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INTRODUCTION

The Intcl 80386 microprocessor is probably the most widely discu$sed central Pro-
cessing unit (CPU) chip sincc ihe introduction of the 8080 in the early days of per-

sonal computir\g. This book lets you know whal all the slrcr.rting is about

Aft€r presenting a history of the 80i|6 microprocessor fhmily in chapter 1, erch sub-
sequentchaptcr discusses a portion of the 80386 design The o€anization of the
CPU is prcscnted in Chapter 2. Thc basic memory architecture is discussed in Chap-
ter 3. Cbapter 4 introduces rhe instruction set of b(nh tlle 80386 proccssor and the
80387 numeric coprocessor Ch4pter 5 is an exPlanAtion of Prolccled-mode opera-
tbn. Chnpter 6 explains how paging extends thc memory sysicm Compatibility
wilh previous processors via renl mode, virtualll0ti6 mode, ancl lhc 80286 is covcrcd
in chapter 7. Finally, ChaptcrS provides a fullinstruction set rclcrcnce

This book focuse$ cntirely on programmiqg. l! does nol discuss the hardwarc fea_
tures ofth€ proccssor unless tlmse fcatures relate to spccific instructions lfyou are
interest€d in thc hardware characlcristics of the 80386, refet ta the a0i86 Data
ShL\lt ̂nd rhe 80386 H.$duarc Relbrence Manual both pubiishecl by Intel
Corporation.

To gel the most from this book, you should be familiar with computer syste,ns. h
particular, an underslanding ofbinary ancl hexadecimal arithmetic and machinc-
language programming for some othef processor(s) will bc hclpful

A large poriion of the book is devoted to the i10386's protected mode Alrhough you
d6 nor need ro under. l"rJ rhr. learure l  '  t ' .8rm lhc 80Jd6 rr  i . rmponanttuur_
derstand protected mode to grasp why system designers havc made the choices
rh<y hJve in implememinJt rhc Os 2. wiadoss J8o. PC N'tOs JM ard I NIX
operating environments.

The conventions throughout thjs book are summarized on the following pages. If
you are famili2r with other Intel microprocessors, you are probably already familiar
with these conceots.
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Number Formats
I use numbers in tluee differenr bases, binary (base 2), decimal (base 10), and hexa-
decinal (base 16). You can assune that all numbers are base 10 unless they are fol-
lowed by the suffix "B" (for binary) or "H" (for hexadecimal). F'or oc?mple,

l A H = 2 6 = 0 0 0 1 1 0 i 0 B

Data Types
Tire 80386 can operate on a variety of data rypes. The most common afe 8-bit, 16-
bit, and 32'bit quantities.In this book, an 8 bit quantity is called a byte, a 16-bit
quaniiry is calLed a word, and a 32-bit quantity is called a doubleword, or dword.
This nomenclature is unusual because the standa.d data item size of a computer is
conmonly called a worcL. In thc Digital Equipment VAX computers, for example, a
32-tri1 quantity is a worcl, and a 16-bit quantity is a halfvord. The same is true for the
Moroftta 6i]000 farrily anci the IBM 370 mainframes.

Although thc slandard 80386 operand size is 32-bits, Intcl rctaincd thc naming con-
ventions of its carlicr processds because the 80386 is a descendant of thc 8086 and
the 80286 (16 bit proccssors). This simplifies running software from the 8086 or rh€
80286 and lets you usc thc samc assembler to generate code for any of lhe three

Thc smallcst addrcssable data item on thc 80386 is thc bylc. Allothcrdata items
can bc bft)kcn down into byles. The 80386 stores largcr data itcms in mcmory low-
ordcrbylc first, as lhe fbllowing diagram showsl

7 0

Rirr 7 t 5
k ' l h i

Bits 7

32 bir dword

Assume thxt the 32-bil valuc 100F755DH is stored in memory, beginning ar locarion
10. Thc individual mcmory bytes are:

10
5DH

16$it wod
0 1 5 24

71 12 13
75H otH 1oH
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It is unnecessa.ily complex, however, ro show words and doublewords broken down
in byte order. and illustratlons in this book treat the quantity as a unit. For example,
the book would present the previolrs value asr

The 80386 can perfbrm operations on itcms smaller lhan a single byte, fbr cxampie,
on a single bit or on x bit field. H()wcvcr, the pr@:essor ihvays fetchcs llt least one
byte from memory when perfirrning these oPerati()ns

Assembler l{otation
An 80386 instruction is a bin.rry Pattern tl1.| is dccoded by tl)c logic inside rhc CPU.
An insiruction can be fr'()m {l to 120 brts in lcngth Becausc coding n progrxm using
bioary pa crns would be r.dious, progrxnrmc.s Lrse a typc (t program callcd an as
semblcr Thc simplest rypc ofassemble. txkes r sct of keywoftls.rnd svmbols xnd
translatcs them ink) ̂ n instrLrctioo. l-he sel of k€y$(n d s xnd symbolt is cxl lcd the
asscml)lcr lan|Lr^gc. lypically, dlerc is I onc to-onc DrxPping betwccn an instruc-
in)n in assembly l^nguagc and an xcrLral m:rchine instrLdhn lhe ^ssemblcrwould
Iakc nn insiruction such rs:

A O O  E B X ,  5

mcrning, "Ad(I 5 k) thc value in rqtisle.lillx and st(nc thc resull in llllx," l'nd
would t.anshtc iI inlo thc I)i! pattcrn

0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 r 0 1 0 0 i 1 1 1 r 1 1 1 0 1 1 1 1 1 8

Thc names ofthc inslrucrions arc callcd mnenx)nics,.rnd thc'y Lrslrelly occuPy lhe
li$t ficld in an inslrucli.rn line. Thc sul)sequent ficlds.tc the ()pcflnds ofthc in-
stfuclion and can takc a numlxr oilirrns The snnplcsr is a numcfic value' such rs
thc 5 in the previ()us cxample. A rcgisrer nnme is xnother forln (n oper.rnd An cx
prcssbn within brackcts, such as tlllP+2], sisnilies an opersrd thrt is a memofv

'lhroughoui rhe book,I usc standard Intcl mncmonics. N()tc, howevef' tlret x mne_
monic ciocs nol necessarily spccify the exac! ctlcocling ofan instfucln)n. For ex-
ample, thc "incremenl" insirucrion has a gcncfal form in which anv opcran.lmav
be encoded, ancl the instrucLi()n INC EAX would be encodcd.rs !'FH 00II Tlrere is
also a single bylc instruction fbr incremenijng a general rcgislcr lnthis fbfm' 40H
cncodes the INC EAX instfr.rcti.rn. An assenrblcr will gencmlly choose thc mosr
compact form ofinsructio. Rr any given mncmonic, bul rhc cfttct ofex(uring
cifier form is lhc same.

I also use a coolmon conventi()n in.Lis.ussions xbcrul setting bils I use the lcrm
"scf' when assigning the valuc of I to a bit, an.l rhe term 'resct" when xssigning tbe
valueof0babit .
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Syntax
This book uses the following syniax:

t -
Or

Shift right
Shifr left

crerter dran or equdl ro

32.bit Instruction Set
The 1J0386 supports several modcs that arc compatible wiih previou$ Inrel proces-
sors (thc 161)i18086 and 8028('. Fbwcvcf, this book focuscs on thc 80386's new fea-
turcs and does not discuss the 16-bit architeclues ofthe 8086 and rhc 80286, even
rhough thcy arc I subset of dtc 80386's capabiliries programmcrs Lrsing rhe 80386 as
a replatcmcnt lbr previor.rs processors shoLrld be able to do so wirh refercncc mate-
rials for dre 8086 and the 80286.

Operating System Seruices
The 80386 implcmcnts a complex co&purcr archirecture, and ir is nor rcasonable
Io expecl a s(and-irlone program to takc:rdvantage ofall rhe CpU's capabilirics. At
various times I makc statements such as "Thc ()perating system will . . " or ,,Ar rhis
point, the operating syslem...." In these cases I am not referring ro any particular
operating systcm. Instead, I am highlighring a feature of ihe 80386 rhar will be
implemented by lhc operating system sofrware and nor by an applicarion.
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E\'OLT'TION OF
THE 8(,346

AFIGHTTEGTI.'RE

Even though I have spent the last eight years working with microcomputers, the
phras€ "computer system" still brings io mind images of the installation inthe base-
ment of the campus library at Montana State University. There, in air-condition€d
comfort, behind glass walls, lived Siggie, the univ€rsity computer system (a Xerox
Sigma 7). Housed in several refrigerator-si7-e units, SiSgie served the computing
needs of the entire university.

Now, the 80386 microprocessor, born of a technology that was first realized while
Siggi€ was still considered state-of-the-art, can serve as the heart of a desktop
microcomputer, which has greater computing power than Si88ie.

The First Gomponents
The 80386 is the latest member of a line of microprocessors built by Intel corpora-
tlon. Intel claims to have invented th€ microprocessor in 1971, when it was ap-
proached by a (now defunc0Japanese corporation to build a custom circuit to serve
as the "brains" for a new calculator Intel designer Ted Hoff proposed that a pro-
grammable, general-purpose computing circuit be built instead, and the 4004
became reality. The 4et0 and the 8008 chips soon followed, but these chips lacked
many characteristics of microprocessors as we know them today.

The8O80
The chip that, by most accounts, led to the birth of the microcomputer industry was
the 8O8O, which Intel introduced in 1974. An article in the September 1975 issue of
Popular Electronics brarght the idea of a "personal" computer to the mass market,
and, as they say, the rest is history. The 8080 was the CPU (cenrral processing unit)



lxE ao3a6 BooK

in such pioneering sysrcms as the Altair and the IMSAI. Intel did nor enjoy a
monopoly on the market for long, howeveri Motorola inrroduced the 6800, MOS
T€chnology .esponded with the 6502, and rwo designers of rhe 8080 left Intel for
Zilog Corpo.:rtion, wlich soon produced rhe 280. Unlike the 6800 and the 6502,
which had completely differenr archirecrures, rhc 280 was €omparible with rhe 8080
bur had an expanded instructbn set and ran rwicc as fasr. The battle for CPU

The 8080 was an 8'bit machinc; thal is, it processed data 8 bits at a time.Ir had a
single accumulabr (the A register) and six secondary registers (8, C, D, E, H, and I,
shown in Figurc l-1). These six registers could be used in 8-bit arirhmeric opcralions
or combined as pai.s (BC, Hl) to hold 16-bir memory addresses. A 16-bit addrcss
allowed tire 8080 to access 216, or 64 KB, of memory.

uc
DI
TIL

PS\q

B c
t) E
H I

sf
PC

Blgore \-1,. 't he tntn roAtstcr sel

Intel also dcvcbpcd a refinement of lhc 1J0f]l cdled the 8085, an 8o8o-compatible
processordrat icalufcd beftef performance and a simpler hardware inlerface.

The 8O86
In 1978, under pressurc liom other manufacrurers' faster, more powerful micropro-
ccssors, Intel moved to a 16-bit architecture. The 8086 was toutecl as the successor to
the 8080 microprocessor, and, although the instruction ser was new, it retained
compatibility with the 8080's instruction ser. Figure t 2 shows how the new regisrers
of the 80815 could be mapped into the sei of 8080 registcrs.

Programs that wcrc written for the 8080 could nor be run on the 8086i however,
almost every 8086 instruction corresponded io an t1080 insrrucrion. Ar worst, an
8080 instructbn could be simularcd by rwo or three 8086 operarions. An Inlel
translalor program could convert 8080 assembler programs inro 8086 assembler p.o
grams, and thc firsr versions of Microsofr's BASIC and MicroPro's Vordsrar for rhc
8086 were portcd from 8080 sysrems via rhe Intel rmnslator This concern for com,
patibility has charactcrized Intel's preseflcc in the microcompurer market. Every
new generation of microprocessor has been able ro run software v'.ritten for rhe
orevrous senerrlron.



AX
BX
cx
DX

FIEEe\-Z. The saga 866 registet set naf.

In addition to providing softwarc compatibiliry, rntel was intcrcstcd in slrpporting
high-lcvcl languagcs. At Intel, almosl all programming was donc in xn Algol-likc
languagc callcd PLIM. Inicl belicvccl lhat a languagc such as PLIM or t'�a*-al woulcl
b€come the dominant microcomputer dcvelopmcnt lanttuagc, so Intel clcclicatecl
many 8086 rcTisters to specific purposcs, as shown in riglrrc 1-3.

BX
CX
DX

Destinrtbn index rcgister
Soufce index regisler
Stnck fmme base pointer

Flgldre l-3. The 3]0116 registet set.

The next two examples show dedicaled rcgistcrs in use. Figure 1-4 shows how high-
level languages such as Pascal use the stack pointer (sP) and base pointer (BP)
registers.

3

AH
BH al
crl ct
DH DI

DI
SI
tsP
SP
IP

cs
DS
ss
ES
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Pascal code
procedure procl  (a,
i n t  i i
real  J  j
D e g 1 n

:

vJflrble Addrelsin8mode

b :  i r t )

i

j

BP

old tP
OId BP
0ocals)

Blgof,el-4. S bto tine context.

In a Pas.al pr(Eram, the conlext of rhe currently c'x€curing subroutine is maintained
on the stack. The values (parametero provided to th€ subroutine by the callinS rou-
tine are first on thc stack, then the saved IP of the calling rourine, and finally rhe
saved BP of the calling routine, The context also contains stack space for any tem-
porary or local variables that the subroutine uses, Access to either the parameters or
local variablcs is rclative to the cuffent value of BP.

Consider the Pascal assignment statement in Figure 1-5, Because an entire record
must be copied, the compilcr generates a block move instruction tha! uses the SI,
DI, and CX registers.

IBP -  of fset l

I B P  +  o f f s e t l

tsP

5P

Flgnre1-5. Bl&b n1oue.

4

oeg l  n

I
r  : -  J i

l e a  s 1 ,  j

n o v  c x .  S I Z E 0 F (  f e c  )

:
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The advantage oidedicatinS reglsters ls that il allowccl Intcl Io encode the instruc-
ri()ns in a compacr, mcmory-cfticicm manncr. Thc opcode specifies exactly what is
to takc place; for cxampLc, in thc MOVsts instruction, specifying dre three operands
(sourcc, destinatbn, and count) is unn€css.1ry. As a rcsuh, the MOVSB opcode is
only 1bylc. The disadvantage of dedicalcd &gistcrs is thar ifyou are using SI orDI
and w,rnt k) do a MOVSII instruclion, yotl can't usc anothcrregisler
'l he 8086 also introduced segmentation to the microprocessor world. A s€gment is a
block of mcmory beginning ai a fixed address tlut is determined by the value in the
approprixte segment register. This concept, probably the nost despised featurc of
the 8086 becar$e of the restrictions it imposes, was incol?orated for compatibility
wtth the 8080i each segment was 64 KU, equivalent to one 8080 address spacc.
Using segmentation, softwarc can maintain dre 16 bit addressjng usecl in thc ij080
while expanding (through fie use of multiple segments) the menofy thar rhc chip
can adcLress.'the 8086 provictes four segment reglsters that can pojnt anywherc in
ihe I MB nddress space. They are defined as follows:

CS-Ihe co.le segment /egrst€r: All cxlls and jrmps rcfcr to k)caiions within the

DS-me data segrnent r.egr.ster Most menx)ry refarcncc instructk)ns rele. k) an
offscr wilhin dre dara segmcnt.

SS-The srack segrneflt /egtrte,.i All I,USFI nnd POP instructbns acccss data in
lhe s(nck segment. Acldilionally, any mcmory relercnce donc rclalivc t() drc BP
fcrister is also clifcltsclto thc slack scgmenl.

ES-Ihe extra segrr@n ,'€Stsreri 'l his segmcnt specifics tbc dcstinatk)n scg-
mcnt in certrin string prc(essing instrrrtbns.
'lhc wxy an rpplicalion mrnagcs mcmofy (thc memory model) is usually consisrenl
throughout a progr.m. whcn Intcl introduce.l thc 8086, tl ee memory models werc
postL xted, which are shown in Figure 1-6.

inE-]
t l

L-] F;I
.ode ::

L "
.,J"u

' l iny

Flgael'6. Mmory madels.
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The tiny model mimicked the 8080 address space. The code segment and data seg-
ment were in the same area of memory and the progfam was limited to 64 KB. The
small model was expected to be prevalent bec se it allowed pmgrams to double in
size. By having separate code and data segments, programs could expand to 128 KB
and still retain 16-bit addressing. The large memory model allo$€d the use of mul-
tiple code and data segments. In this model, the entire 1 MB address space of the
Processor could be used.

Vhen the 8086 was introduced in 1978, most mi€rocomputers were limited to 64
KBi almost no one realiz€d how quickly the 64 KB segment limit would become a
serious problem. Although the large model allowed programs to fill the entire 1MB
of 8086 address space, using the large model meant using 32-bir pointers. On a 15-bit
machine, 32-bit pointers exacted a size and perfcrmance penalty that mosr pro-
grammers were unwilling tc) pay. By the early 1980s, even the 1 MB limit became
confining. Additional memory models with names such a$ "compact" and "medium"

were inFoduced to optimize performance for special progfamming needs.

Other processors in the 8086 family were fie 8088, the 80186, and the 80188. The
8088, introduced a '€ar after the 8086, had the same 16-bit internal architecture but
a restricted 8-bit e\ternal bus. The 8088 could run the same proSrams as rhe 8086,
but rtpically 30 percent sloRer, The 8088 became wildly successful when IBM chose
it for the PC and the PCIXT. The 80186 and 80188 were announced much latet, in
1982. These processors kept the same base architecture but included features such
as direct memory access (DMA) controllers, on-chip counter/timers, and a simpli-
fied hardware interface. They also operated more quickly than did the 8086/8088
and became popular in conkoller applicaLions.

Tho 8087
An innovative part of the 8086 family of CPUS is the coprocessor The ESC or
coprocessor escape class of instructions only generated a memory address on the
8086. Mditional, special-purpose CPUS could be created to monitor the instruction
stream and watch for ESC sequences, as shown in Figure 1-7. Vhenever an ESC was
detected, the coprccessor could decode the escape as an instnrction for itself and
peform a function that the 8086 was incapable of doing efficiently on its own.

ESCT=nMULST(2)

figuer-7, &a6 coprocexor tnte{ace.

6
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The first (and only) coprocessor developed for the 8086 was thc 8087. The U087 1m
plementc.l a floating point instructlon set, capable ofas much as 80 bits of pfcci
sjon. Inrel workecl closely $ith the lnDn and prcfessof at the Universiry of
California, Berkelcy, to crcatc x fft)ating point representation that was flcxiblc rnd
accurltc. This rcprcscntati(n and its numeric pfoperties have sincc becn fornaliT-cd
as lElti StandafclIEEE 75'i.

The 8087 contdbuted to the populrrity of thc 80i16. ,^ deskbp compLrter drat con
tained both an 8086 an.l an 8087 corl.l &) scri()Lrs scientific work. Implementing
fbating point functions in hardware improvcd rhc pcrfbrmrnce ofmathemxtical
celculalions over existiqg software routincs. tlowcvcr, lhc {]087 pointecl out the
prcblems oldre 61KB segment size. Once scicntists and cn!!ineeN had the comput
in8 powef k) hanctle real world problems, they oftcn nccdcd t() dcal with largc ar-
rxys of numbers The 6/1 KB segment hnit restrictcd a vcll(tr ol doublc'prc{is( 11
fl()ating point numbeF to no morc than 1024 clcmcnts. Sofiwafe capable ofgeuing
xft)und Lhe resrriction $,as soon available, but thc "lrrgc" mcmory m(dcl wxs dilli-
cult to progmm in and was slow.

The 80286
'I 

hc ncxt mxjor int()duction fr(rn hr|cl, thc 80286, carnc in 1982. 'l hc 80286 is com
prtiltc with the u0il(r fumily, bul il rlso p()vi(lcs .r signilicxnt pcdb nancc iDprove-
Drcnt. 11 boxsrs lw() opcrrtinit nrxlcs: rcrl nx)dc nnd p!orcclccl Drcdc. li(.iirl  roclc.
which eDnrhlcs the in86, is thc defiurh |l11)dc. 1 hc ncw noclc is crllcd p.orcdcd
nx)clc. In prorcdc(l )clc, thc 80286 supporls lhc u0U6 inslfuction sct but phces a
new intcrprclrlion ()n thc coltcnts oflhc s.gnrcnt ltgistc|s th:u.|ontml bow
me|ll(xy is lcccsscd

AlthoLrgh opcr^ting systerns thal arc nnplcmcntccl undc. pftnc'cted rnodc dfc clilfcf
cnt f.onr those lbrt are designcd fof rcrl modc, .rpplications crn bc clcvcl()ped tlut
run in either mode.'l'he clcsign oirhcsc du.rl nnxlc xpplicati()os fequi.es thxL Lhc
application observe certain mcnnry rcstriclions.

llnib.tunalcly, MS Dos, shich is the dominrting operating system for 8086$ased
ruchincs, placcs no rcstriclions on ho*'an application addresses memory, and pro-
rccted m(xlc pft)vcd inc(rnpalible wiih a najority ofMS-DOS applicarhns. As 1
rcsult, ftra mrmbcr ofycaft the 80286was generally treared as a fxst 8086 becausc
no onc kncw how to Lrsc pi)tc{led mode.

This was unforlunarc bccalrsc rhc 80286 ofierccl x bencfrixl new felture pro
Icctecl mode. ProtL'ctcd mo.lc cxpands lhe amount of physically addressable
memory from I MB to 16 MB, xlbws fie implementdion oivinual memofy, a..l
provi.Lcs for thc scpafation of tasks i. a multitasking or multiuser envifon,nent.
Versions (r1 UNIX run jn p()L6le.l mode. hut IINIX has not been su..essful on thc
80286 because comperirive producls usually .Lrn on n1o.c po$,erfl 32-bit com-
purers. More recendy, Microsofr inrocLuced OS/2, which uscs almosr all protecred-
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Tlre 80286 is thc firsr I cL nicroprcccssor dc'signc.l for "sc.ious" computing. Con-
sidefalions were made for mullitasking. clata integrity, ancL security. 'rhe designers
examined the architecture of minicomputers and mainframes as they developed the
80286. In addition, two of the main influences on fie 80286 deslgners w--re the Muf
tics project and a continued belief in Pascal.

Rcrdhg thc conLrcncc papc$ about thc Muitics p.ojecl will enlighren anyonc who
thinks llnt p()rcltcd noclc is rhe pro.lucl of some Inteldesigner's fevered in1agina'
tn)n. Multics bcgan in the mid r(Xos as a joint research project xDrong MIT, Ilell
Lrbs, xnd Gcncral Elcctric. The projcct combincd hxKlwarc and sofrwarc arld was
br sed on the GE 645. l he following is a pxrtiai list of rrchitcat ural leat urcs dlat the
ML tics group pioneered:

. Virtuxlnienxtryi

. hotcction rings

. Scgnrcmcd .Ldd rcssinS'

. D.'s(r'ipto access rights

. (l)nli)rnri g codc scgnrcn$

somc lcxtLrcs ol Multics Niso rnrclc thcir way into cxistir\q 80286-bascd soitwarc
syslcms Mic()sofr's OS/2, lbr cx|rnplc, Lrscs dynarnic iinking, ano(hcr Mullics

'fh! influcncc ol l)a*-alon rhc dcsign oftbc 80286 is shown by the addition ofthe
liN l rtl instructi()ll to (hc 802U6 inslruclion sct. Thc nNTER instfucrion simplilics
crcrting a slack liamc such.s the onc sh()wn in thc subroutinc c()n!cx! illuslrati()n
in tigurc 1-4. tjN'l tslt crn.ls(r copy thc c()ntext or stack li nc ofthc prcvious sub-
roulinc. 'l his ability is not ncccsslry i. lxnguagcs such as FORTRAN or C, bul
it is uselul in langLnges such lls Pis.:rl and Adr drat alk)w ncstccl p()cccllrc

The 80287
lntel xlso introduccd a ncw copf.rccs\o. for lhc 80286, bur thc 80287 was a bit oflr
clisippoinlmcnt Altholrgh thc 80286 cxcculcs programs two () th.cc limes iaster
tlun the 8086, fie perforrnancc oflhc 80287 is about thc samc as lhe il)87 Intel did
not really modify thc conpuhtional cngine ofthc 8087 in crcaling the 80287 so the
new coproccssor (locs not run any fxster. Intel clid changc the inrerface between the
CPU and the coprocessor, howcvcr. climinating the nccd ibr thc coprocessor to
monitor the instruction srcam of fie main CPU.

lnthis new interface meth.xl, illusLratcd in ligufc I 8, Lhc main CPU decodes the
ESC insructions and rhen passes fic jnformati()n to thc coproccssor via the I/O

' 'lhe r\1ulli(s srcup did not inve dese features, butdr€ywef€ an int€aral pait oldrc sysrcm.

a
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channel. Because addressing is treated differently in rcal modc rhan jt is in pro-
tected mode, the coprocessor would have had to operate ifl diffcrcnt modes as well,
using the old interface method. lnsiead, the new intedace requires the 80286 ro vali
date all addresses before sign.rling the 80287 This interface allows thc coprocessor
to run at a clock rate ctiffercnt lrun that of the main CPU, and it also allows the
80287 to be used wlth CPUS othcr than the 80286.

-Er- "..,-p
EF@AE

F r$r e t a, 8 O2a 6 c ap r oces n t i, t e {a.e.

Competitive Pressu?es
Ilctwccn ihc inhr)du(lion ofthe 8086 and thc u0286, Mo()fok dcvelopcd what
l)ccxme rbe strongest competition to Inrel's dominance oithe nricroprocessor
mxrkct, thc 68000 f^mily. Several fcaturcs oirhe Mokxol,r microproccssors were at-
tradivc k) thc dcvelopment communiry. Thc 611000 family incorporates a 32$ir in-
tcrnal rcAi$ter file for data and.dcLrcssing. This albws a large applicatbn addr€ss
spncc without the limitation of64 Kts scgmcnls. This 32-bit capability also makes it
casy k) port opcrating syslems (such as UNIX) and minicomplrlcr applicatbns k)
thc (}!1000 family processors.

Motorola also boasted abolrl lhc 'l)rthogonality" of the 6a000 instrucrion set. Unlike
the 8086 and the 80286, wifi thcir spc( ial-purpose regjsters, the 68000 allowed pro-
grammers to speciiy any regisicr fo. a given inskuction. Although ail68000 micro-
processors had 32-bit register filcs, thc first two CPUS (68000 and 68010) were
limited b 24+it addresses ancL a 16 bir meDDry inierface. In 1985, however,
Molorola began sampling the 68020, which had a full 32,bit address bus and a 32iit
clxta bus. Although lntel had most of thc busincss micfocomputer market, makers of
scientific and engineering workstations almo$ unanimously chose Motorola CPUS
for their products.

Intel's 32.Bit Microprocessor
Inrcl's dcsign cnginee.s faced two problems: comparibility and pcrfomance. They
needed to mainrain compatibility with the previous generation of processors to re-
tain lheir share of fie PC business market; Intel's marketing force frequently
referred to the "billions and billions" of bytes of code (applicriions) that the 80386
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had to be able to run. At the same time, they needed a product that would address
the shortcomings of the 8086 family architecture, which gave Motorola an edge in
scientific and engineering markets. The resulting product, the 80386, addresses
these issues by operating in a nunber of modes. At boot time, it operates in real
mode like the 80286 and is nothing more than a very fast 8086. It uses 16-bit
registers and the 8086 segmentation scheme, and it is subject to the 1MB memory
limitation.

But the 80386 can also be ser'itched kr protected mode. In prote€ted mode, each
segment is marked by a bit that designates whether the segment is a protected-
mode segment containing 16-bir 80286 code or a 32-bit protected-mode segment.
Programs residing in ,2-bit segments can use the extended address space (s€gments
larger than 64 KB) and additional features, including array indexing, orthogonal use
of the register set, and special debugging capabilities not found in previous

A prot€cted-mode operating system can also create a task that runs in virtual 8086
mode. An application running in this mode believes that it is running in real mode
or on an 8086, However, the operaling system can designate certain classes of in-
put/output (l/O) operations that it will not allow. Ifthe application attempts to vio-
late any operating system rules, an interrupt is generated that tran$fers control from
the application to the operating system, By examining the in$truction that the appli-
cation was trying to execute, the operating system can choose to block the applica-
rion from running, simulate the operation, or ignore it and let the applicatbn
continue. The operating system also maps the 1 MB 8086 address space that the ap-
plication believes it is running under to the actuai memory space that the operating
system wants the application to use, A protecled-mode operating systefi can estab-
lish multiple virtual 8086 tasks.

The 80386 also e,xtends the similarities betvr'een the Intel architecture and the Mul-
tics system. Like Multics, the 80386 integrates the ability to perforo demand paging
(a virtualmemory technique used in minicomputers and mainframes) with
segmentation,

Ths 80387
The most rccent mlcroprocessor line from Intel also boasts a new coprocessor, the
80387 The interface between the CPU and the coprocessor is the same one defined
for rhe 80286 and the 80287 The 80386 can be coupied with the 80287 to provide a
lower-cost floating-point environment. The 80387 provides a significant perfor-
mance improvement over its predecessor, executing floating-point benchmarks
about five times faster

8O386 Family Extensions
htel has indicated that the 80386 product line will continue to evolve. The next
generation processor will be called the 80486 and will include capabilities beyond
those of the 803a6. However Intel has committed to broadening support for the

l o
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80386 as well. Intel recently introduced the 80386SX and the 80387SX, which are
fully compatible with the 80386/80387 but support only a 16-bit exrernal data bus
and a 24'bit external address bus. Intel plans to introduce other processors that use
ihe 80386 native mode instruction set but that do not supporl compatibility features
such as real mode or V86 mode.

Summary
As you can see from the follo!,r'ing table, the 80386 technology has significantly
ad nced beyond thar of its prcd€cessorsi however, the road to 32-bit computing
fl"as not necessarily straight and naffow. The 80386 has been shaped by a number of
forces, the id€als of thc designers, the limits of compatibility (some stemming from
the early days of the 8080), threats from the comperition (both real and perceived),
and other facrors such as Pascal. Multi€s, and UNIX. Now that I've shown the
origins of the 80386, the remaindcr of the book will show what the 80386 is and

Relath"e Peiformance

&ts6/e7 80286/247 N3A6/387

Integet 1.0
noartagpold, 1.0

2.'7
1.7 10.0

Ii the 8086/87 performan€e is 1.0, lhe 80386/387 is approximarely 6.7 rimes fasrer
performing integer calculations and approximately 10 times faster pedorming float-
ing-point (?lculations.
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Back in 1837, when Charles Babbage was musing ovcr the idea of cumPutation
automata, he refefied to his grandest s.heme as an "analytical engine " At that tim€,
especially considering the mechanical aspects of Babbage's idea, an engine w"as an
apr metaphor for a computing device: fuel, combustion, and power ,s input, com-
putation, ancl output.

A Data-Prccessing Factory
In recent years, however, this machinelik€ cycle led to limitations on lhe amount of
work that could be accomplished. A modern microprocessor such as the 80386
might be more successfully comPared with a factory than with an engine. Ai the
heart ofthis data-processing factory, the computational engine rem4ins, but it is suF
roun.led by a bevy otsuppor(ing depar(mcnls.

Figure 2-1 on the following page illustrates our imaginary widgel factory lt is com_
posed of three departrnents: Shipping and Re.eivinS, Materials, and Manuiacturing
The Shipping and Receiving department deaLs with the world outside the factory' It
orders truckloads of raw materials from suppliers and passes them to the Materials
daparhne . The goods are sorted here and warehoused untii needed The Manu-
facturing depar[nent, the "engine" of the factory, forges the finished widgets from
the raw materials and routes them to Shipping and Recelving, where ftey arc sent to
the outside world.

The efficiency of this model lies in the parallel nature of the different activities At
rhe same rime as rhe Mareri.rlr depa.henr reque$s the raw Soods n(e\\ary |o
build widgets, Manufacturing builds the current supply of widgets, and Shipping and
Receiving deals with the outside world, buys unfinished goods, and ships the newlv
finished widgets.

Conventional computers receive two €lasses of data: inslruclions and operands
The instructions tell the computer which operations to perform on the operands

2

6
E

t 3



tHt aog€6 Boo!(

Similar to the operation of our imaginary factory, the 80386 can work on more than
one instruction simultaneously. In the jargon of the computer industry, this is called

PiPetining.

Wictgets

Fl8r,Ie 2"L wuge t jactoty.

In Figure 2-2, I recast the widget faclory as a data-processing factory analogous !o
the operarion of rhe 80386. The shipping and Receiving department pulls in bytes
of data from rnernory, Instructions then move to the Matedals department, where
they are decoded and stored, vhen requested, the new instructions and any neces-
sary operands pass to the Manufacturing departrnent, the computational engine.
The results ofan opelation pass back !o Shipping and Receiving, which stores the
resuhs outside the CPU. in memorv.

Rlgwe 2-2. Ihta-p.acettt A.t'actofy.

Ahhough simple, this picture of the flow of information through the 80386 is fairly
accurate. The three departunents in the example coffespond to six logical units in
the 80386, as shown in Figure 2-3. Each unit operates in parallel with the other
units. later sections of this chapter describe the operation of each unit.
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Keeping the tactory rnoving
The 80386 runs to r hcartbeat called the clock signal. This rcgular cl€ctroni€ pulse
keeps all units ol the 80386 synchroniTed. The clock signal is x square wave
o..(illating at a sp€cific frequency, as shown in Figurc 2-4. Instruction timings,
lneflrcry access times, and operational dela,$ are mcasLrrcclin lenns ofclocks, or
()ne completc square-wave cycle. A typicd frcqucncy for lrn 80386-based system is
16 MIJZ. At 16 MHz. onc clock is 62.5 nano$econds.

16 Ml lz

AIAlJne 2-4- t squre Me qcle.

Thc timings ofeach processing unit afc also measured in clocks. The sbrtesl pos-
sible execution time is * clock. This is possible because dle square-wave input to
Ihc 80386 CPU chip oscillxtes a! lwicc thc clock frequency, making a two phase

Perfornance advantages of parallelism
The pipclined operation of the 80386 "hides" portions of insrucrion exe.ution
time. Somc operations necessary to execute an insrruction occur during the pre
vious insruction. The table that folbws illustrates the difference between execuling
a rypical instruction (ADD ECX, [nBP+8]) on the 80386 and executing it on a similar
imaginary processorwithout pipclining.

*Actual hardwarc signal is rwo-phasci rhat is,
it oscill.tes twice tor every prccessorclock.

l 5
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Operand addres xlate

5-tti6cks

2 ll clocks

io:Teiiocks

Pipelining lets the 80386 execute an instruction about twice as quickly as a similar
processof thal performs each step of the instruction sequentially, some instructions
that have no operands appear to execute in "zero" time because of the parallel na-
ture of80386 operating units.

80386 ilicroarchitecture
Figure 2-5" shows a block diagram of lhe internal operating units of the 80386.
Although the progfammer se€s the 80386 as a sinSle entily, il is instructivc to see
how th€ 80386 achieves the division of labor that €ontributes to its speed.

32-bi,r

32,bi,r

. 32-bir insruction set . 32-bit addressing modes

Flg$e 2-5. ao3a6 nbftnrchttectu.e.

80386 ov€ryiew
full 32-bit af chitectuf e

Flexible on'chip memory manaaement

! Reprinted by permi$ion of Intel Corporation, .lpyrigbt 1946.

t 6
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Bus interface unit
The bus interface unit (llllD is the 803i:l6 s gateway to thc cxtc.nal workl. Any.rthcr
unit that neds data irom the ouiside asks thc tsIU to pcrform thc opcration Similarly,
whenan instructjon.eeds to wire clata t() mcmofy or t() Ihc I/O channcl, rheBIU is
presented with the data and actdress a.d is asked t() plxcc iton lhc bus. Thc bus intcr-
f:ce unit dealswith physical (hardwnre) addfesscs only, so opcrandaddrcsscs must
firctpass thrcr.€h the segmentatio. unit ancl thc paging unit, ifneccssary.

lnstruction prefetch unit
The job of the p.efetch unlt is relativeb snrrple. The insnuctn)n dccGlc Lrnir
empties a 16 byte queue, and the prefetch unit tries to kccp tlte qucuc lull thc
prefetch unit continuallyasks the IIll to fetch Lhe contcnls ()fnrcmory aI rhc next
insnudion address. As soon as the p.efetch unit rcccivcs thc datx, it phces it in the
queue and, if the queue is not ful I, requests another 32-bit piecc of ncmory 'l hc
BIU trcats requests fionr the prefetch Lnlil as slighlly lcss i!np(r't.rnt than requcsts
from olher rnits. In this w.Ly, cu ently executing inslrt(li()ns rcqucsting opc..rnds
receive fte highest priority and are nol slowcd cl<)wn, but prelclclres stilloccuras
frequently xs possiblc. Thc prcfatch unit is n({ilicd whencvcr thc cxecution unit
processes I C.^11., a Jlvll', or rn interrupt s() th,rt it can bcltin lttching inslruc(ions
from rbe new address. The quclre is fllrshcd whencvcr r CALL, nJMP, or rn inter-
rupt occurs, wbich prevcnts lhe cxeclrlion unit lknn rcceiving invrlkl jnstnrtionr

Instruction decodo unit
The instruction clccode unit has a job silnilnr k) tllal ofthc pfel-ctch unit. lL Lckcs in-
diviclual bytes from lhe prefetch quer.le nnd detc nincs rhc numl)cf ofbytes ncedcd
to complete dre next instructk)n. A singlc instrlrction in drc 80386 can bc anywhere
from I to 16 bytes After pulling thc cnlirc instfr.rcrion liom lhc prcfctch queue, the
instruction de(ode unit refornrats the opc.odc in!) xn jotcrnal inslruction forrnrl and
places the decoded instructbn into thc inslructi()n quclrc, which js three operntions
deep. The instruction decode uni! also signals lhe BItl lf the insructionjust de-
codedwill cause a memory referencc. This alk,ws thc opcran.ls oi the instructions
ro be obtrined prior io the execuli()n ofthc insulrcLi()ns.

Execution unit
The execution unil is the part ot'lhe CPt.l lhal d()cs computrlions.lt performs 3ny
shifts, additions, muhiplications, and so on that arc ncccssa.y io accomplish an in-
strr.rtion. The register set is contained inside the execution u.it. Thc unit also con-
tains a logic component called ir barrel shifter, which can pcrfbrm multiple-bit shifts
in a single clock cycle. The exelution unituses this capabiliry nol only in slrift in-
sructions butin accelerating multiplications and in generaring indcxed acldresses.
The execution unit xlso tclls thc bus intcrfacc unit whcfl it has data that needs to be
sent to the memory or I/o bus.

1 7
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Segnentation unit
The segmentation unit translates segmented addresses into linear addresses. Seg-
ment banslation time is almost entirely hidden by the parallelism of the 80386. At
the most, one clock is required to complete the address translation. The typical case
is zero clocks. The segmentation unit contains a cache that holds descriptor rable in-
formation for each of the six segment registers. This unit is described further in
Chapter 3.

Paging unit
The paging unit takes the linear addresses generated by the segmentation unit and
converts them to phtsical addresses. If paging is disabled, the linear addresses of
the segmentation unit become the physical addresses. \X/hen paging is enabled, the
linear address space of the 80386 is divided into 4096-byte blocks cralled pages, Each
page can be mapped into an entirely different physicai address. Chapter 6 discusses
the paging process in detail.

The 80386 microprocessor uses a page table to translate every linear address to a
physical address. The paging unit contains an associative cache called the transla-
tion lookaside buffer (TLB). whlch contalns the entries (new addresses) for the 32
most recently used pages. If a page table entry is not found in the TLB, a 32-bit
memory read cycle fetches the entry from RAM. Under typical operating conditions,
less than 2 percent of all memory references require the 80386 !o look outside the
TLB for a page table enrry.

The time required !o pefform the translation varies betw€en 0 and 5 clocks. Thanks
to the TlB, the typical delay is only y, clock.

lnstruction Set Alchitecture
The execution unit presents the programmer with the model for instruction e.xecu-
tion, It contains the logic to process instructions, to operate on various data types,
and to interpret control information.

Be.cause the 80386 is a 32-bit machin€, the tpical size of an 80386 operand is a
32-bit quantity. Also, because the 80386 proc€sses data 32 bits at a time, it is said to
h^ve a uord slze of 32bits. Unfortunately, the term "word" is ambiguous when
referring to the 80386.

For compatibility, !r,D/d refers to a 16bit quantity, as it did in the 8086 and 80286
environments. The term dz,o/4 ot 32-bit ller.l, tefers ta ̂  32-bit quantity.

Bits and bit strings
Although the basic (default) operaod size on the 80386 is 32 bits, it can manipulate
quantities of rious sizes. The most elementary is the bit. A bit is a single binary
digit, and the 80386 implernents a number of instructions that test and modify indi-
vidual bits. Bits are addressed as an offset from a resister or memorv location. The

l a
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low-order bit of the operand is designared as bit 0, the high-order bit in the 1ow
oder byte is bit Z and thc low order bit of the ncxr byte is bit 8. Figure 2-6 shoss
the bits in a register and in mcmory. If the operand resides in memory, negarive bit
offscts can also be used. Bit -1 is rhe high-order bit of the byte imm€diarely preced-
ing the memory address.

Dlr Bir Bit tsit
1 6 8 0 - 8

7  0 7  ( ) 7  O 7  o 7

Dit N

I
Bit
-16

r + 2

Signed valuc 128 <r< 127
Unsigncd vnlu€o S r < 255

: r + 1  a  . r - 1

EAX

a - 2

l1

RlqjD�re 2-6. Bt sttlnas.

Bytes
The byte is thc basic unit of addressability on the 80386i rhar is, address 3 refers to
the third byte in mcmory, not the third dword. A byte is an 8-bit quantity rhat can
be interpreted as cithcr ^ signed or an unsigned value. l'igurc 2-7 shows the layour
of a byte and fic range of i?lues thar it can specify.

7 0

FIAufe 2-7. B:"te Mlue nnge

vhen a byte is interpfeled as an unsigned numbcr, it can take on a value ranging
liom 0 through 255. Ifa bytc is interpreted as a signed number, it is assumed to be
in tllY)'s complement ̂oralion. This notarion allows a single byre ro store values
ranging from -128 through +127. To determine rhe value oi a two's complemenr
number, follow these sleps:

1. Examine the most significant bit (MSB) of the value. If the MSB is 0, rhe nurber
is positive and can be read as if il were an unsEned value. Ifrhe MSB is 1, the
value is negative.

2. You c?n find the absolute value of the number by t^kingthe comptement c,f the
numbe. (inverting the value of each bit) and adding 1-

For example, consider the binary value 10ttr1008. The mosr significmr b , 1, indj
cates that the number is negative. To find the absolure value, rake the complemenr

tsit N
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(010000118) and adct 1. The rcsult, 010001008, is 68 d*-nnal, so i0111100B represents
the value -68.

Words
words, as pfeviously deflned, arc l6-bit quantities. Figure 2 8 shows the range of
vilues that can be stored in a word. Vhen a worci is written k) mcmory. it is stored
in two bytes. The low order bylc is written to the specified address, and the hlgh
or.ler byte is written to the next consc'cutive memory iocation.

signed valuc -32768 <r< 32767
Unsigncd value 0 < r < 65535

FlgDre 2.a. war.l Mhrc ranlje.

vorcl vxlucs arc intcrpreted as signed orunsigncd in thc same way xs xrc hytc
valucs. The only diffcrences xre tlut bit 15 is thc MSB and d1ar rbcrc is n grcater
r.'ngc ol possible values.

Dwolds
l)worcls arc 32-bi! quantities l-ike l)yics and words, they cnn bc siSncd or unsigned.
Thc cxlrr bits allow represenlxtion olinlcgral values grenter lhln 2 billion. ligure
2-9 illLrskatcs thc range of valuc$ fbr dw()ds:lnd the way thcy arc $k)rcd in
mcmory. likc words, cLwords are s(xed in mcmory low-oftler bylc first lf thc low-
o.dcr bylc is slored at address ,r, thc high4rdcr bylc is stored nt {dclress ,t + 3.

Signcd vnlue 2147443648 < ..r S 2147483647
Unsigned valuc 0 <rS 4294r\t7295

^ + 3  ^ + 2

Rlgutre 2-9. DuDrd tahte tunge.

The compurer industry does not agree on the proper meihod of bteaking up large
values inlo bytes for memory storage. Computcrs like the DEC VAX usc thc same
te(hniquc as fie 80386. Others, such as the IBM 370 or the Motorola 68020, slore fie
high-oder bytc firsl This can be a consideration when poning programs fiom onc
computcr Io another

Ouadwords
Qu3dwods are 64 bir numcric quantities. No instructions rcference quadwotd
memofy opcrands. However, the 32-bit Multiply instruction generates a 64 bir valuc,
with the high-order bits in register EDX and the loworcler bits in regirter DAX.
Converscly, the Divide instruction accepts a 64 bit dividend stored in the same
register format. Storing a quadword in memory rcquires two MOV instructions.

m
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ASCII and BCD
In the prcvbus examples, the values discussed represent numbers. F'or ASCII ancl
BCD, thc binary pauerns represent encodings of information. ASCII siands for
Amcrican Standad Code for Inforuution Interchange. ASCII values are 7 bils of in-
formation stored in a single byte. The most significant bit is 0. A particular bir pat-
Icrn rcprescnts a predefined value. For example, the binary pattern 01010118
rcPrcscnls rhe plus character (+). 10100118 represents the le$er S, and 0110101rcprc-
sents the digit 5. Appendix B contains a table ofall ASCII charactcrs.

Similarly, BCD, which stands forbinary codcd dccimxl, encodes rcpresentations of
decimal numbers in a binary format. Encoding a dcrnnal digit requires 4 bits.
Because using only 4 bits ofa byte is inefficicni, 2 Bcl) diSits xre ofien stored in a
single byte. This represent^rion is cl\llc(l pachecl Bc?" I?igure 2 10 shors how values
are stofed in BCD notation.

D c D D c c n n x l r T 9 3 2
. ' - - @ n c om m O +

, o,, , . . ' .
; i ;  ;  ' . '  , - .  J ' '
0011 3
0100 I
0 1 0 1  s  l -  9 {  2 " ,o l l 9 : f f i i ; i r l *
0 1 1 1  7  -

1000 lJ - A.l.lrcss
r 0 0 t  9  ^ + 2  d + 1
1010

r ) tnvi l
l l l l

Rlg$re z-rc. ACD sto age.

Ilec se ASCII and nCD provide ways to encode numeric values and do nor have a
fixed length, they can be used to implement variable-precision numbers. 1he 80386
supportsASCII and BCD arithmetic vh fie D€cimal A.ljusr andASCIi A.Ljusr in
structions. Chapter.i discusses ASCII xncl BCD arithmetic.

The 8O386 Register Set
In addition to implementing dre logic to ex€cute instructions, the 80386 b.s a num-
ber of storage locations on the chip, callcd /egrster Because they are inside the
CPU, registers can be accessed as operands much morc rapi.ly than can external
memory. 'I he general registers arc used by thc 80386 ro store frequently accessed
operands. Other registers contain spc'cial values fiat control specific aspects of
80386 operation.
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The 8036 register sel is partitioned into five classes: the geneml registers, whjch
applications use fbr daia storage and computaiion. seqment tegbters, whi'.h alfecr
memory addressing; protection rcgisters, whichhelP suppo.t the operating qftemi
control regtste5, llhiah tivrdify the behavior of the pro.esso\ ^nd .lebug and test
/eg,ste,'q which are used as their name implies.

Gene?al registers
The general fegisters are named EAx, EBX, EO(, EDX, ESI, EDI, EBP, and ESP, as
shown in Figure 2-11. As a rule, any instruction can use any general register ex€ept
ESq either as an operand or as a pointer to an operand in memory. ExcePtions are
noted in Chapter 4 in the discussion of the instruction set

General registers

Itgarc 2-1L A03A6 base reg*tel sel.

In the 80385, you can address selectcd portions of these registers. The part of the
regis@r accessed depends on whclher you are performing an 8-bi1, 16-bit, or 32_bit
operation. Each division of a regisler has ,r separate name. For example) EAX is the
name of one of the 32-bit registers. The lower 16 bits are addressable as AX, and thal
half of the regisler is accessible as AL (the low-order 8 bits) or AH (the high-order I
bits). These names are left over from previous generation microprocessors, the 8080
and 8086, as dis.ussed in chapter 1� The 80386 extends the 80286 register set to 32
bits. similar to the way that the 8086 and 80286 er.aended the I-bit registers of the
U080 to 16 bils. Figure 2 12 shows a map of lhe register extensions.

CS
s5
DS
E5
FS
GS

l  1 o r 5  , 3
Il3"\ AX

t A H I A L
llBx Bx

B H I B L
licx cx

r c H r c l
tsDX DX

I D H I D I

EBP
DP

ESI
r s l

EDI
D1

ESP
t s P

22



2r flr. aOSaG Archlt.crur.

3 l 1
E!*:iii!!:::i:,:

:::a:r|::ta:At::

i::@1:l::1rr:
Fitf:t i iii* iil
i o n r o r ,

EE':: l : : : : l : : l i : : l
i : : : : l : !9i i l : l i i

I 15I

5!

GeneralreSisterssenera' reEDreF 
I sozae rcgisrer

! s03s6 registers extensions

Flgtte 2-12. 386/286 rcBlsterc.

Two aclditional regisiers hold status information about thc cuffcnt instruction
stream. The EIP rcgisrcr contains the address of the currently exccuting inslruction,
and the EFLAGS registcr contains a number of fieids relevant to different

like the other registers, EIP and EFIACS have 16-bit components, IP and FLACS.
The 16-bit forms of these registcrs arc used in virtual8086 mode and in runoing
code written for the 80286.

EFLAGS regist.r
A breakdown of the EFLAGS rcgister looks like this:

Vu-Vlrtuar 8086 mode: \qhen this bit is set, it indicates that the currently exe-
cuiing instruction stream is &86 code. The implications of virtual 8086 mode are
covered in Chapter 7. Applications cannol change the vM (virtual machine) bit, and
instructiofls that modify EFLAGS leave the \44 bit unchanged. only the task-switch
operation or an interrupy'interrupt return can alter fie VM bit.

zt
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B.F-Resunefag This bit controls whcthcr a debr.€ fault cln be generated dur

ing the executi()n of an instruction. Ii(hcn an exception occurs during progra'r cx-

ecution, the 80186 pushes the cu.rcnl CS, ElP, and RFLAGS regisrers onto thc slack

and transfers control to the proper exccption handler. The stack image ofthe

EILAGS register has the RF'bit set b l. whcn the exception hrndlcr returns to the

inteffuptecl i.struction, the RF bit is on, anclthe 80386 pfevents a cLebug fault f.om

being generaied. Any otherfaults (such as Prge faults or protection faults) occur as

uslral. fhe debw cxccption has the higbesr priority of all 80386 exccptionsi il

thercfore, an insrrucrion caL$es muhiplc faulrs, the first one Processcd is the debug

cxception. Vhcn conrrol returns t() thc inlcfftpted instructi()n, thc lt-t bit is set. and

the instruction is completed without rcriggeriqg the clebug falrlt. 1he 80386 clcars

the ltF bii upon completion ot'thc imcrrupied inst[tciion. (sec ChaPter 5 fbr 2

discnssion of cxccptions rnd support fdr debugging.)

NT-Nestcd,tlskJlag. Thc 80386 sets this bitwhcnevcr r CALL, inteilupt, trap,

orcx.cption c.ruses n task swilch. lhe bit is sct in thc EITLAGS registcr ()l thc new

task and indicrtcs tbat x revcl.se usk switch (IRET) is vxlid.'lhsk sw1lching in the

80386 is discusscd ftr.ther in Chrptcr 5.

rcPL- lO prtatleAe leael Tl)is 2])it liclcl lDlcls x valuc of 0-3 thal jndicx(es the

pr ivilcge lcvcl rcqlrircd to pcrfit m I/O instructions. Akhough iOl'L is in the

HITIACS rc€islcr, no p.occdr.r.c cnn modily it rnless thc proccdurc is rulning at

privilcic lcvcl0, rnd (bcn only l)y usinS lhc l'Ol'�f inst'ucti(tl.

A p()cedurc s currem pfivilcgc lcvcl (Cl'�l) nnrsr bc cquxl !o or morc Privilegcd thxn

rhc IOI)L to cxccutc xny ofrhc litk)wing insh\rcrnrrsr IN. lNs, OU'l OllTS, CLI, or

Sl l. ,{ p()cudurc tlul can cxc{r.rle lhcsc instnrti(nrs is sLrid io havc //O/rirltu8?

OF-OoerJloroJl4g. whcn xn rfilhn]clic intcger inslrlrcli()n is cxccutcd, thc OI

bir is sct ifthc rcslrlt is too large or t(x) smdll to fit io the destinalion register or

nlcrno.y ̂ ddfess. Bcc,rusc lhe OF flag is scl rcl.rtive to inlcgcf insl.uclions, thc

80386 presunrcs th.rt lhc .lestinatbn fcgister is one bit smxllc. in size to rlk)w fi).

litc sign bil Thc ti)lbwing lnstructions ilh$trate some exx'nplcs

H o v  A L ,  1 2 7

A D O  A L ,  2

t10\/  cx, 35000
S U B  C X , 7 O O 2

A L  *  7 F H ,  l a r q e s t  8 - b i t
s i g n e d  j n t e g e r  0 F  :  0
r e s u l t ,  A L  - -  8 1 H  (  l ? 7 )
s h o u l d  b e  A x : -  0 0 8 1  ( 1 2 9 ) ,  0 F  -  I

c x  - -  7 7 4 8 H ,  0 F  -  0
r e s u l t ,  c x : :  s B E E H  (  4 2 0 0 2  )
s h o u l d  b e  E C X  -  F F F F 5 B E E I T  (  4 2 0 0 2 ) ,
0 F - 1

Note that the Ol' bir is ignored if Lrflsigned arithmclic is intended R)r cxirnPle,

acl.ling 127 and 2 in fegistcr Al generates a vxlicl, unsigned reslrh ol 129
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DF-I re.dor.flag The direction flag bit modifies the behavior of the string in-
structions: MOVS, STOS, LODS, CMPS, SCAS,INS, and OUTS. Vhen DF is 0, rhe
string instructions operate on incrementally higher addresses. Vhen DF is 1, rhe
memory addresses are decrementedj and the operand addresses become progres-
sively lower. The Sm instruction sets the direction flag bit, and the CLD instruction
clears t}le bit.

IF*Inrct rpt etalieflag Vhen ihis bir is ser, the 80386 responds to external
hardware intefiupts. When the bit is reset, inrerupts are disabled, and the 80386 ig-
nores the hardw?re inre(upt pin. Note that this bir does nor affect the NMI inter-
rupt. The processor alflays responds io fauhs (exceptions) and software interrupts
regardless of the setting of the IF bit. rx/hen IF is 0, irnerupts xe sai tobe masked.

The STI instruction s€ts lF to 1, and the CLI instruction clears IF to 0. The interrupt
enable flag is also rnodified when an IRET is executed. A POPF insrruction modifies
the interrupt enable flag only if the procedure executing the instrucrion has I/O
privilege.

|E-TfapJlI4g: The trap flag bir assisrs in debugging programs on the 80386.
'Vhen the TF bit is s€t, an intefiupt 1 occurs immediately after lhe nexr insrruction
executes. The trap flag is usually set by a debuggeri the debug capablliries of rhe
80386 are covered in Chapter 5.

sF-stAnlr4g The sign flag bit changes when arifimeric or logical instructions
are executed. The siSn flag bit r€ceives the lue of the high-order bir of the result
and, when set to 1, indicates rhat the result of the instrrrction is nesative,

ZF-Zerafla& The zero flag bit is ser when arithmetic instructions genemre a 0
result,

:  Slgn f lag unchanged by M0V
: EDX -- 2,  SF nov 0
: EDX -- -2,  SF nor I

;  Zero f lag unchang€d by 0V
; AL unchanged, ZF no|{  I

r 1 0 v  A L , 0

ing oFthe characters 4 and 7

I ' tov Eox, -1
A00 tox, 3
IiEG EOX

4 0 0  A L ,  ' 7 '

A,F-Auxtttat! canlJ aE, The auxiliary caffy flag bit indicates that a carry out ot
the low-order nibble of the AL register occufied in an arithmetic instruction. This
bit is used by the ASCII and BCD instructions. It allows implementation of multiple-
digit precision decimal arithmetic. The following e{ample assumes an ASCII encod-

:  AL - 34H, AF unchanged by t{ov
; AL - 68H, AF nox I
:  A s c I I  A d l u s t ,  A L  - -  1 ,  A H  -  A H  +  I

E



PF-Parttf fa& The parity flag bit is sct to 1 when an arithmetic insklrclion
resulrs in x value with an even numbcr of I bils. lbr exall1ple, if you issued the fol-
lowing instructions, the resuhing parity flag bit wot d be 0.

CF-Crrry fla.g, The crr.y flag bi1 is sct whcn the result of an arithmctic opera-
tion is too large or small for the deslination registeror menory adclfcss. ft is similar
in operalion to the oF bit but indicites an unsigncd overflow oftbe destination.

:  AH - 100100018, Pr unchansed by Mov
: AH - 100101108, PF no|{ I

j  AL - -  7FH, CF urc l ranged by l40v
;  AL - -  81H, CF no|{  0
;  A L  - -  0 2 H ,  C F  n o | {  I  ( r e s u l t  i s  1 0 2 t 1 )

CF unchanged by f i0v
A L  - -  F F N ,  c F  n o l l  1  ( b o r f o v i  b i t )

t 4 0 v  A H , 9 1 H
ADD AH, O5H

r 'r0v AL, 127
AOO AL, 2
AOO AL, AL

t ' t o v  A L , 3
S I ] B  A L , 4

Sogment regi$tets
Thc scgment registers hold the l".rlues that dll{t which portions ofmcmory a pro-
gram uses. lbur segmen! rcgistcrs arc uscd under specific condilbns, ancl two are
availahlc as pointers to frequendy uscd arcas oi mcmory. The CS, DS, SS, and tsS
rcgis@rs were inherited f,om thc 802U6 and perform the same functbns as they did
in r l l .u CPU 1$o. dinor.r l re8r ir . r . ,  fS rnd GS. rrc ncu to the 803U6.

Associared with thc scgmcnt rcgisiers is a descriptor cache, which hokls the starling
address of the mcmory scgmcnt and other relaled informatk)n. chapter 3 details the
relntionship bctwccn scgmcnls and memory addresses in thc 110386. The descriPior
cache for thc scgmcnt rcgistcrs is not accessible b the programmcri only the 16$it
'egistcr p()rlion can be rcpessed direclly. Figure 2-13 illlrstfa(es the segment regis-
ters and thc intcrnal clcscriptor cache.

Limit rightsBase0
cs
ss
DS
!s

cs

Flgre 2-1r. kqment reqlste/s.

' lnvisible' descripror crche

! r.og.u..". o"""..tr"

E Not accesible
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Protection model registers
Four registers support the protection model of the 80386, as sho$.n in Figure 2-14.

! Programmer accesible

n Not accesible

CDTR
IDTR

F::r
Base

Visibleponion

Flgtte 2-14. fratection regiJters.

Thc prote€tion model regislers arel

CDff,- Clot/al Descriptor lable Register

,DfR- Interrupt Dcscriptor Table Register

ZDm-hcal Dcscriptor Table Register

'Invisible descripbr cache

fR-Task Register

The GDTR and IDTIi contain linear basc address€s that point to the siart of the
cDT and the IDT descriDtor tables. Thevalso contain limit fields that describe the
size ofthe CDT and IDT tables.

The LDTR and TR registers hold 16-bit selector lu€s, similar to lhe segment regis-
ters. Like thc segment registers, an inaccessible descripk)f cachc exists for both the
IDTR and TR. The LDTR holds a selector for an IDT descriptor, and lhe TR holds a
selector for the TSS (task state segment) of the currently ex€cudng process. Chapter
5 discusses how these registers work.

Control registers
The €ontrol registers regulate the paging and numeric cop(ressor operation of the
80386. A general description of rhe registers followsi refer to lhe specific chapters
on paging and coprocessors for more detailed information. A programmer can only
read or modify control registers by instructions of the fbfln MOV CR , /eg where
,?g stands for one of the general registers. A procedure must bc running at the
highest privilege level to exe.ute these instructions.

2l
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CRO-Control r€gister o
The foilowing illustration shows the contents of control register 0. The LMSV and
SMSW instructions allow access to the low-order 16 bits of CRo as the machine

Itc-Pagrrrg Paging is enabled by setting the PG bit to 1. Tlpically, the operating
system does this once, at initialization. Chapter 6 discusses the 80386 paging

m-Bx,esslor. btre: The 80386 sets the ET bit !o l at boot time if the processor
determines that an 80387 is present. If this bit is 0, the coprocessor is either an
80287 or is not present at all. vhen ET is 1, the 80386 uses a 32-bit protocol to com-
municate with the coprocessor; otherwise, it uses a 16-bit prolocol,

Is-fash srobchcd The 80386 sets the TS bit wh€n a task switch opemtion oc-
curs, When the TS bit is on, the next coproc€ssor instruction qluses a trap to the
operating system. This feature lets the opef4ting system irnplement multitasking
withou! requiring the operating system to save th€ state of the math coProcessor ev-
ery time a task switch occurs. The context of the 80387 is more than 100 bytes, so
saving lhe coprocessor state at every task switch would waste valuable CPU time,

Bu-Bmrlatz math coprocesso/r '{7hen thb bit is set, floating-point instruc-
tions that would normally control coprocessor operation trap to the operating sys'
tem instead. Proper use of this bit allows proSrammers to write applications as if a
coprocessor were pr€sent. If an 80287 o! 80387 is present, the operating sysiem ini
tializes the EM bit to 0, and the applicatlon's floating-point instructions will be exe-
cured by the copro€essor. If an 80287 or 80387 is not present, the operatidS system
sets the EM bit to l. Then, when an application executes a floating-point instr\rction,
the 80386 will trap back to the operating system, which either emulates the instruc-
tion in software or passes th€ operands to other floating-point hardware in the

MP-Math lrrcsent; The operating system sets this bit to 1 al boot time if a math
coprocessor (either the 80287 or 80387) is present. The MP bit affects the operation
of the rvAIT instrwtion, as described in chapter 8.

PB-Pntaect ena.bla. Setting the PE bit places the processor into protected mode.
Typically, this is done once, at initialization. Unlike the eadier 80286, the 80386
makes it possible to switch the CPU back into real mode after entering protected
mode. Some implementations of the OS/2 operating system use this technique io
allow real-mode MS-DOS programs to run concurrently with protected-mode OS/2

n
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CRI-Control iogister I
Control register 1 is not used in the 80386 and is reserved for future Intel processors.

CR2-Control reglster 2
When a page fault occurs, the CR2 register is loaded with the linear address that
caused the exception. Refer to Chapter 6 for more details on paging in the 80386.

CB3-Control registor 3
The 80386 paging hardware also uses lhis register It contains the linear address of
the starting point of the page directory. The implementation of paging is covered
fully in Chapter 6.

Debug and test registers
The 80386 contains s€ven debug registers and two test regist€rs. The test registers,
TR6 and TRZ allow diagnostic software to test the rranslation lookaside buffer
OfB). Because the TLB is part of the paging hardware, th€se registers are dis.ussed
in ChaDter 6.

The d€bug r€gisters, labeled DR0-DRZ allow the 80386 to implement a hardware
breakpoint capability that pr€viously required an cxt€rnal in-circuit emulator By
setting the address register (DRo-DR3) and control bils (DR6-DR7), the program-
m€r can halt the 80386 when a particular mcmory location is read from, written !o,
or execuicd. The breakpoints are noninvasiv€ (they don't require modification of
the program under debug), and they are also real-lime (they dont degrade the peF
formancc of lhe program). chapter 5 dcscribcs dc'bugging tcrhniques using the
clebug registers.

Goprocessor Support
The 80386 can operale wiih either the 80287 or 80387 numeric data processor
(NDP). Because rhese specul-purpose chipsoperate in parallelwith thc80386. they
^re called coprocessors.'l he 80287 is a slower chip with a 16-bit interface, original ly
designed for use with the 80286. Floating-point performance with the 80287 is ap"
proximately 320,000 whetstones wh€n running at 10 MHz. The 32-bit 80387 offers
higher performance. This processor is software compatible with the 80287 and can
execute about 1,8'00,000 whetstones when running at 16 MHz. Appendix F notes the
differences between the 80287 and 80387 References to the 80387 in the following
text also refer to the 80287 unless otherwise noted.

In addition 1o the raw performance advantage of hardware support for floating-
point arithmetic, the NDPS introduce another lev€i of parailelism into the system.
As soon as lhe 80386 passes an instruction to the 80387, it begins operating on the
next instruction regardless of how long the 80387 takes to complete its opemtion. Of
course, if the 8036 encounters another floating-point inslru€tion, it must wait for
the coprocessor to complete the curent operation before the 80386 can give it

A
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To use a \alue computed by the 80387 and written Io memory, you must ensure that
the 80387 has completed the write operation. The F,firAlT instruction ensures syn-
chronization between the 80386 and 80387

If a coprocessor is absent, the 80386 allows an operating q'stem to emulate one and
remain invisible to thc applicarion. For derails on coprocessor emulation, see the
discussion of the EM bit in control register 0 of the 80386 earlier in this chapter.

Additional data formats
Adding either the 80287 or the 80387 coprocessor to an 80386 adds dire€t hardware
support for three floating-point number formats and one BCD integer format. The
80287 and 80387 also support three integer formats that the 80386 recognizes. These
are the 16-bit, 32-bit, and 64-bit two's complefient (signed) integers, idenrical to
their counterparts on the 80386. Figure 2-15 shows the additional numeric formats.

1 5

I'T-*-l---___-.]'r'on'""r
52 5l

f--l__l*o.ain,.g..

f--_lu.on'n,"g",
6 3 0

| , , 
---_-l 

tong,n,"g",

BCD inteSer

63 62

AlglJfe 2-15. FlMtine-polnt for nats.

3 l

Sign l-\ponent

31 30 23 22

dr7 dr6 d le dt {  dr ,  . .  . .  d 4 , d 1  d 2  d r  4
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Floating.point numbers
The 80387 supports three floating-point formats. This allows a programmer lo make
compromises between the amount of m€mory required and the Fecision of the
results- The srorl /eal format lets programmers specify numbers of about six deci-
mal digits of accuracy. This format is also known ^s sinele-Wcklon bec use a
short real number fits into a single 32-bil machine word . Iong reak, also U,^oa"n as
double-precision, rcVesent floating-point nlunbers of up to 15 decinul digits of ac-
curacy. Holding a long real mnnber requires a double machine word (64 bits). The
rhird format is called tenp (temporary) real ot extended-preclslan.'lemp re l nnm-
bers are 80 bits and represent about 19 decimal digits of precision.

Jusr as scientific notation represents floaring-point quantities in decimal notation
(for erample, 4.74 x 103), the 80387 floating-point format is a type of binary scien-
tific notation. The general format of a floating-point number on the 80387 is lirx 2',
where/r€presents a biMryfraction and e i$ an exponential pow€r of 2. Three
fields are requir€d to make up a floating-point numben the sign, the exponent, and
the flaction, or siSrllflcand.

The sign field is a single bit that is set to 1 to indicate a negative number and reset to
O for a positive v4lue. Unlike the two's complement notation of the integers, no

lue manipulation is necess?lry to change the number from Positive to negative (or
vice versa) other than toggling the sign bit. This notational format ailows the repre-
sentation of +0.0 and-0.0, which is useful in certain circumstances.

The exponent field represents a multiplier of 24. This field ranges from 8 bits in the
shorr real format !o 11 bits in the long real format to 15 bits in the temp real format.
To accommodate negative exponents (such as 2-6), the value in the exFDnent field
is bl.ased; that is, rhe ̂ .tral exponent is determined by subtEcting the appropriate
bias value from the value in the exponent field. For example, the bies for short reals
is 127. If the value in the exponent field is 130, the expon€nt represents a value of
2r3o-r27, or23. The bias for long reals is 1023, and the bias for temp reals is 16383.
The lues 0 and all ls (binary) are rese ed for repr€senting sPecial values and
cannot be used to represeni floating-point flunbers.

The significand field contains the fractional part of the floating-point number. The
significand occupies 23 bits in short reJs, 52 bits in long reals, and 64 bits in temp
reals. Figure 2-16 shcws how to interpret floating-point fractions. The significand
is encoded in two different ways on the 80387 In l€mp real format, the siSnificand
field holds the binary fraction in the form so.qs2 . . . s63, where s" is bit '? of the
signilicand.

In short format and in long real format, the authors of the IEEE-754 format took ad-
vantage of a representational tfick to squeeze out an extra bit of precision. A review
of scientific notation shows that the lues 40.103 x 107, 4.0103 x 103. and 0.0040103
x 10ro all represent the same number. A binary notation has the same Foperty.

3l
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Shifting rhe fracrion by one position sin be compensated for by incrementir\g or
. l (1rcmcnrinerhevalueolrhcexponenr.Becruseahinarynurnbercon\ i$solonly
0s and ls, the designers of the floating-point forrnat decided that the fractional por-
tion of the short and long reals would be shifted left until the most significant bit
was 1. Sincc this bit was now defined as r, rhete was ro point in storing it, and it
was assumed to exist. The fraction for a short or long reat, therefore, has the value
1.soEs,...s,,, where '' is 22 for short reals and 51for long rcals.

Decimal fn.tior Binary fracrion

,1il1,[[ ;[|i,ff]:
Dccimalpoint Birary poini

37 2101 dccimal 6.5625 decimal

F
Sinsle disit befo.c l

" ' , . .  .-",1
, 

""': L l.l Sirnttlcand | - Iracrion rMSB impliuJ)
Long rcr l

Slgnificand

Flg0.ie2-16. FIM nS-potnt fuctions.

remp reat ITTT --Tl F.acrion dir€ctly represented

Single

Abslutevalue - t �sosr. . ,  sz2x2 rctp- 127)

The bias for the short real exponent is 127. The signifiond includes the "implied 1"
bit and dlows a precision of about six decimal digits. Representative values range
from 11.18 x 10-33 to i3.40 x 1033.
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LongrcaI

Absolute value = l.sosr,.. ssrx 2 (cxp r02r)

The bias for rhe long real exponent is 1023. The significand includes the "implied 1"
bit and allows a pre€ision of about 15 decimal digits. Representative values range
from 12.23 x 10-303 to 11.80 x 10303.

TefiP tcdt:

Extended

so s63

Absolurc value - s0.sr. . .  s63 x 2(cxp-16r,)

The bias for the temp real exponent is 16383. The significand represents the frac-
tional portion of the value (with no implied bits) and allows a precision of about 19
d€cimal digits. Representative values range from t3.30 x 10-4e32 to !7.2 x li4e32

sttec-r^rlaa nA-Irornt ta&res.' In addition to intuitive values such as 3 14159 and
6.03 x 1013, the 80387 represcnts lues that arise under unusual conditions. These
val\es ue . lle<l lnfinlttes, denornals, ^nd NaNs <NaN stands for "not a number"')

Infinity, positive or negative, is represented by a value whose exponent field is all ls
and whose fraction is 1.0B. Note that in short and long real numbers, 1.0B is rePre-
sented by a sig:nificand ofall 0$, whereas in lemp real numbers, the significand is a
binary 10000000...0B.

Denormals are values thal are too small to represent in the standard (or normalized)
fashion. Denormals are represented by a !?lue with an exponent field of0 and any
nonzero lue in rhe significand. A floating-point number with t$th an exponent of
0 and a significand of 0 represents 0.0.

NaNs are invalid representations of floating-point numbers. They are identified by
an exponer{ field of all ls and a significand other than the one representing infinity
The two kinds of NaNs are the slgnaling NaN and the quiel NaN. A signaling NaN
has a fraction of the form l.ojc.tx. . . rB, where , represents any bit value. The 80387
generates an e{ception whenever a signaling NaN is used. The 8037 never creates
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a signaling NaN, but a Fogrammer can use one to indicate some erfor condirion
such as an uninitialized floating-point variable. The quiet NaN has a fractional for,
mat of l.Lrro(rrB. Recall that the leading 1 is not implied in the significand of short
and long reals but must be present in temp reals. The 80387 generates a quiet NaN
instead of a numeric rcsult whenever a floating-point instruction causes an in\,?lid
operation. Any instruction that receives either tt?e of NaN as an operand genemtes
a NaN ai a result. The following table lists special values used by the 80387

JrEa Btp<mettt Fractloi ualt@

1 1 . . . 1 1 8
1 1 . . . 1 1 8
1 1 . . . 1 1 8
00. . .008
00. . .00B

1.00.. .04
0rooooorB
0.00,. .08

Quiet NaN
SignalinS NaN
Infhity

Zerc

The "x" indicates that it makes no difference whether the bit is 0 or l. The .1" before
the decimal in the fraction is physically pr€sent only in temporary real format. It is
implied in the short and the long real fomats. Denormals are recognized in rhe
short and the lonS format by the 0 exponent value.

BCD Intogor
The other new data type that the 80387 supporrs is a packed decimal integer of 18
digits siored in 10 consecuth€ byte6 of memory. The high-order bit of the high-
order byte is interpreted as a sign bit in the same way as floating-point numbers.
The rest of the hlSh-order byte is unused. The remaining bytes each conrain two
BCD dicits.

7211 64 0

0 d d

The wlue range of the BCD integer is 0 through 1r9,yD,999,D9,W,999. Pt tarA-
mers who work with BCD numbers might want to run rhe 80387 with the precision
exception unmasked. Because BCD formats often represent monetary values, it is
importanl to avoid losses du€ to rounding or truncation,

Goprocessor reglster 3et
The 80287 and 8O3a7 are nearly ideftical in rerms of their programming model6.
Both contain register files of eight 80-bit floaring-point registers and a nurnber of
status registers. (See Figure 2-17)
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FIP
!cs

FOO
tos

0
t
2
3
4
5
6
7

Iloatlng-point reSisters Error poinlels

Eignrc 2-r7. 80387 legbter ftb.

Unlike the general registers of the 80386, however, the NDP registe$ are addressed
as a stack. Tbe current top-of-stack (the l?lue most recently push€d) is indicat€d by
a field in the status word register and is addressed as ST or ST(0) The next register
(he previous value pushed) is ST(1), and so on This is best illustrated by th€ fol_
lowing example.

Assume that the confrgpration in Figure 2-18 (on the following page) shows the ini-
tial state of the 80387 Register 2 is designated as the current top-of-stack, but
nothinS ls stored in the registers. The ta8 word (Tw) register holds a 2_bit field for
each registet marking it as valid, 0, special, or unused To evaluate the pollnomial I
. 3rr - 7rc + 4, w€ will use the followir8 code fragmeni. (Figufe 2-18 shows how
the function evaluation pfogresses on the 80387 stack )

X D D ?
v D 0 ?
const  Dl l  ?

FLD
FLO
FI.IUL
t 0 v
FI I.IU L
H0v
F I L D
F$ULP
FSUBRP
 0v
FIADD
FSTP

;  s h o r t  r e a l  v s f j a b l e  " x "

;  fes u l  t  o f  conputat j0n
:  nenory | {ord for  ln teger  constants

sT(0  )
sT(0)

s r {2 ) ,
sT(  1 )  ,

3

7

ST

l o a d  x  t o  t o p  o f  s t a c k
d u p l i c a t e  c o p y  o f  x
square copy of  x  at  top of  s tack
i n t e g e r  m u l  t i  p l i  e r
nul t jp ly  top of  s tack by 3

l o a d  7  t o  t o p  o f  s t a c k
S T ( 2 ) - x . 7 , p o p S T
S T ( 1 )  -  S T  S T ( l ) ,  p o p  S I

s t o r e  r e s u l t  a n d  p o p ,  c l e a r i n q  s t a c k
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sT(0)

E;,ol

o sT(o)
1 ST(r)
2
3
4
5
6
7

0 sT(o)
I ST(r)
2
J
4
5

7

0 sT(o)
1 ST(r)
2
3
4
5
6
7

0 sT(l)
I ST(2)
2
3

o
7 ST(0)

0
I
2
3

5
6
1

FSUBRP ST(1), ST

; FMITTP stp,"rl

sT(o)

trov;*q r l
I r'AJ'r con$ |

Elgttr. 2-1a- tualuatlne a plfnorniaL
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Elgsre 2-1E. cortinue.l

0
I ST(0)
2
3
4

5
6

0
I
2
3
4
5
6

'I he 80387 registcr iddress€d by sT(t) varies llccor(Ling to the valuc of the ToP field

in the status wod rc€ister. The following section (L€scribes the ottrer fields in the

status worc1 reSrslcr

Status word aogiste?
The st.rlus word rcTister can be illuslrxtc.l as foLlowsr

,-arrsJ. l'his bit is 1 whcn thc 80387 is exccuting an insructbn or whcn an un-
maskeclcxceptbn (bits 0 5) is indicnted. lxccutc lhe instruction INS'ISV AX,
wirich copies rhc slxtus wod register lo lhc AX registeroithc i303861o lest this bi!

ca, C2, cb Co-condltton coles.' The 80387 sets thesc bi$ when a fk)aling-
point comparc, tesl, orexaminc inslruction is exctu|cd.'Ihe various combinalions
that €curarc discussed undcr thc rclcvant instructi()ns in chaPter8.

11oP-Top'o:f-stack: This iield indicales which of the 80387 naclrine registers
functions as the &)p of stack. \(/hen a new valuc is Pushed onio thc register stack,
(hc value of ToP is dccremented by 1. vhcn ^ value is popped from the stack, ToP
is incrementecl by l. The results of thc incrcme or decrement are truncatecl !o
Ihree bits to allow addressir\g ofeight fk)aling-poinl registers.

ES-Er''olr sutmnarJr The 80387 scrs this bit to I whencver a floating poinl in-
struction generates an unmaskecl cxccplion. The exceplion indicators are birs 0-5
The exccption masks themselves arc located in the control word register.

SF- Stack Jault The 80387 sets this bit to 1 if an instruction causcs a stack over
flow by pushing loo many operands or a siack underflow by popping the stack
when there arc no more values. This field does not exist jn lhc 80282 so floating-
point code that must run on eithef coprocessor should not rely on having the bir' A
stack fault also results in an invalid opcration exception.

ll c3 'roP c2 c l c0 !5 sf Pu TJE oli zI:, DI] I I
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Before discussing each field, iI is worth noting a couple of things about bits 0-5 of
the status word register These bits correspond to exceptional conditions that can
occur $/hile executing 80387 instructions.

Vhenever a condition represented by an exception bit occurs, the 80387 first sets
the appropriate bit in the status word register. Next, it checks the corresponding
mask bit in the control word register. If the mask bit is 0 (unmasked), the 80387 trig-
gers the coprocessor fault (inteffupt 16) on the 80386. If the mask bit is 1 (masked),
the 80387 continues by executing the next instruction.

Additionally, the 80387 exception bits are "sticky." Once set, tley remain set until
the programmer loads the status word register with a new value. This lets the pro-
grammer w te a series of flrneric instruclions and place a test for errors at the end
of the instnrction sneam rather than after each instruction.

PB-PteclsLm etceptl@r: This exception occurs when the 8037 cannot repre-
sent the exact result of a floating-point instruction. For exampie, thc fraction yr can-
not be represented exactly as a decimal fraction because it produces an infinitely
rep€ating result. Any finite representation such as 0.3, 0.333333333, ot even
0.333333133333333333333333333333 is only an approximation. similarly, the 80387
cannot represent this flraclion exactly in birary format. Dividing 1by 3 results in the
infinite binary fraction 0.018.

This exception also occurs when a temp real number is converted to a low€r preci-
sion and bits are lost in the conversion,

The precision €xception is almost always masked because a rounded or truncated
result will suffice in most cases.

UE-Unde4flow exceprtot The underflow exception is triggered when the
result ofan operand is too small for the 80387 to represent. For example, the
smallest value that can be represented in th€ 80387's 80-bit qxtended-precision for-
mat is 3.37 x 10-4e32. Attempting to square a numb€f such as 10-3ooo results in an
underflosr' exception.

OE-Orerlflao exceptt$: This exception is the converse of the underflc,s/ ex-
ception. It occurs when the result of a floating-point operation is loo large for rhe
8037 to represeni. Like the precision exception, UE and OE can be generated
when a number representable on the 80387 is converted to a format in which it is
not representable.

ZE-Zer..t dhlde excet tlofl: Whenever division by zero is atlempted, rhe ZE ex-
ception occurs. This exception ctn be €aused by floating-point operations other
than the divide instruction, $ch as sine, cosine, remainder and so on.

DE-Ibflomal etcepnor!. This exception occurs whenever an operand of a
floating-point instructioo is a denormal. Denormal flunbers are discussed earlier in
this chapter.

3a



2r lh. 40306 lrchti*hrr.

IE-IreaUd oper.a,Lm etcceptkm: Thise\ceprion traps all effor conditions not
handled by the previously discussed exceptions. These can include arithmetic fauits
(such as an attempt to take the square root of a ne9tive nulrber) or programmer
faults (such as specifying a regisler that contains no value as an instruction operand).

Contrpl word rogbtsr
A programmer modifies the control word register (C\V) of the 8037 to alter its
behavior The format of the control word register and the definition of each field

Bt 12-O (r4Fnry con rn�t on A02A7): Bit 12 is ignored on the 80387 On the
80282 this bit selects either affine or projective closure. Affine closure allows the
use of both positive and negative infinity. In projective closure, very large or very
small numbers overflow to a single unsigned infinity. The 80387 only supports
affine closure,

Rc-Roundtsg cott el: This field specifies how the 80387 handles values that it
cannot represent exiKdy, The RC field can be set to one of the following modes:

oo-Round 0oward nearest (choose even number lf equidistano

o1-Round toward neSative infinity

10-Round toward positive infinity

ll-Round toward zero (truncate)

To see how the rounding control affects the results ofa computation, assume that
the 80387 can represent only the integers -5 through +5. Figure 2-19 on the follow-
ing page shows the results of rounding the values 21/t,7'�/r, -11/t, a d-zth ineach
rounding mode.

Pc-PrccTator, cont ol: The PC fleld tells the 80387 which floating-point format
to use when generating the results of add, subtract, multiply, divide, and square root
operations, This field can hold one of the following valuesl

00-Single-precision (32-bit)

o1-Reseffed for future coprocessors

10 -Double-precision (64-bit)

ll-Extended-precision (80-bit)

Instructions other than those affected by the Pc field generate extended-precision
results or have a precision specified by the operand.

l 2 a 7

x x x x RC PC x x PM UM ZM DM IM
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f i - + - -
- , , - 2 - 1  0 1

<-j <-i

Blgofrc 2-19, Roundtw contral

PM, AM, OI4 ZM, DIL IM-Mask bltst The remaining bit$ in the control word
regisier are the mask bits for the ex€eption conditions and correspond to bits 0-5 of
the status word rcltistcr. The maskbits arel

Pr€cision mask (PM)

Underflow mask (UM)

Overflow mask (OM)

Zero divide mask (ZM)

Denormal operand mask (DM)

Invalid operation mask (IM)

Tag wo?d registor
The final 16-bit register on the 80387 is the tag word register. This register co$ists
of eight 2-bit fields tlut correspond to each ftoating-point register. T0 is lhe field for
register 0 (not ST0), T1 is asso€iated with register 1, and so on. Each tag field holds
one of the following values that gives additional information about the contents of
the corresponding register:

00-The register contains a valid floating-point nurnbei.

01-The regisler contains the value 0.0.
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10 The registe. contains the value infinity or an invalid nunber

11-The regisier is empty (unuscd).

The tag word regjst€r is normally not used by the programmer A debugger that dis-
plays the contents of the 80387 stack must examine the contents of the tag word
register to properly interpret the contents of the coprocessor registers.

Error pointer registeas
The only other registers on the 80387 are the error pointer registers. These registers
are updated each time a new floating-point instruction is executed. Vhen a float-
ing point instruciion causes an exception, these registers can be queried to deter-
mine which instruction is at fault. Note tlut no 80387 instructions directly address
these registers. The store environment operation copies the contents ofall 80387
regtsrers rc memory.

Thc crror F)intcr registers are n€cessxry becxuse oflhe parallel operation of the
80386 and 80387 The 80386, which is exocuting simpler, faster instruclions, mighr
bc cxccuting codc in r diftarent segment when the U0387 generalcs an cxccptbn.
'1hc effor pintcr rc€istcrs makc it much casicr !o dctcrminc what wcnt wror\g
whcn nn 803i17 cxccplion occlrrs.

1 t 5

F

0 0 0 0 0  | FOP FCS

F( o

0 ros

FlP-Floanng'potnt tnstr.tc,ton pol ter: This register is loaded wiih the con-
tcnts of the 80386 EIP register when a coprocessor instruction is executed.

FCS - Phrattag-Intnt code segrreri' This register is loaded with the value of the
80386 CS register when a floaling-point instruciion is executed.

FoP-Flaatlng-ltornt ofcod"r This register is loaded with 11 birs of opcode in-
firmation. A coprocessor instruction alwrys has the format:

7 0 7 0

l  r l 0  r l r l ?  ? l ? Fl.'lT{' FFll (op,i.M, b},es)
Firsr brre Scco.d blte
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The second brte ofthe instruction is concatenated with the 3low-order bits of the
first byte to form the contents of the FoP register. Early versions of the 80386 do not
generate this information for the 80382 nor is it available n'hen using the 80386 in
protected mode with the 80287 coprocessor. It might be simpler to use the FCS and
FIP values to find the instruction at fault.

I;()S-Fba,t tg-Itolit operarrd segn eaf This register contains th€ segment
register of the memory operand (if any) referred !o by the most recent floating-
point instruction,

FAo-tloatt tg-liots, opelad qlfsea This register holds rhe offset wirhin se8-
ment FOS of the memory operand (if arry) refeffed to by the most recent coproces-
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MEMORY
ARGHITECTURE=
SEGMENTATTON

A segmentecl m€mory archilecrurc is a hallmark of the Intel 8086 family of pro-
cessors. The 80386 is the fhst of lhesc processors in which segmentation is nor an
impediment to the programmer,

Linear vs Segmentod Memory
Th€ hanCware interface between rhe CPU and memorv is virtual Iv identical in almosr
cvcrycomputer. and thc 80386 is no exccpri(rn. A serofaddrcss Iiner goes out from
the processor to memory. The CPU places an address on rhe bus, and memory re-
sponds by returning thc value stored at that location or by accepring a new lue.
Figure 3-1 shows the hardware relationship between the CpU and memory.

32lines, 2" possible addresses

80386

El81urcr-t. CPU - nemorr intetace.
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Because of th€ binary nature of the digital comp le! a system with , address lines
nllows the syslem to reference 2' elements of memory. The hardware behaves in a
/ir?eal fashioq that is, for each of the 2' possible combinations of address lines, a
separate mcmofy element responds.

Most computers also have ̂  Iircar ,nemory model They allow programmatic ac-
cess Io memory, beginning with add.ess 0 and contiNing through address 2" - 1.
Theoretically an applicalion could read the byte at lGation 0, then read the next
byte, and so on until it reads the last byle of memory in the system This model
pa.allels the hardwarc interface.

However likc the 8086 and ihc 80286, the 80385 has a programmatic memory
modeL different from the hardware memory model These processors have a s€8-
mente.l rr,emoty n'r,del.'lo a program, the address space is divided into chunks,
or seam?nar, and the pfogram can onLy access data contained in drose segments.
vithin each segment, adclrcssing is linear, and the Program can access byte 0, byte
1, byte 2, and so on. The addrcssing is relative to the start of thc segment, howcYer,
and the hadwarc address associatecl with soflwarc acldress 0 is hidden from thc

This approach () mcmory management is natural. l'rograms are typically divided
ink) se:ments of codc ancldata. In thc 80386, programs can be madc up of singl€ or
mrny code xnd Jltr jcgments. In a mLtltil$king environmenl ie8mcntrrion dlsu
isdntcs orocesses from one another If ni, program can look at only my code and
my data, i! cannot illicitly modify lcrr Program's codc or dala Figur€ 3-2 shows a
multiproccssing system with many segmcnts coexisting ln memory

H\X/

c1

c1

Rl{nxe 3-2- MeMr! .lirlded into eSmmts

4

c2
ca
0
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The 80386lus six segmcm registers. The vllllrcs in these registcrs deternine rhe
memory scaments that a pmgran can access. The cs registef poims ro the segment
that contajns lhe p.ograrn's codc. CAI-L andJMP insrructjons implicirly refer to rhe
current co.lc segment.lhe DS rcgister points to the pfogram's main dara a.en. For
example. dre instruction:

copies the first byte (byrc 0) ()frhe &ra scgmcnr inro fegisrcr Al.

Thc ij0386 also supports a stack segmcm (.egister SS) Thc sLack segmenr is com-
monly (but not neccssarily) the srme scgnrent as rhe (lat.r scgmenr. The pLlslr rncl
POP inst'uctions srorc dara to or removc il from the stack scgnrenr.

Three aclditbnal registers (ES, Fs, .nd cS) point r(r xuxiliary drta that rhc p.ogram
needs to .rcccss less frequemly, srch as COMMON variables in.r FORTRAN pro
gram. You can.rpply a special prcfix &) an instrucri()n rhar nccesscs thc dxrx sc!!
ment rcigistcr. The prefix calrscs ltrc insrruction k) acL on one ofthc lrcldili(rnxl
segmenls instcad. For e*rmplc, lhc previorF insrrLrri()n olight bc wri((cn rs:

l.t0v

I t0v A L ,  t 0 l

A L ,  E S : [ 0 ]

to fctdl thc lirst bylc from onc ol thc ahcrnntc dt(n scgnrcnts, or cvcn lrsl

t 0 v A L ,  C S :  l 0 l

k) fatch lhe firsl byte from thc code scgmcnl.

Previurs gcncrntions ofthc l.l0il6 lzn ily :rlso dcalt \\,i!h scgmcnrod lncnl()fyi how-
cvci thcse prcccssors lnnircd thc size ol a scgnrcnr ro 64 Kll, wl)ich w:ls ofrcn t]r((h
too snull. A single scgmcn! in 1hc 80386 crn l)c 1|"5 lxrgc xs,i cB.

An opcr^ting systcm cicsigner can ch(x)sc lo simuhlc I lincaf mcnxr.y modcl (.lso
called x/at nbdcl) on rhe 80386 by crcating one vc.y hrgc codc sc3menr ancl onc
very large dala sq]menl and luving .rll progrltms usc rhc sanre vahEs f.r CS.rnd Ds.
Tbis is a conmon lcchrique when porLing sysrems rhar luvc fLnr ()n Iinerr:rd.Lrcss
machines. The UNIX operating sysrcDr-wirh its VAX hcritxge-is rypjcally ilnple
mcnted on linear mcrnory machincs.

Virtual Addressing
Ixcept when operating in .cal mode, rhe 80lM) is ! rirtual memory .tracess<)t.
\vhcn an instruction requcsrs rhe contents ofa menory location. rbe insrudion
rclcrs to dle location not by an actual b.rdwarc memory address blrr by x /l,.rral
,rddress. The vitual address is real ly a name for a rnemory locarion. The processor
translatcs thc bcation namc im() an appropriatc physical locarion. Thc operaring
system must Daintain tire propcr mapping berwccn virruat and physicalmemory.

This conccpt is not as convolured as ir mighr sound. For examplc, suppose that
someone says l() me, liPut fiis .cport on the boss's desk.,, In my parriclrlar
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deparhent, that might mean, "PuI rhis report on Simon Legree's desk." If, how-
ever I transfer to a ncw dcparrment, l might be placing my report on Ebcnezer
Scrooge's desk. "The boss's clesk" is a virtual location, and I can carrt out the in-
struction to turn in my report even dlough the desk on which I place lhe report
varies according k) Ihe circumstances.

A vlrtual address on the 80386 ls speciiied by two numbcrs, a seftrctor and an o/Jet.
Thc sel€ctor is a 16-bit value that serves as avirrual namc lbr a memory segment.lt
is rhc sclcctor thit is loaded into the segment regisrers (cs, Ds, and so on). The oftl
sct is the distance from the beginning ofrhc scAmenl, and it is a 32 bit value. Ex-
amples of virtual addresses include:

Int 4treted vlrtual Ad4ress

3F1 100000000
0149:0001FF00
EC2C:J1887004

Offsct 0l I fiorn sclccLor 3!1 l ri
Offsct I IIO0It fronr sclector 01A9H
Ollset 3l!N97004H from selector !C2Cl I

'l he cPU translates a vjrtual addrcs$ to a singlc 32-bir nltnhet calle.l ̂  linear ad-
lr".$ Figure 3-3 shows an examplc oiaddress translation. Tbis lincar rcldrcss goes
out on the sysrcn blrs Lrnlcss thc pagir\g fcalure is enablecl. Paging is another levcl
of acldress tr^nslation and is dis.ussccL fully in Ch.pter 6.

Flgtre 3-3, Iineat atidrcs tnalation.

Vidual.to-linear addres$ translation
The cPU r.lses the selector as an index to a sct of sysrem lables called ,lsscrbtor
tables. A descriptor is ^block of mcmory that describes the characteristics ofa
given element of thc syslcm. In the case of a memory segment, the chaftctedslics
include the scgmenfs linear base ad.dress, Iimit, ^cce$ rights, an(l priuile+e \elEl.

4 CI'] Mc'nory
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The base address is the starting point in the segmeor,s linear address space. The off
set poflion of a virtual address is added ro the base acldress to senerare the linear
acldress of the desired memory etement. Figure 3-4 illusrrates an exanple. The vir-
tual address 13A7:0010F405H is broken down intlr irs segment and offser compo-
ncnts. The sysiem uses rhe selecror 13A7H as an index into its descriDtor tabtes. ft
pJl l :  uu'  a de\cnpro, rhr,  say,.  for cxJmple. r l r r  rh. . .gmenr hls J h;\  Jddre$ in
thc linear address space of00032DI)000H. The vinrual address offser is combined
with the base, an.l the resulting value, 338C405H, is the translarcd linear address.

The 80386 hardware suppofts a 32 bit linear address spacc (2n,, or slighrly in ex
cess of 4 billion bytes). The lyrse address of a segment is 1Ra1ed somewhcre in rhis
'xnge. As the basc address defines rhe srxrting poinr ofa scgmenr, rhe limit ficld
dciines the end poinr. The limit specifies thc segmenCs last rddressable bytc. The
110386 checks evcry instruction thxt addr€sscs memory to dcrcrmine wherhcr rhe
inslruction is allcmptiqg to rcad or ro writc memory within the boundaries oflhe
sc€menfs descripk)r An our-olbounds refercnce carBes an interrupr called a 8el,-
erul trotection/ault ta occur. Frults are discr$sed in rhc scrlion on interfupls and
cxceptions in Chapler 5. 1 he access righrs ficld defines the rypc of segment and rhe
privilcge level requirc.l to acccss ir.

33EC405[l

Flgre 3-4. Virtml-toJinear a.1d/e$ tttnslation

,( OB Mcmory

tsase addrcss is nddcd to offset
yielding linear acldrcss.
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Segnent descriptors
At this point, )ou probably visualize a descriptor as something like the itern in
Figure 3-5. Indeed, all the data in this figure is in an 80386 descriptoq however
because of space and compatibility constraints, the rgal thing is not quite so pretty.
Figure 3-6 shows the actual format of an 80386 segment descriptor

Etglo,rc 3-5. vtsuauzed descrtotor

80386

80286

63

lo) l3248

3r 15

- 
A"*r"
rights

47 t64a

Base

2 4  .  . 3 7
c

L

Llmit
1 6 .  . 1 9

I
DPT

I

s
0

T}PE 0 . . 2 3
Limit

0 . . 1 5

P

I
DPI

I
:
0

Tvpe 0 . . 2 3
limit

0 . . 1 5

A.**
ign6

BIlgnEcS-6- Achlal80286 and 8qA6 descriptors.
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Flgue 3-6. contlnued

80286 descripro.
as storeo n memory

1 5

limit

rights 1 6  .  . 2 3

0

80385descdptor

G D
L

Limit
16.  .  1 ,9 .ights 1 6 .  2 3

I
I
I
J

High

Base add|ss: The base address po(ion of the des€riplor is rhe address of offser 0
in the segment. This field is 32 bits and is consrructed from byres 2, 3, 4, and 7 of
the descriptor. In rhe 80286, the base address is only 24 contiguous bjts. However,
Intel specified that bytes 6 and 7 of the 80286 descriptor werc ro be set ro 0 to en_
sure that 80286 code would run properly on an 80386,based computer

,rmr* The iimit field determines the last addressable rnir of rhe secfient. The iimit
lield is 20 bil.. comprisinC b',res (r.rnd I o' rhe de.criplor and rhe b;-orJer four birsof
byte 6. Again, the split js due ro rhe difference in rhe limir field sizes between the
80286 and the e,0386. Those ofyou handy with binary arirhmetic mighr notethat a 20_
bit limit field allows the addressing of only 2ro, or approximately 1 million, irems.
At first glance, this seems !o mean that an 80386 segmeni is limited to 1 megabyte.
This is not the case, although rhe segment tr limited to 1 million rarrs. The c fur in
byre 6ofrh( descripror stand. bt BMnuturil and 80jgo jegmenr s ( ome in r$o
rorms, ,-rrp Smndd rG - 0l and page granuh rc - tJ

0 . . 1 5
Limit

0 . . 1 5
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'fhe Notrl granularity is similar to the worcl /esolrrior?. A ligh-resolution image is
madc of vcry tiny items, and a lower-resolurion image is made of larger items. The
limit of a byte granular segment is measured in bytes; a page granular segment is
measured in larger pieces called pases.

A page on the 80386 is 2r'�, or 4096, bytes. This makes the linii on lhc size of a seg-
ment 2,o pages ot' 21, bytes, fbr a total of 23, bytes (,i GB). Again, a scgment of code
ported from the 80286 is always a byte granular segmcni bccausc thc scventh and
eighth descriptor bytes are required to be 0.

For ej(1mple, assune that the DS register points to a byte granular segment with a
limit of 001FH. The size of the segment is 20H (32 decimal) bytes, and the last ad-
dressable byte is byte 001FH.

Itl4gal lnsatu tlott Reasort

Mov EAx,l123.1Hl Memory address beyond lnnit
MOV EAX, [o0:lDHl Size of item ,ead extends beyod linrit
MOV A1, I0O20Hj Memory 3ddress beyond lnnit
MOV I001|lHl, AX SiTc ofitcnr wrntcn bcyond limit

Iegal Insrntcttott Reason

MOV llAX, {0000111 La$ bylc rcad is 3lJ
MOV IIAX, [001CH] Lrs! byte rerd is 1FII
MOv AL, 1001m1 Llsr bytc read is lFH
MOv l001EHl, AX Lastlrytewitten is UiH

Now imagine ̂ page granular segnent with a limit of0000H. The size ofthe seg-
ment is one pxge, and pagc 0 is fie lasl addressable page. A page has 1000H (4096
decimal) bytes in it, so the last addressable byte is 0FF!]H

Illegol lNrnctlon Reasoa

Mov EAX, I1?34H1 Memory iddress beyond limit
MOV EAX, IoFIDH] size ofi(em read extends beyond knit
Mov AL, n020Hl Menbry adclress beyond limit
MOv [0f!Fr ,lx Sizc olitem wrilte. b.aond limit

Iegallnsrrlrcdorr Reason

MOV !AX, I0000Hl last byte rsd is 3H
MOV llAX,lolFCIll tast bytc read is 0fI|8
MOv Ar, [0FF!rI k$ byle rcad is oFIFH
MOV IoFFEH,AX last byle Mitten is oFM

50



3r lo.rt Archtt.ctw.! S.Cfr€rr.tbn

Access ,.tghts: The access rights trxlrion of the derriptor has the following formatl

7 6 5 4 3 2 \ 0

The P bit srands for "present.', Ir is set ro 1 when the segment indicated by the selec_
ior is present in phtsical memory. In a virtual memory system, rhe operating sysrem
can move the contenrs of some segments to disk if physical memory is full. it tiren
marks the descriptor as not present by resetting rhe p bir to O. If an application loads
a selector irto a segmenr register and the descriptor associared wilh the selector has
P * 0, the not present inteffupt (11 decimal) is gederared.

The operaring system then looks for a free area of physical m€mory copies the con_
tents of the segmenr from disk back into memory, upclates the d9scriptor wirh the
new base address, sets P to 1, afld restarts the inteftupted instruction"
The DP^I field conrains the privilege level of the descriptor. The privilege level
rang€s from 0 (mosr pdvileged) through 3 (ea$t privileged). A task can;cess seg_
ments of equal or lesser privilege, A task can only read data from or store data in;
segments of equal or lesser privilege. A rask can call only code segments of th; same
privileSe: ]pwever access to segmen(s of higher prMlege may b4ranred indtrecrly
v|a rne durdo protection mechanism, A task can never invoke a code segment of
lower privilege.

The prMlege level of a t^*., calkdrhe curreht prtuttege leuel <Cpl), is the p|.:lihfJge
le.r'el of fte currendy exe(urin8 code segment. Trpicaliy, the most secure poruionJ
or rne operatjng sysrem run ar level0, oher system sofiware m ight run at a less
fivileffd ll:el_anq applicarions typically run at level 3. See Che;rer 5 for a descrip_
tion of rhe 80386 privilege mechanism.

The s (for segment) bit is als,q,s ser to 1 for a memory segmen!. .when 
s is equal to

0, a descriptor descdbes an object other than a memory segment. These obj;ts are
described in the chapter on the 80386 protecrion mechaniJm, Chapter 5,
Th€ TYPE field indicates rhe types of operations allowed on the seAment. Valid
cyp€s are:

0 Rsd-only dara seSmenr
r Read/wfite data segmenr

3 Read/writ€ ex?and-down dara segmenr
4 Execute-only code segmenr
5 Execure^eadable cod€ seament
O Execute-only ,,conforming,, code sesmeD!
7 LKut€/readabte ,,onformina, code segment

The tt?e indicator defines the access rules applied to a segmenr. The CS register
cannot be loaded with a selector of a segment of rlpe aata 1O 3;. No prograir can
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modify a segment that cannot be written. Segments that are not readable can be ex-
e€uted but not read as data. An aftempt to violate any of these rules results in a pro-
tection fauh. Conforming segments are discussed in Chapter 5- Expand-down
segmenrs are covefed later in this chapter.

The 8036 sets the A (accessed) bit when the selector for the descriptor is toaded
into a segment register. The operating system can use lhis bit to find out which seg-
ments are not frequendy used and can therefore be swapped to disk if necessary.

Ad.dttto,talfrewt: Four additional fields in the segment des€riptor are located in
the high-order nibblc of byte 6.
'I'he G bit, described previoush regulates the granularity of the segmenl.

llit 6 is ref€rred to as the D bit if the descriptor is for an executable segment or as
the B bit ii the dcscriptof type is a data segDent. The D bit is set to I to indicate the
def^ulr, ot naliLe fiode, lnstruction set. \{hen D is equal to 0, thc code segment is
assumed to bc an 80286 €ode segment, and itruns with 16-bil offsets and the 80286-
compatible instructbn sct.

The B bit is set to 1 in any dala scltmcnt whose size is greater than 64 KB.

Bit 5 must be set !o 0. It is for use in a future Intel microprcrccssor.

Bit 4 (A\4) is a\"ailablc for use by system programmers. Possible uscs include mark-
ing segments for garbage collc'ction or indic?tir\g segments whose base addresscs
should not be modified.

Expand-down segments, indicated by TYPE - 3, are 4 special kind of data segment
dcsigned for use with the stack. I'igure 3-7 shows a stack that residcs in its own

Flgare 3-7, stack residina in its oM seqrnent.

As more data is pushed onto the stack, the stack pointer (ESP) nears 0. If too much
data is pushed onto the slack, the program nftempts to decrement ESP beyond 0,
resulting in a stack fauh. At this point, the operating system has no choice bul to ter-
mnate the program,

Placing the stack in an expand <lown segment rather than in a normal dala se8:ment,
however wiLl change the way mcmory is addressed inside the segment.
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Although normal segments are addressed beginning ar 0 and exrending to /intt,
ex?and-down segments begin ^ Iimit + 1^nd extend ro FFFFFFFFH. Fieure 3-8
illustrates the difference-

I n *'*'-l 

| | 
2048

I S S  I
L \,_ lo

FF!FFFTFH

Nornal data seSment Exparddown segment

llglfe 3-A, Normal data sesne as and ekpand-doum Wments.

The ad ntage ofthis approach is rhar when the stack pointer is decremented past
the limit and triggers a stack fault, the operering s",stem can extend rhe size of the
segment and decremed the limit. The faufting instruction is then restarted, allowing
the program !o run with a larger stack segmenr. Figure 3-9 show; how this is
accomplished.

, - {

3@6

FTFFIFFTH

Old limlt

Ftgare a-9. Er'tendinA rhe size afthe segment

Note that when a descriptor for an expand-cl,own segment is created, the base ad-
dress must be set to the linear address of rhe first byre after the end of rhe segment
rather than to the address of the start of the segmenr. Be€ause addressing arithmetic
is limited to 32 bits, large offset values can be viewed as if they were negative mun-

base + FFFFFFFFH = ba5e + -1 = base -1

Expard'down segment
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Descriptor tables
All the derriptors are grouped together in dcscriptor tables. The two sysrem de-
scriptor tables are the Global Descriplor Table (GDT) and the Inrcrupt Descripior
Table (IDT). The IDT contains flo scgmcnt des.riptors, so ir is not dis.usscd here.
A full description of the IDr and othcr facets of the 80386 p.otection mcchanism is
given in Chapter 5.

An operating q'stem can also implement various local Descriptor Tables (LDTS).
Segment descriptors are found either in the GDT or in the cuffently active lDT. The
selector used to identify the descriptor determines yhich table to use. The location
oithe tables in memory is cletermined by the GDTR,IDTR, and LDTR registers.

Soloctors
A segmcnt, as wc hxve seen, is da*:ribe.l by ^ descriptor thar has been J?/ecrcl by a
selcctor. A scicclor is made ofthree c'omponents, as shown in the following
illustration.

1 5

INDIiX TI RPI

The INDEX and TI (tablc indicatorbit) fields telllhc 80386 where b find the de-
scriptor. When dre TI bit is sct to 0, thc clescripbr is in the GDT. When Tl is set ro 1,
the 80386 uses the current LDT instead. The INDEX identifies which entry in the
descriptor tablc to usc. The RI'L field is the requested privilege level. Note that the
RPL can diffcr from the act ual d€scripbr privileg€ level. The reason forthis is dis-
cussed in dehil in Chaflcr 5.

As an exAmplc of how the s€lection mechanism works, assume that the value
1A3BH is a valid sclecbr. The selector is divided as followsl

Selector = 1A3BFI INDEX - 0347H (839 decimal)

00011010001110118 TI-0 (CDT)

RPI = 3 (lowest)

To use a selcctor, hardware must first break it into three fields, INDEX, TI, and RPL.

Figure 3-10 jllustrates how hardware separates a selocror inro its comfx)neors.
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Games Segments Play
Using the vidual addressing capabilities of rhe 80386, an operaring system designer
can provide a number of interesting features, One srrch featur€ is vinual memory,
Virtual memory gives the app€arance of physical memory where none exists.

To illustrate how this can be accomplished, imagine an environment such as the
one pictured in Figure 3-11. The figure symbolizes a multiraskinS ststeIr1 in which
four tasks are to be run. One MB of memory is available for running rhe four appli
cations. Application A r€quires 400 KB, applicarion B requires 100 KB, application C
requires 400 KB, and application D requires 200 KB. Also assume that halfofthe
application space is dedicated ro code and thar the other half is required for data.

System m€mory

FI
T t--._lt t l

TL]
1  |  l l o o K B S  a  I

*o'o, 
| 

^ 
|

I l  I

T f__l.o*uT f;_l' T l  " 1 . . : L '  '
Frgue ,-1lJ.. Initial state of a multitasking Vstem.
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Because the combined memory requirement of the four applications exceeds 1 MB,
they cannol all be in memory slmultaneously. Afrer A, B, and C are loaded (see
Figure 3-12), not enough room remains for all of iask D. The operating system loads
ihe codc portion of iask D but not the data segment. It cloes, howevet create
des.riptors for both the code and the data segnents of task D, marking the data seg-
ment descrlptor as not Present,

osit:

B
c

,.r""I[;_-]

1oo KBI

El$trc 3-12. Initial tasbs laaded lnto nemar!.

This is a 'rultitasking system, so the slarling address (CSTEIP) ol each iask is passed
to thc schcdulcr portion of the operaling syste,n, and excrution begins. Task A
slarts and is allowed to execule for a few milli$econds. The scheduler then takes
control and allows task B to run for a few millise(onds. However, part i,r'ay through
its alknted limc slice, task B reads rhe keyboard for input from the operator Becxuse
no keys have yct bcen pressed, the operating system lakcs control and marks task Il

The scheduler then gives controlb task c, which runs through its allotted execu-
tion time, Control now passes k) task D, It begins to !'xecute, but as soon as it tries to
refer to the data segment, thc 80386 gcncrates the not present interrupl.

Thc opcrating system determines which task was executing when the interruPt oc-
curred Ilnd what causcd the interrupt. Ir detennines thd task D needs access to its
d4a segment, so i! evaluates lhe status of the other tasks. Task B is suspended, so
the operating sysicm dccides to temporarily remove it from memory to make room
for the data segment of rask D.

The memory image of B is written to disk, and thc descriptors for B are marked as
not present. Task B is said to have been swapped out, and operating systems thal
implement virtual memory in a similar manner are implementing swaPping.

The data segment for D is copied into memory at the physjc?l location just vacated
by B, and the descriptor for D is updal€d to reflect the new base address and to
show that the segment is now presenl in memory. Figure 3 13 reflects the new staie
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rlgure 3-r1. Suappw tasks B and D.

The scheduler now totates execution time among tasks A, C, and D. At some point
the computer operator sees the prompt for input from task B and in response
presses a key on the keyboard. This action ca\rses a hardware inteffupr, and the
operating system realizes that it must now schedule task B, However, because none
of the other tasks are suspended, the system mighr choose !o suspenci task A
temporarily,

Because task B is small, ir displaces only part of rask A. The code segment of task A
is marked as nor present, and the descriptors for task B are updated as shown in
Figure 3-14. Notice that task B is now running at a complerely different physical ad-
dress than it was when it bcgan. This is invisible to the applicarion, hosever,
because the selectors loaded into the segment r€gisters do not change and because
th€ memory offsets used by lhe instructions in rhe code segment are r€lative to the
starting point of the segment, regardless of the physical origin of the segment.

Descriplor uble

* l|.n.ryArchlt.crurcls.ln.nt ttotr

Etg0ae 3-14. SMpplnC tatbs A a .l B.
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The sysrem will coffinue to operare as previously described, v/ilh occasional swap-
ping and shifting of segmetus. If no external condition exists that causes a segment
to swap, the operating system might swap segments, based either on which tasks
have run the longest or on another system of priority.

Pe?f ormanee considerations
As the previous cxamplc shows, virtual memory doesn't create RAM out of thin air;
it.uses secondary slolage, usually disk, to supplement the p/lnrdry (RAM) storage
and give thc appcarance of more primary storage than exists in the system. Th€
cost of keeping up appearances is the amounl of time it takes to move data between
primary and secondary storage. The mofe time the system has !o spend swapping,
the less time it €an spend executing th(r applications. On extreme occasions, a sys-
tem can be so overext€nded that it spends all its time swapping segments in and
out. This pAthological sitr rion is <?'lled thtushing.

An opemting syslem designer can improve the performance of a virtual memory
system. On the 80386, for example, code segments are immutable, Because the con-
tents of a code segment do no! change, it doesn't have to be swapped out, You can
recreate the contents from the original executable image ofthe program, Only
swapping in requires access to secondary memory. The operating system, therefore,
can swap code segments twice as fas! as it can swap data segments, Actually, if 'ou
recall the contents of a descriptor, you will remember that certain kinds of data seg-
ments can be marked as read-only, Like code segments, read-only data segments do
not have to be written !o secondary storage when swapped out.

Another trick that designers can use also relies on knowledge about code segments,
Thc technique of sggmert shallng lels lwo or fiore tasks share the same code, This
is primarily effective in multiuser systems. In the previous example, assume that
tasks A, B, C, and D represent users running applications, Suppose that users A 4nd
C are running the same applicatioo, perhaps a spreadsheet, Now users A and C are
operating on different data and require separate data segments, They are, however,
executing the same code. Figure 3-15 shows how all four applications can fit in
physical memory in this situation. The users maintain separate descriptors for their
code and daia, but the base addresses for the code segments ofA and C point !o the

Finally, a segment-oriented virtual memory system can pr(xjde a way to compact
memory. Compacting memory belps solve a problem calle.a flagnentatlotr. tuag-
mentation occurs when memory that is not contiguous is available to run additional
applications. To put it another way, the pieces of available memory are small and
scattered throughout physical memory, and to be useful they need to be next to one
another. Fgure 3 16 illustrates this problem. Because applications deal with virtual
addresses, they are not affecred by a change in lo€ation. The process does take up
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100 KB free m€mory

B'{,ufe 3-16. Memory lra4nen attan.

Why bother?
Becaus€ virtual memory is plagued with porential performance Foblems and adds
to the complqxity of operating systems by forcing rhem to deal with fragmentation
and with identifing shareable segme s, ),ou mighr be tempred to ask, ,.Is it wo(h
the effort?" In most cases, rhe answer is yes.

One clear advantage of virrual memory is that a user doesn,t have ro spend monev
for enra memory s'mply ro ger an ,ppl'calion |o rlrn. Any rppli( arion will run in
existing memory it will simply run more slowly if it has ro be swapped our. lefs
say that I have a system with 2 MB of physical memory and thar 90 percenr of my

3! fl6tmy irchll€clN! S.lhdtt.tl.n

Elgnre 345, Tashi A, B, C, and D h phtstcal metnoly
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applications fit into physical memory. However, 10 percent of the time I run an ap-
plicatioo that requires 5 MB of memory. Vithout virtual memory, I cant run the
large application unless I spend the extra money to buy 3 MB of memory that will
remain unused 90 percent of the time. With virtual memory, I can at least run the
application and decide whether I want to spend money to improve its performance.

Viriual memory also makes life easier for the application designer What ifyou are
writing a program thar manipulates a large affay? If virrual memory js not available,
you hav€ to worry about how much memory your Rpical user will have and how to
make your program fit into a systcm of that sjze. As a designer, )ou can no ionger
worry about simply solving the problem at hand (the array manipulation). You must
also b€ concerned about breaking ',our program inio pieces that will fit on the t'?i-
cal system. The complexity of your application incfeases, and the application is
more likely to contain bugs.

This situation might be likened to giving a speech simultaneoudy in two different
languages. By letting someone else handle the translationi you can concentrate on
your job-presenting your information,

The dark side of the force
so far, only the advantages of segmentation have been discussed, l€fs take another
look at segments and see if we can uncover some problem areas, one ad ntage of
segmentation is virtual addressing. The application deals with seleclors, whereas
the linear memory address for lhe segment is in the descripior Thus, every time a
selector is loaded into a segment register, the contents of the descriptor must be
fetched as well. Every instruction that causes a segment register to be loaded also
causes the 8-byte descripoor for the segmenr !o load. In addition, the descriplor is
marked as accessed when it is loaded, so a memory wlite is required to set the bit in
the descriptor

At a minimum, therefore, a segment registef load has an overhead of lwo memory
read cycles and one memory write cycle in addition to any memory cycles required
to felch the operand of the load instruction. Because of this and the protection
€hecking that the 80386 does based on the tlpe of segment, size of descriplor table,
and privilege level, loading a s€gment r€gister takes between 18 and 19 clocks as op-
posed !o the 2 to 5 clo.ks that it rakes to load a general-purpose register.

Anolher advantage of segmentalion is the limit checking tbai the 80346 performs. If
a data object such as an affay is placed in its own segmenl, the CPU monitors all ref-
erences !o the object and triggers an interrupt if any instruction refers to a poiff
beyond the bounds of the object. limit checking is an excellent tool for helping
programmers discover flaws in their programs. Unfortunately, using this tool means
having many data segments. Having many data segmenis implies many segment
register load operalions, which slow down the program. You must also deal with
48-bit poiffers-16 bits of selecror and 32 bits of offset.

6 0 .



+ lr.mory lrchh.ctur.! S.gm. .rbn

The 80386 does not provide many inskuctions for handliqg these iffegularly sized
items, nor do many Fogramming languages. Consequently, they are awkward to
manipulate and they cause more work for the programmer.

Finally, you must deal with the problem of fragmentation. Because segments come
in odd sizes, the operating system musl work harder to anange physical memory
space in which to load applications.

Summary
As you have seen, segmentation is a mixed blessing. On one hand, it pro/ides a
method for implementing virtual memory, it provides a mechanism for implement-
ing a secure operating ryrstem via prMlege levels, and the segment limits assist pro-
grammers in tracking bugs that arise from in\alid pointers or array boundary erro$.
on the other hand, segmentation gives rise to unwieldy 48-bit pointers, extracts a
performance penally, and can cause fragmentation when used to impl€ment virtual

The flexibility of the 80386 offers system designers three choices. You can ignore
segmentation completely by creating only one code segment and one data segment
that encompass the entire address space, Another alternative is to use a limited
form of segmentation where only two segments, code and data, exist for every user
or (ask on rhe sys(em, In this inslance. (he applicatjon see; a uniform address space.
and only the operating system needs !o deal with segments. Or you can implement
a fully segmented system in which each large data obiect and each module of code
is in a separate seSment.

Each implementation has advanrages. The first method gives you an alchitecture
similar to the M68000 or vAX. Although it fiight seem that you lose the capabiliry to
implement virtual memory with this method, you can implement a form of virtual
memory other than the one des.ribed herc by using paSing, which is discussed in
chaprer 6. A system of this dcsig:n, however, loscs the privilege-level protection fea-
tures provided by segmentation.

The second method srikes a balance between the olher two, Prot€ction is provided
on a lask-by-task basis, and virtual memory can be implemented through segmenta-
tion, paging, or both.

The thid method is the most similar to th4t provided by oS/2 on the 80286 and to
programming in the large memory model. This rype of system can provide a very
secure environment. but the svstem will run somewhat slower

One beauty of the 80386 is that it suppods these divergent environments and
allows designers to build systems that meet their needs, from high security to high
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TNSTRUGTION

SET

The 80386 is a classic stored, proqram, or lon Neunxarr, processori that is, the
memory atta€hed to the CPU stores nor only data to be operated on bLrt lhe instnrc-
tions that sp€cify the operations. The term iff N?&rTMrtt is used in honor of the
mathemati€ian John von Neumann, who wrotc a scries of papers in thc mid-1940s
outlining the design of stored proglam computers. Almost all commercially avail-
abl€ computcrs are designed after the von Neumann model, and the 80386 is no

Built into ev€ry siored progmm computer is a set of commands that cause the CPU
to read from a lo€ation in memory, interplet the cont€nts as an instruction (that is,
as a command to perform somc funclion), execute the function, and start the cycle
over again. Because this sequence is often implemented in microcode, it is com-
fi\only rcfetred !. as the ,nlcrccycle.

In one of the earliest soored program computers, the EDVAC, each machine instruc-
tion was broken doEn into five tieldsr A bit pattern in one field designated the
operation 1o be performed, two fields designated input oPerands, one field sp€ci-
fied where the resuit was to be stored, and the final field spe€ified the location of
the next inslruction. Computer designers soon learned that if they placed one in-
struction alter another they could eliminate the ficld that specified the address of
the next instruction- A register called the program colurter or instruction pointer
was used 1o point to the ner:t instruction and was incremented to pojd 10 the nen
one as soon as each instruction was fetched.
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This method has never been modified, and the 80386 microcycle can be expressed
algorithmically like this:

fbrch the instruction at EIP

increment EIP by the size (in byres) of the insrruction

execute the instruction

goto top

This is, of course, a simple view of the microcycle. In actuality, it is much more
complex because of the parallelism built into the 80386 (see Chapter 1) and becausc
of the ne€essity of saving the state of the pr()ces.{or if an instruction faults and has to
be restarted. However, the basic algorirhm is all that is necessary to understand the

Instruction Format
Instructions are siored in memory in rhe same way that characters, floating-point
numbers, inleSers, or any other type of data is siored in memory. The yalue 0F5H,
for example, is the encoding for the CMC (complemenr carry flag) insrruction. An
80386 instruction can range from I bytc to 16 byres.

In general, the format ofan 80386 instruction looks lik€ this;

The opcode is 1 or 2 bytes. The mod r/m and s-i-b bytes specify the operands and
memory addressing modes. The displ (displacement) field is part of the memory
address and can be 1, 2, or 4 bytes. The dara field specifies alt immediare operand
value and can also be 1, 2, or 4 bytes.

Not all fields are presenr in all insrructions. The CMC instrucrion, as shown pre-
viously, consists of only a single opcode byte. The instrucrion:

XCHG EAX, EBX

consists of only the op€ode and mod r/m fields. All fields are presenr in the

A D D  I E S P + S ] [ E S I * 4 ] ,  1 7

Appendix D specifies the bit patterns used to encode instrucrions, and Appendix E
contains a table that lets you decode bit pafterns inro the original assembly language
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Instruction Operands
The inslructions stored in memory command the CPU lo manipulate one or more

operands.'lbe ao3t36 tnstruction opcrands can be sp€cified in onc of five vavs:

TI\ey c^nbe implicit, register, i/nmediate, I/O, $ memoUr refeqlce opeftnds

lmplicit operands
An operancl is implicit iflhc instructiot itsclf specifies ir' TIle CLI nlsrruction' for
, u m p l < . ' ' t , r J r e s o n r h . l l  l ' r r  I n l h ( F l l A L , S r e g i ' r e r ' l r , c p r o g r J m r n ( r d o e s n ' I
have to spclify anything bcyond the insrruction. Thc stack is an nrpLicit operand in

a number ofinstructions, fof example, I'USH, POP, CALI, and IRET Howevet
because thc stack residcs in memory, I will discus\ stack operands in the section on

memofy rcference operands. The fitk)wing instructbns have implicit operands

Adjust reSister AL aiier ASCII add
complcmcft rhe vnluc of dre carLy rlxs
Clcxr dkection flalj to0

Registet operands
An ifftruction wilh a rcTislef ( )Pcrand perfbnns an action on dle valuc that is sk)rccl

in onc ofthc 803116 intern^l rcsistcrs (shown in ligLue 4-1on lhe folk)wing pxgc)

Specify rcgistcr opcrancls l)y usinlllhc name ofthc registcr in the oPcrand ficld of

the inslructbn. Note tha! not ̂ ll rcgisters ̂re lcgal operands for allinstrlations' Ihc

llcncml rcgislcrs (llAX, Cl, nnd so on) are most commonly used jn dala maniPula-

i ion in\ tru(rron\ V\r iJ.1nor,  l i  ' r  (xrrnnlc,  rn(rqm(nl Ih( \ rrnrenlr  I  ' f  r  :egmr'nt

regislcr or Lrse ^ cont|ol or dehug rcgjsler k) st()rc a memory address

'l hc following cLamPLes illustrxte rypical instrudions using rcgjster oPerands

cMc
ct.t)

INC ESI
suR Ecx,licx
MOV AI,, DL
MOV EAX, CRO
CAI,J, EDI

Add I to contenls of DSI
subffact LCX ftomitscli lcNving 0
copy c()ntents ol DL into AL
Copy CRo.o.lcnts into EIX
Invoke subroulinewhose addres is in IDI
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31 1615 7 i l  0 15

J 1
EFI"{GS

EIP

Gcncrul fcgislers

Flgnre 4-L 8QJ86 rcBistel !et.

Immediate opetandg
An immediate operand is spcriiied when a valuc is parr oflhe instruction itsell
Considerdre instrucrbn ADD liAX, 3.In addition ro the registeroperand EAX, rhe
numeric !"lue 3 is codcd in the instrlKthn and is stored in the code segmcnr with
thc bit pattem that rcprcscnts ADD. Orher cxamplcs oiinsrructions rhat use im-
mcdiatc operands includc:

cs
ss
DS
TS
FS
GS

EAX AX
I A n , , c r

EtsX BX
l  B u ,  B L

ECX CX
c H , c l

EDX DX
D H ,  D L

E]JI
AP

I]SI
SI

L]DI
DI

ui" '.

MOV EA-\,7
AND CL, OIOH
BT EDI,3
JC 3C1H

Store the value 7 in rcgister E,\x
Mask otl the low-order bits oi Cl-
Copy bit 3 of EDI to carry flag
Brrnch to offset 3C1H ifC! is ser

l/O operands
External devices that Fansfbr data from the computer to anorher environment are
cailed input/output (I/O) devices. The 80386 communicrres with rhese devices in
two erays. The devicc can access a portion oi 80386 memory to read values from or
write values to memory addresses. The device can aiso have irs own address (or sei
of addresses). The 80386 supports 65,536 I/o device addresses, called /oro,.rri

I/O communication is done in 8-bir or 16 bit quantiries. '1he accumulator is always
the source or the destination of the I/O insrruction, and rhe I/O port is specified
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with an immediate opemnd or by the contents of the DX register. Examples of in-
structions that use I/O operands include:

IN A1, O4H
OUT ICH,AX
IN AX, DX
IN EAX, DX

Memory refetence op€rands
To operate on the conlents of memory, Jrcu must specify the address of the data
value you want to use. The 80386 provides a number of addressing modes Therc is
rarely a performance penalty on the 80386 for using a complex addressing mod€, so
use rhe addressing mode lhat is mo<l approPriatc to your proSrrm s needs
'when you specify a rnemory address, you specify the offset from the b€Sinning of
the appropriate segmeft. Address 0 is the first byte of the memory segment, address
1 is the second byte, and so on, fegardless of the segmedt's phttical starting address
Chapter 3 contains a detailed description of how segmentation i$ used to generate

memory addresses on the 80386.

By default, the segment used in most instructions is the one pointed to by the DS
register, Forcing an iqstruction to operate on values in other segments is Posslble,
hovr'ever, by programminS a segment prefix opcode immediately before the instruc-
tion. Normally, the instruction MOV AL, [0] reads the first byte of the data segment
into register AL, By applying a segment preflx, you can force the data to be fetched
from another secment, The instructionsl

A L ,  [ 0 ]

load the AL register with the first byte of the stack segment, AlthouSh the segm€nt
prefix byte comes before the instruction in the code stream, the prefix is usually
written as part of the memory oPeland fof readability. The previous example is nor-
mally $ritten:

H o v  A L ,  S S :  t o l

Diroct addre3sing
The simplest form of memory reference is called llrcct addressinS, wherettie n-
struction itself includes the location of the operand. The location is specified as a
16-bit or 32-bit olfset in the curent segment. This offset is also known as the
d.tptacement. Tbe r^tle on the following page shows three examPles of direct ad-
dressing. The brackets differentiate data values (no brackets) and memory ad-

Inpur a byte tom port 04H
Output a word Io port 1CH
Inpu! a wotd from pon specilied by Dx
lnpul a doubleword from port DX

S S I
 0v
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]NC DWORD PTR I17HI
rvrov At, t1,\33D4Hl
SHT BYIIJ I''I R [lFTH],3

 dd I to dre 32 bir valuc at offset 17
Copy the menory byte !o .cgistcr ,{L
shift the memory byte left 3 bts

In the exxmples in this chapter,I gc.eraUyuse numeric ncmory addresses ro illus-
trate wherc thc adclfess values arc used in an insrrucrion. Y()u may never need to
use numcric nrenrory addrcsscs YoUr programming cnvironmenr wiU provlde as-
sembiers an.l compilers that name locarions in memory, and you will use these
nanres in your pfosram. This techniquc is called .rynbotic .lddresting

Symbolic rddressing has a nlrmb$of a&?nrages ovcr absolure numeric adcLressing.
You .rre nruch lcss likely to make a misrake if you crn rcfer r() a variable by a mnc-
monic n.rmc, sl'ch as queue_top, ralherfian a numbcf sr(h as 32081A3H. Also, if
you use symbolic nxnres, the rsscmblcr keeps rrack of thc rype of dre data irem. For
example, thc opc<)dc for the incrcmcnt instrucrion is INC, bur the sane opcodc can
apply to 8$it, 16-bit, or 32-bir opcrands. If you definc a symb(tic valiable, thc cor-
rccl inslruction cncoding is drosen lbr y()u \I/irhou symbolic nddrcssing, you mL$t
spc(ily l)odr the sizc xnd the locnrion ofthc opcrand l'or exrmple, norice the differ,
encc Derwcen thcsc tw() operations:

I N C  D I I O R D  P T R  t I 5 F 2 N l  |  3 2 - b i !  o p e r a n o

COUNT OD ?
I N C  C O U N T

i  A l l o c a t e  3 2  b i t s  r i t h  r a m e  C o U N T
:  I n c f e m e n t  v a r i a b l e

I Icrc xrc some adcliti()nale&xDplcs ofinstrucri.)ns rhai rNe symbolic aclclrcssjng.

COL]NT DD
ll,Ac D\(/
NANI]] DI]

Dlic
MOV
MOV
OR

20 DUP (?)
COIJNT
At, NAME
AI,, NAMI]III
FI,AG. ,IOOOH

, Rcsove 32-l)i!valuc, initialvxllre 10
RcscNe a sinAle word
Rescrvc 20.onseculivc hytcs
Subtracr 1 liom fie valuc rl COtrNT
Copy first hytc of NAME
Copy secodd bytc of N,\ME ro AL
scl onc bit in rbe sfc(ificd word

Ba3ed addressing
In based addrcssing, a regisrcr holds the addre\s of an opcrand. The regisrcr con
taining the memory address is called the basc rcgister, and you can use any ofrhe
scven general rc,listers as a b^sc rcgister Vhcn y()u use ESp or Drlp as a basc resis
rcr r t re dddre$ r.  J*I-ed ro be Jn,, t  f :er f rom rh( {r .  k \eqmenr tssr rdrne, I  ha;
l r o r n r h c ( l i u . e s r n ; n | l D 5 , . Y o u . p e , i l y r " , e d a d d r e s , i n s h l p l j c r n g , l - , . r e g i s r e l
name in brackets, as the following examplcs iltusrrare.
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r,t0v
DEC
XCHG
CALL

P 0 I N T  s t r u c
X D D ?
Y D D ?

P 0 I N I  e n d s

C O R N E R  P O I N T < >

LEA-

I N C

: Copy byte of  nenorY at  Ecx in to
;  Deoement 16 b i t  l , ,ord at  ESI
;  Swdp contents of  EBx { i th  dword
;  EAX holds pointer  to
;  address of  subrout jne

Def ine record layout

A L ,  I E C X ]
I , lORD PTR IESI ]
E B X ,  I  E B X ]
I  EAX]

At  EBX

Base plus displacement addrassing
B.1se plus displacement addressing is a variant ofbased addressiqq that uses a base
register to speciiy a nearby locatbn. An integer offset then modifies the bese ad-
dress to form ihe final destination. tsase plus displaccmenl addressing is commonlv
usecl in xcldressiqg components of data structures and in stack relativc addressing.
For examplc, if ESI points to a icrord of tlpe poir,, where poirt is a slruciure
whose firsl clement is the $ coor.linate and whose scrcond element is thc t coordi'
nate, thcn you could use the instruction MOV EAX, [ESl+4] to fetch thc./

s imrlrr l ) .  l ) (rr .c Ihu I ' r .c poinrer Fl lP c,  'mmonl) pornr\ I ' t rhccurrenl:rr tk
frame, any !'alucs pushed onto the stack can be addressed by an offset fronl EBP
Offsets can bc positivc or negative and nrc inteQreted as signcd, 32-L-rit intcgers
The assemblcr provides a construct called a strc that makes keePing track of off-
sets within dala snucnrres simplc. I lerc is the abovc "Point" data lyPc cxample
redonc symbolically:

E S I ,  C O R N E R
E A X ,  t E S r  l .  X
I E S I ] . Y

c e t  a d d r e s s  o f  v a f i a b l e
Fetch the x conponent
Increment  the y conponent

Indox plua dbplacement add?essing
Incl!'xing is implemented by using the conlcffs of a registef as a componenl of ^n
ad.lress. Any oi tbe sevcn general regislcrs (except ESP) is a legal index rcgisre. In-
dcx plus displacement addressing is most Lseful in dealing with arrays. A direct ad'
d.ess points to the starting address of the array, and the indcx specifies the element
of thc array. Here are lhrcc examples of indej{ plus displacemcnr addressing:

l . lov AL, TACHtESll  ;  Get bvte of arrav based at 7AC tr / jndex
It luL 1/ECTORtECxI ;  l lu l t ip lv EAX bv element indexed bv Ecx
suB ARRAYIEAXI, 2 :  Subtract 2 fron elenert  of  arrav

It might appear that index plus displacement is the same as base plus displacemetu
However, indoring offers an i cresting capability lhat based a.ldressing cannot
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The c language code fragment in the following erample computes the sum of the
squares of an afray.

i n t  v t v -  A X l ;
r e g j s t e f  i n t  i :

s u n  -  0 :
for ( i  -  0;  I  < V-f iAx! l++)
s u n  + -  v l i ]  *  v l i l :

Assuming that the size of an iot€er is 32 biis, two separate values are required to
progress through the array: the index riable d and the offset in memory ofvtll.
For example, when I is 3, the address ofv[3] is the address ofv plus 12 (4 x 3)
byt$. Every time I is used as an index inoo the array, it must be multiplied by the
slze of the aftay element. The assembly code to execute the above loop mrght look
like this:

XOR ECX, ECX
t'10v sul4, Ecx

Llr  Cl lP ECX, V- t lAX
.JGE DOIIE

II,IU L
ADD
I lic
dt{P

;  C l e a r  E C X  ( c o u n t e f )  t o  0
;  Copy 0 to SUt l
;  Is counter > v-l{Ax?
:  T e s  - 9 0 0 n

su , EAX
ECX
L I

s q u a r e  t
Comput€ the sun

Loop back to the top

C l e a r  E C X  ( c o u n t e r )  t o  0
Copy 0 to Sljll
Is counter > l/-l,lAx?

0 0  E :

The highlighted code shoe/s the conversion frcm array inde,,< to memory offset and
the addressing of the selected item.

The 80386 provides a speclal optimization for affays whose elements are 1, 2, 4, or 8
bytes. The 80386 adiusis the index to produce a memory offset. This adjustrnent is
called scalirng and is indicated in assembly language by placing a multiply operation
in the brackets that enclose the index register The above e)€mpl€ becomes:

x0R
lt0v
ct!P
,tGI

E C X ,
su ,
EC)( ,
DOIIE

E C X  i
E C X  i

I } IUL
A00
Iltc
JIIP

DO E:

[AX
SU}4. EAX
ECX
L 1

; Square the array element

:  Bunp lhe counter
:  Loop back to tne top
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The second version of the program does not require rhe index value to be copied
and multiplied, so the program runs faster. Also, the instruction:

r '10v EAx, vI  Ecx*4]

takes no lor\ger to execute than the instruclion:

r i40v EAx, l / [  EAx]

vrhen EBP is used as a scal€d index regisler, it does not force the memoly reference
relative to the stack segment as it does when used as a base register. When an in-
strrction specifies both a tvdse rcgister and an index register and one of them is
EBq EBP is assumed to be the base rcgister unless a s€ale faclor is present. If n s€ale
factor exists, it is assumed to be thc index regisler. The following list shows four
€xampl€s:

ADD
MOV
MOV
INC

IECX]IEtsP],7
AX,ARRAY[EBP]
EAX, tlicxltlraP,4l
BYTII PTR IECXi 81 IEtsP].X

lBP 's base, SS segment usecl
EBP is base, SS segment uscd
ECX is base, DS segment used
EBP is basc, SS segment used

Unlike the 8086 and the 8088, which require anywhere from 5 !o 17 clocks to €om-
pute the operand addres$ (depending on the complerdty of the operands), th€
803M requires no additional time to compute the effective address unless both a
base register 4r?d an index rcgister are used to select !h€ operand, 'J(/hen both
registers select the oper4nd, execution time increases by only one clock cycle

Bare plu! dl.phcemont plua Indgx add.o.llng
Base plus displacement plus index addlessing is the most complex 80386 addrcssing
mode, This addressing f(nm is used to address data structures stored on the stack or
to address nffays whose base address is contained in a register. vhen addressing
these affays, the displacement value is 0 and the programmer need not sPecify it,
afthough the assembler encodes a 0 dispiacement into the iostruction. The index
register can contain a scale value as il does in index plus displacement addressing
mode. Following are examples of base plus displacement plus index addressing:

MOV
INC
MOV

EAX, tEtsP+8] {ESII
I/ORD PTR [EBX+tsAX.2]
EDx, PTIEAX. Sl [ESI].Y

Array is on stack beginning at EBI' + 8
16-bit vstor based at EBx, with index
Array of "point" da(a slrDctures

The final example above appears to conlain two displacement values: the initiai
displacement that sp€cifies the start of the array, and the disPlacement of structure
element Y in the indexed array element. The assembler simply offers these values
for clarity. In the machine instruction, the displacement field contains rhe srun of
fte two values. as calculated bv the assembler.
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Stack based addressing
A stack is a data slnrcture in which the value most recendy stored is the fi$I lalue
retrieved. The acronvm LIFO (last in. first out) describes the action of a stack and
contrasts with the FIFO (first in, firct ouo structure. Figure 4 2 illustrates the IIFO
and FIFO structures.

,'f,
-

Queu€ - firsr in, firsr ou!

B'{l0,te 4-2. LIFO, IIIO.

Th€ 803i16 instruction$ implicitly refer to a stack. The 80386 hard$?re assumes that
all memory in the stack segment (that is, the segment pointed to by the SS register)
belongs to the stack, but this is no! always true. Often, DS and SS point to lhe same
segmenti part of the segment contains program data, and part is reserved for the
stack. In this situation, the programmer may need to wdte code to check for stack
overflow, which occurs if too many items are pushed onto the stack and it runs over

\7hen a value is stored on thc stack, or pushed, the ESP register is tested to see if it
is greater than or equal to 4. If it is not, a stack fauft (inteffupt 12) is generatedi
otherwise, ESP is decremented by 4, and the operand is stored at SS:[ESP]. The most
recently pushed value, to which register ESP always points, is called rhe top o/stdc,€.

The POP operation retrieves the most recently pushed value from the stack. First,
ESP is compared with the limit of the stack segment. If the memory reference is out-
side the limit, a stack fault is genemted; otherwise, the value at SS:[ESP] is read, and
ESP is incremenled by 4.

The PUSH and POP instructions cause immediate lalues, regisler values, or the con-
tents of a memory location to be stored to and retrieved from lhe sta.k. Also, some
instrucrions that cause a transfer of contol (change the EIP register) push the old

T
-

1

AA+& A6&A
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execution address onto the stack. This allows the subroutine to return to the pre-
vious point of execution.

The most commonly used instruction that changes the EIP register is CALL. The
CALL instruction has one operand, the address of a routine to be ex€cuted. The
value of EIP (whi€h points to the instruction immediately following the CAIL) is
pushed onto the stack, and EIP is set to the address specified by the CALI operand.
The RET (or "return') instruclion pops the €urrent top of stack into the EIP register,
returning control to the instruction after the initial CAIL.

A routine passes information to another routine by storing values on the stack
beforc exe€uting a CALL instruction. The standard way this information is strlrc-
tured is called thetdrr? of the call€d routin€ or the call stack. FiSure 4-3 illustrates
a subrourine call and shows hoer' the stack frame is structured.

PUSH r

38
34
30
2C
2A
24
20
1C
1E

38

30
2C
28
24
20
1C
1 8

38
34
30
2C
28
24
20

38
34
30
zc
28

20
1C
18

CAl,l subr
subr: ENTER 8

LEAW
RET 4

1C
18

n srrk frame for '\ubr"

I hcd veiabte space in ftame

Bl81urc 4-3. Use ofthe 8a386 srack.
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Programs cm push and pop 16-bit values by specifying registers AX, BX, SI, and so
on, or by specifying 16'bit memory references. It is more efficient, however, to push
the contents of the 32 bit register (for example, EAX for AX) and to disregard tbe
high-order bits. Use dre MOVSX or MOVZX instructions to copy memory operands
to a register and extend them to 32 bits before they are pushed onto the stack. The
reason for doing this relates to how the 80386 interfaces with memory. Ifthe physi
cal nEmory address is a nultipLe of,i, that is, if the address is on a dwod boundary,
then a single memory reference cycie can fetch as many as 4 bytes. If the physical
memory address is offset from the dword boundary, then at least two additional
clock cycles are required b fead orto wdte a 32 bitvalue.
'l herciore, after exe€uting a 16-bit push, aLl subsequent 32$it st.rck references
dcgrade in performance by at least 30 percenl lhe 80386 generates 32-bit refer
cnces when the 16-bit segment registers (CS, SS, DS, tjs, FS, and GS) nre pushed or
popped, so pcrformancc dcgrxdntion is nor an issuc in this case.

Instruction Gategories
The operations th^t 80386 instrr.(rions pcform varywidely, reflccting both thc
wide mnge ofthc Drachine's capabilitier ̂nd irs compalibility with previous pro-
cessors. In this secrion,I divide the instruction set ink) ̂  nurrrbcr of rclatcd crlcgo-
des an.lidcntify thc rrost itnportant inslrucrions of e^ch caicgory.

Aiithmetic
Arilhmelic instruclions pcrform signed ancl unsignccl inteller operalions on
opcrands of8, 16, ancl 32 birs virh fcw cxccplions, these instrLrrions have rhc

0PC0Dt dest,  src

Generally, arithmetic instructions operate on source and destination oper4nds and
store the resuh in the location speciiied bythe destination operand. The dcslinati{)n
operand can be a memory reference or a register, and the source operand can bc
memory, a register, or an immediate data value. Both the source and the destinaiion
operands cannot be mernory references, however The instructions that fit dris lbf

ADD
ADC
sua
SBB
CN'P
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Thcsc instructions alT€d the CR OF, PF, SF, and ZF bits of the EFLAGS rcgistcr dc-
pencling on the rcsulrs of thc operation.

In acldition to the ctouble opeftnd(or dyadic) insrructions, thcrc arc single-
operand (or rror14 /.) insftuctions:

INC
DDC

Each of these instructions takes a sir\qle operand, eiiher a rcTistef or a memory rcf-
ercnce. These instructions also affect the same BFIAG bits, cxccpt rhar lhey do not
nx)dify the carry flag (CF).

l'inally, there are dr€ irreguhr arithmclic inslr ctionsl

I)IV
lDlv
MIJI ,
IMTJI, signcd nn'ltiply

Thc l)IV, Il)IV, and MUL iostructions take a singlc sourcc opcrand. The destination
opcrnnd is nrplicitly the accrxnulator and depends on thc sizc ofthc operands.
Dcstination onerands arc defined as foLlowsr

16 b i t$
32I) i ts
64 bits

IiAX
EDX,EAX

Becauae ofits uscfulncss in computing a|ray and structue elemenl offseis, the
lMUl instruction has thrsc cliffcfcnt forms:

IMUL .v.

'lhe DIV lDlY and MUL instruclions lciv€ Lhe status flags in undefined stales. The
IMUL instruction modifies Cl' and OF, lcaving SF, ZF, AF, and PF undefined.
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Decinal arithmetic
Sjx insr.ucrions help implement decimal math routines. Thc standard integer in
structions perform computations, and the fbllowing instructions adjust the fesult
becausc the operands are not integers but BCD encodings. The followiqg instruc
tions havc cither rhe AI- or the AX accumulator as an nnDlicit operand:

D,\,\
DAS

ASCII adju$ after addition
AscII adjust b--fore division
nSCll adjus! aftcr multiply
ASCII adjusl rfter strhr.ction
Dc.imrl rdjusl xfter acLlition
Decinr.l adjlst alier subtraction

Logical
The following instructions^rcc lled loglcal bec use they mxkc no scmantic
xssumplions xhout thcir opcrandsithat is, fiey do not regad the opcrands as in_
rcgers, BCD (ligits, character strings, ancl so on Thc inslructions are snjcdy
tsoolcan, or llit-by bit, operations. First is a sel of clyadic iunctions similar to thc
nrithmcric instructionsl

Insttltcttorl EtPkuaton

ANI)
OR
XOR
TIS'I

Dxclusive Olt
l,crforms rn AND bur modiiiesonly the EFl,IGs rc3ist$

A single monadic insrruction, NOT, performs a k)gical complement of dre opcrancl.
with the exception of NOT, dre logical instfr.rctions modify each of the OF, SF, ZF,
Pl'. ancl cF flags according ro lhe outcome oiLhc opcrarion.'I he AF flag is lef!

A series ofinstruclions opcftucs on bil strings. These instructi()ns havc ihc lbrm:

0PC0DE dest,  t rde)(

where desl sclects a bit srring, eirher in memory or in a regi$let and irder identifies
the parrjcular bit in rhe bit strjng thar is the subject of the operaUoo. The irdet
value is eilhcr conlaincd in a regisler or specified as an immediate valuc.If dest is a
memory bcation, rrden is trcated as a signed integer and can iake on any value
from -2G through +2G. Instruclions that operate on bit strings are BT, BTC. BTR,
ANd BTS.
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Iustmctlon B4rlaaatl@

m
mc
BTR
BTS

Bit test (sve the value of the seleded bit in cF)
Bit test and complement (save bit, then omplemenr deri bi!)
Bit test and €set (Mve bir, then clear A?sr bit to 0)
Bit lest and set (save b]t, then ser dasr bir to 1)

Figure 4-4 shows bit indexing in these instructions.

Index- -26

2ABH 2ACH
Dest

Flfllfe 4-4. Btt lnderine ln BT lnstructlons.

Two instructions search bit strings, These instructions have the fa,rml

BSr ,tesi s/c

where src indicates the locatbn of a bit string. The Aest operand must be a register
that receives the index of the first nonzero bir. The dest opcrand can be only a 16-
bit or 32-bit register and indicateri whether the src operand is a l6-bit or 32-bir quan-
tity. Figure 4-5 shows how these insiructions work.

BSF EAX, EAX EAX

o T o 0  1 0 0 I  I  1 .  .  . 0 0 I 0 0  1  o ! _ o - l B i t s c a n f b r w a r d-T
EAX 

+ Start

3

3r

BSR EAX, E{X

1 0 1 .  0 0 1 0 0 1 0 0 0  l B i t  s c i n  r e v e s e
- t

Blgae 4-5. BU scannlne.

The final logical inslrutions are shift and rotate instructions. Figure 4-6 on the fol-
lowirrg page illustrates what shift and rotate instructions do.

30
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Flgarc 4-6. ShA anel latate tnslructtons.

Most ofthese instructions have the form:

0PC00E dest,  C0!t !T

The destination is either a memory refer€ncc ora register The COUNT is either an
immediate value or the CL register. The folbwing insiructions fit this format:

t6.rscioi BxtrthffiUorl

SHL
SHR
SN.L
SAR
ROI,
ROR
RCL
RCR

Shift lcft loSical
Shift righ! Iogical

Rotate through.ary lcft
Rotate hrough cary right

The foltowing double shift instructions arc also provided:

SHLD derr, ff, COUNT Shifr lefr doublc
SHRD lest, J7c, COUNT Shift rigbt double

In the above instructions. the sourcc and the destination are concatenated and
shifted, and the result is t.uncatcd and stored in the destination operand. Figure 4-7
illustrates double shifl instructions.
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Rl8.ore 4-7. Double shtfts.

Data transfet
Probably the most frequently used instructions are in the dara iransfer categgry. To
the assembly programm€r, a single instruction appears ro do almost all the work.
Actually, the MOV mnemonic is encoded into one of several opcodes, depending
on the operands involved. The general form of the MOV instruction is:

MoV dest,  src

Either the /es, or the s,"c operand can be a memory referenc€, but not both. Both
operands can be registers, and the src operand can be an immediate value for most
choices of dart This instruction is not restricted to operating on the general regis-
ters, The MOV instruction is the only instruction you can use to read or modify th€
control registers (CRo-CR3) and the debug and test registers (DRo'DR7, TR6:TR7).
You can also use the MOV insFuction to load and store the segment registers DS, SS,
ES, FS, and GS.

Not all possible combinations of s/c and lest are leSal 80386 instructions. The
restrictions are covered in Chapter 8.

Here are four additional data transfer instructions:

XCHC dert, src
MOVSX den, src
MOVZX de$, s]l"c
SETcc desl

Exchange the contents ofthe two operands
Move src inlo derrsign-extending s/c
Move sr€ inio d€sr zero-extendinS src
ser desr ro 0 or 1 d€pending on condirion codes

The XCHC instruction takes two operands and swaps their contents, One operand
must be a registeri the other can be a register or a memory referenc€. Because this
instruction is frequendy used to implement sernaphores, the hardware bus LOCK
signal is asserted whenever one of the operands is a memory reference,

The MOVSX and MOVZX instructions are similar to MOV but thev take an s/c
operand of a single b}1e rnd eiLher sign-extend rr ( MOVSB r or zero-exrend rr
(MOVZB) into a 16-bit or 32-bil inteqer at the dest location.
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SETC. insnuclions move a 0 or a 1 into the destination, depending on the lue of
the condition codes in the EFLAGS register The conditions supported are:

Insttuctld E4naiatlon

SE]A deil Set to 1 if above (unsigned x >y) /Ct'= 0& zF= 0
SITAE dalr Set to 1 if above or equal / ct = 0
SETB d6r Se! to
SETBE d6t 5e! ()
SETC desr sel ro
SETE ../eix set Io
SETG de.v s€t to

SETS dest Sct to
ff'lz dest Set to

if below (unsigned x < y) / CF = I
ii below o. equal / Cl' = 1 | zF - I
ilGry / Cf = I

if greater (siSned x > y) / 5F = OI & z! = 0

ifsign / SI - l
i f O / Z l - |

SETGE dat Sct to I if Sreater or equal / SI = OF
sETl Asr set to 1 if less Gigned x < y) / sFl - oI
SETLE . le!  set to I  i f less or equ /$l"OFandZF-1
sllTNA 4r, setto I if not above (SETBE)
SETNA! des, set to I if no! above or equal (SETB)
SETNB des, Set to I if nol below (SETAX)
SETNBE desr Sel to 1 if .ot below or equal (SETA)
SBTNC dest Sct I() 1 ii no carry / C! - 0
sE tNE det s€t to 1 if not equal / zt' - 0
SETNG d6r si€t to 1 if not 8.eater (SETLE)
SETNGE derr Set to 1 if not greater or equal (SETI)

' 
SETNL dert Settol if not less (SEIGE)
SETNLE ,Je!t Set to 1 if not less or cqual / SF - OF & ZF " 0
SETNO derr set to 1 lf no ovcrflow / oF - 0
SETNP larr Set to 1 lf no parity / PI - 0
SETNS le$ Set to 1 if no sign / SF - 0
sETNz lesr Sel to l itnoto/ zF - 0
SETO dest 5(r IU ]di o\ ertlow / OF _ I
SETP tl6t set !o 1 ii parity / PI - 1
SIiTHj ,tesr Set to 1 il parity even / PF - I
SETPO dat xr ro I ifparity odd PF - 0

Stack
The stack instructions siore and retrieve data from lhe stack. The PUSH inslruction
writes its opemnd to the stack, and the POP jnstruclion removes the top-of-stack
element and stores it in the location specified by its operand.

The PUSHAD and POPAD inslructions require no operands and save or restore all
the general registers to the stack. Figure 4'8 shows the stack after a PUSHAD has
been executed. Although PUSHAD sto(es the value of the ESP register, POPAD does
not reload ESP from the saved image. The new ESP value is always the old ESP value
plus the number of bytes required to store the generai register context.
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Before PUSHAD

ESP

Btglore4-4. PatS AD cantext

Control transtcl
Control transfer inshllctions affect the flow of ex€cution, Norrr, allv, an instruction is
fetchcd from the address hcld in rhe EIP regis(er. rnd thcn EIP iJi in(remented by
rhe size ofthe instrucrion \r rhar it poinrs to the nexr insrrucri(,n. Thc n(; opcode
is fetched, and the cycle continucs.

The 80386 supports hranch instrutions, which alrer EIB and subrourine call in-
structioN, which save the old EIP and then modify ir. The sofrware interrupt in-
struction is siftilar to the subroutine call cxcept that 4n interrupt nunbet is
specified for EIP rather than a new value. The address of the desrination routine is
then determined by a gate in the IDT. Figure 4-9 show$ howJMP and CALI instruc-
tions affect the flow of excrution.
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Branch instructions exist in both condilional and unconditional torms Uncondi-

tional jumps occur immediately when rhe appropriate instruction is encountercd

All calls and software interrupts arc unconditbflal

conditional branches tesr certain bits in the EFLAGS register to detcrmine whether

to branch or not. These birs are usually sct as the result ofa compare instruction
(CMP) or as the resuh of an arithmetic or a logical opcralion These branches are to

relativc x.ldressesi the oftset is a I displacement from ihe current []P The foll(Ning

list shows the conditions lhrt can be teslcd for and thc mnemonic for each

JAT
JB
JLIi
JC
.laxz
JECXZ
J D
Jc
JCE
JL
Jl,li
JNA
JNAD
JNIJ
JNI]I]
JNC
JNrl
JNC
JNGIi
JNL
JNI,I]
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
Js
Jz

ollset
oflset
oflsct
arrret
ollsel
ollset
o[sel
onset
aJJset
anflt
oJlset
9lset
oliet
ollset
olfscl
oIJscl
ollset
olJKl
otrsel
allsel
aJJsel
ol/el
ol|sel
,'Isct
o"lfsct
oIIset
otiet
allsel
alJsel
ollser
oxset
ofs"l

Jump lbove (unsiSned x > y) / cF = 0 & zi- = 0
Junp rlFve or cqual / cF = 0
Jump below (ursigned x < y) / cI = 1
Juop beloworeqo. l /  Cf  = I  ZF-1
J u  p i f c a r r y / c F = t
Jutup ifcx " 0
Jump iLECX = 0

Jump grcatcr (signcd x > y) / Sr = Ol' & ZI - 0
Jump gre.ltef or cqunl/S! - Ol'
Jump les, (signcd x < y) /sf lF ol'& zI = 0
Jump lcst or cqurl/ sl-l- olr
Jump not abovc (JIIE)
lu,np not above (Jt cqual(Jll)
Ju p not below UA].l)
Jump not b€low or cqual (JA)

Junrp no caffy / cl - 0
J'.'nlP not cqual / Z! - 0
Jump nol grcrler s! l- OI& ZF = 1
Jump nd greatcr or cqurl (J!)

Jump nol less (Jcll)

Jump not less or cqual (JG)

Jump no ovcrtlow / o! - 0
Junp no parily / I'�F - cr
Jump no siln / SF = 0

Ju'np if ovcrflow / oF = r
Junp ifplrity / r! - r
Jump prrity even / l'li = 1
Jump padry odd / PF = 0
Jump ifsign / SI = 1
Jump i f  0 /  ZF = I

Three other conditional branch instructions are re loop instructions lI)op instruc-
rions de$cmenl re ECX rcgister and brunch if the conditbns outlined in lhe fol-
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LooP olfset
LOOPZ olJaet
LooPNZ o/:?

Deoement, bran h if ECX l- 0
Decrement, bfanch ]f Ecx l= 0 and ZF = 1
Dccrement, bfanch lflicx l= 0 and Zli = 0

IOOPE and LOOPNE are s)'nonyms for LOOPZ and LOOPNZ.

String
Srring instructions handle large blocks of memory with ease. A string instruction
can move ll block from one location in memory to another, compare one block with
another, or search a slring for a specific \alue. Striqq instructlons use specific regis
ters for storing operands. DS and tsSI always point to the sor.rce memory block. ES
ancitjDl point to the destination. These pointers are incremented (or decremented)
by thc sizc ofthc opcrand (1, 2, or 4 byies) every time thc siring instruction

The direction flag (Dl.) detennines $/hcther thc sourcc xnd drc dcsrination pointcrs
xre incrcncnlcd or dc{-rcmcnted. Vhcn thc clircrtion lhg is 0, rire adclrcsscs arc in-
crcmentccl. \vhen the flag is 1, aclclrcsscs arc decrcmcntcd. The string inslructions
p()vidc thc fitlowing cnpnbilitics:

MQVS
CMPS
s los
I,OI)S
scAs

Move $fting .opy stinS rr DSIISI k) liStjDI
Comprrc strinS-comparc DS:llSI to liS:liDl
Skxc the rclumulakx {t ts:tlDI
Load dre.rccumulator with DS DSI
Stnn string, coorparc DS DSI with a.{mutator

You can execute,rny ofthese insructions repealedly by placing a counl valuc in thc
ECX rcsisler and preceding the sring instructionwith dre REP prefix The comparc
and scan instructions, which modify the flag bils, can also be prefixecl by the REI'�E
(rcpeat while equal) and REPNE (repeat while not equal) instfuctions, albwing fast
comPafc and search oPerations.

Pointer manipulation
Poinle. manipulation instructions load a 48-bit pointer into any pairofthe segment
and gcner.rl rcgislcrs. 'I he fofmat of these instructions is:

feg, nen

where ,crc shnds for the segment register (SS, DS, ES, FS, or GS), rcg is any gcncral
register, ancl ,lem is a memory operand.

The LEA (load effective address) instruction computes 32-bit addresses. LEA loads a
32-bit register wiih thc address defined by the memory operand, which is unusual
because other instrrlclions operate on the value stored at the memory operancl
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locarion. The folk)wing example shows irow to use the LEA insrucrion k) cpmpure

V E C T o R  D D  2 0  D U P  ( ? )  :  A r r a y  o f  2 0  e ' l e n e n t s
M o V  E A X ,  9  ;  A r r a y  i n d e x
L E A  E A x ,  y E C T 0 R I E A X + 4 1  ;  G e t  p o i n t e r  t o  9 t h  a r r a y  e l e n e n t
P U S U  E A X  : .  P u s h  p o j n t e f  o n  s t a c k
C A L L  H Y S U B R  ;  l n v o k e  s u b f o u t i n e

Because the LBA instrLrctnrn csscntially pertbrms only additions and shifls on ihc
values ofthe displacemcnt rnd lhc base and index registers, ir can perform simplc
nNltiplicatbns fasterthan the hlrdware mLrltiply instmctions can. l'or a value storcd
in x generul fegister (such as EAX in thc srmplc opemtions), these operations can

M l^x, lEAX.z l  Mul t ip ly  by2 ( indcx)
l,li,\ !dx, LEAX+EAX.2l Mulriply byJ (base + rmexr
LIjA liAX, ili^X.4i Muhifly hy 4 (indcx)
LUA rAX, [iAx+liA&4] Mulridy l)y 5 (brse + indcx)
LlA EAX,lEAx"rll ^4ultiply by u (index)
LliA IAX, lDr\X+E Ax" ilj Mtrhiply by 9 (b,rse + index)

tlsing thc ItjA instruclk)n in rhis wlly does not lffc.ct thc llags. Y(N cannor lcllwhcn
xdlhuretic overlbw has ()ccur'rcd, when thc rcsuh is 0, and s() on. tj$c LEA only ro
c{t)rPutc n klrcsses such ̂s nrr^y or s lrcturc indcxcs whcfc ovcribw is not likely
io occu.. YoLr crn xlso vicw the Ll.lA ins(uction rs .ln addilion insrrucrion with four
opc nds instqKl ()l !wo. Thc conrent ofrhc indcx rcgislcr is addcd r) tbc base
rcaister xnd lhc displaceDrcnl. Ily treating rhe displacemenl simply as I constanr,
thc fi)llowing forlnula cxplcsscs thc action ofItjA

desl reg <- intlcx rag+ base req + canst

li.n cxample, dre result of Lhc l,EA BCX, IFIAX tFlsll[3] insrmcrion is cquivalenr b rhe
following operxtions:

I IOV ECX, EAX
A O O  E C X ,  E S I
A D D  E C X ,  3

Input/Output
Because I/O ports irle usually conncrrcd b system devices, it is imporram ro protecl
againsr indis.riminxte access to them. S.'curc system routines rharrun wirh I/O
privilege (CPL<IOPI) may execure my l/O inslruction. A less privileged task may
execule an l/O insrfuction; however, a gcnc.al p()re.tion faulr (inrernrpt 13) will
occurunless the operating system has granted thc iask permission ro access fie
spe.ific port(s). The operating slstem grants permission by setrin8 the appropriate
biLs in the l/O permission bitmap of the task's ISS.
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Bodr the input and output instnrctions have three forms. The simplest form is:

IN acc, port
OUT part ,  acc

whcrc dcc is onc of the accumulatof registerc (AL, AX, or EAX) and po,.t is a value
from 0 to oFFH. Thcse inskuclbns can be used to xddress only the first 256IlO ad-
drcsscs, and the 803ii6 suppots as many as 65j536IlO ports. To access the enrire
range, usc thc following i()rm ofdle instructionsr

I  a.c,  DX
o U T  D X ,  a c c

In the above instructions, the I/O rcldress is containcd in thc I)X rcgis[er.

Srdng insl.uctions are the thnll tlpe of I/O instnrctions. INS (input srring) rakcs in-
pul from the porl specified by DX and stores the result at ES:tsDI, adjusting EDl rc-
coding to the direction flag bit. OUTS (ouDut strind reads the value at DS:tjSl rnd
writes it to the port specified byDX.INS and OUTS cxn bc prefixcd by thc Rlil, in-
slrucrion, which cluses the I/O iostruction to repeat until tsCX is d$rcnentcd to 0.

Prefix
Irrcfix inslruclions prc(ede other 80386 instructions. l,refixes modify the action of
thc instructions lhcy preccde. You can apply morc dnn onc prcfix to an instruction

Thc most commonLy used prclixcs arc the rcpca! prcfixcs, dis(r"rsscd prcvn)usly
with the string instruction$. Il a rcpca! prcfix is applic.l k) any instructbn oiher
then a string instructbn, an undcfincd opcodc fault (interrupt 6) occurs. The folbw-
ing tablc lists ihc rcpcat prefix inslructbnr.

Repeat ufltil ECX = 0
Repenr untilECX = 0or Z! = 0
Repeat until ECX - 0 o. Z! = I

You can apply a segment overricle prefix to almost any mcmory rcfcrcncc instruc-
tion. Each of rhe six segmenr registers has a prefix instrucrion. Thc ovcri.lc fbrccs
thc nemory refi:rence of the modified instruction to the segment specified by dre
prefix rather than to the default segment. The following table lists seement override

REP
R]]P! / RI]PZ
RI]PND / RDPNZ

CSI
SS:
DS:
tis:
FS:
GS:

Rebr ro the .ode segment
Relr to the stack seSmenr
Refe. ro the data segmenL
Refer rc the segment poinred to by ES
Retur to the segment poinred to by IS
Refer &r the segmetu poinled to by GS
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For example, the instruction MoV EAx, l42rX copies the dword at oflset 42H of the
data segment into EAX. vhen the insEuction is prefixed with Ssr, the dword is rcad
from the stack segment. Most assemblers let you specify the prefix before the in-
struction or as part of the instruction. For examplel

5 5 :
l{0v EAX, t42Hl

l ' lov EAX, SS: t42Nl

The only memory reference instructions that cannot be prefixed by a segmedt over-
ride are SCAS, STOS, and INS. These are string instructions that operate on memory
at ESrlEDIl. Vhen a prefix instruction is applied !o any other string instruction, it
overrides the DS:[ESI] pointer only. The MOVS and CMPS string instructions have
both a source (EsI) and a destination (EDI) pointer aod are allowed a single prefix
instruction that oveffides the DSTIESII pointer.

You can apply the LocK prefix to any of the following instrrrctions when reading or
modifying a memory l ationl

A D C ,  A D D .  A I I D .  B T ,  B T C , 8 T R ,  B T S ,  D T C ,  I I I C ,  I { E G ,  N O T .  O R ,
S 8 B ,  S U B ,  T C N G ,  X O R

The LocK prefix asserts the hardware signal LOCK\ , which ensures exclusive ac-
cess to a memory location in a multiprocessor environment.

The assembler usually inserts two additional prefix instructions, but Intel does not
give them mnemonics. I call them OPSIZ (operand size prefix) and ADRSIZ (ad-
dress size prefix).

OPSIZ toggles the operand word size of the processor for the next instruction. Nor-
mally, the machine word size is 32 bits. Prefixlng a 32-bit instruction with OPSIZ
converts it to a l6-bit instnrction. Similarly, erhen code is run in 8086-compatible or
80286-compatible mode, the default machine word size is 16 bits; appMng the
OPSIZ prefix converrs a 16-bit instruction to a 32-bit instnrction.

In real mode, virtual 8086 mode) and 80286-compatible mode, the byte 40H is inter-
preted as INC AX, but in native (32-bit) mode, it is interpreted as INC EAX. To in-
cremenl the AX register in native mode, ],ou must prefira the instfl.rction byte with
the OPSIZ instruction. The assembler does all the wo(k, however. Iflou enter the
instruction INC AX in a native mode code segment, the assembler generates the
bytes 66H and 40H. The following table illustrates the bltes that the assembler

OFode G€neratlon ln fnffer€nt Mod€s

ReaL vrdr.at, d @2#cdt dbb rtode

rNcAx+66H,40H INC AX r 40H
INC EAX -J 4OH INC BAX -9 66H,4OH
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Similarly, tbe ADRSIZ prefix toggles between 16 bit addressing and 32 bit address
ing. This prefix is useful for programmers witing 80386 code that will .un under a
16-bil opcrating system. In t6-bit modc (rcal, virlual, or 80286-compatiblc), memofy
ofi:scrs arc limitcd to t6 bits, and morc rules rcstricl which registcrs yo can use as
base and index ralucs in gcneraling addresses. These resrriclions arc listcd in
Appcndix D. Thc ADRSIZ logglc lcts you usc thc fLrll addressing crpabilities of the
{]0386.

lf you use 32-bit addressing under a 16-bit operating system, be consistent about
register usage. For example, a programmer who wants to use the scaled inclex iea
ture of the 80386 jn a program that runs under MS DOS might code the following
rnstructron sequencel

;  Increment each membef of a 'r  array of l6 bi t  jntesers
| ' lov cX, count :  Get size of array

L 1 :  I l l c  a f f a y  2 t E C X * 2 1  :  I n c r e m e f t  a r r a y  e l e m e n t
L00P Ll  ;  Decfenent index, branch i f  not 0

Thcsc instruclions would probably not work bcuusc thc scrlc'd addrcss fcature re-
quircs the full32-bit tsCX registcr and thc programmcrhas loaded onlythe 16+it CX
rcgister.'Ihc valuc of the high-order 16 bits is unknown. The correc! approach is:

;  Increnent each member of af  array of l6-bl t  integers
0 V Z X  E C X ,  c o u n t  ;  G e t  a r r a y  s i z e ,  z e r o ' e x t e n d  l n t o  E C X

L 1 :  l l l c  a f f a y - 2 [ E C X * 2 ]  ;  l n * e m e f t  a r r a y  e l e m e n t
L00P Ll  ;  Decfenent index, branch i f  fot  0

System
Application programs do not c'xecute systcD inslructi()ns. In somc casesi system in-
skuctions qnnot be cxcrutcd unlcss lhc prcccs$ has a high privilege level The fol-
lowing tabl€ lisls sysrcm instfr.rctions. N'torc dctailccl information xbout these
instructions is given in Chapter 8.

Instntcltot Et ol4i4ll6

LGD'r' mem Load CDT basc addrcss and Iimit
SCD| nem Skrc GDT base and limit
l-lDT Loacl IDT base addres and lnnit
SIDT Store lD'l base and lilnit
LIR Loxd a selcctor into thc l$k rcgistcr
sTR .lest Sto.c rhc TR sclcc!ff
LIDT k- Load a select{n into fte IDT reSister
SLDI Llr store lhe LDT selector
VERR reg, zlar veriii Read a.cess ibr desr selector
vERIL/ reg,,l6r verify write access for L\t sclcctof
rAR rcq, d6t Load acccss.ighls for .*r,t selector
LSl. ftg, d6t Loid limit for 216r segment
ARPL d6r, v. Adjust privileSe lsel io. dat
HII Halt the CPU until reser or iorerrupl
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Miscellaneous
A few instructions don't fit inlo any catego, y. For example, the NOP instructbn per-
rorms no oPerat'on.

l he 'ifAlT instruciion rests the lurdware pin callect READY\ . If the READY\ pin is
not active, the CPU waits until it becomes active. If the 80386 is waitins, it continues
to respond to hardware interrupts; howeve! iI returns to ihe VAIT after the inter
rupt completes. The 80287 and 80387 hold READY\ inactive while they perform
floating-point operations. You should execute a WAll instruction before you use
the result of a floating point computation to ensure that the coprocessor has fin
ished execution.

Floating.Point Extensions
As cliscussed in Chxpter 2, the 80387 NDP extends the instruction set ofthe tl03ll6
by providing hxrdwarc sLrppofl fbr fk)xting-point operarions. tlnlike thc 803ii6, thc
80387 prr)grxnrming model is a stxck<niented modelratherthan the two-operand
rcgister/mcmory modcl. Mosr arithmetic instrucrions c^n be spccified in thrcc
wnys, with no opcrancls, with a singlc operand, or wilh Iwo opcrands. Frollowing
afc somc cxnmplcs rh.rt illlrstrnte rhe floating-poinr nddilion insrructions.

IIADD
IIADD ST(3)
IADD IEI}P+6I
ti\DD sT(2), ST

sintjlc- nrcnnn y opc nd

Vhen no operancls are specified, lhc opcrands are impiicil. The following
pseudocode illr.Etrates what happens whcn no operand is specifjedl

temp <-  pop(  )
ST <-  ST <funct ion> temp

Vhen a single operand is specified, the top of stnck is nnplicitly fie first operand,
so the instructbn becomes:

S T  < "  S T  < f u n c t j o n >  o p
'whcn 

two opcrands afe specified, borh operands must be 80387 registers, and one
nrust be the k)p of stack. You can store the result of the operation in eidrer register,
which you d€signate by making it the first operand.

op1 < op1 <funct jon> op2

S.'veral instructions have a form that discards the cuffent top of stack after the func
tion is performed. A snffiJ{ of P (tbr pop) is added to tbe instruction mnemonic. F(f
exalnple, the instruction:

aa
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causes the top of siack and ST(3) to be multiplied and stores the result j. ST(3).
Then rhe top of stack is discarded, leaving the newly created rJlue ai ST(2).

Load and store
The load instructions push a new value onto the top of the 80387 stack, but the store
instructions do not pop a value off unless explicitly indicated. The relevant jnstfuc

IN,ruc,loi Brpl4notld

FBID Push .n lo-bir tsCD lnteger
FILD hrsh a 16-,32-, or64-bit intc€c.
fLD slG) Push a (opy of 1 valuc akcady l(,adc{
l.l.D Puslt a 32-,64-, (r80 bn rc.1
FLDl
FLDL2E
FLDL2T
FLDLO2
II-DLN2
T'LDPI
FLDZ

l\Eh 1oA, l0
hsh loaLo 2

rBSII) Storc Sl h rn 80-bit p.rckcd DCD intcgcr md pop
(discard fro'n stack)

FIS'I SL(rc Sl in a 16-or32-bil intcl#r
Flslt, Stde ST in a 16-,32-, or(l-bit inrcilcfrnd pop
!S l ST(iD Store n copy of ST in ST(n)
FST Store STin a 32-oi&-bit rell
I,STP Slore S l in a 32-, Cq-, or 80-bii rcitl dnd pop

Because the coprocessor operates in parallelwith lhe 80386 and becrusc 803u6 in'
sructions generally execute more rapidly than 80387 opcralions, issuc a VAIT (of
FWAIT) instruction before using the result of a iloaling'poin! s&rc opcration. This
ensures rhat rhe NDP has written io memory and that the 80386 code can ̂ cccss lhc

Arithmetic
The following table lists the arithmetic operations that tbe 8,03117 pcrforms. Scc
Chapter 8 for a description of the types of ope, ancls tha! each instruction supporls.

Iwtntcrlott Bt bl4lrtlon

F2xMl Compute 2sr  lwhcre 1<ST<1
IAAS Trke absolure vilue of ST
FADD top(rl Md rwo floating poi numbers
FADDP op1, op2 Md opl ^nd op2, pop sr^.k
FIADD Add 16 or 32 bit integer to ST
FCHS Change rhe sign of sT
lcoM o, cotnpare sT with op Geaister or metndy)
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ICOMP oP
ICOMPP
FICOM

lucoM oP
IUcoMP oP
IUCoMPP oP
l:cos
FDIV tolrtn
FDI\,? op1, op2

fDIvR lo4sn
IDIVRP op1, ap2

IMUL taf@l
IMtJtP ot1, op2
TIMUL
IPA1AN
FPREM
FPREMl
FPTAN
IIIiNDINT
I.SCAI,D
ISIN
FSINCOS
FSQRT
FSUI] I1N,J
fSUrlP oPI, oP2
IISUA
ISUBR IOP(O]
ISIIBRI ap1, op2
!ISUI]R
III ST

FXTRACT

FYI,2X
F'YI2X'1

Contrcl
Control instructions save or alter fie state of fte NDP. Some have a special "no

wait" form, indicated by lhe letter N as the second character of the mnemonic. The
"no wait" instructions execute withour the implicir WAIT that occurs berween two
f loating-point instruclions.

compare sT wi$ op and pop
Compare sT with sT(l), pop bo$
Cotnpare ST with 16 or 32 bit integer
Compare with ioteSer and pop
Comparc auowing quier NaNs
Like FCOMP
Like FCOMPP

Dt\I<Ie aql by aP2, pop
Divide STby 16- or 32-bit inte€cr
Reve$e divide (op2 by opr)
Reverse divide oP2 by oP7 add pop
Divide integer by ST
Florling-point nultiply
Multiply oP1, by o?2 and pop sta€k
Multiply sT by 16. or 32,bit inteSer
tuctangent of ST(1)/ST
P tid remalnder of sT/sT(l)
Computc partial rcmaindc|ro uiEE spec
computc unScnt oi ST, push(l .0)

Multiply sT by 2s(1)
Compute slne oi ST
temp - sT, sT - sin(temp), push(cos(enp))
'lhke th€ squar€ root of sT
IrloatinA.poinl subfaction
subtrac! op2 from op, and pop
Subhact 16- or 32ltt tnteger iiom ST

Subtrad opl from or2 and pop srack
Subtnc! ST from 16- or 32-bir iffe8er
Compare ST agdnst 0.0
Exnmine sT and set condition codes
Decompose 5T to er?oneff and signlficand, ST - exponent,

5T(1) = ST(l) x loSrST, pop stack
sr(1) = sT(l) x log,(sT + 1), pop siick
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Normally a \qAIT instruction is implied before every coprocessor operation The
two instruction streams that follow are equivalent.

F A D D  S T ( 3 ) ,  S T
F  U L  S r ( 1 ) F A D D  S T ( 3 ) ,  S T

I IAIT
FI i4UL ST( 1)

VAIT causes the 80386 to check the hardware ERROR\ signal asserted by the NDP
if unmasked exceptions have occuffed. If a cop'ocessor effor is signaled, a floatinS-
point exception (interrupt 16) occurs. "No wait" instructions allow you to save the
NDP state without worrying about proces{ing any floating-fDint exceptions

The processor state of the 80387 is held in the registers discussed in chapter 3.
Some of these registers are addressable individually, but others, such as the tag word
and error pointer fegisters, are not, The €ombination of the control word, status
word, and error pointers is calledthe erxulronment The instructions for loading and
storing this prccessor state in the memory format are oudined in Figurc 4-10

31,
0 c\(
0 s'{/
0 T'!(

FIP
0 FCS

FOO
FCS

Blgllre 4"1O. En"lronneflt latr'ut.

The following table lists the 80387's conttol instructions and their functions.

I
I
I
I

HiSh

L '16
0
4
8

12
16
20
24

rblclEx
TDECSTP
FFREE ST(n)
FINCSTP
FbI]INIT

FIDENV -em
INOP
FRSTOR rrem
FIN]SAVE
!INISTC\X/
!IN]STENV
FIII]STSW
F[N]STSIi( AX

clear all excepliot flags
Decrement lhe ToP fi€ld i. the C,w
Mark sTG) as unused
Increment the co.trol word TO! field
Innialze the NDP
Load the rcntrol word regisrer
r,ozd the floating-po'nt environmenl

Rel@d the entire 80387 machine state
Store the entire 80387 s!a!e Io memory
Sio.e the control $onl ro mmory
Stoe the floaing point environmeni

copy rhe status wod !o 80386 AX
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The entle NDP state, including all registers, tags, and pointers, must be saved and
restored when multitasking between two or more programs that rely on the 80387
The FSAVE and FRSTOR instructions load and save the memory image shown in
F€ure 4 11.

The memory images described in Figure 4-11 are slightly different in a system using
the 80287 See Appendix F for information pertaining to the 80287

3 1
c\{
S\q
T\q

FIP
0 FCS

FOO
0 FCS

sT(o) o I
sT(o)v 6,

sT(l)o I sT(0)64 D
sr(l),,, 4?
sr(l) $ .,,
sr(2)d n
sT(z) D 61

sT(3)d ,5 IST(2/, ,  ,
sT(3) re .o
sT(3)r n

sT(4J , d
sT(5)o u sT(4) & 19

sT(5) rr. l

sT(6) o..r

sr(7) o 1 ST(6)er p
sTo) rs ar
sr(7) r" ,.

0
4
8

1 2
16
20
24
2A

36
40

48

56
60

68
72

80
84
88
92
96

100
104

it$are 4-lJ. FSAVT, a1ld FRSTOR nenor! Ia!tut.

92



5

THE ao3a6
PROTECTTON
MEGHANISM

The role of computers in srcicty is becoming more and more significant, computers
process our financial transactions, count our votes at election time, control medical
equipment, and more, As our dependency on computers grows, we neecl systems
thar can process multiple tasks anci maintain reliabiliry atthe same time.

In support of these goals, Intel designers implemcntccl the protected virtual addr€ss
mode (protccted mode) on the 80286, Protected m(Xle aLlows multiple applications
1o run concurrently but isolates them from one another so that failur€s in one appli
cation do not affect any other application. Although it was possible to imPlement
multitasking on previous Intel microp(rccssors, every applicalion had acce$s to all
portions of the system. A flaw in one application could easily crash the entire sys-
tem or coffupt data associatedwith anothertask,

The 80386 is the second Intel processor to support protected mode. However, the
80386's capabilities are exended by use of 32-bit addressing. This chapler discusses
how the 80386 protection mechanism works, including privilege levels, task separa-
tion, and how virtual ^ddressing is used to support the pmtection model.

Selectors
The central feature of the 80386 protection mechanism is the sefucto,1 Rather tMn
directly accessing any part of the system, a program deals with a selector which
grants access to a system object. Asseialed with each obiect is information about it,
for example, the object's bcation, size, and rype, and any restrictions on its use.

This information is not stored in the selector for two reasons. The selector would be
very large, and passing it frcm routine io routine would take a lot of compuler time
More importantly, keepiog the object inJormation in a separate location prevents an
unscrupulous or errant program from corrupting the information.

9:'
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A selector is like a sealcd envelope. Inside the envelope is imporram data that musr
be kept secure. Like a mcsscnger pefmiued only to see envelopes and pass rhen k)
olhef messengers, a program can skne and retrieve selectors and pass rhem ro orhcr
rouLines. Only the operating sysrcm has access to the data inside fie cnvclopc,

lich on the 80386 is callc(l ^ .le$riptor.

Descriptors
Aptly naDred, descriptors dcscdbc x system object in detail. Memory segments, .rs ii-
lustfalcd in chaptef 3, are one kind of stsrcm (,bject. Orher sysrem objects inclMe
tablcs thar suppo the protection mcchanism, spccixl segme.rs rhat srore the pro-
cessorst.lte, and eccess control objects callcd gales.

I)cs.riplo$ are groupeclin dcsdipL(' tables. Byenmining a sclcctor thc 80386
hadwxre determines which dcx-riptor is associated with thc scicc()r llnd wilh thc
(i)icct ro which the ctescrDtor poinls. One item rhar rhe descriptor in.lic.rtcs js thc
privilege level ofthc objccl. This value is stored in the DPL iicld ol thc dcscriptor
whcn a prcgram requests irccc$s to x systen object with a sclcltor, one ofthc lit-

. Acc€ss is clcniecl. Iflhc rcqucst violat€s a rulc ofthc protectn)n nrcf,hrni$m (,norc
on this lutef), control pxsscs frorr the program to:r designatc.l rourinc in rhc
opcrxting system. l hc operxring system usually terminates thc pr(rccss

. Acccss is pcnnnlcd blrr irnp()ssible 1() granl.I.bf cxamplc, ifdre objccr is not cur'-
rently in rrcnr)ry, xn opemting systc (Ntinc is callcd tha! swxps thc objcrt inro
nlenxxy xnd rcnrns conlrol () Lhc pfogmm. Thc program is lhcn pcrmirrcd !o
rctr y rcccss k) lhe object.

. ,^cccss is granted d thc rcqlrcstcd privilege level.

Privilege
'lhc 80386 processor supports four lcvcls ofincreasing privilege, mmbered 3,2, r,
and 0. I,rivilege level0 is thc most privileged level.

The priviLege level ofrhc sclcctor in the CS register idcnrifics drc precedence of rhe
currently executing rourinc and is called rhe crlrent pririleEie lercl (aPL). Fot rcli-
ability, onlythe most ruslworlhyand crash-resistanr code in rhc opcraring system
should run at fie mosr privilcged level (CPL = 0). Applications rhar mighi fail or
compromise lhe intcgrity of fie system should run ar rhc lowest prioriiy (CPt = 3).

Becausc Lhe number of programs fiat can run at high privilege levels diminishes
ncar lcvel 0 and be. se level 0 codc is likely to exist only in the core of rhe opcrar-
ing sysrcm, the classic illustration of rhe privilege system is one of concenrric rings,
as shown in ligure 5 :l�
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Flgt|trc t-1. Ptluttege ttngs

The concentric ring image is so well integrated intcr the understanding of Privilege

ihu, o,o".rrn...r_ott.n-.peak ofcode that runs _in rjng 0 or_inringJ -rnother

*ru'of slvinc that tne cpi of rhe procedure is 0 or 3 Every syrlcm ohicq (that is

evervrhlng r;ferred to by a dcscriPtor) is arsocialcd wilh a privilcge lc\ el anLl
'lesides" in a Particular ring.

The word pll! /k8e connotes riEhrs or advantages not normally granted On lhc

80386, procedure.s runninS in the innermost rings can access dara obiects in lhe

outer rings (which have Lcss privileger' bol outcrring proccdures cannot access oD-

iects witi qrearer prjvilege ln additron to prevent the oPcraling syslem lrom crasn-

i* a* ,""u"a -a., p.iedures (annot cdll olher Procedures that miSht be lcss

reiiable (procedures in outer rings)

For example. a procedure running in nng I m ay access a drta segmcnt, residing,in 
^

rinq 2 or ijne 3 but it prevented from accessrng a 'egmcnr qho'e privilegc ievel rs u

A rine I proiedure. however' cannor invoke a suhrouLine residing in ring 2 or flng ''

nor cln it call one in rine 0. Figure 5-2 on rhe following oage rllusl"xres lhi'

An ooeri(inq rystem does nor need ro 'uppon all four privilege levcl' U\IX syt-

i.t,, f", "*i^pf.. ryei."llv i'nplemenr onlv rwo levelc 0 Jnd J Os 2 suppon 5 th-ce

i*"i", rr'. "pi'"ii"g .v"tem code runs in ring 0, applications run in ring 3' and

special routines that need access to I/O devices run in ring 2'
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A Data

tr code (prosramt

+ teSal acccss

----> Illcgal ac.ess

Flgtrtc 5-2. Accass hcten tinljs

Inte;level corrmunication
 s a $ecurity mcaslrfc, concenrric rings of privilege work wcll, but the possibiliry cx-
ists that an applicatfun funnin{; in rinS 3 might need scrvicc from rhe operaring sys-
rcm. l he opcrating systcm, howcvcr, rhough omnipoicnt in ring 0, is not acccssiblc
to the lrpplicntk)n The applicatbn, in effecr, mighr say, "Oh most great anclworrhy
ofopclating syslcms, pl€ase granl me, dly humble and ()bcdienl servant, additional
RAM for my srack," bul becausc ofthc access restrictions it has no way ofcalling on
lhc operrting systcn.

Various cuhufcs have esiablished a priesthood whose job is to act as intermccliator,
but lhe Intcl clcsign enginccrs apparendy dcspaired ot firting somclhing rhat c!m-
plicxrcd in() only 250,000 rrxnsisbrs, so they rcs(xled ro something simplcr. tr,s
calle.lr ga!c.

Gato6
A gate is a systcm objecr (rhar is, it has its own dc{-riptor) rhat poinrs to a prcccdure
in a code scgmcni, but the garc has a privitege levcl separate from thar ofrhe code
segmenl Figure 5-3 shows how this changes the legal subroutine call parh.

.A gaie allows execulc only access ro a rourine in an inncr ring fiom a less privilcgcd
procedure. The resrricrion on outward calls, however, rcmains in force. The 803S6
supports four types of gates c.tll, intelrupL trap, ^nd ras&. Call gates are invokcd
via the standard subrourine call insrruction. Inreffupr garcs and rrap gates are in,
vokcd by the INT instrucrion or by hardware interruprs. Task gates are invoked by
JMP. CALL, or INT instructions or by barcLware interrupts.
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O crte

n codc (prcsnms)

+ Itsgal access

-_- - )  t l l cSa l  ! . .ess

Flgurc 5-3. aaU l)dthr thtauuh Adks

In I strndard slrb(Ntinc c:lll, lhc rcnrrn lddress and llny Paranrcte$ rre storcd on

thc shck, und cxcrution conlinucs t the s1a( ofthe subroutine \(hcn invoking n

subrolrtinc th,ough n gatc, thc Privilcge levcl ()f lhe exccl(ing rorrline chanljcs t()

tlrc lcvel ofthc coclc scgtncnr () which thc grlc poinls Whcn thc sul)roulinc

rctLr.ns, lhc Privilcgc lcvcl is sct back t() dr^1()f thc cxllinll pro(edurc. lbr examplc,

.n npplicatbn cxcljiling in ring 3 mjght cnll thc opemling syslc'n to Llllocxte some

nrcnx)fy. l he operating syslcm c(xlc rLrns in ring 0, xncl a call Satc in dng 3 points

to the allocrtion (n'tinc

This approach solves lhc communication problem bui inlroduces anolhcr one'

llclause thc rclurn addfcss (and possibly so re systcln call Prrameters) is on thc

slack and lhc slack is a fing 3 (aPPlication) dxra scrment, drc address and paramc-

teff are no longcr secure. Thc apPLicalion co! d co|fupl them while thc operating

systcm is pn)ccssing the rcqucst. To s()lvc this p()blem, part oflhe slack is copied

to a more privilcgcd stack segntlrnt as il moves through the gxte' as shown ifl ligurc

5 ,i on the fol l()wiflg page. tllch call Salc .LescriPtor conrairs a l ield cal lc.l lhe

dwor<l coun!, which indicatcs the nunrbdol32 bit siack words Io copv liom the

ou[cFring stxck to the inner riflg stack

Every application mus! hive as many stack segments as thcre are pdvilege levels

in the operating environmenr under which it is nrnning lfthis seems excessivc'

'cmembe' that you can usc the virtual memory caPabilitv ofthe 80386Io vour ad-

vantage. An application can have des.riptors fbr more than one stack segment, but

stack segmeffs can be marked as nor presenr and never lake up anv plrvsical

memory if fiey are not used.
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SS:ESP

(Rins 3) call through galc with

Flg$e 5-4 Stack pliukEe tncrcay.

If the idea of four sta€k segmenrs has you flipping back to the 80386 regist€r dia-
gram looking for addirional registers, you won't find them. The active srack poinrer
is held in the SS and BSP registers. The orhers are stored in a system obiect called
rhe l^tk state seSmoni ot'lSS.

Tglk st.tg rogment.
A TSS is a special memory segment that the 80386 uses ro support mulritasking. Its
format is outlined in Figure 5-5, and ir contaiff a copy of alllhe registers that-must
be saved to preserve the siate of a task, It also contains valu€s that are associated
with the task but that are nor slored in CpU regisrers.

The TSS conrains rhree additional suck segment selecbrs rSSO, SSl. and SS2) and
three suck pointers (Espo. ESpl, and ESP2J, ajj shown ln Fipure 5_5. when a cali or
interrupt rhrough a Sare causes a change in privilege. the n;w SS and ESp ale load€d
trom thc TSS. Thc task regisrer (Tfu conrains rhe selector ofrhe currenrly activc
TSS,
'When 

a task switch occurs, all the executing task's registers are saved in the active
TSS. The task register is then toaded with the selector of a new TSS, and each gen_
eral register is loaded wirh the valu€s from rhe new TSS. Other fields in the TSi and
mulritdsking ar< discu.s<d Larer in rhis chapre,.

Descriptor tables
As mentioned earlier, rhe descriptors for the memory segments, TSSS, gares, and
other system objects are grouped inro descripbr tabtes. The three tr?es of descrip_
tor tables are: the inteffupt descripror table (rDT), rhe globat descripror rable (cDi),
and the local descriplor tables oDTs).

The IDT contains descriptors that relate ro hardware and software intetuDts. A sDe,
ci.rl regis'er IDTR. conrJins rhe tinear base addres. ,rnd size (timn, ot rhe tDT. Tire
IDT is discussed in derail later in this chaprer in the section ..Interrupts and
Exceptions. "
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3 1
0 B3ck link

usP0
0 ss0

ESPl
0 551

ISP2
SS2

cR3
EIP

EFLAGS
EAX
ECX
EDX
EBX
ESP
EBP
BSI
EDI

0 ES
0
0 5S
0 DS
0 !s
0 GS
0 LDTR

0  t T

15

4
8

1 2
't6

20
24
2A

92

100
104

3b
40

48

64

72

80
84
88

TSS
limit

F|{]ote 5-5. Tatk state segnent (TSS)

The cDT is the primary descriptor table. The GDTR register contains the lineff
base address and limit of lhe GDT. Important descriptors that the operating system
uses reside in the GDT. An operating system can be built using only the Gm and
the IDT. The LDTS, however, provide an additional 1a)€r of Protection and are help-
ful in building reliable systems.

The following illustration shows the mechanism used to identify a descriptor given

a 16-bit selector. The selector is composed of three fields: the index, the table indica-
tor (TI), and the requested privilege level (RPL).
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The RPL can be used to request access to an objecr at a /esr privileged level than is
normally grantcd. If ll)u're a canny operating system designer, you don,r necessarily
want access at lhe most privilegecl level awilable to you. Using rhe RPL in this man-
ner guards against misuse of highly privileged routines to subverr rhe sysrem.

Consider a programmer wk) ries to snoop in a "secure" system. This programmer
knows thxl an application prcgram that aftempts to access rhe operatir\g sysrem,s
code will fail. However, the progranrmer tries anorher ractic. The snooplr\g applica-
tioncalls thc operating system's disk write rourine and passes it a poinrer to the sys-
tem scgmenl 1() which it wants access. The opefiring system routine has enough
privilege to gain access to the scgment, so no prote€tion violation occurs, and the
clever programmerhas a ciisk fiic rhar conrains the desifed segment. Figure 5-6
illustrntes this scenario.

A seclrrc operatir\g systcn can foil attempts such as this by ensurirg that the RpL
field of any sclector is set k) the CPI. of the calling fourine. The ARPL (adiust re-
qLrcstccl privilege level) instrlrclion pedorms this function.'When rhis is done, rhc

Application passes fte rina 0 selecror (which is illegal fo! n to use) to lhe .ing 0 routine.
The dng 0 rounne gains acess to the ring segment and writes it !o disk.

Flglm 5-6. ,4.i 6 /a da Llpating rred \eawt.

too



5: th.AO3A6 Protetion cch.nl$

system can detect that the requested privilege level (RPL) of the selector is less than
(nurerically higher than) the DPL of the desired segmcnt and rcfusc to complete
the operation. Figure 5 7 shows the behavbr of a sccLrre opcrating system in this

A

Blguft 5"1. S.'curo olNtaline systen Lnne ARI)L

The TI bii of a selcclor identifies the table ff()ln which thc dcscriptor is selecled.
Vhen TI is sct 1() 0, the selecklr refers to the indcx/r descriptor in the CDT. A selec-
tor value of0033H, lbr cxamplc, poinls b the GI)T dcscriptor number 6. The first
slot in the gbbal descriplor table, cDT(0), is ncver used. A sclcctor value of 0t is
used as a nullselector. The null selectofcan be ft)aded inlo a data segment register
wiLholrt triggcring a protcction fhult.

vhen TI is set to 1, the index refers to a descriptor in the current LDT. rDT(0) can
be used to hold a valid descriptor. LDTS are usually created on a pcr task basis and
serve two purposes. First, because a selector is 16 bits and the index field is only 13
bits, you can address a maximur of 8192 descrlptors. MuLtiple LDTS allow you b
slore more descriptors. If there were only one LDT as there is only onc GDT, an
operating system might run out of space to sbre des.riptors.

Second, the LDT aLso gives you increased security. Figure i-8 on the following page
repfesents an opefati.g system that uses only the GDT to sbre descfipto$. The

ARPL adj!'sts selcctor

' The RPL portio. of the nnll sclectd is ignded, so .ny of the values 0, r, 2, or I are vrlid null

tor
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descriptors below 100 point to various operating system objects and are all ring 0
objects. GDT(100) is a ring 3 descriptor for the code segment of application A, and
Gm(101) is the data segment descriptor also in ring 3- Descriptors 102 and 103 are
the descriptors for the code and the data of appiication B.

Any attempt by application A to access outside its code and data segments results in
a protection violation. However, whal if application A attempts to forge a seleclor?
That is, what if the application iries to cfeare an otherwise lid sele€tor for a seg-
ment that doesn't belong to it? Creating a selector for any of the firsr 100 cDT slots
results in a protection violation because the operating system descriptors are ring 0
objects. If application A creates a selector for CDT(103), however, it can potentially
access (or destroy) data for application B. The 80386 prevents access between rinss
but not inside the same ring.

Figure 5-9 shows the 80386 solution to the problem. Ifeach application is given its
own LDT, the GDT can be rcs€rved for sysrem use. All descriprors in rhe GDT point
to objects in rings 0, 1, or 2. The LDT for each task contains the ring 3 (application)
code and data segments. Each appliciarion has a separate IDT, so a forged selecior
can refer to objecls only in the GDT, which are more privileged and therefore inac-
cessible, or to objects in its own LDT Thus, the LDT defines a virtual addre,ls space
for the application, and each task has a separate, nonwerlapping address space.

BrlgElJf,e 5-4. Opetuting slstem usine onu the GDT.
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,,' Address space B

Rlgnre,-9. Operuting $,stem ' ne a GDI .tn.l4n LDT

As Figurc 5-9 indicatcs, an IDl is also a system objecl with ils own descriPto The
next scction illusratcs thc gcneraL format of descriptors in thc 80386.

Descriptor Formats
Figurc 5-10 on the following page illustraies the three forms of a des.riptor' The iol-
lo$ing Jre lhe dercrinlor ryPe\: orogram memorv segment.. sy.rem 'egmcnl. and
gates. Progrnm memory segment descriplors were introduccd in Chapter 3 System
rgmcnr descriptoF .l.rribe LDT: an.l l5\\. Like prugf.r'n memory rgmenr de-
scriptors, system segmcnt descripto$ dcscribe regions of memory and have a base
and a limil However, you cannot lod a descriptor for an IDT or a TSS into a seg-
ment regisier and read or write the contenls as data. For an oPeratjng system to up
date an LDT or a TSS, it must create a memory segment descriplor wjth lhe same
base addrcss and limit, called an allas Programs such as debuggers, which let vou
modify yoLr program's code segments, must also create aliases because code seg
ments are not writable under the 8036 protection rules
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Blg!,f,e 5-1O, Galeral des.rtptorforrrar slstem, menory, and gate descrtptors.

System segments are identified by a value of 0 in the S bir of the descriptor Th€
TYPE field can hold any ofthe following lues:

O-Unused (invalid descriptor)

1-80286 TSS

2-Lm

3-Busy 80286 TSS

9-80386TSS

ll-Busy 80386 TSS

A gate descriptor does not delineate a memory region and therefore has no base ad-
dless or limit fields. Insread, a gate points ro anorher des€riptor via a selector. Call,
rntefiupt, and trap gates must contain the selector for a code segment and an offset
into the segment. Task gates hold a selector for a TSS, and the offset portion of the
descriptor is unused.

cate descriplors, like system segment descriptors, have the S bir set to 0 and can
conkin one of the following values in rhe TypE field:

4-80286 (:all g te

5-Task gate

6-80286 intenupt gate

7-80286 trap gare

12-8035 call gate

14-80386 intefupt gate

l5-80J86lrap grre

TYPE field values of 8, 10, and 13 are resetred for future Intel processors.

lo4
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Descriptor tlpes 1, 3, 4, 6, and 7 are used on the 80286. operating systems designed
for the 80286 (such as OS/2) run without modification on the 80386, so these de-
scripror types are fully supported. A native mode system, howevet or one that sup-
porr5 horh lb-brr and J2-bit programs. uses full J2-bir descriprors. You (an use i6-brr
code and data descriptors in a 32-bit s'stem, but using 16-bit system descriptors such
,i usk srarc segmenr \ can lerd to difticulries.

Multitasking
I have previously shown how the 80386 uses call gates to implement interlevel sub-
routine €alls. Interrupt and trap gates are discussed later in this chaPter. The follow_
ing sections show how the 80386 can use the remaining s)stem obj€cts (TSSS, LDTS,
and task gates) to implement robust multitasking operating systems.

Simply defined, a task is "a sequence of related actions leading to the accomplish-
ment of some goal," In a computer, ihe resources required to accomplish the goal
are usually included in the definition ofa task-that is, the amount of memory, CPU
time, disk space, and so on.

The tetm multl\^skiflg tefers !o the ability of a computer to execute more than one
task simultaneously, The 80386 cannot execute mor€ than one instruction stream at
once, but it can execute one instrrrction stream, $witch to another, execute it, switch
!o a thirdj execute it, switch back to the original, and so on. Because the CPU exe-
cutes so rapidly, all tasks appear !o execute simultanecl.rgly, Concutrenc! ^n!l
mul tipr ogranxnlng ar e synonyms for multitasking.

An executing task is called a p,"ocess. Thus, some people refer to multltasking as
multiprocessing, Others, however, use the word t tlttp,'ocessrl,8 to refer to systems
in which multiple CPUS or processors are running simultaneously. To avoid confu-
sion, I do not use the term multiprocessins, and I r€fer to computers with more than
one CPU as multiprocessor system9,

Assume that each task in a computer is implemented by a single programi therefore,
multiple programs must share th€ cPU. various strategies exist for sluring the CPU,
but !o discuss and compare these strategies is beyond the scope of this book. At
some level, each system must turn over conFol of the CPU from one task to another.

The first task might be in the middle of a computation when control is wrested
from it ard passed 10 another taski when the first task resumes, it must be able to
continue processing as though nothing had happened. All the registers that the lask
was using must be restored to their original lues when that task regins control.

The 80386 hardware supports this kind of task switching via the TSS Figure 5-l1 oo
the following page depicts the $emory layout ofthe TSS. Each TSS has only one de-
scriptor, which defines its base memory address and limit. FiSure 5-11 shows the TSS
descriptor format immediately below the TSS. To allow access to the TSS by differ-
ent privilege levels or via interupts, you must use task gates.
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F!8rte 5-11. Task state esmut and descrlptor

The TSS descriptor is similar to that of a tlpical memory segment because the TSS is
a syslem segment; however, rhe S bit is 0. The TYPE field for a TSS contains either a
binary 10018 or 10118 (9 or 1l). The variable bit is called the &r.st blr. This bir is ser
to 1 in the curently executing task and in any tasks rhat have called the cuffent rask,
establishing a chain of nested iasks. Any auempt to invoke a task rhat is mark€d as
lrusy kiggers an exception.
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Thc selector in the task register (TR) idctuifies rhe current task. Usually, rhis registef
is loaded once at initlalizalion lime and then is managed by thc iask switch opera
tion.I-oading TR does n(n cause a task switch; it does identify the rctive TSS,

Vhen a task switch occurs, the state of the currcntly executing task is saved in its
TSS, ancl rhc CPU registers are loaded fron rhc image of the new or destination TSS
The tesk rcgister contains a selector fbr ihc currcntly active TSS. TSS descdptors can
be located only in thc GDT.

Part of the TSS in figurc 5-11 is 8ray.'I he gray portion indicates values that are not
stored in the ou[loing TSS during atask switch, altlx,ugh new values are badcd
from the dest inxt ion 1 SS. lf any grxy vaLue clungcs during execution of lhc task, the
operating syslcm musr cnsure th.rt the TSS is kcPt cLrffenl lhe apPlicxti()n cmnot
chaqqe these vxlucsi they require kernel supPorr (privilegc le\€l 0) to be m(Xlified

Thc bLrlk of the TSS hdcls c()pies ol thc f]0386 general rellisler sct: EAX EDI, thc
segmcnt reSistersi I]FLAGS, and rIP. ln addition, the TSS c()ntains these fieldsr

Back link-Thc sclcctor oi the TSS thrt wrs prcviously executing.

ss , EsPn-Thc strck pointcrs for ring , execlrti()n, lrs discussed in lhc sc€tion on
c1lll gates.

CR3-control rcgister 3, which dcfincs lhe physical nemory address ofthe Page
iiblcs fbr thc ta$k.

LDTR-The selcck)rollhe ll)I lor drc trsk.

T-Thc '!r!p on task switcb" bit. A dcl)ug iault (interrtPt 1) occurs when this bit is
scl&) I in lhc incomingTSS.

I/OP bttrnap base A r6-bit offset in() thc TSS dut indicales thc starl ol'dre 1/O
permission bitmap. Ifthis field is setto 0, no I/O pcrmission bihrp cxists.

S]stem dep€nd€nt-The p()rtonofthe TSS tha! lhc opcraling system can use to
snrc any operating systenr-specific information aboul thc tlrsk.

l/O lr€rmlsslon bitmap-The field tha! slllrts at re offset inclicared by the I/OP
bihap basc and continues to the end of Lhc'lss or to the hasc plus 8192

lask switching
Four events can czusc a task switch on the 803861

. The current task executes a FAR CALI orJMP instruction inwhich the sclector
points to a TSS descripk).

. Thecurfc lask execures a FAR CALLoTJMP instruction, andthe selector Points
to a lask gaie.
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. Thc curent task executes an IRET instruction to rcturn to ihc pr.wious task. An
IRET causcs a task switcb onLy if the NT (nested task) bit ofthe EFLAGS rcgisrer
is set to 1.

. An inteffupt or exception occurs, and the IDT enny for the vector is a task gate.

For any task swirch, ihe f(tlowing events take place:

L I I  r \ (  r r \k  s i rch rs  nor .Ju.c( l  hy a hJnJ$rrc nr(Tut l .  an e: \ ,  epr ion.  or  Jn
IRFjT, the descriptor privilcgc rules are checked. The DPL of the descriptor
(TsS o. task gate) must be nLunerically less rhan rhe cuffent task's CPL and the

2. The present bii and limit of the descriptor for the current (outgoing)'l SS is
checked to ensure IlnI thc TSS is present and can hold xt leasr 104 bytcs of s1.Ic
information. Ifso,Ihe currcnt machine state is savediothcrwisc an cxccption

3. The present bit and limi! of thc descriplor fi)r the new (incon)ing) TSS is
chcckcd.lfthe TSS is not prescnt orls kx) small, an exceprion (Ecursi orher-
wisc all thc rcgisler imnges are loaded. Ifthc valuc of CR3 has chlngcd, rhc
TLB cachc (sec Ch^pter 7) is flushed.
At this fx)inr, al1 the general and scgmcnt rcgislcfs ̂re k)adcd, bur the 80386
shadow rcgislcrs are not. CS might have a valuc of217nFI, bu11hc des4riptor for
sclclkx 217FH has not becn badcd. Thc skrlc ofthc ourgoing task has been
savcd, howevcr, and any exceptbns th4t occur rre in rbc context ofthc new
stalc, cvcn if fic CS dcscriploris no! pfcscn! or is invalid.

Thc linkage to thc outgoinlttask is established. what luppcns ncxL.lcpends on
what caused the task switch.

a. If thc task switch was caused by a JMP ins(rlKlion, lhe TSS dcs.riptor of the
olrlgoing task is marked as not busy, and thc incoming task descriptor is
identificcl as a husy TSS.

b. Ifthe task swilch was causcd by an inreffupr ora CALL insrructjon, thc
olrtgoing task remains busy, and the incoming task is also marked as a busy
TsS. Additionally, the NT bit ofrhc EFLAGS register is ser ro t, and rhe back
link field ofthe incoming TsS is scL b the selectof of the outgoing'l SS.

c. If the task swirch was caused by an IRET insrruction, thc ourgoing rask js ser

Thc rask switched (TS) bit in CRo is scr to 1, and rhe current privilege level for
the incoming task is taken from the RPL field ofthe CS selector in the TSS.

to0
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6. The IDTR shadow registers are loaded if dlc IDl R contains a valid sclcctor lf
the LDTR value is 0 (the null selector), no :rction is raken. lf the selector is in-
valid or ifthe new LDT is not present, an exception occurs.

7 'fhe descriptors for CS, SS, DS, ES, rs, and Gs 1rc loaded inkr thc 80386 shadow
registers in rhat order A1l dcsc.ipft,s ife lcstcd fir pri\.ilcgc vi(narions (cl)L has
alreadybeen established) rnd rsi bc nxrkcclprescmi othcfwise an cxccption

U. Thc local enable bits in DR7 are cleared to 0.

9. Ifthe T bit of the jncoming'[SS is set to l, a clebug liult (interrupt 1) occurs.

10. Ihe ncw task bcgins cxccuting by fctching rhc instrucrion 2r cs lli).

l/O permission bitmap
'lwo con.litn)ns dctcrftinc whcther x txsk is xlk)wed i() pefi)rm I/O: the i/O pri\.i-
lege level xnd the l/O pc|fiissnn bitmap. The IoPl. bits in ihe FIILAGS regisler dc
lcrlnine thc l/o pLivilcgc lcvcl. The IOI'I. dcfincs rhe lexst privilegccl levcl rh{t can
perform rn l/O instrlrclion witholrt rcslriclion. lin cxxnplc, il lOI)1. = 2, I/O in-
strlrctions can bc pcrfonncclby proccdures cxcculinS rt lcvcls 0, 1, or 2. An r(tcDpl
k) exc'cr.rtc an instfuctbn l)y a ring 3 rppli(rtn)n olrsl l)c lirrhcr vrli.lxlcd l)y thc
I/O pennission birnrap.

lflhc CI'L of rhe currcm rask is gre^tcr thln IOI,L (rlrr is, il l/O is rcsr ft:rcd fbf rhrl
lask), lhc I/O pc|nrissi(nr bihnp is chcckcd, whiclr prolccrs rhc r/O x(ldrcss sPn(c
on rn individlral I/O por l)rsis. The TSS skxes an I/O Dcnrisshn l)itrnrp lif evcry
task. Thc bitm p l)cgins al thc oftsct in (hc TSS sp.{iticd by thc l6$ir I/O nrrp basc
v.tllre. Thc I/O map brsc v llrc mlrst bc gre tcr llun (n cquxl 10 6ilII.

The I/O permissn)n bihrap is n mrxinnnn oi 8192 bytes, with onc bit fof crch ofthe
65,536I/O ports. Il ihe bir in the bitmlp conespondiog ro rhe 1/O port is ser k) l,
thcn thc task .locs nol h.rve xcccss !o ihe porl, xnd r genernl Dfoiectk)n flulr $ill oc-
cuf iflhc trsk aLlcmpls !) cxcculc an J/O inslrrriion :r1thal pori.

The I/O permission bitmap is nol reqdrcd Io bc 8192l)ytcs. 'l hc linit ficld ofthc
TSS descriptor specifies the end ofthe biturap. lf thc l/O nup bxse v.rlue is greiter
than orequalto the limitvalue, the TSS conrains no I/O permission Lrinnap All
ports ihat do not have a bitmap position in lhe TSS are protecled f|om access.

!'igure 5-12 on the following page shows a sample l)ilmrp.lhc lask with this'lSS
can access ports 8,9, r0, lt, and 12. A subroutine in this lask can icccss bylc po|ts 8,
9, 10, 11, and 12, word ports I aM 10, or dword port L
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Interrupts and Exceptions
Interrupt is ̂  rc:.ln:q:i]:F€,r(lefines x variely of control iransfers on tlle i:103{16. The
spccific itc'ns impliccl by this term xre IrL|c interrupts (hadwa!e intcrruPts) and
"r.?prrorr', which afe further subdiviclccl into lr?r5, faults, .n aborts

Allinle upts ̂ nd exccptions share a common featurc:'lhc current exccuti()n bca-
tk)n (Cs:llIP) rnd l'lags rcgister (HFJ-AGS) ^rc srvcd on lhc stack, and control trxns-
icrs &) x softwxrc rN)rltinc c llc.l ̂ n interrupt han.llel via a gale in the inlerruPt
clcscnpk)r t^blc (IIx ). l hc 80386 supporrs a mnximum of 256 descriPtors in thc
IDL llvcry inlcrLrpt orcxception is associalcd with onc ofthcsc intefruPt numbcrs
lntcrupl nunrl)crs 0 thft)Lrgh 31 arc .eserved for spcciiic purposes rcl^tin{i k) thc
U0386 proccss(r; lhe opcuting systeD Can assign numl)crs 32 drrough 255

Thc hinds oi inlerrupts and cxceptr()ns arc:

Internrpts-Trlc internrpts are crrNed by harclware signals that origjnalc oulside
the CPU. Tw() pins on lhe 80386, NMI 1ncl INTR, signal interrupts. Pulling thc NMI
pin l()w activaLcs x nonmaskable interrupi. Thc NMI inieffupl always invokcs the
rouline ass()ci.rtcd lvith inlerrupt vector (II)T cnry) 2.

An active signal on the INTR line cluscs a maskable inierrupt. Thc 80386 does not
respond to a maskablc inrcrrupt unless the IF bit ofthc EFLAGS register is setto 1
'when the IF bit is 0, inicffupts are not recognized and are sxicl to be mas&?d.Iiihc
processor responcls, it issucs m inlerrupt-acknowledgc bus cycle, and the interrupl
ing device must respond with an i errupl number. Use only values 32-255 for
maskable interrupts.

Traps Thcsc are conditions that the 80386 rcgards as errors and detects alier rhe
executk)n ofr software instruction. The savcd instruction pointer (CS|EIP) on the
stack poi s to the instruction imnkdialcly after an instruction that has tapped.

t t o
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A classic example ofa trap is the INTO instruction. When INTO is executed, the
processor checks the value of the overflor- flag (OF). If OF = 1, the U0386 vectors
through IDT des.riptor 4.

,^ll softw.rre interrupt (IN't) instrucrions are handled as traps. To issue one of these
instruclions, howcvcr, a procedufe musi b.?ve access privilege to the IDT descriptor
fitr thc inrcrrlrpr number lor example, ifa rins 3 application execr.rtes an INT.i7 in
srruciion, thc descriptor llt IDT(47) must have DPL = 3; otherwise, a protection fault
occlr.s. This mc'$anism prcvcnts applicarbns from issuing lN'I instructions for
rccbrs associared with hrrdwarc inteffrpts bc{ause the $tes for these vectors
poinr ro operating system code thatruns at high privilege levels, usually ring 0.

Faul6 vhen rhe {]03U6 rlerc.rs ̂ i cttor durtng lhc processing of an instruction
(forexample, when the instructi()n's operand is storcd in x pagc frllmc marked not
present), a lault occurs. A qreciiic intcrrupr numbcr is .rssocixtecL with cach fault
condition. The instructi()n p()inter savcd on thc slxck altcr I l-ault occurs points to
fie instruction that caused the fxuh. Thus, thc ()perlring systcm c.rn correct the con'
dition ancl resume executing d1e insttucti()n.

Aborts-whcn an effor is so severe that some crontext is lost, tl)c rcsLrlt is an abort.
It miglrt be impossible to determine dle causc of rn xb()rt, ol it might bc drat the
insklrthn causing th€ nbort is not ablc to be restartcd.

Thc fblk)wing trl)le Iists all oi tbe cxccplions hancucd l)y lhc 80386:

80386 Exc€ptlons

Nunber CLrss

0
I
2

5
6

l0
l l
1 2
I J
1 4
15
16
),1 37

Fnult Diviclc eno.
FaLrk or(ap Dcbug!!$ nrtcrrupi

NonnMskahlc intcmupt

lntcrrupl on overllow (lN'l O)
Aray bound.ry violatbn ( ROI lN D)

coproccssor nor avNilablc

copro.esor segme.r ovenun

General protcction violation

Interrupr or r.ap S)stcm dependem
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One class of error is more severe than an abort. If the proces"sor is unable to con-
tinue processing an exception, it shuts down. In a protected-mode environment, the
system should shut down only if a hardware failure occurs. To prevent shutdown,
the vectors tlut handle the double fault (interrupt 8) and in lid TSS (inlerrupt 10)
conditions should be separate tasks, and IDT entries 8 and 10 should be task gates-
This approach allows the 80386 to load a new machine state from which to handle
the exceptions. If this is not done, the exception handler might be running in the
same environment that caused the failures and oisht not be able to continue
processmg.

Int6rrupt gat6s, trap gates, and task gates
The only typ€s of descriptors that can reside in the IDT are interrupt gates, trap
gates, and task gates. Task gates in the Im are identical to those in the GDT and
operate ln me same manner,
'i/hen a task gate is invoked with an inteffupt or with an exception, the machine
state is saved in the existing TSS, and a new state is loaded from the TSs associated
with the task gate. Thus, an interrupt can have its own address space, including its
own page tables lnd LDT. In addition, the interrupt handler is prevented from using
too much of the interrupted application's stack and from €orrupting any registers. A
task switch takes longer to execute than a gate transfer, however, and the advantages
of invoking a task gate must be weighed against pcrformance considerations.

The most common entries in the IDT are interrupt gates and trap gates, These de-
s€riptors have identical formats-only the type code is different. Figure 5-13 illus-
trates the descriptor format for interrupt gates. The only difference in behavior
between the two gates is that when an interrupt gate is actil4ated the IF bit of the
EFLAGS reSister is cleared to 0. Hardware interrupts are masked until the inteffupt
handler deems it safe !o reenable them. Transferring control through a trap 8at€
does not modify the interrupt flag.

The behavior of interrupt gates and trap gates is similar to that of call gates. Al'
though intenupt gates and trap gates do not iontain a word count field, they can
point to code segments of specific privileg€ levels or to conforming segments.
Figure 5-14 shows the layout of the stack when an inteffupt handler is invoked.

4A03 16 15

otrsel,, 
I, )PLl: Type Offset

Fl€'Elfe 5-13. lnretrupt Bate and tnp gate d^. ttptot Iornar.
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ESP

Interrupr or exceplion flilh
no Pfivilegc $ansition.

ESP ar initializarion
pointed to other stack

EFLAOS
0 cs

EII)
ESP

Int€mrpt or exception with tmnsition
to ncw stack segment.

F g$e 5.11, tnterrupt stetck unhout and ulth prltllege trunsnb

An interrupt hendler must retum to thc calling routine via an IRET instruction The
IRET r€siores the original inskuction pointer, flags, and stack segmen!. Ifthe NT
(nested tasld bit was sei in the EFTAGS register, a task switch lo the original TSs
also occurs. The programmer should remove any erfor c(xle (generaled by the fault)
from the stack before returning from the interrupt handler.

80386 prqcessor cxceptions
The following sections explain the faults, traps, and aborls ftat can occur during
80386 program execution, some exceptions cause a control transfer via the IDTi
others c?use an error code to be pushed onlo the stack as well. If an effor codc is
pushed, it is push€d onto the stack of the interrupt handleri that is, it is pushed after
any privilege level or task transition. Exceptions that cause effor codes to be pushed
onto the stack are indicated in the following sections with tlle symbol1ec/. The
value of the error code is either 0 or as defined in the following illustrationl

1 6  1 5  2 1 0

T
I

E
x
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Thc setector index and TI fields are taken from the selecto. of the segment associ

iled with the excepiion. lnstead ofan RPr ficld, howevet thc effor code has an I bit

and an EX bit. Thc I bit is set to 1 when the index refers to an IDT index, and the TI

bit is ignored. vhcn I = 0, the TI bit indicates whether the selector is from rhe GDT

or l-rom the cumem lDT. lf the EX bit is set to l, the fault was caused by an event

outside the executing proSram.

lntorrupt O-Divide (faultl
A divide fault occu.s ii division by zero is a(empted or if the rcsult of a djvide

opcration does noL fit into the destinaln)n operand.

Interrupt l-Dobugger (fault or trapl
This exception is trigger€d by one ofrhcsc conditionsl

Debug registcr breakpoint

SinSlc stcp trap

' lhc'Debugging"scct ionlater inthischaptcr€overslhclr iSgeringandhandl ingof

dcbug t|aps in dctail.

Inter?upt 2-NMl (intetruptl
ll)l vectof 2 is rc$crycd ior the haftlwnrc NMI condition. N() cxccptions trap
thr(Ngh vcctor 2.

Interrupt 3-Brsakpoint lttaPl
l)cl)uggcrs usc lhc brcakpoint interrupt (INT 3), which is covcred in the 'Debug-

ging" section later in this chapter

Interrupi 4-Ovetllow (trapl
Thc overflow trap (rccurs after an INTO iostfuction hrs ex€culcd ifthe OFblt is set
t.) L Thc INTO instruction is useful in l4nguagcs such as Ada that require arithmetic
instrlalions eitherb produce a valid result orlo flise an exccption

Int6.rupt 5-Bounds check (faultl
likc inierrupt 4, the bounds check trap oclLrrs as the result of a software inslruc-
tion. The BOUND instruction compares an array index with an upper bound and a
lower boufld. If the index is our of range, the processor traps to vector 5

Interrupt 6-lnvalid opcode (faultl
An inter.upl6 fault occurs if:

. The processor tries to decode a bit panern that docs not correspond to anv legal
machine instruction.

t l 4



5: th. ao3a6 Plol*tlo. xeh.nls

. The processor tries to execute an instruction that contains invalid operands.

. The processor tries to execute a protected-mode instruciion while running in
real mode or in virtual 8086 mode.

Opcodes that are illegal on the 8086 or cause an invalid opcode fauit on the 80286
do not always cause an exception when the 80386 executes in reai mode. The op-
codes mighr r orr*pond |o new in.rrucl ions rhat rrc r"lid in Jnv 80386 operating

Interrupt 7-Cop.ocos.or not available (faultl
\? hen a computer does not support an 80287 or 8037 coproc€ssor, the operating
sysrem can set the EM bit of register CRo to indicate NDP software emulation. If the
EM bit of register CRo is set, an intefiupt 7 fault occurs each time a floating-point
insuuction is encountered,

This fault also occurs if the MP bil of CRo is set and the 80386 executes a VAIT or
floating-point instruction after a task swilch. The task switch sets the TS bit to 1.
The operating system can clear TS after a task switch to prevent ihe fault from oc-
curring. The 80386 uses this method to signal lhat the state of the math coprocessor
needs to be saved so that it can be used bv another task.

Interlupt 6-Double leult labortl locl
Processing an exception sometimes triggers a second exception, For example, sup-
pose that a divide fault occurs during the processing of an applicalion and that the
trap gate for interrupt 0 points to a conforming segment so that the Privilege level
does not change. Now suppose that the user stack does not hav€ room for the cs,
EIP, and EFLAGS pushed by the divide fault. The condition of being unable to
process the divide exception correcdy would result in a double fault.

Not all exception paits result in double faults. In some cases, most notably when
getting access to the fault handle! causes a page fault, the second fault is Processed
first, and then control transfers to the initial exception handler The followjng table
shows the exception pairs that lrigger a double fault:

I\'sbte Fault {fFoloued Br

0 (Divide hult)
9 (NDP s€gment overunl

10 (lnvalid Tss)

12 (Stack fauh)
13 (ceneral protection)
14 (Pase fauh)

0 , 9 , 1 0 , 1 1 , 1 2 , 1 3
o,9, to, t t ,12,13
0 ,  9 ,  1 0 , 1 1 , 1 2 , 1 3
0 , 9 , 1 0 , 1 1 , t 2 , 7 3
0 ,  9 ,  1 0 , 1 1 , 1 2 , 1 3
0, q 10, 11, 12, 13
0.9: ro, 11, 12, 13, 14

A task gate c?o be$ handle the double fault vector, although a secure ring 0 segment
usually works. You should use the method best suited for placing the system in a

t t 5
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known state b.tausc lhc proccssor shuts down ifa third fault occurs while the
u03i:16 is trying l() stari thc i crrupr S exception Mndler.

The shutdo*n srate is simjlarro the hah sLarc. only a proccss.rr reset of NMI (if the
NMI vector is valid) can bdng the pfocessor our of shurd()wn A special shutdown
signal is placed on the bus so that external hardwa.e can detLtt thc shutdown.

An error c()dc of0 is pushed onlo thc stack when a double fault exception occurs.

Interrupt g-Coprocessor sogr|rent oveitun (abortl
The copr<ressor scgmcnt ovcrrun cxccption is signaled when a floating point in-
structi()n causcs a mcmory ac:ccss th:li runs beyond the end ofn segment.Ifthe
stxrting xddrcss oiI floating-point opcrand is or.rtside the segment limit, a gencnl
p()tcrtn)n fxlrl( (interrupt 13) occurs rather thrn an interrupt 9.
'lhc sc:ment ov€rrun exception is classified as an alrrt because thc instruction
c.rnnot be restarted. You nnrst r$e dre FNINIT instrucli()n t() rcinitillizc the 80387
coproccssor. l he Cs:Ell'�srveclon th€ stackwill pointto the offcncling instruction

Inlerrupt lO-lnvalid task state eogrnont (faultl ]ocl
A variety ol cxuses cxn lrililie, xn intc upl 1(l bcrausc thc TSs contains a number of
descr iptors. 'l he 80386 pr$h€s an errofn)de onk) the strck k) aid in diAgnosing thc
crx)r con(litbn. 'Ihe fbllowing txblc lisrs invrlid Tss faLrlt conditnxrs and thc vAhre
ofthc crxxcodc pushccl onto thc srack for crch c(rrdirion. Thc ilems arc listeclin
fic orclef jn which thcy mrc chcckcd by thc cPtl

OutgoinS lss lhrii < l{)J
Inc'o.ring 'l SS lnnit < 103
l ,Dl  sc l .dorh.s I I= I
l.Dl dcscrift(r' has S = l
LDl dcscfiFtrl Yllj l= 2
LDTdescri or not present

CS .le$riptor hxs S = 0
cs de$riptor not execuriblc
Cs conforming, DPl. > CPL

'I SS nrdcx:'l l : lix l'
l.Dl inctcx fI liXT
LDT index Tl I ExT
LDT index TI I EXT
LDT nrdex I I: DX'l'

CS indcx

CS ooronbtrDing, DPL I= CPI- of CS inclet
DPI < RPI

SS seledor RPL = CPI
ss descriprof has S = 0
55 dcsc.ipd noi rviiiNblc

|  .p  lo l lovns '  hr .  k '  r , r  m|c lur  "  |  " rhrr  \  1 ,1,u, .  in  rLr ,  urJ( ,  D) .  f - .  F\  . '_J c \

Dcs..ipbr is cxe.cute only
DS, ES, 1,5, or GS inctex
DS, E5, FS, orGS index

Desc.iplor nor contorming, DPL < CPlor DS, ES, fj, orGS index
DPL < RPI

t t 6
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The CPL value is taken from the RPL of the incoming CS seiector If one of the
memory segment descriptors is marked no! present, a not present fault or stack fault
occurs rather than the invalid TSS fault. The TSS load stops at the point of the fa lt,
and the other exception handler must ensure that the remaining segment registers
get loaded.

Interrupt ll-Not present (taultl l9cl
The not present interrupt lets you implement virtual memory via the 80386 segmen-
tation mechanism. An operating system can mark a mernory segment as not present
and swap its contents out to disk. The interrupt 11 fault is triggered when an applica-
tion needs to access the segment.

This fault occurs when the 80386 tries to gain access !o a descriptor that is not pres-
ent (P = 0), loading DS, ES, FS, or CS triggers the fault, as does a FAR CALL orJMP
ftat either loads CS with a scgment marked not present or accesses a gate whose
descriptor is marked not present. In addition, the LLDT and IITR instru€tions cause
descriptors to be loaded and can trigger the fault.

A segment fault that occurs when loading the SS register results in a stack fault (in-
teftupt 12) rather than in a not present fault. Additionally, when lhe IDTR is loaded
during a task switch rather than by the IDTR instruction, an invalid TSS exception
occurs if the descriptof has P - 0.

The CS and EIP that are pushed onto the stack as a resuh of the exceplion usually
point !o the offending instruction. Also pushed is an error code that identifies the
selector involved in the fault. The only time that CSTEIP does not point to the of-
fending insiruclion is when a task switch occurs and a selector in thc tu'w task im-
age causes the not present exception,

In this case, the CSTEIP points to the first instrwtion of the new task. The selectors
ar€ loaded in the order SS, DS, ES, FS, and GS, and the tash switch terminates at the
point of the fault. The interrupt 11 fault handler must handle the fault and validate
the remaining selectors. If the inteffupt 11 fault handler is invoked via a task garc,
this happens on the IRET that ends inteffupt 11. If a trap gate invokes the interrupt,
however, the fault handle! must tesl each selector wifi the IAR instruction.

Intorrupt l2-Stack itaultl lecl
A task gate should handle this exception because the state of the stack is unknown
when a stack fault occurs. You can use a level 0 trap gate, but if a stack fault occurs
at ring 0, the trap to the inteffupl 12 handler resuits in an immediate doubie fault.

A stack fault with an error code of 0 occurs if a normal instruction refers to memory
beyond the limits of the stack segment. This includes instructions such as PUSH and
POq and instructions that use ao SS: segment override or use EBP as a base register.
In addition, the ENTER instrrction causes the same fault if it causes ESP to be decre-
mented beyond lhe lower bound of the segment. Instructions such as SUB ESP, l0 do
not cause stack falrlts.
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If the slack far t is rriggered by loading SS with a not present selector or if the fault
occurs during gated transition between privilege rings, an error code indicating the
offending selector is pushed onto the stack. Loading sS with invalid descriptors (out
of range, segment not writable, and so on) results in a general protection fault rather
than a stack fault.

Vhen the effor code is 0, this usually means that a given stack segment is too small.
If the operating system supports expand-do$'n segments, it can expand the stack of
the faulting npplication. The saved CS:EIP points to the Paulting instruction, which
can always be restartedr hovr'ever, the same caveat that applies to task switches and
not present exceptions also applies to stack faults. See the final paragraph under
"Interrupt ll*Not present (fault)[ec]" for more details.

Intorrupt l3-G.noral proteetion (faultl lecl
Any condition not covered by some other eraception triggers a general protection
fault. This fault usually indicales that the program has been conupted and should be
'terminatedwith prejudice," as the old UNIXphrase goes.

The exception to this rule is that \€6-mode tasks trigger general protection faults
wh€n the system needs to be "virtualized." For example, a v86 task that tries to dis-
able interrupts or issue a software interrupt instruction trjggers a general pmtection
fault when IOPL < 3. In such a case, the interrupt handler must det€rmine the
pfoper behavior ard return control to the faulting task.

The operating system can restart any instruction that tdggers a general protection
fault, although doing so is often inappropriate. An effor code is always pushed onto
lhe stack as part of the exceptioni jn many cases, however, the value is 0. ',J(/hen the
value is not 0, the value indic?tes the selc'ctor that caused the exception.

lnterrupt l4-Pego (l.ultl [.cl
The page fault inteffupi lets you implement virtual memory on a demand-paged
basis, An interrupt 14 occurs whenever an access to a page directory entry or page
table enrry refers to an entry with the present bit set to 0. The operating system
makes the page present, updates the table entry and restarts the faulting instruc-
tlon. A page fault also occurs when a paging protection rule is violated. In this case,
the operating system needs to take other appropriate action.

vhen a page fault occurs, the CM register is loaded with the linear address that
caused the fault, and an error code is pushed onlo the stack. The page fault error
code is different from that of the other exceptions and has this format:

U
s R

P

31
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The three low-order bits of the error code provide more information about why the
address in cR2 caused the fault. The P bit is set to l if the fault was a page protection

. fault sther than a page not present fault. The w/R bit is set to I if the faulting in
struction was attempting !o write to memory. The bit is cleared to 0 if the fault oc-
curred during a read. Finally, the U/s bit is set to 1 if the faulting instruction was
executing in user mode and is cleared to 0 if the instruction $"s a suPefvisor in_
struction. (User mde and supervisor mode are discussed in Chapter 7)

Be€ause of the large flunber of divergent memory accesses tMt occur during a task
svr'itch, operating system designe$ should ensure that important task tables (the

CDT, application TSS, and application LDT) are resident in memory before ex€cut-
ing the task switch. The siluations that arise if page faults occur durinS a task switch
are not impossible to deal with, but sysrem design is simpler ifyou avoid them.

Intorrupt l5
This vector is reserved for future Intel processors.

Intgrrupt l6-CoDrocealoi grtot (laultl
This exception occurs under two conditions:

. Vhen the ERRoR\ pin is active at the start of an ESC (numeric coprocessor)
instruction

. vhen the EM bit of CRo is 0 at the start of a WAIT instruction

Intorruptr I 7-31
Th€se vectors are reserved for future Intel processors.

Intelruptr 32-45
These veclors are available for use by an operating system. The system can install
interrupt, trap, or task gates in any IDT slol coffesponding to one of these intenupts
The interrupt handlers can be invoked by software INT ', instrrctions or by hard'
ware that signals the 80386 via lhe INTR pjn.

Interrupt masking and ptiorlty
The only programming mechanisms for masking interrupts are the CLVSTI instruc'
tions, which affect the hardware INTR line. Howev€r, other siluations prevent cer_
tain types of interrupts, €ither by desiSn or because a more imporiant inteffupt is
pending. Intenupts have the following priority ranking:

1. Nondebug faults

2. Trap instructions (software interrupts INT 0, lNT 3, INT ,)

3. Debug traps fbr the current instruction

4. Debug faults for the pending inskuction

5. Hardware NMI

6- Hardware INTR intenuor

l t 9
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lor exalllple, if a page fault anct a ctebug fault arc triggcred on the sxme instruction,
the page fault takes prior ity, and the dcbug faull is masked. However, s'hen the
page fault handlef completcs ils operilion and resiarts the faulting instruction. lhe
debug far. t is retriggered.

other interupt masking conclitions occur when:

. An NMI is triggered. Fudher NMIS arc nuskcrl uniil thc ncxt IRE I instruction

. A dcbug Iarlt occurs. Debug fauits cause the RF bit in the FIFL.AGS rcgistcrto be
se1, nasking iddjtional debug interrupts. The prccessorclexrs RI upon suc-
ccssfully completing an instruction.

. The SS register is k)adcd. IIxrdlvrrc intcrrupis (both NMI and INTR) and debuS
cxceptions (inclucling singlc srcp) irc m.rskcd forthc.luratjon of one instructiol
aftef SS is baded Tl)ur, thc IISI' rcgis(ef can lorcL without risk of invokin:t an in'
terrupt handlerwiLh an invxlicl stxck pointcr 'lhc insruction that londs RSP can,
however receive a prSc fxulr, and (l)c imeffupt 14 routinc will be invoked wirh
xn invxlid stack poirllcr, possibly lcading to a doublc fnult. You can xv()icl rhis by
k)xding bo(l) SS xnd ISI'using x single instruction, LSS.

Debugging
'li:rdir 

nnrxlly, ,) kx)p(Ecssors hrvc ncvcf()m.ilNtcd mLrh tu solving Lhc prcblcrr

oldclruggiot:. Dchugging on ll1icft)proccss(xs has bcen accorDplishcd with brcak-
pojnt inslru(Iiors rnd wirh thc abiliry k) singlc stcl (cxcrlrlc one inslruclion rl x
tnnc); but fbr (lifficult pr(trlenrs, prr)grannrcrs l)ave hxd k) (urn li) in-circuir cmula-
tors or hxrdwrrc-nssistcd dehuggcfs.

As D icfocomputcr' syslcrns bccomc more sophisticrted, hrrdwrfc's xbilily k) clcter
rninc whrt is going on insiclc the Cl'Ll diminishes. FofexaDrple, assLnnc tha! r pm'
gftrmmcr wrnts ro bc notificd llnt.r particulardata strucnre hlls heen nx)dilicd.
Bccrlrsc of prgjng, re srructLre might not be in rcntiguous menxny. Thc opcr.rl-
ing systcln s vinurl rremory capebility allows itto rnove the progrrm out from
undcr lhc cyc of drc .lcblrggjng har.LwaLe,.nd lhus the prograrn's linear ancl synr
bolic nd.Lrcsses bear no relation to the generared hardware adcl esscs.

Fodunalcly, thc 803M) dssignc.s rccognizccl drcsc problcms rnd added features to
the p()ccssofllut syslcm soflwlrc can use to aid in debugging. F'orir mechanjsnr s
tfigger clsbug i crfuprs u.dcfdiltrcnt conditions: trap flag, rask switch trap,
breakpoi.t fegisters, and soflwafe breekponlr.

Trap flag
Setting dreTF bit i. lbe DIiLAGS rcllistcr causcs e singlc-step fault (inteffupt 1) to
occur beforc the next instruction. The 80386 clears the T!'bit before invoking thc
handler pointed b by lD l (l). xldDugh the saved image of EFLAGS on the stack has
Ihe trap flag set.

12l)
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'Vhen a software interrupt instrucrion (lNl INTO) is executed, the TF bit is
cleared. A debugger should not attempt to single steP an INT instruction bul should
place a breakpoint either at the destination ofrthe gate pointed 0o by INT or imme_
.li2relv after the INT instruction.

A call gate does not clear the trap flag, so a debugger shot d check all FAR cALLs
andJMPs to see whether they cause a change in privilege level lfso, programmers

should not be allowed to single step into code more privileged than rheir
applications.

Taak .wltch trap
Vhen the T bit of a TSS is set to 1, switching to the TSS'S iask invokes the debugger
fault (inteffupt 1). The fault does not occur until aftef the cotuents of the TSS are
loaded and before the first instruction of the task is executed.

Brorkpolnt rggbtorr
The debug registers (DRo-DR7) implement four address breakpoints. vhen the
registers are correctly initialized, each identifies a linear address. If the processol

accesses that address, a debugger fault (interrupt 1) occurs The debug regist€$ are
described in detail in "Prosrammingthe debug r€gisters" in this chapter'

Soltware b.oakpolnt
The single-byte INT 3 (0CCH) instruction triSgers this interruPt By replacing the
first byte of an instrrction with an INT 3, a debuggel can cause a breakpoint to oc-
cur when the execution stream reaches the INT 3 Because the software interrupts
are classified as traps, the saved cS and EIP on lhe stack point to the byte immed!
ately after INT 3. To restart the program, the debugger must replace the ocCH value
with th€ first byte of the original instru€tion, decrement EIP so that it Pojnts to the
stari of the instruction, and execute an IRET to return from the interupt handler'

This method of implementing breakpoints is much clumsier than using the debug
registers because it requires creating a sritable allas for a code segment' saviog the
original instruction byte, replacing the instnrction with an INT 3, and undoing the
above when the breakpoint has been triggered Hoer'ever, because the debug regis-
ters allow only foul active br€akpoints at once, a reasonable tradeoff is to use debug
registers for data space brsdkpoints and INT 3 for code space breakpoints

Programmlng the dobug reglst.ra
Figrre 5-15 oo the following page shows the layout of the debug registers To load a
value into one of the registers, use a MOV DRji, reg instruction. Similarly' using
MoV reg, DRJf reads the contents of a debug register into one of the 32-bit geneml

r€gisters.

The fir$ four registers (DRo-DR3) are address registers The linear address of a
desired breakpoint must be loaded into one of these registers The debug registers
are not affected by paging. Only the linear address (from the descriPtors) is used to

march a breakpoint address. Debug registers DR4 and DR5 are reserved for future
Intel microprocessors.
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Ft$re 5-15. Debug reetsters.

Register DR6 is the status register. Ir indicates the condition(s) that lead to lhe inter-
rupt. A bit is ser ro 1 in DR5 ifthc condition associated with the bit has been met.
The following table idcntifics thc bits and the reasons for the interrupt.

BO
u1
82
B3
BD
BS
BT

Brcakpoi regislcr 0 triggered
Brcakpoint rcghter 1 triggered
Brerkpoint register 2 triggered
areakpoin fegister 3 trigSered
Intel ICE hardware active
Single srep (1f sct ro 1)
'lSS T bit ser ro 1

Bits 80*83 are ser Io I if dre breakpoint in DR0-DR3 was malched during execu-
tion, evco if the breakpoint was ,ot enabled and did not cause the debug fault.

vhen Intel ICE 386 hardware is used, the debug registers are reserved for the in-
circuil emulator. The BD bit is set to 1, and any attempt to place (MOV) a value in
one of the debug registers triggers an interrupt 1.

The debug iderrupt handler must clear the contents of register DR6. The CPU sets
bits, but bits can be cleared only programmatic?lly.
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DR7 is the debug conrol register Placing an address in DRo-DR3 !r'ill not enable a

trreal-point. The"enable bi(s) in DR7 must be set, as must the breakpojnt length and

The LE\l? fields let you rpecil v r he leng h of brerkPoinr'1 l he lengh ralues "re

encoded as followsr

Oo-Byte / breakpoint legal at any address

O1-vord (2 bytes) / breakpoint must be on even address

1o-Reserved for fulure use

ll-Dword (4 bytes) / breakpoint address must be on dvr'ord boundary

The R/v, field lets 'r)u specify the tlpe of memory acccss that triggers breakpoint

'?. This field is encoded as shown belowl

o0-Execution breakPoint

ol-Memory write breakPoint

lo-Reserved for firture use

ll-Memory read or write breakpoint
'When R/v is set to O0B, an execution breakpoint' the corresponding LEN field also

must be set to OOB An execution breakpoint is triggered only if th€ breakpoint ad-

dress is set to the first byte of the instruction. If any Prefix bytes are part of the in-

struction, the breakpoint must be set to the addrcss at the first Prefix byte

The L, and C, bits allow breakpoints to be locally or globally enabled lf neither

the ! nor the G bit is set, the breakpoint is disabled and does not triSger an inteF

rupt, although the corresponding bit in DR6 is set if the breakpoint condition is met

ItonLv the L bit is se(, the breakpojnr is localLy enabled A task swjtch clears lhe L

bils ihe syslem should mark fte T bit in the TSS of the tasl< uring locally en' D|ed

U."rto.f"i" .. ,tt"t an itteffupt 1 occurs when the task is reaciivated Th€n' the L

bits cin be reset.

If the G bit is set, the br€akpoint is globally enabled and can be disabled only by

clearing C to O. Settiog both the L and G bits equals setting the G bit

Resister DR7 contains two other bits, tE and GE When elther bit is set' it enables

ttEexa"t rnat.tt cona;tion when exact match is €nabled, the 80386 processor slows

to ensure that the intenupt 1 faull reports the instruction that triggered the break-

ooinr it r-e ana ce are o, rhe 8038o mighr ger ahead of thc debu8 uni( becau<e of

i r , .  i " , . , rrr  p"r"rr"r l ' - ;n rhe ptocessoi and rheCSand EIPonthe inrerrug hrn

a...".f. - 'Sh, p"ln, one or lwo Insrrrn tions beyond the one I hJr. ltiggercll the, 
,

frulr. The pe;formance loss is not \ignili\anr' anLl LE 'rnd GE 'hould he enabled I ne

diflerence betvreen the two bits is tbat LE is cleared after a task switch' as are the

L4 bits.
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triggering the debug intorrupt
The following table shows how the address and conlrol fields define a breakpoint
condition a.d gives examples of lnstnrctions that do or do not trigger the break-
point. The table assumes a base address ofCS = 0003A000H and DS = 0004C000H.

Deb, g Regt s I et Sent ttg s

DRo: OOO4C020H
DR7: LEo = 1, R\vo " 00B, LENo ' 008 MOVAL, [20]

DR0! 0004C020H
DR7: lEo - 1, Rwo - 1lB, LENo - 00B MOV AL, [20]

DR0: O0O4CO2Ofi
DR7: LEo - 1, RIrc - 108, 1EN0 - 00B MOV AL, I20l

Df,o! 0004C020H
DR7: tEo - 1, R\vo - 118, LENo- 118 MOV AL, [23]

DRo! 0004C020H
DR7: lEo - 1, R\vo - 11B, LENo- 118 INC DVORD PTR I01El

DR0! 0004C020H
DRT|!E0 - 0, R\vo - 114, LENo'11B INC D'{9ORD PTR lolEl

DRo: O0O3A0O0H
DR7: !E0 - 1, Rvo - 008, LlNo - 008 CSr0000 MovAr,37H

DBo! 0003A001H
DRTI LEo - 1, Rwo - 008, IEN0 - 008 CS:0000 MOv AI, 37H

Byte 4C020H

Breakpoint not

12i|



MEMORY
AFICHITECTURE:

Paging is used to implement virtual memory bascd on fixed-sizc blocks called
pager, Paging is probably the ftost widely used virtual memory technique on today's
minicomputers and mainframes,

like segmentation, paging trans)ates virtual addresses into physical addresses
Addresses are translated by mappjng fixed'size blocks of memory into Physical
m€mory locations called pagelranes. cofisidet a physical memory system com-
posed of page framcs o, 1, 2, and 3, each having 10 bytes of memory. A virtual ad-
dress consists of a frame name and an offset, so assumc that the frames have the
names A, B, c, and D. The memory system al6o contains a page table lbr converting
the virtual address into a physic2l address. Figure 6-1 shows how virtual address c7
is mapped into physical address 17. The arows indicate the page mapping.

RI{rJfe 6-1, Tra$L4ting a tlrtual ad&es ta a phfncal atldrN

Segmentatioo and paging are similar: A name and an offset are translated to an ad-
dress. This mapping is the essence ofvirtual memory. However, segme ation ancl
mapping are also different- Assume that any virtual address from ttle Previous ex-
ample consists of a two-digit number and thal the digit in the ro's place is the fiame
name, rather than a letter, as in Figure 6-1. A virtual memory translation would re-
semble Figure 6-2 on the following Page. In this examPle, virtual address 27 is
translated to ohvsicrl address 17

Physical



t||E €03€6 BOOX

Because pages have a fixed size, a virtual address can be easily separated into a
name and an offset. A page table lookup converts every virlual address into a physi-

Physical memory page frames

9- - , , ,  e tv " l . r t

2
3

\d8.E|Jtre 6-2. vi/t al aid6 trandation off&cn'sze eteneflts.

Advantages and Disadvantages
A fixed page size is the key to the ad ntages of paging over segmentation. Because
a disk is usually the secondary storage for a virtual memory system, you can choose
page sizes that map well into the sector size of the disk. Paging also avoids the frag-
mentation problem of segmentation, Every time a page is swapped out, another
page fits s.actly into the freed page frame.

Another advantage of paging is that allocation for a large object (for example, a
memory segm€nt) does not have to be contiguous. An object that was contained in
virtual pages l and 2 in Figure 6-2 would not be stored in consecutive physical

Finally, paglnS is invisible to the prcgrammer. Unlike segmentation, which requires
you to know the virtual name (segment) and offset of an obiect in memory paging
requires you !o know only one address. The virtual address is broken down into its
components by the virtual memory mechanism in the hardware,

Paging isn't perfect. Using paging means losing the protection rings implemented
with segmentation. Paging is also subject to a different kind of fragmentation, called
t tternalhagmentatlan, which occurs when you store objects that do not fit into a
page or a sequence of pages. For example, if the page size is 10 bytes, an ll-byte
object requires two pages, which wastes memory.

Additionally, paging incurs more overhead than does segmenlation. In a segm€.ted
system, the table lookups that are needed to convert a virtual address to a physical
one occur only when a new segment is loaded. In a paged system, a virtual-to-
phyrical translation must be pedormed for every memory access. This would not be
an issue if the entire page table could be stored in the CPU, but processors with
gigabyte address spaces require very large page tables.

These problems are not insurmountable, however. You can implement a simple pro-
tection scherne with paging alone, plus, on the 80386, 'ou can use segmentation
and paging together. Internal fragmentation is not usually as serious as segm€nt
fragmentation, and the 80386 uses parallelism ald a special cache called the transla-
tion lookaside buffer (TLB) to help alleviate the page Eanslation overhead.

1 8



Paging on the 80386
The size of a page frame on the 80386 is 4096, or 21'�, bvtes Paging is enabled when

the PG bit of CRO is set to 1. (Once Paging is enabled, usually bv opeIating s'Etem

software, it will probably not be disabled.) Translation treats the linear address gen-

erated by the segmentation unit as a virtual address and performs page mapping on

it. Thus. memory references on the 80386 go rhrough the following stagesr

S€gment:offset -> linear address -> physical address

A linear address is a 32-bit value. To interpret it as a virtual address, take the bigh-

order 20 bits as a frame name, and use the low-order 12 bits as an offset into the

4096-byte page. To generate a 32-bit physical address, each entry in the page table

must translate the frame name to a frame address. Frame address 0 corresponds to
physical addresses 0-4095, frame address l identifies physical addresses 4096-8191,

and so on. A page table entry must also provide additional page status bits for a pro-

tection model and for s$?pping. Thus, an 80386 page table entry has this format:

e  .m.ry ^rcht*lut.! P.dng

1 1

Page frame address 31. . .12 0 l) 0 0 ?R
( P

The bits marked O are reserved for use by future Intel Processors, The field marked

.4a?ll can be used by system programmers to mark pagcs that are shared among

tasks, to hold usag€ information, or to store other paging data. The Page fram€ acl'

dress becomes th€ high-order bits of the physical addr€ss The 80386 sets the D
(dirty) bit to l when a write operation occurs vr'ithin the specified Page The cPU

sets the A (accessed) bit to l when any memory access (read, write, or fetch) occurs

within the page.

The U/S and R/v bits are part of paging's Proiection mechanism They are dis-

cussed in this chapter's "Page Protection" s€ction

vhen the P (present) bit is set to 1) the page is Present in memory lf P - 0, the Page
is assumed to be swapped to disk, and any attemPt to access the page resuLts in a

page fault (interrupt 13). Y.rhen P - 0, all other bits in th€ Page table (31-D are ir-

ielivant to the a€a6 and can be used by the system programmer Frequently, a

swapp€d page's location on disk is stored in those bits when the page is not preseot

Page Tables and Page Directories
Each page is 212 bytes, and physical address space is 232 bytes' so 22o (more than 1

million) page table entries are required to implement a virlual-to-physical transla-

tion table. Because €ach entry takes up 4 bltes, a page table requires 4 MB of

memory. If a frame address alone indicated the page table entry, the page table

would require 4 MB of contiguous memory ln a multitasking svstem that provides a

separate vitual address space for each task, each task requires a 4 MB block of

memorv in addition to its code and data.

123r
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Thc'$olution to this space problem, swappjng our the pagc table, ca.not be imple-
mcntcd aith a simple, one level p3ge tablc. For example, if a program tdes ro access
adctrcss r., the page table cmry (PTE) for jlj lnusr be brought inio mcmofy. Because
the pigc table is itselfpagcd, the PTE for pTE(jr) 'rust be broughr imo memory
first. Swappiqg continucs until the initial page of rhe page rablc is swapped in.

A better solutbn. the one nnplcrrcnred by rhe 80386. is a two level pxge tablc. rn
this schemc, thc virtual name component ofrhe vi ual address (the high-odcr 20
lrits) is split into two parts. Thc high order 10 birs are used as an index inro a 1)dge
director! A paue .lnecbty entry (PDE) points to a scaled down page rablc thar <)n
tains 1024 entric's. The l0 bits lelt ove. in dre virrual address select the pagc rablc
cnties from thc page table. Figurc 6-3 illusrrates the two,levet page structurc
'this stfLlcture solves thc p()blem of swapping our rhe page table because the initi:rl
lookLrp goes drrough thc paSe directory. Thc page directory, wi$ 1024 32 bit en
trics, lakcs up only 4 Kts and is permancnrly sr)red in memory. Each page tat)le atso
txkcs up 1r KB (fits right imo x pagel) and hxs 1024 page tablc cntrics.

Register Cll3 contains the physicai iddfess ofrhe page dirccrofy for a task. Clt3 is
thc only 80386 rcTisicr tbat contains a physical memory rddress. A page directory
cntry lus the samc form^t as x page table enrry excepr that rhc t) bil is unused and
thc A bil is set b I whcnever one ofthc paSc tables poinrcd k) by lhc page difc{k)ry

Figre 6-3. 8A386 page taqellircctory structure.
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A detailed oxamPle
Fique 6 4 shows a linear address that is tmnslated to a physical address via paging'

As;ume that an instruction refers to the lingrr address 13A49F01H The frame name
(13A49H) is split inlo a directory index (04EH) and a page table index (249H) The

page directory is at the address specified bv register CR3' location 1C000H The
page direcrory element number O4EH is selected. It contains the lue 3A7A2rrc'H,
where ,rjcn represents the Page status bits lf the present bit is set, the Page table

begins al location 3A7A2000H, and page table entry number 249H is selected ln the

anample, this entry contains the value 2c115rrtH, where ,rn rcpresents me con-

tents of the status bits. The offset of the linear address is aPPended to the page

frame to yield a physical address of 2C115F01H

Lnear adJres< lJA4gFOtH -  0001001110100100t0011r110000001 B
__----T------ ------- ------

102)

Page table
2C115101H

Blgpre 6-4. PaSe tansl4tlon yocas

As the e)(ample shows, referring to a single memory location when pagiog is en-

abled requires three referencesr a memory read of the page directory, a read of

the page table, and the targel memory access

The Translation Lookaside Buffer
To eiiminale lhe errra bus cyctc. rhar pagine impors on memory referencer' rhe

80386 contains the TLB, a €oftent-addresMble cache memory. The TLB stores the

J2 most frequenlly u.ed page l2ble enlries and page direclot) enlries on ' hip

\0henever a Page table request occurs, the TLB is checked first. If the table entry is

cR3

04EH (7810) 249H (t8510) F01H
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found (a "cache hit"), the 80386 translates the address with no addirional memory
overhead. More than 98 percent of all references result in a ca€he hit, leaving less
than 2 percent of all memory references degraded by additional cycles.

The TIB is flushed whenever register CR3 is loaded with a new base address.
Because the tabie entries are cached on the 80386 chip, maintaining page table con-
sistency in multiprocessor environments is important. When one processor modifies
a page table (that may be in another proces.sois ca€he) or a page direcbory, the pro-
cessor must signal the other proces.so$ and force them to flush their TLBS. The
other processors must then load the modified tables. The LOCK prefix should pre-
cede any accesses to the page tables to eliminate simultaneous access,

Page Faults
If a page descriptor is marked not present (p = 0), a page fault (interrupt 14) occurs.
When this happens, reSister CR2 stores the linear addfess that caused the fault,
anC an error code is pushed onto the stack, Page faults can also be caused by viola-
tions of lhe page protection rules, described in the nexr section. Chaprer 5 conrains
additional information about page faufts in the section called "Interrupts

and Bxceptions,"

Page p?otoction
The format ofa paSe dircctory entry and of a page table enrry includes birs marked
U/S and R/W The U/S bit specifies whether a paSe is a user page (U/S . 1) or a
supervisor page (U/S - 0). A supervisor page cannot be used by any procedure run-
ning with a CPL of 3. However, a Focedure wirh a CPI of 0, l, or 2 can access a
supervisor page. User pages are accessible re€ardless of the CPL. If a page direcrory
entry is marked with U/S - 0, only a supervisor procedure can acce$ pages in the
pag€ table pointed !o by that directory entry, regardless of the U/S seiting in rhe in-
dividual page table entries.

For a user level program (CPL - 3), access to individual pages can be restricted fur-
ther with the R/r / bit, A user level program can read or can execute any user level
pages but can wdte to a page only lf rhe R/!7 bit is s€t to 1 in the page directory and
in the page table enlries. A supervisor level program can read or can wdte pages
regardless of the s€ttings of the R/\i, birs. The rules are summarized by these
fbrmulas:

read-access(addr) - (cpl< 3)l GDE(U/S) = 1& pTE(u/s) = l)

wdterccess(addr) = (CPL < 3) | (read,access(addr) & PDE(R/\O = 1 &

PTE(R/V) = 1)

Vhen a user level process loads a selector, issues a software interrupt, or generates
an access to the GDT, LD! TSS, or IDT to load a descriptor, system table reads and
$'rites are treated as supervisor level accesses. Pushing values onto an inner-ring

l3tt
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srack segme is also treated as a supervisor l*el access lf the systcm tables had Io

be stofed in Lrser level pages, Ihcy would be lcss secure dran if storcd in supervis.rr

Gombined Paging and Segmentation
Ahhough snnulaijng a fhl adcLress space is possible in thc 80386, most systcms will

p()brbly use some segmcntalion. No spccial restrictions xpply when combining

segmcnurion 3nd paging, rlthough observing ccrtain rules can mxke life easicr ior

thc opcrating system dcsisner.

!'or examPle, sc*ments do not nced to fit int() I single page or into a mr. tiPlc ol ,?

pagesr 2 Pxgc can contain porlions of more than one segmcnt, or vice versa l bw"

ever, men)ry management is casicr if al L segmcnts are nruhiPlcs of 4096 lrvlcs You

can mark xll scgmcnt hrits xs Pagc granular ((l = I jn the segncnt clescr ipt( x ). rn.l

each segmenl limit field willcontain the ntrmbcr of pages rcquiredto hold thc seg

T() slrppo|t page protcltion, nn openting system should implement 1lt lcrst level 0

xnd lcvcl3 segmcnt protcrtion rings 'lhis is noi I problcm, even in svstc,is simul.rG

ing n flrt mcnrory xrchits:tufe.  ll uscr lcvel Progfrms can slurc thc scme lcvcl 3

c(rde scgmcnt .rnd lcvcl 3 daia segnrcnl, and the operating systcnr crn usc tw() lcvcl

0 scgnrcnts. lloth scls ()isegncnts cAn nrap into lhc sxmc lincafadclrcss sP.tcc' so

1hc use of(lilfcrcnl seleck)rs will l)c invisjl)lc exccpr for the P ivilcgc lsvel

Multitasking
Opsraling syslcm dcsigners can choosc io suPport eilhcra singlc mctnory map (onc

forcrch lxsk) ()f muiripie menxxy maps (onc fbr dtc system nnd one for caclr.iPPli
clltion). A singlc virrual rnemofy space is dre siNpLcst aPproachi howevcr, anv sys-

tcln thal suppons multipie virtual 8086-modc tasks n€eds a cliifcrcnl set of Pxgc
txblcs foreach vs6lask.In vu6 mode, each iask accesses lincar .rddresscs 0 ro I MB
Thcrc must be a scparxle physicaladdress spacc for each lincaradcLress spacc
Figlrrc 6-5 on 1he fbllowing pagc sbows how Vu6 tasks can bc mapped to phvsical

The s03s6 supports diftcrcnr page tables for each task by saving and resloring thc
CR3 regisrcf in the task state segmen! To &1ve itself f.om having onc 4 MB pagc

table per !xsk, an operaling syslem can limir the linexr eddress space ofan applica
Iion to a subsct ofpaging's 32-bit, 1GB vi|tual memory sizc

R)r cxampLe, ifan operating system limits each applicition to 8 MB oflinear eddress

sprce, it needs 1o manage only two page tables irnd the Page di.cctory Each unused
pxge directory enrry is marked not prcsenr (P = 0). Tryiflg to access an illegxl
memory address results i' e pagc fault, and the operating sfslcm can tell whether
the fault represents a swappe.l-out page or an illcgal memofy reference. rigure 6 6
on the following page jlluslmtcs such a systeD.

t 3 l
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l M B

640 KB

0

4 M B

3 M B

2 M B

1 M B

0

[ach pair of affows indicates
a set of Page maPpings.

1 M B

640 KB

V86 task 1

Unear address

Et$ilrre 6-5, .!4awtng 186 tatkt to phys(al r4enaL .

8 MB virtual address space
007Fr000H

00040000H

00002000H
00001000H
00000000H

Page table 0

Illegal addresses Swapped pages

Flgte 6-5. Page ndes rc4uired to vWfi a MB of Mory.
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Application desigaers should know address spa€e restrictions. Some operating
systems might have a way to request a larger virtual addfess space with a system
call, but others might not.

Performance is another concern for application designers in a demand-paged s'5_
tem. A key io system performance is the size of the applk^rion's urcrking set.'fl€
working set is the number of application pages that the operating system lries to
keep in physical memory ai one time.

For example, asslune that an application is computing the sum of two arrays into a
thid array, as represented by the following program fragmentl

1 n t  a C r 0 2 4 l ,  b t 1 0 2 4 1 .  c t  I 0 2 4 l ;

i o r  t i  '  o ;  i  <  1 0 2 4 ;  i + )
a t l l - b l l I + c t l l l

The code for the program resides in one page, and each array (a, b, and c) resides in
a separxte pase. If the operating system provided a wo(king set of three pages p€r
application, this program would run slowly because two pages would have 1o be
swapped to disk for every,6/ loop iteration. Figure 6-7 iLlustrates the swap.

only 3 pages ln
m€mory stmultaDeously.
.1 musr be swapped out
and d swapped ln, then
d swapp€d out and,4
in 1024 times.

aEDft 6-7. sfuapptns a u,othinq set.

Most operating systems provide working sets much larger than three pages per
application, but applications with large memory requirements miSht see similar
results. If J,ou write an application that requires a large amount of memory, ycu
might improve its performance by changing the ptogtalJ\'s locality oJ referefice.

The previous program ftagment needs access to many pages for every rycte
through the loop. If this program were running under the operaling system de
scribed previously, you could increase its performance by changing the data struc-
ture so that at, bt, and ci reside in the same page.
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i n t  a ,  b ,  c :

.  
)  b l  o c k l 1 0 2 4 l ;

f o r  ( l  -  0 r  J  <  1 0 2 4 :  j + l )

b l o c k t i l . a  -  b l o c k t i l . b  +  b l o c k t i l . c ;

The program now runs with only two page ss?ps, as shoNn in Figure 6-8.

Initial working set allows
67% of rhe loop to execute
without any swaPPjngi then,
first block is swapped o t
and lasl block is swapped in
to complete the loop.

Bl{.xe 6-8, Reductne suapptng uta \o.ahry of refercnce.

Application designers should consider how paging affltts their programs. Although
many designers will sc'e no impact on their programs, others m*ht need to modify
code. A classic example is a program such as a LISP interpreter, which manipulates
a large number of linkedlist data structures. Unless a mechanism forces locality of
reference on the lists, a user could end up $r'ith lists that have pointels to cells scaF
tered throughout the address spacer resulting in excessive swapping overhead,
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In earlierchapters I alludcd to the 80386's abilitylo run sofrwarc written for pre-
vious lntel microprocessors. This chapter explorcs this ability and disclrsscs how ro
make thc mosr ofit.

The 80386 provides an almost ideal upgradc parh from previous gcncralions of Inrel
processors. In real modc, the 80386 can run U086-family programs. Il can swirch
inlo protected modc and execuie 80286 soirw"re. The native modc of rhe 80386 ex-
pands fie prolecrcd-mode capabilities with 32-bit operations and climin4res thc 64
KB segment rcstrictions of lhe 80286. Virrual8086 mode also lcts you run real-mode
prcgrams in protecled modei this is advanlageous becausc thcrc are many more
real-mode applic4tions available than protected-mode applications.

Beal Mode
When the 80386 is powered up orreinirializ€d via rhe hardware RESET\ line, rhe
CPU is in real (reafaddress) mode. Io rcal mode, all of rhe CPU'S protccrion fcarures
are disabled, paging is not supporred, ancl program addresses corrcspond |o physi-
cal memory addresscs. The address space is limited to 1 MB of physical memory.
Real mode is compatible wirh rhe 8086, rhe 8088, the 80186, rhe 80188, and rhe real
mode of the 80286. Minor differences between feal mode on rhe 80386 and orhel
processors are listed in Appendix F.

Vhen lhe 80386 is reset, the regisrers are initialized ro rhe values shown in the tablc
on the fbllowing page.

7
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DH
DI
ETTAGS
IDl'R

CS
IP
SS
ESP
DS
IS
!S
GS
cR0

3

2
0 (base), 3IFH (linit)

r000tI
FFIOH
0
?
0
0
0
0
0000000*OH

3 for 80386
Identiies revision number ofCPU

Descriplc,r ba-sc set to IFF|00OOH
lirst inshuction a! FIFFIFFoH

Undefined, load SS:ESP belorc usina stack

Bit4 - 1if80387 prcsent,0 otherwise
Bits 5-30 ,!€ undefined

Memory addresslng
The 80386's use of shadow registers (segment descriptor caches) provides a key to
underslanding real-mode memory addressing. Each 80386 segment reSisler that
holds a seleclor has an invisible component called a shadow register. In protected
mode, evefy time a selector is loaded into a segment register, lhe contents of the de-
scriplor indicated by the selector are loaded into the shadow portion. In real mode,
lhe shadow register is loaded with a computed lue rather than with a value
extracted from a descriptor. Figure 7-l illustrates the shadow registers,
'when the 80386 is resct, fie shadow fegisters for segments other lhan CS are loaded
with a base address value of 0 and e limi! of oFFFFH. wth attributes set to 16-bit ad-
dressin$ 16-bit instruction seti read, write, and execute abilityi and privilege level0.
The CS shadow registers are set with the same limit and access bits as the other
shadow registers, but have a base address ofFFilFooooH. Except for the registers
listed in the above table,80386 registers are undefincd.

1
CS
SS
DS
ES
rc
GS

Flgure 7-1. aA386 shadou reqste^.

I lrogmminer accessible

Invnible' descripror cache

t36

n No! accessible
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Ar reser, rhe limir porrions or thc shado$, regislers are set ro 0IFFFH, which indi
catcs a 64 KB segmcnr. The access dghts portion is set to a valuc i.djcating thar the
seSmenl is readable, wrirable, and cxe.utable and rhar 16-bir addfessing and ope.
and modes are enabled. These values femain consranr wtrile thc p.ocessor is in real
modc, and only thc bxse address value is alrercd. Each rime a segment reSisrcr is
loacte.l,lhe base addrcss portion ofrhe sludow reSister is ser to 16 rimes rhe value of
the sclcctof. For example, ioading Ds wirh thc vatue of 001AH scts the base adclress
of thc l)S segnEnt to 01A0H. Because aLl the scgmenrs in rcal mode are 64 Kts, rhe
segmcnt acldress.lblc via DS exrends from 0t AoH ro 1019tli Figurc 7 2 illLErarcs
physical acldress gencration in real mocle.
'lhc highest segmcnt base a.ldress drat c;tn bc generated h real rmde is oFrrFFOH,
16 bylcs short oI I Mll. Becausc thxr segment cxrends for 64 Kt], memory bcyond I
MB can be adclresscd. Thus, 80386 reafmode ddressing is somewhar inc(rmparible
with tllat of the 80ij6, which hardware acldress lines limjt ro 1 MB. ccncn ly, rtris
limitatk)n can be ignored bec.rusc i]086 programs do nor usc ir. tfneedcd, cxrernal
hardwxre can bc added to the 80386 ro limit sysrem addrcss spxce ro 20 birs while
opcrating in real m(xle.
'1 he rcset statc ol the CS sl clow regisler docs not follow rhc .,selecbr iimes 16"
rLrlc. llclausc thc inirial l)usc kldress for rhc codc scgmcnr is ser to I]I:FFoooOH!
ItOMs rh^t handlc pft)cessor rcscr cxn bc phccd at thc cnd ofrhc adclress $pacc.'1 hc firsl CALL ()rJMP instruction thnt lxds CS afrdr rcset lbrccs thc basc address
inlo thc fhst ,ncgabyrc ofa(ldrcss spacc.

0

1 t\,tR
MB+6'1 KB0140

00001400 2 C B
Base addtcss

Flgufe 7 -2. Real -ho.le a.1dt6.tu!t.

l6.bit instruction set
The predefined shadow registef vatucs cause anorhcr side effecr. Thc D bit in the
access dghts field is always ser to 0 in rcal mode. Thus, rhe 80386 is forcccl to oper_
are in 16 bit mode unlcss it encounters an OPSIZ or ADRSIZ prefix.

137



THE 603A5 BOOX

To unde.srand how the D bit works, examine the 8086 instruction set Most 8086 in-
stru€tions execute with either a byte operand or a word operand The byte/word
indicator is encoded in one bit in the instruction. For example, the oPcode fbr negaF
ing a byte operand is 111101108, and the opcode for negating a word operand is
111101118.

RJlher rhan invenr new op-odes fot J2-bir I dword I operands. 80J86 de{isners
changed the meaning of the opcode bit that signifies a lord operand \I/hen exe_
cuting in a native-mode (32-bit) segment, where the D bit in the segment descriptor
is set to 1, executinS opcode 111101108 means negate ,/te and 111101118 m€ans
negate drrorl The instructions refer to bytes and drrv'ords rather than to bytes and
woKls. Vhen the D bit of a descriptor is set to 0, however, the opcodes retain their
or'Sinalmeanings.

The D bit also affects address computation for memory operands and the slack.
when D = 0, coffespondinS to the 8086, the 16-bit registers are used in calculating
segment offsetq as in MOV AL, [SI+8]. r /hen D - 1, corresponding to the 32-bit
native mode of the 80386, the same opcode bits cause the memory address to be
calculatecl using the 32-bit registers, and the instruction becornes MOV AL, [ESl+8].
\(/hen D - O in stack segment descriptors, PUSH and POP instructions access 16_bit
operands, Vhen D = 1, 32-bit Pushes and pops are executed.

The OPSIZ and ADRSIZ prefixes qan oveftide the cuffent D bit setting for an in-
struction. Thus; 32-bit native-mode instructions can b€ Preflxed to use 16'bit
operands, and 16-bit c.()de can be prefixed to access 32-bit opelands and 32_bit ad-
dressing modes. The new 80386 addressing features (such as indexino are not
available in segments that have the D bit se! to O unless the ADRSIZ prefix is used.
You need not speciiy the prefix instfuctionsi use extended_addressing mode' and
the assemblerwill insert the prefix.
'when using extended addr€ssing in real mode, observe the 64 KB segment size
limitation. In real mode, addr€ss offsets greater than 65535 return an inteffupt 13

Interrupt processlng
Intenupt handling is different in real mode than it is in protected mode. As in Pro-
tected mode, the IDTR contains the base addr€ss and limit of the interrupt table For

8086 compatibility, lhe base is initialized to physical address 0 with a limit of 3FFH.
In rsal mode, however, the interrupt table does not hold descriptorsi each interrupl
has a 32-bit selectonoffset address that points to the routioe to be invoked when an
interrup! occurs. Thus, each enlry is 4 bytes rather than 8 bytes Figure 7-3 illus-
trates the real-mode interrupt vector table

Processing of an interupt in real mode is similar to that in protected mode except
for the use of vectors instead of descriptors. A software or hardware interrupt causes
the 16-bit FLAGS register to be pushed onto the stack, followed by the current cs

and IP The IF and TF flags are cleared to 0, disabling interrupts and single-
stePpmg.
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Physical memory

3t  16 75 0

:

Vector 255

F1gorc1-3, Real-mode interlupt tEctor taqe.

The pointer from the interrupt table is loaded into CS and Iq and processing con-
tinues at the new location, Automatic task switching and interrupt gates are not
present because no descriptor tables exist in real mode, The vector in the inteftupt
table specifies a new ex€curion address only.

Real.mode yestrictions
You can use all the instructions added to the Iniel80386 archirecture since the in-
troduction of the 8086, with the exception ofl

IAR

ILDT

ISL

LTR

SIDT

STR

VERR

VERW

Real mode does not support the ways that these instructions access protected-mode
selectors and descriptors, Executing one of these instructions returns nn undefined
opcode fault (interrupt 6).

You can exe€ute all other 80386 instru€tions. Real-mode programs can access any
80386 register, including the control, debug, and resr registers.

Real mode does not support paging. Setting the PG bit in register CR3 ro enable pag-
ing causes a protection fauit.

Appendix F outlines the differences among the operarions of rhe U086, rhe 80286 in
real mode, and rhe 80386.
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Prctected Mode
S€tting the lo*order bit of CRO to 1 switches the processo into protected mode.
The processor will run in protected mode even if no setup is done. Thai is, it will
nul unril the first inteffupt, FAR program transfer, or segment register load. At this
point, the processor needs to access a descriptor table. Because the 80386 depends
on descriptor tables, the system will shut down if the descriptor tables have not been
initialized.

Protected-mode initialization requires you to set up a global descriptor table and in-
terrupt dcscriptor tables and to create a task state segment for the first process. The
initial descripior tables may be stored in ROM, but lhey must be copied to RAM
before s€tting the GDTR and ImR to point to them because the 80386 needs to
writc to the descriptors ns well as read from them.

Figure - .4 .how< a simple ini l ia l  GDI. thi{  CDT would he.uff ic ient ro run ddi-
tional startup code. You could also build the operating system imagc in real mode
and then switch inoo protected mode. An advantage of$witching into protcctcd
mode as soon as possible after reset is that the 80386 hardwarc can hclp trap startup
bugs early in the codc devebpment cycl€.

In Figure 7-4, GDT(o) is uft)sed because a selector wlue ofo is treated as a special
case, a NULI pointer Thus, any descriptor at GDT(o) will never be used. CDT(I)
points to rhe GDT as a witabie data segment, allowing the operating system to add,
delete, and change descriptors as needed. GDT(2) points to the IDT as a writable
data segment for the same reason. cDT(3) defines the TSs for the startup task,
cDT(4) defines lhe task's data segment, and cDT(5) defines the task's code seg-
ments. which are in ROM.

0
I
2
3
4
5

E {lJfeT-4. A nnple aDT.
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Before enabling p.otected mode, the GDTR mlrsL be loaded wirh rhe address.rn.l
l i  n i r  o l  l , e  C D T .  T l - ,  I D T : l  u u  d . o n . J r n  g J r , - , 1  - r  t , , . r  r  r J .  J J e . i ,  

 

r r i p \  J n )
far. ts that occur dlring staflup. The ID IIT is initi.rlizccl ro p( )inr ro rhe IDT, and t R is
loxded with the selcck)f ofcDT(3). The PM bii is ihen scr in the CRO register to en-
xble protected modc. Next. a FAR junp instrrrrion loads rhe CS register wirh a v. i.l
prctected mode descript()r Finally, the stack s.gmcnl, srack poinrer, and data seg-
nrentregis tersare loadcd' rhein i t ia l izat ionwi l lbu i ldrheresrofrheoperar ingsys-
tem, enable prging, .rnd start application pfograms.

8(,286 compatibility
Protected mode 80286 cocle executes on the u03il6 if rhe lburrh wold of each dc-
scriptof is initialized k) 0. I)cscfiptors are 64 bits ()n thc u0286. xs on the 80386, but
rhe last l6 bits .uc unLrscd. Il1 the 80386, thc cxlm bits spccify rhe high ordcr.,fthe
lrase address an.lthc lhit fielcls nnd contain thc (l xnd I) control birs.'lhcsc ncw
ficlds should be sct k) 0, resrricrinS segr'ent limits 10 64 KII and a(ivaring thc 16])it
insin'ction sct (which is (\rmFrible *,ith thc 80211(t.
'lhe u02il6 xnd the 80386 operate similxrly; the few clilfcrenccs in opcr.xri( con,
cern pcrlormxncc xncl newly xnplenrcntc.l li ||fcs xnd insirrrrrcns. t hc i10386
rllows thc IOCK prcfix to pfececlc the following insr[cLions only whcn (l)cy
nodily mcmory:

AI)C

AI)I)

A N  l )

lJt-

BTC

B'l]t

BTS

DEC

INC

Nll(;

NO'I"

OR

51]I]

sua
xci IG

XOR

Illcgal use ofthe LOCK prcfix rcsul!s in a protecrion lluh on rhc 80386. Addi-
rionally, the 80286locks rll of physical memory during rlrc insLruction; on rhe
80386, the locked area is thc mcmory fegion with rhe sarrc sraring xdclfess and
lsngth rs the operand ofrhc locked instruction.

The machinc stitus word (MSV) is thc low o cr 16 bits of regisrer CR0. Thc MS\v
is initjalized to 0F|F0H on the 80286, bur ir is inirixlized b 0 on rhe 80386. Rcgisicrs
that are spccified as undeiined ar reset mighr havc diferenr values than drcy do on
rhe U0286.

A! reser, fie base addfess ofthe CS registcr is diffcre.r on rhe 80386 than ir is on rhe
U0286. The CS register is set to the last 16 byrcs ofaddress space on both processo.s,
but the 80286 supporrs only 2,i bit addresses; rc 80J86 slll)porLs 32 bir addresses.
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Retulning to real mode
In general, an opcraling system sholrld nol switch the U0386 to real mode aflcr run

njng in protected node. Returni.g to rcal mode comPiomjses operating system

sccuriiy because reaL mode is more vulnerable to crashes To run reaL modc pro-

gr.rms, create special tasks that run in vinual8086 (V86) mode lhe next scciion

discusses this prcccss.

If you must rcturn to real mode, follow this pro.cdurc: lfpaging is cnabled, turn it

offby b.anching to a routine whose linear and physical addresses arc the same'

cleadng rhe PG bjt in CRO, xnd moving 0 inLo cR3 io flush the TrB

'lhe attrjbute bits in cach segment clcscriptor mrisl bc sct to valLEs crtnPrtible with

rcaL-mode opcrxtn)n (that is, they mLrsl be byte granulxr scSments wilh a ]nnit of

oliFf!'H, ancl the 1l xnd D bits must bc 0) CS must bc m.rrked executablc, ilnd SS,

l)S, ljs, !S, and GS shoukL be "'dtablc scgments. (Changc thc CS selector by issuing

.r lAlt jLnnp ofcxll instruction.)

Disablc intcrrupts, ancl loxd tlre IDl lt with .l bxse addt€ss ot' 0 xncl x litnit of 3FII I

Clcxr rl)c Ptj bit oiihc CRO rcgister !o return to real mode, xnd exc{ute a FAn iu'Ip
to llush thc 803u6 instrl|clbn queLre xnd iniiializc CS to x vxlid rcrl-modc bxse

Oncc yoo loa.llhe stack poinlcr (ss rsl'�) nd (hc olhcrscl]drc registe.s, prcgrams

cxn contintrc proccssing jn '!^lnrxlc

Virtual 8086 Mode
lrNt rs vinual metnory rll()ws thc processor to cfcatc thc nnPressi()n ol memory lhrt
isn't rcally thcrc, virtualll0u6 mode rllows thc 80386 to cre,(c lhc illusion ofmul-
trple 80U6 prcccssoN. This illusbn is so nearly complcte fb,rt muhiplc 8086$asccl
operating systcrns can nrn undcf a suPervisory p(nccted-moclc operating system.
lbr exrmplc, issume thrt thc n:rtive{ode opefxting system for x'r 110386 complncf
is UNIX and lhal suppolt fbr V86 nbde is built ii ln ,rddition t() runnjng multiplc
UNIXtasks, thc user can run a <)py of MS-DOS a.d a word Prccessor in x V86 win
dow Thc Lrscr crn aLso invokc ,rnodrer virtual 8086 scssion runn ing i sPreadshecr
undefvindows. Eich V86 lask l)elicves lhat i! is running on a separare 8086 mr
chine bul aclualLy mns corcurcffly with host oPcr^ting systen lasks

V86 mode was designcd for the 803U6 in response to the ncgatjve reaclion tor'"ard
80286 prorected mocle. AppLjcarion designers .leveloped lr largc sofNare basc lor
the 8086 f,lmily under MS DoS. l'he 8086 and 8088 processors slrpport onlv fcal-
modc progranming, andMS-DOS js sensilive to the maPping belween seleclor
values and physical actdresscs. when Intel introduced the 80286, developers lbund
tha! MS DOS prograDrs had problems running in protected mode
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If MS-DOS were less sensitive to physical addressing, most applications could be
easily ported to 80286 protected mode. Operating sysrems such as Concuffent CplM
and Miffosoft Windows created environments thar relied less on the idio$alcrasies
of real mode. bur be. ause of DOs s wide popularil) lhe rnarkerplr"e dernanded
support of real mode.

V86 mode was Intel's response to the demand for support of real mode. The 80386,s
paging and multitasking capabilities enabled designers to implement V86 mode,
which overcomes the 1 MB nonprotecred limirations of real mode. Because a TSS
€ontains an image of all the general regisrers, it is the basis of a register image for a
virtual machine (in this case, an 8086). Addirionallv, the TSS conrains t}le €xtra in-
torm;tron needed for prorecred mode: rhe inner-ring sLack pointers and lhe page
map base register (CR ). Th€ operaring sysrem creates a \€6 task by setting rhe VM
bit in the EFLAGS image of the task's TSS.
'When 

a rask is invok€d and the EFLAGS r€gi$ter is loaded (setting the processor,s
\M bit), the task's code porrion behaves as if it were running in real mode. The task
does not use des€riplorsi base address€s are generated by multiplying the selector
value by 16. The difference berween real mode and V86 mode is thar real-mode ad-
drcsses are physlcal addftsses and V86-mode addresses are ltnear ad.dresses tl:.,�l
can be mapped via paging hardware.

Thus, the executing progtam makes the same assumptions about selectors and ad-
dresses that a real-mode program does, but the paging hardware, under control of
the native-mode supervisor, conrrols which physical addresses are used by rhe V86
task. The entire 4 cB address space is a ilable for remapping the V86 task,s ad-
dresses. The other issue thar desiSners of the 80386 had ro face was integrating real-
mode programs into a secure, protected-mode envitonment.

M€mory references were flot a problem. The paging hardware can isolate the V86-
mode program address space from protected-mode programs, preventing data cor-
ruption, Besides memory, rhe only external inrerfaces to the 80386 CPU are I/O
ports ancl lntefrupts,

UO in V86 mode
In protected mode, the I/O privilege level (IOPL) determines whether a procedure
can pedorm I/O instrucrions. In V86 mode, IOPL prorects the inteffupr flag (IF),
and I/O port protection is performed through the I/O permission birs in the TSS.
V86-mode programs run in ring 3; rhus, they cannot alter the value of IOPL.

The CPL of a V86-mode task is alwats 3. If the system IOPL is less than 3, rhe in-
structions on the following page return a general protection faulr (inteffupt 13) with
an error code of 0. I/O instructions are not IoPl-sensilive in V86 mode.
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INT

IRET
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LOCK

POPF

PUSHF

STI

Ifthc system runs with an IOPL of 3, the V86-mode task will execute the instruc-
Iions above withoul triggering the gcneral proteclion fault. This creates a problem
becausc thcsc instruclions modify the inteffupt flag. Although 80386 performance
may be higherrr'hen IOpL = 3, this operating mo.lc is not recommended. Allowing
a V86-modc task to disablc interrupts col cl result in a data loss or a system shur'
down. For example, rhe following twoline asscmbly program locks the system and
requircs a complctc powcr cycle b bring thc syslcm back on line:

Designing a reliable system that runs V86-mo<le tasks with IOPL = 3 requires bard-
ware support and cannot be implemented with software alone, For example, a
watchdog timer can be connected to the NMI interrupt, forcing control back to the
opcrating systcm if an application appears lo have crashcd the systcm.

The I/O permission bihr4p ofthe V86 task state segment determines whcthcrthc
I/O instruction exe.utes or causes an exception. Figure 7-5 illuslratcs thc I/O pcr-
mission bitmap in a V86 task state segment.

Flg0ie7-5. UO perminlon bltnap.

c l  i
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A tradeoff exists between performance and prorr:crion. If you a ow all rasks to issue
I/O instructions, more rhan one rask might access a device simultaneously. How
ever, if you trap all I/O instructions, prcgrams might run slowly_ A compromise is
to mark I/O address space as inaccessible until rhe firsr fault occurs. By trapping the
first I/O instruction to a given port, the operaring system cm derermine wherher
another task is using the device. If not, the permission bits for the faultine rask can
be modified to granr access to ihe specific device, and the rask can resume process_
ing it iull ipeed. Il some olher ra:k is acce\\in8 rhe de\ i. e. rhe ldultin€ rask c.rn be
suspended or terminared.

Memory-mapped devices must be controlled rhrough paging hardware. pages thar
correspond to device addresses can be rtarked ,.not presenf'to cause a fault, or
they can be mapped to other devices or memory locations for subseaucnt Drocess_
ing. (The larrer rs cilecri\e lor Jisplry devrcu!.,

Inter?upt handling in V86 mode
Because V86 mode is part of the protccled-mode cnvironment. interruols are
handled throuSh rhe srandarrd protecrcd-mode lDT. The inreffupr c ;s rhe pro-
cessor to switch k) an inneFring stack segment, The stack segmenfs selector is
tak€n from lhe TSS and is a standard protccted-mode seleclor, as opposed !o lhe
value of SS that the V86-mod€ task is using. Hardware inteffupls arc flelded by rhe
routines or tasks designated by ihe gates in the IDT. &)frware inteffupt insrrucrions
in the V86 task usually refer () routines in the virtual rnachine opcrating system;
th€y are unlikely to coffesfiond !o the vectors implemented by thc supervisory
operating sysrem. Therefore, any operating system that supports V86 tasks musr be
aware of two possible ourcomes ofa software INT insrruction executed by a V86_
mode Program,

The most likely outcome is a general protection fault (interrupt 13). Because V86
tasks execute ar privilege level 3, accessing a morc pfivileged ring's descriptor
causes a general protection fault. The intenupt 13 faulr handler musr detect when ir
has been invoked due ro a sofrware inrerrupt inskuction from a V86 usk.

The error code on the stack indicales lhc vecror that caused the Eeneral Drotection
[auk. The handlercan lerch thc onrenrs ofrhe V8o inr{rrupr ve; lrL}m rhe \ 86
Lask image and branch ba( k lo thc v86 rourin<.

A less likely outcome occurs only when IOpt = 3 and when the gare in the lDT has
a level J descripror In r his case. the sofrware inrerrupr causes a branch tl) rhe rou-
tine poinled to by the gate. This rourine musr be in ring 0 to prevent a general pro_
tection faull. Any inteffupt .ourine thar can be invoked by a level 3 gate in the IDT
must examine ihe \7l4 bit in the EFLAGS image on the stack ro determine whether
the_interrupt handler was invoked by a standard protecred-mocle rouline or by a
V86 task.
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'!/henever an interrupt occurs while the processor is executing a V86-mode task,
control moves to a ring 0 code segment. Control may rransfer directly to ring 0r or it
may transfer to the general protection fault handler (which must be in ring 0). The
ring 0 stack is slightly different when control comes from a V86 task than when it
comes from a protected mode procedure. All segmedt registers are pushed onlo the
ring 0 stack when an inteffupt or trap occurs in a vll6 task. Figure 7-6 illustrates the
differences in the stacks. Note that an effor code will also be pushed for certain ex-

In addition to the exrra values pushed onto the stack, all segment registers are
reloaded during the transition through the gate. DS, ES, PS, and GS are loaded with
a null selector (0), SS js lc/aded from the ring 0 stack selector in the TSS for th€ V86
task, and CS is loaded with the descriptor from the inteffupt or task gate.

The segment registers must be loaded with new lalues if the ex€cuting task is a V86
task, Before an interrupt, the segment registers contain real-mode style segment ad-
dresses, which are not valid selectors for the protected-mode interrupt handler.
vhen th€ inteffupt handler returns via rhe IRET instruction, the 80386 ch€cks the
saved EFLACS image in the level 0 stack. If the saved vM bit is set, the cPU recog-
nizes thar it is returning to a v86-mode task and reloads the segment registers with
the saved values on the stack,

l
Tr
I R€al"mod

Interiupt stack after
rmnsition to ring 0
in protected node

Fl$rre 7'6- RinA A inblrupt stach:: lA6 vs ptcttectecl node.
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TNSTRUGTION
SET

REFERENGE

'lhis chapter of 7h? 8O3a6 Eook provides a reference for thc 80386 and 80387 in-
slruction sets. The instructions ̂re in alphabetical order, with floating-point instruc-
tions following the 80386 instruction pages.

The experienced user can find information with a quick glance at the first part of an
inskuctionr a less experienced uscr can refer to the detailed descriptions and

Operators
The following reference pages use these ope*tors:

OPenrot Meanlng qpmbt Mealttng

+ Addition & Boolem AND
- Sublraction > crearer than
. Muliplication < Less rhan
+ Division >> Shiir right
- Not << Shif! left
= Equal to < Less than orcrquallo
l- \or Fqurl r^ : C.errer thrn or eourlro
I Or * Asi8nmell
^ Exclusive OR
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SYNTAX
Generk
instructian
fort/tot.

OPERAIION.
k\eudocode
qeratton
descr$rtion.

#PF (pagefault)
A tnlue in parentheses
hdicat6 that qn
error code is pushed
onto the stach.

EXAMPI.E.
Code thot
illustrates
use of the
insltuctian.

THE ao:ra6 'OOX

MNEMOMC.
Used by the assembler to
relnesent the instruction.

NAMI.
Nane of the instructian.

PROCESSOR TYPE.
Processors that suwrt
the instruction. Note that
earlier plocessors
srrpported onlJ) g-bit or
16bit forns.

OPERAND SIZES.
When nany different
oryrands may be used,
this field indicates legal
sizes. If the insttuction
requires nnre thon olE
opered, the! are
asstmed to be the sane
size. Unl6s otheruise
slabd, 8 = 8-bit
oper^nds; 16 = 16btt
operands; 32 = 32-bit
operands; 16p = The
instluction accepts 16-
bit olElan^ b)/ ltsing the
32-bitform and the
OPSI Z instruc tion prefhi

LEGAI TORMS.
Ipgalfollts of the
instrudion. rcg = one oJf
the gereral registers
EAX, ES], BX, DI, BP,
DX, etc. n\em = a
memory opwand
to2ulll, IEBP+EAX r 31,
[ECX+7J, etc. idata = 6n
irntnediate dakl oath@
62 17A3H, etc.) $eg =
a Wmerrt register. offset
- an offsetfrom the'
current CS:IP

FII\GS.
OF = OLerflou flag.
DF = Dlrection fla.g.
IF - Intellupt enable flag.
TF = Trapflae.
SF = Sign flog.
zF = Zeroflag.
AF - Atuciliqr! flog.
PF = Parityflag.
CF = Carry flag.
An 'r" in 6 box indi4etes
that the Wcified Ut is
nodified W the ins uc-
tion. An "-" in a bo2c
rrBarls that the strecified.
bit Mhre refiains
unchanged. A "?" meens
that the instluction sets the
flag to an unknour, tvlue.
Ifa "O" or "1" is in q box,
the instruction sets the
specified bit to that ?.ulue.

DESCRIPTION. \\ D...'rPdd
Des(Wion of ---r-.._ 

llilt,'l,lltlull,iiiliili."liiil:::il:i::-:,illit,tit:l-..:,il1,-"'"., ,-
the inslrucllon.

FAItnS. -_1

Fau.lts that na! \ Fr"'
\ or or

oe rn88ere4 01 \ ffTtfflTTT-J
the instruction.
The abbreoiairor,s \ F urt'

used  i nc lude :  
' , , *  *  *

*UD (undefined opcode) ii :1.,,,,..11 X,li.ll
#l'lP (not Dr6ent)

. , Erel.*tJ lt4sQ s:tuvcn)
*GP &ereral DroteclioD
#SF(stackfault) ;( i6,'!^'.,1
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AAA
ASCII Adiust After Addtdon

8086/80186/80286/80386
(8)

Syntax

Ope.atlon
i f  ( A F  ( ( A L  &  0 F H )  >  9 ) )  t h e n

A L E ( A L + 6 ) & O F H

e n d i f

Legal Form

Dercrlptlon
This instrlrction ensures thar an ASCII or BCD addirion results in a lid BCD digit.
After executing anADD orADC instruction thar leaves a single BCD oTASCII digjt
in register AL, execure AAA ro produce a lid BCD result,

If the value in AL produces a decimal overflow, rhe BCD digit is forced inlo lhe legal
range (0-9), and AH is incremented. The high-order nibble is z€med so that AL
contains only the resulting single BCD digit, and the AF and CF flags are set !o 1.

If no overflow occurs, rhe AF and CF flags are reset to 0.

Flagg

OFDF IF 1T SF T AI PF CT

Fault!
None,

Examplo
t l 0 v  A L ,  ' 5 '  

I  B i n a r y  3 5 n
A D D  A L ,  ' 7 '  

;  A d d  b i n a r y  3 7 H  y j e l d i n q  6 C N
^aa :  AL e 02H, AH e AH + 1,  decinat  carry ser
0 R  A L ,  3 0 H  :  c o n v € r t  r e s u l t j n s  d i s j t  t o  A s c l r  . 2 .
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AAD
ASCII Adiust Before Dtvision

8086/80186/80286/80386
(16)

Synlax

Operation
A L e A H * 1 0 + A L

Log.l Forrn

Deacriplion
This instruction supports BCD division. Before execution, the AL regbter should
contain a single, unpacked BCD digit. The AH register should hold the next higher-
order BCD digit. Afrerexecuting the AAD instruction, Ax contains the binary equiv-
alent ofthe two BCD digits. You can then issue the divide instruction, which leaves
a binary result,

Flag.

OFDF IF TF SF A AF PF CT

x ?

F.ults
None.

Erample
f 1 0 v  A H ,  ' 4 '  I  H i g h - o r d e f  d 1 g 1 t
f l o v  A L ,  ' 2 '  I  L o w - o r d e r  d 1 9 1 t  ( A x  -  A S C I I  4 2 )
AND AX, 0F0FH ; convert  to unpacked 8cD
AAD ; Ax e 2AH (42 declnal)
l lov BL, 6 ;  Djvisor for 4216
D I V  B L  :  A L  e  7 ( q u o t i e n t ) ,  A H  e  o ( r e n a j n d e r )
0 R  A L ,  3 0 H  I  C o n v e r t  r € s u l t  t o  A S C I I  ' 7 '

150



A: th. lOSaAraO3aT lEtdctlon 3€t R6t.Enc.

AAM
ASCII Adiust Aft€r Multtpltcatton

8086/80186/80286/80386
(8)

Syntax

Operation

legal Form

Do.c.lptlon
TheAAM instruction converts the result ofa sinSle-digit BCD multiplication (a
value 0-81) in the AX register to two unpacked BCD digits, the high"order digit in
AH and the low-order digit in AL.

Flag.

OFDF II TF SF zF A.F [F CT

I  t l u l t l p l a i d
:  l4ul  t i  p l  l  er
:  A X  e  2 0 H ,  3 2  d e c i m a l
: 4 H 6 3 , 4 1  t s 2

0R AX. 3030H ;  Convert  to  ASCII  '32 '

Frult!
None,

Erlmplo
t ' t ov  aL ,4
i40v AH, I
I.IIJ L AH
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AAS
AscII Adiust Alter subtractloo

8086/80186/802a6/80386
(8)

Syntax

Opgratlon
l f  ( A F  |  ( A L  a  0 F H )  >  9 )  t h e n

A L e ( A L _ 6 ) & o F H

Logal Form

Dorcrlptlon
This instruction ensures that an ASCII or BCD subtraction results in a valid BCD
digit. After executing a slJB or SBB instruction that leaves a single BCD or ASCII
digit in register AL, execute AAS to produce a valid BCD result

If lhe value in Al produces a decimal boffow, the BCD diSit is forced into the Iegal
range (O-9) and AH is decremented. The high-ordef nibble is zeroed so that AL
contains only lhe resulting single BcD di8it, and the AF and CF flags are set !o 1

If no boffow occurs, the AF and CF fiags are reset to 0.

Flag!

OT DT IA TF 3F ZF AI PF CF

? ?

Fault.
None.

Example
t 4 0 v  A L , ' 5 '
S U B  A L ,  ' 7 '

O R  A L , 3 O H

35H
Subtract  37H y je ld ins oFEH
A L  e  0 8 H ,  c a r r y  s e t  i n d i c a t j n s  " b o r r o { '

C o n v e r t  r e s u l t  b a c k  t o  A S C I I  ' 8 '
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ADC
Addwtth carry

g: lh.8ooa6/aoea7 h.tr@tlon Sel n.t.r.nc.

8086/80186/80286/80386
(8/r6p/32)

Syntax

Operation
d e s t e d e s t + s r c + C F

Legal Form.
4eJt

A D C  r e g ,  l d a t a
Aoc nen, ldata
ADC reg, res
ADC reg,
AI)C reg

Dcacrlptlon
This instruction adds the contents of the dest and s/c operands, increments the
resuh by 1 if the carry flag is set, and stores the result in thc location specilied by
dert The operands must be of the same size. If the operands afe signed integers,
the OF flag indicates an invalid result. If the operands are unsigned, the CF flag in-
dicates a carry out of the destination.

Flr9.
OFDF IB TF SI U AT PF CF

x

Faulig
PM RTT VEE6

12 #SS(0)
13 #CP(0) rNT 13 #GP(o)
14 #PF(e)

Erample
:  Subrout lne to add t l l lo  64_bi t  in tegers
t l lTER 0,  0 ;  Create stack f rane
r10V EAX, IEBP+8]  ;  Get  lo ! -order  of  f i rs t  va lu€
t iov EDX, IEBP+I2l  :  Get  h igh 'order  of  f i rs t  va lue
ADD EAX, [EgP+16]  :  Add low-ofder  b i ts ,  senerat ing carry
ADC EDX, IEBP+20]  ;  Add h ish-order  b i ts  Bi th prev ious carry
LEAVE :  Undo stack f rane
RET :  Return t l i th  va l '1e 1n EoX:EAX
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ADD
Integer Addltlon

8086/aor86/802E6/EO3E6
(8/76p/32t

Syntax

Oporation
d e s t e d e s t + s r .

Lsgal Forms
dest sr"c

A 0 0  r e g .  i d a t a
A 0 0  n e n ,  i d a t a
AoD reg, reg
A00 reg,
400 reg

Do!c.lptlon

This instruction adds the contents of the /est and s/c operands and stores the result
in the location specified by dArl. The operands must be ofthe same size. Ifthe
opefands ar€ signed integers, the OF flag indicates an in lid resuit. If the operands
are unsigned, the CF flag indicales a carry out of the destination, If the operands are
unpa€k€d BCD digits, theAF flag indicates a decimal carry.

Fl.g!

OF DT IF TT SF ZF AF PF CF

Faults
RM I&R6

12 *SS(0)
13 *GP(o) rNT 13 #GP(o)
14 *PI(e)

Example
a D D  A L ,  [ 4 2 1 1 A ]  ; 8 - b j t  a d d i t i o n
400 AX, 34 r  16-b i t  innr 'ediate value addi t ion
4 0 0  E S I ,  I E B P + 8 ]  :  3 2 - b i t  m e m o r y  a d d i t i o n  t o  r e s i s t e r
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AND
Boolean AND

ar ThG 40306/00367 lr.trucllon S€t n€l.rerc6

8086/80186/80286/Eo386
(8/r6p/32)

Synt.x

Oporatlon
d e i t 6 d e s t & s r c
C F  e  0
0 F e 0

Logal Formt
dest  s tc

AllD reg, idata
al lD idata
Al{0 res, reg
A N o  r e g ,
AND mem, feg

Deacrlptlon
This instruction pelforms a bit-by-bx AND operation on the lest and s/c oPemnds
and stores the result in the dest operand, TheAND operation is defin!{l as followsl

0 & 0 - 0

0 & 1 = 0

1 & 0 - 0

1 & 1 = 1

Flag.
OF DF IF TT ST IrB AF PF CF

0

Faultr
Prl RM tAOa6

12 *SS(0)
13 *GP(o) rNT 13 #GP(o_)
14 #PF(ec)

Example
A N D  A L ,  o F H  ;  z e r o  h i s h - o r d e r  n i b b l e  o f  A L
ANo EBx. EcX ;  comPute EBx e EBx & Ecx
Al lD BYTE PIRIEBP+6],  7FH : l {ask off  hish-order bi t  of  nenorv operand
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ARPL
Adiust RPL Fteld of Selector

80286,/80386
(r6)

Syntax

Operation
i f  ( d e s t . R P L  <  s r c . R P L )  t h e n

d e s t , R P L  e  s r c .  R P L
Z F e l

Z F  e  0

Logal Forma
dest src

ARPL reg, reg
ARPL reg

Dgrcrlptlon
System software uses this inslruction to modify a sel!'ctofs requested privilege level
(RPD field. Both the desl and s/c operands mus! be valid selectors.

Ii thc Rl,L of the ,rert operand is numerically less rhan the RPL of the src, that is, if
the desl sclecior is morc privileS€d, the dssl selector's RPI is lower€d to match that
of the s,"c, and lhc ZF flag is set to 1. Ifthe /esi selector is less privileged (numeri
cally higher) than the src, the ZF flag is cleared to 0, and the lert operand is not
modified.

operntjng system routines that are passed sel€ctors from applications shouid use
ARPL to ensure thar fie calling routine has not passed a selector with a higher privi-
lege than the npplicatiofl is allowed. Use the calling routine's CS register as the s/c

Flags

OFDF IF TF SF A AF PF CF

1 5 6



ar lh. 0ota6/aGa7 hdl*tlon S'r Bdd'nc'

Faults
PM &t4 lw66

6
12 *SS(0)
13 #CP(o)
14 #PF(e€)

tNT6 #UDo

Example
MoV A)(,  IEBP+121 ;  Get paraneter off  the stack
A R ? L  A X ,  [ E B P + 2 1  ;  A d J u s t  t o  c 6 l l e f ' s  R P L  ( p f e v l o u s  C P L )  b v

i  using CS of return addfess 0n st!ck
,JNZ bad-param I granch l f  cal ler passed a bad selector
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BOUND
Check Array Boundades

80186/80286/803E6
(r6p/jz\

Syntax

Operation
l f  ( ( d e s t  <  s r c l 0 l )  I  ( d e s t  >  s r c t l l ) )  t h e n

I l l t  5

Logal Form

80U10 reg, nen

Derc?lptlon
This insruction compares the d?st operand, which must be a register containing a
signed integer, with rwo values, a bwer bound srored at the address specified by srq
and an upper bound stored in th€ following location. The bounds can be 16-bil or
32-bitvalues.

If the dai value is less than the lower bound or greater rhan the upper bound, an in-
terrupt 5 occurs. The return address pushed onro the stack byrhe exceprion is the
slarting address of the BOUND instlucrion rhat caused the inrerrupt,

Flaga

OTDF IF fi SF ZF AF PT CF

Fault3
PM R-n 'AO{t6

5 INT5 INT5 lNTj
6" iuDO rNT6 #uDo

12 $SS(0)
13 *GP(0) INT 13 *cP(0)

tThe undefi.ed opcode lault oc.urs only if rhe insrruction encoding of the BoUND insrrution speci,
ties an s/. oper2nd lhat is a rcgister
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a: lh. AO3€6/aO3A7 In.truction Srt Befercn@

Examplg

VC LI I I ITS I
DD 1,  20 ;  Bounds for  20-e lement  array

V C  D D  2 0  D U P  ( ? )  ;  A r r a y  s t o r a g e  a r e a

1.10V EAX, IEBP'61 :  Get  array index
B0Ul lD EAX, VC-LI f I ITS ;  Check asajnst  l imi ts
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BSF
Btt Scar Forward

80386
(16p/32)

Syntax

Operation
1 f  ( s r c  -  0 )  t h e

Z F e I

Z F  + 0
lemp e 0
| { h l l e  ( b i t ( s f c ,  t e n p )  -  0 )

t e m p F t e m p + 1

logal Forms
src

8SF reg, reg
BSF reg, nem

Do.crlptlon
This instruction scans the s/c op€rand and writes the bit position of rhe first I bir in
src to the destination register. If rhe src operand is 0, rhe ZF flag is ser to 1, and the
instruction ends with rhe der, registerin an undefined stare.

If the src operand is not 0, each bit is e{amined, beginning with bit 0, unril a 1 bit is
found. The bit position of the first l bir (indeD is stored in the /?st register.

Flag!

OFDF IF TT SF ? AI PT CF

Fault.
PM RM IA86

12 #SS(0)
13 *CP(0) rNT 13 #CP(o)
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a! fl!. ooata/ooaAt h.rrstion a.r id@E.

Example
XoR ECX, ECX ; Index into sector nap

L1r BSF EAX, SECToRSIECX*41 ;  Scan a dword
, l r lz GoT-0l lE :  Bfanch i f  any bl ts set
I l lC ECI :  Go on to next dl tord
CHP Ecx, TABLE-SIzE :  Done searchjng?
,JL Ll  ;  l {0,  scan next table entry
,JHP 110-SECT0RS ! l {o bi ts set in ent l re table

GOT-OIE:

t6t



rHE 00086 300K

BSR
Blt Scan R€v€ise

80386
A6p/32)

Syntax

Operatlon
i f  ( d e s t  l n  I A x ,  B X ,  C X ,  D X ,  S L  0 t ,  B P ,  S P ] )  t h e n

s t a f t b i t  e  1 5

s t a f t b i t  e  3 l

1 f  ( s r c  -  0 )  t h e n
Z F e l
dest  + ???

Z F  6  0
tenp e star tb i t
l l h l l e  ( b 1 t ( i r c ,  t e n p )  -  0 )

tenp F tenp 1

La99l Formi
d . < f  . f i

8SR feg,  reg
BSR feq,  mem

Dogcrlptlon
This instruction scans rhe src operand in reverse, searching for a 1 bir beginning at
the high order of the src operand. If the s/c operand is 0, lhe ZF flag is set to 1, and
the instruction ends with rhe desr register in an undefined srate.

If the srE operand is not 0, each bit is examined, beginning with rhe high-order bit
(either 15 for word operands or 31 for byte operands), until a I bit is found. The bit
position (index) of the first 1 bit is srored in the dest register.

Flags

OFDF IF TF ST T AF PF CT
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a! rh. 603€6/00467 h.rt@tlon S.i h.td{@

Faultt
PM RM VEN6

12 *SS(0)
13 *cP(o) rNT 13 #GP(o)

Examplg
l {ov ECX, SElt_ttA)(-1 ;  lndex of last entry in

'  semaphore table
Llr  8sR EAX, S€MAPH0REIECX*41 i  Scan for non-zero bl ts

Jl lz found-l t
LOOP LI

:  B r a n c h  l f  v a l l d  l n d e x
: Decf€nent CX, loop back

i Get here
;  l f  e n t i r e  t a b l e  i s  z e f o
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BT
Blt Test

80386
(r6p/32)

Syntax

Operation
C F  e  B l T ( d e s l ,  i r d e x )

Legal Forms

B T  r e g ,  i d a t a
BT men, idata
BT reg, reg
BT neri ,  reg

Dolc.lpilon

This instruclion tests the bit spccificd by rhe operands and places lhe value of the
bit into th(j carry flag.

Tl\e index opet^ndholds a bit index into the bit string specified by desr, which can
be a 16-bit or 32-bit regisrer or a memory locarion, The state ofthe bi! is copied into
lhe carry flag.

Ifthc mrlsn operand is an imm€diate data value, ir can range from O through 31. If
thc lr?der is held in a register, il can take on any integral value. Some assembler$
might lcl you specify immediate lrdarc values grearer than 31. If so, they modify rhe
effcttiv€ rddress by an appropriate value so that the lrdef can be scaled back to
betwccn 0 and 31.

BT does not acccpr byte operandq so do not use it with memory-mapped I/O
devices becausc rhe instruction causes either the 16-bit word or the 32-bit word con-
taining rhc sclcrted bit to be read. This could affecr more than onc I/O device regis-
ter You should use a single-byte MOV instru€tion to red the I/O regisier and then
test the contcnts of the register

Fla96
OF DF CFPTAIzn
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a! th. 00006/00007 rn.t{crrd !.t R.rmm.

Fault!
PM RM \ry)46

12 #SS(0)
13 #GP(o) rM13 #GP(o)
14 *PI(ec) #Pl(ec)

Examplo
l lov EAX, 192 i  Bi t  lndex
BT SEI4APHoRES, EAX I Test senaphore number 192
, lc sefLset ;  Branch i f  th€ bi t  {as set
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BTC
Blt Test and Complemenl

80386
(16p/32)

Syntax

Operation
CF e 9 l l (dest ,  index)
BIT\dest ,  lndex)  € -81\(dest ,  index)

Legal Foam6
dest index

8TC reS,
BTC
B T C  r e g ,
BIC

Doacripiion
This instruction copies the bit specificd by the opcrands into Cl then complements
the original valuc ofthe bit in the &J_, opcrand.

Thc infur operancl holcls a bit indcx into the bit slring specifieclby dcrt, which can
bc n 16-bit or 32-bit rcgistcror a memory location. Thc statc ofthc bir is copied ink)
thc cnrry flag, and the bir ofthc dert operand is complemented.

lf ll\e lnrler openlnd is ̂ n immediate da|a valuc, it can range from 0 rhrough 31. If
the tt?den is held in a register, it can take on any inte!ruI value. Some assemblers
might le! yolr spccify immediate irder values greatcr than 31. lf$o, they rnodify the
effective adclfcss by an appropriate value so that the lrdan can be scaled back to
between 0 and 31.

BTC does not accept byte operands, so do not use it wirh memory-mapped I/O
devices becnuse thc instuction causes either the 16-bi1 word or rhe 32-bir word con-
taining the selected bitto be read. Tbis could affecr more than onc I/O d.,vice regis
rer. You should use a singlc-byle MOV insrruction to read rhe I/O rcgisrcr and rhen
lcst the contents of the rcqistc.,

Flags
OF DF CFI
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a: lh.6Ot06/AOi'a? hdncrld a.t R6t s@

Faulta
PA RM |ma6

12 iFs(0)
13 #GP(o) rNT13 *cP(o)
14 sPF(ec) #P(ec)

Exanrplo
I ' loVZt EAX, 8YTE PTR t01A2Hl ;  R€ad nenory byte tnto 32-bj t  regtster
8 T C  E A X , 2 ; Test and complenent bl t  number 2
t lov t04A2Hl,  AL ,  l r i te nodlf led byte back to nenory
J C  b l  t s e t r  Bronch l f  the bl t  l {as s€t
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BTR
Blt Test and Reset

80386
(r6p/32')

Syntax

Opgi.tion
CF + B\I(dest,  lndex)
BIT( desr,  t rder) e 0

Logal Forms

dest lndex
BTR TEg,
BTR nen,
STR reS,
8TR

I  d a t a
I  d a t a
fe9
fe9

Do.crlptlon
This instruction copi€s the bit spccified by the operands inlo CF, then clcars the
original bit in desl ro 0.

the lndex opera dholds a bit index into the bit string spe€ified by /est, which can
bc a 16-bit or 32-bit register or a memory location, The state of the bit is copied into
lhc cafty flag, and the bit of the lest operand is cleafed !o 0.

If the irder. opcrand is an immediate data value, it can range from 0 through 31. If
the lndex is hel<l in ^ rcgisler, it can be any integer Some assemble$ might let lrcu
specify immediatc lrden valucs grealer than 31. If so, they modify the effective ad-
dress by an Appropriate value so that the lr?r/er can be scaled back to between 0
^n<l31.

BTR does not accept byte operandq so do not use it with memory-mapped I/O
dcvices because the instruction cau6€s either the 16-bit word or the 32-bit wofd con-
laining the selected bit to be read. This could affect more than one I/O device regis-
ter You should use a single-byte MOV instruction to read the I/O fegister and then
test the contents of the register.

\0hcn using a ttTR insrru(rion ro imllemenr a srenaling lunclion in a multiprocessor
environment, the LOCK instruction prefix should immediately pre€ede any BTR in-
struction thar mdifies shared m(]mory.

Flags

O F D F I F T F S F A
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a! ih. 00396/90i[7 ltr.tlEtion s.t Rclcrcnc.

Faults
PM Rtr VAOA6

12 *SS(0)
13 *CP(o) rNT 13 #GP(o)
14 *PF(ec)

Example
BTR I{Y-FLAG, 7 ;  zero the h i9h_order  b i t  o f  byte r '4Y FLAG
JNC NoT SET ;  8 l t  {as a l ready reset

"r'F(<)

t59



tHE go3a6 BOOK

BTS
Blt Test and set

80386
(16p/32)

Syntax

Oper.tion
CF e Bl l (dest ,  index)
Bl I ldest ,  index)  € |

Logal Forms
dest  index

B-fS res,  idata
BTS men,  idata
8 T S  r e g ,  f e g
BTS feg

Do.c.lptlon

This instruction copies the specified bit into CF, then $ets thc original bit in

'lhe lndex opefan<l l1!.1<ls a bir index inio thc bi! string specified by d?st, which can
bc a l6Jlir or 32-hit registcr or a mcmory bc4tion. Thc state oflhc bit is copicd into
lhc carry flag, and the bil oilhe /esl opcrand is ser lo 1.

Ifthe irlerc operand is an immediate data lue, iI can range from 0 through 31. If
the irrrlex is held in a register, it can be any integer Some assemblers might let you
spc{ify immediate t/r/"r, valu€s greater than 31. If so, they modify the effectivc ad-
dress by an appropriate valu€ so that the Ird€re can be scaled back to betwecn 0
and 31.

BTS docs not accept bytc opcrandsi so do not usc it with memory-mappcd I/O
dcviccs bc.:use the instruction causes either the l6-bii word or the 32 bit word con-
lainingthc sclected bi! to bc rcad. This col d aff&t morc than one I/O device regis-
tcr. You should use a singlc-byrc MOV inslructbn to fcad the I/O register and then
tcsl thc contcnts of ih€ rEiisler.

When using a BTS instruction tlr implement a semaphore function in a
multiprocessor environmenl, the I-OCK instruction prefix should immediately
precede any BTS instruction that modifies shared memory.

Flags

OFDF IF TF SF A AF PF CF
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a: th€ aO3a6/aOiF7 In.lructlon S.r B.ts.nc.

Faults
PM R-tr taoa6

12 *SS(0)
13 *GP(o) rNT 13 +GP(0)

Exanple
8TS | '1Y_FLAG, 7 ;  Set  the h ish-order  b i t  o f  byre | IY,FLAG
JC l lAS SET ;  Bl t  {as a l ready set
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CALL
Far Procedure Call

8086/80186/aO286/80386
(32p/48)

Syntax

Oporatlon
push(cs)
p u s h ( E I P )
C 5 :  E I P  e  d e s t

legal Form.

C A L L  i d a t a  :  C S T E I P  e  i d a r a
C A L L  m e n  ;  C S T E I P  e  t m e m l

Dolcrlptlon

The far procedure call saves the current code segment selectot and the address of
the next instruction (EIP) on rhe stack. Control then transfers to the desrination
specified by the operand. The operand can be an immedlate sel€ctor:offset value or
the address ofa 48-bi( FAR poinrer in memory.

The selector can point to another code segment, a call gate, a task gate, or a task
state segment. If the seleclor points to a gare or TSS, the offset portion of the CALL
is ignored. If the selector points to a code segment, conrrol transfers to the specified
offset within that segmenr.

All flags are affected by a task switch.

Flagr
OFDT IF TF SF A AF PF CF

Faulta
PM RU V8IR6

10 #TS(0)
10 #Ts(sel)
11 +N?(sel)
12 *SS(0)
12 #ss(ss)

172

#TS(sel)
#NP(seD

13 +GP(o) INT 13 #cP(0)
+GP(CS) INT 13 iGP(o)



a: th.4o366/ao3a7 herruclior set Rel.renc.

Example
C A L L  t 6 A 3 : 0 0 0 0  ;  0 i  r e c t  c a l l
CALL Fl l0RD PTR l005AHl :  ind i  fect  ca l  l
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CALL
Near Procedure Call

8086/80186/80286/80386
(16p/32)

Syntax

Ope.atlon
p u s h ( E I P )

Logal Forns

CALL offset :  EIP e EIP + offset
CALL nem ; EIP F tnenl
C A L L  r e g  :  E I P  e  t r e g l

Do3crlptlon

This instruction pushes the address of thc n€xt instruction (EIP) onto the stack. The
instruction pointer is then set to the value spccifi€d by the operand.

Ifthe operand is an immediate value, the new instruction pointer is relative to the
current position. Ifthe op€rand is a memory address or a reltister, the subroutine
address is taken indirectly from the operand.

Flag!

OFDF IT TI SF A AF PF CF

F.ultr
PM RM V6O66

12 #S(0)
13 #GPio) INT 13 *cP(o)

Exarnplo
CALL SQRT ;  Cal ]  d j  rect
LEA EBX, Fl l  TABLE ;  Get  pojntef  to  address tabte
I ' l o v  E A X , 3  ;  S e l e c t  t h i r d  f u n c t i o n
CALL [EBX+EAX*4]  ;  Cal l  i t
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ar th. lo3€6/€Oa0t In.truction 3.t not.H6

cBw
Convent B:nte to Word

8086/80186/E0286/80386
(8)

Syntax
cB14

Operatlon
i f  B I T ( A L ,  7 )  t h e n

Lggal Form
cBI

Dolcrlptlon
This instruction sign-extends the byte in Al to AX.

Flagt
OT DF IT TI SF ZF A.I PF CiF

Faulta
None,

Exarf|plo

l lov AL, TII IY :  Read a byte lnto AL
CBI{ I  Convert  to l6-bi t  s igned lnteger
ADD BX, AX
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cDo
convert Doubleword to Quadword

80386
(32)

Syntar
CDQ

Oporatlon
1 f  ( 8 1 T ( E A X , 3 1 )  -  1 )  t h e n

EDX e 0FFFFFFFFH

E D X e 0
e n d i f

Logal Fortfl

c0Q

Dolorlptlon

This instruction sign-€ntends the 32-bit EAX register to a &-blt dword. Ir ls most
frequently used before the inteSer divide instruction, which operates on a 64-bit
dMdend,

Fl!g!

OF DF II TF ST ZA AI PF CA

F ult.
None,

Exqmplg

I ' loV EAx, I400Hl I  Copy dividend to EAx
C00 ;  Extend to 64 bj ts
IDM|0RD PIR t20Hl ;  Dlvide
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cLc
Clear Caffy Flag

8086/80186/80286/80386
( )

Syntax
cLc

Oporatlon
C F e 0

Logal Form
cLc

Deccrlptlon
This imtruction clears the caffy flag in the EFIAGS register to 0.

Flatr
OF DT IF TF SF A A.A PF CF

0

Faulta
None.

Ex.nplo
NO-ERROR:

cLc
RET

;  C l e a r  c a r r y
;  Return from subrout ine l { j th success
;  i n d j c a t e d  b y  C F
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CLD
Clear Dhectlon Flag

8086/80186/80286/80386
( )

Syntar
cL0

Oporatlon
0 F e 0

Logal Forrn
C L D

Delcrlptlon
This instructlon cleaB the dir€ction flag in the EFLAGS regisrer to 0. When DF is 0,
any string instnrctions increment th€ index registers (ESI or EDI).

Fllgr
OF DF If TF SF ZF AT PF CF

0

Fault!
None,

Examplo
l lov ECX, STR-LEIi  I  Str lng nove count
C L D  I  C l e a r  d i r e c t j o n  f l a g
REP IIoVSB ; Copy lhe st f ing

t?8
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cLl
Clear Interupt Flag

a086/80$6/80286/80386
( )

Syntar
C L I

Opergtion
I F  e  0

Log.l Form
C L I

D9!crlptlon
This instnrction clears the interrupt bit in rhe EFLAGS fegister to 0, disabltng hard-
ware inteffupts (eJrcept NMI). The procedure €s.ecuring the CLI instruction musr be
of equal or higher privilege than the cuffent IOPL, that is, CPL < IOPL, or a general
Protection fault occurs,

Flrgr
OTDF IF TF SF Z A? PF CI

0

Faulta
PM RM IM86

13 *CP(o)

Ex!mplo
CL I

#cP(0)

I  D l s a b l e  l n t e r r u p t s
t '10V AL, SEI1APH0RE r cet menorJ value
DEC AL i  oecrenent counter
JZ done ;  Skip i f  va lue l {as 0
l {ov 5E|{APHoRE, AL :  Update

D0l i t l
SI I :  E n a b l e  i n t e r r u p t
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CLTS
Clear Task Switch€d Btt

80286/80386
( )

Syntax
CLTS

Operation
8 I T ( C R 0 ,  3 )  e  0

Legal Form
CLTS

D.!crlptlon
This instruction clears the task switched (TS) bit in the CRo regbter to 0. The TS bit
allows the 80386 to efficiently manage the 80387 t*/henever a task switch occuls on
the 80386, the CPU sers rhe TS bit to 1. If the TS bit is I when a coprocessor escape
(ESC) or \VAIT instruction executes, a coprocessor not available fault (int 7) occurs,

The fault handler can clear the TS bit, save the NDP state, load the NDP state for the
cuftent task, and retum to the insruction that faulted, Switchlng between tasks that
do not use the 80387 will not cause the fault, and you can avoid the overhead of sav-
ing and restoring lhe NDP srate.

Only procedures running at a cPL of 0 c4n execute CITS without causing a general

CITS is valid in real mode to allow initialization for protected mode.

Flrgt
OT DF IF TF SF ZF AT PF CF

F.ult.
RM

13 *GP(o)

Exa|nple
CLTS
CALL S|AP NDP STATE

#cPt0)

C l e a r  t a s k  s w i t c h e d  b i t
Save/restofe math coprocessor  s tate

lao
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CMG
Complement the Caffy Flag

8086/80186/80286/80386

o
Syntax
cl'tc

Oporatlon
C F  €  - C F

Legal Form
cl'1c

Dglcrlptlon
The carry bit of the EFLAGS register is complemenr€di that is, if the iditial value of
the carry blt is 0, ir is set !o 1. Ifthe initial lue is l, rhe flag is cleared ro 0 as a
result of the iNtrlrction.

Flagr
OF DF IF TF SI ZI A.A PF CF

F ult!
None.

Examplg
8 T  l A X ,  I  ,  T e s t  .  b j t ,  s a v e  1 n  C F
J C  E X I T  ;  B i t  N r s  s € t - - w e , r e  d o n e
J P TRY_AGAI 

 

;  t {o t  feady yet
t X I T I

Ct lC i  Return,  CF c lear
RET

la l
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CMP
Colnpare Integers

8086/80186/80286/80386
(846P/32)

Syntax

Operation

Logal Forms
desl

c l ,P feg,  r -data
c l lP nen,  r -data
C M P  f e g ,  r e g
C M P  f e g ,
Cf lP res

D..c.iption
This instrucrion subtracls the contents of op2 from op, and discards the resuit. Only
thc EFLACS register is affected. The following table illustrates how the flags are set
bas€d on fie operancl values.

cotdttton stA edcorrrtroe Unsgned@npaft

o p 1 >  a p 2  Z ! - 0 a n d s l = O F  C F - o a n d z ! - o
a P 1 >  o P 2  S F - O I  C f - o
ool  ̂  aP2 zr-r zr-r
o p l  < o p 2  Z I - l m d S F l - O F  C F - l o f z f - 1
o P 1 <  a P 2  S F I = O I  C F - I

If opl is a 16-bit or 32-bit operand and op2 is an 8-bit immediate value, opz is sign-
extended to match the size of opl

Flags
OF DI IT TF SF ZF A.F PF CF

Faults
PM ruI 'ts0A6

12 #SS(0.)
13 *CP(0) rNT 13 +CP(o)
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Examples
C l l P  A L ,  [ 4 2 1 1 4 ]  ; 8 - b i t  c o m p a r e
Cl iP AX, tBX+31 |  15-b i t  fea l /v i r tual  node
Cl lP CX, tEBP+81[EAX*2]  ;  16-b i t  protected node
C r i P  E S L  T  ; 3 2 - b l t  c o n p a r e  w i t h  s i g n - e x t e n d e d  o p e r a n d

ta3
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CMPS
Compare Striflg

8086/80186/80286/80386
(a46p/32)

Syntax
c PS

Operation
{hen opcode is  (Cr iPSB, Cl lPSU, C PSD) set  opsjze € l l ,  2 ,  4)
N U L L  e  D S T I E S I I  E S :  I E 0 1 ]
i f  ( D F  -  0 )  t h e n

E S I e E S I + o p s i z e
E D I e E D I + o p s i z e

Logal Forrn3
CI{PSB ; Compare str lng byte
Cl{PSl, l  ;  Compare str ins wofd
Cl. iPSD ; Conpare str lng doubleword

Do.crlptlon
This instruction subtracts the memory operand poi ed to by DS:ESI from the
operand at ES:EDI and dis.ads the result, as in the CMP lnstruction. The size of
the operand is either a byte, word, or doubleword, depending on the opcode used.
The flags are set as the comparison dictates, and the contents ofESI and EDI are
modified, either incremented by the size of the operand, or decremented, depend-
ing on the setting of the DF bit in the EFIAGS register ESI and EDI are incremented
whcn DF = 0.

You can precede the CMPS insrruction with either the REPE or REPNE prefix to re-
peat€dly compare operands while the ZF bit remains I (REPE) or 0 (REPNE). Regis-
ter ECX holds the maximum compare count.

You can also apply a segment override prefix to the CMPS instruction to override
the DS seg.ment of lhe DS:IESII operand. You cannot ovenide the ES segment
assumption for the EDI operand.

Fl.ge

OF DF IF TF SF ZF AF PF CF
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Fault!
PM RM IE]A6

12 *S(0)
13 #CP(o) rNT 13 #cP(o)
14 #PF(ec) #pr(ec)

Ex.mple
L E A  E S I ,  s t a n d a r d  ;  D S : E S I  p o i n t s  t o  d e f a u t t
LES lDL [EBP+12] ;  ESTEDI loaded from stack fr€me
t 0 V  E C X , 3 1  i  C o u n t  i s  a  c o n s t a n t
C L D
REPE CIIPSB
Jl{E not-eq

:  Ensure dlrect ion f lag set coarect ly
;  Compare byte st f i  ng
;  B r a n c h  l f  s t r l n g s  n o t  e q u a l

ta5
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cwD
CjonYert Word to Doubleword

80E6/E0185/80286/80386
(16)

Syntax
Cl'lD

Opsration
i f  ( B l T ( A x ,  1 5  -  1 ) )  t h e n

DX e oFFFFH

D X e 0

Lggal Forfi

cl,{D

Deacription
This insiruclion sign-extends the word inAXtothe DXrAXregister pair. The
prefeded 16-bit to 32-bii conversion instruclion is C\flDE, C\flD is us€d by the 8086
and 80286, which do not have 32-bit registers.

Flag!

OF DF IT TF SF A A.F PF CF

Faultg
None.

Examplo
1 . 1 0 V  A X ,  d i v i s o r  ;  G e t  l 6 _ b i t  d i v i s o l
Cl,{D ;  txtend to DX|AX
D M X  :  l 6 - b J !  d l  v l  s i  o n

taa
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CWDE
convert word to Doubleword trxtended

40346
(16)

Syntax
Cl,l0E

Operation
i f  ( B I T ( E A X ,  l 5 )  -  1 )  t h e n

E A X  e  E A x  l F F F F 0 0 0 0 H

E A X e E A X & 0 0 0 0 F F F | - H

Legal Form
C!IDE

Deacrlptlon
This instruction sign-€xtcnds thc 16-bi! value inAXto a full32 bits in the EAX
register,

Flagl
OF DF IF TF SF ZIF AF P8 CF

F.ult.
None.

Erampls
t t 0 v  A X ,  s h o r t - j n t  :  G e t  1 6 - b i t  s i s n e d  v a l u e
NfG AX. :  Conv€rt  to nesat ive number
C N o E  t  R e t u r n  3 2 _ b i t  f e s u l t
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DAA
Dectfral Adiust AL Aftef Addttlon

8086/80186/80286/80386
(8)

Synt.x

Operation
i f  ( A F  |  ( A L  &  0 F H )  >  9 )  t h e n

i f  ( C F  ( A L  )  9 F N ) )  t h e n
A L e A L + 6 0 H
C F e l

C F e 0

Logll Form

Delcrlptlon
This instruction ensures that AL contains a valld decimal resulr afrer an addirion of
two packed BCD values.

Flegr
OF DF IF TF ST ZF AF PB CF

x

Faultt
None,

Example
 0 Y  A L , 7 2 H
AOD AL,  19I ]

; 7 2  i n  p a c k e d  d e c l n a l
;  Y i e l d s  8 B H  i n  A L
;  Adjusts AL to 9IH

laa



a: th. eo3€5/aooa7 h3ttuctid S.t hcl.rc.e

DAS
Declrnal Adlust AL After Subtmctlon

8086/80186/80286/80386
(8)

Syntax
0As

Operatlon
i f ' ( A F  |  ( ( A L  &  0 r - H ) )  >  9 )  t h e n

i f  ( C F  |  ( A L  )  9 F N ) )  t h e n
A L e A L - 6 0 H
C F e l

Logll Form
DAS

Dolcrlptlon
This instruction ensures that AI contains a valid decimal r€sult after a subtraction of
two packed BCD valu€s.

Flagr
OF DT IF TF SF 2tr AT PF CT

F.ult3
None.

Exarnple
HOY AL, 42H
SUB AL,  13H
DAS

; 42 in  packed decimal
;  Y i e l d s  2 F t l  1 n  A L
;  AdJusts AL to Z9H

ra0
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DEC
D€crement

8086/80186/80286/80386

G/r6P/32)

Syntax
DEC opl

Opor.tion

Lcg.l Form!
0p1

DEC re{t
DEC men

Do!crlptlon
This instruction subtracts rhe value 1 from opt DEC is frequently used to decrement
indexes arld rherefore does not affect the cafiy flag (CF). In other respects, ir is
equi lerit to the instrirction:

su8 opl,  1

Fhlr
OF DF IT TI  3FU AI  PF CF

x

F ulta
PLt nM V8lXt6

12 #S{0) #ss(o)
13 #GP(0) INT 13 ircP(o)
14 #PF(ec)

Examplo
DEC ESI ;  Decrement contents of ESI
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Dtv
Ursigned Dfu'tston

ar lho aoiF6/4o307 h.rlGtion s.t i.feenc.

8086/e0186/80286/80386
(8/16p/32)

Syntax
Dll opl

Opgi.tion
l o N l a c c ) + a c c / a p j
h j g h ( a c . )  e  a c c  n o d u l o  o p l

Logal Formg

D i V  f e S
D I V

De.crlptlon
This instruction divides the value in the accumulak)r r€gister or register pair by op1,
storing the quotient in the low-order portion of the accumulalor and the reflraindcr
in th€ high-order portion. The following tablc illustrates the registers used 4s ac-
cumulators, depending on the size of op.l,

sr oJfopt Dtue,td guott4fl! Reft.ttntter

AH
DX
IIDX

Byte
Vord DX,AX AX
Dword DDX,EAX EAX

If the dMdend is 0 or if the quoticnt is too large to fil in the result accumulator, a di-
vide error fault (interrupt 0) occurs.

Flage
OT DF IF TF SF ZT AF PF CF

Faults
PL' RM VN86

O INTO INTO INTO
12 #SS(0)
13 #GP(o) rNT 13 +GP(o)

t9t
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Example
rlov EAx, di vidend
CI,{DE ;  Convert  32,b j t  operand to 64 br ' ts
o M B X  ;  3 2 - b i t  d i v r o e
r40V quot ient ,  EAX :  Save resul r
MoY renainder,  EoX
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ENTER
B ter Neq'Stack Frame

80186/80286/80386

o

Syntax
E N T E R  l o c d l r ,  r e s t i r g

Ope.ation
, e s t t r g  e  n a x  ( n e s t i n g ,  3 l )
p u s h  ( E B P )
IEMP 1-  ESP
i f  ( r e s t i r g  >  0 )  t h e n

n e s t l n g e n e s t i n g - l
, h l l e  ( r e s t i n g  >  0 )

E B P  €  E B P  4
p ! s h  ( s s :  t  E B P I  )
n e s t i n g e n e s t i n g ' I

EBP e tenp
E S P e E S P -  l o c d l s

Logal Fotms
l o c a l s  n e s t l n g

E N T E R  i d a t a ,  l d a t a

De3cripiion
This instf.rction sets up the slack framc used by highlevel lmguages. The form
ENTER n,0 is equivalenl to lhe instrr.rctions:

PUSH EBP
I4OV EBP, ESP
S U B  E S P ,  n

This saves the prcvious frame pointer (EBP), seIS lhe framc io the cunent stack lop
(ESP), and al krales space for local variables Parameters passed b the procedurc

a.e addressed as positive offsels from EBII and local variables are acldressed as

negative offsets from EBP.

vhen the second operand is greater than 0 (which happens only in languages that

allow nesting of procedure definitions), the pointers to previous stack frames are
pushed otuo the stack to allow addressing of stack-resident variables whose s.opes

are outside the curent stack frame.
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Ianguages such as FORTRAN and C do nor alloqr lexical procedure nesting, so they
always use ENTER with a nesting operand of 0. pascal, Modula-Il, and Ada allow
procedue nesting, and compilers for those languages generate lhe more complex
form of ENTER.

Fla93

OFDI IF IT SF 3 AT PF CF

Faultr
Pltt RIt tw6

12 *SS(0)
14 #PF(ec) "PF(ec)

Ex.rnple
EIITER 4,  0 ;  Create st lck f raf ie  { j th

:  space for  a d*ord local

t9a
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HLT
Halt

8086/80186/80286/80386

o

Syht.x
HLT

Logal Form
HLT

Degcrlptlon
This instruction stops all fu(her processing on the 80386. No other instructions will
execute until the processor is reset or an interrupt occufs. An NMI interrupt always
brings the processor out of the halt state. The IF flag must be 1 for any other hard-
ware interrupt to be acknowledged. After processing the interupt, execution con-
tinues with the instnrction immediately following HllT.

You must execute at a CPL of 0 to issue a HLT instructioni otherwise, a genelal pro-
tection fault occurs,

Flag!

OFDT F TF SF ZF AF PF CF

F!ultr
PM &M V8IR6

13 *GP(o)

Examplo
sTt

LI  I  HLT
,Jl'lP 11

*cP(0)

:  I d l e ,  p r o c e s s i n g  o n l y  i f t e r r u p t s
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tDtv
lnteger (Stgned) Division

8086/80186/80286/80386
(ah6p/32)

Syntar

Oporalion
l o s ( a c c ) e a c c / a p j
h i q h ( r . . )  F  a c c  n o d u l o  o p 1

Log.l Forma

I 0 l  V  r e g

Desctiption
This instruction divides the value in the accumulator rcgistcr or rcgislcr pairby opl,
$i(xing the quotienx in the low-order portion oftlle accumlrlator ancl the rcmainclcr
in lhc high-(xdcr portion. The followingtable illustratcs lhe rcgistcrs uscd rs ac-
cumulalffs, depeoding on dre size of opl.

stzeoJopl Dtardend Quotten, Rern4tndet

AH
DX
EDX

AX AI,
DX,AX AX
tiDx,li^x IlAx

Ifthc dividcnd is 0 or ifthe quotient is too large to fit in rhe rcsult accumulalor, a di-
viclc crror f:Lrlt (interrupt 0) occurs.

Flags
OT DF IF TF SF ZF AF PT CF

?

Faults
RM VaOa6

O INTO INT O IN'I'O
12 'SS(0)
13 "CP(o) rNT 13 +GP(o)
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Examplo
Mov EAX, IESP+14]  :  Get  d iv idend
CDo :  Convert  to  64 b i ts
1 D I V  E C X
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IMUL
Integer (Sigred) Multiplicatton

8086/80186/80286/80386

<a/ftp/32)

Syntax
l t4UL op1,  lop?,  Lopj l l

Opgration
d e s t  e  m u ' l t i p l l e f  *  m u l t l p l i c a n d

Loggl Forms
opl opz op3

I  UL res
IHUL mem

:  a c c  e  a c c  *  r e g
i  a c c  e  a c c  *  n e n

IHUL res,  res i  op l  € opl  *  op2
I i IUL reg,  nem I  opl  e opl  .  op2
I IUL feg,  idata I  opl  <-  opl  *  opz
I I IUL feg,  reg,  Jdata i  op. l  <-  op2 + ap3
I  UL reg.  men,  idata I  opl  € op2 *  ap3

Dercriptlon
This instruction multiplies signed, two's complemcnl intcgcrs. Thc flags are leli in
an unknown statc c'xcept for OF and CF, which are cleared to 0 if thc rcsult ofthc
multiplicatbn is the same size (byte, wod, or dworcl) as the mulriplicand.

In the single operand form of&c instruction, the resuh is placed inAX if opl is a
byte, DX$X if op] is a word, and EDX:EAX if op-l is a dword.

In the forms ofIMUI lhat use 2 or 3 operands, the operands must all bc the same

Flag.

OT DT IF TF ST ZF AF PT CF

Faults
PM B.LI 'EA6

12 *SS(0)
13 *GP(o) tN r'13 *GP(o)

Example
I I IUL ECX
I I I U L  A L ,  C H , 7

l9a
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IN
Input from I/O Port

8086/80186/802E6/80386
(a/ftP/32)

Synlax

Op6ration

Lagal Forrna

I l l
I l i DX

Deccrlptlon
This instruction reads a byte, word, or dword into the specified accumulator from
the designated I/O port. If rcu use an immediate data value in the instructioni
'ou can address only the first 256 ports. If the port is specified in the DX register,
you can access any of the 65536 ports.

IN is a privileged instruction, A procedure that attempts !o eraecute an input instruc-
tion must satisfy one of two conditions to avoid a general protection fault.

If the procedure that executes an IN inslruction has I/o privilege (that is, if its CPL
is numerically less than or equal to th€ IOPI fi€ld in the EFLAGS register), the input
instruction execut€s immediately.

If the procedure does not have I/O privilege, the I/O permission bitmap for the cur-
rent task is checked. lf the bit(s) coffesponding to the I/O port(s) is cleared lo 0, the
input instruction executes. If rhe bit(s) is set to 1, or the pon(s) is outside the range
of the bitmap, a general protection fault occu$, Se€ chapter 5 for more details on
this feature.

If the IN instruction is encountered while in V86 mode, only the I/O permission bit-
map is tested. The IOPL value is not a factor in validating acc€ss to the port.

Fl.gr
O F D F I T T F S T A

Faults

13 #GP(o) #cP(o)
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Exar|iple
I N  A X , 7 2 N  :  I n P u t  a  1 6  b i t  v a l u e

;  f ron Ports  72H ar td 131

l , lov DX, cr t  por t
i N  A L ,  D X  ;  I r p u t  a  b Y t e  v a l  u e
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8086/80186/EO2E6/80386
(an6p/32')

Syntax
INC op1

Operation

Legal Form!

I l iC reg
I lic

Doac.lptlon
This instruction adds the value 1 to opl. This insrructlon is ofren used to increment
indexes and therefore does not affect the carry flag (CF). In orher respects, it is
equi lent to the instruction:

ADD opl,  1

Flag!

OF DT IT TF ST ZF AI PF CF

Fgultt
PDT RM IWI'6

12 *SS(0)
13 #GP(o) rNT 13 #GP(o)
14 #PI(€c) #Pl(ec)

Eramplg
I l lC ESI ;  Increnent  contents of  ESI

m1
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tNs
lnput Strtng from I/O Port

EOra6/a0286/80Ja6
(a/$p/3zl

Syntax
I N S

Opgration
w h e n  o p c o d e  j s  ( l N S B ,  I N S l i ,  I N S 0 ) ,  s e t  o p s i z e  €  ( r , 2 , 4 )

E S : I E 0 I ]  e  p o r t (  D X )
l f  ( 0 F  -  0 )  t h e n

E D I e E D I + o p s l z e

E D I  F  E o l  o p s i  z e

Legal Forns
Irt lsB i Input str ing byte
l l lsl , l  r  Input str ing word
I I 1 S D  :  I n p l t  s t r j n g  d o u b l e * o r d

Do3cription

This instruction 4llows the location specified by IiS:lEDIlto receivc data input fiom
the I/O porr containcd in the DX register. An 8-bit operation (INSII) acljusts thc ad-
dress in EDI by 1, a 16-bit operation (INS\q) adjusts EDI by 2, ,lnd a 32-bit operxtion
ONSD) adjusts EDI by 4. l he memory offsct in tlDI is increment€d iflhe D!'bit is 0
or is dccfcmcnted if DF is 1.

Like $e lN instructbn, thc INS instruction is privilcgcd. The executing Proccdure
mus! have a CPL equal to or nLrmcrically less than the IOPL, or access to thc port
specified in DX mustbc granred by the I/O permission bit11lp in theTSS.

You c1n use the REP prefix with the INS inslruction. Usingthe prcfix causes regis-
ter ECX to be interpreled as an instruction count.

A segment oveffide prefix does not affect the INS inslruction. The destinalion seg-
ment is always ES.

Flags

OF DF IF TF ST ZF AF PF CF
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Faulta
PM RM 'W86

13 #GP(0) INT 13 *CP(o)
14 #PF(e€) #PF(e)

Exaniple
LEA EDL nel l l -va ' l  ;  Set  up dest inat ion pointer
I ' loV DX, 370H ;  Set  uP Port  address
CLD
I l lsD
I IiSD

; Input 32-bl t  val  ue to ner-val
;  Input value to ne[-va] + 4
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INT
Software Interupt

8086/80186/80286/80386
( )

Synt.x
I l lT  vecto.

Oporation
push( EFLAGS)
push(cs )
p u s h (  E I  P )
T F e 0
1f  ( I0T(vector) .TYPE -  I I ITERRIJPT_GAIE) then

I F  e  0

C S : E I P  e  d e s t l  n a t l  o n (  I D l ( y e c t o r ) )

Legal Fonn

I l l T  i d a t a

Dclcrlptlon
This instruction saves the current flags and execution location on the stack, and the
,vclol operand indicates the Im eftry that is selected. The gate from rhe IDT de-
termines the new execution location,

If the processor encounters the INT instrrrcrion while in V86 mode, the 803M
switches to the dng 0 stack (SS0|ESPo) taken from the V86 task state segmenr before
processing the inteffupt. B€cause the processor is running ln rlng 0, the IDT entry
must have a DPL of 0i otherwise, a general protection fault occurs,

The INT 3 instruction is usually encoded as a single byte (oCCH) and used as a
breakpoint instnrction for debuggers.

Flag!

OFDT IF TT SF A AI PF CF
x 0

m4
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Faults
PM Rtt twa6

10 *Ts{sel)
r I #NP(sel)
12 #SS(0)
13 #GP(o) rNT 13 *GP(0)

Example
I N T  4 2 ;  M a k e  a  s y s t e n ' d e p e r d e n t  0 S  c a l l
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INTO
Interrupt on Overflow

8086/80186/80286/80386
o

Stmtax
I I lTO

Operation
i f  ( 0 F )  t h e n

I I lT 4

Logal Form
I N T O

DoEc ptlon
This instruction executes an INT 4 instruction if the overflow bit (OF) in the
EFLAGS register is 1. See the INT instruction for further details.

Flags
OF DF IF 1T SF ZF AF PF CF

0

Fault!
PM RM IA0{}6

10 *Ts(sel)
11 #NP(sel)
12 $SS(0)
13 #Cl (0) INT 13 jFGP(0)
14 #PF(ec)

E .mple
ADD ECX, VECToRIEDI*41 i  Ar i thnet lc operat lon
I l lT0 :  Check for  over f loN
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IRET
Inteffupt Return

8086/80186/80286/80386
( )

Syhtax
I R E T

Operation
i f  0, lT -  I )  then

lask-return (TSS. back_] l  nk)

p o p  ( E r P )
p o p  ( c s )
pop ( EFLAGS )

Legal Fotm

I R E T

Doacrlptlon
This instruction signals a rerurn from an interrupt or, if the NT (nested task) bir is
set to 1, a task switch from the current task to the one that invoked it,

Vhen the new value of EFLAGS is popped from rhe stackj the IOPL btts are mod!
fied only if the CPL is 0.

Chapter 5 dlscusses transitions across protection rings 4nd task switching,

If the IRET instructlon executes while the processor is ln V86 mode, a general pro-
tection fault occurs. It is the responsibiltry of rhe fault handler !o emulate the real-
mode IRET for the V86 rask.

Flag.

O F D F I T  f i  S F U  A X  P F  C F
x

Faultg
PM RM '&E6

11
12 #ss(o)
13 #GP(o) rNT 13 +GF(o)
14 *PF(<) +PF(<)

Exarlipla
I  RET
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Jcc
Jlrfl.p lI Cot dltlofi

8086/80186/80286/80386
( )

Syntar

Operation

E I P  €  E I P  +  s i g r  e x t e n d ( o f f s e t )

Legal Form3 o; - ;lyorfk,
J A  o f f s e t  ;  J u n p  a b o v e  ( u n s l g n e d  x  >  v )  /  C F - 0  & z F - 0
, lAt of fset ;  Junp above of equal /  CF - 0
,Jg offset ;  Jump belo{ (unsigned x < y) /  CF - I
,JsE offset ;  Junp belo{ or equal /  CF - 1 |  zF -  I
Jc offsdt |  , lump j f  carry /  CF - 1
Jcxz offset ;  Jump j f  cx -  0
JECXZ offseN :  Jump l f  €CX - 0
dt of fset ;  ' lunp equal /  ZF - I
, l G  o f f s e t  ;  ' l u r i p  g r e a t e r  ( s l g n e d  x  >  v )  /  S F ' 0 F  &  z F  -  0
JoE offset ;  Jump greatef of  equal /  SF - 0F
,JL offset i  , lunp less (signed x < v) /  SF l-  0F & ZF - 0
,JLE offset I  Junp less or equal /  SF l-  0F
,Jl , lA offset |  ,Jump not above (,JBE)
JIIAE offset :  Jump not above or equal (JB)
JNB offset :  Jump not belovi  ( ,JAE)
,Jl lBE offset ;  Junp not belol l l  or equal ( ,JA)
Jl lC offset ;  dunp ro caffy /  CF - 0
,Jl{E offset ;  Jump not equal /  zF -  0
,JNG offset :  Jump not greater /  SF l-  0F & ZF - I
J l lcE offset |  ,Junp not greater or equal (JL)
J l i L  o f f i e t  r , J u n p  n o t  l e s s  ( J C E )
JIILE offset :  Jump not less or equal (JG)
Jt lo offset :  Junp no overf low /  0F - 0
,Jt{P offset :  Junp no parl ly /  PF - 0
, l l ls of fs€t ;  Junp no sign /  SF - 0
,ll{Z offset ; Jump not 0 / ZF - 0
J0 offset :  Junp l f  oveff lor /  0F - 1
J? otfset |  , lump l f  par l ty /  PF - I
JPE offset I  Jump parj ty even /  PF - I
JPo offset i  Jump pari ty odd /  PF - 0
, ls offset :  Junp i f  s isn /  sF - 1
JZ offset :  Jun'p i f  0 /  ZF - 1
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Descrlption
TheJcc instructions te$ rhe conditions described for each mnemonic. If rhe condi
tion holds true, the processor branches to the specified location. If the condition is
false, execution continues with the instruction following the junp.

More than one mnemonic exists for the same condition. This lets you writc rhe resl
in a manner most appropriate fof the condition. For example, after OR EAX, EAX
you $/ould use JZ, and after CMP EAX,ESI lou would use JE; both mnemonics test
lor ZF = 1.

Flag.

OF DF IF TF SF ZT AF PF CF

Faults
Plt' RIt \eA6

13 #GP(o)

Examplo
DEC AL :  Decrenent  AL
,JZ r€ached_zero :  Bfanch i f  zero
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JMP
NearJump

8086/80186/80286/80386
( )

Syntax

Opor.tlon
ElP e d€st

Logal Formr

, l , tP of fset  I  EIP e EIP + of fset
,J l lP res i  EIP e req
,JttP ne|n : EIP e lm€nl

Delcrlptlon
This instruction loads a new value into the instnrction pointer (EIP). Subsequent in-
structions are fetched beginning at the new location
'$ifhen y)u use the immediate form of the instruction, the data lue is an offset
from the current EIP The other forms are indirect bmnches, that is, ihe new lue
of EIP is taken from the operand register or memory location.

Flalr
OF DF IF TF SI ZF AF PF CF

F9ult.
PM NlI WR6

12 *SS(0)
13 *CP(o) rNT 13 *GP(o)
14 #PF(ec)

Eramplo
Jl'lP nell-label
,lilP ECX
.JHP DIIORD PTR IEBP+l2]

#pr(ec)

0 i r e c t .  r e l a t i v €  b r a n c h

Branch to iout ine shose
a d d r e s s  i s  o n  s t a c k
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JiIP
FarJump

8086/80186/80286/80386
( )

Syntax

Opgration
C S : E l P  e  d e s t

Logal Form3

, l l l P  l d a t a  :  C S T E I P  e  d a t a
Jt lP :  CSTEIP e Imeml

De3crlptlon
A far jump instruction modifies both CS and EIP, In the immediate form of the in-
struction, a rlew 48-bit poinrer is specified. In th€ indirect form, rhe mem operand
points to a 48-bit selecloroffser poinrer.

The new CS selector can be a code segment selecoor (where the branch is to the
specifled offset within rhe code segment), or the selector can be a call gate, task
gate, or task state segment. In this case, the offser portion of theJMP is ignored, and
the new lue of EIP is taken from the gate or the incoming TSS, If the iump causes
a task srwitch, all flags are subject to change as EFLACS reloads from the new rask,s
TSS. Chapter 5 discusses the task switch operation and rhe use of gates.

Flag!

OPDF II TF SF za AT PF CF

Faultt
4M VNtt6

10 #'Is(sel)
11 #NP(sel)
12 *Sqo)
13 *GP(o) rNT 13 *cP(o)
14 #PF(ec)

Eramplo
Jl lP 21A7:0002I IF3H :  0 i  fect  branch
Jl iP Fl ' loRD PTR ne{ task :  Sranch lndl rect
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LAHF
Irad AH wtth Flags

8086/80186/802E6/80386
(8)

Syntax

Opgretlon
A H F E F L A G S & o F F N

L9991 Forrr

Dolcrlptlon
This instruction copies the low-order byte of the EFIAGS register into AH. After the
instruction executes, the AH register has the follo!r'ing contents:

Fl!9r
OF DF IF PPZF AI

Frult!
None.

Examplo

SHR
AtIO

A H , 6
A H ,  1 i  AH nolr  contalrs !he zF f lag
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LAR
I-oad Access Rtghts

80286/80386
(rcp/32)

Syntax

Oporatlon
l f  ( c h e c k , a c c e s s ( s e l e c t ) )  t h e n

Z F € L
dest  e access- f l  ghts (descr i  p tor(  se lect )  )

Z F e 0
endi f

Logal Forma
dest select

& OOF?FFOOH

LAR res, res
LAR reg,

Dolc.lpilon
This instruction allows a program to determine whether a giv€n selector is acces-
sible to it without causing a protection fault.

If the selecl operand contains a !"llid 80386 selector that is accessible to the execur-
ing procedure and the selector r'?e is one defined below, the zero flag (ZF) is set to
1, and the access rights field of the descriplor indicat€d by the selector is loaded inlo
the destination register

If the destination register is a 15-bit register, the high-order 8 bits of the regisrer
contain the access rights fi€ld of the descriptor

TYPB

If the destination is a 32-bit r€gister, bits 8-15 contain the access rights, and birs 20-
23 contain the access extension bits found in bvte 6 of the descrioror.

31 23 20 16 15 8 7  0

If the selector references a nonmemory segment with an invalid tlpe (Tlpe = 0, 8,
oAH, oDH), ZF is reset and the d€st register is not modified.
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Flags
OFDF IF TF SF T AF PF CF

F.ults
Ptt n I tex6

INT6 #UDO
12 #SS(0)
i3 #cP(o) rNT 13 *GP(o)

Exrmplg
i  V e r l f y  t h a t  v a r l a b l e  X  c o n t a l r s  t h e  s e l e c t o r  o f  a  c a l l  g a t e
i  t h a !  c a n  b e  l e g a l l y  i n v o k e d  b y  t h e  e x e c u t l n g  r o u t i n e .
LAR AX, X ;  Load access r lghts
J l l Z  n o - a c c e s s  i  g r a n c h  1 f  c a n ' t  a c c € s s
SHR AX, I  :  l love access r ights to lo l1 ofder
Al , lD AX, IFH :  Save of ly  S b i t  and TYPE
Cl lP AX, oCH :  Test  for  385 ca ' l l  gate
,Jt  ls ,gate ;  Eranch i f  accesslb le gate
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Irad Effecttv€ Address

a3 th. aoa€6/803at Inlrructiotr l.t i.lr.nc.

8086/80186/80286/80386
(r6p/32)

Syntax

Operation
dert  e address (  src)

Logal Form!
dest

LEA reS,

Dglcrlptlon

This instrrrction loads the address specified by the memory operand into the dcsti
nation register, No memory a€cess cycle takes place,

You can also use LEA to perform simple multiplication or addition as discussed in
Chapter 4.

Flag!

OF Df IF TF SF Z1 A.F PF CF

Faulta
RM rA0a6

6 +UDO INT6 *UDO
' Thc undefined opcode fauh only ccurs when the w opednd ls enco<lcd as a regisler

Example3
LEA ESI,  VECToRIEBXt4I  :  Load address of  array € lemeft
LEA EDI,  IEAX][ECX] :  Add contents of  EAx and ECX, store in  EDI
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LEAVE
I€av€ Cuffent Stack Frame

80186/80286/80386
( )

Syntax
LEAVE

Operatlon
f tov €sP, EBP
P O P  E B P

Lcgal Forn
LEAVE

Do.crlptlon
LEAVE is the counterpart of the ENTER instrrctlon. ENTER is executed immediately
after a procedure call to set up a new stack frame, LEAVE is elxecuted befofe a RET
inskuction to release the returning procedure's stack frame,

Fl.gt
OFDF IF TT SF A AT PF CF

Fault!
PM Rtl W)e6

12 #Sq0)
l j  1 3

Exatfrplo
EI1TER 4,4

LEAVE
RET

*G0(0)

;  F j . s t  i n s t r u c t l o n  o f  p f o c e d u r €

; Procedur€ contents

; Clean up Stack frane
;  A n d  r e t u f n  t o  c a l l e r

216



0! lh. 00306/0ot0t h.rrucdon sot Rer.H6

LGDT
I-oad GDT Regtster

80286/80386
( )

Stmt.x
LGDT op

Opelation
GDTR.I imit  e topl
G D T R . b a s e e l o p + 2 1

Legal Form

LGDT

Do.crlptlon
This instruction loads the GDTR register speclfying the address and limit of the
global des€riptor table (CDT). The operand must point to a data structure in
memory whose first 16 bits contain the limit of the global descriplor table and
s/hose dext 32 bits cor{ain the linear base address of the GDT.

Loading the GDTR does nol invalidate th€ cuffently active descriptors' hovr'ever,
subsequent references !o seleclors load descriptors from the new GDT.

A procedure must have a CPI of 0 to issue the LCDT insruction.

Flag!

OF DT IF II SF ZF AF PF CF

Faulti
P M N V W

6 +I,DO INT 6 #UDO
12 *SS(0)
13 *CP(o) rNT 13 +GP(o)
14 *PF(ec)
' The undefi.ed opcode fauli only oc.uis when the instrution is enoded wnh a reglster v.lue for op

Eranple
L G D T  l n i t i a l _ t a b l e
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LIDT
Load IDT Reglster

80286/80386

o

Syntax
LIDT op

Operation
I D T R . I  i m i  t  e  I o p ]
l o T R . b a s e F t o p + 2 1

Logal Form

LIDT NEM

Doacription
This instr\rcrion loads the IDTR register and specifies the addr€ss and limit of the
interrupt descriptor table (IDT). The op€rand must point to a data structure in
memory whosc first 16 bits contain the limit of the interrupt descriptor table and
whose next 32 bits contain the ljn€ar base address of the IDT.

After loading lhe IDTR, any soflware or hardq?re interrupts, faults, or traps will
cause an access to the new IDT,

A procedure must have a CPL of 0 to issue the LIDT instruction.

Fl.g3

OT DF IF fi SF ZF A.F PT CF

Faultt
PM RM VW86

6 *UDO INT6 "UDO
12 rSS(0)
13 *CP(o) rNT 13 *GP(o)
14 *PI(€c)
' The u.defined opcode lauh o.ly occurs when the op operand is en o<led ds ! tgistei

Erarnple
L I D T  n e w  i n t  t a b l e  :  L o a d  I D T  r e q i s t e r

214



a: lhc ao3a6/00347 h.truction s.t R.f€rdco

LLDT
Load LDT Register

80286/80386
(16)

Syntrx
LLDT OP

Opgration
LoTR e op

L9gal Fofins

LLoT feg
LLoT mem

Do3crlptlon

This in$truction loads a selecto! into the IDTR register and specifies a new local de-
scriptor table (lDT). The operand to ILDT must contain a l".rlid local descfiplor table
selector or the lue 0.

Active descriptors that refer to th€ previous LDT are not invalidated; howevef, subse-
quent selector references load descriptors from the new LDT,

If the IDTR is loaded with lhe value 0, all IDT seleclor references that cause a
memory reference result in a general protection fault,

The executing procedure must have a CPL of 0 to issue the LIDT instruction.

Fl.g.

OIDF IF TF AF T AP PF CF

Fault.
Ptl lext6

6 INT6
11 JrNP(sel)
12 irss(o)
13 *GP(o)
13 #GPGel)
14 #PF(ec)

Exarnple
LL0T task-8. I  d t r

sLDo
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LMSW
Load Machine Status Word

80286/80386
(16)

Synt.x
Ll'lsI op

Opsration
c R o  e  ( c R o  &  F F F F 0 0 0 0 H )  l o p

legal Forma

Ltlsl{ reg
Ltlsli mem

Deicrlptlon
This instruction loads the low-order 16 bits of the CRo register Use it only when
running 80286 operating ststem code. On 32-bit systems, use the instruction Mov
CRo, re& Note that you can use LMS\W to enter protected mode but not to leAve it
and that you can use MoV cRo, reg to both enter and leare protected mode.

A procedur€ must be running in ring 0 to execute IlvlSW:

Flagr
OF DF II TI ST ZF AF PF CF

F.ultr
PM RM \€,86

12 #SS(0)
13 *GP(o) rNT 13 #GP(o)
14 *PI(ec) *PF(ec)

Exampla
Lf ls l i  i  n i t_state
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Assert Hardvare LOCK\ Stsnal Prefix

a! Th. aoaa6/ao3a7 In*ruction f6t nGtorc.e

ao86/80186/aO286/803a6
( )

Syntax
LOCK

Legal Fo ns
LOCK

Deectiption

The LOCK inst,uclion prclx supports multipr(x,ess)r har.lware configrations. You
can use the hardwarc LOCK\ signal to ensufe exclusivc access to a particular mem-
ory byte, word, or clfford. The LOCK instruction is vali.l only ifit precedes an in-
struction in the lisr below. If you use it in combinalion with another instructbn or
in an unsupported form of one of the iisted instructions, an unclefined oPcodc lault

llT
D l s
R'IR
BTC
xcHc
XCHG
ADD
,\l)c
AND

OR
SRB
sUu
xoR
DDC
INC
NI]C
NOT

The IOCK\ siqnal is asserted for the dumlion of dre instructi()n, incluciing the limc
required for a rcad-modify-write cyclc. Thc XCHG instructbn docs not require thu
IOCK pfefix bc.cause the LOCK\ signal is always asserted during a memory XCHG

when writing software for multiprocessor systems, cnsure that locked access ibr
particular memory addresscs always occurs to opcmnds of ihe same sizc ln other
words, if you use the dword ar physical address 100, always get access to iI as a
d$,,ord and never as a bytc or word. Locking is not guaranteed to operate coffectly
unlcss vou observe this restriction

Flags
OF DF TF TF SF CF
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Faults
PM RM TAOA6

6 #[JDO rNT6 +UDo

Example
LOCK
B T S  s e n a p h o r e , 3

222



A: lh. go3a6/ao3a7 In.trucllon sot Rol.renc.

8086/80186/80286/80J86LODS
Irad Strirg (a/ftp/32')

Syntax
LODS

Operation
N h e n  o p c o d €  i s  ( L 0 D S B ,  L o D S N ,  1 0 0 5 0 )  s e t  o p s i z e  e  ( 1 , 2 , 4 )
a c c  e  D S :  I t s l ]
i f  ( D F  -  0 )  t h e n

E S I e E S I + o p s l z e

E S I  e  E S I  o p s i z e
e n d i f

Logal Form.
L00SB ; Load str lng byte
L00Sf ;  Load str lns *ord
LoDSD I Load str lns doublewofd

Delcrlptlon
This insruction loads the byte, wod, or dword at DSTESI into the accumulator. If the
DF bir in the EFLAGS register is 0) ESI is incremented by the sjze of the operand
(1, 2, or 4 bytes). IfDF is 1, ESI is decremented,

Because LODS is one of the 80386 string inslructions, you can precede it with thc
REP prefixi howev€n the resulting instruction is useless, as it continLlously over-
writes the contents of the accumulator

You can precede the LODS iAstruction with a segment override preiix. ln such a
case, the operand is taken from the specificd segm€nt.

Flage

OIDF IF TT SF T AI PI CF

Faults
PM RM V8IB6

12 *SS(0)
13 #GKo) rNT 13 +CP(o)
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Examplo
L E A  E B X ,  A _ t o _ E  ;  A d d r e s s  o f  t r a n s l a t i o r  t a b t e
t10v Esr ,  |EEP+121 :  source dooress
L E S  E D I ,  I E B P + 1 6 ]  i  D e s t j n a t r ' o n

Ll :  LoDSB ;  Fetch byte f rom source
0R AL,  AL ;  Test  byte for  zefo
JZ 00NE ,  Branch i f  zero
XLATB ;  Translate the byre
5T058 ;  Save t rars lated verston
,tftP L1

D O N E :

24
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LOOPcc
Decr€m€rxt ECX and Branch

8086/80186/8o286/8o386
o

Syntax

Operation
E C X e E C X - I
i f  ( c c  &  ( E C X  t -  0 ) )  t h e n

E I P e E I P + o f f s e t
e n d i f

Legal Form!
L00P , f fset
L00Pz offset
L00Pt{Z offset
L00PE offset
L00P E offset

Dglcrlptlon

These insffuctions support a d€crement and branch ope{ation, For all variants other
than LOOB the decfement and branch ls combined with a test on the ZF bit. A loop
counter is assumed in register Ecx, The instrrction decrem€nts the register, and if
the lue of ECX is 0, no branch is taken. No flags are set as a result of the decre-

Ifthe lue ofEC)( is not 0, the branch is taken unless the condition in the LOOPcc
forms is noi true.

Flrg!

OF DF IF TF SF ZI AF PT CF

F.ulta
RM tAO86

13 *GP(o) rNT 13 *GP(o)
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Ex.mple
;  I n i t i a l i z e  a r r a y  o f  t e m p  f e a t s  t 0  1 � O
FL01 t  Push 1.0 onto Dp stack
LEA ESL array ;  Start inE address of array
{t lov ECX, sjze ;  Load toop counter

l 1 :  F L D  S T ( 1 ) ,  S T  ;  D u p t t c a t e  1 . 0  v a t u e  o n  t { D p  s t a c k
FSTP IESII  ;  Store 1.0. pop t{op stack
L00P 11 ;  Cont lnue {h e ECX not 0
F S T P  S T ( 0 ) ,  S T  I  D o n e - - p o p  t a s t  t . O  c o n s t a n t  o f f

;  N0P stac k

2fr



Lseg
Irad Segment Register

8: tho aO.?45/AO3a7 h.truction S.t iotdence

8086/80186/80286/80386
(16p/32)

Stmtax

Operatlon
dest e ls.cl
s e g e i s r c + 4 1

Legal Fo?nrr

L o S  f e g ,
L E S  r e g ,
LFS reg,
LGS r€9,  heh
LSS reg,  nem

Dercrlptlon
The src address specifies a 48-bit pointer (32-bit in real mode or V86 mode) consist-
ing of a 32-bit offset followed by a 16-bit sele€tor. The 32-bit offset is loaded into the
dest register and the selector is loaded into the segment register specified by the in-
struction mnemonic. The 80386 protection me€hanism validates thc descriptor
associated with the selector.

Use only rhe ESP reSister with the Lseg instruction.

Flag!

OFDT II TF ST T AI PF CF

Faultt
PM BTT 'A0A6

12 #SS(0)
13 *CP(o) rNT 13 #GP(0)
14 *PF(ec) #PF(ec)

Exarnplo!
LES ESL BIGPTR ;  Load address of  array e lement  [EBX]
LSS ESP, oLD STACK ;  Load a new stack pointer
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LSL
Ioad Segment Llmit

80286/80386
(r6p/32)

Syntax

Operatlon
i f  ( a c c e s s - 0 X ( s e l e c t )  )  t h e n

d e s t  e  d e s c r l  p t (  s e ? e c t ) . I  i m i t
Z F e I

Z F F 0

Legal Form.
dest  se le. !

LSL reg, reg
L S L  r e E ,

Delcriplion
Ifthe serec, operand is accessible to the executing program as a valid selector undel
the protection rules, this instruction loads the dat register with the segmenr limir
from the clescriptor indicared by sel€ct and sets ZF to 1.

If the operand is not acccssible or the descriptor associatc{ with selsci does not con-
tain a limjt field, ZF is set to 0.

The value sbred in the ,/cst regisrer is always rhe offset of the last adclressable byre
in the segmenl (page granular limits are converred to byte granular limits). There-
fore, do not use a 16-bit register as lhe dest operand, as the resulting value might be
too large.

Flaga

OF DF IT IT SF T A.F PF CF

Faultc
PM RM 'A$6

12 *SS(0)
13 #GP(o)
14 *PF(s)

INT6 #UDo
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Exafiple
L S L  E A x ,  t B P + l z l  ;  G e t  l i n i t  o f  s e l e c t o r  o n  s t a c k
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LTR
Ioad Task Reglster

80286/80386
(16)

Syntax

Oporation

Logal Forma

LTR
LIR

res

DgEcrlptlon
This instruction loads the task register with rhe selector specified by the op€rand.
The TSS des.riptor for the sele€tor is marked "busy." lDading the task register does
not cause a task switch,

If the pfocedure thar executes the ITR insiru€rion is not running with a CPL of 0, a
general protection fault occurs.

Fl!g!

OFDT IF TF ST ? AF PF CF

Fault.
PM tm86

10 *NP(sel)
12 *SS(0)
13 *CP(o)
13 *GPGel)
14 #PF(ec)

Eranplo
LTR AX

INT6 *UD(.)
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MOV
Move Data

0: lho 0Gta6/aO:F7 h.truction 3.t R.ld.nc.

8086/80186/80286/80386
(e/a6p/32)

Syhtax

Oporation

Logrl Forn!

l {ov reg, ldata
l i0v nem, ldata
l{ov reg, reg
I'loV reg, fiem
I'loV feg

Dslcrlptlon
This instruction copies the contents of the s/c ope|and into dest,

Flrg.
OTDF IF IT 3F A AI PF CF

Frult!
Ptv Nt ve86

12 #SS(0)
13 JfGP(0) INT 13 #GP(o)
1{ *PF(ec) #PF(ec)

Exanpler
l {0V AL,  IECXI ;  Get  byte f rom nemofy
t10V ESI,  l82H ;  Load ESI l , { i th  data value
1.10V Bx.  Dx ;  16-b i t  movc
l10\ /  AH, 7FH ;  Load AH y i th 8-b i t  data

81
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MOV
MoYe S€lector

8086/80186/80286/80386
(16)

Syntax

Oporation

Logal Forms
dest src

l40V sreg, reS
l40y sreg, i ren
l iov reg, sreg
l i0v mem, sreg

Do3crlptlon

This instruction copies the contents of the e€ operand into the dest operand. If the
dest operand is a segment register, the inskuction loads the descriptor associated
with the seleclor into the 80386 shadow registers. Privilege checks and tests for de-
scripror legality are made unless rhe selector value is 0. A prorecrion faul! occurs if 0
is loaded into the SS register

when the SS register is loaded, all hardsare interrupts (including NMI) are mask€d
until after thc ncxt in$truction €xecutes, to allow loading of th€ ESP r€gister.

Flagr
OF DT IF TF SF ZT AF PF CF

Faults
RM V8'R6

10 rFNl,(sel)
12 #SS(0)
13 #Cl,(0) rNT 13 #GP(o)
14 *PF(ccJ

Examples
HoV DS, AX ;  Load ne{  data seqnent
r40V ES, heap ses ;  Load ES reglste l
Hov save ss,  SS :  Store copy of  SS res is ter

zt2
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MOV
Move speclal

80386
(32)

Syntax

Oporaiion

Logal Form.
dest sra

t lov feg, reg

Descrlptlon
Thi$ instruction copies or loads a speclal CPU register to or from an 80386 general
register. The special registers are CRo, CR2, CR3, DRo, DRl, DRz, DR3, DR6, DRZ
TR6, and TR7

A procedure must be running at a CPL ofo to execute this instruction,

Flaer
O F D F I F f i S F A  A F  P F  C X

Faultt
PM RM IW'6

13 #CP(o) 'GP(0)

Examplo!
HoY tAx, CRo : Save CRo in EAX
HoV TR7, ECI i  Load test register 7

zt3
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MOVS
Move Sttlng

8086/80186/80286/E0386
(8n6P/32')

Syntax
t40vs

Operation
v h e r  o p c o d e  i s  0 4 0 v S B ,  H o v S ! ,  H 0 V S 0 )  s e t  o p s i z e  e  \ L  2 , 4 )
E s r l E D I l  €  D S :  I E S I  ]
i f  ( D F  -  0 )  t h e n

E S I e E S I + o p s i z e
E o I e E o I + o p s i z e

E S I e E S l - o p s i z e
E S I e E S I _ o p s i z e

L99al Formt
t4ovsB ; Move shlng byte
|JoVSl{ :  Move str1ng {ord
l10VSD :  l '1ove st r ing double l l lord

Dgrcrlptlon
This inslruction copies the memory operand pointed to by DS:ESI to lhe destination
address specified by ES:EDL The operand is a byte, word, or doubleword, depend-
ing on the opcode specified. The EDI and ESI registers are incremented by the size
of rhe operand ifthe DF bir is 0 of decremenred ifthe DF bit is 1.

You can apply the REP prefix !o the MOVS inslruction 1o repeat the instruction. You
must placc the value specifying the repeal count in the ECX register.

A segment override prefix may be applied to the MOVS instrrcrion. It will override
the DS segment of the DS:[ESI] operand. You cannot override the Es segment
assumption for the EDI operand.

lbr dword-aligned strings, a REP MOVSD transfers data quicker than does fie equiv-
alent REP MOVSB or REP MOVSW However, if the source and desiinalion stdnfls
overlap, only the REP MOVSB operation works correctly.

Flags

OFDF IF TF SF A AF PF CF
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Fauli.
PM R'I 'UB6

12 #SS(0)
13 #GP(o) rNT 13 #GP(o)
14 #Pl(ec) #Pr(ec)

Ex.mplo
LEA ESI, copyrlght isg i  Get source str jng
LES EoI,  [EBP+12] ;  ES:EDI loaded from stack frane
l lov ECX, 31 ;  51ze of soufc€ str ing
CLD
REP I.iOVSB

;  Ensure dl tect lon f lag set correct ly
i  coDy byte str ing

2;t5
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ilovsx
Move wlth Slgn nxrcnslon

80386
(e/r6p/12)

Syntax
t '10VSX dest,  src

Oporation
dest  e s lgn extend(src)

Legal Form!

oVSX reg,  feS
I ' !0V5X reg,

Do.crlptlon
This instruction copies an 8-bit operand to a 16-bit or 32"bit destination or a 16-bir
operand to a 32-bit destination and sign-e{tends the source opefand !o fit, Sign ex-
tension is performed by duplicating the hiSh-order bit of the src throughout the up-
per bits ofthe d€sl operand.

Fl.g!

OF DF TF TF SF U A.F PT CF

Frult.
PM EM I&)46

12 *SS(01
13 sGP(o) rNT 13 #GP(o)
14 *PF(ec)

Exarnplea
t l0vst TAI�  AL ;  Extend byte to dwofd
l loVSX EoI.  l , {oRD PTR IESI]  ;  Extend wofd t0 dword
l ' loVSX CX, DL :  Extend byte to {ofd

4$



MOVZX
Move wlth Zefo E Ftenslon

a: lhe ao3a5/ao3a7 h.ttuction 5.r Rd.r.nc.

80386
(a/fip/32)

Synlax
l40VZX dest, sr.

Ope.ation

legal Foams
5rc

HoVZX reS, reg
HoVZX reS, mem

Doscrlptlon
This instruction copies an 8-bitoperandto a 16-hit or 32$i! destinarion or a 16-bir
operand b 4 32-bit destination and zero-extends ihc sourcc operancl rc fil. Sign ex-
tension is performed by filling the upper bits of thc desl opcflrnd with 0.

Flags

OF DT IT TF SF A A.F PF CF

Faulta
BM W@6

12 *SS(0)
13 *GP(o) rNT 13 *CP(0)

Exanpl6s
l l0VZX EAX. AL ;  Exterd byte to dwofd
l l0vZX EDL I ' I0RD PTR IESI]  ;  Extend l lord to d l lord
I40VZX CX, DL I  Extend byte to wofd
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MUL
Unstgned Multtpltcattorl

8086/80186/802E6/80386
(a/16p/32)

Syntax
I'lUL src

Operation

Legal Forms

l lUL reS
M U L

De3crlptlon

This instruction performs unsigned integer multiplication and requires only one
operand, the multiplier. Th€ multiplicand is the accumulator, and the product is also
stored in the accumulatof. The size of the sr€ operand determines which registe$
will be used, as illu$tfated in the foilowing table:

Mtu ter <.tc) Muw kitu Prvduc.

AL
AX
EAX

AX
DXrAX
EDX:EAX

The flags are left in an undetermined state except for oF and cF, which are cleared
to 0 if the high-order byte, s/ord, or dword of the product is 0.

Flat!
O F D F l r  T F S T T  A N  P !  C F

? x

Fault.
PM RM '4086

12 *SS(0)
13 #GP(o) rNT 13 *cP(0)
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Example
r'r0v EAX, 3
I i4UL DI4ORD PTR IESI]
Jc res 64
r ,40v res 32,  EAX

B r a n c h  i f  r e s u l t  r e q u i r e s  6 4  b l t s
E l s e  s t o f e  p r o d u c t

ztg
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NEG
N€gat€ lnteger

8086/80185/80286/80386
(an6p/32\

Syntax
EG op

Ope?ation

Logal Forng

l lEG reg
I lEG

Dglcrlptlon
This instruction subtracts its operand from 0, which resulls ln a two's complement
(integer) negation of the op€rand.

Fl.gi
OF DF IF TF SF ZF AI PF CF

x x x

Fault.
P]t n t&R6

12 #SS(01
13 *GP(o) rNT 13 #GP(o)
14 #PF(ec)

Ersmplg
;  Conpute absolute value
0R EAX, EAX : Test for +/ '
, l l l s  S K I P  ; J u n p  i f  n o t  s i s n e d  ( p o s i t l v e )
l lEG EAX : l {egate nesat ive nunber
S K I  P :
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NOP
No Olr€ratlon

8086/80186/80286/80386
( )

Syntax
N O P

Logrl Form
NOP

Dercription
This iostruction performs no function other than taking up space in the code
segmeft,

Flag!
O F D F I F f i S I ?  A F  F F  C F

F!ult!
None.

Exrmplo
l loP : l{othjng occurs
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t{oT
Boolean Complement

8086/80186/80286/80386
(aA6P/32)

Syntax
NoT op

Opsration

Legal Fo na

NoT reg
NOT

Dg.crlptlon
This instruction inverts the state of each bit in the opemnd

Fl.gr
OF DI IF TF SF ZF AF PF CF

F.ult.
PM R.M VaO86

12 *SS(0)
13 ,rCP(o) INT 13 *GP(o)
14 #PF(ec) "P(ec)

Exampl€
l l0T ECX ; Insert  ECX

42



A: flF ao:|a6/ao:|a7 ltr.irrctlon 5.1B.ld.nco

OR
Boolean OR

aoa6 / aola6 / ao2a6 / ao 3a6
(8/r6p/32>

Stht.x

Oporation
d e s t e d e s t l s r c

Lggal Fornt

0 R  r € 9 ,  l d a t a
0R nen, ldata
0R reg, reg
0 R  r e E .
0R nen, reg

Dorcrlptlon
This instruction performs a Boolean OR operarion berween each bit of the src
operand and the dest operand. The result is stored in .&st The trurh rable defining
the OR operation is as follows:

o l  o - o
o l  1 -  1

1 l o - 1

1 1 1 - l

Flag!
OFDF IF TT SF ? At PF CF

0 0

F.ulta
PM nM tU66

7 2
13 *GP(o) rNT i3 #cP(o)
14 #PI(ec)

Exampla
0 R  A L ,  8 0 H  ;  S e t  h i g h  b i t  o f  A L
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OUT
Output to Porrt

8086/80186/80286/80386
(a/ftp/32)

Syntax

Operation

Legal Forlni
DOrt

o U T  d a t a ,
OUT OX,

Dgrcrlptlon
This instruction outputs the value in the accumulator !o the specified data p,rrt.
Placing an immediate value in the ,ort operand field lets you address ports 0-255.
You can address port addresses 0-65,535 by storing the port number in the Dx
register.

OUT is a privileged instruction. A procedure executlng an ourput instrrrction must
satisfy one of two conditionsi otherwise, a general protection fault occurs,

Ifth€ procedure that executes an OUT instrrrction has I/O privilege (if its CPL is
numerically less than or equal to the 1OPI field in the EFLAGS register), the output
instruction executes immediateiv.

If the procedure do€s n(n have I/O privilege, the I/O permission bitmap for the cur-
rent task is che€ked. If the bit(s) corresfnnding to the I/O port(s) is cleared !o 0, the
output iqstruction €xecutes. If fie bit(s) is set to 1, or the port(s) is outside the range
of the bitmap, a general protection fault occu$. See Chapter 5 for more details on

If the OUT instrucrion is encountered while in V86 mode, only the I/O permission
bitmap rs lested. The IOPL value is not a faclor.

Flags
OTDF IT TF SF T AI PF CF

Faulta
PM RM 'A0A6

13 *GP(o)

244
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ar th. €oll66/8o3a7 In.ttuction s.t Retereco

Example
f lov DX, 378N :  Set  por t  address
oUT DX, AX i  t { r j te  t0 por ts  378 and 3/9

24tt
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OUTS
Output Strlng

80186/80286/80386
(a/ftp/32)

Syhtax
OUTS

Operation
| {he r  opcode  i s  (0uTsB,  0u1s !1 ,0uTS0)  se t  ops j ze  e  (1 ,2 ,4 )
p o f t  ( D X )  e  D S : I E S I ]
1 f  ( D F  -  0 )  t h e f

E S I € E S I + o p s i z e

E S I e E S I - o p s i z e

Legal Form3

oUTSB ; out st f ing bYte
o U T S l , l  ; o u t  s t r l n g  w o r d
0 U T S 0  : 0 u t  s t r l n g  d o u b l e w o n d

Dorcrlptlon

This instruction outputs the byle, word, or doubleword at offset Esl to the port
specified in rc€ister DX. The ESI register is adjusted by the size of the memory
operand-incremented if the DF bit is 0 or decremenled if DF is 1

You can precede the OUTS instrution with the REP instructioni however, register
ECx must contain a count of the number of times the OUTS inskuction is to be
executed,

You can apply one of the segmen! override prefixes to the OUTS instruction, caus-
ing the operand to be tak€n from the specified segment rather than the segment
pointed to by DS.

outpur insructions are privileged lnstructions. The protection checks for the ouTS
iostructions are the same as those for the OUT instruction

Flags

OF DF IF TF SF ZA AI PF CF
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F.ult3
PM R,�I 'ryN6

12 #SS(0) #s(0)
13 #GP(o) rNT 13 #GP(o)
14 +PI(ec) ,*pF(ec)

Exarnplo
tEA ESL I0_CHI|L_C140 i  cet pointer to str jng
l(ov DX, C0|{TRoL[ER i  cet I /0 port  nLrnber
I t lov ECx, 8 |  Sjze of I /0 str jng
REP 0UTSD ; output I  doubtewofds
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IIOP
Pop segment Reglster

8o86/8o1E6/8o286/80386
(r6)

Syntax

Oporation
s e g  e  S S :  I E S P ]
E S P e E S P + 4

Logal Fornr

PoP s res

Delcrlptlon
This instruction pops a 32-bit value off the stack and stores the low-order 16 bits in
the sp€cified segment register. Register CS is not a valid destination oPerand, but
the oth€r segment regisiers (DS, ES, SS, FS, and GS) are wlid.

The wlue slored in the segment register must be a lid selector or 0i otherwise, a
protection fault occurs. (Register SS cannot be loaded with a 0 ) Note also that a
POP SS instruction hes limited usefulness because SS and ESP are required to imple_
ment a stack. Ho\,,€ver, if you execute a PoP SS, the 80386 inhibits all hardwafe in_
terrupts to enable the loading of ESP and the guarding against intefiupts while the
stack pointer is invalicl.

If the PoP instflrction is executed by a V86 mode task, only 16 bits are popped off

Flag!

OF DI IT

Faults
PM

CFPFAFm

RM te)a6

t0
L2
t3

*NP(seD
*ss(0)
#GP(0)

#ss(0)
#GP(0)

POP GS
POP DS

Eramples

28
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POP
Pop Value off Stack

8086/80186/80286/80386
(16p/32)

Slmtax

Operatlon
dert e ss: IEsP]
i f  ( s l z e o f  ( d e s t )  -  1 6 )  t h e n

E S P e E S P + 2

E S P e E S P + 4

legal Foam!

PoP reg
PoP nen

Dorcilptlon
This instruction pops the cuffedt value at the lop-of-stack, slores it in the dest
operand, and adiusts the stack pointer

For optimum performance, keep the stack on a doubleword boundary. Pusting and
popping l6-bit lues might alter this alignment. For this reason, it is preferable to
sign-extend or zero-extend a 16-bit opefand !o 32 bits before pushing or popping it,

W'hen you execute POP in V86 mode, the srack will generally be used only for 16-
bit lues. This does not degrade system performance. Pushirg and popping 16-bit
values leads io problems only when both 32-bit and 16-bit puslrcs and pops are
mixed in the same code,

Flag.
OTDA IA TF SF ? AT PF €F

Fault!
PM nM VUA6

12 *SS(0)
13 *cP(o) rNT 13 *CP(o)
14 *PF(ec)

Examplo
POP ECX
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POPA
Pop All General Registers

80186/80286/80386
(16)

POP
ADD
POP
POP
POP
POP

Syntax

Oporatlon
O I
S I
B P

B X
D X
C X

Legal Forrn

D.rcrlpllon
This insir!rction pops all 16-bit general fegislers excePt SP from the stack Because
thc registers are sbrcd as a 16-byte block of data, the POPA instruction does not
aff!'ct dolbleword alignmcn! of the stack.

Flagr
O F D F I F  T F  S F  A  A F  P 8 CF

Faulta
PM ra0a6

\ 2
1 3't4

*ss(0)
INT 13 #GP(0)

Exanple

2t;o
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POPAD
Pop AI G€rxeral Registers

80386
(32)

Syntax

Oper.tlon

POP
ADD
POP
POP

POP

EDI
E S I
E B P
E S P , 4
EBX
EDX
E C X
EAX

Lggal Fotm
POPAO

Dorcilptlon
This instr\rction pops all 32-bit general registers except ESp from the slack.

Flags
OBDF IF IT SF 3 AI PF CF

F!!lta

lwt6
12 irss(o)
L3
14 *PF(ec)

Examplo

INT 13 #cP(0)
*PF(ec)

1
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POPF
Pop Srack tnto FLAGS

8086/80186/80286/80386
(16)

Syntax

Opor.tion
FLAGS e SS: I  ESP ]
E S P e E S P + 2

Logal Form
P O P F

Doacrlptlon
This instruction pops the low-order word of the EFLAGS register from the stack.
POPF provid€s compatibility with previous Intel microprocessors. Use the POPFD
instruction in native-mode programming,

Flagl

OFDF IF TF SF A AF PF CF

Fault!
PM R.IT IW6

12 #SS(0)
13
14 *Pltec)

Examplo

tNT 13 *GP(o)
*PF(ec)

x x x

2
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POPFD
Pop Stack tnto EFLAGS

4o366

G2)

Syntar

Oporation
EFLAGS e SS |  [ESP]
E S P e E S P + 4

Lsgal Form
POPFO

Do3crlptloh
This instruction pops the top-of-stack into the EFLAGS regisrer The VM and p.F bits
initially present in EFIAGS are not modified. The inteffupr flag i$ modified only if
CPL < IOPI before the POPFD, that is, ifthe executing procedure has I/O privilege.
The IOPL field is altered only if CPL - 0.

Flr93
OT DF II TF SF ZF AT PF CF

x x x

Fault.
PM RM V8O86

12 *S5(0)'t3

Er.mple
POPFD

INT 13 *GP(O)
$pr(ec)
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PUSH
Pushvalue onto stack

8086/80186/80286/a0386
(a/$p/32')

Syntax
PU5H op

Operaiion
j f  ( s j z e o f ( o p )  -  1 6 )

E S P e E S P - 2

E S P € E S P - 4

s s : [ E S P ]  e  o p

Log.l Form.

P U S H  l d a t a
PUSH res
PUSH sreg
PUSH men

Do.crlptlon
This instruction pushes the opemnd onro the stack. The stack pointeris decre-
mented before the lalue is pushed. Ifthe operand is the ESP register, the value
stored on the stack is the value thar ESP had before the instruction was executed.
(Thb instruction is different from the 8086 instruction, which pushes the new
value.)

Note that pushing 16-bit registers and memory operands onto the stack changes the
stack's memofy alignment, It is more efficient to sign-extend or zero-extend the
operand to 32 bits and push th€ dword. The 80386 uses segment registers to push
an instruction lu€ onto the stack,

when 'ou execute the PUSH instruction in v86 mode, segment registers are pushed
as 16-bit values. The stack will generally be used only for 16-bit values in V86 mode.
This does not affect system pedormance b€cause stack misalignment only occurs
when both l6-bit and 32-bit lues are pushed onio the stack.

Flaga

OFDF IF TF SF A Af PF CF

4



ar Tho aO3A6/AO3a7 h.l.uctld S.l Felcrsce

Faulls
Rir tao86

12 #SS(0)
13 #GP(o)

Examplea
P U S H  7
I IOVSX EAX, AX
PUSH EAX
P U S H  a r r a y t E S I  N 4 l Pu sh nenofy val  ue

5
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PUSHA
Push l6-Btt G€neral Registers

80186/80286/80386
(16)

Syntax
PUSHA

Opgratlon

PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH tenp
PUSH BP
PUSH SI
PUSH DI

Logal Form
PUSHA

DoEcrlptlon
This insrrucrion srores a copy of all eight 16-bit registers on (he stack. This instruc-
tion provides compatibility with 80186 and 80286 software. Use the PUSHAD in-
struction in native-mode environments,

Flag!

O F D T I T T ? S F A CF

F.ults
tao86

L2
la't4

*ss(0)
tNT 13 i*GP(0)

Example
PU5HA
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ar th.€O3€6/€Oildt In.trucrbr E tnd.rc.6

PUSHAD
Push 32-Elt General Reglstefs

80386
(32)

Syntax
PUSHAD

Oper.tlon
temp e EsP
PUSH
PU5H
PUSH
PUSH
PUSN
PUSH
PIJSH
PIJSH

EAX
ECX
ED)(
EBX

E 8 P
E S I
E D I

Dorcrlptlon
This instruction siores a copy of 4ll eight general registers on the stack, The l?lue
of ESP that is saved to the stack is the ESP value before e,xecution ol the PUSHAD
instruction,

Log.l Form
PUSHAI)

Flag!

OF DF II TF 38 ZI

Fault!
Prt

AF crPT

teB6

t2
1 3't4

rss(0)
INT 13

*oP(0)

Eramplg
PUSHAD

E7
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PUSHF
Push 16-Btt EFLAGS Regster

8086/80186/80286/80386
(16)

Syntar
PUSHF

Oporation
ESP -  ESP 2
ss: tEsPl e FrAGs

Logal Form
PUSHF

D.icrlptlon
This instflrction pushes the low-order 15 bits of the EFLAGS register onto the stack.
PUSHF provides compatibility with 16-bit processors and caNes misalignment of
the stack if used in native mode. Or y 32"bit programs should use PUSHFD,

PUSHF causes a general protection fault in V86 mode if the executing procedure's
IOPL is numerically less than 3.

Flrg!
OT DF IF TF ST U A.F PF CF

Fauli!
PM R.tt W)86

12 #SS(0)
L3
14 #PF(ec)

Example
P U S H  F

+cP(0)
*PI(ec)
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PUSHFD
Push EFI,\GS Reglster

80386
(32)

Stmtax
PUSHF0

Opgralion
E S P - E S P . 4
SSrtESP] e EFLAGS

Logal Form
PUSHFD

Dercrlptlon
Thls idstructiod pushes the contents of the EFLAGS register onlo the srack. PUSHF
will cause a general protectlon fault in V86 mode lf IOPL is less than 3.

Flrgr
OADF IF TF SF zF AI PF CF

Flultr
RM V8o86

12 *SS(0)
1,3
14 #Pr(ec)

Exanplo
PUSHFD

#GP(0)
#PI(€c)
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RCL
Rotate Tlrough carry L€ft

80M/80186/80286/80386
(a/ftp/32)

Syntax

Opgration
temp F nax (corr t ,  3 l )
l f  ( t e n p  -  1 )  t h e n

0 F  €  ( h l g h b J t ( d e s t )  t -  C F )

0 F t s ?

value e concatenate (cF,  desl )
l { h l l e  ( t e n p  ! -  0 )

x  e  h j g h b j t  (  v a l  u e )
v a l u e  e  ( v a l u e  < <  1 )  +  x
t e m p e t e n p - I

C F  F  h l g h b l t  (  v a l  u e )

Legal Fo.mr
dest count

R C L  r e g ,  i d a t a
R c L  l d 6 t a
R C L  r e g ,  C L
R C L  C L

Oe3crlptlon

This instruction concatenates the cafiy flag (CF) with the des, operand and rotates
the \alue the specified number of times. A rotation is implemented by shifting the

lue once and transferling the bit shifted off the high end to th€ los/-order position

The OF bit is defined only if the rotate count i6 1. Th€ 80386 never rotates a pattern
more than 31 times. Counts greater than 31 are masked by the bit pattern
0000001FH.

Flage

OF DF IF TF SF ZF AF PF qF
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Faults
PM RM I\N6

12 *SS(0)
13 *GP(O) rNT 13 #cP(o)
14 #PF(ec) *Pf(ec)

Example
RCL EAX, 3 ;  Rotate EAX 3 b i ts  te f t
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RCR
Rotate Tlrough CanyRight

8086/80re6/80286/80386

@/r6p/32)

Syntax

Opoiation
temp + nax (cour l ,  31)
J f  ( t e m p  -  1 )  t h e n

0 F  e  ( h l g h b l t ( d e s N )  I -  h i s h b i t ( d e s t  < <  1 ) )

0 F e ?
e f d i  f
v a l u e  e  c o n c a t e n a t e  ( d e s t ,  c F )
{ f i l e  ( t e n p  ! -  0 )

x e v a l u e & 1
v a l u e  e  ( v a l u e  > >  1 )
h i g h b i t  ( v a l u e )  e  x
t e m p e t e n p - 1

C F  e  h l g h b l t  ( v a l u e )

Legal Form.

R C R  f e g ,  i d a t a
R c R  i d a t a
R C R  f e g ,  C L
R C R  C L

Daac.iption
This instruction concatenates the caffy flag (CF) with the des, operand and rotates
the value the specified number of times. A rotation is implemented by shifting the
value once and transfeffing the bit shifted off the low end () the high-order position

The OF bit is defined only if the rotate count is 1. The 80386 never rotates a pattern
more than 31 times. Counts greater than 31 are masked by the bil pattern
000000rFH.

Flags

OFDF IF TF SF A AF PF CF

x2



ar th. ao3a5/acia7 In.ttucll.n S6t Bclcrencc

Faults
PM RII IAIB6

12 #SS(0)
13 #CP(o) rNT 13 *GP(o)

Er.mple
RCR EAX, 3 ;  Rotate EAX 3 b i ts  r ight
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.  REP
Repeat Strtng Irreftx

8086/80186/802E6/8oi86
( )

Syntax
R E P

legal Form!
R E P
R E P E
R E P Z
RE PI lE
RE PI lZ

Do3crlptlon

The repeat prefix may be applied to any string lnstruction (CMPS, INS, lODs,
MOVS, OUTS, SCAS, STOS).'When the prefix is present, the string instructlon exe-
cutes r€peat€dly based on the cowrt lue in the ECX register The ZF flag ls also
tested when executing CMPS or SCAS,

If EC)( is 0 when a repeated strinS lnstruction is encountered, the string instrucrion
will not be executed.

Refer to the individual string instructions in this chapter for additional information.

Fl.g.

OF DI II TF ST ZF AF PF CF

Faultt
PM RM I&)46

6 *UDO INT6 #UDO

Exgmple
t{ov EAx, 0
 0Y ECX, tO24/4
REP STOSD ;  j n i t i a l i z e  I  ( 8  o f  n e n o r y  t o  0
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RET
Near Retum f.om Subroutlne

0! llr. €o:t66Eo3a? hdrEtton l.r n.t@m.

8086/80186/802E6/80386

o
Syhtax
RET court

Oporatlon
E I P  €  p o p  ( ) l
E S P e E S P + c o u n t

Logal Form.

RET
RET ldata

Dolcrlptlon
This instrirction restores the insrruction pointer to the value ir held before the
previous CALL instrrction. The !"lue of EIP that had been saved on rh€ 6tack is
popped.If the count operand is present, the cornt lue is added ro EsB removing
any operands that were pushed onlo the stack for the subrourin€ call,

Fl.g!

OFDF II TT ST U AJ PT CI

Fault!
PM R.LI IM86

12 #SS(0)
13 #GP(o) rNT 13 #cP(o)
14 #P!(ec)

Exarrplo
RET 4
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RETF
Far Relur'l from Subroutlne

8086/80186/80286/80386

o

Syntax
RETF count

Ope.aiion
E I P  e  p o p (  )
c s  e  p o p (  )
E S P e E S P + c o u r i

Logal Fotm.

RETF
R E T F  J d A t A

Descrlptlon
This variation of the RET instruction poPs both a new cS and EIP from the stAck.
The instruction assurnes that the CS valu€ is stored as the low-ofder 16 bits of a

dword on the stack.

Ifthis instruction causes a privilegelevel transition, the protection checks
described in chapter 5 |ake Place

Fls93
OF DT IF TF 3I ZF CFPF

Faults
RII vN86

10 #M(sel)
12 #SS(0)
13 #CP(o)

Example
RETF

INT 13 #GP(O)
*pFiec)

:  Rotate EAX 3 b i ts  le f t
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ROL
Rotate kft

a. th. lo3€5/ao3g? lBtructlon S.t i.t*.nc.

80E6/80186/80286/80386
(an6p/32)

Syntax

Operation
t e m p  e  m a x  ( . a r r t ,  3 1 )
i f  ( t e n p  -  1 )  t h e n

0 F  e  ( h l g h b i t ( d e r t )  l -  C F )

0 F  F  ?

{ h l l e  ( t e n p  l -  0 )
x  e  h l g h b J t  (  d e s t )
dest  e (dest  << l )  + x
tenp e temp I

c F  e  h i s h b l t  (  d e s i )

Legal Formo
caunt

R o L  r e S ,  j d a t a
R o L  l d a t a
R o L  r e s .  C L
RoL nem, CL

Do!crlpilon

This instruction roktes the /€rt operand the specified number of times. A rolation
is implemented by shifting the value ence and transferring rhe bir shifted off the
hiSh end ro lhc low-order posrrron ofthc value.

The OF bit is defined only if the rorate count is 1. The 80386 never rotates a paltern
more than 31 times. Couds grgater than 31 are masked by rhe bit panern
0000001FH.

Flag$

OFDF II TF SF A AF PI. CF

a7
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Faultg
PM RT' 'EI'6

12 *SS(0)
13 *GP(o) rNT13 #G(0)
14 *PF(€.) *PF(ec)

Exarnp19
RoL EAX, 3 ;  Rotate EAX 3 b i ts  le f t

2Aa



a: th€ 40386/o03A? In.ttuction S€t Rol.Hc.

8086/80r86/80286/80386ROR
Rotate Rtght G/r6p/32)

Syntar

Operatlon
temp e max (corr t ,  31)
i f  ( t e m p  -  1 )  t h e n

0 F  e  ( h i 9 h b l t ( d € s t )  ! -  h i g h b i t ( d e s N  < <  1 ) )

0 F  e  ?

H h J l e  ( t e n p  l -  0 )
x e v a l u e & 1
v a l u e  €  ( v a l u e  ) )  1 )
h 1 9 h b 1 t ( v a l u e )  e  x
temp e temp 1

C F  t s  h l g h b j t  ( v a l u e )

Logal Forma
d .< f  . a , , . r

RoR feg,  J  data
RoR idata
RoR reg,  CL
RoR nei t ,  CL

Do.crlptlon
This instruction rotates the /e.rt operand rhe specified number of timcs. A rotation
is implemented by shifting the value once and transfefiing the bit shifted off the low
end to the high-order position of rhe value.

The OF bit is defined only if the rotare counr is 1. The 80386 never rotates a pauern
more than 31 times. Counts grerter than 31 are maskcd by the bit pattern
0000001FrJ.

Flags

OFDT IF TF SF T AF PF CF
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Feulta
PM RM IAOA6

12 +SS(0)
13 *CP(o) rNT 13 *GP(o)
U #P!(ec) *PF(<)

EramDlo
RoR EAX, 3 ;  Rotate EAx 3 bl ts rJght
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SAHF
Stor€ AE ttr EFLIGS

8086/80186/80286/80386
(8)

Syntax
5AHF

ODeratlon
EFLA6S e EFLAGS |  (AH & 0D5H)

Logal Form
SAHF

Do3crlptlon
This instruction loads the conrents of the AH r€gister into bits Z 6, 4, 2, and O of the
EFLAGS register.

Flrgr
OIDF IT TT SI zF AF P8 CF

x

Fault!
None,

Eramplc
SAHF

zr1
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SAL
Shlft Irfr Arlthmettc

8086/80186/80286/80386
(8/r6p/32,

Stmt.x

Opgr.tlon
t e m p e c o u n t & 0 0 1 F H
, h 1 l e  ( t e f l p  I -  0 )

CF e hjghorder (  dest)
dest e dest << I
t e m p e t e m p _ l

l f c o u n t - l t h e n
0 F  e  h i g h o r d e r  ( d e s t )  l -  C F

0 F e ?

Lggll Form!

dest count
SAI feg, ldata
SAL men, ldata
SAL reg, CL
SAL nem, CL

Dgrcrlptlon

This instruction shifts the dest ope:€and count bits to the left, The arithmetic shift
left (SAL) and loSical shift left (SHL) are equivalent instructions,

The cornt operand must either b€ an immediate data lue or be stored in register
CL. The 80386 masks the corrt operand with lFH so that the corrt value is never
Sreater than 31,

If the corrt operand is 1, the overflow flag is reset to 0 when the high-order bit and
the carry flag have the same lue after the shift. If the high-order bit and CF have
different lues, OF is set !o 1. If cor,rt is greater than 1, oF is undefined.

A left shilt is equivalent to multiplying the d?st operandby 2ctu"t.

Flagt

OF DF IF II SF ZF AI PF CT
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* th. ao3a6/ao3a7 Instruction S€t R6l.renc€

Faults
PM RM WNA6

i2 *ss(o)
13 +GP(o) rNT 13 *GP(o)
1.i #l,F(<) *PF(d

Examples
S A L  E C X ,  7
S A L  N O R O  P T R  I E B P + 8 ] ,  C L
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SAR
Shft Rtght Artthmettc

8086/80186/80286/80386

<a/$p/52)

Syntax

Operation
t e n p e c o r r t & 0 0 l F H
! l h i l e  ( t e m p  ! -  0 )

s a v e  e  h i s h o f d e f  ( d e s t )
C F - d e s t & 1
dest  e dest  >> t
h j 9 h o r d € r  ( d e r t )  -  s a v e
temp e temp 1

l f c o u n t - 1 t h e i
0 F e 0

0 F e ?

Lggal Forrr!

SAR feg,  idata
SAR i  data
S A R  f e g ,  C L
SAR CL

Dolcrlptlon

This instruction shifts thc dest opeftnd count birs to the right The shift is called
arithmeric because it prescrves fie sign bit of the ,test operand

The corrt operand must be an immediate data value or it must be slored in tegisler
cl. The 80386 masks the corrt operand with 1FH so that the corrt value is never
greater rhan 31.

If corrt is 1, the overflow is feset to 0. If corrt is greater than 1, OF is undefined

The arithmetic righl shift is simila. to dividing dest by 2'a"' s{cept that negative
values are rounded toward negtive jrfinity, rather than toward 0 (that is, -3 shifted
left I rounds to -2, whereas -3 divided by 2r rounds to -l).

Flags

OTDF IF TF SF 2rr AI PF CT
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Faults
RM ttsO86

12 #SS(0)
13 *cp(o) rNT 13 #cp(o)
14 *PF(ec) #PF(ec)

Exarnplgs
SAR ECX, 7
SAR I ' I0RD PTR IEBP+8] ,  CL
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SBB
subtractlon wlth Boffow

8086/80186/80286/80386
(alftp/32)

Syntax
SBB dest ,  src

Oporation
dest  P dest  -  src -  cF

Logal Formr
dest src

Sss reg, i  data
s88 i  data
s88 reg, reg
s88 reg, nem
s8B nen. feg

Delctlptlon

This instruction subtracts the trc operand from the desl operand and decrements
the dest operand by 1 if the CF flag is set. The result is stored in dest

Flag.

OFDF IT TT SF 3 AP PF CF

x

Faultl
RM rts046

12 #SS(0)
13 ,fOP(o) rNT 13 *GP(o)
14 #PF(€c)

Examplg
:  64-b i t  subtract lon operat ion ED)(TEAX -  EBX:ECX
SUB EAX, ECX ;  Lor-order  Dl ts
S B B  E D X ,  E B X  :  H i q h - o r d e r  b l t s
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SGAS
Scan Strlng

8086/80186/802a6/a0386
(8/r6p/rz)

Syniax
scAs

Opgratlon
rhen opcode ls  (SCASB, SCASI, { ,  SCASD) set  opsl :e e (L 2.4)

U L L € a c c - E S : [ t 0 I ]
i f  ( D F  -  0 )  t h e n

E o I e E D I + o p s l z e

L u r ! L U l  .  o p s r z e

Legal Form!
SCASB I Scan str lng byte
SCASI i  Scan str lng ,ord
SCAS0 i  Scan str jng doublerord

Doacrlptlon

This instruction compares the lue in the accumulator (AL, AX, or EAX) with the
operand at ES:IEDII. The flags are set according to the compare operarion, and the
BDI reglster ls adlisted by the size of the operand. If the direction flag (DF) is 0,
EDI is incrementedi oth€rwise, it is decremented,

You can apply the REPE or REPNE prefix to the SC"{S instruction. The ECX register
contalns a repeat count, indicating the maximum number of times the instruction
should be repeated. The instnrction will repeat only whlle the repear condition is
true, that ls, when ZF - 1 for REPE (REPZ) or ZF - 0 irr REPNE (REPNZ).

You cannot use a segment oveffide prefix with SCAS, The ES register is always the
destination of the string io be s.anned.

Flag!

O F D F I l  T T  S F ?  A I  P F  C F
x
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Faults
PM RLI 'AOE6

12 #SS@)
13 #GP(o) INT i3 *GP(o)
14 +PF(ec) #PF(ec)

Example
I  S € a r c h  f o r  a n  a s t € r i s k  1 n  a  s t f i n g
LES EDl,  LEBP+121 i  Str lng pointer on stack
l10l/  ECX, tEBP+2OI :  Str lng slze on stack
CLD

REPIIE SCASB
.JE I.IATCH

;  Character to search for
:  scan
; granch lf  found
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se9
Segment Overtde I'refh

8086/80186/80286/80386

o
Logal Fo.ma
c s :
D S :
5 S :
E 5 :
F 5 :
G S :

Delcalptlon

The instruction that follows these prefixes takes its memory operand from the spec-
Ified segment rather rhan from the defaulr seSment.

You cannot override the following string instructionsl

INS

scAs
sTos

Flatr
OADI IF TF SF A AF PI CF

Flult!
None,

Examplo
tl0v EAX, FSTIESII I  R€ad fron FS rath€r thin 0S
Al)D DS: lEBP],  7 |  l l r l te  to DS father  than SS
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SETcc
Setrye oncorrdt lort

80386
(8)

Syntax
SETcc dest

" Oporatlon
1 f  ( c c )  t h e n

desl e I

dest e 0

Legal Form!

S E T A  d e s t  i  S e t  l f a b o v e  ( u n s l g n e d  x  >  y )  /  c F - 0 t Z F - 0
SETAE dest  :  Set  i f  above or  equal  /  CF -  0
SETS dest  :  Set  l f  be lo l ,v  (unsigned x < y)  /  CF -  1
SETBE dest  ,  set  1f  belot l  or  equal  /  CF -  1 |  ZF -  1

i  5 e r  r r  c a r r y  /  L F  -  r
i  ) e r  r r  e q u a r  /  . f  -  r

S E T G  d e s t  ;  s e t  l f  g r e a t e r  ( s J g n e d  x  >  y )  /  s F ' 0 F  &  z F  -  0
SETGE dest  ;  Set  l f  greater  of  equal  /  SF -  0F
S E T L  d e s t  :  S e t  l f  l e s s  ( s j g n e d  x  <  y )  /  S F  l -  0 F
S E T L E  d e s t  :  S e t  l f  l e s s  o r  e q u a l  /  S F  l -  0 F  &  Z F  -  1
SETIA dest  !  set  i f  not  obove (SETBE)
SET AE dest  i  Set  l f  not  above of  equal  (SETB)
SET B dest  I  Set  1f  not  below (SEIAE)
SETIBE dest  ;  set  1f  not  below of  equal  (SETA)
SETNC dest  ;  Set  1f  no carry /  CF -  0
SETl , lE dest  ;  Set  1f  not  equal  /  ZF -  0
SETNG dest  ;  Set  i f  not  greater  (SEILE)
SETNGE dest  ;  Set  1f  rot  greater  or  equal  (SETL)
SETNL dest  ;  set  l f  not  less (s tTGE)
STT LE dest  I  Set  l f  not  less or  equal  /  sF -  0F & ZF -  0
SET 0 dest  I  Set  l f  no over f lor  /  0F -  0
SETNP dest  ,  Set  i f  no par l ty  /  PF -  0
SETNS dest  ;  Set  i f  no s jgn /  5F -  0
SETNZ dest  ;  Set  i f  not  0 /  ZF -  0
SETo dest  ;  Set  i f  over f lor  /  0F -  1
S E r P  d e s t  :  S e t  i f  p a r i t y  /  P F  -  L
SETPE dest  ;  S€t  i f  par i ty  even /  PF -  I
SETPo dest  :  Set  i f  par i ty  odd /  PF -  0
S€TS dest  ;  Set  i f  s isn /  sF -  I
S€Tz dest  ;  Set  i f  0  /  zF -  1
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Doscrlptlon
This instuction sets the dert blte to 1 if the condition described by the opcode is
meq otherwise, the instnrction clears rhe b''te to 0.

Fl.gg

OT DF IF TF SI U AT PF CF

F.ult!
PM RM IW6

12 #SS(0) #SS(0)
13 *OP(o) rM13 #GP(o)
14 *PF(ec) #PF(€c)

Eramplo
SETIIZ AL
I'tovzx EAx, AL

nl



THE A03A6 BOOX

SGDT
Store CDT Reglster

80286/80386

o

Syntar(
SGoT desl

Operation
dest  e GDIR. LI r '1 IT
d e s t + 2 e G o T R . B A S E

Legal Form

SGDT

Do.cription
This inslruction wdtes the limit portion of the GDTR to the lest memory address
,nd writes the lincar base address ofthc GDT to the dword at dest + 2.

Flags
OT DF IF TF SF ZT A.F PF CF

Faultr
PM R.M tW6

6' #uDO rNT6 *UDo
12 *SS(0)
13 *GP(o) INT 13 *GP(o)

' The undefincd opcode fnult onlt oc.us whcn the let opetand is cncoded as x egistei

Example
s00T I300H l ;  Save GDTR

2a2



A: th. AO3A5/aOOa? Instrucrion 3d nel.rence

SHL
Shft I-€ft Logtcal

8o86/80186/80286/80386
(8/r6p/32)

Syntax

Operation
t e n ' p e c o u r t & 0 0 1 F H
w h i l e  ( t e n p  ! -  0 )

C F  e  h i s h o r d e r  (  d e s t )
dest  e desl  << I
t e m p e t e m p - l

i f c o u r t - l t h e n
0 F  e  h i g h o f d e r  ( d e s t )  1 -  C F

Lo99l Form!
dest  caunt

Sl lL  reg,  i  data
Sl lL  nem, idata
Sl lL  feg.  CL
St lL men,  CL

Dorc.lptlon
This instruction shifts the dest opet^t\d count bits to the lcft. Thc arirh'ncric left
shift (SAL) and logical left shift (SHL) are equivalent instructions.

The corr,t operand must either be an immcdiate data value or be stored in regisrer
CL. The 80386 masks the cowlt operand wilh lF:H so that the co&rt vallre is nevcr
greater than 31.

If the corzr operand is 1, the overflow flag is reset to 0 when rhe high-order bit and
the carry flag have the same value after the shift. If the high-order bir and CF have
different values, OF is settol.lf count is grearer than 1, OF is undefined.

A left shift is equivalent to muliiplying the dest opc:dandby 2n'r-t.

Fla93

OTDF IF IT SF A AF PF qF

n3
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Faults
NA tA(t86

12 +SS(0)
13 #GP(0) rNT 13 #GP(o)
14 #PF(ec) *Pr(ec)

Erample3
sHL  ECX,  7
SHL NORD PTR IESP+8] ,  CL

244



6i th. 004a6/ao3a7 h.ltuctld S.t F.1.retr6

SHLD
shtft Ifft Double

ao386
<16p/32)

Syntar
SHLD dest ,  src,  count

Opo.ation
tenp e max (count,  31)
value e concatenate (dest,  src)
v a l u e  e  v a l u e  < <  t e n p

Log.l Form.
dest src

S H L D  r e g ,  f e g ,  i d a t a
S H L D  n e n ,  r e g ,  l d a t a
S H L D  r e s ,  r e g ,  c L
S H L D  r e g ,  c L

Dolcrlptlon
This insiruction concatenates the s,"c operand to the t&st oPerand and shifts the
resultiAg double-size value left. The low-order bits are stored in des,

The corr?i operand is masked vr'ith 1FH so lhat no shift counts Srealer than 31 are

used,

Fl!93

OF Df IF TF ST ZT AT PF CF

? x

Fault.
R t ' 8 6

12 #SS(0)
13 JfGP(0) INT 13 *GP(0)
14 #PF(ec)

Examplo
l rov EAx.  IESI I  ;  Get  lor -ofdef  dword
S H L D  E A X ,  I E S I + 4 1 ,  7  ; 6 4 ' b i t  s h l f t

n5
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SHR
Shtft Rtght Irgtcal

8086/80186/80286/80386
(a/L6p/32)

Syntax

Oporetion
t e m p t s c o u r t & 0 0 1 F H
l { h i l e  ( t e n p  ! -  9 )

C F - d e s t & 1
dest  e dest  >> I
temp e tenp I

i f c o u n t - 1 t h e n
0 F  e  h l s h o r d e r  (  d e s t )

0 F F ?

logal Form!
dest count

S H R  f e g ,  1 d a  t a
S H R  l d a t a
S H R  f e g ,  C L
S H R  C I

Dolcalptlon
This instruction shifts rhe dest ope|3'nd count bits to the right. The high-ordcr bits
are cleared to 0 as the low-order birs are shifred.

The co&rt operand must eilher be an immediate data wlue or be stored in register
CL. The 80386 masks the corrrt operand with lFH so that the count lue is never
greater than 31.

If the coar?l operand is 1, the overflow flng is set to the high-order bir of the dest
operand. If co&r?, is greater rhan 1, OF is undefioed.

Flags

OFDF IF Tf SF T AT PF q8

M



a: Th. aO3a6/aO0B7 ltrstructlon S.r R.td6nce

Faults
PM R l tm86

12 #SS(0)
13 #GP(o) INT 13 *GP(o)
14 *PF(ec) +PF(ec)

Example3
sHR ECX,  7
SHR UORD PTR [ESP+8] ,  CL

a7
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S}IRD
Shft Rtght Double

80386
A6p/32)

Stmtax
SHRD dest ,  s , "c ,  count

Operatlon
tenp € max (courr ,  31)
v a l u e  e  c a t  { s . c ,  d € s t )
v a l u e  e  l a l u e  > >  t e n p

Logal Form.
src count

S H R o  f e g ,  r e s ,  l d a t a
SHRD res, idata
S H R D  r e g ,  r e g ,  C L
S H R D  r e S ,  C L

D9!calptlon

This inshuction concatenates th€ srE operand to rhe dest operand and shifts the
resulting double-$ize value righr. The low-order bits are srffed in r,/es,

The count opefar.d is masked with lFH so that no shift counts greater than 31 arc

Flagr

OFDF IF TT SF A AI PF CF

Fault3
RM tm86

12 *SS(0)
13 #Gr(0) rNT 13 *cP(o)
14 .fPF(ec)

Eramplo
f lov EAX, [002AH] ;  Cet  lo | {  ordef  ororo
S H R D  E A x ,  l 0 0 2 E h l  ;  6 4 - b j t  s h j f t

2aa
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80286/80386srDr
Store IDT Reglster ()

Syntar
SIDT dest

Oporation
dESt E I  DTR. L I I I  I I
d e s t + 2 e I D r R . S A S E

Logal Fotm

SIDT NCM

Dg.crlpllon
This instruction writes the limit Portion of the IDTR to the de$ memory address

and the linear base address of the IDT !o the dwod al dest + 2.

Flrg!
O! DB IF TT S! ZI Af PF CT

Faulta
RM re86

6 #UDO INT6 *UDO
12 #SS(0)
13 *GP(o) INT 13 #cP(o)
14 *PF(ec)
. The undefined op.ode fault only occuB whcn the ds, oPerand is encoded as a leSister'

Example
Sl0T int , tab :  Get  addfess and l iml t  o f  I0T

4g
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SLDT
Store LDI Regtster

80286/80386
(16)

Syntar
SLDT dest

Oporation
dest  e LDTR

Logal Formt

SLoT r€9
SLoT mem

Dalcrlptlon
This instruction stores the selector in the LDTR in the desiinarion location.

Fllgr
OFDF TF TF SI  T AF P8

Frultt
PM

6
12 #SS(0)
13 #GP(o)
14 #P!(ec)

Examplo
SLOT DX

INT 6 #UDO

i Put LDT selector into 0x
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sMsw
Store Machlne Status Vord

80286/80386
(16)

Syntax
SHSU dest

Oporation

Lggal Form3

Sllsll reg
sl4sl{ n€m

Dolcrlptlon
This instruction stores the low'order 16 bits of register cRo (the 80286 machine
status wofd) in the &st oPerand

Thls instrrrction is provided for compatibility only Use the Mov CRo instrlrction in
native mode programming

Flagr
OFDF IF IT 3F A AT FF CF

Faultr
PM RU wo86

6
12 #SS(0)
13 #GP(o) INT 13 *GP(o)
14 #PF(€c) *PF(€c)

ExamDle
slrsll tDrl

231
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sTc
Set Carry Flag

8086/80186/802a6/803a5
( )

Syntax
STC

Opo.atlon
C F  s  1

Lagal Form
sTc

Do.crlptlon
This instruction sets the caffy flag (CF) in the EFLAGS reghter ro 1.

Fl!g!

OFDF IF TT SF U AX PF CF

F.ult!
None,

Er!mplo
s T C  ;  C a f f y  f t a g  s e t t o l

n2



a: th. aoo06lto5a7 b.lructlon S.t B.lmm.

STD
Set Dlrectlon Flag

aoa6 / aora6 / ao2a6 / ao3a6
o

Syntax
sr0

Operation

Log.l Forn
STD

Dslcrlptlon
This instruction set6 the direction fleg (DF) in the EFLAGS register to 1. This in'

strirction indicate6 reverse direction in the string instructions tg decrement the ln_

dex registers when DF ' 1,

Flagr
O T D T l F  T B S F U  A F  P F  C 8

Frult!
None,

Exanpla
STD ; Prepare for reverse str ing operat lon
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srl
Set Inteffupt Flag

8086/80186/80285/80386
( )

Syntar
STI

Operation
I F  e  I

Logrl Forn
S T I

Dolc.lptlon
This instruction sets the Inreffupt flag (IF) in the EFLAGS register to 1, enabling
hardware interrupts.

Th€ eyecuting program must have a high enough privilege (CPl < IOPL) io lssue the
STI command to avoid a general protection fauft.

Fl.gr
O I D T I l  T F S F z F  A T  P F  C X

F.ult
R.Lt te)66

13 *GP(o)

Exrmpla
C L I  I  D l s a b l e  i n t e r r u p t s
lrov AL, sehaphore :  Get m€nofy value
DEC AL ;  Decrenent countef
,12 Dol lE :  Sklp 1f vatue was 0
l10V senaphore. AL :  Update

D O N E :
STI :  Reenabte jnterrupts
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sTos
Store Stalng

8086/EO186/80286/80386
(a/fip/32t

Syntax
sT0s

Operation
{ h e n  o p c o d e  1 s  ( S T 0 S B ,  S T o S N ,  S T 0 S D ) ,  s e t  o P s i z e  t s  ( 1 , 2 , 4 )

E 5 : l E o l l  e  a c c l n
l f  ( 0 F  -  0 )  t h e n

E D I e E D I + o p s i z e

E D I  + -  E D I  _  o P s i z e

Log.l Forma
sTosB ; store string byte
ST0SI' I  :  Store str ln9 rord
SToSD r Store str jng double{ord

Dsrcrlpllon
This instruction \erites the current contents of the accumulabor (AL, AX, or EAx, de-
pending on the opcod€ used) !o the memory location pointed to by ES:EDI. It then
increments or decr€ments EDI by the size of the operand, according to the DF bit in
the EFLAGS register.

If you precede the STOS instruction with the REP prefix, register ECI( must contain
a count of the number of times STOS is to be executed. This fills memory with the
value in the accumulator,

You cannot use a segment override prefix with the STOS instruction. The destina-
tion segment wlll always be select€d by Es.

Fl.g!

OT DF IT T} SF ? A.T PF C!

Faultt
PM RM Iry'8�6

12 *SS(0)
13 #cP(o) rNT 13 *GP(o)

85
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Erample
:  C l e a r  1 0 0  b y t e s  o f  m e n o r y  b e g i n n l n g  a t  l o c a t r ' o n  0
t10V EoL 0 :  Base address
f lov ECx,  100 /  4  :  Count  ( in  dvords)
X o R  E A X ,  E A X  ;  C l e a f  a c c u n u l a t o r  t o  0
c L 0
REP SToSD ;  Zero menory
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O: lh. 004t6/6o367 h.tructLon S.r hd.EF.

STR
Store Task Reglst€r

ffi2a6/ao3a6
(16)

Syntax
STR dest

Opor.tlon

Logal Forrra

STR feg
STR

De.ctlptlon

This instruction stores the task register selecoor in d?Jr,

Flag!

OF DT TF TB ST Z} AF PF CT

Flultt
PM tw86

6
12 #SS(0)
13 *GP(o)
14 *PF(ec)

ExanDle
STR CX

INT6 #UDO

; Store current task's sel€ctor

,,t7



tHC AOa6A BOOK

SUB
Subtractlon

aoa6 / aola6 / ao2a6 / ao3a6
G/r6p/32)

Syntax
SIJB dert, rl"c

Oporatlon
dest r- dest - sac

Logal Formt
dest trc

S U B  r e g ,  l d a t a
5UB men, idata
SUB reg, reg
SUB aeg, nen
SU8 Dem, reg

Dolcrlptlon
This instruction subtracts the s/c operand from the d4r, operand and stores the
resuh in desl

Fhgr
OBDT IF TT SI A AX PT CA

x

F!ultr
PM R.U V$46

12 *SS(0)
13 +GP(o) rM 13 #GP(o)
14 *PF(e€)

Eramplc
;  64'bl t  subtract ion operat ion EDxrEAx EBx:ECX
SUB EAX, ECX : Lor"order bi ts
SBB El]X, [81 ;  Hish-order bl ts r l th possib]e boffor ' r
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TEST
Test Blts

ar fir. 6oga6rioita? In.tructlon 5.t F.lddc.

so86/80186/80286/80386
(8/r6p/32)

Syntax

Opgration
U L L e d e s t & r r c

Legal Form!
dest

TEST reg,  ldata
TEST r  data
' IEST reg,  reg
I E S T  r e g ,
TEST NEM, TEg

Dolcrlptlon
This instruction performs a bit-by-bi! AND operation on the t/c and dett oPerands
and discards the result, The flag bits, however, are set as they would be after an

AND instruction,

Fl.gt

OF DF IF 1T SF A A.A PF CF

F ulta
PM nM lm86

12 #SS(0)
13 *GP(o) INT 13 #CP(o)
14 *PF(<)

Examplor
TEST AL,  ( ]FH

TEST E8X, ECX
TEST l loRD PTR[EBP+6] ,  8000H

C h e c k  l f  a n Y  b i t s  s e t  i r

T€st EgX under mask in ECX

1 6 ' b i t  i n t e s e r  i s  n € s a t l v e

0 x 0
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VERR
vedfy Read Access

ao2a6/ao3a6
(r6)

Syntax
V E R R  s e l e c t

Opgration
i f  ( a c c e s s i b l e ( s e i e c t ) )  &  r e a d  a c c e s s ( i e i e c t ) )  t h e n

Z F  e  I

Z F e 0

Log.l Form!
. F IF . t '

VERR reg
VERR nen

D9!ctlptlon

This instruction sets the ZF bit in EFLACS ro 1 if rhe current procedure can load the
sslect operand into DS, ES, FS, or GS and can read a lue from the memory seg-
ment without causing a privilege violation.

If th€ selector is for a descripior that is not a memory segment, jf the memory seg-
ment is not readable, or if the current procedure does not have a hi8h enough privi-
lege lev€l to Sain access to rhe segmenr, VERR clears ZF to O. The VERR instnrction
does not generate a fault for refeffing to a seleclor that is invalid; however, a fault oc-
curs if the instruction operand is a memory operand and the operand address is
in lid.

Nole that this instruction does not check the 'presenf bit of the descriptor, nor does
it check access at the page protection level (U/S and R/V bits of page table enrries).

Fla93

OFDF IT TF ST ? AI PF CT

Faulta
PM RM VA!86

6
12 *SS(0)
13 #GP(o)
14 #P!(ec)

300

INT6 #UDO



6: lh. ao3a6/ao3a? h.trucrbn 3€t nd.Hc.

Exanple
VERR i IORD PTR [EBP+8]
JZ COIITINUE
STC
LEAVT
RETF

C O N T I T U E :

Check selectof  on stack
B f a n c h  i f  0 K

A n d  r e t u r n  i f  s e l e c t o r  i s  i n v a l i d

30r
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VERW
Veflfy Wrlte Access

80286/80386
(16)

Stmtax
VERl, l  se lect

Operatlon
i f  ( a c c e s s i b l e ( s e r e c t )  )  a  { r 1 t e _ a c c e s s ( s e i e . t ) )  t h e n

Z F e L

Z F  e  0

Logal Forns
< e 1 e . r

VERII  reg
v !Rt{

Dercilptlon
This instruction sets the zF bit in EFLAGS to 1 ifth€ cuffent procedure can load the
selec, operand inlo DS, SS, ES, FS, or CS and can wrire a value to the memory seg-
ment without causinS a pridlege violation.

If lhe selector b for a descriptor that is not a memory segmenr, if rhe memory seg-
ment is not writable, or if the current procedure does not have a high enough privi-
lege level to gain access to the segment, VERV clears ZF !o 0. The VERW jnstrucrion
does not generate a fault for referring io a selector thar is inr?lidi however, a fauh oc-
curs if the insuuction operand is a memory operand and the operand address is
in!?lid.

Note that this i$struction does not check the 'preseni bir of the descdpror, nor does
it check access at the page protection level (U/S and R/W bits of page rable entries).

Flage

OF DF IF TT SI ZP AF PF CF

Fault.
PM R lwtt6

6
12 #SS(0)
13 *GP(o)

n2

INT6 *UDO



ar th.ll(xta6llosaT h.trctlon alr id@m.

Erample
VERI{  l {0R0 PTR IEBt+8]  :  Check selector  on stack
JZ CoNTIt i l . lE ;  Branch i f  0K
STC ;  Set  carry f las
L E A V E  ;  A n d  f e t u r n  i f  s e l e c t o r  i s  j n v a l i d

RET
C O  T ] N U E :
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watt
Walt Ur{ll Not Busy

8086/80186/80286/80386
()

Synlax
I{AIT

Legal Forrn

Doacrlptlon
This instruction places the 80386 into an idle srate unril the BUSY\ pin is iMcrive. If
the BUSY\ pin is inactive when the instruction executes, no idle occurs. The BUSY\
pin is usually connected to a numeric coprocessor, You should execute this instruc-
tion before any 80386 instruction that will access a value stored by the coprocessor.

If both the TS (task switched) bit in regisrer CRo and rhe MP (monitor coprocessor)
bit are set, a coprocessor faulr occurs. If the ERROR\ pin of rhe 80386 is active, indi-
cating 4n unmasked exception on the coprocessor, a math fault occurs,

Fl.gr
OFDF IF TF SF U AI PT CT

Fault!
PM tw86

7 *NMo
16 *MFo

Examplo

I.IA IT
PUSH resul t
CALL fp_print

INTT
INT 16

*NMO
*MIO

S t o r e  f l o a t i n g - p o 1 n t  r e s u l  t
l ia j t  ior copfocessor to f ln lsh
Push the result  onto the stack
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0: lhc AOSaG,!OSaT h.trstlotr 3.t R.l.6nc.

XGHG
Exchang€

8086/80186/80286/80386
(a/MP/32')

Stmtar
XCHG op1, ap2

Opor.tlon

Lcgal Forrnr
api op2

XCHG reg, reg
XCHG reg, men
XCHG reg

Dorcrlptlon
This instruction gwaps the contents of two operands, If either operand is a memory
operard, the bus LOCK\ signal is held active durin8 rhe read and write memory

Flagr
OF DT IF TF 3F '!F AI PF CI

Frult.
PM nM tm86

12 *SS(0)
13 #GP(o) rNT 13 #GP(o)
14 #Pr(ec) sPI(ec)

Examploa
XC|IG EAX, ECX I  S*ap IAX and ECX
XCl l6 AL,  IESI+101 i  Exchanse AL | / i th  nenory
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XLATB
Translate Btte

8086/80186/80286/EO386
()

Syntax
XLATB

Operatlon
AL e DS: IEBX+AL]

Legal Form
XLATB

Doscrlptlon
This instruction uses the lue ofAL as a positive index into a table located at
DS:EBX. lt then stores the indexed table byte in Al, replacing the original value.

You can apply a segment override prefix to XLATB so that the lable access locarion
will be at EBX + AL in the specified segment.

Fhg!

OFDT IT TF SF A AF PF CF

Fault!
PM R]' VNI]6

12 #ss(o)
13 *GP(o) INT 13 i*CP(o)
14 *PF(€O *PF(ec)

Eramplo
LEA EBX, AZE_TAB I  Load of fset  of  ASCII  to  EBCoIC table
LDS ESL SRC ;  Load soufce st r lng pointef
L E S  E D I ,  0 E S T _ B U F F  ;  L o a d  d e s t j n a t l o n  s t r i n g  p o i n t e r
C L D  ; s e t D F - o

Ll :  10058 ;  cet  byte of  source st f jng
C 5 :  ;  A s s u n e  t r a n s l a t e  t a b l e  f e s i d e s  i n  C S
XLATB ;  Translate byte
5T0SB ;  Store fesut t ing character
0R AL,  AL ;  Test  fo f  l iUL character
JNZ Lt  :  Loop i f  not  NUL
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xoR
Boolean Excluslve OR

a: the gGt06/AO3a7 h.ttuctld 3.t neLH@

aoa6 / aofi 6 / a02a6 / ao3a6
(a/76p/32)

Syntax

Oporation
d e s t e d e s t " s r c

Logal Forrni

X o R  r e g ,  i d a t a
X o R  l d a t a
X o R  r e s ,  f e S
XoR r€q,
XoR mem, feg

Do.crlptlon
This instruction performs a bit-by-bit exclusive OR operarion on rhe src and dest
operands, storing the result in the &st operand. The XOR operation is defined as
followsl

0 ^ 0 - 0

0 ^ 1 - 1

1 ^ 0 - 1

1 ^ l - 0

Flagr

OFDF IF TF SF ? AF PF CI
0 0

Fsultt
PM RM VWJ6

12 #SS{0)
t3 #cp(o) tNT t3 *cp(o)

Exa|nples
XOR AL,  OFFH
XOR EBX, ECX

: Change 0s to 1s and v ice versa in  AL
;  compute E8x e EBX ̂  ECX
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Floating-Point Instruction Set
The floating-point instruction set adds support for arithmetic functions using real

numbers. The 80386 cannot directly execute floatinS-point instructions. However,

when coupled with the 80387 numeric coprocessor, the insffuction set is extended

to include the instructions that are described on the following pages.

PROCESSORS
Proc6sors that suq@rt
the instructian.

MI\EMOl\tIC
Used W ,he asseubler ,r
rE)r6ent the instruction.

NAME
Name of irtstru.tian.

LEGAI, FORMS
Iegal forms of the
insttuction.

DESCRIPTION
Description of the
instruction. fitem =
memor! olrerand.

EXCEPTIONS
An 'r" in a botc
indicates that the
sPec ified etccePt ion m4)
be generated for the
b6tru.ction. A "-" in a
box indic&tes thot the
sPecified excePtion is not
possibb. SF = Srackfault.
PE = Precision exception.
UE = Underflou
excePtion. OE =
OLelflow excePtian. ZE
= Zero divide exception.
DE = Denorrrwl
exce?tion. IE = lntolid
oPelqtion etcception.

EXAMPLE
Eqch etaample shous the
80387 stack before and
after execution ofthe
iftstluctton.

rhcbpdrix.k lrrheqxxteisFlcoMethsitkislx ptdxrt$rheomprdgr
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FABS
Ab€olute Value

0: flF 4o3a6i60367 ltr.trucrld s.t hGlsrcne

aoa7 /ao2a7 /ao3a7

Legal Form
FABS :  I f  (ST < 0)  then 5T e ST *  -1

D€loriptlon
This instruction replaces the or8inal value of the element at rhe top of stack with irs

Excoptlon.
SF PE I'E OE A DB IB

Exampl.

Before

-3.71 STST

FABS
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fl{E AO3a6 BOOX

FADD
Addttion

aoa7 /ao2a7 /ao3a7

Lggal Forma
F A o D  ;  S T ( 1 )  e  S T  +  S T ( 1 ) :  p o p ( ) l
FADo nem32 :  ST e ST + mem32
FA00 mem64 : ST F ST + nem64
FADD 5T(r) ;  ST i-  ST + sT(n)
F A 0 0  S T ,  S T ( n )  |  S T  e  S T  +  S T ( n )
F A 0 0  S T ( n ) ,  S T  I  S T ( n )  e  S T ( n )  +  S f
F A 0 0 P  S T ,  S T ( n )  I  S T  €  S T  +  S T ( n ) :  p o p ( ) l
F A D D P  S T ( n ) ,  S T  :  S T ( n )  t s  S T ( n )  +  S T r  p o p ( ) l

Do3crlptlon

This instruction adds the specjfied floating-point operands and optionally pops the
top ofstack,

If you specify a memory opemnd, ir is converred to temp re l (80-bir) former before
it is added to the top of stack.

If you add a floating-point value to infinity, the result is the original irfinity, If you
add two infinities, they must have the same sign, and the result is the same irfinity,

Ercopllona

SF PE UE OE 2IE DE IE
x x x

Examplo3

4.66
o,2l

13.00

ST
sT (1)
sT (2)

ST
sT (1)

4.47
1300

3 to

FADD



ar rrE aoOaosottT h.rrE$d br nd.He

ST
sT (1)
sT (2)

4.6
o.2L

13.00

ST
sT (1)
sT (2)

FADD ST(2), ST

4.6
0.21

3t t



tHE A03€6 BOOK

FBLD
BCD Irad

aoa7 /ao2a7 /ao3a7

Legal Fortr
FSLD mem80 ;  push( f l  oat(nen80) )

Doicrlptlon

This instruction converts an 80-bx, l9-digit BCD integer to a temp reai and pushes it
onto the stack. If the memory operand is not a !?lid BCD integer, an undefined
value is pushed onto the stack.

Exceptlon.
SF PE UE OE ZIE DE IA

x

ST

Er.mplo

102.04

ESI points ro 17 BCD.

17.00
102.08

ST
sT (1)

IBLD IESI]
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a: tho aO3g6/AOa8? hniucrtd acr ndcrenco

aoa7 /ao2a7 /ao3a7FBSTP
BCD Store and Pop

legal Form
FBSTP nem80 |  nen80 e BCD(ST):  pop() :

Do.c.lptlon

This instruction rounds the top of stack to an integer, stores in memory in BCD f(f-
mat, and then pops the stack.

Unlike most arithmetic operations, FBST? signals rhe invalid (I) exception if eittrer
opemnd is a quiet NaN,

Excoptlona
9I PE IJE OE 4 DB IB

Examplo

ST
sT (1)

3.09
s]'

FBSTP IOA2FI]

BCD 3 is stored in memory.
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tlll00t86 BooK

FCHS
Charge Stgn

ao87 /ao2a7 /ao3a7

Logal Forn
F C H S  ; s T e s T * _ 1

Doacription
This insrruction complements the sign bii of the top of stack.

Excaptlon.
SF PE I'E OE ZlE DB IE

Exanple

5T
sT (1)

-to2a.9
5.2001

ICHS
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a! lh. 00306/003t? h.rrFtro Lr R.r.retrE

aoaT /ao2a7 /ao3a7FCLEX
Clear Exc€ptlons

Logal Fornr!
F C L E X  :  S H e S x & 0 7 F 0 0 H
F l i C t E x  I  S l , l e S f  & 0 7 F 0 0 H

Dosc Dtlon
This idstruction clears the exception flags in the status word and the busy bit to 0.
The FCLEX form of the instnrction checks for unmasked exceptions from previous
operations before clearing the status word. The FNCLEX form clears the S\7 bit
without checking.

Excgptlonr
SF PE IJB OE U DD IE

3r5



tHE ao3a6 BOOK

FGOM
Coltrpafe

aoa7 /ao2a7 /ao3a7

Legal Forms
FC0tl
Fcoll mem32
Fcoli nrem64
Fcol l  ST(n )
FCoHP mem32

FC0I4P 5T(n)

c o n P a r e  s T ,  s T ( 1 )
conPare (sT,  mem32)
compare (sT,  mem64)
c o n p a f e  ( s T ,  s T ( n ) )
conpare (SI ,  nen32)
cornpare (ST,  mem64)
c o m p a r e  ( S T ,  S T ( f  )  )
c o n p a r e  ( s T ,  s T (  1 )  )

Doscription

This instruction performs thc ftl/].cti(m comparc (op-l, op2) and scrs the 80387 con-
dition code accorcLing k) Ihc resuh offie comparison. Thc 80387 $tack is optionaliy
Popped once or twice.
'l he following ublc shows the condition code setriryts thar result from the compare
frnction. FCOM considcrs +0.0 and-0.0 to b€ equal.

Con Utton Ca C2 Cl @

apl>at)2 0 0 0

citbc..'p is a NaN 1 1 - I

Thc U0387 condition codes are arranged in the slatus word so that C3, C2, and C0
nrap into the &1me bil positions as thc ZE PF, and CF birs of rhe 80386 EFLAGS
register Thus, issuing thc following instructions sets thc 80386 flags as ifthe com-
pare hrd been performed on the 80386.

:  F l o a t i n g  p o l n t  c o m p a r e
:  Store status tofd to AX
;  S t o r e  A N  i n t o  f l a s s

0 0  1
l 0 - 0

FC0l{ op
FSTSII  AX

You can then use any condilional jump instruction (Jts, JNE,lA, JAn, JB, orJBE) 1o
branch on the result of the compare. You can use JP to test for NaN opcrands.

U.like most arithmetic operations, FCOM signals the invalid (I) exception if either
operand is a quiet NaN.

Exceptions

S F P E U B O B Z D E I E

3t6



a! th. ao3a6Eoa87 lndrEtlon !.t R.l.mo

Examplea

21,.0

0.1114
ST
ST

ST
sT (1)
ST Q)

sT (1)
sT (2)

Before

-21.0
6.0
0.1114

FCOM ST (2)

!COMPP

0.11145T
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tHE 004€o BooK

FCOS
Coslne

80387

Legal Form
F C o S  ;  S T e c o s ( S T )

Doscrlptlon
This instruction computes the cosine of the \.?lue in radians at the lop of stack and
replaces ST with cosine.

The operand processed by Fcos must be a %lue betweeo t 263 or the instnrction
does nor execure and conditioo code C2 is set to 1. C2 is cleared io 0 if the lnstruc-
tion is executed.

Exceptlona
SF PB I]B OB ZE DE IB

x

Erlmplo

ST
sT (1)

Before

0.785399

3ta



a! the gctlt6ia(x|aT In.lrFtlotr 8.t i.t.6n4

aoa7 /ao287 /ao3a7FDECSTP
Decrernent Stack Polnter

Logal Fo?m
FDECSTP : ToP e (ToP _ 1) & 07H

Do.c.lption
This instruction allows 'nu to manipulate the 80387 stack pointe. Issuing FDECSTP
is equivalent to pushing a new value onto lhe stack, but no valr.re is supplied. The
tag registers are not modified,

Ercoptlonr
SF PB IJD OB 4 DE IE

Ex.mplo

ST
sT (1

ST
sT (1)
sT (2)

8.201
999.9

FDECSTP

3t9

Befofe

4.201
999.9



fl{E ao5a6 BOOI(

FDIV
DtYtsion

aoa7 /ao2a7 /ao3a7

Legal Forma
F D  I V
F D  I V
F D I V
F D I  V
F D I  V
F D I V
F D I V P
F D I V P

S T ( 1 )  e  S T ( 1 )  /  S T r  p o p ( ) ;
men32 ST € ST /  nen32
men64 ST € ST / hem64
s T ( n )  s T  F  s T  /  S l ( n )
S T ,  S T ( n )  S T  e  S T  /  S T ( n )
s T ( n ) ,  s T  s T ( n )  e  s T ( n )  /  s T
S T ,  S T ( n )  S T  e  S T  /  S T ( n ) !  p o p o ;
S T ( n ) ,  5 T  S T ( n )  e  S T ( n )  /  S T :  p o p  O ;

Dolcriptlon
This inskuction executes a divide operation with rhe above operands. If )iou
specify a rnemory operand, ir b converted !o temp real (80-bit) format befcre the
division is perform€d. A stack pop operarion is performed if specified by the
opcode.

Division by infinity results in 0. Infinity divided by a feal nunber results in infinity,
Infinity divided by infiniry is not a valid operation.

Exceptlon!

S F P B U E O B U D ! I E
x x

Examplog

ST
sT (1)
sT c)

4.0
0.4
5.0

3N

!Dry



0! lha 0o006lgxtaz hdt@tlor 3.t lt t.mo

ST
sT (1)
sT (2)

sT (1)
sT (2)

FDIV ST(2), ST

4.0
0.4
t.2,

4.0
0.4
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IHE aoa€6 BooK

FDIVR
Dlvblon Reve$€d

aoa7 /ao2a7 /ao3a7

Logal Forn!

F o M  S T ( 1 )  e  S T  /  S 1 ( 1 ) ;  p o p o :
FDM rnen32 ST e nen32 /  ST
FDIVR mem64 5T e nen64 /  ST
F o I V R  S T ( n )  5 T  e  S l ( n )  /  S T
F D M  S I ,  S T ( n )  S T  e  S T ( n )  /  S T
F D M  S T ( n ) ,  S T  S T ( n )  €  S T  /  S T { n )
F o M P  5 T ,  S T ( n )  S T  e  S T ( n )  /  S T ;  p o p o ;
F D M P  s T ( i ) ,  S T  S T ( n )  + , 5 T  /  S T ( n ) r  p o p  ( ) ;

Deacrlptlon
This instruction executes a divide operation wirh rhe above operands. This instruc-
tion is equivaleft to mIY but the divisor and dividend operands are exchanged. If
'ou specify a memory operand, it is converted to temp real (80-bit) format before
the division is performed. A srack pop operation ts performed if specified by the
opcode.

DMsion by infiniry results in 0. Infinlty divided by a real number results in infinity,
Infinity divided by infinity is not a valid op€r4tion,

Erceptlonr
SF PB I]B OB 2'E DE IE

x x

Eramplo!

ST
sT (1)
sT (2)

4.0
0.4
5 0

ST
sT (1)

10.0

322
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a! lh. ao3€5/aoca7In.ttuction 361R.t r*c.

ST
ST (1)
sT (2)

ST
sT (1)
sT c)

FDn? ST(2), ST

4.0
0.4
0.8

4.0
0.4

323



tltE 803€5 BOOX

FFREE
Free NDP Register

aoa7 /ao2a7 /ao3a7

Logal Forn
FFREE ST(n)  ;  T l , l ( i )  e  UI iUSED

Deacrlptlon
This instruction marks th€ specified stack element as unused by setting the tag
s/ord ior th€ corresponding 80387 register. The stack pointer is not modified, no( is
fie actual content of the NDP register

Exceptlons
S F P E U E O E 4 D E I E

Examplo

ST
sT (1)
sT (2)

190000.3

0.001

ST
sT (1)
sT (2)

!FR!E ST(1)

190000.3

0.001

324



a! th. 60lE6rao:ta7 h.tretlon l.t R.lm|E

aoa7 /ao2a7 /ao3a7FIADD
Int€gei Addldon

Legal Form!

FIA00 nem16 :  ST F ST + f loat{nen16)
FlA00 nen32 ;  SI e ST + f loat(nen32)

Delcrlptlon
This instnrction converts the !flo's complement lnteger at the specified address to
temp real foimat and adds it to the top of stack. Other than the difference in
operand ttpe, this instnrction is equhdent to FADD.

Excoptlon3
SF PE I,E OB U DE IE

Exrmplo

sr o)
ST
sT (1)

Before

t7,6
0,333 0.333

FTADD VORD PIR IEC)C

ECX points ao integer -2.

3



tHE AO3€5 BOOK

FICOM
Integer Compare

aoaT /ao2a7 /ao3a7

Leg6l Forr s

FlCol l  men16 |  compare (ST, neml6)
Flcol l  nen32 |  conpare (ST, mem32)
FICOI{P nen16 :  conpare (ST, neml6);  pop() l
FIco P mem32 :  conpare (ST, nem32): pop( )  |

Do3crlption

The two's complement integer is converted !o iemp real format and comPared with
th€ top of stack. If the opcode is FlcoMq the stack is popped after the comparison

The condition codes are set in the same manner as those for FCoM

Excgptlon.

S F P E U E O B 4 D E I E
x

Examplo

ST
sT(1)

Befo!€

6.0
13792.29731 ST t3792 2973r

tIcoMP woRD PTR lorc6tl c, " , " , ".

Memory pointer is integer 6.
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& th. aot8a/lota? h.truc$.r &t Ad.h.o

aoa7 /ao2a7 /ao3a7FIDIV
Integef Dlvlslol

Logal Forrng
FIDII /  mem16 r ST e ST /  rest(nen16)
FIoIV nem32 :  ST € ST /  real(mem32)

Dgacrlptlon
This instruction fetches the t$/o's cornplement integer from memory, converts it to
temp real furmat, and uses it as a divisor of the top of stack. The results generared
by thi6 instruction ar€ the same as rhose generated by $e FDMnstrucrion.

Excoptlon!
S F P E U B O E A D E I B

Errmpla

ST
sT o)

ST
sT (1)

1.0
2.2

-0.25
2.2

IDTV D!{ORD PTR IEBP+16J

Memory poidter is integer -4.

x
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tfiE 503A6 IOOK

FIDIVR
Integer Dft'lslon Revers€d

aoa7 /ao2a7 /ao3a7

Lcgal Fotma
FIDIVR nenl6 ;  sT e real (meml6)  /  ST
FIDM men32 :  ST ts  real (mem32) /  ST

x

Do.criplion
This instruction converts the two's complement integer at th€ sPecified memory
locarion to temp real format and divides it by the top of stack The results generated

bv this insrruction are lhe same as those generated by the FDIVR instruction

Excoption!
3F PB UE OB Zts DE IE

Examplo

sT (1)

nDM D\{/ORD PTR [EBP+161
Memory pointer is integer -4.

Before

-4.0
2.2
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FILD
Integer Irad

a! lh. aoa€t/4o367 Inatructtd a.t a.i.r6c.

aoa7 /ao2a7 /ao3a7

Legal Forma
FILD meml6 ;  push ( f loat  (meml6)
FILD mem32 ;  push ( f loat  (mem32)
FILD mem64 :  push ( f loat  (mem64)

Descrlptlon
This instruction converts a two's complement integer to temp real format and
pushes the vaiue onto rhe 80387 stack.

Excoptlohr
SI PB I]E OE Z DE II

Eramplo

Befo.e

1.2@ST sT (1)
666.0

1 209

FIID Q\{ORD PTR IEAX]

Memory pointer is integer 666.
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tHE 603A6 aOOK

FIIIUL
Integer Multlpllcatlon

aoa7 /80247 /ao3a7

legal Form3
FII IUL meml5 ;  ST
FIITUL nem32 ;  ST

Delcfiptlon

e ST *  real  (mem16 )
ts  SI  *  real  (men32 )

This instruction converts the t\to's complement integpr at the specified memory
location to temp real format and multiplies it by the oop of stack. The results of this
instruction are identical to those obtained by FMUL.

Exceptlona
SF PE I.'E OE Z DB IE

Examplg

ST
ST O)

FIMUI, !{ORD PTA IESI+EAX]

Memory pointer is integer -4.

0.16
't7.9

Befo.e
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* th. 0oata/6o367 l..r.Erlo a.t tr.Lm..

aoa7 /ao2a7 /ao3a7FINCSTP
Increment stack Poldter

Log.l Form
F I n C S T P  ;  T o P F  ( T o P + 1 )  & 0 7 H

D9lcription
This instruction increments the TOP field in the 80387 sratus word. The conrents of
the 80387 register previously at the top of stack and th€ regisrer's associared tag
word are not affected.

Exceptlont
S F P B U E O B A D B I B

Exanple

ST
sT (1)

72 32
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fl{E A0366 SOOX

Ftl{tT
Inlttallze NDP

aoaT /ao2a7 /ao3a7

Lggal Form!
FINIT ; Cl{ e 037FH: S}l € sl '{  & 4700Hr TI e oFFFFH
FNINIT ;  Cl i  e  037FHr Sl , l  e  s l ,J  & 4700H: TI  e oFFFFl i

D€rcrlptlon
This instruction sets the 80387 machine state to its default value All registers are
marked unused, all exceptions are masked, rcunding conhol is set to nearest, and
the operating ntode is set to double-precision

The FINIT instruction tests for any unmasked exceptiod in the 80387 before clear-
ing the NDP state, unlike FNINI! which does not codsequently, the first floating-
poin! instruction of an application should be FNINIT

Erccptlona
SF PB I,E OE A DB IE
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Ai th. AO3A6/0Oaa7 h.truc{on a.t iGtcftre

aoaT /ao2a7 /ao3a7FIST
Integef Stofe

Legal Forfts
FIST menl6
FIST ne'n32
FISTP mernl6
FISTP n'en'32

menl6 e i  n t (  ST)
nem32 e i  n t (ST)
m e n 1 6  e  i n t ( s T ) :  p o p (  ) :
m e m 3 2  e  i n t ( S T ) ,  p o p (  ) ;
m e m 6 4  e  i n t ( S T ) :  p o p (  )  |

Deacrlptlon
This instruction rounds the currenr top of stack to an integ€r according to tlle €on-
trol bits and stores the lue in the specified operand. Ifthe opcode js FIS'P, the
stack is popped afrer the store operatlon. Note that rhe sign of a floating-point 0 is
iost upon conversion to th€ two's complement integer format,

Two differences exist between FIST and FISTP. The FISTP instrucrion, which Dops
rhe sLac k afrer rhe srore operarion. can itore a 6{ -bit inreser: FIST can nor Thc FIIT
instrlrction generates an in lid operarion exceprion if the bp of stack is a quier
NaNi FISI? does nor.

Excoptlon!
SF PE !'E OE U DE IE

x *

Ex.nplo

ST
sT (1)

ST
sT (r)

32.1
456.78

32.1
456.78

IIST DTi{ORD PTR [EBP+421

Integer 32 stored into memory.

333
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FISUB
Integer Subtractlon

aoaT /ao2a7 /ao3a7

Logal Forms
F1SUB meml6 :  5T e ST real(nen16)
FISUB nen32 :  sT e Sr -  real(mem32)

Descriptlon
This instruction converts the two's complement integer at the specified memory
location to temp real format and subtracts it from the lop of stack. The r€sults of this
instruction ar€ identical to those obtained by FSIJB.

Excgptlons
SF PE UE OE ZTE DB IB

x

Er.mplo

ST
sT (1)

ST
sT (1)

Before

a6.99
0.0

33.99
0.0

FISIJB WORD PTR IA72HI

Memory poinler is integer 3.

334



ar th. 6oad6/ao3a7 Instructlon 3.t h.tdE.

FISUBR
InGger Subt.actlon R€versed

aoa7 /ao2a7 /ao3a7

Legal Forms
FISUBR mem16 :  ST e real (mem16) -  ST
FISUBR nem32 :  ST e real (mem32) -  ST

Delcrlptlon

This instruction converts the two's complem€nt inreger at rhe specified memory
location to temp real format and subrracts the top of slack from ir. The results of this
insrucrion are identical to those obtained by FSUBR.

Erceptlons
SF PB IJE OE ZE DE IE

x

Example

ST
sT (1)

ST
sT (1)

-33 99
0.6

FISUBR 
'WORD 

PTR [A72H1

Memory pointer is integer 3.

Before

36.99
0.5
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tflE 60(|a6 Eoor

FLD
Irad Real

8087/80?87180387

Logal Forms
FLD nen32 :  push(mem32)
FLD nem64 ;  push(mem64 )
FLD neng0 :  Push(men8o)
F L D  S T ( n )  :  p u s h ( S T ( n )  )

Do3ctiption

This instruction pushes a copy of the specified operand onto the 80387 stack. If you

specify a 32-bit or 64-bil floating-point memory operand, it is converted to temP

real format before being stored,

lf the operand is a single- or double-precision value, the 80387 might generate a

denormal exception. A d€normal exception is not Senerated by a value already in

temp real format.

Exccptlon!
SB PE IJE OE U DE IB

x

Examplg

ST
sT (1)

t9a62.o
7 . 1 1

ST
ST (1)
sT (2)

FLD D\(ORD PIR tEDi

6.1.

t9362.0
7.11

Memory pointer is sho( real
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FLDconst
ut dlconstan

a! th. aooa6/00307 Instruclion a.r Bd4cnc.

aoa7 /ao2a7 /ao3a7

Logal Forn!
FL01  ;  push ( I . 0 )
FLDL2E ; push( I  og2( e) )
F L o L 2 T  ;  p u s h ( l o s 2 ( 1 0 ) )
F L o L G 2  :  p u s h ( 1 o s 1 0 ( 2 ) )
F L D L N 2  :  p u s h (  I  n (  2 )  )
F L D P I  ;  p u s h (  P I  )
F L D Z  ;  p u s h ( + o . o )

Deacrlptlon
This instruction pushes the consranr lue spccified by the opcodc ono the stack.
The function ln stands for log base e

Ercoptlona
Sf PE I]B OE ZA DB ID

Exanrplo

4.0
3.141196...

ST
ST
sT (1)

FLDPI
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fl{E a0388 BOOK

FLDCTI'
Load cnntrol Word

aoa7 /ao2a7 /ao3a7

Legal Form
FLDCl,l meml6 ; Cl'l e nenl6

Descriptlon
This instruction loads a new value for lhe control word from memory. FLDcv can
unmask previously masked exceptions, triSgering an unmasked exception

Excepilons
S F P B I ] E O E A D E l B

x
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FLDENV
Load Envhonment

a! th. €O366/aO3A7 h.t ucitd 3!t R.t@nc.

EO87/80287/80387

Logal Fo.m
FLDENV ,renp ; NDP e memp

Doacrlptlon
This instruction loads the 28-byte blo€k pointed ro by memp into t}te envhonmedt
registers of the 80387 The memory operand contains a new control word, sratus
word, tag word, and effor block. The memory format for the environment is shown
in Figure 8-1,

1 6  1 53r q Blte offset

Eror offser (EIP)
Inor s€leclor (cs)

32-bit format

0
4
8

L2
16
20

Byte offset
0
2
4
6
8

l0
t2

lPro r

9P,c ui
16-bit format

Blgl'fe A-L a0387 entronmen'

Loading a new status word and con(ol word can cause an unmasked exception.

Excoptlon3

SF PE IJE OE ZB DE IE

339
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FMUL
Multtpltcatton

aoa7 /ao2a7 /ao387

Legal Forms
FI'{UL
FHUL nen32
FI1UL nen64
Fl ' lUL sT(n )
Fr i4UL ST,  ST(n )
F t l U L  S T ( n ) ,  S T
FI '1ULP ST,  ST(n)
F| IULP ST(n ) ,  ST

S I ( 1 )  e  S T ( 1 )  +  S T ;  p o p ( ) ;
S I e S T * m e m 3 2
S T e S T * m e m 6 4
S T 6 S T * S T ( n )
S T e S T * S T ( f )
S T ( n ) e S T ( n ) * S T
s T  e  s T  *  s T ( r ) :  p o p ( ) :
s T ( n )  e  S T ( n )  +  S T ;  p o p o ;

Doscrlptlon
This instructbn ,nultiplies the specified operands and stores them as indicated
above. If't'ou specify 32-bit or 64-bit memory operands, they are converted to temp
real format before the multiplication takes place. If the opcode specifies, the stack is
poPped after the oPeration.

Multiplying any value otherthan 0 by infinity results in infinity. Multiplying 0 by in-
finity is an in\"alid operation.

Ercaptlon!
S F P B U E O E 4 D E I E

Examplo3

2.O
0.0:t
7.6

o.o2
7.6

ST
sT (1)
sT (2)

5T
sT (1)

tro

FMIJI,



0! th. to3€6/a(l!t7 rBttucito a.l i.t.Erc.

sT (1)
sT (2)

2.0
0.0r

o.o2
0.01

ST
sT (1)
sT (2)

FMU! ST(1)

34t
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FNOP
No Operatlorx

aoaT/ao2a7 /ao3a7

Legal Form
FNOP

Doscrlptlon
FNOP is an alias for the FST ST, ST instruction. It does nothing.

ExcoDtlon3
ST PE UE OB 2ts DI IB

Er.mplg

ST
sT (1)

ST
sT o)

Before

3.3
r9.6

rNOP

3.3
19.6

g2



a: th. €O306/aO3A7 h3ttuctlon aet BcLmc.

aoa7 /ao2a7 /ao3a7FPATAN
Partlal Arctangent

Legal Fo.m
F P A T A I 1  :  S T ( 1 )  e  a t a n ( S I ( 1 )  /  S T ) ;  p o p ( ) ;

De3crlptlon

This instruction computes the arcrangenr in radians of ST(1) + ST The mnemonic
"partial arctangent" is inherited from earlier NDPS, which placed restricrions on the
\,?lues of ST and ST(1). These \dues are not testricted on the 80387

Exceptlons
SF PE UE OE ZB DE IE

Ex!mplo

ST
sT (1) sT (1)

2.0
1.0

0.4616...
1,0

FPATAN

34:l
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FPREM
Partlal R€malnder

aoa7 /ao2a7 /ao3a7

Legal Form
FPREI'I ;  s T  e  r e n a i n d e r  ( 5 T  /  S T ( 1 ) )

Doscription
This idstfl.rction uses repeated subtractions to compute the remainder of ST dMded

by sT(l). Because this operation could require 4 large number of itetations (during

which time the NDP would be inaccessible), the 80387 halts after producing a par-

tial remainder. The 80387 reduces the value in ST by a faclor of up lo 2@ in a single

If the remainder is a partial value (that is, the operation does not complete), the C2

status bit b set to 1. If the remainder is less than the lue of ST(1), the operation is

complete and bit C2 is cleared to 0. By testing the lue of C2, the FPREM instruc-

tion may be executed rep€atedly until the remainder operation yields an exact

result. Mditionally, when the insta.rction is complete (C2 - 0), the three least sig-

nificant bits of the quoti€nt of ST + ST(1) can be computed by the following formula:

e ! C 0 x 4 + C 3 x 2 + C l

where C0, Cl, and C3 are ihe remaining statw bits.

The FPREM instruction reduces operands for the kansc€ndental functions of the

80387 to legal lues. For e,xamPle, the operand to F2xMl must b€ -1 < ST < 1'

FPREM produces an exact result, and th€ Precision control and rounding control bits

are ignored durinS execution,

The FPREMI instruction produces the IEEE-754 standard Partial remainder lalue'

which may be different from FPREM when ther€ are two integers equally close to

ST + ST(1). FPREM rounds toward 0, and FPREM1 chooses the even value

Excoptlona
S F P B U B O E A D E I E

344
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Example

ST
sT (1)

ST
ST (D

C 2 - 0

6
4

2
4

FPREM

3t5
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FPREMI
IEEE Parttal Rematnder

80367

Logal Fonr
FPREI i I ;  S T  e  r e n a i n d e r  ( S T  +  S T ( I ) )

D€acrlption
This instruction uses repeated subtractions to compute the remainder of ST divided
by ST(1). Because rhis operation could require a large number of iterations (during

which time the NDP would be inaccessible), the 80387 halts afier produ.ing a par_

tial remainder The 80387 will reduce the value in ST by a factor of up to 2s in a
single iteration.

If the remainder is a partial v3lue (that is, the operation is not complete), the c2
status bit is 6ct to 1. If the remainder is less than the value of ST(1), the operation is
complete and bit C2 is clear€d to 0. By testjng the value of C2, the FPREM1 instruc_
tion may be executed repeatedly until the r€mainder operations yield an exact
result. Additionally, when the instruction is complete (C2 ' 0), the three lea$ sig_
nificant bits of the q.Dlient of ST + ST(1) can be computed by the following formulal

e = C 0 x 4 + C 3 x 2 + C 1

whefe C0, Cl, and C3 are the remaining status bits.

The FPREM1 instruction reduces operands for the transcendental functions of the
80387 to legalvalues. For o<ample, the operand to Fr(Ivfl must be -1< ST < 1.
FPREM1 always produces an €xact result, and th€ Precision control and rounding
control bits are iSnored during €xecution,

The FPREM1 instruction produces the IEEE-754 standard Partial remainder value,
which may be different from FPREM when there are two inteSers equally close to
ST + sT(l). FPREM always rounds toward 0, and FPREMI alsr'ays chooses lhe even

ExcaDtion3

SF PE UE OE ZTE DE IE

346
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Exaanplc

ST
sT (1)

ST
sT (1)

Before

6.0
4.0

IPREMl

2.0
4.0

c2-0

347
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FPTAN
Partlal Tangent

aoa7 /ao2a7 /ao3a7

Lggal Form
F P T A I I  :  S T  e  t a n ( S T ) :  p u s h ( 1 . 0 ) :

Description
This instruction computes the tangent of the top of stack and arranges the NDP
stack swh that:

:=i = lan (orisinal ST)

The denominator is always 1.0 after the FPTAN instruction.

The operand lue must be a positive number that is expressed in radians less than
PI x 262, or no operation takes place and rhe C2 condltion code bit is set to 1. If the
input operand is legal, C2 is cleared to 0.

Exceptlonr
SF PE UE OE 2I DE IE

Examplo

ST
sT (1)

Before

0.78549...
b.2

ST
sT (1)
sT (2)

FPTAN

x x

1.0
1.0

344
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aoa7 /ao2a7 /ao3a7FRNDINT
Round to Integer

Log.l Forn
F R l l D I l { T  ;  S T e  l n t ( S T )

D€rcriptlon
This instnrction rounds the %%%%%%%%%%%%%%%%�lue at the top of stack to an integer based on the set-
tings of the round €orltrol (RC) field in the control word. see chapter 2 for a discus-
sion of the 80387 rounding modes.

Exceptlon3
ST PE UE OE 'IE DE IE

x

Ex!mplc

ST
sT (1)

1.06
6 0 1

1,0
60.1

ST
sT (1)

FRNDIM

349
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FBSTOR
Restore NDP State

aoaT /ao2a7 /ao3a7

D6!cription
This instructioo loads the entire 80387 proces.sor state from the 108-byte block of
dat^ begir.ni,..gat rnenp. Use the FSAVE insrruction to siore rhe NDP state. F8ure
8-2 shows the format of the state block.

Lggal Form
FRST0R ,eDp

Registef

t 5 Btte offse!
0
2
4

8
t 0
1 2J i

Instrucrion poinrero.,1
lPn

OP*

Sn0) o a
sT(o)v 6

sroo r I sr(0)61 ,
sT(1)16 .'
sr(l)- *
sT(2)o r
sT(2)3'. 6l

sT6)o s ST(2)d ,o
sT(3)16. r
sT(3)4 '
sT(4)o.r
sT(4)' 6

sT6)0. rr ST(4)& D

sT(6)0 i
sr(6b 6l

sT(7)o E I sT(6/...
STOL .i7
STO)o r

16'bit fornat (real & v86 modes)

18
22

30
34
3A
42

62

70

7a
a2
86
t9

FEte a-2. ao3a7 mchine state.
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6r licocla6iaoat? h.ttuctlols0t i.t dc.

a1
0
4
8

t 2
1 6
20
24

sT(0)o r

sT(r)b. E I Srto\. -
5T(1)16. {7
ST(1)4 rs
ST(2)o r
STQ)]�..63

STe). s I sT(z)a r
ST(3)rs o
sT(3)€ it

sT(4)r, 61
sr(5)o .x I s!11&..L

5T(5)rr..o
ST(5)a..re
sr(6)0. ,1
5T(6), 63

sro)^ ( | sT(6)6{,

32-bl! forma!

New unmasked exceptions miSht be triggered bec?use a new status wold and con'

trol *!rd are loaded.

Ercaptlona
ST PB I]B OE Its DE IE

15

2a

36
40

4A

56
o0

72
70
80
84
88

96
100
104

Regisler

Enor ofist (ElP)

351



IHE AOiE6 EOOK

FSAVE aoaT /ao2a7 /40387
Save NDP State

Legal Forms
FSAVE Derrp ; menp e NoP
FNSAVE rerp I memp e rilDP

Description
This instruction storcs the complete procesror stare of the 80387 in memory begin-
ning ar location memp Figure 8 3 shows rhe format of the stare block.

L5

oPr,s rql31

0
2
4
6
8

10
\2

14
llJ
22
26
30
34
38
42

50
54
58
62

70

7A
82
86
90

Ftg\\rc a-3. AA3a7 nachine state.

sr(o)o r

sTo),, " sr(0)i"

sT(1)4d ,q
sr(2)o l
ST(2)r' A

Sl l3 )u  r (  |  ST(2)L i  .D
sr(3),6 '
ST(3)4 rq
sr(4)o n
sT(4)r, e

sr{5)o r I sT(4)& -
sT6) i6,
sT(5)$. ,
sT(6)0 l
ST(6h or

sT(7)o D ST(O6a. '
sT(7)j6 t
sr(7\s 7e

16 bil forma! (real & v86 modet

352



Errcr ofTsel (EIP)

figirc a-3. continued

3 \ 16
0
4
a

t 2
i6
20
24

sT(0)o 31
sr(oh 6.

sT(l\.6 | sT(o)d 19
sT(1),6 .4?
sr(t)s..'!
sT(2)d {
sT(2)e:. o:

sTa3)^ ,. 5T(2)d i
STG)16 o
STc)as D
sT(4)d 1
ST(4)r .6'

sT(5)o ,t I ST(4)d D
sT(5)rr. I

sT(o o 4
sr(6):r r:

sT(7)o F I S16to,,
STO)ra o
sT(7)ls..,

32-bit lormat

After the FSAVE is completed, the NDP state is set to the initialized state, as if an
FNINIT instruction had been executed,

The FSAVE form of the instruction tests for any unmasked excePtions befor€ execut-
ing the save, while FSAVE does not. If you use FSAVE, pending e\ceptions are re-
instated when the stat€ block is loaded by an FRSTOR instruction. FSAVE is not
executeduntil previous floating-point instructions complete

Exceptiona
Sf PE T',E OE A DE IE

a! lho ao3a6Eo3t? ltr.tructlo. 3.r Rdd.nc.

1 5

2a
32
3o
40

48

60

68
72

80
a4
88
92
9b

100
104

353



rrrE €0006 gooK

FSCALE
Scale by 2"

aoa7 /ao2a7 /ao3a7

L€g.l Form
FSCALE :  sT e sT * 2inr(sr(r))

Degcription
This instruction scales the rop of stack value by the povr'er of 2 in ST(1). If the value
in ST(l) is not an integer, ir is ',chopped" before being used as an exponent. chop-
ping generates the nearest lnteger smaller than the orlginal value.

The 80387 does not perform a muftiply operation, but it uses the identity (.t x 2n)
(1.0 x 2n) - r x 2n+m and adds the integral porrion of ST(1) to rhe exponent of ST.

Excgptlon!

SF PE IJE OE U DE IE
x x x

Exgmplo

ST
sT (1)
sT (2)

B€fore

1,0
3.01

92.6

ST
ST
ST

FSCAI€

354
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ao2a7/ao3a7FSETPM
s€t Protect€d Mode

Logal Form
FSITPI'1

D€tcrlptlon
This instnrction performs no operatlon on the 80387 It is required on the 80287 to

signal that the ciu i6 entering protected mode and is supporrcd for compatibility

only.

Excoptlon!
S T F E U D O E U D E I E

355
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FSIN
Slne

80387

Legal Forrh
F S I I I  ;  S T  t s  s i n ( S T ) ,

Doscription
This instruction computes the sinc ofthe rop of stack and srores rhe result in ST.
Thc value in ST is assumed to be in radians.

The input operand to FSIN must be a value such that I ST | < 263, or no operation
takes placc and the C2 condjtion code is ser ro 1. If the operand is a legal value, C2 is
cleared to 0.

Excoptlona
S F P E U E O E U D E I E

Exgmplo

ST
sT (1)

ST
sT (1)

3.14159..
88.6

0.0
88.6

FSIN

354
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40347FStI{COS
Slne add Coslne

Legrl Fo.m
FSINCoS i  temp e ST,  ST e s ln( tenp)

:  push(  cos ( temp) )

Deacription
This insrruction computes both the sine and cosine of the top of stack, although the

lues might be less precise than those generated by FSIN and FCoS. The lue in
ST is assumed to be in radians.

The input operand !o FslNcos must be a value 6uch that I sT < 263 or no open-
tion takes place and the C2 condition code is set to 1. If the operand is a legal lue,
c2 is cleared to 0, the top of stack is the cosine lue, and ST(1) contains the sine.

Excoptlon!
SF PE I'B OE A DE IE

x

Examplo

ST
sT (1)

Before

3,14159...
88.6

-1,0
0.0

88.6

ST
sT (1)
sT (2)

ISINCOS

357
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FSORT
Squar€ Root

aoaT/ao2a7 /ao3a7

Legal Form
FSQRT ;  S T  e  s q r t ( S T )

Dorcrlpllon
This instruction replaces the top of stack with the square rcot of the original lue.
Taking the square root of a negative lue results in an invalid operation, except
that the square root of oegative zero (-0.0) is defined as -0-0. The square root of in,
finity (positive) is defined to be infiniry.

Ercoptlon!

S F P B U E O E U D E I E

ExanrDlo

B€fore

354
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aoa7 /40247 /ao3a7FST
Store Floatlng Polnt

Log.l Formg
FST men32
FST nen64
F S T  S T ( n )
FSTP mem32
FSTP men64
FSTP mem80
F S T P  S T ( n )

men32 e

S T ( n )  6
men32 e

n€n80 F
S T ( n )  e

ST
ST
ST
S T ;  p o p (  )  i
S T ;  p o p  (  ) ;
s I ;  p o p (  ) ;
S l I  p o p (  )  r

Dercrlptlon
Thls instruction stores rhe top of stack in the designated destination. If the opcode
is FSTP, the stack top is popped (discarded) after the siore operation. If the destina-
tion is a 32-bit or 64-bit real memory operand, the top of stack is rounded according
to the rounding control (RC) bits of the control word.

Note that the FSTP form of thls insFuction can store a remD real (80-bit) value. while
the FST form cannot.

Excoptlona
ST PE IJB OB 4

E amplg

ST
sT (1)

Before

69.0
98.6

FST QWOBD PTR IESII

69.0.Memory pointer is long real
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FSTCW
Store Control Wo.d

aoaT /ao2a7 /ao3a7

Legal Fo?irs
FSTCI menl6 ; meml6 F Cl{
FNSTC}i  mem16 :  hem16 e Cf

Do.c.lptlon

This instruction stores the contents of the control rord (Cw) register in memory.
The FSTCV form of the instnrction checks for unmasked oceptions before the
control word is stored, while FNSTC\/ does not,

Ercottloni
SF PB I]B OB 4 DE IE

360
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aoa7 /ao2a7/ao3a7FSTENV
Store EN'troonrent

Legal Forns
FSTEIIV ,?er?p nenp e env(NDP)
Fl lSTEl lV r?er?p nemp € env(NDP)

Descrlptlon
This instruction stores the contents of the 80387 eflvironment registers (CV, S\v,
T.Ii(/, and error pointers) in memory beginning at ,rarp Figure 8-4 outlines the for-
ma! of the 28-byte environment block.

16 1t I Blte offset

Errcr offset (EIP)
Eror selectof (Cs)

31

32-bit formal
r t

0
4
6

L 2
16
2A
24

B'1e ollset
0
2

6
8

10
t2

Instruction Dointern x
IP, .

o&c rl
16-bit fomat

F gate A-4. 80387 entlrcnnenL

The FSTEIW form of the insquction checks for unmasked exc€ptions before the
environment is slored, while FNSTENV does not. If unmasked elceptions are pend-
ing before FNSTEI'W is executed, they are reactilated if the environment block is
loaded with FLDENY

Exceptlo|rg

SF PB tJE OE U DE TE
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FSTSW
store status word

aoa7 /ao2a7 /ao3a7

Legal Forns
FSTSI,{ AX AX F Sli
FSTSI'I meml6 menl6 € Sll
FllSTSl,l AX AX € Sl'l
F STSI'J meml6 neml5 € Sl'J

Dercrlptlon
This instruction stores the conients of the 80387 status word in memory or in the
AX register of the 80386. The FSTSV form of the instruction checks for unmasked
exceptions before the control word is slored, while FNSTS1V does not.

ErccDtlonr
SF PB IJE OE 2T DB If,

362
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aoaT /ao2a7 /ao3a7FSUB
Subtractlon

Legal Form3
F S U B  ;  S T ( 1 )  e  5 T  -  S T ( l ) j  p o p ( ) :
FSUB men32 :  Sr  e 5T -  nen32
FSUB nen64 ;  ST € 5T -  nem64
F s U B  S T ( n )  i  S T  €  S T  -  S T ( n )
F S U B  S T ,  S T ( n )  :  S T  €  S T  -  S T ( n )
F S U B  S T ( n ) ,  S T  :  S T ( n )  e  S T ( n )  5 T
F S U B P  S T ,  S T ( n )  :  S T  e  S T  -  5 T ( n ) :  p o p ( ) :
F S U B P  S T ( n ) ,  S T  :  S T ( n )  e  5 T ( n )  -  5 T ;  p o p ( ) ;

Do.crlptlon
This instruction subtracts the specifled operands and stores the result on the 80387
stack 4s shown aboj,,e. Optionally, the top of stack is also popped.

If you spe.ify a 32-bit or 64-bit real memory operand, it is converted to temp real
format before it is subtracted from ST.

If any real value is subtracted from infinity or infinity is subtracted irom any real
value, the result is infinity. Subtracting two infinities oflhe same sign is an invalid
operation.

Exceptlona
SF PE I]E OE ZE DE IE

Examploa

9.81
6.1

72.O
1.51

72.0

ST
sT (1)
sT (2)

ST
ST O)

FSUB

35:t
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ST
sT (1)
sT (2)

9.81
6,3

7Z.O

ST
sT (r)
sT (2)

FSUB DWORD PTR IESI+4]

Memory poinrer is short real 2.2.

7.61

72.0

3A4
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aoa7 /ao2a7 /ao3a7FSUBR
Subtr"actlon Revers€d

Legal Fo.m!
F S U S R  I  S T ( 1 )  e  5 T ( 1 )  -  S T ;  p o p ( ) ;
FSUBR nem32 |  ST e nen32 _ 5T
FSUBR mem64 ;  ST e men64 _ ST
F S U B R  S r ( n )  ;  s T  e  s T ( n )  _  S T
F S U B R  s T ,  s T ( n )  :  s T  e  S l ( n )  -  s T
F S U B R  S T ( n ) ,  S T  ;  S T ( n )  e  S T  '  S T ( n )
F S U S R P  5 T ,  S T ( n )  |  S T  e  s T ( n )  -  s T ;  p o p o r
F S U B R P  S T ( n ) .  S T  I  S T ( n )  e  s T  -  s T ( n ) ;  p o p ( ) j

De.crlptlon
This instruction subtracts the specified operands and stores the result on the 80387
stack as shown above. This insta.rction is equivalent to FSUB except that the
subtrahend and mlnuend are exchanged. optionally, the lop of stack is also
poPPed.

If you specify a 32-bit or 64-bit real memory operand, it is converted to temp real
format before it is subtracted from ST.

If any real value is subtracted from infinity or inJinity is subtracted from any fed
value, the result is infinity. Subtracting two infinities of the same sign is an invalicl

Excspilon!
9F PE I,E OE ZB DE IB

Era|nplgg

ST
sT (1)
sT (2)

ST
sT (1.)

9.81
6.3

72.4

-3. t1
72.0

x x

FSUBR

345
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9.81
6.3

72.O

7.61
6.3

72.0
sT (1)
sT (2)

ST
sT(1)
sT (2)

FSUB DWORD PTR IESI+4]

Memory pointer is short real 2.2.
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aoa7 /ao2a7 /eo3a7FTST
Test for Zero

logal Form
FTST ;  conpare  (ST ,0 .0 )

Deacription
This instnrction compares the top of stack with 0.0 and s€ts the 80387 condition
codes according to the results of the comparison,

The following table shows the condition code settings that result from the com-
parison function. FTST considers +0.0 and -0.0 to be equal.

C6dttloa C3 Q CI <P

sT > 0.0
sT < 0.0
ST - 0.0

0 0 - 0
0 0 - 1
1 0 - 0

S T i s a N a N l l - l

The 80387 condition codes are arranSd in the status word so that C3, C2, and C0
rnap into the same bit posilions as the ZR PF, and CF bits of the 80386 EFLAGS
reSister. Thus, issuing the following idstructions sets th€ 80386 flags as if the com-
parison had been perform€d on the 80386:

FSTSll AX
SAHF

i  F l o a t i n g - p o i n t  c o n p a r e
I Stofe status vord to AX
; Store AH into f lags

You can then use any conditional jurnp instruction (JE, JNE, JA, JAf, JB, orJBE) lo
branch on the result of the comparison. Use JP to test e/hether ST is a NaN.

Unlik€ most arithmetic operations, PTST will sl8nal the In%lid (IE) excePtion if ST
is a quiet NaN.

Exc.ptlont
SF PB IJE OE ZE DI II
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Exarrplo

ST
sT (r)

-37.37
1.0

ST
sT(1) 1,0

FTST

a6a
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ao3a7FUCOtul
Unofdered Compare

Logal Forfia
FUC0I4 ;  compare (ST, ST(1))
FUCoM nen32 ;  compare (Si,  nen3z)
FUC0M mem64 ;  compafe (ST, mem64)
F U C 0 l 4  S I ( n )  ;  c o m p a r e  ( S T ,  S T ( n ) )
F U C o t l P  :  c o n p a r e  ( S T ,  S T ( 1 ) ) :  p o p o
FUCo P mem32 i  conpar€ (ST, men32)r popo:
FUCo P mem64 |  compare (ST, men64);  pop( ) ;
F U C o  P  S T ( n )  i  c o n p a r e  ( S T ,  S T ( n ) ) r  p o p ( ) :
F U C 0 | , 4 P P  ;  c o n p a r e  ( S T ,  S T ( 1 ) ) ;  p o p ( ) r  p o p O l

Doac ptlon
This inskuction is identical to FCOM except that no exceptions are signalcd ifeirher
oPerand in the compare function is a quiet NaN, (the comparison is unordered).
FUCOM executes the func\ior\ compare (opl, op2) and sets rhe 80387 condition
code according to the resuhs of the comparison. The tll387 stack is optionally
poppeo once or rwrce,

The followinS table shows the condition code settings thar result frdn the compare
function, FUCOM considers +0.0 and -0.0to be equal.

Con tttton C3 C2 CI CO

op1> Qp2 0 0 - 0
o?l <oP2 0 0 - I
opt - oP2

The 80387 condition codes are affanged in the status vr'od so rhar C3, C2, and C0
map into the same bit positions as the ZF, PF, and CF bils of rhe 80386 EFLAGS
register. Thus, the following instructions set the 8035 flags as if the comparison
had been performed on the 80386:

1 0 - 0
1 1 - 1

FUColl op
FSTSN AX
SAHF

;  F l o a t i n s - p o i n t  c o n p a r e
: Store status {ord to AX
:  S t o r e  A H  i n t o  f l a 9 s

You can then use any conditional iump insrrucrion (JE, JNE, JA, JAE, JB, orJBE) ro
branch on the result of the comparison. Use JP to test for unodered comparison.
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Exqeptlon3
SF PE I'E OB A DE IE

Examplo

sr (1) ST
sT (1)

72rO.0
0.1

7270.0
0.1

3m
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FWAIT
Walt Untll Not Busy

aoa7 /ao2a7 /ao3a7

Legal Form

Do3criplion
This is the 80386 VAIT instnxtion, but many assemblers allow ],ou to encode it as
FWAIT because it relates to the NDp. FWAIT places the 80386 inlo an idle state until
the BUSY\ pin is inacrive. If rhe BUSY\ pin is inactive when the instruction is exe-
cuted, no idle occurs. The BUSY\ pin on the 80387 is held active while the NDP is
performing a floating-point instruction. Execute rhis insrruction before any 80386
instruction that will use a value stored by the coprocessor.

Excoptlon!

S F P E U E O B Z D D I E
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FXAI,I
Examlne Top ofstack

a0a7 /ao2a7 /aota7

Logal Forrn
:  C c  e  e x a n i n e  ( S T )

c3 c2 cl a1,

Dgacriptlon
This instruction sets the condition €ode bits in the 80387 status word (SW) accord-
ing to the value of the top of stack. The following table indicates the settings that
can arise based on different values of ST.

Unsupported' 0
NaN 0
valid (normrD 0
lnfinity 0

Unused (T\v - enpty) I
Deno.mal I
Unused (Tw - €mpty) 1

0
0
1
1
0
0
1
1

0
I
0
I
0
I
0
1

The s bit in Cl is set to the sign of the value of ST, with 0 indicating a Positive lue
and 1 indicating a negative.

Excoptlonr
SF PB I]E OE A DB

'Unsupported values are sPcclal blt Patreds th.t rere %lid for lhe 8087 ot 80287 but are no lo!8et

supponed.lhese in.lude Pseudo-NaN, pseudo.zc.o, pseud,c_inflnity, and unnomals
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Examplo

ST
sT (1)

Before

44.0 45.0ST (1)

FXAM

373



. tHE AO3a5 aOOK

FXCH
Exchange Stack Blements

aoa7 /ao2a7 /ao3a7

Legal Forms
FXCH ;  tenp € STi  ST e ST(1) ;  ST(I )  e tenp
F X C H  S T ( n )  ;  t e m p  e  S T r  S T  e  S T ( n ) :  S T ( n )  e  t e m p

Descrlption
This instruction swaps the contents of the specified stack registers. This allows
values to move to the top of stack, which is the standard operand locatlon for many
80387 instructions.

Ercoptlona
SF PE T'E OB 4 DE IE

x

Eramplo

ST
sT (1)
sT (2)

ST
sT (1)
sT (2)

2.0
1 0

1.0
2.0
3.0

FXCH
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FXTRACT
Extract Floatlng-Polnt Components

a: flr. ao:Fa/Eo3€? h.rruc d 3.r RdFnc.

aoa7 /ao2a7 /ao3a7

Logal Form
FXTRACT ; tenp e sI: 5T € exponent(temp)

;  p u s h ( f r a c t i  o n ( t e m p )  )

Dorcrlptlon
This instruction breaks rhe top of srack into irs constituent pans, the significand and
the exponent, The exponent is slored as a true, unbiased lue. not as iust the bit
parcrn in the exr onenr Field ol rhe floaLins-poinr represenution. This operarion
leaves t}Ie fraction or significand on the rop of stack and the er.ponent at ST(1). The
original value is desrroyed.

If the original top of stack is O, the ewonent pofiion is set to ne9rive irfinity.

Excoptlonr
SF PB I]B OB Z DE ID

Ex.mplo

Before

r.59 x IST

FXIRACT

3?5
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FYL2X
Compute Y x log2x

aoa7 /ao2a7 /ao3a7

Legal Form
F Y L 2 X  ;  t e m p  +  l o s , ( S T ) r  p o p ( ) ;  S T  e  S T  *  t e m p

Doacription

This insiruction pops rhe top of sta€k, takes the base 2 logarithm, and multiPlies the
rcsult by the ne top of stack. Anothcr way of expressing the function is:

ST(1) x log2 ST

The initial top of siack must be a positive value,0 lhrcugh infinity lfit is not, the
rcsults ofthe opcration are undefin€d.

You can also use this inslructionto compute logarithms with a base other than 2,
relying on the idenlity:

log,, 'c = (log2 x) / <log2 n)

Thc following code fragment illustrat€s this computarion

F L o l  :  1 . 0
F L O  i  ; n ,  1 . 0
F Y L 2 X  ;  l o g ,  n
F L D 1  :  1 , 0 ,  1 o g ,  n
F D I V P  S T ( r ) ,  S T  I  l / 1 o 9 ,  n
F L o  x  I  x ,  1 / 1 0 9 ,  n
F Y L ? X  :  l o g r x *  l / l o g r n

Exceptlons
ST PE IJ'E OE ZE DB IE

Exarnple

ST
sT (1)
sT (2)

ST
sT (1)

8.0
0.01
0.333

0.03
0.331
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FYL2XPI
computerxbg2(x+1)

A! lh. aoata/0o347 harruc o. Sct R.ld.nc.

aoaT /ao2a1 /ao3a7

Legal Forn
F Y L 2 X P 1  ;  t e n p  e  l o s , ( S T + l . o ) ;  p o p ( ) :  S T  e  S T  *  t e m p

Doscription
This instruction pops the top of stack, adds 1.0 to the value, takes rhe base 2
logarithm, and muhiplies the resulr by the new rop of stack. Another way of ex
Pressing the instruction is:

ST(1) x log, (ST + 1.0)

The jnitial top of stack must be within rhe range -l + ',L /2 < X < I -',L /2, or the
result ofthe instruction is undefined.

This instruction is provided so tha! adding 1.0 ro rhe top of srack and cxecutirtg
FYL2Xdoes flot result in a precision loss. Because the FyL2Xpl funcrion is com-
puted differendy than the FYI2X instruction, a special range resrricrion exists.
FYLDGI iS also uscful in computing the arcsinh, arccosh, And arctanh invcrse
hyperbolic rrigonometric ftnctions.

Excoptlons
ST PB !'B OE ZE DE TI

x

Exal|tplo

5T
sT (1)
sT (2)

ST
sT (1)

15.0
10.0 40.Q

FI].D(P1
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F2XMI
compute 2. -l

aoaT /ao2a7 /ao3a7

Legal Form

F 2 x f l l  ; s r e z s r - 1

Descriptiolr

This instruction replaces the current lop of stack (ST) with the value of the function
2sr - 1. Horr'ever, the initial operand lue must be within the range -0 5 < x < +0 5
or the result of the operalion is undefined.

The fiinction 2* - 1, rather than the simpler 2x, is provided on the 80387 to ensure
precision when x is near 0 (for e{ample, when computing h}perbolic trigonometric
functions).

'Because the range of the FIO'41 instruction is narrow, subroutines !o compute 2n
must use FRNDINT and FSCALE to bring the instruction into a legal range and scale
the result !o I proper \alue.

You can compute the general function ,cv by using the ide iryl

x! = 2t x log2 tc

4nd using the FYL2X and F2XM1 instructions.

Excoptlont
SF PE I]B OE ZE DB IE

Exalfrple

ST
ST (:I)

ST
sT (1)

0.01
3.0

x

0.0069
3.0

374
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Appendix A

POWERS
OFTWO

0
I
2
3
4
5
6

8
9

10
1 1
t 2
) 3
74
i 5
16

20

1
2
4
ii

16

128

512
LO24
2044
4096
at92

16344
327/.a
"":

1048576

429196725k

I
2

E
t0
20
&
u0

100
200
400
u00

1000
2000
4000
8000

10000

trr:

10000000032

3at



Blts

Appendix B

ASGTI
GHARACTEll

SET

Hreh-(r.le1" Blts
0000 0001 0010 0011 0100 0101 0lro 0r1r

NUL DlE space0000
o00l
0010
o01l
0100
0101
0110
0111
1000
lool
1010
loll
1100
1101
1110
t1t1

soH Dcl
STX DCz
ETX DC3
EOT DC4
ENQ NAK
ACK SYN
BEI I]TB
BS CAN
HT EM
LF SUts
VT tsSC
F! r's

0 @ P p
l ^ a n q
2 B l t b
3 C S (
4 D t d r
5 E I l e
6 F V f
7 G \ ( 8
8 l l x b
9 I Y i y
, J Z j
i K l k l
< L \ 1 1
= M l n l
> N
? O o R U B

CR GS
so Rs
st us

I
5

f
(
)

-
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Appendix G

apgoDE
TABLE-

The following opco<]e tables aid in interpretir\g 80386 object code. Use the hiSh-
order 4 bits of the opcode as an index 0o a row of the opcode tablei use the low-
order 4 bits as an index !o a column of the rable. If the opcode is oFH, refer ro rhe
2-byte opcode table, and use the second byte of rhe opcode to index the rows and
columns of that table.

Key to Abbreviations
Operands are identified by a two-character code of the form Zz. The first character,
an uppercase letter, specifies the addressing method; the second character, a lower-
case letter, specifies the type of operand.

Godes for Addressing Method
.4.' Direct address. The instruction has no mod r/m byte; the address of the operand
is €ncoded in the instructioni no base register, index register, or s.aling factor can
be applied-for example, farJMP GD.

C,' The reg field of the mod r/m byte selects a control register, for example, MOV
(OFH 2OH, OFH 22D,

I). The reg field of the mod r/m byle selecis a debug register, for example, MOV
(oFH 21H, 0Fl1 23H).

f.' A mod r/m byte follows the opcode and specifies the operand. The operand is
either a general register or a memory address. If it is a memory address, the address
is computed from a segment register and any of the following values: a base register,
an index register, a scaling factor or a displacement.

'Adapted r'nd rFpr,nr"d q prmis'onof Inrel Co po.rron, (vplIrshr !.85
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f.. Fl^gs register.

c.' The reg field of the mod r/m byte selects a Seneral register fbr cxample, ADD
(00H).

r.' Immediate data. The \'.rlue of the operand is en€oded in subsequent bytes of the

Jf. The instruction contains a relative offset to be added to the instruction pointer
register-for cxample, JMP short, LOOP-

tt; The mode r/m byte may refer only to memory-for example, BOUND, lEs,
IDS, I,SS, LFS, IGS.

o.' The instruction has no mod r/m bytei the offset of the operancl is coded as a
word or doubleword (depending on address size attribute) in thc instruction. No
base register, index register, or scaling factor can be applied-for cxample, MoV
(AOH-A3H).

R. The llx)d field ol the mod r/m byte may rcfcr only to a general register-for cx-
ample, MoV (oFH 20H, oFH 26H).

s, The reg field of thc mod r/m byte selects a segment register-for example, Mov
(8CH,8EH).

?.' Thc rcg ficld ofthe mod r/m bytc sclccts a test regisler-for examplc) Mov
(oFH 24H).

X, Memory addresscd by DSrSI*for example, MOVS, COMPS, OUTS, LODS, SCAS

r. Mcmory addressed by ES:DI-for example, MOVS, CMPS, INS, SToS

Godes for Operand Type
u.' Two single-word operands in memory or lwo double-word opcrands in
memory, depending on operand size attribute (used only by BOUND).

A.' tsytc (regadless ofoperand size attribute).

c.' Byte or word, depcnding on operand size attribute.

.t.. Doubleword (regardless of operancl size attribute).

,. 32 bi! or 4a-bit pointer, depending on opemnd size attribute.

s.' 6-byte pseudodes.riptor.

r.' .!(oft1or doubleword, depending on operand sirc attribute.

rr. \ ord (regadless ofopcrand size attribute).

346



ADD.ndlt e ODcod. Lbl.

RegisterCodes
'{qhm an opemnd is a register encoded in the opcode, the regisrer is idenrified by
its name, for example, AX, CL, or ESL The name of the register indicares whether
the register is 32 bits, 16 bits, or 8 birs. A regisrer identifier of rhe folm e)O( is used
when the width of the register depends on the operand size attributq for q,(ample,
eAJ( indicates that the AX regisrer is used when the operand size atrribute is 16 and
tllat the EAX register is used when the operand size attribute is 32.
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One.Byte Opcode Table

NOTE ALL numb.rs rre in hex

3aa

0 1 2 3 4 5 6 1

ADD
!b,cb

ADI)
Ev,Gv

ADD
Gb,Eb Gf,Fiv

 DD ILJSH
US

POP
ES

ADC
Eb,Gb

^DC
!v,cv

ADC
Gb,Eb

,\DC
Gv,Ev

ADC ,\DC
eIX,lv

PI;SH
ss

POt
SS

AND AND
Ev,G! Gb,!b Gv,Ev

AND AND
ES,

xoR
!b,Gb

XOR
Er.Cv

xoR
Gl),Eb

XOR
Gv,liv

xoR
AI,Ib

XOR

tNc tN'c
e('(

INC
cDX

INC
ellX

INC INc
eill,

INC lNc
cDI

PUSTI PIJS l l PI;SI I
cDX

PLJSH PT]SII Pl isl I I USH PI]SII
eDI

l , lJs l lAD
NOI  JN I ) ARPI,

ljw,ltw
1'S: Ol)SlZtil ADltslzE:

.IO
Jb

JN() JD
.tb

,1NR
Jl)

tz
.1b

JNZ Jr)l
Jl)

.)Nllti
.ll)

Eb,tb liv,lv ljv,lb
1 1.:s t '1E51-

liv,Gv
XCI IC
Ev,Gb

XCI IG
Ilv,(lv

NOP
xqto XCI IG XCI IG XCHG xct I(i XCIIG XCHG

MOV MOV MOV MOV
MOVSII !{ovs!0/t) ci\lPsB JMISVTD

MOV
At,,ltl

MOV
CL,Ib

MOV
DI-,lb

t\{ov
B].,Ib

MOV MOV
CH,Ib

MOV
DII , Ib

MOV
llH,tb

Eb,lb
Grn'p 2

Ev,lb
RET(ne!t

RET(nerr)
lEs

Gv,Mp
I-DS

Gv,Mp
MOV
Eb,Ib

MOV
Ev,lv

Ev,l ub,cL E!,CL XI,AT

I-OOPNE I.OOPIi
Jb

looP
Jb

Jaxz IN IN OLT OI]T

I,OCK R]JPNE
R!P

REPIJ llLl' cMc
Eb Ev



S 9 A B C D E F

OR
Eb,Gb

OR
Ev,Gv

OR
Gb,Eb

OR
Gv,Ev

OR
AL,Ib

OR PUSH
CS

2-t'.4e

SBB
!b,Gb

SBB
Ev,Ov

SBB
Gb,Eb

SBB
Gv,Ev

SBB SBB
eAX,lv

PUSH
DS

POP
DS

SUB
Eb,Gb

SUB
Ev,Gv

sua
Gb,Eb

STJB
Cv,Ev

SUB
Al,tb

SUB
eAX,lv CSI DAS

CMP
Eb,Gb

CMP
Ev,Gv

CMP
Gb,Eb

CMP
Gv,Ev

CMP
AL,Ib

CMP
eAX,Iv DS:

DEC
€AX

DEC
ecx

DEC
eDX

DEC
eBX

DEC
esP

DEC
EBP

DEC
esl

DEC
€DI

POP POP
ecx

POP
eDX

POP
eBX

POP
€sP

POP
eBP

POP
esI

POP
EDI

PUSH
Iv

IMUI,
Gv,Ev,Iv

PUSH
Ib

IMUL
Gv,Ev,Ib

INSB
l'b,DX

INS\q/D
Yv,DX

OUTSB
DX,Xb

)UTSw/t
DX,xv

Js
Jb

JNS
Jb Jb

JNP
Jb

JL
Jb

JNL
Jb

JLE
Jb

JNLE
Jb

MOV
Eb,Gb

MOV
Ev,Gv

MOV
cb,Bb

MOV
Gv,Ev

MOV
Ew,Sw

!EA
Gv,M

MOV
Sw,Ew

POP
Ev

cB\( cvD CAI,! .V'AIT PUSTIF POPF
Fv S,{HF IAHF

TEST
AI,,Ib

TEST
eAX,Iv sTosa sTos\(/D LODSB LoDsv/,D SCASB scAsI{,/D

MOV
€AX,lv

MOV
eCX,lv

MOV
eDX,Iv

MOV
eBX,Iv

MOV
eSqIv

MOV
EBP,IV

MOY
eSI,Iv

MOV
€Dl,Iv

ENTER
lw,lb LEAVE

RET far
Iw

INT
3

INT
tb INTO IRET

ESC
0

ESC
I

ESC
2

ESC
3

ESC
4

BSC
5

ESC ESC

CAIL JMP
Jv

JMP JMP
Jb

IN
A!,DX

IN
eAX,DX

oUT
DX,AL

ottr
DX,eAX

ctc sTc clI STI CLD STD croup 5

oae-E't. opc.'e Tabk (continued)

ADpddir c: oFcod. LbL.

a

4

5

6

7

8

9

D
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Tiro.Byte Opcode Table (first byte is OFH)

0 1 2 3 4 5 6

D

E

croup 6
IAR

Gv,Ew
!sl,

Gv,Ew clIS

MOV
cd,Rd

MOV
Dd,Rd

MOV
Rd,cd

MOV
Rd,Dd

MOV
Td,Rd

MOV
Rd,Td

Jo
Jv

JNO
Jv

JI]
Jv

JN8
Jv

Jz
Jv

JNZ
Jv

JBE
Jv

JNAE
Jv

SElO
Iib

SETNO
Eb

SETB
Eb

SETNB SETZ
lb

SETNZ
Eb

SETI]E
Eb

SETNtsE
Eb

PUSH
FS

POP
fs

BT
Ev,Gv

SHLD
Ev,Gv,Ib

SH],D
Ev,Gv,CL

LSS
Mp

BTR
Ev,Gv

tts
MP

Ics
Mp

MOVZX
Gv,Eb

MOVZX
G\Ew
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Two-Byl€ Oprode Tablc (cantinuetl)

8 9 A B C D E F

JS
Jv

JNS
Jv

JP
Jv

JNP
Jv

JL
Jv

JNI
Jv

JTE
Jv

JNLE
Jv

SETS SETNS
Eb

SETP SETNP
Eb

SETL
Eb

SETNI
Eb

SETI,E
Eb

SETNLE
Eb

PUSH
GS

POP
cs

BTS
Ev,Gv

SIIRD
Ev,Gv,Ib

SHRD
Ev,Gv,CL

IMUL
Cv,Ev

Group 8
Ev,Ib

BTC
Ev,Gv

BSF
Cv,Ev

BSR
Cv,Ev

MOVSX
Cv,Eb

MOVSX
Gv,Ew
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Opcodes Determined by Bits 5, 4,
and 3 of mod r/m Byte: mod nnn r/m

000 00t 0r0 O:t:l 100 101 110 111

ADD OR ADC SBB AND suB xoR CMP

ROL ROR RCr RCR SHI SIIR

TEST
lb/lv

NOT NEG MUI IMUL DIV IDIV

INC
Eb

DEC
Eb

INC
Ev

DEC
Ev

CALL
l]v

c,\.I-L JMI
llv

JMI' PTiSI I
Ev

SI,DT
Ew

STR
Ew

LIDT LIR VI]RR VER\(/
liw

SCDT SIDl' l,GDl' LIDl'
MS

SMS\/
Dw

I,MSV/
Ew

uT ULS Ilt R RIC

80387 Extensions
'Ihe following lables show the opcode map ro the 803U6 insrructk)n set lbr the 80387
extensions. The opernnd abbreviations for drese t4blcs arcl

fs.' IlTs:livc acldrcss, short rcal (32-bit)

Xr.. Effecrive address, long real(64-bit)

.8 .' Effcrtjvc ^cldress, tenp real (80-bit)

l9r. Hffective address, word (16+it)

.Ed. Effccrive ad.lress, doublewod (32-bit)

,4.' Effective address, quadword (64-bit)

-E i Effective address, BCD (80-bit)

I.a. Effective acldress (no operand size)

slal).' Stack element i

Sf. 'Stacktop
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FomaC

010 100001

ESC 0

0 1 1
00

10

00
mod-o1

10

ESC I

0 1 1 10I100010

101

110

110

l 1 l

1 1 1

mod-11

000

001

010

0 1 1

100

101

1 1 0

l l l

FADD
Es

FMUT
Es

FCOM
Es

ICOMP
ES

FSUB
Es

FSUBR
ES

FDIV
Es

IDTVR
ES

FADD
ST,ST(i)

FMUL
sT,sT(i)

TCOM
5T,ST(i)
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sT.sTai)

FSUB
sT,sT(i)

ISUBR
sT,sT(i)

IDIV
sT.sT(i)

FDIVR
sT.sT(i)

FLD
Es

TST
Es

fSTP
Es

FLDENV
E^

rLDCW
Ew

ISTEN'1/
E^

FSTCW
Ew

FID
sT(0)

FXCH
sT(0) FNOP FCHS FLDl F2XMI IPR!M

TLD
sT(1)

FXCH
sT(1) FABS FIDL2T FYL2X F\'1,2XP1

FLD
sT(2)

FXCH
sTo) FLDL2E PPTAN FSQRT

FI,D
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TXCH
6) FIiDPI PPATAN TSIN@S

FLD
sT(4)

FXCH
sT(4) I!DI,G2 FXTRACTFRN'DINT

FLD
sT(5)

FXCH
sr(5) IXAM FLDlN2 IPRIMI FSCALE

FI,D
ST(6)

FXCH
ST(6) FLDZ FDECSI? FSIN

FlD
sT(7)

n<cH
sT(7) NNCSTP !cos
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Group 3a: mod-11, nnn-100
m 000 001 010 011 100 101 110 111

GENI) (FDISI) FCLEX FINIT GSEI?I\O

BSC 4

000 001 010 011 100 101 t10 111
FADD

EI
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EI
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EI
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EI
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EI
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EI
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Ew
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Ew
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ILD FSTP
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TFREE
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FST
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FUCOM
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FIADD
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FIMUL
Ed
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Ed

NCOMP FISUB
Ed
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Ed

FIDTV
Ed

FIDl\?
Ed

FADDP
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ST(D.ST

FDI\?
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FDI\IRP
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FII,D
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IIST
Ed

FIST? IBI,D
Eb

III,D
Ed

FBSTP
Eb

FIST?
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FSTSIf'
AX

1/m-000
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Appendix D

TNSTRUCTTON
FORMATAND

TTMTN(G-

This appendix describes the 80386 instruction se!. A table lists all instructions $/ith
instruction encoding diagmms and clockcounts. Details of the inslruction encoding
are provided in the following sections, which describe the encodinli structure and
lhe definition of fields occurring within 80386 instructions.

80385 lnstruction Encoding
and Glock Gount Summary

To calculate elapsed lime for an instnrction, multiply the instruction clock count, as
listed in the table on the follovr'ing page, by lhe processor clock period (for ex-
ample, 62.5 ns for an 80386"16 operaring at 16 MHz (32 MHz clK2 signal)).

For more information on the encodings ofinstructions, refer to "Instruction Encod-
ing," which explains the structure ofinstruction en(odings and defines the encod-
ings of instruction fields.

Instruction clock count assumptions
1. The instruction has been prefetched and decoded and is ready for execution.

2. Bus cycles do nol require wait states.

3. There are no local bus HoLD requests delaying processor access to the bus.

4. No exceptions are detected during instruclion execution.

5. If an effective 2ddress is calculated, it does not use two general register compo-
nents. One register scaling and d;splacement can be uscd within the clock counts

'Mapt€d and reprint€d by pe.missio. of Intel corpor2tion, 1936
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shown. However, if the effe€tive address calculation uses two general-register
€omponents, add one clock to the clock count shown.

Instruciion clock count notation
1. If tl'o clock counts are given, the smaller one refers to a register operand, and

the larger one refers to a memory operand.

2. '' - number of times repeated.

3, ,n = number of components in the next instruction executed, where any
displacement counts as one component, any immediate data counts as one com-
ponent, and each of the other bytes of the instruction and prefix(es) counts as
one comPoneff.

To compute 80286 clock counts, add one clock io each effective address calculation
that uses the base + index form of addressing. To compute 8086 clock counts, add
the count from the table below according to the t)?e of address calculation used.

EA Trpe

Displacement or y 6
Base or index only 5
lndex + displacement 9
Base + displrcement 9
Base + index 7or8
Base + index + 11or12

Inatruction noto3 for Tablo
The follovr'ing are insrruction nores for rhe rable titl€d "80386 Instrucrion Set Clock
Count Summary," which b€gins on page 400.

Notes a through c apply to 80386 real address mode only.

a. This is a protected-mode instruction. Trying to execute in real mode results in
excePtion 6 (in lid oPcode).

b. Exception 13 fault (geneml protection) occurs in real mode if an operand refer-
ence is made that padally or fully extends beyond the maximum CS, DS, ES, Fs,
or GS limit, FFFFH. Exception 12 fault (stack segment limit \aolation or not pres-
eqt) occurs in real mode if an operand reference is made that partiaUy or fully
extends beyond the maximum SS limit.

c. This instruction may be executed in real mod€ where it initializes the CPU for
protected mode,

Notes d through g apply to 80386 real address mode and 80386 protected virtual

d. The 80386 uses an early-out multiply algorithm. The number of clocks depends
on the position of the most signif:icant bit in the operand (multiplier).
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Clock counts are minimum to maximut{ To calculare acrual clocks, use the
following formula:

Actual clock = if m < > 0 tlen max (llos, I m I l, 3) + 6 clocksi

ifm = 0 rhen 9 clocks (where m is the mulriDlier)

e. An exception might occur, depending on th€ value of the operand.

I LOCK is asserred, regardless of the presence or absence of rhe LOCK prefix.

g. LOCK is asserted during descriptor table accesses.

Notes h through r apply ro 80386 prolected virtual address mode only:

h. Exception 13 faulr (general protecrion violation) occurs if the memory operand
in CS, DS, ES, FS, or cS cannot be used due to a seSmenr limit violation or ro an
access rights violation. If a $tack limit is violated, an exception 12 (stack segment
limit violation or not pres€nt) occurs,

i. For segm€nt load operarions, rhe CPl, RPL, and DPL musr agree with the privi-
lege rules to avoid an exception 13 fault (general protecrion violation). The seg-
ment's descriptor must indicate "ptesenr" or €xceprion 11 (CS, DS, ES, FS, or cS
not present). If the SS register is loaded and a stack segment nor present is
detected, an srception l2 (stack seSment limi! violation or not present) occurs,

j. All segment descriptor accesses in rhe cDT or LDT made by this instrrction
assert LOCK to maintain descriplor integrity in multiprocessor environments,

k. JMB CALL, INT, RET, and IRET insrructions refeffing to anorher cod€ segment
c4use an exception 13 (general protecdon violatiorD if an applicable privilege
rule is violated.

l. An exception 13 fault occurs if CPL is greater than 0. (0 is rhe most privile8ed
level.)

m. An exception 13 fault occurs if CPL is greater rtlan IOPL.

n. The IF bit of the flag r€gister is not updared if CPL is greater rhan IOPL, The IOPI
and VM fields of the flag register are updated only if CPL is equal to 0.

o. The PE bit of the MS\v (CRo) cannot be reset by rhis instrucrion. Use MOV inro
CRo to rcset the PE bit.

p. Any violation of privilege rules as applied to the selector operand does not cau6e
a protection exception; rather, the zero flag is cleared.

q. If the coprocesso/s memory operand violales a segment limir or segment access
rights, an exception 13 fault General protection exceprion) occurs before the
ESC instruction execures. An exception 12 fault (stack segment limit violation or
not present) occurs if the stack limir is violated by the operand's staring address.

r The destination of aJMq C.ALL, INT, RE! or IRET must be in the defined limit of
a cocle segment or an exception 13 fault (€eneral protection violation) occurs.
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lnstruction Encoding
All instruction encodings are subsets of the geneml instruction fomat sho.rvn in
Figure D-1. Instnrctions consisr of one or rwo primary opcode byres, possibly an ad-
dress specifief consisting of the mod r/m byre and scaled index byre, a djsplace-
menr if requ'red. Jnd an rmmerlia(e drlr ficld it requjred.

Within the primary opcode or opcodes, smaller encoding fields can be defined.
These fields vary according to the cla$ of operation. The fields define information
such as direction of the operarion, size of the displacements, register encoding, and

Almost all instru€tions rhat refer to an operand in memory have an addressing mode
byte following the primary opcode byte(s). This byte, rhe nod r/m byre, specifies
the address mode to be used. Certain encodings ofthe mod r/m byte indicate a sec-
ond addressing byte, the scale-index-base byre, which fully spe(ifies the acldressing

Addressing modes can include a displacem€nt immediarely following rhe mod r/m
byte or the s€aled index byte. If a displacement is present, the possibl€ sizes are 8,

If the instruction specifies an immediate operand, rhe immediare operand follows
any displacement byres. The immediate operand is always rhe lasr field of the

Figure D{ illusrrates some of the fields thar can appear in an instrucrion, such as
the mod field and the r/m field. Several smaller fields also appear in cerrain instruc-
tions, sometimes within the opcode bytes. The follovr'ing tabl€ is a complete lisr of
all fields appearing ln the 80386 insrruction ser. Detailed tables for each field aDDear
later in this aDoendix.

lrrrrrfr I ITTTITIT

0 7 0 . 7  6 5  3 2 0  7 6 5 3 2 0

d3211618 none data32 16 8lnone

rmod /m" 's-i-b'

, byte byte ,.-___r--
re8isler and address

address immediate
displacement .)^ta
(4,2, l bytes (4,2, L btles

or none) or none)

fi8lJfe D"L Gefl eql btstruction.for maL
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Ftelds wtd n a03a6 Insaucdons

of,Bt s

Specifies vhether data is b)1e size or li l size (full slze
is either 16 or 32 bts)

Specifies direction of data openrion
Specifies whether an immediare data field musr be

G€neral register specif ier
Addres, mode specifier (effective address can be a

Scale factor for saled indq add.ess mode
ceneral register to be used as index registef
ceneral r€gjster to be used as base registe.
Segment rcgister spectfier for CS, SS, DS, ES
Segment register specifief fof CS, SS, DS, ES, tS, GS
lor conditional i.s!.!tctions, specifies a condlrton

asserted or a condirion neSated

I

1
I

{e82
s.e83

3

3tor m
2
3
3
2
3
4

NOTEI Flg!rc Dt shws endxllng of lndlvld!.I lnstructiG,

3abft extenrlons of the lnst;uctlon sot
!(/ith the 80385, the 8086/80186/80286 instrucriod set is exrended in two orthogonal
directions: 32-bit forms of all 16-bit instructlons support the 32-bit data types, and
32-bit addressing modes are available for all instructions referring !o memory. This
orthogonal instruction set extension is accompllstred by having a default (D) bit in
the code segment des.riplor and by having two prefixes to the instruction set.
'lirhether the instrlrction defaults to operations of 16 bits ot 32 bits depends on the
setting of the D bit in the code segment des.riptor, The D bit specifies the default
length (elther 16 bits or 32 bits) for both operands and effeciive addresses when
executing that code segment, Rsal address mode and virtual 8086 mode use no code
segment des.rlptors, but the 80386 internauy assumes a D value of 0 when operaF
ing in those modes (for 16-bit default sizes comparible with the 8086/80186/80286).

Two prefixes, the operand size prefix and the effective address size prefix, allow
overriding the default selection oFoperard sjze and effective add;ess size. These
pre8xes can prec€de any opcode bytes and affect only the instrlrctlon they precede.
If necessary, one or both pr€fixes can be placed before the opcode bytes. The pres-
ence of the operand size prefix and the effective address prefix toggles the operand
size or the effective address size to the value opposite from rhat of the default seF
ting. For example, if the default operand size is for 32-bit data operations, the pres-
ence of the operand size prefix loggles rhe instruction to 16-bit data operation. If
the default effective address size is 16 bits, the presence of lhe eflective address size
prefix toggles the instruction to use 32-bit effective address computations.

42l'



ApD.ndlx Dl tmttuction Fm.t .nd ttfrtnt

These 32-bit extensions are available in all 80386 modes, including real address
mode or virtual 8086 mode. In these modes the defauli is alqals 16 bits, so prefixes
are ne€ded to specify 32 bit operands or addresses.

Unless spe€ified, instructions with 8-bit and 16-bit operands do not affect the con-
tents of the high-order bits of the extended registers.

Encoding of instruction fi€lds
Several fields indicate register selection, addressing mode, and so on within the in-
struction. The encodings of these fields are defined in the following tables.

Encodlng oltho oporand longth lwl llold
For any given instruction performing a data operation, the instruction executes as a
32-bir operation or a 16-bir operation. Vithin the constraints of the operation size,
the w field encodes the operand siz€ as either 1 byte or the full operarion size, as
shown in the table below

Opcrand Lngth E rcodlng
open 4 srza Dnttg
16-8, Data Operanons

Operad Slze Du,.r,tg
32-Blt lbra Opet anons

0
I

8 bits
16 btts

8 bits
32 bits

Encodlng oltho gonoral rogllter (regl fleld
The geneml register is specified by the reg field, which can appear in the primary
opcode bytes or as the reg field of the mod r/m byte, or as the r/m field of rhe mod
r/m byte. The following tables illusffate reg field encoding.

Ercodilrg of reg Fteld When w Fteld 16 Not Present ln Inotrucdon

nSIWU
Reg,J,e? S*.ted Drrh A
16-e, Datd Oltera,lons

ReAb'�et selected D.r'b A
3zM Data Oterarto,.s

EAX
Ec)<
EDX
EBX
ESP
EBP
ESI
EDI

AX
cx
DX
BX
SP
BP
SI
DI

000
001
010
011
100
101
101
101

421
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Encoding of reg Field whe,l w Field Is Present in Instructton

Regktcf sp@tfred bt reg FbA lr.rtng 16-Btt Dard Qpemtlorrs
Fun llonoJu FlaA Futudofofu F eU

AX
c)(
DX
BX

tsP
SI
DI

cl,
DI
tsL
AH
CH
DII
BH

000
001
0t0
0t t
100
t0 l
1 1 0
1 t 1

Encodlng of reg Fleld when w Fleld Is Pr$ent ln Instrucdon

RegLstq Spqfud br rea FleA ,t rinA 32"Dlt Datd qeradoB
Fgn donoJlt Fl4A

CL
DL
Bl.
,\ll
c i t
DII
BII

000
001
010
0 t l
r00
t0l
110
1 1 1

]]AX
Ec)(
EDX
EDX
ljsP
uE!
tssl
]]DI

Encodlng ol the segment roglste. (rregl fleld
The sreg field in cert,rin instructions is a 2-bil field tha! allows one of the four 80286
sqgmcnt registcrs to b€ specified. The sreg field in other instructions is a 3-bit field
that allows the 80386 FS and cS segment registers to be specified. The following
two tables show the sele(ted segmenl registers.

2-Blt sreg2 Fleld

ZBlt sreA2 FbA Segndt Realstd Selzcled

ES
cs

DS

C\J
01
lo
1 1
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3-Btt sr€g3 rield
3-aA stq3 FleU S n4ttt Reaktd SElecretl

000
001
010
011
100
101
110
1 1 1

ES
cs
ss
DS
IS
GS

Encoding of addrera mode
Except for special instructions such as PUSH and POB where the addressing mode
is prederermined, the addressing mode for the currenr instruction is specified by
addressing bytes following the primary opcode. The primary addressing byte is the
mod r/m byte, and a second byte of addressing inflormation, the s-i-b (scale-index-
base) byte, qan be specified.

The s-ib byte is specified when using 32-bit addressing mode and the mod r/m
byte has r/m = 100 and mod = 00, 01, or 10. Vhen the s-i-b byte is present, the 32-bit
addressing mode is a function of the mod, ss, index, and base fields.

The primary addressing byte, the mod r/m byte, also contains 3 bits (shown as TTT
in Feure D-1) sometim$ used as an extension of the primary opcode. The 3 bits,
however, can also be used as a register field (reg).

'Vhen calculating an eff€ctive address, either 16-bit addr€ssing or 32-bjt addfessing
is used. 16-bit addressing us€s 16-bit address components to caiculate the €ffective
address, while 32-bit addressing uses 32-bit addres components to calculate the
effective address. when 16-bit addressing is used, the mod r/m byte is interpreted
as a 16-bit addressing mode specifier. rx/hen 32-bit addressing is used, the mod r/m
byte is interpreted as a 32-bit addressing mode specifier.

The following tables define all encodings of all l6-bit addressing modes and 32-bit
addressins modes,

4n
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Encodtng of 32-Btt Address Mode wtth 'nod r/m Byte
(no s-l-b Br/t€ Present)

,,mdr/n Efre.n1'eAddress

00 000 DS:[EA)0
00 001 DS:tlCX
OOO1O DSdEDX
OOO11 DS{EBX
00100 s-i-b is present
00101 DS:d32
0O 110 DS:IESI]
0O 111 DS:tDDl

01000 Ds{EAX+dsl
01001 DS,{ECX+d8j
01010 DS,IEDX+d8]
01011 DS,tEBX{d8l
01 100 s'i-b is presen!
01 101 SS;IEBP+d8I
01 110 DS:tESI+d8l
01111 DS,IEDI+d8]

10 000 DST[EAX+d321
10 001 DST[EO(+d321
10010 DS,tEDx+d3z1
10011 DS{EBX+d32j
10100 s-i-b is present
10101 SSdEBP+d321
10110 DS,lESr+d321
10111 . DST[EDI+d321

11 000 regist€r-see below
11 001 fegister-see below
11 010 register-se€ below
11 011 reSister-see below
11 100 regirter-see b€low
11 101 register-see belc{r'
11 110 register-se€ below
11111 register-see below

R rtbl speclfcd b! ,ee ot r/m Dnlt ta 16-8l, Datc otteranotrt
Fta<tloaoIuFtew Fractlorofufieu

,n rdr/6 whenw-O Vhenu - |

AX

DX
BX
SP
BP
sl
DI

AL
cI
DI
BI
AH
CH
DH
BH

1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
l l  l l 1
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Encodtng of 32-Btt Addfess Mode with firod r/m Byte
(Iro s-t-b B}ne Pfesent)

Registq Spulfred b! fee or ltn Dar:lnA 32"Nt Ihta Openti^s
Fafdronofu fteA Ft t rtot of,1o FkA

11000
1 1 0 0 1
1 1 0 1 0
l l 0 t l
11 100
11 101
:11 110
1 1 1 1 1

CL
DL
Bl-
A] I
CH
DH
DH

EAX
ECX
EDX
EtsX
TSP
EBP
ESI
EDI

Encodlng of 32-Btt Addr€ss Mode (mod r/m Blte and s-l,b Btte present)

00 000
00 001
00010
00 011
00 100
00 101
0 0 1 1 0
0 0 1 1 1

0r 000
01 001
01 010
01 011
01 100
01 101
0 1 1 1 0
0 1 1 1 1

10 000
10 001
10 010
10 011
l0 100
10 101
1 0 1 1 0
1 0 1 1 1

Ds:tE^x+(sNled ind(x)l
DS,tDcx+(scaled index)l
Ds:lEDx+(scalcd indeDl
DS:IEBX+(sc2lcd indcdl
Ds,lEsl,+(scrled index)l
Ds:1d32+(scnled indcx)l
Ds:IDSI+(sc^led incicx)J
DStEDI+(s(alcd index)l

Ds,tEAX+(scalcd indcx)+d8l
Ds,lEcX+(sc!lcd indd)+d8l
Ds,lliDx+(sc ed index)+d8l
DS txax+Gcnled index)+d8l
SS tEsP+(scaL{ inder+d8l
ss,{EBP+(scalcd indcx)+d81
Ds:lEsl+(sclled indcx)+d8l
DS:LIDl+(scaled index)+d81

DSIEAX+(saled index)+d321
Ds:IECX+Gcaled index)+d32j
Ds:lEDx+(sc,led indcx)+d321
Ds:DBx+(scaled indei+d321
sslEsP+(saled index)+.1321
sslEBP+(saled index)+d32]
Ds:IESI+($aled index)+d321
Ds:IEDI+(s!alcd index)+d321

NOTni Mod lieLl in mod r/n byrq ss, ind.x, llse fiekls in s i b byte

ss 5.414 Factor

x8

00
01
:10
:l:l
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000
00:t
0:10
0:L:l
100
101
l l 0
1 1 1

EAX
ECX
EDX
EtsX

TBP
tisl
FDI

' Vhen index ficld is 100, indiati.g no indq rcgistcr, ss lield 'nust equal 00. Il index is 100 and ss d@s
not eaual()0. the etTdtive addre$ is undeJin€d.

Encodlng of l6-blt Address Mode *'tth mod r/m Bt't€

Blecaoe Address

00 000
00 001
00010
00011
00 100
00 101
00 110
0 0  1 1 1

01 000
01 001
01 010
01 011
01 100
0r 101
01 110
0 1  1 1 1

10000
10001
r0010
l 00 l l
1 0 1 0 0
l0 101
1 0 1 1 0
l 0 l l t

1r 000
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
l l  l0 l
1 1 1 1 0
1 1 1 1 1

DS:tRX+SIl
DS:[BX+DI]
SS:[B?+S!
SS,Llllj+Dll
Ds:tsll
DSrlDIl
DS:td16l
DS:ltsX

D5:lBX+SI+d81
DS:lIlX+Dl+dill
ss,lBP+sr+d8l
sslRP+Dl+d8l
DS:lsr+d8l
D5:lDI+d81
ssttsP+d8l
DS:U]X+d8l

DS:t8X+Sr+d161
DSTIBX+Dt+d16il
ss,lBP+sI+dl6l
ss,lBP+DI+d161
DS:lSI+d161
DS,tDl+d161
SS:tBP+d16il
Ds,[BX+cl16i]

regisre.-see page 427
register-see page 427
leSister see page 427
registef-se paSe .127
registe r-ee paae .i27
register see prge 427
.egister se page 427
reSistef- see paSe 427
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Encoding of 16'btt Address Mode wlth mod r/m B''te

Regtster $'ec7fi.d W r/n Dwira I6-Bit l\xa qptattoB
Funct onof,u FieA FsncriM oJu FieA

AX
(x
llx
BX

BP
5l
DI

CL
DL
BL

CH
DFI
BH

11000
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Encodtng of l6"btt Address Mode with mod r/m Blte

ReAlstet Slrecwd bf r/it lrlt7nA 32-Blt It ta Qpeatlo6
Ft lctlon olut FleU Fu@tbnoJu FleU

11 000
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
l l 1 0 0
l l  1 0 1
1 1 1 1 0
1 1 1 1 1

CL
|'I,
llL
,\H
CH
DLI
BI I

EAX
uc-x
ltDx
Iillx
tisP
I]I]P
ESI
EI)I

Encodlhg ot oporation direction (dl tiold
In many 2-operand instructions thc d ficld indicatcs which operand is rhe source
and which is the destination, as shown in lhc following table.

Operatlon DLecdon Encodlng

Dlrectloi oJl Opet ttlott

Rcgislcr/Mcmory <- ReSisler
reg field indicues $urce opcrand! nui /nr or mod ss index b.se

indicales destinllnJn opctand
ReSisler< Regisre/Memo.y
rea fieid indiores destin2tion operandi mod r/m or mod ss indcx

base indicates source operand

Encodlng of sign extend (ol lield
The s field occu$ in instructions vith immediate data fieids. The s field has an
effect only if the size of the immediatc dala is 8 bits and is being placed in a 16-bit
or 32 bit destination. The following table shows s field cnc(xling.
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Slgn Extend E rcodlng

Elfqt or Intudlate Data a Wect ott lwdt4te Dato 16/32

Sign exreod data 8 ro fill
16 bit or 32'bn destination

Encoding ol conditional te6t (tttnl lield
For the conctitional instructions (condiriooal jumps and set on condirion), trrn is en-
coded with n indicating to use thc condirion (n = 0) or irs negarion (n - 1) and ttr
giving the condition to test. The following table shows encoding of the Btn field.

condttlonal Test Encodlng

o
NO
1]/NAE
NIJ/ ll
ta/7,
NIANZ
BI]/NA
NI]E/A

NS
P/PE
NP/PO
L/^_Gli
NI,/CE
I,I]/NG
NIE/G

Ovcriio'w 0000
No overflow 0001
Rek)Vnot above orcqual 0010
Not belovabove or equal 001 1
[quil/zero 0100
Notcqul/not zero 0101
Dclow or equal/not rbove 0110
Not bclow or cqual/abovc 0111
sign 1000
Ndsign 1001
Prrity/prrity even 1010
Not parity/prrity odd 1011
Less than/not greater or equal 1100
Not less rhan/8.cater or cqual 1101
Lcss thm orqual/grcatcr tha. 1110
Not less or equrl/greatcr thrn 1111

Encoding ofcontrol, dobug,.nd toot regiators leool tield
The eee lield loads and stores the control, debug, and tcst regisrers.

Encodlng of eee When I nterpreted as Cootrol Reglster Fleld

000 cR0
010 cR2
011 cR3
Do not use any other en oding.
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Encodlng of eee when Inte4rreted as Debug R€gister Fteld

000
001
010
011
l l 0
1 1 1

DRO
DRl
DRZ
DII3
DR6
DR7

Do nor use a ny other en(odin8

Encodlng of eee when Interpreted as Test Reglster Fleld

110
1 1 1

TR6
TR7

Do not use any other encoding

80387 Extensions
The table beginning on the iollowing pag€ shows 80387 extensions to the 80386
instrrction set.
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Instructlon Encoding/Tlmlng

rnrcn r/rtrl ftmoryiosTo

rd3 inrqermemory ro sr(o)

Exk.ded Frl mc'$ry ro sl(0)

s r'(0) ro i,ncrcr/Qr mefrry

s 110) ro ron! inrct.r Dcnory

rntr$ fte.d iNirtry r ) sT(o)

ri(ioMP - (i.niptrexod pop

FCOM}P-coinfrcandpp
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I!futronEnodtlgr'nntrr*i @!,kl

ay& 3'r I oflronal
| 4e3 2.6

32Brr | 32Brr 64Dft I 1dBr.
&ar I hesd kr I h&s€.

FLDZ - red + 03 im sT(o)

FLDI - Load + 1.0 i.bs'f(o)

FLDL2T- rfad loa:OO) Inb ST(0)

FLDL2E - L.adl{z(e) inb ST(0)

FLDLC2 . Loid kar.(2) inbST(0)

-Ellm Tmmr{---l
-!lim Tmmm--
Tiaa-ial-Tn nox - -l

rEsc oor -T-moLoo, ----l

r lllm Ttrum---
r lllm Txum----l
T Esc ooi Tnrolhi---

InreSeleal tumy$,lth S(0)

tnte3e/dl ftmy wllh sT(o)

hr.g.r/Eal rum-ywi.h S'I(0)

hqe/re mywlthsT(o)

PSC{LE - S.aleST(0) byST(r)

FPREM I - Ptd.l rcoal.der (IEEE)

FRNDINI - P@nd ST(O) F Inegg

FABS . abdolutevdk ofsT(o)

FcHs - ch.n3e si3lotsr(o)

T lsc,1F 0 T'100 000 R/N T'B/os----l

T-C"Ti-fimoo snp-

T-- irm-A-rroo rmi lvg'o;p 
-r

T-!al-t-6-11ii-o'i i/i -

r--isc-fi.-Tiii-i6i- i-Tnfii!!----l
T  l s c d P o T , r o t s T N - - -

T--i3a-'1r 0 Tr'00 'LR R/r Tsrs/pe----

f - T 3 i d P o T m ' R i / n -

T-tiii-Tm, 'oro 
----l

T-:a-6ii-Tfi rrrr-nti---
T--i!i-6ii-Tiiiu-di----.l
T-S-6i-T'Lr1o'oi---
r--TL-66i-TiIn Nt---l
r flm Tirfiiroo---l

r-- ria-ooi-Tii,ii@a--l

T tm Tntm 
-_-.l

24-12 '1-12 29-17

z4-32 t7-32 23-36

26_34d

74-rtt
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bredonn'codrng^tntns, .,,n !./

T I Y .

FP1!\Nr =rxdirLknsed.f sT(0)

:

rYr.2xtr-s1(l). toFrGT(o))

at]m TU]m---]
I lrm Txmdi--_l
| €s. @r T11lffi l

I rm Tnmm----l
f !s.io, Tllm I

- l smol  T ,11roor -  
l_ l

:: ,rr-zr" 
- 

. ,t

[D(:\v.Jdd.rrr01*ortt

|s1(:\u-srk(ndwi)d

IsrriNv-sr&envtonfunr

rrNcslP-r'rcicfunrrx.k|nid.r

FDrCSlr'- D(rc'nenr!!.k|sink'

f s or TlMtn---
I  sc  1 I  l rL000N I

€s  o0r  I  H00 r0 !  R/ f  sJvorsP

-"s ri--T@lih^ rri,rcr-N-
-ri 'oi--l-iot ,,, R/,i-f-mp'spl
r !sa-o -Tinooori---

- rsr @i--rHoo ro ra-r srslo;
f s ooi--TNoo mtH rr!m;i-
f Es-n Tioo im-friTilr--r
I  s (  r0  i00  r@ F/N I  s rs io ry  l

--ismi---Tmw, ---.l

f-rm Tnmd---l
I rs. 1or Tm; $nt-l
I rs. ou Th,oooo 

Il

Sh4dul arca\ t .licate inntrcti.ns ttut a/e frat avilahte b t]'057la12117.

NOTIS
a. when loadin8 single-p..rision or doublc-pr(nion 0 from memory, .dd 5 ct..ks.
b. ,^d<l I clocks to rhc linjle wh.n d - L
c ^dd I .l€k ro cr.lr ran,je whcn i - l
.l Add I .locks to rnc ranse wher d = 0.
e rypical - 52 (whcn d - 0,.16-54, r''pi.!t = ,19.)
I Add 1cl@k b lhe mngc vhen lt = 1.

h Add 3 clocks b fie r.r\qe whed d = r.

j. Thesc tnnings hold for operands in rhc range x <,r/.1 r.orop€mnds nol jn this rangc, up !o 76
-dJr '  , tu  , lo .  Ln  rh r  b .  nap wr rdu .c  . . \  .p r r .nd .

m.0  <  sT(o)  <6 , -@<sT0)<  +  6 .
n.0 <lsT(o) < (2 - SQRT(2))/2, -* < sTO) < + *
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Appendix E

TNSTRT.'GTION
DISASSEMBI.Y

TABLE

The tabl€ in this appendix allows you to deccdc 80386 inskuctions lt presents the

same informatlon as the opcode table in ApPendix C but is easier tC) use

The table has the following formatl

hequired byte(s)l loperand byte(s)] linstfl.rctionl

At least one of the required bytes is an 8-bit hexadecimal value, and additional bytes

may follow. The operand bytes hav€ one of the follovr'ing formsr

ea.' The source and destination operands are cncoded in the standard mod reg r/m

format described in Appendix D

eal,ry. The destination operand is encoded in the mod r/m Portion of the ea field,

and the reg bits are set to /N.

ddtaN.' N bytes of immediate data follow the inslruction.

-/rr/rq: 'lhc sr^ndxd mod reg r/m encoding is interpreted so that the mod bits

are ignored, the reg bits specify registe 

 

of a group (such as CR3), and the r/m bits

select a general 32-bit register

dktN.' A signed displacement (N bits in length) from the cuffent instruction
pointer (EIP) follows the instruction.

The abbreviations Ea, Eb, Ew. and Ed stand for the effective address' byte, vord,

and doubleword indicated by lhe ea bits in the instrrrcIion.

Insrrudions pre(ede.l bv an isterisk | ' I are J2-bil in{ru rlons thdr opemte on l6-

bit quantiti; when preceded wilh the oPslz: instruction prefix. For real mode, V86

mode, and 286-compatible code segments, the behavior is reversed; that is, the in-

structions operate on 16-bit operands unless preceded with the OPSIZ: prefix
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Instf uction Disassernbly Table

Bttes b,tes

.0t .1dr !32
,06
'07
08 ca

10D data32
"0l i

0f C\) cr/2
0l' 00 er/3

oir 00 cx/5
(JIr 0l cr'/0
0 l :01ca/ l
0l 0l cn/2
olj 0l cr/3
0f 01 cnl,1
0f 0l crl6

.0F02 c.

0! 06
01j20 -/n/r.!
0I2l -/n/rc8
oF 22 /nheg
OF 23 /nheg

oir 26 -/nrcg
.0f 80 dhp32
.0f 8l disp32
'0F82 disp32
'0F83 disp32
"0F8,1disp32
,0Fil5disp32
.0F86disp32
,o l i87dhp32

'0! il8.lisp32
.0F89dhp32
.0F8Adisp32
.0FilR disp32

ADD Ib, reglj
ADD Ed, reg32
ADD rc€8, Eb
dDD regl2, !d
ADDAT, dAIAS
ADD EAX, d!u32
PI]5I I I.]S
POP !S
Olt Eb, rc88
Olt Ed, rcg32
OR fegti, Eb
OR reg32, Ed

oR IiAX, drtd32
PIJSI I CS
sLl)T Dw
51 lt ]]w
LLryt |w
L-t R ltw
VEItli liw
VIIRV liw
SGl)| lir
Sll)1 [a
I(lltl lln
l,ll)l na
SMSV !w
IMS\V Ii$,
I- R reg32, Lw
Lsl- reg32, liw
cns
lilov cR., reg32
Mov DFq reg32
Mov rc832, cRn
MOV rcg32, DRn
MoVTRn, rc832
MOV rc932, TRn
lo dispj2
JNo.lisp32
JB disp32 (JB4NA|)
JNts dispj2 (JNB/JAIj)
Jz tisp32 (JZf)E)
Jh'Z disp32 (JNr7JNE)
JRB disp32 (JBrlNA)
JNBE disp32 (JNBI/

JA]
JS disp32
JNs <lisp32
JI, disp32 (I,PE)
JNl, disp32 (JNPfPo)

.0F 8C disp32

.0F 8D disp32
,0F8E disp32
'0I8Fdhp32

0F 93 ca

0f 95 er
Oti(X e.

0F 98 ca
(Ir 99 ca

0l:9t) cr
0I 9li cx

r0F 83 cr

.Oli 85 ea

' 0 F B B e a
'0FBC ca
'0I BD ea
'01B!  ea

JL disp32 (JLIJNGE)
JNr disp32 (JNIrcE)
Jr! disp32 (JrllrN(;)
IIX disp32 (JNLIj4CE)
SETO Ub
sE fNo !b
SETI] Eb (SIJ'I'B/SETNAE)
su rNts Eb (SI'iNIJ/SETAE)
sril z ljb (sETzstlft)
SE'I'NZ Ib (SETNZ/5IJ'1NE)
sETari tib (SETRE/slil\A)
sETNRli !b (SETNBD/SI11)
SITS Eb
stlT\'s Eb
srlP Eb (sETr,/sli't?E)
sli't NP tb (SETNP/s[tPo)
SETI, Iib (SITLISETNGI')
$j rNL Bb (sti INL/SETGE)
sul tE lrb (sri l t_,j/sltTNc)
sri INLE Eb (sli'r'Nr.D/

5'ilcE)
PIJSI I l{i
POP IS
llT lid, rcg32
SHLD t:d, rc!32, data8
SHLD Ed, rqt32, CL
PLJSLI GS
IOP GS
llTS lil, rc832
SHRD Ed, rc832, .lxrl|tl
sHltD Ed, rcx32, cl
lMLiLreg32, l jd
l.SS re832, !a
BTR Ed, rell3z
LFS rc832, Ea
LGS .eg:12, lia
MOVZX reg32, !b
MOVZ\ re&32, liw
BT !d, darail

tsTR Fil, data8
BTC Ed, data8
B'l c Ed, reg32
BSI reg32, !d
BSR feg32, Ed
MOVSX rc332, Eb
MOVSX re!32, !v
ADC Eb, regs
ADC ljd, reg32
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App.ndix Er h.rrmtion Dis...mhly Lble

Itrtructton Dts6semblYTable.

Aftes Bttes

.13 ea

i15 dara32
i 1 6
. 1 7
18 ca

lc dltaS
' lDdata32
.1 l l
. 1 I

22 ca
, 2 3 c )

'2t <l^t^32
26
27
28 ea

' 2 9 e

r2B a^
2c datnli

'2D.lIa32
2E
2t

32 e^
,33ea
34 drns

'35 dat^32
36
37
3a ea

3C datd
"3D d^t^32
3E
3F

ADC reg8, Eb
ADcre832, Id

ADC !AX, dan32
PUSH SS
l,ol ss
SDR Eb, re88
SBB Ed, reg32
ststs reg8, Eb
ststs fe832, Ed
SBD AL, datas
SaB EAx, data32
I'USII DS
POP DS
AND Eb, reg8
AND td, rc€32
AND rcg8, Eb
AND re832, Ed
AND At, data8
AND EAX, data32
ESI

SUB ljb, rcSiJ
sUB l,n, reg32
SUa reA8, Eb
SUB !eg32, Ed
SUll A!, data8
SUts EAX, daul2
CS:
DAS
xOR nb, regli
XOR Ed, re832
XoR fegu, Db
XOR .e932, lld
xoR ,{t-, darail
xOR EAX, dan32
SS:

CMP Eb, regS
cMP Ed, !c932
CMl, reg8, Eb
CM? reg32, Ed
CMP AL, dala8
CMP EAx, dara32
DS:

INC EAX

r42

.44

.45
'46

.18
,19

'4C
tlD

.4f

.50

. 5 1
r52
'53

,55
,54
'51

"59

.51]

' 5 D
15E
"5F

i 6 l

63 ea
64
65

61
.@ dat^ 32
.69 eadxa32

6C
.6D
6E

rNc tcx
INC EDX
INC EBX
INC ESP
INC EBP
tNc Esl
INC EDI
Drc lrAx
DEC ECX
DIC EDX
DEC E]]X
DEC IiSI
DEC 1]BI
DlC 1]SI
DEC IiDI
PUSH EAX
PUSH ECX
PUSH I]DX
PUSI I I]RX
PUSLI I]SP
PUSII EI,}P
I'USI I ESI
PUSH EDI
POP EAX
POP ICX
POP IJDX
I OP EBX
POP ESP
POP EtsP
PO! DSI
POP I]DI
I USIIAD
POPAT)
BOUND re832, [a
ARPL Ew, rc816
FS:
cs:
OPSIZI
ADRSIZ:
PUSH data32
IMUr re832, Ed, .lara32
PUSH dataS
IMUL reg32, Ed, data8
INSB
INSD
oulsB
OUTSD
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rnstruction Dtsd*mbly Table.

Bltes Attes

70 disp8
71disp8
72 dispS

75 disps

7t displ.]

Tcdisp8
7l)d isp8

.81ea/6dara32
'81 c., dNr$2

98
'9C
.9D
'E
9r

.A5
A6

' A9 .tar^32

.,\lJ

B0 da!i8
Br d2a8
82.lara8
B3 dataS

85 datas
ts6 dda8
87 dari8

! Ba data32
' 89 data32

MOV re832, Ed
MOV Ew, veg
rEA rcgl2, L
MOV src8, Ew

NOP
xcltc EAx, licx
XCI1C EAX, EDX
XCTIG EAX, EtsX
XCFIG I]r\X, ESP
XCHG EA\ IIJP
XCHGEAX,I ]SI
XCHG EAX, EDI
cBv/ / clr'DE
c-!(D
CArl,offsct32
\fr\IT
PUSTIFD
POP]ID
SAIIII
I,AIII:
MOv AI-, ldisp]
MOV nAX, klispl
MOV ldispl, AL
MOV ldhpl,llAX
MOV$]l
MOVSD
CMPSR
CMPSD
'I'�lgt AL, data8
1lST EAx, da1a32
STOSA
STOSD
LODSB
LODST)
scAsu
scAsD
MOV ,\r, dara8
MOV CL .lata8
Mov DL, data8
MOV BL, data8

MOVCH, data8
MOV DH, dara8
MOV BH, daraS
MOV EAX, data32
MOV EC( data32

JO disps i8B ca
INO disp8 8C cals
.lB clisp8 (lElJNAll) . 8D ea
JNB.lisp8 (JNts/JAE) 8E ets
Jzdispa( JaJD 18Fea
JNz.lisps (JNzfNE) 90
JBll disps (JRli4NA) i9l
JNBIi disp8(JNBtj/J ) .92
Js disp8 .93
JNs.lisp8 '94
Jr clhps (JPIIE) '95
JNr dispe UNldl,o) "'6
JL dispu (.llrNc!) .97
JNL disps (JNL4cx) .98
JLli disps (.lLEllNc) 99
JNLE disp8 (JNLE/Jcli) 9]\ oifset32
,\DD Eb, dara8
Olt !b, datx8

SBII lib, &talJ
,{ND lib, drta8
SUII [b, dxta8
XOlt Eb, d2rn8
CMI) Eb, darr8
AI)D Ed, data32
OR ril, datN32
ADC f.il, drn32
sDB Ed, dxu32
AND Ed, data32
SUR Dd, data32
XOR tkl, dara3z
cMP Ed, .lata32

OR Ed, dr1a8
ADc Ed, d a8
SBR E l, .lara8
AND lld, dara{l
sUB Ed, data8
XOR Ecl, dataS
CMP Ed, datas'I IjST Eb, fc88
TtS I Ed, reg32
XCIIC Eb, reg8
XCHC !d, reg32
MOV Eb, .c88
MOv Ed, reg32
MOV reg8, Eb
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Lrstruc"donDtsa3re$bly\^bE continued

BJ'tes ryos
!BA daa32
.BBdaa32
.Be daa32
.BDdata32
rBEdara32
rBF data32
c0 ealo data8
c0 eall dalaS
C0 e^/2 dxr^8
C0 e^/3 d^r^8
CO e2/4 d^^A
co ea./s d^a8
c0 et7 datas

.CL ealo d^aA

.Cleal1data8

.C1 e /2 dx^A

.ct e /3 d^taa
'cl e /4 dar^8
'C't e /5 da6A
'Cl eal1 dataa
C2 dara16

, C 5 e
c6 €a dataS

C8 dara16 data8

cAdatal6
CB
cc
CD d*a8
CE
CF
D0 ea/o
D0 eal1
D0 ea/z
Do ea./3
lxe /4
IX ea/5
DO ekn

.D1ea/0
tDl eaJL
'Dl ea!2
.D7 e /a
.Dlea./4
"DL e2/5

MOv EDX, data32
MOv EB)q data3z
Mov EsP, dita3z
MOV EBB data32
MOV ESI, dara32
MOV EDI, data32
ROL Eb, data8
ROR Eb, daa8
RCl, Eb, data8
RcR Eb, dataS
SHr Eb, dataS
SHR Eb, data8
SAR Eb, d1ta8
ROl, Ed, dataS
ROR Ed, dat.8
RcL Ed, data8
RCR !d, data8
SHL Ed, dara8
SHR Ed, data8
SAR Ed, data8
RET dara16
RET
LES re832, Ed
IDS reg32, Ed
MOv reg8, dataS
Mo\ rc932, d^t^32
ENTER data16, data8
LEAYE
RETFdatal6
RETT
INT 3
INTdata8
INTO
IRET
ROt Eb, 1
ROR Eb, 1
RCL Eb, I
RCR Eb, 1
SHL Eb, 1
SHR Eb, 1
SAR Eb, 1
ROL Ed, 1
ROR Ed, 1
RCr Ed, 1
RCR Ed, 1
SHI, Ed, 1
SHR Ed, 1

SAR Ed, 1
ROI Eb, CL
ROR Eb, CL
RCL Eb, C!
RCR Eb, CL
sHL Eb, Cl
SHR Eb, CT
SAR Eb, CL
RO! Ed, CL
ROR Ed, CL
RCL Ed, CL
RCR Ed, CI,
sHL Ed, Cl,
SHR Ed, CL
SAR Ed, CL

AAD
)OAI
ESC 0 (NDP)
ESC 1 (NDP)
ESC 2 (NDP)
ESC 3 (NDP)
ESC 4 NDP)
ESC 5 WDP)
ESC 6 NDP)
ESC 7 NDP)
LOOPNB dhp8

OOOPNE/,I,OOPNZ)
LOOPE dtsp8

(LOOPE/LOOPZ)
IOOP dtspS
JcxZ dtspS
IN AL, dataS
tN EAx, dara8
OUT dara8, AL
ouT dara8, EAX
CALL ea32
JMP disp3z
JMP FAR ea48
JMP disp8
IN AL, DX
IN EAX, DX
OUT DX, AL
OUT DX, E,{X
LOCX
REPNE/,REPNZ
RNP/REPE/lREPZ

.Dle^n
D2e /O
D2 ea/1
D2 ea/2
Dze /a
DZ ea/4
DZe /5
DZ ean

'D3 e^10
iD3 e^lr
tD3 ea/z

,D3 ea/4
.D3 ea/s
.D3 e /7
D4
D5
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0 dispS

El dtspS

E2 dispS
E3 dispS
E4 dltl8

iE data8
E6 dataS

rE8 e$2
E9disp3z

.EA ea48
EB disp8
EC

i BD

EE
"EF
!!
E2
F3

4i37



rNtrucdon Dlsa$embly Table.

Bttcs Bttcs

!5

16 ea/2

HII
cMc
'l LiS l Ib, data8
NOT !b
NI]G Eb
MIiL AL, Eb
IMUI AL, Eb
Dlv ,|.r, tib
IDIVAI-,I]h
-lliST lid, dara32
NOT Ed
NEG Ed
MUI EAX, Ed
IMUL EAX, !d
DIV E X, Ed
IDIV IJAX, I id

!8
1,9

!B

ID

"|1. ct5

cLc
sTc
cLt
sTl
CLD
S-I'D
INC I]b
DEC Eb
INC Ed
DEC Ed
C,\LL td
CALI,Ii\R CA
JMP Ed

?IJSIJ KI

80387 Bxt€nstons (NDP Escapes)

B!tes ales

lr8 crlo
D8 crvl
D8 en/2
D8 cd3
D8 a!/4
D8 e/5

D8Co+i
D8C8+i
D8 Do+i
D8 D8+i
DI] EO+i
DU E8+i

DS la+i
D9.a/O
D9 aa/2
D9 e,/3

D9 ex/5

D9 cal7
D9 C0+i
D9 C8+i

D9 DO
D9 rio
D9 til
D9 E.4
D9 E5
D9 D8
tD ii9
D9 UA
D9 EI]
D9 EC
D9 ED
D9 Etr
D9 FA
D9 FI
D9 F2
D9 F3
D9 F4
D9 F5
D9 F6
D9 F/
D9IB
D9 T9
D9IA
D9IB
D9 TC

IINOP
IICI IS
FAI]S
!'TS1'
IX{M
II,D]
FLDI,2T
FTDL2E
FLDPI
I]IDG2
IIDN2
t \.Dz
f2xM1
!YL2X
IPTAN

!](,I'RACT
IJPRI]M1
IDNCSTP
I]INCSTP
FPREM
FYI''PI
FSQRI'
fslNcos
FRNDINT

E{DI) Iienlr2
IiMUL lteal32
I'COM Rcal32
ICOMP Rcal32
FSIIB Rerl32
FSUBR Real32
FDIV Iteil32
lDM Rcrl32
IADD S f, ST(i)
fN'tu. sT, sT(i)
FCOM ST ST(D
FCOMP ST, ST(i)
FSUts ST, ST(i)
rsuaR sll s r(D
l:Drv stl s](i)
FDIVR ST, 5T(O
FtD Rerl32
FSTReal32
FSTP Real32
FLDENV Ea
FLDCW Ew
Fli l ENv !a
l-STCw F-w
FLD ST(i)
FXCH ST(i)

434



ADpddlt E In.td.tion d..smuy l.hl.

a0347 Extenstoff (NDP Estpes). cannnued

Btttes Bttes

D9 FD
D9IE
D9 FF

DA ealz
DAe /3
DA.ea/4
DAd/5

DA ean
DA E9
DB ealo
DB ea/2
DB ea,/3

Dts ea/6
DB E2
DB E3
DC e^/O
DCe /1
DCe /2
Dce /3
DCe /4
DC e^/5
Dc e^/6
DC ea/7
DC Co+i
DC C8+i
DC Eo+i
DC E8+i
DCro+i
DC F8+i
DD ealo

IIADD Ind(t
IlMUl,lntlo
FICoM Irt16
FICOMP lnt16
FISUD Int16
t-IsUBRIntlo
FlDIvlntlO
FIDII'R Inr16
FUCOMPP
FILD Int16
FISTIntl6
!lsTP Int16
ILD Real8o
ISTP Real8o
FCLEX
FINIT
FADD Real64
FMUI, Real64
FCoM Real&
FCOMP Real64
FSIIB Real64
ISL]BR Real54
IDIV Real64
FDIVR Red64
txDD sT(t), sT
FMUT STO, ST
FSUBR STO, ST
FSUB ST(i), ST
FIDI\'R ST(I), ST
!DMT(), ST
IID Realtr

DD ea,t2
DD ea/3
DD s/4
DD eal6
DD ean
DDCo+i
DD DO+i
DD D8+i
DD EO+i
DD I]8+i
DE eto
DE eall
DB e^/2
DE e^/3
DEe /4
DE ea/5
DE eJ6
DEe /7
DE Co+i
DE C8+i
D]I D9
DE EO+i
DE E8+i
DE FO+i
DE F8+i
DI eal0
D\1e.Jz
DFe /3
DFe /4
DF eal5
DFe /O

D! n0

FST Real64
FSTP Real64
F&STOR !a
FSAVE Ea
FSTSV Ew
TIRDE ST(i)
TST ST(i)
ISTP ST(i)
FUCOM STC)
FUCOMP ST(i)
FIADD Int32
FIMULInt32
i_ICOM lnt32
FICOMP In62
IISUB Int32
IISUBR InI32
IIDIvlnt32
IIDIVR Int32
FADDP ST(D, ST
FMULP ST(i), ST
FCOMPP
FSUBRP ST(i), ST
rSuBP ST(i), ST
IDI\TP ST(t), ST
FDIW ST(I), ST
llLD Int32
IISTI.t32
IISTP Int32
rBlD Bcd80
FIID Int64
FaSTP Bcd80
FISTP lnt64
FSTS!( AX

FSCALE
FSIN
FCOS
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Appendix F

aoaG-FAMlLy
PROGESSOR

DTFFERENGES

Although the 8086, 80286, and 80386 are object-code compatible, minor differences
have arisen during the evolution of this microprocessor famiLy. This appendix
describes these differences.

Real.Modo Differences
Between the 8085 and the 8O386

The 8086 processor does not generate exceptions 6, 8-13, and 16.

Instructions execut€ more rapidly on fie 80386; in most cases, address decode time

On the 80386, the divide fault (INT 0) leaves the saved CS:EIP pointing to the faulF
ing instruction. On the 8086, rhe lue of CS:IP on the stack points to the instruclion
after the one that caused the fault.

opcodes that were not explicitly defined on the 8086 are interFeted as new in-
structions or cause the undefined opcode fault (INT O when executed on the
80386.

\x/hen lhe Pt SH SP In.rrucrron i. execured, rhe vilue on rhe suck of rhc 80JM i5
the preincremenred value, where the value pushed on the 8086 is the postincre-
mented value of SP If it is necessary to recreate the same stack lue, use the follow-
ing sequence of instructions on the 80386 in place of PUSH SP.

PUSH 8P
t10v BP. sP
X C H G  B P ,  t 8 P ]
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The count vatue for shift and rotate instrucrions is taken modulo 32 in rhe 80386.
The full valuc (up k) 255) is used on the 8086, which can result in long instntction

An insructlon (inchding prefixcs) cannor exceed 15 bytes on the 80386.Ifir does,
I gcncral protection fault occurs. This does not occur under normal circumstances
but might o.rur if you use multiplc redundant prefixes. Thc 8086 has no such

Operands cannot c'xtcnd across the segment bounds on rhe 80386. Il for examplc,
an instruction refcrs b a r6-bit operand at offset 65535, a general prorection fault
occurs. Ifthe stack pcrintcr is set to low memory (offscr 2) an.l a 32 birvalr.F is
ptshcd, a stack fault occlrrs. In the 80i16, addresses wrap arouml rbe segment
boundary and are continuous fiom 65535 to 0. insrruction cxe.Lrrn)n bebaves like

On the 80386, you cxn use the LOCK instructbn only wilh cerrain instructions;
otherwisc, an unclcfined opcoclc fault occlrrs. Scc chapter 8 for a lisr ofthc lc€al
In\ l rr .L r :on'  lh( i r r \ i  h/ .  n!  5(r( lL redr l . l ion!

Somctimcs thc 11086 hxngs while singlc-stcpping The 80386 cloes not hang becausc
thc intcrrupt prioriries on the 80386 .re sl ightly difterent l his prcvcnts I single-
step trap lKrn occurring until thc handlcr rctlrms if a hardware intcnupt is invokcd.
'Ihc 80116 gcncrates a divkle fuul1 ifrhe quolienr of an lI)lV in$trrrrion is the largcst
possiblc ncgativc numbcr. Thc U03fl6 gc cratcs lhc corrccr rcsuh. See rhe earlier
discussbn olthc dividc tlulr in this appendix.
'Whcn the conlenl ofthe ILACS rcllistcr is pushe(l onbo thc stack, l)i!s 12-15 arc
always ls on ttrc 8086. These birs reprcscnr ncw ihgs on the 80386.

The NMI interrupt masks all subscquent NMIS on rhc 80386 Lrnril rn IRET is exe-
cuted. Nlvlls are nor maskcd ()n rhe 8r)86.

The 80386 uscs INT 16 as the coproccssor erro. vcltor. On rhe 8086. rhc sysrem
hardwarc musL be programmed to gcncrarc a. interrupt vecrot and it can be any

vhen a. NDP exception occurs on an 80386, the s.1ved CS:EIP points to fie faulting
insiruction, including any prcfixes that might be parr of rhe insr.uction. On rhe
80ib. lhc saved CS:IP poinrs only !o rhe ISC portion of rhe faulting NDP insrruction.

Additional inlcrupts can occur on rhc 803t16 if Lhe program contains undcrected
bugs, such as rhc use of unimplemcnrcd .)pcodcs ()r addressing beyond scgmenr

Thc 80M is limited to i Mts of address space by having 20 physical hardware ad-
dress 1incs. Using selectors such as FFFFH can resulr in linearaddrcsses beyond I
MB, but bcrause there are only 20 address li.es, tbe addresses wrap around to 0.
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Because there are 32 address lines on the 80386, addresses greater than 1 MB can be
generated in real mode (up to 1oFFEFH). If system software clepends on the ability
to wrap around to 0 after 1 MB, hardware must be added Io lhe system to force ad-
dress line 21 to 0 in real mode.

Virtual 8o85.Mode Differences Between the
8086 and the 80386

All th€ previousLy lisred differences also apply to V86 mode on the 80386 in com-
parison to real mode on the 8086. Following are some additional differences.

I/O instructions in v86 mode are allowed only if the I/O permission bitmap for the
V86 mode task is set up.

All exceptions (hardw.rre and software interrupts) vector to the protected-mode
IDT enkics rather than through the real-mode interrupt mechanisrn. The protecred-
modc handlers must simulate the reafmode vector process when apprcpriale,

Differences Between the 8O286 and the 80386
As implemented on the 80286, th€ LOCK prefix caus€d memory to be locked during
the prefixed instruction. on th(: 80386, only the memory accesscd by the prefixed
instruction iri lockcd,

On RESET, any of the registers which contained undefined values on the 80286 may
contain different values on the 80386.

Differences Between the 8087 and the 80387
Errors are signalled via a dedicated hardware pin on the 80387 instead of the stan-
dard CPU interrupt mechanism. The 80386 responds to coprocessor effors via inter-
rupts 7, 9, and 16 instead of an external hardware inteffupt.

The format ofthe effor information in the 80387 environment varies depending on
whether the processor is in renl mode or in prote.ted mode. The 8087 only supports
real-mode information.

The instructions FEN/FDISI are no-ops on the 80387

The 8087 does not perform automatic normalization of denormalized reals. Instead,
it signals a denormal exception and relies on the application to perform this opera-
tion. The 80387 will normalize these values and mighi execute faster if the denor-
mal exception is masked when running 8087 programs.

The 8087 requires oyplicil 'VAIT insructions before each floating-point instruction
to slnchronize with the 8086. The 80386 and rhe 80387 perform automaric slnchro-
nizalion. The WAIT instructions are unnecessary, but they will not cause the pro-
gram to operate ncorrectly,
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Dillerences Between the 8O287 and the 8O387
The FSETPM instruction is tleated as a no-op on the 80387

The 80287 supports both affine and projective closure. Only affine closure is sup-
ported on the 80387 Programs that rely on projective closure may genemte differ-
ent results on the 80387 than thev did on the 80287
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lndex

cA B
AAA(AscllAdju$AfterAddnion) bkklink. S€ li.kffeld cacne, page Bble 18,129 30

149 bdeaddres CALL (P@ed!rc Calls) 172 74
AAD (AscII Adjusr Befde of the GDT t c^l gare 96+1, ]04.12r

DMsion)l' ofthelDT2T cary flag (cF) 26
MM(ASCIlAdjustAfter <nase96enr16-49,r.9e-,9, CBw(convertBtretovbrd)l7t

Multipli.atidD 151 L36 CDQ (Coftrt Doublmrd io
AAs (ASCII AdjustAfte. b6ed addresi.g Quadrurd)t6

subtB.tion)l52 alone 58 59 ctr rcgisrer 22
abdt (d.eption .las) plu dbplenent 69 CrC (Cler Carry llad 177

cop!@e$or seSnrnt ovdun plu displ2@ment plus cl,D (cle^r Dnerion rlas) 178
(lNT 9) 116 index 71 ctl (cle 

 

Inteflupr !l.d 179
deflned 111-t2 base pointd (EBP) regGter Cl, reglster 22
double rauh (lNT 8) 115 3-4.59 CLIS (clea.l sk swnched BID

acce$ed (A) bit 52 ba6e registes 6a-71 r80
a.ce$ itghts 51-12, 8Z 137 BCD ltrkErlons CMC (Cotoplened C2riy FIag)
accumulaor 2,66,75,83 floarlrs-poinr89 181
Aoc (Add wnh ca!9 153 intese'76 anP (comprre I eg*)
ADD (InteAtr A<lditlor) 154 BCD numcic tonat 21, 30, 34 B2-V
addreses BH rcglst€r 22 cMPs (conpare Sring) 184-€5

effetireI,83 bias, fl@tlng.point exponent code segnc s 5r-t2
pht*al18,45,125-27,129, t-33 compatibility with 8046 441+3

132,137 big (B) blt 52 @mpatiblllty wlth 80286 443
sesmnt/offser 46-47 binary fretion! 3rj3,38 @ndirlon <odes
ent! t45-41.\02,125-27 bit lnsrlMriom 76-7 80387 38-40

addlessin8 rDdes. .t@ Irstructior blt strlngs 18-11 76-7 EFLACS rcai$ter 23-26, 80, 82
operands BL reglsre! 22 Jd (ltmpif Cond,toDa2

addle$ ffaNlatlon Boolear lm$ualons 76 SE'|.. <*rBytc on Cddtiofl,
vhual !o llner 46-47 BOUND (Chek Array 79-€O
vinualio physiqll2'-26 B@rdfjeo 158 @rfqming scgmnrs tl

afiine closule 39 bounds chek fault (lNT t) &.kollsructiors 92
AH register 22 111,11,{ .ontrolcgiltcD (CRo-CF3)
alL5 segrenrs 103, 121 BP rca\st* 3-4,22 Z7:29.79,\07,77A, D8
AL .€gl6te. 22 b..nch instr@tioru a1-8, contrcl 0ansfer insrlutions
AND(B@leanAND)155 bekpoinireSi$e6121-24 at-82
architerure berkpoi kap114 control wod (CW) rcgister 39

mlDlion ot l-U BS! (Bit S.an FdMd) 160-61
mic@hiteture 16-18 BSR (Bir &m Beverse) 162 etulation of 28

dtthfttlc lnstr@tios mGnTsr164-65 envionoent 91
floadng-poha9-9o BrcGnTe andcomplemot) insr.@do!s8a-92
i,nreg*7415 166-67 iarrcdNtion of6-7

arithnetic shifts 7a BTR (Bil Tesl md Refo .ucric fdnaG 30-34
ARPL(AdjustRPL)156-57 1@-69 resisr635
day indding. .ta salioA BTS (BnT€st md Seo 00-Z coprocsu{jlu fault ONT 16)
ASCII insf(tions 76 BsI df&e Unft (BIU) 17 119
ASCU nmeric lomat a bus ldk (LcK\) 79, 86, 130 @pr@sw nor aBilable fault
ASCnbbb3S3 burtB)bit106 0NT7) 115
auiliary c.rryfLg (AF) 25 blsyTSS 104,1OA oprdsu s€g@t mnun
available(A\a)bit52 ax r€Sisrer 22 (IM9)116
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cs segment rejliste. t, 26, 45, tl, dn{dy, page r$le rt8, i27 n
94,136 31 Dr register 22

cutrent priviLge level (cPL) 2 i, dniy (D) bit r27

exeute o.ty segmdrs t1-52

expmd .losr scgin€nrt 51 5l
erFnent, flmting-poi 

 

3t 3l
cxrende<l Predsion floarin8 point

(enPrenD 3r,33,13-39
dcnsior type (I'r') bft 23

F
IABS (,\breluie VaILE) 309

FAR CALIr a JMI,S 107, lrz i21,

FBLD (BcD li,d) Jr2
rBSTP (RCD Skr and Pop) 313
rCI Is (chan8c sign) 314
rCL!:x (clcar [xcc$iont 315
FCOM (Comprrc, 316-17

FDICSI? (D{f crcnl Stack

liDlVl (l)ivision ltcvc6cd)

IDiDD (lrrcc Nl)lr llcgistcr) 324
llIADD (inlclcr Addnion) 32t
fICOM (litcgu Conrpr(, 326
f ll)lv (lntcgcr Divi$ion) 327
I,l l)Ml (Intc1lcr Divisnrn

f IMUL (Ift cger Mulripli.rrio.)
330

frNcsl P (ln(rorcot stdck

IINIl 0nirillizr NDP) 312

FIsUa (Incgcr subrretion) 33.i
|_ISU]]R (Intcgcr Sulrka.rion

23 26,42

FLDanst (LaarJ (k sanDa37
FLDCW (Loxd Conrrdl WoRl) 333
I_LDENV (lrid E.vnonhe.t) 339
l loltinA point condition codes

3a -{0
rbnring P.i.r environncnr 91
tlorti.a'poid d.eplion! 37 ,0,

115,119
fl@ting point formts 31,33
flotinB poinl instrution sct 303
FMUL (Mnliipli.atio.) 3,10-41
FNoP (No operlrion) 3,12

5r,9.1-95, 130

r\\ teMrd) 1s6
CWD! (Conve( Wod to

Doublewod Extendcd)

D
D ,^ (l ){ nnxl Adju$ AL llier

DAs (Dc.imil AdjL$t AL Aftcr

drla lrrnslcr insru.tions 79 80

 SCI I2 I
IlcD 2t,3,1

doubl$ods(lqodt 20

bnl{ Mls (doul)le-preision)

! 7 4
(t!.dwods (tq)(h) 20
short r..ls ($inglc prctisi()n)

)1-42
rcND rc!rs(cxtcndcd

dcbu,j br.akponns 114, 120-24
dcblg cx.cprion (INT 1) 109, lt4
dcfilg ' clrislcrs 2q Dl-24

de in  r (D)bn52,137 38

dcnoirn.l f lati.g-point numbers
33

dcnomrl oFrlnd mask (DM)

descriptor crchc 13, 26, 35. Ji?
,ls shadow rcgisletr

de*ri orlbrmab 46 t,i,
104 5

desdprd privilege lsel (DPL)
94)a

de{ripror hblcs 5-1, 100 r02
dcsripr.r rype (TYPE) field

51,104

dnedion flag (DF) 65, 83

446

dhabrc inter4lr (cLD 25j
144-41

DIV (Unsigned Divjsion) t9l

83337 (Zti e{.eprion) 38

double fauli (INT 3) 111,115
double Prsision forut (long

doublsods (dwo(ls) 20
Ds sqhcrt rcgister 5,45.3J

E

licx rclislcr 22,1J2,83 85

D:I,ACS rqtistcr 23-26, 82
cnNlxrc rlt.th $pr@cs{r (riM)

rnrble intctrlpts(Sl l) 25,
143-44

lNTll (Hnrcr N.{ srxck IdNc)
193

equrl (b0rch c.ndibn) 82

ctror Pointer rqjistc6 41-42, tr
ctrorsu hary(ES) bir 37

.x.ePti.n 0asks l7-la, 40

protcctcd mode handling
:Ll0-20

real nodcnandlins rjg 39

vitual 8086 mdle (V36-
modc) lD.dling r45 46

80387

mask bits 37 33, 40



FPATAN (Partial A(tangdt 343
FPRIM (Panit Remainded

34445
FPRtMl onEE Pinkl Rmai.dtr)

34647
FPTAN (Panial Tangdo 343
fnction, binary 31-33, 3a

fmme points. ,t# stack frame
FRNDINT (Rdnd to l ege!) 349
FRSTOR (Restore NDP shte)

350-51

352-13
FscAtiE (scale by 2') 354
FSEI?M (Set Prcteted Mode) 355
FslN (slne) 355
FSINCOS (SIne md C@ln9) 3t7
FSQRT (sq're Roo0 358
FS sgmdr leSiste! 26, 45, 8t
FsT (stde Floatirg Poino 359
FSTC\V (Srorc Cortrcl Vbrd) 360
FSTENV (Sroe rnvironhert) 361
FSTS\V (Sbre Status Vbrd) 362
NUB (subtn tiqt 363-54
FSUBR (Subtractton ?ft ed)

45-46
FTST (lest for zerc) 367-68
FUCOM (Unordered Compare)

r e - 7 0
IWAIT (rXAt Until Not BUSY) 37r
FXAM (Eemlne Top of $acld

312-7'
FXCH (ExchanSe Stack Elemnts)

374
IXTRrcT Gxtret Flo.tlrg-Point

components) 375
FIL2X (Cmpute Yx logr,l) 376
FYL2XPI (compure rx logr'

rJitD> 3n
F2)o.tl (conpute 2" - 1) 378

G-l
g tes%, - ,LM-r,112'13,tO
GmR .€elsier 2Z 54, 9, 141
gme€t pro@don fau[ (INa 1)

41, U, \\t, \\4, U3
clob.l Desriptor lable (cDT) 2Z

54, a7,9A-n3,fi4
slcbal emble (c0-c3) bits 123
grdll,nty (O) bn 4q 111, 142
g.srtr than (bnnch odftio.)

a2
GS segmenr Fgislq 26, 45, 85
Hl,T (Halo 8Z 19t

IDIV (Integd (sig.eo Division)
196+7

IDTR register 2Z 54, 98, 136, Ba,

mEDTA fl oating-poim format
1,3l

MultipUetior) r9a
IN (Input from I/o Pon) 199-200

with base plus dkplaceftnt 7.l
plus displacemmi 69-71

infinity 33, 39

inirkl pr@esor nate 135-36

protetion checks 109, 143
INS (lnput St lng from I/O Pon)

202_3
Irstltedon de.ode ult U
lnstrk on diskdbly table

4at4a
lrokwdon foma$ and rlmtr€E

64,W

vo 66-67
mmoy rcference (w

memory rdcrcnce

irst wrlq pleferch qucue 17
irst wrlon plefet h unlt 17
INT (Softw Int€EupD 204-5

8038619-20
80387 30

Iqloupl Dsipto. Table ODT)
110-13, 1r, 141, 145

ituemP| enable fbg (lF) 25

disbling/mablilg 25, U&
14a-44

*eptions, faults, dd traps
1t04

l n t  r

eftMre 25, al 1n,1a,145
in virrual8086 node145 {5

INTo (l enw on ovedl@)
206

invzlid opcode faul (INT O
1t4-t5

invalid opsation *epdon (l!)
bit 39

inqlld TSS fauh (INT 10) 116-17
t/o

iturutiG 66-67 85

p€rmlsston bltmap 109-10, 143
permission .h4ks 109, 143
in p.ore.ted node 109
in vi'tual 8086 node 143

I/o privilc€e lwel (los) 24, 84,
1@,143-45

IRET (lnteiupt Reru.n) 207

.r-
lcc (JtmP it ConZtttu) 2@-9
JMP (Nar, Arjump) 210-u
LAHF (Ied AH wlth Flag, 212
LAR (L@d Acce$ Rlghrs)

213-it4
Lcs (L@<l CS) 229
LDS (Lo6d DS) 229
LDTR regkter 2Z 102 109, 117
rEA (ldd !ffedve Add.€$) 21t
IEAVE (L.ave Culmt Siack

LES (Load E5) 229
16 rhan (b6rch ddltldt 82
rFs Qed !s) 229
LGDT (Load Gm Reglster) 2r7
rGS 0oad Gs) 229
LIm 0,oad Im Reglstd aa
link 49-fr,136
linq! addrss 18, 2Z 44-47 121,

127_.ry

LLDT (Lo!d Lm Regl5ter) 219
LMsv (l,oad Machlre Staru6

lo€l dstiplq lable (tDr) %,
101-4

l@l emble (10-L) bits 123
LOCI( (Bu As.i HardMre

LOCK\SrStal Preix)
221-22

LODS (Idd &ring) 223 24

long r@l fqmi (dobie-
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LOP.! (,Np De.rement E()(
and Ban.h) 225-26

L€A [oad scgnmr Rcghtc, 229
LSI- (LGd Sesment Linil)

227 28

rTR odd Task Rcgisrcr) 230
nxchnre status woid (Msw) 23,

l4l

mrth present (lvtP) bit 23, r15
nrcnort rcad/writc breakpoinrs

t20 21
tredorY relerence operands

bxscd plus displrement 69
bxscd plusindcx plus

index plrN disphcment
6r-1r

mcmory scgmcnts 5 i, 43 53
mic(r.hncctuc 16-lli

0ror.{ted 7-3, 23, 93-124,
110-1r

r4r'7.14r-9.142
txnsitions bctwccn 28, 142
vktrd a0a6 10, l3l-32,

MOV (Mdc Drrtsclcct(t

MOVS (Mde Stiql) 234-3t
IIOVSX (Movc with Sign

MOVZ( (Nlovc with Zcro

MUL (Unsqn { Mnlriplietion)
2N-39

nultitasking supFtrl 28,.14, 5t,
9n.n5,9

lt-P
NaN(Not aNumbeO 33 34
ndivc modc 36, 135, 138
NIc (Ncgate Imcgcr) 240
.eartive number fo.mts

nctcd hsk (NT) llag 24, roa
Non-Maskable lntcrupt (NMI) 25,

110,120,14.1
NOP (No OperariorD 24r

NoT (B@la. complement) 212
not Presenl lault ONTn) lr7

BCD 21,30, 34

op.odcs, tablc of33t92

ouT (output ro Portl 244-45

prMlcSs ch(king 109, 14il
oUTs (output sdnd 2.i6 ,7
derflq cxception (oE) bit 33
.vcrfkN f lrg(O!) 24,80, 82, 111,

wcrf low t.ap (INT 4) 111, 114

addrcss 8t 36, l37 la
opednd sizc 36, ll7-3,
scghcnt 45, 67, 85-34t,

117-18
PrAc Dn ltqy [ntt (PD[) la9,

130
pr8. c.2blc (l,o) bil28,127, 1,12

Prge iduh (IN l 14) 118-12127 Ul
prgc Irdnullriry(C) bft 4r-50
Plgc T.ble Int.t (!'r'f:) 127-31

F ry flag(Pr) 26, 80, 82

t/o 10r,141
betweo p.ivilc8c rings

segnent a.ces\ 93 r\5
Dlrysi.al add resks 18,4t,

125 21,129, r32, t3J
pornrc r rcS is rc rs r , rz ,b  / l

POP (liop Sqment Resister/vrlue
offsB.k) 248 ,19

IOPA (Pop All Ceneral tegisrers

PoPAD (Pop All o.ncral
Registers 32-bir) 251

ItPF (Pop Srnck into FLACS) 2t2
PoPFD (Pop nack inro EFLAGS)

p.€ision, tlqting-point 31-33
pr<ision control (?c) field 39

prdision exc€ptio. (PE) bit JB

,\DnsrzS6 87, rl7, 138
LOCK 36, 13O, 141
OP5IZ 36, DZ r33

legnent oEdide 45, 67,
85 36, r17 18

in ddr4to. 51, 117, 137

.utrenl (cPr, 24, tl,14 r5,B0

.lcrriptor (DrL) 94-95
pagi.8 a.d privilc8c 130-31

ttunlitions between t6 r0l

inro.lution ro 7-a
hcchanism, 3on86 93 124
swit.hinS inro/x*ry ho'n

t40-42
prorcctcnrblc(PD) bit 2s, f,i2

oi t.recs 118 19,130 ll

PUSH (!ush vxluc omo sirk)
214-51

I'USH,\ (l'ush rGIJit Ccncral

PUSIIAD (P!sh 32-Bit 6c.crxl

PUSHf (PL$h l6-uii ht-l,AGS

PUSHFD (Pusb ll[L,{CS Rcgistq)

O-R

ItCl, (lt(rlte l hrougb Crry ltfr)
260 61

RCR (Roratc Tbrcugh Cary tughr)
2-63

readable code s.Smdts 51
read-only daa fSme.ts 51, 53

real nmber forna$ 3r 35

,|44



.a rcl 21-29, 19, rO1, rA, 1A
debug and test 29, 121-24

segme.talor (w segnenr

REP/REPE/REPZlREPN!/REPNZ
(Repet SirinA Preffx) 264

requested prlvuege lwel (RPl) 54,
9)-102, t@. \\7

RXSET D5-37

from int€trupt 113, 146

fron task .wilch 108, rr3
rin$, potetion 8, 94-96
ROL (Rorate L€fr) 267-68
ROR (Rotate !U8hD 269-70

'oundins @ rcI(rc)39-40

s
SAHF (Siore AH ln EFLAOS) 271
s,{L (shft reft Arlrhmtlc)

272_73
sAR (shift Rlght Arnhneri.)

274-75
SDB (Subketion with Bqrw)

scAs (s!an st.lnd 27-78
sqg Ges(mt ov€dde !e x) 279

addre$ trosLtion in 43-47

sesment qenlde p.eflx 45, 62
85-86, t17-1f'

l@di.a md sding 79, l01, 107,

in vlftu.l .ddrssing 46, 60

s.letd 46 47, 54-55, 93-94,
100 102,107

sET.c (Ser Byte on C@dtro4)
2AO-41

SGDT (Stde Cm ReSisrer) 232

136 37 .td4lro de* ptd

slBred se8@rs 58-59, 131
sHr (Shift l€ft Lgial) 283-{4
sHr-D (shifr r€ft Dqlblo 285
short real (singl€-pKision)

sHR (shlft Rlghl Logtcal)
2ffi-47

SIRD (Shift tught Oouble) 2e€

SIDT (Stoe IDT R€ebttu) 289
sirr flag (S!) 25, 80, 82

sirgle-precision (short real)

slralc stepplrg 120-22, 138

SI-DT (Slorc LDT ReSister) 290
SMSV (Sbcre Ma.hine SBtus

vblo 291
eftwde bMkpoinrs 114
ofrw.rc lnt€nuFs 25, 81, 111,

121.145

SS se8re register 26,45, 72, t8,
145

$ack fault ONT 12) 52-53, 72,
n7-18

ack polDter (EsP) re8t6ter 22, 68
atus word (Sw) reglste. 35,

3719
sTc (ser cany Flag) 292
sm (ser Dhetto lh9 293
sTI (set ltu@upl Flad 294
sToS (stde St ing) 295-96
sTR (S!o!e Task Regisre, 297
s$ing imtrkriotu 25, 43, a5

p e4 t26-2a,L)3-.14
segmenrs 52, t6 60, 117

lndd

f-2
table indicab (Tr) bit 54, 9,

l0l,1l4
tag wod (Iw) regisrer 35, 41
t2sk gare 96, 105, 11H3, 117
task (TR) re8istc 2z 98, 107
Task state s€gment (TsS) t,

98-100, 103-10, 116, 112 l2l
ask swilched (TS) bil 28, 115

lask swnch trap (T) bir 121, 123
rmp real (srended-pruidor)

rormat 31,33,38-39
TEST (Test BitO 299

iop-oist ck (ToP) f,eld 37
Mnslarion look2side buffer (ILB)

la, fig,129-N,142
irap flag (TF) 25, 120-21, 138
trap Sates 96, 104, 112, 117
$aPr 110-I, 114, 120-21
t)?e (TYPD field 51, 104-6
undefined opcodc fauh (lM 6)

1t4-15
urde.flos crce$ion (UE) bit 3Z

38
lndasked ex.ePtions 38
unslgned conpaftons 80, 82

urerauPwisof (u/s) blt 119,
130-31

\86 rDde &? vi'tual 80€6 mode

VIRR (\trify Red Ae6)
300-301

vlRrv (verify rvrite Access)
302-3

vi.tual 8086 mde 10, 23,
142-46

vi.tual addrses 4t-47, 102,
125-27

virtual nemdy 45-42 5r,
55-n0.Q5-27

vhual mode ot4) bir 23, 143, 146
VAIT (Velt Unril Nor Bust) 30.1
wd .oul field. str .hud cont

w.itable daa seSndts 51
XCHC Grchange) 305
I<LAIB (Tra.slaie Bfe) 306
xOR (Bolqn Eklusive Oru 307
2eo divide excepd@ (zE) bir 38
zrc divid€ f2ult (INT 0) n4

tl.4tt
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He.e is a clear, comprehensive, and authoritotive introduction to the chip
that is the foundation of today's popular, high+oweaed micaocomputers.
Wfitten for everysefious programmer, THE 80386 BOOK includes
scores of superb assemblylanguage examples along with a detailed analysis
ofthe chip itself. Ross Nelson, o fofmer lntel programmer, mvers:

r the CplJ: its organization, registers, and 80287 6nd 80387 math
copTocessors

'the momory architoctut€i linear ys segmented addressing, virtual
addTess space, segment descriptofs, selectors, snd virtualmemory

. the instruction 6dts of the 80386 microprocessor and the 80387
math coprocessor

. the 80386 protsction schoms: globol descriptor and lnterrupt descrip-
tortables; selectorsi segment and system descdptors; inte.rupts, trops,
and faults; and debug support

. the implementation ofoviftual mEmory system throughpaging

. compatibility with previous generations of Intelo microprocessors
Of specisl importance is the comprehensive, clearly organized instruction

set rcference that willbe a valuable resoufce for 80386 programmers.
Every assembiy-language programmef, microprocessor design engineer,

and student of computer architecture willfind THE 80386 BOOK an
excellent reference.
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