
If -c not specified, compile both c.cpp and the .S
file and produce an executable:

if ["$compileOnly" = '-c']; then
 objectFile="-o $fileName".o
 cFile=" "
else
 objectFile="-o $fileName"
fi

This code sets objectFile to a string that will specify an object filename
on the gcc command line. If -c is not present, this code will set cFile to
expand to an empty string so that the gcc command does not also compile
c.cpp (the default case).

The following section of the build script deletes any existing object files
or executable files that this command would create:

If the executable already exists, delete it:

if test -e "$fileName"; then
 rm "$fileName"
fi

If the object file already exists, delete it:

if test -e "$fileName".o; then
 rm "$fileName".o
fi

The Bash Shell Interpreter 967

The test built-in function returns true if the specified file exists.
Therefore, these if statements will delete the object and executable files
if they already exist.

Next, the aoaa​.inc header file requires the definition of either the
isLinux or isMacOS symbols in order to determine the OS. The definition of
these symbols allows aoaa​.inc to select OS-specific code so that the example
code will compile (portably) across the two OSes. Rather than force the
user to manually define this symbol, the build script automatically defines
one of these symbols when invoking GCC. To accomplish this, build uses the
uname command, which returns the name of the OS kernel:

Determine what OS you're running under (Linux or Darwin [macOS]) and
issue the appropriate GCC command to compile/assemble the files:

unamestr=$(uname)

Under Linux, uname returns the string Linux; under macOS, it returns
the string Darwin.

Finally, the build script invokes the GCC compiler with command line
arguments appropriate to the OS:

if ["$unamestr" = 'Linux']; then
 gcc -D isLinux=1 $pie $compileOnly $objectFile $cFile $fileName.S $math
elif ["$unamestr" = 'Darwin']; then
 gcc -D isMacOS=1 $compileOnly $objectFile $cFile $fileName.S -lSystem $math
fi

Note the -D name=1 command line option that defines the isLinux or
isMacOS symbols as appropriate. Also note that the pie (position-independent
code) option appears only when compiling under Linux, as macOS code is
always position-independent.

It’s easy to modify the build script to add more features, should you
desire. For example, one limitation to this script is that it allows you to spec-
ify only a single assembly language source file (if you specify two or more
names, it will use only the last name you specify). You can change this with
three modifications to the file, in the case statement.

The first change is to append the filename and add a .S suffix to the
fileName variable rather than replacing its value. You must also set the
executable output filename to the first assembly file specified on the com-
mand line:

*)
 if[fileName = ""]
 then
 objectFile = "$1"
 fi
 fileName="$filename $1.S"
 shift
 ;;

968 Appendix D

The next change is to set objectFile to the empty string if specifying
compile-only mode:

if ["$compileOnly" = '-c']; then
cFile=" "
else
 objectFile="-o $fileName"
fi

The original code set this to the specified filename; however, that is the
default for compile-only mode, and specifying a single object name when
assembling multiple source files is problematic.

The final change is to modify the two gcc command lines to remove
the .S suffix from the assembly filenames (since this was added in the case
statement):

if ["$unamestr" = 'Linux']; then
 gcc -D isLinux=1 $pie $compileOnly $objectFile $cFile $fileName $math
elif ["$unamestr" = 'Darwin']; then
 gcc -D isMacOS=1 $compileOnly $objectFile $cFile $fileName -lSystem $math
fi

However, if you’re going to do a complex assembly using multiple
source files, you’re probably better off using makefiles rather than shell
scripts to do the job.

	 D.8	 For More Information
•	 For details on Unix regular expressions and wildcards, see the Bash

Reference Manual at https://www.gnu.org/savannah-checkouts/gnu/bash/
manual/bash.html.

•	 For more information on bash shell scripts, check out The Linux
Command Line, 2nd edition, by William Shotts (No Starch Press, 2019).

•	 For an explanation of the risks of including ./ in your execution path,
see the Unix & Linux Stack Exchange question at https://unix.stack​
exchange.com/questions/65700/is-it-safe-to-add-to-my-path-how-come.

•	 A complete list of bash shell script variables appears at the Advanced Bash
Scripting Guide site, https://tldp.org/LDP/abs/html/internalvariables​.html.

•	 For details on changing the command line prompt, see the phoe-
nixNap site at https://phoenixnap.com/kb/change-bash-prompt-linux.

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html
https://unix.stackexchange.com/questions/65700/is-it-safe-to-add-to-my-path-how-come
https://unix.stackexchange.com/questions/65700/is-it-safe-to-add-to-my-path-how-come
https://tldp.org/LDP/abs/html/internalvariables.html
https://phoenixnap.com/kb/change-bash-prompt-linux

The Bash Shell Interpreter 969

Here are some websites that describe how to write bash scripts:

	• freeCodeCamp: https://www.freecodecamp.org/news/shell-scripting-crash​
-course-how-to-write-bash-scripts-in-linux

	• Ryan’s Tutorials: https://ryanstutorials.net/bash-scripting-tutorial/bash​
-script.php

	• Linux Hint: https://linuxhint.com

	• Bash scripting cheat sheet: https://devhints.io/bash

https://www.freecodecamp.org/news/shell-scripting-crash-course-how-to-write-bash-scripts-in-linux
https://www.freecodecamp.org/news/shell-scripting-crash-course-how-to-write-bash-scripts-in-linux
https://ryanstutorials.net/bash-scripting-tutorial/bash-script.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-script.php
https://linuxhint.com
https://devhints.io/bash

This appendix contains a list of several C
functions from the C stdlib (and Unix system

library) that may be useful to assembly lan-
guage programmers.

The macOS variants of these functions use an external name that
begins with an underscore. For example, under macOS, strlen() becomes
the _strlen() function. The aoaa​.inc header file contains #define statements
for many of these function names that add the underscore prefix in front of
the unadorned names: #define strlen _strlen.

E
U S E F U L C L A N G U A G E F U N C T I O N S

972 Appendix E

	 E.1	 String Functions
Various chapters in this book have introduced many of the C stdlib string
functions (declared in the strings.h header file). This section describes most
of the available functions, including those this book has not used:

char *strcat(char *dest, const char *src);

Concatenates the zero-terminated string at which X1 (src) points to
the end of the string at which X0 (dest) points. Returns a pointer to the
dest string in X0.

char *strchr(const char *str, int c);

Searches for the first occurrence of the character specified by c (X1) in
the string at which str (X0) points. Returns a pointer into the string (in
X0) where the character was found, or a NULL (0) pointer if c does not
exist in str.

char *strcpy(char *dest, const char *src);

Copies the string pointed at by src (X1) to dest (X0), including the
zero-terminating byte. Returns a pointer to dest in X0.

char *strdup(char *str);

Duplicates a string on the heap. On entry, X0 contains a pointer to
the string to duplicate. On return, X0 contains a pointer to a copy of the
string allocated on the heap. When the application is done using the
string, the application should call the C stdlib free() function to return
the storage to the heap. Though strdup() is not defined in the C stdlib,
most systems include it in their libraries.

char *strncat(char *dest, const char *src, size_t n);

Concatenates at most n characters from the zero-terminated string at
which X1 (src) points to the end of the string at which X0 (dest) points,
plus a zero-terminating byte. Returns a pointer to the dest string in X0.
If the length of src is less than n, this string copies only the first n char-
acters from src to dest (plus a zero-terminating byte).

char *strpbrk(const char *str1, const char *str2);

Finds the first character in the string str1 (passed in X0) that matches
any character specified in str2 (passed in X1). Returns a pointer to the
matching character in str1 in the X0 register (or NULL if no match).

char *strrchr(const char *str, int c);

Searches for the last occurrence of the character c (a char passed
in X1) in the string pointed to by the argument str (passed in X0).
Returns a pointer into str where the character was found in X0. If the
character was not found in str, this function returns NULL (0) in X0.

char *strstr(const char *inStr, const char *search4);

Searches for the first occurrence of the string search4 (passed in X1)
within inStr (passed in X0). It returns a pointer to the matching

Useful C Language Functions 973

position in the X0 register, returning NULL (0) if the search4 string is
not present within inStr.

char *strtok(char *str, char *delim);

Breaks string str (passed in X0) into a series of tokens (words) separated
by characters found in the delim (passed in X1) string. On a first call,
the function expects a C string as an argument for str, whose first char-
acter is used as the starting location to scan for tokens. In subsequent
calls, the function expects a NULL (0) pointer and uses the position
right after the end of the last token as the new starting location for
scanning (skipping any leading delimiter characters). Each call returns
a pointer (in X0) to the next token within the string. This function
returns NULL when it exhausts all the tokens in the string.

This function modifies the contents of the string at which str
(X0) points. If your program cannot tolerate this, make a copy of str
before calling strtok(). The strtok() function maintains internal
state in a static variable and therefore is not safe to use in multi-
threaded applications.

int memcmp(void *mem1, void *mem2, size_t n);

Compares the first n bytes of mem1 and mem2 (mem1 is passed in X0, mem2 is
passed in X1, and n is passed in X2). Similar in operation to strcmp(),
except that this function doesn’t end the comparison upon encounter-
ing a 0 byte; strcmp(), on the other hand, returns a negative value, 0, or
a positive value to indicate the comparison status.

int strcasecmp(const char *str1, const char *str2);

Compares the string at which str1 (X0) points against the string at
which str2 (X1) points using a case-insensitive comparison. Returns
(in X0) a negative number if str1 < str2, 0 if str1 == str2, or a positive
number if str1 > str2. Though strcasecmp() is not defined in the C stdlib,
many systems include it in their libraries; some use the function name
strcmpi() or stricmp() instead.

int strcmp(const char *str1, const char *str2);

Compares the string at which str1 (X0) points against the string at which
str2 (X1) points and returns (in X0) a negative number if str1 < str2,
0 if str1 == str2, or a positive number if str1 > str2.

int strncmp(char *str1, char *str2, size_t n);

Compares two strings up to the first n characters, or until encounter-
ing the first zero-terminating byte (in either string). Pointer to str1
is passed in X0, pointer to str2 is passed in X1, and n is passed in X2.
Returns 0 if the strings were equal (through n characters, or less if both
strings are equal and their length is less than n). Returns a negative
value if str1 is less than str2. Returns a positive value if str1 is greater
than str2. You can use this function to see if str1 is a prefix of str2 by
setting n equal to the length of str1.

974 Appendix E

size_t strcspn(const char *str1, const char *str2);

Calculates the length of the initial segment of str1 (passed in X0),
which consists entirely of characters not in str2 (passed in X1). Returns
this count in X0.

size_t strlen(char *str);

Computes the length of a zero-terminated string. X0 contains a pointer
to the string upon entry, and this function returns the string length in
X0 (not including the zero-terminating byte).

size_t strspn(const char *str1, const char *str2);

Calculates the length of the initial segment of str1 (passed in X0),
which consists entirely of characters in str2 (passed in X1). Returns the
count in X0.

strlwr(str);

Converts all the characters in a string to lowercase. On entry, X0 con-
tains a pointer to the string to convert; on return, X0 points at this
same string with the uppercase characters converted to lowercase.
Though strlwr() is not defined in the C stdlib, many systems include it
in their libraries.

strncpy(char *dest, const char *src, size_t n);

Copies, at most, n (passed in X2) characters from src (passed in X1)
to dest (passed in X0). If n is less than or equal to the length of src,
this function will not copy the zero-terminating byte, and the caller is
responsible for adding this extra byte. This function has two primary
uses. First, it prevents overwriting data beyond the end of dest (when n
contains the size of the dest buffer, plus 1, at which X0 points). Second,
it serves as a substring function, allowing you to extract n characters
from a particular position within a string.

strupr(str);

Converts all lowercase characters in a string to uppercase. On entry,
X0 contains a pointer to the string to convert; on return, X0 points at
this same string with the lowercase characters converted to uppercase.
Though strupr() is not defined in the C stdlib, many systems include it
in their libraries.

void *memchr(void *mem, int c, size_t n);

Searches for the first occurrence of the character c (an unsigned char
passed in X1) in the first n (passed in X2) bytes of the memory block at
which the argument mem (passed in X0) points. Very similar to strchr(),
except this function will not stop scanning when it finds a 0 byte in
str. Returns, in X0, a pointer into mem where it found the character, or
NULL (0) if character c does not exist in mem.

Useful C Language Functions 975

void *memcpy(void *dest, const void *src, size_t n);

Copies n bytes from src to dest (passed in X2, X1, and X0, respectively).
Returns a pointer to dest in X0. If the memory block defined by dest
overlaps the memory block defined by src, the results are undefined.

void *memmove(void *dest, const void *src, size_t n);

Copies n bytes from src to dest (passed in X2, X1, and X0, respectively).
Returns a pointer to dest in X0.

The memmove() function correctly handles situations in which the
source and destination blocks overlap. However, this function may run
a little bit slower than memcpy(), so you should use it only when you can-
not guarantee that the blocks do not overlap.

void *memset(void *mem, int c, size_t n);

Copies the LO byte of c (passed in X1) to the first n (passed in X2)
bytes of the memory block at which the argument mem (passed in X0)
points. Returns a pointer to the memory block in X0.

	 E.2	 Other C Stdlib and Unix Functions
The string functions covered in this appendix are but a small sampling of the
many functions available in the C stdlib. Other useful functions include the
POSIX file I/O functions (declared in the fcntl.h and unistd.h header files),
the math libraries (found in math.h), and many others. For more informa-
tion on these header files, see the following:

fcntl.h

https://pubs​.opengroup​.org​/onlinepubs​/000095399​/basedefs​/fcntl​.h​.html

math.h

https://pubs​.opengroup​.org​/onlinepubs​/9699919799​/basedefs​/math​.h​.html

unistd.h

https://pubs​.opengroup​.org​/onlinepubs​/007908775​/xsh​/unistd​.h​.html

You can easily call each of these functions by specifying its name (don’t
forget to prepend an underscore when calling functions in macOS). You
always pass parameters and retrieve function results by using the ARM ABI
for Linux and the macOS ABI under macOS (remember that macOS differs
when passing variable argument lists to a function, such as printf()).

https://pubs.opengroup.org/onlinepubs/000095399/basedefs/fcntl.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html
https://pubs.opengroup.org/onlinepubs/007908775/xsh/unistd.h.html

	 F.1	 Chapter 1
	 1.	as

	 2.	address, data, and control

	 3.	The PSTATE register

	 4.	(a) 4, (b) 8, (c) 16, (d) 8

	 5.	64 bits

	 6.	bl

	 7.	ret

	 8.	Application binary interface

	 9.	(a) LO byte of W0, (b) LO hword of W0, (c) W0, (d) X0, (e) X0

	10.	X0, X1, X2, and X3 registers (respectively)

	 F.2	 Chapter 2
	 1.	9 × 103 + 3 × 102 + 8 × 101 + 4 × 100 + 5 × 10 –1 + 7 × 10–2 + 6 × 10–3

	 2.	(a) 10, (b) 12, (c) 7, (d) 9, (e) 3, (f) 15

F
A N S W E R S T O Q U E S T I O N S

978 Appendix F

	 3.	(a) A, (b) E, (c) B, (d) D, (e) 2, (f) C, (g) CF, (h) 98D1

	 4.	(a) 0001_0010_1010_1111

	(b)	 1001_1011_1110_0111

	(c)	 0100_1010

	(d)	 0001_0011_0111_1111

	(e)	 1111_0000_0000_1101

	(f)	 1011_1110_1010_1101

	(g)	 0100_1001_0011_1000

	 5.	(a) 10, (b) 11, (c) 15, (d) 13, (e) 14, (f) 12

	 6.	(a) 32, (b) 128, (c) 16, (d) 64, (e) 4, (f) 8, (g) 4

	 7.	(a) 4, (b) 8, (c) 16, (d) 2

	 8.	(a) 16, (b) 256, (c) 65,536, (d) 2

	 9.	4

	10.	0 through 7

	11.	Bit 0

	12.	Bit 63

	13.	(a) 0, (b) 0, (c) 0, (d) 1

	14.	(a) 0, (b) 1, (c) 1, (d) 1

	15.	(a) 0, (b) 1, (c) 1, (d), 0

	16.	XORing with 1 (bitwise, all 1 bits in a register)

	17.	AND

	18.	OR

	19.	NOT (XOR with all 1 bits too)

	20.	XOR

	21.	not (eor with all 1 bits too)

	22.	1111_1011

	23.	0000_0010

	24.	(a) 1111_1111b, (c) 1000_0000b, (e) 1000_0001b

	25.	The neg instruction

	26.	(a) 1111_1111_1111_1111

	(c)	 000_0000_0000_0001

	(d)	 1111_1111_1111_0000

	27.	b (b.al)

	28.	label:

	29.	Negative/sign (N), zero (Z), carry (C), and overflow (V)

	30.	Z = 1

	31.	C = 0 and Z = 0

	32.	bhi, bhs, bls, blo, beq, and bne conditional jump instructions

Answers to Questions 979

	33.	bgt, bge, blt, ble, beq, and bne conditional jump instructions

	34.	The lsl instruction does not affect the zero flag.

	35.	A multiplication by 2

	36.	A division by 2

	37.	Multiplication and division

	38.	A normalized floating-point value has a 1 bit in the HO mantissa
position.

	39.	7 bits

	40.	0x30 through 0x39

	41.	The apostrophe (or single quotation mark) character

	 F.3	 Chapter 3
	 1.	The PC 64-bit register

	 2.	Operation code, the numeric encoding for a machine instruction

	 3.	Static/scalar variables and memory-based constants

	 4.	About ±1 MB, with the ldr and str instructions

	 5.	The address of the memory location to access

	 6.	(b) X0 and (d) SP

	 7.	The lea macro (or adr and adrp instructions)

	 8.	The final address obtained after all addressing mode calculations
are completed

	 9.	Use the .align 3 directive to align a variable in the .data section to an
8-byte boundary.

	10.	Memory management unit

	11.	An arithmetic expression that computes the (static) runtime address of
a memory object

	12.	A big-endian value stores high-order portions of the value in lower
memory addresses, while a little-endian value stores the low-order por-
tions of the value in lower memory addresses.

	13.	The rev32 instruction

	14.	The rev16 instruction

	15.	The rev instruction

	16.	Subtract 16 from SP, then store the value in X0 at the memory address
pointed at by SP.

	17.	Load X0 from the address pointed at by SP, then add 16 to the SP
register.

	18.	Reverse

	19.	Last-in, first-out

980 Appendix F

	 F.4	 Chapter 4
	 1.	A symbolic name for a constant that the assembler (or preproces-

sor) will replace with the numeric equivalent of that constant during
assembly

	 2.	Use the .equ, .set, and = directives. You can also use the C preprocessor
(CPP) #define directive if your source file’s name ends with .S.

	 3.	A constant expression is an arithmetic expression that Gas can compute
during assembly. You determine the number of data elements in the
operand field of a byte directive by counting the expressions separated
by commas.

	 4.	The current offset into a section (such as .data or .text)

	 5.	The period operator (.)

	 6.	Subtract the label of the second declaration from the label of the first
(for example, second - first).

	 7.	A 64-bit memory variable containing the address of another memory
object; you would use a .dword directive to allocate storage for a pointer
(or other mechanism to reserve 64 bits).

	 8.	Load that pointer into a 64-bit register and use the register-indirect
addressing mode to access memory.

	 9.	Use the .dword directive.

	10.	Using an uninitialized pointer; using a pointer that contains an
illegal value; continuing to use allocated data after it has been freed
(a dangling pointer); failing to free memory after you are done using it
(a memory leak); accessing indirect data by using the wrong data type

	11.	A pointer to allocated memory that has already been freed

	12.	A memory leak occurs when a program allocates memory (using
malloc()) but fails to free that storage when it is done using it.

	13.	An object composed of (made up from) a collection of other data types

	14.	A sequence of characters delimited by a zero value (typically a byte)

	15.	A sequence of characters beginning with a length value (typically a
byte, but it could also be a half word, word, or other type)

	16.	A structure that describes a string object, typically containing length
information and a pointer to the string

	17.	A sequence of objects (all the same type) appearing in consecutive
memory locations

	18.	The address of the first element, typically at the lowest address of the
array in memory

	19.	Here is a typical array declaration using Gas:

anArray .space 256, 0 // 256 bytes, all initialize to 0

	20.	You will typically use a directive such as .word with a list of the initial
element values; here’s an example:

Answers to Questions 981

initializedArray: .word 1, 2, 3, 4, 5, 6, 7, 8

		 You could also use the .space directive if you have an array of bytes and
every byte is initialized with the same value.

	21.	(a) Multiply the index by 8 and add the base address of A to this prod-
uct; (b) To access W[i, j], use address = base(W) + (i * 8 + j) * 4; (c) To
access R[i, j, k], use address = base(R) + ((i * 4) + j) * 6 + k) * 4.

	22.	A mechanism for storing arrays in memory, where elements from each
row appear in consecutive memory locations and the rows appear in
consecutive blocks of memory

	23.	A mechanism for storing arrays in memory, where elements from each
column appear in consecutive memory locations and the columns
appear in consecutive blocks of memory

	24.	A typical two-dimensional array declaration for word array W[4,8] would
take this form: W: .space 4 * 8 * 4, 0.

	25.	A composite data type whose elements (fields) need not all be the
same type

	26.	Use statements like the following:

struct student
 byte sName, 65 // Includes zero-terminating byte
 hword Major
 byte SSN, 12 // Includes zero-terminating byte
 hword Midterm1
 hword Midterm2
 hword Final
 hword Homework
 hword Projects
ends student

	27.	Add the offset of a particular field to the base address of the structure.

	28.	A type of structure in which all fields occupy the same memory locations

	29.	For structs, each field is allocated a unique block of memory (according
to its size), whereas for a union, all fields are allocated the same mem-
ory locations.

	 F.5	 Chapter 5
	 1.	The bl instruction copies the address of the next instruction into LR,

then transfers control to the target address specified by the operand.

	 2.	The ret instruction copies the value from the LR into the program
counter.

	 3.	The biggest problem with caller preservation is that it is hard to main-
tain. It also generates bigger object code files.

982 Appendix F

	 4.	It saves registers, taking valuable CPU cycles, even if the caller doesn’t
require those registers to be saved.

	 5.	Storage space in the stack, where a procedure maintains parameters,
return addresses, saved register values, local variables, and possibly
other data

	 6.	The FP register (X29)

	 7.	The standard entry sequence is as follows:

stp fp, lr, [sp, #-16]! // Save LR and FP values.
mov fp, sp // Get activation record ptr in FP.
sub sp, sp, #NumVars // Allocate local storage.

	 8.	The standard exit sequence is shown here:

mov sp, fp // Deallocate storage for all the local vars.
ldp fp, lr, [sp], #16 // Pop FP and return address.
ret // Return to caller.

	 9.	A variable that a procedure automatically allocates and deallocates stor-
age for in an activation record

	10.	Upon entry into a procedure

	11.	The parameter’s value

	12.	The parameter’s address

	13.	X0, X1, X2, and X3

	14.	All parameters beyond the eighth parameter get passed on the stack.

	15.	Volatile registers can be used by an ARM procedure without preserv-
ing their values; nonvolatile registers’ values must be preserved across
a procedure call.

	16.	Registers X0, X1, . . . , X15

	17.	Registers X16 through X31 (SP)

	18.	A procedure accesses parameters passed in the code stream via the
address passed in the LR register.

	19.	Large parameters (such as arrays and records) should be passed by
reference, since the procedure is faster and shorter when using refer-
ence arguments.

	20.	The X0 register (X8 can contain a pointer to a large function return
result)

	21.	The address of a procedure to call, passed as an argument to a proce-
dure or function

	22.	Call procedural parameters (as well as any procedure via a pointer) by
using the br instruction.

	23.	Set aside local storage for the registers and preserve those values in the
local storage.

Answers to Questions 983

	 F.6	 Chapter 6
	 1.	The cmp instruction sets the zero flag if the two operands are equal.

	 2.	The cmp instruction sets the carry flag if one unsigned operand (left) is
greater than or equal to the other unsigned operand (right).

	 3.	The cmp instruction sets negative and overflow flags to opposite values if
the left signed operand is less than the signed right operand; they are
set to the same value if the left signed operand is greater than or equal
to the right signed operand.

	 4.	x = x + y:

ldr w0, [fp, #x]
ldr w1, [fp, #y]
add w0, w0, w1
str w0, [fp, #x]

		 x = y - z:

ldr w0, [fp, #y]
ldr w1, [fp, #z]
sub w0, w0, w1
str w0, [fp, #x]

		 x = y * z:

ldr w0, [fp, #y]
ldr w1, [fp, #z]
mul w0, w0, w1
str w0, [fp, #x]

		 x = y + z * t:

ldr w0, [fp, #y]
ldr w1, [fp, #z]
ldr w2, [fp, #t]
mul w1, w1, w2
sub w0, w0, w1
str w0, [fp, #x]

		 x = (y + z) * t:

ldr w0, [fp, #y]
ldr w1, [fp, #z]
add w0, w0, w1
ldr w1, [fp, #t]
mul w0, w0, w1
str w0, [fp, #x]

984 Appendix F

		 x = -((x * y) / z):

ldr w0, [fp, #x]
ldr w1, [fp, #y]
mul w0, w0, w1
ldr w1, [fp, #z]
sdiv w0, w0, w1
neg w0, w0
str w0, fp, #x]

		 x = (y == z) && (t != 0):

ldr w0, [fp, #y]
ldr w1, [fp, #z]
cmp w0, w1
cset w0, eq
ldr w1, [fp, #t]
cmp w1, #0
cset w1, ne
and w0, w0, w1
str w0, [fp, #w]

	 5.	x = x * 2:

ldr w0, [fp, #x]
lsl w0, w0, #1
str w0, [fp, #x]

		 x = y * 5:

ldr w0, [fp, #y]
lsl w1, w0, #2
add w0, w0, w1
str w0, [fp, #x]

		 x = y * 8:

ldr w0, [fp, #y]
lsl w0, w0, #3
str w0, [fp, #x]

	 6.	x = x / 2:

ldr x0, [fp, #x]
lsr x0, #1
str x0, [fp, #x]

		 x = y / 8:

ldr x0, [fp, #y]
lsr x0, #3
str x0, [fp, #x]

Answers to Questions 985

		 x = z / 10:

ldr x0, [fp, #z]
ldr x1, =6554 // 65,536/10
mul x0, x0, x1
lsr x0, x0, #16 // Divide by 65,535.
str x0, [fp, #x]

	 7.	x = x + y:

ldr d0, [fp, #x]
ldr d1, [fp, #y]
fadd d0, d0, d1
str d0, [fp, #x]

		 x = y - z:

ldr d0, [fp, #y]
ldr d1, [fp, #z]
fsub d0, d0, d1
str d0, [fp, #x]

		 x = y * z:

ldr d0, [fp, #y]
ldr d1, [fp, #z]
fmul d0, d0, d1
str d0, [fp, #x]

		 x = y + z * t:

ldr d0, [fp, #y]
ldr d1, [fp, #z]
ldr d2, [fp, #t]
fmul d1, d1, d2
fadd d0, d0, d1
str d0, [fp, #x]

		 x = (y + z) * t:

ldr d0, [fp, #y]
ldr d1, [fp, #z]
fadd d0, d0, d1
ldr d1, [fp, #t]
fmul d0, d0, d1
str d0, [fp, #x]

		 x = -((x * y) / z):

ldr d0, [fp, #x]
ldr. d1, [fp, #y]
fmul d0, d0, d1

986 Appendix F

ldr d1, [fp, #z]
div d0, d0, d1
fneg d0, d0
str d0, [fp, #x]

	 8.	bb = x < y:

ldr d0, [fp, #x]
ldr d1, [fp, #y]
fcmp d0, d1
cset x0, lo // Less than, ordered
strb w0, [fp, #bb]

		 bb = x >= y && x < z:

ldr d0, [fp, #x]
ldr d1, [fp, #y]
fcmp d0, d1
cset x0, ge // Greater than or equal, ordered (HS is unordered)
ldr d1, [fp, #z]
fcmp d0, d1
cset x1, lo // Less than, ordered (LT is unordered)
and x0, x1
strb w0, [fp, #bb]

	 F.7	 Chapter 7
	 1.	Use the lea macro to obtain the address of a symbol in the program.

	 2.	br reg64
	 3.	A piece of code that keeps track of its execution history by entering and

leaving certain states

	 4.	A mechanism for extending the range of a branch instruction

	 5.	Short-circuit Boolean evaluation might not execute code for all the
conditions in an expression if it determines the result to be true or false
without executing any additional code. Complete Boolean evaluation
evaluates the entire expression, even if the result is known after a par-
tial evaluation of the expression.

	 6.
a.

ldr w0, [fp, #x]
ldr w1, [fp, #y]
cmp w0, w1
cset w0, eq
ldr w1, [fp, #z]
ldr w2, [fp, #y]
cmp w0, w1
cset w1, hi

Answers to Questions 987

orrs w0, w1
beq skip

 Do something.

skip:

b.

ldr w0, [fp, #x]
ldr w1, [fp, #y]
cmp w0, w1
cset w0, ne
ldr w1, [fp, #z]
ldr w2, [fp, #t]
cmp w1, w2
cset w1, lo
ands w0, w1
beq doElse

 then statements
b.al ifDone

doElse:
 else statements
ifDone:

7.
a.

ldrsh w0, [fp, #x]
ldrsh w1, [fp, #y]
cmp w0, w1
bne skip
ldrsh w1, [fp, #z]
ldrsh w2, [fp, #t]
bge skip

 Do something.

skip:

b.

ldrsh w0, [fp, #x]
ldrsh w1, [fp, #y]
cmp w0, w1
beq doElse
ldrsh w1, [fp, #z]
ldrsh w2, [fp, #t]
cmp w1, w2
bge doElse

988 Appendix F

 then statements
b.al ifDone

doElse:
 else statements
ifDone:

	 8.	The following switch statements (assume all variables are unsigned
32-bit integers) become the assembly language code:
a.

ldr x0, [fp, #t]
cmp x0, #3
bhi default
adr x1, jmpTbl
ldr x0, [x1, x0, lsl #3]
add x0, x0, x1
br x0

jmpTbl: .dword case0-jmpTbl, case1-jmpTbl, case2-jmpTbl, case3-jmpTbl

b.

ldr x0, [fp, #t]
cmp x0, #2
blo default
cmp x0, #6
bhi default
adr x1, jmpTbl
ldr x0, [x1, x0, lsl #3]
add x0, x0, x1
br x0

jmpTbl: .dword case2-jmpTbl, default-jmpTbl, case4-jmpTbl
 .dword case5-jmpTbl, case6-jmpTbl

	 9.	The following while loops get converted to the corresponding assembly
code (assuming all variables are signed 32-bit integers):
a.

whlLp:
 ldr x0, [fp, #i]
 ldr x1, [fp, #j]
 cmp x0, x1
 bgt endWhl

 Code for loop body

 b.al whlLp
endWhl:

Answers to Questions 989

b.

do...while:

rptLp:
 Code for loop body

 ldr x0, [fp, #i]
 ldr x1, [fp, #j]
 cmp x0, x1
 bne rptLp

c.

 str wzr [fp, #i]
forLp:
 ldr x0, [fp, #i]
 cmp x0, #10
 bge forDone

 Code for loop body

 ldr x0, [fp, #i]
 add x0, x0, #1
 str x0, [fp, #i]
 b.al forLp
forDone:

	 F.8	 Chapter 8
1.

a.

 ldp x0, x1, [fp, #y]
 ldp x2, x3, [fp, #z]
 adds x0, x0, x2
 adc x1, x1, x3
 stp x0, x1, [fp, #x]

b.

 ldr x0, [fp, #y]
 ldr w1, [fp, #y+8]
 ldr x2, [fp, #z]
 adds x0, x0, x2
 adc w1, w1, wzr
 str x0, [fp, #x]
 str w1, [fp, #x+8]

990 Appendix F

c.

 ldr w0, [fp, #y]
 ldrh w1, [fp, #y+4]
 ldr w2, [fp, #z]
 ldrh w3, [fp, #z+4]
 adds w0, w0, w2
 adc w1, w1, w3
 str w0, [fp, #x]
 strh w1, [fp, #x+4]

2.
a.

 ldp x0, x1, [fp, #y]
 ldr x2, [fp, #y+16]
 ldp x3, x4, [fp, #z]
 ldr x5, [fp, #z+16]
 subs x0, x0, x3
 sbc x1, x1, x4
 sbc x2, x2, x5
 stp x0, x1, [fp, #x]
 str x2, [fp, #x+16]

b.

 ldr x0, [fp, #y]
 ldr w1, [fp, #y+8]
 ldp x2, [fp, #z]
 ldr w3, [fp, #z+8]
 subs x0, x0, x2
 sbc w1, w1, w3
 str x0, [fp, #x]
 str w1, [fp, #x+8]

3.

 ldr x0, [fp, #y]
 ldr x1, [fp, #y + 8]
 ldr x2, [fp, #z]
 ldr x3, [fp, #z + 8]
// X5:X4 = X0 * X2

 mul x4, x0, x2
 umulh x5, x0, x2

// X6:X7 = X1 * X2, then X5 = X5 + X7 (and save carry for later):

 mul x7, x1, x2
 umulh x6, x1, x2
 adds x5, x5, x7

// X7 = X0 * X3, then X5 = X5 + X7 + C (from earlier):

Answers to Questions 991

 mul x7, x0, x3
 adcs x5, x5, x7
 umulh x7, x0, x3
 adcs x6, x6, x7 // Add in carry from adcs earlier.

// X7:X2 = X3 * X1

 mul x2, x3, x1
 umulh x7, x3, x1

 adc x7, x7, xzr // Add in C from previous adcs.
 adds x6, x6, x2 // X6 = X6 + X2
 adc x7, x7, xzr // Add in carry from adds.

// X7:X6:X5:X4 contains 256-bit result at this point, ignore overflow:

 stp x4, x5, [fp, #x] // Save result to location.

	 4.	The conversions are as follows:
a.

 ldp x0, x1, [fp, #x]
 ldp x2, x3, [fp, #y]
 cmp x0, x2
 bne isFalse
 cmp x1, x3
 bne isFalse

 Code

isFalse:

b.

 ldp x0, x1, [fp, #x]
 ldp x2, x3, [fp, #y]
 cmp x1, x3
 bhi isFalse
 blo isTrue
 cmp x1, x3
 bhs isFalse

isTrue:
 Code

isFalse:

c.

 ldp x0, x1, [fp, #x]
 ldp x2, x3, [fp, #y]
 cmp x1, x3

992 Appendix F

 blo isFalse
 bhi isTrue
 cmp x1, x3
 bls isFalse

isTrue:
 Code

isFalse:

d.

 ldp x0, x1, [fp, #x]
 ldp x2, x3, [fp, #y]
 cmp x1, x3
 bne isTrue
 cmp x1, x3
 beq isFalse

isTrue:
 Code

isFalse:

	 5.	The conversions are as follows:
a.

 ldp x0, x1, [fp, #x]
 subs x0, xzr, x0
 sbc x1, xzr, x1
 stp x0, x1, [fp, #x]

b.

 ldp x0, x1, [fp, #y]
 subs x0, xzr, x0
 sbc x1, xzr, x1
 stp x0, x1, [fp, #x]

	 6.	The conversions are as follows:
a.

 ldp x0, x1, [fp, #y]
 ldp x2, x3, [fp, #z]
 and x0, x0, x2
 and x1, x1, x3
 stp x0, x1, [fp, #x]

b.

 ldp x0, x1, [fp, #y]
 ldp x2, x3, [fp, #z]

Answers to Questions 993

 orr x0, x0, x2
 orr x1, x1, x3
 stp x0, x1, [fp, #x]

c.

 ldp x0, x1, [fp, #y]
 ldp x2, x3, [fp, #z]
 eor x0, x0, x2
 eor x1, x1, x3
 stp x0, x1, [fp, #x]

d.

 ldp x0, x1, [fp, #y]
 not x0, x0
 not x1, x1
 stp x0, x1, [fp, #x]

e.

 ldp x0, x1, [fp, #y] // The easy way
 adds x0, x0, x0
 adc x1, x1, x1
 stp x0, x1, [fp, #x]

f.

 ldp x0, x1, [fp, #y] // The easy way
 ror x2, x1, #1
 and x2, x2, #1 << 63
 lsr x0, x0, #1
 orr x0, x0, x2
 lsr x1, x1, #1
 stp x0, x1, [fp, #x]

7.

 ldp x0, x1, [fp, #y] // The easy way
 ror x2, x1, #1
 and x2, x2, #1 << 63
 lsr x0, x0, #1
 orr x0, x0, x2
 asr x1, x1, #1
 stp x0, x1, [fp, #x]

8.

 ldp x0, x1, [fp, #x] // The easy way
 adcs x0, x0, x0
 adcs x1, x1, x1
 stp x0, x1, [fp, #x]

994 Appendix F

	 F.9	 Chapter 9
	 1.	Four output digits

	 2.	Call qToStr twice, the first time passing in the HO dword, the second
time passing in the LO dword.

	 3.	Take the input value and see if it is negative. If so, emit a dash (-) char-
acter and negate the value. Whether the number is negative or nonneg-
ative, call the unsigned conversion function to do the rest of the work.

	 4.	The u64toSizeStr function expects a pointer to the destination buffer
in X0, the value to convert to a string in X1, and the minimum field
width in X3.

	 5.	The function will output however many characters are necessary to cor-
rectly represent the value.

	 6.	The r64ToStr function expects the floating-point value to convert in D0,
a pointer to the buffer in X0, the field width in X1, the number of digits
after the decimal point in X2, the padding character in the LO byte of
X3, and the maximum string length in X4.

	 7.	A string fWidth characters long, containing the # character if it cannot
properly format the output

	 8.	D0 contains the value to convert; X0 contains the address of the out-
put buffer; X1 contains the field width; X2 is the padding character;
X3 contains the number of exponent digits; X4 is the maximum string
width.

	 9.	A character used to begin, end, and separate input values

	10.	Overflow and illegal input characters

	 F.10	 Chapter 10
	 1.	The set of legal input values

	 2.	The set of possible output values

	 3.
a.

 // Assume "input" passed in X0.
 lea x1, f // Lookup table
 ldrb w0, [x1, x0] // Function result is left in W0.

b.

 // Assume "input" passed in X0.
 lea x1, f // Lookup table
 ldrh w0, [x1, x0, uxtw #1] // Function result is left in W0.

Answers to Questions 995

c.

// Assume "input" passed in X0.
 lea x1, f // Lookup table
 ldrb w0, [x1, x0] // Function result is left in W0.

d.

 // Assume "input" passed in X0.
 lea x1, f // Lookup table
 ldr w0, [x1, x0, uxtw #2] // Function result is left in W0.

	 4.	The process of adjusting the input value to a function so that the mini-
mum and maximum values are limited, in order to allow the use of
smaller tables

	 5.	Because memory access is so slow relative to computational performance

	 F.11	 Chapter 11
	 1.	A lane is an element of a byte, half-word, word, or dword array held

within a vector register. When operating on a pair of vector registers,
lanes are corresponding elements within the two vectors.

	 2.	A scalar instruction operates on a single piece of data, while a vector
instruction operates on multiple lanes (pieces of data) within a vector
register.

	 3.	The fmov Sd, Ws instruction

	 4.	The fmov Dd, Xs instruction

	 5.	The tbl or tbx instruction

	 6.	The mov Vd.t[index], Rs instruction (Rn = Xn or Wn)

	 7.	The shl Vd.2D, Vs.2D, #n instruction

	 8.	A vertical addition adds the corresponding lanes from two vector regis-
ters together, while a horizontal addition adds adjacent lanes in a single
vector register together.

	 9.	Use the movi v0.16B, #0 instruction.

	10.	Use the movi v0.16B, #0xff instruction.

	 F.12	 Chapter 12
	 1.	The and and bic instructions

	 2.	The bic instruction

	 3.	The orr instruction

	 4.	The eor instruction

	 5.	The tst instruction

996 Appendix F

	 6.	The bfxil (or bfm) instruction

	 7.	The bfi (or bfm) instruction

	 8.	The clz instruction

	 9.	You could reverse the bits in the register, invert all the bits, and then
use the clz instruction to find the first nonzero bit.

	10.	The cnt instruction

	 F.13	 Chapter 13
	 1.	Compile-time language

	 2.	During assembly (compilation)

	 3.	#warning

	 4.	.warning

	 5.	#error

	 6.	.error

	 7.	#define

	 8.	.equ, .set, and =

	 9.	#ifdef, #ifndef, #if, #elif, #else, and #endif

	10.	The main Gas conditional assembly directives are .if, .elseif, .else,
and .endif. The secondary assembly directives are .ifdef, .ifb, .ifc,
.ifeq, .ifeqs, .ifge, .ifgt, .ifile, .iflt, .ifnb, .ifnc, .ifndef/.ifnotdef,
.ifne, .ifnc, and .ifnes.

	11.	The CPP map macro

	12.	.rept, .irp, .irpc, and .endr

	13.	.irpc

	14.	#define

	15.	.macro and .endm

	16.	Specify the macro name at the place in the file where an instruction
mnemonic is expected.

	17.	Use functional notation. For example: mymacro(p1, p2).

	18.	Specify Gas macro parameters as operands in the instruction operand
field. For example: lea x0, label (x0 and label are the parameters to the
lea macro).

	19.	Put :req after the parameter in the macro declaration.

	20.	Specify the parameter name in the macro declaration without a suffix
(:req, :varargs, or =expression). By default, Gas macro parameters are
optional.

	21.	Use ... as the last (or only) argument in a #define macro definition.

	22.	Put :varargs after the last (or only) argument in a Gas macro definition.

	23.	Use the .ifb (if blank) conditional assembly directive.

	24.	.exitm

Answers to Questions 997

	 F.14	 Chapter 14
	 1.	A sequence of zero or more characters in memory ending with a byte

containing 0

	 2.	Because the program must often scan the entire string to determine
its length

	 3.	Because this string assembly language type (a) encodes the string’s
length as part of the data type, (b) aligns the string data on a 16-byte
boundary, and (c) guarantees that the storage for the string is a mul-
tiple of 16 bytes long. This allows algorithms to fetch additional data
beyond the end of the string, as long as all the data fits within a block
of 16 bytes aligned on a 16-byte boundary.

	 4.	Because the starting index argument can be any value

	 5.	Because they must deal with variable-length characters

	 F.15	 Chapter 15
	 1.	#ifndef or .ifndef

	 2.	The assembly of a source file plus any files it directly or indirectly
includes

	 3.	.global

	 4.	.extern. Technically, using this directive is optional, as Gas assumes all
undefined symbols are external.

	 5.

target: dependencies
 commands

	 6.	A makefile-dependent file is a file that must be built or updated in
order to properly build the current file (that is, the current file depends
on the makefile-dependent file in order to be built).

	 7.	Delete all executable and object-code files produced by a make operation.

	 8.	A collection of object modules that the linker can use to extract (only)
those object modules it needs

	 F.16	 Chapter 16
	 1.	The operating system typically uses svc to call an OS API function.

	 2.	#0

	 3.	#0x80

I N D E X

Numbers
.2byte directive, 17
8-bit excess-127 exponent, 94
.8byte directive, 17
13-bit immediate constants, 107
16-bit unsigned immediate

limitation, 107
16-bit values, 56
32-bit registers, 11
32-bit variables, 56–57
64-bit registers, 11
128-bit decimal output (conversion to

string), 510
128-bit operations

logical AND, 465
NOT, 467
shift-left, 467–468, 709–711
XOR, 465

128-bit value comparisons, 446–450
192-bit addition, 442
192-bit shift-left operation, 469
256-bit comparisons, 449
256-bit logical OR operation, 466
256-bit subtraction, 446

A
AARCH64, xxviii
ABI (application binary interface),

30–33
absolute difference instructions,

669–671
absolute value comparisons, 690–691
access, memory, 119, 135–137

page boundary, 128
violation, 181

accessing data
at the end of an MMU page, 128
pointer data, 174
pushed on the stack, 165–166

accessing elements of an array, 146
of a column-major array, 210
of a single-dimension array, 197

accumulated errors in a floating-point
calculation, 324–325

accuracy, 324
Acorn RISC Machine, xxvi
activation records, 244–247

construction at runtime, 244
addition

192-bit, 442–443
bytes and half-words, 473
different-sized operands,

472–475
extended-precision, 442
mixed-size, 473
pairwise, 664–666

addition instructions, 28, 442–443,
659–660

add across vector, 647, 667
add with carry, 443
add with narrowing, 663–664
horizontal add, 665, 667–668
Neon, 647, 659–660, 666–668
pairwise, 665
saturating, 667
vertical, 664

addresses, 11
alignment, 263
base, 146
expressions, 149

addressing modes, 140–149
indirect-plus-offset, 143
for Neon load and store

instructions, 633
post-indexed, 145
pre-indexed, 144–145
scaled-indexed, 146–149
scaled indirect, 143

1000 Index

address space location randomization
(ASLR), 23–25, 128

adr instruction, 25, 153
Advanced RISC Machine, xxvi
.a files, 883
aggregate data types, 186
aliases (aka instruction

mnemonics), 745
of registers, 22

alignment
an address to some boundary, 263
bit strings, 705
data, 138–140
stack, 155
variable, 19–21

choosing alignment in
memory, 140

alignment directives, 6, 19–21, 139,
263, 780

allocation
storage for strings, 803
variables in a data section, 138

and instruction, 61, 704–705
Neon, 648

AND operation, 58, 648
128-bit, 465
truth table, 58

aoaa​.inc
header file, 771
include file, 10, 26, 36

Apple Silicon, xxvii
application binary interface (ABI),

30–33
application programming interfaces

(APIs), 33
architecture, CPU, 11
args macro, 779
arguments. See macros
arithmetic

with different-sized operands,
472–475

expressions, 303–312
translating into assembly

language, 303
floating-point, 322
infinite-precision, 323
logical systems, 314
mixed-size, 472

operators
in CPP expressions,

745–746
precedence of, 308

real, 322
shift-right operation, 84

extended-precision, 472
SIMD operations, 659

ARM64, xxviii
armasm64 tool, xxix–xxx
ARM memory access, 119

application binary interface, 31
pointer, 174

ARM SVE (scalable vector
extensions), 667

ARMv8, xxviii
arrays, 194–212

access
elements of a column-major

array, 210
elements of a single-

dimension array, 195
four-dimensional, 207
stepping through elements of

an array, 144
three-dimensional, 207
two-dimensional row-

major, 206
of arrays, 207–208
bubble sort, 198–203
column-major ordering, 204,

209–210
declarations, 195
indexing into, 146, 195
mapping to memory, 203–212
multidimensional, 203
packed, 731
row-major ordering, 204–209
of structs, 218

ASCII character set, 55, 99–102
ASCII groups, 100
ASLR (address space location

randomization),
23–25, 128

asr instruction, 321
shift operator (Operand2), 109
for sign-extension, 473

assembly/C hybrid programs, 8

Index 1001

assembly language
instructions, 22
programming style, 228–230
source files

sections, 6
suffix, 4

standard entry sequence, 248
statement format, 229
string type, 802, 805

assembly time
computing string length at, 189
constants, 744

assignments, 304
associativity, 307–308
automatic variables, 250

B
backspace character, 100
.balign directive, 21, 139
b.al (branch always) instruction, 76, 357
base address, 146
bash shell, xxxi
bfm (bit field move) instruction,

726–728
bfxil (bit field extract and insert)

instruction, 727
big-endian data organization, 133
big-endian to little-endian conversion,

134, 646
binary-coded decimals (BCD), 54, 98–99
binary conversions

even/odd—divide-by-two, 47
to hexadecimal, 49–50

binary digits, 47
binary fractions, 94
binary logic, 46
binary numbering system, 45–48
binary point, 94
binary-to-hexadecimal string

functions, 483
b instruction, 75
bitonic sorting, 694
bits, 47, 53

arrays, 731
clearing, 61

bit fields, 727
vectors, 727
to zero, 59

coalescing, 729–731
data, 703
extraction, 704, 713, 715
fields, 85–93, 726–728
first and last clear, 704, 734
first and last set, 704, 734
forcing, 61
guard, 324
insertion

into bit arrays, 732
bit sets into another bit

string, 706
bit strings, 719–726
if true, 648
in vectors, 648

inversion, 61, 704, 709
manipulation, 648, 703–704
masking, 61, 704
most and least significant, 48
movement, 714
Neon, 648
numbering, 54
offset, 704
operations, 58–65
packed arrays of, 731
pattern search, 736
in PSTATE, 93
reversal, 712
runs, 704
scattering, 735
searching for, 734, 736
selecting, 648
sets, 704
setting, 59, 61, 704
sign, 65
starting position, 719
testing, 715

byte, 54
instructions, 691,

704–706, 710
bit strings, 704

alignment, 705
arrays, 731
coalescing, 729
distributing, 729
extraction, 726
insertion, 719–726
merging, 735

1002 Index

bit strings (continued)
packed arrays of, 731
packing and unpacking, 719
scattering bits from, 735
selectively inverting bits, 60
test for 1 bits, 717

bitwise operations, 60–61
bitwise select instructions, 648
BMP (Basic Multilingual Plane),

Unicode, 847
Bn registers, 623
Boolean constant representation, 313
Boolean evaluation, 319

short-circuit, 380–384
Boolean expressions, 313, 319
Boolean logical systems, 314
Boolean values, 53
branch and link instructions, 29–30,

230, 235, 284–285
indirect through register, 235

branch avoidance via computation, 388
branches, conditional, 77–78, 355

unsigned, 80
branch instructions, 74–82, 357

indirect, 358
opposite, 82
unconditional, 77

break statement in assembly language,
420–421

.bss section, 124–126
space in an executable file, 125

bubble sort, 198–203
build shell script, 37
bus error, 155, 286
byte-addressable memory, 14
.byte directive, 55
byte macro, 780
bytes, 53–55
byte variable declarations, 55

C
caches, 16
callee and caller register

preservation, 239
calling conventions, 258
call tree, 242
canonical equivalence, 849
carriage returns, 100

carry condition code, 14
carry (C) flag, 296, 719

settings after cmp, 296
case labels, 399
case statement, 389
-c (compile-only) command line

option, 38
C/C++ preprocessor, 742
C/C++ standard library, 5

calling functions, 33–36
function names in aoaa​.inc, 774
math, 347

cEL exception level, 14
central processing unit (CPU), 11
characters, 55, 99–103

combining, 852
acute accent characters, 849

constants, 101
data, 99
delimiter, 566
names, 848
strings, 187–194, 795

char data type, 102
C integer types, 441
clearing bits, 59, 61, 704

bit fields, 727
vectors, 648

clipping during saturation, 72
cmp instruction, 78, 295–297
cmtst instruction, 706
code indentation, 229
​.code macro, 229, 784
code movement, 387
code points, 102, 847
code sections, 121

in an assembly language program, 6
code size optimization, 482
code snippets, xxx
column-major ordering, 204, 209–210
command line interpreter, xxxi
command line defines, 758
common pointer problems, 180–186
commutative operators, 311
compare and branch instructions,

425, 715
comparisons

128-bit value, 447
256-bit, 449

Index 1003

absolute value, 690–691
dates, 92–93
extended-precision, 446–447, 449
floating-point, 336–343
ordered, 97
scalar, 688, 690
strings, 824, 829
unordered, 97, 336
vector, 687–693

integer, 688
compile-time language (CTL),

741–742
constants, 744
expressions, 745
loops, 763

complement method, 65
complex arithmetic expressions, 307
composite data types, 186–221
conditional assembly, 760
conditional branches, 77–78

signed and unsigned, 80
conditional compilation, 746

debugging and testing code
using, 748

conditional execution, 74
conditional instructions, 297–299, 711

branch, 77, 80
compare, 299, 314

and conjunction, 315–318
or disjunction, 318–319
encoding of Boolean

expressions, 314
equates to define useful bit

patterns, 786
flag settings after cmp,

295–296
increment, 298
inversion, 298
negation, 298
select/move, 298, 343
set, 299

conditional macros in CPP, 756
conditional statements, 372
condition codes, 14. See also flags

defines, 317–318
conditioning inputs, 614
conditions, 298, 318
constant expressions, 150

constant pool, 130
constants

declaration, 21
floating-point, 97, 334
large, 111–113
literal, 21, 49
manifest, 21, 170
newline, 170
read-only variables as, 170
symbolic, 170

constant values, 21
13-bit immediate, 107
64-bit immediate, 103
character literal, 101
floating-point, 97
hexadecimal literal, 49
manifest, 170
nl (newline), 170
symbolic, 170
using read-only data as

constants, 170
​.const directive, 122
continue statement, 422
control bus, 11
control characters, 100
control structures, 355
control transfer instructions, 74
conversions

128-bit decimal output to string,
510–516

ASCII digit to numeric value, 101
between upper- and lowercase, 100
binary

even/odd–divide-by-two, 47
to hexadecimal, 49–50

break statements into pure
assembly, 421

continue statements into pure
assembly language, 422

decimal
to binary, 47
extended-precision unsigned

to string, 510–516
formatted to string, 517–528
signed to string, 509
string to integer, 566–578
unsigned to string, 495–509

endian, 134, 646

1004 Index

conversions (continued)
fixed-point, 344, 684
floating-point, 683–686

to and from integer, 344,
683–684

to string, 529–565
forever statements into pure

assembly, 419
for statements into pure

assembly, 420
half-precision to single-

precision, 685
hexadecimal

to binary, 49
digit to a character, 478
to strings, 478–495
string to numeric, 578–587

if statements to pure assembly, 371
integer

to floating-point, 344, 683–684
to string, 509–510

non-commutative arithmetic
operators to assembly
language, 310

numeric value to ASCII digit, 101
recursive, 495
repeat...until statements into

pure assembly, 417
strings

to floating-point, 588–602
to integers, 566–587
to numeric, 566–602

coprocessors, 327
copying string data, 818
cos() function, 347
CPP (C/C++ preprocessor), 742

arithmetic expressions in, 745–746
compile-time constants, 744
conditional compilation, 746
debugging and testing code, 748
defined function, 746
defined symbol, checking, 746
#endif statement, 746
#error directive, 743
expressions

compile-time, 745
else, 746
if, 746–747

iteration, 757
macro arguments, 749

expansion, 750
separator, 750

macros, 749
composition, 752
conditional, 756
definition line limitation, 753
eval, 758
vs. Gas macros, 790
if_else, 756
iteration with, 757
recursive, 752
redefining, 759
undefining, 759
zero-argument macros, 749

processing __VA_ARGS__ argument
lists, 757

text concatenation, 754
#undef statement, 759
variable argument lists, 751
#warning directive, 743
warnings vs. errors, 744

C preprocessor, 8
CPU (central processing unit), 11
Creative Commons 4.0 license, xxxii
CTL (compile-time language), 742

D
dangling pointer, 182
data alignment, 138–140
data declaration directives, 16–17, 122

label field in, 18
data representation, 45, 169
data sections, 122

variable allocation, 138
data types, composite, 186–221
date comparison, 92–93
DBCS (double byte character set), 846
decimal conversions, 47, 495–509,

566–578
decimal numbering system, 46
decisions, 371
declarations

arrays, 195
byte variables, 55
character variable, 102
constants, 21

Index 1005

floating-point variables, 97–98
pointers, 174–175
variables in Gas, 16–18

decoding ARM instructions, 104
defined function in CPP, 746
definite loops, 419
deinterleaving data, 636, 642
delimiter characters, 566
denormalized values, 94, 96, 342
descriptors, string, 189–190
destructuring code, 386–388
different-sized operands in arithmetic,

472–475
digits, binary, 47
directives, 17–18

alignment, 6, 19–21, 139,
263, 780

.bss, 124–126
reducing executable file size

using, 125
.byte, 55
​.code, 229, 784
​.const, 122
.data, 16–17, 122
else, 761
end, 233, 761, 782–783
enter, 784
equate, 170–171
error, 743, 760
.exitm, 770
external, 864
.fill, 196
floating-point, 97–98
.global, 233, 864
if, 761
​.include, 862
indefinite repeat, 764
leave, 784
.pool, 130–131, 334
proc, 233
public, 233
.purgem, 771
.rept....endr, 763–764
.req, 22
.rodata, 122–124, 170
.section, 122–124, 126
.set, 21, 170
.space, 196

.struct, 217

.text, 121–122

.warning, 760
wastr, 263, 783

displacements, 132
displaying error and warning

messages, 743
distributing bit strings, 729
div128 algorithm, 511–516
division, 294, 457–465, 679–680

extended-precision, 457
integer, 294
simulating div, 321
unsigned, 294
vector, 679–680

DN (default NaN enable) bit in
FPCR, 330

Dn registers, 623
domain conditioning, 614
double-byte character sets (DBCS), 846
.double directive, 97
double loads and stores, 155
double macro, 782
double-precision floating-point

declarations, 17
double words (dwords), 53
dtoStr (double word to string)

function, 482
dup instruction, 631
duplicate include files/operations,

preventing, 863
.dword directive, 57
dyadic operations, 58
dynamic linking, 369
dynamic memory allocation, 178
dynamic range, 323
dynamic string allocation, 803
DZC (division by zero cumulative) flag

in FPSR, 331, 335

E
editor, 4
effective address (EA), 146, 153
effective memory address, 143
element access in an array, 146

column-major, 210
single-dimension, 195
stepping through, 144

1006 Index

else directives, 761
else statements, 746
end directives, 233, 761, 782–783
endian byte organization, 133–135
endian conversions, 134, 646
end macros, 782–783
enter macro, 784
entry sequence, standard, 248
eor instruction, 61, 709

exclusive–OR NOT, 709
Neon, 648

equates, 21
directives, 170–171
public, 784

error directives, 743, 760
errors

bus, 155, 286
messages during assembly, 743

even/odd–divide-by-two binary
conversion, 47

exclusive-OR (XOR) operation,
58–60

128-bit, 467
vectors, 648

executable file size, reducing using .bss
directive, 125

.exitm directive, 770
exploits, 129
exponents

biased, 95
excess-127, 94–95
excess-1,023, 95
floating-point, 95

expressions, 307
addresses, 149
arithmetic, 303, 307
Boolean, 312–319
CPP, 745–747
in an #if statement, 747
and temporary values, 311

extended multiplication, 672
extended-precision

arithmetic, 441
addition, 442
division, 457
multiplication, 450
subtraction, 445–446

comparisons, 446–450

conversions
string-to-numeric, 566, 578
unsigned decimal to string

conversion, 510–516
hexadecimal output, 494
I/O, 478

formatted I/O, 517
negation, 465
shift operations, 467

arithmetic shift-right, 472
logical shift-right, 472
shift-left, 467

extend operators, 110
Operand2 extension

operators, 474
external directives, 864
external symbols, 6, 865
extract instruction, 643, 713, 715
extraction

bits, 704, 713, 715
bit strings, 726–727, 735

F
false, representation of, 313
false precision, 325
fcvt instruction, 343–344
field, 213
file I/O (input/output) functions, 901,

907–915
files library, 901
.fill directive, 196
first clear bit, 704, 734
first set bit, 704, 734
fixed-point conversions, 344, 684
flags, 28. See also condition codes

carry (C), 296, 719
cmp instruction effect on, 295–296
in FPSR, 331–332, 335
negative (N), 295, 718
overflow (V), 296, 719
sign (N), 295, 718
zero (Z), 295, 716

floating-point
calculations, 322

accumulated errors in, 324
vector multiply, 671

comparisons, 336–343
absolute value, 690–691

Index 1007

Neon, 689–691
scalar, 690
vector, 689

condition code flags, 331–332, 335
constants, 97, 334
conversions, 683–686

double- to single-precision, 685
to and from integers, 344, 683
to and from string, 529–565,

588–602
data movement instructions, 332
declarations, 97–98

double-precision, 17
directives, 97–98
exponents, 95
formats, 93–96

single-precision, 17, 94–95
immediate instructions, 630
implied bit, 94
infinity representation, 97
normalized, 96
operands, immediate, 334
parameters, 346
registers, 346

control, 328, 330
status, 328

string output, 529
underflow, 326
values

implied bit in, 94
rounding, 686
subnormal, 342. See also

denormalized values
fmov instruction, 333

with immediate operands, 334
forcing a 0 result, 59
forcing bits to 0 or 1, 61
forever/endfor loops, 418
for loops, 419
formatted decimal to string

conversions, 517–528
four-dimensional array access, 207
FPU (floating-point unit), 327

data movement instructions, 332
frame pointer (FP) register, 13, 246
free() function, 120, 178, 182
functional macros, 749
function results, 32

functions. See procedures
FZ16 (flush to zero, half-precision) bit

in FPCR, 330

G
Gas, 3

literal constants, 49
macros, 765

vs. CPP macros, 790
variables, 16–18

Gas/GCC hybrid programs, 8
GCC, 7
general protection fault, 121
general-purpose registers, 11
generating errors and warnings during

assembly, 760
getErrno macro, 785
.global directive, 233, 864
global names, 6
global variables, 300
glyphs, 848
GNU assembler, 3
goto macro, 785
granularity (MMU page), 127
grapheme cluster, 848–849
guard digits or bits, 324

H
half-precision to single-precision

conversion, 685
half-word data type (hwords), 53,

55–56
variables, 56

hardware stack, 155
header files, 863

aoaa​.inc, 771
multiple inclusion prevention,

772, 863
heaps, 120

storage of strings, 803
“Hello, world!” program, 33, 40

stand-alone version, 899
hexadecimal

conversions
to binary, 49–50
digit to character, 478
to string, 478–495
string to numeric, 578–587

1008 Index

hexadecimal (continued)
literal constants, 49
numbering system, 45, 48–50, 54
output, extended-precision, 494

high-level language (HLL) control
structures, 355

Hn (16-bit halfword) registers, 623
HO (high-order) bit, 48, 65–66, 72,

495, 651
of the mantissa, 94, 96

HO byte, 56–57, 133
in a half word, 55–56, 112
in a word, 56–57

HO half word in a word, 57
HO nibble, 55–57, 98

in a byte, 55
in a half word, 56
in a word, 57

horizontal operations, 646
addition, 665, 667–668
minimum and maximum

values, 682
hword, 780
.hword directive, 17, 56
hybrid programs, 8

I
i64toStr function, 509–510
i64toStrSize, 522
identifiers, 6
idioms (aka machine idiosyncrasies), 319
IEEE-754

infinity representation, 97
not-a-number, 97
standard floating-point formats,

93–94
.if directives, 761
if statements, 371

in CPP, 746–747
if...else, 372

CPP macro, 756
rearranging expressions to improve

performance, 385
immediate constants

13-bit, 107
64-bit, 103
in vector compare, 688–689
and vector registers, 688–689

immediate floating-point operands, 334
implied bits, 94
improving loop performance, 428
include directives, 862

#include vs. .include, 10, 772
include files, 10

aoaa​.inc, 10, 26, 36, 771
nested, 862
preventing duplicate, 863

inclusive-OR operation, 59
increment conditionally, 298
indefinite repeat directives, 764

expanding vararg lists, 767
indentation, code, 229
indirect branch instructions, 235, 358
indirect jump tables, 391
indirect-plus-offset addressing mode, 143

scaled, 143–144
infinite loops, 415, 418

in assembly language, 419
infinite-precision arithmetic, 323
infinity representation, 97
input conditioning, 614
input/output (I/O) devices, 11
input/output program, 901
insertion

bit set into another bit string, 706
bits into bit arrays, 732
bits in vectors, 648
bit strings into other bit strings,

719–726
data into lanes of a vector

register, 626
instructions, 626

instructions. See also conditional
instructions

absolute difference, 669–671
adc, 443
adcs, 443
add, 28, 442

Neon, 660
addhn, 660
addhn2, 660
addp, 660
adds, 28, 443
addv, 647, 667
adr, 25, 153
adrp, 25, 153

Index 1009

and, 61, 704–705
Neon, 648

ands, 705
asr, 84–85, 321
assembly language, 22
b, 75
b.al, 76, 357
bcc, 77
bcs, 77
beq, 77, 80
bfm, 726, 728
bfxil, 727
bge, 80
bgt, 80
bhi, 80
bhs, 80
bic, 704

Neon, 648
bif, 648
bit, 648
bl, 29, 230, 235
ble, 80
blo, 80
blr, 29, 284
bls, 80
blt, 80
bmi, 77
bne, 77, 80
bnge, 82
bnge (macro), 787
bngt, 82
bngt (macro), 787
bnhi, 82
bnhi (macro), 787
bnhs, 82
bnhs (macro), 787
bnle, 82
bnle (macro), 787
bnlo, 82
bnlo (macro), 787
bnls, 82
bnls (macro), 787
bnlt, 82
bnlt (macro), 787
bpl, 77
br, 235, 358
branch, 74–82
bsl, 648

bvc, 77
bvs, 77
cbnz, 425, 715
cbz, 425, 715
ccmn, 299
ccmp, 299, 314
cmeq, 688
cmge, 688
cmgt, 688
cmhi, 688
cmhs, 688
cmn, 297
cmp, 295
cmtst, 706
conditional, 297–299, 711
csel, 298
cset, 298, 711
csetm, 298, 711
csinc, 298
csinv, 298
csneg, 298
data movement, floating-point, 332
decoding, 104
dup, 631
eon, 709
eor, 61, 709

Neon, 648
ext, 643
extr, 715
fabd, 670
facge, 691
facgt, 691
fadd, 660
faddp, 660
fcmeq, 689
fcmge, 689
fcmgt, 689
fcsel, 343
fcvt, 343
fcvtas, 683
fcvtau, 684
fcvtl, 685
fcvtl2, 685
fcvtms, 683
fcvtmu, 684
fcvtn, 685
fcvtns, 683
fcvtn2, 685

1010 Index

instructions (continued)
fcvtnu, 684
fcvtps, 683
fcvtpu, 684
fcvtxn, 685
fcvtxn2, 685
fcvtzs, 683
fcvtzu, 684
fmax, 681
fmaxnm, 681
fmaxnmp, 682
fmaxnmv, 683
fmaxp, 682
fmaxv, 683
fmin, 681
fminnm, 681
fminnmp, 682
fminnmv, 683
fminp, 682
fminv, 683
fmla, 673, 676–678
fmls, 673, 677–678
fmov, 333
fmul, 672, 676, 678
fmulx, 672, 677, 678
FPU data movement, 332
frecps, 679
frinta, 686
frinti, 686
frintm, 686
frintn, 686
frintp, 686
frintx, 686
frintz, 686
frsqrte, 687
frsqrts, 687
fsqrt, 687
fsub, 668
goto, 785
insert, 626
ld1 through ld4, 632–638
ldnp, 333
ldp, 155, 333
ldr, 23, 27, 73, 130
ldrb, 144, 474
ldrh, 144, 474
ldrsb, 474
ldrsh, 474

ldrsw, 474
ldur, 144, 332
lsl, 82, 320, 714
lsr, 83, 321, 714
mla, 671, 675
mlal2, 676
mls, 671, 676
mov, 27
movn, 113
movz, 112
mrs, 331, 716
msr, 331
mul, 211

Neon, 671, 675
mvn, 61, 62, 704
mvni, 630
not, 61, 62

Neon, 648
orn, 704

Neon, 648
orr, 61, 704

Neon, 648
raddhn, 660
raddhn2, 660
rbit, 712
ret, 29, 230, 235
rev, 135
rol, 470
ror, 85, 715
rsubhn, 669
rsubhn2, 669
sabal, 670
sabal2, 670
saba, 670
sabd, 669
sabdl, 670
saddalp, 660
saddl, 660
saddl2, 660
saddlp, 660, 666
saddw, 660
saddw2, 660
sdiv, 457
shadd, 660
shl, 649
shsub, 669
smaddl, 453
smax, 681

Index 1011

smaxp, 682
smaxv, 683
smin, 681
sminp, 682
sminv, 683
smlal, 672, 676
smlal2, 672
smls, 676
smlsl, 672
smlsl2, 672, 676
smnegl, 452
smsubl, 453
smul, 450
smulh, 453
smull, 452

Neon, 672
smull2, 672, 676
sqadd, 660
sqdmlal, 673
sqdmlal2, 673
sqdmlsl, 673
sqdmlsl2, 673
sqdmulh, 674–675
sqdmull, 673
sqdmull2, 673
sqrdmulh, 674
sqsub, 668
square root, 686–687
srhadd, 660
sri, 710
ssubl, 668
ssubl2, 668
ssubw, 668
ssubw2, 669
st1 through st4, 632–638
stnp, 333
store, 26, 144, 332–333, 632–638
stp, 156, 333
str, 23, 332
stur, 144, 332
sub, 28

Neon, 668
subhn, 669
subhn2, 669
subs, 28
svc, 892–894
sxtb, 474
sxth, 474

sxtw, 474
tbnz, 715
tbz, 715
trn1 and trn2, 639
tst, 704
uaba, 670
uabal, 670
uabd, 669
uabdl, 670
uaddalp, 660, 666
uabdl2, 670
uaddl, 660
uaddlp, 660, 665
uaddl2, 660
uaddw, 660
uaddw2, 660
ubfiz, 714
ubfm, 714
ubfx, 713
udiv, 457
uhadd, 660
uhsub, 669
umaddl, 453
umax, 681
umaxp, 682
umaxv, 683
umin, 681
uminp, 682
uminv, 683
umlal, 672, 676
umlal2, 672, 676
umlsl, 672
umlsl2, 672, 676
umnegl, 452
umsubl, 453
umul, 450
umulh, 453
umull, 452

Neon, 672
umull2, 672, 676
uqadd, 660
uqsub, 668
urhadd, 660
usubl, 668
usubl2, 668
usubw, 668
usubw2, 668
uxtb, 474

1012 Index

instructions (continued)
uxth, 474
uxtw, 474
uzp1 and uzp2, 642
xor, 704
zip1 and zip2, 641

integer
comparisons, 688
conversion

to floating-point, 344, 683–684
to string, 509–510

division, 294
types in C, 441

integral rounding, 686
interleave load/store instruction

addressing modes, 633
interleaving and deinterleaving

data, 635–636, 642
registers, 639

invert conditionally, 298
inverting bits, 61, 704

in a bit set, 709
in a bit string, 60

invoking a macro inside another
macro, 752

IOC (invalid operation cumulative) bit
in FPSR, 331

iSize function, 517
iteration with CPP macros, 757
itoStrSize function, 522
IXC (inexact cumulative) bit in

FPSR, 332

J
jumps, indirect, 358
jump tables

indirect, 391
with noncontiguous entries, 392
sparse, 399–402
with vector comparison, 692

K
KCS floating-point standard, 93

L
labels, statement, 356
lanes in vector registers, 625

rearranging, 641

large constants, 111–113
large parameter objects, 273
last clear bit, 704, 734
last-in, first-out (LIFO) data

structure, 161
last set bit, 734
Latin-1 character set, 849
ld (loader/linker) program, 7
lea macro, 142, 153, 356
least significant bit, 48, 54
leave macro, 784
left-associative operators, 308
left-shift operation, 82
length-prefixed strings, 188–189, 796
library files, 883

program size and, 886
lifetime of a variable, 250
line feed, 100
linking, dynamic, 369
link register (LR), 13, 29, 235
listings, xxx
literal constants, 21

hexadecimal, 49
little-endian data organization, 133
little-endian to big-endian conversion,

134, 646
load and store architecture, 23
load and store instructions, 23, 27, 73,

130, 332–334
double, 155–156
interleave addressing modes, 633
Neon, 632–638

loading floating-point constants into an
FPU register, 334

LO (low-order) bit, 48
of the mantissa, 338

LO byte, 56, 133
in a half word, 56
in a word, 57

local labels, 234–235
locals macro, 779
local variables, 250, 300
location counter, 18, 125, 131

. operator, 132, 171, 189
logic, binary, 46
logical operations, 58–60, 313

on bits, 58–65
Neon, 647

Index 1013

shift-left, 82
shift-right, 84

extended-precision, 472
vectors, 648

logical systems, 314
LO half word in a word, 57
LO nibble, 55, 101

in a byte, 55
in a half word, 56
in a word, 57

lookup tables, 644
creating, 615

loops, 415–434
control variables, 416, 426
definite, 419
infinite, 418
performance improvements, 428
register usage, 426
unraveling, 432, 763

M
machine code encoding, 103–110
machine idioms (aka idiosyncrasies), 319
machine state, saving, 237
macros, 741, 765–771. See also under CPP

arguments, 749
expansion, 750
separator, 750

creating inside other macros, 787
functional, 749
Gas, 765
invocations inside other macros, 752
opposite branch, 787
parameters, 765–766

expansion, 766
with string constants, 768

recursive, 752, 769
writing, 787

magic numbers, 170
makefiles, 37

syntax, 876
malloc() function, 120, 178

and memory alignment, 804
manifest constants, 21, 170
manipulating bits, 648

in memory, 703–704
in PSTATE, 93

mantissa, 94

mask bits, 704
masking, 61
math library in C stdlib, 351
matrix transposition, 639
maximum values, 681–683
memory, 11

access, 119, 135–137
page boundary, 128
unaligned, 16
violation, 181

addresses, 11, 19, 143
addressing modes, 120, 140–149
alignment, 804
allocation, 178, 803
byte addressable, 14
choosing variable alignment in

memory, 140
free() function, 178, 182
leaks, 183
malloc() function, 178
manipulating bits in, 703
mapping arrays to, 203–212
MMU pages, 24, 127

accessing data at the end
of, 128

boundaries, 128
faults when reading

memory, 797
granularity, 127

organization, 120–126
multi-byte data

organization, 133
performance, 481
pointer problems, 180–186
reading from memory on a 16-bit

CPU, 136–137
read operation, 15
stack, 120, 155

removing data from, 163–165
subsystem, 14–16
variables, 19, 299

declarations, 16–18
write operation, 15

memory-management unit, 24, 127
mergeBits function, 725–726
minimal procedure, 235
minimum values, 681–683. See also

maximum values

1014 Index

misaligned data and the system
cache, 140

mixed-size arithmetic, 472
addition, 473

MMU (memory-management unit)
pages, 24, 127

accessing data at the end of, 128
boundaries, 128
faults when reading memory, 797
granularity, 127

modules in source code, xxx
modulo, 294–295
monadic operators, 60
most significant bit, 48, 54
move, conditionally, 298
move instructions, 27, 62, 112–113,

331, 716
Neon, 626–630

moving bits, 714
moving data between registers,

625–626
multi-byte data organization in

memory, 133
multidimensional arrays, 203–212
multiple inclusion of header file,

prevention of, 772
multiple instructions on a single source

line, 230
multiple lines per statement, 230
multiplication instructions, 211, 450–457

extended, 672
floating-point, 672
multiply and accumulate, 671
multiply and subtract, 671
Neon, 671–678
of a register value by ten, 320
saturation, 673–675
signed, 450
unsigned, 211, 450
vector, 671–678
by a vector element, 678

multiway branch after vector
comparison, 692

N
NaN (not-a-number) values, 97,

330, 335
narrowing shift-right instructions, 655

N (negative/sign) condition code, 14
negation, 28, 465

conditionally, 298
extended-precision, 465
large values, 465

negative (N) flag, 295, 718
Neon instructions, 621

absolute difference, 669–671
addition, 659–660, 666–668
cmtst, 706
comparison

integer, 688
floating-point, 689–691
scalar, 688–689
signed, 689

conversion
between floating-point

formats, 685
floating-point to integer,

683–684
division, 679
dup, 631
ext, 643
insert, 626
load and store, 632–638
logical, 648
minimum and maximum,

681–683
move, 626–630
multiplication, 671–678
rounding floating-point to integral

values, 686
shift, 649, 710
square root, 687
subtraction, 668–669
transpose, 639
unzip, 642
zip, 641

Neon operations, 327
arithmetic, 659
logical, 647
shift, 649

nested include files, 862
nibble data type, 54
nl (newline) constant, 170
noncontiguous jump table entries, 392
nonvolatile registers, 31, 300, 346
normal forms, 849–850

Index 1015

not-a-number (NaN) values, 97, 330, 335
not instruction, 61–62

Neon, 648
NOT operations, 60, 648

128-bit, 467
NUL character, 189, 263
NULL pointer references, 121
numbering systems, 46–54

binary, 45–46
decimal, 46
hexadecimal, 45, 48–50, 54
positional, 46
radix, 48
two’s complement, 56, 65

numbers, signed and unsigned,
65–70

numeric conversion, 478–602
numeric representation, 50–53
NZCV register, 93

O
OFC (overflow cumulative) bit in

FPSR, 331
offsets, 132, 704
one’s complement format, 94
Operand2, 106–110, 474

allowable fields, 107
encoding, 106–110
extension operators, 110
shift operators, 109

operation code, 104
operations

arithmetic, 659
precedence, 308

bit, 58–65
on different-sized operands,

472–475
dyadic, 58
extension, 71
horizontal, 646
logical, 58–60, 313

AND, 58
OR, 59

NOT, 60, 648
push and pop, 155–158
reducing on a vector, 647
rotate, 85
saturation, 72

shifts, 82–84
sign contraction, 72
stack, 120
string, 795
two’s complement, 66
vertical, 646
write memory, 15
XOR, 59–60

operators
\@, 770
., 132, 171, 189
commutative, 311
extend, 110
left- and right-associative, 308
monadic, 60
precedence, 308
shift (Operand2), 109

opposite branch instructions, 82
macros, 787

opposite condition defines, 318
ordered comparisons, 97
OR operation, 59

256-bit, 466
vectors, 648

OS function call, 892
overflow condition code, 14
overflow (V) flag, 296, 719

P
.p2align directive, 263
packed data, 85–93
packing bit strings, 719
page boundary memory access, 128
pages, MMU, 24, 127

accessing data at the end of, 128
boundaries, 128
faults when reading memory, 797
granularity, 127

pairwise addition, 664–666
pairwise minimum and maximum

values, 681–682
parameters

expansion in macros, 766
of strings, 768

floating-point, 346
large objects as, 273
reference, 256
value, 255

1016 Index

parameters (continued)
variable-length, 263
variadic, 42

passing parameters, 32
by reference, 256

efficiency, 258
by value, 255

PC (program counter) register, 13
PC-relative addressing, 24
performance analyzers, 479
performance improvement

of loops, 428
rearranging expressions in if

statements, 385
permutation of data in vectors, 645
-pie (position-independent executable)

command line option, 38
pointers

accessing data, 174
in assembly language, 174–186
constants, 141, 175
dangling, 182
declarations, 175
invalid address value in, 181
problems, 180–186
to strings, 190
type checking, 183
uninitialized, 180
wild, 182

pointer variables, 178
pool directive, 130–131, 334
.pool section, 142
pop operations, 157–158
positional numbering systems, 46
position-independent code, 128–130
position-independent executables

(PIE), 23, 128
procedural, 284

post-indexed addressing mode, 145
precedence rules, 308

of arithmetic operators, 308
precision, false, 325
pre-indexed addressing mode,

144–145
preprocessors, 8, 742
preserving registers

callee and caller, 239
in loops, 427

on the stack, 159
volatile, 907

printf() function, 33
proc directive, 233
procedures, 230–234

in ARM assembly, 6
invocation, 230
minimal, 235
range of a function, 612
pointers, 284

profilers, 479
program counter (PC) register, 13
program-counter-relative addressing, 24
program listings, xxx
programming in the large, 862
programming languages

C, 441
FORTRAN, 405

program size and object/library
files, 886

PSTATE (processor state) register, 13
manipulation, 93

public equate, 784
public symbols, 233
pure assembly applications, 890
.purgem directive, 771
push operations, 155–157

Q
QC (saturation cumulative) bit in

FPSR, 332
Qn registers, 624
qtoStr function, 494
quad words (qwords), 53
Quicksort, 278
quiet NaN, 335
.qword directive, 57, 781

R
radix, 48
range of a function, 612
Raspberry Pi, xxvii–xxix, 481, 488, 728
rbit instruction, 712
read, memory, 15

reading 16 bits at an odd
address, 137

reading a byte on a 16-bit
CPU, 136

Index 1017

read-only data, 120
sections, 122–124

read-only variables as constants, 170
real arithmetic, 322
reciprocals, 679, 687
recursive conversion, 495
recursive header files, 863
recursive macros

CPP, 752
Gas, 769

reducing code size, 482
reference parameters, 256
register-indirect jump instruction, 358
registers, 11, 14–16

32-bit, 11
64-bit, 11
aliases, 22
floating-point, 346
frame pointer, 13, 246
general-purpose, 11
interleaving and deinterleaving,

639–642
link, 13, 29, 235
moving data between, 625–626
nonvolatile, 31, 300, 346
NZCV, 93
preservation, 159, 427

callee and caller, 239
in loops, 427
on the stack, 159
volatile, 907

program counter, 13
PSTATE, 13
special-purpose, 11
stack pointer, 13, 146, 155
usage and loops, 426
as variables, 299
vector, 623
volatile, 31, 300, 346
Xn, 146
XZR, 146
zeroing out bits in, 727

remainder, 294–295
removing data from the stack, 163–165
repeat...until loops, 417–418
representation, 45

Boolean constant, 313
numeric, 50–53

.rept....endr statements, 763

.req directive, 22
ret instruction, 29, 230, 235
return addresses, 13
reversing bits, 712
rev instruction, 135
right-associative operators, 308
right shifts, 83

arithmetic, 84
RISC (reduced instruction set

computer), xxvi
.rodata (read-only data) objects

declaration vs. value, 170
directive, 170
section, 122–124

rol instruction simulation using
ror, 470

rotate operations, 85
through carry left, 468
through carry right, 472
rotate-left, 85

vector, 710
rotate-right, 85, 715

Operand2, 109
vector, 711

rounding, 345
during floating-point

calculations, 324
floating-point values, 686
integral, 686

rounding mode control, 330–331
row-major ordering, 204–209
running an assembly language

program, 7–10
run of 0 bits, 704
runtime language, 742

S
salign macro, 780
saturation (QC) bit in FPSR, 332
saturation operations, 72

multiplication and double, 673–675
shift-left, 650
shift-right with narrowing

instructions, 655
vector saturating accumulate, 666

scalable vector extensions (SVE), 667
scalar floating-point comparisons, 690

1018 Index

scalar instructions, 621
saturating addition, 667

scalars, 625
scaled-indexed addressing mode,

146–149
scaled indirect addressing mode, 143
scaling factors, 147
scope of a variable, 250, 865
searching

for a bit, 734
for a bit pattern, 736
for the first or last set bit, 734

sections
in an assembly language source

file, 6–7
.bss, 124–126
code, 121
.data, 122
.pool, 130, 142
read-only, 122–124
.section directive, 122–124, 126

flags in, 126
.text, 121–122

security, 23
segmentation fault, 121, 181
selecting bits, 648
separate assembly, 866
separate compilation, 866
.set directive, 21, 170
setting bits, 704

to 0, 59
to 1, 61

shared libraries, 23
shell interpreter, xxxi
shift-and-insert instructions, 652
shift-and-rotate instructions, 704,

709–711
shift operations, 82–85

Neon, 649
operators, 82–83, 109, 320–321, 714

extending (Operand2), 110
shift-left, 82

128-bit, 467–468, 711
192-bit, 469
extended-precision, 467

shift-right, 83–84
accumulating, 654
arithmetic, 84

extended-precision, 472
narrowing, 655

simulating rol instruction using
ror, 470

short-circuit Boolean evaluation,
319, 380

vs. complete Boolean
evaluation, 382

.short directive, 17
side effects, 382
signaling NaN, 335
sign bit, 65
sign condition code, 14
signed comparison flag settings,

296
signed conditional branches, 80
signed division, 294
signed integer-to-string conversion,

509–510
signed multiplication, 450
signed numbers, 65–70

complement method, 65
sign extension, 110

and contraction, 71–72
values using asr, 473

sign (N) flag, 295, 718
significant digits, 323–324
simulating div instruction, 321
simulating rol instruction using

ror, 470
sin() function, 347
single-dimension array access, 195
.single directive, 97
single-instruction, multiple data

(SIMD) instructions, 14,
58, 621

single-instruction, single-data (SISD)
instructions, 621

single-precision floating-point format,
94–95

conversion, 685
declarations, 17
exponent range, 95
precision, 95

Sn registers, 623
sorting, 198–203

quicksort, 278
source code modules, xxx

Index 1019

source files
editor, 4
merging during assembly, 862
sections, 6–7
.S source file suffix, 4

on assembly language source
files, 743

.space directive, 196
sparse jump tables, 399–402
special-purpose kernel-mode

registers, 11
square root instructions, 686–687
stack pointer (SP) register, 13,

146, 155
stacks, 120, 155

accessing data on, 165–166
alignment, 155
cleanup, 163
pointer, 13
removing data from, 163–165
temporary storage on, 155

stand-alone assembly code, 889
stand-alone programs in assembly

language, xxxiv
starting bit position, 719
state, machine, 405
statements

break, 421
case, 389
conditional, 372
continue, 422
else, 746
if, 371
labels, 356
repeat...until, 417
on the same source line, 230
spread across multiple source

lines, 230
switch, 389
while, 415

state variable, 405
static base (SB) register convention,

301
store instructions, 26, 144, 332–333,

632–638
double, 156

str.buf macro, 802–803, 807
strength-reduction optimizations, 321

string allocation
dynamic, 803
on the heap, 803
str.alloc function, 810
string.allocPtr field, 805
str.malloc function, 804

string comparisons, 824, 829
string expansion in macro

parameters, 768
string length, 187

computing at assembly time, 189
functions, 802
length, 796
zero-terminated string, 796

string operations, 795
strings, 189–194, 795

character, 187–194, 795
copying data, 818
data type for assembly language,

801–802, 805
functions, 190

length, 802
stdlib, 797–798
str.bufInit, 805
str.cpy, 818
str.free, 814
strlen(), 798
str.substr, 836
strtoh128, 584
Unicode, 857

length-prefixed, 188–189
pointers, 190
storage allocation, 803
zero-terminated, 187

problems with, 796
string-to-numeric conversions

to floating point, 588–602
functions, 566
to integer, 566–587

str.literal macro, 803, 807
structs (structures), 212–220

arrays of, 218
.struct directive, 217
struct macro, 214, 779

subnormal floating-point values, 342.
See also denormalized
values

substituting text, 22

1020 Index

substring function, 836
subtraction

256-bit, 446
extended-precision, 445–446
instructions, 28, 668–669

surrogate code points, 847
svc (supervisor call) instruction,

892–895
swapping byte order, 134
switch statements, 389–405

default clause in, 396
restrictions in simple

implementations, 393
search implementations of, 403

symbolic constants, 170
symbols

checking if defined in CPP, 746
external, 6, 865
public, 233

system bus, 11
system cache and misaligned

data, 140
system register names, 93

T
tables, 605
tan() function, 347
temporary values, 311
temporary storage on stack, 155
test bit instructions, 704–706, 715
testing bits, 705–706
text concatenation, 754
.text directive, 121
text editor, 4
.text section, 6, 121–122

constants in, 130
textual substitution, 22
three-dimensional array access, 207
Thumb instruction set, 103
tokens, 754
trampoline, 32, 369
transfer instructions, 74, 144

for zero- and sign-extension, 474
translating arithmetic expressions into

assembly language, 293
transpose instructions, 639
tricky programming, 319
true, representation of, 313

truncation during floating-point
operations, 324, 330

truth tables, 58–60, 378
two-dimensional row-major array

access, 206
two’s complement numbering

system, 56
notation, 65

two’s complement operation, 66

U
u64toStr function, 500

u64toStrSize, 522
u128toStr function, 511
UFC (underflow cumulative) bit in

FPSR, 332
unaligned memory access, 16
unconditional branch instruction, 77
#undef statement, 759
underflow, 326
Unicode, 845

in assembly language, 853
Basic Multilingual Plane, 847–848
canonical equivalence, 849
character names, 848
character set, 55, 102, 846
code point, 847
combining characters, 852
encodings, 850
glyphs, 848
normal forms, 849–850
normalization, 849
string functions, 857
surrogate code points, 847
Unicode Text Formats, 850–851

uninitialized data section, 124
uninitialized pointers, 180
unions, 220
unordered comparisons, 97, 336
unpacking bit strings, 719
unraveling loops, 432, 763
unsigned

conditional branches, 80
conversion

decimal to string, 495
integer to string, extended-

precision, 510
division, 294

Index 1021

multiplication, 211, 450
extended multiplication, 672

numbers, 65–70
using registers for variables, 299
uSize function, 517
utoStrSize function, 522

V
__VA_ARGS__ symbol

expansion, 751
processing argument lists, 757

value parameters, 255
values, temporary, 311
vararg parameter lists, 767
variable argument lists, 751
variable-length parameters, 263

lists, 33
variables

32-bit, 56–57
alignment, 19–21

choosing in memory, 140
automatic, 250
bytes, 55
declarations, 16–18
dword, 57
Gas, 16
global, 300
half-word, 56
lifetime, 250
local, 250, 300
loop control, 426
memory addresses, 19
names, 16
pointer, 178
qword, 57
read-only, 170
scope, 250, 865
state, 405
word, 57

variadic parameters, 42
V (overflow) condition code, 14
vector, 128-bit shift-left, 467–468, 711
vector comparisons, 687–693

compare immediate, 688–689
jump tables with, 692
multiway branch, 692
floating-point, 689

vector division, 679–680

vector instructions, 621
bit test, 691

vector load immediate, 628
vector multiplication, 671–678
vector permutations, 645
vector registers, 623

deinterleaving data in, 642
and immediate constants, 628
lanes in, 625, 641
moving data between, 625–626

vector rotation, 710–711
vector saturating accumulate

instructions, 666
veneer, 369
vertical addition, 664
vertical operations, 646
Vn registers, 623

lane types, 624
volatile registers, 31, 300, 346

preservation, 907
Von Neumann architecture machine, 11
vparmn macro, 42, 167, 775–777

W
.warning directive, 760
warning messages during assembly, 743
#warning statement, 743
warnings vs. errors, 744
wastr (word-aligned string)

directive, 263
wastr macro, 783
while loops, 415–417

synthesis in assembly, 416
wild pointers, 182
word data type, 56, 57
.word directive, 57
word macro, 781
WZR (zero) register, 28

X
X16 and X17 registers used for

dynamic linking, 369
X31 register, 146
Xcode, 4
XOR (exclusive-OR) operation, 59–60

128-bit, 467
vectors, 648

XZR (zero) register, 28, 146

1022 Index

Z
zero-argument macros, 749
zero condition code, 14
zero extension, 71–72, 110, 112
zero (Z) flag, 295, 716

setting after a multiprecision
OR, 466

settings after cmp, 295

zeroing out bits in a
register, 727

zero-terminated strings, 17,
187–188

length, 796
problems with, 796

zip instructions, 641

The Art of ARM Assembly is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

NO STARCH PRESS

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com

WEB:
www.nostarch.com

WRITE GREAT CODE, VOLUME 3
Engineering Software
BY randall hyde
376 pp., $49.95
isbn 978-1-59327-979-0

WRITE GREAT CODE, VOLUME 2,
2ND EDITION
Thinking Low Level, Writing High Level
BY randall hyde
656 pp., $49.95
isbn 978-1-7185-0038-9

WRITE GREAT CODE, VOLUME 1,
2ND EDITION
Understanding the Machine
BY randall hyde
472 pp., $49.95
isbn 978-1-7185-0036-5

THE LINUX COMMAND LINE,
2ND EDITION
A Complete Introduction
BY william shotts
504 pp., $39.95
isbn 978-1-59327-952-3

WRITING A C COMPILER
Build a Real Programming Language
from Scratch
BY nora sandler
792 pp., $69.99
isbn 978-1-7185-0042-6

THE ART OF 64-BIT
ASSEMBLY, VOLUME 1
x86-64 Machine Organization
and Programming
BY randall hyde
1,032 pp., $79.99
isbn 978-1-7185-0108-9

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/art-arm-assembly for errata and more information.

®

https://nostarch.com/art-arm-assembly

Never before has the world relied so heavily on the Internet

to stay connected and informed. That makes the Electronic

Frontier Foundation’s mission—to ensure that technology

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through

activism, in the courts, and by developing software to overcome

obstacles to your privacy, security, and free expression. This

dedication empowers all of us through darkness. With your help

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

®

T H E A R T O F
A R M A S S E M B LY

6 4 - B I T A R M M A C H I N E O R G A N I Z A T I O N

A N D P R O G R A M M I N G

R A N D A L L H Y D E

THE F INEST IN GEEK ENTERTA INMENT ™

nostarch.com
®

®

T
H

E
 A

R
T

 O
F

A

R
M

 A
S

S
E

M
B

L
Y

H
Y

D
E

Building on Randall Hyde’s iconic series, The Art
of ARM Assembly delves into programming 64-bit
ARM CPUs—the powerhouses behind iPhones, Macs,
Chromebooks, servers, and embedded systems.

Following a fast-paced introduction to the art of
programming in assembly and the GNU Assembler
(Gas) specifi cally, you’ll explore memory organization,
data representation, and the basic logical operations
you can perform on simple data types. You’ll learn
how to defi ne constants, write functions, manage
local variables, and pass parameters effi ciently. You’ll
explore both basic and advanced arithmetic operations,
control structures, numeric conversions, lookup tables,
and string manipulation—in short, you’ll cover it all.

You’ll also dive into ARM SIMD (Neon) instructions, bit
manipulation, and macro programming with the Gas
assembler, as well as how to:

• Declare pointers and use composite data structures
like strings, arrays, and unions

• Convert simple and complex arithmetic expressions
into machine instruction sequences

• Use ARM addressing modes and expressions to
access memory variables

• Create and use string library functions and build
libraries of assembly code using makefi les

This hands-on guide will help you master ARM
assembly while revealing the intricacies of modern
machine architecture. You’ll learn to write more effi cient
high-level code and gain a deeper understanding of
software-hardware interactions—essential skills for any
programmer working with ARM-based systems.

A B O U T T H E A U T H O R

Randall Hyde is an embedded software engineer
who has worked in the medical, nuclear, consumer
electronics, and entertainment industries. He taught
assembly language programming at the university
level for over 10 years. He is the author of The Art of
Assembly Language, The Art of 64-Bit Assembly, The
Book of I 2C, and the Write Great Code series, all
from No Starch Press.

Modern Instructions

for 64-Bit ARM CPUs

V O L U M E 1

V O L U M E 1

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	0.1. A Brief History of the ARM CPU
	0.2. Why Learn ARM Assembly?
	0.3. Why Learn 64-Bit ARM?
	0.4. Expectations and Prerequisites
	0.5. Source Code
	0.6. Typography and Pedantry
	0.7. Organization

	Part I: Machine Organization
	1. Hello, World of Assembly Language
	1.1. What You’ll Need
	1.1.1. Setting Up Gas
	1.1.2. Setting Up a Text Editor
	1.1.3. Understanding C/C++ Examples

	1.2. The Anatomy of an Assembly Language Program
	1.3. Running Your First Assembly Language Program
	1.4. Running Your First Gas/C++ Hybrid Program
	1.5. The aoaa .inc Include File
	1.6. The ARM64 CPU Architecture
	1.6.1. ARM CPU Registers
	1.6.2. The Memory Subsystem

	1.7. Declaring Memory Variables in Gas
	1.7.1. Associating Memory Addresses with Variables
	1.7.2. Aligning Variables
	1.7.3. Declaring Named Constants in Gas
	1.7.4. Creating Register Aliases in Gas and Substituting Text

	1.8. Basic ARM Assembly Language Instructions
	1.8.1. ldr, str, adr, and adrp
	1.8.2. mov
	1.8.3. add and sub
	1.8.4. bl, blr, and ret

	1.9. The ARM64 Application Binary Interface
	1.9.1. Register Usage
	1.9.2 Parameter Passing and Function Result Conventions

	1.10 Calling C Library Functions
	1.10.1 Assembling Programs Under Multiple OSes
	1.10.2 Writing a “Hello, World!” Program

	1.11 Moving On
	1.12 For More Information

	2. Data Representation and Operations
	2.1 Numbering Systems
	2.1.1 Decimal
	2.1.2 Binary
	2.1.3 Hexadecimal

	2.2 Numbers vs. Representation
	2.3 Data Organization
	2.3.1 Bits
	2.3.2 Nibbles
	2.3.3 Bytes
	2.3.4 Half Words
	2.3.5 Words
	2.3.6 Double Words and Quad Words

	2.4 Logical Operations on Bits
	2.4.1 AND
	2.4.2 OR
	2.4.3 XOR
	2.4.4 NOT

	2.5 Logical Operations on Binary Numbers and Bit Strings
	2.6 Signed and Unsigned Numbers
	2.7 Sign Extension and Zero Extension
	2.8 Sign Contraction and Saturation
	2.9 Loading and Storing Byte and Half-Word Values
	2.10 Control-Transfer Instructions
	2.10.1 Branch
	2.10.2 Instructions That Affect the Condition Code Flags
	2.10.3 Conditional Branch
	2.10.4 cmp and Corresponding Conditional Branches

	2.11 Shifts and Rotates
	2.12 Bit Fields and Packed Data
	2.13 IEEE Floating-Point Formats
	2.13.1 Single-Precision Format
	2.13.2 Double-Precision Format

	2.14 Normalized Floating-Point Values
	2.14.1 Nonnumeric Values
	2.14.2 Gas Support for Floating-Point Values

	2.15 Binary-Coded Decimal Representation
	2.16 Characters
	2.16.1 The ASCII Character Encoding
	2.16.2 Gas Support for ASCII Characters

	2.17 Gas Support for the Unicode Character Set
	2.18 Machine Code
	2.19 Operand2
	2.19.1 #immediate
	2.19.2 #pattern
	2.19.3 Register
	2.19.4 Shifted Register
	2.19.5 Extending Register

	2.20 Large Constants
	2.20.1 movz
	2.20.2 movk
	2.20.3 movn

	2.21 Moving On
	2.22 For More Information

	3. Memory Access and Organization
	3.1 Runtime Memory Organization
	3.1.1 The .text Section
	3.1.2 The .data Section
	3.1.3 Read-Only Data Sections
	3.1.4 The .bss Section
	3.1.5 The .section Directive
	3.1.6 Declaration Sections
	3.1.7 Memory Access and MMU Pages
	3.1.8 PIE and ASLR
	3.1.9 The .pool Section

	3.2 Gas Storage Allocation for Variables
	3.3 Little-Endian and Big-Endian Data Organization
	3.4 Memory Access
	3.5 Gas Support for Data Alignment
	3.6 The ARM Memory Addressing Modes
	3.6.1 PC-Relative
	3.6.2 Register-Indirect
	3.6.3 Indirect-Plus-Offset
	3.6.4 Scaled Indirect-Plus-Offset
	3.6.5 Pre-indexed
	3.6.6 Post-Indexed
	3.6.7 Scaled-Indexed

	3.7 Address Expressions
	3.8 Getting the Address of a Memory Object
	3.9 The Push and Pop Operations
	3.9.1 Using Double Loads and Stores
	3.9.2 Executing the Basic Push Operation
	3.9.3 Executing the Basic Pop Operation
	3.9.4 Preserving at Least Two Registers
	3.9.5 Preserving Register Values on the Stack
	3.9.6 Saving Function Return Addresses on the Stack

	3.10 Pushing and Popping Stack Data
	3.10.1 Removing Data from the Stack Without Popping It
	3.10.2 Accessing Data Pushed onto the Stack Without Popping It

	3.11 Moving On
	3.12 For More Information

	4. Constants, Variables, and Data Types
	4.1 Gas Constant Declarations
	4.2 The Location Counter Operator
	4.3 Data Types and Gas
	4.4 Pointer Data Types
	4.4.1 Pointer Usage in Assembly Language
	4.4.2 Pointer Declarations in Gas
	4.4.3 Pointer Constants and Expressions
	4.4.4 Pointer Variables and Dynamic Memory Allocation
	4.4.5 Common Pointer Problems

	4.5 Composite Data Types
	4.6 Character Strings
	4.6.1 Zero-Terminated Strings
	4.6.2 Length-Prefixed Strings
	4.6.3 String Descriptors
	4.6.4 Pointers to Strings
	4.6.5 String Functions

	4.7 Arrays
	4.7.1 Declaring Arrays in Gas Programs
	4.7.2 Accessing Elements of a Single-Dimensional Array
	4.7.3 Sorting an Array of Values
	4.7.4 Implementing Multidimensional Arrays

	4.8 Structs
	4.8.1 Dealing with Limited Gas Support for Structs
	4.8.2 Initializing Structs
	4.8.3 Creating Arrays of Structs
	4.8.4 Aligning Fields Within a Struct

	4.9 Unions
	4.10 Moving On
	4.11 For More Information

	Part II: Basic Assembly Language
	5. Procedures
	5.1 Assembly Language Programming Style
	5.2 Gas Procedures
	5.2.1 Gas Local Labels
	5.2.2 bl, ret, and br

	5.3 Saving the State of the Machine
	5.4 Call Trees, Leaf Procedures, and the Stack
	5.4.1 Activation Records
	5.4.2 Objects in the Activation Record
	5.4.3 ARM ABI Parameter-Passing Conventions
	5.4.4 Standard Entry Sequence
	5.4.5 Standard Exit Sequence

	5.5 Local Variables
	5.5.1 Low-Level Implementation of Automatic Variables
	5.5.2 The locals Macro

	5.6 Parameters
	5.6.1 Passing by Value
	5.6.2 Passing by Reference
	5.6.3 Using Low-Level Parameter Implementation
	5.6.4 Accessing Reference Parameters on the Stack

	5.7 Functions and Function Return Results
	5.8 Recursion
	5.9 Procedure Pointers and Procedural Parameters
	5.10 A Program-Defined Stack
	5.11 Moving On
	5.12 For More Information

	6. Arithmetic
	6.1 Additional ARM Arithmetic Instructions
	6.1.1 Multiplication
	6.1.2 Division and Modulo
	6.1.3 cmp Revisited
	6.1.4 Conditional Instructions

	6.2 Memory Variables vs. Registers
	6.2.1 Volatile vs. Nonvolatile Register Usage
	6.2.2 Global vs. Local Variables
	6.2.3 Easy Access to Global Variables

	6.3 Arithmetic Expressions
	6.3.1 Simple Assignments
	6.3.2 Simple Expressions
	6.3.3 Complex Expressions
	6.3.4 Commutative Operators

	6.4 Logical Expressions
	6.5 Conditional Comparisons and Boolean Expressions
	6.5.1 Implementing Conjunction Using ccmp
	6.5.2 Implementing Disjunction Using ccmp
	6.5.3 Handling Complex Boolean Expressions

	6.6 Machine and Arithmetic Idioms
	6.6.1 Multiplying Without mul
	6.6.2 Dividing Without sdiv or udiv
	6.6.3 Implementing Modulo-N Counters with AND
	6.6.4 Avoiding Needlessly Complex Machine Idioms

	6.7 Floating-Point and Finite-Precision Arithmetic
	6.7.1 Basic Floating-Point Terminology
	6.7.2 Limited-Precision Arithmetic and Accuracy
	6.7.3 Errors in Floating-Point Calculations
	6.7.4 Floating-Point Value Comparisons

	6.8 Floating-Point Arithmetic on the ARM
	6.8.1 Neon Registers
	6.8.2 Control Register
	6.8.3 Status Register

	6.9 Floating-Point Instructions
	6.9.1 FPU Data Movement Instructions
	6.9.2 FPU Arithmetic Instructions
	6.9.3 Floating-Point Comparisons
	6.9.4 Floating-Point Conversion Instructions

	6.10 The ARM ABI and Floating-Point Registers
	6.11 Using C Standard Library Math Functions
	6.12 Moving On
	6.13 For More Information

	7. Low-Level Control Structures
	7.1 Statement Labels
	7.2 Initializing Arrays with Statement Labels
	7.3 Unconditional Transfer of Control
	7.4 Register-Indirect Branches
	7.5 Taking the Address of Symbols in Your Code
	7.5.1 Revisiting the lea Macro
	7.5.2 Statically Computing the Address of a Symbol
	7.5.3 Dynamically Computing the Address of a Memory Object
	7.5.4 Working with Veneers

	7.6 Implementing Common Control Structures in Assembly Language
	7.6.1 Decisions
	7.6.2 if...then...else Sequences
	7.6.3 Complex if Statements Using Complete Boolean Evaluation
	7.6.4 Short-Circuit Boolean Evaluation
	7.6.5 Short-Circuit vs. Complete Boolean Evaluation
	7.6.6 Efficient Implementation of if Statements in Assembly Language
	7.6.7 switch...case Statements

	7.7 State Machines and Indirect Jumps
	7.8 Loops
	7.8.1 while
	7.8.2 repeat...until
	7.8.3 forever/endfor
	7.8.4 for
	7.8.5 break and continue
	7.8.6 ARM Looping Instructions
	7.8.7 Register Usage and Loops

	7.9 Loop Performance Improvements
	7.9.1 Moving the Termination Condition to the End of a Loop
	7.9.2 Executing the Loop Backward
	7.9.3 Eliminating Loop-Invariant Calculations
	7.9.4 Unraveling Loops
	7.9.5 Using Induction Variables

	7.10 Moving On
	7.11 For More Information

	Part III: Advanced Assembly Language
	8. Advanced Arithmetic
	8.1 Extended-Precision Operations
	8.1.1 Addition
	8.1.2 Subtraction
	8.1.3 Comparisons
	8.1.4 Multiplication
	8.1.5 Division
	8.1.6 Negation
	8.1.7 AND
	8.1.8 OR
	8.1.9 XOR
	8.1.10 NOT
	8.1.11 Shift Operations

	8.2 Operating on Different-Size Operands
	8.3 Moving On
	8.4 For More Information

	9. Numeric Conversion
	9.1 Converting Numeric Strings to Values
	9.1.1 Numeric Values to Hexadecimal Strings
	9.1.2 Extended-Precision Hexadecimal Values to Strings
	9.1.3 Unsigned Decimal Values to Strings
	9.1.4 Signed Integer Values to Strings
	9.1.5 Extended-Precision Unsigned Integers to Strings
	9.1.6 Formatted Conversions

	9.2 Converting Floating-Point Values to Strings
	9.2.1 Floating-Point Exponent to String of Decimal Digits
	9.2.2 Floating-Point Mantissa to String of Digits
	9.2.3 Strings in Decimal and Exponential Format
	9.2.4 Double-Precision Values to Strings

	9.3 String-to-Numeric Conversions
	9.3.1 Decimal Strings to Integers
	9.3.2 Hexadecimal Strings to Numeric Form
	9.3.3 String to Floating-Point

	9.4 Other Numeric Conversions
	9.5 Moving On
	9.6 For More Information

	10. Table Lookups
	10.1 Using Tables in Assembly Language
	10.1.1 Function Computation via Table Lookup
	10.1.2 Function Domains and Ranges
	10.1.3 Domain Conditioning
	10.1.4 Table Generation

	10.2 Table-Lookup Performance
	10.3 Moving On
	10.4 For More Information

	11. Neon and Simd Programming
	11.1 The History of SIMD Instruction Extensions
	11.2 Vector Registers
	11.3 Vector Data Movement Instructions
	11.3.1 Data Movement Between Registers
	11.3.2 Vector Load Immediate Instructions
	11.3.3 Register or Lane Value Duplication
	11.3.4 Vector Load and Store
	11.3.5 Interleaved Load and Store
	11.3.6 Register Interleaving and Deinterleaving
	11.3.7 Table Lookups with tbl and tbx
	11.3.8 Endian Swaps with rev16, rev32, and rev64

	11.4 Vertical and Horizontal Operations
	11.5 SIMD Logical Operations
	11.6 SIMD Shift Operations
	11.6.1 Shift-Left Instruction
	11.6.2 Saturating Shift Left
	11.6.3 Shift-Left Long
	11.6.4 Shift and Insert
	11.6.5 Signed and Unsigned Shift Right
	11.6.6 Accumulating Shift Right
	11.6.7 Narrowing Shift Right
	11.6.8 Saturating Shift Right with Narrowing
	11.6.9 Shift by a Variable Number of Bits

	11.7 SIMD Arithmetic Operations
	11.7.1 SIMD Addition
	11.7.2 Subtraction
	11.7.3 Absolute Difference
	11.7.4 Vector Multiplication
	11.7.5 Vector Division
	11.7.6 Sign Operations
	11.7.7 Minimum and Maximum

	11.8 Floating-Point and Integer Conversions
	11.8.1 Floating-Point to Integer
	11.8.2 Integer to Floating-Point
	11.8.3 Conversion Between Floating-Point Formats
	11.8.4 Floating-Point Values Rounded to the Nearest Integral

	11.9 Vector Square-Root Instructions
	11.10 Vector Comparisons
	11.10.1 Vector Integer Comparisons
	11.10.2 Vector Floating-Point Comparisons
	11.10.3 Vector Bit Test Instructions
	11.10.4 Vector Comparison Results

	11.11 A Sorting Example Using SIMD Code
	11.12 A Numeric-to-Hex-String Example Using SIMD Code
	11.13 Use of SIMD Instructions in Real Programs
	11.14 Moving On
	11.15 For More Information

	12. Bit Manipulation
	12.1 What Is Bit Data, Anyway?
	12.2 Instructions That Manipulate Bits
	12.2.1 Isolating, Clearing, and Testing Bits
	12.2.2 Setting and Inserting Bits
	12.2.3 Clearing Bits
	12.2.4 Inverting Bits
	12.2.5 Shift and Rotate
	12.2.6 Conditional Instructions
	12.2.7 Counting Bits
	12.2.8 Bit Reversal
	12.2.9 Bit Insertion and Selection
	12.2.10 Bit Extraction with ubfx
	12.2.11 Bit Movement with ubfiz
	12.2.12 Bit Movement with ubfm
	12.2.13 Bit Extraction with extr
	12.2.14 Bit Testing with tbz and tbnz

	12.3 Flag Modification by Arithmetic and Logical Instructions
	12.3.1 The Zero Flag
	12.3.2 The Negative Flag
	12.3.3 The Carry and Overflow Flags

	12.4 Packing and Unpacking Bit Strings
	12.4.1 Inserting One Bit String into Another
	12.4.2 Extracting a Bit String
	12.4.3 Clearing a Bit Field
	12.4.4 Using bfm

	12.5 Common Bit Operations
	12.5.1 Coalescing Bit Sets and Distributing Bit Strings
	12.5.2 Creating Packed Arrays of Bit Strings
	12.5.3 Searching for Bits
	12.5.4 Merging Bit Strings
	12.5.5 Scattering Bits from a Bit String
	12.5.6 Searching for a Bit Pattern

	12.6 Moving On
	12.7 For More Information

	13. Macros and the Gas Compile-Time Language
	13.1 The Gas Compile-Time Language Interpreter
	13.2 The C/C++ Preprocessor
	13.2.1 The #warning and #error Directives
	13.2.2 Compile-Time Constant Definition with CPP
	13.2.3 CPP Compile-Time Expressions
	13.2.4 Conditional Assembly
	13.2.5 CPP Macros

	13.3 Components of the Gas CTL
	13.3.1 Errors and Warnings During Assembly
	13.3.2 Conditional Assembly
	13.3.3 Compile-Time Loops
	13.3.4 Gas Macros

	13.4 The aoaa .inc Header File
	13.5 Generating Macros by Another Macro
	13.6 Choosing Between Gas Macros and CPP Macros
	13.7 Moving On
	13.8 For More Information

	14. String Operations
	14.1 Zero-Terminated Strings and Functions
	14.2 A String Format for Assembly Language Programmers
	14.2.1 Dynamic String Allocation
	14.2.2 String Copy Function
	14.2.3 String Comparison Function
	14.2.4 Substring Function
	14.2.5 More String Functions

	14.3 The Unicode Character Set
	14.3.1 Unicode History
	14.3.2 Code Points and Code Planes
	14.3.3 Surrogate Code Points
	14.3.4 Glyphs, Characters, and Grapheme Clusters
	14.3.5 Normal Forms and Canonical Equivalence
	14.3.6 Encodings
	14.3.7 Combining Characters

	14.4 Unicode in Assembly Language
	14.4.1 Writing Console Applications with UTF-8 Characters
	14.4.2 Using Unicode String Functions

	14.5 Moving On
	14.6 For More Information

	15. Managing Complex Projects
	15.1 The .include Directive
	15.2 Ignoring Duplicate Include Operations
	15.3 Assembly Units and External Directives
	15.4 Creating a String Library with Separate Compilation
	15.5 Introducing Makefiles
	15.5.1 Basic Makefile Syntax
	15.5.2 Make Clean and Touch

	15.6 Generating Library Files with the Archiver Program
	15.7 Managing the Impact of Object Files on Program Size
	15.8 Moving On
	15.9 For More Information

	16. Stand-Alone Assembly Language Programs
	16.1 Portability Issues with System Calls
	16.2 Stand-Alone Code and System Calls
	16.3 The svc Interface and OS Portability
	16.3.1 Call Numbers
	16.3.2 API Parameters
	16.3.3 API Error Handling

	16.4 A Stand-Alone “Hello, World!” Program
	16.5 A Sample File I/O Program
	16.5.1 volatiles.S Functions
	16.5.2 files.S File I/O Functions
	16.5.3 stdio.S Functions
	16.5.4 File I/O Demo Application

	16.6 Calling System Library Functions Under macOS
	16.7 Creating Assembly Applications Without GCC
	16.8 For More Information

	Part IV: Reference Materials
	A. The ASCII Character Set
	B. Glossary
	C. Installing and Using Gas
	C.1 macOS
	C.2 Linux

	D. The Bash Shell Interpreter
	D.1 Running Bash
	D.2 Command Lines
	D.2.1 Command Line Arguments
	D.2.2 Redirection and Piping Arguments

	D.3 Directories, Pathnames, and Filenames
	D.4 Built-in and External Bash Commands
	D.5 Basic Unix Commands
	D.5.1 man
	D.5.2 cd or chdir
	D.5.3 pwd
	D.5.4 ls
	D.5.5 file
	D.5.6 cat, less, more, and tail
	D.5.7 mv
	D.5.8 cp
	D.5.9 rm
	D.5.10 mkdir
	D.5.11 date
	D.5.12 echo
	D.5.13 chmod

	D.6 Shell Scripts
	D.6.1 Defining Shell Script Variables and Values
	D.6.2 Defining Special Shell Variables
	D.6.3 Writing Your Own Shell Scripts

	D.7 The build Script
	D.8 For More Information

	E. Useful C Language Functions
	E.1 String Functions
	E.2 Other C Stdlib and Unix Functions

	F. Answers to Questions
	Index
	Back Cover

