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INTRODUCTION

The Intel 80386 microprocessor is probably the most widely discussed central pro-
cessing unit (CPU) chip since the introduction of the 8080 in the early days of per-
sonal computing. This book lets you know what all the shouting is about.

After presenting a history of the 8086 microprocessor family in Chapter 1, each sub-
sequent chapter discusses a portion of the 80386 design. The organization of the
CPU is presented in Chapter 2. The basic memory architecture is discussed in Chap-
ter 3. Chapter 4 introduces the instruction set of both the 80386 processor and the
80387 numeric coprocessor. Chapter 5 is an explanation of protected-mode opera-
tion. Chapter 6 explains how paging extends the memory system. Compatibility
with previous processors via real mode, virtual 8086 mode, and the 80286 is covered
in Chapter 7. Finally, Chapter 8 provides a full instruction set reference.

This book focuses entirely on programming,. It does not discuss the hardware fea-
tures of the processor unless those features relate to specific instructions. If you are
interested in the hardware characteristics of the 80386, refer to the 80386 Data
Sheet and the 80386 Hardware Reference Manual, both published by Intel
Corporation,

To get the most from this book, you should be familiar with computer systems. In
particular, an understanding of binary and hexadecimal arithmetic and machine-
language programming for some other processor(s) will be helpful.

A large portion of the book is devoted to the 80386’s protected mode. Although you
do not need to understand this feature to program the 80386, it is important to un-
derstand protected mode to grasp why system designers have made the choices
they have in implementing the 08/2, Windows/386, PC-MOS/386, and UNIX
operating environments,

The conventions throughout this book are summarized on the following pages. If
you are familiar with other Intel microprocessors, you are probably already familiar
with these concepts.
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Number Formats

I use numbers in three different bases: binary (base 2), decimal (base 10), and hexa-
decimal (base 16). You can assume that all numbers are base 10 unless they are fol-
lowed by the suffix “B” (for binary) or “H” (for hexadecimal). For example,

1AH = 26 = 00011010B

Data Types

The 80386 can operate on a variety of data types. The most common are 8-bit, 16-
bit, and 32-bit quantities. In this book, an 8-bit quantity is called a byte, a 16-bit
quantity is called a word, and a 32-bit quantity is called a doubleword, or dword.
This nomenclature is unusual because the standard data item size of a computer is
commonly called a word. In the Digital Equipment VAX computers, for example, a
32-bit quantity is a word, and a 16-bit quantity is a halfword. The same is true for the
Motorola 68000 family and the IBM 370 mainframes.

Although the standard 80386 operand size is 32-bits, Intel retained the naming con-
ventions of its earlier processors because the 80386 is a descendant of the 8086 and
the 80286 (16-bit processors). This simplifies running software from the 8086 or the
80286 and lets you use the same assembler to generate code for any of the three
processors,

The smallest addressable data item on the 80386 is the byte, All other data items
can be broken down into bytes, The 80386 stores larger data items in memory low-
order byte first, as the following diagram shows:

Bits 7 0
1 byte
Bits 7 015 8
I lobyte | hibyte |
16-bit word
Bits 7 015 8 23 16 31 24
[ lo byte ! i i hibyte |

32-bit dword

Assume that the 32-bit value 100F755DH is stored in memory, beginning at location
10. The individual memory bytes are:

Address: 10 11 12 13
Contents: SDH 75H OFH 10H

Xii



Introduction

It is unnecessarily complex, however, to show words and doublewords broken down
in byte order, and illustrations in this book treat the quantity as a unit. For example,
the book would present the previous value as:

31 = 0
| ; 100F755DH I |

L

The 80386 can perform operations on items smaller than a single byte, for example,
on a single bit or on a bit field. However, the processor always fetches at least one
byte from memory when performing these operations.

Assembler Notation

An 80386 instruction is a binary pattern that is decoded by the logic inside the CPU.
An instruction can be from 8 to 120 bits in length, Because coding a program using
binary patterns would be tedious, programmers use a type of program called an as-
sembler. The simplest type of assembler takes a set of keywords and symbols and
translates them into an instruction. The set of keywords and symbols is called the
assembler language. Typically, there is a one-to-one mapping between an instruc-
tion in assembly language and an actual machine instruction. The assembler would
take an instruction such as:

ADD EBX, 5

meaning, “Add 5 to the value in register EBX and store the result in EBX,” and
would translate it into the bit pattern:

00010110101010101010101010100111111110111118

The names of the instructions are called mnemonics, and they usually occupy the
first field in an instruction line, The subsequent fields are the operands of the in-
struction and can take a number of forms. The simplest is a numeric value, such as
the 5 in the previous example. A register name is another form of operand. An ex-
pression within brackets, such as [EBP+2], signifies an operand that is a memory
reference.

Throughout the book, T use standard Intel mnemonics. Note, however, that a mne-
monic does not necessarily specify the exact encoding of an instruction. For ex-
ample, the “increment” instruction has a general form in which any operand may
be encoded, and the instruction INC EAX would be encoded as FEH 00H. There is
also a single-byte instruction for incrementing a general register. In this form, 40H
encodes the INC EAX instruction. An assembler will generally choose the most
compact form of instruction for any given mnemonic, but the effect of executing
either form is the same.

I also use a common convention in discussions about setting bits. I use the term
“set” when assigning the value of 1 to a bit, and the term “reset” when assigning the
value of 0 to a bit.
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Syntax

This book uses the following syntax:

Operator Meaning

Addition
Subtraction
Multiplication
Division

Not

Equal to

Not equal to

Or

Exclusive OR
Boolean AND
Greater than

Less than

Shift right

Shift left

Less than or equal to
Greater than or equal to
Assignment

= ==
TiVIAﬁgAVQ&)_EII! S

32-bit Instruction Set

The 80386 supports several modes that are compatible with previous Intel proces-
sors (the 16-bit 8086 and 80286). However, this book focuses on the 80386’s new fea-
tures and does not discuss the 16-bit architectures of the 8086 and the 80286, even
though they are a subset of the 80386's capabilities. Programmers using the 80386 as
a replacement for previous processors should be able to do so with reference mate-
rials for the 8086 and the 80286.

Operating System Services

The 80386 implements a complex computer architecture, and it is not reasonable
to expect a stand-alone program to take advantage of all the CPU’s capabilities. At
various times I make statements such as “The operating system will...” or “At this
point, the operating system....” In these cases I am not referring to any particular
operating system. Instead, I am highlighting a feature of the 80386 that will be
implemented by the operating system software and not by an application.

Xiv



1
EVOLUTION OF

THE 80386
ARCHITECTURE

Even though I have spent the last eight years working with microcomputers, the
phrase “computer system” still brings to mind images of the installation in the base-
ment of the campus library at Montana State University. There, in air-conditioned
comfort, behind glass walls, lived Siggie, the university computer system (a Xerox
Sigma 7). Housed in several refrigerator-size units, Siggie served the computing
needs of the entire university.

Now, the 80386 microprocessor, born of a technology that was first realized while
Siggie was still considered state-of-the-art, can serve as the heart of a desktop
microcomputer, which has greater computing power than Siggie.

The First Components

The 80386 is the latest member of a line of microprocessors built by Intel Corpora-
tion. Intel claims to have invented the microprocessor in 1971, when it was ap-
proached by a (now defunct) Japanese corporation to build a custom circuit to serve
as the “brains” for a new calculator. Intel designer Ted Hoff proposed that a pro-
grammable, general-purpose computing circuit be built instead, and the 4004
became reality. The 4040 and the 8008 chips soon followed, but these chips lacked
many characteristics of microprocessors as we know them today. :

The 8080

The chip that, by most accounts, led to the birth of the microcomputer industry was
the 8080, which Intel introduced in 1974. An article in the September 1975 issue of
Popular Electronics brought the idea of a “personal” computer to the mass market,
and, as they say, the rest is history. The 8080 was the CPU (central processing unit)
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in such pioneering systems as the Altair and the IMSALI Intel did not enjoy a
monopoly on the market for long, however; Motorola introduced the 6800, MOS
Technology responded with the 6502, and two designers of the 8080 left Intel for
Zilog Corporation, which soon produced the Z80. Unlike the 6800 and the 6502,
which had completely different architectures, the Z80 was compatible with the 8080
but had an expanded instruction set and ran twice as fast. The battle for CPU
supremacy was on.

The 8080 was an 8-bit machine; that is, it processed data 8 bits at a time. It had a
single accumulator (the A register) and six secondary registers (B, C, D, E, H, and L,
shown in Figure 1-1). These six registers could be used in 8-bit arithmetic operations
or combined as pairs (BC, HL) to hold 16-bit memory addresses. A 16-bit address
allowed the 8080 to access 216, or 64 KB, of memory.

PSW
A
BC B C
DE D E
HIL H L
5P
PC

Figure 1-1. The 8080 register sel.

Intel also developed a refinement of the 8080 called the 8085, an 8080-compatible
processor that featured better performance and a simpler hardware interface.

The 8086

In 1978, under pressure from other manufacturers’ faster, more powerful micropro-
cessors, Intel moved to a 16-bit architecture, The 8086 was touted as the successor to
the 8080 microprocessor, and, although the instruction set was new, it retained
compatibility with the 8080’s instruction set. Figure 1-2 shows how the new registers
of the 8086 could be mapped into the set of 8080 registers.

Programs that were written for the 8080 could not be run on the 8086; however,
almost every 8086 instruction corresponded to an 8080 instruction. At worst, an
8080 instruction could be simulated by two or three 8086 operations. An Intel
translator program could convert 8080 assembler programs into 8086 assembler pro-
grams, and the first versions of Microsoft's BASIC and MicroPro’s WordStar for the
8086 were ported from 8080 systems via the Intel translator. This concern for com-
patibility has characterized Intel’s presence in the microcomputer market. Every
new generation of microprocessor has been able to run software written for the
previous generation.
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8080
PSW

(=l o0 (@) i

Figure 1-2. The 8080-8086 register set map.

In addition to providing software compatibility, Intel was interested in supporting
high-level languages. At Intel, almost all programming was done in an Algol-like
language called PL/M. Intel believed that a language such as PL/M or Pascal would
become the dominant microcomputer development language, so Intel dedicated
many 80806 registers to specific purposes, as shown in Figure 1-3.

AX
BX
CX
DX

Flags

AH

AL

BH

BL

CH

CL

DH

DL

DI

SI

BP

SP

IP

CS

S8

ES

Accumulator
Base pointer
Count register
Data register

Destination index register
Source index register
Stack frame base pointer
Stack pointer

Instruction pointer

Code segment
Data segment
Stack segment
Extra segment

Figure 1-3. The 8086 register set.

The next two examples show dedicated registers in use. Figure 1-4 shows how high-
level languages such as Pascal use the stack pointer (SP) and base pointer (BP)
registers.
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proce
int i
real
begin

end

Pascal code

dure procl (a, b : int)

5%

Stack frame

Variable Addressing mode

BP

P
s

(parameters)

[BP — offset]

Old 1P

CE=w Old BP

(locals)

[BP + offset]

elE——

Figure 1-4. Subroutine context.

In a Pascal program, the context of the currently executing subroutine is maintained
on the stack. The values (parameters) provided to the subroutine by the calling rou-
tine are first on the stack, then the saved IP of the calling routine, and finally the
saved BP of the calling routine. The context also contains stack space for any tem-
porary or local variables that the subroutine uses. Access to either the parameters or
local variables is relative to the current value of BP,

Consider the Pascal assignment statement in Figure 1-5. Because an entire record
must be copied, the compiler generates a block move instruction that uses the SI,
DI, and CX registers.

Pascal code

Assembly code

var

beg

i, J : employee_rec;
in

lea si, i
lea di, J
mov cx, SIZEOF(rec)
rep movsb

Source

Figure 1-5. Block move.

Destination
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The advantage of dedicating registers is that it allowed Intel to encode the instruc-
tions in a compact, memory-efficient manner. The opcode specifies exactly what is
to take place; for example, in the MOVSB instruction, specifying the three operands
(source, destination, and count) is unnecessary. As a result, the MOVSB opcode is
only 1 byte. The disadvantage of dedicated registers is that if you are using SI or DI
and want to do a MOVSB instruction, you can't use another register.

The 8086 also introduced segmentation to the microprocessor world. A segment is a
block of memory beginning at a fixed address that is determined by the value in the
appropriate segment register. This concept, probably the most despised feature of
the 8086 because of the restrictions it imposes, was incorporated for compatibility
with the 8080; each segment was 64 KB, equivalent to one 8080 address space.
Using segmentation, software can maintain the 16-bit addressing used in the 8080
while expanding (through the use of multiple segments) the memory that the chip
can address. The 8086 provides four segment registers that can point anywhere in
the 1 MB address space. They are defined as follows:

CS—The code segment register: All calls and jumps refer to locations within the
code segment,

DS —The data segment register: Most memory reference instructions refer to an
offset within the data segment.

SS—The stack segment register: All PUSH and POP instructions access data in
the stack segment. Additionally, any memory reference done relative to the BP
register is also directed to the stack segment.

ES—The extra segment register: This segment specifies the destination seg-
ment in certain string processing instructions.

The way an application manages memory (the memory model) is usually consistent

throughout a program. When Intel introduced the 8086, three memory models were
postulated, which are shown in Figure 1-6.

Tiny Small Large
S¢
3 Stack
CS

cs Code DS
DS z sS
55 Dita Code ES
e Stack

Data

5
Stack DS

ES

Figure 1-6. Memory models.
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The tiny model mimicked the 8080 address space. The code segment and data seg-
ment were in the same area of memory, and the program was limited to 64 KB. The
small model was expected to be prevalent because it allowed programs to double in
size. By having separate code and data segments, programs could expand to 128 KB
and still retain 16-bit addressing. The large memory model allowed the use of mul-
tiple code and data segments. In this model, the entire 1 MB address space of the
processor could be used.

When the 8086 was introduced in 1978, most microcomputers were limited to 64
KB; almost no one realized how quickly the 64 KB segment limit would become a
serious problem. Although the large model allowed programs to fill the entire 1 MB
of 8086 address space, using the large model meant using 32-bit pointers. On a 16-bit
machine, 32-bit pointers exacted a size and performance penalty that most pro-
grammers were unwilling to pay. By the early 1980s, even the 1 MB limit became
confining. Additional memory models with names such as “compact” and “medium”
were introduced to optimize performance for special programming needs.

Other processors in the 8086 family were the 8088, the 80186, and the 80188. The
8088, introduced a year after the 8086, had the same 16-bit internal architecture but
a restricted 8-bit external bus. The 8088 could run the same programs as the 80806,
but typically 30 percent slower. The 8088 became wildly successful when IBM chose
it for the PC and the PC/XT. The 80186 and 80188 were announced much later, in
1982, These processors kept the same base architecture but included features such
as direct memory access (DMA) controllers, on-chip counter/timers, and a simpli-
fied hardware interface. They also operated more quickly than did the 8086/8088
and became popular in controller applications.

The 8087

An innovative part of the 8086 family of CPUs is the coprocessor, The ESC or
coprocessor escape class of instructions only generated a memory address on the
8086. Additional, special-purpose CPUs could be created to monitor the instruction
stream and watch for ESC sequences, as shown in Figure 1-7. Whenever an ESC was
detected, the coprocessor could decode the escape as an instruction for itself and
perform a function that the 8086 was incapable of doing efficiently on its own.

Instruction path

;?[ﬁf{ﬂﬁ ]ﬁ"cﬂx;:'“

ﬂﬁ,ﬂﬂ"’

A ESC 7 = FMUL ST(2)

8086 8087

Figure 1-7. 8086 coprocessor interface.
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The first (and only) coprocessor developed for the 8086 was the 8087. The 8087 im-
plemented a floating-point instruction set, capable of as much as 80 bits of preci-
sion. Intel worked closely with the IEEE and professors at the University of
California, Berkeley, to create a floating-point representation that was flexible and
accurate. This representation and its numeric properties have since been formalized
as IEEE Standard IEEE-754.

The 8087 contributed to the popularity of the 8086. A desktop computer that con-
tained both an 8086 and an 8087 could do serious scientific work. Implementing
floating-point functions in hardware improved the performance of mathematical
calculations over existing software routines. However, the 8087 pointed out the
problems of the 64 KB segment size. Once scientists and engineers had the comput-
ing power to handle real-world problems, they often needed to deal with large ar-
rays of numbers. The 64 KB segment limit restricted a vector of double-precision
floating-point numbers to no more than 1024 elements. Software capable of getting
around the restriction was soon available, but the “large” memory model was diffi-
cult to program in and was slow.

The 80286

The next major introduction from Intel, the 80286, came in 1982, The 80286 is com-
patible with the 8086 family, but it also provides a significant performance improve-
ment, It boasts two operating modes: real mode and protected mode. Real mode,
which emulates the 80806, is the default mode. The new mode is called protected
mode, In protected mode, the 80286 supports the 8086 instruction set but places a
new interpretation on the contents of the segment registers that control how
memory is accessed.

Although operating systems that are implemented under protected mode are differ-
ent from those that are designed for real mode, applications can be developed that
run in either mode. The design of these dual-mode applications requires that the
application observe certain memory restrictions.

Unfortunately, MS-DOS, which is the dominating operating system for 8086-based
machines, places no restrictions on how an application addresses memory, and pro-
tected mode proved incompatible with a majority of MS-DOS applications. As a
result, for a number of years the 80286 was generally treated as a fast 8086 because
no one knew how to use protected mode.

This was unfortunate because the 80286 offered a beneficial new feature—pro-
tected mode. Protected mode expands the amount of physically addressable
memory from 1 MB to 16 MB, allows the implementation of virtual memory, and
provides for the separation of tasks in a multitasking or multiuser environment.
Versions of UNIX run in protected mode, but UNIX has not been successful on the
80286 because competitive products usually run on more powerful 32-bit com-
puters. More recently, Microsoft introduced OS/2, which uses almost all protected-
mode features.
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The 80286 is the first Intel microprocessor designed for “serious” computing. Con-
siderations were made for multitasking, data integrity, and security. The designers
examined the architecture of minicomputers and mainframes as they developed the
80286. In addition, two of the main influences on the 80286 designers were the Mul-
tics project and a continued belief in Pascal.

Reading the conference papers about the Multics project will enlighten anyone who
thinks that protected mode is the product of some Intel designer’s fevered imagina-
tion. Multics began in the mid-1960s as a joint research project among MIT, Bell
Labs, and General Electric. The project combined hardware and software and was
based on the GE 645. The following is a partial list of architectural features that the
Multics group pioneered:

e Virtual memory*

® Protection rings

o Segmented addressing*

e Descriptor access rights

e (Call gates

® Conforming code segments

Some features of Multics also made their way into existing 80286-based software
systems. Microsoft's O8/2, for example, uses dynamic linking, another Multics
innovation,

The influence of Pascal on the design of the 80286 is shown by the addition of the
ENTER instruction to the 80286 instruction set. The ENTER instruction simplifies
creating a stack frame such as the one shown in the subroutine context illustration
in Figure 1-4. ENTER can also copy the context or stack frame of the previous sub-
routine. This ability is not necessary in languages such as FORTRAN or C, but

it is useful in languages such as Pascal and Ada that allow nested procedure
declarations.

The 80287

Intel also introduced a new coprocessor for the 80286, but the 80287 was a bit of a
disappointment. Although the 80286 executes programs two to three times faster
than the 8086, the performance of the 80287 is about the same as the 8087. Intel did
not really modify the computational engine of the 8087 in creating the 80287, so the
new coprocessor does not run any faster. Intel did change the interface between the
CPU and the coprocessor, however, eliminating the need for the coprocessor to
monitor the instruction stream of the main CPU.

In this new interface method, illustrated in Figure 1-8, the main CPU decodes the
ESC instructions and then passes the information to the coprocessor via the I/0O

*The Multics group did not invent these features, but they were an integral part of the system.
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channel. Because addressing is treated differently in real mode than it is in pro-
tected mode, the coprocessor would have had to operate in different modes as well,
using the old interface method. Instead, the new interface requires the 80286 to vali-
date all addresses before signaling the 80287. This interface allows the coprocessor
to run at a clock rate different from that of the main CPU, and it also allows the
80287 to be used with CPUs other than the 80286.

Instruction path

Ho5ce ESC 7 = FMUL ST(2): 8005

Figure 1-8. 80286 coprocessor interface.

Competitive Pressures

Between the introduction of the 8086 and the 80286, Motorola developed what
became the strongest competition to Intel’s dominance of the microprocessor
market, the 68000 family. Several features of the Motorola Microprocessors were at-
tractive to the development community. The 68000 family incorporates a 32-bit in-
ternal register file for data and addressing. This allows a large application address
space without the limitation of 64 KB segments. This 32-bit capability also makes it
easy to port operating systems (such as UNIX) and minicomputer applications to
the 68000-family processors.

Motorola also boasted about the “orthogonality” of the 68000 instruction set. Unlike
the 8086 and the 80286, with their special-purpose registers, the 68000 allowed pro-
grammers to specify any register for a given instruction. Although all 68000 micro-
processors had 32-bit register files, the first two CPUs (68000 and 68010) were
limited to 24-bit addresses and a 16-bit memory interface. In 1985, however,
Motorola began sampling the 68020, which had a full 32-bit address bus and a 32-bit
data bus. Although Intel had most of the business microcomputer market, makers of
scientific and engineering workstations almost unanimously chose Motorola CPUs
for their products.

Intel’s 32-Bit Microprocessor

Intel's design engineers faced two problems: compatibility and performance. They
needed to maintain compatibility with the previous generation of processors to re-
tain their share of the PC business market; Intel’s marketing force frequently

referred to the “billions and billions” of bytes of code (applications) that the 80386
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had to be able to run. At the same time, they needed a product that would address
the shortcomings of the 8086 family architecture, which gave Motorola an edge in
scientific and engineering markets. The resulting product, the 80386, addresses
these issues by operating in a number of modes. At boot time, it operates in real
mode like the 80286 and is nothing more than a very fast 8086. It uses 16-bit
registers and the 8086 segmentation scheme, and it is subject to the 1 MB memory
limitation.

But the 80386 can also be swilched to protected mode. In protected mode, each
segment is marked by a bit that designates whether the segment is a protected-
mode segment containing 16-bit 80286 code or a 32-bit protected-mode segment.
Programs residing in 32-bit segments can use the extended address space (segments
larger than 64 KB) and additional features, including array indexing, orthogonal use
of the register set, and special debugging capabilities not found in previous
Processors.

A protected-mode operating system can also create a task that runs in virtual 8086
mode. An application running in this mode believes that it is running in real mode
or on an 8086, However, the operating system can designate certain classes of in-
put/output (1/0) operations that it will not allow. If the application attempts to vio-
late any operating system rules, an interrupt is generated that transfers control from
the application to the operating system. By examining the instruction that the appli-
cation was trying to execute, the operating system can choose to block the applica-
tion from running, simulate the operation, or ignore it and let the application
continue. The operating system also maps the 1 MB 8086 address space that the ap-
plication believes it is running under to the actual memory space that the operating
system wants the application to use. A protected-mode operating system can estab-
lish multiple virtual 8086 tasks.

The 80386 also extends the similarities between the Intel architecture and the Mul-
tics system. Like Multics, the 80386 integrates the ability to perform demand paging
(a virtual-memory technique used in minicomputers and mainframes) with
segmentation,

The 80387

The most recent microprocessor line from Intel also boasts a new coprocessor, the
80387. The interface between the CPU and the coprocessor is the same one defined
for the 80286 and the 80287. The 80386 can be coupled with the 80287 to provide a
lower-cost floating-point environment. The 80387 provides a significant perfor-
mance improvement over its predecessor, executing floating-point benchmarks
about five times faster.

80386 Family Extensions

“Intel has indicated that the 80386 product line will continue to evolve. The next
generation processor will be called the 80486 and will include capabilities beyond
those of the 80386. However, Intel has committed to broadening support for the

10
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80386 as well. Intel recently introduced the 80386SX and the 80387SX, which are
fully compatible with the 80386/80387 but support only a 16-bit external data bus
and a 24-bit external address bus. Intel plans to introduce other processors that use
the 80386 native mode instruction set but that do not support compatibility features
such as real mode or V86 mode.

Summary

As you can see from the following table, the 80386 technology has significantly
advanced beyond that of its predecessors; however, the road to 32-bit computing
was not necessarily straight and narrow. The 80386 has been shaped by a number of
forces: the ideals of the designers, the limits of compatibility (some stemming from
the early days of the 8080), threats from the competition (both real and perceived),
and other factors such as Pascal, Multics, and UNIX. Now that I've shown the

origins of the 80386, the remainder of the book will show what the 80386 is and
what it does.

Relative Performance

8086/87 80286/287 80386/387
Integer 1.0 2.7 6.7
Floating point 1.0 1.7 10.0

If the 8086/87 performance is 1.0, the 80386/387 is approximately 6.7 times faster
performing integer calculations and approximately 10 times faster performing float-
ing-point calculations,
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THE 80386
ARCHITECTURE

Back in 1837, when Charles Babbage was musing over the idea of computation
automata, he referred to his grandest scheme as an “analytical engine.” At that time,
especially considering the mechanical aspects of Babbage's idea, an engine was an
apt metaphor for a computing device: fuel, combustion, and power vs input, com-
putation, and output,

A Data-Processing Factory

In recent years, however, this machinelike cycle led to limitations on the amount of
work that could be accomplished. A modern microprocessor such as the 80386
might be more successfully compared with a factory than with an engine. At the
heart of this data-processing factory, the computational engine remains, but it is sur-
rounded by a bevy of supporting departments.

Figure 2-1 on the following page illustrates our imaginary widget factory. It is com-
posed of three departments: Shipping and Receiving, Materials, and Manufacturing.
The Shipping and Receiving department deals with the world outside the factory. It
orders truckloads of raw materials from suppliers and passes them to the Materials
department. The goods are sorted here and warchoused until needed. The Manu-
facturing department, the “engine” of the factory, forges the finished widgets from
the raw materials and routes them to Shipping and Receiving, where they are sent to
the outside world.

The efficiency of this model lies in the parallel nature of the different activities. At
the same time as the Materials department requests the raw goods necessary to
build widgets, Manufacturing builds the current supply of widgets, and Shipping and
Receiving deals with the outside world, buys unfinished goods, and ships the newly
finished widgets.

Conventional computers receive two classes of data: instructions and operands.
The instructions tell the computer which operations to perform on the operands.
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Similar to the operation of our imaginary factory, the 80386 can work on more than
one instruction simultaneously. In the jargon of the computer industry, this is called
Dpipelining.

Manufacturing b Shipoi
ippin,
I(JSI: 2 > Widgets
T Receiving
< Raw materials
Materials <

Figure 2-1. Widget factory.

In Figure 2-2, I recast the widget factory as a data-processing factory analogous to
the operation of the 80386. The Shipping and Receiving department pulls in bytes
of data from memory. Instructions then move to the Materials department, where
they are decoded and stored. When requested, the new instructions and any neces-
sary operands pass to the Manufacturing department, the computational engine.
The results of an operation pass back to Shipping and Receiving, which stores the
results outside the CPU, in memory.

Results
Manufacturing _ Operands | Shipping Results 1;“
Instructions Receiving 5
Operations t g R
Materials e gd:: Y
atz

Figure 2-2. Data-processing factory.

Although simple, this picture of the flow of information through the 80386 is fairly
accurate. The three departments in the example correspond to six logical units in
the 80386, as shown in Figure 2-3. Each unit operates in parallel with the other
units. Later sections of this chapter describe the operation of each unit.
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Manufacturing d Shipping & Receiving
Segmentation
Execution unit unit Results M
<y
T Paging M
unit 9
Materials L < R
Decode | | Instruction | | _ Bus BaiCe
i prefetch lnterf.ace
unit unit

Figure 2-3. 80386 factory.

Keeping the factory moving

The 80386 runs to a heartbeat called the clock signal. This regular electronic pulse
keeps all units of the 80386 synchronized. The clock signal is a square wave
oscillating at a specific frequency, as shown in Figure 2-4. Instruction timings,
memory access times, and operational delays are measured in terms of clocks, or
one complete square-wave cycle. A typical frequency for an 80386-based system is
16 MHz. At 16 MHz, one clock is 62.5 nanoseconds.

1 clock
| 67.5 nsccl
—

| e R s

Clock*

80386

16 MHz
|

* Actual hardware signal is two-phase; that is,
it oscillates twice for every processor clock,

Figure 2-4. A square-wave cycle,

The timings of each processing unit are also measured in clocks. The shortest pos-
sible execution time is %2 clock. This is possible because the square-wave input to
the 80386 CPU chip oscillates at twice the clock frequency, making a two-phase
clock.

Performance advantages of parallelism

The pipelined operation of the 80386 “hides” portions of instruction execution
time. Some operations necessary to execute an instruction occur during the pre-
vious instruction. The table that follows illustrates the difference between executing
a typical instruction (ADD ECX, [EBP+8]) on the 80386 and executing it on a similar,
imaginary processor without pipelining.
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Operation With Pipelining Without Pipelining
Instruction fetch 0 clocks 2-4 clocks
Instruction decode 0 clocks 1 clock

Operand address xlate 0-6 clocks 2-8 clocks

Operand read 3 clocks 3 clocks

Execute 2 clocks 2 clocks

Total: 5-11 clocks 10-18 clocks

Pipelining lets the 80386 execute an instruction about twice as quickly as a similar
processor that performs each step of the instruction sequentially. Some instructions
that have no operands appear to execute in “zero” time because of the parallel na-
ture of 80386 operating units.

80386 Microarchitecture
Figure 2-5* shows a block diagram of the internal operating units of the 80386.
Although the programmer sees the 80386 as a single entity, it is instructive to see
how the 80386 achieves the division of labor that contributes to its speed.

80386 overview
full 32-bit architecture

Execution unit Segment unit Paging unit
32-bit Segment Page
register descriptor | descriptor
file cache M cache
Barrel shifter Segment || | Page
» ALU > unit [ unit
. T
Instruction [ .
quemla by ; e - — 32-bit
........ 1 e e : address bus
’ Instruction ‘ Prefetch | Prefetch I
e unit =i B queue unit [ 4— 32-bit
Lo b ST T T e T e data bus
| Instruction decode unit| | Code prefetch unit |

Flexible on-chip memory management
® 32-bit registers e 32-bit bus
e 32-bit instruction set » 32-bit addressing modes

Figure 2-5. 80386 microarchitectiire.

* Reprinted by permission of Intel Corporation, copyright 1986,
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Bus interface unit

The bus interface unit (BIU) is the 80386’s gateway to the external world. Any other
unit that needs data from the outside asks the BIU to perform the operation. Similarly,
when an instruction needs to write data to memory or to the I/O channel, the BIU is
presented with the data and address and is asked to place it on the bus. The bus inter-
face unit deals with physical (hardware) addresses only, so operand addresses must
first pass through the segmentation ufiit and the paging unit, if necessary.

Instruction prefetch unit

The job of the prefetch unit is relatively simple. The instruction decode unit
empties a 16-byte queue, and the prefetch unit tries to keep the queue full. The
prefetch unit continually asks the BIU to fetch the contents of memory at the next
instruction address. As soon as the prefetch unit receives the data, it places it in the
queue and, if the queue is not full, requests another 32-bit piece of memory. The
BIU treats requests from the prefetch unit as slightly less important than requests
from other units, In this way, currently executing instructions requesting operands
receive the highest priority and are not slowed down, but prefetches still occur as
frequently as possible. The prefetch unit is notified whenever the execution unit
processes a CALL, a JMP, or an interrupt so that it can begin fetching instructions
from the new address. The queue is flushed whenever a CALL, a JMP, or an inter-
rupt occurs, which prevents the execution unit from receiving invalid instructions.

Instruction decode unit

The instruction decode unit has a job similar to that of the prefetch unit. It takes in-
dividual bytes from the prefetch queue and determines the number of bytes needed
to complete the next instruction. A single instruction in the 80386 can be anywhere
from 1 to 16 bytes, After pulling the entire instruction from the prefetch queue, the
instruction decode unit reformats the opcode into an internal instruction format and
places the decoded instruction into the instruction queue, which is three operations
deep. The instruction decode unit also signals the BIU if the instruction just de-
coded will cause a memory reference, This allows the operands of the instructions
to be obtained prior to the execution of the instructions.

Execution unit

The execution unit is the part of the CPU that does computations. It performs any
shifts, additions, multiplications, and so on that are necessary to accomplish an in-
struction. The register set is contained inside the execution unit. The unit also con-
tains a logic component called a barrel shifter, which can perform multiple-bit shifts
in a single clock cycle. The execution unit uses this capability not only in shift in-
structions but in accelerating multiplications and in generating indexed addresses.
The execution unit also tells the bus interface unit when it has data that needs to be
sent to the memory or I/O bus.
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Segmentation unit

The segmentation unit translates segmented addresses into linear addresses. Seg-
ment translation time is almost entirely hidden by the parallelism of the 80386. At
the most, one clock is required to complete the address translation. The typical case
is zero clocks. The segmentation unit contains a cache that holds descriptor table in-
formation for each of the six segment registers. This unit is described further in
Chapter 3.

Paging unit
The paging unit takes the linear addresses generated by the segmentation unit and
converts them to physical addresses. If paging is disabled, the linear addresses of
the segmentation unit become the physical addresses. When paging is enabled, the
linear address space of the 80386 is divided into 4096-byte blocks called pages. Each
page can be mapped into an entirely different physical address. Chapter 6 discusses
the paging process in detail.

The 80386 microprocessor uses a page table to translate every linear address to a
physical address. The paging unit contains an associative cache called the transla-
tion lookaside buffer (TLB), which contains the entries (new addresses) for the 32
most recently used pages. If a page table entry is not found in the TLB, a 32-bit
memory read cycle fetches the entry from RAM. Under typical operating conditions,
less than 2 percent of all memory references require the 80386 to look outside the
TLB for a page table entry.

The time required to perform the translation varies between 0 and 5 clocks. Thanks
to the TLB, the typical delay is only 2 clock.

Instruction Set Architecture

The execution unit presents the programmer with the model for instruction execu-
tion, It contains the logic to process instructions, to operate on various data types,
and to interpret control information.

Because the 80386 is a 32-bit machine, the typical size of an 80386 operand is a
32-bit quantity. Also, because the 80386 processes data 32 bits at a time, it is said to
have a word size of 32 bits. Unfortunately, the term “word” is ambiguous when
referring to the 80386.

For compatibility, word refers to a 16-bit quantity, as it did in the 8086 and 80286
environments. The term dword, or 32-bit word, refers to a 32-bit quantity.

Bits and bit strings

Although the basic (default) operand size on the 80386 is 32 bits, it can manipulate
quantities of various sizes. The most elementary is the bit. A bit is a single binary
digit, and the 80386 implements a number of instructions that test and modify indi-
vidual bits. Bits are addressed as an offset from a register or memory location. The
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low-order bit of the operand is designated as bit 0, the high-order bit in the low-
order byte is bit 7, and the low-order bit of the next byte is bit 8. Figure 2-6 shows
the bits in a register and in memory. If the operand resides in memory, negative bit
offsets can also be used. Bit 1 is the high-order bit of the byte immediately preced-
ing the memory address.

Bit N Bit Bit Bit Bit Bit Bit -N
16 8 0 -8 -16
|7 07 07 07 07 0‘ 7 0
Address
a+2 a+1 a a=1 a-2
31 0
I EAX |

Figure 2-6. Bit strings.

Bytes

The byte is the basic unit of addressability on the 80386; that is, address 3 refers to
the third byte in memory, not the third dword. A byte is an 8-bit quantity that can
be interpreted as either a signed or an unsigned value. Figure 2-7 shows the layout
of a byte and the range of values that it can specify.

0
]—7:1 Signed value -128 < x< 127
Unsigned value0 £ x < 255
Address
a

Figure 2-7. Byte value range.

When a byte is interpreted as an unsigned number, it can take on a value ranging
from 0 through 255. If a byte is interpreted as a signed number, it is assumed to be
in fwo’s complement notation. This notation allows a single byte to store values
ranging from —128 through +127. To determine the value of a two’s complement
number, follow these steps:

1. Examine the most significant bit (MSB) of the value. If the MSB is 0, the number
is positive and can be read as if it were an unsigned value. If the MSB is 1, the
value is negative.

2. You can find the absolute value of the number by taking the complement of the
number (inverting the value of each bit) and adding 1.

For example, consider the binary value 10111100B. The most significant bit, 1, indi-
cates that the number is negative. To find the absolute value, take the complement
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(01000011B) and add 1. The result, 01000100B, is 68 decimal, so 10111100B represents
the value —68.

Words

Words, as previously defined, are 16-bit quantities. Figure 2-8 shows the range of
values that can be stored in a word. When a word is written to memory, it is stored
in two bytes. The low-order byte is written to the specified address, and the high-
order byte is written to the next consecutive memory location.

1 8
| 2 7 0| Signed value -32768 < x< 32767

Unsigned value 0 < x< 65535

Address
arl a

Figure 2-8. Word value range.

Word values are interpreted as signed or unsigned in the same way as are byte
values. The only differences are that bit 15 is the MSB and that there is a greater
range of possible values.

Dwords

Dwords are 32-bit quantities. Like bytes and words, they can be signed or unsigned.
The extra bits allow representation of integral values greater than 2 billion. Figure
2-9 illustrates the range of values for dwords and the way they are stored in
memory. Like words, dwords are stored in memory low-order byte first. If the low-
order byte is stored at address m, the high-order byte is stored at address m + 3,

12403 164
3 25 1615 87 Ul Signed value 2147483648 < x < 2147483647

Unsigned value 0 € x < 4294967295

Address
a3 a2 fat a

Figure 2-9. Dword value range.

The computer industry does not agree on the proper method of breaking up large
values into bytes for memory storage. Computers like the DEC VAX use the same
technique as the 80386. Others, such as the IBM 370 or the Motorola 68020, store the
high-order byte first. This can be a consideration when porting programs from one
computer to another.

Quadwords

Quadwords are 64-bit numeric quantities. No instructions reference quadword
memory operands. However, the 32-bit Multiply instruction generates a 64-bit value,
with the high-order bits in register EDX and the low-order bits in register EAX.
Conversely, the Divide instruction accepts a 64-bit dividend stored in the same
register format. Storing a quadword in memory requires two MOV instructions.
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ASCII and BCD

In the previous examples, the values discussed represent numbers. For ASCII and
BCD, the binary patterns represent encodings of information. ASCII stands for
American Standard Code for Information Interchange. ASCII values are 7 bits of in-
formation stored in a single byte. The most significant bit is 0. A particular bit pat-
tern represents a predefined value. For example, the binary pattern 0101011B
represents the plus character (+). 1010011B represents the letter S, and 0110101 repre-
sents the digit 5. Appendix B contains a table of all ASCII characters.

Similarly, BCD, which stands for binary coded decimal, encodes representations of
decimal numbers in a binary format. Encoding a decimal digit requires 4 bits.
Because using only 4 bits of a byte is inefficient, 2 BCD digits are often stored in a
single byte. This representation is called packed BCD. Figure 2-10 shows how values
are stored in BCD notation.

BCD Decimal 1 7 ) 3 2
[ o001 | ommx [ 1001 | o011 | 0010 |Bcp
Address
a+td at3 a+2 a+l a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010

1 7 O'aihea 2
(0000  0001] 0111 1001] 0011  0010]

Address
at2 atl a

Packed
BCD

hielie DN oy SV, BNV SR =]

g ][nvalicl
1111

Figure 2-10. BCD storage.

Because ASCIIT and BCD provide ways to encode numeric values and do not have a
fixed length, they can be used to implement variable-precision numbers. The 80386
supports ASCII and BCD arithmetic via the Decimal Adjust and ASCII Adjust in-
structions. Chapter 4 discusses ASCII and BCD arithmetic.

The 80386 Register Set

In addition to implementing the logic to execute instructions, the 80386 has a num-
ber of storage locations on the chip, called registers. Because they are inside the
CPU, registers can be accessed as operands much more rapidly than can external
memory. The general registers are used by the 80386 to store frequently accessed
operands. Other registers contain special values that control specific aspects of
80386 operation.
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The 80386 register set is partitioned into five classes: the general registers, which
applications use for data storage and computation; segment registers, which affect
memory addressing; protection registers, which help support the operating system;
control registers, which modify the behavior of the processor; and debug and test
registers, which are used as their name implies.

General registers

The general registers are named EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP, as
shown in Figure 2-11. As a rule, any instruction can use any general register except
ESP, either as an operand or as a pointer to an operand in memory. Exceptions are
noted in Chapter 4 in the discussion of the instruction set.

31 ey Gy ) 15 0
EAX AX Gs
| AH | AL S8
EBX BX DS
| BH | BL ES
ECX CX FS
[RACHSEICL GS
EDX DX Segment registers
| DH | DL
EBP ,
| BP 31 0
EFLAGS
ESl EIP
| Sl —
EDI Status registers
| DI
ESP
[ SP

General registers

Figure 2-11. 80386 base register set.

In the 80386, you can address selected portions of these registers. The part of the
register accessed depends on whether you are performing an 8-bit, 16-bit, or 32-bit
operation. Each division of a register has a separate name. For example, EAX is the
name of one of the 32-bit registers. The lower 16 bits are addressable as AX, and that
half of the register is accessible as AL (the low-order 8 bits) or AH (the high-order 8
bits). These names are left over from previous generation microprocessors, the 8080
and 8086, as discussed in Chapter 1. The 80386 extends the 80286 register set to 32
bits, similar to the way that the 8086 and 80286 extended the 8-bit registers of the
8080 to 16 bits. Figure 2-12 shows a map of the register extensions.
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N
<

31 16858570

ek b et

aidon sk
o afiam be b

e
B
A

Segment registers

31 16[15
EFLAGS . =
ElB

Status registers

5P
General registers 80286 registers

i:] 80386 registers extensions

Figure 2-12. 356/286 registers.

Two additional registers hold status information about the current instruction
stream. The EIP register contains the address of the currently executing instruction,
and the EFLAGS register contains a number of fields relevant to different
instructions.

Like the other registers, EIP and EFLAGS have 16-bit components, IP and FLAGS.
The 16-bit forms of these registers are used in virtual 8086 mode and in running
code written for the 80286.

EFLAGS register

A breakdown of the EFLAGS register looks like this:

31 ) 1615 8 7 0
VI|R| [N|IO [O|D|L|T|S|Z| |A| [P| |C
MIE| |T P.L F|(F|F|F|F|F| [F| |F| |F

VM — Virtual 8086 mode: When this bit is set, it indicates that the currently exe-
cuting instruction stream is 8086 code. The implications of virtual 8086 mode are
covered in Chapter 7. Applications cannot change the VM (virtual machine) bit, and
instructions that modify EFLAGS leave the VM bit unchanged. Only the task-switch
operation or an interrupt/interrupt return can alter the VM bit.
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RF—Resume flag: This bit controls whether a debug fault can be generated dur-
ing the execution of an instruction. When an exception occurs during program ex-
ecution, the 80386 pushes the current CS, EIP, and EFLAGS registers onto the stack
and transfers control to the proper exception handler. The stack image of the
EFLAGS register has the RF bit set to 1. When the exception handler returns to the
interrupted instruction, the RF bit is on, and the 80386 prevents a debug fault from
being generated. Any other faults (such as page faults or protection faults) occur as
usual. The debug exception has the highest priority of all 80386 exceptions; if,
therefore, an instruction causes multiple faults, the first one processed is the debug
exception. When control returns to the interrupted instruction, the RF bit is set, and
the instruction is completed without retriggering the debug fault. The 80386 clears
the RF bit upon completion of the interrupted instruction. (See Chapter 5 for a
discussion of exceptions and support for debugging.)

NT'— Nested task flag: The 80386 sets this bit whenever a CALL, interrupt, trap,
or exception causes a task switch. The bit is set in the EFLAGS register of the new
task and indicates that a reverse task switch (IRET) is valid. Task switching in the
80386 is discussed further in Chapter 5.

IOPL—1/0 privilege level: This 2-bit field holds a value of 0-3 that indicates the
privilege level required to perform 1/0 instructions. Although IOPL is in the
EFLAGS register, no procedure can modify it unless the procedure is running at
privilege level 0, and then only by using the POPF instruction.

A procedure’s current privilege level (CPL) must be equal to or more privileged than
the IOPL to execute any of the following instructions: IN, INS, OUT, OUTS, CLI, or
STI. A procedure that can execute these instructions is said to have 1O privilege.

OF— Overflow flag: When an arithmetic integer instruction is executed, the OF
bit is set if the result is too large or too small to fit in the destination register or
memory address. Because the OF flag is set relative to integer instructions, the
80386 presumes that the destination register is one bit smaller in size to allow for
the sign bit. The following instructions illustrate some examples.

MOV AL, 127 ; AL = 7FH, largest 8-bit
: signed integer OF = 0
ADD AL, 2 : result, AL = 81H (-127)

; should be AX == 0081 (129), OF =1

MOV CX, -35000 i CX == 7748H, OF = 0

SUB CX, 7002 : result, CX == SBEEH (42002)
: should be ECX =— FFFF5BEEH (-42002),
; OF = 1

Note that the OF bit is ignored if unsigned arithmetic is intended. For example,
adding 127 and 2 in register AL generates a valid, unsigned result of 129.
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DF— Direction flag: The direction flag bit modifies the behavior of the string in-
structions: MOVS, STOS, LODS, CMPS, SCAS, INS, and OUTS. When DF is 0, the
string instructions operate on incrementally higher addresses. When DF is 1, the
memory addresses are decremented, and the operand addresses become progres-
sively lower. The STD instruction sets the direction flag bit, and the CLD instruction
clears the bit.

IF—Interrupt enable flag: When this bit is set, the 80386 responds to external
hardware interrupts. When the bit is reset, interrupts are disabled, and the 80386 ig-
nores the hardware interrupt pin. Note that this bit does not affect the NMI inter-
rupt. The processor always responds to faults (exceptions) and software interrupts
regardless of the setting of the IF bit. When IF is 0, interrupts are said to be masked.

The STT instruction sets IF to 1, and the CLI instruction clears IF to 0. The interrupt
enable flag is also modified when an IRET is executed. A POPF instruction modifies
the interrupt enable flag only if the procedure executing the instruction has I/O
privilege.

TF—Trap flag: The trap flag bit assists in debugging programs on the 80386,
When the TF bit is set, an interrupt 1 occurs immediately after the next instruction
executes. The trap flag is usually set by a debugger; the debug capabilities of the
80386 are covered in Chapter 5.

SF—Sign flag: The sign flag bit changes when arithmetic or logical instructions

are executed. The sign flag bit receives the value of the high-order bit of the result
and, when set to 1, indicates that the result of the instruction is negative.

MOV EDX, -1 ; Sign flag unchanged by MOV
ADD EDX, 3 s EDX == 2. SF now O
NEG EDX ; EDX == -2, SF now 1

ZF—Zero flag: The zero flag bit is set when arithmetic instructions generate a 0
result.

MOV AL, 0O ; Zero flag unchanged by MOV
OR AT AL : AL unchanged, ZF now 1

AF—Auxiliary carry flag: The auxiliary carry flag bit indicates that a carry out of
the low-order nibble of the AL register occurred in an arithmetic instruction, This
bit is used by the ASCII and BCD instructions. It allows implementation of multiple-
digit precision decimal arithmetic. The following example assumes an ASCII encod-
ing of the characters 4 and 7.

MOV AL, '4' ; AL == 34H, AF unchanged by MOV
ADD AL, '7°' ; AL == 6BH, AF now 1
AAA ; ASCIT Adjust, AL == 1, AH = AH + 1
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PF— Parity flag: The parity flag bit is set to 1 when an arithmetic instruction
results in a value with an even number of 1 bits. For example, if you issued the fol-
lowing instructions, the resulting parity flag bit would be 0.

MOV  AH, 91H ;: AH =— 10010001B, PF unchanged by MOV
ADD AH, O5H : AH = 10010110B, PF now 1

CF—Carry flag: The carry flag bit is set when the result of an arithmetic opera-
tion is too large or small for the destination register or memory address. It is similar
in operation to the OF bit but indicates an unsigned overflow of the destination.

MOV AL, 127 ; AL == 7FH, CF unchanged by MOV

ADD AL, 2 ; AL == 81H, CF now 0

ADD AL, AL : AL == 02H, CF now 1 (result is 102H)
MOV AL, 3 ; CF unchanged by MOV

SUB AL, 4 : AL == FFH, CF now 1 (borrow bit)

Segment registers

The segment registers hold the values that affect which portions of memory a pro-
gram uses. Four segment registers are used under specific conditions, and two are
available as pointers to frequently used areas of memory. The CS, DS, S8, and ES
registers were inherited from the 80286 and perform the same functions as they did
in that CPU. Two additional registers, FS and GS, are new to the 80386.

Associated with the segment registers is a descriptor cache, which holds the starting
address of the memory segment and other related information. Chapter 3 details the
relationship between segments and memory addresses in the 80386. The descriptor
cache for the segment registers is not accessible to the programmer; only the 16-bit
register portion can be accessed directly. Figure 2-13 illustrates the segment regis-
ters and the internal descriptor cache.

Access
15 0 Base Limit  rights
Cb : R ] B D e bRl

S 2T rErsane e ey
DS
ES
FS
GS

Visible portion "Invisible" descriptor cache

Segment registers

|:| Programmer accessible

Not accessible

Figure 2-13. Segment registers.
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Protection model registers

Four registers support the protection model of the 80386, as shown in Figure 2-14.

Protection registers Access
Base Limit rights
D Programmer accessible GDTR EERRE
Not accessible IDIR paiis
LDTR
TR Snnbin e
Visible portion "Invisible" descriptor cache

Figure 2-14. Protection registers.

The protection model registers are:
GDTR— Global Descriptor Table Register
IDTR— Interrupt Descriptor Table Register
IDTR— Local Descriptor Table Register
TR—Task Register

The GDTR and IDTR contain linear base addresses that point to the start of the
GDT and the IDT descriptor tables. They also contain limit fields that describe the
size of the GDT and IDT tables.

The LDTR and TR registers hold 16-bit selector values, similar to the segment regis-
ters. Like the segment registers, an inaccessible descriptor cache exists for both the
LDTR and TR, The LDTR holds a selector for an LDT descriptor, and the TR holds a
selector for the TSS (task state segment) of the currently executing process. Chapter
5 discusses how these registers work.

Control registers

The control registers regulate the paging and numeric coprocessor operation of the
80386. A general description of the registers follows; refer to the specific chapters
on paging and coprocessors for more detailed information. A programmer can only
read or modify control registers by instructions of the form MOV CRx, reg, where
reg stands for one of the general registers. A procedure must be running at the
highest privilege level to execute these instructions,
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CRO—Control register 0

The following illustration shows the contents of control register 0. The LMSW and
SMSW instructions allow access to the low-order 16 bits of CR0 as the machine
status word.

31 1615 87 43210
P E|T|E|M|P
G Reselrved rls|mip|el €RO

PG—Paging: Paging is enabled by setting the PG bit to 1. Typically, the operating
system does this once, at initialization. Chapter 6 discusses the 80386 paging
mechanism.

ET— Extension type: The 80386 sets the ET bit to 1 at boot time if the processor
determines that an 80387 is present. If this bit is 0, the coprocessor is either an
80287 or is not present at all. When ET is 1, the 80386 uses a 32-bit protocol to com-
municate with the coprocessor; otherwise, it uses a 16-bit protocol.

TS—Task switched: The 803806 sets the TS bit when a task switch operation oc-
curs. When the TS bit is on, the next coprocessor instruction causes a trap to the
operating system. This feature lets the operating system implement multitasking
without requiring the operating system to save the state of the math coprocessor ev-
ery time a task switch occurs. The context of the 80387 is more than 100 bytes, so
saving the coprocessor state at every task switch would waste valuable CPU time.

EM— Emulate math coprocessor: When this bit is set, floating-point instruc-
tions that would normally control coprocessor operation trap to the operating sys-
tem instead. Proper use of this bit allows programmers to write applications as if a
coprocessor were present, If an 80287 or 80387 is present, the operating system ini-
tializes the EM bit to 0, and the application’s floating-point instructions will be exe-
cuted by the coprocessor. If an 80287 or 80387 is not present, the operating system
sets the EM bit to 1. Then, when an application executes a floating-point instruction,
the 80386 will trap back to the operating system, which either emulates the instruc-
tion in software or passes the operands to other floating-point hardware in the
system.

MP—Math present: The operating system sets this bit to 1 at boot time if a math
coprocessor (either the 80287 or 80387) is present. The MP bit affects the operation
of the WAIT instruction, as described in Chapter 8.

PE— Protect enable: Setting the PE bit places the processor into protected mode.
Typically, this is done once, at initialization. Unlike the earlier 80286, the 80386
makes it possible to switch the CPU back into real mode after entering protected
mode. Some implementations of the O8/2 operating system use this technique to
allow real-mode MS-DOS programs to run concurrently with protected-mode OS/2
applications.
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CR1—Control register 1
Control register 1 is not used in the 80386 and is reserved for future Intel processors.

CR2—Control register 2
When a page fault occurs, the CR2 register is loaded with the linear address that
caused the exception. Refer to Chapter 6 for more details on paging in the 80386.

CR3—Control register 3

The 80386 paging hardware also uses this register. It contains the linear address of
the starting point of the page directory. The implementation of paging is covered
fully in Chapter 6.

Debug and test registers

The 80386 contains seven debug registers and two test registers. The test registers,
TRG6 and TR7, allow diagnostic software to test the translation lookaside buffer
(TLB). Because the TLB is part of the paging hardware, these registers are discussed
in Chapter 6.

The debug registers, labeled DRO-DR7, allow the 80386 to implement a hardware
breakpoint capability that previously required an external in-circuit emulator. By
setting the address register (DRO-DR3) and control bits (DR6-DR7), the program-
mer can halt the 80386 when a particular memory location is read from, written to,
or executed. The breakpoints are noninvasive (they don't require modification of
the program under debug), and they are also real-time (they don't degrade the per-
formance of the program). Chapter 5 describes debugging techniques using the
debug registers.

Coprocessor Support

The 80386 can operate with either the 80287 or 80387 numeric data processor
(NDP). Because these special-purpose chips operate in parallel with the 80386, they
are called coprocessors. The 80287 is a slower chip with a 16-bit interface, originally
designed for use with the 80286. Floating-point performance with the 80287 is ap-
proximately 320,000 whetstones when running at 10 MHz. The 32-bit 80387 offers
higher performance. This processor is software compatible with the 80287 and can
execute about 1,800,000 whetstones when running at 16 MHz. Appendix F notes the
differences between the 80287 and 80387, References to the 80387 in the following
text also refer to the 80287, unless otherwise noted.

In addition to the raw performance advantage of hardware support for floating-
point arithmetic, the NDPs introduce another level of parallelism into the system.

As soon as the 80386 passes an instruction to the 80387, it begins operating on the
next instruction regardless of how long the 80387 takes to complete its operation. Of
course, if the 80386 encounters another floating-point instruction, it must wait for
the coprocessor to complete the current operation before the 80386 can give it
another one.
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To use a value computed by the 80387 and written to memory, you must ensure that
the 80387 has completed the write operation. The FWAIT instruction ensures syn-
chronization between the 80386 and 80387.

If a coprocessor is absent, the 80386 allows an operating system to emulate one and
remain invisible to the application. For details on coprocessor emulation, see the
discussion of the EM bit in control register 0 of the 80386 earlier in this chapter.

Additional data formats

Adding either the 80287 or the 80387 coprocessor to an 80386 adds direct hardware
support for three floating-point number formats and one BCD integer format. The
80287 and 80387 also support three integer formats that the 80386 recognizes. These
are the 16-bit, 32-bit, and 64-bit two’s complement (signed) integers, identical to
their counterparts on the 80386, Figure 2-15 shows the additional numeric formats.

15 0
: Word integer
31 0
‘ Short integer
63 ; 0
: | : Long integer
79. 78 BCD digits 0
| | 3
S0 |dy dm:dls dygdys .. : | oy il | d, d, d; dy| BCD integer
Sign Exponent Fraction
31 30 23822 0
S l Short real
Sign |
63 62 52r51 0
S| Exponent | Fraction Long real
79 78 64] 63 [ | 0
S |[Exponent,  Fraction l : Temp real
Address
n+9 n+3 n+2 n+l n

Figure 2-15. Floating-point formats.
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Floating-point numbers

The 80387 supports three floating-point formats. This allows a programmer to make
compromises between the amount of memory required and the precision of the
results. The short real format lets programmers specify numbers of about six deci-
mal digits of accuracy. This format is also known as single-precision because a
short real number fits into a single 32-bit machine word. Long reals, also known as
double-precision, represent floating-point numbers of up to 15 decimal digits of ac-
curacy. Holding a long real number requires a double machine word (64 bits). The
third format is called temp (temporary) real or extended-precision. Temp real num-
bers are 80 bits and represent about 19 decimal digits of precision,

Just as scientific notation represents floating-point quantities in decimal notation
(for example, 4.74 x 103), the 80387 floating-point format is a type of binary scien-
tific notation, The general format of a floating-point number on the 80387 is £/ X 2¢,
where frepresents a binary fraction and e is an exponential power of 2. Three
fields are required to make up a floating-point number: the sign, the exponent, and
the fraction, or significand.

The sign field is a single bit that is set to 1 to indicate a negative number and reset to
0 for a positive value. Unlike the two's complement notation of the integers, no
value manipulation is necessary to change the number from positive to negative (or
vice versa) other than toggling the sign bit. This notational format allows the repre-
sentation of +0.0 and —0.0, which is useful in certain circumstances.

The exponent field represents a multiplier of 27, This field ranges from 8 bits in the
short real format to 11 bits in the long real format to 15 bits in the temp real format.
To accommodate negative exponents (such as 2-9), the value in the exponent field
is biased; that is, the actual exponent is determined by subtracting the appropriate
bias value from the value in the exponent field. For example, the bias for short reals
is 127. If the value in the exponent field is 130, the exponent represents a value of
2130-127 or 23, The bias for long reals is 1023, and the bias for temp reals is 16383.
The values 0 and all 1s (binary) are reserved for representing special values and
cannot be used to represent floating-point numbers.

The significand field contains the fractional part of the floating-point number. The
significand occupies 23 bits in short reals, 52 bits in long reals, and 64 bits in temp
reals. Figure 2-16 shows how to interpret floating-point fractions. The significand
is encoded in two different ways on the 80387. In temp real format, the significand
field holds the binary fraction in the form s,.s,s, .. .54, Where s,, is bit 7 of the
significand,

In short format and in long real format, the authors of the IEEE-754 format took ad-
vantage of a representational trick to squeeze out an extra bit of precision. A review
of scientific notation shows that the values 40.103 x 107, 4.0103 x 108, and 0.0040103
% 1019 all represent the same number. A binary notation has the same property.
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Shifting the fraction by one position can be compensated for by incrementing or
decrementing the value of the exponent. Because a binary number consists of only
0s and 1s, the designers of the floating-point format decided that the fractional por-
tion of the short and long reals would be shifted left until the most significant bit
was 1. Since this bit was now defined as 1, there was no point in storing it, and it
was assumed to exist. The fraction for a short or long real, therefore, has the value
1.548,85. . .5,,, Where » is 22 for short reals and 51 for long reals.

Decimal fraction Binary fraction

1
Sl e |k ek g b | e b | [ | it |
1 1
1 1
10" 10“E10"10"’-10'-‘10“‘ 2%[2¢ 225227 o5t
] 1
Decimal point Binary point
37.2101 decimal 6.5625 decimal

Normalized fraction

ol I o] |

Single digit before
the "binary point"

Short “‘“1} 1.[ Significand | = Fraction (MSB implied)
Long real

Significand
Tempreal [ [, [ | ... | | Fraction directly represented

Figure 2-16. Floating-point fractions.

Short real:
51 2322 0
+ bl
Exp Significand blng.l‘el
- precision
50 S22
Absolute value = 1.5,5, . . . 5,,X 2 (exp—127)

The bias for the short real exponent is 127. The significand includes the “implied 1"
bit and allows a precision of about six decimal digits. Representative values range
from £1.18 x 1038 to £3.40 x 1038.
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Long real:

63 62 5251 &
- R s Double
5 Exp Significand precision

Sy S5y
Absolute value = 1548, . . . s,x 2 P10

The bias for the long real exponent is 1023. The significand includes the “implied 1”
bit and allows a precision of about 15 decimal digits. Representative values range
from +2.23 X 10-398 to +1.80 x 10308,

Temp real:

79 78 64 63 0

+ . e AT Extended
Fl Exp Significand precision

S0 S63

Absolute value = sq.5;. . . 5y x 2CXP 716389

The bias for the temp real exponent is 16383. The significand represents the frac-
tional portion of the value (with no implied bits) and allows a precision of about 19
decimal digits. Representative values range from £3.30 X 10 ~4932 to £1.2 X 101932,

Special floating-point values: In addition to intuitive values such as 3.14159 and
6.03 % 1023, the 80387 represents values that arise under unusual conditions. These
values are called infinities, denormals, and NaNs. (NaN stands for “not a number.”)

Infinity, positive or negative, is represented by a value whose exponent field is all 1s
and whose fraction is 1.0B. Note that in short and long real numbers, 1.0B is repre-
sented by a significand of all Os, whereas in temp real numbers, the significand is a
binary 10000000...0B.

Denormals are values that are too small to represent in the standard (or normalized)
fashion. Denormals are represented by a value with an exponent field of 0 and any
nonzero value in the significand. A floating-point number with both an exponent of
0 and a significand of 0 represents 0.0.

NaNs are invalid representations of floating-point numbers. They are identified by
an exponent field of all 1s and a significand other than the one representing infinity.
The two kinds of NaNs are the signaling NaN and the quiet NaN. A signaling NaN
has a fraction of the form 1.0xxx...xB, where x represents any bit value. The 80387
generates an exception whenever a signaling NaN is used. The 80387 never creates
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a signaling NaN, but a programmer can use one to indicate some error condition
such as an uninitialized floating-point variable. The quiet NaN has a fractional for-
mat of 1.1xxwecB. Recall that the leading 1 is not implied in the significand of short
and long reals but must be present in temp reals. The 80387 generates a quiet NaN
instead of a numeric result whenever a floating-point instruction causes an invalid
operation, Any instruction that receives either type of NaN as an operand generates
a NaN as a result. The following table lists special values used by the 80387.

Sign Exponent Fraction Value

X 11...11B 1.1xx.. . xxB Quiet NaN

X 11...11B 1.0xx...xxB Signaling NaN
X 1118 1.00...0B Infinity

X 00...00B 0. x0xxxxB Denormals

X 00...00B 0.00...0B Zero

The “x" indicates that it makes no difference whether the bit is 0 or 1. The “1” before
the decimal in the fraction is physically present only in temporary real format. It is
implied in the short and the long real formats. Denormals are recognized in the
short and the long format by the 0 exponent value,

BCD integer

The other new data type that the 80387 supports is a packed decimal integer of 18
digits stored in 10 consecutive bytes of memory. The high-order bit of the high-
order byte is interpreted as a sign bit in the same way as floating-point numbers.
The rest of the high-order byte is unused. The remaining bytes each contain two
BCD digits.

79 7271 6463 5655 4847 4039 3231 2423 1615 87 0
s| 0 dd | dd | dd | dd | dd [ dd | dd | dd | dd

The value range of the BCD integer is 0 through £999,999,999,999,999,999. Program-
mers who work with BCD numbers might want to run the 80387 with the precision
exception unmasked. Because BCD formats often represent monetary values, it is
important to avoid losses due to rounding or truncation,

Coprocessor register set

The 80287 and 80387 are nearly identical in terms of their programming models.
Both contain register files of eight 80-bit floating-point registers and a number of
status registers. (See Figure 2-17.)
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15 0
| Control word |

Sign Exponent Fraction
75 78 6463 0 [ statusword |

|_ Tag word |

31 15 16 0
FIP
| FCS
FOO
| FOS
Floating-point registers Error pointers

~1 G\ ok e N O

Figure 2-17. 80387 register file.

Unlike the general registers of the 80386, however, the NDP registers are addressed
as a stack. The current top-of-stack (the value most recently pushed) is indicated by
a field in the status word register and is addressed as ST or ST(0). The next register
(the previous value pushed) is ST(1), and so on. This is best illustrated by the fol-
lowing example.

Assume that the configuration in Figure 2-18 (on the following page) shows the ini-
tial state of the 80387. Register 2 is designated as the current top-of-stack, but
nothing is stored in the registers. The tag word (TW) register holds a 2-bit field for
each register, marking it as valid, 0, special, or unused. To evaluate the polynomial y
= 3x2 — 7x + 4, we will use the following code fragment. (Figure 2-18 shows how
the function evaluation progresses on the 80387 stack.)

X DD ? ; short real variable "x"
¥ DD ? ; result of computation
const DW ? ; memory word for integer constants
FLD X ; load x to top of stack
FLD ST(0) ; duplicate copy of x
FMUL ST(0) ; square copy of x at top of stack
MOV const, 3 ; integer multiplier
FIMUL  const : multiply top of stack by 3
MOV const, 7 ; integer constant
FILD const ; load 7 to top of stack
FMULP  ST(2), ST ; ST(2) = x *= 7, pop ST
FSUBRP ST(1), ST ; ST(1) = ST - ST(1), pop ST
MOV const, 4 ; integer constant
FIADD const Al =Tt
FSTP y ; store result and pop, clearing stack
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b4

~N W W o = O

~ NN R W N = O

~NSDW R W N = O

= W NN = O

SW 2
Top
(a) Initial state

# X

" ¢
SW 0
Top

(c)

> Tx

X
SW 0
Top

(e)

» Tx2

3x
SW 0
Top

(g)

Figure 2-18. Fvaluating a polynomial.

FLD x
SW 1
Top
ST(0)
ST(1)
FMUL ST(0)
SW 0
Top
ST(0)
ST(1)
MOV const, 3
FILD const
S\Xfl | 7 | |
Top
ST(0)
ST(1)
FSUBRP ST(1), ST

Top

Hea 0
1 ST(0)
: 2
3 FLD ST (0)
| 4
15
|6
sieiitess| 7
(b)
x2 0 ST()
X 1 ST(1)
3 2
3 MOV const, 7
4 FIMUL const
gl 5
6
7/
(d)
Tx? 0 ST(1)
X 1 ST(2)
3
: FMULP ST(2), ST
i 6
3 7 ST(O)
(®
. " 0
7 -3x | 1 ST(O)
Tk 2
M3 MOV const, 2
il 4 FIADD const
& 5
16
S 7
(h)
(continued)
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Figure 2-18. continued

|0 g 0

> 1 STO) o 1

|2 2

3 FSTP Y 13

4 4

swl[ 1 5 swl [z T
Top 6 Top |6

|7 7

(i)
The 80387 register addressed by ST(#) varies according to the value of the TOP field

in the status word register. The following section describes the other fields in the
status word register.

Status word register
The status word register can be illustrated as follows:

15 8 7 0

) |
B [C3 TOP C2|C1|CO|ES|SF|PE|UE|OE|ZE|DE| IE

1 L

B—Busy: This bit is 1 when the 80387 is executing an instruction or when an un-
masked exception (bits 0-5) is indicated. Execute the instruction FNSTSW AX,
which copies the status word register to the AX register of the 80386 to test this bit.

C;, C,, C;, C,—Condition codes: The 80387 sets these bits when a floating-
point compare, test, or examine instruction is executed. The various combinations
that occur are discussed under the relevant instructions in Chapter 8.

TOP—Top-of-stack: This field indicates which of the 80387 machine registers
functions as the top-of-stack. When a new value is pushed onto the register stack,
the value of TOP is decremented by 1, When a value is popped from the stack, TOP
is incremented by 1. The results of the increment or decrement are truncated to
three bits to allow addressing of eight floating-point registers.

ES— Error summary: The 80387 sets this bit to 1 whenever a floating-point in-
struction generates an unmasked exception. The exception indicators are bits 0-5.
The exception masks themselves are located in the control word register.

SF—Stack fault: The 80387 sets this bit to 1 if an instruction causes a stack over-
flow by pushing too many operands or a stack underflow by popping the stack
when there are no more values. This field does not exist in the 80287, so floating-
point code that must run on either coprocessor should not rely on having the bit. A
stack fault also results in an invalid operation exception.

37



THE 80386 BOOK

Before discussing each field, it is worth noting a couple of things about bits 0-5 of
the status word register. These bits correspond to exceptional conditions that can
occur while executing 80387 instructions.

Whenever a condition represented by an exception bit occurs, the 80387 first sets
the appropriate bit in the status word register. Next, it checks the corresponding
mask bit in the control word register. If the mask bit is 0 (unmasked), the 80387 trig-
gers the coprocessor fault (interrupt 16) on the 80386. If the mask bit is 1 (masked),
the 80387 continues by executing the next instruction.

Additionally, the 80387 exception bits are “sticky.” Once set, they remain set until
the programmer loads the status word register with a new value. This lets the pro-
grammer write a series of numeric instructions and place a test for errors at the end
of the instruction stream rather than after each instruction.

PE—Precision exception: This exception occurs when the 80387 cannot repre-
sent the exact result of a floating-point instruction. For example, the fraction /3 can-
not be represented exactly as a decimal fraction because it produces an infinitely
repeating result. Any finite representation such as 0.3, 0.333333333, or even
0.333333333333333333333333333333 is only an approximation. Similarly, the 80387
cannot represent this fraction exactly in binary format. Dividing 1 by 3 results in the
infinite binary fraction 0.01B.

This exception also occurs when a temp real number is converted to a lower preci-
sion and bits are lost in the conversion,

The precision exception is almost always masked because a rounded or truncated
result will suffice in most cases.

UE— Underflow exception: The underflow exception is triggered when the
result of an operand is too small for the 80387 to represent. For example, the
smallest value that can be represented in the 80387’s 80-bit extended-precision for-
mat is 3.37 x 1079932, Attempting to square a number such as 10-3900 results in an
underflow exception.

OE— Overflow exception: This exception is the converse of the underflow ex-
ception. It occurs when the result of a floating-point operation is too large for the
80387 to represent. Like the precision exception, UE and OE can be generated
when a number representable on the 80387 is converted to a format in which it is
not representable.

ZE—Zero divide exception: Whenever division by zero is attempted, the ZE ex-
ception occurs. This exception can be caused by floating-point operations other
than the divide instruction, such as sine, cosine, remainder, and so on.

DE— Denormal exception: This exception occurs whenever an operand of a
floating-point instruction is a denormal. Denormal numbers are discussed earlier in
this chapter.
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IE—Invalid operation exception: This exception traps all error conditions not
handled by the previously discussed exceptions. These can include arithmetic faults
(such as an attempt to take the square root of a negative number) or programmer
faults (such as specifying a register that contains no value as an instruction operand),

Control word register

A programmer modifies the control word register (CW) of the 80387 to alter its
behavior. The format of the control word register and the definition of each field
follows.

15 12 ' ‘87 0
X[ XXX RC PC X | X |PM|UM|OM|ZM |DM| IM

Bit 12— 0 (infinity control on 80287): Bit 12 is ignored on the 80387. On the
80287, this bit selects either affine or projective closure. Affine closure allows the
use of both positive and negative infinity. In projective closure, very large or very
small numbers overflow to a single unsigned infinity. The 80387 only supports
affine closure.

RC— Rounding control: This field specifies how the 80387 handles values that it
cannot represent exactly. The RC field can be set to one of the following modes:

00—Round toward nearest (choose even number if equidistant)
01—Round toward negative infinity

10— Round toward positive infinity

11—Round toward zero (truncate)

To see how the rounding control affects the results of a computation, assume that
the 80387 can represent only the integers —5 through +5. Figure 2-19 on the follow-
ing page shows the results of rounding the values 2'4, 13, —=1'3, and —2Y3 in each
rounding mode.

PC—Precision control: The PC field tells the 80387 which floating-point format
to use when generating the results of add, subtract, multiply, divide, and square root
operations. This field can hold one of the following values:

00— Single-precision (32-bit)

01— Reserved for future coprocessors
10— Double-precision (64-bit)

11— Extended-precision (80-bit)

Instructions other than those affected by the PC field generate extended-precision
results or have a precision specified by the operand.



THE 80386 BOOK

';_pq_i i Round to:
| 1 1

i . E E Nearest (even)
SR D R 0 IS s

| i i i

| ! 1 ]

j i i i

E—» > —

' : 1 ' Zero (truncate)
| 0 (S

] : I |

i i i i

i i i i
e !

i ] I i =09
-3 ! 24 el 0 1 ! 2 ! 3

el e i

] I | I

i i | i

— — — —

! H ! ! S
LR ] 0 102 S 3

e et

214 -1%4 12.-"_} 214

Figure 2-19. Rounding control,

PM, UM, OM, ZM, DM, IM—Mask bits: The remaining bits in the control word
register are the mask bits for the exception conditions and correspond to bits 0-5 of
the status word register. The mask bits are:

Precision mask (PM)

Underflow mask (UM)

Overflow mask (OM)

Zero divide mask (ZM)

Denormal operand mask (DM)

Invalid operation mask (IM)

Tag word register

The final 16-bit register on the 80387 is the tag word register. This register consists
of eight 2-bit fields that correspond to each floating-point register. TO is the field for
register 0 (not STO), T1 is associated with register 1, and so on. Each tag field holds

one of the following values that gives additional information about the contents of
the corresponding register:

00—The register contains a valid floating-point number.

01—The register contains the value 0.0.



2: The 80386 Architecture

10—The register contains the value infinity or an invalid number.
11—The register is empty (unused).

The tag word register is normally not used by the programmer. A debugger that dis-
plays the contents of the 80387 stack must examine the contents of the tag word
register to properly interpret the contents of the coprocessor registers.

Error pointer registers

The only other registers on the 80387 are the error pointer registers. These registers
are updated each time a new floating-point instruction is executed. When a float-
ing-point instruction causes an exception, these registers can be queried to deter-
mine which instruction is at fault. Note that no 80387 instructions directly address
these registers. The store environment operation copies the contents of all 80387
registers to memory.

The error pointer registers are necessary because of the parallel operation of the
80386 and 80387. The 80386, which is executing simpler, faster instructions, might
be executing code in a different segment when the 80387 generates an exception,
The error pointer registers make it much easier to determine what went wrong
when an 80387 exception occurs.

31 16 15 0
|
FIP
|
| |
00000 : FOP i FCS
|
FOO
|
|
0 : FOS

FIP— Floating-point instruction pointer: This register is loaded with the con-
tents of the 80386 EIP register when a coprocessor instruction is executed.,

FCS— Floating-point code segment: This register is loaded with the value of the
80386 CS register when a floating-point instruction is executed.

FOP— Floating-point opcode: This register is loaded with 11 bits of opcode in-
formation. A coprocessor instruction always has the format:

i, 0 7 0

1(1{0]|1[1]?|?(? Al bl el il el el

-3

(Optional bytes)

First byte Second byte

a1
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The second byte of the instruction is concatenated with the 3 low-order bits of the
first byte to form the contents of the FOP register. Early versions of the 80386 do not
generate this information for the 80387, nor is it available when using the 80386 in
protected mode with the 80287 coprocessor. It might be simpler to use the FCS and
FIP values to find the instruction at fault.

FOS— Floating-point operand segmeni: This register contains the segment
register of the memory operand (if any) referred to by the most recent floating-

point instruction,

FOO— Floating-point operand offset: This register holds the offset within seg-
ment FOS of the memory operand (if any) referred to by the most recent coproces-
sor instruction,
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MEMORY
ARCHITECTURE:
SEGMENTATION

A segmented memory architecture is a hallmark of the Intel 8086 family of pro-
cessors. The 80386 is the first of these processors in which segmentation is not an
impediment to the programmer,

Linear vs Segmented Memory
The hardware interface between the CPU and memory is virtually identical in almost
every computer, and the 80386 is no exception. A set of address lines goes out from
the processor to memory. The CPU places an address on the bus, and memory re-
sponds by returning the value stored at that location or by accepting a new value.
Figure 3-1 shows the hardware relationship between the CPU and memory.

32 lines, 2% possible addresses

I

> < Address bus >
Clock 80386 Memory

system

Control signals

< Data bus >

80287
or
80387

Figure 3-1. CPU— memory interface.
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Because of the binary nature of the digital computer, a system with 7 address lines
allows the system to reference 27 elements of memory. The hardware behaves in a
linear fashion; that is, for each of the 27 possible combinations of address lines, a
separate memory element responds.

Most computers also have a linear memory model. They allow programmatic ac-
cess to memory, beginning with address 0 and continuing through address 27 — 1.
Theoretically an application could read the byte at location 0, then read the next
byte, and so on until it reads the last byte of memory in the system. This model
parallels the hardware interface.

However, like the 8086 and the 80286, the 80386 has a programmatic memory
model different from the hardware memory model. These processors have a seg-
mented memory model. To a program, the address space is divided into chunks,
or segments, and the program can only access data contained in those segments.
Within each segment, addressing is linear, and the program can access byte 0, byte
1, byte 2, and so on. The addressing is relative to the start of the segment, however,
and the hardware address associated with software address 0 is hidden from the
programmer.

This approach to memory management is natural, Programs are typically divided
into segments of code and data. In the 80386, programs can be made up of single or
many code and data segments. In a multitasking environment, segmentation also
isolates processes from one another. If my program can look at only my code and
my data, it cannot illicitly modify your program’s code or data. Figure 3-2 shows a
multiprocessing system with many segments coexisting in memory.

HW . Segment
addresses : addresses
0 Memo;y
Unused c1
Prog 1 code
1 0
ik 1o
Prog 2 code 5
C3
Prog 2 data
STEE 10
(el
Prog 1 data
0
0

Figure 3-2. Memory divided into segments.
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The 80386 has six segment registers. The values in these registers determine the
memory segments that a program can access. The CS register points to the segment
that contains the program’s code. CALL and JMP instructions implicitly refer to the
current code segment. The DS register points to the program’s main data area. For
example, the instruction:

MOV AL, [0]
copies the first byte (byte 0) of the data segment into register AL,

The 80386 also supports a stack segment (register SS). The stack segment is com-
monly (but not necessarily) the same segment as the data segment. The PUSH and
POP instructions store data to or remove it from the stack segment.

Three additional registers (ES, FS, and GS) point to auxiliary data that the program
needs to access less frequently, such as COMMON variables in a FORTRAN pro-
gram. You can apply a special prefix to an instruction that accesses the data seg-
ment register. The prefix causes the instruction to act on one of the additional
segments instead. For example, the previous instruction might be written as:

MOV AL, ES:[0]

to fetch the first byte from one of the alternate data segments, or even as:
MOV AL, CS:[0]

to fetch the first byte from the code segment.

Previous generations of the 8086 family also dealt with segmented memory; how-
ever, these processors limited the size of a segment to 64 KB, which was often much
too small. A single segment in the 80386 can be as large as 4 GB.

An operating system designer can choose to simulate a linear memory model (also
called a flat model) on the 80386 by creating one very large code segment and one
very large data segment and having all programs use the same values for CS and DS.
This is a common technique when porting systems that have run on linear address
machines. The UNIX operating system—with its VAX heritage—is typically imple-
mented on linear memory machines.

Virtual Addressing

Except when operating in real mode, the 80386 is a virtual memory processor.
When an instruction requests the contents of a memory location, the instruction
refers to the location not by an actual hardware memory address but by a virtual
address. The virtual address is really a name for a memory location. The processor
translates the location name into an appropriate physical location. The operating
system must maintain the proper mapping between virtual and physical memory.

This concept is not as convoluted as it might sound. For example, suppose that
someone says to me, “Put this report on the boss's desk.” In my particular
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department, that might mean, “Put this report on Simon Legree’s desk.” If, how-
ever, I transfer to a new department, I might be placing my report on Ebenezer
Scrooge’s desk. “The boss's desk” is a virtual location, and I can carry out the in-
struction to turn in my report even though the desk on which I place the report
varies according to the circumstances.

A virtual address on the 80386 is specified by two numbers, a selector and an offset.
The selector is a 16-bit value that serves as a virtual name for a memory segment. It
is the selector that is loaded into the segment registers (CS, DS, and so on). The off-
set is the distance from the beginning of the segment, and it is a 32-bit value. Ex-
amples of virtual addresses include:

Virtual Address Interpreted Virtual Address
3F11:00000000 Offset OH from selector 3F111H
01A9:0001FF00 Offset 1FFOOH from selector 01A9H
EC2C:31887004 Offset 31887004H from selector EC2CH

The CPU translates a virtual address to a single 32-bit number called a linear ad-
dress, Figure 3-3 shows an example of address translation. This linear address goes
out on the system bus unless the paging feature is enabled. Paging is another level
of address translation and is discussed fully in Chapter 6.

4GB Memory

Offset from start seier
of segment LisEty

. Segment base address

v

Virtual address
translation

Figure 3-3. Linear address translation.

Virtual-to-linear address translation

The CPU uses the selector as an index to a set of system tables called descriptor
tables. A descriptor is a block of memory that describes the characteristics of a
given element of the system. In the case of a memory segment, the characteristics
include the segment’s linear base address, limit, access rights, and privilege level.
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The base address is the starting point in the segment’s linear address space. The off-
set portion of a virtual address is added to the base address to generate the linear
address of the desired memory element. Figure 3-4 illustrates an example. The vir-
tual address 13A7:0010F405H is broken down into its segment and offset compo-
nents. The system uses the selector 13A7H as an index into its descriptor tables. It
pulls out a descriptor that says, for example, that the segment has a base address in
the linear address space of 00032DD000H. The virtual address offset is combined
with the base, and the resulting value, 33EC405H, is the translated linear address.

The 80386 hardware supports a 32-bit linear address space (232, or slightly in ex-
cess of 4 billion bytes). The base address of a segment is located somewhere in this
range. As the base address defines the starting point of a segment, the limit field
defines the end point. The limit specifies the segment’s last addressable byte. The
80386 checks every instruction that addresses memory to determine whether the
instruction is attempting to read or to write memory within the boundaries of the
segment's descriptor. An out-of-bounds reference causes an interrupt called a gen-
eral protection fault to occur. Faults are discussed in the section on interrupts and
exceptions in Chapter 5. The access rights field defines the type of segment and the
privilege level required to access it.

4 GB Memory

41— Linear address

33EC405H
Base
address
Virtual address 32D288{?g;: N
Selector Offset R .
[ 13a7H |  [0010F405H |- - {l?dcl;?gnpmr

Base address is added to offset
yielding linear address.

Figure 3-4. Virtual-to-linear address translation.
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Segment descriptors
At this point, you probably visualize a descriptor as something like the item in
Figure 3-5. Indeed, all the data in this figure is in an 80386 descriptor; however,
because of space and compatibility constraints, the real thing is not quite so pretty.
Figure 3-6 shows the actual format of an 80386 segment descriptor.

Base address

Segment limit

Access rights

Privilege level

Figure 3-5. Visualized descriptor.

80386
63 48 47 32 31 16 15 0
|
Base i ] S :
Limit Base address Limit
address |GD|O| V o|P[DPL| =| Type
2% . 31 16..19 | |o IOHZS ()]
Access
ights
80286 neas
63 48 47 32 31 16 15 0
| |
S R
Base address Limit
0 P IDPL| =|Type B 2 0..15
| (9 i
Access
rights
Figure 3-6. Actual 80286 and 80386 descriptors. (continued)
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Figure 3-6. continued

80286 descriptor
as stored in memory

15 0
Limit
(610 5)
Base address
(811G
Access Base address
rights 16. .23
0
80386 descriptor
as stored in memory
31 16 15 0 Low
addresses
Base address Limit
(IS5 Ol 1)
Base address Al Limit Access Base address
24..31 [G[P|O X 16..19 rights 161,23 High
addresses

Base address: The base address portion of the descriptor is the address of offset 0
in the segment. This field is 32 bits and is constructed from bytes 2, 3, 4, and 7 of
the descriptor. In the 80286, the base address is only 24 contiguous bits, However,
Intel specified that bytes 6 and 7 of the 80286 descriptor were to be set to 0 to en-
sure that 80286 code would run properly on an 80386-based computer.

Limit: The limit field determines the last addressable unit of the segment. The limit
field is 20 bits, comprising bytes 0 and 1 of the descriptor and the low-order four bits of
byte 6. Again, the split is due to the difference in the limit field sizes between the
80286 and the 80386, Those of you handy with binary arithmetic might note thata 20-
bit limit field allows the addressing of only 220, or approximately 1 million, items.

At first glance, this seems to mean that an 80386 segment is limited to 1 megabyte.
This is not the case, although the segment s limited to 1 million items, The G bit in
byte 6 of the descriptor stands for granularity, and 80386 segments come in two
forms, byte granular (G = 0) and page granular (G = 1).
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.

The word granularity is similar to the word resolution. A high-resolution image is
made of very tiny items, and a lower-resolution image is made of larger items. The
limit of a byte granular segment is measured in bytes; a page granular segment is
measured in larger pieces called pages.

A page on the 80386 is 212, or 4096, bytes. This makes the limit on the size of a seg-
ment 220 pages of 212 bytes, for a total of 232 bytes (4 GB). Again, a segment of code
ported from the 80286 is always a byte granular segment because the seventh and
eighth descriptor bytes are required to be 0.

For example, assume that the DS register points to a byte granular segment with a
limit of 001FH. The size of the segment is 20H (32 decimal) bytes, and the last ad-
dressable byte is byte 001FH.

Tllegal Instruction Reason

MOV EAX, [1234H] Memory address beyond limit

MOV EAX, [001DH] Size of item read extends beyond limit
MOV AL, [0020H] Memory address beyond limit

MOV [001FH], AX Size of item written beyond limit
Legal Instruction Reason

MOV EAX, [0000H] Last byte read is 3H

MOV EAX, [001CH] Last byte read is 1FH

MOV AL, [001FH] Last byte read is 1FH

MOV [001EH], AX Last byte written is 1FH

Now imagine a page granular segment with a limit of 0000H. The size of the seg-
ment is one page, and page 0 is the last addressable page. A page has 1000H (4096
decimal) bytes in it, so the last addressable byte is OFFFH.

Hlegal Instruction Reason

MOV EAX, [1234H] Memory address beyond limit

MOV EAX, [OFFDH] Size of item read extends beyond limit
MOV AL, [1020H] Memory address beyond limit

MOV [0FFFH], AX Size of item written beyond limit
Legal Instruction Reason

MOV EAX, [0000H] Last byte read is 3H

MOV EAX, [OFFCHI Last byte read is OFFFH

MOV AL, [0OFFFH] Last byte read is OFFFH

MOV [0FFEH], AX Last byte written is OFFFH
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Access rights: The access rights portion of the descriptor has the following format:

TR eMoRACE > ] 10
[P pPL]s] TyPE [A]

The P bit stands for “present.” It is set to 1 when the segment indicated by the selec-
tor is present in physical memory. In a virtual memory system, the operating system
can move the contents of some segments to disk if physical memory is full. It then
marks the descriptor as not present by resetting the P bit to 0. If an application loads
a selector into a segment register and the descriptor associated with the selector has
P =0, the not present interrupt (11 decimal) is generated.

The operating system then looks for a free area of physical memory, copies the con-
tents of the segment from disk back into memory, updates the descriptor with the
new base address, sets P to 1, and restarts the interrupted instruction.

The DPL field contains the privilege level of the descriptor. The privilege level
ranges from 0 (most privileged) through 3 (least privileged). A task can access seg-
ments of equal or lesser privilege. A task can only read data from or store data into
segments of equal or lesser privilege. A task can call only code segments of the same
privilege; however, access to segments of higher privilege may be granted indirectly
via the 80386 protection mechanism. A task can never invoke a code segment of
lower privilege.

The privilege level of a task, called the current privilege level (CPL), is the privilege
level of the currently executing code segment. Typically, the most secure portions
of the operating system run at level 0, Other system software might run at a less
privileged level, and applications typically run at level 3. See Chapter 5 for a descrip-
tion of the 80386 privilege mechanism.

The S (for segment) bit is always set to 1 for a memory segment. When § is equal to
0, a descriptor describes an object other than a memory segment. These objects are
described in the chapter on the 80386 protection mechanism, Chapter 5.

The TYPE field indicates the types of operations allowed on the segment, Valid
types are:

Read-only data segment

Read/write data segment

Unused

Read/write expand-down data segment
Execute-only code segment

Execute/readable code segment

Execute-only “conforming” code segment
Execute/readable “conforming” code segment

NGV B o= O

The type indicator defines the access rules applied to a segment. The CS register
cannot be loaded with a selector of a segment of type data (0-3). No program can
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modify a segment that cannot be written. Segments that are not readable can be ex-
ecuted but not read as data. An attempt to violate any of these rules results in a pro-
tection fault. Conforming segments are discussed in Chapter 5. Expand-down
segments are covered later in this chapter.

The 80386 sets the A (accessed) bit when the selector for the descriptor is loaded
into a segment register. The operating system can use this bit to find out which seg-
ments are not frequently used and can therefore be swapped to disk if necessary.

Additional fields: Tour additional fields in the segment descriptor are located in
the high-order nibble of byte 6.

The G bit, described previously, regulates the granularity of the segment.

Bit 6 is referred to as the D bit if the descriptor is for an executable segment or as
the B bit if the descriptor type is a data segment. The D bit is set to 1 to indicate the
default, or native mode, instruction set. When D is equal to 0, the code segment is
assumed to be an 80286 code segment, and it runs with 16-bit offsets and the 80286-
compatible instruction set.

The B bit is set to 1 in any data segment whose size is greater than 64 KB.
Bit 5 must be set to 0. It is for use in a future Intel microprocessor.

Bit 4 (AVL) is available for use by system programmers. Possible uses include mark-
ing segments for garbage collection or indicating segments whose base addresses
should not be modified.

Expand-down segments, indicated by TYPE = 3, are a special kind of data segment

designed for use with the stack. Figure 3-7 shows a stack that resides in its own
segment,

Limit

ESP

585 0

Figure 3-7. Stack residing in its own segment,

As more data is pushed onto the stack, the stack pointer (ESP) nears 0. If too much
data is pushed onto the stack, the program attempts to decrement ESP beyond 0,
resulting in a stack fault. At this point, the operating system has no choice but to ter-
minate the program., ;

Placing the stack in an expand-down segment rather than in a normal data segment,
however, will change the way memory is addressed inside the segment.
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Although normal segments are addressed beginning at 0 and extending to limit,
expand-down segments begin at limit + 1 and extend to FFFFFFFFH. Figure 3-8
illustrates the difference.

- 2047 2 FFFFFFFFH
2048 2048
+——ESP
59 SS
li< 0 L limit+1
Normal data segment Expand-down segment

Figure 3-8. Normal data segments and expand-down segments.

The advantage of this approach is that when the stack pointer is decremented past
the limit and triggers a stack fault, the operating system can extend the size of the
segment and decrement the limit. The faulting instruction is then restarted, allowing
the program to run with a larger stack segment. Figure 3-9 shows how this is
accomplished.

FFFFFFFRH

2048

3096 —

= Old limit

——=ESP

¥ New limit

Figure 3-9. Extending the size of the segment.

Note that when a descriptor for an expand-down segment is created, the base ad-
dress must be set to the linear address of the first byte after the end of the segment
rather than to the address of the start of the segment. Because addressing arithmetic
is limited to 32 bits, large offset values can be viewed as if they were negative num-
bers. For example:

base + FFFFFFFFH = base + —1 = base —1
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Descriptor tables

All the descriptors are grouped together in descriptor tables. The two system de-
scriptor tables are the Global Descriptor Table (GDT) and the Interrupt Descriptor
Table (IDT). The IDT contains no segment descriptors, so it is not discussed here.
A full description of the IDT and other facets of the 80386 protection mechanism is
given in Chapter 5.

An operating system can also implement various Local Descriptor Tables (LDTSs).
Segment descriptors are found either in the GDT or in the currently active LDT. The
selector used to identify the descriptor determines which table to use. The location
of the tables in memory is determined by the GDTR, IDTR, and LDTR registers.

Selectors

A segment, as we have seen, is described by a descriptor that has been selected by a
selector. A selector is made of three components, as shown in the following
illustration. :

15 shod 0]

INDEX TI | RPL

The INDEX and TI (table indicator bit) fields tell the 80386 where to find the de-
scriptor. When the T1 bit is set to 0, the descriptor is in the GDT. When TI is set to 1,
the 80386 uses the current LDT instead. The INDEX identifies which entry in the
descriptor table to use, The RPL field is the requested privilege level, Note that the
RPL can differ from the actual descriptor privilege level. The reason for this is dis-
cussed in detail in Chapter 5.

As an example of how the selection mechanism works, assume that the value
1A3BH is a valid selector, The selector is divided as follows:

Selector = 1A3BH INDEX = 0347H (839 decimal)
00011010001110118B TI=0 (GDT)
RPL = 3 (lowest)
To use a selector, hardware must first break it into three fields: INDEX, TI, and RPL.

Figure 3-10 illustrates how hardware separates a selector into its components.
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15 DN 0
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LDTR

Descriptor |

(Active)

GDT LDTs

Figure 3-10. Selector components.

Games Segments Play

Using the virtual addressing capabilities of the 80386, an operating system designer
can provide a number of interesting features. One such feature is virtual memory.
Virtual memory gives the appearance of physical memory where none exists.

To illustrate how this can be accomplished, imagine an environment such as the
one pictured in Figure 3-11. The figure symbolizes a multitasking system in which
four tasks are to be run. One MB of memory is available for running the four appli-
cations. Application A requires 400 KB, application B requires 100 KB, application C
requires 400 KB, and application D requires 200 KB. Also assume that half of the
application space is dedicated to code and that the other half is required for data.

; Applications

T 100 KB §_ Bee |
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Figure 3-11. Initial state of a multitasking system.
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Because the combined memory requirement of the four applications exceeds 1 MB,
they cannot all be in memory simultaneously. After A, B, and C are loaded (see
Figure 3-12), not enough room remains for all of task D. The operating system loads
the code portion of task D but not the data segment. It does, however, create
descriptors for both the code and the data segments of task D, marking the data seg-
ment descriptor as not present.

LS 200 KB D
A

B
c

100 KB §

Figure 3-12. Initial tasks loaded tnto memory.

This is a multitasking system, so the starting address (CS:EIP) of each task is passed
to the scheduler portion of the operating system, and execution begins. Task A
starts and is allowed to execute for a few milliseconds. The scheduler then takes
control and allows task B to run for a few milliseconds, However, part way through
its allotted time slice, task B reads the keyboard for input from the operator. Because
no keys have yet been pressed, the operating system takes control and marks task B
as suspended.

The scheduler then gives control to task C, which runs through its allotted execu-
tion time. Control now passes to task D. It begins to execute, but as soon as it tries to
refer to the data segment, the 80386 generates the not present interrupt.

The operating system determines which task was executing when the interrupt oc-
curred and what caused the interrupt. It determines that task D needs access to its
data segment, so it evaluates the status of the other tasks. Task B is suspended, so
the operating system decides to temporarily remove it from memory to make room
for the data segment of task D.

The memory image of B is written to disk, and the descriptors for B are marked as
not present. Task B is said to have been swapped out, and operating systems that
implement virtual memory in a similar manner are implementing swapping.

The data segment for D is copied into memory at the physical location just vacated
by B, and the descriptor for D is updated to reflect the new base address and to
show that the segment is now present in memory. Figure 3-13 reflects the new state
of the system.
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Descriptor table

A code Disk

o e
B code ——— NP

B data —» NP

C code D code
C data
D code
Lo e |
D data
D data

Figure 3-13. Swapping tasks B and D.

The scheduler now rotates execution time among tasks A, C, and, D. At some point
the computer operator sees the prompt for input from task B and in response
presses a key on the keyboard. This action causes a hardware interrupt, and the
operating system realizes that it must now schedule task B. However, because none
of the other tasks are suspended, the system might choose to suspend task A
temporarily.

Because task B is small, it displaces only part of task A. The code segment of task A
is marked as not present, and the descriptors for task B are updated as shown in
Figure 3-14. Notice that task B is now running at a completely different physical ad-
dress than it was when it began. This is invisible to the application, however,
because the selectors loaded into the segment registers do not change and because
the memory offsets used by the instructions in the code segment are relative to the
starting point of the segment, regardless of the physical origin of the segment.

Descriptor table

Acode —P*NP

A data

B code B

B data A data
C code D
C data

D code C
Ddata |—— D

Figure 3-14. Swapping tasks A and B,
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The system will continue to operate as previously described, with occasional swap-
ping and shifting of segments. If no external condition exists that causes a segment
to swap, the operating system might swap segments, based either on which tasks
have run the longest or on another system of priority.

Performance considerations
As the previous example shows, virtual memory doesn’t create RAM out of thin air;
it uses secondary storage, usually disk, to supplement the primary (RAM) storage
and give the appearance of more primary storage than exists in the system. The
cost of keeping up appearances is the amount of time it takes to move data between
primary and secondary storage. The more time the system has to spend swapping,
the less time it can spend executing the applications. On extreme occasions, a sys-
tem can be so overextended that it spends all its time swapping segments in and
out. This pathological situation is called thrashing.

An operating system designer can improve the performance of a virtual memory
system. On the 80386, for example, code segments are immutable. Because the con-
tents of a code segment do not change, it doesn’t have to be swapped out. You can
recreate the contents from the original executable image of the program. Only
swapping in requires access to secondary memory. The operating system, therefore,
can swap code segments twice as fast as it can swap data segments, Actually, if you
recall the contents of a descriptor, you will remember that certain kinds of data seg-
ments can be marked as read-only. Like code segments, read-only data segments do
not have to be written to secondary storage when swapped out.

Another trick that designers can use also relies on knowledge about code segments,
The technique of segment sharing lets two or more tasks share the same code. This
is primarily effective in multiuser systems. In the previous example, assume that
tasks A, B, C, and D represent users running applications, Suppose that users A and
C are running the same application, perhaps a spreadsheet. Now users A and C are
operating on different data and require separate data segments. They are, however,
executing the same code. Figure 3-15 shows how all four applications can fit in
physical memory in this situation. The users maintain separate descriptors for their
code and data, but the base addresses for the code segments of A and C point to the
same location.

Finally, a segment-oriented virtual memory system can provide a way to compact
memory. Compacting memory helps solve a problem called fragmentation. Frag-
mentation occurs when memory that is not contiguous is available to run additional
applications. To put it another way, the pieces of available memory are small and
scattered throughout physical memory, and to be useful they need to be next to one
another. Figure 3-16 illustrates this problem. Because applications deal with virtual
addresses, they are not affected by a change in location. The process does take up
CPU time, however.
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Descriptor table
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Figure 3-15. Tasks A, B, C, and D in physical memory.
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Figure 3-16. Memory fragmentation.

Why bother?

Because virtual memory is plagued with potential performance problems and adds
to the complexity of operating systems by forcing them to deal with fragmentation
and with identifying shareable segments, you might be tempted to ask, “Is it worth
the effort?” In most cases, the answer is yes.

One clear advantage of virtual memory is that a user doesn’t have to spend money
for extra memory simply to get an application to run. Any application will run in
existing memory; it will simply run more slowly if it has to be swapped out. Let’s
say that I have a system with 2 MB of physical memory and that 90 percent of my
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applications fit into physical memory. However, 10 percent of the time I run an ap-
plication that requires 5 MB of memory. Without virtual memory, I can’t run the
large application unless I spend the extra money to buy 3 MB of memory that will
remain unused 90 percent of the time. With virtual memory, I can at least run the
application and decide whether I want to spend money to improve its performance.

Virtual memory also makes life easier for the application designer. What if you are
writing a program that manipulates a large array? If virtual memory is not available,
you have to worry about how much memory your typical user will have and how to
make your program fit into a system of that size. As a designer, you can no longer
worry about simply solving the problem at hand (the array manipulation). You must
also be concerned about breaking your program into pieces that will fit on the typi-
cal system. The complexity of your application increases, and the application is
more likely to contain bugs.

This situation might be likened to giving a speech simultaneously in two different
languages. By letting someone else handle the translation, you can concentrate on
your job— presenting your information.

The dark side of the force

So far, only the advantages of segmentation have been discussed. Let’s take another
look at segments and see if we can uncover some problem areas. One advantage of
segmentation is virtual addressing. The application deals with selectors, whereas
the linear memory address for the segment is in the descriptor. Thus, every time a
selector is loaded into a segment register, the contents of the descriptor must be
fetched as well. Every instruction that causes a segment register to be loaded also
causes the 8-byte descriptor for the segment to load. In addition, the descriptor is
marked as accessed when it is loaded, so a memory write is required to set the bit in
the descriptor.

At a minimum, therefore, a segment register load has an overhead of two memory
read cycles and one memory write cycle in addition to any memory cycles required
to fetch the operand of the load instruction. Because of this and the protection
checking that the 80386 does based on the type of segment, size of descriptor table,
and privilege level, loading a segment register takes between 18 and 19 clocks as op-
posed to the 2 to 5 clocks that it takes to load a general-purpose register.

Another advantage of segmentation is the limit checking that the 80386 performs. If
a data object such as an array is placed in its own segment, the CPU monitors all ref-
erences to the object and triggers an interrupt if any instruction refers to a point
beyond the bounds of the object. Limit checking is an excellent tool for helping
programmers discover flaws in their programs. Unfortunately, using this tool means
having many data segments, Having many data segments implies many segment
register load operations, which slow down the program. You must also deal with
48-bit pointers—16 bits of selector and 32 bits of offset.
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The 80386 does not provide many instructions for handling these irregularly sized
items, nor do many programming languages. Consequently, they are awkward to
manipulate and they cause more work for the programmer.

Finally, you must deal with the problem of fragmentation. Because segments come
in odd sizes, the operating system must work harder to arrange physical memory
space in which to load applications.

Summary

As you have seen, segmentation is a mixed blessing. On one hand, it provides a
method for implementing virtual memory, it provides a mechanism for implement-
ing a4 secure operating system via privilege levels, and the segment limits assist pro-
grammers in tracking bugs that arise from invalid pointers or array boundary errors.
On the other hand, segmentation gives rise to unwieldy 48-bit pointers, extracts a
performance penalty, and can cause fragmentation when used to implement virtual
memory.

The flexibility of the 80386 offers system designers three choices. You can ignore
segmentation completely by creating only one code segment and one data segment
that encompass the entire address space. Another alternative is to use a limited
form of segmentation where only two segments, code and data, exist for every user
or task on the system. In this instance, the application sees a uniform address space,
and only the operating system needs to deal with segments. Or you can implement
a fully segmented system in which each large data object and each module of code
is in a separate segment.

Each implementation has advantages. The first method gives you an architecture
similar to the M68000 or VAX. Although it might seem that you lose the capability to
implement virtual memory with this method, you can implement a form of virtual
memory other than the one described here by using paging, which is discussed in
Chapter 6. A system of this design, however, loses the privilege-level protection fea-
tures provided by segmentation.

The second method strikes a balance between the other two. Protection is provided
on a task-by-task basis, and virtual memory can be implemented through segmenta-
tion, paging, or both.

The third method is the most similar to that provided by OS/2 on the 80286 and to
programming in the large memory model. This type of system can provide a very
secure environment, but the system will run somewhat slower.

One beauty of the 80386 is that it supports these divergent environments and
allows designers to build systems that meet their needs, from high security to high
performance,
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The 803806 is a classic stored program, or von Neumann, processor; that is, the
memory attached to the CPU stores not only data to be operated on but the instruc-
tions that specify the operations. The term von Neumann is used in honor of the
mathematician John von Neumann, who wrote a series of papers in the mid-1940s
outlining the design of stored program computers. Almost all commercially avail-
able computers are designed after the von Neumann model, and the 80386 is no
exception.

Built into every stored program computer is a set of commands that cause the CPU
to read from a location in memory, interpret the contents as an instruction (that is,
as a command to perform some function), execute the function, and start the cycle
over again. Because this sequence is often implemented in microcode, it is com-
monly referred to as the microcycle.

In one of the earliest stored program computers, the EDVAC, each machine instruc-
tion was broken down into five fields: A bit pattern in one field designated the
operation to be performed, two fields designated input operands, one field speci-
fied where the result was to be stored, and the final field specified the location of
the next instruction. Computer designers soon learned that if they placed one in-
struction after another they could eliminate the field that specified the address of
the next instruction. A register called the program counter or instruction pointer
was used to point to the next instruction and was incremented to point to the next
one as soon as each instruction was fetched.
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This method has never been modified, and the 80386 microcycle can be expressed
algorithmically like this:

top:
fetch the instruction at EIP
increment EIP by the size (in bytes) of the instruction
execute the instruction
goto top

This is, of course, a simple view of the microcycle. Tn actuality, it is much more
complex because of the parallelism built into the 80386 (see Chapter 1) and because
of the necessity of saving the state of the processor if an instruction faults and has to
be restarted. However, the basic algorithm is all that is necessary to understand the
process.

Instruction Format

Instructions are stored in memory in the same way that characters, floating-point
numbers, integers, or any other type of data is stored in memory. The value OF5H,
for example, is the encoding for the CMC (complement carry flag) instruction. An
80386 instruction can range from 1 byte to 16 bytes.

In general, the format of an 80386 instruction looks like this:

[ opcode | [ mod r/m | [ s-i-b | | displ | [ data |

The opcode is 1 or 2 bytes. The mod r/m and s-i-b bytes specify the operands and
memory addressing modes. The displ (displacement) field is part of the memory
address and can be 1, 2, or 4 bytes. The data field specifies an immediate operand
value and can also be 1, 2, or 4 bytes,

Not all fields are present in all instructions. The CMC instruction, as shown pre-
viously, consists of only a single opcode byte. The instruction:

XCHG EAX, EBX

consists of only the opcode and mod r/m fields. All fields are present in the
instruction:

ADD [EBP+8][ESI*4], 17

Appendix D specifies the bit patterns used to encode instructions, and Appendix E
contains a table that lets you decode bit patterns into the original assembly-language
mnemonics.
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Instruction Operands

The instructions stored in memory command the CPU to manipulate one or more
operands. The 80386 instruction operands can be specified in one of five ways:
They can be implicit, register, immediate, /O, or memory reference operands.

Implicit operands

An operand is implicit if the instruction itself specifies it. The CLI instruction, for
example, operates on the IF bit in the EFLAGS register. The programmer does not
have to specify anything beyond the instruction. The stack is an implicit operand in
a number of instructions, for example, PUSH, POP, CALL, and IRET. However,
because the stack resides in memory, I will discuss stack operands in the section on
memory reference operands. The following instructions have implicit operands.

Instruction Explanation

AAA Adjust register AL after ASCIT add
CMC Complement the value of the carry flag
CLD Clear direction flag to 0

Register operands

An instruction with a register operand performs an action on the value that is stored
in one of the 80386 internal registers (shown in Figure 4-1 on the following page).
Specify register operands by using the name of the register in the operand field of
the instruction. Note that not all registers are legal operands for all instructions. The
general registers (EAX, CL, and so on) are most commonly used in data manipula-
tion instructions. You cannot, for example, increment the contents of a segment
register or use a control or debug register to store a memory address.

The following examples illustrate typical instructions using register operands.

Instruction Explanation

INC  ESI Add 1 to contents of ESI

SUB  ECX, ECX Subtract ECX from itself, leaving 0

MOV AL, DL Copy contents of DL into AL

MOV EAX, CRO Copy CRO contents into EAX

CALL EDI Invoke subroutine whose address is in EDI
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31 1615 78 0 15 0
EAX AX CS
| AH | AL sS
EBX BX DS
| BH , BL ES
ECX €X FS
| e, cL GS
EDX DX Segment registers
| DH, DL
EBP
| BP
ESI
| SI 31 0
[ EIP
3P Status registers
LTI sp

General registers

Figure 4-1. 80386 register set.

Immediate operands

An immediate operand is specified when a value is part of the instruction itself.
Consider the instruction ADD EAX, 3. In addition to the register operand EAX, the
numeric value 3 is coded in the instruction and is stored in the code segment with
the bit pattern that represents ADD. Other examples of instructions that use im-
mediate operands include:

Instruction Explanation

MOV EAX, 7 Store the value 7 in register EAX

AND CIL, OFOH Mask off the low-order bits of CL

BT EDI, 3 Copy bit 3 of EDI to carry flag

JC 3C1H Branch to offset 3C1H if CF is set
1/O operands

External devices that transfer data from the computer to another environment are
called input/output (I/0) devices. The 80386 communicates with these devices in
two ways. The device can access a portion of 80386 memory to read values from or
write values to memory addresses. The device can also have its own address (or set
of addresses). The 80386 supports 65,536 1/O device addresses, called 1/0 ports.

I/O communication is done in 8-bit or 16-bit quantities. The accumulator is always
the source or the destination of the I/O instruction, and the I/O port is specified
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with an immediate operand or by the contents of the DX register. Examples of in-
structions that use I/O operands include:

Instruction Explanation

IN AL, 04H Input a byte from port 04H

OUT 1CH, AX Output a word to port 1CH

IN AX, DX Input a word from port specified by DX
IN EAX, DX Input a doubleword from port DX

Memory reference operands

To operate on the contents of memory, you must specify the address of the data
value you want to use. The 80386 provides a number of addressing modes. There is
rarely a performance penalty on the 80386 for using a complex addressing mode, so
use the addressing mode that is most appropriate to your program’s needs.

When you specify a memory address, you specify the offset from the beginning of
the appropriate segment. Address 0 is the first byte of the memory segment, address
1is the second byte, and so on, regardless of the segment’s physical starting address.
Chapter 3 contains a detailed description of how segmentation is used to generate
memory addresses on the 80386.

By default, the segment used in most instructions is the one pointed to by the DS
register. Forcing an instruction to operate on values in other segments is possible,
however, by programming a segment prefix opcode immediately before the instruc-
tion. Normally, the instruction MOV AL, [0] reads the first byte of the data segment
into register AL. By applying a segment prefix, you can force the data to be fetched
from another segment. The instructions:

SS:
MOV AL, [0]

load the AL register with the first byte of the stack segment. Although the segment
prefix byte comes before the instruction in the code stream, the prefix is usually
written as part of the memory operand for readability. The previous example is nor-
mally written:

MoV AL, SS:[0]

Direct addressing

The simplest form of memory reference is called direct addressing, where the in-
struction itself includes the location of the operand. The location is specified as a
16-bit or 32-bit offset in the current segment. This offset is also known as the
displacement. The table on the following page shows three examples of direct ad-
dressing. The brackets differentiate data values (no brackets) and memory ad-
dresses (brackets).
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Instruction Explanation

INC  DWORD PTR [17H] Add 1 to the 32-bit value at offset 17 -
MOV AL, [1A33D4H] Copy the memory byte to register AL
SHL  BYTE PTR[1FFH], 3 Shift the memory byte left 3 bits

In the examples in this chapter, I generally use numeric memory addresses to illus-
trate where the address values are used in an instruction. You may never need to
use numeric memory addresses. Your programming environment will provide as-
semblers and compilers that name locations in memory, and you will use these
names in your program. This technique is called symbolic addressing.

Symbolic addressing has a number of advantages over absolute numeric addressing.
You are much less likely to make a mistake if you can refer to a variable by a mne-
monic name, such as queue_top, rather than a number such as 32081A3H. Also, if
you use symbolic names, the assembler keeps track of the type of the data item. For
example, the opcode for the increment instruction is INC, but the same opcode can
apply to 8-bit, 16-bit, or 32-bit operands. If you define a symbolic variable, the cor-
rect instruction encoding is chosen for you. Without symbolic addressing, you must
specify both the size and the location of the operand. For example, notice the differ-
ence between these two operations:

INC DWORD PTR [15F2H] ; 32-bit operand

and

COUNT DD ? ; Allocate 32 bits with name COUNT
INC COUNT - ; Increment variable

Here are some additional examples of instructions that use symbolic addressing.

Instruction Explanation
COUNT DD 10 . Reserve 32-bit value, initial value 10
FLAG Dw 7. : Reserve a single word
NAME DB 20 DUP () Reserve 20 consecutive bytes
DEC COUNT Subtract 1 from the value at COUNT
MOV AL, NAME Copy first byte of NAME
MOV AL, NAME[1] Copy second byte of NAME to AL
OR FLAG, 4000H Set one bit in the specified word
Based addressing

In based addressing, a register holds the address of an operand, The register con-
taining the memory address is called the base register, and you can use any of the
seven general registers as a base register. When you use ESP or EBP as a base regis-
ter, the address is assumed to be an offset from the stack segment (SS) rather than
from the data segment (DS). You specify based addressing by placing the register
name in brackets, as the following examples illustrate.
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MOV AL, [ECX] ; Copy byte of memory at ECX into AL

» DEC WORD PTR [ESI] : Decrement 16-bit word at ESI

% XCHG EBX, [EBX] ; Swap contents of EBX with dword at EBX
CALL [EAX] ; EAX holds pointer to

; address of subroutine

Base plus displacement addressing

Base plus displacement addressing is a variant of based addressing that uses a base
register to specify a nearby location. An integer offset then modifies the base ad-
dress to form the final destination. Base plus displacement addressing is commonly
used in addressing components of data structures and in stack-relative addressing.
For example, if ESI points to a record of type point, where point is a structure
whose first element is the x coordinate and whose second element is the y coordi-
nate, then you could use the instruction MOV EAX, [ESI+4] to fetch the y
coordinate.

Similarly, because the base pointer EBP commonly points to the current stack
frame, any values pushed onto the stack can be addressed by an offset from EBP.
Offsets can be positive or negative and are interpreted as signed, 32-bit integers.
The assembler provides a construct called a struc that makes keeping track of off-
sets within data structures simple. Here is the above “point” data type example
redone symbolically:

POINT  struc ; Define record layout
X DD ?
Y DD ? &
POINT  ends
CORNER POINT<> ; Reserve memory
LEAZ ESI, CORNER ; Get address of variable
MOV EAX, [ESI].X ; Fetch the x component
FNC = ES T] oY : Increment the y component

Index plus displacement addressing

Indexing is implemented by using the contents of a register as a component of an
address. Any of the seven general registers (except ESP) is a legal index register. In-
dex plus displacement addressing is most useful in dealing with arrays. A direct ad-
dress points to the starting address of the array, and the index specifies the element
of the array. Here are three examples of index plus displacement addressing:

MOV AL, 7ACHLESI] : Get byte of array based at 7AC w/index
IMUL VECTORLECX] ; Multiply EAX by element indexed by ECX
SUB ARRAY[EAX]1, 2 : Subtract 2 from element of array

It might appear that index plus displacement is the same as base plus displacement.
However, indexing offers an interesting capability that based addressing cannot.
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The C language code fragment in the following example computes the sum of the
squares of an array.

int V[V_MAX];
register int i:

sum = 0;
for (i = 0; 1 < V_MAX; i++)
sum += v[i] = v[i];

Assuming that the size of an integer is 32 bits, two separate values are required to
progress through the array: the index variable 7 and the offset in memory of V[i].
For example, when i is 3, the address of V[3] is the address of V plus 12 (4 X 3)
bytes. Every time 1 is used as an index into the array, it must be multiplied by the
size of the array element. The assembly code to execute the above loop might look
like this:

XOR ECX, ECX ; Clear ECX (counter) to 0
MOV SUM, ECX ; Copy 0 to SUM
kS CMP ECX, V_MAX : Is counter > V_MAX?
JGE DONE ; Yes - go on
MOV EAX, ECX | Copy counter to EAX

1tiply by 4)

SHE G EAX 20 e SRSPEGERX 20 biits Gl
MOV EAX, VLEAX]  ; Load contents of array into EAX
IMUL EAX ; Square the array element
ADD SUM, EAX ; Compute the sum
INC ECX ; Bump the counter
JMP L1 ; Loop back to the top

DONE :

The highlighted code shows the conversion from array index to memory offset and
the addressing of the selected item.

The 80386 provides a special optimization for arrays whose elements are 1, 2, 4, or 8
bytes. The 80386 adjusts the index to produce a memory offset. This adjustment is
called scaling and is indicated in assembly language by placing a multiply operation
in the brackets that enclose the index register. The above example becomes:

XO0R ECX, ECX ; Clear ECX (counter) to 0
MOV SUM, ECX ; Copy 0 to SUM

L1: CMP ECX, V_MAX ; Is counter > V_MAX?
JGE :

[ MOV f ILELX:
IMUL EAX ; Square the array element
ADD SUM, EAX ; Compute the sum
INC ECX ; Bump the counter
JMP L1 ; Loop back to the top

DONE :
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The second version of the program does not require the index value to be copied
and multiplied, so the program runs faster. Also, the instruction:

MOV EAX, V[ECK*4]
takes no longer to execute than the instruction:
MOV EAX, VLEAX]

When EBP is used as a scaled index register, it does not force the memory reference
relative to the stack segment as it does when used as a base register. When an in-
struction specifies both a base register and an index register and one of them is
EBP, EBP is assumed to be the base register unless a scale factor is present. If a scale
factor exists, it is assumed to be the index register. The following list shows four
examples:

Instruction Explanation

ADD [ECXIIEBP], 7 EBP is base, SS segment used
MOV  AX, ARRAY [EBP] EBP is base, SS segment used
MOV EAX, [ECX][EBP«4] ECX is base, DS segment used
INC  BYTE PTR [ECX+8][EBP]. X EBP is base, SS segment used

Unlike the 8086 and the 8088, which require anywhere from 5 to 17 clocks to com-
pute the operand address (depending on the complexity of the operands), the
80386 requires no additional time to compute the effective address unless both a
base register and an index register are used to select the operand. When both
registers select the operand, execution time increases by only one clock cycle.

Base plus displacement plus index addressing

Base plus displacement plus index addressing is the most complex 80386 addressing
mode. This addressing form is used to address data structures stored on the stack or
to address arrays whose base address is contained in a register. When addressing
these arrays, the displacement value is 0 and the programmer need not specify it,
although the assembler encodes a 0 displacement into the instruction. The index
register can contain a scale value as it does in index plus displacement addressing
mode. Following are examples of base plus displacement plus index addressing:

Instruction Explanation

MOV EAX, [EBP+8][ESI] Array is on stack beginning at EBP + 8
INC  WORD PTR [EBX+EAX+2] 16-bit vector based at EBX, with index
MOV EDX, PTIEAX+8][ESI.Y Array of “point” data structures

The final example above appears to contain two displacement values: the initial
displacement that specifies the start of the array, and the displacement of structure
element Y in the indexed array element. The assembler simply offers these values
for clarity. In the machine instruction, the displacement field contains the sum of
the two values, as calculated by the assembler.
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Stack based addressing

A stack is a data structure in which the value most recently stored is the first value
retrieved. The acronym LIFO (last in, first out) describes the action of a stack and
contrasts with the FIFO (first in, first out) structure. Figure 4-2 illustrates the LIFO
and FIFO structures,

Stack — last in, first out

Queue — first in, first out

Figure 4-2. LIFO, FIFO,

The 80386 instructions implicitly refer to a stack. The 80386 hardware assumes that
all memory in the stack segment (that is, the segment pointed to by the SS register)
belongs to the stack, but this is not always true. Often, DS and SS point to the same
segment; part of the segment contains program data, and part is reserved for the
stack. In this situation, the programmer may need to write code to check for stack
overflow, which occurs if too many items are pushed onto the stack and it runs over
into the data area,

When a value is stored on the stack, or pushed, the ESP register is tested to see if it
is greater than or equal to 4. If it is not, a stack fault (interrupt 12) is generated;
otherwise, ESP is decremented by 4, and the operand is stored at SS:[ESP]. The most
recently pushed value, to which register ESP always points, is called the top of stack.

The POP operation retrieves the most recently pushed value from the stack. First,
ESP is compared with the limit of the stack segment. If the memory reference is out-
side the limit, a stack fault is generated; otherwise, the value at SS:[ESP] is read, and
ESP is incremented by 4.

The PUSH and POP instructions cause immediate values, register values, or the con-
tents of a memory location to be stored to and retrieved from the stack. Also, some
instructions that cause a transfer of control (change the EIP register) push the old
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execution address onto the stack. This allows the subroutine to return to the pre-

vious point of execution.

The most commonly used instruction that changes the EIP register is CALL. The
CALL instruction has one operand, the address of a routine to be executed. The
value of EIP (which points to the instruction immediately following the CALL) is

pushed onto the stack, and EIP is set to the address specified by the CALL operand.
The RET (or “return”) instruction pops the current top of stack into the EIP register,

returning control to the instruction after the initial CALL.

A routine passes information to another routine by storing values on the stack
before executing a CALL instruction. The standard way this information is struc-

tured is called the frame of the called routine or the call stack. Figure 4-3 illustrates

a subroutine call and shows how the stack frame is structured.

EBP Tl EBP
-

30 ESP 2t

2C

28

24

20

1C

18

Initial stack Stack after
PUSH x

= T 30

e B

Stack after Stack after
CALL subr LEAVE
subr: ENTER 8 RET 4

| Stack frame for "subr"

Local variable space in frame

Figure 4-3. Use of the 80386 stack.

38
34
30
2C
28
24
20
1C
18

38
34
30
2C
28
24
20
1C
18

73



THE 80386 BOOK

Programs can push and pop 16-bit values by specifying registers AX, BX, SI, and so
on, or by specifying 16-bit memory references. It is more efficient, however, to push
the contents of the 32-bit register (for example, EAX for AX) and to disregard the
high-order bits. Use the MOVSX or MOVZX instructions to copy memory operands
to a register and extend them to 32 bits before they are pushed onto the stack. The
reason for doing this relates to how the 80386 interfaces with memory:. If the physi-
cal memory address is a multiple of 4, that is, if the address is on a dword boundary,
then a single memory reference cycle can fetch as many as 4 bytes. If the physical
memory address is offset from the dword boundary, then at least two additional
clock cycles are required to read or to write a 32-bit value.

Therefore, after executing a 16-bit push, all subsequent 32-bit stack references
degrade in performance by at least 30 percent. The 80386 generates 32-bit refer-
ences when the 16-bit segment registers (CS, SS, DS, ES, FS, and GS) are pushed or
popped, so performance degradation is not an issue in this case.

Instruction Categories

The operations that 80386 instructions perform vary widely, reflecting both the
wide range of the machine’s capabilities and its compatibility with previous pro-
cessors, In this section, I divide the instruction set into a number of related catego-
ries and identify the most important instructions of each category.

Arithmetic

Arithmetic instructions perform signed and unsigned integer operations on
operands of 8, 16, and 32 bits. With few exceptions, these instructions have the
form:

OPCODE dest, src

Generally, arithmetic instructions operate on source and destination operands and
store the result in the location specified by the destination operand. The destination
operand can be a memory reference or a register, and the source operand can be
memory, a register, or an immediate data value. Both the source and the destination
operands cannot be memory references, however. The instructions that fit this for-

mat are:
Instruction Explanation
ADD Integer addition
ADC Add with carry
SUB Subtract
SBB Subtract with borrow
CMP Compare integers
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These instructions affect the CF, OF, PF, SF, and ZF bits of the EFLAGS register, de-
pending on the results of the operation.

In addition to the double-operand (or dyadic) instructions, there are single-
operand (or monadic) instructions:

Instruction Explanation
INC Increment by 1
DEC Decrement by 1

Each of these instructions takes a single operand, either a register or a memory ref-
erence. These instructions also affect the same EFLAG bits, except that they do not
modify the carry flag (CF).

Finally, there are the irregular arithmetic instructions:

Instruction Explanation

DIV Unsigned divide
DIV Signed integer divide
MUL Unsigned multiply
IMUL Signed multiply

The DIV, IDIV, and MUL instructions take a single source operand. The destination
operand is implicitly the accumulator and depends on the size of the operands.
Destination operands are defined as follows:

Operand Size Register
8 bits AL

16 bits AX

32 bits EAX

64 bits EDXEAX

Because of its usefulness in computing array and structure element offsets, the
IMUL instruction has three different forms:

Instruction Explanation
IMUL  src ACCUm = accum X Sre
IMUL dest, src dest = dest X src

IMUL dest, src, data  dest = src X data

The DIV, ID1V, and MUL instructions leave the status flags in undefined states. The
IMUL instruction modifies CF and OF, leaving SF, ZF, AF, and PF undefined.
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Decimal arithmetic

Six instructions help implement decimal math routines. The standard integer in-
structions perform computations, and the following instructions adjust the result
because the operands are not integers but BCD encodings. The following instruc-
tions have either the AL or the AX accumulator as an implicit operand:

Instruction Explanation

AAA ASCII adjust after addition

AAD ASCII adjust before division

AAM ASCII adjust after multiply

AAS ASCII adjust after subtraction

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction
Logical

The following instructions are called logical because they make no semantic
assumptions about their operands; that is, they do not regard the operands as in-
tegers, BCD digits, character strings, and so on. The instructions are strictly
Boolean, or bit-by-bit, operations. First is a set of dyadic functions similar to the
arithmetic instructions:

Instruction Explanation

AND Boolean AND

OR Boolean OR

XOR Exclusive OR

TEST Performs an AND but modifies only the EFLAGS register

A single monadic instruction, NOT, performs a logical complement of the operand.
With the exception of NOT, the logical instructions modify each of the OF, SF, ZF,
PF, and CF flags according to the outcome of the operation. The AF flag is left
undefined.

A series of instructions operates on bit strings. These instructions have the form:
OPCODE dest, index

where dest selects a bit string, either in memory or in a register, and fndex identifies
the particular bit in the bit string that is the subject of the operation. The index
value is either contained in a register or specified as an immediate value. If dest is a
memory location, index is treated as a signed integer and can take on any value
from —2G through +2G. Instructions that operate on bit strings are BT, BTC, BTR,
and BTS.
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Instruction Explanation

BT Bit test (save the value of the selected bit in CF)

BTC Bit test and complement (save bit, then complement dest bit)
BTR Bit test and reset (save bit, then clear dest bit to ()

BTS Bit test and set (save bit, then set dest bit to 1)

Figure 4-4 shows bit indexing in these instructions.

Index= -26
N o - T L ST S U
L cE | [uor100]] | |7 O RN | 0 | ] |
2A8H 2A9H 2AAH 2ABH 2ACH
Dest
address

Figure 4-4. Bit indexing in BT instructions,

Two instructions search bit strings. These instructions have the form:

Instruction Explanation
BSE  dest, sre Bit scan forward
BSR  dest, src Bit scan reverse

where src¢ indicates the location of a bit string. The dest operand must be a register
that receives the index of the first nonzero bit. The dest operand can be only a 16-
bit or 32-bit register and indicates whether the src operand is a 16-bit or 32-bit quan-
tity. Figure 4-5 shows how these instructions work.

BSF EAX, EAX EAX
31 0
| 0100100111, . ,001001000 |Bitscan forward
EAX L Start
Result: \_ 3 |
BSR EAX, EAX EAX
[01. . . . . . . . 001001000 |Bitscan reverse
Start—T EAX
Result: l 30 |

Figure 4-5. Bit scanning.

The final logical instructions are shift and rotate instructions. Figure 4-6 on the fol-
lowing page illustrates what shift and rotate instructions do.
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|
cY Aw) AT
1
cY RCL )

Figure 4-6. Shift and rotate instructions.

Most of these instructions have the form:
OPCODE dest, COUNT

The destination is either a memory reference or a register. The COUNT is either an
immediate value or the CL register. The following instructions fit this format:

Instruction Explanation

SHL Shift left logical

SHR Shift right logical

SAL Shift arithmetic left

SAR Shift arithmetic right

ROL Rotate left

ROR Rotate right

RCL Rotate through carry left
RCR Rotate through carry right

The following double shift instructions are also provided:

Instruction Explanation

SHLD  dest, src, COUNT Shift left double
SHRD  dest, sre, COUNT Shift right double

In the above instructions, the source and the destination are concatenated and
shifted, and the result is truncated and stored in the destination operand. Figure 4-7
illustrates double shift instructions.
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Figure 4-7. Double shifts.

Data transfer

Probably the most frequently used instructions are in the data transfer category. To
the assembly programmer, a single instruction appears to do almost all the work.
Actually, the MOV mnemonic is encoded into one of several opcodes, depending
on the operands involved. The general form of the MOV instruction is:

MOV desti i Src

Either the dest or the src operand can be a memory reference, but not both. Both
operands can be registers, and the sr¢ operand can be an immediate value for most
choices of dest. This instruction is not restricted to operating on the general regis-
ters, The MOV instruction is the only instruction you can use to read or modify the
control registers (CRO—CR3) and the debug and test registers (DRO-DR7, TR6~TR7).
You can also use the MOV instruction to load and store the segment registers DS, SS,
ES, FS, and GS.

Not all possible combinations of sr¢ and dest are legal 80386 instructions, The
restrictions are covered in Chapter 8.

Here are four additional data transfer instructions:

Instruction Explanation

XCHG  dest, src Exchange the contents of the two operands
MOVSX  dest, src Move src into dest sign-extending src

MOVZX dest, src Move src into dest zero-extending src

SETcc  dest Set dest to 0 or 1 depending on condition codes

The XCHG instruction takes two operands and swaps their contents. One operand
must be a register; the other can be a register or a memory reference. Because this
instruction is frequently used to implement semaphores, the hardware bus LOCK
signal is asserted whenever one of the operands is a memory reference.

The MOVSX and MOVZX instructions are similar to MOV, but they take an src
operand of a single byte and either sign-extend it (MOVSB) or zero-extend it
(MOVZB) into a 16-bit or 32-bit integer at the dest location.
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SET¢e instructions move a 0 or a 1 into the destination, depending on the value of
the condition codes in the EFLAGS register. The conditions supported are:

Instruction Explanation
SETA = dest Set to 1 if above (unsigned x >y) /CF=0& ZF = 0
SETAE dest Set to 1 if above or equal / CF = 0
SETB  dest Set to 1 if below (unsigned x <y) /CF =1
SETBE dest Set to 1 if below or equal / CF=1| ZF =1
SETC  dest Setto 1 if carry / CF = 1
SETE  dest Setto 1 if equal / ZF = 1
SETG  dest Set to 1 if greater (signed x > y) / SF = OF & ZF = 0
SETGE dest Set to 1 if greater or equal / SF = OF
SETL  dest Set to 1 if less (signed x < y) / SF! = OF
SETLE dest Set to 1 if less or equal / SF! = OF and ZF = 1
SETNA  dest Set to 1 if not above (SETBE)
SETNAE dest Set to 1 if not above or equal (SETB)
SETNB  dest Set to 1 if not below (SETAE)
SETNBE dest Set to 1 if not below or equal (SETA)
SETNC  dest Setto 1if no carry / CF =0
SETNE  dest Setto 1 if not equal / ZF = 0
SETNG dest Setto 1 if not greater (SETLE)
SETNGE dest Set to 1 if not greater or equal (SETL)
SETNL  dest Set to 1 if not less (SETGE)
SETNLE dest Set to 1 if not less or equal / SF = OF & ZF = 0
SETNO dest Set to 1 if no overflow / OF = 0
SETNP  dest Set to 1 if no parity / PF = 0
SETNS  dest Set to 1 if no sign / SF = 0
SETNZ  dest Setto 1ifnot0/ ZF =0
SETO  dest Set to 1 if overflow / OF = 1
SETP  dest Set to 1 if parity / PF = 1
SETPE  dest Set to 1 if parity even / PF = 1
SETPO  dest Set to 1 if parity odd / PF = 0
SETS dest Setto 1if sign / SF =1
SETZ  dest Setto1if0/ZF =1
Stack

The stack instructions store and retrieve data from the stack. The PUSH instruction
writes its operand to the stack, and the POP instruction removes the top-of-stack
element and stores it in the location specified by its operand.

The PUSHAD and POPAD instructions require no operands and save or restore all
the general registers to the stack. Figure 4-8 shows the stack after a PUSHAD has
been executed. Although PUSHAD stores the value of the ESP register, POPAD does
not reload ESP from the saved image. The new ESP value is always the old ESP value
plus the number of bytes required to store the general register context.
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Before PUSHAD After PUSHAD After POPAD
High memory

BSP———1 temp——» JE =
EAX
ECX
EDX
EBX
temp
EBP
ESI
ESP —» EDI

Low memory

Figure 4-8. PUSHAD context,

Control transfer

Control transfer instructions affect the flow of execution. Normally, an instruction is
fetched from the address held in the EIP register, and then EIP is incremented by
the size of the instruction so that it points to the next instruction. The new opcode
is fetched, and the cycle continues,

The 80386 supports branch instructions, which alter EIP, and subroutine call in-
structions, which save the old EIP and then modify it. The software interrupt in-
struction is similar to the subroutine call except that an interrupt number is
specified for EIP rather than a new value. The address of the destination routine is
then determined by a gate in the IDT. Figure 4-9 shows how JMP and CALL instruc-
tions affect the flow of execution,

Flow of instructions

CALL = =P

Gl

YW W v

LAY

RET

G
G

JMP CALL/RET

Figure 4-9. JMP and CALL instructions.
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5

Branch instructions exist in both conditional and unconditional forms. Uncondi-
tional jumps occur immediately when the appropriate instruction is encountered.
All calls and software interrupts are unconditional.

Conditional branches test certain bits in the EFLAGS register to determine whether
to branch or not. These bits are usually set as the result of a compare instruction
(CMP) or as the result of an arithmetic or a logical operation. These branches are to
relative addresses; the offset is a + displacement from the current EIP. The following
list shows the conditions that can be tested for and the mnemonic for each
instruction.

Instruction Explanation

JA offset Jump above (unsigned x > y) / CF = 0 & ZF = 0
JAE offset Jump above or equal / CF = 0

JB offset Jump below (unsigned x <y) / CF =1
JBE offset Jump below or equal / CF = 1 | ZF=1
JC offset Jump if carry / CF = 1

JCXZ  offset Jump if CX =0

JECXZ offset Jump if ECX = 0

JE offset Jump equal / ZF = 1

JG offset Jump greater (signed x > y) / SF = OF & ZF = 0
JGE offset Jump greater or equal / SF = OF

JL offset Jump less (signed x <y) / SF |= OF & ZF = 0
JLE offset Jump less or equal / SF = OF

JNA offset Jump not above (JBE)

JNAE  offset Jump not above or equal (JB)

IJNB offset Jump not below (JAE)

JNBE  offset Jump not below or equal (JA)

JNC offset Jump no carry / CF =0

JNE offset Jump not equal / ZF = 0

ING offset Jump not greater SF != OF & ZF = 1
INGE  offset Jump not greater or equal (JL)

JNL offset Jump not less (JGE)

INLE  offset Jump not less or equal (JG)

JNO offset Jump no overflow / OF = 0

JNP offset Jump no parity / PE = 0

JNS offset Jump no sign / SF =0

JNZ offset Jumpnot 0/ ZF =0

JO offset Jump if overflow / OF = 1

JP offset Jump if parity / PF = 1

JPE offset Jump parity even / PF = 1

JPO offset Jump parity odd / PF = 0

JS offset Jump if sign / SF = 1

JZ offset Jump if 0/ ZF = 1

Three other conditional branch instructions are the loop instructions. Loop instruc-
tions decrement the ECX register and branch if the conditions outlined in the fol-
lowing list are met.
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Instruction Explanation

LOOP  offset Decrement, branch if ECX != 0

LOOPZ offset Decrement, branch if ECX = 0 and ZF = 1
LOOPNZ offset Decrement, branch if ECX != 0 and ZF = 0

LOOPE and LOOPNE are synonyms for LOOPZ and LOOPNZ.

String

String instructions handle large blocks of memory with ease. A string instruction
can move a block from one location in memory to another, compare one block with
another, or search a string for a specific value. String instructions use specific regis-
ters for storing operands. DS and ESI always point to the source memory block. ES
and EDI point to the destination. These pointers are incremented (or decremented)
by the size of the operand (1, 2, or 4 bytes) every time the string instruction
executes.

The direction flag (DF) determines whether the source and the destination pointers
are incremented or decremented, When the direction flag is 0, the addresses are in-
cremented, When the flag is 1, addresses are decremented, The string instructions
provide the following capabilities:

Instruction Explanation

MOVS Move string—copy string at DS:ESI to ES:EDI
CMPS Compare string—compare DS:ESI to ES:EDI
STOS Store the accumulator at ES;EDI

LODS Load the accumulator with DS:ESI

SCAS Scan string, compare DS:ESI with accumulator

You can execute any of these instructions repeatedly by placing a count value in the
ECX register and preceding the string instruction with the REP prefix. The compare
and scan instructions, which modify the flag bits, can also be prefixed by the REPE
(repeat while equal) and REPNE (repeat while not equal) instructions, allowing fast
compare and search operations.

Pointer manipulation

Pointer manipulation instructions load a 48-bit pointer into any pair of the segment
and general registers. The format of these instructions is:

Lxx reg, mem

where xx stands for the segment register (SS, DS, ES, FS, or GS), reg is any general
register, and mem is a memory operand.

The LEA (load effective address) instruction computes 32-bit addresses. LEA loads a
32-bit register with the address defined by the memory operand, which is unusual
because other instructions operate on the value stored at the memory operand
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location. The following example shows how to use the LEA instruction to compute
a pointer:

VECTOR DD 20 DUP (7) ; Array of 20 elements
MOV EAX, 9 ; Array index
LEA EAX, VECTOR[LEAX#4] ; Get pointer to 9th array element
PUSH EAX : Push pointer on stack
CALL MYSUBR ; Invoke subroutine

Because the LEA instruction essentially performs only additions and shifts on the
values of the displacement and the base and index registers, it can perform simple
multiplications faster than the hardware multiply instructions can. For a value stored
in a general register (such as EAX in the sample operations), these operations can
be performed:

Instruction Explanation

LEA EAX, [EAX+2] Multiply by 2 (index)

LEA EAX, [EAX+EAXs2] Multiply by 3 (base + index)
LEA EAX, [EAX+4] Multiply by 4 (index)

LEA EAX, [EAX+EAX+4] Multiply by 5 (base + index)
LEA EAX, [EAX+8] Multiply by 8 (index)

LEA EAX, [EAX+EAX«8] Multiply by 9 (base + index)

Using the LEA instruction in this way does not affect the flags. You cannot tell when
arithmetic overflow has occurred, when the result is 0, and so on. Use LEA only to
compute addresses such as array or structure indexes where overflow is not likely
to occur. You can also view the LEA instruction as an addition instruction with four
operands instead of two. The content of the index register is added to the base
register and the displacement. By treating the displacement simply as a constant,
the following formula expresses the action of LEA:

dest reg <— index reg + base reg + const

For example, the result of the LEA ECX, [EAX][ESII[3] instruction is equivalent to the
following operations:

MOV ECX, EAX
ADD ECX, ESI
ADD ECX, 3

Input/Output

Because 1/O ports are usually connected to system devices, it is important to protect
against indiscriminate access to them. Secure system routines that run with I/O
privilege (CPLSIOPL) may execute any I/O instruction. A less privileged task may
execute an I/O instruction; however, a general protection fault (interrupt 13) will
occur unless the operating system has granted the task permission to access the
specific port(s). The operating system grants permission by setting the appropriate
bits in the I/O permission bitmap of the task’s TSS.
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Both the input and output instructions have three forms. The simplest form is:

IN acc, port
ouT port, acc

where acc is one of the accumulator registers (AL, AX, or EAX) and port is a value
from 0 to OFFH. These instructions can be used to address only the first 256 [/O ad-
dresses, and the 80386 supports as many as 65,536 I/O ports. To access the entire
range, use the following form of the instructions:

IN acc, DX
ouT DX, acc

In the above instructions, the [/O address is contained in the DX register.

String instructions are the third type of 1/0 instructions. INS (input string) takes in-
put from the port specified by DX and stores the result at ES:EDI, adjusting EDI ac-
cording to the direction flag bit. OUTS (output string) reads the value at DS:ESI and
writes it to the port specified by DX, INS and OUTS can be prefixed by the REP in-
struction, which causes the I/O instruction to repeat until ECX is decremented o 0.

Prefix

Prefix instructions precede other 80386 instructions. Prefixes modify the action of
the instructions they precede. You can apply more than one prefix to an instruction.

The most commonly used prefixes are the repeat prefixes, discussed previously
with the string instructions. If a repeat prefix is applied to any instruction other
than a string instruction, an undefined opcode fault (interrupt 6) occurs. The follow-
ing table lists the repeat prefix instructions:

Instruction Explanation

REP Repeat until ECX = 0

REPE / REPZ Repeat until ECX =0 or ZF = 0
REPNE / REPNZ Repeat until ECX = 0 or ZF = 1

You can apply a segment override prefix to almost any memory reference instruc-
tion. Each of the six segment registers has a prefix instruction. The override forces
the memory reference of the modified instruction to the segment specified by the
prefix rather than to the default segment. The following table lists segment override

prefixes:
Prefix Explanation
G5: Refer to the code segment
SS: Refer to the stack segment
DS: Refer to the data segment
ES: Refer to the segment pointed to by ES
FS: Refer to the segment pointed to by FS
GS: Refer to the segment pointed to by GS
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For example, the instruction MOV EAX, [42H] copies the dword at offset 42H of the
data segment into EAX. When the instruction is prefixed with SS:, the dword is read
from the stack segment. Most assemblers let you specify the prefix before the in-
struction or as part of the instruction. For example:

SS:
MOV EAX, [42H]

or
MOV EAX, SS:[42H]

The only memory reference instructions that cannot be prefixed by a segment over-
ride are SCAS, STOS, and INS. These are string instructions that operate on memory
at ES:(EDI], When a prefix instruction is applied to any other string instruction, it
overrides the DS:[ESI] pointer only. The MOVS and CMPS string instructions have
both a source (ESI) and a destination (EDI) pointer and are allowed a single prefix
instruction that overrides the DS:[ESI] pointer.

You can apply the LOCK prefix to any of the following instructions when reading or
modifying a memory location:

ADC, ADD, AND, BT, BTC, BTR, BTS, DEC, INC, NEG, NOT, OR,
SBB, SUB, XCHG, XOR

The LOCK prefix asserts the hardware signal LOCK\, which ensures exclusive ac-
cess to a memory location in a multiprocessor environment,

The assembler usually inserts two additional prefix instructions, but Intel does not
give them mnemonics. I call them OPSIZ (operand size prefix) and ADRSIZ (ad-
dress size prefix),

OPSIZ toggles the operand word size of the processor for the next instruction. Nor-
mally, the machine word size is 32 bits. Prefixing a 32-bit instruction with OPSIZ
converts it to a 16-bit instruction. Similarly, when code is run in 8086-compatible or
80286-compatible mode, the default machine word size is 16 bits; applying the
OPSIZ prefix converts a 16-bit instruction to a 32-bit instruction.

In real mode, virtual 8086 mode, and 80286-compatible mode, the byte 40H is inter-
preted as INC AX, but in native (32-bit) mode, it is interpreted as INC EAX. To in-
crement the AX register in native mode, you must prefix the instruction byte with
the OPSIZ instruction. The assembler does all the work, however. If you enter the
instruction INC AX in a native mode code segment, the assembler generates the
bytes 66H and 40H. The following table illustrates the bytes that the assembler
generates.

Opcode Generation in Different Modes

Native Mode Real, Virtual, or 80286-compatible Mode
INC AX — 66H, 40H INC AX — 40H
INC EAX — 40H INC EAX — 66H, 40H
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Similarly, the ADRSIZ prefix toggles between 16-bit addressing and 32-bit address-
ing. This prefix is useful for programmers writing 80386 code that will run under a
16-bit operating system. In 16-bit mode (real, virtual, or 80286-compatible), memory
offsets are limited to 16 bits, and more rules restrict which registers you can use as
base and index values in generating addresses. These restrictions are listed in
Appendix D. The ADRSIZ toggle lets you use the full addressing capabilities of the
80386.

If you use 32-bit addressing under a 16-bit operating system, be consistent about
register usage. For example, a programmer who wants to use the scaled index fea-
ture of the 80386 in a program that runs under MS-DOS might code the following
instruction sequence:

; Increment each member of an array of 16-bit integers

MOV CX, count ; Get size of array
L1 INC array-2[ECX*2] ; Increment array element
Loop L1 ; Decrement index, branch if not 0

These instructions would probably not work because the scaled address feature re-
quires the full 32-bit ECX register and the programmer has loaded only the 16-bit CX
register. The value of the high-order 16 bits is unknown. The correct approach is:

; Increment each member of an array of 16-bit integers

MOVZX  ECX, count ; Get array size, zero-extend into ECX
Ll: INC array-2[ECX#2] ; Increment array element
LOOP L1 ; Decrement index, branch if not 0

System

Application programs do not execute system instructions. In some cases, system in-
structions cannot be executed unless the process has a high privilege level. The fol-
lowing table lists system instructions. More detailed information about these
instructions is given in Chapter 8.

Instruction Explanation

LGDT  mem Load GDT base address and limit
SGDT  mem Store GDT base and limit

LIDT mem Load IDT base address and limit
SIDT mem Store IDT base and limit

LTR sre Load a selector into the task register
STR dest Store the TR selector

FLDT " sre Load a selector into the LDT register
SLDT  dest Store the LDT selector

VERR reg, dest Verify Read access for dest selector
VERW reg, dest Verify write access for dest selector
LAR reg, dest Load access rights for dest selector
LSL reg, dest Load limit for dest segment

ARPL  dest, src Adjust privilege level for dest

HLT Halt the CPU until reset or interrupt
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Miscellaneous

A few instructions don't fit into any category. For example, the NOP instruction per-
forms no operation.

The WAIT instruction tests the hardware pin called READY\. If the READY\ pin is
not active, the CPU waits until it becomes active, If the 80386 is waiting, it continues
to respond to hardware interrupts; however, it returns to the WAIT after the inter-
rupt completes. The 80287 and 80387 hold READY\ inactive while they perform
floating-point operations. You should execute a WAIT instruction before you use
the result of a floating-point computation to ensure that the coprocessor has fin-
ished execution.

Floating-Point Extensions

As discussed in Chapter 2, the 80387 NDP extends the instruction set of the 80386
by providing hardware support for floating-point operations. Unlike the 80386, the
80387 programming model is a stack-oriented model rather than the two-operand
register/memory model. Most arithmetic instructions can be specified in three
ways: with no operands, with a single operand, or with two operands, Following
are some examples that illustrate the floating-point addition instructions,

Instruction Explanation

FADD No operands

FADD ST(3) Single-stack operand
FADD [EBP+6] Single-memory operand
FADD ST(2), ST Two operands

When no operands are specified, the operands are implicit. The following
pseudocode illustrates what happens when no operand is specified:

temp <- pop()
ST <- ST <function> temp

When a single operand is specified, the top of stack is implicitly the first operand,
so the instruction becomes:

ST <- ST <function> op

When two operands are specified, both operands must be 80387 registers, and one
must be the top of stack. You can store the result of the operation in either register,
which you designate by making it the first operand.

opl <- opl <function> op2

Several instructions have a form that discards the current top of stack after the func-
tion is performed. A suffix of P (for pop) is added to the instruction mnemonic, For
example, the instruction:

FMULP ST(3), ST
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causes the top of stack and ST(3) to be multiplied and stores the result in ST(3).
Then the top of stack is discarded, leaving the newly created value at ST(2).

Load and store

The load instructions push a new value onto the top of the 80387 stack, but the store
instructions do not pop a value off unless explicitly indicated. The relevant instruc-

tions are:
Instruction Explanation
FBLD mem Push an 80-bit BCD integer
FILD mem Push a 16-, 32-, or 64-bit integer
FLD ST(n) Push a copy of a value already loaded
FLD mem Push a 32-, 64-, or 80-bit real
FLD1 Push 1.0
FLDL2E Push log, e
FLDL2T Push log, 10
FLDLG2 Push log;, 2
FLDLN2 Push log,, 2
FLDPI Push pi
FLDZ Push 0.0
FBSTP mem Store ST in an 80-bit packed BCD integer and pop
(discard from stack)
FIST mem Store ST in a 16- or 32-bit integer
FISTP mem Store ST in a 16-, 32-, or 64-bit integer and pop
FST ST(n) Store a copy of ST in ST(n)
EST mem Store ST in a 32- or 64-bit real
FSTP mem Store ST in a 32-, 64-, or 80-bit real and pop

Because the coprocessor operates in parallel with the 80386 and because 80386 in-
structions generally execute more rapidly than 80387 operations, issue a WAIT (or
FWAIT) instruction before using the result of a floating-point store operation. This
ensures that the NDP has written to memory and that the 80386 code can access the

value.

Arithmetic

The following table lists the arithmetic operations that the 80387 performs. See
Chapter 8 for a description of the types of operands that each instruction supports.

Instruction Explanation

F2XM1 Compute 25T-1 where -1 ST < 1

FABS Take absolute value of ST

FADD lop(s)] Add two floating-point numbers

FADDP opl, op2  Add opl and op2, pop stack

FIADD mem Add 16- or 32-bit integer to ST

FCHS Change the sign of ST

FCOM op Compare ST with op (register or memory)

(continued)
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conlinued

Instruction Explanation
FCOMP op Compare ST with op and pop
FCOMPP Compare ST with ST(1), pop both

FICOM ment
FICOMP memn
FUCOM op

FUCOMP  op
FUCOMPP op

FCOS

FDIV lop(s)]
FDIVP opl, op2
FIDIV mem

FDIVR lop(s)]
FDIVRP opl, op2
FIDIVR mem
FMUL lop(s)]
FMULP opl, op2
FIMUL mem
FPATAN

FPREM

FPREMI1

FPTAN

FRNDINT

FSCALE

FSIN

FSINCOS

FSQRT

FSUB lop(s)]
FSUBP opl, op2
FISUB mem
FSUBR lop(s)]
FSUBRP opl, op2
FISUBR mem

Compare ST with 16- or 32-bit integer
Compare with integer and pop
Compare allowing quiet NaNs

Like FCOMP

Like FCOMPP

Cosine of ST

Floating-point divide

Divide op? by op2, pop

Divide ST by 16- or 32-bit integer
Reverse divide (op2 by op1)

Reverse divide op2 by op? and pop
Divide integer by ST

Floating-point multiply

Multiply op? by op2 and pop stack
Multiply ST by 16- or 32-bit integer
Arctangent of ST(1)/ST

Partial remainder of ST/ST(1)
Compute partial remainder to IEEE spec
Compute tangent of ST, push(1.0)
Round ST to integer

Multiply ST by 2511

Compute sine of ST

temp = ST, ST = sin(temp), push(cos(temp))
Take the square root of ST
Floating-point subtraction

Subtract op2 from op! and pop
Subtract 16- or 32-bit integer from ST
Reverse subtraction

Subtract op? from op2 and pop stack
Subtract ST from 16- or 32-bit integer

FTST Compare ST against 0.0
FXAM Examine ST and set condition codes
FXTRACT Decompose ST to exponent and significand, ST = exponent,
push significand
FYL2X ST(1) = ST(1) x log,ST, pop stack
FYL2XP1 ST(1) = ST(1) x log,(ST + 1), pop stack
Control

Control instructions save or alter the state of the NDP. Some have a special “no
wait” form, indicated by the letter N as the second character of the mnemonic. The
“no wait” instructions execute without the implicit WAIT that occurs between two
floating-point instructions.
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Normally a WAIT instruction is implied before every coprocessor operation. The
two instruction streams that follow are equivalent.

FADD STC395: S WAIT

FMUL ST(1) FADD  ST(3), ST
WAIT
FMUL  ST(1)

WAIT causes the 80386 to check the hardware ERROR\ signal asserted by the NDP
if unmasked exceptions have occurred. If a coprocessor error is signaled, a floating-
point exception (interrupt 16) occurs, “No wait” instructions allow you to save the
NDP state without worrying about processing any floating-point exceptions.

The processor state of the 80387 is held in the registers discussed in Chapter 3.
Some of these registers are addressable individually, but others, such as the tag word
and error pointer registers, are not. The combination of the control word, status
word, and error pointers is called the environment. The instructions for loading and
storing this processor state in the memory format are outlined in Figure 4-10.

Address

Low 31 16 15 0 offset
memory 0 CwW 0
0 SW 4
0 ™ 8
FIP 12
ORI PGS 16
FOO 20

High —

memory 0 [ Fcs 24

Figure 4-10. Environment layout,

The following table lists the 80387's control instructions and their functions.

Instruction Explanation

FINICLEX Clear all exception flags

FDECSTP Decrement the TOP field in the CW
FFREE ST(n) Mark ST(n) as unused

FINCSTP Increment the control word TOP field
FINJINTT Initialize the NDP

FLDCW mem Load the control word register
FLDENV mem Load the floating-point environment
FNOP No operation

FRSTOR mem Reload the entire 80387 machine state
FINISAVE Store the entire 80387 state to memory
FIN]STCW Store the control word to memory
FINISTENV Store the floating-point environment
FINISTSW Store the status word

FINJSTSW AX Copy the status word to 80386 AX

21
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The entire NDP state, including all registers, tags, and pointers, must be saved and
restored when multitasking between two or more programs that rely on the 80387,
The FSAVE and FRSTOR instructions load and save the memory image shown in
Figure 4-11.

The memory images described in Figure 4-11 are slightly different in a system using
the 80287. See Appendix F for information pertaining to the 80287.

Address
31 0 offset

0 CW 0
0 SW 4
0 TW 8
FIP 12
0 | Ecs 16
FOO 20
DR | BRECS 24
STO) y, 51 28
ST, 63 32
ST(Dp, 15 | ST s 70 | 36
ST(1) 4 47 40
ST(1) 45, 79 44
ST(2) o, 31 48
ST(2) 3 63 52
ST3) o, 15 | ST@gs 70 | 56
ST 16, 47 60
ST(3) 48..79 64
ST ¢, 51 68
ST(4) 52 63 72
ST(5)g. 15 | ST@ et 70| 76
ST(5) 16. 47 80
ST(5) 4. 79 84
ST(6) o, 31 88
ST(6) 33 63 92
ST(M o, 15 | STO) s 70| 96
ST(T) 16, 47 100
ST(T) 48, 70 104

Figure 4-11. FSAVE and FRSTOR memory layout.
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THE 80386
PROTECTION
MECHANISM

The role of computers in society is becoming more and more significant. Computers
process our financial transactions, count our votes at election time, control medical
equipment, and more. As our dependency on computers grows, we need systems
that can process multiple tasks and maintain reliability at the same time.

In support of these goals, Intel designers implemented the protected virtual address
mode (protected mode) on the 80286. Protected mode allows multiple applications
to run concurrently but isolates them from one another so that failures in one appli-
cation do not affect any other application. Although it was possible to implement
multitasking on previous Intel microprocessors, every application had access to all
portions of the system. A flaw in one application could easily crash the entire sys-
tem or corrupt data associated with another task.

The 80386 is the second Intel processor to support protected mode. However, the
80386's capabilities are extended by use of 32-bit addressing. This chapter discusses
how the 80386 protection mechanism works, including privilege levels, task separa-
tion, and how virtual addressing is used to support the protection model.

Selectors

The central feature of the 80386 protection mechanism is the selector. Rather than
directly accessing any part of the system, a program deals with a selector, which
grants access 1o a system object. Associated with each object is information about it,
for example, the object’s location, size, and type, and any restrictions on its use.

This information is not stored in the selector for two reasons. The selector would be
very large, and passing it from routine to routine would take a lot of computer time.
More importantly, keeping the object information in a separate location prevents an
unscrupulous or errant program from corrupting the information.

a3
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A selector is like a sealed envelope. Inside the envelope is important data that must
be kept secure. Like a messenger permitted only to see envelopes and pass them to
other messengers, a program can store and retrieve selectors and pass them to other
routines. Only the operating system has access to the data inside the envelope,
which on the 80386 is called a descriptor.

Descriptors

Aptly named, descriptors describe a system object in detail. Memory segments, as il-
lustrated in Chapter 3, are one kind of system object. Other system objects include
tables that support the protection mechanism, special segments that store the pro-
cessor state, and access control objects called gates.

Descriptors are grouped in descriptor tables. By examining a selector, the 80386
hardware determines which descriptor is associated with the selector and with the
object to which the descriptor points. One item that the descriptor indicates is the
privilege level of the object. This value is stored in the DPL field of the descriptor.
When a program requests access to a system object with a selector, one of the fol-
lowing happens:

® Access is denied. If the request violates a rule of the protection mechanism (more
on this later), control passes from the program to a designated routine in the
operating system. The operating system usually terminates the process,

® Access is permitted but impossible to grant. For example, if the object is not cur-
rently in memory, an operating system routine is called that swaps the object into
memory and returns control to the program. The program is then permitted to
retry access to the object.

e Access is granted at the requested privilege level.

Privilege

The 80386 processor supports four levels of increasing privilege, numbered 3, 2, 1,
and 0. Privilege level 0 is the most privileged level.

The privilege level of the selector in the CS register identifies the precedence of the
currently executing routine and is called the current privilege level (CPL), For reli-
ability, only the most trustworthy and crash-resistant code in the operating system
should run at the most privileged level (CPL = 0). Applications that might fail or
compromise the integrity of the system should run at the lowest priority (CPL = 3).

Because the number of programs that can run at high privilege levels diminishes
near level 0 and because level 0 code is likely to exist only in the core of the operat-
ing system, the classic illustration of the privilege system is one of concentric rings,
as shown in Figure 5-1.
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Least secure

Most secure

Figure 5-1. Privilege rings.

The concentric ring image is so well integrated into the understanding of privilege
that programmers often speak of code that runs “in ring 0” or “in ring 3"—another
way of saying that the CPL of the procedure is 0 or 3. Every system object (that is,
everything referred to by a descriptor) is associated with a privilege level and
“resides” in a particular ring.

The word privilege connotes rights or advantages not normally granted. On the
80386, procedures running in the innermost rings can access data objects in the
outer rings (which have less privilege), but outer-ring procedures cannot access ob-
jects with greater privilege. In addition, to prevent the operating system from crash-
ing due to bad code, procedures cannot call other procedures that might be less
reliable (procedures in outer rings).

For example, a procedure running in ring 1 may access a data segment residing in
ring 2 or ring 3 but is prevented from accessing a segment whose privilege level is 0.
A ring 1 procedure, however, cannot invoke a subroutine residing in ring 2 or ring 3,
nor can it call one in ring 0. Figure 5-2 on the following page illustrates this
concept.

An operating system does not need to support all four privilege levels. UNIX sys-
tems, for example, typically implement only two levels, 0 and 3. OS/2 supports three
levels: The operating system code runs in ring 0, applications run in ring 3, and
special routines that need access to /O devices run in ring 2.
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Code (programs)
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Figure 5-2. Access between rings.

Interlevel communication

As a security measure, concentric rings of privilege work well, but the possibility ex-
ists that an application running in ring 3 might need service from the operating sys-
tem. The operating system, however, though omnipotent in ring 0, is not accessible
to the application. The application, in effect, might say, “Oh most great and worthy
of operating systems, please grant me, thy humble and obedient servant, additional
RAM for my stack,” but because of the access restrictions it has no way of calling on
the operating system.

Various cultures have established a priesthood whose job is to act as intermediator,
but the Intel design engineers apparently despaired of fitting something that com-
plicated into only 250,000 transistors, so they resorted to something simpler. It's
called a gate.

Gates

A gate is a system object (that is, it has its own descriptor) that points to a procedure
in a code segment, but the gate has a privilege level separate from that of the code
segment. Figure 5-3 shows how this changes the legal subroutine call path.

A gate allows execute-only access to a routine in an inner ring from a less privileged
procedure. The restriction on outward calls, however, remains in force, The 80386
supports four types of gates: call, interrupt, trap, and task. Call gates are invoked
via the standard subroutine call instruction. Interrupt gates and trap gates are in-
voked by the INT instruction or by hardware interrupts. Task gates are invoked by
JMP, CALL, or INT instructions or by hardware interrupts.
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Figure 5-3. Call paths through gates.

In a standard subroutine call, the return address and any parameters are stored on
the stack, and execution continues at the start of the subroutine. When invoking a
subroutine through a gate, the privilege level of the executing routine changes to
the level of the code segment to which the gate points. When the subroutine
returns, the privilege level is set back to that of the calling procedure. For example,
an application executing in ring 3 might call the operating system (o allocate some
memory. The operating system code runs in ring 0, and a call gate in ring 3 points
to the allocation routine.

This approach solves the communication problem but introduces another one.
Because the return address (and possibly some system call parameters) is on the
stack and the stack is a ring 3 (application) data segment, the address and parame-
ters are no longer secure. The application could corrupt them while the operating
system is processing the request. To solve this problem, part of the stack is copied
to a more privileged stack segment as it moves through the gate, as shown in Figure
5-4 on the following page. Each call gate descriptor contains a field called the
dword count, which indicates the number of 32-bit stack words to copy from the
outer-ring stack to the inner-ring stack.

Every application must have as many stack segments as there are privilege levels
in the operating environment under which it is running. If this seems excessive,
remember that you can use the virtual memory capability of the 80386 to your ad-
vantage. An application can have descriptors for more than one stack segment, but
stack segments can be marked as not present and never take up any physical
memory if they are not used.
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Figure 5-4. Stack privilege increase.

If the idea of four stack segments has you flipping back to the 80386 register dia-
gram looking for additional registers, you won't find them. The active stack pointer
is held in the S and ESP registers. The others are stored in a system object called
the task state segment, or TSS.

Task state segments

A TSS is a special memory segment that the 80386 uses to support multitasking. Tts
format is outlined in Figure 5-5, and it contains a copy of all the registers that must
be saved to preserve the state of a task. It also contains values that are associated
with the task but that are not stored in CPU registers.

The TSS contains three additional stack segment selectors (SS0, SS1, and 882) and
three stack pointers (ESP0, ESP1, and ESP2), as shown in Figure 5-5. When a call or
interrupt through a gate causes a change in privilege, the new SS and ESP are loaded
from the TSS. The task register (TR) contains the selector of the current ly active
TSS.

When a task switch occurs, all the executing task’s registers are saved in the active
TSS. The task register is then loaded with the selector of a new TSS, and each gen-
eral register is loaded with the values from the new TSS. Other fields in the TSS and
multitasking are discussed later in this chapter.

Descriptor tables

As mentioned earlier, the descriptors for the memory segments, TSSs, gates, and
other system objects are grouped into descriptor tables. The three types of descrip-
tor tables are; the interrupt descriptor table (IDT), the global descriptor table (GDT),
and the local descriptor tables (LDTs).

The IDT contains descriptors that relate to hardware and software interrupts. A spe-
cial register, IDTR, contains the linear base address and size (limit) of the IDT. The
IDT is discussed in detail later in this chapter in the section “Interrupts and
Exceptions.”
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Figure 5-5. Task state segment (TSS).

The GDT is the primary descriptor table. The GDTR register contains the linear
base address and limit of the GDT. Important descriptors that the operating system
uses reside in the GDT, An operating system can be built using only the GDT and
the IDT. The LDTs, however, provide an additional layer of protection and are help-
ful in building reliable systems.

The following illustration shows the mechanism used to identify a descriptor given
a2 16-bit selector. The selector is composed of three fields: the index, the table indica-
tor (TD), and the requested privilege level (RPL).



THE 80386 BOOK

15 Sz R0

i
I

Index

—aE

The RPL can be used to request access to an object at a less privileged level than is
normally granted. If you're a canny operating system designer, you don’t necessarily
want access at the most privileged level available to you. Using the RPL in this man-
ner guards against misuse of highly privileged routines to subvert the system.

Consider a programmer who tries to snoop in a “secure” system. This programmer
knows that an application program that attempts to access the operating system’s
code will fail. However, the programmer tries another tactic. The snooping applica-
tion calls the operating system’s disk write routine and passes it a pointer to the sys-
tem segment to which it wants access, The operating system routine has enough
privilege to gain access to the segment, so no protection violation occurs, and the
clever programmer has a disk file that contains the desired segment. Figure 5-6
illustrates this scenario.

A secure operating system can foil attempts such as this by ensuring that the RPL
field of any selector is set to the CPL of the calling routine. The ARPL (adjust re-
quested privilege level) instruction performs this function. When this is done, the

—> Legal access

====k [llegal access

A Segment

O Call gate

Level 0
selector

segment

Application

Application passes the ring 0 selector (which is illegal for it to use) to the ring 0 routine.
The ring 0 routine gains access to the ring segment and writes it to disk.

Figure 5-6. Access to an operating system segment.

100



5: The 80386 Protection Mechanism

system can detect that the requested privilege level (RPL) of the selector is less than
(numerically higher than) the DPL of the desired segment and refuse to complete
the operation. Figure 5-7 shows the behavior of a secure operating system in this
situation,

— Legal access

----p lllegal access

A Segment

O Call gate

Level 0
selector

ARPL adjusts selector
to same privilege as
application.

Figure 5-7. Secure operating system using ARPL.

The TI bit of a selector identifies the table from which the descriptor is selected.
When TI is set to 0, the selector refers to the index# descriptor in the GDT. A selec-
tor value of 0033H, for example, points to the GDT descriptor number 6. The first
slot in the global descriptor table, GDT(0), is never used. A selector value of 0* is
used as a null selector. The null selector can be loaded into a data segment register
without triggering a protection fault.

When TI is set to 1, the index refers to a descriptor in the current LDT. LDT(0) can
be used to hold a valid descriptor. LDTs are usually created on a per task basis and
serve two purposes. First, because a selector is 16 bits and the index field is only 13
bits, you can address a maximum of 8192 descriptors. Multiple LDTs allow you to
store more descriptors. If there were only one LDT as there is only one GDT, an
operating system might run out of space to store descriptors.

Second, the LDT also gives you increased security. Figure 5-8 on the following page
represents an operating system that uses only the GDT to store descriptors. The

* The RPL portion of the null selector is ignored, so any of the values 0, 1, 2, or 3 are valid null
selectors,
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descriptors below 100 point to various operating system objects and are all ring 0
objects. GDT(100) is a ring 3 descriptor for the code segment of application A, and
GDT(101) is the data segment descriptor, also in ring 3. Descriptors 102 and 103 are
the descriptors for the code and the data of application B.

Any attempt by application A to access outside its code and data segments results in
a protection violation. However, what if application A attempts to forge a selector?
That is, what if the application tries to create an otherwise valid selector for a seg-
ment that doesn’t belong to it? Creating a selector for any of the first 100 GDT slots
results in a protection violation because the operating system descriptors are ring 0
objects. If application A creates a selector for GDT(103), however, it can potentially
access (or destroy) data for application B. The 80386 prevents access between rings
but not inside the same ring.

Figure 5-9 shows the 80386 solution to the problem. If each application is given its
own LDT, the GDT can be reserved for system use. All descriptors in the GDT point
to objects in rings 0, 1, or 2. The LDT for each task contains the ring 3 (application)
code and data segments. Each application has a separate LDT, so a forged selector
can refer to objects only in the GDT, which are more privileged and therefore inac-
cessible, or to objects in its own LDT. Thus, the LDT defines a virtual address space
for the application, and each task has a separate, nonoverlapping address space.

Address space A
and
Address space B

DPL=0
1 DPL=0 Code
2| DPL=0 Task

A

Figure 5-8. Operating system using only the GDT.
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Figure 5-9. Operating system using a GDT and an LDT.

As Figure 5-9 indicates, an LDT is also a system object with its own descriptor. The
next section illustrates the general format of descriptors in the 80386.

Descriptor Formats

Figure 5-10 on the following page illustrates the three forms of a descriptor. The fol-
lowing are the descriptor types: program memory segments, system segments, and
gates. Program memory segment descriptors were introduced in Chapter 3. System
segment descriptors describe LDTs and TSSs. Like program memory segment de-
scriptors, system segment descriptors describe regions of memory and have a base
and a limit. However, you cannot load a descriptor for an LDT or a TSS into a seg-
ment register and read or write the contents as data. For an operating system to up-
date an LDT or a TSS, it must create a memory segment descriptor with the same
base address and limit, called an alias. Programs such as debuggers, which let you
modify your program’s code segments, must also create aliases because code seg-
ments are not writable under the 80386 protection rules.
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Figure 5-10. General descriptor format: system, memory, and gate descriptors.
System segments are identified by a value of 0 in the S bit of the descriptor. The
TYPE field can hold any of the following values:
0—Unused (invalid descriptor)
1—80286 TSS
2—LDT
3—Busy 80286 TSS
9—80386 TSS
11— Busy 80386 TSS

A gate descriptor does not delineate a memory region and therefore has no base ad-
dress or limit fields. Instead, a gate points to another descriptor via a selector, Call,
interrupt, and trap gates must contain the selector for a code segment and an offset
into the segment. Task gates hold a selector for a TSS, and the offset portion of the
descriptor is unused.

Gate descriptors, like system segment descriptors, have the S bit set to 0 and can
contain one of the following values in the T'YPE field:

4—80286 call gate
5—Task gate
6—80286 interrupt gate
7—80286 trap gate
12—80386 call gate
14—80386 interrupt gate
15—80386 trap gate

TYPE field values of 8, 10, and 13 are reserved for future Intel processors.

104



5: The 80386 Protection Mechanism

Descriptor types 1, 3, 4, 6, and 7 are used on the 80286. Operating systems designed
for the 80286 (such as OS/2) run without modification on the 80386, so these de-
scriptor types are fully supported. A native mode system, however, or one that sup-
ports both 16-bit and 32-bit programs, uses full 32-bit descriptors. You can use 16-bit
code and data descriptors in a 32-bit system, but using 16-bit system descriptors such
as task state segments can lead to difficulties.

Multitasking

I have previously shown how the 80386 uses call gates to implement interlevel sub-
routine calls. Interrupt and trap gates are discussed later in this chapter. The follow-
ing sections show how the 80386 can use the remaining system objects (TSSs, LDTS,
and task gates) to implement robust multitasking operating systems.

Simply defined, a task is “a sequence of related actions leading to the accomplish-
ment of some goal.” In a computet, the resources required to accomplish the goal
are usually included in the definition of a task—that is, the amount of memory, CPU
time, disk space, and so on.

The term multitasking refers to the ability of a computer to execute more than one
task simultaneously. The 80386 cannot execute more than one instruction stream at
once, but it can execute one instruction stream, switch to another, execute it, switch
to a third, execute it, switch back to the original, and so on. Because the CPU exe-
cutes so rapidly, all tasks appear to execute simultaneously. Concurrency and
multiprogramming are synonyms for multitasking,

An executing task is called a process. Thus, some people refer to multitasking as
multiprocessing. Others, however, use the word mutltiprocessing to refer to systems
in which multiple CPUs or processors are running simultaneously. To avoid confu-
sion, I do not use the term multiprocessing, and I refer to computers with more than
one CPU as multiprocessor systems.

Assume that each task in a computer is implemented by a single program,; therefore,
multiple programs must share the CPU. Various strategies exist for sharing the CPU,
but to discuss and compare these strategies is beyond the scope of this book. At
some level, each system must turn over control of the CPU from one task to another.

The first task might be in the middle of a computation when control is wrested
from it and passed to another task; when the first task resumes, it must be able to
continue processing as though nothing had happened. All the registers that the task
was using must be restored to their original values when that task regains control.

The 80386 hardware supports this kind of task switching via the TSS. Figure 5-11 on
the following page depicts the memory layout of the TSS. Each TSS has only one de-
scriptor, which defines its base memory address and limit. Figure 5-11 shows the TSS
descriptor format immediately below the TSS. To allow access to the TSS by differ-
ent privilege levels or via interrupts, you must use task gates. '
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Figure 5-11. Task state segment and descriptor.

The TSS descriptor is similar to that of a typical memory segment because the TSS is
a system segment; however, the S bit is 0. The TYPE field for a TSS contains either a
binary 1001B or 1011B (9 or 11). The variable bit is called the busy bit. This bit is set
to 1in the currently executing task and in any tasks that have called the current task,
establishing a chain of nested tasks. Any attempt to invoke a task that is marked as

busy triggers an exception.
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The selector in the task register (TR) identifies the current task. Usually, this register
is loaded once at initialization time and then is managed by the task switch opera-
tion. Loading TR does not cause a task switch; it does identify the active TSS,
however.

When a task switch occurs, the state of the currently executing task is saved in its
TSS, and the CPU registers are loaded from the image of the new or destination TSS.
The task register contains a selector for the currently active TSS. TSS descriptors can
be located only in the GDT.

Part of the TSS in Figure 5-11 is gray. The gray portion indicates values that are not
stored in the outgoing TSS during a task switch, although new values are loaded
from the destination TSS. If any gray value changes during execution of the task, the
operating system must ensure that the TSS is kept current. The application cannot
change these values; they require kernel support (privilege level 0) to be modified.

The bulk of the TSS holds copies of the 80386 general register set: EAX-EDI, the
segment registers, EFLAGS, and EIP. In addition, the TSS contains these fields:

Back link— The selector of the TSS that was previously executing.

$Sn, ESPn —The stack pointers for ring 7 execution, as discussed in the section on
call gates,

CR3— Control register 3, which defines the physical memory address of the page
tables for the task.

LDTR—The selector of the LDT for the task.

T—The “trap on task switch” bit. A debug fault (interrupt 1) occurs when this bit is
set to 1 in the incoming TSS.

1/OP bitmap base—A 16-bit offset into the TSS that indicates the start of the /O
permission bitmap. If this field is set to 0, no I/O permission bitmap exists.

System dependent—The portion of the TSS that the operating system can use to
store any operating system-specific information about the task.

1/0 permission bitmap—The field that starts at the offset indicated by the 1/OP
bitmap base and continues to the end of the TSS or to the base plus 8192.

Task switching

Four events can cause a task switch on the 80386:

e The current task executes a FAR CALL or JMP instruction in which the selector
points to a TSS descriptor.

e The current task executes a FAR CALL or JMP instruction, and the selector points
1o a task gate.
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The current task executes an IRET instruction to return to the previous task. An
IRET causes a task switch only if the NT (nested task) bit of the EFLAGS register
is setto 1.

An interrupt or exception occurs, and the IDT entry for the vector is a task gate.

For any task switch, the following events take place:

il

4.

If the task switch is not caused by a hardware interrupt, an exception, or an
IRET, the descriptor privilege rules are checked. The DPL of the descriptor
(TSS or task gate) must be numerically less than the current task’s CPL and the
selector’s RPL.

The present bit and limit of the descriptor for the current (outgoing) TSS is
checked to ensure that the TSS is present and can hold at least 104 bytes of state
information. If so, the current machine state is saved; otherwise an exception
OCCUTS.

The present bit and limit of the descriptor for the new (incoming) TSS is
checked. If the TSS is not present or is too small, an exception occurs; other-
wise all the register images are loaded. If the value of CR3 has changed, the
TLB cache (see Chapter 7) is flushed.

At this point, all the general and segment registers are loaded, but the 80386
shadow registers are not. CS might have a value of 217FH, but the descriptor for
selector 217FH has not been loaded. The state of the outgoing task has been
saved, however, and any exceptions that occur are in the context of the new
state, even if the CS descriptor is not present or is invalid.

The linkage to the outgoing task is established. What happens next depends on
what caused the task switch.

a. If the task switch was caused by a JMP instruction, the TSS descriptor of the
outgoing task is marked as not busy, and the incoming task descriptor is
identified as a busy TSS.

b. If the task switch was caused by an interrupt or a CALL instruction, the
outgoing task remains busy, and the incoming task is also marked as a busy
TSS. Additionally, the N'T bit of the EFLAGS register is set to 1, and the back
link field of the incoming TSS is set to the selector of the outgoing TSS.

¢. If the task switch was caused by an IRET instruction, the outgoing task is set
to not busy.

The task switched (TS) bit in CRO is set to 1, and the current privilege level for
the incoming task is taken from the RPL field of the CS selector in the TSS.
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6. The LDTR shadow registers are loaded if the LDTR contains a valid selector. If
the LDTR value is 0 (the null selector), no action is taken. If the selector is in-
valid or if the new LDT is not present, an exception occurs.

7. The descriptors for CS, SS, DS, ES, FS, and GS are loaded into the 80386 shadow
registers in that order. All descriptors are tested for privilege violations (CPL has
already been established) and must be marked present; otherwise an exception
occurs.

8. The local enable bits in DR7 are cleared to 0.
9. Ifthe T bit of the incoming TSS is set to 1, a debug fault (interrupt 1) occurs.

10. The new task begins executing by fetching the instruction at CS:EIP.

1/0 permission bitmap

Two conditions determine whether a task is allowed to perform [/O: the 1/O privi-
lege level and the I/O permission bitmap. The IOPL bits in the EFLAGS register de-
termine the I/O privilege level, The IOPL defines the least privileged level that can
perform an 1/0 instruction without restriction, For example, if IOPL = 2, 1/O in-
structions can be performed by procedures executing at levels 0, 1, or 2. An attempt
to execute an instruction by a ring 3 application must be further validated by the
1/O permission bitmap.

If the CPL of the current task is greater than IOPL (that is, if [/O is restricted for that
task), the I/O permission bitmap is checked, which protects the I/O address space
on an individual 1/0 port basis. The TSS stores an [/O permission bitmap for every
task. The bitmap begins at the offset in the TSS specified by the 16-bit I/O map base
value. The I/0 map base value must be greater than or equal to 68H.

The I/O permission bitmap is a maximum of 8192 bytes, with one bit for each of the
65,536 1/0 ports, If the bit in the bitmap corresponding to the 1/O port is set to 1,
then the task does not have access to the port, and a general protection fault will oc-
cur if the task attempts to execute an I/0 instruction at that port.

The 1/O permission bitmap is not required to be 8192 bytes. The limit field of the
TSS descriptor specifies the end of the bitmap. If the 1/O map base value is greater
than or equal to the limit value, the TSS contains no I/O permission bitmap. All
ports that do not have a bitmap position in the TSS are protected from access.

Figure 5-12 on the following page shows a sample bitmap. The task with this TSS
can access ports 8, 9, 10, 11, and 12. A subroutine in this task can access byte ports 8,
9,10, 11, and 12, word ports 8 and 10, or dword port 8.
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Figure 5-12. I/O permission bitmap in TSS.

Interrupts and Exceptions

Interrupt is a term that defines a variety of control transfers on the 80386. The
specific items implied by this term are true interrupts (hardware interrupts) and
exceptions, which are further subdivided into traps, faults, and aborts.

All interrupts and exceptions share a common feature: The current execution loca-
tion (CS:EIP) and flags register (EFLAGS) are saved on the stack, and control trans-
fers to a software routine called an interrupt handler via a gate in the interrupt
descriptor table (IDT). The 80386 supports a maximum of 256 descriptors in the
IDT. Every interrupt or exception is associated with one of these interrupt numbers.
Interrupt numbers 0 through 31 are reserved for specific purposes relating to the
80386 processor; the operating system can assign numbers 32 through 255.

The kinds of interrupts and exceptions are:

Interrupts— True interrupts are caused by hardware signals that originate outside
the CPU. Two pins on the 80386, NMI and INTR, signal interrupts. Pulling the NMI
pin low activates a nonmaskable interrupt. The NMI interrupt always invokes the
routine associated with interrupt vector IDT entry) 2.

An active signal on the INTR line causes a maskable interrupt. The 80386 does not
respond to a maskable interrupt unless the IF bit of the EFLAGS register is set to 1.
When the IF bit is 0, interrupts are not recognized and are said to be masked. If the
processor responds, it issues an interrupt-acknowledge bus cycle, and the interrupt-
ing device must respond with an interrupt number. Use only values 32-255 for
maskable interrupts.

Traps— These are conditions that the 80386 regards as errors and detects after the
execution of a software instruction. The saved instruction pointer (CS:EIP) on the
stack points to the instruction immediately after an instruction that has trapped.
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A classic example of a trap is the INTO instruction. When INTO is executed, the
processor checks the value of the overflow flag (OF). If OF = 1, the 80386 vectors
through IDT descriptor 4.

All software interrupt (IN'T) instructions are handled as traps. To issue one of these
instructions, however, a procedure must have access privilege to the IDT descriptor
for the interrupt number. For example, if a ring 3 application executes an INT 47 in-
struction, the descriptor at IDT(47) must have DPL = 3; otherwise, a protection fault
occurs. This mechanism prevents applications from issuing INT instructions for
vectors associated with hardware interrupts because the gates for these vectors
point to operating system code that runs at high privilege levels, usually ring 0.

Faults—When the 80386 detects an error during the processing of an instruction
(for example, when the instruction’s operand is stored in a page frame marked not
present), a fault occurs. A specific interrupt number is associated with each fault
condition. The instruction pointer saved on the stack after a fault occurs points to
the instruction that caused the fault. Thus, the operating system can correct the con-
dition and resume executing the instruction.

Aborts—When an error is so severe that some context is lost, the result is an abort.
It might be impossible to determine the cause of an abort, or it might be that the

instruction causing the abort is not able to be restarted.

The following table lists all of the exceptions handled by the 80386:

80386 Exceptions
Interrupt
Number Class Description
0 Fault Divide error
1 Fault or trap Debugger interrupt
2 Interrupt Nonmaskable interrupt
3 Trap Breakpoint
4 Trap Interrupt on overflow (INTO)
5 Fault Array boundary violation (BOUND)
6 Fault Invalid opcode
7 Fault Coprocessor not available
8 Abort Double fault
9 Abort Coprocessor segment overrun
10 Fault Invalid TSS
11 Fault Segment not present
12 Fault Stack exception
13 Fault General protection violation
14 Fault Page fault
15 Reserved
16 Fault Coprocessor error
17-31 Reserved
32-255 Interrupt or trap System dependent
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One class of error is more severe than an abort. If the processor is unable to con-
tinue processing an exception, it shuts down. In a protected-mode environment, the
system should shut down only if a hardware failure occurs. To prevent shutdown,
the vectors that handle the double fault (interrupt 8) and invalid TSS (interrupt 10)
conditions should be separate tasks, and IDT entries 8 and 10 should be task gates.
This approach allows the 80386 to load a new machine state from which to handle
the exceptions. If this is not done, the exception handler might be running in the
same environment that caused the failures and might not be able to continue
processing.

Iinterrupt gates, trap gates, and task gates

The only types of descriptors that can reside in the IDT are interrupt gates, trap
gates, and task gates. Task gates in the IDT are identical to those in the GDT and
operate in the same manner.

When a task gate is invoked with an interrupt or with an exception, the machine
state is saved in the existing TSS, and a new state is loaded from the TSS associated
with the task gate. Thus, an interrupt can have its own address space, including its
own page tables and LDT. In addition, the interrupt handler is prevented from using
too much of the interrupted application’s stack and from corrupting any registers. A
task switch takes longer to execute than a gate transfer, however, and the advantages
of invoking a task gate must be weighed against performance considerations.

The most common entries in the IDT are interrupt gates and trap gates. These de-
scriptors have identical formats—only the type code is different. Figure 5-13 illus-
trates the descriptor format for interrupt gates. The only difference in behavior
between the two gates is that when an interrupt gate is activated the IF bit of the
EFLAGS register is cleared to 0. Hardware interrupts are masked until the interrupt
handler deems it safe to reenable them. Transferring control through a trap gate
does not modify the interrupt flag.

The behavior of interrupt gates and trap gates is similar to that of call gates. Al-
though interrupt gates and trap gates do not contain a word count field, they can
point to code segments of specific privilege levels or to conforming segments.
Figure 5-14 shows the layout of the stack when an interrupt handler is invoked.

63 48 47 32 31 16 15 0
Offset
16, .31

S .
PIDPL E Type 0 Selector Offsetul 15

Figure 5-13. nterrupt gate and trap gate descriptor format.

112



5: The 80386 Protection Mechanism

ESP at time of local
intitialization local
EFLAGS
| e (e
EIP
JEyRhe—— 1 Error code (If exception)

[nterrupt or exception with
no privilege transition.

EFLAGS
ESP at initialization 0 | CS
pointed to other stack EIP
Ry ei— Error code (If exception)

Interrupt or exception with transition
to new stack segment,

Figure 5-14. Interrupt stack without and with privilege transition.

An interrupt handler must return to the calling routine via an IRET instruction, The
IRET restores the original instruction pointer, flags, and stack segment. If the N'T
(nested task) bit was set in the EFLAGS register, a task switch to the original TSS
also occurs. The programmer should remove any error code (generated by the fault)
from the stack before returning from the interrupt handler,

80386 processor exceptions

The following sections explain the faults, traps, and aborts that can occur during
80386 program execution. Some exceptions cause a control transfer via the IDT;
others cause an error code to be pushed onto the stack as well. If an error code is
pushed, it is pushed onto the stack of the interrupt handler; that is, it is pushed after
any privilege level or task transition. Exceptions that cause error codes to be pushed
onto the stack are indicated in the following sections with the symbol /ec/. The
value of the error code is either 0 or as defined in the following illustration:

31 16 15

Undefined Selector index

T
mm s
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The selector index and T1I fields are taken from the selector of the segment associ-
ated with the exception. Instead of an RPL field, however, the error code has an I bit
and an EX bit. The I bit is set to 1 when the index refers to an IDT index, and the TI
bit is ignored. When I = 0, the TI bit indicates whether the selector is from the GDT
or from the current LDT. If the EX bit is set to 1, the fault was caused by an event
outside the executing program.

Interrupt 0—Divide (fault)
A divide fault occurs if division by zero is attempted or if the result of a divide
operation does not fit into the destination operand.

Interrupt 1 —Debugger (fault or trap)
This exception is triggered by one of these conditions:

Debug register breakpoint
Single step trap
Task switch trap

The “Debugging” section later in this chapter covers the triggering and handling of
debug traps in detail.

Interrupt 2—NMI (interrupt)
IDT vector 2 is reserved for the hardware NMI condition. No exceptions trap
through vector 2.

interrupt 3—Breakpoint (trap)
Debuggers use the breakpoint interrupt (INT 3), which is covered in the “Debug-
ging” section later in this chapter.

Interrupt 4 —Overflow (trap)

The overflow trap occurs after an INTO instruction has executed if the OF bit is set
to 1. The INTO instruction is useful in languages such as Ada that require arithmetic
instructions either to produce a valid result or to raise an exception.

Interrupt 5—Bounds check (fault)

Like interrupt 4, the bounds check trap occurs as the result of a software instruc-
tion. The BOUND instruction compares an array index with an upper bound and a
lower bound. If the index is out of range, the processor traps Lo vector 5.

Interrupt 6 —Invalid opcode (fault)
An interrupt 6 fault occurs if:

e The processor tries to decode a bit pattern that does not correspond to any legal
machine instruction,
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® The processor tries to execute an instruction that contains invalid operands.

e The processor tries to execute a protected-mode instruction while running in
real mode or in virtual 8086 mode.

Opcodes that are illegal on the 8086 or cause an invalid opcode fault on the 80286
do not always cause an exception when the 80386 executes in real mode. The op-
codes might correspond to new instructions that are valid in any 80386 operating
mode.

interrupt 7—Coprocessor not available (fault)

When a computer does not support an 80287 or 80387 coprocessor, the operating
system can set the EM bit of register CRO to indicate NDP software emulation. If the
EM bit of register CRO is set, an interrupt 7 fault occurs each time a floating-point
instruction is encountered.,

This fault also occurs if the MP bit of CRO is set and the 80386 executes a WAIT or
floating-point instruction after a task switch. The task switch sets the TS bit to 1.
The operating system can clear TS after a task switch to prevent the fault from oc-
curring, The 80386 uses this method to signal that the state of the math coprocessor
needs to be saved so that it can be used by another task.

Interrupt 8 —Double fault (abort) [ec]

Processing an exception sometimes triggers a second exception, For example, sup-
pose that a divide fault occurs during the processing of an application and that the
trap gate for interrupt 0 points to a conforming segment so that the privilege level
does not change. Now suppose that the user stack does not have room for the CS,
EIP, and EFLAGS pushed by the divide fault, The condition of being unable to
process the divide exception correctly would result in a double fault.

Not all exception pairs result in double faults. In some cases, most notably when
getting access to the fault handler causes a page fault, the second fault is processed
first, and then control transfers to the initial exception handler. The following table
shows the exception pairs that trigger a double fault;

Initial Exception Double Fault if Followed By
0 (Divide fault) 0,9 10,11, 12,13
9 (NDP segment overrun) 0,9, 10,11, 12, 13
10 (Invalid TSS) 0,9,10,11, 12,13
11 (Not present) 0,9 10,11, 12,13
12 (Stack fault) 0,9 10,11, 12,13
13 (General protection) 0,9, 10,11, 12, 13
14 (Page fault) 0,9 10,11, 12, 13, 14

A task gate can best handle the double fault vector, although a secure ring 0 segment
usually works. You should use the method best suited for placing the system in a

115



THE 80386 BOOK

known state because the processor shuts down if a third fault occurs while the
80386 is trying to start the interrupt 8 exception handler.

The shutdown state is similar to the halt state. Only a processor reset or NMI (if the
NMI vector is valid) can bring the processor out of shutdown. A special shutdown
signal is placed on the bus so that external hardware can detect the shutdown.

An error code of 0 is pushed onto the stack when a double fault exception occurs.

Interrupt 9—Coprocessor segment overrun (abort)

The coprocessor segment overrun exception is signaled when a floating-point in-
struction causes a memory access that runs beyond the end of a segment. If the
starting address of a floating-point operand is outside the segment limit, a general
protection fault (interrupt 13) occurs rather than an interrupt 9.

The segment overrun exception is classified as an abort because the instruction
cannot be restarted, You must use the FNINIT instruction to reinitialize the 80387
coprocessor. The CS:EIP saved on the stack will point to the offending instruction.

Iinterrupt 10— Invalid task state segment (fault) [ec]

A variety of causes can trigger an interrupt 10 because the TSS contains a number of
descriptors. The 80386 pushes an error code onto the stack to aid in diagnosing the
error condition. The following table lists invalid TSS fault conditions and the value
of the error code pushed onto the stack for each condition. The items are listed in
the order in which they are checked by the CPU.

Condition Error Code Value
Outgoing TSS limit < 103 TSS index : T1 : EXT
Incoming TSS limit < 103 TSS index : T1: EXT
LDT selector has T1 = 1 LDT index : TI ; EXT
LDT descriptor has S = 1 LDT index : TI : EXT
LDT descriptor TYPE != 2 LDT index : TI : EXT
LDT descriptor not present LDT index : TI : EXT
CS selector is null CS index

CS descriptor has § = 0 CS index

CS descriptor not executable CS index

CS conforming, DPL > CPL CS index

CS not conforming, DPL != CPL or CS index

DPL < RPL

S8 selector is null SS index

S8 selector RPL = CPL SS index

S8 descriptor has § = 0 SS index

SS descriptor not writable SS index

The following checks are made for all other selectors in the order DS, ES, FS, and GS:

Descriptor has § = 0 DS, ES, IS, or GS index

Descriptor is execute only DS, ES, FS, or GS index

Descriptor not conforming, DPL < CPL or DS, ES, FS, or GS index
DPL < RPL
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The CPL value is taken from the RPL of the incoming CS selector. If one of the
memory segment descriptors is marked not present, a not present fault or stack fault
occurs rather than the invalid TSS fault. The TSS load stops at the point of the fault,
and the other exception handler must ensure that the remaining segment registers
get loaded.

Interrupt 11—Not present (fauit) [ec]

The not present interrupt lets you implement virtual memory via the 80386 segmen-
tation mechanism. An operating system can mark a memory segment as not present
and swap its contents out to disk. The interrupt 11 fault is triggered when an applica-
tion needs to access the segment.

This fault occurs when the 80386 tries to gain access to a descriptor that is not pres-
ent (P = 0). Loading DS, ES, FS, or GS triggers the fault, as does a FAR CALL or JMP
that either loads CS with a segment marked not present or accesses a gate whose
descriptor is marked not present. In addition, the LLDT and LTR instructions cause
descriptors to be loaded and can trigger the fault.

A segment fault that occurs when loading the SS register results in a stack fault (in-
terrupt 12) rather than in a not present fault. Additionally, when the LDTR is loaded
during a task switch rather than by the LDTR instruction, an invalid TSS exception

occurs if the descriptor has P = 0.

The CS and EIP that are pushed onto the stack as a result of the exception usually
point to the offending instruction. Also pushed is an error code that identifies the
selector involved in the fault. The only time that CS:EIP does not point to the of-
fending instruction is when a task switch occurs and a selector in the new task im-
age causes the not present exception.

In this case, the CS:EIP points to the first instruction of the new task. The selectors
are loaded in the order SS, DS, ES, FS, and GS, and the task switch terminates at the
point of the fault. The interrupt 11 fault handler must handle the fault and validate
the remaining selectors. If the interrupt 11 fault handler is invoked via a task gate,
this happens on the IRET that ends interrupt 11. If a trap gate invokes the interrupt,
however, the fault handler must test each selector with the LAR instruction.

Interrupt 12— Stack (fault) [ec]

A task gate should handle this exception because the state of the stack is unknown
when a stack fault occurs. You can use a level 0 trap gate, but if a stack fault occurs
at ring 0, the trap to the interrupt 12 handler results in an immediate double fault.

A stack fault with an error code of 0 occurs if a normal instruction refers to memory
beyond the limits of the stack segment. This includes instructions such as PUSH and
POP, and instructions that use an 88: segment override or use EBP as a base register.
In addition, the ENTER instruction causes the same fault if it causes ESP to be decre-
mented beyond the lower bound of the segment. Instructions such as SUB ESP, 10 do
not cause stack faults.
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If the stack fault is triggered by loading SS with a not present selector or if the fault
occurs during gated transition between privilege rings, an error code indicating the
offending selector is pushed onto the stack. Loading SS with invalid descriptors (out
of range, segment not writable, and so on) results in a general protection fault rather
than a stack fault.

When the error code is 0, this usually means that a given stack segment is too small.
If the operating system supports expand-down segments, it can expand the stack of
the faulting application. The saved CS:EIP points to the faulting instruction, which
can always be restarted; however, the same caveat that applies to task switches and
not present exceptions also applies to stack faults. See the final paragraph under
“Interrupt 11—Not present (fault)[ec]” for more details.

Interrupt 13 —General protection (fault) [ec]

Any condition not covered by some other exception triggers a general protection
fault. This fault usually indicates that the program has been corrupted and should be
“terminated with prejudice,” as the old UNIX phrase goes.

The exception to this rule is that V86-mode tasks trigger general protection faults
when the system needs to be “virtualized.” For example, a V86 task that tries to dis-
able interrupts or issue a software interrupt instruction triggers a general protection
fault when IOPL < 3. In such a case, the interrupt handler must determine the
proper behavior and return control to the faulting task.

The operating system can restart any instruction that triggers a general protection
fault, although doing so is often inappropriate. An error code is always pushed onto
the stack as part of the exception; in many cases, however, the value is 0. When the
value is not 0, the value indicates the selector that caused the exception.

Iinterrupt 14—Page (fault) [ec]

The page fault interrupt lets you implement virtual memory on a demand-paged
basis. An interrupt 14 occurs whenever an access to a page directory entry or page
table entry refers to an entry with the present bit set to 0. The operating system
makes the page present, updates the table entry, and restarts the faulting instruc-
tion. A page fault also occurs when a paging protection rule is violated. In this case,
the operating system needs to take other appropriate action.

When a page fault occurs, the CR2 register is loaded with the linear address that
caused the fault, and an error code is pushed onto the stack. The page fault error
code is different from that of the other exceptions and has this format:

31 3

= )
o |~
)

Undefined
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The three low-order bits of the error code provide more information about why the
address in CR2 caused the fault. The P bit is set to 1 if the fault was a page protection
fault rather than a page not present fault. The W/R bit is set to 1 if the faulting in-
struction was attempting to write to memory. The bit is cleared to 0 if the fault oc-
curred during a read. Finally, the U/S bit is set to 1 if the faulting instruction was
executing in user mode and is cleared to 0 if the instruction was a supervisor in-
struction, (User mode and supervisor mode are discussed in Chapter 7.)

Because of the large number of divergent memory accesses that occur during a task
switch, operating system designers should ensure that important task tables (the
GDT, application TSS, and application LDT) are resident in memory before execut-
ing the task switch. The situations that arise if page faults occur during a task switch
are not impossible to deal with, but system design is simpler if you avoid them.

Interrupt 15
This vector is reserved for future Intel processors.

Interrupt 16 —Coprocessor error (fault)
This exception occurs under two conditions:

e When the ERROR\ pin is active at the start of an ESC (numeric coprocessor)
instruction

e When the EM bit of CRO is 0 at the start of a WAIT instruction

Interrupts 17-31
These vectors are reserved for future Intel processors.

Interrupts 32-255

These vectors are available for use by an operating system. The system can install
interrupt, trap, or task gates in any IDT slot corresponding to one of these interrupts.
The interrupt handlers can be invoked by software INT # instructions or by hard-
ware that signals the 80386 via the INTR pin.

Interrupt masking and priority

The only programming mechanisms for masking interrupts are the CLI/STT instruc-
tions, which affect the hardware INTR line. However, other situations prevent cer-
tain types of interrupts, either by design or because a more important interrupt is
pending. Interrupts have the following priority ranking:

1. Nondebug faults

2. Trap instructions (software interrupts INT 0, INT 3, INT #)
3. Debug traps for the current instruction

4, Debug faults for the pending instruction

5. Hardware NMI

6. Hardware INTR interrupt
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For example, if a page fault and a debug fault are triggered on the same instruction,
the page fault takes priority, and the debug fault is masked. However, when the
page fault handler completes its operation and restarts the faulting instruction, the
debug fault is retriggered.

Other interrupt masking conditions occur when:

® An NMI is triggered. Further NMIs are masked until the next IRET instruction
OCCUrs.

e A debug fault occurs. Debug faults cause the RF bit in the EFLAGS register to be
set, masking additional debug interrupts. The processor clears RF upon suc-
cessfully completing an instruction,

e The SS register is loaded. Hardware interrupts (both NMI and INTR) and debug
exceptions (including single step) are masked for the duration of one instruction
after SS is loaded. Thus, the ESP register can load without risk of invoking an in-
terrupt handler with an invalid stack pointer. The instruction that loads ESP can,
however, receive a page fault, and the interrupt 14 routine will be invoked with
an invalid stack pointer, possibly leading to a double fault. You can avoid this by
loading both S8 and ESP using a single instruction, LSS,

Debugging

Traditionally, microprocessors have never contributed much to solving the problem
of debugging. Debugging on microprocessors has been accomplished with break-
point instructions and with the ability to single step (execute one instruction at a
time); but for difficult problems, programmers have had to turn to in-circuit emula-
tors or hardware-assisted debuggers.

As microcomputer systems become more sophisticated, hardware’s ability to deter-
mine what is going on inside the CPU diminishes. For example, assume that a pro-
grammer wants to be notified that a particular data structure has been modified.
Because of paging, the structure might not be in contiguous memory. The operat-
ing system’s virtual memory capability allows it to move the program out from
under the eye of the debugging hardware, and thus the program’s linear and sym-
bolic addresses bear no relation to the generated hardware addresses.

Fortunately, the 80386 designers recognized these problems and added features to
the processor that system software can use to aid in debugging. Four mechanisms
trigger debug interrupts under different conditions: trap flag, task switch trap,
breakpoint registers, and software breakpoint.

Trap flag

Setting the TF bit in the EFLAGS register causes a single-step fault (interrupt 1) to
occur before the next instruction. The 80386 clears the TF bit before invoking the
handler pointed to by IDT(1), although the saved image of EFLAGS on the stack has
the trap flag set.
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When a software interrupt instruction (INT, INTO) is executed, the TF bit is
cleared. A debugger should not attempt to single step an INT instruction but should
place a breakpoint either at the destination of the gate pointed to by INT or imme-
diately after the INT instruction. :

A call gate does not clear the trap flag, so a debugger should check all FAR CALLs
and JMPs to see whether they cause a change in privilege level. If so, programmers
should not be allowed to single step into code more privileged than their
applications.

Task switch trap

When the T bit of a TSS is set to 1, switching to the TSS's task invokes the debugger
fault (interrupt 1). The fault does not occur until after the contents of the TSS are
loaded and before the first instruction of the task is executed.

Breakpoint registers

The debug registers (DRO-DR7) implement four address breakpoints. When the
registers are correctly initialized, each identifies a linear address. If the processor
accesses that address, a debugger fault (interrupt 1) occurs, The debug registers are
described in detail in “Programming the debug registers” in this chapter.

Software breakpoint

The single-byte INT 3 (OCCH) instruction triggers this interrupt. By replacing the
first byte of an instruction with an INT 3, a debugger can cause a breakpoint to oc-
cur when the execution stream reaches the INT 3. Because the software interrupts
are classified as traps, the saved CS and EIP on the stack point to the byte immedi-
ately after INT 3. To restart the program, the debugger must replace the 0CCH value
with the first byte of the original instruction, decrement EIP so that it points to the
start of the instruction, and execute an IRET to return from the interrupt handler.

This method of implementing breakpoints is much clumsier than using the debug
registers because it requires creating a writable alias for a code segment, saving the
original instruction byte, replacing the instruction with an INT 3, and undoing the
above when the breakpoint has been triggered. However, because the debug regis-
ters allow only four active breakpoints at once, a reasonable tradeoff is to use debug
registers for data space breakpoints and INT 3 for code space breakpoints.

Programming the debug registers

Figure 5-15 on the following page shows the layout of the debug registers. To load a
value into one of the registers, use a MOV DRx, reg instruction. Similarly, using
MOV reg, DRx reads the contents of a debug register into one of the 32-bit general
registers.

The first four registers (DRO-DR3) are address registers. The linear address of a
desired breakpoint must be loaded into one of these registers. The debug registers
are not affected by paging. Only the linear address (from the descriptors) is used to
match a breakpoint address. Debug registers DR4 and DR5 are reserved for future
Intel microprocessors.
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31 0
Breakpoint address 0 DRO
Breakpoint address 1 DRI
Breakpoint address 2 DR2
Breakpoint address 3 DR3
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Figure 5-15. Debug registers.

Register DRO is the status register. It indicates the condition(s) that lead to the inter-
rupt. A bit is set to 1 in DR if the condition associated with the bit has been met.
The following table identifies the bits and the reasons for the interrupt.

Bit Reason

BO Breakpoint register 0 triggered
Bl Breakpoint register 1 triggered
B2 Breakpoint register 2 triggered
B3 Breakpoint register 3 triggered
BD Intel ICE hardware active

BS Single step (TF set to 1)

BT TSS T bit set to 1

Bits BO-B3 are set to 1 if the breakpoint in DRO-DR3 was matched during execu-
tion, even if the breakpoint was not enabled and did not cause the debug fault.

When Intel ICE-386 hardware is used, the debug registers are reserved for the in-
circuit emulator. The BD bit is set to 1, and any attempt to place (MOV) a value in
one of the debug registers triggers an interrupt 1.

The debug interrupt handler must clear the contents of register DR6. The CPU sets
bits, but bits can be cleared only programmatically.
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DR7 is the debug control register. Placing an address in DRO-DR3 will not enable a
breakpoint. The enable bit(s) in DR7 must be set, as must the breakpoint length and
condition.

The LEN# fields let you specify the length of breakpoint 7. The length values are
encoded as follows:

00— Byte / breakpoint legal at any address

01— Word (2 bytes) / breakpoint must be on even address

10— Reserved for future use

11— Dword (4 bytes) / breakpoint address must be on dword boundary

The R/Wn field lets you specify the type of memory access that triggers breakpoint
n. This field is encoded as shown below:

00— Execution breakpoint

01— Memory write breakpoint

10 —Reserved for future use
11—Memory read or write breakpoint

When R/W is set to 00B, an execution breakpoint, the corresponding LEN field also
must be set to 00B. An execution breakpoint is triggered only if the breakpoint ad-
dress is set to the first byte of the instruction. If any prefix bytes are part of the in-
struction, the breakpoint must be set to the address at the first prefix byte,

The L and G# bits allow breakpoints to be locally or globally enabled. If neither
the L nor the G bit is set, the breakpoint is disabled and does not trigger an inter-
rupt, although the corresponding bit in DR6 is set if the breakpoint condition is met.

If only the L bit is set, the breakpoint is locally enabled. A task switch clears the L
bits. The system should mark the T bit in the TSS of the task using locally enabled
breakpoints so that an interrupt 1 occurs when the task is reactivated, Then, the L
bits can be reset.

If the G bit is set, the breakpoint is globally enabled and can be disabled only by
clearing G to 0. Setting both the L and G bits equals setting the G bit.

Register DR7 contains two other bits, LE and GE. When either bit is set, it enables
the exact match condition. When exact match is enabled, the 80386 processor slows
to ensure that the interrupt 1 fault reports the instruction that triggered the break-
point. If LE and GE are 0, the 80386 might get ahead of the debug unit because of
the internal parallelism in the processor, and the CS and EIP on the interrupt han-
dler stack might point one or two instructions beyond the one that triggered the
fault. The performance loss is not significant, and LE and GE should be enabled. The
difference between the two bits is that LE is cleared after a task switch, as are the
Lz bits.
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Triggering the debug interrupt

The following table shows how the address and control fields define a breakpoint
condition and gives examples of instructions that do or do not trigger the break-
point. The table assumes a base address of CS = 0003A000H and DS = 0004C000H.

Brealk-

Debug Register Settings Instruction point Reason

DRO: 0004C020H

DR7: LEO = 1, RW0 = 00B, LENO = 00B MOV AL, [20] N  Execution
breakpoint

DRO: 0004C0Z0H

DR7: LEO = 1, RWO0 = 11B, LENO = 00B MOV AL, [20] Y  Byte 4C020H
read

DRO: 0004C020H .

DR7: LEO = 1, RW0 = 10B, LENO = 00B MOV AL, [20] N  Breakpoint on
Wwrite access
only

DRO: 0004C020H

DR7: LEO = 1, RWO = 11B, LENO = 11B MOV AL, [23] Y  Breakpoint

covers 4 bytes

DRO: 0004C020H

DR7: LEO = 1, RWO = 11B, LENO = 11B  INC DWORD PTR [01E] Y  Dword extends
into breakpoint
area

DRO: 0004C020H

DR7: LEO = 0, RWO = 11B, LENO = 11B  INC DWORD PTR [01E] N Breakpoint not
enabled

DRO: 0003A000H

DR7: LEO = 1, RWO = 00B, LENO = 00B  C8:0000 MOV AL, 37H Y  Execution
breakpoint

DRO: 0003A001H

DR7: LEO = 1, RW0 = 00B, LENO = 00B  €S:0000 MOV AL, 37H N Execution
breakpoint not
at first byte of
instruction
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MEMORY
ARCHITECTURE:
PAGING

Paging is used to implement virtual memory based on fixed-size blocks called
pages. Paging is probably the most widely used virtual memory technique on today's
minicomputers and mainframes.

Like segmentation, paging translates virtual addresses into physical addresses.
Addresses are translated by mapping fixed-size blocks of memory into physical
memory locations called page frames. Consider a physical memory system com-
posed of page frames 0, 1, 2, and 3, each having 10 bytes of memory. A virtual ad-
dress consists of a frame name and an offset, so assume that the frames have the
names A, B, C, and D. The memory system also contains a page table for converting
the virtual address into a physical address. Figure 6-1 shows how virtual address C7
is mapped into physical address 17. The arrows indicate the page mapping,

Virtual frames Physical memory page frame
’Virtuaql\ A g _9 > 17 Physical
address B 1 address
Crie=sap (¢ 2
D 3

Figure 6-1. Translating a virtual address to a physical address.

Segmentation and paging are similar: A name and an offset are translated to an ad-
dress. This mapping is the essence of virtual memory. However, segmentation and
mapping are also different. Assume that any virtual address from the previous ex-
ample consists of a two-digit number and that the digit in the 10s place is the frame
name, rather than a letter, as in Figure 6-1. A virtual memory translation would re-
semble Figure 6-2 on the following page. In this example, virtual address 27 is
translated to physical address 17.
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Because pages have a fixed size, a virtual address can be easily separated into a
name and an offset. A page table lookup converts every virtual address into a physi-

cal address.
Virtual frames Physical memory page frames
Virtual 0 4 0 _, .. Physical
address 1 R 1 17" address
i 2 F— 2
3 3

Figure 6-2. Virtual address translation of fixed-size elements.

Advantages and Disadvantages

A fixed page size is the key to the advantages of paging over segmentation, Because
a disk is usually the secondary storage for a virtual memory system, you can choose
page sizes that map well into the sector size of the disk. Paging also avoids the frag-
mentation problem of segmentation. Every time a page is swapped out, another
page fits exactly into the freed page frame.

Another advantage of paging is that allocation for a large object (for example, a
memory segment) does not have to be contiguous. An object that was contained in
virtual pages 1 and 2 in Figure 6-2 would not be stored in consecutive physical
memory locations.

Finally, paging is invisible to the programmer. Unlike segmentation, which requires
you to know the virtual name (segment) and offset of an object in memory, paging
requires you to know only one address. The virtual address is broken down into its
components by the virtual memory mechanism in the hardware.

Paging isn’t perfect. Using paging means losing the protection rings implemented
with segmentation. Paging is also subject to a different kind of fragmentation, called
internal fragmentation, which occurs when you store objects that do not fit into a
page or a sequence of pages. For example, if the page size is 10 bytes, an 11-byte
object requires two pages, which wastes memory.

Additionally, paging incurs more overhead than does segmentation. In a segmented
system, the table lookups that are needed to convert a virtual address to a physical
one occur only when a new segment is loaded. In a paged system, a virtual-to-
physical translation must be performed for every memory access. This would not be
an issue if the entire page table could be stored in the CPU, but processors with
gigabyte address spaces require very large page tables.

These problems are not insurmountable, however. You can implement a simple pro-
tection scheme with paging alone, plus, on the 80386, you can use segmentation
and paging together. Internal fragmentation is not usually as serious as segment
fragmentation, and the 80386 uses parallelism and a special cache called the transla-
tion lookaside buffer (TLB) to help alleviate the page translation overhead.
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Paging on the 80386

The size of a page frame on the 80386 is 4096, or 212, bytes. Paging is enabled when
the PG bit of CRO is set to 1. (Once paging is enabled, usually by operating system
software, it will probably not be disabled.) Translation treats the linear address gen-
erated by the segmentation unit as a virtual address and performs page mapping on
it. Thus, memory references on the 80386 go through the following stages:

Segment:offset —> linear address —> physical address

A linear address is a 32-bit value. To interpret it as a virtual address, take the high-
order 20 bits as a frame name, and use the low-order 12 bits as an offset into the
4096-byte page. To generate a 32-bit physical address, each entry in the page table
must translate the frame name to a frame address. Frame address 0 corresponds to
physical addresses 0-4095, frame address 1 identifies physical addresses 40968191,
and so on. A page table entry must also provide additional page status bits for a pro-
tection model and for swapping. Thus, an 80386 page table entry has this format:

31 12 11 0

: ]
Page frame address 31...12 | Avail |0|o[D|A[00 l/"\lé/l’
S s

The bits marked 0 are reserved for use by future Intel processors. The field marked
Avail can be used by system programmers to mark pages that are shared among
tasks, to hold usage information, or to store other paging data. The page frame ad-
dress becomes the high-order bits of the physical address. The 80386 sets the D
(dirty) bit to 1 when a write operation occurs within the specified page. The CPU
sets the A (accessed) bit to 1 when any memory access (read, write, or fetch) occurs
within the page.

The U/S and R/W bits are part of paging’s protection mechanism. They are dis-
cussed in this chapter’s “Page Protection” section.

When the P (present) bit is set to 1, the page is present in memory. If P =0, the page
is assumed to be swapped to disk, and any attempt to access the page results in a
page fault (interrupt 13). When P = 0, all other bits in the page table (31-1) are ir-
relevant to the 80386 and can be used by the system programmer. Frequently, a
swapped page's location on disk is stored in those bits when the page is not present.

Page Tables and Page Directories

Each page is 212 bytes, and physical address space is 232 bytes, so 220 (more than 1
million) page table entries are required to implement a virtual-to-physical transla-
tion table. Because each entry takes up 4 bytes, a page table requires 4 MB of
memory. If a frame address alone indicated the page table entry, the page table
would require 4 MB of contiguous memory. In a multitasking system that provides a
separate virtual address space for each task, each task requires a 4 MB block of
memory in addition to its code and data.
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The solution to this space problem, swapping out the page table, cannot be imple-
mented with a simple, one-level page table. For example, if a program tries to access
address x, the page table entry (PTE) for x must be brought into memory. Because
the page table is itself paged, the PTE for PTE(x) must be brought into memory
first. Swapping continues until the initial page of the page table is swapped in.

A better solution, the one implemented by the 80386, is a two-level page table. In
this scheme, the virtual name component of the virtual address (the high-order 20
bits) is split into two parts. The high-order 10 bits are used as an index into a page
directory. A page directory entry (PDE) points to a scaled-down page table that con-
tains 1024 entries. The 10 bits left over in the virtual address select the page table
entries from the page table. Figure 6-3 illustrates the two-level page structure.

This structure solves the problem of swapping out the page table because the initial
lookup goes through the page directory. The page directory, with 1024 32-bit en-
tries, takes up only 4 KB and is permanently stored in memory. Each page table also
takes up 4 KB (fits right into a page!) and has 1024 page table entries.

Register CR3 contains the physical address of the page directory for a task. CR3 is
the only 80386 register that contains a physical memory address. A page directory
entry has the same format as a page table entry except that the D bit is unused and
the A bit is set to 1 whenever one of the page tables pointed to by the page directory
is used.

Linear 31 2221 1211 0

address | | [ [ Offset
| ! Page tables
1023 4 GB
1023
Index_ T
: Index Page frame %x 41— Physical
* _l address
b 0 5
Page directory Physical
memory

o]

Figure 6-3. 80386 page table/directory structure,
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A detailed example

Figure 6-4 shows a linear address that is translated to a physical address via paging.
Assume that an instruction refers to the linear address 13A49F01H. The frame name
(13A49H) is split into a directory index (04EH) and a page table index (249H). The
page directory is at the address specified by register CR3, location 1CO00H. The
page directory element number 04EH is selected. It contains the value 3A7A2xxxH,
where xxx represents the page status bits. If the present bit is set, the page table
begins at location 3A7A2000H, and page table entry number 249H is selected. In the
example, this entry contains the value 2C115xxxH, where xxx represents the con-
tents of the status bits. The offset of the linear address is appended to the page
frame to yield a physical address of 2C115FO01H.

Linear address  13A49F01H =looo1001 1 1?'100100100}11'110000001| B
1
04EH (78,,) 249H (585,,) FO1H

| [t e
1023 1CFFFH 1023 3A7A2FFFH
7813A7A2 xxxH 7812C115 xxxH
2 2
1 1
g 1CO00H 0 3A7A2000H
Page directory Page table LA
2C115F01H

CR3| 1CO00H Physical address

Figure 6-4. Page translation process.

As the example shows, referring to a single memory location when paging is en-
abled requires three references: a memory read of the page directory, a read of
the page table, and the target memory access.

The Translation Lookaside Buffer

To eliminate the extra bus cycles that paging imposes on memory references, the
80386 contains the TLB, a content-addressable cache memory. The TLB stores the
32 most frequently used page table entries and page directory entries on chip.
Whenever a page table request occurs, the TLB is checked first. If the table entry is
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found (a “cache hit”), the 80386 translates the address with no additional memory
overhead. More than 98 percent of all references result in a cache hit, leaving less
than 2 percent of all memory references degraded by additional cycles.

The TLB is flushed whenever register CR3 is loaded with a new base address.
Because the table entries are cached on the 80386 chip, maintaining page table con-
sistency in multiprocessor environments is important. When one processor modifies
a page table (that may be in another processor’s cache) or a page directory, the pro-
cessor must signal the other processors and force them to flush their TLBs. The
other processors must then load the modified tables. The LOCK prefix should pre-
cede any accesses to the page tables to eliminate simultaneous access.

Page Faults

If a page descriptor is marked not present (P = 0), a page fault (interrupt 14) occurs.
When this happens, register CR2 stores the linear address that caused the fault,

and an error code is pushed onto the stack. Page faults can also be caused by viola-
tions of the page protection rules, described in the next section, Chapter 5 contains
additional information about page faults in the section called “Interrupts

and Exceptions.”

Page protection

The format of a page directory entry and of a page table entry includes bits marked
U/S and R/W. The U/S bit specifies whether a page is a user page (U/S = 1) ora
supervisor page (U/S = 0). A supervisor page cannot be used by any procedure run-
ning with a CPL of 3. However, a procedure with a CPL of 0, 1, or 2 can access a
supervisor page. User pages are accessible regardless of the CPL. If a page directory
entry is marked with U/S = 0, only a supervisor procedure can access pages in the
page table pointed to by that directory entry, regardless of the U/S setting in the in-
dividual page table entries.

For a user level program (CPL = 3), access to individual pages can be restricted fur-
ther with the R/W bit. A user level program can read or can execute any user level
pages but can write to a page only if the R/ W bit is set to 1 in the page directory and
in the page table entries. A supervisor level program can read or can write pages

regardless of the settings of the R/W bits. The rules are summarized by these
formulas:

read_access(addr) = (CPL < 3) | (PDE(U/S) = 1 & PTE(U/S) = 1)
write_access(addr) = (CPL < 3)| (read_access(addr) & PDE(R/W) = 1 &
PTE(R/W) = 1)

When a user level process loads a selector, issues a software interrupt, or generates
an access to the GDT, LDT, TSS, or IDT to load a descriptor, system table reads and
writes are treated as supervisor level accesses. Pushing values onto an inner-ring
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stack segment is also treated as a supervisor level access. If the system tables had to
be stored in user level pages, they would be less secure than if stored in supervisor
level pages.

Combined Paging and Segmentation

Although simulating a flat address space is possible in the 80386, most systems will
probably use some segmentation. No special restrictions apply when combining
segmentation and paging, although observing certain rules can make life easier for
the operating system designer.

For example, segments do not need to fit into a single page or into a multiple of »
pages; a page can contain portions of more than one segment, or vice versa. How-
ever, memory management is easier if all segments are multiples of 4096 bytes. You
can mark all segment limits as page granular (G = 1 in the segment descriptor), and
each segment limit field will contain the number of pages required to hold the seg-
ment, less one.

To support page protection, an operating system should implement at least level 0
and level 3 segment protection rings. This is not a problem, even in systems simulat-
ing a flat memory architecture. All user level programs can share the same level 3
code segment and level 3 data segment, and the operating system can use two level
0 segments, Both sets of segments can map into the same linear address space, so
the use of different selectors will be invisible except for the privilege level.

Multitasking

Operating system designers can choose to support either a single memory map (one
for each task) or multiple memory maps (one for the system and one for each appli-
cation). A single virtual memory space is the simplest approach; however, any sys-
tem that supports multiple virtual 8086-mode tasks needs a different set of page
tables for each V86 task. In V86 mode, each task accesses linear addresses 0 to 1 MB.
There must be a separate physical address space for each linear address space.
Figure 6-5 on the following page shows how V86 tasks can be mapped to physical
memory.

The 80386 supports different page tables for each task by saving and restoring the
CR3 register in the task state segment. To save itself from having one 4 MB page
table per task, an operating system can limit the linear address space of an applica-
tion to a subset of paging’s 32-bit, 4 GB virtual memory size.

For example, if an operating system limits each application to 8 MB of linear address
space, it needs to manage only two page tables and the page directory. Each unused
page directory entry is marked not present (P = 0). Trying to access an illegal
memory address results in a page fault, and the operating system can tell whether
the fault represents a swapped-out page or an illegal memory reference. Figure 6-6
on the following page illustrates such a system.
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V86 task 3
1 MB

640 KB

V806 task 2

1 MB

640 KB

Linear address

V86 task 1

Linear address

1 MB

640 KB

Linear address

Figure 6-5. Mapping VG tasks to physical memory.

Page directory

Physical memory

Shared ROM
segment

4 MB

Task 1 3 MB

Task 3 2 MB

Task 2 1 MB

0

Each pair of arrows indicates
a set of page mappings.

8 MB Virtual address space

1023 [Not present 1023

>

0

007FFO00H

Page table

1023

00040000H

Not present

1 | 1

OL

00002000H

00001000H

v

Page table 0

Illegal addresses Swapped pages

fault here fault here

00000000H

Figure 6-6. Page tables required to support 8 MB of memory.
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Application designers should know address space restrictions. Some operating
systems might have a way to request a larger virtual address space with a system
call, but others might not.

Performance is another concern for application designers in a demand-paged sys-
tem. A key to system performance is the size of the application’s working set. The
working set is the number of application pages that the operating system tries to
keep in physical memory at one time.

For example, assume that an application is computing the sum of two arrays into a
third array, as represented by the following program fragment:

int a[1024], b[1024], c[1024];

for (1 = 03 1< 10245 1++)
a1 =ub i st c[dd:
The code for the program resides in one page, and each array (a, b, and ¢) resides in
a separate page. If the operating system provided a working set of three pages per
application, this program would run slowly because two pages would have to be
swapped to disk for every for loop iteration. Figure 6-7 illustrates the swap.

I

i A E Working set allows
e e, L ! only 3 pages in
] et L EEm——— 1 memory simultaneously.
i i Cace ! A must be swapped out
: : page B :

. |

1

C swapped out andA
in 1024 times.

r

L}
:I and ¢ swapped in, then
|
|
|

Figure 6-7. Swapping a working set.

Most operating systems provide working sets much larger than three pages per
application, but applications with large memory requirements might see similar
results. If you write an application that requires a large amount of memory, you
might improve its performance by changing the program'’s locality of reference.

The previous program fragment needs access to many pages for every cycle
through the loop. If this program were running under the operating system de-
scribed previously, you could increase its performance by changing the data struc-
ture so that a;, b, and ¢, reside in the same page.
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struct {
Wi Gl (o A6
} block[1024];

FONE GRS () 24 et

block[il.a = block[i].b + block[i].c:

The program now runs with only two page swaps, as shown in Figure 6-8.

r

I
(]

Figure 6-8. Reducing swapping via locality of reference.

Application designers should consider how paging affects their programs. Although
many designers will see no impact on their programs, others might need to modify
code. A classic example is a program such as a LISP interpreter, which manipulates
a large number of linked-list data structures. Unless a mechanism forces locality of

reference on the lists, a user could end up with lists that have pointers to cells scat-

o
e e e e e e e

Initial working set allows
67% of the loop to execute
without any swapping; then,
first block is swapped out
and last block is swapped in
to complete the loop.

tered throughout the address space, resulting in excessive swapping overhead.
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THREE
IN ONE

In earlier chapters I alluded to the 80386's ability to run software written for pre-
vious Intel microprocessors. This chapter explores this ability and discusses how to
make the most of it.

The 80386 provides an almost ideal upgrade path from previous generations of Intel
processors. In real mode, the 80386 can run 8086-family programs. It can switch
into protected mode and execute 80286 software. The native mode of the 80386 ex-
pands the protected-mode capabilities with 32-bit operations and eliminates the 64
KB segment restrictions of the 80286. Virtual 8086 mode also lets you run real-mode
programs in protected mode; this is advantageous because there are many more
real-mode applications available than protected-mode applications.

Real Mode

When the 80386 is powered up or reinitialized via the hardware RESET\ line, the
CPU is in real (real-address) mode. In real mode, all of the CPU’s protection features
are disabled, paging is not supported, and program addresses correspond to physi-
cal memory addresses. The address space is limited to 1 MB of physical memory.
Real mode is compatible with the 8086, the 8088, the 80186, the 80188, and the real
mode of the 80286. Minor differences between real mode on the 80386 and other
processors are listed in Appendix E

When the 80386 is reset, the registers are initialized to the values shown in the table
on the following page.
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Register Value Explanation

DH 3 3 for 80386

DL <id=> Identifies revision number of CPU

EFLAGS 2

IDTR 0 (base), 3FFH (limit)

(see below)

CS FOOOH Descriptor base set to FFFFOO00H

IP FFFOH First instruction at FEFFFFFOH

SS 0 Base address 0

ESP ? Undefined, load SS:ESP before using stack

DS 0 Base address 0

ES 0 Base address 0

FS 0 Base address 0

GS 0 Base address 0

CRO 000000020H Bit 4 = 1 if 80387 present, 0 otherwise

Bits 5-30 are undefined

Memory addressing

The 80386's use of shadow registers (segment descriptor caches) provides a key to
understanding real-mode memory addressing. Each 80386 segment register that
holds a selector has an invisible component called a shadow register. In protected
mode, every time a selector is loaded into a segment register, the contents of the de-
scriptor indicated by the selector are loaded into the shadow portion. In real mode,
the shadow register is loaded with a computed value rather than with a value
extracted from a descriptor. Figure 7-1 illustrates the shadow registers.

When the 80386 is reset, the shadow registers for segments other than CS are loaded
with a base address value of 0 and a limit of OFFFFH, with attributes set to 16-bit ad-
dressing; 16-bit instruction set; read, write, and execute ability; and privilege level 0.
The CS shadow registers are set with the same limit and access bits as the other
shadow registers, but have a base address of FEFFO000H. Except for the registers
listed in the above table, 803806 registers are undefined.

Base Limit  Access

15 0 rights
CS 5 T

58

DS

ES

ES

GS

Visible portion "Invisible" descriptor cache

Segment registers

l:] Programmer accessible

Not accessible

Figure 7-1. 80386 shadow registers.
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At reset, the limit portions of the shadow registers are set to OFFFFH, which indi-
cates a 64 KB segment. The access rights portion is set to a value indicating that the
segment is readable, writable, and executable and that 16-bit addressing and oper-
and modes are enabled. These values remain constant while the processor is in real
mode, and only the base address value is altered. Each time a segment register is
loaded, the base address portion of the shadow register is set to 16 times the value of
the selector. For example, loading DS with the value of 001AH sets the base address
of the DS segment to 01A0H. Because all the segments in real mode are 64 KB, the
segment addressable via DS extends from 01AOH to 1019FH. Figure 7-2 illustrates
physical address generation in real mode.,

The highest segment base address that can be generated in real mode is OFFFFOH,
16 bytes short of 1 MB. Because that segment extends for 64 KB, memory beyond 1
MB can be addressed. Thus, 80386 real-mode addressing is somewhat incompatible
with that of the 8086, which hardware address lines limit to 1 MB. Generally, this
limitation can be ignored because 8086 programs do not use it. If needed, external
hardware can be added to the 80386 to limit system address space to 20 bits while
operating in real mode,

The reset state of the CS shadow register does not follow the “selector times 16"
rule. Because the initial base address for the code segment is set to FFFFO000H,
ROMs that handle processor reset can be placed at the end of the address space.
The first CALL or JMP instruction that loads CS after reset forces the base address
into the first megabyte of address space.

Physical memory

0
15 o = st S| 8 SN
| Selector | KR
eSO N = Real
81 20 19 il A e
I pace
[_ 0 | Base address | 0000 sp
Selector (1 MBiF======—L] |
| 01A0 | 1 MB#64 KB -n-- oo i

| 00001A00 | S|

Base address
Figure 7-2. Real-mode addressing.

16-bit instruction set

The predefined shadow register values cause another side effect. The D bit in the
access rights field is always set to 0 in real mode. Thus, the 80386 is forced to oper-
ate in 16-bit mode unless it encounters an OPSIZ or ADRSIZ prefix.
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To understand how the D bit works, examine the 8086 instruction set. Most 8086 in-
structions execute with either a byte operand or a word operand. The byte/word
indicator is encoded in one bit in the instruction. For example, the opcode for negat-
ing a byte operand is 11110110B, and the opcode for negating a word operand is
11110111B.

Rather than invent new opcodes for 32-bit (dword) operands, 80386 designers
changed the meaning of the opcode bit that signifies a word operand. When exe-
cuting in a native-mode (32-bit) segment, where the D bit in the segment descriptor
is set to 1, executing opcode 11110110B means negate byte and 11110111B means
negate dword. The instructions refer to bytes and dwords rather than to bytes and
words. When the D bit of a descriptor is set to 0, however, the opcodes retain their
original meanings.

The D bit also affects address computation for memory operands and the stack.
When D = 0, corresponding to the 8086, the 16-bit registers are used in calculating
segment offsets, as in MOV AL, [SI+8]. When D = 1, corresponding to the 32-bit
native mode of the 80386, the same opcode bits cause the memory address to be
calculated using the 32-bit registers, and the instruction becomes MOV AL, [ESI+8].
When D = 0 in stack segment descriptors, PUSH and POP instructions access 16-bit
operands. When D = 1, 32-bit pushes and pops are executed.

The OPSIZ and ADRSIZ prefixes can override the current D bit setting for an in-
struction. Thus, 32-bit native-mode instructions can be prefixed to use 16-bit
operands, and 16-bit code can be prefixed to access 32-bit operands and 32-bit ad-
dressing modes. The new 80386 addressing features (such as indexing) are not
available in segments that have the D bit set to 0 unless the ADRSIZ prefix is used.
You need not specify the prefix instructions; use extended-addressing mode, and
the assembler will insert the prefix.

When using extended addressing in real mode, observe the 64 KB segment size
limitation. In real mode, address offsets greater than 65535 return an interrupt 13.

Interrupt processing

Interrupt handling is different in real mode than it is in protected mode. As in pro-
tected mode, the IDTR contains the base address and limit of the interrupt table. For
8086 compatibility, the base is initialized to physical address 0 with a limit of 3FFH.
In real mode, however, the interrupt table does not hold descriptors; each interrupt
has a 32-bit selector:offset address that points to the routine to be invoked when an
interrupt occurs. Thus, each entry is 4 bytes rather than 8 bytes. Figure 7-3 illus-
trates the real-mode interrupt vector table.

Processing of an interrupt in real mode is similar to that in protected mode except
for the use of vectors instead of descriptors, A software or hardware interrupt causes
the 16-bit FLAGS register to be pushed onto the stack, followed by the current CS
and IP. The IF and TF flags are cleared to 0, disabling interrupts and single-

stepping.
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Physical memory

31 16 15 0
Vector 0| Selector Offset
Vector 1
Vector 255 |

Figure 7-3. Real-mode interrupt vector table.

The pointer from the interrupt table is loaded into CS and IP, and processing con-
tinues at the new location. Automatic task switching and interrupt gates are not
present because no descriptor tables exist in real mode. The vector in the interrupt
table specifies a new execution address only.

Real-mode restrictions

You can use all the instructions added to the Intel 80386 architecture since the in-
troduction of the 8086, with the exception of:

LAR
LLDT
LSL
LTR
SLDT
STR
VERR
VERW

Real mode does not support the ways that these instructions access protected-mode
selectors and descriptors. Executing one of these instructions returns an undefined
opcode fault (interrupt 6).

You can execute all other 80386 instructions. Real-mode programs can access any
80386 register, including the control, debug, and test registers.

Real mode does not support paging. Setting the PG bit in register CR3 to enable pag-
ing causes a protection fault.

Appendix F outlines the differences among the operations of the 8086, the 80286 in
real mode, and the 80386,
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Protected Mode

Setting the low-order bit of CRO to 1 switches the processor into protected mode.
The processor will run in protected mode even if no setup is done. That is, it will
run until the first interrupt, FAR program transfer, or segment register load. At this
point, the processor needs to access a descriptor table. Because the 80386 depends
on descriptor tables, the system will shut down if the descriptor tables have not been
initialized.

Protected-mode initialization requires you to set up a global descriptor table and in-
terrupt descriptor tables and to create a task state segment for the first process. The
initial descriptor tables may be stored in ROM, but they must be copied to RAM
before setting the GDTR and IDTR to point to them because the 80386 needs to
write to the descriptors as well as read from them.

Figure 7-4 shows a simple initial GDT. This GDT would be sufficient to run addi-
tional startup code. You could also build the operating system image in real mode
and then switch into protected mode. An advantage of switching into protected
mode as soon as possible after reset is that the 80386 hardware can help trap startup
bugs early in the code development cycle.

In Figure 7-4, GDT(0) is unused because a selector value of 0 is treated as a special
case, a NULL pointer. Thus, any descriptor at GDT(0) will never be used, GDT(1)
points to the GDT as a writable data segment, allowing the operating system to add,
delete, and change descriptors as needed. GDT(2) points to the IDT as a writable
data segment for the same reason. GDT(3) defines the TSS for the startup task,
GDT(4) defines the task’s data segment, and GDT(5) defines the task’s code seg-
ments, which are in ROM.

Physical memory

GDTR IDTR

o N N = O
\J

GDT

4GB Startup ROM

Figure 7-4. A simple GDT.
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Before enabling protected mode, the GDTR must be loaded with the address and
limit of the GDT. The IDT should contain gates that point to code that traps any
faults that occur during startup. The IDTR is initialized to point to the IDT, and TR is
loaded with the selector of GDT(3). The PM bit is then set in the CRO register to en-
able protected mode. Next, a FAR jump instruction loads the CS register with a valid
protected-mode descriptor. Finally, the stack segment, stack pointer, and data seg-
ment registers are loaded. The initialization will build the rest of the operating sys-
tem, enable paging, and start application programs.

80286 compatibility

Protected-mode 80286 code executes on the 80386 if the fourth word of each de-
scriptor is initialized to 0. Descriptors are 64 bits on the 80286, as on the 80386, but
the last 16 bits are unused. In the 80386, the extra bits specify the high order of the
base address and the limit fields and contain the G and D control bits. These new
fields should be set to 0, restricting segment limits to 64 KB and activating the 16-bit
instruction set (which is compatible with the 80286).

The 80286 and the 80386 operate similarly; the few differences in operation con-
cern performance and newly implemented features and instructions. The 80386
allows the LOCK prefix to precede the following instructions only when they
modify memory:

ADC INC
ADD NEG
AND NOT
BT OR
BTC SBB
BTR SUB
BTS XCHG
DEC XOR

Illegal use of the LOCK prefix results in a protection fault on the 80386, Addi-
tionally, the 80286 locks all of physical memory during the instruction; on the
80380, the locked area is the memory region with the same starting address and
length as the operand of the locked instruction.

The machine status word (MSW) is the low-order 16 bits of register CR0O, The MSW
is initialized to OFFFOH on the 80286, but it is initialized to 0 on the 80386. Registers
that are specified as undefined at reset might have different values than they do on
the 80286.

At reset, the base address of the CS register is different on the 80386 than it is on the
80286. The CS register is set to the last 16 bytes of address space on both processors,
but the 80286 supports only 24-bit addresses; the 80386 supports 32-bit addresses.

141



THE 80386 BOOK

Returning to real mode

In general, an operating system should not switch the 80386 to real mode after run-
ning in protected mode. Returning to real mode compromises operating system
security because real mode is more vulnerable to crashes. To run real-mode pro-
grams, create special tasks that run in virtual 8086 (V86) mode. The next section
discusses this process.

If you must return to real mode, follow this procedure: If paging is enabled, turn it
off by branching to a routine whose linear and physical addresses are the same,
clearing the PG bit in CRO, and moving 0 into CR3 to flush the TLB.

The attribute bits in each segment descriptor must be set to values compatible with
real-mode operation (that is, they must be byte granular segments with a limit of
OFFFFH, and the B and D bits must be 0). CS must be marked executable, and SS,
DS, ES, FS, and GS should be writable segments. (Change the CS selector by issuing
a FAR jump or call instruction.)

Disable interrupts, and load the IDTR with a base address of 0 and a limit of 3FFH.
Clear the PE bit of the CRO register to return to real mode, and execute a FAR jump
to flush the 80386 instruction queue and initialize CS to a valid real-mode base
address.

Once you load the stack pointer (S5:5P) and the other segment registers, programs
can continue processing in real mode.

Virtual 8086 Mode
Just as virtual memory allows the processor to create the impression of memory that
isn't really there, virtual 8086 mode allows the 80386 to create the illusion of mul-
tiple 8086 processors. This illusion is so nearly complete that multiple 8086-based
operating systems can run under a supervisory protected-mode operating system.
For example, assume that the native-mode operating system for an 80386 computer
is UNIX and that support for V86 mode is built in. In addition to running multiple
UNIX tasks, the user can run a copy of MS-DOS and a word processor in a V86 win-
dow. The user can also invoke another virtual 8086 session running a spreadsheet
under Windows. Each V86 task believes that it is running on a separate 8086 ma-
chine but actually runs concurrently with host operating system tasks.

V86 mode was designed for the 80386 in response to the negative reaction toward
80286 protected mode. Application designers developed a large software base for
the 8086 family under MS-DOS. The 8086 and 8088 processors support only real-
mode programming, and MS-DOS is sensitive to the mapping between selector
values and physical addresses. When Intel introduced the 80286, developers found
that MS-DOS programs had problems running in protected mode.
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If MS-DOS were less sensitive to physical addressing, most applications could be
easily ported to 80286 protected mode. Operating systems such as Concurrent CP/M
and Microsoft Windows created environments that relied less on the idiosyncrasies
of real mode, but because of DOS'’s wide popularity the marketplace demanded
support of real mode.

V86 mode was Intel’s response to the demand for support of real mode. The 80386’
paging and multitasking capabilities enabled designers to implement V86 mode,
which overcomes the 1 MB nonprotected limitations of real mode. Because a TSS
contains an image of all the general registers, it is the basis of a register image for a
virtual machine (in this case, an 8086). Additionally, the TSS contains the extra in-
formation needed for protected mode: the inner-ring stack pointers and the page
map base register (CR3). The operating system creates a V86 task by setting the VM
bit in the EFLAGS image of the task’s TSS,

When a task is invoked and the EFLAGS register is loaded (setting the processor’s
VM bit), the task’s code portion behaves as if it were running in real mode. The task
does not use descriptors; base addresses are generated by multiplying the selector
value by 16. The difference between real mode and V86 mode is that real-mode ad-
dresses are physical addresses and V86-mode addresses are linear addresses that
can be mapped via paging hardware.

Thus, the executing program makes the same assumptions about selectors and ad-
dresses that a real-mode program does, but the paging hardware, under control of
the native-mode supervisor, controls which physical addresses are used by the V86
task. The entire 4 GB address space is available for remapping the V86 task’s ad-
dresses. The other issue that designers of the 80386 had to face was integrating real-
mode programs into a secure, protected-mode environment,

Memory references were not a problem. The paging hardware can isolate the V86-
mode program address space from protected-mode programs, preventing data cor-
ruption. Besides memory, the only external interfaces to the 80386 CPU are 1/O
ports and interrupts.

1/O in V86 mode

In protected mode, the I/O privilege level (IOPL) determines whether a procedure
can perform I/O instructions. In V86 mode, IOPL protects the interrupt flag (TF),
and I/O port protection is performed through the 1/O permission bits in the TSS.
V86-mode programs run in ring 3; thus, they cannot alter the value of IOPL.

The CPL of a V86-mode task is always 3. If the system IOPL is less than 3, the in-
structions on the following page return a general protection fault (interrupt 13) with
an error code of 0. I/0 instructions are not IOPL-sensitive in V86 mode.
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CLI

INT

IRET

LOCK

POPF

PUSHF

STI

If the system runs with an IOPL of 3, the V86-mode task will execute the instruc-
tions above without triggering the general protection fault. This creates a problem
because these instructions modify the interrupt flag. Although 80386 performance
may be higher when IOPL = 3, this operating mode is not recommended, Allowing
a V86-mode task to disable interrupts could result in a data loss or a system shut-
down. For example, the following two-line assembly program locks the system and
requires a complete power cycle to bring the system back on line:

cli
s Jjmp 11

Designing a reliable system that runs V86-mode tasks with IOPL = 3 requires hard-
ware support and cannot be implemented with software alone. For example, a
watchdog timer can be connected to the NMI interrupt, forcing control back to the
operating system if an application appears to have crashed the system.

The I/O permission bitmap of the V86 task state segment determines whether the
I/0 instruction executes or causes an exception. Figure 7-5 illustrates the 1/O per-
mission bitmap in a V86 task state segment.

FFFFFEFF
FFFFFFFF
w0 00001E00 . .

[/OP bitmap hase| 100

0

Figure 7-5. I/O permission bitmap.
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A tradeoff exists between performance and protection. If you allow all tasks to issue
[/0 instructions, more than one task might access a device simultaneously. How-
ever, if you trap all I/O instructions, programs might run slowly. A compromise is
to mark I/O address space as inaccessible until the first fault occurs. By trapping the
first I/O instruction to a given port, the operating system can determine whether
another task is using the device. If not, the permission bits for the faulting task can
be modified to grant access to the specific device, and the task can resume process-
ing at full speed. If some other task is accessing the device, the faulting task can be
suspended or terminated.

Memory-mapped devices must be controlled through paging hardware. Pages that
correspond to device addresses can be marked “not present” to cause a fault, or
they can be mapped to other devices or memory locations for subsequent process-
ing. (The latter is effective for display devices.)

Interrupt handling in V86 mode

Because V86 mode is part of the protected-mode environment, interrupts are
handled through the standard protected-mode IDT. The interrupt causes the pro-
cessor to switch to an inner-ring stack segment. The stack segment’s selector is
taken from the TSS and is a standard protected-mode selector, as opposed to the
value of SS that the V86-mode task is using, Hardware interrupts are fielded by the
routines or tasks designated by the gates in the IDT. Software interrupt instructions
in the V86 task usually refer to routines in the virtual machine operating system;
they are unlikely to correspond to the vectors implemented by the supervisory
operating system. Therefore, any operating system that supports V86 tasks must be
aware of two possible outcomes of a software INT instruction executed by a V86-
mode program.

The most likely outcome is a general protection fault (interrupt 13), Because V86
tasks execute at privilege level 3, accessing a more privileged ring’s descriptor
causes a general protection fault. The interrupt 13 fault handler must detect when it
has been invoked due to a software interrupt instruction from a V86 task.

The error code on the stack indicates the vector that caused the general protection
fault. The handler can fetch the contents of the V86 interrupt vector from the V86
task image and branch back to the V86 routine.

A less likely outcome occurs only when TOPL = 3 and when the gate in the IDT has
a level 3 descriptor. In this case, the software interrupt causes a branch to the rou-
tine pointed to by the gate. This routine must be in ring 0 to prevent a general pro-
tection fault. Any interrupt routine that can be invoked by a level 3 gate in the IDT
must examine the VM bit in the EFLAGS image on the stack to determine whether
the interrupt handler was invoked by a standard protected-mode routine or by a
V86 task.
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Whenever an interrupt occurs while the processor is executing a V86-mode task,
control moves to a ring 0 code segment. Control may transfer directly to ring 0, or it
may transfer to the general protection fault handler (which must be in ring 0). The
ring 0 stack is slightly different when control comes from a V86 task than when it
comes from a protected-mode procedure, All segment registers are pushed onto the
ring 0 stack when an interrupt or trap occurs in a V86 task. Figure 7-6 illustrates the
differences in the stacks. Note that an error code will also be pushed for certain ex-
ception interrupts.

In addition to the extra values pushed onto the stack, all segment registers are
reloaded during the transition through the gate. DS, ES, FS, and GS are loaded with
a null selector (0), SS is loaded from the ring 0 stack selector in the TSS for the V86
task, and CS is loaded with the descriptor from the interrupt or task gate.

The segment registers must be loaded with new values if the executing task is a V86
task. Before an interrupt, the segment registers contain real-mode style segment ad-
dresses, which are not valid selectors for the protected-mode interrupt handler.
When the interrupt handler returns via the IRET instruction, the 80386 checks the
saved EFLAGS image in the level 0 stack. If the saved VM bit is set, the CPU recog-
nizes that it is returning to a V86-mode task and reloads the segment registers with
the saved values on the stack.

31 0 31 0
SS:ESPO 0 i Task SS SSP:ESPO 0 : GS
from TSS ESP from TSS 0 i FS
EFLAGS GRS
DG R R ES
ESP —» EIP (T SS
ESP
EFLAGS
A R CS
ESEaaai EIP
Interrupt stack after Interrupt stack after
transition to ring 0 transition to ring 0
in protected mode in V86 mode

Figure 7-6. Ring O interrupt stacks: V86 vs protected mode.
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THE
80386/80387
INSTRUCTION
SET
REFERENCE

This chapter of The 80386 Book provides a reference for the 80386 and 80387 in-
struction sets. The instructions are in alphabetical order, with floating-point instruc-
tions following the 80386 instruction pages.

The experienced user can find information with a quick glance at the first part of an
instruction; a less experienced user can refer to the detailed descriptions and

examples.
Operators

The following reference pages use these operators:
Operator Meaning Operator Meaning
+ Addition & Boolean AND
= Subtraction > Greater than
. Multiplication < Less than
+ Division >> Shift right
~ Not << Shift left
= Equal to < Less than or equal to
= Not equal to 2 Greater than or equal to

Or — Assignment

A Exclusive OR

147



THE 80386 BOOK

—— MNEMONIC. —— PROCESSOR TYPE.
Used by the assembler to Processors that support
represent the instruction. the instruction. Note that

earlier processors
NAME. supported only 8-bit or
Name of the instruction. 16-bit forms.
\ 8: The Set
\ CALL 8086/80186/80286/80386
(16p/32)

SYNTAX. = Near Procedure Call
Generic \

5 . Syntax
instruction

Jformat.

CALL dest

Operation

_/ push(EIP)
OPERATION. =] EIP + dest

Pseudocode
operation
description.

DESCRIPTION.
Description of
the instruction.

FAULTS.
Faults that may

Legal Forms
dest
CALL  offset ; EIP « EIP + offset
CALL  mem : EIP « [mem]
CALL req : EIP « [reg]
Description
This instruction pushes the address of the nestinstruction CEHD onto the stack, The
instruction pointer is then set to the value specificd by the operancd.
1f the operand is an immediate value. the new instruction pointer is relative to the
current position. I the operand is o memory address oraregister. the subroutine
aclelress is taken indirectly from the operand
Flags

OF DF IF TF SF ZF PF CF
~ Jeaty [ [T TTTT]
the instruction.

The abbreviations "'“':; . ¥
used include: TR
#UD (undgmed opcode) T GRY TS Ty
#NP (not present)
#IS (ta'sk SwitCh) ZT:WI‘ZGRT : Call direct
e R T R
#SF (stackfault) CALL  [EBX+EAX*4] : call it
#PF (page fault)
A value in parentheses
indicates that an
error code is pushed 173
onto the stack. |
|

EXAMPLE.

Code that

illustrates

use of the

instruction.
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—— OPERAND SIZES.

When many different
operands may be used,
this field indicates legal
sizes. If the instruction
reqiiires more than one
operand, they are
assumed to be the same
size. Unless otherwise
stated, 8 = 8-bit
operands; 16 = 16-bit
operands; 32 = 32-bit
operands; 16p = The
instruction accepts 16-
bit operands by using the
32-bit form and the
OPSIZ instruction prefix.

LEGAL FORMS.

Legal forms of the
instruction. reg = one of
the general registers
EAX, ESI, BX, DI, BP,
DX, efc. mem = a
memory operand
[021AH], [EBP+EAX = 3],
[ECX+7], etc.idata = an
immediate data value
(32, 17A3H, etc.) sreg =
a segment register. offset
= an offset from the
current CS:IP.

FLAGS.

OF = Overflow flag.

DF = Direction flag.

IF = Interrupt enable flag.
TF = Trap flag.

SF = Sign flag.

ZF = Zero flag.

AF = Auxiliary flag.

PF = Parity flag.

CF = Carry flag.

An “x” in a box indicates
that the specified bit is
modified by the instruc-
tion. An =" in a box
means that the specified
bit value remains
unchanged. A “?” means
that the instruction sets the
flag to an unknown value.
Ifa “0” or “1”is in a box,
the instruction sets the
specified bit to that value.




8: The 80386/80387 Instruction Set Reference

AAA 8086/80186/80286/80386
ASCII Adjust After Addition (8)
Syntax
AAA
Operation

if (AF | ((AL & OFH) > 9)) then
AL « (AL + 6) & OFH
AH « AH + 1
CE, AF & 1
else
CF, AF « 0
endif

Legal Form
AAA

Description

This instruction ensures that an ASCII or BCD addition results in a valid BCD digit.
After executing an ADD or ADC instruction that leaves a single BCD or ASCII digit
in register AL, execute AAA to produce a valid BCD result,

If the value in AL produces a decimal overflow, the BCD digit is forced into the legal
range (0-9), and AH is incremented. The high-order nibble is zeroed so that AL
contains only the resulting single BCD digit, and the AF and CF flags are set to 1.

If no overflow occurs, the AF and CF f lags are reset (o 0.

Flags
OF DF IF TF SF ZF AF PF CF
7| e = | = 28 | 2 el | =l | | |
Faults
None.
Example
MOV At byl ; Binary 35H
ADD Al T ; Add binary 37H yielding 6CH
AAA ; AL « 02H, AH « AH + 1, decimal carry set
OR AL, 30H ; Convert resulting digit to ASCII '2°'
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AAD 8086/80186/80286/80386
ASCII Adjust Before Division @16)

Syntax
AAD

Operation

AL « AH * 10 + AL
AH « 0

Legal Form
AAD

Description

This instruction supports BCD division. Before execution, the AL register should
contain a single, unpacked BCD digit. The AH register should hold the next higher-
order BCD digit. After executing the AAD instruction, AX contains the binary equiv-
alent of the two BCD digits. You can then issue the divide instruction, which leaves
a binary result.

Flags
OF DF IF TF SF ZF AF PF CF
220 = [ | Bl e [ S| S | s |
Faults
None,.
Example
MOV AH, '4' ; High-order digit
MOV Al 2! ; Low-order digit (AX = ASCII 42)
AND AX, OFOFH ; Convert to unpacked BCD
AAD ; AX « 2AH (42 decimal)
MOV B|eeE ; Divisor for 42/6
DIV BL - ; AL « 7(quotient), AH « O(remainder)
OR AL, 30H ; Convert result to ASCIT '7°
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AAM 8086/80186/80286/80386
ASCII Adjust After Multiplication 8
Syntax
AAM
Operation

AH « AL div 10
AL « AL mod 10

Legal Form
AAM

Description

The AAM instruction converts the result of a single-digit BCD multiplication (a
value 0-81) in the AX register to two unpacked BCD digits, the high-order digit in
AH and the low-order digit in AL.

Flags
OF DF IF TF SF ZF AF PF CF
T | = NS | R | ) = | P | (S e | il
Faults
None.
Example
MOV AL, 4 ; Multipland
MOV AH, 8 ; Multiplier
MUL AH ; AX « 20H, 32 decimal
AAM i AH « 3, AL « 2
OR AX, 3030H ; Convert to ASCII '32'
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AAS 8086/80186/80286/80386
ASCII Adjust After Subtraction (8)
Syntax
AAS
Operation

if (AF | (AL & OFH) > 9) then
AL « (AL - 6) & OFH
AH < AH - 1
CF, AF « 1
else
CF, AF « 0
endif

Legal Form
AAS

Description

This instruction ensures that an ASCII or BCD subtraction results in a valid BCD
digit. After executing a SUB or SBB instruction that leaves a single BCD or ASCII
digit in register AL, execute AAS to produce a valid BCD result.

If the value in AL produces a decimal borrow, the BCD digit is forced into the legal
range (0-9) and AH is decremented. The high-order nibble is zeroed so that AL
contains only the resulting single BCD digit, and the AF and CF flags are set to 1.

If no borrow occurs, the AF and CF flags are reset to 0.

Flags
OF DF IF TF SF ZF AF PF CF
TR || B A 2 | Sl [ et | o |
Faults
None.
Example
MOV AlEath S a5H
SUB AL : Subtract 37H yielding OFEH
AAS : AL « 08H, carry set indicating "borrow"
OR AL, 30H ; Convert result back to ASCII '8'
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ADC 8086/80186/80286/80386
Add with Carry (8/16p/32)
Syntax

ADC dest, src

Operation
dest « dest + src + CF

Legal Forms

dest sre
ADC reg, idata
ADC mem, idata
ADC reg, reg
ADC reg, mem
ADC mem, reg
Description

This instruction adds the contents of the dest and src operands, increments the
result by 1 if the carry flag is set, and stores the result in the location specified by
dest. The operands must be of the same size. If the operands are signed integers,
the OF flag indicates an invalid result. If the operands are unsigned, the CF flag in-
dicates a carry out of the destination.,

Flags

OF DF IF TF SF ZF AF PF CF

i (s i | ] 85 e o] 5"l Bt B " [ |
Faults

PM RM V8086

12 #S58(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example

; Subroutine to add two 64-bit integers
ENTER 0, 0 ; Create stack frame
MOV EAX, [EBP+8] ; Get low-order of first value
MOV EDX, [EBP+12] ; Get high-order of first value
ADD EAX, [EBP+16] : Add low-order bits, generating carry
ADC EDX, [EBP+20] : Add high-order bits with previous carry
LEAVE ; Undo stack frame
RET ; Return with value in EDX:EAX
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ADD

Integer Addition

8086/80186/80286/80386
(8/16p/32)

Syntax
ADD dest, src

Operation

dest « dest + src

Legal Forms

dest sre
ADD reg, idata
ADD mem, idata
ADD reg, reg
ADD reqg, mem
ADD mem, reg
Description

This instruction adds the contents of the dest and sr¢ operands and stores the result
in the location specified by dest, The operands must be of the same size, If the
operands are signed integers, the OF flag indicates an invalid result. If the operands
are unsigned, the CF flag indicates a carry out of the destination. If the operands are
unpacked BCD digits, the AF flag indicates a decimal carry.

Flags

OF DF IF TF SF ZF AF PF CF

e e | S| s | | S o | el | I |
Faults

PM RM V8086

12 #8S8(0)
13 #GP0) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
Example
ADD AL, [4211A] ; 8-bit addition
ADD AX, 34 ; 16-bit immediate value addition
ADD ESI, [EBP+8] ; 32-bit memory addition to register
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AND 8086/80186/80286/80386
Boolean AND (8/16p/32)
Syntax

AND dest, src

Operation

dest « dest & src
CF « 0
OF « 0

Legal Forms

dest src
AND reg, idata
AND mem, idata
AND red, reg
AND reg, mem
AND mem, reg
Description

This instruction performs a bit-by-bit AND operation on the dest and src operands
and stores the result in the dest operand. The AND operation is defined as follows:

0&0=0

0&1=0
1&0=0
1&1=1
Flags

OF DF IF TF SF ZF AF PF CF

Q| F= 8 = = 6 e S (=8 | Bl ol el | - 8 Q)
Faults

PM RM V8086

12 #85(0)
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
AND AL, OFH ; Zero high-order nibble of AL
AND EBX, ECX ; Compute EBX « EBX & ECX
AND BYTE PTRLEBP+6], 7FH ; Mask off high-order bit of memory operand
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ARPL 80286/80386

Adjust RPL Field of Selector (16)

Syntax
ARPL dest, src

Operation

if (dest.RPL < src.RPL) then
dest.RPL « src.RPL
IF « 1

else
IF « 0

endif

Legal Forms

dest sre

ARPL reg, reg
ARPL mem, reg

Description

System software uses this instruction to modify a selector’s requested privilege level
(RPL) field. Both the dest and src operands must be valid selectors.

If the RPL of the dest operand is numerically less than the RPL of the sre, that is, if
the dest selector is more privileged, the dest selector’s RPL is lowered to match that
of the sre, and the ZF flag is set to 1. If the dest selector is less privileged (numeri-
cally higher) than the sre, the ZF flag is cleared to 0, and the dest operand is not
modified.

Operating system routines that are passed selectors from applications should use
ARPL to ensure that the calling routine has not passed a selector with a higher privi-
lege than the application is allowed. Use the calling routine’s CS register as the src
operand.,

Flags
OF DF IF TF SF ZF AF PF CF

- = - = - X = 2 = = = 2
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Faults
PM RM V8086
6 INT 6 #UD(O)
12 #88(0)
13 #GPO)
14  #PF(ec)
Example
MOV AX, [EBP+12] ; Get parameter off the stack
ARPL AX, [EBP+2] : Adjust to caller's RPL (previous CPL) by
: using CS of return address on stack
JINZ bad_param : Branch if caller passed a bad selector

157



THE 80386 BOOK

BOUND 80186/80286/80386
Check Array Boundaries (16p/32)
Syntax

BOUND dest, src

Operation

if ((dest < src[0]) | (dest > src[1])) then
INT §
endif

Legal Form

dest src
BOUND reg, mem

Description

This instruction compares the dest operand, which must be a register containing a
signed integer, with two values, a lower bound stored at the address specified by src,
and an upper bound stored in the following location. The bounds can be 16-bit or
32-bit values.

If the dest value is less than the lower bound or greater than the upper bound, an in-
terrupt 5 occurs. The return address pushed onto the stack by the exception is the
starting address of the BOUND instruction that caused the interrupt.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086
5 INTS INT 5 INT 5
6" #UDQ) INT 6 #UD()
12 #SS(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)

*The undefined opcode fault occurs only if the instruction encoding of the BOUND instruction speci-
fies an src operand that is a register,
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VC_LIMITS:
DDESSIEE24)
YC DD 20 DUP (?)

MOV EAX, [EBP-6]
BOUND EAX, VC_LIMITS

.

8: The 80386/80387 Instruction Set Reference

; Bounds for 20-element array
; Array storage area

; Get array index
; Check against Timits
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BSF

Bit Scan Forward

80386
(16p/32)

Syntax

BSF

dest,. src

Operation

if (

else

src = 0) then
IF « 1
dest « 117

IF « 0

temp « 0
while (bit(src, temp) = 0)

temp « temp + 1
dest « temp

endif

Legal Forms

dest sre
BSF reg, reg
BSF reg, mem
Description

This instruction scans the sr¢ operand and writes the bit position of the first 1 bt in
sre to the destination register. If the src operand is 0, the ZF flag is set to 1, and the

instruction ends with the dest register in an undefined state,

If the src operand is not 0, each bit is examined, beginning with bit 0, until a 1 bit is
found. The bit position of the first 1 bit (index) is stored in the dest register.

Flags
OF DF IF TF SF ZF AF PF
== | = 7 S | | ST D |
Faults

PM RM V8086
12 #S5(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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Example

XOR
ST B S E
JINZ
INC
CMP
JL
JMP
GOT_ONE:

ECX, ECX

EAX, SECTORS[ECX*41]
GOT_ONE

ECX

ECX, TABLE_SIZE

L1

NO_SECTORS

8: The B0386/80387 Instruction Set Reference

Index into sector map
Scan a dword

Branch if any bits set

Go on to next dword

Done searching?

No, scan next table entry

: No bits set in entire table
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Bit Scan Reverse

80386
16p/32)

Syntax

BSR dest, src

Operation

if (dest in [AX, BX, CX, DX, SI, DI, BP, SP]) then
startbit « 15

else
starthit « 31
endif
if (src = 0) then
IF « 1
dest « 127
else
IF « 0

temp « starthit

while (bit(srec, temp) = 0)
temp « temp - 1

dest « temp

endif

Legal Forms

dest sre
BSR reg, reg
BSR reg, mem
Description

This instruction scans the src operand in reverse, searching for a 1 bit beginning at
the high order of the sr¢ operand. If the src operand is 0, the ZF flag is set to 1, and

the instruction ends with the dest register in an undefined state.

If the sr¢ operand is not 0, each bit is examined, beginning with the high-order bit
(either 15 for word operands or 31 for byte operands), until a 1 bit is found. The bit

position (index) of the first 1 bit is stored in the dest register.

Flags
OF DF IF TF SF ZF

AF

PF

?

?

X

?
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Faults
PM RM V8086
12 #SS(0)
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
MOV ECX, SEM_MAX-1 :
L1: BSR EAX, SEMAPHORE[LECX#*4] .
JNZ found_it :
LOOP L1 :
none_found: :

Index of last entry in
semaphore table

Scan for non-zero bits
Branch if valid index
Decrement CX, loop back
if not zero

Get here

if entire table is zero
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BT 80386

Bit Test (16p/32)

Syntax
BT dest, index

Operation
CF « BIT(dest, index)

Legal Forms

dest index
BT reg, idata
BT mem, idata
BT reg, reg
BT mem, reg
Description

This instruction tests the bit specified by the operands and places the value of the
bit into the carry flag,

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location, The state of the bit is copied into
the carry flag.

If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can take on any integral value. Some assemblers
might let you specify immediate index values greater than 31. If so, they modify the
effective address by an appropriate value so that the index can be scaled back to
between 0 and 31.

BT does not accept byte operands, so do not use it with memory-mapped [/O
devices because the instruction causes either the 16-bit word or the 32-bit word con-
taining the selected bit to be read. This could affect more than one 1/O device regis-
ter. You should use a single-byte MOV instruction to read the 1/O register and then
test the contents of the register.

Flags
OF DF IF TF SF ZF AF PF CF
20 | R A 2 8 S | 8 LS | S s [
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Fauits
PM RM V8086
12 #S85(0)
13 #GP() INT 13 #GP(O)
14  #PF(ec) #PF(ec)
Example
MOV EAX, 192 ; Bit index
BT SEMAPHORES, EAX ; Test semaphore number 192
JC sem_set : Branch if the bit was set
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BTC 80386

Bit Test and Complement (16p/32)

Syntax
BTC dest, index

Operation
CF « BIT(dest, index)
BIT(dest, index) « -BIT(dest, index)

Legal Forms

dest index
BTC reg, idata
BTC mem, idata
BTC reg, reg
BTC mem, reg
Description

This instruction copies the bit specified by the operands into CF, then complements
the original value of the bit in the dest operand.

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location. The state of the bit is copied into
the carry flag, and the bit of the dest operand is complemented.

If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can take on any integral value. Some assemblers
might let you specify immediate index values greater than 31. If so, they modify the
effective address by an appropriate value so that the index can be scaled back to
between 0 and 31.

BTC does not accept byte operands, so do not use it with memory-mapped 1/0
devices because the instruction causes either the 16-bit word or the 32-bit word con-
taining the selected bit to be read. This could affect more than one I/O device regis-
ter. You should use a single-byte MOV instruction to read the I/O register and then
test the contents of the register.

Flags
OF DF IF TF SF ZF AF PF CF
7 (RS ST S 1180 o 8| S [ | R | o S [
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Faults
PM RM V8086
12 #S8(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
MOVZX EAX, BYTE PTR [04A2H] ; Read memory byte into 32-bit register
BTC EAX, 2 ; Test and complement bit number 2
MOV [04A2H], AL ; Write modified byte back to memory
JC bitset ; Branch if the bit was set
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BTR 80386

Bit Test and Reset (16p/32)

Syntax
BTR dest, index

Operation

CF « BIT(dest, index)
BIT(dest, index) « 0

Legal Forms

dest index
BTR reg, idata
BTR mem, idata
BTR reg, reg
BTR mem, reg
Description

This instruction copies the bit specified by the operands into CF, then clears the
original bit in dest to 0.

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location. The state of the bit is copied into
the carry flag, and the hit of the dest operand is cleared to 0.

If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can be any integer. Some assemblers might let you
specify immediate index values greater than 31. If so, they modify the effective ad-
dress by an appropriate value so that the index can be scaled back to between 0
and 31,

BTR does not accept byte operands, so do not use it with memory-mapped I/0
devices because the instruction causes either the 16-bit word or the 32-bit word con-
taining the selected bit to be read. This could affect more than one 1/O device regis-
ter. You should use a single-byte MOV instruction to read the 1/O register and then
test the contents of the register.

When using a BTR instruction to implement a signaling function in a multiprocessor
environment, the LOCK instruction prefix should immediately precede any BTR in-
struction that modifies shared memory.

Flags
OF DF IF TF SF ZF AF PF CF
| | RS o | 2l ot 1 8= | | = 2 | S
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Faults
PM RM V8086
12 #S5(0)
13 #GP0) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
Example
BTR MY_FLAG, 7 : Zero the high-order bit of byte MY_FLAG
JNC NOT_SET ; Bit was already reset
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BTS ' 80386

Bit Test and Set (16p/32)

Syntax
BTS dest, index

Operation

CF « BIT(dest, index)
BIT(dest, index) « 1

Legal Forms

dest index
BTS reg, idata
BTS mem, idata
BTS reg, reg
BTS mem, reg
Description
This instruction copies the specified bit into CF, then sets the original bit in

dest to 1.

The index operand holds a bit index into the bit string specified by dest, which can
be a 16-bit or 32-bit register or a memory location. The state of the bit is copied into
the carry flag, and the bit of the dest operand is set to 1.

If the index operand is an immediate data value, it can range from 0 through 31. If
the index is held in a register, it can be any integer. Some assemblers might let you
specify immediate index values greater than 31. If so, they modify the effective ad-
dress by an appropriate value so that the index can be scaled back to between 0
and 31.

BTS does not accept byte operands, so do not use it with memory-mapped /0
devices because the instruction causes either the 16-bit word or the 32-bit word con-
taining the selected bit to be read. This could affect more than one 1/O device regis-
ter. You should use a single-byte MOV instruction to read the I/O register and then
test the contents of the register.

When using a BTS instruction to implement a semaphore function in a
multiprocessor environment, the LOCK instruction prefix should immediately
precede any BTS instruction that modifies shared memory.

Flags
OF DF IF TF SF ZF AF PF CF
e s e i | Rl e =
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Faults
PM RM V8086
12 #S88(0)
13 #GPO) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
Example
BTS MY_FLAG, 7 ; Set the high-order bit of byte MY _FLAG
Jc WAS_SET ; Bit was already set
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CALL

Far Procedure Call

8086/80186/80286/80386

(32p/48)

Syntax
CALL dest

Operation

push(CS)
push(EIP)
CS:EIP « dest

Legal Forms

dest
CALL idata ; CS:EIP « idata
CALL mem ; CS:EIP « [mem]
Description

The far procedure call saves the current code segment selector and the address of
the next instruction (EIP) on the stack. Control then transfers to the destination
specified by the operand. The operand can be an immediate selector:offset value or

the address of a 48-bit FAR pointer in memory.

The selector can point to another code segment, a call gate, a task gate, or a task
state segment. If the selector points to a gate or TSS, the offset portion of the CALL
is ignored. If the selector points to a code segment, control transfers to the specified

offset within that segment.

All flags are affected by a task switch.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
10 #TS(0)
10 #TS(sel) #TS(sel)
11  #NP(sel) #NP(sel)
12 #SS(0)
12 #S5(58S)
13 #GPO) INT 13 #GP(0)
#GP(CS) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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Example
CALL 16A3:0000 ; Direct call
CALL FWORD PTR [005AH] ; Indirect call
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CALL 8086/80186/80286/80386
Near Procedure Call A6p/32)

Syntax
CALL dest

Operation

push(EIP)
EIP « dest

Legal Forms

dest
CALL offset ; EIP « EIP + offset
CALL mem i EIP « [mem]
CALL reg i EIP « [reg]
Description

This instruction pushes the address of the next instruction (EIP) onto the stack. The
instruction pointer is then set to the value specified by the operand.

If the operand is an immediate value, the new instruction pointer is relative to the
current position. If the operand is a memory address or a register, the subroutine
address is taken indirectly from the operand.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086
12 #SS(0)
13  #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
CALL SQRT ; Call direct
LEA EBX, FN_TABLE ; Get pointer to address table
MOV EAXS 3 ; Select third function
CALL [EBX+EAX*4] s Calllvait
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CBW 8086/80186/80286/80386
Convert Byte to Word : (8

Syntax
CBW

Operation

if BIT(AL, 7) then
AH « OFFH
else
AH « 0
endif

Legal Form
CBW

Description
This instruction sign-extends the byte in AL to AX.

Flags
OF DF IF TF SF ZF AF PF CF

Faults

None.

Example

MOV AL, TINY ; Read a byte into AL

CBW ; Convert to 16-bit signed integer
ADD BX, AX
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CDQ 80386
Convert Doubleword to Quadword (32)
Syntax
cba
Operation

if (BIT(EAX, 31) = 1) then
EDX « OFFFFFFFFH

else
EDX « 0

endif

Legal Form
coha

Description

This instruction sign-extends the 32-bit EAX register to a 64-bit dword. It is most
frequently used before the integer divide instruction, which operates on a 64-bit
dividend.

Flags

OF DF IF TF SF ZF AF PF CF
Faults

None,

Example

MoV EAX, [400H] : Copy dividend to EAX
CDQ ; Extend to 64 bits
IDIV DWORD PTR [20H] ; Divide
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Clear Carry Flag

8: The 80386/80387 Instruction Set Reference

8086/80186/80286/80386
O

Syntax
cLC

Operation
CF « 0

Legal Form
cLC

Description

This instruction clears the carry flag in the EFLAGS register to 0.

Flags
OF DF IF TF SF ZF

AF

CF

Faults
None,

NO_ERROR:
CLC
RET

; Clear carry
; Return from subroutine with success
; indicated by CF
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CLD 8086/80186/80286/80386
Clear Direction Flag (@)

Syntax
CLD

Operation
DF « 0

Legal Form
CLD

Description

This instruction clears the direction flag in the EFLAGS register to 0. When DF is 0,
any string instructions increment the index registers (ESI or EDI).

Flags

OF DF IF TF SF ZF AF PF CF

SR BRSO S e | e e e =
Faults
None.
Example
MOV ECX, STR_LEN i String move count
CLD ; Clear direction flag
REP MOVSB ; Copy the string
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CLI 8086/80186/80286/80386
Clear Interrupt Flag O

Syntax
CLI

Operation
IF « 0

Legal Form
CLI

Description

This instruction clears the interrupt bit in the EFLAGS register to 0, disabling hard-
ware interrupts (except NMI). The procedure executing the CLI instruction must be
of equal or higher privilege than the current IOPL, that is, CPL < IOPL, or a general
protection fault occurs,

Flags

OF DF IF TF SF ZF AF PF CF

S S| M| R | | | Sl | | e e
Faults

PM RM V8086

13 #GP(0) #GP0)
Example

CLI ; Disable interrupts
MOV AL, SEMAPHORE ; Get memory value
DEC AL ; Decrement counter
JZ done i Skip if value was 0
MOV SEMAPHORE, AL ; Update
DONE :

STI ; Enable interrupt

179



THE 80386 BOOK

CLTS 80286/80386

Clear Task Switched Bit (0]

Syntax
CLTS

Operation
BIT(CRO, 3) « 0

Legal Form
CLTS

Description

This instruction clears the task switched (TS) bit in the CRO register to 0. The TS bit
allows the 80386 to efficiently manage the 80387, Whenever a task switch occurs on
the 80386, the CPU sets the TS bit to 1. If the TS bit is 1 when a coprocessor escape
(ESC) or WAIT instruction executes, a coprocessor not available fault (int 7) occurs.

The fault handler can clear the TS bit, save the NDP state, load the NDP state for the
current task, and return to the instruction that faulted. Switching between tasks that
do not use the 80387 will not cause the fault, and you can avoid the overhead of say-
ing and restoring the NDP state.

Only procedures running at a CPL of 0 can execute CLTS without causing a general
protection fault,

CLTS is valid in real mode to allow initialization for protected mode.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
13 #GP(O) #GP(0)
Example
CLTS ; Clear task switched bit
CALL SWAP_NDP_STATE ; Save/restore math coprocessor state
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Complement the Carry Flag
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8086/80186/80286/80386
O

Syntax
CMC

Operation
CF « ~CF

Legal Form
CMC

Description

The carry bit of the EFLAGS register is complemented; that is, if the initial value of
the carry bit is 0, it is set to 1. If the initial value is 1, the flag is cleared to 0 as a

result of the instruction.

Flags
OF DF IF TF SF ZF

PF CF

Faults
None,

BT EAX, 1

Jc EXIT

JMP TRY_AGAIN
EXIT:

CMC

RET

; Test a bit, save in CF
; Bit was set--we’re done
; Not ready yet

; Return, CF clear
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CMP 8086/80186/80286/80386
Compare Integers (8/16p/32)
Syntax

CMP opl, op2

Operation
NULL « opl - op2

Legal Forms

dest src
CMP reg, idata
CMP mem, idata
CMP reg, reg
CMP reg, mem
CMP mem, reg
Description

This instruction subtracts the contents of op2 from op? and discards the result. Only
the EFLAGS register is affected. The following table illustrates how the flags are set
based on the operand values.

Condition Signed Compare Unsigned Compare
opl > op2 ZF = 0 and SF = OF CF=0and ZF = 0
opl 2 op2 SF = OF CE=0

opl = op2 Zfi=1 ZF=1

opl < op2 ZF =1 and SF = OF CF=lorZF=1

opl < op2 SF I= OF CE=1

If op? is a 16-bit or 32-bit operand and op2 is an 8-bit immediate value, op2 is sign-
extended to match the size of opl.

Flags
OF DF IF TF SF ZF AF PF CF
X = = = x X = X = X - X
Faults
PM RM V8086
12 #SS(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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Examples

CMP AL, [4211A] ; B-bit compare

CMP AX, [BX+3] ; 16-bit real/virtual mode

CMP CX, [EBP+8][EAX*2] ; 16-bit protected mode

CMP EST 7 ; 32-bit compare with sign-extended operand
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CMPS 8086/80186/80286/80386
Compare String (8/16p/32)
Syntax
CMPS
Operation

when opcode is (CMPSB, CMPSW, CMPSD) set opsize « (1, 2, 4)
NULL « DS:[ESI] - ES:[EDI]
if (DF = 0) then
ESI « ESI + opsize
EDI « EDI + opsize
else
ESI-opsize
EDI-opsize
endif

Legal Forms

CMPSB ; Compare string byte
CMPSW ; Compare string word
CMPSD ; Compare string doubleword
Description

This instruction subtracts the memory operand pointed to by DS:ESI from the
operand at ES:EDI and discards the result, as in the CMP instruction. The size of
the operand is either a byte, word, or doubleword, depending on the opcode used.
The flags are set as the comparison dictates, and the contents of ESI and EDI are
modified, either incremented by the size of the operand, or decremented, depend-
ing on the setting of the DF bit in the EFLAGS register. ESI and EDI are incremented
when DF = 0.

You can precede the CMPS instruction with either the REPE or REPNE prefix to re-
peatedly compare operands while the ZF bit remains 1 (REPE) or 0 (REPNE). Regis-
ter ECX holds the maximum compare count.

You can also apply a segment override prefix to the CMPS instruction to override
the DS segment of the DS:[ESI] operand. You cannot override the ES segment
assumption for the EDI operand.

Flags
OF DF IF TF SF ZF AF PF CF
X = = = X X = X = X = X
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Faults
PM RM V8086
12 #88(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
LEA ESI, standard ; DS:ESI points to default
LES EDI, [EBP+12] ; ES:EDI Toaded from stack frame
MOV ECGXGS 31 ; Count is a constant
CLD ; Ensure direction flag set correctly
REPE CMPSB ; Compare byte string
JNE not_eq ; Branch if strings not equal
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CWD 8086/80186/80286/80386
Convert Word to Doubleword (16)

Syntax
CWD

Operation

if (BIT(AX, 15 = 1)) then
DX « OFFFFH

else
DX « 0

endif

Legal Form
CWD

Description

This instruction sign-extends the word in AX to the DX:AX register pair. The
preferred 16-bit to 32-bit conversion instruction is CWDE. CWD is used by the 8086
and 80286, which do not have 32-bit registers,

Flags
OF DF IF TF SF ZF AF PF CF

Faults

None.

Example

MOV AX, divisaor ; Get 16-bit divisor
CWD ; Extend to DX:AX
DIV CX ; 16-bit division
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CWDE 80386
Convert Word to Doubleword Extended (16)
Syntax
CWDE
Operation

if (BIT(EAX, 15) = 1) then
EAX « EAX | FFFFOOOOH
else
EAX « EAX & O000OFFFFH
endif

Legal Form
CWDE

Description

This instruction sign-extends the 16-bit value in AX to a full 32 bits in the EAX
register.

Flags
OF DF IF TF SF ZF AF PF CF

Faults

None.

Example

MOV AX, short_int ; Get 16-bit signed value
NEG AX, ; Convert to negative number
CWDE ; Return 32-bit result
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DAA 8086/80186/80286/80386
Decimal Adjust AL After Addition (8)

Syntax
DAA

Operation

if (AF | (AL & OFH) > 9) then
AL « AL + 6
AF « 1

else
AF « 0

endif

if (CF | (AL > 9FH)) then
AL « AL + 60H
CF « 1

else
GF <0

endif

Legal Form
DAA

Description
This instruction ensures that AL contains a valid decimal result after an addition of
two packed BCD values.

Flags
OF DF IF TF SF ZF AF PF CF

2| IR [ | | e | | | el e B R
Faults
None.
Example
MOV AL, 72H ; 72 in packed decimal
ADD AL, 19H ; Yields BBH in AL
DAA ; Adjusts AL to 91H
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DAS 8086/80186/80286/80386
Decimal Adjust AL After Subtraction (8)

Syntax
DAS

Operation

if (AF | ((AL & OFH)) > 9) then
AL < AL - 6
AF « 1

else
AF « 0

endif

if (CF | (AL > 9FH)) then
AL « AL - 60H
CF « 1

else
CF « 0

endif

Legal Form
DAS

Description

This instruction ensures that AL contains a valid decimal result after a subtraction of
two packed BCD values.

Flags

OF DF IF TF SF ZF AF PF CF

LS [ | R [ = e | e SR o
Faults
None.
Example
MOV AL, 42H ; 42 in packed decimal
SUB AL, 13H ; Yields 2FH in AL
DAS ; Adjusts AL to 29H
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DEC 8086/80186/80286/80386
Decrement (8/16p/32)
Syntax
DEC opl
Operation

opl « opl - 1

Legal Forms

opl
DEC reg
DEC mem
Description

This instruction subtracts the value 1 from opl. DEC is frequently used to decrement
indexes and therefore does not affect the carry flag (CF). In other respects, it is
equivalent to the instruction:

SUB opl, 1
Flags
OF DF IF TF SF ZF AF PR CF
oo | Wi | e | S S | = e e |
Faults
PM RM V8086
12 #8S(0) #8S(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
DEC ESI ; Decrement contents of ESI
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DIV 8086/80186/80286/80386
Unsigned Division (8/16p/32)
Syntax
DIV opl
Operation

low(acc) « acc / opl
high(acc) « acc modulo opl

Legal Forms

opl
DIV reg
DIV mem
Description

This instruction divides the value in the accumulator register or register pair by opl,
storing the quotient in the low-order portion of the accumulator and the remainder
in the high-order portion. The following table illustrates the registers used as ac-
cumulators, depending on the size of opl.

Size of opl Dividend Quotient Remainder
Byte AX AL AH

Worc DX,AX AX DX

Dword EDX,EAX EAX EDX

If the dividend is 0 or if the quotient is too large to fit in the result accumulator, a di-
vide error fault (interrupt 0) occurs.

Flags
OF DF IF TF SF ZF AF PF CF
2 = | R (R 57 = i (S 2
Faults
PM RM V8086
0 INTO INT O INT 0
12 #S5(0)
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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Example

MOV EAX, dividend

CWDE ; Convert 32-bit operand to 64 bits
DIV EBX ; 32-bit divide

MOV quotient, EAX i Save result

MOV remainder, EDX
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ENTER 80186/80286/80386
Enter New Stack Frame (@)
Syntax

ENTER locals, nesting

Operation

nesting « max (nesting, 31)
push (EBP)
temp « ESP
if (nesting > 0) then
nesting « nesting - 1
while (nesting > 0)
EBP « EBP - 4
push (SS:[EBP])
nesting « nesting - 1
endwhile
push (temp)
endif
EBP « temp
ESP « ESP - locals

Legal Forms

locals nesting
ENTER idata, idata

Description
This instruction sets up the stack frame used by high-level languages. The form
ENTER n,0 is equivalent to the instructions:

PUSH EBP
MOV EBP, ESP
SUBRRESPSN

This saves the previous frame pointer (EBP), sets the frame to the current stack top
(ESP), and allocates space for local variables. Parameters passed to the procedure
are addressed as positive offsets from EBP, and local variables are addressed as
negative offsets from EBP.

When the second operand is greater than 0 (which happens only in languages that
allow nesting of procedure definitions), the pointers to previous stack frames are
pushed onto the stack to allow addressing of stack-resident variables whose scopes
are outside the current stack frame.
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Languages such as FORTRAN and C do not allow lexical procedure nesting, so they
always use ENTER with a nesting operand of 0. Pascal, Modula-I1, and Ada allow

procedure nesting, and compilers for those languages generate the more complex
form of ENTER.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086
12 #SS(0)
14  #PF(ec) #PF(ec)
Example
ENTER 4, 0 ; Create stack frame with

; space for a dword local
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HLT 8086/80186/80286/80386
Halt O

Syntax
HLT

Legal Form
HLT

Description

This instruction stops all further processing on the 80386. No other instructions will
execute until the processor is reset or an interrupt occurs. An NMI interrupt always
brings the processor out of the halt state. The IF flag must be 1 for any other hard-
ware interrupt to be acknowledged. After processing the interrupt, execution con-
tinues with the instruction immediately following HLT.

You must execute at a CPL of 0 to issue a HLT instruction; otherwise, a general pro-
tection fault occurs,

Flags

OF DF IF TF SF ZF AF PF CF

Faults
rPM RM V8086

13 #GP() #GP(0)

Example
STI

L1: HLT ; Idle, processing only interrupts
JMP L1
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IDIV 8086/80186/80286/80386
Integer (Signed) Division (8/16p/32)
Syntax
IDIV opl
Operation

low(acc) « acc / opl
high(acc) « acc modulo opl

Legal Forms

opl
IDIV reg
IDIV mem
Description

This instruction divides the value in the accumulator register or register pair by op1,
storing the quotient in the low-order portion of the accumulator and the remainder
in the high-order portion. The following table illustrates the registers used as ac-
cumulators, depending on the size of opl.

Size of opl Dividend Quotient Remainder
Byte AX AL AH

Word DX, AX AX DX

Dword EDX,EAX EAX EDX

If the dividend is 0 or if the quotient is too large to fit in the result accumulator, a di-
vide error fault (interrupt 0) occurs.

Flags
OF DF IF TF SF ZF AF PF CF
Zi0 | e P 2 8 220 eSS | | o | el 60
Faults
PM RM V8086
0 INTO INTO INT O
12 #S8(0)
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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Example

MOV EAX, [ESP+14] ; Get dividend

cDQ ; Convert to 64 bits
IDIV ECX
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IMUL

Integer (Signed) Multiplication

8086/80186/80286/80386

(8/16p/32)

Syntax

IMUL opl, [op2, [op3]]

Operation

dest « multiplier * multiplicand

Legal Forms

opl opé op3

IMUL  reg ; ACC « acc * reg
IMUL  mem ; 4CC ¢« acc * mem
IMUL reg, reg i opl « opl * op2
IMUL  reg, mem i opl « opl * op?
IMUL  reg, idata i opl « opl * op2
IMUL reg, reg, idata ; opl « opZ2 * op3
IMUL  reg, mem, idata ; opl « op2 * op3
Description

This instruction multiplies signed, two’s complement integers. The flags are left in
an unknown state except for OF and CF, which are cleared to 0 if the result of the
multiplication is the same size (byte, word, or dword) as the multiplicand.

In the single operand form of the instruction, the result is placed in AX if op? is a

byte, DX:AX if opl is a word, and EDX:EAX if op7 is a dword.

In the forms of IMUL that use 2 or 3 operands, the operands must all be the same

size.
Flags
OF DF IF¥F TF SF ZF AF PF CF
SR =2 | o | S5l S | | | R | R S
Faults

PM RM V8086
12 #8S(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
IMUL ECX ; EDX:EAX « EAX #* ECX
IMUL AL, CH, 7 s AL =iCH #2 7
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IN 8086/80186/80286/80386
Input from I/O Port (8/16p/32)

Syntax

IN acc, port

Operation
ACC « (port)

Legal Forms

acc port
IN acc, idata
IN acc, DX
Description

This instruction reads a byte, word, or dword into the specified accumulator from
the designated I/O port. If you use an immediate data value in the instruction,
you can address only the first 256 ports. If the port is specified in the DX register,
you can access any of the 65536 ports,

IN is a privileged instruction. A procedure that attempts to execute an input instruc-
tion must satisfy one of two conditions to avoid a general protection fault.

If the procedure that executes an IN instruction has I/O privilege (that is, if its CPL
is numerically less than or equal to the TOPL field in the EFLAGS register), the input
instruction executes immediately,

If the procedure does not have I/O privilege, the I/O permission bitmap for the cur-
rent task is checked. If the bit(s) corresponding to the I/O port(s) is cleared to 0, the
input instruction executes. If the bit(s) is set to 1, or the port(s) is outside the range
of the bitmap, a general protection fault occurs, See Chapter 5 for more details on
this feature.

If the IN instruction is encountered while in V86 mode, only the 1/0 permission bit-
map is tested. The IOPL value is not a factor in validating access to the port.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
13 #GP(0) #GP(0)
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Example
IN AX, 72H ; Input a 16-bit value
: from ports 72H and 73H
MOV DX, crt_port
IN AL, DX

: Input a byte value
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INC 8086/80186/80286/80386
Increment (8/16p/32)
Syntax
INC opl
Operation

opl « opl + 1

Legal Forms

opl
INC reg
INC mem
Description

This instruction adds the value 1 to gpZ. This instruction is often used to increment
indexes and therefore does not affect the carry flag (CF). In other respects, it is
equivalent to the instruction:

ADD opl, 1
Flags
OF DF IF TF SF ZF AF PF CF
S | S || = || il | S | Sl | R |l R |
Faults
PM RM V8086
12 #88(0)
13  #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
INC ESI ; Increment contents of ESI
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INS 80186/80286/80386
Input String from I/0 Port (8/16p/32)
Syntax
INS
Operation

when opcode is (INSB, INSW, INSD), set opsize « (1, 2, 4)
ES:[EDI] « port(DX)
if (DF = 0) then
EDI « EDI + opsize
else
EDI « EDI - opsize
endif

Legal Forms

INSB ; Input string byte

INSW ; Input string word

INSD ; Input string doubleword
Description

This instruction allows the location specified by ES:[EDI] to receive data input from
the 1/O port contained in the DX register. An 8-bit operation (INSB) adjusts the ad-
dress in EDI by 1, a 16-bit operation (INSW) adjusts EDI by 2, and a 32-bit operation
(INSD) adjusts EDI by 4. The memory offset in EDI is incremented if the DF bit is 0
or is decremented if DF is 1.

Like the IN instruction, the INS instruction is privileged. The executing procedure
must have a CPL equal to or numerically less than the IOPL, or access to the port
specified in DX must be granted by the I/O permission bitmap in the TSS.

You can use the REP prefix with the INS instruction. Using the prefix causes regis-
ter ECX to be interpreted as an instruction count.

A segment override prefix does not affect the INS instruction. The destination seg-

ment is always ES.

Flags
OF DF IF TF SF ZF AF PF CF

202



8: The 80386/80387 Instruction Set Reference

Faults
rPM RM V8086
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
LEA EDI, new_val ; Set up destination pointer
MOV DX, 370H ; Set up port address
CLD
INSD ; Input 32-bit value to new_val
INSD ; Input value to new_val + 4
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INT 8086/80186/80286/80386
Software Interrupt (@)

Syntax
INT vector

Operation

push(EFLAGS)

push(CS)

push(EIP)

TF « 0

if (IDT(vector).TYPE = INTERRUPT_GATE) then
IF « 0

endif

CS:EIP ¢« destination(IDT(vector))

Legal Form

vector
INT idata

Description

This instruction saves the current flags and execution location on the stack, and the
vector operand indicates the IDT entry that is selected. The gate from the IDT de-
termines the new execution location.

If the processor encounters the INT instruction while in V86 mode, the 80386
switches to the ring 0 stack (SSO:ESPO) taken from the V86 task state segment before
processing the interrupt. Because the processor is running in ring 0, the IDT entry
must have a DPL of 0; otherwise, a general protection fault occurs.

The INT 3 instruction is usually encoded as a single byte (OCCH) and used as a
breakpoint instruction for debuggers.

Flags
OF DF IF TF SF ZF AF PF CF
= = X 0 = = = - - = - -




8: The 80386/80387 Instruction Set Reference

Faults
PM RM V8086

10 #TS(sel)
11 #NP(sel)

12 #S5(0)

13 #GP(0) INT 13 #GP(0)

14 #PF(ec) #PF(ec)

Example

INT 42 ; Make a system-dependent 0S call
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INTO 8086/80186/80286/80386
Interrupt on Overflow O

Syntax
INTO

Operation

if (OF) then
INT 4
endif

Legal Form
INTO

Description

This instruction executes an INT 4 instruction if the overflow bit (OF) in the
EFLAGS register is 1. See the INT instruction for further details.

Flags
OF DF IF TF SF ZF AF PF CF
- - X 0 - = = - = - = =
Faults
PM RM V8086
10 #TS(sel)
11 #NP(sel)
12 #SS(0)
13 #GP0) INT 13 #GP0)
14  #PF(ec) #PF(ec)
Example
ADD ECX, VECTORLEDI*4] ; Arithmetic operation
INTO ; Check for overflow
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IRET 8086/80186/80286/80386
Interrupt Return )
Syntax
IRET
Operation

if (NT = 1) then

task_return (TSS.back_link)
else

pop (EIP)

pop (CS)

pop (EFLAGS)
endif

Legal Form
IRET

Description

This instruction signals a return from an interrupt or, if the NT (nested task) bit is
set to 1, a task switch from the current task to the one that invoked it,

When the new value of EFLAGS is popped from the stack, the IOPL bits are modi-
fied only if the CPL is 0.

Chapter 5 discusses transitions across protection rings and task switching.

If the IRET instruction executes while the processor is in V86 mode, a general pro-

tection fault occurs, It is the responsibility of the fault handler to emulate the real-
mode IRET for the V86 task.

Flags
OF DF IF TF SF ZF AF PF CF
X I el | e | Wl [ sl (Rl | el | RS B
Faults
PM RM VB086
11
12 #SS(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
IRET
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Jcc 8086/80186/80286/80386
Jump if Condition O
Syntax
Jecec offset
Operation

if (cec) then
EIP « EIP + sign_extend(offset)

endif
- r':‘l'.?
Legal Forms 0 F = Wewlors
JA offset ; Jump above (unsigned x > y) / CF = 0 & ZF = 0
JAE offset ; Jump above or equal / CF =0
JB offset ; Jump below (unsigned x < y) / CF =1
JBE offset ; Jump below or equal / CF =1 | ZF =1
Jc offset : Jump if carry / CF =1

JCXZ offset ; Jump if CX = 0
JECXZ offset ; Jump if ECX = 0

JE offset ; Jump equal / ZF =1

JG offset ; Jump greater (signed x > y) / SF = OF & ZF = 0
JGE offset : Jump greater or equal / SF = OF

JL offset ; Jump less (signed x < y) / SF != OF & ZF = 0
JLE offset ; Jump less or equal / SF != OF

JNA offset : Jump not above (JBE)

JNAE offset ; Jump not above or equal (JB)

JNB offset ; Jump not below (JAE)

JNBE offset ; Jump not below or equal (JA)

JNC offset ; Jump no carry / CF =0

JNE offset ; Jump not equal / ZF = 0

JNG offset ; Jump not greater / SF != OF & ZF = 1
JNGE offset ; Jump not greater or equal (JL)

JNL offset ; Jump not less (JGE)

JNLE offset ; Jump not less or equal (JG)

JNO offset ; Jump no overflow / OF = 0

JNP offset ; Jump no parity / PF =0

JNS offset ; Jump no sign / SF = 0

JINZ offset ; Jump not 0 / ZF =0

Jo offset ; Jump if overflow / OF = 1

JP offset ; Jump if parity / PF =1

JPE offset ; Jump parity even / PF =1

JPO offset ; Jump parity odd / PF = 0

Js offset ; Jump if sign / SF =1

Jz offset ; Jump if 0 / ZF =1
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Description

The Jcc instructions test the conditions described for each mnemonic. If the condi-
tion holds true, the processor branches to the specified location. If the condition is
false, execution continues with the instruction following the jump.

More than one mnemonic exists for the same condition. This lets you write the test
in a manner most appropriate for the condition. For example, alter OR EAX, EAX
you would use JZ, and after CMP EAX,ESI you would use JE; both mnemonics test
for ZF = 1.

Flags
OF DF IF TF SF ZF AF PF CF
Faults

PM RM V8086

13 #GPO)

Example
DEC AL ; Decrement AL
JZ reached_zero ; Branch if zero
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JMP 8086/80186/80286/80386
Near Jump O

Syntax
JMP dest

Operation
EIP « dest

Legal Forms

dest
JMP offset : EIP « EIP + offset
JMP reg ; EIP « reg
JMP mem ; EIP « [mem]
Description

This instruction loads a new value into the instruction pointer (EIP). Subsequent in-
structions are fetched beginning at the new location.

When you use the immediate form of the instruction, the data value is an offset
from the current EIP, The other forms are indirect branches, that is, the new value
of EIP is taken from the operand register or memory location.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #S8(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
JMP new_label : Direct, relative branch
JMP ECX ; Branch indirect
JMP DWORD PTR [EBP+12] : Branch to routine whose

; address is on stack
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JMP 8086/80186/80286/80386
Far Jump O
Syntax
JMP dest
Operation

CS:EIP « dest

Legal Forms

dest
JMP idata ; CS:EIP « data
JMP mem 3 CS:EIP « [mem]
Description

A far jump instruction modifies both CS and EIP, In the immediate form of the in-
struction, a new 48-bit pointer is specified. In the indirect form, the mem operand
points to a 48-bit selector:offset pointer.

The new CS selector can be a code segment selector (where the branch is to the
specified offset within the code segment), or the selector can be a call gate, task
gate, or task state segment. In this case, the offset portion of the JMP is ignored, and
the new value of EIP is taken from the gate or the incoming TSS. If the jump causes
a task switch, all flags are subject to change as EFLAGS reloads from the new task’s
TSS. Chapter 5 discusses the task switch operation and the use of gates.

Flags

OF DF IF TF SF ZF AF PF CF
Faults

PM RM V8086

10  #TS(sel)

11 #NP(sel)

12 #88(0)

13  #GP(0) INT 13 #GP(Q)

14  #PF(ec) #PF(ec)
Example
JMP 21A7:000211F3H ; Direct branch
JMP FWORD PTR new_task ; Branch indirect
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LAHF 8086/80186/80286/80386
Load AH with Flags (8)
Syntax
LAHF
Operation

AH « EFLAGS & OFFH

Legal Form
LAHF

Description

This instruction copies the low-order byte of the EFLAGS register into AH. After the
instruction executes, the AH register has the following contents:

7 0

se[zr] 2 [aH 2 [pH 2 [cH|

Flags

OF DF IF TF SF ZF AF PF CF

Faults

None,

Example

LAHF

SHR AH, 6

AND AH, 1 ; AH now contains the ZF flag
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LAR 80286/80386
Load Access Rights (16p/32)
Syntax

LAR dest, select

Operation

if (check_access(select)) then

IF « 1

dest « access_rights(descriptor(select)) & 00F?FFOOH
else

IF « 0
endif

Legal Forms

dest select
LAR reg, reg
LAR reg, mem
Description

This instruction allows a program to determine whether a given selector is acces-
sible to it without causing a protection fault,

If the select operand contains a valid 80386 selector that is accessible to the execut-
ing procedure and the selector type is one defined below, the zero flag (ZF) is set to
1, and the access rights field of the descriptor indicated by the selector is loaded into
the destination register.

If the destination register is a 16-bit register, the high-order 8 bits of the register
contain the access rights field of the descriptor.
15 8 7 0
[AlDPL[S] TYPE ] [

If the destination is a 32-bit register, bits 8—15 contain the access rights, and bits 20—
23 contain the access extension bits found in byte 6 of the descriptor.

31 23 20 16 15 8 7 0
TYPE | [c[B]o]A] [alDPL]S] TyPE | |

If the selector references a nonmemory segment with an invalid type (Type = 0, 8,
0AH, ODH), ZF is reset and the dest register is not modified.

213



THE 80386 BOOK

Flags

OF DF IF TF SF Z7ZF AF PF CF
- - - - - X - - - - -
Faults
PM RM V8086

6 INT 6 #UDO)

12 #S5(0)
13 #GP0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example

; Verify that variable X contains the selector of a call gate
; that can be legally invoked by the executing routine.

LAR
JNZ
SHR
AND
CMP
JE

214

AX,

no_access

AX,
AX,
AX,

X

8
1FH
0CH

is_gate

; Load access rights

; Branch if can’t access

: Move access rights to low order
; Save only S bit and TYPE

; Test for 386 call gate

; Branch if accessible gate
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LEA 8086/80186/80286/80386
Load Effective Address (16p/32)
Syntax

LEA dest, src

Operation
dest « address(src)

Legal Forms

dest sre
LEA reg, mem
Description

This instruction loads the address specified by the memory operand into the desti-
nation register. No memory access cycle takes place,

You can also use LEA to perform simple multiplication or addition as discussed in

Chapter 4.
Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
6" #UDQ) INT 6 #UDQO)

* The undefined opcode fault only occurs when the src operand is encoded as a register.

Examples
LEA ESI, VECTOR[EBX*4] ; Load address of array element
LEA EDI, [EAXILECX] ; Add contents of EAX and ECX, store in EDI
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LEAVE

Leave Current Stack Frame

80186/80286/80386
O

Syntax

LEAVE

Operation
MOV ESP,

POP EBP

Legal Form

LEAVE

EBP

Description
LEAVE is the counterpart of the ENTER instruction. ENTER is executed immediately
after a procedure call to set up a new stack frame. LEAVE is executed before a RET
instruction to release the returning procedure’s stack frame.

OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #55(0)
13 #G0(0)
Example
ENTER 4,0 ; First instruction of procedure
: Procedure contents
LEAVE ; Clean up stack frame
RET ; And return to caller

216



8: The B0386/80387 Instruction Set Reference

LGDT 80286/80386
Load GDT Register (@)
Syntax
LGDT op
Operation

GDTR.Timit « [op]
GDTR.base « [op + 2]
Legal Form

op
LGDT mem

Description

This instruction loads the GDTR register specifying the address and limit of the
global descriptor table (GDT). The operand must point to a data structure in
memory whose first 16 bits contain the limit of the global descriptor table and
whose next 32 bits contain the linear base address of the GDT.

Loading the GDTR does not invalidate the currently active descriptors; however,
subsequent references to selectors load descriptors from the new GDT.

A procedure must have a CPL of 0 to issue the LGDT instruction.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086

6" #UDO) INT 6 #UD()
12 #88(0)
13 #GP0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
* The undefined opcode fault only occurs when the instruction is encoded with a register value for op.
Example
LGDT initial_table
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LIDT 80286/80386
Load IDT Register O
Syntax
LIDT op
Operation

IDTR.Timit « [op]
IDTR.base « [op + 2]
Legal Form

op
LIDT mem

Description

This instruction loads the IDTR register and specifies the address and limit of the
interrupt descriptor table (IDT). The operand must point to a data structure in
memory whose first 16 bits contain the limit of the interrupt descriptor table and
whose next 32 bits contain the linear base address of the IDT.

After loading the IDTR, any software or hardware interrupts, faults, or traps will
cause an access to the new IDT.

A procedure must have a CPL of 0 to issue the LIDT instruction.

Flags

OF DF IF TF SF ZF AF PF CF
Faults

PM RM V8086

6" #UDO) INT 6 #UD()
12 #88(0)

13 #GP(0) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
* The undefined opcode fault only occurs when the op operand is encoded as a register.
Example

LIDT new_int_table : Load IDT register
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LLDT 80286/80386

Load LDT Register 16)

Syntax
LLDT op

Operation
LDTR « op

Legal Forms

0p
LLDT reg
LLDT mem
Description

This instruction loads a selector into the LDTR register and specifies a new local de-
scriptor table (LDT). The operand to LLDT must contain a valid local descriptor table
selector or the value 0.

Active descriptors that refer to the previous LDT are not invalidated; however, subse-
quent selector references load descriptors from the new LDT.

If the LDTR is loaded with the value 0, all LDT selector references that cause a
memory reference result in a general protection fault.

The executing procedure must have a CPL of 0 to issue the LLDT instruction.

Flags
OF DF IF TF SF ZF AF PF CF
Faulits
PM RM V8086
6 INT 6 #UD()
11  #NP(sel)
12 #SS(0)
13 #GP(0)
13 #GP(sel)
14  #PF(ec) #PF(ec)
Example
LLDT task B.ldtr ; Get access to LDT for task B
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LMSW

Load Machine Status Word

80286/80386
(16)

Syntax
LMSW op

Operation

CRO « (CRO & FFFFOOOO0H) | op

Legal Forms

0p
LMSW reg
LMSW mem
Description

This instruction loads the low-order 16 bits of the CRO register. Use it only when
running 80286 operating system code, On 32-bit systems, use the instruction MOV
CRO, reg. Note that you can use LMSW to enter protected mode but not to leave it
and that you can use MOV CRO, reg to both enter and leave protected mode.,

A procedure must be running in ring 0 to execute LMSW,

Flags

OF DF IF TF SF ZF AF PF CF
Faults

PM RM V8086
12 #55(0)
13 #GP() INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example

LMSW init_state
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LOCK 8086/80186/80286/80386
Assert Hardware LOCK\ Signal Prefix O
Syntax
LOCK

Legal Forms
LOCK

Description

The LOCK instruction prefix supports multiprocessor hardware configurations. You
can use the hardware LOCK\ signal to ensure exclusive access to a particular mem-
ory byte, word, or dword. The LOCK instruction is valid only if it precedes an in-
struction in the list below. If you use it in combination with another instruction or
in an unsupported form of one of the listed instructions, an undefined opcode fault

oceurs,
Locked Form of Locked Form of

Instruction Instruction Instruction Instruction
BT mem, op OR mem, op
BTS mem, op SBB mem, op
BTR mem, op SUB mem, op
BTC mem, of XOR mem, op
XCHG mem, reg DEC mem
XCHG reg, mem INC mem
ADD mem, op NEG mem
ADC mem, op NOT mem
AND mem, op

The LOCK\ signal is asserted for the duration of the instruction, including the time
required for a read-modify-write cycle. The XCHG instruction does not require the
LOCK prefix because the LOCK\ signal is always asserted during a memory XCHG.

When writing software for multiprocessor systems, ensure that locked access for
particular memory addresses always occurs to operands of the same size. In other
words, if you use the dword at physical address 100, always get access to it as a
dword and never as a byte or word. Locking is not guaranteed to operate correctly
unless you observe this restriction.

Flags
OF DF IF TF SF ZF AF PF CF
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Faults

PM RM V8086
6  #UD() INT 6 #UD(O)
Example
LOCK
BTS semaphore, 3
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LODS 8086/80186/80286/80386
Load String (8/16p/32)
Syntax
LODS
Operation

when opcode is (LODSB, LODSW, LODSD) set opsize « (1,2,4)
acc « DS: [ESI]
if (DF = 0) then
ESI « ESI + opsize
else
ESI « ESI - opsize
endif

Legal Forms

LODSB ; Load string byte
LODSW ; Load string word
LODSD ; Load string doubleword
Description

This instruction loads the byte, word, or dword at DS:ESI into the accumulator. If the
DF bit in the EFLAGS register is 0, ESI is incremented by the size of the operand

(1, 2, or 4 bytes). If DF is 1, ESI is decremented.

Because LODS is one of the 80386 string instructions, you can precede it with the
REP prefix; however, the resulting instruction is useless, as it continuously over-
writes the contents of the accumulator,

You can precede the LODS instruction with a segment override prefix, In such a
case, the operand is taken from the specified segment.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #55(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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Example
LEA EBX, A_to E
MOV ESI, [EBP+12]
LES EDI, [EBP+16]
L1: LODSB
OR AL, AL
Jz DONE
XLATB
STOSB
JMP L1
DONE:
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Source address

Destination

Fetch byte from source

Test byte for zero

Branch if zero

Translate the byte

Save translated version
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LOOPcc 8086/80186/80286/80386
Decrement ECX and Branch @)
Syntax

LOOPcc offset

Operation

ECXiie ECX: = 1

if (cc & (ECX != 0)) then
EIP « EIP + offset

endif

Legal Forms

LOOP offset
LOOPZ offset
LOOPNZ offset
LOOPE offset
LOOPNE offset

Description

These instructions support a decrement and branch operation. For all variants other
than LOOP, the decrement and branch is combined with a test on the ZF bit. A loop
counter is assumed in register ECX. The instruction decrements the register, and if
the value of ECX is 0, no branch is taken. No flags are set as a result of the decre-
ment operation.,

If the value of ECX is not 0, the branch is taken unless the condition in the LOOPce

forms is not true.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086
13 #GP(0) INT 13 #GP(0)
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Example

il

226

: Initialize array of temp reals to 1.0

FLD1
LEA
MOV
FLD
FSTP
LooP
FSTP

ESI, array
ECX, size
SIS ST
[ESI]

11

ST(0), ST

; Push 1.0 onto NDP stack

; Starting address of array

; Load loop counter

; Duplicate 1.0 value on NDP stack
; Store 1.0, pop NDP stack

; Continue while ECX not 0

; Done--pop last 1.0 constant off
; NDP stack
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Lseg 8086/80186/80286/80386
Load Segment Register (16p/32)
Syntax

Lseg dest, src

Operation

dest « [src]
seqg « [src + 4]

Legal Forms

dest sre
LDS reg, mem
LES reqg, mem
LFS reg, mem
LGS reg, mem
LSS reg, mem
Description

The src address specifies a 48-bit pointer (32-bit in real mode or V86 mode) consist-
ing of a 32-bit offset followed by a 16-bit selector. The 32-bit offset is loaded into the
dest register and the selector is loaded into the segment register specified by the in-
struction mnemonic. The 80386 protection mechanism validates the descriptor
associated with the selector,

Use only the ESP register with the Lseg instruction.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #SS(0)
13 #GP() INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
LES ESI, BIGPTR ; Load address of array element [EBX]
LSS ESP, OLD_STACK ; Load a new stack pointer
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LSL 80286/80386
Load Segment Limit (16p/32)
Syntax

LSL dest, select

Operation

if (access_OK(select)) then
dest « descript(select).limit
IF « 1

else
IF « 0

endif

Legal Forms

dest select
LSL reg, reg
LSL reg, mem
Description

If the select operand is accessible to the executing program as a valid selector under
the protection rules, this instruction loads the dest register with the segment limit
from the descriptor indicated by select and sets ZF to 1.

If the operand is not accessible or the descriptor associated with select does not con-
tain a limit field, ZF is set to 0

The value stored in the dest register is always the offset of the last addressable byte
in the segment (page granular limits are converted to byte granular limits). There-
fore, do not use a 16-bit register as the dest operand, as the resulting value might be

too large.
Flags
OF DF IF TF SF ZF AF PF CF
- - - - - x - - - - - -
Faults
PM RM V8086
6 INT 6 #UDO)
12 #8S5(0)
13  #GP(O
14  #PF(ec) #PF(ec)
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Example
LSL EAX, [BP+12] ; Get limit of selector on stack
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LTR 80286/80386
Load Task Register 16)
Syntax
LTR select
Operation

TR « select

Legal Forms

select
LTR reg
LTR mem
Description

This instruction loads the task register with the selector specified by the operand.
The TSS descriptor for the selector is marked “busy.” Loading the task register does
not cause a task switch,

If the procedure that executes the LTR instruction is not running with a CPL of 0, a
general protection fault occurs.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
6 INT 6 #UD()

10 #NP(sel)
12 #S5(0)
13 #GP(0)
13 #GP(sel)
14  #PF(ec)

Example
LTR AX ; Load task register
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MOV 8086/80186/80286/80386
Move Data (8/16p/32)
Syntax

MOV dest, src

Operation

dest « src

Legal Forms

dest src
MOV reg, idata
MOV mem, idata
MOV reg, reg
MOV reg, mem
MOV mem, reg
Description

This instruction copies the contents of the sr¢c operand into dest,

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #85(0)
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
MOV AL, [ECX] ; Get byte from memory
MOV ESI, 182H ; Load ESI with data value
MOV BX, DX ; 16-bit move
MOV AH, 7FH ; Load AH with 8-bit data
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MOV 8086/80186/80286/80386
Move Selector (a6)
Syntax

MOV dest, src

Operation

dest « src

Legal Forms

dest src
MOV sreg, reg
MOV sreg, mem
MOV reg, sreg
MOV mem, sreg
Description

This instruction copies the contents of the src operand into the dest operand. If the
dest operand is a segment register, the instruction loads the descriptor associated
with the selector into the 80386 shadow registers. Privilege checks and tests for de-
scriptor legality are made unless the selector value is 0. A protection fault occurs if 0
is loaded into the SS register.

When the SS register is loaded, all hardware interrupts (including NMI) are masked
until after the next instruction executes, to allow loading of the ESP register.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
10 #NP(sel)
12 #55(0)
13 #GPWO) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
MOV DS, AX ; Load new data segment
MOV ES, heap_seg ; Load ES register
MOV save_ss, SS ; Store copy of SS register
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MOV 80386
Move Special (32)
Syntax

MOV dest, src

Operation

dest « src

Legal Forms

dest sre
MOV reg, reg
Description

This instruction copies or loads a special CPU register to or from an 80386 general
register. The special registers are CR0, CR2, CR3, DRO, DR1, DR2, DR3, DR6, DR7,
TRG6, and TR7.

A procedure must be running at a CPL of 0 to execute this instruction.

Flags
OF DF IF TF SF ZF AF PF CF
P | | 7 | R | 2 | = | | S
Faults
PM RM V8086
13 #GP(0) #GP(0)
Examples
MOV EAX, CRO ; Save CRO in EAX
MOV TR7, ECX ; Load test register 7
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MOVS 8086/80186/80286/80386
Move String (8/16p/32)
Syntax
MOVS
Operation

when opcode is (MOVSB, MOVSW, MOVSD) set opsize « (1, 2, 4)
ES:[EDI] « DS:[ESI]
if (DF = 0) then
ESI « ESI + opsize
EDI « EDI + opsize
else
ESI « ESI - opsize
ESI « ESI - opsize
endif

Legal Forms

MOVSB ; Move string byte
MOVSW ; Move string word
MOVSD ; Move string doubleword
Description

This instruction copies the memory operand pointed to by DS:ESI to the destination
address specified by ES:EDI. The operand is a byte, word, or doubleword, depend-
ing on the opcode specified. The EDI and ESI registers are incremented by the size
of the operand if the DF bit is 0 or decremented if the DF bit is 1.

You can apply the REP prefix to the MOVS instruction to repeat the instruction, You
must place the value specifying the repeat count in the ECX register.

A segment override prefix may be applied to the MOVS instruction. It will override
the DS segment of the DS:[ESI] operand. You cannot override the ES segment
assumption for the EDI operand.

For dword-aligned strings, a REP MOVSD transfers data quicker than does the equiv-
alent REP MOVSB or REP MOVSW. However, if the source and destination strings
overlap, only the REP MOVSB operation works correctly.

Flags
OF DF IF TF SF ZF AF PF CF
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Faults
PM RM V8086
12 #S5(0)
13 #GP(O) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
LEA ESI, copyright_msg ; Get source string
LES EDI, [EBP+12] ; ES:EDI loaded from stack frame
MOV ECX, 31 ; Size of source string
CLD ; Ensure direction flag set correctly
REP MOVSB ; Copy byte string
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MOVSX

Move with Sign Extension

80386
(8/16p/32)

Syntax
MOVSX dest, src

Operation

dest « sign_extend(src)

Legal Forms

dest src
MOVSX reg, reg
MOVSX reg, mem
Description

This instruction copies an 8-bit operand to a 16-bit or 32-bit destination or a 16-bit
operand to a 32-bit destination and sign-extends the source operand to fit. Sign ex-
tension is performed by duplicating the high-order bit of the src throughout the up-

per bits of the dest operand.

Flags

OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086

12 #88(0)

13 #GP(0) INT 13 #GP(0)

14  #PF(ec) #PF(ec)
Examples
MOVSX EAX, AL ; Extend byte to dword
MOVSX EDI, WORD PTR [ESI] ; Extend word to dword

MOVSX

Cx, DL

; Extend byte to word



MOVZX

Move with Zero Extension
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80386
(8/16p/32)

Syntax
MOVZIX dest, src

Operation
dest « src

Legal Forms

dest src

MOVZX reg, reg
MOVZX reg, mem

Description

This instruction copies an 8-bit operand to a 16-bit or 32-bit destination or a 16-bit
operand to a 32-bit destination and zero-extends the source operand to fit. Sign ex-
tension is performed by filling the upper bits of the dest operand with 0.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #S5(0)
13 #GPO) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
Examples

MOVZX EAX, AL

MOVZX EDI, WORD PTR [ESI]

MOVZX X, DL

; Extend byte to dword
; Extend word to dword
; Extend byte to word
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MUL 8086/80186/80286/80386
Unsigned Multiplication (8/16p/32)
Syntax
MUL src
Operation

dCC & 4acc * src

Legal Forms

src
MUL reg
MUL mem
Description

This instruction performs unsigned integer multiplication and requires only one
operand, the multiplier, The multiplicand is the accumulator, and the product is also
stored in the accumulator. The size of the src operand determines which registers
will be used, as illustrated in the following table:

Multiplier (src) Multiplicand Product
byte AL AX

word AX DX:AX
dword EAX EDX:EAX

The flags are left in an undetermined state except for OF and CF, which are cleared
to 0 if the high-order byte, word, or dword of the product is 0.

Flags
OF DF IF TF SF ZF AF PF CF
S| W e (5 | e S = 8 e 8 S 5= | e
Faults
PM RM V8086
12 #S8(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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DWORD PTR [ESI]

Example

MOV EAX, 3
MUL

Jc res_64
MOV res_32,

EAX

r

; Branch if result requires 64 bits

8: The 80386/80387 Instruction Set Reference

; Multiplicand

Multiplier

Else store product
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NEG 8086/80186/80286/80386
Negate Integer (8/16p/32)

Syntax
NEG op

Operation
op « -(op)

Legal Forms

op
NEG reg
NEG mem
Description

This instruction subtracts its operand from 0, which results in a two's complement
(integer) negation of the operand.

Flags

OF DF IF TF SF ZF AF PF CF

S| = | =l | B | | B S | Wl | =
Faults

PM RM V8086

12 #8S(0)
13 #GP0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
; Compute absolute value
OR EAX, EAX s Test fon'+/-
JNS  SKIP ; Jump if not signed (positive)
NEG  EAX ; Negate negative number
SKIP:
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NOP 8086/80186/80286/80386
No Operation O
Syntax
NOP

Legal Form
NOP

Description

This instruction performs no function other than taking up space in the code
segment,

Flags

OF DF IF TF SF ZF AF PF CF

Faults
None.

Example
NOP ; Nothing occurs
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NOT 8086/80186/80286/80386
Boolean Complement (8/16p/32)

Syntax
NOT op

Operation

o0p « -op

Legal Forms

0p
NOT reg
NOT mem
Description

This instruction inverts the state of each bit in the operand.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #SS(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
NOT ECX ; Insert ECX
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OR 8086/80186/80286/80386
Boolean OR (8/16p/32)
Syntax
OR dest, src
Operation

dest « dest | src

Legal Forms

dest src
OR reg, idata
OR mem, idata
OR reg, reg
OR reg, mem
OR mem, reg
Description

This instruction performs a Boolean OR operation between each bit of the sre
operand and the dest operand. The result is stored in dest. The truth table defining
the OR operation is as follows:

0ol o=0

ol 1=1

1l o=1

1| 1=1
Flags
OF DF IF TF SF ZF AF PF CF
O|-|[-]-|x|x|-|x|[-]x|-]0
Faults

PM RM V8086
12 ‘
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
OR AL, 80H : Set high bit of AL
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ouT 8086/80186/80286/80386
Output to Port (8/16p/32)
Syntax

oUT port, acc

Operation

port « acc

Legal Forms

port acc
ouT data, acc
ouT DX, acc
Description

This instruction outputs the value in the accumulator to the specified data port.
Placing an immediate value in the port operand field lets you address ports 0-255.
You can address port addresses 0-65,535 by storing the port number in the DX
register.

OUT is a privileged instruction. A procedure executing an output instruction must
satisfy one of two conditions; otherwise, a general protection fault occurs.

If the procedure that executes an OUT instruction has I/O privilege (if its CPL is
numerically less than or equal to the IOPL field in the EFLAGS register), the output
instruction executes immediately.

If the procedure does not have 1/O privilege, the I/O permission bitmap for the cur-
rent task is checked. If the bit(s) corresponding to the 1/O port(s) is cleared to 0, the
output instruction executes. If the bit(s) is set to 1, or the port(s) is outside the range
of the bitmap, a general protection fault occurs. See Chapter 5 for more details on
this feature.

If the OUT instruction is encountered while in V86 mode, only the 1/O permission
bitmap is tested. The IOPL value is not a factor,

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
13 #GP(0) #GP(0)
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Example
MOV DX, 378H : Set port address
ouT DX, AX ; Write to ports 378 and 379
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OouTS 80186/80286/80386
Output String (8/16p/32)
Syntax
OUTS
Operation

when opcode is (OUTSB, OUTSW, OUTSD) set opsize « (1,2,4)
port (DX) « DS:[ESI]
if (DF = 0) then
ESI « ESI + opsize
else
ESI « ESI - opsize
endif

Legal Forms

QUTSB : Out string byte
QUTSW ; Out string word
ouUTSD ; Out string doubleword
Description

This instruction outputs the byte, word, or doubleword at offset ESI to the port
specified in register DX, The ESI register is adjusted by the size of the memory
operand—incremented if the DF bit is 0 or decremented if DF is 1.

You can precede the OUTS instruction with the REP instruction; however, register
ECX must contain a count of the number of times the OUTS instruction is to be
executed.

You can apply one of the segment override prefixes to the OUTS instruction, caus-
ing the operand to be taken from the specified segment rather than the segment
pointed to by DS.

Output instructions are privileged instructions. The protection checks for the OUTS

instructions are the same as those for the OUT instruction.

Flags
OF DF IF TF SF ZF AF PF CF
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Faults

PM RM V8086
12 #SS(0) #55(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
LEA ESI, IO_CHNL_CMD ; Get pointer to string
MOV DX, CONTROLLER ; Get I/0 port number
MOV ECX, 8 Size of I/0 string
REP 0uUTSD ; Output 8 doublewords
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POP 8086/80186/80286/80386
Pop Segment Register 16)
Syntax
POP seg
Operation

seg « SS:[ESP]
ESP < ESP + 4

Legal Form

seg
POP sreg

Description

This instruction pops a 32-bit value off the stack and stores the low-order 16 bits in
the specified segment register. Register CS is not a valid destination operand, but
the other segment registers (DS, ES, SS, FS, and GS) are valid.

The value stored in the segment register must be a valid selector or 0; otherwise, a
protection fault occurs, (Register SS cannot be loaded with a 0.) Note also that a
POP 88 instruction has limited usefulness because SS and ESP are required to imple-
ment a stack. However, if you execute a POP 88, the 80386 inhibits all hardware in-
terrupts to enable the loading of ESP and the guarding against interrupts while the
stack pointer is invalid.

If the POP instruction is executed by a V86 mode task, only 16 bits are popped off

the stack.
Flags
OF DF IF TF SF ZF AF PF CF
Faults

PM RM V8086
10 #NP(seD
12 #S5(0) #88(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
POP GS
POP DS
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POP 8086/80186/80286/80386
Pop Value off Stack (16p/32)
Syntax
POP dest
Operation

dest « SS:[ESP]

if (sizeof (dest) = 16) then
ESP <« ESP + 2

else
ESP « ESP + 4

endif

Legal Forms

dest
POP reg
POP mem
Description

This instruction pops the current value at the top-of-stack, stores it in the dest
operand, and adjusts the stack pointer.

For optimum performance, keep the stack on a doubleword boundary. Pushing and
popping 16-bit values might alter this alignment. For this reason, it is preferable to
sign-extend or zero-extend a 16-bit operand to 32 bits before pushing or popping it.

When you execute POP in V86 mode, the stack will generally be used only for 16-
bit values. This does not degrade system performance. Pushing and popping 16-bit
values leads to problems only when both 32-bit and 16-bit pushes and pops are
mixed in the same code.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #85(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
POP ECX
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POPA 80186/80286/80386
Pop All General Registers (16)

Syntax

POPA

Operation

POP DI

POP SI

POP BP

ADD ESP, 2

POP BX

POP DX

POP cX

POP AX

Legal Form

POPA

Description

This instruction pops all 16-bit general registers except SP from the stack. Because
the registers are stored as a 16-byte block of data, the POPA instruction does not
affect doubleword alignment of the stack.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #58(0)
13 INT 13 #GP0)
14  #PF(ec) #PF(ec)
Example
POPA
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POPAD 80386
Pop All General Registers (32)

Syntax

POPAD

Operation

POP EDI

POP ESI

POP EBP

ADD ESP, 4

POP EBX

POP EDX

POP ECX

POP EAX

Legal Form

POPAD

Description

This instruction pops all 32-bit general registers except ESP from the stack.

OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #55(0)
13 INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
POPAD
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POPF 8086/80186/80286/80386
Pop Stack into FLAGS 6)
Syntax
POPF
Operation

FLAGS « SS:[ESP]
ESP « ESP + 2

Legal Form
POPF

Description

This instruction pops the low-order word of the EFLAGS register from the stack.
POPF provides compatibility with previous Intel microprocessors. Use the POPFD
instruction in native-mode programming,

Flags
OF DF IF TF SF ZF AF PF CF
X X X X X X X X X X X X

Faults

PM RM V8086
12 #SS(0)
13 INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
POPF
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POPFD 80386
Pop Stack into EFLAGS (32)
Syntax
POPFD
Operation

EFLAGS « SS:[ESP]
ESP « ESP + 4

Legal Form

POPFD

Description

This instruction pops the top-of-stack into the EFLAGS register. The VM and RF bits
initially present in EFLAGS are not modified. The interrupt flag is modified only if
CPL = TIOPL before the POPFD, that is, if the executing procedure has 1/O privilege.
The IOPL field is altered only if CPL = 0.

Flags
OF DF IF TF SF ZF AF PF CF
X X X X X X X X X X
Faults

PM RM V8086
12 #S8(0)
13 INT 13 #GP(0)
14 #PF(ec) #PF(ec)
Example
POPFD
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PUSH 8086/80186/80286/80386
Push Value onto Stack (8/16p/32)
Syntax
PUSH op
Operation

if (sizeof(op) = 16)
ESP « ESP - 2
else
ESP « ESP - 4
endif
SS:[ESP] « op

Legal Forms

op
PUSH idata
PUSH reg
PUSH sreg
PUSH mem
Description

This instruction pushes the operand onto the stack. The stack pointer is decre-
mented before the value is pushed. If the operand is the ESP register, the value
stored on the stack is the value that ESP had before the instruction was executed.
(This instruction is different from the 8086 instruction, which pushes the new
value.)

Note that pushing 16-bit registers and memory operands onto the stack changes the
stack’s memory alignment. It is more efficient to sign-extend or zero-extend the
operand to 32 bits and push the dword. The 80386 uses segment registers to push
an instruction value onto the stack.

When you execute the PUSH instruction in V86 mode, segment registers are pushed
as 16-bit values. The stack will generally be used only for 16-bit values in V86 mode.
This does not affect system performance because stack misalignment only occurs
when both 16-bit and 32-bit values are pushed onto the stack.

Flags
OF DF IF TF SF ZF AF PF CF
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Faults

PM RM V8086
12 #5S8(0)
13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
PUSH 7 ; Push data value
MOVSX EAX, AX ; Sign extend AX
PUSH EAX ; Then push
PUSH array[ESI*4] ; Push memory value
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PUSHA 80186/80286/80386
Push 16-Bit General Registers (16)

Syntax

PUSHA

Operation

temp « SP

PUSH AX

PUSH CX

PUSH DX

PUSH BX

PUSH temp

PUSH BP

PUSH SI

PUSH DI

Legal Form

PUSHA

Description

This instruction stores a copy of all eight 16-bit registers on the stack. This instruc-
tion provides compatibility with 80186 and 80286 software. Use the PUSHAD in-
struction in native-mode environments.

Flags
OF DF IF TF SF ZF AF PF CF

Faults

PM RM V8086
12 #SS(0)
13 INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
PUSHA
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80386
(32)

Syntax
PUSHAD
Operation
temp « ESP
PUSH EAX
PUSH ECX
PUSH EDX
PUSH EBX
PUSH temp
PUSH EBP
PUSH ESI
PUSH EDI
Legal Form
PUSHAD
Description

This instruction stores a copy of all eight general registers on the stack. The value
of ESP that is saved to the stack is the ESP value before execution of the PUSHAD
instruction.

Flags
OF DF IF TF

SF ZF

PF CF

Faults
PM

V8086

12
13
14

#55(0)

#PF(ec)

Example
PUSHAD

INT 13

#GP(0)

#PF(ec)
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PUSHF

Push 16-Bit EFLAGS Register

8086/80186/80286/80386
@16)

Syntax
PUSHF

Operation

ES Pi=R S PR

SS:[ESP] « FLAGS

Legal Form

PUSHF

This instruction pushes the low-order 16 bits of the EFLAGS register onto the stack.
PUSHF provides compatibility with 16-bit processors and causes misalignment of
the stack if used in native mode. Only 32-bit programs should use PUSHFD.

PUSHF causes a general protection fault in V86 mode if the executing procedure’s
IOPL is numerically less than 3.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #58(0)
13 #GP(0)
14  #PF(ec) #PF(ec)
Example
PUSHF
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80386
Push EFLAGS Register 32)
Syntax
PUSHFD
Operation
ESP = ESP - 4

SS:[ESP] « EFLAGS

Legal Form

PUSHFD

Description
This instruction pushes the contents of the EFLAGS register onto the stack. PUSHF

will cause a general protection fault in V86 mode if IOPL is less than 3.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #S85(0)
13 #GP(0)
14  #PF(ec) #PF(ec)
Example
PUSHFD
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RCL

Rotate Through Carry Left

8086/80186/80286/80386
(8/16p/32)

Syntax
RCL dest,

Operation

temp « max (count, 31)

count

if (temp = 1) then

0F « (highbit(dest)

else

OF « 7

endif

value « concatenate (CF, dest)

while (temp != 0)

X « highbit (value)

I= CF)

value « (value << 1) + x
temp « temp - 1
endwhile
CF « highbit (value)

dest « value

Legal Forms

dest count
RCL reg, idata
RCL mem, idata
RCL reg, CL
RCL mem, CL
Description

This instruction concatenates the carry flag (CF) with the dest operand and rotates
the value the specified number of times. A rotation is implemented by shifting the
value once and transferring the bit shifted off the high end to the low-order position
of the value.,

The OF bit is defined only if the rotate count is 1. The 80386 never rotates a pattern
more than 31 times. Counts greater than 31 are masked by the bit pattern
0000001FH.

Flags
OF DF IF TF SF ZF

AF

X
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Faults
PM RM V8086
12 #S8@0)
13 #GP(O) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
Example
RCL EANGS ; Rotate EAX 3 bits Jeft
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RCR 8086/80186/80286/80386
Rotate Through Carry Right (8/16p/32)
Syntax

RCR dest, count

Operation

temp < max (count, 31)
if (temp = 1) then
0F « (highbit(dest) != highbit(dest << 1))
else
OF « 7
endif
value « concatenate (dest, CF)
while (temp != 0)
X « value & 1
value « (value >> 1)
highbit (value) « x
temp « temp - 1
endwhile
CF « highbit (value)
dest « value

Legal Forms

dest count
RCR reg, idata
RCR mem, idata
RCR reg, CL
RCR mem, CL
Description

This instruction concatenates the carry flag (CF) with the dest operand and rotates
the value the specified number of times. A rotation is implemented by shifting the
value once and transferring the bit shifted off the low end to the high-order position
of the value.

The OF bit is defined only if the rotate count is 1. The 80386 never rotates a pattern
more than 31 times. Counts greater than 31 are masked by the bit pattern
0000001FH.

Flags
OF DF IF TF SF ZF AF PF CF
3 |8 = [ [ | S S e i | S
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Faults
PM RM V8086
12 #85(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
RCR EAYES ; Rotate EAX 3 bits right
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REP

Repeat String Prefix

8086/80186/80286/80386
O

Syntax
REP

Legal Forms

REP
REPE
REPZ
REPNE
REPNZ

Description

The repeat prefix may be applied to any string instruction (CMPS, INS, LODS,
MOVS, OUTS, SCAS, STOS). When the prefix is present, the string instruction exe-
cutes repeatedly based on the count value in the ECX register. The ZF flag is also
tested when executing CMPS or SCAS.

If ECX is 0 when a repeated string instruction is encountered, the string instruction

will not be executed,

Refer to the individual string instructions in this chapter for additional information.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
6 #UDO) INT 6 #UD()
Example
MOV EAX, O
MoV ECX, 1024/4
REP STOSD

; initialize 1 KB of memory to 0
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RET 8086/80186/80286/80386
Near Return from Subroutine (@)

Syntax

RET count
Operation

EIP « pop ();

ESP « ESP + count

Legal Forms

count
RET
RET idata
Description

This instruction restores the instruction pointer to the value it held before the
previous CALL instruction. The value of EIP that had been saved on the stack is
popped. If the count operand is present, the count value is added to ESP, removing
any operands that were pushed onto the stack for the subroutine call.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086
12 #85(0)
13 #GPO) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
Example
RET 4 ; Return and pop one dword
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8086/80186/80286/80386

O

Syntax
RETF count

Operation

EIP « pop()
CS « pop()
ESP « ESP + count

Legal Forms

count
RETF
RETF idata
Description

This variation of the RET instruction pops both a new CS and EIP from the stack.

The instruction assumes that the CS value is stored as the low-order 16 bits of a
dword on the stack.

If this instruction causes a privilege-level transition, the protection checks
described in Chapter 5 take place.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
10 #NP(sel)
12 #85(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
RETF ; Rotate EAX 3 bits left



8: The 80386/80387 Instruction Set Reference

ROL 8086/80186/80286/80386
Rotate Left (8/16p/32)
Syntax

ROL dest, count

Operation

temp « max (count, 31)

if (temp = 1) then
OF « (highbit(dest) != CF)

else
OF « ?

endif

while (temp != 0)
X « highbit (dest)
dest « (dest << 1) + x
temp « temp - 1
endwhile

CF « highbit (dest)

Legal Forms

dest count
ROL reg, idata
ROL mem, idata
ROL reg, CL
ROL mem, CL
Description

This instruction rotates the dest operand the specified number of times. A rotation
is implemented by shifting the value once and transferring the bit shifted off the
high end to the low-order position of the value,

The OF bit is defined only if the rotate count is 1. The 80386 never rotates a pattern
more than 31 times. Counts greater than 31 are masked by the bit pattern
0000001FH.

Flags
OF DF IF TF SF ZF AF PF CF
R | Bl (| | | 2 = | B | (RS S e
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Faults
PM RM V8086
12 #55(0)
13  #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
ROL EAX, 3 : Rotate EAX 3 bits left
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ROR 8086/80186/80286/80386
Rotate Right (8/16p/32)
Syntax

ROR dest, count

Operation

temp « max (count, 31)
if (temp = 1) then
O0F « (highbit(dest) != highbit(dest << 1))
else
OF < ¢
endif
while (temp != 0)
X « value & 1
value ¢« (value >> 1)
highbit(value) « x
temp « temp - 1
endwhile
CF « highbit (value)
dest « value

Legal Forms

dest count
ROR reg, idata
ROR mem, idata
ROR reg, CL
ROR mem, CL
Description

This instruction rotates the dest operand the specified number of times. A rotation
is implemented by shifting the value once and transferring the bit shifted off the low
end to the high-order position of the value,

The OF bit is defined only if the rotate count is 1. The 80386 never rotates a pattern
more than 31 times. Counts greater than 31 are masked by the bit pattern
0000001FH.

Flags
OF DF IF TF SF ZF AF PF CF
ERH | | | | | | | | =
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Faults
PM RM V8086
12 #55(0)
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
ROR EAX, 3 ; Rotate EAX 3 bits right
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SAHF 8086/80186/80286/80386
Store AH in EFLAGS (8)
Syntax
SAHF
Operation

EFLAGS « EFLAGS | (AH & OD5H)

Legal Form

SAHF

Description
This instruction loads the contents of the AH register into bits 7, 6, 4, 2, and 0 of the

EFLAGS register.

Flags

OF DF IF TF SF ZF

CF

X

X

Faults
None.

Example
SAHF
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SAL

Shift Left Arithmetic

8086/80186/80286/80386
(8/16p/32)

Syntax
SAL dest, count

Operation

temp « count & 001FH
while (temp != 0)

if count = 1 then

else

Legal Forms

OF « ?

CF « highorder (dest)
dest « dest << 1
temp « temp - 1
end

0F « highorder (dest) != CF

dest count
SAL reg, idata
SAL mem, idata
SAL reg, CL
SAL mem, (¢l
Description

This instruction shifts the dest operand count bits to the left. The arithmetic shift
left (SAL) and logical shift left (SHL) are equivalent instructions.

The count operand must either be an immediate data value or be stored in register
CL. The 80386 masks the count operand with 1FH so that the count value is never
greater than 31

If the count operand is 1, the overflow flag is reset to 0 when the high-order bit and
the carry flag have the same value after the shift. If the high-order bit and CF have
different values, OF is set to 1. If count is greater than 1, OF is undefined,

A left shift is equivalent to multiplying the dest operand by 2¢o#n,

Flags
OF DF IF TF SF ZF

X

X

X
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Faults
PM RM V8086

12 #85(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)

Examples

SAL ECXA .
SAL WORD PTR [EBP+8], CL
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SAR 8086/80186/80286/80386
Shift Right Arithmetic (8/16p/32)
Syntax

SAR dest, count

Operation !

temp « count & 001FH

while (temp != 0)
save « highorder (dest)
CF = dest & 1
dest « dest >> 1
highorder (dest) = save
temp « temp - 1
end

if count = 1 then
OF « 0

else
OF « 17

Legal Forms

dest count
SAR reg, idata
SAR mem, idata
SAR reg, CL
SAR mem, CL
Description

This instruction shifts the dest operand count bits to the right. The shift is called
arithmetic because it preserves the sign bit of the dest operand.

The count operand must be an immediate data value or it must be stored in register
CL. The 80386 masks the count operand with 1FH so that the count-value is never
greater than 31.

If count is 1, the overflow is reset to 0. If count is greater than 1, OF is undefined.

The arithmetic right shift is similar to dividing dest by 2<e#»* except that negative
values are rounded toward negative infinity, rather than toward 0 (that is, =3 shifted
left 1 rounds to —2, whereas —3 divided by 21 rounds to —1).

Flags
OF DF IF TF SF ZF AF
o = | S S| B | = 85— ol | 8= e
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PM RM
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V8086

12 #88(0)
13 #GP() INT 13
14  #PF(ec)

Examples

SAR EGH: 7
SAR WORD PTR [EBP+8],

#GP(0)
#PF(ec)

CL
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SBB 8086/80186/80286/80386
Subtraction with Borrow (8/16p/32)
Syntax

SBB dest, src

Operation
dest « dest - src - CF

Legal Forms

dest src
SBB reg, idata
SBB mem, idata
SBB reg, reg
SBB reg, mem
SBB mem, reg
Description

This instruction subtracts the src operand from the dest operand and decrements
the dest operand by 1 if the CF flag is set. The result is stored in dest.

Flags

OF DF IF TF SF ZF AF PF CF

X | = = = | e | P = | S = e | P X
Faults

PM RM V8086

12 #8S(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example

; 64-bit subtraction operation EDX:EAX - EBX:ECX
SUB EAX, ECX ; Low-order bits
SBB EDX, EBX ; High-order bits
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SCAS 8086/80186/80286/80386
Scan String (8/16p/32)
Syntax
SCAS
Operation

when opcode is (SCASB, SCASW, SCASD) set opsize « (1, 2, 4)
NULL « acc - ES:[EDI]
if (DF = 0) then
EDI « EDI + opsize
else
EDI « EDI - opsize
endif

Legal Forms

SCASB ; Scan string byte

SCASH : Scan string word

SCASD ; Scan string doubleword
Description

This instruction compares the value in the accumulator (AL, AX, or EAX) with the
operand at ES:[EDI]. The flags are set according to the compare operation, and the
EDI register is adjusted by the size of the operand. If the direction flag (DF) is 0,
EDI is incremented; otherwise, it is decremented.

You can apply the REPE or REPNE prefix to the SCAS instruction. The ECX register
contains a repeat count, indicating the maximum number of times the instruction
should be repeated. The instruction will repeat only while the repeat condition is
true, that is, when ZF = 1 for REPE (REPZ) or ZF = 0 for REPNE (REPNZ).

You cannot use a segment override prefix with SCAS. The ES register is always the
destination of the string to be scanned.

Flags
OF DF IF TF SF ZF AF PF CF
2 R | | S | e | S oo | | et | =S e
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Faults
PM RM V8086
12 #SS(0)
13 #GP() INT 13 #GP(O)
14  #PF(ec) #PF(ec)
Example
: Search for an asterisk in a string
LES EDI, [EBP+12] ; String pointer on stack
MOV ECX, [EBP+20] : String size on stack
CLD
MOV Al gt : Character to search for
REPNE SCASB ; Scan
JE MATCH ; Branch if found
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seg 8086/80186/80286/80386
Segment Override Prefix O

Legal Forms

€S:
DS:
SS:
ES:
S
GS:
Description

The instruction that follows these prefixes takes its memory operand from the spec-
ified segment rather than from the default segment.

You cannot override the following string instructions:
INS

SCAS

STOS

Flags
OF DF IF TF SF ZF AF PF CF

Faults

None.

Example

MOV EAX, FS:[ESI] ; Read from FS rather than DS
ADD DS:[EBP], 7 ; Write to DS rather than SS
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SETcc

Set Byte on Condition

80386
®

Syntax
SETce dest

Operation

if (cc) then
dest « 1
else
dest « 0
endif

Legal Forms

SETA dest y
SETAE dest :
SETB dest :
SETBE dest >
SETC dest :
SETE dest ;
SETG dest -
SETGE dest .
SETL dest ;
SETLE dest ;
SETNA dest ;
SETNAE dest :
SETNB dest :
SETNBE dest 3
SETNC dest ;
SETNE dest H
SETNG dest H
SETNGE dest 3
SETNL  dest i
SETNLE dest f
SETNO dest :
SETNP dest :
SETNS dest .
SETNZ dest '
SETO dest 3
SETP dest ;
SETPE dest :
SETPO dest :
SETS dest :
SETZ dest H

Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set

if above (unsigned x > y) / CF =0 & ZF = 0
if above or equal / CF = 0

if below (unsigned x < y) / CF =1

if below or equal / CF =1 | ZF =1

if carry / CF = 1

if equal / ZF =1

if greater (signed x > y) / SF = OF & ZF = 0
if greater or equal / SF = OF

if less (signed x < y) / SF != OF

if less or equal / SF != OF & ZF = 1

if not above (SETBE)

if not above or equal (SETB)

if not below (SETAE)

if not below or equal (SETA)

if no carry / CF =0

if not equal / ZF = 0

if not greater (SETLE)

if not greater or equal (SETL)

if not less (SETGE)

if not less or equal / SF = OF & ZF = 0
if no overflow / OF = 0

if no parity / PF =0

if no sign / SF = 0

if not 0 / ZF = 0

if overflow / OF = 1

i pandty /i PEe="1

if parity even / PF =1

if parity odd / PF = 0

if sign / SF =1

if 0/ ZF = 1



Description

This instruction sets the dest byte to 1 if the condition described by the opcode is
met; otherwise, the instruction clears the byte to 0.

Flags

8: The 80386/80387 Instruction Set Reference

OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #55(0) #55(0)
13 #GP) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
SETNZ AL
MOVZX EAX, AL
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SGDT 80286/80386
Store GDT Register O
Syntax
SGDT dest
Operation

dest « GDTR.LIMIT
dest + 2 « GDTR.BASE

Legal Form

dest
SGDT mem

Description

This instruction writes the limit portion of the GDTR to the dest memory address
and writes the linear base address of the GDT to the dword at dest + 2.

Flags

OF DF IF TF SF ZF AF PF CF
Faults

PM RM V8086

6" #UD() INT 6 #UD()
12 #55(0)

13 #GP(0) INT 13 #GP(O)

14  #PF(ec) #Pl(ec)
* The undefined opcode fault only occurs when the dest operand is encoded as a register.
Example

SGDT [300H] ; Save GDTR
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SHL 8086/80186/80286/80386
Shift Left Logical (8/16p/32)
Syntax

SHL dest, count

Operation

temp « count & 001FH
while (temp != 0)
CF « highorder (dest)
dest « dest << 1
temp « temp - 1
end
if count = 1 then
OF « highorder (dest) != CF
else
0F « ?

Legal Forms

dest count
SHL reg, idata
SHL mem, idata
SHL reg, CL
SHL mem, CL
Description

This instruction shifts the dest operand count bits to the left. The arithmetic left
shift (SAL) and logical left shift (SHL) are equivalent instructions.

The count operand must either be an immediate data value or be stored in register
CL. The 80386 masks the count operand with 1FH so that the count value is never
greater than 31.

If the count operand is 1, the overflow flag is reset to 0 when the high-order bit and
the carry flag have the same value after the shift. If the high-order bit and CF have
different values, OF is set to 1. If count is greater than 1, OF is undefined.

A left shift is equivalent to multiplying the dest operand by 2¢oun,

Flags
OF DF IF TF SF ZF AF PF CF
ol R0 | = | W= el [l | e | = ] | S8 8 et
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Faults
PM RM V8086

12 #S5(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)

Examples

SHL ECX, 7
SHL WORD PTR [EBP+8], CL
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SHLD 80386
shift Left Double (16p/32)
Syntax

SHLD dest, src, count

Operation

temp < max (count, 31)

value « concatenate (dest, src)
value « value << temp

dest « value

Legal Forms

dest src count
SHLD reg, reg, idata
SHLD mem, reg, idata
SHLD reg, reg, CL
SHLD mem, reg, G
Description

This instruction concatenates the src operand to the dest operand and shifts the
resulting double-size value left. The low-order bits are stored in dest.

The count operand is masked with 1FH so that no shift counts greater than 31 are

used.
Flags
OF DF IF TF SF ZF AF PF CF
s = | o 5| o S (R £ e ] |
Faults
PM RM V8086
12 #S5(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
MOV EAX, [ESI] : Get low-order dword
SHLD EAX, [ESI+4], 7 ; 64-bit shift
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Shift Right Logical

8086/80186/80286/80386
(8/16p/32)

Syntax
SHR dest, count

Operation

temp « count & 001FH
while (temp != 9)

CF = dest & 1
dest « dest >> 1
temp « temp - 1
end

if count = 1 then

else

Legal Forms

OF « ?

OF « highorder (dest)

dest count
SHR reg, idata
SHR mem, idata
SHR reg, CL
SHR mem, CL
Description

This instruction shifts the dest operand count bits to the right. The high-order bits

are cleared to 0 as the low-order bits are shifted.

The count operand must either be an immediate data value or be stored in register
CL. The 80386 masks the count operand with 1FH so that the count value is never
greater than 31,

If the count operand is 1, the overflow flag is set to the high-order bit of the dest

operand. If count is greater than 1, OF is undefined.

Flags
OF DF IF TF SF ZF AF PF
X R e (e - X
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Faults
rM RM V8086

12 #S5(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)

Examples

SHR ECX, 7
SHR WORD PTR [EBP+8], CL i
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SHRD _ 80386
Shift Right Double (16p/32)
Syntax

SHRD dest, src, count

Operation

temp « max (count, 31)
value « cat (srec, dest)
value « value >> temp
dest « value

Legal Forms

dest src count
SHRD reg, reg, idata
SHRD mem, reg, idata
SHRD reg, reg, CL
SHRD mem, reg, CL
Description

This instruction concatenates the src operand to the dest operand and shifts the
resulting double-size value right. The low-order bits are stored in dest.

The count operand is masked with 1FH so that no shift counts greater than 31 are

used.,
Flags
OF DF IF TF SF ZF AF PF CF
2 | = = | ol 16 = | 2 = | B I
Faults
PM RM V8086
12 #SS(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
MOV EAX, [002AH] ; Get low-order dword
SHRD EAX, [002EH] ; b4-bit shift
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SIDT 80286/80386
Store IDT Register (@)
Syntax
SIDT dest
Operation

dest « IDTR.LIMIT
dest + 2 « IDTR.BASE

Legal Form

dest
SIDT mem
Description

This instruction writes the limit portion of the IDTR to the dest memory address
and the linear base address of the IDT to the dword at dest + 2.

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
6 #UDQ) INT 6 #UDQ)
12 #88(0)
13 #GP) INT 13 #GP(0)
14 #PF(ec) #PF(ec)
* The undefined opeode fault only occurs when the dest operand is encoded as a register.
Example
SIDT int_tab ; Get address and limit of IDT
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SLDT

Store LDT Register

80286/80386
(16)

Syntax

SLDT

dest

Operation
dest « LDTR

Legal Forms

dest
SLDT reg
SLDT mem
Description

This instruction stores the selector in the LDTR in the destination location.

Flags

OF

DF IF TF SF ZF AF PF CF

Faults
PM RM V8086

6 INT 6 #UD()
12 #85(0)
13 #GP(0)
14  #PF(ec)
Example
SLDT DX ; Put LDT selector into DX
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SMSW 80286/80386

Store Machine Status Word ae6)

Syntax
SMSHW dest

Operation
dest « MSW

Legal Forms

dest
SMSW reg
SMSH mem
Description

This instruction stores the low-order 16 bits of register CRO (the 80286 machine
status word) in the dest operand.

This instruction is provided for compatibility only. Use the MOV CRO instruction in

native mode programming.

Flags
OF DF IF TE SF ZF AF PF CF

Faults
PM RM V8086

6
12 #55(0)
13 #GPO) INT 13 #GP(0)
14  #PF(ec) #PF(ec)

Example
SMSW [DI]
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STC 8086/80186/80286/80386
Set Carry Flag @)

Syntax
STC

Operation
CF « 1

Legal Form
STC

Description
This instruction sets the carry flag (CF) in the EFLAGS register to 1.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
None.

Example
STC ; Carry flag set to 1
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STD 8086/80186/80286/80386
Set Direction Flag (@)

Syntax
STD

Operation
DF « 1

Legal Form
STD

Description

This instruction sets the direction flag (DF) in the EFLAGS register to 1. This in-
struction indicates reverse direction in the string instructions to decrement the in-
dex registers when DF = 1,

Flags
OF DF IF TF SF ZF AF PF CF

Faults
None.

Example

STD ; Prepare for reverse string operation
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STI 8086/80186/80286/80386
Set Interrupt Flag O

Syntax
STI

Operation
IF « 1

Legal Form
STI

Description
This instruction sets the interrupt flag (IF) in the EFLAGS register to 1, enabling
hardware interrupts.

The executing program must have a high enough privilege (CPL < IOPL) to issue the
STI command to avoid a general protection fault.

Flags
OF DF IF TF SF ZF AF PF CF

Fault
PM RM V8086

13 #GPO)

Example
CLI ; Disable interrupts
MOV AL, semaphore ; Get memory value
DEC AL ; Decrement counter
J2 DONE ; Skip if value was 0
MOV semaphore, AL ; Update

DONE:
STI ; Reenable interrupts
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STOS 8086/80186/80286/80386
Store String (8/16p/32)
Syntax
STOS
Operation

when opcode is (STOSB, STOSW, STOSD), set opsize « (1, 2, 4)
ES:[EDI] « accum
if (DF = 0) then
EDI « EDI + opsize
else
EDI « EDI - opsize
endif

Legal Forms
STOSB ; Store string byte

STOSW ; Store string word
STOSD ; Store string doubleword

Description

This instruction writes the current contents of the accumulator (AL, AX, or EAX, de-
pending on the opcode used) to the memory location pointed to by ES:EDI. It then
increments or decrements EDI by the size of the operand, according to the DF bit in
the EFLAGS register.

If you precede the STOS instruction with the REP prefix, register ECX must contain
a count of the number of times STOS is to be executed. This fills memory with the
value in the accumulator.

You cannot use a segment override prefix with the STOS instruction. The destina-
tion segment will always be selected by ES.

Fiags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #SS(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
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; Clear 100 bytes of memory beginning at location 0

Example

MOV EDI, O

MOV ECX, 100 / 4
XOR EAX, EAX

CLD

REP STOSD

; Base address
; Count (in dwords)
; Clear accumulator to O

; LZero memory
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STR 80286/80386
Store Task Register 16)

Syntax
STR dest

Operation
dest « TR

Legal Forms

dest
STR reg
STR mem
Description

This instruction stores the task register selector in dest.

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086

6 INT 6 #UD()
12 #85(0)
13 #GP(0)
14  #PF(ec)

Example
STR CX ; Store current task’s selector
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sSUB 8086/80186/80286/80386
Subtraction (8/16p/32)
Syntax

SUB dest, src

Operation
dest « dest - src

Legal Forms

dest src
SUB req, idata
SuB mem, idata
SUB reg, reg
SUB reg, mem
SUB mem, reg
Description

This instruction subtracts the sr¢ operand from the dest operand and stores the
result in dest.

Flags
OF DF IF TF SF ZF AF PF CF
3| R | =S R | el {5 = | e [ = e | e B
Fauilts
PM RM V8086
12 #S8S(O)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
; 64-bit subtraction operation EDX:EAX - EBX:ECX
SUB EAX, ECX ; Low-order bits
SBB EDX, EBX : High-order bits with possible borrow
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TEST 8086/80186/80286/80386
Test Bits (8/16p/32)
Syntax

TEST dest, src

Operation
NULL « dest & src

Legal Forms

dest src
TEST reg, idata
TEST mem, idata
TEST reg, reg
TEST reg, mem
TEST mem, reg
Description

This instruction performs a bit-by-bit AND operation on the src and dest operands
and discards the result. The flag bits, however, are set as they would be after an
AND instruction.

Flags

OF DF IF TF SF ZF AF PF CF

ON| RS RER | F e (et | S | 2R S-S e (= [0
Faults

PM RM VB086
12 #85(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
TEST AL, OFH : Check if any bits set in
; low nibble of AL

TEST EBX, ECX : Test EBX under mask in ECX
TEST WORD PTRLEBP+61, 8000H ; Check whether

. 16-bit integer is negative
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VERR 80286/80386
Verify Read Access (16)
Syntax

VERR select

Operation

if (accessible(select)) & read_access(select)) then
IF « 1

else
IF « 0

endif

Legal Forms

select
VERR reg
VERR mem
Description

This instruction sets the ZF bit in EFLAGS to 1 if the current procedure can load the
select operand into DS, ES, FS, or GS and can read a value from the memory seg-
ment without causing a privilege violation.

If the selector is for a descriptor that is not a memory segment, if the memory seg-
ment is not readable, or if the current procedure does not have a high enough privi-
lege level to gain access to the segment, VERR clears ZF to 0. The VERR instruction
does not generate a fault for referring to a selector that is invalid; however, a fault oc-
curs if the instruction operand is a memory operand and the operand address is
invalid,

Note that this instruction does not check the ‘present’ bit of the descriptor, nor does
it check access at the page protection level (U/S and R/W bits of page table entries).

Flags
OF DF IF TF SF ZF AF PF CF
- - e, - - X - - - - - -
Faults
PM RM V8086
6 INT 6 #UDQO)
12 #SS5(0)
13 #GP(0)
14  #PF(ec)



Example

VERR
Ji
STC
LEAVE
RETF
CONTINUE:

WORD PTR [EBP+8]
CONTINUE

8: The 80386/80387 Instruction Set Reference

; Check selector on stack

; Branch if OK

+ Set carry flag

: And return if selector is invalid
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VERW 80286/80386

Verify Write Access (16)

Syntax
VERW select

Operation

if (accessible(select)) & write_access(select)) then
IF « 1

else
IF « 0

endif

Legal Forms

select
VERW reg
VERW mem
Description

This instruction sets the ZF bit in EFLAGS to 1 if the current procedure can load the
select operand into DS, SS, ES, FS, or GS and can write a value to the memory seg-
ment without causing a privilege violation.

If the selector is for a descriptor that is not a memory segment, if the memory seg-
ment is not writable, or if the current procedure does not have a high enough privi-
lege level to gain access to the segment, VERW clears ZF to 0, The VERW instruction
does not generate a fault for referring to a selector that is invalid; however, a fault oc-
curs if the instruction operand is a memory operand and the operand address is
invalid.

Note that this instruction does not check the ‘present’ bit of the descriptor, nor does
it check access at the page protection level (U/S and R/W bits of page table entries).

Flags
OF DF IF TF SF ZF AF PF CF
- - - - - x - - - -t - -
Faults
PM RM V8086
6 INT 6 #UD()
12 #SS(0)
13 #GP0)
14  #PF(ec)
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Example

VERW
Jz
STC
LEAVE
RET
CONTINUE:

WORD PTR [EBP+8]
CONTINUE

8: The 80386/80387 Instruction Set Reference

; Check selector on stack

; Branch if OK

; Set carry flag

: And return if selector is invalid
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WAIT 8086/80186/80286/80386
‘Wait Until Not Busy @)

Syntax
WAIT

Legal Form
WALT

Description

This instruction places the 80386 into an idle state until the BUSY\ pin is inactive. If
the BUSY\ pin is inactive when the instruction executes, no idle occurs. The BUSY\
pin is usually connected to a numeric coprocessor. You should execute this instruc-
tion before any 80386 instruction that will access a value stored by the coprocessor.

If both the TS (task switched) bit in register CRO and the MP (monitor coprocessor)
bit are set, a coprocessor fault occurs. If the ERROR\ pin of the 80386 is active, indi-
cating an unmasked exception on the coprocessor, a math fault occurs,

Flags
OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
7 #NMO) INT 7 #NM()
16 #MF() INT 16 #MF()
Example
FST result ; Store floating-point result
WAIT ; Wait for coprocessor to finish
PUSH result ; Push the result onto the stack
CALL fp_print ; Print the value
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XCHG 8086/80186/80286/80386
Exchange (8/16p/32)
Syntax

XCHG opl, opZ2

Operation

temp « opl
opl « op?2
op2 « temp

Legal Forms

opl opé
XCHG reg, reg
XCHG reg, mem
XCHG mem, reg
Description

This instruction swaps the contents of two operands. If either operand is a memory
operand, the bus LOCK\ signal is held active during the read and write memory
cycles,

Flags
OF DF IF TF SF ZF AF PF CF

Faults
PM RM V8086
12 #88(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
XCHG EAX, ECX ; Swap EAX and ECX
XCHG AL, [ESI+10] ; Exchange AL with memory
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XLATB 8086/80186/80286/80386
Translate Byte O
Syntax
XLATB
Operation

AL « DS:[EBX+AL]

Legal Form

XLATB

Description
This instruction uses the value of AL as a positive index into a table located at
DS:EBX. It then stores the indexed table byte in AL, replacing the original value.

You can apply a segment override prefix to XLATB so that the table access location
will be at EBX + AL in the specified segment.

OF DF IF TF SF ZF AF PF CF
Faults
PM RM V8086
12 #S8S(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Example
LEA EBX, AZ2E_TAB ; Load offset of ASCII to EBCDIC table
LDS ESI, SRC ; Load source string pointer
LES EDI, DEST_BUFF ; Load destination string pointer
CLD : Set DF = 0
Ll: LODSB : Get byte of source string
€S2 ; Assume translate table resides in CS
XLATB ; Translate byte
STOSB ; Store resulting character
OR AL, AL ; Test for NUL character
JNZ 11 ; Loop if not NUL
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XOR 8086/80186/80286/80386
Boolean Exclusive OR (8/16p/32)
Syntax

XOR dest, src

Operation

dest « dest * src

Legal Forms

dest sre
XOR reg, idata
XOR mem, idata
XOR reg, reg
XOR reg, mem
XOR mem, reg
Description

This instruction performs a bit-by-bit exclusive OR operation on the src and dest
operands, storing the result in the dest operand. The XOR operation is defined as

follows:
0AD=0
0Al=1
1A0=1
1A1=0
Flags

OF DF IF TF SF ZF AF PF CF

(O =S = RS | e o | R | | | | )
Faults

PM RM VB086

12 #S8(0)
13 #GP(0) INT 13 #GP(0)
14  #PF(ec) #PF(ec)
Examples
XOR AL, OFFH ; Change 0s to 1s and vice versa in AL
XOR EBX, ECX ; Compute EBX « EBX » ECX
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Floating-Point Instruction Set

The floating-point instruction set adds support for arithmetic functions using real
numbers. The 80386 cannot directly execute floating-point instructions. However,
when coupled with the 80387 numeric coprocessor, the instruction set is extended
to include the instructions that are described on the following pages.

PROCESSORS
Processors that support
the instruction.

MNEMONIC

Used by the assembler to
represent the instruction.

NAME
Name of instruction.

LEGAL FORMS
Legal forms of the
instruction.

DESCRIPTION
Description of the
instruction. mem =
memory operand.

i

iy

s

EXCEPTIONS
An “x”in a box
indicates that the
specified exception may
be generated for the
instruction. A “~"in a
box indicates that the
specified exception is not
possible. SF = Stack fault.

PE = Precision exception.

UE = Underflow
exception. OE =
Overflow exception. ZE
= Zero divide exception.
DE = Denormal
exception. IE = Invalid
operation exception.
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FICOM 8087/80287/80387
Integer Compare

Legal Forms

FICOM meml§ : compare (ST. meml6)

FICOM mem32Z ; compare (5T, mem32)

FICOMP meml6 ; compare (ST, meml6): pop():

FICONP mem32 ; compare (ST, mem32): pop():

Description
The two's complement integer is converted to temp real format and compared with
the top of stack. If the opcode is FICOMP, the stack is popped after the comparison.

The condition codes are set in the same manner as those for FCOM.

Exceptions
SF PE UE OE ZE DE IE

HEEEREEE
Example

Before After

ST 60
ST(D 13792 29731 5T

13792.29731

FICOMP WORD PTR [0FCGH]

Memory pointer is integer 6.
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EXAMPLE

Each example shows the
80387 stack before and
after execution of the
instruction.




FABS

Absolute Value

8: The 80386/80387 Instruction Set Reference

8087/80287/80387

Legal Form

FABS

; If (ST < 0) then ST « ST *= -1

Description

This instruction replaces the original value of the element at the top of stack with its
absolute value.

Exceptions

SF PE UE OE ZE DE IE

X

ST

Before

-3.71

FABS

ST

After

3.71
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FADD

Addition

8087/80287/80387

Legal Forms

FADD

FADD mem32
FADD mem64
FADD  ST(n)
FADD ST, ST(n)
FADD  ST(n), ST
FADDP ST, ST(n)
FADDP  ST(n), ST
Description

; ST(1)
i ST «
i ST «
i ST «
i ST
i ST(n)
i ST «
; ST(n)

ST
ST
ST
ST

ST

ST + ST(1); pop();

+ mem32
+ memé64
+ ST(n)
+ ST(n)
ST(n) +

+ ST(n); pop();
ST(n) + ST; pop();

ST

This instruction adds the specified floating-point operands and optionally pops the
top of stack.

If you specify a memory operand, it is converted to temp real (80-bit) format before
it is added to the top of stack.

If you add a floating-point value to infinity, the result is the original infinity. If you
add two infinities, they must have the same sign, and the result is the same infinity.

Exceptions
SF PE UE OE ZE DE IE
3o e sl | B | = | B e
Examples
Before
ST 4.66
ST (1) 0.21
ST (2) 13.00
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FADD

ST
ST (1)

After

4.87

13.00
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Before After
ST 4,66 ST 4.66
ST (1) 0.21 ST (1) 0.21
ST (2) 13.00 ST (2) 17.66

FADD ST(2), ST
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FBLD 8087/80287/80387
BCD Load

Legal Form
FBLD mem80 ; push(float(mem80))

Description

This instruction converts an 80-bit, 19-digit BCD integer to a temp real and pushes it
onto the stack. If the memory operand is not a valid BCD integer, an undefined
value is pushed onto the stack.

Exceptions
SF PE UE OE ZE DE IE
x - - - - - -
Example
Before After
ST 17.00
ST 102.08 ST (D 102.08

FBLD [ESI]
ESI points to 17 BCD.
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FBSTP

BCD Store and Pop

8087/80287/80387

Legal Form
FBSTP mem80 ; memB0 ¢« BCD(ST); pop();

Description

This instruction rounds the top of stack to an integer, stores in memory in BCD for-

mat, and then pops the stack.

Unlike most arithmetic operations, FBSTP signals the invalid (I) exception if either

operand is a quiet NaN.

Exceptions
SF PE UE OE ZE DE IE
x| = (e = R =
Example
Before
ST 3.09
ST (1) -71.6 ST

FBSTP [0A2H]

BCD 3 is stored in memory.

After

-71.6
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FCHS

Change Sign

8087/80287/80387

Legal Form

FCHS

i ST « ST #*

Description

=

This instruction complements the sign bit of the top of stack.

Exceptions

SF PE UE OE ZE DE IE

x -

Example

Before

ST

1023.99

ST (D

6.2001
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5T
ST (1)

After

-1023.99

6.2001




FCLEX

Clear Exceptions

8: The 80386/80387 Instruction Set Reference

8087/80287/80387

Legal Forms
FCLEX

FNCLEX

Description
This instruction clears the exception flags in the status word and the busy bit to 0.
The FCLEX form of the instruction checks for unmasked exceptions from previous
operations before clearing the status word. The FNCLEX form clears the SW bit

without checking.

Exceptions
SE PE UE OE ZE DE IE

SW « SW & 07FO0H
SW « SW & 07F00H
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FCOM 8087/80287/80387

Compare

Legal Forms

FCOM ; compare ST, ST(1)

FCOM mem32 ; compare (ST, mem32)

FCOM mem64 ; compare (ST, mem64)

FCOM ST(n) ; compare (ST, ST(n))

FCOMP  mem32 ; compare (ST, mem32); pop();

FCOMP  mem64 ; compare (ST, mem64); pop();

FCOMP ST(n) ; compare (ST, ST(n)); pop();
FCOMPP ; compare (ST, ST(1)): pop(); pop();
Description

This instruction performs the function compare (op1, 0p2) and sets the 80387 con-
dition code according to the result of the comparison. The 80387 stack is optionally
popped once or twice.

The following table shows the condition code settings that result from the compare
function. FCOM considers +0.0 and —0.0 to be equal.

Condition c3 c2 Cl o

opl > op2 0
opl < op2 0 =
opl = op2 1
either op is a NaN 1

o CcCc
—_D =D

The 80387 condition codes are arranged in the status word so that C3, C2, and CO
map into the same bit positions as the ZF, PF, and CF bits of the 80386 EFLAGS
register. Thus, issuing the following instructions sets the 80386 flags as if the com-
pare had been performed on the 80386.

FCOM op ; Floating point compare
FSTSW AX ; Store status word to AX
SAHF ; Store AH into flags

You can then use any conditional jump instruction (JE, INE, JA, JAE, JB, or JBE) to
branch on the result of the compare. You can use JP to test for NaN operands.

Unlike most arithmetic operations, FCOM signals the invalid (I) exception if either
operand is a quiet NaN,

Exceptions
SF PE UE OE ZE DE IE
| R | = = = Sl e
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Examples
Before After
ST 21.0 ST -21.0
ST (1) 6.0 ST (1) 6.0
ST (2) 0.1114 ST (2) 0.1114
FCOM ST (2)
Before After
ST -21.0
ST (1) 6.0
ST (2) 0.1114 ST 0.1114
FCOMPP
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FCOS

Cosine

80387

Legal Form

FCOS

$ ST e~ cos(ST)

Description

This instruction computes the cosine of the value in radians at the top of stack and
replaces ST with cosine.

The operand processed by FCOS must be a value between * 263 or the instruction
does not execute and condition code C2 is set to 1. C2 is cleared to 0 if the instruc-
tion is executed.

Exceptions
SF PE UE OE ZE DE IE
X X P = = X X
Example

Before
ST 0.785399
ST () -6.1
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ST
ST (1)

After

0.7071...

-6.1
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FDECSTP 8087/80287/80387

Decrement Stack Pointer

Legal Form
FDECSTP ; TOP « (TOP - 1) & 07H

Description

This instruction allows you to manipulate the 80387 stack pointer. Issuing FDECSTP
is equivalent to pushing a new value onto the stack, but no value is supplied. The
tag registers are not modified.

Exceptions
SF PE UE OE ZE DE IE

Example
Before After
ST 7 i
ST 8.201 ST (1) 8.201
ST (1 999.9 ST (2) 999.,9
FDECSTP
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FDIV

Division

8087/80287/80387

Legal Forms

FDIV ST Ve
FDIV mem32 ST « ST
FDIV mem64 ST & ST
FDIV ST(n) ST « ST
FDIV ST, ST(n) ST « ST
FDIV ST(n), ST  ST(n) «
FDIVP ST, ST(n) ST « ST
FDIVP ST(n), ST  ST(n) «
Description

ST(1) / ST; pop();

/ mem32
/ mem64
/ ST(n)
/ ST(n)

ST /ST

/ ST(n); pop();
ST(n) / ST; pop ();

This instruction executes a divide operation with the above operands. If you
specify a memory operand, it is converted to temp real (80-bit) format before the
division is performed. A stack pop operation is performed if specified by the

opcode.

Division by infinity results in 0. Infinity divided by a real number results in infinity.
Infinity divided by infinity is not a valid operation.

Exceptions
SF PE UE OE ZE DE IE

X X X X X X X
Examples
Before
ST 4.0
ST (1) 0.4
ST (2) 5.0
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FDIV

ST
ST (1)

After

0.1

5.0




ST
ST (1
ST (2)

Before

4.0

0.4

5.0

8: The 80386/80387 Instruction Set Reference

ST
ST (1)
ST (2)

FDIV ST(2), ST

After

4.0

0.4

1.25
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FDIVR 8087/80287/80387

Division Reversed

Legal Forms

FDIVR ST(1) « ST / ST(1); pop();
FDIVR mem32 ST « mem32 / ST

FDIVR mem64 ST « mem64 / ST

FDIVR ST(n) ST « ST(n) / ST

FDIVR ST, ST(n) ST « ST(n) [/ ST

FDIVR ST(n), ST ST(n) « ST / ST(n)

FDIVRP ST, ST(n) ST « ST(n) / ST; pop();
FDIVRP ST(n), ST ST(n) « ST / ST(n); pop ();
Description

This instruction executes a divide operation with the above operands, This instruc-
tion is equivalent to FDIV, but the divisor and dividend operands are exchanged. If
you specify a memory operand, it is converted to temp real (80-bit) format before
the division is performed. A stack pop operation is performed if specified by the
opcode.

Division by infinity results in 0. Infinity divided by a real number results in infinity.
Infinity divided by infinity is not a valid operation.

Exceptions
SF PE UE OE ZE DE IE
X X X X X X X

Examples
Before After
ST 4.0
ST (1) 0.4 ST 10.0
ST (2) 5.0 ST (1) 5.0
FDIVR
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ST (1)
ST (2)

Before

4.0

0.4

5.0
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ST (1)
ST (@

FDIVR ST(2), ST

After

4.0

0.4

0.8
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FFREE

Free NDP Register

8087/80287/80387

Legal Form

FFREE

ST(n)

Description

; TW(n) <« UNUSED

This instruction marks the specified stack element as unused by setting the tag
word for the corresponding 80387 register. The stack pointer is not modified, nor is
the actual content of the NDP register.

Exceptions

SF PE UE OE ZE DE IE

Example

Before
i 190000.3
ST (1) -7.7
ST (2) 0.001
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ST
ST (1)
ST (2)

FFREE ST(1)

After

190000.3

<unused>

0.001
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FIADD 8087/80287/80387
Integer Addition

Legal Forms

FIADD  meml6 : ST « ST + float(meml6)
FIADD mem32 : ST « ST + float(mem32)
Description

This instruction converts the two's complement integer at the specified address to
temp real format and adds it to the top of stack. Other than the difference in
operand type, this instruction is equivalent to FADD.

Exceptions
SF PE UE OE ZE DE IE
X X X X = X X
Example

Before After
ST 17.6 ST -35.2
ST (1) 0.333 ST (1) 0.333

FIADD WORD PTR [ECX]

ECX points to integer -2.
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FICOM

Integer Compare

8087/80287/80387

Legal Forms

FICOM
FICOM
FICOMP
FICOMP

mem16
mem32
meml6
mem32

Description

The two's complement integer is converted to temp real format and compared with
the top of stack. If the opcode is FICOMP, the stack is popped after the comparison.

compare (ST,
compare (ST,
compare (ST,
compare (ST,

meml6)
mem32)
meml6); pop():
mem32); pop();

The condition codes are set in the same manner as those for FCOM.

Exceptions

SF PE UE OE ZE DE IE

X = - - - X X

Example

Before Afel
ST 6.0
ST (1) 13792.29731 o) 1379229721
FICOMP WORD PTR [0FCGH] €,C,C,C,

Memory pointer is integer 6.
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FIDIV 8087/80287/80387
Integer Division

Legal Forms

FIDIV memlé ; ST « ST / real(meml6)
FIDIV mem32 ; ST « ST / real(mem32)
Description

This instruction fetches the two's complement integer from memory, converts it to
temp real format, and uses it as a divisor of the top of stack. The results generated
by this instruction are the same as those generated by the FDIV instruction.

Exceptions
SF PE UE OE ZE DE IE
X X X X X X X

Example

Before After
ST 1.0 ST -0.25
ST (1) 2.2 ST (1) 2.2

FDIV DWORD PTR [EBP+16]

Memory pointer is integer -4.
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FIDIVR 8087/80287/80387
Integer Division Reversed

Legal Forms

FIDIVR meml6 ; ST « real(meml6) / ST
FIDIVR mem32 ; ST « real(mem32) / ST
Description

This instruction converts the two's complement integer at the specified memory
location to temp real format and divides it by the top of stack. The results generated
by this instruction are the same as those generated by the FDIVR instruction.

Exceptions
SF PE UE OE ZE DE IE
X X X X X X X

Example

Before After
ST 1.0 ST -4.0
ST (1) 2.2 ST (1) 2.2

FIDIVR DWORD PTR [EBP+16)
Memory pointer is integer -4,
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FILD 8087/80287/80387
Integer Load

Legal Forms

FILD meml16 ; push (float (meml6))
FILD mem32 ; push (float (mem32))
FILD mem64 ; push (float (mem64))
Description

This instruction converts a two’s complement integer to temp real format and
pushes the value onto the 80387 stack.

Exceptions
SF PE UE OE ZE DE IE
x - - - - - -
Example
Before After
ST 666.0
ST 1.209 ST (1) 1.209

FILD QWORD PTR [EAX]

Memory pointer is integer 666.
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FIMUL 8087/80287/80387
Integer Multiplication

Legal Forms

FIMUL meml6 i ST « ST * real(meml6)
FIMUL  mem32 i ST « ST # real(mem32)
Description

This instruction converts the two’s complement integer at the specified memory
location to temp real format and multiplies it by the top of stack. The results of this
instruction are identical to those obtained by FMUL.

Exceptions
SF PE UE OE ZE DE IE
X X X X = X b. 4
Example

Before After
ST -0.04 ST 0.16
ST (1) 17.9 ST (1) 17.9

FIMUL WORD PTR [ESI+EAX]

Memory pointer is integer -4.
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FINCSTP 8087/80287/80387

Increment Stack Pointer

Legal Form
FINCSTP ; TOP « (TOP + 1) & O7H

Description

This instruction increments the TOP field in the 80387 status word. The contents of
the 80387 register previously at the top of stack and the register’s associated tag
word are not affected.

Exceptions
SF PE UE OE ZE DE IE

Example
Before After
ST 72.32 ST (7) 72.32
ST (1) 32072 ST 32.72
FINCSTP
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FINIT 8087/80287/80387
Initialize NDP

Legal Forms

FINIT ; CW « 037FH; SW <« SW & 4700H; TW « OFFFFH
FNINIT ; CW « 037FH; SW « SW & 4700H; TW « OFFFFH
Description

This instruction sets the 80387 machine state to its default value, All registers are
marked unused, all exceptions are masked, rounding control is set to nearest, and
the operating mode is set to double-precision.

The FINIT instruction tests for any unmasked exception in the 80387 before clear-
ing the NDP state, unlike FNINIT, which does not. Consequently, the first floating-
point instruction of an application should be FNINIT.

Exceptions
SF PE UE OE ZE DE IE
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FIST 8087/80287/80387
Integer Store

Legal Forms

FIST meml6 ; memlé « int(ST)

FIST mem32 ; mem32 « int(ST)

FISTP  meml6 ; meml6 « int(ST); pop();:
FISTP  mem32 ; mem32 « int(ST); pop();:
FISTP  mem64 ; membd « int(ST); pop();

Description

This instruction rounds the current top of stack to an integer according to the con-
trol bits and stores the value in the specified operand. If the opcode is FISTP, the
stack is popped after the store operation. Note that the sign of a floating-point 0 is
lost upon conversion to the two’s complement integer format.

Two differences exist between FIST and FISTP. The FISTP instruction, which pops
the stack after the store operation, can store a 64-bit integer; FIST cannot. The FIST
instruction generates an invalid operation exception if the top of stack is a quiet
NaN; FISTP does not.

Exceptions
SF PE UE OE ZE DE IE
X | = (M= | =P8 I e
Example

Before After
ST 32.1 ST 32.1
ST (1) 456.78 ST (1) 456.78

FIST DWORD PTR [EBP+42]

Integer 32 stored into memory.
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FISUB 8087/80287/80387
Integer Subtraction

Legal Forms

FISUB  meml6 ; ST « ST - real(meml6)
FISUB mem32 ; ST « ST - real(mem32)
Description

This instruction converts the two’s complement integer at the specified memory
location to temp real format and subtracts it from the top of stack. The results of this
instruction are identical to those obtained by FSUB.

Exceptions
SF PE UE OE ZE DE IE
o | [ e [ M S e
Example

Before After
ST 36.99 ST 33.99
ST (1) 0.6 ST (1) 0.6

FISUB WORD PTR [A72H]

Memory pointer is integer 3.
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FISUBR 8087/80287/80387

Integer Subtraction Reversed

Legal Forms

FISUBR memlé6 ; ST « real(meml6) - ST
FISUBR mem32 3 ST « real(mem32) - ST
Description

This instruction converts the two’s complement integer at the specified memory
location to temp real format and subtracts the top of stack from it. The results of this
instruction are identical to those obtained by FSUBR.

Exceptions
SF PE UE OE ZE DE IE
X X X X = X X
Example

Before After
ST 36.99 ST -33.99
ST (1) 0.6 ST (1) 0.6

FISUBR WORD PTR [A72H]

Memory pointer is integer 3.
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FLD

Load Real

8087/80287/80387

Legal Forms

FLD mem32 ; push(mem32)
FLD mem64 ; push(mem64 )
FLD mem80 ; push(mem80)
FLD ST(n) ; push(ST(n))
Description

This instruction pushes a copy of the specified operand onto the 80387 stack. If you
specify a 32-bit or 64-bit floating-point memory operand, it is converted to temp
real format before being stored.

If the operand is a single- or double-precision value, the 80387 might generate a
denormal exception. A denormal exception is not generated by a value already in
temp real format,

Exceptions
SF PE UE OE ZE DE IE

X -

-l -] -] x|x

Example

Before

ST

19362.0

ST (1)

7.11

ST
ST (1)
ST (2)

FLD DWORD PTR [EDX]

Memory pointer is short real 6.1.
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After

6.1

19362.0

7.11




FLDconst

Load Constant

8: The 80386/80387 Instruction Set Reference

8087/80287/80387

Legal Forms

FLD1
FLDL2E
FLDL2T
FLDLG2
FLDLNZ
FLDPI
FLDZ

Description

This instruction pushes the constant value specified by the opcode onto the stack.
The function In stands for log base e,

Exceptions
SF PE UE OE ZE DE IE

push(1.0)
push(log2(e))
push(1og2(10))
push(logl0(2))
push(1n(2))
push(PI)
push(+0.0)

X -

Before

ST

4.0

After
ST 3.1415906.,..
ST (1) 4.0

FLDPI

337



THE 80386 BOOK

FLDCW

Load Control Word

8087/80287/80387

Legal Form
FLDCW

meml6

Description

This instruction loads a new value for the control word from memory. FLDCW can
unmask previously masked exceptions, triggering an unmasked exception.

Exceptions

SF PE UE OE ZE DE IE

; CW « memlé6

X

X

x

X

X

X

X

338



8: The 80386/80387 Instruction Set Reference

FLDENV 8087/80287/80387

Load Environment

Legal Form
FLDENV  memp ; NDP « memp

Description

This instruction loads the 28-byte block pointed to by memp into the environment
registers of the 80387. The memory operand contains a new control word, status

word, tag word, and error block. The memory format for the environment is shown
in Figure 8-1.

31 16 15 0 Byte offset
Reserved Control word 0
Reserved Status word 4
Reserved Tag word 8

Error offset (EIP) 12
Reserved | Error selector (CS) | 16
Data operand offset 20
Reserved I Data selector 24

32-bit format

15 0 Byte offset
Control word 0
Status word 2
Tag word 4
Instruction pointer, 15| 6
IP1g 1o S
Operand pointer, ;5 | 10
OPyg 19 12

16-bit format

Figure 8-1. 80387 environment.

Loading a new status word and control word can cause an unmasked exception.

Exceptions
SF PE UE OE ZE DE IE

X X X X X X | X
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FMUL

Multiplication

8087/80287/80387

Legal Forms

FMUL ;
FMUL mem32 0
FMUL mem64 :
FMUL ST(n) ;
FMUL SRS ) S
FMUL SN RS .
FMULP ST STith) S
FMULP STnd;, ST -
Description

ST(1) « ST(1) * ST; pop();
ST « ST * mem32

ST « ST * memé4d

ST « ST #* ST(n)

ST « ST #* ST(n)

ST(n) « ST(n) * ST

ST « ST * ST(n); pop();
ST(n) « ST(n) * ST; pop();

This instruction multiplies the specified operands and stores them as indicated
above. If you specify 32-bit or 64-bit memory operands, they are converted to temp
real format before the multiplication takes place. If the opcode specifies, the stack is
popped after the operation.

Multiplying any value other than 0 by infinity results in infinity. Multiplying 0 by in-
finity is an invalid operation.

Exceptions
SF PE UE OE ZE DE IE
X X X X = X X
Examples
Before
ST 2.0
ST (1) 0.01
ST (2) 7.6
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After
ST 0.02
ST (1) 7.6

FMUL
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Before After
ST 2.0 ST 0.02
ST (1) 0.01 ST (1) 0.01
ST (2) 7.6 ST (2) 7.6
FMUL ST(1)
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FNOP 8087/80287/80387
No Operation

Legal Form

FNOP

Description

FNOP is an alias for the FST ST, ST instruction. It does nothing.

Exceptions

SF PE UE OE ZE DE IE
Example
Before After
ST 3.3 5T 513
ST (1) 19.6 ST (1) 19.6

FNOP
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FPATAN 8087/80287/80387

Partial Arctangent

Legal Form
FPATAN i ST(1) « atan(ST(1) / ST); pop();

Description

This instruction computes the arctangent in radians of ST(1) + ST. The mnemonic
“partial arctangent” is inherited from earlier NDPs, which placed restrictions on the
values of ST and ST(1). These values are not restricted on the 80387,

Exceptions
SF PE UE OE ZE DE IE
X X X ] = X X
Example
Before After
ST 2.0 ST 0.4636..,
ST (1) 1.0 ST (1) 1.0

FPATAN
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FPREM 8087/80287/80387

Partial Remainder

Legal Form
FPREM + ST « remainder (ST / ST(1))

Description

This instruction uses repeated subtractions to compute the remainder of ST divided
by ST(1). Because this operation could require a large number of iterations (during
which time the NDP would be inaccessible), the 80387 halts after producing a par-
tial remainder. The 80387 reduces the value in ST by a factor of up to 264 in a single
iteration.

If the remainder is a partial value (that is, the operation does not complete), the C2
status bit is set to 1, If the remainder is less than the value of ST(1), the operation is
complete and bit C2 is cleared to 0. By testing the value of C2, the FPREM instruc-
tion may be executed repeatedly until the remainder operation yields an exact
result. Additionally, when the instruction is complete (C2 = 0), the three least sig-
nificant bits of the quotient of ST + ST(1) can be computed by the following formula:

Q=CO0x4+C3x2+Cl
where C0, Cl, and C3 are the remaining status bits.
The FPREM instruction reduces operands for the transcendental functions of the
80387 to legal values. For example, the operand to F2XM1 must be -1 < ST < 1.

FPREM produces an exact result, and the precision control and rounding control bits
are ignored during execution.

The FPREMI instruction produces the IEEE-754 standard partial remainder value,
which may be different from FPREM when there are two integers equally close to
ST + ST(1), FPREM rounds toward 0, and FPREMI chooses the even value.

Exceptions
SF PE UE OE ZE DE IE
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Example
Before After
ST 6 ST 2
ST (1) 4 ST (1) 4
FPREM
C2=0
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FPREM1 80387

IEEE Partial Remainder
Legal Form
FPREM1 ; ST « remainder (ST + ST(1))
Description

This instruction uses repeated subtractions to compute the remainder of ST divided
by ST(1). Because this operation could require a large number of iterations (during
which time the NDP would be inaccessible), the 80387 halts after producing a par-
tial remainder. The 80387 will reduce the value in ST by a factor of up to 264 in a
single iteration.

If the remainder is a partial value (that is, the operation is not complete), the C2
status bit is set to 1. If the remainder is less than the value of ST(1), the operation is
complete and bit C2 is cleared to 0. By testing the value of C2, the FPREM1 instruc-
tion may be executed repeatedly until the remainder operations yield an exact
result, Additionally, when the instruction is complete (C2 = 0), the three least sig-
nificant bits of the quotient of ST + ST(1) can be computed by the following formula:

Q=COx4+C3x2+Cl
where C0, Cl, and C3 are the remaining status bits.

The FPREMI instruction reduces operands for the transcendental functions of the
80387 to legal values. For example, the operand to F2XM1 must be ~1< ST < 1.
FPREM1 always produces an exact result, and the precision control and rounding
control bits are ignored during execution.

The FPREMI instruction produces the IEEE-754 standard partial remainder value,
which may be different from FPREM when there are two integers equally close to
ST + ST(1). FPREM always rounds toward 0, and FPREM1 always chooses the even

value.

Exceptions

SF PE UE OE ZE DE IE
X o X - = X X
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Example

Before
ST 6.0
ST (1) 4.0

8: The B0386/80387 Instruction Set Reference

FPREM1

ST
ST (1)

After

2.0

4.0

C2=0
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FPTAN 8087/80287/80387

Partial Tangent

Legal Form
FPTAN ; ST « tan(ST); push(1.0);

Description
This instruction computes the tangent of the top of stack and arranges the NDP
stack such that:

ST(1)

= tan (original ST)
ST

The denominator is always 1.0 after the FPTAN instruction.

The operand value must be a positive number that is expressed in radians less than
PI X 262, or no operation takes place and the C2 condition code bit is set to 1. If the
input operand is legal, C2 is cleared to 0.

Exceptions
SF PE UE OE ZE DE IE
X X X - = X X
Example

Before After

ST 1.0

ST 0.78539... ST (1) 1.0
ST (1) 6.2 ST (2) 6.2

FPTAN
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FRNDINT 8087/80287/80387

Round to Integer

Legal Form
FRNDINT i ST « int(ST)

Description

This instruction rounds the value at the top of stack to an integer based on the set-
tings of the round control (RC) field in the control word. See Chapter 2 for a discus-
sion of the 80387 rounding modes.

Exceptions
SF PE UE OE ZE DE IE
X X > = = b X
Example

Before After
ST 1.06 ST 1.0
ST (1) 60.1 ST (1) 60.1

FRNDINT
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FRSTOR

Restore NDP State

8087/80287/80387

Legal Form
FRSTOR  memp

Description

; NDP « memp

This instruction loads the entire 80387 processor state from the 108-byte block of
data beginning at memp. Use the FSAVE instruction to store the NDP state. Figure

8-2 shows the format of the state block.

15
Control word
Environment Status word
portion Tag word
Instruction pointery, 5
1P 10|
Operand pointery, 5
31 [OPyg. 1
ST(0) g, 31
Register ST(O)sz. ¢
portion ST(Lg, 15 ST(0)s4, 79
ST(Dyg, 47
ST(4s. 70
ST(2) 31
ST(3)g, 15 | ST(2)s4. 79
ST3)is. 47
ST(3)is. 79
ST(4) 0, 31
ST(4)sz. 63
ST(5)o. 15 l ST(gs. 70
STGs. 47
ST )is, 79
ST(6) . a1
ST(6)35, 3
ST(?)O. .15 ST(G)&L 79
ST(Phs. 47
ST(ss, 79

Figure 8-2. 80387 machine state.
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FIGURE 8-2. continued

Environment
portion

Register
portion

8: The B0386/80387 Instruction Set Reference

31 16 15
Reserved Control word
Reserved Status word
Reserved Tag word
Error offset (EIP)
Reserved | Error selector (CS)
Data operand offset
Reserved | Data selector
ST(0) g, 31
ST(D)32. 63
ST(1)o._15 | ST(O)ss. 79
ST g, 47
ST(yg, 79
ST(2)o. a1
ST(Z)_}Z, .63
ST(3o. 15 ST(2)g4. .79
ST, 47
ST, 79
ST(4) o, 31
ST(4)s2. 63
ST(5)0, 15 ST(4)g4. 70
ST(5)i6. 47
ST(5)in. 79
ST6) o, 31
ST(6)32, .63
ST(7)o_ 15 I ST(G)es, 70
ST(7 )16, 47
ST(7ss, 790

32-bit format

Byte offset
0
4
8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100
104

New unmasked exceptions might be triggered because a new status word and con-
trol word are loaded.

Exceptions

SF PE UE OE ZE DE IE

20 | X | X

X

XN IX K
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FSAVE

Save NDP State

8087/80287/80387

Legal Forms

FSAVE memp
FNSAVE  memp

Description

; memp « NDP
; memp « NDP

This instruction stores the complete processor state of the 80387 in memory begin-
ning at location memp. Figure 8-3 shows the format of the state block.

15 0 Byte offset
Control word 0
Environment Status word -
portion Tag word 4
Instruction pointery 5| 6
IP 16, 19| 8
Operand pointery ;5 | 10
31 OPig 19| 12
ST(0) o, a1 14
Register ST(0)32, 63 18
portion ST(1)y, 15 ST(0)s4. 70 22
ST(i6,.47 26
ST(D4, 79 30
ST(2) g, 31 34
ST(2)s2. 63 38
ST(3)o, .15 ST(2)s4, 70 42
ST(3)i6._4z 46
ST(3)4s, 70 50
ST 0.5 54
ST(4)35, 63 58
ST(5)o, 15 I ST(4)ss. 79 62
ST(5)15. 47 66
ST(5)4s. 79 70
ST(6) o 31 74
ST(6)3, 63 78
ST ST(6)gs. 70 82
ST(7 )16, 47 86
ST(7)4g. 79 90

Figure 8-3. 80387 machine state.
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Figure 8-3. continued

31 16 15 0 Byte offset
Reserved Control word 0
Environment Reserved Status word 4
portion Reserved Tag word 8
Error offset (EIP) 12
Reserved [ Error selector (CS) 16
Data operand offset 20
Reserved | Data selector 24
Register ST(0)sz, ¢3 32
portion ST(1)p. .15 | ST(0)ss. 70 36
ST(1 )16 47 40
ST(1)45. 70 44
ST(2)p, 31 48
ST(2)s2. 63 52
ST(3)o. 15 I ST(2s4, 20 56
STR)yg, 47 60
ST34s, 70 64
ST(4) g, a1 68
ST(4)32. 63 72
ST(5)0. .15 | ST(4)g4, 79 76
ST(5)16. 47 80
ST(5)48, 70 84
STG) g, 3 88
ST(6)s2, 63 92
ST(Po. 15 | ST(6)s4. 70 96
ST(Phe. 47 100
ST(7)ig. 70 104

32-bit format
After the FSAVE is completed, the NDP state is set to the initialized state, as if an
FNINIT instruction had been executed.

The FSAVE form of the instruction tests for any unmasked exceptions before execut-
ing the save, while FSAVE does not. If you use FSAVE, pending exceptions are re-
instated when the state block is loaded by an FRSTOR instruction. FSAVE is not
executed until previous floating-point instructions complete.

Exceptions
SF PE UE OE ZE DE IE
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FSCALE 8087/80287/80387

Scale by 27

Legal Form
FSCALE ; ST « ST * 21nt(sT(1))

Description

This instruction scales the top of stack value by the power of 2 in ST(D). If the value
in ST(1) is not an integer, it is “chopped” before being used as an exponent. Chop-
ping generates the nearest integer smaller than the original value.

The 80387 does not perform a multiply operation, but it uses the identity (x x 20)
(1.0 x 2m) = x X 20*m and adds the integral portion of ST(1) to the exponent of ST.

Exceptions
SF PE UE OE ZE DE IE
X X X X & X X
Example

Before After
ST 1.0 ST 8.0
ST (1) 3.01 ST (1) 3,01
ST (2) 92.6 ST (2) 92.6

FSCALE
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Set Protected Mode

8: The B0386/80387 Instruction Set Reference

80287/80387

Legal Form

FSETPM

Description

This instruction performs no operation on the 80387. It is required on the 80287 to
signal that the CPU is enteting protected mode and is supported for compatibility

only.

Exceptions
SF PE UE OE ZE DE IE
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FSIN

Sine

80387

Legal Form

FSIN i ST « sin(ST);

Description

This instruction computes the sine of the top of stack and stores the result in ST,
The value in ST is assumed to be in radians.

The input operand to FSIN must be a value such that | ST | < 263, or no operation
takes place and the C2 condition code is set to 1. If the operand is a legal value, C2 is

cleared to 0.

Exceptions
SF PE UE OE ZE DE IE
X X X - = X X
Example

Before
ST 3.14159...
ST (D 88.6
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FSIN

ST
ST (1)

After

0.0

88.6




FSINCOS

Sine and Cosine

8: The 80386/80387 Instruction Set Reference

80387

Legal Form

FSINCOS

; temp « ST; ST « sin{temp}
; push(cos(temp))

Description

This instruction computes both the sine and cosine of the top of stack, although the
values might be less precise than those generated by FSIN and FCOS. The value in

ST is assumed to be in radians.

The input operand to FSINCOS must be a value such that | ST | < 263 or no opera-
tion takes place and the C2 condition code is set to 1. If the operand is a legal value,
C2 is cleared to 0, the top of stack is the cosine value, and ST(1) contains the sine.

Exceptions
SF PE UE OE ZE DE IE
X X X = = X X
Example

Before
ST 3.141509...
ST (1) 88.6

ST
ST (1)
ST (2)

FSINCOS

After

-1.0

0.0

88.6
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FSQRT

Square Root

8087/80287/80387

Legal Form

FSQRT

i ST « sqrt(ST)

Description

This instruction replaces the top of stack with the square root of the original value,
Taking the square root of a negative value results in an invalid operation, except
that the square root of negative zero (-0.0) is defined as —0.0. The square root of in-
finity (positive) is defined to be infinity.

Exceptions
SF PE UE OE ZE DE IE
X X X = < X X
Example

Before
ST 2.0
ST (1) 21.3

FSQRT

After

ST

1.4142...

ST (1)

21.3




FST

Store Floating Point

8: The B0386/80387 Instruction Set Reference

8087/80287/80387

Legal Forms

EST: mem32 3
FST mem64 3
FST ST(n) 3
FSTP mem32 :
FSTP memé64
ESTP mem80
FSTP ST(n)
Description

mem32
mem64
ST(n)
mem32

; memb4d
;. mem80
; ST(n)

3O AR A

ST
ST
ST
Sl
ST:
ST
ST:

pop();
pop();
pop();
pop();

This instruction stores the top of stack in the designated destination. If the opcode
is FSTP, the stack top is popped (discarded) after the store operation. If the destina-
tion is a 32-bit or 64-bit real memory operand, the top of stack is rounded according
to the rounding control (RC) bits of the control word.

Note that the FSTP form of this instruction can store a temp real (80-bit) value, while

the FST form cannot.

Exceptions
SF PE UE OE ZE DE IE
X X X X = X X
Example

Before
ST 69.0
ST (1) 98.6

Memory pointer is long real 69.0.

After
ST $69.0
ST (1) 98.6

FST QWORD PTR [ESI]
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FSTCW

Store Control Word

8087/80287/80387

Legal Forms

FSTCW meml6
FNSTCW memlé

Description

; memlé « CW
; memlé « CW

This instruction stores the contents of the control word (CW) register in memory.
The FSTCW form of the instruction checks for unmasked exceptions before the

control word is stored, while FNSTCW does not.

Exceptions

SF PE UE OE ZE DE

1IE
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FSTENV 8087/80287/80387

Store Environment

Legal Forms

FSTENY  memp memp ¢« env(NDP)
FNSTENV memp memp « env(NDP)

Description

This instruction stores the contents of the 80387 environment registers (CW, SW,
TW, and error pointers) in memory beginning at memp. Figure 8-4 outlines the for-
mat of the 28-byte environment block.

31 16 15 0 Byte offset
Reserved Control word 0
Reserved Status word 4
Reserved Tag word 8

Error offset (EIP) 12
Reserved |  Error selector (CS) | 16
Data operand offset 20
Reserved | Data selector 24
32-bit format
15 0 Byte offset
Control word 0
Status word 2
Tag word 4
Instruction pointery 15| 6
1P, 19| 8
Operand pointery 15 | 10
OPys. 10| 12

16-bit format

Figure 8-4. 80387 environment,

The FSTENV form of the instruction checks for unmasked exceptions before the
environment is stored, while FNSTENV does not. If unmasked exceptions are pend-
ing before FNSTENV is executed, they are reactivated if the environment block is
loaded with FLDENV.

Exceptions
SF PE UE OE ZE DE IE
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FSTSW

Store Status Word

8087/80287/80387

Legal Forms

FSTSW AX
FSTSW meml6
FNSTSW  AX

FNSTSW meml6

Description

AX « SW
memlé « SW
AX « SW
meml6 « SW

This instruction stores the contents of the 80387 status word in memory or in the
AX register of the 80386. The FSTSW form of the instruction checks for unmasked
exceptions before the control word is stored, while FNSTSW does not,

Exceptions

SF PE UE OE ZE DE IE
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FSUB 8087/80287/80387
Subtraction

Legal Forms

FSUB ; ST(1) « ST - ST(1); pop();
FSUB mem32 ; ST « ST - mem32

FSUB mem64 ; ST « ST - mem64

FSUB ST(n) ; ST « ST - ST(n)

FSUB ST, ST(n) ; ST « ST - ST(n)

FSUB ST{n), ST  ; ST(n) & ST(n) - ST

FSUBP ST, ST(n) : ST « ST - ST(n): pop();
FSUBP ST(n), ST  ; ST(n) « ST(n) - ST: pop():
Description

This instruction subtracts the specified operands and stores the result on the 80387
stack as shown above. Optionally, the top of stack is also popped.

If you specify a 32-bit or 64-bit real memory operand, it is converted to temp real
format before it is subtracted from ST.

If any real value is subtracted from infinity or infinity is subtracted from any real
value, the result is infinity. Subtracting two infinities of the same sign is an invalid

operation.
Exceptions
SF PE UE OE ZE DE IE
X X X X = X X
Examples
Before After
ST 9.81
ST (1) 6.3 ST 3.51
ST (2) 72.0 ST (1) 72.0
FSUB
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ST
ST (D
ST (2)

Before

9.81

6.3

72.0

After
ST 7.61
ST (1) 6.3
ST (2) 72.0

FSUB DWORD PTR [ESI+4]

Memory pointer is short real 2.2.
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FSUBR 8087/80287/80387

Subtraction Reversed

Legal Forms

FSUBR ; ST(1l) « ST(1) - ST; pop();
FSUBR mem32 ; ST « mem32 - ST

FSUBR mem64 ; ST « mem64 - ST

FSUBR ST(n) ; ST « ST(n) - ST

FSUBR ST, ST(n) : ST « ST(n) - ST

FSUBR ST(n), ST : ST(n) « ST - ST(n)

FSUBRP ST, ST(n) ; ST « ST(n) - ST; pop();
FSUBRP ST(n), ST ;: ST(n) « ST - ST(n); pop();
Description

This instruction subtracts the specified operands and stores the result on the 80387
stack as shown above. This instruction is equivalent to FSUB except that the
subtrahend and minuend are exchanged. Optionally, the top of stack is also
popped.

If you specify a 32-bit or 64-bit real memory operand, it is converted to temp real
format before it is subtracted from ST.

If any real value is subtracted from infinity or infinity is subtracted from any real
value, the result is infinity. Subtracting two infinities of the same sign is an invalid

operation,
Exceptions
SF PE UE OE ZE DE IE
2 e | e | = e | X
Examples
Before After
ST 9.81
ST (1) 6.3 ST -3.51
ST (2) 72.0 ST (1) 72.0
FSUBR
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ST
ST (1)
ST (2)

Before

9.81

6.3

72.0

After
S 7.61
ST (1) 6.3
ST (2) 72.0
FSUB DWORD PTR [ESI+4]

Memory pointer is short real 2.2,
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FTST 8087/80287/80387

Test for Zero

Legal Form
FTST ; compare (ST, 0.0)

Description

This instruction compares the top of stack with 0.0 and sets the 80387 condition
codes according to the results of the comparison.

The following table shows the condition code settings that result from the com-
parison function. FTST considers +0.0 and —0.0 to be equal.

Condition c3 c2 Cl1 co
ST > 0.0 0 0 - 0
ST<0.0 0 0 - 1
ST = 0.0 1 0 - 0
ST is a NaN 1 1 - 1

The 80387 condition codes are arranged in the status word so that C3, C2, and CO
map into the same bit positions as the ZF, PE, and CF bits of the 80386 EFLAGS
register. Thus, issuing the following instructions sets the 80386 flags as if the com-
parison had been performed on the 80386:

FTST ; Floating-point compare
FSTSW AX ; Store status word to AX
SAHF ; Store AH into flags

You can then use any conditional jump instruction (JE, JNE, JA, JAE, JB, or JBE) to
branch on the result of the comparison. Use JP to test whether ST is a NaN.

Unlike most arithmetic operations, FTST will signal the Invalid (IE) exception if ST
is a quiet NaN.

Exceptions
SF PE UE OE ZE DE IE
X|l=]=]-]=[x]x
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Example

Before
ST -37.37
ST (1) 1.0

368

ST
ST (1)

FIST

After

-37.37

1.0
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FUCOM 80387

Unordered Compare

Legal Forms

FUCOM ; compare (ST, ST(1))
FUCOM  mem32 ; compare (ST, mem32)
FUCOM  mem64 ; compare (ST, memé64)
FUCOM ST(n) ; compare (ST, ST(n))
FUCOMP ; compare (ST, ST(1)); pop()
FUCOMP mem32 ; compare (ST, mem32); pop();
FUCOMP  mem64 ; compare (ST, mem64); pop();

FUCOMP ST(n) : compare (ST, ST(n)); pop();
FUCOMPP ; compare (ST, ST(1)); pop(); pop();:
Description

This instruction is identical to FCOM except that no exceptions are signaled if either
operand in the compare function is a quiet NaN, (the comparison is unordered).
FUCOM executes the function compare (opl1, op2) and sets the 80387 condition
code according to the results of the comparison. The 80387 stack is optionally
popped once or twice,

The following table shows the condition code settings that result from the compare
function. FUCOM considers +0.0 and —0.0 to be equal.

Condition c3 c2 Ci co
opl > op2 0 0 - 0
opl < op2 0 0 = 1
opl = op2 1 0 - 0
unordered 1 1 - 1

(NaN compared)

The 80387 condition codes are arranged in the status word so that C3, C2, and C0O
map into the same bit positions as the ZF, PF, and CF bits of the 80386 EFLAGS
register. Thus, the following instructions set the 80386 flags as if the comparison
had been performed on the 80386:

FUCOM op ; Floating-point compare
FSTSW AX ; Store status word to AX
SAHF ; Store AH into flags

You can then use any conditional jump instruction (JE, JNE, JA, JAE, JB, or JBE) to
branch on the result of the comparison. Use JP to test for unordered comparison,
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Exceptions

SF PE UE OE ZE DE IE

p,) || o R [ (S (8 1 1 ¢

Example
Before After

ST -6.3

ST (1) 7210.0 ST 7210.0
0.1 ST (1) 0.1

FUCOMP ST(2)
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FWAIT 8087/80287/80387
Wait Until Not Busy

Legal Form
FWALT

Description

This is the 80386 WAIT instruction, but many assemblers allow you to encode it as
FWAIT because it relates to the NDP. FWAIT places the 80386 into an idle state until
the BUSY\ pin is inactive. If the BUSY\ pin is inactive when the instruction is exe-
cuted, no idle occurs. The BUSY\ pin on the 80387 is held active while the NDP is
performing a floating-point instruction, Execute this instruction before any 80386
instruction that will use a value stored by the coprocessor.

Exceptions
SF PE UE OE ZE DE IE
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FXAM 8087/80287/80387
Examine Top of Stack

Legal Form

FXAM : CC « examine (ST)

Description

This instruction sets the condition code bits in the 80387 status word (SW) accord-
ing to the value of the top of stack. The following table indicates the settings that
can arise based on different values of ST.

ST c3 C2 c1 Co
Unsupported® 0 0 § 0
NaN 0 0 ] 1
Valid (normal) 0 1 s 0
Infinity 0 i 5 1
Zero 1 0 S 0
Unused (TW = empty) 1 0 5 1
Denormal 1 1 s 0
Unused (TW =empty) 1 1 s 1

The s bit in Cl is set to the sign of the value of ST, with 0 indicating a positive value
and 1 indicating a negative,

Exceptions
SF PE UE OE ZE DE IE

*Unsupported values are special bit patterns that were valid for the 8087 or 80287 but are no longer
supported. These include pseudo-NaN, pseudo-zero, pseudo-infinity, and unnormals.
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Example
Before After
ST 2 ST —Ae)
ST (1) 46.0 ST (1) 46.0
FXAM
GG €1C;
Lof1]1]1]
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FXCH 8087/80287/80387
Exchange Stack Elements

Legal Forms

FXCH ; temp « ST; ST « ST(1); ST(1l) « temp
FXCH ST(n) ; temp « ST; ST « ST(n); ST(n) « temp
Description

This instruction swaps the contents of the specified stack registers. This allows
values to move to the top of stack, which is the standard operand location for many
80387 instructions,

Exceptions
SF PE UE OE ZE DE IE
x - - - - - -
Example

Before After
ST 3.0 ST 1.0
ST (1) 2.0 ST (1) 2.0
ST (2) 1.0 ST (2) 3.0

FXCH
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FXTRACT 8087/80287/80387

Extract Floating-Point Components

Legal Form

FXTRACT i temp « ST; ST « exponent(temp)
; push(fraction(temp))

Description

This instruction breaks the top of stack into its constituent parts, the significand and
the exponent. The exponent is stored as a true, unbiased value, not as just the bit
pattern in the exponent field of the floating-point representation. This operation
leaves the fraction or significand on the top of stack and the exponent at ST(1). The
original value is destroyed.

If the original top of stack is 0, the exponent portion is set to negative infinity.

Exceptions
SF PE UE OE ZE DE IE
X = = = X X X
Example
Before After
ST 1,59
ST 1.59 x 2 ST (1) 4.0

FXTRACT
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FYL2X 8087/80287/80387
Compute Y x log, X

Legal Form

FYL2X : temp « 109,(ST); pop(); ST « ST # temp

Description

This instruction pops the top of stack, takes the base 2 logarithm, and multiplies the
result by the new top of stack. Another way of expressing the function is:

ST(1) x log, ST

The initial top of stack must be a positive value, 0 through infinity. If it is not, the
results of the operation are undefined.

You can also use this instruction to compute logarithms with a base other than 2,
relying on the identity:

log,, x= (log, %) / (log, n)

The following code fragment illustrates this computation.

FLD1 310

FLD n B dlal)

FYL2X i log, n

FLD1 ; 1.0, logp n
FDIVP ST(1), ST i 1/109; n

FLD X ; X, 1/10g, n
FYL2X ; log, x * 1/1og, n
Exceptions

SF PE UE OE ZE DE IE
X [X | X[|X|X|X|[|X

Example
Before After
ST 8.0
ST (1) 0.01 ST 0.03
ST (2) 0.333 ST (1) 0.333
FYL2X
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FYL2XP1 8087/80287/80387
Compute Y x log, (X + 1)
Legal Form
FYL2XP1 ; temp « 10g,(ST+1.0); pop(): ST « ST * temp
Description

This instruction pops the top of stack, adds 1.0 to the value, takes the base 2
logarithm, and multiplies the result by the new top of stack. Another way of ex-
pressing the instruction is:

ST(1) x log, (ST + 1.0)

The initial top of stack must be within the range =1 + V2 /2< X <1 -2 /2, or the
result of the instruction is undefined.

This instruction is provided so that adding 1.0 to the top of stack and executing
FYL2X does not result in a precision loss. Because the FYL2XP1 function is com-
puted differently than the FYL2X instruction, a special range restriction exists.
FYL2XP1 is also useful in computing the arcsinh, arccosh, and arctanh inverse
hyperbolic trigonometric functions.

Exceptions
SF PE UE OE ZE DE IE
X X X < = X X
Example
Before After
ST 15.0
ST (1) 10.0 ST 40.0
ST (2) 7.7 ST (1) 7.7

FYL2XP1
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F2XM1

Compute 2* -1

8087/80287/80387

Legal Form

F2XM1

Description
This instruction replaces the current top of stack (ST) with the value of the function
25T — 1, However, the initial operand value must be within the range —0.5 < X £ +0.5
or the result of the operation is undefined.

Fleegalceial

The function 2% — 1, rather than the simpler 2%, is provided on the 80387 to ensure
precision when x is near 0 (for example, when computing hyperbolic trigonometric

functions).

‘Because the range of the F2XM1 instruction is narrow, subroutines to compute 2
must use FRNDINT and FSCALE to bring the instruction into a legal range and scale
the result to a proper value.

You can compute the general function x¥ by using the identity:

xv=2Xlog, x

and using the FYL2X and F2XMI instructions.

Exceptions
SF PE UE OE ZE DE IE
X X X = - X X
Example

Before
ST 0.01
ST (1) 3.0
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ST
ST (1)

After

0.0069

3.0
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Appendix A

POWERS
OF TWO

Exponent Decimal Value Hex Value
0 1 1
1 2 2
2 4 4
3 8 8
4 16 10
5 32 20
6 64 40
7 128 80
8 256 100
9 512 200

10 1024 400

11 2048 800

12 4096 1000
13 8192 2000
14 16384 4000

15 32768 8000

16 65536 10000

20 1048576 100000

32 4294967296 100000000




Appendix B

ASCII
CHARACTER
SET

Low-Order High-Order Bils

Rits 0000 0001 0010 0011 0100 0101 0110 0111
0000 NUL DLE space 0 @ P p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 d 2 B R b r
0011 ETX DC3 # 3 G S c S
0100 EOT DC4 $ 4 D T d l
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f %
0111 BEL ETB 4 7 G W 2 W
1000 BS CAN ( 8 I X h X
1001 HT EM ) 9 I Y i y
1010 LF SUB . : ] Z j Z
1011 VT ESC + : K | k {
1100 FF FS , < L \ 1 1
1101 CR GS - = M ] m }
1110 SO RS ; > N A n ~
1111 SI US / ? 0 = 0 RUB
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OPCODE
TABLE

The following opcode tables aid in interpreting 80386 object code. Use the high-
order 4 bits of the opcode as an index to a row of the opcode table; use the low-
order 4 bits as an index to a column of the table. If the opcode is OFH, refer to the
2-byte opcode table, and use the second byte of the opcode to index the rows and
columns of that table.

Key to Abbreviations

Operands are identified by a two-character code of the form Zz. The first character,
an uppercase letter, specifies the addressing method; the second character, a lower-
case letter, specifies the type of operand.

Codes for Addressing Method

A: Direct address. The instruction has no mod r/m byte; the address of the operand
is encoded in the instruction; no base register, index register, or scaling factor can
be applied—for example, far JMP (EA).

C: The reg field of the mod r/m byte selects a control register, for example, MOV
(OFH 20H, OFH 22H).

D: The reg field of the mod r/m byte selects a debug register, for example, MOV
(OFH 21H, OFH 23H).

E: A mod r/m byte follows the opcode and specifies the operand. The operand is
either a general register or a memory address. If it is a memory address, the address
is computed from a segment register and any of the following values: a base register,
an index register, a scaling factor, or a displacement.

* Adapted and reprinted by permission of Intel Corporation, copyright 1986.
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F: Flags register.

G: The reg field of the mod r/m byte selects a general register—for example, ADD
(0OH).

I: Immediate data, The value of the operand is encoded in subsequent bytes of the
instruction.

J: The instruction contains a relative offset to be added to the instruction pointer
register—for example, JMP short, LOOP.

M: The mode r/m byte may refer only to memory—for example, BOUND, LES,
LDS, LSS, LFS, LGS,

0: The instruction has no mod r/m byte; the offset of the operand is coded as a
word or doubleword (depending on address size attribute) in the instruction. No
base register, index register, or scaling factor can be applied—for example, MOV
(AOH-A3H).

R: The mod field of the mod 1/m byte may refer only to a general register—for ex-
ample, MOV (OFH 20H, OFH 26H).

8: The reg field of the mod r/m byte selects a segment register— for example, MOV
(8CH, 8EH).

T: The reg field of the mod r/m byte selects a test register—for example, MOV
(OFH 24H).

X: Memory addressed by DS:SI—for example, MOVS, COMPS, OUTS, LODS, SCAS.
Y: Memory addressed by ES:DI—for example, MOVS, CMPS, INS, STOS,

Codes for Operand Type

a: Two single-word operands in memory or two double-word operands in
memory, depending on operand size attribute (used only by BOUND).

o

: Byte (regardless of operand size attribute).
Byte or word, depending on operand size attribute,
: Doubleword (regardless of operand size attribute).

: 32-bit or 48-bit pointer, depending on operand size attribute.

AT O

6-byte pseudodescriptor.

s

Word or doubleword, depending on operand size attribute.

w: Word (regardless of operand size attribute).
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Register Codes

When an operand is a register encoded in the opcode, the register is identified by
its name, for example, AX, CL, or ESI. The name of the register indicates whether
the register is 32 bits, 16 bits, or 8 bits. A register identifier of the form eXX is used
when the width of the register depends on the operand size attribute; for example,
eAX indicates that the AX register is used when the operand size attribute is 16 and
that the EAX register is used when the operand size attribute is 32.
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One-Byte Opcode Table
0 1 2 3 4 5 6 7
0 ADD ADD ADD ADD ADD ADD PUSH POP
Eb,Gb Ev,Gv Gb,Eb Gv,Ev ALIb eAX v ES ES
1 ADC ADC ADC ADC ADC ADC PUSH POP
.| Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX v 5§ SS
AND AND AND AND AND AND :
2 Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX Iv Y D)
3 XOR XOR XOR XOR XOR XOR S AAA
: Eb,Gb Ev,Gv Gb,Eb Gv,Ev ALTb eAX,Iv et
4 INC INC INC INC INC INC INC INC
eAX eCX eDX eBX eSP eBP eSI eDI
5 PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH
eAX eCX eDX eBX eSP ¢BP es] eDI
, BOUND | ARPL i LR e
6 | PUSHAD | POPAD GvMa Ew RW ES: GS: OPSIZE: |ADRSIZE:
Al JNO JB JNB JZ INZ JBE JNBE
Ib Jb b Ib Jb Jb Ib Ib
8 Group 1 | Group 1 Group 1 | TEST TEST XCHG XCHG
i Eb,Ib Lv,Iv Ev,Ib Eb,Gb Ev,Gv Ev,Gb Ev,Gv
9 NOP XCHG XCHG XCHG XCHG XCHG XCHG XCHG
eCX,eAX | eDXeAX | eBX,eAX | eSPeAX | eBPeAX | ESI,eAX | eDI,eAX
MOV MOV MOV MOV ‘ . )
A ALOb | eAXOv | ObAL | OveAx MOVSB [MOVSW/D| CMPSB [CMPSW/D
B MOV MOV MOV MOV MOV MOV MOV MOV
AL,Ib CL,Ib DL,Ib BL,Ib AH,Ib CH,Ib DH,Ib BH,Ib
Group 2 | Group 2 [RET(near) LES LDS MOV MOV
C ;
Eblb | Evib e (BEL@eDI e o v Gy | Ebib || Eviv
Group 2 | Group 2 | Group 2 | Group 2
R Evl | Eber || Ever (| AAMIlEAAD ok
E LOOPNE | LOOPE LOOP JCXZ IN IN ouT ouT
Jb Jb Jb Tb ALIb | eAXIb | IbAL eAX
x REP ; Group 3 | Group 3
F LOCK REPNE REPE HLT CMC Eb Ev
NOTE: ALL numbers are in hex, (continued)
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Appendix C: Opcode Table

8 9 A B C D E F
OR OR OR OR OR OR PUSH 2-byte
Eb,Gb Ev,Gv Gb,Eb Gv,Ev ALIb eAX,Iv CS escape
SBB SBB SBB SBB SBB SBB PUSH POP
Eb,Gb Ev,Gv Gh,Eb Gv,Ev ALTIb eAX v DS DS
SUB SUB SUB SUB SUB SUB cs: DAS
Eb,Gb Ev,Gv Gb,Eb Gv,Ev ALIb eAX,Iv : .
CMP CMP CMP CMP CMP CMP DS: AAS
Eb,Gbh Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX v i
DEC DEC DEC DEC DEC DEC DEC DEC
eAX eCX eDX eBX esSp eBP eSl eDI
POP POP POP POP POP POP POP POP
eAX eCX eDX eBX esSP eBP eSl eDI
PUSH IMUL PUSH IMUL INSB | INSW/D | OUTSB [OUTSW/D
Iv Gv,Ev,Iv Ib Gv,Ev,Ib | Yb,DX Yv,DX DX, Xb DX Xy
JS JNS JP JNP JL JNL JLE JNLE
Jb Jb Jb Ib b Ib Ib Jb
MOV MOV MOV MOV MOV LEA MOV POP
Eb,Gb Ev,Gv Gb,Eb Gv,Ev Ew,Sw Gv,.M Sw,Ew Ev
g PUS 3
CBW CWD il WAIT EUSHE HORE SAHF LAHF
Ap Fv Fv
TEST TEST ’ 3 3 il .
ALIb eAX Iy STOSB [STOSW/D| LODSB |LODSW/D| SCASB |SCASW/D
MOV MOV MOV MOV MOV MOV MOV MOV
eAX v eCX,lv eDX Iv eBX,Iv eSPIv ¢BPIv eSLLIv eDI Iv
ENTER o RET far INT INT x
Tw,Ib LEAVE o 3 b INTO IRET
ESC ESC ESC ESC ESC ESG ESC ESC
0 1 2 3 4 5 6 7
CALL JMP JMP JMP IN IN OuUT ouT
Av Iv Ap Jb ALDX | eAX,DX | DXAL | DXeAX
GLE STC CLI STI CLD STD Group 4 | Group 5
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Two-Byte Opcode Table (first byte is OFH)

6

0 1 2 ) 4 5 6 7
LAR LSL
Group 6 | Group 7 GUEY | Gy Ew CLTS
MOV MOV MOV MOV MOV MOV
Cd,Rd Dd,Rd Rd,Cd Rd,Dd Td,Rd Rd,Td
JO JNO JB JNB JZ INZ JBE JNBE
Jv Jv Jv Jv Jv Jv v Jv
SETO SETNO SETB SETNB SETZ SETNZ | SETBE | SETNBE
Eb Eb Eb Eb Eb Eb Eb Eb
PUSH POP BT SHLD SHLD
FS FS Ev,Gv | Ev,Gv,Ib | Ev,Gv,CL
LSS BTR LES LGS MOVZX | MOVZX
Mp Ev,Gv Mp Mp Gv,Eb Gv,Ew
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Two-Byte Opcode Table (continued)

Appendix C: Opcode Table

8 9 A B (& D E F
IE JNS JP JNP JL JNL JLE JNLE
Jv Jv Jv Jv Jv v v Jv
SETS SETNS SETP SETNP SETL SETNL SETLE | SETNLE
Eb Eb Eb Eb Eb Eb Eb Eb
PUSH POP BTS SHRD SHRD IMUL
GS GS Ev,Gv Ev,Gv,Ib | Ev,Gv,CL Gv,Ev
Group 8 BTC BSF BSR MOVSX | MOVSX
Ev,Ib Ev,Gv Gv,Ev Gv,Ev Gv,Eb Gv,Ew
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Opcodes Determined by Bits 5, 4,
and 3 of mod r/m Byte: mod nnn r/m

000 001 010 011 100 101 110 111
1 ADD OR ADC SBB AND SUB XOR CMP
2 ROL ROR RCL RCR SHL SHR SAR
3 | TEST NOT | NEg | MUL | IMUL | DIV IDIV
Ib/Iv AL/eAX | AL/eAX | AL/eAX | AL/eAX
4 INC DEC
Eb Eb
5 INC DEC CALL CALL JMP JMP PUSH
: Ev Ev Ev Ep Ev Ep Ev
6 SLDT STR LLDT LTR VERR VERW
Ew Ew Ew Ew Ew Ew
- SGDT SIDT LGDT LIDT SMSW LMSW
Ms Ms Ms Ms Ew Ew
8 BT BTS BTR BTC
80387 Extensions

The following tables show the opcode map to the 80386 instruction set for the 80387
extensions. The operand abbreviations for these tables are:

Es: Effective address, short real (32-bit)
El: Effective address, long real (64-bit)
Et: Effective address, temp real (80-bit)
Ew: Effective address, word (16-bit)

Ed: Effective address, doubleword (32-bit)
Eq: Effective address, quadword (64-bit)
Eb: Effective address, BCD (80-bit)

Ea: Effective address (no operand size)
ST(#): Stack element i

ST: Stack top
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Format: mod nnn r/m
ESC 0
nni
000 001 010 011 100 101 110 111
00 FADD | FMUL | FCOM | FCOMP | FSUB | FSUBR | FDIV | FDIVR
10 Es Es Es Es Es Es Es Es
FADD | FMUL | FCOM | FCOMP [ FSUB | FSUBR | FDIV | EDIVR
mod=11 ST,ST() | ST,ST(G) | ST,STG) | ST,STG) | ST,STG) | ST,STG) | ST,STG) | ST,ST()
i=r/m
ESC 1
nnn
000 001 010 011 100 101 110 111
mod_g? FLD FST FSTP | FLDENV | FLDCW [FSTENV | FSTCW
10 Es Es Es Ea Ew Ea Ew
r/m | FLD FXCH | e . :
000| st | sty | FNOP FCHS | FLD1 | F2XM1 | FPREM
FLD | EXCH
001 ; ; =
ST | ST FABS | FLDL2T | FYL2X [FYL2XP1
FLD
010 AH FLDL2E | FPTAN | FSQRT

ST | s12)
FLD FXCH
011
st | 3
FLD FXCH
10
O sty | st

FLDPI [FPATAN | FSINCOS

mod=11
FTIST | FLDLGZ2 |FXIRACT |FRNDINT

FID | EXCH

101 F FPREMI | FS
L s XAM | FLDLNZ MI | FSCALE
FLD | FXCH

110 DECSTP | FS
S FLDZ |FDE FSIN

111| FLD | FXCH FINCSTP | FCOS

ST(7) ST
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00
mod=01
10

mod=11

00
mod=01
10

mod=11

r/m

00

mod=01
10

mod=11

394

ESC 2
nnn
000 001 010 011 100 101 110 111
FIADD | FIMUL | FICOM |FICOMP | FISUB | FISUBR | FIDIV | FIDIVR
Ew Ew Ew Ew Ew Ew Ew Ew
FUCOMPP®
*r/m=5
ESC 3
nnn
000 001 010 011 100 101 110 111
FILD FIST FISTP FLD FSTP
Ew Ew Ew Et Et
Group 3a
Group 3a; mod=11, nnn=100
000 001 010 011 100 101 110 111
(FEND) | (FDISI) | FCLEX | FINIT |(FSETPM)
ESC 4
nnn
000 001 010 011 100 101 110 111
FADD FMUL | FCOM | FCOMP | FSUB | FSUBR FDIV FDIVR
El El El El El El El El
FADD FMUL | FCOM | FCOMP | FSUB | FSUBR FDIV FDIVR
ST(),ST | ST(1),ST | STG),ST | ST(),ST | ST(),ST | ST(),ST | ST(),ST | ST),ST
i=r/m
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ESC5
nnn
000 001 010 011 100 101 110 111
e FLD FST | FSIP | FRSTOR FSAVE | FSTSW
10 El El El Ea Ea Ew
FFREE FST | FSTP |FUCOM [FUCOMP
mod=11 ST(i) st) | st | st | st
i=r/m
ESC 6
nnn
000 001 010 011 100 101 110 111
FIADD | FIMUL | FICOM |FICOMP| FISUB | FISUBR | FIDIV | FIDIVR
Ed Ed Ed Ed Ed Ed Ed Ed
FADDP | FMULP FCOMPP*| FSUBP | FSUBRP | FDIVP | EDIVRP
ST(),ST | STG),ST ST(),ST | STG),ST | STG),ST | STG),ST
*r/m=001
ESC 7
nnn
000 001 010 011 100 101 110 111
FILD FIST | FISTP | FBLD | FILD | FBSTP | FISTP
Ed Ed Ed Eb Eq Eb Eq
FSTSW*
AX
*r/m=000
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Appendix D
INSTRUCTION
FORMAT AND
TIMING*

This appendix describes the 80386 instruction set. A table lists all instructions with
instruction encoding diagrams and clock counts. Details of the instruction encoding
are provided in the following sections, which describe the encoding structure and
the definition of fields occurring within 80386 instructions.

80386 Instruction Encoding
and Clock Count Summary

To calculate elapsed time for an instruction, multiply the instruction clock count, as
listed in the table on the following page, by the processor clock period (for ex-
ample, 62.5 ns for an 80386-16 operating at 16 MHz (32 MHz CLK2 signal)).

For more information on the encodings of instructions, refer to “Instruction Encod-
ing,” which explains the structure of instruction encodings and defines the encod-
ings of instruction fields.

Instruction clock count assumptions

1. The instruction has been prefetched and decoded and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying processor access to the bus,
4. No exceptions are detected during instruction execution.
5

. If an effective address is calculated, it does not use two general-register compo-
nents. One register scaling and displacement can be used within the clock counts

* Adapted and reprinted by permission of Intel Corporation, 1986.
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shown. However, if the effective address calculation uses two general-register
components, add one clock to the clock count shown.

Instruction clock count notation

1.

If two clock counts are given, the smaller one refers to a register operand, and
the larger one refers to a memory operand.

. n=number of times repeated.

. m= number of components in the next instruction executed, where any

displacement counts as one component, any immediate data counts as one com-
ponent, and each of the other bytes of the instruction and prefix(es) counts as
one component.

To compute 80286 clock counts, add one clock to each effective address calculation
that uses the base + index form of addressing. To compute 8086 clock counts, add
the count from the table below according to the type of address calculation used.

EA Type Clocks
Displacement only 6
Base or index only 5
Index + displacement 9
Base + displacement 9
Base + index 7or8
Base + index + 11 or 12

displacement

Instruction notes for Table

The following are instruction notes for the table titled “80386 Instruction Set Clock
Count Summary,” which begins on page 400.

Notes a through ¢ apply to 80386 real address mode only.

a.

b.

This is a protected-mode instruction. Trying to execute in real mode results in
exception 6 (invalid opcode).

Exception 13 fault (general protection) occurs in real mode if an operand refer-
ence is made that partially or fully extends beyond the maximum CS, DS, ES, FS,
or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not pres-
ent) occurs in real mode if an operand reference is made that partially or fully
extends beyond the maximum S8 limit.

This instruction may be executed in real mode where it initializes the CPU for
protected mode,

Notes d through g apply to 80386 real address mode and 80386 protected virtual
address mode.

d.

The 80386 uses an early-out multiply algorithm. The number of clocks depends
on the position of the most significant bit in the operand (multiplier).
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e.

f.

g

Appendix D: Instruction Format and Timing

Clock counts are minimum to maximum. To calculate actual clocks, use the
following formula:
Actual Clock = if m < > 0 then max ([log, Im |1, 3) + 6 clocks:

if m = 0 then 9 clocks (where m is the multiplier)
An exception might occur, depending on the value of the operand.
LOCK is asserted, regardless of the presence or absence of the LOCK prefix.

LOCK is asserted during descriptor table accesses.

Notes h through r apply to 80386 protected virtual address mode only:

h.

Exception 13 fault (general protection violation) occurs if the memory operand
in CS, DS, ES, FS, or GS cannot be used due to a segment limit violation or to an
access rights violation. If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.

For segment load operations, the CPL, RPL, and DPL must agree with the privi-
lege rules to avoid an exception 13 fault (general protection violation). The seg-
ment’s descriptor must indicate “present” or exception 11 (CS, DS, ES, FS, or GS
not present). If the SS register is loaded and a stack segment not present is
detected, an exception 12 (stack segment limit violation or not present) occurs.

All segment descriptor accesses in the GDT or LDT made by this instruction
assert LOCK to maintain descriptor integrity in multiprocessor environments.

k. JMP, CALL, INT, RET, and IRET instructions referring to another code segment

cause an exception 13 (general protection violation) if an applicable privilege
rule is violated.

An exception 13 fault occurs if CPL is greater than 0. (0 is the most privileged
level.)

An exception 13 fault occurs if CPL is greater than IOPL,

. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL

and VM fields of the flag register are updated only if CPL is equal to 0.

. The PE bit of the MSW (CR0) cannot be reset by this instruction. Use MOV into

CRO to reset the PE bit.

. Any violation of privilege rules as applied to the selector operand does not cause

a protection exception; rather, the zero flag is cleared.

. If the coprocessor’s memory operand violates a segment limit or segment access

rights, an exception 13 fault (general protection exception) occurs before the
ESC instruction executes. An exception 12 fault (stack segment limit violation or
not present) occurs if the stack limit is violated by the operand’s starting address.

The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of
a code segment or an exception 13 fault (general protection violation) occurs.

399



(D310 °81 'S 'S8 D 'SH)
V/N V/N ¥/N fry q 12 £ | toog bBais of | TLL10000 | 12151321 Juatudag
(W0 BOYS) (SC1 40 'SS 'SD "SH)
8 0z < fry q 1z L [trrebausomo | ID1stEanuswEag
8 S S 4 q ¥ ¥ [ om0 | (ULIO] LOYS) 1215139y
VA+LT/8 < S | q < < [m72" 000 pou] T111000T | Asowait /121813y
dod = dod
V/N L1 LT y q 81 81 [__ooogotio | [[eysnd = VHSNd
V/N ¢ € q q z z e1ep 31eipauwi [ 0sOTOTL0 | erpauy
Yi/N VN V/N 4 q Z Z | 000E Bais or| TT110000 | b5 m%ﬂmw%m%vﬂmﬂww
(ULIOJUIOUS)
or ¢ ¢ q q z z [0T1z B335 000 |  (SC120'S8'SD ‘S Imisiaes wawAag
L € € q q z z [B25 otoo | (ULIOJIOYS) 12151850
VA+HOL/LT & S q q S < [=72 o1t pou] TITELTIT | Asowaun /121518
ysng = HSNd
¥/N ¥/N V/N q q 9/¢ 9/€ [m73~ B34 pou] MITOLIOT | 11110000 | Asowsu /551331 Wwody 1s18ay
UOISUNXD OIZ LA A0 = XZAOW
V/N V/IN V/N q q 9/€ 9/€ [w72 624 pou] RITELIOL | TIT10000 | Atowsul/ 12151831 0011 1215184
UOISUIIND WSS I A0 = KSAOW
VH6/T /T ¢/e q q Z/T /e [w73E 6335 pou] 00110001 | Asowaw /10151851 01 151821 jUaEag
VH+B/T GL/LT <z fry q 61/81 <z [[@74E Baas pou] 01110001 | 2151821 1uawdas o1 Aowau 1218133y
01 € ¢ q q z z juamsde|dsip L1ns[__ ATO00TOT | (WHOJUOUS)AIOWSUI OLIOEMUNIOY
ot < < 4 q ¥ ¥ jusmadsedsip L(ni[  MODOOTOT | (UMOJUOUS)IOTRININIIE 01 AIOWDN
¥ z z z Z eqep azeipaumi [ Bad MIIOT | (ULIOJUOYS)I21ST31 O131EIpat]
VH+0L/¥ £/ €T Y q /T /e e3ep ajerpamul [m/4 00D pou| MTT000TT | Asouu /12151831 01 S1ETpauIu]
VA+6/2 iz C/Z L] q /2 /2 72533 pou] MI0T000T | 181821 o Asowaw /1215180y
Vd+8/2 €/T /T q q Z/T T/ [m7a G4 pou] A00T000T | Asowaul 12151831 01 1215183y
BAOW = AOW
I3jsuei] EIR( [EIU3D
INnoo | Wd Wi Wd wH Wd Wi
ADOTD
9808 yzzmwmwwgu SAION INNOD IO LVIWHO NOLLDIHISNI

AJewrmng }o0[) 19§ UONONIISUL 98€08

400



(PENUITOD)

ot € ¢ u q y ¥ [ ootrroot | sSe[J usnd = HSId
g < < u'y q < < E sgepydod = 4dOd
4 z z z z [ xrerront | 8e]J WL HY PEOT = JHVT
4 z z [4 4 [ Totonnin | Fepy Aueusundwon = DD
V/N " A I 2 < < [ ottooooo TTLT0000 | FE]] PAYIILMS ¥SELIED|D = S11D
z ¢ ¢ w € ¢ [__otermi | Sepyajqeus idniusiurea)) = 10
4 4 z Z z [__oortrma | FejJ UoNANP IEID = AID
z & z z 7 E Zepy ALEd 183D = 1D
fonuo) Sepy
V/N Vi/N Y/N q @ L =73 634 pou| 01001101 | TTT10000 | sg oj1uod peoT =597
V/N V/N V/N q e L [w7a 6o pom]  ToTOITOL | TT110000 | g ormuiod peot =591
V/N V/N Vi/N q <z L |=/2 B34 pom] 00101101 | TTT10000 | S4 o1mutod peot = §41
VH+91 Iz L q 4 L [w/4 Bad pon] 00T000TT | gg oumuod peot=ga1
VA+91 Iz L q b L |2/ Bad pou] TOTO00TT | sa omuod peot = a1
[onuo) yuawdas
YHI+Z < € T T [mra B3 pou] TOTI000T | 12151321 01 Vg peoT = VAT
3 ¢ ¢ w 25T/ 45 (B 524 [ =rmonn vod 3jqeies
0ot < < r 8 01 ¥Zi Jaqunu 1Jod | MTT00TLT | uod paxig
onnding = 100
2 < < w olZlel €1 124 [ #otrorir | uod qeLEA.
(1] 8 c c w 97/ +0 I 924 Jaqunu jiod | MOTOOTIT | vod paxiyg
m_”””umm”m awoajndug = NI
unog ¥1) .
i € ¢ € ¢ E JOTE[NILNIOE LM“WHNMMWM
VA+LI/E /e </ U3 1q <€ </¢ [w/a B34 pom]  mrTO00OT | 2151331 A AIOWa /121818
S8UBYDXT = DHDX
V/N 61 61 y q ¥ 52 [_tooootia | 112 dod = vaoa
Fanupuo? ‘I3JSUBl] Ele( [BI2U5
INOD Wd wWd Wd wWH wWd Wy
IqDOTD
9808 ._.zb.wwn W_M.OAU SILON INNOD DO IVWHOA NOLLOMYISNI

401



¥ T 4 4 z e3Ep 318 Lpaumi] E IOVE[NITNIIE EE%HMW%W%W
VI+LL/F LT LIT q q 1T LT ejep ajeipawnt [EW/J TOT pou| Ms00000T | AKsowan /13151823 woxy AI0waW
VA+91 /2 0 q q 9 9 [w73 B=d pou| MIOT0T00 | 12181820 WOy AJowapy
Via+6 L L q q L L [/ Beipom]  mooTo100 | A10umstn woy 1215133y
¢ 7 z z z [m7a Bad pou] #poT0100 | 19151501 WO} 121S1 35
PEngqng = gns
z z z z z [B21_ oooto | (uL0j 10Us) IMS1FAY
VA+SL/E i Lz 4 q 9/ 9/ [=/2 o000 pou| RITIIIIL | Asowour /151824
TUW210U] = DN
(ULI0] LIOUS)
2 ¢ ¢ z z e3ep a3eipaww) [ mOTOT000 | JOTRULNDYE O) A)BIPALITU]
VA+LT/% L€ LIE q q LT /T e1ep 2a3ejpamut [w/a 010 pou | #s00000T | Asowsw /12181821 0) 31e1pauIu]
VI+9T L L q q 9 9 [mza Bad pow| MT001000 | 151301 0) AI0twapy
Va+6 L L q q L L [m7a Bas pou] M0o0ToDo | Asoum 0115183y
€ z z z z [m7s B34 pou] MPODTO00 | 181a1 01 10183y
Ao qim ppy =0av
(uojuoys)y
v € ¢ z z e1ep 23eipawut [ MOT00000 | IOJE[NNIOE ) STEIPALLUI]
VE+LI/ T £/ Lig y q £IT LT e3ep ajeipamay [w/3 ppo pou | MS00000T IO /1915182 O JTEIPIWII|
VH+O1 & i Yy q 9 9 w/3 Baa pou | R1000000 | 12181521 01 AJOWSpY
Va+6 L L q q L L [u7a Bai pou] ®0000000 | A3owaw 0 1151854
4 T z z z [wzs 631 pou] Mp000000 | 12151821 01 1215180y
PPV =QV
OPAWIY
z z z w € € [_zotiina | Se1Joiqeua1dnuLIUT RS = 11§
z z z z z [__Toorra | S]] UONISNIPIAS = (118
4 “ 4 z 4 E ey Aned12g =018
¥ z z € € [_ormmmoor | $8e1J UL HV 2901 = THVS
panujuos ‘Jonuo) Segy
INOOD Wd wWH Wd Wy Wd Wd
MD0TD
9808 EAW%%WQU STLON JINNOD IO LVIWHOS NOLIDHISNI

panuijuoy AJemnnng Y2010 135 BTONINISUL 98€08

402



(panujuod)

|mza pox pow] MITOTTIT | AJ0wWsw/J21si8a1 iis JOBnuwnaoy
(paudis) Aidnpnu 528310 = M1
V/N Y/N yp Pq WH-ZI/BE6 | F-T1/5E-6 PIOMIqNOd—
GET-8IT ¥Z/12 ¥e/12 y'p Pa SEVTEG | SI-TLT6 PIOM—
£8-0L 9L/€T oL/€L yp Pq LETIAT6 | L6 214g —randympy
[u7a™ oot pou] MITOTTIT | AJOWISU/IR1SI8ar YIIs JOIR[NINIOY
(pausisun) Adnnp = 10w
i3 ¢ ¢ 4 ¥ [rtiotoo | BENGNS JOJISN{PE [EWIDD(1 = SV
¥ € € ¥ 2 [trroot00 | PPRIOJISTIPE [Wa(l = ¥Va
¥ € € 4 ¥ [_Trrrmmoo | 12ENqNS 10] 1S0IPE [[DSY =S¥V
7 € € 4 y [Trrotion | PPEJ0J ISNIPE 18V = VWV
va+91/€ Lz Lz q q 9/2 9/z [m/2" 110 pow]  mrTOTIIT | usis o8ueyD = AN
(ULI0] LIOYS)
¥ € € z ri ejep aje|pauwwy g JOTE[NUINIOE YITAL S1ETPLTI]
VA+LL/® LiE LIe L q S/Z iz eiep ajeipammy (w/d  TTT pow] MS00000T | Asousaw /12151823 (IIA STRIpaTITI]
VH+91 1 L q q 4 9 [w7a B3 pou] RIDTIT00 | Asowsur i 11518y
VE+6 9 9 q q s S [@/2 B pow] mpoTITOO0 | Jsidas i Asowapy
& @ Z re ré, [®71 Bad pou] MPOTII00 | stdan s ssi8ay
aredwo) = JND
z T z z Z [ Bas 10070 | (U0} Boys) 215189y
VH+ST/E LIT LT q q 9/Z 9T 23ep ajeipsmmy [W/3 100 Bad | ATIIILIT | Asouaws 1218185y
W13 = DAQ
¥ 4 z Z z e38p 3je|paump E JOIB[NIUNO0E Eo.%%m&ﬂwmﬁw
VaA+LI/% L/ L/Z y q L/T LT eyep 2jeipammy [W/J 770 pow]  Mspooo0r | Asowsur/ssistSoruwon aerpIuwra
Va+91 L L q q 9 9 |uza B34 pow] MIOTI000 | 12951800 woay ASoWwspy
Vd+6 i ol q q £ s |wsa Bas pou | MOOTI000 | AJouwaur woay 12118y
¢ Z Z Z Z [u7a "Ba1 pom I MPOTI000 | 1215181 WOy 121518y
MOLIO] TIEM 19EAGNS = GFS
panuuos DPSTIPLIY
INOD Wd Wy Wd wWa Wd Wi
O [ INnoo 3o
9808 98708 SHION JINNOD DO LVINHOI NOLLDHISNI

403



(4HS PUE THS ‘UVS
“IVS MOY “ToY) Aued ySnoaq ioN
SUORINNSUL IR0 YIYS
21807
s z z z (4 [[_TO0OTI00T |  PIOMS[GNOp 01 PIOA LISAUOD = (IMD
z z z € € [_ooortoot | PIoMA 01 214G LSAUOD = MED
€8 ¥l ¥1 LT LT [ ototoooo | oorotorr | Adnmuz 0 1Snipe [[D8Y = WYV
09 o1 91 61 61 [ototoooo | TOTOTOIT | SPIAID 10 1SNIPE DSV = AVV
V/N V/N V/N u2 >q 9F/Eh 9¥/¢¥ pIOMAqNO—
061-591 82/SC 82/€T 2 a¥q 0€/LT 0e/iT PO —
SII-101 | 0z/L1 0Z/L1 g2 2'q ZT/61 7Z/61 NAg—I0SIAI
[e7a 111 pou] MTTOTIIL | sowsur/ 12181801 A I01g[numdy
(pausis) Spratp 1a8a1u] = ATAT
V/N V/N V/N yo >'q T¥/8¢ I¥/8¢ PIOMIGROC —
BO1-FF1 €L/TT CT/TT y= 2q CZ/TT CT/iE PO —
98-08 LT/FL LT/¥T ya 2q L1/%L LI/%L a1dg —1osIAIg
[m7a 011 pou] ATTOLIIT | Asowswr /19181851 AQIOIE[AIUNIY
(pausisum) apiaid = ATd
/N V/N uyp pa -zim6 | v PIOAIGNO—
VN VN y'p p'q T-TliE-6 | EIIE6 paom —
1215132101
e3ep ajetpawmt [uyd Bad uols_q 15010110 |  2wetpawiun s AI0wat /123518y
V/N V/N yp Pq F-ZI/BES IF—TLEE6 Promajgnog —
V/N V/N yp pP'q SZ-TUTT6 | SETWTT6 piom —
[w73~Ba. pou] TITIOTOT |  TITL0000 | Asowaw /1151891 i 1215183y
V/N Y/N Y/N H_.__u Unﬂ Ib-ZI/BE6 15 ZL/EEG PIOAMINOC—
091-821 ST/TT Sz/eT up Pq S-TUT6 | TG pion—
#01-08 LI/ LT/FL up p'g LI-ZLFI-6 | TG s14g —andnniy
P ‘OLIRLTY
Nnon | Wd Wi Wd wWH Wd wH
AD0TD
9808 H.zawwnwaU INNO2 DO IVIWHOS NOLIDHISNI

00 A $J20[D 395 UORINSU] 98€08

404



(PanUIIoI)

98208

VA+L1/¥ 9/¢ 9/€ 4 L c/e 232p ajeipamm [u/d D0 pol] ALIOTITT | AJowsur/31si8a1 pue elep lepatuu]
Ya+6/¢ 9/Z 9/2 4y /T L w72~ Bai pou] ®DT0000T | 12151331 Pue IO /121818y
1[N$31 OU ‘SBEY} O UONDUN puY = ISTL
14 € € 4 ré R3Ep 10 |paumt E JOTE[MIUNDOE Qﬁwﬁ%.v_mwﬁw
VAR LIE LiE q L/Z e3ep ajeipaemt [wza oo1 pom] MODOO00T | Atouwur /12151321 01 S1EIpata]
Va+91 L L 4 9 9 [275"Baa pou] MI000T00 | 1215181 01 Asowapy
Va+6 L L y L L [w7a Bax pom] %0000100 | Asowaur o] 115183y
£ z i rd z [w7a Bai pour] MPOOOTO0 | 12181801 01 1315189y
PUy =dgNy
VN V/N L/ L/ [e72 Boapow]  tortotor | tirroooo | 10 4q Asowaw /32151824
V/N ¥/N LiE /€ B3RP 11q-g paamy [u/a 34 poa | 00110101 | TI110000 | SeIpaunul Aq Asowat /121s18ay
SAANOPIYSUPIYS = AUHS
V/N W¥/N LI€ L/g [@/2 Baspow ] Totootor | triroooo | 10 Aq Asowaur /1218180y
V/N V/N L/E L/€  loqep 31q-g peww; [B/2_ Bed pow| 0OTOOTOT | TILL0000 | aerpatuut Aq Lsowau /13151508
S[MANOP =] YIS = (TTHS
4vs  IIT
¥HS TOT
I¥S/IHS 001
¥4 110
124 010
Hod 100
VN | ussues [ wguic | g 01/6 0/6 L 1noo
uoL3IINJISUL L] Nerpawut Aq Ao /aastday
UPHZRE | UHR/UHC | U4/ U4G q 01/6 01/6 e1ep 31q-g pammt [wyd 11} pow] MO00001T | 10 4q loursu /ss18ay
VH+E1/E LIE Lz q 0L/6 01/6 [wra 11 pou] MIOOIOTT | 1 Aq Asowau /3215180
[®73 111 pow]  moootoit | (DY pue 10Y) Aneo ydnory
¥/N U+B/U4C | U+8/U+C q LfE L/E unoo
e3ep 11q-g powuy [B/4 101 pow|  mgpooorr | ~rerpowmndqAsoussi/mnsigoy
UROZ/URE | U/ U+C | Usg/U4+G q LIS LIS [E72 11t pou] T00T0TL | T 4Aq Asouwsur/ ss18ay
VA+E1/Z LIT L/ q L/€ L/ [E72 1z pou] #O00T0TT | 1 4q Jowaw/ois18ay
panuitiod ‘DBoy
INNOD Wd wWa Wd Wd ot |
Mﬁuﬂwu INNODIIOT) STLON INOODMDOTD IVIWHOI NOLLOMMLISNI

405



[ < S q S < [ rrrotert | 214q 2L[SURLL = IVTX
C XVE/XV/TV
i ¢ ¢ u q ¥ 4 [ mmototor | wouypiomp/pios /2149 21015 = SOIS
<1 L L q q L L [ mrroter | PIOMD/ PIOM /314 UBIS = VDS
uod¥a
V/N < S ury q «87/8 1 823 [ #rmorio | orpromp/pios/a1fqinding =100
a1 S S Y q L L [[__motoorot | PIOAD/ PIOA /3140 A0 = SAOW
XVI/XV/ TV
zt < < q q S < [ "otmoror |  orpiomp/piosm/a14qpeo=Ssaol
wod ¥
20 ¢ | owe | 9 || a | [T oy piosp/pios/auaudul - SNI
apoy
7 8 8 4 q o1 or 0808 [ #itootor | promp/piom/a14qamedwod = SqND
1en3JLA
1uno) 12 uonemdruey Supng
VH+O1/E LIT LT q q 9/ 9/Z [uza ot0 pouf MITOTTIT | Asowauw /19151831 BaAU] = LON
(U110 1IOYS)
¥ € € z T ejep ajeipawsi [ MOTOTIO0 | JOTE|NUNIOE 0} AIRIPAUI]
VAL F LIE L€ q q LT L/T ejep ajetpamnt [m/d  DIT pou ] “0000001 | Asowa /12181521 0 DIRIPALILI]
VA+01 7. L y q 9 9 [E73 Baa pou] ATO0TI00 | 151301 01 Asowap
Vi+6 i L q q (& L |msa B3J pow| M000TI00 | Alouau o1 1s18ay
€ z z z z [w73 Bei pow]  ®pootico | 1os18a1 015150y
10 IASNINE = JOX
(ULIO] LOUS)
¥ € £ z i e3ep ajeipawmy [ MOTIO0000 | JOIE[NLINIOE 0 JNETPSIIU]
VI+L1/% L/ L/ 4 q LI LT ejep ajeipawmt fu/d 100 pou] M000000T | Asotuatu 1151851 01 21RIPSLULU]
VI+9I A L q q 9 c [mja— Bad pou] RT0T0000 | 1515321 01 IR
VE+6 L L q q L L [w72 B3y pou] — 'MoDTOO00 | Asowow o1 1518y
4 z z z z [=7s B3 pow] — poTo00O0 | 1s1da opas1doy
10=40
(LI0] LOUS)
¥ € ¢ z z e3ep sieipsuuy [ MOOTOTOL |  JOIBJAWNIOE PUE EIRp AIBIpaIuI]
panuijod ‘oxioy
INNOD Wd Wy Wd Wy Wd WH
ADOTD
9808 ANNODHDOTO SAION INNODMDOTI IVIWHOA NOLIDNHISNI

98208

pentguos AJeununs Yoo 135 UonInnsul 9gE08

406



V/N V/N 7IN y q £L/9 €1/ 551 pou | TT0t0%01 | TITT0000 ] 1sio1 ‘iotwau 1915180y

V/N V/N V/N y q 8/9 89 = T0L Fou]__ OTOTTIOL | TTT10000 | P AIOUBIL/13S15
135 pUB 1S 1] = ST

V/N ¥/N V/N q q 1/9 £1/9 I TrooTTer | TTTT0000 ] 121518901 ‘Aaowat /1S9y

V/N V/N V/N 4 a /9 /9 |[=3%p 3198 psomr [u/d  ort pow]  ororiror | TTiooo0 | SvEIpauI Kowau /s 3oy
19821 PUB 1S I = 4.1

VN Yy W - il €19 £1/9 w3 bed pom|  TIOILIOL | TIT10600 | 5181 LIowa /o518y

/N Y/N V/N 4 q 8/9 8/9  [e3ep 3ia-5 pewmi [w/a 111 pom | OTOTTIOE | 11110000 | FBRE SOuSt RN
.:—.UC._DT.HEOU PUEIS g = 219

¥/N V/N V/N Y q ZL/E /€ [E73 Bas pou] TT000T0T | TTIT0000 | 51821 ‘Kaouwrat Asidoy

V/N V/N ¥/N 4 q 9/¢ 9/€  |[=3=6 31g-g powu; [E/d 00T poE] _ GIGTTIOL | TI110000 | SrEIpauT ‘AI0Wa INs1Tay
1S2111] = 1]
V/N V/N V/IN 4 9 Ue+01 ug+01 [@/2_ Bt pow] tortrior | trtioooo | PSRAIUEIS I =HSH
V/N /N V/N ] q ug+01 uc+01 [E_b%3 pou] _coriiior | 11000 PIEALIOJ URDS 11E] = ASE
uvopemdiven g
upl+6 UE+H U+ q q Uc+< uc+C [ MTOTOTOT | DTO0TIIL Sus 21018 = SOIS I

usl+6 Ug+g Ug+< q q UZB+C ug+g | MTTI0T0T | OTO0TIIT | (XVE/XY/TV Pul))
BuIns UG = YOS ANJHY

uci+a ug+c ug+g Y q ug+C ug+c [ ATTTOIOT | TI00TTIT | (XVHI/XV/TV-uou putj)
Sums uexs = §¥DS 499
V/N Up+¢ Up4g wy q -sUS+02/.89]  UCHZT [ssa ] [_#ittotio | oreortit | Sumsinding = §1.10 494
ULL+6 U+C Uyr+6 4 q Ui+, U/ [ ™otootor |  ortootitt | SUINS A0 = SAOW dTH
UET+6 Up+¢ up+g q q U9+¢ un+< [_*ottotor | oroorrir | SULS PEOT = SAOT JAY
VN Up4G Ub4G wy q BOHZ/A000 L] UQHET E [ WOTTOTTO | OT00TIIT | Buisindur = SNT JTY8

uzZ+6 UG+S UG+S y q UG+S UG+S i [[_*ixcotor | owooriit | (yorewr puty)
N84 1D Supns aredwo) = SAND INAHY

(YoIEW-UoU puLy)
UzZ+6 UG+c UG+5 q q UG+S ug+< [ MTI00TOT | TIOOTIIL | Sups aredwio)) = SAWD Aday
X0 30 XD uriunod £q pateaday
uopemdiuey Surng pajeaday

INDCD Wda WH Wd wH Wd WH

u.ww% INAQODHIOTD STLON INNODMDOTD LVIWHOd NOLLONHISNI

98Z08

407



. (SS.L9BE) %SE1
V/N iy 1ze OR0R [ENIA 01 3SP1 087 WOL]
/N iy coe SS.1.08¢€ 013581 987 WOl
w4081 iy 8/Z SS.L9GZ O1S¥1 987 WO
(ss210ure.ted X) [2A3]
WHXE+06 Yy W4 XF+86 a8opaud 1uasaytp 01 21E3 [TED EIA
(s1orpwesed ou) Pas]
w+eg 1y w+06 aapand juaiagyip 01 9188 [[ED BIA
Wi 1yiy W49 [2A3] 28a1aud Swes 0191e8 [[B BIA
(wwSasionn
12231puT) A[UO PO PAIR0I]
VH+LE W+6Z w491 iy wgE W+Zg |m/a 110 pou | TITILIIL | JuswSosIDuIeNpU]
(SS1.98¢) 3sE1
V/N 1Myfy At 0808 [ENUIA O] JSE1 GRE WOL]
¥/N 1y 00 SS1.98€ 013SE10RE WO
V/N yly €z SS1.997 O13SE198E WO
turt (SS.198¢) ¥5El
V/N iy L1Z Q808 [ENHIA 01 581 987 WO
V/N yly 862 $S1.98E 013SE1 087 WOl
w1 iy ¢iz SS.1.987 O1 ¥SEI 97 WOk
(s121wered X) [243]
UI43F408 15yly W+XB+56 aSapand usyIp 019168 [[ED BIA
(s121ouresed ou) PAd)
w478 iy w+08 aBapiaLd JUSIa[1p 01 2183 [[ED BIA
wW+TE iy ur4z< P31 a8apaud sures o1 21e8 [Ed BIA
(uawdasiau
10901p) A[UO PO PA13ANOI]
74 W07 Wi4€T vl W4+EC W4/ 1 J0133[35 *135340 [n4 paubisun E WS EasISN 13201(]
VH+HIZ/01 |W+O1/ W/ | W+ 0]/ W+, Iy W4+ OT /4 / | U4 O/ 10/ @72~ 010 pou] LITTITIL | TUSUEaS UTL M 10311pU]
Azowraw /1215182y
61 w+/ ws/ 1 ws/ W/ jusmaoceds|p L[N E WSISaS UNILM 10911]
1[ED =TIVD
JIDJSUEI], [0IIU0)
INNOD Wd Wi Wd Wd Wy
HOOTD
9808 Lo .ngwuuc D SELON INNOD DO IVWHOIL NOLIDNHUISNI

panujuos “AFemms Y2o[) 19§ UOHINISUL 9808

408



(Panupuos)

98Z08

¥/N iy 80¢ SS1.98E 01 YSE1 9R¢ WOI]
V/N Ity \Fird $S1.987 01SE1 98¢ WOL
5o (85.1.98¢)
V/N iy 77T 3SE1 GRS [EN1IIA 01358187 WO
V/N Ity 90¢ $4.1.9R€ O14SE1 987 WOl
w1 ryiy 6LT $S1.987 O13SE1087 WO
W% 1ty w46 [9Aa 98aiand oures 01 2188 [[ED BIA
(uawSasan
122mpur) 4uo spous pa1dajo1g
VA+HT w+og w+C] iy q W4Ig UL/ | =73 ot pou] TITIIILL | D SoLITUI 1921pU]
e (SS198E) %SE10808 [ENLIA
V/N Iyly 07 Ol YSE109¢ WoL]
V/N iy €0E $S1.98€ 01SE1 08¢ WOI]
V/N iy 0T SS.1.98Z 01 HSE1 9¢ oL
L (SSLORE)SEIGR0G [ENMIA
V/N Ty 812 O1SP1 087 WOLT
V/N 1yfy 10€ SS1.99€ 01 YSE1 087 WoL]
WHC/T iy $LT SS.1.98Z O1Ys®1 98z Wwioag
[PAa]
ur+ge iy WG adapiaud sures o1 2188 [1ED BIA
(uawdasiagul
1021p) AUO 3POL P1II0I]
<1 wicz WL iyl W+/7 w4z 1033335 *135}J0 ||n} paubsun E UAHUBILISIUT 10251C]
i wawdas
VH+BT/TT W/ W4/ | W]/ q q WO/ WL | W4 O /W +/ —uz_:C 001 pou | LITITTIL | unpLs Joanpur Aowsw s1dag
<1 w+/ W/ 1 ws/ wsf Juawade|dsip |0 E WS U 19901
<1 W/ W/ 1 Wi/ W+/ [3uswaseidsip F1g-8] 10010171 | uoys
dum| puonrpuodun = JW[
; (SS.L9BE) dsEl
V/N iy 17 0808 [ENLIIA 01 Y{SB1 ORE WO
V/N ryiy co¢ SS1ORE 01SEI1GRE WOLT
V/N ryfy 8Lz SS1.9RZ O1SEIGRE WOL]
Panuos ‘IJSUBLY [OIIU0D
INNOD Wd wWa Wd WH Wd wWa
INNOD
9808 IO SZLON INNODIDOD IVIWHOd NOLLONYISNI

409



V/N V/N V/N 1 Ciows/ | cIows/ Juawadedsip (ing | L100000T | 11110000 | JUBLUADBIASIP TN
#1091 gows) | Cows/ 1 clow+/, | CIoW+. | tdsip 3iq-g| TT001TIO0 | uswaoe|dsipug-g
[enbaio
anoqe/mofaqlou uo dumf = Fv [/aNT
V/N V/N V/N 1 Ciows/ | CIOW+/ juamadejdsip yiny | 01000001 | LTT10000 | uawaoeidsip ng
yi09T | growss | ciounss 1 glours/ | Ciow+/ [ tdstp 3ta-8] 0TOOTTIO | wawE(dSIpUg-§
{enba 1o
asoqe ou/mojaquodum| = FyNI/al
VN V/N ¥/N 1 €IoW+/ | €I0W+/ juamaoe|dsip [N} _ 10000001 _ ::aooenv wawasedsip ng
FI001 giou+/ | Ciows/ 1 ¢iomws/ | giows/ [ 1dsip 319-8] T000TTIO0 | wawadeidsipg-g
mopaa01ou uo dumf = Nl
V/N Y/N V/N 1 ciows/ | ciows/ juawade|dsip 1ns | 00000001 | 1110000 | JuuREdsIp [Ind
FI0G] glows/ | Clows/ 1 Clow+/ | CI0OWs/ | 19sip 3tg-g| 0000TTI0 | wwaoeldsIp Ig-g
moppaso uo dumf=of
LJIENIOU
10 uael, dumnf are ssun | LON
sdumffenonpuo)
dso1
W+CC yly 29 aerpaw; Surppe wawsasiau]
w4gg oyl 80 WwALBasIuy
[P0 a8apiand Iy
‘01 ( L) AJuo apour pa122103d
dS 01 1BIpawL
L1 wi+C7 wc] yiys q ul+z¢ w+g1 [[tdsip 31a-o1] 0T0T00TT | Surppe wswEasimu]
81 w7 WHCl 1ys q wi4z¢ w+gT [_trooort | wawEasI]
dS o1 21erpatl
7l W+ W+ Iy q w+Qr w4+ | L9sip 319-91 | 0T0000TT | Surppe watwHas Uty
8 W4T W+ Iy's q w+0f w01 [___troooort | WRuEss UL
STTVD WO WInay = 13y
(SS.L98¢E)
Y/N ryly YT HSB10808 [ENHLA 01 4SE1 ORE WOl
pEnupuos (I3JSUel], [03U0D
INNOD Wd WA Wd WH Wd wWa
HDOTD
9808 ._.ZDWWNMWQG STION INNODIDOD IVIWHOd NOLLDOHISNI

penuyuos AFemmns Y20[D) 126 UOROINISUL 98€08

410



(Panuiiuoa)

V/N Y/N V/N T ¢Iows/ | Cromss juamadejdsip (nd | 00110001 | TIT10000 | wausedsIp [1ng
clows) | ClowWws/ | Cloul4/ I ciows) | Clowsys _ 1dstp 119-8 | Q0TTILTO | wiswasedsip ng-g
Enbo 1o
meaai 1ousssaf uo dumf = FoN (/T
V/N V/N V/N 1 Ciow+/ | CIOW4, Jusmavedsip L0 | TI0T000T | T1110000 | uAwaIE(SIp [N
HI00L Clow+) | gIow+/ 1 giows/ | CIOW4/ [ 1dsip 31g-8] TIOTTLIO0 | JuaUIR0R[dSIP Ig-8
ppo Aed /Anred
j0u o dum([= Od[/dN[
Y/N V/N Y/N 1 cioms/ | CIOW+/ juamadejdsip (ny | 11010007 | 11110000 | wRwRBldSIp [N
$1091 | clows/ | Crowsy 1 oW/ | CIOWs/ [ 1dstp3ia=8] _ otoiiiio | w=waseldsIp ug-g
uaad Qped /Aued vodum [ =g4[/d(
YV/N VN VN 1 ciouly/ | CIOW/ Juawadeidsip [1ng | 10010001 | 11110000 | JuaREdSIP [N
¥I0QL CIOWs/ | IO/ i Clows/ | glows/ | tdsipaiq-g| TO0TITIO | WaWw20e[dsIp 3-8
udisjou uo duwm(=gn[
V/IN Y/N Y/N 1 Ciows/ | Clows/ juamaoe|dsip L1nd | 00010001 | TLL10000 | Juawa2oedsip [ng
FIOOT | £iows/ | Cioutss 1 ciows/ | clouws [ 1dsip 3ig-8] 0001110 | WSWRR[ASIP I8
uds uo dum( =g
V/N V/N Y/N 1 fiows/ | CioWs/ jusmaoedsip (1ns | 11100001 | TIT10000 | wauREdsIp [INd
PIOQT | CIOW4/ | CIOW4/ 1 ciows/ | ClOW4/ [ tdsip 319-8] TIT0ITI0 WESIP G-
anoqe;,/renba
10 mofaq 100 uo dumf = v [/3gN[
V/N V/N V/N I ciows/ | cowW+/ juawadeidsip Lins [ ottoooor | T11T0000 | WSWAORIASIP [N
£I0gT clows/ | clouts/ 1 ciows/ | Clows/ [ 1dsip 319-8] OTIO0TLIO | JuaRdEdsIp Ig-8
anoqeiou/enba
10 mofaquodum(=yN[/ag[
Y/N ¥/N V/N 1 ciows/ | Ciow+, juamadejdsip ny | 10100001 | 11110000 | suoedsip [ng
+I0QT clows/ | grounss 1 giouws/ | cioursy | tdstp 3ia-g| 10101110 | uawaedsip 1g-g
o015z Jou/enbaou uo dumf = ZN[/aN[
V/N V/N V/N 1 €IOW/ | CIOWH, Juamadeidsip (104 [ 00100001 | TITT0000 | uaw2eldsip [N
#1001 glomw+; | ¢romwss 1 ciows/ | CIOWH, [ dsip 3ig-8| 00T0TTTID | w20e[ds1p -8
osaz,/enba uo dwnf =z {/a[
panugiuos ‘sdum[euonrpuo)
INNOD Wd wWa Wd Wd wWHa
uwh%i,mu INNOD MO SELON INNOD DO IVIWHOI NOLIDIHISNI
98708

411



V/N ¥/N V/N q 95 /% [=/72 000 pou] 01001001 | 11110000 | Asowawr/Iasia1 0],

[enba Jo 3A0qE 10U/ Mo[aq
U0 NAQ 198 = IVNLIS/HLAS

V/N V/N V/N y Sy S/E [=72" ooo po=] 10001001 | 11110000 | Asouur/insigar o,

MO[H2A0 10U U0 214q 128 = ONLLIAS

Y/N V/N V/N y S/ S/¥ [=75" 000 pou] 0000T00T | 11110000 | Ajowau /13151821 O,

MO[H2A0 U0 140125 = OLAS
“AIowaur /12151831 318 ST, -5 LON

13§ 214g [euonIpuo)
91081 FIOW+E FIOW+E if W+1T W+IT 0122 JOU
| _tdstp 3tg-8]  ©00000TIT |  2pymdool=gNdOOT/ZNJOOT
9I08T Plow+g | HIOW+HE 1 W+11 Wi+ 1L [enbo soraz
| tdsip 3iq-g| 10000TLT | s doo = 3400 T/Zd001
CI0/1 pIOWLE | IO+ 1 W+ 1 W+ T [ 1dsip 3tg-g8] OT000TTL | sawm ¥ dooT= 4001
(Zxod[wonzxd[
SITENU2I2JTP X1j2Id 3715 s531ppy)
V/N Y/N Y/N i clouw+g | clowsg [ 1dsip 319-8] 11000T1T | asaz yoauodum| =7yl
91081 | piow+g | piowsg 1 cloms+g | clowsg [ 1dstp 319-8] 1100011 | oz xpuodumf=7x0[
V/N V/N V/N 1 Clows/ | CIOW4L juaesejdsip (4 | TTIT000T | 11110000 | JusWRoEdSIP [N
cIouw4/ | CIOWs/ | CIOW4/ 1 ciouly/ | ClowWs/ | 1dsip 3tg-g] ITITIINO | uouIadB[dsTp -8
1a1e218 /[Enba
sossafjouuodum|= o3 INT
V/N VN V/N 3 Ciows, | gIoW/ juamade|dsip (s | 0T1IT000T | 11110000 | wwadedsIp (N4
CIoW+/ | IOW+, | CIOW+/, 3 ciows/ | Clows/ _ [dstp 119-8| OTITITIO | wowaoedsip ng-g
1218218
10u/Tenba 10 ssaf uo dumf = N /a1l
V/IN V/N Y/N 1 clous/ | Clows/ Jusmade|dsip Ling | 10TT000T | TTI10000 | wawasedsip
Clowy/ | €IOW+. | CIOW+/ x cows/ | Clows/ | tdsip 3tq-g| 10TIIite | wausedsp ng-8
[enba 10 1218218 /359]
1ouuo dumnf= g0/ INI
panuyuod ‘sdumf feuonipuod)
INNOD Wd wWa Wd wWa Wd WH
MO0
9808 hz:w%uwwé STLON INNOD DO LVIWHOA NOLIDNMISNI

panujuos Aewnuns Yoo[D 195 UONONIISUL 9RE08

412




(Panuiiuos )

V/N

V/N

¥/N

¥/N

V/N

VN

¥/N

Y/N

V/N

Y/N

V/N

V/N

¥iN V/N

¥/N V/N

V/N V/N

Y/IN Y/N

V/N V/N

¥/N V/N

V/N ¥/N

V/N V/iIN

V/N VN

V/N V/N

V/N V/N

Y¥/N V/N

954

95 4

/e

S/%

S/%

57

sy
>

1754

S/¥

/¥

INNOD

Wd

Wd

Wy

_Euu

000

uoE_

OTITLIO0E

LITT0000 | Asowsw /1151821 0,

121218 10U,/ fenba
JOSS9[ U0 4G IAS = ONLAS/HTLIAS

—.Ec

000

pou |

10TTILITO0

11110000 | Lsowawymsifarof,

[enba 10 1518218 /859
10U uo A4 195 = IOLIS/ TNLIS

[

000

pou _.

00TTT00T

TTT10000 | Azouram AasiSar o

[enba 1o 121218
10U /5831 U0 MNAG 18 = TONLAS/TLAS

_.EC

000

pou |

TIOTTO00T

11110000 | Asouraw /13151821 O,

ppo Aued /Ayred
10U U0 214G 19§ = O LAS/IN.LIS

B

000

pou _

0T0TI00T

TT110000 | Asounur/rnsidaior

u2n2 Hued
/Aed uo 214q125 = 5 414S/d LAS

—E?_

000

poa |

TO0TTO00T

TIT10000 | Asouraur/rasidarof

udis 10U U0 14195 = SN LIS

_u_‘_._

000

pou ]

000TTO00T

11110000 | Azowawr/1is18a1 0]

udisu0a14q1ag = S 1AS

|msa

000

pou |

ITI0T00T

11110000 | Asousw/ 12151821 0],

2a0qe,/Tenba Jo mojaq
10U U0 314G 128 = V LIS /AANLAS

__E__L

000

pou _

0TT0100T

T1110000 | Asowaw 1981821 01,

aaoqe10u/[enba so
MO UONLG 158 = YNLIS/dd.1AS

[mra

000

poa |

10T0T00T

11110000 | Asowaw /511 0

o019z Jou/enba
10U U0 I14Q 1S = ZNLLAS /AN LAS

[mza

000

pou |

Q0I0TO00T

TITE0000 | Asowaw aas18aa of,

019z /Tenba uo M4 128 = 7 LAS/ALTS

2

000

uoa_

TT00T00T

TII10000 | Asownw 181821 0],

[enba Jo asoge
/M0[2q 10U U0 214G 196 = INLHS

panuijuod 198 14d [euonipuoc)

MDO0TO
9808

INOQOD DO
98208

SALON

ANNODHDOTD

LVIWHOI NOLLDMYISNI

413



¥/N
¥/N

€5

(4%
s

VN
V/N
V/N
V/N
w/91
w+g/

W+

€1

cl
wW+oe

E+v.N

w+ez

w+eg

e
ryl8
8
18
118
8
yig

1y 1 y iRiny
IyTyEs

EXe|
2'g

a'q
3q

ot

4] 6

e

€€
£

2168 3SE1 BiA SS1 ORE 01 4SE] ORE WO
21ES HSE BIA §5.1 937 01 35E1 9Z¢ W0
2728 SSE1 B1A PO GR(E [ENLIA 01 §581 047 WOI]
21ES §SEI EIA §S.1. OFE 01 SEl 9/ TUOL]
218 YSE EIA §S.], OFF 01 YSEI 07 WWol]
Past28apand wasanp o1 2188 denjo idnasaqur eny
[Paa) 28aand awres 01 2168 den Jo idnasagur ery,
payads adAL LT
(LNI) AJU0 apou pa1o210ig
2Bueiuryy
aduesjomoj]

28ue1joIng
=73~ Bas pom] 01000170 | anfeA 12219p Ji ¢ wdnusug = punog

0=401I
1=40J1
E 198 8eJ Mo a0 Ji p1dn U] = OLNI

oot ] ok
[ ECLEN 10TT001T | payadsadAL

adniiug = [NT

suoponssu] dnriayug

V/N
¥/N
Y/N
¥/N

V/N

(I-WH+9o1

<t

V/N

g
(1-wp+01
<1

I

V/N

=S — R ~ R

L L L L

(I-WF+<1
A
ot

¥
(I-U)p+<1

ZL

(1] §

INNOD
9808

Wd

Wy

Wd

[Tooteore | mpao0sdonea1 - AAVET

1<T
=1

0=T1

_ 3731 319-8 *JUw0R[GS1P 319-91 | 00OTO0TT | ampasoid DUy = ¥4, LNT

[=75 ooo pow]  wvitioor | vrrroooo | Asounus,/s1821 0],

1a1e218 /enba jo
SS2[10U UO 4G 138 = D LAS/ATNLAS

panuiiuona 198 N [evonIpuo)

AINNODHDOTD
98708

SHILON

AINNODHDOTD

RASR (07 NOLLOMEISNI

peniuiuod "AIETIInNS YO0 196 UONINISUL 98€08

414



(Panuiuna)

98208

/N I8 ¥IE 21EE YSE1 BIA 65,1 08¢ 01 9POU 9808 [ENLITA WOI]
VN 18 187 21E8 §581 BIA §S.1 9] O IPOUL 980G [ENLIA WOL]
V/N 118 il e ST BIA IPOU 9ROG [ENLIA 01 §SE19FE WOL]
V/N ry18 60€ 2728 ST 1A §S.1 98E 01 SEI 9RE WO
V/N 18 787 5728 4ST1BIA §S1. 987 O1 §SE1 08¢ 1oL
V/N ry18 $2T 2728 3SE1 E1A 2POU 9808 [ENMIA 01 YSE1 98 WOl
V/N 1513 L0€ S1E3 3SE1 BIA S5 1 98C O1 4SP1 9BE WOL
w+/91 Iy 082 2188 Y€1 BIA S5 987 O1 YSP10R7 oL
W4/ ry18 66 [Pasra8apanud Juasagp oy el denso dnusut ey,
Ur+ (% Y8 65 [2a3] a3spiand awes oy 2168 den o idnuaiut ey
“OLNI
V/N 611 218 idn usjut 1o 21e8 den eia g [pas] 233 taud o1 Spow 9g0g [ENLIIA WOL]
V/N I3 zig D1e YSE1 BIA §S.1 98E 01 9POW 9RNG [ENUIA WOI]
V/N I8 <gz 2128 Sl BIA §S L 987 01 9POW GEOR [ENLIA WOL]
/N IylE il 2728 3SE1 BIA DPOU 5RO [EN1ITA 0 SE108¢ WOLT
V/N I'yI8 L0S 21e8 3SE1 BIA 5.1 GRC 01 )SE1 9RE WO
V/N Iy1E 087 218 SE1 BIA SS LGB O 3ST1 9RE WOLL
¥/N Iyre b 2128 3581 BIA SPOUL OROF [ENIIA O 3SE1 97 WIOLT
V/N 118 <o¢ S1EB %SEL BIA SS1 9RE O1{SE1 97 WOL]
Ul+/QT Iy Qi7 2128 3SE1 1A ST OR7 O1 3SE1 9/ WOL]
wi+g/ 118 66 [Paa] 28apand wasagpp o1 1ef den sodnusur ers
WO 1418 65 [PAa] a8ap1and sures o1 2188 denso idnuaiur ery
gadA L INI
V/N 611 a1l wdnusur o ared den eia () [Pas] 283ALd 012pOUT GROR [BN 1A WO
/N 318 o1¢ 2128 NSBI BIA §5.1 9R€ 01 2P0 980G [ENIIA WOL
VN 918 68T 2128 35¥) EIA ST 087 01 9O 9G8R [ENLITA WOL]
V/N i3 7T 2188 S$E1 BIA 2DOW 9ROE [ENLIA O1 Y581 08¢ WOI]
panuiuod ‘suononnsuIdniisiug
Nnoo | W4 Wy Wd Wd wH
MDOTD
9808 INNOD MO SELLON INNOD ¥DOTD IVIWHOL NOLLDNH.ISNI

415



G UL
V/N 09 SPOUL GO [ENMIA 1 %SEI GRE WOL]
¥/N iy 7T HSE19808 [EN1HA 01 YSE1 98¢ WOIT
V/N Iyiy ciz SSL98E 01 4SEIH8E WOL]
V/IN iy 1Lz SSI1.99Z O13SE1 98¢ W]
(iseumpAs)
V/N 09 SPOT GZ08 [ENLIIA O1{SE] 987 WOLT
V/N Iyiy ¥z SEIGR0E [ENIA 01 SE 9RZ WO
V/N Iyl <oz SSILOSE 01T 087 WOL]
W+601 iy €T SS1.99Z O13Se1 987 LWOL]
w4ce lys 8 (fse ungum)
[2aa] 28apand wasapp oL,
w+g ylys 8¢ CisT1 UML) [243] 282p1and Sures of,
(L291) Ajuo apour pa122101g
¥e W/ 1y @ TTIT00TT wmias idn s = LAl
urmay ydnarayuy
V/N 6I1 218 idn uanuLIo 91e8 den el () (pAa] 25(tatid 01 2pot 9gOg [ENITA WOL]
¥/N rylE ¥67 21e8 3SE] BIA $G 1 ORE 01 IO 90 [ENMIA WOL]
Y/N Iy18 oz 2128 58] 1A $G1 ORF 01 PO 9R0E [ENUITA WOL]
V/N 1y18 (5 74 21E8 ¥SE) BIA 9POUL 90 [EN1IA 01 3{SE1 98¢ WOl
V/N 118 $6T 9125 ST1 EIA §S 1, 98¢ 013SE1 98¢ WOL]
V/N I8 07 2168 {S¥1 FIA §S.L 987 O1 3SE1 98¢ WO
V/N 118 167 188 3ST1 B1A SPOUT §R(S [ENUIA O] 5B 087 1oL
V/N 18 ¥8Z 9128 4SE1 BIA SS1L ORE 01345%1 GRZ WO
W+/9T Y8 ¥z 2188 YSE1 BIA S5 ORZ O1 YSE1087 1oL
g/ ryld 66 [Paa] aSapiand wasagip o1 9188 den Jo idn.uaiur etp
W0k I8 65 |22 aBaaud awres 012188 den 1o dn oo el ©
ANNOH “
YN rq18 611 218 1dn usut 10 5188 den 1A  [243] 233[1ALd 01 3POL 98(E [ENIIA WOL]
panuuod ‘'suononnsoy ydniiauy
INOOD Wd it Wd wWH nd Wy
DOTID
9808 E:m%mwwsu SALON INNODMDOD IVINHO NOLLDMMISNI

) penuyuos Aremung Y20[0) 195 UONONOSUL 98<08



(panuun)
z 0 0 : 0 0 [ oriortoo | 5§
V/N V/N 0 0 [ toroorio | $9 -M..
V/N V/N 0 0 [ ootootio | 9
z 0 0 0 0 [orrootoo | gt
4 0 0 0 0 [ ortrtion | sa
z 0 0 0 0 [ortrotoo | )
x1j2id apriaan JuamSag
V/N V/N V/N 0 0 [orrootio | (Z18d0) xyy21d azis puesado
z 0 0 w 0 0 [ ooootTir | x1y21d 320[ g = ¥DOT
V/N V/N V/N 0 0 [__trrootio | (Z1S9a V) x1j21d 2218 $S21ppy
sAAG XYa3d
“J0559304d0D> 40} uUOljPWAOJUL
28poddo aJe s1iq 777 pue 1y
q “0¢r8daag [=wra Fmpou] Liirroit | 2de383 UOISUDIXR 105530014

SUONINISU] BOISUNXY JOSSID0I

pateSaust
¢ € ¢ 9 9 [_tiortoor | uid\ ASOE RUNATEA = LTVAL
€ ¢ ¢ ¢ € [ ooootaor | uonEeRdo o = JON
V/N V/N V/N | ZI (48 | Basasarr 00100100 | TTTI0000 | £-99 L wosy 15185y
¥/N ¥/N ¥/N 1 ZI Tr | basssarr otro0t00 | TILE0000 | 15131 WOy /-y L,
V/N V/N N 1 s i | Basasarr | 10000100 | 11110000 | €-08( WoIj 115183y
V/N V/N V/N I ¥l 31 | Baasaayyr | 10000100 | LITT0000 | £-0M Wiy Jms1day
Y/N V/N V/N I 91 o1 [ Baseearr ] 11000100 | 11110000 | 121518233 WOy £-9N(]
V/N V/N ¥/N 1 @ z [ Bswssstr | 11000700 | 1ritoooo | 12181801 WOy C-0¥a
V/N V/N V/N 1 9 9 |  Badssary | 00000100 | 11170000 | C-0ND wioy 121518y
V/N V/N V/N I S/B/0L /%01 | Bassaary | 0TO00TO0 | TITT0000 | 121S1820 WOy C4Y /78D /08D
[ ootoTTIr | sssiBa13531/8nGap,/ [0AU0D WO PUE 01 9A0I = AOIW
k4 z z [ < < IeH = LTH
[OXIU0D) J0SSI00I]
INNOD wWd Wy wWd wWa wd wWH
MDOID
9808 INNGD ID0T SALON INNOD D0 LVINHOA NOLLDTHISNI

98ZO8




"UOTIDNISUL ¢ T NTIO] STUNOD Y202 011221 $1n200 Jjnej ¢ uondaoxa ‘woissiuuad satusap deuniq O /11
"apou ggog [enuia utuod au1 01 O/ SMO[[e voissiiad O/ J1 sotdde umoys unod oD}

TdOL <TdD JLes
TdOI=TdD J1.
9L/¥1 diys E or/¢1 V/N [®72 tot pos]  oooooooo | TIIrooon | $S300E I AJLIOA = MUTA
AJowain /12151820
91/%1 difyd E 11/01 V/N [=72" oot pom]  oooOOOOD | tiitoooo | 53008 PE2 AJUSA = HHHA
Asowaw /12151801
€z q E /T V/N [=/2 Too pou]  oooooooo | TiEIOO00 | 0112151521 Y581 21018 = UL
€T g o'q /01 £1/01 [®75 oot pom] 10000000 ] TITI0000 |  PHOMSNIEISAUIYDEW OIS = MSINS
Aounu/ 12151851 01 12151821
£/ q e z/e V/IN |=/2 000 pow] 00000000 | 11110000 | 2[qe1101dLIS3P [B20] 20015 = LATS
12151821 2[E)
A q 2'q 6 6 [=75 700 pow]  To000000 | Tirroooo | 1o1dunsap 1dnusIuL 2101S = LATS
12151321 9[qjE)
1 y 2'q 6 6 [2/5 ooo pou| 10000000 | 11110000 | J01d1253p [BGO[E 21018 = 1A DS
Azowa /32151821
GT/LT riys B 1Z/5T ¥/N [e72 oo pom]  oo000000 | TIT10000 ] WO 12)S1331 §SEIPEOT = M.LT
V/N diy's E 9z/<T V/N e nuesi-ofed
9151 di'ys e 12/0Z V/N nunpenuesd-oidg
Adowau /12181831
[m72 Baa pom] — Tro00000 | TII10000 | WOI} W[ USWES PEOT =TT
Krowaur /12151351 woly
9/€ 'y 2q £1/01 €1/01 [=75 o1t pow] 10000000 | TIIT0000 |  PIOM SMIEIS SUIJIEW PEOT = ASWT
Aowaw /12181821 01 13151821
6L/LT riys e ¥Z/02 V/N =72 oo pom] — pooo0000 | TITI0000 | Aqe1101dL$op [30] PEOT = LAT1
32151521 2[(]E1
70 Iy 2'g Il It [=/2 110 pou] 10000000 | 11110000 | Jodussap idnusul peot = LAT'T
12181821 2|E
11 1y ’q I I [m72" oto pow] — T0000000 | TTT10000 | 101dussap [BqO[3 pEOT = LA DT
Aowou /12151821 ®
g1/¥1 diys E 91/SE VN [m73 B34 pou] 01000000 | 11110000 | WOty S1YFL $52008 PECT = ¥V “
Azownun /19151821 WoIJ [2AI]
1I/01 q E 12/02 V/N [m73™ B2 pou | 11000110 | aFaiaud paisanbal isnipy =TIV
[ONU0D) VOIN0IS
LNNOD Wd WH Wd Wy Wd WH
MDOTD
9808 INNODHIDOTY SALON INNOD IO LVIWHOd NOLLDHISNI
98208 L

pantgiuod ATeunnng ¥o0[0) 19§ U0NINISUT 98E08



Appendix D: Instruction Format and Timing

Instruction Encoding

All instruction encodings are subsets of the general instruction format shown in
Figure D-1. Instructions consist of one or two primary opcode bytes, possibly an ad-
dress specifier consisting of the mod r/m byte and scaled index byte, a displace-
ment if required, and an immediate data field if required.

Within the primary opcode or opcodes, smaller encoding fields can be defined.
These fields vary according to the class of operation, The fields define information
such as direction of the operation, size of the displacements, register encoding, and
sign extension.

Almost all instructions that refer to an operand in memory have an addressing mode
byte following the primary opcode byte(s). This byte, the mod #/m byte, specifies
the address mode to be used, Certain encodings of the mod r/m byte indicate a sec-
ond addressing byte, the scale-index-base byte, which fully specifies the addressing
mode.

Addressing modes can include a displacement immediately following the mod r/m
byte or the scaled index byte. If a displacement is present, the possible sizes are 8,
16, and 32 bits.

If the instruction specifies an immediate operand, the immediate operand follows
any displacement bytes. The immediate operand is always the last field of the
instruction.

Figure D-1 illustrates some of the fields that can appear in an instruction, such as
the mod field and the r/m field. Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes. The following table is a complete list of
all fields appearing in the 80386 instruction set. Detailed tables for each field appear
later in this appendix.

L rrrrrrrr | T [mod TTT r/m| ssindexbase | d32| 16] 8| none data32|16|8| none

7 0 0 20 765320
N | 7 1\76513 AN SI3 I\ | J\ I J
opcode "mod r/m" "s-i-b" address immediate
(one or two bytes) byte byte 9 displacement data
(T represents an T (4, 2, 1 bytes (4, 2, 1 bytes
opcode bit) register and address or none) or none)

mode specifier

Figure D-1. General instruction format.
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Fields within 80386 Instructions

Field Number
Name Description of Bits
W Specifies whether data is byte size or full size (full size 1
is either 16 or 32 bits)
Specifies direction of data operation 1
s Specifies whether an immediate data field must be 1
sign-extended
reg General register specifier 3
mod r/m  Address mode specifier (effective address can be a 2 for mod;
general register) 3 for r/m
ss Scale factor for scaled index address mode 2
index General register to be used as index register 3
base General register to be used as base register 3
sreg2 Segment register specifier for CS, 88, DS, ES 2
sreg3 Segment register specifier for CS, S, DS, ES, FS, GS 5
tttn For conditional instructions, specifies a condition 4

asserted or a condition negated

NOTE: Figure D-1 shows encoding of individual instructions,

32-bit extensions of the instruction set

With the 80386, the 8086/80186/80286 instruction set is extended in two orthogonal
directions: 32-bit forms of all 16-bit instructions support the 32-bit data types, and
32-bit addressing modes are available for all instructions referring to memory. This
orthogonal instruction set extension is accomplished by having a default (D) bit in
the code segment descriptor and by having two prefixes to the instruction set.

Whether the instruction defaults to operations of 16 bits or 32 bits depends on the
setting of the D bit in the code segment descriptor. The D bit specifies the default
length (either 16 bits or 32 bits) for both operands and effective addresses when
executing that code segment. Real address mode and virtual 8086 mode use no code
segment descriptors, but the 80386 internally assumes a D value of 0 when operat-
ing in those modes (for 16-bit default sizes compatible with the 8086/80186/80286).

Two prefixes, the operand size prefix and the effective address size prefix, allow
overriding the default selection of operand size and effective address size. These
prefixes can precede any opcode bytes and affect only the instruction they precede.
If necessary, one or both prefixes can be placed before the opcode bytes. The pres-
ence of the operand size prefix and the effective address prefix toggles the operand
size or the effective address size to the value opposite from that of the default set-
ting. For example, if the default operand size is for 32-bit data operations, the pres-
ence of the operand size prefix toggles the instruction to 16-bit data operation. If
the default effective address size is 16 bits, the presence of the effective address size
prefix toggles the instruction to use 32-bit effective address computations.

420



Appendix D: Instruction Format and Timing

These 32-bit extensions are available in all 80386 modes, including real address
mode or virtual 8086 mode. In these modes the default is always 16 bits, so prefixes
are needed to specify 32-bit operands or addresses.

Unless specified, instructions with 8-bit and 16-bit operands do not affect the con-
tents of the high-order bits of the extended registers.

Encoding of instruction fields

Several fields indicate register selection, addressing mode, and so on within the in-
struction. The encodings of these fields are defined in the following tables.

Encoding of the operand length (w) field

For any given instruction performing a data operation, the instruction executes as a
32-bit operation or a 16-bit operation. Within the constraints of the operation size,
the w field encodes the operand size as either 1 byte or the full operation size, as
shown in the table below.

Operand Length Encoding
Operand Size During Operand Size During
w Field 16-Bit Data Operations 32-Bit Data Operations
0 8 bits 8 bits
1 16 bits 32 bits

Encoding of the general register (reg) field

The general register is specified by the reg field, which can appear in the primary
opcode bytes or as the reg field of the mod r/m byte, or as the r/m field of the mod
r/m byte. The following tables illustrate reg field encoding.

Encoding of reg Field When w Field Is Not Present in Instruction

Register Selected During Register Selected During
reg Field 16-Bit Data Operations 32-Bit Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
101 SI ESI
101 DI EDI
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Encoding of reg Field When w Field Is Present in Instruction

Register Specified by reg Field During 16-Bit Data Operations

Function of w Field Function of w Field
reg Field When w =0 When w = 1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

Encoding of reg Field When w Field Is Present in Instruction

Register Specified by reg Field During 32-Bit Data Operations

Function of w Field Function of w Field

reg Field When w = 0 When w = 1

000 AL EAX

001 CL ECX

010 DL EDX

011 BL EBX

100 AH ESP

101 CH EBP

110 DH ESI

111 BH EDI

Encoding of the segment register (sreg) field

The sreg field in certain instructions is a 2-bit field that allows one of the four 80286
segment registers o be specified. The sreg field in other instructions is a 3-bit field
that allows the 80386 FS and GS segment registers to be specified. The following
two tables show the selected segment registers.

2-Bit sreg2 Field

2-Bit sreg2 Field Segment Register Selected
00 ES

01 CS

10 SS

11 DS
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3-Bit sreg3 Field

3-Bit sreg3 Field Segment Register Selected
000 ES

001 C8

010 SS

011 DS

100 FS

101 GS

110 Do not use

111 Do not use

Encoding of address mode

Except for special instructions such as PUSH and POP, where the addressing mode
is predetermined, the addressing mode for the current instruction is specified by
addressing bytes following the primary opcode. The primary addressing byte is the
mod r/m byte, and a second byte of addressing information, the s-i-b (scale-index-
base) byte, can be specified.

The s-i-b byte is specified when using 32-bit addressing mode and the mod t/m
byte has r/m = 100 and mod = 00, 01, or 10. When the s-i-b byte is present, the 32-bit
addressing mode is a function of the mod, ss, index, and base fields.

The primary addressing byte, the mod r/m byte, also contains 3 bits (shown as T'T'T
in Figure D-1) sometimes used as an extension of the primary opcode. The 3 bits,
however, can also be used as a register field (reg).

When calculating an effective address, either 16-bit addressing or 32-bit addressing
is used, 16-bit addressing uses 16-bit address components to calculate the effective
address, while 32-bit addressing uses 32-bit address components to calculate the
effective address. When 16-bit addressing is used, the mod r/m byte is interpreted
as a 16-bit addressing mode specifier. When 32-bit addressing is used, the mod r/m
byte is interpreted as a 32-bit addressing mode specifier.

The following tables define all encodings of all 16-bit addressing modes and 32-bit
addressing modes.

423



THE 80386 BOOK

Encoding of 32-Bit Address Mode with mod r/m Byte
(no s-i-b Byte Present)

mod r/m Effective Address
00 000 DS:EAX]

00 001 DS:{ECX]

00010 DS:[EDX]

00011 DS:[EBX]

00 100 s-i-b is present

00 101 DS:d32

00 110 DS:[ESI]

00111 DS:EDI]

01 000 DS:[EAX+d8]

01 001 DS:[ECX+d8]

01 010 DS:[EDX+d8]

01 011 DS:[EBX+d8]

01 100 $-i-b is present

01 101 SS:[EBP+d8]

01 110 DS:[EST+d8]

01111 DS:[EDI+d8]

10 000 DS:[EAX+d32]

10 001 DS:[ECX+d32]

10 010 DS:[EDX+d32]

10 011 DS:([EBX+d32]

10 100 s-i-b is present

10 101 SS:[EBP+d32]

10110 DS:[ESI+d32]

10 111 DS:EDI+d32]

11 000 register—see below
11 001 register—see below
11 010 register— see below
11011 register—see below
11 100 register—see below
11 101 register—see below
11110 register—see below
11111 register—see below

Register Specified by reg or r/m During 16-Bit Data Operations

Function of w Field Function of w Field

mod r/m Whenw = 0 When w = 1

11 000 AL AX

11 001 CL cX

11 010 DL DX

11011 BL BX

11 100 AH Sp

11 101 CH BP

11 110 DH SI

11111 BH DI
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Encoding of 32-Bit Address Mode with mod r/m Byte
(no s-i-b Byte Present)

Register Specified by reg or r/m During 32-Bit Data Operations

Function of w Field Function of w Field

mod r/m When w = 0 When w = 1

11 000 AL EAX

11 001 (G, ECX

11 010 DL EDX

11 011 BL EBX

11 100 AH ESP

11 101 CH EBP

11 110 DH ESI

11111 BH EDI

Encoding of 32-Bit Address Mode (mod r/m Byte and s-i-b Byte Present)
Mod Base Effective Address

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]
00010 DS:[EDX+(scaled index)]
00011 DS:[EBX+(scaled index)]

00 100 DS:ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]
00110 DS:[ESI+(scaled index))
00111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)-+d8]
01 001 DS:[ECX+(scaled index)+d8]
01 010 DS:[EDX+(scaled index)+d8]
01011 DS:[EBX+(scaled index)+d8]
01 100 S8:[ESP+(scaled index)+d8]
01 101 SS:[EBP+(scaled index)+d8]
01 110 DS:[ESI+(scaled index)+d8]
01 111 DS:[EDI+(scaled index)+d8)
10 000 DS:[EAX+(scaled index)+d32]
10 001 DS:[ECX+(scaled index)+d32]
10 010 DS:[EDX+(scaled index)+d32)
10 011 DS:[EBX+(scaled index)+d32]
10 100 SS:[ESP+(scaled index)+d32]
10 101 SS:[EBP+(scaled index)+d32)
10 110 DS:[ESI+(scaled index)+d32]
10111 DS:[EDI+(scaled index)+d32]

NOTE: Mod field in mod r/m byte; ss, index, base fields in s-i-b byte,

sS Scale Factor
00 x1
01 x2
10 x4
11 x8
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Index Index Register
000 EAX

001 ECX

010 EDX

011 EBX

100 no index reg*
101 EBP

110 ESI

111 EDI

* When index field is 100, indicating no index register, ss field must equal 00. If index is 100 and ss does
not equal 00, the effective address is undefined.

Encoding of 16-bit Address Mode with mod r/m Byte

mod r/m Effective Address

00 000 DS:[BX+SI]

00 001 DS:[BX+DI|

00010 SS:[BP+SI]

00011 SS:[BP+DI]

00100 DS:[s1]

00 101 DS:(DI]

00110 DS:[d16]

00111 DS:[BX]

01 000 DS:[BX+SI+d8]

01 001 DS:[BX+DI+d8]

01 010 SS:(BP+SI+d8)

01 011 SS:[BP+DI+d8]

01 100 DS:[ST+d8]

01 101 DS:(DI+d8]

01110 SS:[BP+d8]

01 111 DS:[BX+d8]

10 000 DS:[BX+SI+d16]

10 001 DS:[BX+DI+d16]

10 010 SS:[BP+SI+d16]

10 011 SS:[BP+DI+d16)

10 100 DS:[SI+d16]

10 101 DS:[DI+d16]

10 110 SS:(BP+d16]

10111 DS:[BX+d16]

11 000 register—see page 427
11 001 register—see page 427
11 010 register—see page 427
11011 register—see page 427
11 100 register—see page 427
11 101 register—see page 427
11 110 register—see page 427
11 111 register—see page 427
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Encoding of 16-bit Address Mode with mod r/m Byte
Register Specified by r/m During 16-Bit Data Operations

Function of w Field Function of w Field

mod r/m When w = 0 Whenw =1

11 000 AL AX

11 001 CL (5.

11 010 DL DX

11 011 BL BX

11 100 AH SP

11 101 CH BP

11 110 DH SI

11111 BH DI

Encoding of 16-bit Address Mode with mod r/m Byte
Register Specified by r/m During 32-Bit Data Operations

Function of w Field Function of w Field

mod r/m Whenw = 0 When w = 1

11 000 AL EAX

11 001 CL ECX

11 010 DL EDX

11011 BL EBX

11 100 AH ESP

11 101 CH EBP

11110 DH ESI

11 111 BH EDI

Encoding of operation direction (d) field
In many 2-operand instructions the d field indicates which operand is the source
and which is the destination, as shown in the following table.

Operation Direction Encoding
d Direction of Operation

0 Register/Memory <— Register
reg field indicates source operand; mod r/m or mod ss index base
indicates destination operand
1 Register <— Register/Memory
reg field indicates destination operand; mod r/m or mod ss index
base indicates source operand

Encoding of sign extend (s) field

The s field occurs in instructions with immediate data fields. The s field has an
effect only if the size of the immediate data is 8 bits and is being placed in a 16-bit
or 32-bit destination. The following table shows s field encoding.
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Sign Extend Encoding
s Effect on Immediate Data 8 Effect on Immediate Data 16/32
0 None None
1 Sign extend data 8 to fill None

16-bit or 32-bit destination

Encoding of conditional test (tttn) field

For the conditional instructions (conditional jumps and set on condition), tttn is en-
coded with n indicating to use the condition (n = 0) or its negation (n = 1) and ttt
giving the condition to test. The following table shows encoding of the tttn field.

Conditional Test Encoding
Mnemonic Condition ttin
(0] Overflow 0000
NO No overflow 0001
B/NAE Below/not above or equal 0010
NB/AE Not below/above or equal 0011
E/Z. Equal/zero 0100
NE/NZ Not equal/not zero 0101
BE/NA Below or equal/not above 0110
NBE/A Not below or equal /above 0111
S Sign 1000
NS Not sign 1001
P/PE Parity/parity even 1010
NP/PO Not parity/parity odd 1011
L/NGE Less than/not greater or equal 1100
NL/GE Not less than/greater or equal 1101
LE/NG Less than or equal/greater than 1110
NLE/G Not less or equal/greater than 1111

Encoding of control, debug, and test registers (eee) field
The ece field loads and stores the control, debug, and test registers.

Encoding of eee When Interpreted as Control Register Field
eee Code Reg Name

000 CRO
010 CR2
011 CR3

Do not use any other encoding.
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Encoding of eee When Interpreted as Debug Register Field

eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding.

Encoding of eee When Interpreted as Test Register Field

eee Code Reg Name
110 TR6
111 TRY

Do not use any other encoding.

80387 Extensions

The table beginning on the following page shows 80387 extensions to the 80386
instruction set.
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‘Instruction Encoding/Timing

ENCODING CLOCK COUNTRANGE
LR CLION, Byte Byte Optional | 32Bit | 32Bit | 64Bit | 16-Bit
0 1 Bytes 2-6 Real Integer Real Integer
Data Transfer
FLD = Load®
[nlcgerfrealmemolryms'['(l}) [_ESC MF 1 | Mmoo ooo m/M [ sis/pise || 20 45-52 25 61-65
Long integer memory to ST(0) [_Esc 111 | Moo 101 r/M [ sis/pIse | 5667
Extended real memory to ST(0) | Esc 011 | Mob 101 R/M [ siB/oISP | 44
BCD memory to ST(0) |LEsc 111 | Mop 100 R/M | sie/oise || 266-275
ST(i) to ST(0) |_ESc 001 | 11000 sT¢i) | 14
FST = Store
ST(0) 1o integer/real memory |ESC MF 1 | Mob o010 r/w | sis/pisp | 44 79-93 45 82-95
ST(O) 1o ST |_Esc 101 [ 11010 sT(1) | 11
FSTP = Store and pop
ST(O) to integer/real memory |_ESC MF 1 | Moo 011 R/M | sIB/DISP || 44 79-03 45 82-95
ST(0) to long integer memory |LESC 111 | WoD 111 R/M [ sie/pIsP | 80-97
ST(0) to extended real [ Esc 011 | Mop 111 R/M | sI/DISP | 53
ST(0) to BCD memory [_ESC 111 | _Mop 110 R/M | siB/DISP | 512-534
ST O ST [TEsc 101 | 11001 sT(1) | 12
FXCH = Exchange
ST() and ST(0) [(Esc ool | 11001 STC1) | 18
Comparison
FCOM = Compare
Integer/real memory to ST(0) [ ESC MF 0 | Mop 010 R/M | sie/oise | 26 56-63 31 71-75
ST 0 ST(0) [_Esc_ooo | 11010 sT(i) | 24
FCOMP = Compare and pop
Integer/real memory to ST [_Esc WF 0 | Mo 011 R/M [ SiB/DISP 26 56-63 3 71-75
ST() 10 STO) | ECS 000 [ 11011 sty | 26
FCOMPP = Compare and pop
rwice
ST to ST(0) [_Esc 110 [ 11011001 | 26
FTST = Test §T(0) [_ESC 0ol [ 11100100 | 28
EXAM = Examine ST(0) | Esc 001 [ 11100101 | 30-38  Constants
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Instruction Encoding/Timing. continued

ENCODING CLOCK COUNT RANGE
IS IRUCHON Byte Byte Optional | 32Bit | 32Bit | G4Bit | 16Bit
0 1 Bytes 2-6 Real Integer Real Integer
Constants
FLDZ = Load + 0.0 into ST(() | ESc 001 | 11101110 | 20
FLD1 = Load + 1.0into ST(0) | Esc no1 [ 11101000 ] 24
FLDP1 = Load pi into $T(0) [ Esc oo1 [ 11101011 ] 40
FLDL2T = Load log,(10) into ST(0) | ESC 001 | 11101001 | 40
FLDL2E = Load log,(e) into ST(0) |_Esc ool |1iilpieio ] 40
FLDLG2 = Load log,o(2) intoST(0) | ESC 001 [ 11101100 ] 41
FLDLN2 = Load log,(2) | Esc ool |111p1101 | 41
Arithmetic
FADD = Add
Integer/real memory withST(0) [ ESC MF 0 [ MOD 000 R/M [ SIB/DISP 24-32 57-72 29-37 71-85
ST() and ST(0) [ escdpo 11000 sTet) | 23-31b
FSUB = Subtract
Integer/real memory with ST(0) [ Esc mF o [Mop 10 R/M [ SIB/DISP 24-32 57-82 28-36 71-83¢
ST and ST(0) [ Escdro [1110 R R/M_| 26-344
FMUL = Multiply
Integer/real memory with ST(0) |_ESC MF 0 |MOD 001 R/M | SIB/DISP 27-35 61-82 32-57 76-87
ST(D and ST(0) | ESC d P o |11001R/M | 29-57¢
FDIV = Divide
Integer/real memory with ST(0) | Esc MF 0 [MOD 11R R/M [ SIB/DISP 89 120-127¢ 94 136-140%
ST() and ST(O) |_Eescdpo [1111 RRM | #8h
FSQRT! = Square root [_esc oor  [11111010 | 122-129
FSCALE = Scale ST(0) by ST(1) [ esc oor  [11111101 ] 67-86
FPREM = Partial remainder | Esc 001 [ 11111000 | 74-155
FPREM1 = Partial remainder (IEEE) [ Esc 001 [11110101 ] 95-185
FRNDINT =Round ST(O)tointeger [ Esc 001 [11111100 | G6-80
FXTRACT = Extract components [ Esc oo1  [11110100 | 70-76
of ST(0)
FABS = Absolute value of ST(0) [Esc oo1 11100001 | 22
FCHS = Change sign of ST(0) | Esc 001 [11100000 | 24-25
(continued)



Instruction Encoding/Timing. continued

ENCODING

INSTRUCTION Byte Byte Optional CLOCK COUNT RANGE

0 1 Bytes 2-6
FPTANK = Partial tangent of ST(0) [__esc 001 [ 11110010 | 191-497i
FPATAN = Partial arctangent |_Esc oo1 [ 11110011 | 314487
FSINK = Sine of ST(0) |_Esc ool [ 11111110 | 122-771
F2XM1!= 25T~ ] |__Esc oo1 [ a1iiooo0 ] 211-476
FYL2Xm = §T(1) + log,(ST(0)) |__Esc ool [ 11110001 ] 120-538
FYL2XP10 = ST(1) [__Esc 001 [ 11111001 ]
+ log,(ST(O) + 1.0) 257547
Processor Control
FINIT = Initialize NPX |__Esc o011 [ 11100011 ] a3
ESTSW AX = Store status word |__Esc 111 [ 11100000 | 13
FLDCW = Load control word [__Esc 001 [ MOD 101 R/M | siB/DIsP | 19
FSTCW = Store control word |__ESc 101 [ MOD 111 R/M_|  sie/pise | 15
FSTSW = Store status word | Esc 101 [ WOD 111 R/M |  Sis/oisp | 15
FCLEX = Clear exceptions [_Esc 011 [ 11100010 | 11
FSTENYV = Store environment [__ESc 001 [mMoD 110 R/M |  siB/DISP | 103-104
FLDENV = Load environment |__escoo1  [Mop 100 R/M | sie/pise | 71
FSAVE = Save state |__Esc 101 [ Mop 110 R/ | sie/pisp | 375-376
FRSTOR = Restore state [__Esc 100 [MoD 100 R/M |  Sis/Disp | 308
FINCSTP = Increment stack pointer | ESC 001 | 11110111 ] 21
FDECSTP = Decrement stack pointer | ESC 001 | 11110110 | 22
FFREE = Free ST() [__Esc 101 [ 1100 stciy | 18
FNOP = No operation [__Esc oor  [11orooo0 | 12

Shaded areas indicate instructions that are not avatlable in 8087/80287,

NOTES:

a. When loading single-precision or double-precision 0 from memory, add 5 clocks,
b. Add 3 clocks to the range when d = 1,

¢. Add 1 clock to each range when R = 1,

d. Add 3 clocks to the range when d = 0.

e. Typical = 52, (When d = 0, 4654, typical = 49.)

f. Add 1 clock to the range when R = 1.

g.135-141 when R = 1.

h. Add 3 clocks to the range when d = 1.

1. =0 < ST(0) S + oo,

j. These timings hold for operands in the range | x | < n/4. For operands not in this range, up to 76
additional clocks might be needed to reduce the operand.

k.0<| sT(O)| <263,

1. =10 ST < 1.0.

m, ) £ 8T(0) < oo, —e0 < ST(1) < + o2,

n. 0| ST | <2 - SQRT(2))/2, = < ST(1) < + oo,
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Appendix E
INSTRUCTION
DISASSEMBLY

TABLE

The table in this appendix allows you to decode 80386 instructions. It presents the
same information as the opcode table in Appendix C but is easier to use.

The table has the following format:
[required byte(s)] [operand byte(s)] linstruction]

At least one of the required bytes is an 8-bit hexadecimal value, and additional bytes
may follow. The operand bytes have one of the following forms:

ea: The source and destination operands are encoded in the standard mod reg r/m
format described in Appendix D.

ea/N: The destination operand is encoded in the mod r/m portion of the ea field,
and the reg bits are set to /N.

dataN: N bytes of immediate data follow the instruction.

—/n/reg: The standard mod reg r/m encoding is interpreted so that the mod bits
are ignored, the reg bits specify register n of a group (such as CR3), and the r/m bits
select a general 32-bit register.

dispN: A signed displacement (N bits in length) from the current instruction
pointer (EIP) follows the instruction.

The abbreviations Ea, Eb, Ew, and Ed stand for the effective address, byte, word,
and doubleword indicated by the ea bits in the instruction.

Instructions preceded by an asterisk (*) are 32-bit instructions that operate on 16-
bit quantities when preceded with the OPSIZ: instruction prefix, For real mode, V86
mode, and 286-compatible code segments, the behavior is reversed; that is, the in-
structions operate on 16-bit operands unless preceded with the OPSIZ: prefix.
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Instruction Disassembly Table

Instruction Instruction
Bytes Operation Bytes Operation
00 ea ADD Eb, reg8 +0F 8C disp32 JL disp32 (JL/JNGE)
*01 ea ADD Ed, reg32 +0F 8D disp32 JNL disp32 (JNL/JGE)
02 ea ADD reg8, Eb +OF 8E disp32 JLE disp32 (JLE/JNG)
x03 ea ADD reg32, Ed «0F 8F disp32 JNLE disp32 (JNLE/JGE)
04 data8 ADD AL, data8 OF 90 ea SETO Eb
+05 data32 ADD EAX, data32 OF 91 ea SETNO Eb
+06 PUSH ES OF 92 ea SETB Eb (SETB/SETNAE)
«(07 + POP ES OF 93 ea SETNB Eb (SETNB/SETAE)
08 ea OR Eb, reg8 OF 94 ea SETZ Eb (SETZ/SETE)
+(09 ea OR Ed, reg32 OF 95 ea SETNZ Eb (SETNZ/SETNE)
0A ea OR reg8, Eb OF 96 ea SETBE Eb (SETBE/SETNA)
+0B ea OR reg32, Ed OF 97 ea SETNBE Eb (SETNBE/SETA)
0C data8 OR AL, data8 OF 98 ea SETS Eb
«0D data32 OR EAX, data32 OF 99 ea SETNS Eb
«0E PUSH CS OF 9A ea SETP Eb (SETP/SETPE)
OF 00 ea/0 SLDT Ew OF 9B ea SETNP Eb (SETNP/SETPO)
OF 00 ea/1 STR Ew OF 9C ea SETL Eb (SETL/SETNGE)
OF 00 ea/2 LLDT Ew OF 9D ea SETNL Eb (SETNL/SETGE)
OF 00 ea/3 LTR Ew OF 9E ea SETLE Eb (SETLE/SETNG)
OF 00 ea/4 VERR Ew OF 9F ea SETNLE Eb (SETNLE/
OF 00 ea/5 VERW Ew SETGE)
OF 01 ea/0 SGDT Ea «0F AO PUSH FS
OF 01 ea/1 SIDT Ea «0F Al POP FS
OF 01 ea/2 LGDT Ea *0F A3 ea BT Ed, reg32
OF 01 ea/3 LIDT Ea +0OF A4 ea data8 SHLD Ed, reg32, data8
OF 01 ea/4 SMSW Ew «(OF AS ea SHLD Ed, reg32, CL
OF 01 ea/6 LMSW Ew +0F A8 PUSH GS
«0F 02 ea LAR reg32, Ew +OF A9 POP GS
«0F 03 ea LSL reg32, Ew +0F AB ea BTS Ed, reg32
0F 06 CLTS «0F AC ea data8 SHRD Ed, reg32, data8
OF 20 —/n/reg MOV CRn, reg32 «0F AD ea SHRD Ed, reg32, CL
OF 21 —/n/reg MOV DRn, reg32 +0F AF ea IMUL reg32, Ed
OF 22 —/n/reg MOV reg32, CRn +OF B2 ea LSS reg32, Ea
OF 23 —/n/reg MOV reg32, DRn *0F B3 ea BTR Ed, reg32
OF 24 —/n/reg MOV TRn, reg32 «0OF B4 ea LFS reg32, Ea
OF 26 —/n/reg MOV reg32, TRn *OF BS ea LGS reg32, Ea
+OF 80 disp32 JO disp32 +OF B6 ea MOVZX reg32, Eb
+OF 81 disp32 JNO disp32 +0F B7 ea MOVZX reg32, Ew
+0F 82 disp32 JB disp32 (JB/INAE) «(OF BA ea/4 data8 BT Ed, data8
«0F 83 disp32 JNB disp32 (INB/JAE) =OF BA ea/5 data8 BTS Ed, data8
«OF 84 disp32 JZ disp32 (JZ/JE) +0F BA ea/6 data8 BTR Ed, data8
«0F 85 disp32 JNZ disp32 (JNZ/JNE) +0F BA ea/7 data8 BTC Ed, data8
«OF 86 disp32 JBE disp32 (JBE/JNA) «OF BB ea BTC Ed, reg32
*0F 87 disp32 JNBE disp32 (JNBE/ +0F BC ea BSF reg32, Ed
JA) +OF BD ea BSR reg32, Ed
+OF 88 disp32 JS disp32 +OF BE ea MOVSX reg32, Eb
+OF 89 disp32 JNS disp32 +0F BF ea MOVSX reg32, Ew
+0F 8A disp32 JP disp32 (JP/JPE) 10 ea ADC Eb, reg8
«0F 8B disp32 JNP disp32 (JNP/JPO) =11 ea ADC Fd, reg32
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Instruction Disassembly Table. continued

Instruction Instruction
Bytes Operation Bytes Operation
12 ea ADC reg8, Eb »41 INC ECX
+13 ea ADC reg32, Ed *42 INC EDX
14 data8 ADC AL, data8 +43 INC EBX
»15 data32 ADC EAX, data32 +44 INC ESP
16 PUSH S5 +45 INC EBP
+17 POP 5§ “46 INC ESI
18 ea SBB Eb, reg8 w47 INC EDI
«19 ea SBB Ed, reg32 «48 DEC EAX
1A ea SBB reg8, Eb +49 DEC ECX
»1B ea SBB reg32, Ed +4A DEC EDX
1C data8 SBB AL, data8 +4B DEC EBX
« 1D data32 SBB EAX, data32 «4C DEC ESP
+1E PUSH DS *4D DEC EBP
«1F POP DS »4F DEC ESI
20 ea AND EDb, reg8 «4F DEC EDI
«21 ea AND Ed, reg32 +50 PUSH EAX
22 ea AND reg8, Eb +51 PUSH ECX
+23 ea AND reg32, Ed *52 PUSH EDX
24 data8 AND AL, data8 *53 PUSH EBX
«25 data32 AND EAX, data32 “54 PUSH ESP
26 ES: *55 PUSH EBP
27 DAA *56 PUSH ESI
28 ea SUB Eb, reg8 «57 PUSH EDI
+29 ea SUB Ed, reg32 *58 POP EAX
2Aea SUB reg8, Eb *59 POP ECX
»2B ea SUB reg32, Ed *SA POP EDX
2C data8 SUB AL, data8 +5B POP EBX
+2D data32 SUB EAX, data32 «5C POP ESP
2E CS: »5D POP EBP
2F DAS «5E POP ESI
30 ea XOR Eb, reg8 +5SF POP EDI
*31 ea XOR Ed, reg32 +60 PUSHAD
32ea XOR reg8, Eb «61 POPAD
*33 ea XOR reg32, Ed +62 ea BOUND reg32, Ea
34 data8 XOR AL, data8 63 ea ARPL Ew, regl6
»35 data32 XOR EAX, data32 64 FS:
36 SS: 65 GS:
37 AAA 66 OPSIZ:
38 ea CMP Eb, reg8 67 ADRSIZ:
+30 ea CMP Ed, reg32 +68 data 32 PUSH data32
3A ea CMP reg8, Eb «(9 ea data32 IMUL reg32, Ed, data32
+3B ea CMP reg32, Ed 6A data8 PUSH data8
3C data8 CMP AL, data8 «0B ea data8 IMUL reg32, Ed, data8
*3D data3?2 CMP EAX, data32 6C INSB
3E DS: +6D INSD
3EF AAS 6E OUTSB
=40 INC EAX «GF OuUTSD

(continued)
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Instruction Disassembly Table. continued

Instruction Instruction
Bytes Operation Bytes Operation
70 disp8 JO disp8 +8B ea MOV reg32, Ed
71 disp8 JNO disp8 8Cea/s MOV Ew, sreg
72 disp8 JB disp8 (JB/INAE)  +8D ea LEA reg32, Ea
73 disp8 JNB disp8 (JNB/JAE)  8E ea/s MOV sreg, Ew
74 disp8 JZ disp8 (JZ/JE) +8F ea POP Ed
75 disp8 JNZ disp8 (JNZ/INE) 90 NOP
76 disp8 JBE disp8 (JBE/JNA) 91 XCHG EAX, ECX
77 disp8 JNBE disp8 (JNBE/JA) +92 XCHG EAX, EDX
78 disp8 JS disp8 +93 XCHG EAX, EBX
79 disp8 JNS disp8 +94 XCHG EAX, ESP
7A disp8 JP disp8 (JP/JPE) *95 XCHG EAX, EBP
7B disp8 JNP disp8 (JNP/JPO) +96 XCHG EAX, ESI
7C disp8 JL disp8 (JL/INGE) «97 XCHG EAX, EDI
7D disp8 JNL disp8 (JNL/JGE)  +98 CBW / CWDE
7E disp8 JLE disp8 (JLE/JNG) 99 CWD
7F disp8 JNLE disp8 (JNLE/JGE) 9A offset32 CALL offset32
80 ea/0 data8 ADD Eb, data8 9B WAIT
80 ea/1 data8 OR Eb, data8 *9C PUSHFD
80 ea/2 data8 ADC Eb, datag «9D POPFD
80 ea/3 data8 SBB Eb, data8 9E SAHE
80 ea/4 data8 AND Eb, data8 9F LAHF
80 ea/5 data8 SUB Eb, data8 A0 disp MOV AL, [disp]
80 ea/6 data8 XOR Eb, data8 «Al disp MOV EAX, [disp]
80 ea/7 data8 CMP Eb, data8 A2 disp MOV [disp], AL
«81 ea/0 data32 ADD Ed, data32 *A3 disp MOV [displ, EAX
+81 ea/1 data32 OR Ed, data32 Ad MOVSB
+81 ea/2 data32 ADC Ed, data32 + A5 MOVSD
+81 ea/3 data32 SBB Ed, data32 A6 CMPSB
+81 ea/4 data32 AND Ed, data32 * A7 CMPSD
+81 ea/5 data32 SUB Ed, data32 A8 data8 TEST AL, data8
«81 ea/6 data32 XOR Ed, data32 +A9 data32 TEST EAX, data32
+81 ea/7 data32 CMP Ed, data32 AA STOSB
+83 ea/0 data8 ADD Ed, data8 +AB STOSD
*83 ea/1 data8 OR Ed, data8 AC LODSB
*83 ea/2 data8 ADC Ed, data8 +AD LODSD
+83 ea/3 data8 SBB Ed, data8 AE SCASB
+83 ea/4 data8 AND Ed, data8 *AF SCASD
+83 ea/5 data8 SUB Ed, data8 B0 data8 MOV AL, data8
+83 ea/6 data8 XOR Ed, data8 Bl data8 MOV CL, data8
+83 ca/7 data8 CMP Ed, data8 B2 data8 MOV DL, data8
84 ea TEST Eb, reg8 B3 data8 MOV BL, data8
+85 ea TEST Ed, reg32 B4 data8 MOV AH, data8
86 ea XCHG Eb, reg8 B5 data8 MOV CH, data8
+87 ea XCHG Ed, reg32 B6 data8 MOV DH, data8
88 ea MOV Eb, reg8 B7 data8 MOV BH, data8
+89 ea MOV Ed, reg32 + B8 data32 MOV EAX, data32
8A ea MOV reg8, Eb +B9 data32 MOV ECX, data32
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Instruction Disassembly Table. continued

Instruction Instruction
Bytes Operation Bytes Operation
*BA data32 MOV EDX, data32 +D1 ea/7 SAR Ed, 1
+BB data32 MOV EBX, data32 D2 ea/0 ROL Eb, CL
+BC data32 MOV ESP, data32 D2 ea/l ROR Eb, CL
+BD data32 MOV EBP, data32 D2 ea/2 RCL Eb, CL
« BE data32 MOV ESI, data32 D2 ea/3 RCR Eb, CL
*BF data32 MOV EDI, data32 D2 ea/4 SHL Eb, CL
CO ea/0 data8 ROL Eb, data8 D2 ea/5 SHR Eb, CL
C0 ea/1 data8 ROR Eb, data8 D2 ea/7 SAR Eb, CL
CO0 ea/2 data8 RCL Eb, data8 *D3 ea/0 ROL Ed, CL
CO0 ea/3 data8 RCR Eb, data8 «D3 ea/l ROR Ed, CL
C0 ea/4 data8 SHL Eb, data8 «D3 ea/2 RCL Ed, CL
C0 ea/5 data8 SHR Eb, data8 «D3 ea/3 RCR Ed, CL
C0 ea/7 data8 SAR Eb, data8 +D3 ea/d SHL Ed, CL
+C1 ea/0 data8 ROL Ed, data8 «D3 ea/5 SHR Ed, CL
+C1 ea/1 data8 ROR Ed, data8 +D3 ea/7 SAR Ed, CL
+C1 ea/2 data8 RCL Ed, data8 D4 AAM
+C1 ea/3 data8 RCR Ed, data8 D5 AAD
«C1 ea/4 data8 SHL Ed, data8 D7 XLAT
«C1 ea/5 data8 SHR Ed, data8 D8 ESC 0 (NDP)
+C1 ea/7 data8 SAR Ed, data8 D9 ESC 1 (NDP)
€2 datal6 RET datal6 DA ESC 2 (NDP)
C3 RET DB ESC 3 (NDP)
+C4 ea LES reg32, Ed DC ESC 4 (NDP)
+C5 ea LDS reg32, Ed DD ESC 5 (NDP)
C6 ea data8 MOV reg8, data8 DE ESC 6 (NDP)
+C7 ea data32 MOV reg32, data32 DF ESC 7 (NDP)
C8 datal6 data8 ENTER datal6, data8  EO disp8 LOOPNE disp8
9 LEAVE (LOOPNE/LOOPNZ)
CA datal6 RETF datal6 El disp8 LOOPE disp8
CB RETF (LOOPE/LOOPZ)
cC INT 3 E2 disp8 LOOP disp8
CD data8 INT data8 E3 disp8 JCXZ disp8
GE INTO E4 data8 IN AL, data8
CFE IRET «E5 data8 IN EAX, data8
DO ea/0 ROL Eb, 1 E6 data8 OUT data8, AL
DO ea/1 ROR Eb, 1 +E7 data8 OUT data8, EAX
DO ea/2 RCL Eb, 1 +E8 ea32 CALL ea32
DO ea/3 RCR Eb, 1 E9 disp32 JMP disp32
DO ea/4 SHL Eb, 1 +EA ead8 JMP FAR ea48
D0 ea/5 SHR Eb, 1 EB disp8 JMP disp8
DO ea/7 SAR Eb, 1 EC IN AL, DX
«D1 ea/0 ROL Ed, 1 +«ED IN EAX, DX
+D1 ea/l ROR Ed, 1 EE OUT DX, AL
+D1 ea/2 RCLEd, 1 +EF OUT DX, EAX
+D1 ea/3 RCR Ed, 1 FO LOCK
+D1 ea/4 SHL Ed, 1 F2 REPNE/REPNZ
+D1 ea/5 SHR Ed, 1 F3 REP/REPE/REPZ

(continued)
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Instruction Disassembly Table. continued

Instruction Instruction
Bytes Operation Bytes Operation
F4 HLT 8 CLC
F5 CMC 79 STC
F6 ea/0 data8 TEST Eb, data8 FA CLI
F6 ea/2 NOT Eb FB STIL
F6 ea/3 NEG Eb FC CLD
F6 ea/4 MUL AL, Eb FD STD
F6 ea/5 IMUL AL, Eb FE ea/0 INC Eb
F6 ea/6 DIV AL, Eb FE ea/1 DEC Eb
F6 ea/7 IDIV AL, Eb «FF ea/0 INC Ed
«F7 ea/0 data32 TEST Ed, data32 «FF ea/1 DEC Ed
»F7 ea/2 NOT Ed +FF ea/2 CALL Ed
«F7 ea/3 NEG Ed +FF ea/3 CALL FAR ea
+F7 ea/d MUL EAX, Ed FF ea/4 JMP Ed
«F7 ea/s IMUL EAX, Ed +FF ea/5 JMP FAR ea
+F7 ea/6 DIV EAX, Ed «FF ea/6 PUSH Ed
«F7 ea/7 IDIV EAX, Ed
80387 Extensions (NDP Escapes)
Instruction Instruction
Byies Operation Bytes Operation
D8 ea/0 FADD Real32 D9 DO FNOP
D8 ea/1 FMUL Real32 D9 EO FCHS
D8 ea/2 FCOM Real32 D9 El FABS
D8 ea/3 FCOMP Real32 D9 E4 FTST
D8 ea/4 FSUB Real32 D9 E5 FXAM
D8 ea/5 FSUBR Real32 D9 E8 FLD1
D8 ea/6 FDIV Real32 D9 E9 FLDL2T
D8 ea/7 FDIVR Real32 D9 EA FLDL2E
D8 CO+i FADD ST, ST(i) D9 EB FLDPI
D8 C8+i FMUL ST, ST(i) D9 EC FLDG2
D8 DO+i FCOM ST, ST() D9 ED FLDN2
D8 D8+i FCOMP ST, §T(i) D9 EE FLDZ
D8 EO+i FSUB ST, STG) D9 FO F2XM1
D8 E8+i FSUBR ST, ST() D9 F1 FYL2X
D8 FO+i FDIV ST, ST() D9 F2 FPTAN
D8 F8+i FDIVR ST, ST(i) D9 F3 FPATAN
D9 ea/0 FLD Real32 DY F4 FXTRACT
D9 ea/2 FST Real32 D9 F5 FPREM1
D9 ea/3 FSTP Real32 DY F6 FDECSTP
D9 ea/4 FLDENV Ea D9 F7 FINCSTP
D9 ea/s FLDCW Ew D9 F8 FPREM
DY ea/6 FSTENV Ea D9 F9 FYL2ZXP1
D9 ea/7 FSTCW Ew D9 FA FSQRT
D9 CO+i FLD ST(i) D9 FB FSINCOS
D9 C8+i FXCH ST() D9 FC FRNDINT
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80387 Extensions (NDP Escapes). continued

Instruction Instruction

Bytes Operation Bytes Operation
D9 FD FSCALE DD ea/2 FST Real64
D9 FE FSIN DD ea/3 ESTP Real64
D9 FE FCOS DD ea/4 FRSTOR Ea
DA ea/0 FIADD Intl6 DD ea/6 FSAVE Ea
DA ea/l FIMUL Int16 DD ea/7 FSTSW Ew
DA ea/2 FICOM Int16 DD CO+i FFREE ST(i)
DA ea/3 FICOMP Int16 DD DO+i FST ST()
DA ea/4 FISUB Int16 DD D8+i FSTP ST(i)
DA ea/5 FISUBR Int16 DD EO0+i FUCOM STG)
DA ea/6 FIDIV Int16 DD E8+i FUCOMP ST(i)
DA ea/7 FIDIVR Intl6 DE ea/0 FIADD Int32
DA E9 FUCOMPP DE ea/1 FIMUL Int32
DB ea/0 FILD Int16 DE ea/2 FICOM Int32
DB ea/2 FIST Int16 DE ea/3 FICOMP Int32
DB ea/3 FISTP Int16 DE ea/4 FISUB Int32
DB ea/4 FLD Real80 DE ea/5 FISUBR Int32
DB ea/6 FSTP Real80 DE ea/6 FIDIV Int32
DB E2 FCLEX DE ea/7 FIDIVR Int32
DB E3 FINIT DE CO+i FADDP ST(i), ST
DC ea/0 FADD Real64 DE C8+i FMULP ST(D), ST
DC ea/l FMUL Real64 DE D9 FCOMPP
DC ea/2 FCOM Real64 DE E0+i FSUBRP ST(), ST
DC ea/3 FCOMP Real64 DE E8+i FSUBP ST(), ST
DC ea/4 FSUB Real64 DE FO+i FDIVRP ST(), ST
DC ea/5 FSUBR Real64 DE F8+i FDIVP ST(i), ST
DC ea/6 FDIV Real64 DF ea/0 FILD Int32
DC ea/7 FDIVR Real64 DF ea/2 FIST Int32
DC CO+i FADD ST(i), ST DF ea/3 FISTP Int32
DC C8+i FMUL ST(i), ST DF ea/4 FBLD Bed80
DC EO+i FSUBR ST(), ST DF ea/5 FILD Int64
DC E8+i FSUB STG@), ST DF ea/6 FBSTP Bed80
DC FO+i FIDIVR 8T(), ST DF ea/7 FISTP Int64
DC F8+i FDIV ST(), ST DF E0 FSTSW AX
DD ea/0 FLD Real64
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8086 -FAMILY
PROCESSOR
DIFFERENCES

Although the 8086, 80286, and 80386 are object-code compatible, minor differences
have arisen during the evolution of this microprocessor family. This appendix
describes these differences.

Real-Mode Differences
Between the 8086 and the 80386

The 8086 processor does not generate exceptions 6, 8-13, and 16.

Instructions execute more rapidly on the 80386; in most cases, address decode time
does not exist.

On the 80386, the divide fault (INT 0) leaves the saved CS:EIP pointing to the fault-
ing instruction. On the 8086, the value of CS:IP on the stack points to the instruction
after the one that caused the fault.

Opcodes that were not explicitly defined on the 8086 are interpreted as new in-
structions or cause the undefined opcode fault (INT 6) when executed on the
803806.

When the PUSH SP instruction is executed, the value on the stack of the 80386 is
the preincremented value, where the value pushed on the 8086 is the postincre-
mented value of SP. If it is necessary to recreate the same stack value, use the follow-
ing sequence of instructions on the 80386 in place of PUSH SP.

PUSH BP
MOV BP, SP
XCHG BP, [BP]
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The count value for shift and rotate instructions is taken modulo 32 in the 80386.
The full value (up to 255) is used on the 8086, which can result in long instruction
execution times.

An instruction (including prefixes) cannot exceed 15 bytes on the 80386. If it does,
a general protection fault occurs. This does not occur under normal circumstances
but might occur if you use multiple redundant prefixes. The 8086 has no such
restrictions.

Operands cannot extend across the segment bounds on the 80386. If, for example,
an instruction refers to a 16-bit operand at offset 65535, a general protection fault
occurs. If the stack pointer is set to low memory (offset 2) and a 32-bit value is
pushed, a stack fault occurs. In the 8086, addresses wrap around the segment
boundary and are continuous from 65535 to 0. Instruction execution behaves like
an operand fetch.

On the 80386, you can use the LOCK instruction only with certain instructions;
otherwise, an undefined opcode fault occurs. See Chapter 8 for a list of the legal
instructions. The 8086 has no such restrictions,

Sometimes the 8086 hangs while single-stepping. The 80386 does not hang because
the interrupt priorities on the 80386 are slightly different. This prevents a single-
step trap from occurring until the handler returns if a hardware interrupt is invoked.

The 8086 generates a divide fault if the quotient of an IDIV instruction is the largest
possible negative number. The 80386 generates the correct result, See the earlier
discussion of the divide fault in this appendix.

When the content of the FLAGS register is pushed onto the stack, bits 12-15 are
always 1s on the 8086. These bits represent new flags on the 80386.

The NMI interrupt masks all subsequent NMIs on the 80386 until an IRET is exe-
cuted. NMIs are not masked on the 8086,

The 80386 uses INT 16 as the coprocessor error vector, On the 8086, the system
hardware must be programmed to generate an interrupt vector, and it can be any
vector.

When an NDP exception occurs on an 80386, the saved CS:EIP points to the faulting
instruction, including any prefixes that might be part of the instruction. On the
8086, the saved CS:IP points only to the ESC portion of the faulting NDP instruction.

Additional interrupts can occur on the 80386 if the program contains undetected
bugs, such as the use of unimplemented opcodes or addressing beyond segment
boundaries.

The 8086 is limited to 1 MB of address space by having 20 physical hardware ad-
dress lines. Using selectors such as FFFFH can result in linear addresses beyond 1
MB, but because there are only 20 address lines, the addresses wrap around to 0.
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Because there are 32 address lines on the 80386, addresses greater than 1 MB can be
generated in real mode (up to 10FFEFH). If system software depends on the ability
to wrap around to 0 after 1 MB, hardware must be added to the system to force ad-
dress line 21 to 0 in real mode.

Virtual 8086-Mode Differences Between the
8086 and the 80386

All the previously listed differences also apply to V86 mode on the 80386 in com-
parison to real mode on the 8086. Following are some additional differences.

I/O instructions in V86 mode are allowed only if the 1/O permission bitmap for the
V86 mode task is set up.

All exceptions (hardware and software interrupts) vector to the protected-mode
IDT entries rather than through the real-mode interrupt mechanism. The protected-
mode handlers must simulate the real-mode vector process when appropriate.

Differences Between the 80286 and the 80386

As implemented on the 80286, the LOCK prefix caused memory to be locked during
the prefixed instruction. On the 80386, only the memory accessed by the prefixed
instruction is locked.

On RESET, any of the registers which contained undefined values on the 80286 may
contain different values on the 80386.

Differences Between the 8087 and the 80387

Errors are signalled via a dedicated hardware pin on the 80387 instead of the stan-
dard CPU interrupt mechanism. The 80386 responds to coprocessor errors via inter-
rupts 7, 9, and 16 instead of an external hardware interrupt.

The format of the error information in the 80387 environment varies depending on
whether the processor is in real mode or in protected mode. The 8087 only supports
real-mode information.

The instructions FENI/FDISI are no-ops on the 80387.

The 8087 does not perform automatic normalization of denormalized reals. Instead,
it signals a denormal exception and relies on the application to perform this opera-
tion. The 80387 will normalize these values and might execute faster if the denor-
mal exception is masked when running 8087 programs,

The 8087 requires explicit WAIT instructions before each floating-point instruction
to synchronize with the 8086. The 80386 and the 80387 perform automatic synchro-
nization. The WAIT instructions are unnecessary, but they will not cause the pro-
gram to operate incorrectly.
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Differences Between the 80287 and the 80387

The FSETPM instruction is treated as a no-op on the 80387.

The 80287 supports both affine and projective closure. Only affine closure is sup-
ported on the 80387, Programs that rely on projective closure may generate differ-
ent results on the 80387 than they did on the 80287
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A B
AAA (ASCII Adjust After Addition) back link. See link field
149 base address
AAD (ASCII Adjust Before of the GDT 27
Division) 150 of the IDT 27
AAM (ASCII Adjust After of a segment 4649, 53, 98-99,
Multiplication) 151 136
AAS (ASCII Adjust After based addressing
Subtraction) 152 alone 68-69

abort (exception class)
COProcessor segment overrun
(INT 9) 116
defined 111-12
double fault (INT 8) 115
accessed (A) bit 52
access rights 51-52, 87, 137
accumulator 2, 66, 75, 83
ADC (Add with Carry) 153
ADD (Integer Addition) 154
addresses
effective 71, 83
physical 18, 45, 125-27, 129,
132,137
segment/offset 46-47
virtual 45-47, 102, 125-27
addressing modes. See instruction
operands
address translation
virtual to linear 46-47
virtual to physical 125-26
affine closure 39
AH register 22
alias segments 103, 121
AL register 22
AND (Boolean AND) 155
architecture
evolution of 1-11
microarchitecture 16-18
arithmetic instructions
floating-point 89-90
integer 7475
arithmetic shifts 78
ARPL (Adjust RPL) 15657
array indexing. See scaling
ASCII instructions 76
ASCII numeric format 21
ASCII table 383
auxiliary carry flag (AF) 25
available (AVL) bit 52
AXregister 22

plus displacement 69
plus displacement plus
index 71
base pointer (EBP) register
3—4, 69
base registers 68-71
BCD instructions
floating-point 89
integer 76
BCD numeric format 21, 30, 34
BH register 22
bias, floating-point exponent
31-33
big (B) bit 52
binary fractions 31-33, 38
bitinstructions 7677
bit strings 18-19, 7677
BL register 22
Boolean instructions 76
BOUND (Check Array
Boundaries) 158
bounds check fault (IN'T 5)
111, 114
BP register 3—4, 22
branch instructions 81-83
breakpoint registers 121-24
breakpoint trap 114
BSF (Bit Scan Forward) 160-61
BSR (Bit Scan Reverse) 162
BT (Bit Test) 164-65
BTC (Bit Test and Complement)
166-67
BTR (Bit Test and Reset)
168-69
BTS (Bit Test and Set) 170-71
Bus Interface Unit (BIU) 17
bus lock (LOCK\) 79, 86, 130
busy (B) bit 106
busy TSS 104, 108
BX register 22

C :
cache, page table 18, 129-30
CALL (Procedure Calls) 172-74
call gate 96-97, 104, 121
carry flag (CF) 26
CBW (Convert Byte to Word) 175
CDQ (Convert Doubleword to
Quadword) 176
CH register 22
CLC (Clear Carry Flag) 177
CLD (Clear Direction Flag) 178
CLI (Clear Interrupt Flag) 179
CL register 22
CLTS (Clear Task Switched Bit)
180
CMC (Complement Carry Flag)
181
CMP (Compare Integers)
182-83
CMPS (Compare String) 184 -85
code segments 51-52
compatibility with 8086 441-43
compatibility with 80286 443
condition codes
80387 38-40
EFLAGS register 23-26, 80, 82
Jee (Jump if Condition) 82
SETcc (Set Byte on Condition)
79-80
conforming segments 51
control instructions 92
control registers (CRO—CR3)
27-29, 79,107, 118, 128
control transfer instructions
81-82
control word (CW) register 39
COprocessor
emulation of 28
environment 91
instructions 8892
introduction of 67
numeric formats 30-34
registers 35
coprocessor error fault (INT 16)
119
coprocessor not available fault
(INT 7) 115
COProcessor segment overrun
(INT 9) 116
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CS segment register 5, 26, 45, 51,
94, 13637

current privilege level (CPL) 24,
51, 94-95, 130

CWD (Convert Word to
Doubleword) 186

CWDE (Convert Word to
Doubleword Extended)
187

CX register 4, 22

D
DAA (Decimal Adjust AL After
Addition) 188
DAS (Decimal Adjust AL After
Subtraction) 189
data segments 51-52
data transfer instructions 79-80
data types
ASCII 21
BCD 21, 34
bit strings 18-19
bytes 19
doublewords (dwords) 20
integers 19-20
long reals (double-precision)
31-34
quadwords (qwords) 20
short reals (single-precision)
31-32
temp reals (extended-
precision) 31, 33
words 20
debug breakpoints 114, 12024
debug exception (INT 1) 109, 114
debug registers 29, 121-24
DEC (Decrement) 190
decimal instructions 76
default (D) bit 52, 137-38
denormal exception 38
denormal floating-point numbers
33
denormal operand mask (DM)
bit 40
descriptor cache 18, 26, 36. See
also shadow registers
descriptor formats 4654,
104-5 '
descriptor privilege level (DPL)
94-95
descriptor tables 54, 100-102
descriptor type (TYPE) field
51,104
DH register 22
direct addressing 67-68
direction flag (DF) 65, 83

446

directory, page table 118, 127-31
DI register 22
dirty (D) bit 127
disable interrupts (CLI) 25,
14344

displacement 64, 67, 69
DIV (Unsigned Division) 191
divide fault

80386 (IN'T 0) 114

80387 (ZE exception) 38
DL register 22
double fault (INT 8) 111, 115
double-precision format (long

real) 31-34

double shift 78
doublewords (dwords) 20
DS segment register 5, 45, 83
dword count field 97
dwords 20
DX register 22

E
EAX register 22
EBP register 22, 68, 71
EBX register 22
ECX register 22, 82, 83, 85
EDI register 22, 83
EDX register 22
EFLAGS register 23-26, 82
emulate math coprocessor (EM)
bit 28, 115
enable interrupts (STI) 25,
143—-44
ENTER (Enter New Stack Frame)
193
equal (branch condition) 82
error codes 113-19
ERROR\ pin 119
error pointer registers 41-42, 91
error summary (ES) bit 37
ES register 5, 83
ESI register 22, 83
ESP register 22, 68
exception masks 37-38, 40
exceptions
80386
aborts 111
protected-mode handling
110-20
real-mode handling 138-39
traps 11011
virtual 8086-mode (V86-
mode) handling 145-46
80387
conditions 38-40
mask bits 37-38, 40

execute-only segments 51-52

execution unit 17

expand-down segments 51-53

exponent, floating-point 31-33

extended-precision floating point
(temp real) 31, 33, 38-39

extension type (ET) bit 28

F

FABS (Absolute Value) 309

FADD (Addition) 310

FAR CALLs and JMPs 107, 117, 121,
140

faults. See exceptions

FBLD (BCD Load) 312

FBSTP (BCD Store and Pop) 313

FCHS (Change Sign) 314

FCLEX (Clear Exceptions) 315

FCOM (Compare) 31617

FCOS (Cosine) 318

FDECSTP (Decrement Stack
Pointer) 319

FDIV (Division) 320-21

EDIVR (Division Reversed)
322-23

FFREE (Free NDP Register) 324

FIADD (Integer Addition) 325

FICOM (Integer Compare) 326

FIDIV (Integer Division) 327

FIDIVR (Integer Division
Reversed) 328

FILD (Integer Load) 329

FIMUL (Integer Multiplication)
330

FINCSTP (Increment Stack
Pointer) 331

FINIT (Initialize NDP) 332

FIST (Integer Store) 333

FISUB (Integer Subtraction) 334

FISUBR (Integer Subtraction
Reversed) 335

flag register (EFLAGS)
23-26, 82

FLD (Load Real) 336

FLDconst (Load Constant) 337

FLDCW (Load Control Word) 338

FLDENY (Load Environment) 339

floating-point condition codes
38-40

floating-point environment 91

floating-point exceptions 37-40,
115, 119

floating-point formats 31-33

floating-point instruction set 308

FMUL (Multiplication) 340—41

FNOP (No Operation) 342



FPATAN (Partial Arctangent) 343

FPREM (Partial Remainder)
34445

FPREMI (IEEE Partial Remainder)
34647

FPTAN (Partial Tangent) 348

fraction, binary 31-33, 38

fragmentation 58, 126

frame pointer. See stack frame

FRNDINT (Round to Integer) 349

FRSTOR (Restore NDP State)
350-51

FSAVE (Save NDP state)
352-53

FSCALE (Scale by 2#) 354

FSETPM (Set Protected Mode) 355

FSIN (Sine) 356

FSINCOS (Sine and Cosine) 357

FSQRT (Square Root) 358

FS segment register 26, 45, 85

FST (Store Floating Point) 359

FSTCW (Store Control Word) 360

FSTENV (Store Environment) 361

FSTSW (Store Status Word) 362

FSUB (Subtraction) 363-64

FSUBR (Subtraction Reversed)
365-66

FTST (Test for Zero) 367-68

FUCOM (Unordered Compare)
369-70

FWAIT (Wait Until Not BUSY) 371

FXAM (Examine Top of Stack)
372-73

FXCH (Exchange Stack Elements)
374

FXTRACT (Extract Floating-Point
Components) 375

FYL2X (Compute Y x log, X) 376

FYL2XP1 (Compute ¥ X log,
(X+1)) 377

F2XM1 (Compute 2% —1) 378

G-Il

gates 94, 96-98, 1045, 112-13, 117

GDTR register 27, 54, 99, 141

general protection fault (INT 13)
47, 84, 111, 118, 143

Global Descriptor Table (GDT) 27,
54, 87, 98-103, 114

global enable (GO-G3) bits 123

granularity (G) bit 49, 131, 142

greater than (branch condition)
82

GS segment register 26, 45, 85

HLT (Halt) 87, 195

IDIV (Integer (Signed) Division}
196-97
IDTR register 27, 54, 98, 136, 138,
145
IEEE-754 floating-point format
7,31
immediate operands 66
implicit operands 65
IMUL (Integer (Signed)
Multiplication) 198
IN (Input from [/O Port) 199-200
INC (Increment) 201
index addressing
with base plus displacement 71
plus displacement 69-71
index field 99, 101
infinity 33, 39
infinity control bit 39
initial processor state 135-36
input
instruction 66-67, 85
protection checks 109, 143
INS (Input String from I/O Port)
202-3
instruction decode unit 17
instruction disassembly table
433-38
instruction formats and timings
64, 397
instruction operands
immediate 66
implicit 65
1/0 66-67
memory reference (see
memory reference
operands)
register 65
instruction prefetch queue 17
instruction prefetch unit 17
INT (Software Interrupt) 204-5
integer data format
80386 19-20
B0387 30
Interrupt Descriptor Table (IDT)
110-13, 130, 141, 145
interrupt enable flag (IF) 25
interrupt gate 96
interrupts
disabling/enabling 25, 118,
143-44
exceptions, faults, and traps
110-21
gates for 104—5
hardware 25, 110, 111
masking 119-20
in real mode 138-39

Index

Interrupts continued
software 25, 81, 111, 121, 145
in virtual 8086 mode 145-46
INTO (Interrupt on Overflow)
206
invalid opcode fault (INT 6)
114-15
invalid operation exception (IE)
bit 39
invalid TSS fault (INT 10) 11617
1/0
instructions 66-67, 85
operands 6667
permission bitmap 109-10, 143
permission checks 109, 143
in protected mode 109
in virtual 8086 mode 143
1/0 privilege level (IOPL) 24, 84,
109, 143—45
IRET (Interrupt Return) 207

J-M

Jee (Jump if Condition) 208-9

JMP (Near, Far Jump) 210~11

LAHF (Load AH with Flags) 212

LAR (Load Access Rights)
213-14

LCS (Load CS) 229

LDS (Load DS) 229

LDTR register 27, 107, 109, 117

LEA (Load Effective Address) 215

LEAVE (Leave Current Stack
Frame) 216

LES (Load ES) 229

less than (branch condition) 82

LFS (Load FS) 229

LGDT (Load GDT Register) 217

LGS (Load GS) 229

LIDT (Load IDT Register) 218

limit 49-50, 136

linear addresses 18, 27, 44—47, 121,
127-29

link field 107, 108

LLDT (Load LDT Register) 219

LMSW (Load Machine Status
Word) 220

local descriptor table (LDT) 98,
101-4

local enable (LO-L3) bits 123

LOCK (Bus Assert Hardware
LOCK\Signal Prefix)
221-22

LODS (Load String) 22324

logical shifts 77-78

long real format (double-
precision) 31-34
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LOOPce (Loop Decrement ECX
and Branch) 225-26
Lseg (Load Segment Register) 229
LSL (Load Segment Limit)
227-28
LSS (Load 8S) 229
LTR (Load Task Register) 230
machine status word (MSW) 28,
141
mask bits 37-38
math present (MP) bit 28, 115
memory read/write breakpoints
120-24
memory reference operands
based 68-69
based plus displacement 69
based plus index plus
displacement 71
direct 67-68
index plus displacement
69-71
stack 72-74
memory segments 5-6, 43-53
microarchitecture 16-18
modes
protected 7-8, 28, 93124,
14041
real 7, 135-39, 142
transitions between 28, 142
virtual 8086 10, 131-32,
142-46
MOV (Move Data/Selector/
Special) 231-33
MOVS (Move String) 234-35
MOVSX (Move with Sign
Extension) 236
MOVZX (Move with Zero
Extension) 237
MUL (Unsigned Multiplication)
238-39
multitasking support 28, 44, 55,
98, 105-9

N-P
NaN (Not a Number) 33-34
native mode 86, 135, 138
NEG (Negate Integer) 240
negative number formats
floating-point 31
integer 19-20
nested task (NT) flag 24, 108
Non-Maskable Interrupt (NMI) 25,
110, 120, 144
NOP (No Operation) 241

NOT (Boolean Complement) 242
not present fault (INT 11) 117
null selector 101-2, 146
numeric formats
BCD 21, 30, 34
floating-point 31-33
integer 19-20
offset 46-47
opcodes, table of 385-92
OR (Boolean OR) 243
OUT (Output to Port) 244—45
output
instruction 6667, 85
privilege checking 109, 143
OUTS (Output String) 246-47
overflow exception (OE) bit 38
overflow flag (OF) 24, 80, 82, 111,

114
overflow trap (INT 4) 111, 114
override prefixes

address 85-86, 137-38
operand size 86, 137-39
segment 45, 67, 85-806,

117-18
Page Directory Entry (PDE) 128,

130
page enable (PG) bit 28, 127, 142
page fault (INT 14) 11819, 127, 131
page granularity (G) bit 49-50
Page Table Entry (PTE) 127-31
paging 125-31, 143
paging unit 18
parity flag (PF) 26, 80, 82
permission checks

1/0 109, 143
between privilege rings
96-101
segment access 93-96
physical addresses 18, 45,

125-27, 129, 132, 137
pointer registers 3, 52, 67-73
pointers 60, 83-84
POP (Pop Segment Register/Value

Off Stack) 248—49
POPA (Pop All General Registers

16-bit) 250
POPAD (Pop All General

Registers 32-bit) 251
POPF (Pop Stack into FLAGS) 252
POPFD (Pop Stack into EFLAGS)

253
precision, floating-point 31-33
precision control (PC) field 39

precision exception (PE) bit 38
prefix instructions
ADRSIZ 86-87, 137, 138
LOCK 86,130, 141
OPSIZ 86, 137, 138
repeat 83, 85
segment override 45, 67,
85-86, 117-18
present (P} bit
in descriptor 51, 117, 137
in page table 119
privilege levels
current (CPL) 24, 51, 94-95, 130
descriptor (DPL) 94-95
paging and privilege 13031
tings 94-96
transitions between 96-101
projective closure 39
protected mode
introduction to 7-8 |
mechanism, 80386 93~124
switching into/away from
14042
protect enable (PE) bit 28, 142
protection
of pages 118-19, 130-31
of segments 93-96
PUSH (Push Value onto Stack)
254-55
PUSHA (Push 16-Bit General
Registers) 256
PUSHAD (Push 32-Bit General
Registers) 257
PUSHF (Push 16-Bit EFLAGS
Register) 258
PUSHFD (Push EFLAGS Register)
259

Q@-R
quadwords 20
quiet NaN 34
RCL (Rotate Through Carry Left)
260-61
RCR (Rotate Through Carry Right)
262-63
readable code segments 51
read-only data segments 51, 58
read/write (R/W) bit
for debugging 123
for paging 127, 130
READY\ 88
real mode 7, 135-39
real number formats 31-33



registers
breakpoint 121-24
control 27-29, 79, 107, 118, 128
debug and test 29, 121-24
floating-point 35
general 22
protection 27
segmentation (see segment
registers)
REP/REPE/REPZ/REPNE/REPNZ
(Repeat String Prefix) 264
requested privilege level (RPL) 54,
99-102, 108, 117
RESET 135-37
resume flag (RF) 24, 120
RET (Near Return from
Subroutine) 265
RETF (Far Return from
Subroutine) 266
return
from interrupt 113, 146
from subroutine 73
from task switch 108, 113
rings, protection 8, 94-96
ROL (Rotate Left) 267-68
ROR (Rotate Right) 26970
rotate instructions 78
rounding control (RC) 39-40

S
SAHF (Store AH in EFLAGS) 271
SAL (Shift Left Arithmetic)
272-73
SAR (Shift Right Arithmetic)
274-75
SBB (Subtraction with Borrow)
276
scaling 71, 87
SCAS (Scan String) 277-78
seg (Segment Override Prefix) 279
segmentation
address translation in 43-47
introduction of 5—6
protection in 48-53
segmentation unit 18
segment override prefix 45, 67,
85-86, 117-18
segment registers
description of 26-27
initialization of 136
introduction of 5-6
loading and storing 79, 101, 107,
117, 146
in virtual addressing 46, 60

selector 4647, 5455, 9394,
100-102, 107

SETcc (Set Byte on Condition)
280-81

SGDT (Store GDT Register) 282

shadow registers 108-9,
13637, See also descriptor
cache

shared segments 58-59, 131

SHL (Shift Left Logical) 283-84

SHLD (Shift Left Double) 285

short real (single-precision)
format 31-32

SHR (Shift Right Logical)
286-87

SHRD (Shift Right Double) 288

shutdown 116, 144

SIDT (Store IDT Register) 289

sign flag (SF) 25, 80, 82

significand 31-33

single-precision (short real)
format 31-32

single stepping 12022, 138

Sl register 22

SLDT (Store LDT Register) 290

SMSW (Store Machine Status
Word) 291

software breakpoints 114

software interrupts 25, 81, 111,
121, 145

SP register 3—4, 22

SS segment register 26, 45, 72, 98,
145

stack fault (INT 12) 52-53, 72,
117-18

stack fault (SF) bit 37

stack frame 8, 69, 73

stack pointer (ESP) register 22, 68

status word (SW) register 35,
37-39

STC (Set Carry Flag) 292

STD (Set Direction Flag) 293

STI (Set Interrupt Flag) 294

STOS (Store String) 295-96

STR (Store Task Register) 297

string instructions 25, 83, 85

SUB (Subtraction) 298

subroutine call 4, 73, 81

supervisor pages 130-31

swapping

pages 126-28, 133-34
segments 52, 56—060, 117

Index

T-Z

table indicator (TI) bit 54, 99,
101, 114

tag word (TW) register 35, 41

task gate 96, 105, 112-13, 117

task (TR) register 27, 98, 107

Task State Segment (TSS) 27,
98-100, 103-10, 116, 117, 121

task switched (TS) bit 28, 115

task switching 107-10

task switch trap (T) bit 121, 123

temp real (extended-precision)
format 31, 33, 38-39

TEST (Test Bits) 299

test registers 29, 99

top-of-stack (TOP) field 37

translation lookaside buffer (TLB)
18, 108, 129-30, 142

trap flag (TF) 25, 120-21, 138

trap gates 96, 104, 112, 117

traps 11011, 114, 120-21

type (TYPE) field 51, 104—6

undefined opcode fault (INT 6)
114-15

underflow exception (UE) bit 37,
38

unmasked exceptions 38

unsigned comparisons 80, 82

user-level pages 130-31

user/supervisor (U/S) bit 119,
130-31

V86 mode, See virtual 8086 mode

vector table 111, 138-39

VERR (Verify Read Access)
300-301

VERW (Verify Write Access)
302-3

virtual 8086 mode 10, 23,
142-46

virtual addresses 45-47, 102,
125-27

virtual memory 45-47, 51,
55-60, 125-27

virtual mode (VM) bit 23, 143, 146

WALT (Wait Until Not Busy) 304

word count field. See dword count
field

words 20

writable data segments 51

XCHG (Exchange) 305

XLATB (Translate Byte) 306

XOR (Boolean Exclusive OR) 307

zero divide exception (ZE) bit 38

zero divide fault (INT 0) 114

zero flag (ZF) 26, 80, 82



ROSS P. NELSON

Ross Nelson has several years of programming experience, all with Intel micropro-
cessors. After earning his B.S. in computer science from Montana State University,
he joined Intel Corporation in 1979. There he worked on the development of the
80286 and was an adviser in the early stages of the 80386 chip’s development. He is
currently the manager of software engineering at Answer Software, which produces
software development tools for the PC and a database line for the Macintosh.

Nelson has written for Byte and Dr. Dobb’s Journal. His article on programming the
80386 was chosen as the lead feature for Dr. Dobb’s Journal in 1986.

The manuscript for this book was prepared and submitted to Microsoft Press in
electronic form. Text files were processed and formatted using Microsoft Word.

Cover design by Hornall Anderson Design, Works
Interior text design by Darcie S. Furlan
Ilustrations by Becky Geisler-Johnson

Principal typography by Lisa G. Iversen

Text composition by Microsoft Press in Garamond with display in Helvetica
Black, using the Magna composition system and the Linotronic 300 laser
imagesetter.



By Ross P Nelson R g

Here is a clear, comprehensive, and authoritative introduction to the chip F o

that is the foundation of today’s popular, high-powered microcomputers.
Written for every serious programmer, THE 80386 BOOK includes
scores of superb assembly-language examples along with a detailed analysis
of the chip itself. Ross Nelson, a former Intel programmer, covers:
= the CPU: its organization, registers, and 80287 and 80387 math
COpProcessors
= the memory architecture: linear vs segmented addressing, virtual
address space, segment descriptors, selectors, and virtual memory
= the instruction sets of the 80386 microprocessor and the 80387
math coprocessor
= the 80386 protection scheme: global descriptor and interrupt descrip-
tor tables; selectors; segment and system descriptors; interrupts, traps,
and faults; and debug support
= the implementation of a virtual memory system through paging
= compatibility with previous generations of Intel® microprocessors
Of special importance is the comprehensive, clearly organized instruction
set reference that will be a valuable resource for 80386 programmers.
Every assembly-language programmer, microprocessor design engineer,
and student of computer architecture will find THE 80386 BOOK an
excellent reference.

ISBN 1-55L15-138-1

52495
U.S.A. $24.95
U.K. £22 .85
Austral. $37.95 9 781556"151385

[recommended)



	Preface

	Contents

	Introduction
	1. Evolution of the 80386 Architecture
	2. The 80386 Architecture
	3. Memory Architecture - Segmentation
	4. The 80386 Instruction Set
	5. The 80386 Protection Mechanism
	6. Memory Architecture - Paging
	7. Three in One
	8. The 80386-80387 Instruction Set Reference
	Floating-Point Instruction Set

	A

	B

	C

	D

	E

	H

	I

	J

	L

	M

	N

	O

	P

	R

	S

	T

	V

	W

	X


	Appendix A - Powers of Two

	Appendix B - ASCII Character Set

	Appendix C - Opcode Table

	Appendix D - Instruction Format and Timing 
	Appendix E - Instruction Disassembly Table

	Appendix F - 8086-Family Processors Differences

	Index


