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Statement of Aims
What
This is a book on the organization and architecture of theJava Virtual Machine (JVM), the
software at the heart of the Java language and is found inside most computers, Web browsers,
PDAs, and networked accessories. It also covers general principles of machine organization and
architecture, with llustrations from other popular (and not-so-popular) computers.

It is not a book on Java, the programming language, although some knowledge of Java or a
Java-like language (C, C++, Pascal, Algol, etc.) may be helpful. Instead, it is a book about how
the Java language actually causes things to happen and computations to occur.

This book got its start as an experiment in modern technology. When I started teaching
at my present university (1998), the organization and architecture course focused on the 8088
running MS-DOS—essentially a programming environment as old as the sophomores taking
the class. (This temporal freezing is unfortunately fairly common; when I took the same class
during my undergraduate days, the computer whose architecture I studied was only two years
younger than I was.) The fundamental problem is that the modern Pentium 4 chip isn’t a par-
ticularly good teaching architecture; it incorporates all the functionality of the twenty-year-old
8088, including its limitations, and then provides complex workarounds. Because of this com-
plexity issue, it is difficult to explain the workings of the Pentium 4 without detailed reference
to long outdated chip sets. Textbooks have instead focused on the simpler 8088 and then have
described the computers students actually use later, as an extension and an afterthought. This is
analogous to learning automotive mechanics on a Ford Model A and only later discussing such
important concepts as catalytic converters, automatic transmissions, and key-based ignition sys-
tems. A course in architecture should not automatically be forced to be a course in the history of
computing.

Instead, I wanted to teach a course using an easy-to-understand architecture that incorporated
modern principles and could itself be useful for students. Since every computer that runs a Web
browser incorporates a copy of the JVM as software, almost every machine today already has a
compatible JVM available to it.

This book, then, covers the central aspects of computer organization and architecture: digital
logic and systems, data representation, and machine organization/architecture. It also describes the
assembly-level language of one particular architecture, the JVM, with other common architectures
such as the Intel Pentium 4 and the PowerPC given as supporting examples but not as the object of
focus. The book is designed specifically for a standard second-year course on the architecture and
organization of computers, as recommended by the IEEE Computer Society and the Association
for Computing Machinery.1

1 “Computing Curricula 2001,” December 15, 2001, Final Draft; see specifically their recommendation for course
CS220.

xiii
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How
The book consists of two parts. The first half (chapters 1–5) covers general principles of computer
organization and architecture and the art/science of programming in assembly language, using
the JVM as an illustrative example of those principles in action (How are numbers represented in
a digital computer? What does the loader do? What is involved in format conversion?), as well as
the necessary specifics of JVM assembly language programming, including a detailed discussion
of opcodes (What exactly does the i2c opcode do, and how does it change the stack? What’s the
command to run the assembler?). The second half of the book (chapters 6–10) focuses on specific
architectural details for a variety of different CPUs, including the Pentium, its archaic and historic
cousin the 8088, the Power architecture, and the Atmel AVR as an example of a typical embedded
systems controller chip.

For Whom
It is my hope and belief that this framework will permit this textbook to be used by a wide
range of people and for a variety of courses. The book should successfully serve most of the
software-centric community. For those primarily interested in assembly language as the basis for
abstract study of computer science, the JVM provides a simple, easy-to-understand introduction
to the fundamental operations of computing. As the basis for a compiler theory, programming
languages, or operating systems class, the JVM is a convenient and portable platform and target
architecture, more widely available than any single chip or operating system. And as the basis for
further (platform-specific) study of individual machines, the JVM provides a useful explanatory
teaching architecture that allows for a smooth, principled transition not only to today’s Pentium,
but also to other architectures that may replace, supplant, or support the Pentium in the future.
For students, interested in learning how machines work, this textbook will provide information
on a wide variety of platforms, enhancing their ability to use whatever machines and architectures
they find in the work environment.

As noted above, the book is mainly intended for a single-semester course for second-year
undergraduates. The first four chapters present core material central to the understanding of the
principles of computer organization, architecture, and assembly language programming. They
assume some knowledge of a high-level imperative language and familiarity with high school
algebra (but not calculus). After that, professors (and students) have a certain amount of flexibility
in choosing the topics, depending upon the environment and the issues. For Intel/Windows shops,
the chapters on the 8088 and the Pentium are useful and relevant, while for schools with older
Apples or a Motorola-based microprocessor lab, the chapter on the Power architecture is more
relevant. The Atmel AVR chapter can lay the groundwork for laboratory work in an embedded
systems or microcomputer laboratory, while the advanced JVM topics will be of interest to
students planning on implementing JVM-based systems or on writing system software (compilers,
interpreters, and so forth) based on the JVM architecture. A fast-paced class might even be able to
cover all topics. The appendices are provided primarily for reference, since I believe that a good
textbook should be useful even after the class is over.
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Computation and
Representation

1.1 Computation

A computer Also a computer

1.1.1 Electronic Devices
How many people really know what a computer is? If you asked, most people would point to
a set of boxes on someone’s desk (or perhaps in someone’s briefcase)—probably a set of dull-
looking rectangular boxes encased in gray or beige plastic, and surrounded by a tangle of wires
and perhaps something resembling a TV. If pressed for detail, they would point at one particular
box as “the computer.” But, of course, there are also computers hidden in all sorts of everyday
electronic gadgets to make sure that your car’s fuel efficiency stays high enough, to interpret the
signals from a DVD player, and possibly even to make sure your morning toast is the right shade
of brown. To most people, though, a computer is still the box you buy at an electronics shop, with
bits and bytes and gigahertz that are often compared, but rarely understood.

3
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In functional terms, a computer is simply a high-speed calculator capable of performing
thousands, millions, or even billions of simple arithmetic operations per second from a stored
program. Every thousandth of a second or so, the computer in your car reads a few key per-
formance indicators from various sensors in the engine and adjusts the machine slightly to en-
sure proper functioning. The key to being of any use is at least partially in the sensors. The
computer itself processes only electronic signals. The sensors are responsible for determining
what’s really going on under the hood and converting that into a set of electronic signals that
describe, or represent, the current state of the engine. Similarly, the adjustments that the computer
makes are stored as electronic signals and converted back into physical changes in the engine’s
working.

How can electronic signals “represent” information? And how exactly does a computer
process these signals to achieve fine control without any physical moving parts or representation?
Questions of representation such as these are, ultimately, the key to understanding both how
computers work and how they can be deployed in the physical world.

1.1.2 Algorithmic Machines
The single most important concept in the operation of a computer is the idea of an algorithm:
an unambiguous, step-by-step process for solving a problem or achieving a desired end. The
ultimate definition of a computer does not rely on its physical properties, or even on its electrical
properties (such as its transistors), but on its ability to represent and carry out algorithms from
a stored program. Within the computer are millions of tiny circuits, each of which performs a
specific well-defined task (such as adding two integers together or causing an individual wire or
set of wires to become energized) when called upon. Most people who use or program computers
are not aware of the detailed workings of these circuits.

In particular, there are several basic types of operations that a typical computer can perform.
As computers are, fundamentally, merely calculating machines, almost all of the functions they
can perform are related to numbers (and concepts representable by numbers). A computer can
usually perform basic mathematical operations such as addition and division. It can also perform
basic comparisons—is one number equal to another number? Is the first number less than the
second? It can store millions or billions of pieces of information and retrieve them individually.
Finally, it can adjust its actions based on the information retrieved and the comparisons performed.
If the retrieved value is greater than the previous value, then (for example) the engine is running
too hot, and a signal should be sent to adjust its performance.

1.1.3 Functional Components
System-Level Description
Almost any college bulletin board has a few ads that read something like “GREAT MACHINE!
3.0-GHz Intel Celeron D, 512 mg, 80-GB hard drive, 15-inch monitor, must sell to make car
payment!” Like most ads, there’s a fair bit of information in there that requires extensive unpacking
to understand fully. For example, what part of a 15-inch monitor is actually 15 inches? (The length
of the diagonal of the visible screen, oddly enough.) In order to understand the detailed workings
of a computer, we must first understand the major components and their relations to each other
(figure 1.1).



1.1 Computation 5
� �

CPU memory mouse
hard
disk

control
unit

ALU

Figure 1.1 Major hardware components of a computer

Central Processing Unit
The heart of any computer is the Central Processing Unit, or CPU. This is usually a single
piece of high-density circuitry built on single integrated circuit (IC) silicon chip (figure 1.2).
Physically, it usually looks like a small piece of silicon, mounted on a plastic slab a few cen-
timeters square, surrounded by metal pins. The plastic slab itself is mounted on the mother-
board, an electronic circuit board consisting of a piece of plastic and metal tens of centimeters

Figure 1.2 Photograph of a CPU chip
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on a side, containing the CPU and a few other components that need to be placed near the
CPU for speed and convenience. Electronically, the CPU is the ultimate controller of the com-
puter, as well as the place where all calculations are performed. And, of course, it’s the part of
the computer that everyone talks and writes about—a 3.60-GHz Pentium 4 computer, like the
Hewlett-Packard HP xw4200, is simply a computer whose CPU is a Pentium 4 chip and that
runs at a speed of 3.60 gigahertz (GHz), or 3,600,000,000 machine cycles per second. Most
of the basic operations a computer can perform take one machine cycle each, so another way
of describing this is to say that a 3.60-GHz computer can perform just over 3.5 billion basic
operations per second. At the time of writing, 3.60 GHz is a fast machine, but this changes very
quickly with technological developments. For example, in 2000, a 1.0-GHz Pentium was the
state of the art, and, in keeping with a long-standing rule of thumb (Moore’s law) that comput-
ing power doubles every 18 months, one can predict the wide availability of 8-GHz CPUs by
2008.

S I D E B A R
Moore’s Law
Gordon Moore, the cofounder of Intel, observed in 1965 that the number of transistors that could
be put on a chip was doubling every year. In the 1970s, that pace slowed slightly, to a doubling
every 18 months, but has been remarkably uniform since then, to the surprise of almost everyone,
including Dr. Moore himself. Only in the past few years has the pace weakened.

The implications of smaller transistors (and increasing transistor density) are profound. First,
the cost per square inch of a silicon chip itself has been relatively steady by comparison, so
doubling the density will approximately halve the cost of a chip. Second, smaller transistors
react faster, and components can be placed closer together, so that they can communicate with
each other faster, vastly increasing the speed of the chip. Smaller transistors also consume less
power, meaning longer battery life and lower cooling requirements, avoiding the need for climate-
controlled rooms and bulky fans. Because more transistors can be placed on a chip, less soldering
is needed to connect chips together, with an accordingly reduced chance of solder breakage and
correspondingly greater overall reliability. Finally, the fact that the chips are smaller means that
computers themselves can be made smaller, enough to make things like embedded controller chips
and/or personal digital assistants (PDAs) practical. It is hard to overestimate the effect that Moore’s
law has had on the development of the modern computer. Moore’s law by now is generally taken
to mean, more simply, that the power of an available computer doubles every 18 months (for
whatever reason, not just transistor density). A standard, even low-end, computer available off
the shelf at the local store is faster, more reliable, and has more memory than the original Cray-1
supercomputer of 1973.

The problem with Moore’s law is that it will not hold forever. Eventually, the laws of physics
are likely to dictate that a transistor can’t be any smaller than an atom (or something like that).
More worrisome is what’s sometimes called Moore’s second law, which states that fabrication
costs double every three years. As long as fabrication costs grow more slowly than computer
power, the performance/cost ratio should remain reasonable. But the cost of investing in new chip
technologies may make it difficult for manufacturers such as Intel to continue investing in new
capital.
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CPUs can usually be described in families of technological progress; the Pentium 4, for
example, is a further development of the Pentium, the Pentium II, and the Pentium III, all manufac-
tured by the Intel corporation. Before that, the Pentium itself derived from a long line of numbered
Intel chips, starting with the Intel 8088 and progressing through the 80286, 80386, and 80486.
The so-called “x86 series” became the basis for the best-selling IBM personal computers (PCs
and their clones) and is probably the most widely used CPU chip. Modern Apple computers use a
different family of chips, the PowerPC G3 and G4, manufactured by a consortium of Apple, IBM,
and Motorola (AIM). Older Apples and Sun workstations used chips from the Motorola-designed
68000 family.

The CPU itself can be divided into two or three main functional components. The Control
Unit is responsible for moving data around within the machine For example, the Control Unit takes
care of loading individual program instructions from memory, identifying individual instructions,
and passing the instructions to other appropriate parts of the computer to be performed The
Arithmetic and Logical Unit (ALU) performs all necessary arithmetic for the computer; it
typically contains special-purpose hardware for addition, multiplication, division, and so forth.
It also, as the name implies, performs all the logical operations, determining whether a given
number is bigger or smaller than another number or checking whether two numbers are equal.
Some computers, particularly older ones, have special-purpose hardware, sometimes on a separate
chip from the CPU itself, to handle operations involving fractions and decimals. This special
hardware is often called the Floating Point Unit or FPU (also called the Floating Point Processor
or FPP). Other computers fold the FPU hardware onto the same CPU chip as the ALU and the
Control Unit, but the FPU can still be thought of as a different module within the same set of
circuitry.

Memory
Both the program to be executed and its data are stored in memory. Conceptually, memory can be
regarded as a very long array or row of electromagnetic storage devices. These array locations are
numbered, from 0 to a CPU-defined maximum, and can be addressed individually by the Control
Unit to place data memory or to retrieve data from memory (figure 1.3). In addition, most modern
machines allow high-speed devices such as disk drives to copy large blocks of data without
needing the intervention of the Control Unit for each signal. Memory can be broadly divided
into two types: Read-Only Memory (ROM), which is permanent, unalterable, and remains even
after the power is switched off, and Random Access Memory (RAM), the contents of which
can be changed by the CPU for temporary storage but usually disappears when the power does.
Many machines have both kinds of memory; ROM holds standardized data and a basic version
of the operating system that can be used to start the machine. More extensive programs are held
in long-term storage such as disk drives and CDs, and loaded as needed into RAM for short-term
storage and execution.

This simplified description deliberately hides some tricky aspects of memory that the hard-
ware and operating system usually take care of for the user. (These issues also tend to be hardware-
specific, so they will be dealt with in more detail in later chapters.) For example, different comput-
ers, even with identical CPUs, often have different amounts of memory. The amount of physical
memory installed on a computer may be less than the maximum number of locations the CPU
can address or, in odd cases, may even be more. Furthermore, memory located on the CPU chip
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Figure 1.3 Block diagram of a linear array of memory cells

itself can typically be accessed much more quickly than memory located on separate chips, so a
clever system can try to make sure that data is moved or copied as necessary to be available in
the fastest memory when needed.

Input/Output (I/O) Peripherals
In addition to the CPU and memory, a computer usually contains other devices to read, display
or store data, or more generally to interact with the outside world. These devices vary from
commonplace keyboards and hard drives through more unusual devices like facsimile (FAX)
boards, speakers, and musical keyboards to downright weird gadgets like chemical sensors, robotic
arms, and security deadbolts. The general term for these gizmos is peripherals. For the most part,
these devices have little direct effect on the architecture and organization of the computer itself;
they are just sources and sinks for information. A keyboard, for instance, is simply a device to let
the computer gather information from the user. From the point of view of the CPU designer, data
is data, whether it came from the Internet, from the keyboard, or from a fancy chemical spectrum
analyzer.

In many cases, a peripheral can be physically divided into two or more parts. For example,
computers usually display their information to the user on some form of video monitor. The
monitor itself is a separate device, connected via a cable to a video adapter board located inside
the computer’s casing. The CPU can draw pictures by sending command signals to the video
board, which in turn will generate the picture and send appropriate visual signals over the video
cable to the monitor itself. A similar process describes how the computer can load a file from
many different kinds of hard drives via a SCSI (Small Computer System Interface) controller
card, or interact via an Ethernet card with the millions of miles of wire that comprise the Internet.
Conceptually, engineers draw a distinction between the device itself, the device cable (which is
often just a wire), and the device controller, which is usually a board inside the computer—but to
the programmer, they’re usually all one device. Using this kind of logic, the entire Internet, with
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its millions of miles of wire, is just “a device.” With a suitably well-designed system, there’s not
much difference between downloading a file off the Internet or loading it from a hard drive.

Interconnections and Buses
In order for the data to move between the CPU, memory, and the peripherals, there must be
connections. These connections, especially between separate boards, are usually groups of wires
to allow multiple individual signals to be sent in a block. The original IBM-PC, for example, had
eight wires to allow data to pass between the CPU and peripherals. A more modern computer’s
PCI (Peripheral Component Interconnect) bus has 64 data wires, allowing data to pass eight times
as fast, even before increased computer speed is taken into account. These wires are usually
grouped into what is called a bus, a single wire set connecting several different devices. Because
it is shared (like an early party-line telephone), only one device can transmit data at a time, but the
data is available to any connected device. Additional wires are used to determine which device
should listen to the data and what exactly it should do when it gets it.

In general, the more devices attached to a single bus, the slower it runs. This is true for two
main reasons. First, the more devices, the greater the possibility that two devices will have data
to transmit at the same time, and thus that one device will have to wait its turn. Second, more
devices usually means longer wires in the bus, which reduces the speed of the bus due to delays
in propagation—the time it takes a signal to get from one end of the wire to the other. For this
reason, many computers now have a multiple-bus design, in which, for example, the local bus
connects the CPU with high-speed memory stored on the CPU’s motherboard (often on the CPU
chip itself). The system bus connects the memory board, the CPU motherboard, and an “expansion
bus” interface board. The expansion bus, in turn, is a second bus that connects to other devices
such as the network, the disk drives, the keyboard, and the mouse.

On particularly high-performance computers (such as the one in figure 1.4), there may
be four or five separate buses, with one reserved for high-speed, data-intensive devices such as
the network and video cards, while lower-speed devices such as the keyboard are relegated to a
separate, slower bus.

Support Units
In addition to the devices mentioned already, a typical computer will have a number of components
that are important to its physical condition. For example, inside the case (itself crucial for the
physical protection of the delicate circuit boards) will be a power supply that converts the AC
line voltage into an appropriately conditioned DC voltage for the circuit boards. There may also
be a battery, particularly in laptops, to provide power when wall current is unavailable and to
maintain memory settings. There is usually a fan to circulate air inside the case and to prevent
components from overheating. There may also be other devices such as heat sensors (to control
fan speed), security devices to prevent unauthorized use or removal, and often several wholly
internal peripherals such as internal disk drives and CD readers.

1.2 Digital and Numeric Representations
1.2.1 Digital Representations and Bits
At a fundamental level, computer components, like so many other electronic components, have
two stable states. Lights are on or off, switches are open or closed, and wires are either carrying
current or not. In the case of computer hardware, individual components such as transistors and
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Figure 1.4 Block architecture of a high-speed, multibus computer

resistors are either at 0 volts relative to ground or at some other voltage (typically 5 volts above
ground). These two states are usually held to represent the numbers 1 and 0, respectively. In the
early stages of computer development, these values were hand-encoded by flipping mechanical
switches. Today, high-speed transistors serve much the same purpose, but the representation of
data in terms of these two values remains unchanged since the 1940s. Every such 1 or 0 is usually
called a bit, an abbreviation for “binary digit.” (Of course, the word “bit” is itself a normal English
word, meaning “a very small amount”—which also decribes a “bit” of information.)

S I D E B A R
How Transistors Work
The single most important electrical component in the modern computer is the transistor, first
invented by Bardeen, Brattain, and Shockley in 1947 at Bell Telephone Labs. (These men received
the Nobel Prize for Physics in 1956 for this invention.) The fundamental idea involves some fairly
high-powered (well, yes, Nobel-caliber) quantum physics, but it can be understood in terms of
electron transport, as long as you don’t need the actual equations. A transistor consists mostly
of a type of material called a semiconductor, which occupies an uneasy middle ground between
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good conductors (like copper) and bad conductors/good insulators (like glass). A key aspect of
semiconductors is that their ability to transmit electricity can change dramatically with impurities
(dopants) in the semiconductor.

For example, the element phosphorus, when added to pure silicon (a semiconductor), will
donate electrons to the silicon. Since electrons have a negative charge, phosphorus is termed
an n-type dopant, and phosphorus-doped silicon is sometimes called an n-type semiconductor.
Aluminum, by contrast, is a p-type dopant and will actually remove—actually, lock up — electrons
from the silicon matrix. The places where these electrons have been removed are sometimes called
“holes” in the p-type semiconductor.

When you put a piece of n-type next to a piece of p-type semiconductor (the resulting widget
is called a diode; figure 1.5), an interesting electrical effect occurs. An electrical current will not
typically be able to pass through such a diode; the electrons carrying the current will encounter and
“fall into” the holes. If you apply a bias voltage to this gadget, however, the extra electrons will
fill the holes, allowing current to pass. This means that electricity can pass in only one direction
through a diode, which makes it useful as an electrical rectifier.

Structure of diode

p-type
semiconductor

n-type
semiconductor

Symbol for diode

Figure 1.5 Diodes

A modern transistor is made like a semiconductor sandwich; a thin layer of p-type semicon-
ductor between two slices of n-type semiconductor, or sometimes the reverse. (Yes, this is just
two diodes back to back; figure 1.6). Under normal circumstances, current can’t pass from the
emitter to the collector as electrons fall into the holes. Applying a bias voltage to the base (the
middle wire) will fill the holes so that electricity can pass. You can think of the base as a gate that
can open or shut to allow electricity to flow or not. Alternatively, you can think of it as a valve in
a hosepipe to control the amount of water it lets through. Turn it one way, and the electrical signal
drops to a trickle. Turn it the other way, and it flows without hindrance.

The overall effect of the transistor is that a small change in voltage (at the base) will result in a
very large change in the amount of current that flows from the emitter to the collector. This makes
a transistor extremely useful for amplifying small signals. It also can function as a binary switch,
the key advantage being that it has no moving parts and thus nothing to break. (It’s also much,
much faster to throw an electrical switch than a mechanical one.) With the invention of the IC,
for which Jack Kilby also won the Nobel Prize, engineers gained the ability to create thousands,
millions, or billions of tiny transistors by doping very small areas of a larger piece of silicon. To
this day, this remains the primary way that computers are manufactured.

(continued )
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1.2.2 Boolean Logic
Modern computers operate using a logic based on bits. A bit is the smallest unit that can be said to
carry information, as in the children’s game “Twenty Questions,” where each yes or no question
yields an answer that could be encoded with a single bit (for example, 1 represents a “yes” and
0 a “no”). If you are familiar with the old Milton Bradley board game, “Guess Who,” the same
principle applies. By asking yes/no questions, you gradually learn which person your opponent
has chosen—and by recording the answers to your questions, you can recreate that learning at
any point. A bit is therefore the smallest unit that can be operated upon—stored, transmited, or
manipulated—using logic. The conventional way of performing logic on bit quantities is called
Boolean logic, after the nineteenth-century mathematician George Boole. He identified three
basic operations—AND, OR, and NOT—and defined their meaning in terms of simple changes
on bits. For example, the expression X AND Y is true (a “yes,” or a 1) if and only if, independently,
X is a “yes” and Y is a “yes.” The expression X OR Y, conversely, is a “yes” if either X is a “yes”
or Y is a “yes.” An equivalent way of stating this is that X OR Y is false (a “no,” or a 0) if and
only if X is a “no” and Y is a “no.” The expression NOT X is the exact opposite of X: “yes” if
X is a “no” and “no” if X is a “yes” (figure 1.7). Because a bit can be in only one of two states,
there are no other possibilities to consider. These operations(AND, OR, and NOT) can be nested
or combined as needed. For example, NOT (NOT X)) is the exact opposite of the exact opposite
of X, which works out to be the same as X itself. These three operations parallel their English
lexical equivalents fairly well: if I want a cup of coffee “with milk and sugar,” logically what I
am asking for is a cup of coffee where “with milk” is true AND “with sugar” is true. Similarly, a
cup of coffee “without milk or sugar” is the same as a cup “with no milk and no sugar.” (Think
about it for a bit.)

In addition to these three basic operations, there are a number of other operations that can
be defined from them. For example, NAND is an abbreviation for NOT-AND. The expression
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AND no yes
no no no
yes no yes

OR no yes
no no yes
yes yes yes

NOT
no yes
yes no

Figure 1.7 Truth tables for AND, OR, and NOT

X NAND Y refers to NOT (X AND Y). Similarly, X NOR Y refers to NOT (X OR Y). Another
common expression is exclusive-OR, written XOR. The expression X OR Y is true if X is true, Y
is true, or both. By contrast, X XOR Y is true if X is true or Y is true, but not both. This difference
is not captured cleanly in English but is implicit in several different uses: for example, if I am
asked if I want milk or sugar in my coffee, I’m allowed to say “yes, please,” meaning that I want
both. This is the normal (inclusive) OR. By contrast, if I am offered coffee or tea, it wouldn’t
make much sense for me to say “yes,” meaning both. This is an exclusive XOR; I can have either
coffee XOR tea, but not both at the same time.

From a strictly theoretical point of view, it doesn’t matter much whether 1/“yes”/“true”
is encoded as ground voltage or as 5 volts above ground as long as 0/“no”/“false” is encoded
differently and the difference is consistently applied. From the point of view of a computer engineer
or system designer, there may be particular reasons (such as power consumption) to choose one
representation over another. The choice of representation can have profound implications for the
design of the chips themselves. The Boolean operations described above are usually implemented
in hardware at a very low level on the chip itself. For example, one can build a simple circuit
with a pair of switches (or transistors) that will allow current to flow only if both switches are
closed. Such a circuit is called an AND gate, because it implements the AND function on the 2
bits represented by the switch state. This tiny circuit and others like it (OR gates, NAND gates,
and so forth), copied millions or billions of times across the computer chip, are the fundamental
building blocks of a computer. (See Appendix A for more on how these blocks work.)

1.2.3 Bytes and Words
For convenience, 8 bits are usually grouped into a single block, conventionally called a byte.
There are two main advantages to doing this. First, writing and reading a long sequence of 0s and
1s is, for humans, tedious and error prone. Second, most interesting computations require more
data than a single bit. If multiple wires are available, as in standard buses, then electrical signals
can be moved around in groups, resulting in faster computation.

The next-largest named block of bits is a word. The definition and size of a word are not
absolute, but vary from computer to computer. A word is the size of the most convenient block
of data for the computer to deal with. (Usually, though not always, it’s the size of the bus leading
to main memory—but see the Intel 8088, discussed later, for a counterexample.) For example,
the Zilog Z-80 microprocessor (the chip underlying the Radio Shack TRS-80, popular in the
mid-1970s) had a word size of 8 bits, or 1 byte. The CPU, memory storage, and buses had all been
optimized to handle 8 bits at a time (for example, there were eight data wires in the system bus).
In the event that the computer had to process 16 bits of data, it would be handled in two separate
halves, while if the computer had only 4 bits of data to process, the CPU would work as though it
had 8 bits of data, then throw away the extra 4 (useless) bits. The original IBM-PC, based on the
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Intel 8088 chip, had a word size of 16 bits. More modern computers such as the Intel Pentium 4
or the PowerPC G4 have word sizes of 32 bits, and computers with word sizes of 64 bits or even
larger, such as the Intel Itanium and AMD Opteron series, are available. Especially for high-end
scientific computation or graphics, such as in home video game consoles, a large word size can
be key to delivering data fast enough to allow smoothly animated, high-detail graphics.

Formally speaking, the word size of a machine is defined as the size (in bits) of the machine’s
registers. A register is the memory location inside the CPU where the actual computations, such as
addition, subtraction, and comparisons, take place (figure 1.8). The number, type, and organization
of registers vary widely from chip to chip and may even change significantly within chips of the
same family. The Intel 8088, for example, had four 16-bit general-purpose registers, while the
Intel 80386, designed seven years later, used 32-bit registers instead. Efficient use of registers is
key to writing fast, well-optimized programs. Unfortunately, because of the differences between
different computers, this can be one of the more difficult aspects of writing such programs for
various computers.

program counter (PC) 

instruction register (IR)

Control Unit (CU) Arithmetic and Logical Unit (ALU)

R1

R2

R3

R4

R5

R6

Bus

Figure 1.8 Typical internal structure of a CPU

1.2.4 Representations
Bit Patterns are Arbitrary
Consider, for a moment, one of the registers in an old-fashioned 8-bit microcomputer chip. How
many different patterns can it hold? Other ways of asking the same question are to consider how
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many different ways you can arrange a sequence of 10 pennies in terms of heads and tails or how
many strings can be made up of only 8 letters, each of which is a 0 or a 1.

There are two possibilities for the first bit/coin/letter/digit, two for the second, and so on until
we reach the eighth and final digit. There are thus 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 possibilities. This works
out to 28 or 256 different storable patterns. Similar reasoning shows that there are 232 or just over
4 billion storable patterns in a 32-bit register. (All right, for the pedants, 232 = 4, 294, 967, 296.
A handy rule of thumb for dealing with large binary powers is that 210, really 1024, is close to
1000. Remember that to multiply numbers, you add the exponents: ab · ac = ab+c. Thus, 232 is
22+10+10+10, or 22 · 210 · 210 · 210, or about 4 · 1000 · 1000 · 1000.)

Yes, but what do these patterns mean? The practical answer is: whatever you as the pro-
grammer want them to mean. As you’ll see in the next subsection, it’s fairly easy to read the
bit pattern 00101101 as the number 77. It’s also possible to read it as a record of the answers to
eight different yes/no questions. (“Are you married?”—No. “Are you older than 25?”—No. “Are
you male?”—Yes. And so forth.) It could also represent a key being pressed on the keyboard
(in this case, the pattern represents the ASCII value for a capital M). The interpretation of bit
patterns is arbitrary, and computers can typically use the same patterns in many ways. Part of the
programmer’s task is to make sure that the computer interprets these arbitrary and ambiguous
patterns correctly at all times.

Natural Numbers
A common way to interpret bit patterns involves using binary arithmetic (in base 2). In conven-
tional, or decimal (base 10) arithmetic, there are only ten different number symbols, 0 through 9.
Larger numbers are expressed as individual digits times a power of the base value. The number
four hundred eighty-one (481), for instance, is really 4 · 102 + 8 · 101 + 1. Using this notation,
we can express all natural numbers up to nine hundred ninety-nine in only three decimal digits.
Using a similar notation, but adding up powers of 2, we can express any number in binary using
only 0s and 1s.

Taking as an example the (decimal) number 85, simple arithmetic shows that it is equivalent
to 64 + 16 + 4 + 1, or (in more detail) to 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1. In
binary, then, the number would be written as 1010101. In an 8-bit register, this could be stored
as 01010101, while in a 32-bit register, it would be 00000000000000000000000001010101.

It’s possible to do arithmetic on these binary numbers using the same strategies and al-
gorithms that elementary students use for solving base 10 problems. In fact, it’s even easier, as
the addition and multiplication tables are much smaller and simpler! Because there are only two
digits, 0 and 1, there are only four entries in the tables, as can be seen in figure 1.9. Just remember
that, when adding in binary (base 2), every time the result is a 2, it generates a carry (just as every
10 generates a carry in base 10). So the result of adding 1 + 1 in base 2 is not 2, but 0 carry the 1
or 10.

Inspection of the tables reveals the fundamental connection between binary arithmetic and
Boolean algebra. The multiplication table is identical to the AND of the two factors. Addition,
of course, can potentially generate two numbers: a one-digit sum and a possible carry. There is
a carry if and only if the first number is a 1 and the second number is a 1; in other words, the
carry is simply the AND of the two addends, while the sum (excluding the carry) is 1 if the first
number is 1 or the second number is 1, but not both: the XOR of the two addends. By building an
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+ 0 1

0 0 1
1 1 10

· 0 1

0 0 0
1 0 1

Figure 1.9 Addition and multiplication tables for binary (base 2) arithmetic

appropriate collection of AND and XOR gates, the computer can add or multiply any numbers
within the expressive power of the registers.

How large a number, then, can be stored in an 8-bit register? The smallest possible value
is obviously 00000000, representing the number 0. The largest possible value, then, would be
111111111, the number 255. Any integer in this range can be represented easily as an 8-bit
quantity. For 32-bit registers, the smallest value is still 0, but the largest value is just over 4.2
billion.

Although computers have no difficulty interpreting long binary numbers, humans often
do. For example, is the 32-bit number 00010000000000000000100000000000 the same as the
number (deep breath here) 00010000000000000001000000000000? (No, they are different. There
are sixteen 0s between the 1s in the first number and only fifteen in the second.) For this reason,
when it is necessary (rarely, one hopes) to deal with binary numbers, most programmers prefer
to use hexadecimal (base 16) numbers instead. Since 16 = 24, every block of 4 bits (sometimes
called a nybble) can be represented as a single base 16 “digit.” Ten of the 16 hexadecimal digits
are familiar to us as the numbers 0 through 9, representing the patterns 0000 through 1001.
Since our normal base 10 uses only 10 digits, computer scientists have co-opted the letters A
through F to represent the remaining patterns (1010, 1011, 1100, 1101, 1110, 1111; see table
1.1 for the complete conversion list). Nowadays, this is about the only use that people have for
hexadecimal numbers: to specify and abbreviate long lists of bitstring values such as might be
used in cryptography or networking. The two numbers above are clearly different when converted
to base 16:

0001 0000 0000 0000 0000 1000 0000 0000
1 0 0 0 0 8 0 0 = 0x10000800

0001 0000 0000 0000 0001 0000 0000 0000
1 0 0 0 1 0 0 0 = 0x10001000

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

Table 1.1 Hexadecimal ↔ binary digit conversions
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By convention in many computer languages (including Java, C, and C++), hexadecimal
numbers are written with an initial “0x” or “0X.” We follow that convention here, so the number
1001 refers to the decimal value one thousand one. The value 0x1001 would refer to 163 + 1, the
decimal value four thousand ninety-seven. (Binary quantities will be clearly identified as such in
the text. Also, on rare occasions, some patterns will be written as octal, or base 8, numbers. In
C, C++, or Java, these numbers are written with a leading 0, so the number 01001 would be an
octal value equivalent to 513. This is a rather unfortunate convention, since almost no one uses
octal for any reason, but the tradition continues.) Note that 0 is still 0 (and 1 is still 1) in any base.

Base Conversions
Converting from a representation in one base to another can be a tedious but necessary task.
Fortunately, the mathematics involved is fairly simple. Converting from any other base into
base 10, for example, is simple if you understand the notation. The binary number 110110, for
instance, is defined to represent 25 + 24 + 22 + 21, 32 + 16 + 4 + 2, or 54. Similarly, 0x481 is
4 · 162 + 8 · 161 + 1, 1024 + 128 + 1, or (decimal) 1153.

An easier way to perform the calculation involves alternating multiplication and addition.
The binary number 110110 is, perhaps obviously, twice the binary value of 11011. (If this isn’t
obvious, notice that the base 10 number 5280 is 10 times the value of 528.) The binary number
11011 is, in turn, twice 1101 plus 1. Thus, one can simply alternate multiplying by the base value
and adding the new digit. Using this system, binary 110110 becomes

((((((((((1 · 2) + 1) · 2) + 0) · 2) + 1) · 2) + 1) · 2) + 0)

which simple arithmetic will confirm is 54. Similarly 0x481 is

((((4 · 16) + 8) · 16) + 1)

which can be shown to be 1153.

If alternating multiplication and addition will convert to base 10, then it stands to reason that
alternating division and subtraction can be used to convert from base 10 to binary. Subtraction
is actually implicit in the way we will be using division. When dividing integers by integers, it’s
rather rare that the answer is exact; normally there’s a remainder that must be implicitly subtracted
from the dividend. These remainders are exactly the base digits. Using 54 again as our example,
the remainders generated when we repeatedly divide by 2 will generate the necessary binary
digits.

54 ÷ 2 = 27r0

27 ÷ 2 = 13r1

13 ÷ 2 = 6r1

6 ÷ 2 = 3r0

3 ÷ 2 = 1r1

1 ÷ 2 = 0r1
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The boldface numbers are, of course, the bits for the binary digits of 54 (binary 110110).
The only tricky thing to remember is that, in the multiplication procedure, the digits are entered
in the normal order (left to right), so in the division procedure, unsurprisingly, the digits come
out in right-to-left order, backward. The same procedure works for base 16 (or indeed for base 8,
base 4, or any other base):

1153 ÷ 16 = 72r1

72 ÷ 16 = 4r8

4 ÷ 16 = 0r4

Finally, the most often used and perhaps the most important conversion is direct (and quick)
conversion between base 2 and base 16, in either direction. Fortunately, this is also the easiest.
Because 16 is the fourth power of 2, multiplying by 16 is really just multiplying by 24. Thus, every
hexadecimal digit corresponds directly to a group of 4 binary digits. To convert from hexadecimal
to binary, as discussed earlier, simply replace each digit with its 4-bit equivalent. To convert from
binary to hexadecimal (hex), break the binary number into groups of 4 bits (starting at the right)
and perform the replacement in the other direction. The complete conversion chart is (re)presented
as table 1.2.

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

Table 1.2 Hexadecimal ↔ binary digit conversions
(copy of table 1.1)

So, for example, the binary number 100101101100101 would be broken up into 4-bit
nybbles, starting from the right, as 100 1011 0110 0101. (Please note that I cheated: the number
I gave you has only 15 bits, so one group of 4 isn’t complete. This group will always be on the
far left and will be padded out with 0s, so the “real” value you will need to convert will be 0100
1011 0110 0101.) If you look these four values up in the table, you will find that they correspond
to the values 4, B, 6, and 5. Therefore, the corresponding hexadecimal number is 0x4B65.

Going the other way, the hexadecimal number 0x18C3 would be converted to the four
binary groups 0001 (1), 0100 (8), 1100 (C) and 0101 (3), which are put together to give the binary
quantity 0001010011000101.

A similar technique would work for octal (base 8) with only the first two columns of table 1.1
and using only the last 3 (instead of 4) bits of the binary entries, as shown in table 1.3. Using
these notations and techniques, you can represent any nonnegative integer in a sufficiently large
register and interpret it in any base we’ve discussed. With a bit of creativity and flair, you can
even adapt these techniques to oddball bases like base 3 or base 7.
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Hex Binary Hex Binary

0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 111

Table 1.3 Octal ↔ binary digit conversions

Signed Representations
In the real world, there is often a use for negative numbers. If the smallest possible value stored in
a register is 0, how can a computer store negative values? The question, oddly enough, is not one
of storage but of interpretation. Although the maximum number of storable patterns is fixed (for
a given register size), the programmer can decide to interpret some patterns as meaning negative
values. The usual method for doing this is to use an interpretation known as two’s complement
notation.

It’s a common belief (you can even see it in the film Ferris Beuller’s Day Off) that if you
drive a car in reverse, the odometer will run backward and apparently take miles off the engine.
I don’t know if it works or not—it didn’t work for Ferris—but Howstuffworks.com1 says that it
should have. Imagine for a moment that it did. Suppose I took a relatively new car (say, with 10
miles on it) and ran it in reverse for 11 miles. What would the odometer say?

Well, the odometer wouldn’t say −1 miles. It would probably read 999,999 miles, having
turned over at 000,000. But if I then drove another mile forward, the odometer would turn over
(again) to 000,000. We can implicitly define the number −1 as the number that, when 1 is added
to it, results in a 0.

This is how two’s complement notation works; negative numbers are created and manipu-
lated by counting backward (in binary) from a register full of 0s, as in figure 1.10. Numbers in
which the first bit is a 0 are interpreted as positive numbers (or 0), while numbers in which the
first bit is a 1 are interpreted as negative. For example, the number 13 would be written in (8-bit)
binary as 00001101 (hexadecimal 0x0D), while the number −13 would be 11110011 (0xF3).
These patterns are called signed numbers (integers, technically) as opposed to the previously
defined unsigned numbers. In particular, the pattern 0xF3 is the two’s complement notation
representation of −13 (in an 8-bit register).

How do we get from 0xF3 to −13? Beyond the leading 1, there appears to be no similarity
between the two representations. The connection is a rather subtle one based on the above definition
of negative numbers as the inverses of positive numbers. In particular, 13 + −13 should equal 0.
Using the binary representations above, we note that

00001101 13
+ 11110011 -13 in two's-complement notation
------------

100000000 0 plus an overflow/carry

1 http://auto.howstuffworks.com/odometer1.htm

http://auto.howstuffworks.com/odometer1.htm
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Figure 1.10 Structure of 4-bit signed integer representation

However, the 9-bit quantity 100000000 (0x100) cannot be stored in only an 8-bit register!
Like a car odometer that rolls over when the mileage becomes too great, an 8-bit register will
overflow and lose the information contained in the ninth bit. The resulting stored pattern is
therefore 00000000 or 0x00, which is the binary (and hex equivalent of 0. Using this method, we
can see that the range of values stored in an 8-bit register will vary from −128 (0x80) to +127
(0x7F). Approximately half of the values are positive and half are negative, which in practical
terms is about what people typically want. Figure 1.10 shows that, in general, there is one more
negative number than positive number, because the number opposite 0 on the figure is negative.

This demonstration relies critically on the use of an 8-bit register. In a 32-bit register, a much
larger value is necessary to produce overflow and wrap around to 0. The 32-bit two’s complement
representation of −13 would not be 0xF3, but 0xFFFFFFF3. In fact, viewed as a 32-bit number,
0xF3 would normally be interpreted as 0x000000F3, which isn’t even negative, since the first bit
isn’t a 1.

Calculating the two’s complement representation of a number (for a given fixed register
size) by hand is not difficult. Notice first that the representation of −1, for any register size, will
always be a register containing all 1s. Adding 1 to this number will produce overflow and a register
full of 0s. For any given bit pattern, if you reverse every individual bit (each 1 becomes a 0, each 0
becomes a 1, while preserving the original order—this operation is sometimes called the bitwise
NOT, because it applies a NOT to every individual bit) and add the resulting number to the original,
the result will always give you a register full of 1s. (Why?) This inverted pattern (sometimes called
the “one’s complement” or just the “complement”), added to the original pattern, will yield a sum
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of −1. And, of course, adding one more will give you a −1 + 1, or 0. This inverted pattern plus
1, then, will give you the two’s complement of the original number.

00001101 (= 13)
11110010 (inverted)

+ 1
------------

11110011 (= -13)

Note that repeating the process a second time will negate the negation.

11110011 (= -13)
00001100 (inverted)

+ 1
------------

00001101 (= 13)

This process will generalize to any numbers and any (positive) register size. Subtraction
will happen in exactly the same way, since subtracting a number is exactly the same as adding its
negative.

Floating Point Representation
In addition to representing signed integers, computers are often called upon to represent frac-
tions or quantities with decimal points. To do this, they use a modification of standard scientific
notation based on powers of 2 instead of powers of 10. These numbers are often called floating
point numbers because they contain a “decimal” point that can float around, depending upon the
representation.

Starting with the basics, it’s readily apparent that any integer can be converted into a number
with a decimal point just by adding a decimal point and a lot of 0s. For example, the integer 5 is
also 5.000. . . , the number −22 is also −22.0000. . . , and so forth. This is also true for numbers
in other bases (except that technically the “decimal” point refers to base 10; in other bases, it
would be called a “radix” point). So the (binary) number 1010 is also 1010.0000. . . , while the
(hexadecimal) number 0x357 is also 0x357.0000. . . .

Any radix point number can also be written in scientific notation by shifting the point around
and multiplying by the base a certain number of times. For example, Avogadro’s number is usually
approximated as 6.023 · 1023. Even students who have forgotten its significance in chemistry
should be able to interpret the notation—Avogadro’s number is a 24-digit (23 + 1) number whose
first four digits are 6, 0, 2, 3, or about 602,300,000,000,000,000,000,000. Scientific notation as
used here has three parts: the base (in this case, 10), the exponent (23), and the mantissa (6.023).
To interpret the number, one raises the base to the power of the exponent and multiplies by the
mantissa. Perhaps obviously, there are many different mantissa/exponent sets that would produce
the same number; Avogadro’s number could also be written as 6023 · 1020, 60.23 · 1022, or even
0.6023 · 1024.

Computers can use the same idea, but using binary representations. In particular, note the
patterns in table 1.4. Multiplying the decimal number by 2 shifts the representation 1 bit to the
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left, while dividing by 2 shifts it 1 bit to the right. Alternatively, a form of scientific notation
applies where the same bit pattern can be shifted (and the exponent adjusted appropriately), as in
table 1.4.

Decimal Binary integer Binary radix Scientific notation

5 00000101 00000101.0000. . . 1.01 (binary) · 22

10 00001010 00001010.0000. . . 1.01 (binary) · 23

20 00010100 00010100.0000. . . 1.01 (binary) · 24

40 00101000 00101000.0000. . . 1.01 (binary) · 25

Table 1.4 Exponential notation with binary numbers

We extend this to represent noninteger floating point numbers in binary the usual way, as
expressed in table 1.5. The number 2.5, for example, being exactly half of 5, could be represented
as the binary quantity 10.1 or as the binary quantity 1.01 times 21. 1.25 would be (binary) 1.01 or
1.01 times 20. Using this sort of notation, any decimal floating point quantity has an equivalent
binary representation.

Decimal Binary Binary real Scientific notation

5 101 00101.000. . . 1.0100 (binary) · 22

2.5 00010.100. . . 1.0100 (binary) · 21

1.25 00001.010. . . 1.0100 (binary) · 20

0.6125 00000.101. . . 1.0100 (binary) · 2−1

Table 1.5 Exponential notation with binary fractions

The Institute for Electrical and Electronic Engineers (IEEE) has issued a series of specifica-
tion documents describing standardized ways to represent floating point numbers in binary. One
such standard, IEEE 754-1985, describes a method of storing floating point numbers as 32-bit
words as follows (and as illustrated in figure 1.11:

31   30   29   28   27    26   25   24    23   22   21   20   19   18    17   16   15   14   13   12   11    10    9     8     7     6     5     4      3     2     1     0

sign exponent mantissa

Figure 1.11 IEEE 32-bit floating point storage: sign, exponent, mantissa

Number the 32 bits of the word starting from bit 31 at the left down to bit 0 at the right. The
first bit (bit 31) is the sign bit, which (as before) tells whether the number is positive or negative.
Unlike two’s complement notation, this sign bit is the only way in which two numbers of equal
magnitude differ.

The next 8 bits (bits 30–23) are a “biased” exponent. It would make sense to use the bit
pattern 0000000 to represent 20 and 0000001 to represent 21, but then one couldn’t represent
small values like 0.125 (2−3). It would also make sense to use 8-bit two’s complement notation,
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but that’s not what the IEEE chose. Instead, the IEEE specified the use of the unsigned numbers
0..255, but the number stored in the exponent bits (the representational exponent) is a “biased”
exponent, actually 127 higher than the “real” exponent. In other words, a real exponent of 0
will be stored as a representational exponent of 127 (binary 01111111). A real exponent of 1
would be stored as 128 (binary 10000000), and a stored exponent of 00000000 would actually
represent the tiny quantity 2−127. The remaining 23 bits (bits 22–0) are the mantissa with the
decimal point—technically called the radix point, since we’re no longer dealing with base 10—
placed conventionally immediately after the first binary digit. This format, using a fixed number
of positions in front of the radix point, is sometimes called normalized form.

Thus, for normal numbers, the value stored in the register is the value

(−1)sign bit · mantissa · 2realexponent + 127

A representational exponent of 127, then, means that the mantissa is multiplied by 1 (a corre-
sponding real exponent of 0, hence a multiplier of 20), while an exponent of 126 means that the
fraction is multiplied by 2−1 or 0.5, and so forth.

Actually, there is a micro-lie in the above formula. Because the numbers are in binary, the
first nonzero digit has to be a 1 (there aren’t any other choices that aren’t 0!). Since we know that
the first digit is a 1, we can leave it out and use the space freed up to store another digit whose
value we didn’t know beforehand. So the real formula would be

(−1)sign bit · 1.mantissa · 2realexponent + 127

As a simple example, the decimal number 2.0 in binary is 1.0 · 21. Representing this as an
IEEE floating point number, the sign bit would be 0 (a positive number), the mantissa would be all
0s (and an implicit leading 1), while the exponent would be 127 + 1, or 128, or binary 10000000.
This would be stored in the 32-bit quantity

0 10000000 00000000000000000000000
sign exponent mantissa

This same bit pattern could be written as the hexadecimal number 0x40000000.

The number −1.0, on the other hand, would have a sign bit of 1, an exponent of 127 + 0,
or binary 01111111, and a mantissa of all 0s (plus an implicit leading 1). This would yield the
following 32-bit quantity :

1 01111111 00000000000000000000000
sign exponent mantissa

Another way of writing this bit pattern would be 0xBF800000.

There’s a little problem with this. What do you do if the number is to be stored exactly
(0.000. . . )? There is no “implicit leading 1” anywhere in a string of all 0s. The IEEE defined as a
special case that a bit pattern of all 0s (sign, exponent, and mantissa) would represent the number
0.0. There are also a number of other special cases, including representations of both positive
and negative infinity, and the so-called NaN (not a number, the number that results when you
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try an illegal operation such as taking the logarithm of a negative number) and “denormalized
numbers,” which are used, rarely, to represent extremely tiny numbers with greater accuracy.
The IEEE has also defined standard methods for storing numbers more accurately in 64-bit and
larger registers. These additional cases are similar in spirit, if not in detail, to the 32-bit standard
described above, but the details are rather dry and technical and not necessarily of interest to the
average programmer.

One problem that comes up in any kind of radix-based representation is that of numbers
that are not represented exactly. Even without worrying about irrational numbers (like π ), some
simple fractions can’t be represented exactly. In base 10, for example, the fraction 1/7 has the
approximate value 0.14285714285714. . . but never comes to an end. The fraction 1/3 is similarly
0.33333. . . . In base 2, the fraction 1/3 is 0.010101010101010101. . . . But there’s no way to fit an
infinite sequence into only 23 mantissa bits. So the solution is: we don’t.

Instead, the number is represented as closely as possible. Converting to radix point, we see
that 1/3 is about equal to 1.01010101010101010101010 · 2−2, represented as

0 01111101 01010101010101010101010
sign exponent mantissa

This isn’t a perfect representation, but it’s close. But “close” may not be good enough in all
contexts; small errors (called roundoff error) will inevitably creep into calculations involving
floating point numbers. If I multiplied this number by the value 3.0 (1.1 ·21), I’d be very unlikely
to get the exact value 1.0. Programmers, especially those who handle big numerical problems like
matrix inversion, spend a lot of time trying to minimize this sort of error. For now, all we can do
is to be aware of it.

Performing operations on floating point numbers is tricky (and often slow). Intuitively,
the algorithms are understandable and very similar to those you already know for manipulating
numbers in scientific notation. Multiplication is relatively easy, since we know that 2x times 2y is
just 2x+y . Therefore, the product of two floating point numbers has as its sign bit the product or
XOR of the two signs, as its mantissa the product of the two mantissae, and as its exponent the
sum of the two exponents.2 Thus we have the following:

3.0 = (0) (10000000) (100000000000000000000000) [0x40400000]

2.5 = (0) (10000000) (010000000000000000000000) [0x40200000]

The sign bit of the result of 3.0 · 2.5 would be 0. The mantissa would be 1.100. . . · 1.010. . . ,
or 1.111. . . (do you see why?). Finally, the exponent would be 1 + 1, or 2, represented as 1000001.
Thus we see that the product would be

(0) (10000001) (111000000000000000000000) [0x40F00000]

as expected, which converts to 7.5.

2 But remember to account for both the exponent bias and the unexpressed 1 bit at the head of the mantissa!



1.2 Digital and Numeric Representations 25
� �

Addition is considerably more difficult, as addition can happen only when the exponents of
the two quantites are the same. If the two exponent values are the same, then adding the mantissae
is (almost) enough:

3.0 = (0) (10000000) (100000000000000000000000) [0x40400000]

2.5 = (0) (10000000) (010000000000000000000000) [0x40200000]

The binary quantities 1.01 and 1.1 add up to 10.11, so the answer would be 10.11 times
the common exponent: 10.11 ·21. Of course, this isn’t legal, but it’s easy enough to convert by
shifting to a legal equivalent: 1.011 ·22. This yields

(0) (10000001) (011000000000000000000000) [0x40B00000]

which converts, as expected, to 5.5.

However, when the two exponents are not the same (for example, when adding 2.5 and 7.5),
one of the addends must be converted to an equivalent form, but with a compatible exponent.

2.5 = (0) (10000000) (010000000000000000000000) [0x40200000]

7.5 = (0) (10000001) (111000000000000000000000) [0x40F00000]

Let’s convert 7.5: 1.111 ·22 is the same as 11.11 ·21. Adding 11.11 + 1.01 yields 101.00;
101.00 ·21 is the same as 1.01 ·23. The final answer is thus

(0) (10000010) (010000000000000000000000) [0x41200000]

which, again, is the expected value, in this case 10.0.

Character Representations
Nonnumeric data such as characters and strings are also treated as binary quantities and differ
only in interpretation by the programmer/user. The most common standard for storing characters
is the ASCII code, formally the American Standard Code for Information Interchange. ASCII
code assigns a particular character value to every number between 0 and 127.

This is a slight oversimplification. Technically speaking, ASCII provides an interpretation
for every 7-bit binary pattern between (and including) 0000000 and 1111111. Many of these
patterns are interpreted as characters; for example, the pattern 100001 is an uppercase ‘A.’ Some
binary strings, especially those between 0000000 and 0011111, are interpreted as “control char-
acters,” such as a carriage return, or a command to a peripheral such as “start of header” or “end
of transmission.” As almost all computers are byte-oriented, most store ASCII characters not as
7-bit patterns but as 8-bit patterns, with the leading bit being a 0. The letter A would be, for
example, (binary) 01000001, or (hexadecimal) 0x41, or (decimal) 65. Using 8-bit storage allows
computers to use the additional (high-bit) patterns for character set extensions; in Microsoft Win-
dows, for example, almost every character set has different display values in the range 128–255.
These display values may include graphics characters, suits (of cards), foreign characters with
diacritical marks, and so forth.
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The chief advantage of the ASCII encoding is that every character fits comfortably into
a single byte. The chief disadvantage of ASCII is that, as the American standard code, it does
not well reflect the variety of alphabets and letters in use worldwide. As the Internet continued
to connect people of different nationalities and languages together, it became obvious that some
method of encoding non-English (or at least, non-U.S.) characters was necessary. The result was
UTF-16 encoding, promulgated by the Unicode consortium.

UTF-16 uses 2 bytes (16 bits) to store each character. The first 128 patterns are almost
identical to the ASCII code. With 16 bits available, however, there are over 65,000 (technically,
65,536) different patterns, each of which can be assigned a separate (printable) character. This
huge set of characters allows uniform and portable treatment of documents written in a variety of
alphabets, including (U.S.) English, unusual characters such as ligatures (e.g., æ) and currency
symbols, variations on the Latin alphabet such as French and German, and unusual (from the
point of view of American computer scientists) alphabets such as Greek, Hebrew, Cyrillic (used
for Russian), Thai, Cherokee, and Tibetan. The Greek capital psi (�), for example, is represented
by 0x803A, or in binary by 1000000000111010. Even the Chinese/Japanese/Korean ideograph
set (containing over 40,000 characters) can be represented (see figure 1.12 for an example).

Machine Operation Representations
In addition to storing data of many different types, computers need to store executable program
code. As with all other patterns we have discussed, at its most basic level the computer can
only interpret binary activation patterns. These patterns are usually called machine language
instructions. One of the major roles of a register in the CPU is to fetch and hold an individual bit
pattern where that pattern can be decoded into a machine instruction and then executed as that
instruction.

Interpretation of machine language is difficult in general and varies greatly from computer
to computer. For any given computer, the instruction set defines which operations the computer
can execute. The Java Virtual Machine (JVM), for example, has a relatively small instruction set,
with only 256 possible operations. Every byte, then, can be interpreted as a possible action to
take. The value 89 (0x59) corresponds to the dup instruction, causing the machine to duplicate a
particular piece of information stored in the CPU. The value 146 (0x92) corresponds to the i2c
instruction, which converts a 32-bit quantity (usually an integer) to a 16-bit quantity (usually a
Unicode character). These number-to-instruction correspondences are specific to the JVM and
would not work on a Pentium 4 or a PowerPC, which have their own idiosyncratic instruction
sets.

The task of generating machine code to do a particular task is often extremely demanding.
Computers usually provide a large degree of programmed support for this task. Programmers
usually write their programs in some form of human-readable language. This language is then
converted into machine code by a program such as a compiler, in essence a program that converts
human-readable descriptions of programs into machine code.

Interpretation
In light of what we have seen in the preceding sections, it is clear that any given bit pattern can
almost certainly be interpreted in several different ways. A given 32-bit pattern might be a floating
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point number, two UTF-16 characters, a few machine instructions, two 16-bit signed integers,
an unsigned 32-bit integer, or many other possibilities (see figure 1.12). How does the computer
distinguish between two otherwise identical bitstrings?

0011 1110 0010 0000 0111 0010 0011 0111
Interpreted as...

Hexadecimal numbers 3E 20 72 37
Signed 32-bit integer 1042313783
Signed 16-bit integers 15904 29239

Signed 32-bit float 0.156686
8-bit characters > space r 7

16-bit characters
JVM machinei nstructions istore 3 lstore 2 frem lstore

Figure 1.12 Bit pattern with multiple interpretations

The short and misleading answer is that it can’t. A longer and more useful answer is that the
distinction between the bitstrings is provided by the context of the program instructions. As will
be discussed in the following chapter, most computers (including the primary machine discussed,
the JVM) have several different kinds of instructions that do, broadly speaking, the same thing.
The JVM, for example, has separate instructions to add 32-bit integers, 64-bit integers, 32-bit
floating point numbers, and 64-bit floating point numbers. Implicit in these instructions is that
the bit patterns to be added will be treated as though they were the appropriate type. If your
program loads two integers into registers and then tells the computer to add two floating point
numbers, the computer will naively and innocently treat the (integer) bit patterns as though they
were floating point numbers, add them, and get a meaningless and error-ridden result. (Figure 1.12
illustrates this, since the instructions implicit in that pattern are type-illegal.) Similarly, if you tell
the computer to execute a floating point number as though it were machine code, the computer will
attempt to carry out, to the best of its ability, whatever silly instruction(s) that number corresponds
to. If you’re lucky, this will merely cause your program to crash. If you’re not lucky, . . . well,
that’s one of the major ways that hackers can break into a computer: by overflowing a buffer and
overwriting executable code with their own instructions.

It’s almost always an error to try to use something as though it were a different data type.
Unfortunately, this is an error that the computer can only partially compensate for. Ultimately, it is
the responsibility of the programmer (and the compiler writer) to make sure that data is correctly
stored and that bit patterns are correctly interpreted. One of the major advantages of the JVM is
that it can catch some of these errors.

1.3 Virtual Machines
1.3.1 What is a “Virtual Machine”?
Because of differences between instruction sets, the chances are very good (warning: that’s
quite an understatement!) that a program written for one particular platform (CPU type and/or
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operating system) will not run on a different one. This is why software vendors sell different
versions of programs for Windows computers using Pentium 4 CPUs and Macintosh comput-
ers using PowerPC CPUs, and also why many programs have “required configurations,” stat-
ing that a particular computer must have certain amounts of memory or certain specific video
cards to work properly. In the extreme case, this would require that computer programmers
write related programs (such as the Mac and Windows versions of the same game) indepen-
dently from scratch, a process that would essentially double the time, effort, and cost of such
programs. Fortunately, this is rarely necessary. Most programming is done in so-called high-
level languages such as C, C++, or Java, and then the (human-readable) program source code
is converted to executable machine code by another program such as a compiler. Only small
parts of programs—for example, embedded systems, graphics requiring direct hardware ac-
cess, or device drivers controlling unusual peripherals—need be written in a machine-specific
language.

The designers of Java, recognizing the popularity of the Web and the need for program-
enabled Web pages to run anywhere, have taken a different approach. Java itself is a high-level
language. Java programs are typically compiled into class files, with each file corresponding to
the machine language for a program or part of a program. Unlike normal executables compiled
from C, Pascal, or C++, the class files do not necessarily correspond to the physical computer
on which the program is written or running. Instead, the class file is written using the machine
language and instruction set of the Java Virtual Machine (JVM), a machine that exists only as
a software emulation, a computer program pretending to be a chip. This “machine” has structure
and computing power typical of—in some cases, even greater than–a normal physical computer
such as an Intel Pentium 4, but is freed from many of the problems and limitations of a physical
chip.

The JVM is usually a program running on the host machine. Like any other executable
program, it runs on a physical chip using the instruction set of the local machine. This program,
though, has a special purpose: its primary function is to interpret and execute class files written in
the machine language of the JVM. By running a specific program, then, the physical chip installed
in the computer can pretend to be a JVM chip, thereby being able to run programs written using
the JVM instruction set and machine code.

The idea of a “virtual machine” is not new. In 1964, IBM began work on what would be
known as VM/CMS, an operating system for the System/360 that provided time-sharing service
to a number of users simultaneously. In order to provide the full services of the computer to
every user, the IBM engineers decided to build a software system and user interface that gave
the user the impression that he or she was alone and had the entire system to himself or herself.
Every person or program could have an entire virtual S/360 at his or her disposal as needed,
without worrying about whether this program would cause another person’s program to crash.
This also allowed engineers to upgrade and improve the hardware significantly without forcing
users to relearn or rewrite programs. More than twenty years later, VM/CMS was still in use on
large IBM mainframes, running programs designed and written for a virtual S/360 on hardware
almost a million times faster. Since then, virtual machines and emulators have become a standard
part of many programming tools and languages (including Smalltalk, an early example of an
object-oriented language).
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S I D E B A R
The .Net Framework
Another example of a common virtual machine is the .NET Framework, developed by Microsoft
and released in 2002. The .NET Framework underlies the current version of Visual Studio and
provides a unified programming model for many network-based technologies such as ASP.NET,
ADO.NET, SOAP, and .NET Enterprise Servers. Following Sun’s example of the JVM, .NET
incorporates a Common Language Runtime (CLR), a virtual machine to manage and execute
code developed in any of several languages. The underlying machine uses a virtual instruction set
called Microsoft Intermediate Language (MSIL) that is very similar in spirit to JVM bytecode.
Even the detailed architecture of the CLR’s execution engine is similar to that of the JVM; for
example, they’re both stack-based architectures with instruction set support for object-oriented,
class-based environments. Like the JVM, the CLR was designed to have most of the advantages
of a virtual machine: abstract portable code that can be widely distributed and run without com-
promising local machine security. Microsoft has also followed Sun’s example in the development
and distribution of a huge library of predefined classes to support programmers using the .NET
Framework who don’t want to reinvent wheels. Both systems were designed with Web services
and mobile applications in mind. Unlike the JVM, MSIL was designed more or less from the start
to support a wide variety of programming languages, including J#, C#, Managed C++, and Visual
Basic. Microsoft has also established a standard assembler llasm. In practical terms, the CLR is
not as common or as widely distributed a computing environment as the JVM, but the software
market is extremely dynamic and its final verdict has not yet been returned.

One key issue that will probably have a significant impact is the degree of multiplatform support
that Microsoft provides. In theory, MSIL is as platform-independent as the JVM, but substantial
parts of the .NET Framework libraries are based on earlier Microsoft technologies and will not
run successfully on UNIX systems or even on older Windows systems (such as Windows 98).
Microsoft’s track record of supporting non-Microsoft (or even older Microsoft) operating systems
does not encourage third-party developers to develop cross-platform MSIL software. Java, by
comparison, has developed a strong group of developers on all platforms who both rely on and
support this portability. If Microsoft can follow through on its promise of multiplatform support
and develop a sufficient customer base, .NET might be able to replace Java as the system of choice
for developing and deploying portable Web-based applications.

1.3.2 Portability Concerns
A primary advantage of a virtual machine, and the JVM in particular, then, is that it will run
anywhere that a suitable interpreter is available. Unlike a Mac program that requires a PowerPC
G4 chip to run (G4 emulators exist, but they can be hard to find and expensive), the JVM is widely
available for almost all computers and for many kinds of equipment such as PDAs. Every major
Web browser such as Internet Explorer, Netscape, or Konqueror has a JVM (sometimes called a
“Java runtime system” built in to allow Java programs to run properly).

Furthermore, the JVM will probably continue to run anywhere, as the program itself is
relatively unaffected by changes in the underlying hardware. A Java program (or JVM class file)
should behave in the same way, except for speed, on a JVM emulator written for an old Pentium
computer as for a top-end Power G7—a machine so new that it doesn’t exist yet. However, if/when
Motorola makes one, someone will almost certainly write a JVM client for it.
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1.3.3 Transcending Limitations
Another advantage that virtual machines (and the JVM in particular) can provide is the ability
to transcend, ignore, or mask limitations imposed by the underlying hardware. The JVM has
imaginary parts corresponding to the real computer components discussed above, but because
they consist only of software, there’s little or no cost to making them. As a result, they can be
as large or numerous as the programmer needs. Every (physical) register on a chip takes up
space, consumes power, and costs significant amounts of money; as a result, registers are often
in somewhat short supply. On the JVM registers are essentially free, and programmers can have
and use as many as they like. The system bus, connecting the CPU to memory, can be as large as
a programmer wants or needs.

A historical example may make the significance of this point clear. The original IBM-PC
was based on the Intel 8088 chip. The 8088 was, in turn, based on another (earlier) chip by
Intel, the 8086, almost identical in design but with a 16-bit bus instead of an 8-bit bus. This
implicitly limits the data transfer speed between the CPU and memory (of an 8088) by about 50%
relative to an 8086, but IBM chose the 8088 to keep its manufacturing costs and sales prices down.
Unfortunately, this decision limited PC performance for the next 15 years or so, as IBM, Intel, and
Microsoft were required to maintain backward compatibility with every succeeding generation of
chips in the so-called Intel 80x86 family. Only with the development of Windows was Microsoft
finally able to take full advantage of cheaper manufacturing and wider buses. Similar problems
still occur, with most major software and hardware manufacturers struggling to support several
different chips and chipsets in their products, and a feature available on a high-end chipset may
not be available at the low end. Appropriately written Java runtime systems can take advantage
of the feature where available (on a JVM written specifically for the new architecture) and make
it useful to all Java programs or JVM class files.

The JVM also has the advantage of having, fundamentally, a better and cleaner design
than most physical computer chips. This is due in part to its being designed from scratch in
1995 instead of inheriting several generations of engineering compromises from earlier versions.
But the simplicity that results from not having to worry about physical limitations such as chip
size, power consumption, or cost meant that the designers were able to focus their attention on
producing a mathematically tractable and elegant design that allows the addition of useful high-
level properties. In particular, the JVM design allows for a high degree of security enhancements,
something discussed briefly below and in greater detail in chapter 10.

1.3.4 Ease of Updates
Another advantage of a virtual machine is the ease of updating or changing it compared to the
difficulty of upgrading hardware. A well-documented error with the release of the Pentium chip
in 1994 showed that the FPU in the Pentium P54C didn’t work properly. Unfortunately, fixing
this flaw required consumers to send the old chips back to Intel and to receive/install a complete
physical replacement. By contrast, a bug in a JVM implementation can be repaired in software by
the writers, or even possibly by a third party with source-code access, and distributed via normal
channels, including simply making it available on the Internet.

Similarly, a new and improved version of the JVM, perhaps with updated algorithms or a
significant speed increase, can be distributed as easily as any other updated program, such as a
new video card driver or a security upgrade to a standard program. Since the JVM is software
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only, a particularly paranoid user can even keep several successive versions so that in case a new
version has some subtle and undiscovered bug, she can revert to the old version and still run
programs. (Of course, you only think this user is paranoid until you find out she’s right. Then you
realize she’s just careful and responsible.)

1.3.5 Security Concerns
A final advantage of virtual machines is that, with the cooperation of the underlying hardware,
they can be configured to run in a more secure environment. The Java language and the JVM
were designed specifically with this sort of security enhancement in mind. For instance, most
Java applets don’t require access to the host computer’s hard drive, and providing them with such
access, especially with the ability to write on the hard drive, might leave the computer open to
infection by a computer virus, theft of data, or simply deletion or corruption of crucial system
files. The virtual machine, being software only, is in a position to vet attempted disk accesses and
to enforce a more sophisticated security policy than the operating system itself may be willing or
able to enforce.

The JVM goes even further, being designed not only for security but for a certain degree
of verifiable security. Many security flaws in programs are created accidentally—for example,
by a programmer attempting to read in a string without making sure that enough space has
been allocated to hold it, or even attempting to perform an illegal operation (perhaps dividing a
number by an ASCII string), with unpredictable and perhaps harmful results. JVM bytecode is
designed to be verifiable and verified via a computer program that checks for this sort of accidental
error. Not only does this reduce the possibility of a harmful security flaw, but it also improves the
overall quality and reliability of the software. Software errors, after all, don’t necessarily crash the
system or allow unauthorized access. Many errors will, instead, quietly and happily—and almost
undetectably—produce wrong answers. Catching these errors before the answers are produced,
sometimes even before the program is run, substantially reduces this source of wrong answers
and significantly increases the reliability of programs. The JVM security policy will be discussed
extensively in chapter 10.

1.3.6 Disadvantages
So, if virtual machines are so wonderful, why aren’t they more common? The primary answer,
in one word, is “speed.” It usually takes about 1000 times longer to do a particular operation
in software instead of hardware, so performing hard-core computations (matrix multiplications,
DNA sequencing, and so forth) in Java on a JVM may be significantly slower than performing
the same computations in (chip-specific) machine language compiled from C++.

The practical gap, fortunately, does not appear to be anywhere near 1000 times, mainly
because there have been some very smart JVM implementers. A properly written JVM will take
advantage of the available hardware where practical and will do as many operations as possible
using the available hardware. Thus, the program will (for example) use the native machine’s
circuitry for addition instead of emulating it entirely in software. Improvements in compiler
technology have made Java run almost as fast as natively compiled code, often within a factor of 2,
and sometimes almost imperceptibly slower. A February 1998 study by JavaWorld (“Performance
tests show Java as fast as C++”) found that, for a set of benchmark tasks, high-performance JVMs
with high-efficiency compilers typically produced programs that ran, at worst, only slightly (about
5.6%) more slowly than their C++ equivalents, and for the most part ran identically to the limits of
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measurement. Of course, comparing computers and languages for speed is a notoriously difficult
process, much like the standard apples and oranges comparison, and other researchers have found
other values.

In some regards, speed comparisons can be a nonissue; for most purposes other than hard-
core number crunching, Java or any other reasonable language is fast enough for most people’s
purposes. Java, and by extension the JVM, provide a powerful set of computation primitives
including extensive security measures that are not found in many other languages, such as C++.
It’s not clear that the ability to crash a computer quickly is a tremendous advantage over being
able to run a program to completion but somewhat more slowly.

A more significant disadvantage is the interposition of the JVM interpreter between the
programmer and the actual physical hardware. For many applications demanding assembly lan-
guage programming (games, high-speed network interfacing, or attaching new peripherals), the
key reason that assembly language is used is to allow direct control of the hardware (especially of
peripherals) at a very low level, often bit by bit and wire by wire. A badly written JVM prevents
this direct control. This is becoming less and less of an issue with the development of silicon
implementations of the JVM such as the aJile Systems’ aJ-100 microcontroller or the Zucotto
Systems’ Xpresso family of processors. Both of these companies are producing controller chips
suitable for hand-held Internet devices that use a chip-based implementation of JVM bytecode
as machine code. In other words, these chips do not require any software support to translate
JVM bytecode into native instruction sets and therefore can run at full hardware speeds, with full
control over the hardware at a bit-by-bit level. With the development of Java chips, the JVM has
come full circle from a clever mathematical abstraction to allow portable and secure access to a
wide variety of processors to a physical chip of interest in its own right.

1.4 Programming the JVM
1.4.1 Java: What the JVM Isn’t
Java, it must be stressed, is not the same as the Java Virtual Machine, although they were designed
together and often are used together. The Java programming language is a high-level programming
language designed to support secure platform-independent applications in a distributed network-
ing environment such as the Internet. Perhaps the most common use of Java is to create “applets,”
to be downloaded as part of a Web page and to interact with the browser without cluttering up
the server’s network connection. The Java Virtual Machine, on the other hand, is a shared virtual
computer that provides the basis for Java applications to run.

Much of the design of Java strongly influenced the JVM. For example, the JVM is a virtual
machine precisely because Java should be a platform-independent language, so it cannot make any
assumption about what kind of computer the viewer uses (figure 1.13). The JVM was designed
around the notion of a security verifier so that Java programs could run in a secure environment.
Networking support is built into the JVM’s standard libraries at a relatively low level to ensure
that Java programs will have access to a standardized and useful set of networking operations.
There is, however, no necessary connection between the two products. A Java compiler could
in theory be written to compile to native code for the PowerPC (the hardware underlying older
Macintosh computers) instead of to JVM bytecode, and a compiler for any other language could
be written to compile to JVM code.
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Figure 1.13 Hardware compatibility and virtual machines

In particular, consider the program written in figure 1.14. This is a simple example of a Java
program that outputs a given fixed string to the default system output, usually the currently active
window. This, or a very similar program, is often the standard first example in any elementary
programming class, although sometimes one is shown instead a program that opens a new window
and displays a message. When examined in more detail, however, the Java program itself is found
to do nothing of the sort. The Java program, by itself, does nothing. In order to be executed, it
must first be run through a translation program of some sort (the compiler) in order to produce an
executable class file. Only this can be run to produce the desired output.

Java, or any programming language, is better viewed as a structure for specifying com-
putations to be performed by the computer. A program in any language is a specification of a
particular computation. In order for the computer to do its thing, the specification (program) must
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public class JavaExample {
public static void main(String [] args) {

System.out.println("This is a sample program.");
}

}

Figure 1.14 Sample program in Java

be translated into the machine code that the computer ultimately recognizes as a sequence of
program steps.

1.4.2 Translations of the Sample Program
There are usually many ways of specifying a given computation. A very similar program can be
written in many other languages. For example, figures 1.15, 1.16, and 1.17 show programs with
identical behavior written in C, Pascal, and C++. These programs also show great similarity in
overall structure. The core of the program is written in a single line that somehow accesses a

#include <stdio.h>

int main()
{

(void) printf("This is a sample program.\n");
}

Figure 1.15 Sample program in C

Program PascalExample(output);

begin
writeln ('This is a sample program.');

end.

Figure 1.16 Sample program in Pascal

using namespace std;
#include <iostream.h>
int main()
{

cout << "This is a sample program." << endl;
}

Figure 1.17 Sample program in C++

fixed string (of ASCII characters) and calls a standard library function on it to pass it to a default
output device. The differences are subtle and in the details; for example, the Pascal program has a
name (PascalExample), while the C and C++ versions do not. In both C and C++, the program
must explicitly represent the end-of-line carriage return, while Java and Pascal have a function
that will automatically put a return at the end of the line. These differences, however, are relatively
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small when compared with the tremendous amount of similarity, especially when one considers
the differences between this and machine-level code.

In light of the preceding discussion of the architecture and organization of a typical computer,
consider the following: Few, if any, CPUs have enough registers within the ALU or Control Unit
to allow storing an entire string. (This is especially true since there is no necessary upper limit
to the length of a string in the abstract. Instead of printing a mere sentence, the programs could
have printed an entire textbook.) No CPU has a single instruction to print a string to the screen.
Instead, the compiler must break the program down into sufficiently small steps that are within
the computer’s instruction set.

1. The string itself must be stored somewhere in main memory, and
2. the CPU must determine where that storage location is.
3. The CPU must also determine which output peripheral should print the message, and possibly
4. what type it is. Finally,
5. it must pass the appropriate instructions to the peripheral, telling it
6. where the string is stored,
7. that the string is a string (and not an integer or a floating point number), and
8. that the appropriate action to take is to print it (possibly while automatically appending a

return).

A single line of code may translate into eight or more individual operations that the computer
must perform. In fact, there’s no limit to the number of operations that might be performed in a
single line of code; a line in Java like

i = 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10;

requires an operation for every addition, in this case nine separate calculations. Since there’s no
limit to the theoretical complexity of a mathematical formula, there’s no limit to the complexity
of a single Java statement.

1.4.3 High- and Low-Level Languages
This encapsulation of many machine language instructions in a single line of code is typical of
what are called high-level languages. Java, Pascal, and so forth are typical examples of one style
of such languages. The task of a Java compiler is to take a complicated statement or expression
and produce an appropriate series of machine instructions to perform the task.

By contrast, a low-level language is characterized by a very close relationship between
operations in machine language and statements in the program code. Using this definition, machine
language is, of course, a very low-level language, since there is always a 1:1 relationship between
a machine language program and itself. Assembly language is a slightly more human-readable,
but still low-level, language designed to promote total control over the machine and the machine
code instructions but still be readable and understandable by the programmer. Assembly language
is also characterized by a 1:1 relationship between assembly language instructions and machine
code instructions.

In machine language, every element of the instruction (also called opcode, an abbrevia-
tion for “operation code”) is, like everything else in the computer, a number. An earlier section



36 Chapter 1 � Computation and Representation
� �

algorithm

editor

source
file

source
file

compiler assembler

object or
class file

object or
class file

linker

executable
file

loader

Figure 1.18 The programming process

mentioned in passing, for instance, that the opcode 89 (0x59) is meaningful to the JVM and
causes it to duplicate a particular piece of information. In assembly language, every opcode is
also given a mnemonic (pronounced “num-ON-ik,” from the Greek word for memory) that ex-
plains or summarizes exactly what it does. The corresponding mnemonic for opcode 89 is dup,
short for “duplicate.” Similarly, the mnemonic iadd, short for “integer add,” corresponds to the
machine opcode used to perform an integer addition. The task of the translation program, in this
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case called an assembler, is to translate each mnemonic into its appropriate binary opcode and
to gather the appropriate pieces of data that the computer needs (figure 1.18).

1.4.4 The Sample Program as the JVM Sees It
The JVM machine code version of the sample program(s) above would thus be a long and mostly
unreadable binary string. A version of the program that corresponds to the machine code is
presented in figure 1.19. This program was written (by hand) in a (low-level) JVM assembly
language called jasmin, but could also have been written by a compiler starting from one of the
original sample programs. Notice that the program is much longer—almost 30 lines instead of only
3 or 4—and much more difficult to understand. This is because many of the things that you take

; defines the class file associated with this as jasminExample.class
.class public jasminExample
; defines jasminExample as a subclass of Object
.super java/lang/Object

; boilerplate needed for object creation
.method public <init>()V

aload_0

invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
; we need two stack elements, for System.out and the string
.limit stack 2

; find System.out (an object of type PrintStream)
; and put it on the stack
getstatic java/lang/System/out Ljava/io/PrintStream;

; find the string (characters) to be printed
; and put it on the stack
ldc "This is a sample program."

; invoke the PrintStream/println method
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

; ... and that’s it!
return

.end method

Figure 1.19 Sample program in JVM assembly language
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Java code jasmin code JVM machine code

x = 1 + 2 + 3 + 4 + 5; bipush 1 0x10
0x01

bipush 2 0x10
0x02

iadd 0x60
bipush 3 0x10

0x03
iadd 0x60
bipush 4 0x10

0x04
iadd 0x60
bipush 5 0x10

0x05
iadd 0x60
istore 1 0x3c

Figure 1.20 Sample expression in Java, jasmin, and JVM machine code (see the next
chapter for details)

for granted in writing high-level programs must be specified exactly and explicitly. For example,
in Java, every class is implicitly a subclass of type Object unless specified otherwise. The JVM
requires, instead, that every class define its relationship to other classes explicitly. The comments
(beginning with semicolons) in figure 1.19 present a more detailed, line-by-line description (for
the human reader) of exactly how the (implicit) operations are defined and carried out.

Notice, though, that although the notions of class, subclass, and so forth are explicitly
supported and used in Java, there is nothing especially Java-specific about the JVM low-language
program presented in this section. In fact, just as it is the task of a Java compiler to convert the
high-level Java code to something akin to JVM machine code, it is the task of a C++ or Pascal
compiler to do the same with its program code for a specific platform. There is no reason that a
Pascal compiler couldn’t be written that produces JVM code as its final (compiled) output instead
of PowerPC or Pentium machine code; the program would then run on a JVM (for instance, on a
JVM emulator, inside a Web browser, or on a special-purpose chip like those mentioned earlier)
instead of on the specific chip hardware (figure 1.20).

1.5 Chapter Review
� Computers are simply high-speed algorithmic devices; the details of their construction as

electronic devices are less important than the details of how they work as information processing
devices.

� The main part of a computer is the Central Processing Unit (CPU), which in turn contains
the Control Unit, Arithmetic and Logical Unit (ALU), and Floating Point Unit (FPU). This is
where all computations actually happen and programs actually run.
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� Memory and peripherals are connected to the CPU through a collection of electrical buses that
carry information to and from the CPU.

� All values stored in a conventional computer are stored as binary digits or bits. These are
grouped for convenience into larger units such as bytes and words. A particular bit pattern
may have several interpretations as an integer, a floating point number, a character or sequence
of characters, or even a set of instructions to the computer itself. Deciding what types of
data a given bit patterns represents depends on the context and is largely the programmer’s
responsibility.

� Different CPU chips have different instruction sets representing different things that they can
do and ways that they do things. Every CPU, then, needs a different executable program written
in a different kind of machine language even to run the same program.

� A virtual machine is a program that runs atop a real CPU and interprets machine instructions
as though it itself were a CPU chip. The Java Virtual Machine (JVM) is a common example
of such a program, and can be found on almost every computer and in every Web browser
worldwide.

� Virtual machines have many advantages over conventional silicon-based CPUs, such as porta-
bility, fewer hardware limitations, ease of updates, and security. Virtual machines may have a
big disadvantage in speed.

� Java is an example of a high-level language that can combine many machine-code instructions
into a single statement. C, Pascal, and C++ are similar high-level languages. These languages
must be compiled to convert their code into a machine-executable format.

� Low-level languages like assembly language have a tight, typically 1:1 relationship between
program statement and machine instructions.

� There is no necessary connection between Java and the JVM; most Java compilers compile
to JVM executable code, but a C, Pascal, or C++ compiler could do this as well. Similarly,
a Java compiler could compile to Pentium 4 native code, but the resulting program would not
run on a Macintosh computer.

1.6 Exercises
1. What is an algorithm?
2. Is a recipe as given in a cookbook an example of an algorithm?
3. Name the part of the computer described by each of the following phrases:

• The heart and ultimate controller of the computer, the place where all calculations are
performed

• The part of the computer responsible for moving data around within the machine
• The part of the computer responsible for all computations, such as addition, subtraction,

multiplication, and division
• A set of wires used to interconnect different devices for data connectivity
• A device for reading, displaying, or storing data
• A place for short-term storage for data and executing programs

4. How many different patterns could be stored in a 16-bit register? What is the largest value
that could be stored as a (two’s complement) signed integer in such a register? What is the
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smallest value? How about the largest and smallest values that could be stored as unsigned
integers?

5. Convert the following 16-bit binary numbers into hexadecimal and signed decimal numbers
(no, you don’t get to use a calculator!):

• 1001110011101110
• 1111111111111111
• 0000000011111111
• 0100100010000100
• 1111111100000000
• 1100101011111110

6. Convert the following 32-bit IEEE floating point numbers from hexadecimal into standard
decimal notation.

• 0x40200000
• 0x41020000
• 0xC1060000
• 0xBD800000
• 0x3EAAAAAB
• 0x3F000000
• 0x42FA8000
• 0x42896666
• 0x47C35000
• 0x4B189680

7. Convert the following decimal numbers into 32-bit IEEE floating point notation.

• 2.0
• 45.0
• 61.01
• −18.375
• −6.68
• 65536
• 0.000001
• 10000000.0

8. Are there any numbers that can be represented exactly as a 32-bit integer but not as a 32-bit
IEEE floating point number? Why or why not?

9. Using a standard ASCII table (check the Internet or appendix E), what 4 hexadecimal bytes
would represent the string “Fred”?

10. What ASCII character string would correspond to the hexadecimal number 0x45617379?
11. True or false: the more is there are in a binary number, the larger it is. Why or why not?
12. Why won’t executables created for a Windows Pentium IV run on a PowerPC-based Macin-

tosh (without special software support)?
13. What is the most important advantage of a virtual machine over a chip-based architecture?
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14. What is the most important disadvantage?
15. What languages can be used to write programs for the Java Virtual Machine (JVM)?
16. How many low-level machine instructions correspond to the following statement?

x = a + (b∗c) + (d∗e);

1.7 Programming Exercises
1. Write a program (in any language approved by the instructor) to read in a 32-bit (binary) signed

integer and to output its decimal equivalent.
2. Write a program (. . . ) to read in a 32-bit (binary) floating point number and to output its

decimal equivalent.
3. Write a program (. . . ) to read in a decimal floating point number and output its IEEE 64-bit

hexadecimal equivalent. (Note: this may require additional reading.)
4. Write a program (. . . ) to read two 32-bit floating point numbers (in hexadecimal IEEE format)

A and B and to output their product A · B in hexadecimal. Do not convert internally to decimal
floating point numbers and multiply using the language’s multiply operation.

5. Write a program (. . . ) to read two 32-bit floating point numbers (in hexadecimal IEEE format)
A and B and to output their sum A + B in hexadecimal. Do not simply convert to decimal and
add.

6. Write a program (. . . ) to read a 32-bit floating point number A (in hexadecimal) and to output
its reciprocal 1.0

A in both hexadecimal and decimal. Can you use this program in conjunction
with program 4 to perform floating point division? How?
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Arithmetic Expressions

2.1 Notations
2.1.1 Instruction Sets
Two central problems—indeed, perhaps the two central problems—with computers are their lack
of imagination and the limited set of things that they can do. Consider trying to work out the
following story problem (figure 2.1) on a typical pocket calculator:

Figure 2.1 A conical mountain

What is the volume of a circular mountain 450 m in diameter at the base and 150 m high? A
few minutes of searching through geometry textbooks will give you the formulas you need: the
volume of a cone is one-third the product of the area of the base and the height. The area of the
(circular) base is π times the square of the radius. The radius is half of the diameter. The value of
π , of course, is 3.14 and a bit. Putting it all together, the answer would be

1

3
·
[
π ·

(
450

2

)2
]

· 150

So how do you work with this mess?

Here is where the issue of the computer’s—or in this case, the calculator’s—instruction set
rears its head. This formula cannot be entered as is into a typical calculator. It will need to be broken
down into bite-sized pieces that the calculator, or computer, can work with. Only a sequence of
such pieces will allow us to extract the final answer. This is no different from traditional computer
programming, except that the pieces used by such a calculator are much smaller than the-pieces
used in higher-level languages such as Java.

42
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Depending upon the specific calculator used, there are several sequences of keystrokes that
would work to solve this problem. On a typical high-end calculator, the following sequence would
calculate ( 450

2 )2:

( 4 5 0 ÷

÷

÷ ÷π

2 ) x2

or, alternately,

4 5 0 2 = x2

The entire calculation can be performed by

1 3 . . .( 4 5 0 2 ) x2 1 5 0

2.1.2 Operations, Operands, and Ordering
Implicit in this are a few subtle points. First, notice that the “instruction set” of this calculator

includes an x2 button, so that a number can be squared with a single press. It also has a π

button. Without these conveniences, more keystrokes and greater complexity would be needed. In

fact, few people know what the right sequence of keystrokes would be to replace the
√

x button.

Second, notice that ordering is important in this sequence. Just as there is a difference
between 450 and 540, there is also a difference between 450 ÷ 2 and 450 2 ÷. The first yields the
value 225, while the second does not even make sense (under conventional notation). In general,
most of the mathematical operations people think of are binary; that is, they take two numbers
(arguments, formally called operands)) and produce a third. Add 3 and 4, get 7. A few advanced
mathematical operations, such as sin x , cos x , and log x , are unary, meaning that they take only
one argument. In order to process an operation, a computer needs both the operator, defining
which operation is to be performed, and the values of all necessary operands, in a very strict
format.

In conventional chalkboard mathematics, for example, binary operations are written in so-
called infix notation, meaning that the operator is written in the middle, between the two operands
(as in 3 + 4). Trig functions such as sin are written in prefix notation, where the operator preceeds
the operand(s) (as in sin π

2 ). Some high-end calculators such as the Hewlett-Packard HP 49G also
support postfix notation (also called “reverse Polish notation”), where the operator comes last,
after the operands. On such a calculator, the sequence of buttons to press to divide 450 by 2 would
be

4 5 0 ENTER 2 ÷
Although this notation may appear confusing at first, many people come to prefer it, with

a little bit of experience, for reasons we shall explore later.

2.1.3 Stack-Based Calculators
This kind of calculator (RPN-using) can be easily modeled by the use of a data structure called
a stack. The term derives from the image of a stack of trays in a cafeteria or of styrofoam cups
at a fast-food restaurant (figure 2.2). Such cups are typically stored in spring-loaded containers,
where the weight of the trays pushes the entire pile down so that the top cup is always at a uniform
height. At any point, only the top cup can be removed (causing the rest of the stack to pop up
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Only top cup of stack is accessible 

Spring-loaded plate pushes cup 
up when top cup is removed to 
keep top cup accessible 

Figure 2.2 A stack of cups at a cafeteria

slightly and expose a new tray) or an additional cups can be placed on top, causing the additional
weight to push the trays down slightly. In slightly more abstract terms, only the top object is
available for access.

A stack is a collection of numeric or data objects with similar access properties. Only the
“top” object is available for processing, but it can be removed (“popped”) at any time or another
object can be added (“pushed”) to the stack, displacing the previous top one (to the second position
in the stack, and so forth). Stack-based calculations work particularly well in conjunction with
postfix notation. Items are pushed onto the stack in order. Unary operations, such as sin and log,
can simply pop the top item off the stack for an operand, perform the operation, and push the
answer. For binary operations such as addition, the top two stack items are popped, the operation
is performed, and the answer is pushed back.

The following sequence of operations, then, would perform the calculation described above:

1 3 ÷ π · 450 2 ÷ 450 2 ÷ ·150 ·

Unpacking this sequence, first the numbers 1 and 3 are pushed onto the stack; then they are
popped and the quotient 1

3 or 0.3333 is calculated. The value π is pushed, and then both 0.3333
and π are multiplied, yielding about 1.047, and so forth. Calculations can be performed quickly, in
sequence, without the need for extensive parentheses and structures. In particular, note that there
is no possible ambiguity about the order of operations, as there would be with an infix expression
such as 1 + 3 · 4. The two possibly equivalent expressions 1 3 4 · + and 1 3 + 4 · are clearly and
obviously distinct.
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2.2 Stored-Program Computers
2.2.1 The fetch-execute Cycle
Computers, of course, do not require direct interaction with the operator (via button presses)
in order to do their calculations. Instead, every possible operation is stored (as described in the
previous chapter) as a bit pattern; the sequence of operations is stored as a program containing the
sequence of bit patterns. The computer gets its instructions by reading them from memory (into
the control unit) and interpreting each bit pattern as an operation to be performed. This is usually
called the fetch-execute cycle, as it is performed cyclically and endlessly, millions or billions of
times per second within the computer (figure 2.3).

Inside the Control Unit are at least two important storage locations. The first, the instruction
register or IR, holds the bit pattern that has just been fetched from memory so that it can be
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Figure 2.3 The fetch-execute cycle
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S I D E B A R
Stored-Program Computers and “Von
Neumann Architectures.’’
The first computers were outgrowths of ballistic calculators and code-breaking machines built
for the Second World War. It’s almost incorrect to call them computers, as they were really just
complicated special-purpose electrical machinery. Most importantly, to change what they did
required changes in the physical circuitry of the machinery; the program, if you will, was “hard-
wired” into the computer. If you needed to solve a different problem, you needed to rewire the
machine and build new circuits.

The great mathematician John Von Neumann recognized this as a major limitation and pro-
posed (“Preliminary Discussion of the Logical Design of an Electronic Computing Instrument,”
written with Arthur Burks and Hermann Goldstine in 1946) a revolutionary concept for producing
“general-purpose” computing machines. He identified four major “organs” involved in comput-
ing, related respectively to arithmetic, memory, control, and connection to the outside world (and
the human operator). The key, in his view, to building a general-purpose computer was that it
should be able to store not only the intermediate results of arithmetic calculations, but also the
orders (instructions) that created those calculations. In other words, the “control organ” should
be able to read patterns from memory and act upon them. Furthermore, the storage of the control
patterns should be as flexible as the storage of numeric data. Why not, therefore, store instructions
as binary patterns, just like numeric data? The design of the control organ thus becomes a kind
of selector: when this pattern is read from memory, energize that circuit. Von Neumann further
pointed out that control patterns and data patterns could even reside in the same memory if there
were some way of telling them apart. Alternatively (the approach taken by modern computers),
they are distinguished not by patterns, but by use. Any pattern loaded into the control unit is
automatically treated as an instruction. (A competing proposal, the Harvard architecture, uses
separate storage for code and for data. We’ll see this architecture later in the discussion of the
Atmel microcontroller.) This also implies that instructions can be used as data or even overwritten,
allowing the possibility of self-modifying code. This allows the computer to reprogram itself, for
example, by copying a program (as data) from storage into main memory and then executing the
program (as code).

Von Neumann’s computer operates by repeatedly performing the following operations:

1. Get an instruction pattern from the memory organ.
2. Determine and get any data required for this instruction from memory.
3. Process the data in the arithmetic organ.
4. Store the arithmetic results into the memory organ.
5. Go back to step 1.

Von Neumann thus laid most of the theoretical foundations for today’s computers. His four or-
gans, for example, can easily be seen to correspond to the ALU, system memory, control unit, and
peripherals defined earlier. His method of operation is the fetch-execute cycle. Researchers have
been exploring the implications of Von Neumann’s architecture for decades and in some ways have
been able to generalize beyond the limitations of his model. For example, multiprocessor systems,
in general, replace the single control organ with several CPUs, each able to operate independently.
A more radically non–Von Neumann architecture can be seen in the various proposals for neural
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networks and connectionist systems, in which “memory” is distributed among dozens or thousands
of interlocking “units” and there is no control organ. (In particular, see footnote 1 on the Connection
Machine in chapter 50.) Today, however, the term “Von Neumann computer” is rather rare, for the
same reason that fish don’t often talk about water. This kind of computer is so omnipresent
that it’s usually assumed that any given machine follows the Von Neumann/stored-program
architecture.

interpreted The second, the program counter or PC, holds the location from which the next
instruction will be fetched. Under normal circumstances, every time an instruction is fetched,
the PC is incremented so that it points to the next word in memory. If, for example, the PC
contains the pattern 0x3000, the next instruction will be fetched from that location (interpreted
as a memory address). This means that the bit pattern stored at location 0x3000 (not 0x3000
itself) will be placed into the IR. The PC will then be updated to contain the number 0x3001. On
successive cycles, the PC will contain 0x3002, 0x3003, 0x3004, and so forth. At each of these
cycles, the IR will contain some instruction which the computer will dutifully follow. Typical
examples of instructions include data transfers (where data is moved between the CPU and either
memory or an I/O peripheral), data processing (where data already in the CPU will have some
arithmetic or logical operation performed upon it), or control operations that affect the control unit
itself.

Interpreting the instructions is itself a task of moderate complexity, in part because some
instructions are actually instruction groups that need further specification. For example, an in-
struction to store information in memory is incomplete. What information needs to be stored,
and where in memory should it be placed? In addition, many machines need further details, such
as the “addressing mode” (does this bit pattern refer to a memory location or just a number?),
the size (number of words) of the data to be stored, and so forth. For this reason, many machine
language instructions are actually complexes of related bits (like the detailed structure of floating
point numbers in the previous chapter).

An example of this for the IBM-PC (Intel 8086 and later machines) is the simple ADD
instruction. This can be encoded in 2 bytes where the first 8 bits hold the number 0x04 and the
second hold an (unsigned) 8-bit number from 0 to 255. This number will be added, implicitly, to
the number already stored in a particular location (the AL register, a specific 8-bit register in the
CPU). If you need to add a number larger than 255, there is a different machine instruction, with
the first byte 0x05, and the next 16 bits defining a number from 0 to 65525. If you want to add
to the number stored somewhere other than the AL register, then the machine instruction would
begin with the opcode byte 0x81, define exactly where the number is stored in a second byte, and
then define the number to be added.

Because of the design chosen for the JVM architecture (in particular, all addition is done
in one place, the stack), the corresponding interpretation task on the JVM is easier (figure 2.4).
As will be discussed in the following section, this reflects as much on the fundamental design
philosophies of the builders as it does on the power of the JVM itself. For example, all addition is
done on the stack (as in an RPN calculator). This means that the computer doesn’t need to worry
about where the addends come from (since they always come from the stack) or where the sum
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Figure 2.4 Illustration of stack-based computation on the JVM

goes (since it always goes back to the stack). The instruction to add two integers is thus a single
byte of value 0x60—no mess or kerfluffle.

2.2.2 CISC vs. RISC Computers
Perhaps obviously, the more different things the CPU needs to do, the more different opcodes and
machine instructions there will be. Less obviously, the more different opcodes there are, the more
unique bit patterns will be needed and the longer they will need to be (on average) in order to make
sure that the computer can tell them apart. (Imagine the disaster that would occur if the number
0x05 meant not only “add two numbers” but also “halt the computer”! How could the computer
tell which was meant?) Longer opcodes, however, mean a larger IR, a larger bus connecting the
computer to program memory, and a more complicated (and expensive) set of circuitry to interpret
the instructions. Such a complex instruction set will also require a lot of circuitry to perform the
various operations, since every operation might need a different set of wiring and transistors. This
means that such a complex CPU chip is likely to be expensive, require expensive support, and
perform more slowly on each instruction than a more streamlined design. (It will also require a
bigger chip, run hotter [and therefore need better cooling], and burn more power, reducing battery
life.)

Does this mean that a smaller instruction set is better? Not necessarily, for while a CPU with
a reduced instruction set may be able to perform certain tasks faster (every CPU, for example,
needs the ability to add two numbers together), there will be many tasks that the smaller CPU can
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only do by combining several steps. For example, a complex instruction set computing (CISC)
chip may be able to move a large block of data, perhaps a string consisting of several thousand
bytes, from one memory location to another without using any of the CPU’s internal storage. By
contrast, a reduced instruction set computing (RISC) chip might have to move each byte or word
into the CPU (from memory) and then back into memory. More importantly, at every step, the
instruction to move a particular byte would have to be fetched and interpreted. So, although the
overall fetch-execute cycle may run faster (and usually does), the particular program or application
may need to use many instructions to do (slowly) what the CISC computer could do in a single,
although long and complex, machine instruction. Another advantage claimed by RISC proponents
is a resistance to “creeping featurism,” the tendency of equipment and programs to add complexity
in the form of new features. A RISC chip will typically have a small, clean, simple design (by
definition) that will remain small, clean, and simple in future versions, while newer versions of
CISC chips will typically add more instructions, more features, and more complexity. Among
other effects, this will hinder backward compatibility, because a program written for a later CISC
chip will often take advantage of features and instructions that didn’t exist six months earlier.
On the other hand, of course, the new features added to the chip are probably features that the
engineers found useful.

The two major CPU chips on the market today provide a good example of this difference.
The Pentium 4 is a CISC chip with a huge instruction set (34 different ways alone of expressing
ADD, even before taking into account which register or memory location contains the data), while
the PowerPC is a RISC chip, tuned to perform common operations quickly while taking much
longer on rare or complex tasks. For this reason, when comparing processor speeds between the
CPUs, one can’t just look at numbers like clock speeds. A single clock cycle on a RISC chip is
likely to correspond to a single machine instruction, while a CISC chip is likely to take at least two
or three clock cycles to accomplish anything. On the other hand, the larger instruction in the CISC
chip may be able to do a more complicated calculation in those few clock cycles, depending on the
application. The performance difference thus depends more on the type of program being run and
the exact operations than on clock speed differences. In particular, Apple’s sales documentation
claims that the (RISC) 865 MHz Power Mac G4 will perform approximately 60% faster than the
(CISC) 1.7 GHz Pentium 4 (and “3 to 4 times faster . . . in graphics and sound manipulation”)
simply by getting more work done per clock cycle. Whether you believe Apple’s sales literature
or not, their central point—that clock speed is a poor way to compare different CPUs and that
computers can be tuned to different sorts of tasks in the instruction set—remains almost irrefutable,
irrespective of which side of the CISC/RISC debate you take.

2.3 Arithmetic Calculations on the JVM
2.3.1 General Comments
The Java Virtual Machine is an example of a stack-based RISC processor, but with a few twists
reflecting the fact that physically it doesn’t exist. As with most computers, the direct arithmetic
abilities of the JVM are limited to common and simple operations for efficiency reasons. Few if
any machines—and the JVM is not one of them—offer trig functions, but all support elemen-
tary arithmetic, including operations such as addition, subtraction, multiplication, and division.
The JVM goes beyond most computers, however, by using stack-based computations, like the
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high-end calculator described earlier. This makes it very easy to emulate on other computers in a
way that a fixed set of registers could not be emulated. The JVM itself maintains a stack of binary
patterns, holding elements previously pushed and the results of prior computations. The operands
of any given operation are taken from the top elements on the computation stack, and the answer
is returned to the top of the stack. To calculate 7 · (2 + 3), then, would require pushing the 7, 2,
and 3 (in that order), then executing first an addition and then a multiplication.

This procedure is made slightly more tricky because the JVM (and Java in general) use
typed calculations (in this regard, it’s a little different from most RISC machines but offers much
greater security). As discussed in the previous chapter, the same bit pattern can represent several
different items, and the same number may be represented by several different bit patterns. In order
to process these properly, any computer needs to be informed of the the data types represented by
the bit patterns. The JVM is unusual only in how strictly this type system is enforced in an effort
to prevent program errors.

As a result, there are, for example, several different ways to express addition, depending
upon the types to be added. (This, it could be argued, puts the JVM somewhere in the middle of
the CISC/RISC debate.) In general, the first letter of the operation name reflects the type(s) that
it expects as arguments and the type of the answer. To add two integers, one uses the operation
with mnemonic iadd, while to add two floating point numbers, one uses fadd. This pattern is
followed by other arithmetic operations, so the operation to subtract one integer from another is
isub, while the operation to divide two double-precision numbers is ddiv.

In detail, the JVM stack is a collection of 32-bit numbers with no fixed maximum depth.
For data types that can fit within a 32-bit register, there is no problem with storing data elements
in a single stack location. Longer types are typically stored as pairs of 32-bit numbers, so a 64-bit
“double” at the top of the stack actually occupies two positions.

How many positions are there on the JVM stack? In theory, because the JVM is not hardware-
limited, there are as many as you need. In practice, every program, method, or function that you
write will define a maximum stack size. Similarly, there are no hardware-defined limitations on the
amount of memory needed. Instead, every method defines a maximum number of local variables,
not stored on the stack, that can be used to store values temporarily.

2.3.2 A Sample Arithmetic Instruction Set
Data Types
The JVM supports eight basic data types, most of which correspond closely to the basic data
types of the JAVA language itself. These types are listed in table 2.1.The JVM also provides most
of the standard arithmetic operations, including a few that students may not be familiar with.
In the interests of reducing the instruction set, though, certain design simplifications have been
made.

Notable for its absence from the collection of basic types is the boolean type found in Java
but not in the JVM. Boolean variables, of course, can only hold the values true and false, and as
such could be implemented in a single bit. In most computers, however, accessing a single bit is
no more efficient—in fact, is much less efficient—than accessing a word. For this reason, in the
JVM, boolean values are simply represented as the word-sized (32-bit) values 0 or 1, or in other
words as integers.
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Type Code Explanation

int i 32-bit signed integer

float f 32-bit IEEE 754 floating point number

long l 64-bit integer stored in two successive stack locations

double d 64-bit IEEE 754 floating point number (as above)

byte b 8-bit signed integer

short s 16-bit signed integer

char c 16-bit unsigned integer or UTF-16 character

address a Java objects

Table 2.1 JVM basic types and their representations

The sub-word storage types byte, short, and char are also somewhat second-class types.
Because in the JVM doing math on a 32-bit quantity takes no more time than doing math on
smaller quantities, variables of this type are automatically promoted to 32-bit integers inside the
CPU. On the other hand, there is an obvious difference when variables of this type are stored;
for example, an array of a million bytes would take up a quarter of the space of a similar array
of integers. For this reason, the JVM supports the operations of loading small types (byte, short,
char, and even boolean) from memory and storing them into memory, particularly from and into
arrays.

Basic Arithmetic Operations
With this collection of types, each of which requires special processing to support, almost every
combination of type and operation needs a special opcode and mnemonic. To simplify the pro-
grammer’s task, most mnemonics use a letter code to indicate the type of action. To add two ints,
for example, the mnemonic is iadd. Adding two longs would use ladd, while floats and doubles
would use fadd and dadd, respectively. For simplicity, this entire family will be abbreviated as
?add, where the ? stands for any of the legal type letters.

The basic arithmetic operations of addition (?add), subtraction (?sub), multiplication
(?mul), and division (?div) are defined for each of the four major types (int, long, float, and
double). All of these operations act by popping the first two elements off the stack (note: for the
operation a long or double, the first two “elements” will each involve two stack locations, and
hence four stack locations in total), computing the result, and then pushing the result back on
the top of the stack. In addition, JVM provides the ?neg operation which reverses the sign of the
item at the top of the stack. This could also happen, of course, by pushing the value −1 and then
executing a multiply instruction, but a special-purpose operation can do this commonly executed
action faster.

One aspect of the ?div operation requires special attention. Both idiv and ldiv operate on
integers and produce integers (not fractions or decimals) as a result. Dividing 8 by 5, for instance,
yields the answer 1, not the floating point number 1.6. To perform a floating point division, it
is first necessary to convert both arguments to float or double types, as will be discussed later.
Similarly, there is a special operation for int and long types, ?rem, which takes the remainder or
modulus. This operation does not exist for float/double types, as the division operation is defined
to perform exact division—or as exact as the machine representation will allow.
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Logical Operations
The JVM also provides the basic logical operations AND (?and), OR (?or), and XOR (?xor)
for int and long types only (figure 2.5 and 2.6). These operate in what is called bitwise fashion,
meaning that every bit of the first operand is individually compared with the corresponding bit of
the second operand, and the result is the collection of the individual bit operations. When applied
to boolean values, 0 and/or 1, the results are as one expects. The representation of 0 is 0x0000;
the representation of 1 is 0x0001. For all locations except the last, the corresponding bits are 0
and 0; in the last location, the bits are, of course, 0 and 1. The value of 0x0000 OR 0x0001 would
thus be, as expected, 0x0001; in other words, false OR true is true, as desired.

First value 1 1 0 0 1 0 1 0 = 0xCA
Second value 1 1 1 1 0 0 0 0 = 0xF0
AND result 1 1 0 0 0 0 0 0 = 0xC0

Figure 2.5 Illustration of bitwise AND

First value 1 1 0 0 1 0 1 0 = 0xCA
Second value 1 1 1 1 0 0 0 0 = 0xF0
XOR result 0 0 1 1 1 0 1 0 = 0x3F

Figure 2.6 Illustration of bitwise XOR

Shift Operations
In addition to these familiar operations, the JVM also provides some standard shift operations
for changing bit patterns and specifically for moving bits around in a number. In Java/C/C++,
these are represented as the << and >> operators. The basic operation takes every bit in the
number and moves it exactly one place to the right (or left). Using the binary pattern 0xBEEF as
an example:

B E E F
1011 1110 1110 1111 becomes
0111 1101 1101 1110 when shifted one bit left and
0101 1111 0111 0111 when shifted one bit right.

Thus, a shift of 0xBEEF yields 0x7AAE when shifted left by one and 0x5F77 when shifted
right by one. In both cases, the empty space at the right (left) side of the pattern is filled with a 0
bit This is sometimes called a logical shift, as opposed to an arithmetic shift. An arithmetic shift
tries to preserve the sign of the number, so in an arithmetic right shift, the sign bit is duplicated
and repeated in the empty space. (An arithmetic left shift does not duplicate the rightmost bit.)

B E E F
1011 1110 1110 1111 becomes
0101 1111 0111 0111 when logically shifted right or
1101 1111 0111 0111 when arithmetically shifted right.
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Specifically in the case of signed quantities, a logical right shift will always give a positive
result, because a 0 is inserted into the leftmost (sign) bit. By contrast, an arithmetic right shift
will always give a negative result if and only if the initial value was negative, as the sign bit is
duplicated in the operation. For unsigned values, a left shift is equivalent to multiplying the value
by some power of 2, while the logical right shift is equivalent to dividing by some power of 2.
Generally, however, these operations are used to put a known set of bits at a particular place in the
patterns—for example, to use as an operand for later bitwise AND, OR, or XOR operations. The
JVM provides three operations to perform such shifts: ?shl (shift left), ?shr (arithmetic shift
right), and ?ushr (logical shift right—the mnemonic really stands for “unsigned shift right”),
applicable both to ints (32-bit patterns) and to longs (64-bit patterns).

Conversion Operations
In addition to these basic arithmetic and logical operations, there are a number of unary conversion
operations of the form ?2?—for example, i2f, which converts an int (i) to a float (f). Each of
these, in general, will pop the top element off the stack, convert it to the appropriate (new) type,
and push the result. This will usually leave the overall size of the stack unchanged except when
the conversion is from a long to a short type (or vice versa). For example, the operation i2l
will pop one word (32 bits) from the stack, convert it to 64 bits (two words), and then push the
two-word quantity onto the stack, taking two elements. This will have the effect of increasing
the depth of the stack by one; similarly, the d2i operation will decrease the depth of the stack
by one.

As before, not all of the possible combinations of types are supported by the JVM for
efficiency reasons. In general, it is always possible to convert to or from an integer. It is also
always possible to convert between the basic four types of int, long, float, and double. It’s not
directly possible, however, to convert from a char to a float in a single operation, nor from a float
to a char. There are two main reasons for this. First, as sub-word types are automatically converted
to word-sized quantities, the operation that would be defined as b2i is, in a sense, automatic and
cannot even be prevented. Second, conversion of integers to floating point numbers (for example,
2 ↔ 2.0) will, as discussed earlier, involve not just selecting particular bits from a larger whole,
but using an entirely different system of representation and changing the fundamental pattern of
representation. If a person needs to convert between a floating point number and a character, this
can be done in two steps (f2i,i2c). For analogical reasons, the output of the three operations i2s,
i2c, and i2b is somewhat unusual. Instead of producing (and pushing) the second type named in
the mnemonic, these operations produce an integer. However, the integer produced will have been
truncated to the appropriate size and range. Thus, performing the i2b operation on 0x24581357
will yield the pattern 0x00000057, equivalent to the single byte 0x57.

2.3.3 Stack Manipulation Operations
Typeless Stack Operations
In addition to these type-specific operations, the JVM provides some general-purpose and untyped
operations for routine stack manipulations. A simple and obvious example is the pop operation,
which pops a single word from the stack. As the value is only to be thrown away, it doesn’t matter
if it’s an int, a float, a byte, or whatever. Similarly, the pop2 operation removes two words or a
single two-word entry, a long or a double, from the stack. Similar operations of this type include
dup, which duplicates and pushes another copy of a single word entry at the top of the stack; dup2,
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which duplicates and pushes a doubleword entry; swap, which swaps the top two stack words;
and nop, short for “no operation,” which does nothing (but takes time and thus can be useful for
causing the machine to wait for a microsecond or so).

In addition, there are a few unusual operations that perform rather specialized stack oper-
ations, such as dup x1, which duplicates the top word of the stack and then inserts it beneath
the second word; if the stack held, from the top down, (5 3 4 6), then executing dup x1 would
produce (5 3 5 4 6). These special operations are listed in appendix B and will not be discussed
further in this book.

Constants and the Stack
Of course, in order to perform stack-based calculations, some method must be available to put
(push) data onto the stack in the first place. The JVM has several such methods, depending upon
the type of datum to be pushed and the location from which the datum comes.

The simplest case is where a single constant is to be pushed onto the stack. Depending upon
the size of the constant, you can use the bipush instruction (which pushes a 1-byte signed integer),
the sipush instruction (a 2-byte signed integer), the ldc instruction (a one-word constant, like
an integer, a float, or an address), or the ldc2 w instruction (a two-word constant, like a long or
a double). So, to put the numbers (integers) 3 and 5 onto the stack and then multiply them would
require the following code:

bipush 5
bipush 3
imul

The variations

sipush 5 ldc 5
sipush 3 ldc 3
imul imul

would accomplish the same thing but less efficiently. Because 5 (and 3) are such small numbers,
they will both fit into a single byte and can be pushed using bipush. Also, note that because
multiplication is commutative, it doesn’t matter whether you push the 5 or the 3 first. This is not
the case for subtraction and division. In these operations, the computer will subtract the second
number pushed from the first (divide the first number pushed by the second). So, replacing imul
in the above example by idiv would result in dividing 5 by 3. This will leave the value 1 on the
stack (not 1.66667, because idiv specifies integer division, rounding down).

For efficiency, there are several special-purpose operations that will push commonly used
constants onto the stack more quickly. For example, iconst N, where N is one of 0, 1, 2, 3, 4, or 5,
will push the appropriate one-word integer onto the stack. Since it is often necessary to initialize
a variable to 1 or to add 1 to a variable, iconst 1 can be faster than the equivalent bipush 1.
Thus, we can rewrite the example above to be slightly faster using

iconst_5
iconst_3
imul
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Similarly, iconst m1 pushes the integer value -1. There are equivalent shortcuts for floats
(fconst N for 0, 1, and 2), longs (lconst N for 0 and 1), and doubles (dconst N for 0 and 1).

Local Variables
In addition to loading constants, one can also load values from memory. Every JVM method has
a set of memory locations associated with it that can be accessed freely, randomly, and in any
order. As with the stack, the number of memory locations available is not limited by the hardware
and can be set by the programmer. Also, as before, the type of pattern loaded determines the
operation and mnemonic; to load an integer, use iload, but to load a float, use fload. Either of
these will retrieve the appropriate variable and push its value onto the top of the stack

Variables are referred to by sequential numbers, starting at 0, so if a given method has 25
variables, they will have numbers from 0 to 24. Each variable stores a standard word-sized pattern,
so there is no typing of variables. Storage of doubleword patterns (longs and doubles) is a little
more tricky, as each pattern must occupy two adjacent variables. Loading a double from variable
4, for instance, will actually read the values from both variables 4 and 5. In addition, the JVM
allows several shortcuts of the form ?load N, so one can load an integer from local variable zero
(#0) either by iload 0 or the shortcut iload 0. This shortcut exists for all four basic types, for
and all variable numbers from 0 to 3.

Similarly, data can be popped from the stack to be stored in local variables for later use.
The command in this case would be ?store, where the first character, as usual, is the type to be
stored. As before, storing a long or a double will actually perform two pop operations and store
the result in two adjacent variables, so the instruction dstore 3 would remove two elements, not
one, from the stack and cause changes to both local variables #3 and #4. Also, as before, shortcuts
exist of the form ?store N for all types, with N varying between 0 and 3.

2.3.4 Assembly Language and Machine Code
Let’s look, then, at a simple code fragment and see how the various conversions would take place.
We’ll start with a single, simple, high-level language statement (if this notion of “simple high-level
language statement” isn’t a contradiction in terms):

x = 1 + 2 + 3 + 4 + 5;

This statement (obviously?) calculates the sum of the constant numbers 1 through 5 and
stores them in a local variable named x. The first problem is that the JVM doesn’t understand
the idea of named local variables, only numbered ones. The compiler needs to recognize that x
is a variable and allocate a corresponding number (we’ll assume that we’re using #1 and that it’s
an int). One way of writing code to perform this task (there are lots of others) is the sequence of
operations shown in figure 2.7.

This is the main task of the compiler: to convert a high-level statement into several basic
operations. At this point, it is the task of the assembler (or of a different part of the compiler) to
convert each operation mnemonic into the corresponding machine code byte. The full correspon-
dences are given in appendices B and C. For simplicity, we note that the iadd used in this program
corresponds to the machine instruction 0x60. Converting the entire program would result in the
instructions listed in table 2.2.
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; x = 1 + 2 + 3 + 4 + 5;
; translate to: 1 2 + 3 + 4 + 5 +, then load into #1
iconst_1 ; load constant value 1
iconst_2 ; load constant value 2
iadd ; add
iconst_3 ; load constant value 3
iadd ; add
iconst_4 ; load constant value 4
iadd ; add
iconst_5 ; load constant value 5
iadd ; add
istore_1 ; store in x

Figure 2.7 jasmin program fragment #1

Mnemonic Machine Code Byte

iconst 1 0x04
iconst 2 0x05
iadd 0x60
iconst 3 0x06
iadd 0x60
iconst 4 0x07
iadd 0x60
iconst 5 0x08
iadd 0x60
istore 1 0x3c

Table 2.2 Translation of program
fragment #1 into bytecode

The corresponding machine code would thus be the byte sequence 0x04, 0x05, 0x60, 0x06,
0x60, 0x07, 0x60, 0x08, 0x60, 0x3c, which would be stored on disk as part of the executable
program.

Translation is not always this simple, because some operations may take more than 1 byte.
For example, the bipush instruction pushes a byte onto the stack (just as iconst 0 pushes the
value 0). But which byte? The bipush instruction itself has the value 0x10, but it is always
followed by a single byte telling what needs to be pushed. To push the value 0, the compiler could
also use bipush 0, but this would assemble to two successive bytes: 0x10, 0x00. We thus have an
alternate version of the program, as given in table 2.3. Notice, however, that this second version
is about 50% longer and therefore less efficient.

2.3.5 Illegal Operations
Because both the stack and the local variables only store bit patterns, there the programmer can
easily be confused. This can heppen especially with pushing constants, because types of constants
are not explicitly marked in the mnemonic. The command to place the (integer) value 10 into the
stack is ldc 10. The command to place the floating point value 10.0 into the stack is ldc 10.0.
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Revised Mnemonic Machine Code Byte

bipush 1 0x10
0x01

bipush 2 0x10
0x02

iadd 0x60
bipush 3 0x10

0x03
iadd 0x60
bipush 4 0x10

0x04
iadd 0x60
bipush 5 0x10

0x05
iadd 0x60
istore 1 0x3c

Table 2.3 Translation of program fragment
#2 into bytecode

Because most JVM assemblers are smart enough to figure out that 10 is an integer and 10.0 is
a floating point number, the correct bit pattern will be pushed in either case. However, these bit
patterns are not the same. Attempting to push 10.0 twice and then execute an imul instruction will
not give you the value 100.0 (or even 100). Trying to perform arithmetic on a float as though it
were an integer, or on an integer as though it were a float, is an error. In the best case, the machine
will complain. In the worst case, the machine won’t even notice and will give answers that are
completely, mysteriously, and untraceably wrong.

It’s equally an error to attempt to access the top (or bottom) half of a doubleword variable, a
long or a double, as though it were a single word. If you’ve stored a double into local variables #4
(and #5), you can’t then load an integer from local variable #5 (or #4). Again, at best the machine
will complain, and at worst it will silently give meaningless and horribly wrong results. It’s also
an error to attempt to pop from an empty stack, to load from (or store into a variable that doesn’t
exist, and so forth).

One of the chief advantages of the JVM is that it has been designed (as will be discussed in
chapter 3) to catch these sorts of errors as they occur in a running program, or even as the program
is written, so that the programmer cannot get away with them. This has the effect of increasing
the security and reliability of JVM programs tremendously. However, a good programmer should
not rely on the ability of the computer to catch her errors. Careful planning and careful writing
of code is a much better way to make sure that the computer gives you correct answers.

2.4 An Example Program
2.4.1 An Annotated Example
Returning to the cone problem that opened the chapter, the question becomes not only what the
answer is, but how it can be implemented on the machine under discussion (the JVM). To briefly
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recap, the problem was:

450 m

150 m

Figure 2.8 A conical mountain

What is the volume of a circular mountain 450 m in diameter at the base and 150 m high (figure
2.8)? The formula as it would be written on a chalkboard looks like this:

1

3
·
[
π ·

(
450

2

)2
]

· 150

What sequence of JVM instructions would solve this problem?

First, we need to calculate the floating point value 1/3. Integer division will not work, since
1/3 is 0, while 1.0/3.0 is 0.333333. Thus, we push the two elements 1.0 and 3.0 and execute a
division.

3.0

1.0

after ldc 3.0

ldc 1.0
ldc 3.0
fdiv

0.33

after fdiv

We then push the known value of pi.

ldc 3.141593

3.141593

0.33

after ldc 3.141593
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To calculate the radius, we simply push 450, push 2, and then divide. Note that 450 is too
big to store in a single byte (which only goes up to the integer value 127), so we have to use
sipush.

sipush 450
bipush 2
idiv

0.33

2

450

3.141593

after bipush 2

To square the radius, we can either recalculate 450
2 or, more efficiently, use the dup instruction

to copy the top of the stack and multiply.

dup
imul 0.33

225

225

3.141593

after dup

0.33

50625

3.141593

after imul

Next, push the height of 150 and multiply.

sipush 150
imul 0.33

150

3.141593

50625

after sipush 150

0.33

7593750

3.141593

after imul

The integer value at the top of the stack must be converted to a floating point number

i2f
fmul
fmul

0.33

7593750.0

3.141593

after i2f
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and then two (floating point) multiplications will calculate the final answer and leave it at the top
of the stack.

This process will be stored as a sequence of machine code instructions Each instructions
will be fetched individually (from memory) and executed. As the statements are in sequence,
the instruction fetched next will be the next instruction in the sequence—and thus this complex
series of statements will do as expected and desired. A similar process can be used to perform
any calculation within the basic operations available in the instruction set.

2.4.2 The Final JVM Code
; calculate 1/3
ldc 1.0
ldc 3.0
fdiv

; push pi
ldc 3.141593

; calculate radius
sipush 450
bipush 2
idiv

; and square it
dup
imul

; push height
sipush 150

; multiply height times radius-squared
imul

; convert to floating point
i2f
; and multiply times pi and 1/3 previously calculated
fmul
fmul

2.5 JVM Calculation Instructions Summarized

Arithmetic Operations:
int long float double short char byte

add iadd ladd fadd dadd
subtract isub lsub fsub dsub
multiply imul lmul fmul dmul
divide idiv ldiv fdiv ddiv
remainder irem lrem
negate ineg lneg fneg dneg
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Logical (Boolean) operations:
int long

logical AND iand land
logical OR ior lor
logical XOR ixor lxor

Shift operations:
left shift (arithmetic)

int long
ishl lshl

right shift (arithmetic)
ishr lshr

right shift (logical)
iushr lushr

Conversion operations:
from: to:

int long float double short char byte
int i2l i2f i2d i2s i2c i2b
long l2i l2f l2d
float f2i f2l f2d
double d2i d2l d2f

(conversion of short, char, and byte types to int is implicit and automatic)

2.6 Chapter Review
� Computers are like calculators in that they can only do the few actions allowed by their

hardware. Complex calculations that cannot be done in a single operation or button press must
be done as a sequence of several elementary steps within the allowed actions.

� Conventional math, as written on the blackboard, uses infix notation, where operations like
division are written between their arguments. Some calculators and computers, the JVM among
them, use postfix notation instead, where the operation comes after the arguments.

� Postfix notations can be easily described and simulated using a standard data structure called
a stack.

� The basic operation of any computer is the fetch-execute cycle, during which instructions are
fetched from main memory, interpreted, and executed. This cycle is repeated more or less
without end.

� The CPU holds two important pieces of information for the fetch-execute cycle: the instruction
register (IR), which holds the currently executing instruction, and the program counter (PC),
which holds the location of the next instruction to be fetched.

� There are two major philosophies of computer design: Complex Instruction Set Computing
(CISC) and Reduced Instruction Set Computing (RISC). These are typified by the Intel Pentium
and the Apple/IBM/Motorola Power architecture, respectively.

� The JVM uses typed stack-based computations to perform most of its arithmetic operations.
Mnemonics describe both the operation to be performed and the type of data used. It is an error
to perform an operation on a piece of data of the wrong type.
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� The JVM also provides some shortcut operations for commonly used operations, such as
loading a value of 0 into the stack.

� Simple sequencing of elementary mathematical operations can nonetheless perform very com-
plex computations.

2.7 Exercises
1. What are the advantages to having a

√
x button on a calculator? What are the disadvantages?

2. What sequence of operations would be used to calculate (7 + 1) · (8 − 3) on a normal (infix
notation) calculator? How about on a RPN (postfix) calculator?

3. Is there a corresponding sequence of operations using prefix notation to perform the calcu-
lation above. If yes, what is it? If no, why not?

4. Is the fetch-execute cycle more complex on a CISC or a RISC computer? Why?
5. What is the difference between typed and untyped calculations? Give two examples of each.
6. What are the advantages and disadvantages of typed arithmetic calculations?
7. Why doesn’t the instruction cadd exist?
8. Which of the following are illegal and why?

• bipush 7
• bipush -7
• sipush 7
• ldc -7
• ldc2 -7
• bipush 200
• ldc 3.5
• sipush -300
• sipush -300.0
• ldc 42.15

9. How can a shift operation be used to multiply an integer by 8?
10. Describe two ways to get (only) the smallest 8 bits of a 64-bit-long integer.
11. Is there any basic operation that will work on both an int and a float? On both an int and a

long?
12. In the ?div instruction, is the number divided by stored at the top of the stack or is it the

second element?
13. The surface area of a sphere is four times the area of a circle of equivalent radius. Write a

postfix expression to calculate the surface area of a hemispherical dome of radius R.
14. Write a postfix expression for the arithmetic mean of the five numbers a, b, c, d, and e.
15. Prove that for every infix expression there is an equivalent postfix expression and vice versa.

2.8 Programming Exercises
1. Write a program to interpret a postfix expression and to print the resulting value.
2. Write a program to read in an infix expression and to write out the correcponding equivalent

postfix expression.
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3. Write a program to read a sequence of JVM instructions and to determine the maximum stack
height that would result if they were executed, starting from an empty stack.

4. Write a program to read a sequence of JVM instructions and to determine if any of them will
ever attempt to pop from an empty stack. (Note: this is actually one of the tasks performed by
the verifier in a real system.)



3
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Assembly Language
Programming in
jasmin

3.1 Java, the Programming System
As discussed in chapter 1, there is no reason in theory why a program written in Java would
need to be run on the JVM or why a JVM program could not have been written in any high-level
language such as C++. In practical terms, though, there is a strong connection between the two,
and the design of the Java, language has strongly influenced the designs both of the Java Virtual
Machine and of the assemblers for that machine.

In particular, Java strongly supports and encourages a particular style of programming and
design called object-oriented programming (OOP). As one might suspect from the name, OOP
is a programming technique that focuses on objects—individual active elements of the world
(or a model of the world), each with its own set of actions that it can perform or that can be
performed upon it. Objects, in turn, can be grouped into classes of similarly typed objects that
share certain properties by virtue of their types. For example, in the real world, “cars” might
be a natural class, and with very few exceptions, all cars share certain properties: they have
steering wheels, gas pedals, brakes, and headlights. They also share certain actions: I can turn a
car left or right (by turning the wheel), make it slow down (by pressing the brake), or make it
stop altogether (by running out of gas). More strongly, if someone said that he had just bought a
new car, you would assume that this car came with a steering wheel, brake, gas tank, and so forth.

Java supports this style of programming by forcing all functions to be attached to classes
and by forcing all executable program code to be stored as separate (and separable) “class files.”
These class files correspond fairly closely to Linux executable files or Windows .EXE files, except
that they are not necessarily guaranteed to be complete, functional programs in their own right.
Instead, a particular class file contains only those functions necessary for the operation of that

64
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particular class; if it, in turn, relies on the properties and functions of another kind of object, then
those would be stored in a class corresponding to the second kind of object.

The other main difference between a Java class file and a typical executable is that the Java
class file is supposed to be portable between different machine types. As such, it’s written not
in the machine language of the host machine, but in the machine language of the JVM. This is
sometimes called bytecode to distinguish it as specifically not tied to a particular machine. As
such, any class file, compiled on any machine, can be freely copied to any other machine and will
still run. Technically, the JVM bytecode will only run on a copy of the JVM (just as a Windows
executable will usually only run on a Windows computer), but the JVM is enabled, via software,
on almost every hardware platform.

When a bytecode file is to be executed, the computer is required to run a special program
to load the class from disk into the computer’s memory. In addition, the computer will usually
perform other actions at this time, such as loading other classes that are needed to support the
class of interest, verifying the structural soundness and safety of the class and its methods, and
initializing static and class-level variables to the appropriate values. Fortunately, from the point
of view of a user or programmer, these steps are all built into the JVM implementation, so the
user doesn’t need to do anything.

Running Java programs is thus a three-step process. After the program source code is
written, it must be compiled or converted into a class file. The user must then create a (software)
instance of the JVM in order to execute the bytecode. The exact commands to do this will vary
from system to system. On a typical Linux system, for instance, the command to execute the JVM
would look like this:

java TheClassOfInterest

This command will look for a file named TheClassOfInterest.class and will then load,
verify, and initialize it. It will then look for a specific method in that class called main() and
attempt to invoke that method. For this reason, any standalone Java application class must contain
a “main” method. On many other systems (Windows and MacOS, for example), just clicking on
the icon corresponding to the .class file will launch a JVM and run the class file. In addition,
certain kinds of class files can be run directly from a Web browser such as Microsoft’s Internet
Explorer or Netscape Communications’ Navigator.

However, none of these programs will actually run Java programs, only JVM bytecode.
There are a number of compilers that will convert high-level Java code into JVM bytecode, and,
perhaps unsurprisingly, there are also programs that will convert languages other than Java into
JVM bytecode. Here, we will focus on one particular kind of language, in which each bytecode
statement is uniquely associated with a single statement in the program source code. As discussed
in chapter 1, this kind of language (where source code statements and machine instructions have
a 1:1 relationship) is usually called assembly language, and the program to convert from one
language to the other is called an assembler. (The corresponding conversion program for a high-
level language is usually called a compiler.)
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3.2 Using the Assembler
3.2.1 The Assembler
As might be expected, the conversion process between assembly language and machine code is
fairly straightforward. As a result, the program itself is also fairly easy to write. The task of an
assembler is simple enough that there are usually several to choose from, often with very slight
differences between them. Sun has not established an official, standard assembler for the JVM,
so in this book the example programs have been written specifically for the jasmin assembler.
This program was written in 1996 by Jon Meyer and Troy Downing of the NYU Media Research
Laboratory.1 It is available for free download at http://jasmin.sourceforge.net/ and has
become a defacto standard format for assembly language for the JVM. The jasmin program is
also available at the companion Web site to this book: http://prenhall.com/juola. The first
step, then, is to get and install jasmin on the machine you are working on. For simplicity, since
“Java Virtual Machine assembly language” is such a mouthful, we’ll call this language jasmin
as well.

3.2.2 Running a Program
In order to execute the program in figure 1.19, duplicated here as figure 3.1, it must first be typed
into a machine-readable form (like a text file). You can use any editing program for this, from
simple editors like Notepad to complicated and feature-laden publishing packages. Bear in mind,
though, that assemblers can almost never handle fancy formatting or font changes, so save the
program as plain text. By authorial tradition, programs written in jasmin are usually saved with
a .j extension, so the program above would have been written and saved as jasminExample.j
to the disk.

In order to run the program, the same steps used in executing a Java program must be
followed. After the program has been written in text format, it must first be converted from (human-
readable) jasmin syntax into JVM machine code. Second, the JVM (Java run-time engine) must
be run to allow the JVM code to be executed. To do the first (for an appropriately configured
Linux machine), simply type

jasmin jasminExample.j

at the appropriate command prompt. This will execute the assembler (jasmin on the file and
produce a new file, named jasminExample.class, which contains JVM executable code).

This .class file is a standard part of the Java run-time system and can be run by any of the
usual means; the simplest is to type

java jasminExample

which will create a JVM process and execute the jasminExample.class file (specifically, the
main method defined in that file) on this virtual machine.

1 Jon Meyer’s Web site, as I write, is http://www.cybergrain.com/. Meyer and Downing also have an excellent, if
unfortunately out-of-print, book describing the JVM and jasmin: Meyer, J. & T. Downing. (1997). Java Virtual
Machine. Cambridge, MA: O’Reilly.

http://www.cybergrain.com/
http://jasmin.sourceforge.net/
http://prenhall.com/juola
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; defines the class file associated with this as jasminExample.class
.class public jasminExample
; defines jasminExample as a subclass of Object
.super java/lang/Object

; boilerplate needed for object creation
.method public <init>()V

aload_0

invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
; we need two stack elements, for System.out and the string
.limit stack 2

; find System.out (an object of type PrintStream)
; and put it on the stack
getstatic java/lang/System/out Ljava/io/PrintStream;

; find the string (characters) to be printed
; and put it on the stack
ldc "This is a sample program."

; invoke the PrintStream/println method
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

; ... and that’s it!
return

.end method

Figure 3.1 Sample program in JVM assembly language

This or a similar process will work on most machines and on all examples in this book
(except for the ones containing deliberate errors, of course).

3.2.3 Display to the Console vs. a Window
Running the program as described in section 3.2.2 uses a rather old-fashioned and unpopular style
of interfacing. Most modern programmers prefer to use windows interfaces and interact with their
computer via mouse presses than to use a command-line and text-based interface. A primary
reason for the popularity of Java is the extensive support it provides for windowed and networked
applications. However, there are slight differences in the way these kinds of applications interact
with the outside world.
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The most popular kind of Web application for Java is called anapplet. As the name suggests,
this is a small, rather lightweight application specifically designed for interoperation with Web
browers, and as such, all major browsers support Web pages incorporating JVM applets. Figure 3.2
shows a very simple example of a Web page, the only contents of which are an <APPLET> tag.
The effect of this page is that, when it is displayed on a browser, the browser will also download
and run the applet. The exact methods of running the applet differ. Instead of invoking the “main”
method, the browser will invoke a “paint” method as the starting point for the code. In addition,
the output instructions (such as println) are replaced by graphics-specific instructions such as
drawstring that take not only a particular string to be drawn, but also parameters such as the
location (in the window) at which to display the string.

<HTML>
<HEAD> <TITLE>A Sample JVM Applet</TITLE> </HEAD>
<BODY>
<APPLET code = "jasminAppletExample" width = 300 height = 100>
</APPLET>
</BODY>
</HTML>

Figure 3.2 Web page for applet invocation

Applet programming is a fine art and requires some knowledge of applet-specific functions.
Using these functions, a skilled programmer can create detailed pictures, or text in any font,
size, shape, and orientation she desires. As shown in figure 3.3, the overall structure of a jasmin
program does not change much, regardless of whether it was written as an applet, to output to a
window, or written as a standalone application to output to the console.

As before, the program (jasminAppletExample.j) would be assembled using the jasmin
program to produce a class file.

jasmin jasminAppletExample.j

Once the class file jasminAppletExample.class has been created, the applet can be run
by simply opening the Web page shown in figure 3.2. This can be opened in any Web browser—for
example, in Internet Explorer or Netscape—or using a special program such as appletviewer
supplied with the Java system by Sun. Using technology such as this, Java (and jasmin) programs
can be supplied as executable code to be used by any JVM on a machine anywhere in the world.

3.2.4 Using System.out and System.in
When programming in any assembly language, getting the computer to read and write data can
be among the most challenging tasks. This is related to the more general problem of simply
interacting with I/O peripherals; because of the wide variety of peripheral types (reading from the
network is very different from reading from the keyboard) and, even more annoyingly, the wide
variety within a given peripheral type (does your keyboard have a numeric keypad or not?), every
device may have to be approached on an individual basis.
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; defines jasminAppletExample as a subclass of Applet
.class public jasminAppletExample
.super java/applet/Applet

; boilerplate needed for Applet creation
; note similarity to Object creation in previous example
.method public <init>()V

aload_0
; this isn’t an Object, so we have to invoke the Applet <init>
invokespecial java/applet/Applet/<init>()V
return

.end method

; Note that Applets start at paint() method instead of main()
; also notice the subtly different definition
.method public paint(Ljava/awt/Graphics;)V

; we need 4 stack elements :
; the Graphics object
; the string to be printed
; the x-coordinate of print location
; the y-coordinate of print location
.limit stack 4

; Graphics object stored in local #1
.limit locals 2

; This boilerplate is a little unusual as it’s harder to draw
; text in an Applet than on System.out
; load the four parameters
aload_1 ; this is the Graphics object passed as a parameter
ldc "This is a sample applet" ; a string to be printed
bipush 30 ; the coordinates at which this string prints
bipush 50

; and invoke the drawString method
invokevirtual java/awt/Graphics/drawString(Ljava/lang/String;II)V

; ... th’th’th’that’s all, folks!
return

.end method

Figure 3.3 A sample applet in jasmin
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The Java class system somewhat mitigates this problem. Just as one can steer an unfamiliar
car, because all cars have steering wheels and all of them work about the the same way Java
defines a PrintStream class that includes methods named print and println. The JVM always
defines a particular PrintStream named System.out, which is attached to a default print-capable
device.

This provides a relatively simple method of generating output using either the print or
println method. This has already been demonstrated in the sample program (figure 3.1) for
printing String types, but it can be extended to print any type supported by the method (with a
few changes). The necessary steps are presented here largely without explanation—you are not
necessarily expected to understand them right now. To understand them fully will require a deeper
investigation of both the JVM type and the class system and how they are represented; we’ll return
to this simple example, at length, in chapter 10.

First, the System.out object must be pushed onto the stack from its static and unchanging
location in the system.

getstatic java/lang/System/out Ljava/io/PrintStream;

Second, the data to be printed must be loaded onto the stack using any of the usual ways
presented in chapter 2.

iload_2 ; this loads local variable #2 AS AN INTEGER!

Third, the println method must be invoked, including a representation of the type pushed
onto the stack in the second step. Since the statement iload 2 pushes an integer, the command
would be

invokevirtual java/io/PrintStream/println(I)V;

If, instead, we had pushed a float (perhaps with fload 2), the command would be modified
to include an F instead of an I as follows:

invokevirtual java/io/PrintStream/println(F)V;

For printing out a character string, the complex line given in the sample program is needed.

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V;

If you find this confusing, don’t worry about it for now. Classes and class invocation will
be discussed at length in chapter 10. For now, these statements can be treated as a kind of legal
boilerplate or black magic. Any time you want to generate output, just use the appropriate version.
A similar but more complicated set of boilerplate can be used to get input from a similarly
constructed System.in object, but this discussion will also be deferred until we have a better
understanding of classes in general. At this point, understanding the basic statements is more
important in developing working jasmin programs.
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With the newest version of Java (Java 1.5), an entirely new method of doing console input
and output has become available using newly defined classes such as Scanner and Formatter and
a newly structured printf method for formatted output. From the perspective of the underlying
assembly language, these are treated simply as new functions/methods to be invoked; they do not
involve any radical changes in technology.

3.3 Assembly Language Statement Types
3.3.1 Instructions and Comments
Assembly language statements can be divided roughly into three types (In particular, this is also
true of jasmin statements.) The first, instructions, correspond directly to instructions in the
computer’s machine language or bytecode. In many cases, these are produced by looking them up
in a table stored in the assembler; the bytecode corresponding to the mnemonic iconst 0 is the
bit pattern 0x03. In addition, most assemblers allow the use of comments so that programmer can
insert reminders and design notes to help themselves understand later what they are doing today.
In jasmin, any part of the line that follows a semicolon (;) is a comment, so the first two lines
in figure 3.1 are, in their entirety, comments. The assembler is programmed to ignore comments
as though they weren’t there, so their content is skipped in the assembly process, but they are
visible in the source code (for the benefit of human readers, like the professor who will no doubt
be grading your programs).

The jasmin program is a little unusual among assemblers in the freedom of formatting it
permits its programmers. Assembly language program statements usually have a very stereotyped
and inflexible format that looks something like this:

Label:
mnemonic parameter(s) ; Comment

The mnemonic/parameter combination has already been seen, for example, in statements
like iload 2. Depending upon the type of mnemonic, there may be any number of parameters
from zero on up, although zero, one, and two are the most common. The label will be discussed in
detail in chapter 4; for now, suffice to say that it marks a part of the program so that you can go back
and repeat a section of code. Finally, this stereotyped statement contains a comment. Technically,
the computer will never require you to comment programs. On the other hand, your teacher almost
certainly will—and good programming practice demands comments. Most assembly language
programming standards, in particular, usually demand at least one comment per line.

This book, and jasmin, take a slightly nonstandard view of comments. Because many of the
arguments used in jasmin programs can be long, especially string arguments and the locations
of standard objects such as the system output, there may not be room on a line to put comments
related to that line. A more serious problem with the one- comment-per-line standard is that it
can encourage poor and uninformative commenting.

As an example, consider the following line:

bipush 5 ; load the int value 5 onto the stack
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This comment tells the programmer little or nothing. The statement bipush 5, after all,
means “load the int value 5 onto the stack.” Any programmer reading the statement, even in
isolation, would know this. In order to understand the program, she probably needs to know the
answers to broader questions. Why does the particular value 5 need to be pushed onto the stack at
this particular step (and why should it be loaded as an int)? By focusing on the large-scale roles of
statements and the meanings of blocks and groups of statements, comments are rendered (more)
useful and informative:

bipush 5 ; load number of pentagon sides to measure

or even

bipush 5 ; load number of pentagon sides
; to calculate perimeter

bipush 8 ; load length of sides 1-5 in sequence
bipush 13
bipush 9
bipush 7
bipush 2

; now add individual side lengths together

For this reason, I recommend not a slavish devotion to an artificial standard like “one
comment per line,” but instead a reasoned and respectful devotion to the idea that comments should
be explanatory—and that assembly language programs, in particular, need a lot of explanation.

3.3.2 Assembler Directives
The third kind of statement, called a directive, is an instruction to the assembler itself telling it
how to perform its task. In jasmin, most directives begin with a period (.), as does the third line
(or first noncomment line) of the sample program. This directive (.class), for example, informs
the assembler that this file defines a particular class named jasminExample, and therefore (among
other things) that the name of the class file to be created is jasminExample.class. This doesn’t
directly affect the process of converting program instructions to bytecode (and doesn’t correspond
to any bytecode instructions), but it does directly inform jasmin how to interact with the rest of
the computer, the disk, and the operating system.

Many of the directives may not have a particularly clear meaning at this point. This is
because the JVM and the class files themselves are tied directly to the object-oriented structure
and the class hierarchy. For example, all classes must be tied to the class hierarchy and must,
in particular, be subtypes of another class. (A Mercedes, for example, is a subtype of car, while
a car is a subtype of vehicle, and so on.) The Java language enforces this by making any class
that does not explicitly mention its relationship in the hierarchy, by default, a subtype of Object
(java/lang/Object). The jasmin assembler enforces a similar requirement in that any jasmin-
defined class must contain a .super directive defining the superclass of which the new class is a
subtype. The programmer can often, without harm, simply copy this same line:

.super java/lang/Object

from one jasmin program to another.
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Other directives (.method,.end method) are used to define the interactions between this
class and the rest of the universe. In particular, the OOP model enforced by the JVM demands
that calls to functions from outside classes be explicitly defined as “public methods” and strongly
encourages that all functions be so defined. The details of this sort of definition will be explored
in greater detail in chapter 10.

3.3.3 Resource Directives
The most important directive, from the point of view of the jasmin programmer, is the .limit
directive. This is used to define the limits, and by extension the availability, of resources for
computation within a single method. It is one of the unique and very powerful aspects of the
JVM’s status as a virtual machine, since methods can use as many or as few resources as they
need.

In particular, a typical stack-based microprocessor or controller (the old Intel 8087 math
coprocessor chip, later incorporated into the 80486 and beyond as part of the main CPU, is
an archetypical example) holds only a few elements (eight in this case). A complex computa-
tion that needed more than eight numbers would need to store some of them in the CPU stack
and some elsewhere, such as in main memory. The programmer would then have to make sure
that data was moved in and out of memory as necessary, with the price of failure usually be-
ing a buggy or entirely dysfunctional program. Increasing the amount of stack space available
inside the CPU could solve this problem, but only by making each CPU chip larger, hotter,
more power-hungry, and more expensive. Furthermore, changing fundamental chip parameters
between versions will introduce incompatibilities, so that newer programs cannot run on legacy
hardware.

The corresponding solution on the JVM is characteristically clean. The directive

.limit stack 14

as a statement immediately inside a defined method (using the .method directive) will set the
maximum size of the stack to 14 int- or float-sized elements. (It will also store seven long or
double-sized double elements, or five long/double and four int/float elements, or any appropriate
combination.) Similarly, the maximum number of (int-sized) local variables in a method can be
set to 12 by use of the related directive

.limit locals 12

If either of these directives is omitted, then a default limit of one item, enough for a single
int or float and not enough for a larger type, will be applied.

3.4 Example: Random Number Generation
3.4.1 Generating Pseudorandom Numbers
A common but mathematically sophisticated task that computers are often called upon to perform
is the generation of apparently “random” numbers. For example, in computer games, it may be
necessary to shuffle a deck of cards into apparently random order. Because of several fundamental
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limitations of present-day computer hardware, computers are not actually capable of generating
random data (in the strict sense that a statistician would insist upon). Instead, computers generate
deterministic pseudorandom data that, although predictable, technically speaking, appears to be
naively unpredictable.

We focus here on the task of generating integers uniformly over the range of 0 to n. If,
for some reason, the user wishes to generate random floating point numbers, this can be done
by simply dividing the random integer by n + 1. If n is large enough, this will give a good
approximation of a uniform distribution of reals over the interval [0,1). (For example, if n is 999,
the floating point number will be one of the set {0.000, 0.001, 0.002, . . . , 0.999}. If n is a billion,
the final number will look pretty random.)

Mathematically, the computer takes a given number (the seed) and returns a related but
apparently unpredictable number. The usual method of doing this, which is followed here, is to
use a so-called linear congruential generator. With this method, the number to be returned
is generated by an equation of the form

newvalue = (a · oldvalue + c) mod m

for particular values of a, c, and m. The parameter m, for example, determines the maximum
size of the returned random number, as computations mod m will give the highest answer
of m − 1; hence n = m − 1. There is a lot of theoretical research behind the selection of
the “best” values for a and c, and to investigate this fully would take us too far afield. The
value of oldvalue must be selected anew every time the generator is run, as the value of
newvalue strictly depends upon it. However, this generator can be used repeatedly to generate
a sequence of (pseudo)random numbers, so it needs to be seeded only once per program.
Typical sources for the initial seed include truly random (to the program) values such as the
current time of day, the process ID number, the most recent movements of the mouse, and so
forth.

3.4.2 Implementation on the JVM
In order to implement this algorithm on the JVM, a few design decisions need to be made. For
practical reasons, the value of oldvalue will probably be stored in a local variable, as it is likely to
change from call to call, but the values of a, c, and m can be stored and manipulated as constants.
For simplicity, the values of both oldvalue and newvalue will be stored as ints in a single stack
element, but the intermediate values, especially if a and c are large, may overflow a single stack
element and will have to be stored as the long type. Without explanation, we use the largest prime
value that can be stored as a (signed) int (2147483647) as our value for m and select the prime
values 216 + 1(= 65537) for a and 5 for c.

The calculations themselves are straightforward. The expression above

(a · oldvalue + c) mod m

can be expressed in JVM (reverse Polish) notation

a oldvalue · c + m mod
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Therefore, appropriate JVM instructions would be

; compute a * oldvalue
ldc2_w 65537 ; a is 2ˆ16 + 1, stored as a long
iload_1 ; oldvalue is (assumed) stored as local variable #1
i2l ; convert oldvalue to a long
lmul ; and multiply

; add c
ldc2_w 5 ; c is 5, stored as a long
ladd ; and add to a*oldvalue

; and take the remainder mod m
ldc2_w 2147483647 ; load value for m
lrem ; calculate modulus
l2i ; convert back to integer

; newvalue is now left at top of stack

S I D E B A R
Parameter Passing, Local Variables, and
the Stack
Most programs need input to be useful. In fact, most functions and methods need input to be
useful. The normal method of getting information into a method is by passing parameters; for
example, the usual definition of sine takes a single formal parameter. When the sine function is
used, the corresponding actual parameter is passed to the function and used for computation.

The JVM has a rather odd way of handling this process. In traditional (chip-based) architectures,
the computer uses a single shared “stack” in memory to separate memory areas used by different
programs or functions. The JVM, in contrast, provides a unique private stack for every method. This
keeps one method from running amok and destroying data sacred to other parts of the program
(which enhances security tremendously) but makes it difficult for one function to pass data to
another function. Instead, when a function/method is invoked, the parameters are placed (by the
JVM) in local variables available to the method. In general, the first parameter will be placed in
local variable #1, the second in #2, and so forth.

There are three exceptions to this general rule. First, if a parameter is too big to fit in a single
stack element (a long or a double), then it will be placed in two successive elements (and all the
later elements will be shifted down an additional element). Second, this rule leaves local variable
#0 free. Normally (with instance methods), a reference to the current object will be passed in #0.
Methods defined as static have no current object and thus pass the first parameter in local #1, #0,
and so forth.

Finally, Java 1.5 defines a new parameter-passing method to use when you have a variable
number of arguments. In this case, the variable arguments will be converted to an array and passed
as a single array argument (probably in #1); the called method will be responsible for determining
how many arguments were actually passed and operating on them properly.

The use of the stack for parameter passing on machines other than the JVM will be described
in detail in the later chapters dealing with specific machines.
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By inspection, the maximum depth of the stack needed in these calculations is two long-
sized (double) stack elements, so this could be executed in any method with a stack limit of four
or more. Similarly, the code as presented assumes that oldvalue is stored in local variable #1.
Because variables are numbered starting at zero, this means that the program will require two
local variables. (The reason oldvalue is stored in variable #1 is that in some cases, local variable
#0 is reserved by the Java class environment.)

In order for this program to run properly, the method containing this code would need the
two directives

.limit stack 4

.limit locals 2

There are several variations on this code that would also work; like most programming
problems, there are several correct solutions. Most obviously, the two directives could be reversed,
defining the local variables first and the stack size second. A more sophisticated change would
have the calculation performed using a different order of operations, perhaps pushing c first, doing
the muliplication, and then adding. Technically, this would be an implementation of the equivalent
but different RPN expression

c a oldvalue · +m mod

If this implementation is chosen, though, the maximum depth of the stack will be three (long)
elements, requiring a .limit stack 6 directive.

Similarly, there are equivalent ways to perform many of the smaller steps. Instead of pushing
the value 5 as a long directly (using ldc2 w 5), the programmer could push the int value 5
(iconst 5) and then convert it to a long (i2l). This would exchange one instruction for two, but
the two operations replaced may be shorter and quicker to execute. Rarely, however, do minor
changes like this have substantial effects on the size and running speed of a program; more
often, they are simply different ways to perform the same task, at the risk of confusing a novice
programmer who expects a single solution to a given problem.

3.4.3 Another Implementation
Not only are there multiple solutions to the random number generator problem presented above,
but there are also many different algorithms and parameters that can solve the problem. A detailed
examination of the representation scheme used by the JVM can allow a streamlined and more
sophisticated random number generator. In particular, because mathematics involving ints is
always performed using 32-bit quantities, taking numbers mod 232 is automatic. By setting m
to be (implicitly) 232, the programmer can avoid the part of the computation involving taking
the modulus. Furthermore, there is no need to use long-sized storage or stack elements if all
computations will be done implicitly in this modulus.

One proposed set of numbers that may produce a good random number generator us-
ing this modulus is setting a to 69069 and c to 0. (These numbers are actually part of the
“Super-Duper” generator proposed by the researcher George Marsaglia.) By setting c to 0 in
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particular, this will also simplify the code because no addition needs to be done. The resulting
code

; compute a * oldvalue
ldc2_w 69069 ; proposed for Super-Duper as a's value
iload_1 ; oldvalue is (assumed) stored as local variable 1
imul ; and multiply (implicitly taking mod 2ˆ32)

; newvalue is now left at top of stack

is short, simple, and elegant.

So, which random number generator is better? Comparing generators can be very difficult
and can involve fairly high-powered statistics. In additions, depending upon your application,
linear congruential generators, in general, may have some very bad properties. Also, depending
upon how the generator is used, some bits of the answer may be more random than others. The
second generator, for instance, will always generate an odd number if oldvalue is odd and an
even number otherwise. Using only the high-order bits will give much better results than using
the low-order ones. The easiest way to compare the quality of the numbers produced by these
generators would be to program both into a computer, run them for several thousand, million, or
billion numbers, and subject them to statistical tests based on the desired use.

From the perspective of speed (and, more importantly, from the perspective of a course on
computer organization and assembly language), it should be apparent that the second random
number generator will run faster. Not only does it involve fewer operations, but the operations
themselves will run using integer mathematics and therefore might be faster than the long opera-
tions of the first generator.

3.4.4 Interfacing with Java Classes
(This section may be skipped without loss of continuity and assumes some Java programming
knowledge.)

So, why assume that the seed (oldvalue) is stored in local variable #1? This is related directly
to how methods are implemented in Java and how the JVM handles object and method interactions
between classes. Specifically, whenever an object’s method is invoked, the JVM passes the object
itself (as a reference type variable; hence, the leading a in the operation mnemonic) in local
variable #0, and the various method parameters are passed in local variables #1, #2, #3, and so
forth (for as many variables/parameters as are needed).

In order to run properly, the second generator described above would need to be placed
in a method with at least two stack elements and at least two local variables (one for the ob-
ject, one for the seed value). A sample complete jasmin program that defines a particular class
(jrandGenerator.class) and defines two methods, one for object creation and one for gener-
ating random numbers using the second method above, is presented as figure 3.4.

The structure of this program closely mirrors that of the previous program for printing a
string. Unlike the previous program, however, no main () method is defined (the jrandGenerator
class is not expected to be a standalone program), It requires multiple local variables (as defined
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; defines jrandGenerator as a subclass of Object
; also defines the class file associated with this as jrandGenerator.class
.class public jrandGenerator
.super java/lang/Object

; boilerplate, same as before
.method public <init>()V

aload_0

invokespecial java/lang/Object/<init>()V
return

.end method

; define a Generate() method that takes an int and returns an int
.method public Generate(I)I

; we need two stack elements for calculations
.limit stack 2

; we also need two local variables, of which #1 holds the argument
; since this is a normal method, #0 will be set by Java itself
.limit locals 2

; compute a * old_value (and store at top of stack)
ldc 69069 ; proposed for Super-Duper as a’s value
iload_1 ; old_value is (assumed) stored as local variable 1
imul ; and multiply (implicitly taking mod 2^32)

; new_value is stored at top of stack, return as int
ireturn

.end method

Figure 3.4 Complete RNG in jasmin

in the .limit directive), and the argument and return types of the Generate method have been
changed to reflect their use as a random number generator.

When assembled using the jasmin program, the result will be a Java class file named
jrandGenerator.class. Objects of this class can be created and used like any other within
a Java programming environment, as seen in figure 3.5. This simple program merely creates an
instance of ajrandGenerator and invokes the Generate method on it 10 times in rapid succession,
thus generating 10 random numbers

A similar program could be written to generate 10 million random numbers or to call a
different generator written to implement the first RNG described above.
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public class jrandExample {
public static void main(String args[]) {

int i;
int old_value = 1;
jrandGenerator g = new jrandGenerator();

for (i=0;i<10;i++) {
old_value = g.Generate(old_value);
System.out.println("Generated: " + old_value);

}
return;

}
}

Figure 3.5 Java program to call jrandGenerator

3.5 Chapter Review
� The JVM was designed together with the (high-level) programming language

Java, and thus supports a similar style of object-oriented programming (OOP). Although it’s
not necessary to use OOP in jasmin programming, it’s often a good idea.

� Java programs and jasmin programs must both be converted to .class files before they can
be executed by the JVM.

� The command to convert jasmin programs to class files (that is used in this book) is
usually named jasmin. At the time of writing, it is available without charge at Jon Meyer’s
Web site or at the companion Web site http://prenhall.com/juola.

� Input and output are typically difficult problems because of the large number of devices. Java
and the JVM simplify this problem by using the class system. By memorizing the three correct
jasmin statements, a programmer can send data (of any type) to the standard output at any
time.

� Assembly language statements can be divided into three major types: instructions (which are
converted to bytecode machine instructions), comments (which are ignored by the computer),
and directives (which affect the conversion/assembly process itself).

� Directives are used to define how class files fit into the standard Java class hierarchy.
� Directives, and specifically the .limit directive, are also used to control the amount of re-

sources available to a given method or function. In particular, .limit stack X will set the
maximum stack size, and .limit locals Y will set the maximum number of local variables.

3.6 Exercises
1. What is the difference between a compiler and an assembler?
2. List at least five instructions (mnemonics) that take exactly one argument.
3. How can the computer tell if a given line contains a directive, a comment, or an instruction?
4. Will your jasmin program still work if you forget the .limit directive?

http://prenhall.com/juola
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3.7 Programming Exercises
1. Write a jasmin program to display the following poem on a Web page:

There once was a lady named Nan
Whose limericks never would scan
When she was asked why
She replied, with a sigh,
“It’s because I always try to put as many syllables into the last line as I possibly can.”

2. Write a jasmin program to display a triangular pattern of capital O’s as follows:

O
O O
O O
O O
O O
OOOOOOOOOOO

3. Write a jasmin program to display today’s date in the following format: Today is Monday,
9/19/2008.

4. Write a jasmin program to calculate and print the wages due me in the following circum-
stances: This month, I worked 80 hours at a job paying $25.00/hour, 40 hours at a job paying
$15.50/hour, and 45 hours at a job paying $35.00/hour.

5. The Boeing 777-300 has airplane a maximum passenger capacity of 386. Write a program to
determine how many planes I would need to charter in order to take N people on a round-
the-world trip. You may assemble a specific value of N into your program. (Note: planes are
chartered one at at time; chartering three-fifths of a plane doesn’t make sense.)

6. The date February 29 only occurs once every four years—for example, in 2000, 2004, and
2008. If a friend of mine was born on February 29, 1980, and the current year is Y1, write a
program to tell me how many times he has actually been able to celebrate his birthday. (You
can assume, if you like, that he’s been able to celebrate this year if appropriate.)

7. Unlike Christmas (which is always December 25), the date of Easter varies from year to year.
An anonymous correspondent to Nature2 published this algorithm to determine the date upon
which Easter falls. (It was later proven correct by Samuel Butcher, Bishop of Meath, and is
thus called Butcher’s Algorithm.) All values are integers, all division is integer division, and
mod means the integer modulus (the remainder after division):

• Let y be the relevant year
• Let a be y mod 19
• Let b be y/100
• Let c be y mod 100
• Let d be b/4
• Let e be b mod 4
• Let f be (b + 8)/25

2 Nature, April 20, 1876, vol. 13, p. 487.
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• Let g be (b − f + 1)/3
• Let h be (19 · a + b − d − g + 15) mod 30
• Let i be c/4
• Let k be c mod 4
• Let l be (32 + 2 · e + 2 · i − h − k) mod 7
• Let m be (a + 11 · h + 22 · l)/451
• Let p be (h + l − 7 · m + 114) mod 31
• The Easter month is (h + l − 7 · m + 114)/31. (3 = March, 4 = April).
• The Easter day is p + 1.

Implement this algorithm and determine the date of the next 10 Easters.
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Control Structures

4.1 “Everything They’ve Taught You Is Wrong”
4.1.1 Fetch-Execute Revisited
In chapters 2 and 3, we explored how to write and evaluate fairly complex mathematical ex-
pressions using the JVM’s stack-based computations. By pushing arguments onto the calcu-
lation stack and performing an appropriate sequence of elementary operations, one can more
or less get the computer to do one’s bidding. Once. From a practical standpoint, the real ad-
vantage of a computer is its ability to perform tasks over and over again without boredom or
error.

Reviewing the representation structure of the JVM, it’s not difficult to see how the computer
could be made to execute the same block of code repeatedly. Program code, remember, consists of
successive machine instructions stored as sequential elements of a computer’s memory. In order to
execute a particular statement, the computer first “fetches” the current instruction from memory,
interprets and “executes that” instruction, and then updates its notion of the “current instruction.”
The current instruction is, formally, a number stored in the program counter (PC) referring to a
location in the bytecode of the current method. Every time the fetch-execute cycle occurs, the
value stored in the PC goes up by 1 or more bytes so that it points to the next instruction to be
executed.

Why 1 “or more” bytes? Shouldn’t the PC go up by one each time? Not really, since some
operations need more than 1 byte to define. For example, basic arithmetic operations such as irem
only require 1 byte to define. However, operations such as bipush are underspecified. The bipush
operation specifies that a byte should be pushed onto the stack (and promoted to a 32-bit integer)
but does not, by itself, specify which byte this should be. Whenever this instruction is used, the
opcode for bipush (0x10) is followed by a single byte-to-be-pushed. The sipush instruction
(0x11), as one might expect, is followed by not 1 but 2 bytes (a short) to be pushed. Similarly,
the iload instruction is followed by 1 or 2 bytes describing the local variable to be loaded. By
contrast, the iload 1 shortcut operation (0x1B) automatically loads local variable #1 and can be
expressed in a single byte.

Because operations are variably sized, the fetch-execute cycle needs to be smart enough to
fetch (possibly) several bytes, either at the same time or in sequence, in order to fetch the entire
instruction and all of its arguments; the PC must be updated to reflect the size of the instruction

82
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fetched. Once these difficulties are dealt with, setting the PC to the appropriate location will cause
the JVM automatically to execute the sequence of instructions. If, therefore, there were some way
to force the PC to contain a particular value, one could cause the computer to execute that block
of code over and over again. By controlling the PC, one directly controls what (and how many
times) the computer does.

To summarize the next few sections, this kind of direct control is equivalent to the often
vilified goto statement. Students are taught and indeed practically indoctrinated into an avoidance
of such statements, as they can introduce more bugs than a shelf full of ant farms. In higher-level
languages, students are taught programming methods to avoid them. At the level of assembly
language, the gloves are off, and the best one can do is to understand them.

4.1.2 Branch Instructions and Labels
Any statement that might cause the PC to change its value is usually called a “branch” instruction.
Unlike the normal fetch-execute cycle, a branch instruction might go anywhere. In order to define
the target location, jasmin, like most other assembly languages, allows individual instructions to
receive labels so that they can be referred to as individuals. Not all instructions will get such
labels, but any statement can. To adjust the PC, one uses an appropriate statement and then gives
the label of the target instruction.

So how is a branch statement created and stored? In more detail, what is a “label,” and
how can it be stored as a sequence of bits, like a number or a machine instruction? From the
programmer’s viewpoint, a label is just a line by itself holding an optional part of any instruction,
a word (made up of letters and numbers, beginning with a letter, conventionally a capital letter,
and followed by a colon [:]) that marks a particular instruction. To transfer control to a given
location, use that label (without the colon) as the argument in an appropriate branch statement.
For example,

goto Somewhere ; set value in PC to location of Somewhere

4.1.3 “Structured Programming’’a Red Herring
From a machine design standpoint, the simplest way to control the PC is to treat it as a register
or local variable and to assign appropriate values to it (see figure 4.1.) When a particular value is
placed in the PC, the machine will “go to” that location and commence execution of code.

This, of course, is the infinitely abusable “goto” statement.

; do some computation
; do some more computation
goto ALabel ; now transfer control directely to ALabel

; this statement is skipped
; as is this one

ALabel:
; but we pick up with whatever instruction is here
; and keep going on in normal fashion
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Figure 4.1 Fetch-execute cycle performing a goto statement

According to modern programming practice (since about 1970 and the very influential work
of Dijkstra), programming using goto statements is subject to severe disapproval. One reason is
that a naked goto can be dangerous. Placing a random location in the PC will cause the computer
to begin executing whatever is stored at that location. If that location is computer code, fine. If that
location happens to be (for instance) in the middle of the storage dedicated to a string variable, the
computer will treat each byte of the string as though it were program code and begin executing.
(In the JVM, for example, the ASCII character 65 (A) would correspond to lstore 2 and cause
the computer to try to pop a long int off the stack. If there is no such long int at the top of the
stack, an immediate program crash will ensue.)

A potentially more serious problem is that programs written with goto statements can be
confusing and (for that reason) error-prone. From the viewpoint of the statement which is the
target of a goto, there is no obvious relationship between the visual structure of the program, the
ordering of the program statements in bytecode, and the ordering of the program statements in
execution. An apparently simple sequence of statements such as

iload_1
iload_2

Branch:
iload_3
iadd
imul
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may not mean what the casual reader thinks, because the code might be executed via a goto to the
third iload N statement. Thus, the value stored in local variable #3 is added to (and multiplied
by) something nonobvious. In particularly bad cases, the control structure may be completely
confusing (the usual metaphor is a plate of spaghetti), with all the usual problems that correspond
with programmer confusion.

For this reason, modern “structured programming” recommends the use of high-order con-
trol structures such as block-structured loops and decision statements. However, at the level of the
machine code, any change reflecting different computations must be expressed through changes
to the PC, thus requiring an implicit goto.

Why, then, are programmers supposed to program without using goto statements? The idea
behind structured programming is not to avoid using them altogether, but to restrict their use to
contexts where they aren’t confusing. In particular, as much of the program as possible should
be modular (composed of logically divided code fragments that can be treated conceptually as
single operations). These modules, as much as possible, should have a single defined starting
point and a single defined exit point, ideally at the top and bottom of the physical code. (This is
often formalized as the “single-entry/single-exit” principle as part of the definition of structured
programming.) High-level languages will often prevent you from violating the single-entry/single
exit rule by their design. The same principles can, and should, be applied to assembly language
programming in general. Even though the language itself will give you the flexibility to do very
silly and confusing things, a disciplined programmer will resist the temptation. Programmers
familiar with the higher-level control structures such as if statements and loops will try to use
similar easy-to-understand structures, even in jasmin, so that they and others who work with
them will be able to figure out exactly what was intended.

4.1.4 High-Level Control Structures and Their Equivalents
A simple example may help to illustrate this. Figures 4.2 and 4.3 shows examples of similar loops
in Java/C++ (and many other languages) and Pascal, respectively. In both cases, the computer
counts from 100 down to 0, no doubt doing something clever each time through the loop. The
block of clever stuff is most efficiently written as a continuous group of machine instructions.
When the PC is loaded with the address of the first instruction in the group, the entire block will
be executed.

In order to execute this block several times, the computer needs to decide at the beginning
of each block whether or not the block needs to be executed (at least) one more time. In the case

for (i=100; i > 0; i--) {
// do something clever 100 times

}

Figure 4.2 Sample loop in Java or C++

for i := 100 downto 1 begin
{ do something clever 100 times }

end

Figure 4.3 Equivalent sample loop in Pascal
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of the loop in the figures, this decision is easy: if the counter is greater than 0, the block should
be executed again. In this case, go to the beginning of the block (and decrement the counter).
Alternatively, if the counter is less than or equal to 0, do not execute the loop again and go to the
remainder of the program.

Informally, this can be expressed as a simple pop-and-if->0-goto. Formally, the mnemonic
for this particular operation is ifgt. A formal translation of the loops into jasmin would be as in
figure 4.4.

ldc 100 ; load integer 100 (number of times)
istore_1 ; store the index in #1 as an int

LoopTop:
; do something particularly clever using
; any needed local variables
iload_1 ; reload loop index from #1
iconst_m1 ; load -1 for subtraction
iadd ; decrement loop index
istore_1 ; store...
iload_1 ; ... and reload loop index
ifgt LoopTop ; if top of stack > 0, put LoopTop into PC

; and repeat
; otherwise, fall through

Figure 4.4 A (mostly) equivalent sample loop in jasmin

Actually, this isn’t a perfectly accurate translation. As long as the initial value for the loop
index is greater than 0, it will work. If, however, the programmer had specified a loop starting
with a negative number (e.g., for (i=-1; i>0;i++)), the loop in Java or C++ would never
have been executed. The jasmin version would still have been executed once, because the clever
computations would have been performed before the computer had a chance to check whether or
not the index was large enough. A more accurate translation would require smarter—or at least,
more varied—decision and goto statements.

4.2 Types of Gotos
4.2.1 Unconditional Branches
The simplest form of a goto is an unconditional branch (or goto), which simply and always
transfers control to the label designated as an argument. By itself, it can produce an infinite loop
(a loop that runs forever), but not a loop that runs for a while and then terminates when something
changes. For that purpose, the programmer needs conditional branches, branches that may or
may not be taken.

4.2.2 Conditional Branches
The JVM supports six basic conditional branches (sometimes called “conditional gotos”), plus
several shortcut operations and two more branches (to be described later, in conjunction with the
class/object system). A basic conditional branch operates by popping an integer off the stack and
determining whether the popped integer is greater than, less than, or equal to 0. If the desired
condition is met, control is transferred to the designated label; otherwise, the PC is incremented
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as usual and control passes to the next statement. With three possible comparison results (greater
than, less than, or equal to 0), all seven meaningful combinations can be designated. These are
summarized in table 4.1. Note that the goto statement does not change the stack, while the if??
operations all pop a single integer.

Mnemonic top > 0 top = 0 top < 0 Interpretation

ifeq X Goto if equal
ifne X X Goto if not equal
iflt X Goto if less than
ifge X X Goto if greater than or equal
ifgt X Goto if greater than
ifle X X Goto if less than or equal
(goto) X X X (Goto always)

Table 4.1 Conditional and unconditional branch operations in jasmin

4.2.3 Comparison Operations
So, if the basic conditional branches only operate on integers, how does one compare other types?
Comparing other types is performed explicitly by comparison operations that are defined to return
integers. The operation lcmp, for example, pops two longs—as always, two longs will be stored
as four stack elements—and pushes the integer value 1, 0, or −1, depending upon whether the
first element pushed is greater than, less than, or equal to the second (the one at the top of the
stack). For example, the following code fragment

lload_3 ; load local variable #3 (and #4)
lconst_1 ; push 1 (as long) for comparison
lcmp ; compare magnitudes, push integer answer
ifgt Somewhere ; go Somewhere if #3 > 1
; if we got here, #3 <= 1

compares the long value stored as local variable #3 against the number 1 and transfers control to
Somewhere if, and only if, the stored value is larger.

There is a very important point to consider in stack ordering. The instruction sequence
lload 1, lload 3, lcmp will first put local variables #1/#2, then #3/#4, and only then do the
comparison. The comparison is order sensitive and would give a different result if #1/#2 were on
top of the stack instead. To remember how order works, think of subtracting the top element of
the stack from the second element. The result pushed is the sign (+1, 0, or −1) of the difference.
See figure 4.5 for an example.

#3/#4

#1/#2
lcmp

1 iff
#1/#2 > #3/#4

Figure 4.5 The lcmp instruction illustrated
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Comparing floats and doubles is similar, but a bit trickier because of the sophistication of
the IEEE representations. Specifically, IEEE 754 allows certain special bit patterns to represent
“not a number,” abbreviated as NaN. These special patterns, in essence, mean that a calculation
somewhere previously went badly wrong (like trying to take the square root of a negative number
or divide 0 by 0). It usually makes no sense to do comparisons against NaN, but the programmer
sometimes has a special interpretation in mind.

For example, suppose a college defines the honors list as including all students with a grade
point average (gpa) above 3.50. A brief program fragment (in Pascal) to determine whether or
not a student is on the honors list would look like the following:

if (gpa > 3.50) then
onhonorslist := true;

A student with no gpa (a first-semester student or a student who has taken an “incomplete”
in every class for medical reasons, for example) would probably not be considered to be on the
honors list. In other words, if a student has a gpa of NaN, then it should be treated as being less
than 3.50. This same student, however, should probably not be expelled for having too low a
gpa; NaN should be higher than the appropriate cutoff. The JVM and jasmin provide two separate
comparison instructions to define these cases. The instruction fcmpg compares the two floating
point numbers at the top of the stack and pushes 1, 0, −1 as expected, except that if either value
is NaN, the result is 1. If either value is NaN, fcmpl returns −1. As expected, comparing doubles
uses similarly named dcmpl and dcmpg with similar differences in behavior.

The jasmin equivalent of the Pascal fragment above, then, would look something like this:

fload_1 ; load gpa from #1 as float
ldc 3.50 ; load gpa cutoff (3.50)
fcmpl ; compare gpa to cutoff, NaN being "below"
ifle Skip ; go to Skip gpa >= cutoff
iconst_1 ; push 1 (boolean : true)
istore_2 ; put "true" into #2 (as int/boolean
Skip: ; do whatever else you needed to do with this student

4.2.4 Combination Operations
As before, the second-class types such as short and boolean are not directly supported and must be
treated as int types in computation. More surprisingly, jasmin does not provide a way to compute
the result of comparing two integers! Instead, integer comparison is done via shortcut operations
that combine a comparison operation with built-in conditional branches (as in table 4.2.)

All of these operations work in mostly the same way. The CPU first pops two (int) elements
off the stack and performs a comparison like the one that the icmp instruction would do if it
existed. Instead of pushing the result of the comparison, though, the program immediately jumps
(or not) to the appropriate location by modifying the program counter.
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if icmpeq branch if second element is equal to top
if icmpne branch if second element is not equal to top
if icmplt branch if second element is less than top
if icmpge branch if second element is greater or equal to top
if icmpgt branch if second element is greater than top
if icmple branch if second element is less or equal to top

Table 4.2 Combination compare/branch instructions
in jasmin

4.3 Building Control Structures
The main advantage of control structures in high-level languages is that they are relatively easy to
understand. It’s helpful in assembly language programming (on the JVM or any other computer)
to keep this same ease of understanding to the greatest extent possible. One way to do this is to
maintain a similar structure of logical blocks of code that are organized like high-order control
structures.

4.3.1 If Statements
Expanding on the example from section 4.2.3 of how high-level control can be expressed in
jasmin, the key to error-free and understandable code is to retain a similar block structure. A
traditional if/then statement has up to three parts: a boolean expression, a set of statements to be
executed if the expression evaluates as “true,” and another set to be executed if the expression
evaluates as “false.” The C++ or Java block

if (a > 5) {
// (if block)
// do something
// for several lines

} else {
// (else block)
// do something else
// for several lines

}
// do whatever other operations need doing

can be written equivalently in jasmin as (assuming that a is a long in #1)

lload_1 ; if a is in #1
ldc_2 5 ; load 5
lcmp ; compare a to 5
ifle Else
; if we got here, a > 5, hence perform the if-clause
; at the end of the if clause, skip over the else-clause
; via an unconditional goto
; ---- this corresponds to the if block above
goto Quit
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Else:
; if we got here, then a <= 5, hence perform the else-clause
; ---- this corresponds to the else block above

Quit:
; do whatever additional operations need doing
; ---- this corresponds to the statement following the if statement

The block-structured similarity between this code and the high-level code above should
be apparent. In particular, there are consecutive instructions in both code samples corresponding
to the “if block” and to the “else block” that are always performed in sequence, starting at the
top and continuing to the end. The jasmin code weaves in between these blocks to set the PC
accordingly. In detail, note that the test in this example is slightly different; instead of branching
directly to the if clause, this example skips over the if clause (to the else clause) if the reverse of
the condition is true.

Complex boolean conditionals can be handled by appropriate use of the iand, ior, and
other instructions or by repeated comparisons. For example, we can check that a is in the range
between 5 and 10 (a > 5 and a < 10) as follows:

lload_1 ; if a is in #1
ldc_2 5 ; load 5
lcmp ; compare a to 5
ifle Else
; if we got here, a > 5
lload_1 ; if a is in #1
ldc_2 10 ; load 10
lcmp ; compare a to 10
ifge Else
; if we got here, a > 5 and a < 10
; and program continues as before

4.3.2 Loops
In many programming languages, there are two basic kinds of loops: those in which the program
tests the condition at the beginning and those in which the program tests at the end. The second
kind has already been illustrated. We retain the block structure of the interior of the loop, place a
label at the top of the block, and then jump back to the top if the conditions are not right for loop
exit. In broad terms, it looks something like this:

LoopTop: ; do the stuff associated with the loop
; whatever operations are needed
iload_1 ; load first operand of comparison
iconst_m1 ; load second operand of comparison
ifne LoopTop ; (this loops until #1 = -1)
; fall through
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This performs what in Pascal would be a repeat loop and what in C, C++, or Java would
be a do/while loop. For a more traditional while loop, the condition is placed before the loop
body, the loop body is followed by an unconditional goto, and if the loop exit is met, control is
transferred to the first statement outside the loop itself, as in the following:

Control:
iload_1 ; load first operation of comparison
iconst_m1 ; load second operand of comparison
ifeq LoopOut ; (this loops until #1 = -1)
; do the stuff associated with the loop
; whatever operations are needed
goto Control ; after the loop, jump to recheck condition

LoopOut: ; you can ONLY get here via the conditional branch above

This code fragment performs the equivalent of a loop akin to while (i != 1). Alterna-
tively, one can keep the do/while structure but enter the loop at the bottom via an unconditional
branch, as in

goto LoopEnd ; jump directly to loop test
LoopTop: ; do the stuff associated with the loop

; whatever operations are needed
LoopEnd:

iload_1 ; load first operand of comparison
iconst_m1 ; load second operand of comparison
ifne LoopTop ; (this loops until #1 = -1)
; fall through

This saves the execution of a single goto statement.

The equivalence of while and for loops is well known. A counter-controlled loop such as

for (i=0;i<10;i++)
// do something

is equivalent to

i = 0;
while (i<10) {

// do something
i++;

}

and can be easily written using the framework above. The most significant change is the need
to recruit a local variable as a counter; and otherwise the while structure is repeated almost
exactly.
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bipush 0 ; using #1 as i, set it to zero initially
istore_1

goto LoopEnd ; jump directly to loop test
LoopTop:

; do the stuff associated with the loop
; whatever operations are needed

; increment #1
iload_1 ; load i from #1
iconst_1 ; load 1 for incrementing
iadd ; we've now done i++
istore_1 ; ... and saved i in #1 (again)

; for efficiency demons, the four lines above could
; be replaced by a single operation : iinc 1 1

LoopEnd:
iload_1 ; load first operand of comparison (i)
bipush 10 ; load second operand of comparison (10)
ifle LoopTop ; (this loops until #1 >= 10)
; fall through only when #1 >= 10

4.3.3 Details of Branch Instructions
From a programmer’s point of view, using goto statements and labels is fairly simple. You make
a label where you want control to go, and the program automatically jumps there. Under the
hood, the picture is a bit more complex. Instead of storing labels, the computer actually stores
offsets. For example, the goto instruction (opcode 0xA7) is followed in bytecode by a signed
2-byte (short) integer. This integer is used as a change to the program counter; in other words,
after the instruction is executed, the value of the PC is changed to PC + offset. If the offset value
is negative, this has the effect of moving control back to a previously executed statement (as in
the repeat loop example above), while if the offset value is positive, the program jumps forward
(as in the if/then/else example). In theory, there’s nothing to prevent one from using an offset
value of 0, but this would mean that the statement didn’t change the PC and would create an
infinite loop. An offset of zero would correspond to the jasmin statement

Self:
goto Self

which is probably not what the programmer wanted.

So, how does the programmer calculate these offsets? Fortunately, she doesn’t! That’s the
job, and one of the main advantages, of an assembler like jasmin. The programmer can simply use
labels and find that it’s the assembler’s task to determine what the offsets should be. A potentially
more serious problem (again from the programmer’s point of view) with this implementation is
that, with only 2 bytes of (signed) offset, no jump can be longer than approximately 32,000 bytes
(in either direction). What happens in a really long program?

This is addressed in two ways in jasmin. First, jasmin provides, in addition to the goto
instruction, a goto w instruction (sometimes called a “wide goto” and implemented as opcode
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; what I really want is "ifne DistantLocation," but
; that's too far to get in a single step.
; Unfortunately, ifne_w doesn't exist.
; The assembler will realize that and instead use

ifeq Skip ; notice the test is reversed
goto_w DistantLocation ; because we are branching AROUND

Skip: ; the branch we don't want to take
; do something else

Figure 4.6 An example of a “branch around a branch” to jump conditionally to distant
locations

0xC8). In most respects similar to a normal goto, it is followed by a full-sized integer, allowing
programmers to jump forward or back up to 2 billion or so bytes. Since individual JVM methods
are not allowed to be more than 216 (about 64,000) bytes long, and since, if you find yourself
writing a longer method than that, you probably should divide it into sections anyway, this
new opcode solves the problem. Again, it’s the assembler’s job to decide which opcode is
needed—technically, when it sees a statement like goto SomeWhere, it can use either the 0xA7
or 0xC8 instruction. If the necessary offset would be too large to fit into a short, then it will
automatically translate the programmer’s goto into a machine-internal goto w.

A more serious problem is that there is no direct equivalent to ifne w or other wide con-
ditional branches. However, the assembler can (again) devise an equivalence without the pro-
grammer’s knowledge or cooperation. A conditional (wide) branch to a distant location can be
simulated by a branch around a branch, as in figure 4.6.

As with calculating branch sizes in the first place, a good assembler can always do the
right thing in this instance.

The most serious problem with using branch statements is that they do not, in any way,
provide the programmer with local block structures. Many programmers rely on the convenience
of being able to redeclare local variables inside blocks, as in the following:

if (x > 0) {
int x; // this is a new x, unrelated to the previous
x = -1;

...
}
// here the old x reappears and reacquires its old value

No such convenience is available in assembly language; all local variables (and the stack)
retain their values before, during, and after a jump. If an important variable is stored in location
#2 before the jump and the next statement is fstore 2, then the important variable will be
overwritten. Block structure is an important convenience for how to think about assembly
language programs, but it does not provide any practical defense such as information hiding
against mistakes and misuse.
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4.4 Example: Syracuse Numbers
4.4.1 Problem Definition
As an example of how this can be put together, we’ll explore the Syracuse number (or 3N + 1)
conjecture. It dates back to classical mathematics, when an early Greek noticed that a few simple
arithmetic rules would produce surprising and unpredictable behavior. The rules are:

� If the number N you have is 1, stop.
� If the number N you have is odd, let N be 3N + 1 and repeat.
� If the number N you have is even, let N be N

2 and repeat.

It was noticed early on that this procedure always seemed to end (to get to 1) when you
started with any positive integer, but no one could actually prove that conjecture. Furthermore, no
one could find a general rule for predicting how many steps it would take to get to 1. Sometimes
it happens very quickly:

16 → 8 → 4 → 2 → 1

but close numbers can take different times:

15 → 46 → 23 → 70 → 35 → 106 → 53 → 160 → 80 →

40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

and sometimes it takes a very large number of steps. Even today, no one knows how many steps it
takes or even whether it will always go to 1 (although mathematicians with computers have found
that all numbers less than several billion will converge to 1 and thus end). Try it for yourself: how
many steps do you think it will take to get to 1 starting from 81?

4.4.2 Design
Even better, don’t try it yourself. Let the computer do the work. Figure 4.7 gives pseudocode
for an algorithm that will start at 81 and count steps until the final value is 1. Implementing this
algorithm in jasmin will get a quick answer to this conjecture.

(1) count_of_steps <- 0
(2) current_value <- 81
(3) while (current_value != 1)
(4) if (current_value is odd)
(5) current_value <- (current_value * 3) + 1
(6) else
(7) current_value <- (current_value / 2)
(8) endif
(9) count_of_steps <- count_of_steps + 1
(10) endwhile
(11) final answer is count_of_steps

Figure 4.7 Test of Syracuse conjecture in pseudocode
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; entry point for if/else
iload_2 ; load current_value
iconst_2 ; and the number 2, to determine if odd or even
irem ; calculate remainder
iconst_0 ; compare remainder against zero
if_icmpgt CaseOdd ; goto CaseOdd if it's odd

CaseEven: ; technically speaking, we don't need this label
; as we will never branch to this location

; divide #2 by 2 and resave
iload_2 ; load current value
iconst_2 ; push 2 for division
idiv ; do the division
istore_2 ; and store the new value

goto Exit ; and skip the Caseodd block

CaseOdd:
; multiply #2 by 3 and add one
iload_2 ; load current value
iconst_3 ; push 3 for multiplication
imul ; multiply (value stored is now 3*N)
iconst_1 ; push 1 for addition
iadd ; add (value stored is 3*N+1)
istore_2 ; and store the new value

Exit:
; exit point for both branches of if/else

Figure 4.8 If/else structure for internal block of Syracuse number code

; entry point for while
LoopEntry:

iload_2 ; load current_value from #2
iconst_1 ; compare current_value against 1
if_icmpeq LoopExit ; branch to LoopExit if equal

; do necessary statements for odd/even calculations

; do necessary statements for incrementing count_of_steps

goto LoopEntry ; branch unconditionally to top of loop
; and recheck

LoopExit:
; exit point for while loop

Figure 4.9 While structure for main loop of Syracuse number code
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The code in figure 4.7 calls for two integer variables, and for simplicity in calcuation, we’ll
keep them as int types (instead of long). In particular, count of steps can be stored as local
variable #1 and current value as #2. The arithmetic calculations in steps 1, 2, 5, 7, and 9 can
be performed with techniques from chapter 2. Output, in line 11, can be done in any of several
ways; again, we’ll pick one of the simpler ones and just print the final results.

The if/else construction used in lines 4 to 8 can be modeled by the code block in section 4.3.1.
Specifically, we can determine whether or not the current value is odd by taking the remainder
(irem) when divided by 2; if the result is equal to 0 (if icmpeq), then the number is even. The
code in figure 4.8 illustrates this. As is typical of structured programming, this block as a whole
has a single entry at the initial statement of the block and a single exit at the bottom (at the point
labeled Exit:).

This entire block of code will in turn be used inside a while-loop structure, as in figure 4.9.

4.4.3 Solution and Implementation
The complete solution is presented here.

S I D E B A R

; boilerplate
.method public <init>()V

aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit stack 2 ; no complex calculations here
.limit locals 3 ; #0 is reserved (as usual)

; #1 is a loop counter
; #2 is the value of N

iconst_0 ; #1 <- 0
istore_l

bipush 81 ; #2 <- 81
istore_2

LoopEntry:
iload_2 ; load current_value from #2
iconst_l ; compare current_value against 1
if_icmpeq LoopExit

; branch to LoopExit if equal

; do necessary statements for odd/even calculations
; entry point for if/else

iload_2 ; load current_value
iconst_2 ; and the number 2, to determine if odd

or even
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irem ; calculate remainder
iconst_0 ; compare remainder against zero
if_icmpgt CaseOdd ; goto CaseOdd if it's odd

; we only get here if #2 is/was even
; divide #2 by 2 and resave
iload_2 ; load current value
iconst_2 ; push 2 for division
idiv ; do the division
istore_2 ; store the new value

goto Exit ; and skip the Caseodd block
CaseOdd:

; multiply #2 by 3 and add one
iload_2 ; load current value
iconst_3 ; push 3 for multiplication
imul ; multiply (value stored is now 3*N)
iconst_l ; push 1 for addition
iadd ; add (value stored is 3*N+1)
istore_2 ; and store the new value

Exit: ; do necessary statements for incrementing count_of_steps
iinc 1 1 ; increment loop index

goto LoopEntry
; branch unconditionally to top and recheck

LoopExit:
; print result to System.out (as usual)
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 1 ; load loop counter for printing
invokevirtual java/io/PrintStream/println(I)V

return ; and we're done
.end method

4.5 Table Jumps
Most high-level languages also support the concept of multiway decisions, such as would be
expressed in a Java switch statement. As an example of these decisions in use, consider trying
to figure out how many days there are in a month, as in figure 4.10.

Perhaps obviously, any multiway branch can be treated as equivalent to a set of two-
way branches (such as if/else statements) and written accordingly. The JVM also provides
a shortcut—in fact, two shortcuts—that can make the code simpler and faster to execute under
certain conditions. The main condition is simply that the case labels (e.g., the numbers 1 to 12 in
the example fragment) must be integers.

As before, there is no direct notion of block structure. What the machine offers instead is
a multiway branch, where the computer will go to any of several destinations, depending upon
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switch (monthno) {
// 30 days hath September, April, June, and November
case 9 :
case 4 :
case 6 :
case 11 : days = 30; break;
// ... all the rest have 31
case 1 : case 3 : case 5 : case 7 : case 8 : case 10 : case 12:

days = 31; break;
// except February, alone (ignoring leap years)
case 2 : days = 28; break;
default : System.out.println("Error : Bad month!");

} // end switch

Figure 4.10 Multiway branch statement in Java (and C++)

the value at the top of the stack. The general format of a lookupswitch instruction consists of
a set of value:Label pairs. If the value matches the top of the stack, then control is transferred to
Label.

iload_1 ; Assuming that "monthno" is stored in #1
lookupswitch ; begin multiway branch

1 : Days31 ;
2 : Days28 ;
3 : Days31 ;
4 : Days30 ;
5 : Days31 ;
6 : Days30 ;
7 : Days31 ;
8 : Days31 ;
9 : Days30 ;
10 : Days31 ;
11 : Days30 ;
12 : Days31 ;

default : ERROR ;
Days28:

bipush 28 ; Load 28 days
istore_2 ; and assign to days (#2)
goto ExampleEnd

Days30:
bipush 30 ; Load 30 days
istore_2 ; and assign to days (#2)
goto ExampleEnd
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Days31:
bipush 31 ; load 31 days
istore_2 ; and assign to days (#2)
goto ExampleEnd

Error:
; take appropriate error actions like getstatic .../System/out
goto ExampleEnd

ExampleEnd:
; do whatever is needful

The dozen or so lines above that begin with lookupswitch and end with default are
actually a single very complex machine instruction. Unlike the others that have been discussed,
this instruction takes a variable number of arguments, and the task of the jasmin assembler (as
well as the JVM bytecode interpreter) is correspondingly tricky. The default branch is manda-
tory in JVM machine code (unlike in Java). As with other branch statements, the values stored
are offsets from the current program counter; unlike most other statements (except goto w),
the offsets are stored as 4-byte quantities, allowing for jumps to “distant” locations within the
method.

S I D E B A R
Machine Code for lookupswitch/
tableswitch
Both lookupswitch and tableswitch involve a variable number of arguments, and as such
have a complex implementation in bytecode. Essentially, there is a “hidden” implicit argument
about how many arguments there are, so that the computer knows where the next argument
starts.

In the case of lookupswitch, the jasmin assembler will count the number of value:label pairs
for you. The bytecode created involves not only the lookupswitch opcode (0xAB), but also a
4-byte count of the number of nondefault branches. Each branch is stored as a 4-byte integer
(value) and then a corresponding 4-byte offset to be taken if the integer matches the top of the
stack.

In the case of tableswitch, the values can be computed from the starting and ending values.
A tableswitch statement is stored internally as the opcode byte (0xAA), as the low and high
values (stored as 4-byte integers), and finally as a set of sequential 4-byte offsets corresponding
to the values low , low + 1, low + 2, . . . high. See appendix B for more details on both.

If, as in the above example, the values are not only integers but contiguous integers—
meaning that they run from a starting value (1, January) to an ending value (12, December)
without interruption or skips—then the JVM provides another shortcut operation for multiway
decisions. The idea is simply that if the lowest possible value were (for example) 36, the next
would have to be 37, then 38, and so forth. If the low and high ends of the spectrum are defined,
the rest can be filled in as a table. For this reason, the operation is called tableswitch, and it’s
used as follows:
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iload_1 ; Assuming that "monthno" is stored in #1
tableswitch 1 12 ; begin multiway branch, from 1 to 12

Days31 ;
Days28 ;
Days31 ;
Days30 ;
Days31 ;
Days30 ;
Days31 ;
Days31 ;
Days30 ;
Days31 ;
Days30 ;
Days31 ;
default : Error ;

Days28:
bipush 28 ; Load 28 days
istore_2 ; and assign to days (#2)
goto ExampleEnd

Days30:
bipush 30 ; Load 30 days
istore_2 ; and assign to days (#2)
goto ExampleEnd

Days31:
bipush 31 ; load 31 days
istore_2 ; and assign to days (#2)
goto ExampleEnd

Error:
; take appropriate error actions like getstatic .../System/out
; and print an error message
goto ExampleEnd

ExampleEnd:
; do whatever is needful

The only different operation in the tableswitch example is the tableswitch itself; the
rest of the code is identical. The important differences are related to the structure of the table. The
programmer needs to define the low and high values that the variable of interest can legitimately
take, and then to sort the labels into increasing order, but not to pair the labels explicitly with
their corresponding values. This will be done automatically by the table structure; in the example
above, the fourth label (Days30) is automatically attached to the fourth value. As before, a default
case is mandatory.

Of course, whether or not these jump tables will aid program efficiency varies from
situation to situation and from problem to problem. A switch statement can always be writ-
ten as an appropriate collection of if statements with appropriately complex conditions;
in some cases, it may be easier to calculate a boolean condition than to enumerate the
cases.
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4.6 Subroutines
4.6.1 Basic Instructions
One major limitation of branch-based control is that after a block of code is executed, it will auto-
matically transfer control back to a single and unchangeable point. Unlike traditional procedures
in high-level programming languages, it is not possible to set up a block of code that can be run
from any point in the program and then return to the place from which it came. (See figure 4.11.)
In order to do this, more information—and new control structures and operations—are needed.

Part1: ; do something
; do something
goto UtilityProcedure ; do some basic utility (sub)routine

; like calculate a square root
Part1Return:

; do something with the returned value
...

Part2: ; do something
goto UtilityProcedure ; same basic utility (sub)routine

Part2Return:
; and do something different with this returned value
....

UtilityProcedure:
; take value(s) from the stack
; and perform calculations
...
; (sub)routine now finished
goto ?????? ; Where? Part1Return or Part2Return?

; There is no way to make this decision!

Figure 4.11 Subroutine return problem

The main piece of information needed is, of course, the location from which control was
passed so that the program can use the same location as a point of return. This requires two basic
modifications—first, that there be a branch instruction that also stores (somewhere) the value of
the PC before the jump and, second, that there be another kind of branch instruction that will
return to a variable location. A block of code written using these semantics is usually referred to
as a subroutine.

The JVM provides a jsr (Jump to SubRoutine) instruction—all right, technically it provides
two instructions, jsr and jsr w, analogous to goto and goto w—to fill this need. When the jsr
instruction is executed, control is immediately passed (as with a goto) to the label whose offset is
stored in the bytecode. Before this happens, though, the machine calculates the value (PC + 3),
the address of the next instruction that immediately follows the jsr instruction itself. This value
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is pushed onto the stack as a normal 32-bit (4-byte) quantity, and only then is control passed to
the label.

S I D E B A R
Machine Language for jsr
To understand exactly how this works, let’s look at the detailed machine code for the jsr instruction
The jsr mnemonic corresponds to a single byte (0xA8). It is then followed by a 2-byte offset,
stored as a signed short integer. Assume that memory locations 0x1000–0x1003 hold the pattern
as shown in table 4.3.

Location 0x1000 0x1001 0x1002 0x1003
Byte value 0xA8 0x00 0x10 0x3b
Interpretation jsr Integer : 0x0010 = 16 istore 0

Table 4.3 Bytecode structure of jsr instruction

When the jsr instruction is executed, the PC will have the value 0x1000 (by definition). The
next instruction in memory (istore 0) is stored at location 0x1003.

All machines that provide calls to subroutines also provide instructions for returning from
subroutines. It is fairly easy to see how this could be accomplished on a stack-based computer;
the return instruction would examine the top of the stack and use the value stored there, which we
piously hope was pushed by a jsr instruction, as the location to which to return. This location
becomes the target of an implicit branch, control returns to the main program, and computation
proceeds merrily on its way.

Things are slightly more complicated on the JVM, primarily for security reasons; the ret
instruction does not examine the stack for the location to return to, but instead accepts as an
argument the number of a local variable. The first task any subroutine must perform, then, is to
store the value (implicitly) pushed by the jsr instruction into an appropriate local variable—and
once that is done, to leave this location untouched. Trying to perform computations on memory
addresses is at best dangerous, usually misleading, and in Java and related languages, outright
illegal. Again, this is something that the security model and verifier will usually try to prevent.

4.6.2 Examples of Subroutines
Why Subroutines?
One common use for a subroutine is as something akin to a Java method or C++ procedure: to
perform a specific fixed task that may be needed at several points in the program. An obvious
example would be to print something. As has been seen in earlier examples, something as simple
as printing a string can be rather tricky and take several lines. To make the program easier and
more efficient, a skilled programmer can make those lines into a single subroutine block accessed
via jsr and ret.
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Subroutine Max(int A int B)
Let’s start with a simple example of a subroutine to do arithmetic calculations. An easy example
would calculate (and return) the higher of two integers.1 Let’s assume that the two numbers are
on the stack (as integers), as in figure 4.13.

IR

PC x

jsr location

IR

PC location

x + 3

stack

jsr location

stack

Figure 4.12 jsr instruction and stack

argument 2 (B)

argument 1 (A)

max(A, B)should become

Figure 4.13 Stack structure for max (A,B)

The if icmp?? instruction will do the appropriate comparision for us but will pop (and
destroy) the two numbers. So before doing this, we should duplicate the top two words on the
stack using dup2. Before doing that, though, any subroutine must handle the return address. For
simplicity, we will store that in local variable #1.

1 When the jsr instruction is executed, the value 0x1003 is pushed (as an address) onto the stack, and the value of the
PC is changed to 0x1000 + 0x0010, or 0x1010. This implies that the program will jump 16 bytes forward and begin
executing a new section of code. When the ret instruction is executed, transfer will return to location 0x1003 and the
iconst 0 instruction. The jsr w instruction is similar, except that it involves a 4-byte offset (thus possibly a longer
jump) and the value PC+5 is pushed. (See figure 4.12.)
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; assume that this is called via jsr Max, with
; the two integers already on the stack

Max:
astore_1 ; stores return (a)ddress in #1

dup2 ; copy two arguments for later use
if_icmpgt Second ; branch if A < B

First:
; A >= B, so need to delete B from stack
pop
goto Exit

Second:
; A < B, so need to swap A to top and delete it
swap
pop

Exit:

ret 1 ; return to the location stored in #1

Subroutine Printstring (String s)
For a second example, we’ll write (and use) a subroutine to output a fixed string pushed on the
stack. Let’s write the subroutine first:

; assume that this is called via jsr Printstring, with
; the string to be printed already pushed onto the stack
; (below the return address

PrintString:
astore_1 ; stores return (a)ddress in #1

; assume that the string to be printed is already on the stack

; you should already know the next three lines
getstatic java/lang/System/out Ljava/io/PrintStream
swap ; put the arguments in the right order
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

ret 1 ; return to the location stored in #1

The new instruction astore 1 is just another example of the ?store N instruction, but
it stores an address (type ‘a’) instead of a float, double, int, or long. The getstatic and
invokevirtual lines should already be familiar. The code assumes that the calling environ-
ment pushed the string prior to executing the jump-to-subroutine call—and thus merely pushes
the System.out object and invokes the necessary method. Once this is done, the ret instruction
uses the value newly stored in #1 as the location to return to Notice, however, that there is still very
little “information hiding” or block structure and that, in particular, this subroutine will irretriev-
ably destroy any information that had been stored in local variable #1. If a programmer wants to
use this particular code block, she needs to should be aware of this behavior. More generally, for
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any subroutine, it is important to know what local variables are and aren’t used by the subroutine,
since they’re in the same set of local variables used by the main program.

Using Subroutines
The main program can be as complex as we like and may involve several calls to this subroutine.
How about some poetry?

; push the first string/line to be printed
ldc "‘Twas brillig, and the slithy toves"
; call the subroutine beginning at PrintString
jsr PrintString ; return to immediately after this line

; note that no label is needed

; and continue in similar fashion
ldc "Did gyre and gimble in the wabe."
jsr PrintString

ldc "All mimsy were the borogroves"
jsr PrintString

ldc "And the mome raths outgrabe."
jsr PrintString

; never forget to cite your sources
ldc "(from Jabberwocky, by Lewis Carroll)"

return ; quit the method, since we've printed the poem

A complete version of this program is presented in Figure 4.14. (Actually, there is a deliberate
error in this figure. One line will not be printed. Can you figure out which line it is and why?
More importantly, do you know how to correct this error?)

4.7 Example: Monte Carlo Estimation of π
4.7.1 Problem Definition
Today, everyone knows the value of π (3.14159 and a bit). How did mathematicians figure out
its value? Many approaches have been tried over the centuries, including one notable not for its
mathematical sophistication, but instead for its simplicity. We present here a modification of this
method, which was originally used by Georges de Buffon.

Consider throwing darts (randomly and uniformly) at the diagram shown in figure 4.15. We
assume that the darts can land anywhere within the square; in particular, some of them will land
inside the circle and some won’t. Since the square is 2 units on a side, it has a total area of 4. The
circle, having area πr2, has an area of π . Thus, we expect that the proportion of darts that land
inside the circle will be π

4 .

In other words, if we threw 10,000 darts at the diagram, we would expect about 7,854 of
them to land inside the circle. We can even restrict our attention to the upper-right-hand quadrant
and expect the same result.



106 Chapter 4 � Control Structures
� �

; program to print first verse of Lewis Carroll s _Jabberwocky_

.class public jabberwocky

.super java/lang/Object

; the usual boilerplate
.method public <init>()V

aload_0

invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit stack 2
.limit locals 2

; push the first string/line to be printed
ldc " Twas brillig, and the slithy toves"
; call the subroutine beginning at PrintString
jsr PrintString ; return to immedately after this line

; note that no label is needed

; and continue in similar fashion
ldc "Did gyre and gimble in the wabe."
jsr PrintString

ldc "All mimsy were the borogroves"
jsr PrintString

ldc "And the mome raths outgrabe."
jsr PrintString

; never forget to cite your sources
ldc "(from Jabberwocky, by Lewis Carroll)"

return ; quit the method, since we’ve printed the poem

; assume that this is called via jsr Printstring, with
; the string to be printed already pushed onto the stack
; (below the return address)

PrintString:
astore_1 ; stores return (a)ddress in #1

; assume that the string to be printed is already on the stack

; you should already know the next three lines
getstatic java/lang/System/out Ljava/io/PrintStream;
swap ; put the arguments in the right order
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

ret 1 ; return to the location stored in #1
.end method

Figure 4.14 Complete program (with one error) as a subroutine example

This method of exploration is often called Monte Carlo simulation. It can be a very
powerful way of exploring a large probability space when you’re not sure of the exact parameters
of the space. It’s also the sort of task at which computers excel, since the simple calculations
(Where did the dart land? Is it inside or outside the circle?) can be repeated thousands or millions
of times until you have an accurate enough answer.

4.7.2 Design
Section 3.4.1 discussed a bit of the theory and practice of random number generation. The code
developed in that section can provide random integers for us, with a few changes. The main change
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(-1, -1)

(-1, 1) (1, 1)

(1, -1)

Figure 4.15 Diagram for Monte Carlo π estimation

(1) total_hits <- 0
(2) for (total_darts := 1 up to 10000)
(3) generate (x,y) position for new dart
(4) if ( (x,y) inside circle )
(5) total_hits <- total_hits + 1
(6) endif
(7) endfor
(8) final answer is (total_hits / 10000)
(9) FINAL final answer is (total_hits / 10000) * 4

Figure 4.16 Monte Carlo calculation of π in pseudocode

will be that every location (in the unit square) is defined by exactly two numbers, and hence we
will need to call the generator from two separate places. This implies a subroutine.

Other than that, the program will need two counters, one for the number of darts thrown
and one for the number of darts that land inside the circle. For any dart, if the position where it
lands is (x ,y), then it’s inside the circle if and only if x2 + y2 ≤ 1.2

The pseudocode for solving this problem might look something like Figure 4.16. The
structure of the problem itself, involving repeated generation of random points and then totaling
successes and failures, suggests some sort of loop. The actual decision conserning success or
failure (inside or outside the unit circle) will be implemented with an if/then-equivalent struc-
ture. In summary, this program can be approached and designed using the same higher-order
constructions that would be appropriate for other programming languages such as Java or Pascal.

2 Use the distance formula if you’re not sure why that works.
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After this block has been executed enough times, the ratio of successes to total executions
should approximate π

4 .

For variables, we will need at least two integers to serve as counters, another location to
hold the current value of the seed of the random number, two more to hold the (x ,y) coordinates
of the current dart, and a sixth to hold the return location from the random number generation
subroutine. The necessary control structures have all been developed in earlier sections.

In particular, if variables #4 and #5 hold (as floats) the x and y coordinates, respectively,
then the following block of code will increment the counter in #1 only if the dart is inside the
circle:

fload_4 ; load x coordinate from #4
dup ; square it
fmul
fload_5 ; load y coordinate from #5
dup ; square it
fmul
fadd ; calculate xˆ2 + yˆ2
fconst_1 ; push 1 for comparison
fcmpg ; compare
ifgt Skip ; go to Skip if outside the circle
iinc 1 1 ; increment the counter in #1

Skip: ; do whatever is needed

We can modify the first random number generator from section 3.4.2 to generate floating
point numbers fairly easily, as in the following code fragment:

; compute a * oldvalue
ldc2_w 65537 ; a is 2ˆ16 + 1, stored as a long
iload_3 ; oldvalue is stored as local variable #3
i2l ; convert oldvalue to a long
lmul ; and multiply

; add c
ldc2_w 5 ; c is 5, stored as a long
ladd ; and add to a*oldvalue

; and take the remainder mod m
ldc2_w 4294967291 ; load value for m
lrem ; calculate modulus
l2i ; convert back to integer
dup ; duplicate for storage
istore_3 ; store new value for next time

i2f ; convert to floating point number
ldc 4294967291.0 ; load m as floating point
fdiv ; divide to get number in [0,1)

; floating point is left on top of the stack
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This fragment, in turn, will become the core of a subroutine to generate both x and y
coordinates.

4.7.3 Solution and Implementation
The complete solution is presented here.

; program to calculate pi via Monte Carlo simulation

.class public pi

.super java/lang/Object

; boilerplate
.method public <init>()V

aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit stack 4
.limit locals 7

iconst_0 ; number of darts thrown so far is 0
istore_1 ; number of darts is in #1

iconst_0 ; number of darts inside so far is 0
istore_2 ; number of darts inside is in #2

iconst_1 ; seed the random number generator with 1
istore_3 ; RNG seed in #3

Head:
iload_1 ; load number of darts thrown
ldc 10000 ; compare to 10,000 darts
if_icmpgt End ; if more than 10,000, exit the loop

jsr Random ; get random float for x coordinate
fstore 4 ; and store in #4

jsr Random ; get random float for y coordinate
fstore 5 ; and store in #5

fload 4 ; load x coordinate from #4
dup ; square it
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ldc2_w 5 ; c is 5, stored as a long
ladd ; and add to a*oldvalue

; and take the remainder mod m
ldc2_w 2147483647 ; load value for m
lrem ; calculate modulus
l2i ; convert back to integer
dup ; duplicate for storage
istore_3 ; store new value for next time

i2f ; convert to floating point number
ldc 2147483647.0 ; load m as floating point
fdiv ; divide to get number in [0,1)
ret 6 ; return to calling environment stored in #6

End:
iload_2 ; load total darts inside
i2f ; calculate ratio in floating point
iload_1 ; load total darts
i2f ; calculate ratio in floating point

Skip:
iinc 1 1 ; increment total darts thrown in #1
goto Head ; and go to top of loop

Random:
astore 6 ; store return value

; compute a * oldvalue
ldc2_w 65537 ; a is 2^16 + 1, stored as a long
iload_3 ; oldvalue is stored as local variable #3
i2l ; convert oldvalue to a long
lmul ; and multiply

; add c

fmul
fload 5 ; load y coordinate from #5
dup ; square it
fmul
fadd ; calculate x^2 + y^2
fconst_1 ; push 1 for comparison
fcmpg ; compare
ifgt Skip ; go to Skip if outside the circle
iinc 2 1 ; increment number of darts inside in #2
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fdiv ; divide for ratio (pi/4)
ldc 4.0 ; multiply by 4
fmul ; to get final answer

; and print it
getstatic java/lang/System/out Ljava/io/PrintStream;
swap ; arguments in correct order
invokevirtual java/io/PrintStream/println(F)V
return

.end method

4.8 Chapter Review
� The location of the instruction currently being executed is stored in the program counter (PC)

inside the CPU. Under normal circumstances, every time an instruction is executed, the PC is
incremented to point to the immediately following instruction.

� Certain instructions can alter the contents of the PC and thus cause the computer to change
its execution path. These statements are often called branch statements or goto state-
ments.

� Any statement that is the target of a branch must have a label; this is just a word, usually
beginning with a capital letter, that marks its location in the code.

� The goto statement executes an unconditional branch; control is immediately transferred to
the point marked by its argument.

� The if?? family of conditional branches may or may not transfer control to their target. They
pop an integer off the stack and, depending upon the size and sign of that integer, will either
branch or continue the normal fetch-execute cycle.

� The ?cmp family of statements are used to compare types other than integers. They pop two
members of the appropriate type off the stack and push an integer with value 1, 0, or -1,
depending on whether the first argument is greater than, equal to, or less than the second. This
integer can then be used by a following if?? instruction.

� The if icmp?? instructions combine the functions of an icmp statement with the conditional
branches of the if?? family into a single instruction.

� Higher-order control structures such as if/else statements and while loops can—in fact, must—
be implemented at the assembly language level using conditional and unconditional branches.

� The lookupswitch and tableswitch statements provide a way to execute multiway branch
statements that may be more efficient ways of implementing case or switch statements than a
series of if/else statements.

� Subroutines work by pushing the current value on the PC onto the stack and then returning
to the previously saved location at the end of the subroutine. In jasmin, these correspond to
the jsr and ret instructions, respectively. Unlike most other machines, the ret instruction
expects to find its return location in a local variable for security reasons. Therefore, the first
operation in a subroutine is usually the astore operation to store the (pushed) return location
from the stack to a local variable.
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4.9 Exercises
1. Why won’t the JVM let you load an integer into the PC directly?
2. How can structured programming concepts be implemented in assembly language?
3. Is a “branch if greater than 0 or less than 0” instruction available in the JVM instruction set?

If not, how would you implement it?
4. Is NaN (not a number) greater or less than 0.0?
5. How do you build an if/else-if/else-if/else control structure in jasmin?
6. What’s the difference between goto and goto w? Is there a corresponding ifne w?
7. The code in Figure 4.8 uses irem to determine if a number is odd or even. Juola’s law of

multiple cat skinning states that there’s always at least one more way to do anything. Can
you find a way to use iand to determine if a number is odd or even? How about using ior?

8. How about using shift operations?
9. What is the error in Figure 4.14? What is the solution?

10. (For advanced programmers) Do the semantics of jsr and ret as presented in this chapter
support recursion? Explain.

4.10 Programming Exercises
1. Write a program to determine the largest power of 2 less than or equal to N .
2. There are (at least) two different approaches to writing the previous problem, one using shift

instructions and one using multiplication/division. Which one runs faster on your machine?
3. Write a program to determine the largest power of N that will fit into an integer local variable.

In addition, determine the largest power of N that will fit into a long local variable. How can
you tell when an overflow occurs?

4. Write a program to implement RSA encryption and decryption (you’ll probably have to look
this up on the Web) using the key N = 13*17 and e = 11.

5. a. Write a program to test how good the random number generator is. In particular, it should
produce all outputs with about the same frequency. Generate 100,000 numbers (randomly)
from 1 to 10. The least frequent number should be at least 90% as frequent as the most
frequent one. How good is your generator?

b. Find values of a, c, and m that produce a good generator.
c. Find values of a, c, and m that produce a bad generator.
d. (For advanced programmers) Run a chi-squared test on the output of your generator to

determine how good it is.
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General Architecture
Issues: Real Computers

5.1 The Limitations of a Virtual Machine
As a virtual machine, the JVM has been designed to be cleanly and simply implementable on
most real computers. In some ways, the designers have succeeded brilliantly—the JVM is a very
simple and easily understandable architecture, and one of the best machines for teaching computer
organization and architectures. However, this simplicity is achieved, in part, by ignoring some
of the real-world limitations of actual computer chips. For example, every method in the JVM is
presumed to run in its own self-contained environment; changing a local variable in one method
will not affect any other method. By contrast, on a physical computer, there is normally only
one CPU and one bank of main memory, which means that two functions running at the same
time within the CPU might compete for registers, memory storage, and so forth. You can imagine
the chaos that might result if a check-writing program started picking up the data from, say, a
computer game and started printing out checks payable to Starfleet Academy for the number of
remaining photon torpedoes.

Similarly, issues of machine capacity are not issues for the JVM or similar virtual machines;
the JVM machine stack has, for all practical purposes, an unlimited depth and an unlimited capacity
for local variables. By contrast, the PowerPC (the chip inside a gaming console and until recently
inside a Macintosh) has only 32 registers in which to perform calculations, and a Pentium-based
Windows PC has even fewer.

Another major issue that the JVM can safely ignore is speed. To run a JVM program faster,
you just run a copy of the JVM on a faster physical chip. Building a faster physical chip, by
comparison, requires a difficult (and fiercely competitive) job of engineering. Engineers at Intel
and Advanced Micro Devices (or any other chip manufacturing company) are always looking for
edges that will let their chips run faster. Of course, with some of the most highly trained engineers
in the world working on this problem, the details of how to do this are beyond the scope of this
textbook, but the following sections will explore some ways of optimizing the components of a
computer to improve its performance.

115
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5.2 Optimizing the CPU
5.2.1 Building a Better Mousetrap
The most obvious way to get more performance out of the computer is simply to increase the
overall performance numbers—for example, increasing the word size of the computer from 16
bits to 32 bits. Adding two 32-bit numbers can be done in a single operation on a 32-bit machine
but will take at least two operations (and possibly more) on a 16-bit one. Similarly, increasing
the clock speed from 500 MHz to 1 GHz should result in every operation taking half as long, or
a 100% increase in machine performance

In practical terms, this is rarely as effective as one might think. For one thing, almost all
machines today have 32 bits, and a 32-bit register is accurate enough for most purposes. Using
a 64-bit register would let the programmer do operations involving numbers in the quadrillions
more quickly—but how often do you need a quadrillion of anything? In addition, making a faster
CPU chip might not be helpful if the CPU can now process data faster than the memory and bus
can deliver it.

More seriously, though, increasing performance this way is expensive and difficult. The
arithmetic hardware of a chip, for example, is limited by how fast it can be driven by the phys-
ical and electrical response characteristics of the transistors; trying to run them too fast will
simply break them. Even if it were physically possible to make faster transistors (which it of-
ten isn’t), the cost might be prohibitively high. This is particularly the case if one is trying to
make a 64-bit machine at the same time, which requires not only making extremely expen-
sive transistors, but also making twice as many of them. So, engineers have been forced to
look for performance improvements that can be made within the same general technological
framework.

5.2.2 Multiprocessing
One way to make computers more useful is to allow them to run more than one program at a
time. (This way, you can be writing a paper for homework and pause to load a Web page and
check some information at the same time that the computer is automatically receiving e-mail your
roommate sent you and someone else is downloading your home page to see your latest pictures.)
With only one CPU (and therefore only one instruction register), how does the computer juggle
the load?

Aside from buying another CPU—which is possible, but expensive and technically
demanding—a usual choice is time-sharing. As with time-sharing a vacation condominium,
time is divided into slices (weeks for the condo, perhaps milli- or microseconds for the CPU),
and you are allowed to use the equipment for one slice. After that slice of time ends, someone
else comes in and spends his or her week in the condo or on the CPU. In order to make this work,
the computer must be prepared to stop the program at any point, copy all the program-relevant
information (the state of the stack, local variables, the current PC, etc.) into main memory, and
then load another program’s relevant information from a different area. As long as the time slices
and the memory areas are kept separate (we’ll see how both are done a bit later), the computer
appears to be running several different programs at once.

For security reasons, each program must be able to run independently, and each program
must be prevented from influencing other programs. On the other hand, the computer needs to
have a programmatic way to swap user programs in and out of the CPU at appropriate times.
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Rather than relying on the good citizenship of each user program, the solution is to create a spe-
cial überprogram called the operating system, whose primary job is to act as a program control
program, as in “program to control [other] programs,” and enforcer of the security rules. The
operating system (abbreviated OS, as in “MacOS,” “OS X,” and even “MS-DOS”) is granted
privileges and powers not permitted to normal user-level programs, including the ability to in-
terrupt a running program (to stop it or shut it down), the ability to write to an area of memory
irrespective of the program using it, and so forth—these powers are often formalized as pro-
gramming models and define the difference between supervisor- and user- level privileges and
capacities.

5.2.3 Instruction Set Optimization
One way to speed up a computer is to make the individual instructions faster. A particular instruc-
tion that occurs very frequently, for example, might be “tuned” in hardware to run faster than the
rest of the instruction set would lead you to expect. This kind of optimization has already been
seen on the JVM, for example, with the special-purpose iload 0 instruction. This instruction is
both shorter (1 byte vs. 2) and faster than the equivalent iload 0 instruction. (Of course, almost
every method can be expected to use local variable #0, but relatively few will need, say, local
variable #245.) Depending upon the programs that are expected to be run, there may also be
kinds of instructions that are expected to be very common, and the designers can optimize for
that.

For example, on the multiprogramming system described above, “save all local variables to
main memory” might be a commonly performed action. A more accessible example of a common
and demanding application type is a graphics-heavy computer game. Good graphics performance,
in turn, demands a fast way of moving data (bitmaps) from main memory to the graphics display
peripheral. Loading data one word at a time into the CPU and then storing it (one word at a time)
to the graphics card is probably not as fast as a hypothetical instruction to move a large block of
data directly from memory to the graphics card. It shouldn’t surprise you to learn that this kind
of Direct Memory Access is supported by many modern computers as a primitive instruction
type. Similarly, the ability to perform arithmetic operations on entire blocks of memory (for
example, to turn the entire screen orange in a single operation) is part of the basic instruction set
of some of the later Intel chips. “Doing the same operation independently on several different
pieces of data” is a fundamental increase in processing power. By permitting parallel operations
to proceed at the same time (this kind of parallel operation is called SIMD parallelism, an
acronym for “Single Instruction, Multiple Data”), the effective speed of a program can be greatly
increased.

5.2.4 Pipelining
Another way to try to make a CPU work faster is somehow to pack more instructions into a given
microsecond. One possibility that suggests itself is to try to do more than one instruction at a time.
In order to do this, the CPU must have a much more complex, pipelined, fetch-execute cycle that
allows it to process several different instructions at once.

Wait a minute! How is this even possible? The trick is that, although the operations them-
selves have to be processed in sequence, each operation takes several steps, and the steps can be
processed in an assembly-line fashion. As a physical example, consider the line of people involved
in a bucket brigade for carrying water. Rather than carrying water the 40 feet from the well to the
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Figure 5.1 Unpipelined laundry: two loads in six hours
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Figure 5.2 Pipelined laundry: four loads in six hours

fire (a task that might take a minute), I instead accept a bucket from my neighbor and hand it off,
moving the bucket perhaps 4 feet. Although the bucket is still 36 feet from the fire, my hands are
now free to accept another bucket. It still takes each bucket a minute to get from the well to the
fire, but 10 buckets can be moving at once, so 10 times as much water per unit time gets to the
fire. A car assembly line is another good example; instead of putting cars together one at a time,
every worker has a single well-defined job and thousands of cars are put together in small steps.
More prosaically, if I have a lot of laundry to do, I can put one load in the washer; then, when it’s
done, I move that load to the dryer, place another load in the washer, and run both machines at
once.

This kind of task breakdown occurs in a modern high-end CPU. For example, while part
of the CPU (the dryer) is executing one instruction, a different part (the washer) of the CPU
already be fetching a different instruction. By the time the instruction finishes executing, the next
instruction is here and available to be executed. This procedure is sometimes called instruction
prefetch; an instruction is fetched before the CPU actually needs it, so it’s available at once.
Essentially, the CPU is working on two instructions at once and, as a result, can perform twice
as many instructions in a given time, as shown in figures 5.1 and 5.2. This doesn’t improve
the latency—each operation still takes the same amount of time from start to finish—but can
substantially improve the throughput, the number of instructions that can be handled per second
by the CPU as a whole.

The number of stages in a typical pipeline can vary from computer to computer in general,
newer, faster computers have more stages in their pipeline. As an example, a typical mid-range
PowerPC (model 603e, for example) uses a four-stage pipeline and so can handle up to four
instructions at once. The first stage is the fetch stage, in which an instruction is loaded from
program main memory and the next instruction to be performed is determined. Once an instruction
has been fetched, the dispatch stage analyzes it to determine what kind of instruction it is, gets
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the source arguments from the appropriate locations, and prepares the instruction for execution
by the third, execute stage of the pipeline. Finally, the complete/writeback phase transfers the
results of the computation to the appropriate registers and updates the overall machine state as
necessary (figure 5.3).

1 μs 2 μs 3 μs 4 μs 5 μs

fetch
dispatch
execute

instruction 1 instruction 2 instruction 3

instruction 1 instruction 2 instruction 3

instruction 1 instruction 2 instruction 3

writeback  instruction 1 instruction 2 instruction 3

6 μs

Figure 5.3 PowerPC-like pipeline

In order for this process to work as efficiently as possible, the pipeline must be full at
all times, and data must continue to flow smoothly. First, a pipeline can only run as fast as
its slowest stage. Simple things, like fetching a particular instruction, can be done as quickly
as the machine can access memory, but the execution of instructions, especially long, involved
ones, can take much more time. When one of these instructions needs to be executed, it can
cause a blockage (sometimes called a “bubble”) in the pipeline as other instructions pile up
behind it like cars behind a slow-moving commuter. Ideally, each pipeline stage should con-
sistently take the same amount of time, and designers will do their best to make sure that this
happens.

The other easy way to break a pipeline is by loading the wrong data, fetching from the wrong
location in memory. The worst offenders in this regard are conditional branches, such as “jump
if less than.” Once this instruction has been encountered, the next instruction will come either
from the next instruction in sequence or from the instruction at the target of the jump—and we
may not know which one. Often, in fact, we have no way of telling which, because the condition
depends on the results of a computation ahead of us in the pipeline and therefore unavailable.
Unconditional branches are not too bad if the computer has a way of identifying them quickly
enough (usually in the first stage of the pipeline). Returns from subroutines create their own
problems, because the target of the return is stored in a register and again may not be available. In
the worst case, the computer may have no choice but to stall the pipeline until it is empty (which
can seriously affect performance, since branch instructions are very common). For this reason, a
lot of research has focused on the ability to predict the target of a branch well enough to continue
and keep the pipeline full. Branch prediction is the art of guessing whether or not the computer
will take a given branch (and to where). The computer will continue to execute instructions based
upon this guess, producing results that may or may not be valid. These results are usually stored
in special locations within the pipeline and then later copied to registers if the guess is confirmed
correct. If the guess is wrong, these locations (and the pipeline) are flushed and the computer
restarts with an empty pipeline. If you think about it, even the worst-case scenario is no worse
than having to stall the pipeline—and if the computer guesses right, then some time has been
saved.
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Even a poor algorithm should be able to guess right about 50% of the time, since a branch
is either taken or not taken. However, it’s often possible to guess much more accurately by
inspecting the program as a whole. For example, the machine code corresponding to a for loop
usually involves a block of code and a (backward) branch at the end to the start of the loop. Since
most such loops are executed more than once (often hundreds or thousands of times), the branch
will be taken many, many times and not taken once. A guess of “take the branch” in this case could
be accurate 99.9% of the time without much effort. A more sophisticated analysis would look at
the history of each individual branch instruction. If the branch instruction has been executed twice
and has not been taken in either case, then it might be a good bet that it won’t be taken this time,
either. By adapting the amount and kind of information available, engineers have become very
accurate (well above 90%) at guessing, enough to make pipelining a crucial aspect of modern
design.

5.2.5 Superscalar Architecture
The other technique concerning multiple different instructions involves duplication of pipeline
stages or even entire pipelines. One of the difficulties in pipelining is keeping the stages bal-
anced; if it takes substantially longer to execute a particular instruction than it did to fetch
it, the stages behind it may back up. The idea underlying superscalar processing is to per-
form multiple different instructions at once in the same clock cycle. To fully understand this,
we have to generalize the fetch-execute cycle somewhat and pretend that instead of just load-
ing one instruction at a time, we have a queue of instructions waiting to be processed. (For
obvious reasons, this is sometimes called an instruction queue—and there’s no pretense in-
volved.) A typical CPU will have separate modules duplicating possibly time-consuming op-
erations. A good analogy involves adding a lane to a busy highway, allowing more traffic to
flow. Alternatively, think of the way a typical bank operates, with several tellers each taking
the next customer. If one customer has a serious problem, requiring more time than expected,
then other tellers can take up the slack. Unlike the SIMD parallelism described earlier, this is
an example of MIMD (Multiple Instruction, Multiple Data) parallelism. While one pipeline is
performing one instruction (perhaps a floating point multiplication) on a piece of data, another
pipeline can be doing an entirely different operation (perhaps loading a register) on different
data.

S I D E B A R
The Connection Machine
If you want to see a really scary version of parallel operations, check out the architecture of
the Connection Machine, built by Thinking Machines Corporation in the late 1980s. The CM-1
(and the later, faster CM-2) model incorporates up to 65,536 different “cells,” each a 1-bit in-
dividual processor. All cells are connected to a central unit called the “microcontroller,” which
issues the same “nanoinstructions” to each one. The CM-5 model can only handle 16,384 dif-
ferent processors, but each one is as powerful as a Sun workstation. These processors run in-
dividually but are connected to a very fast, flexible internetwork to allow high-speed parallel
computation.

The original CM-1 involved a custom cell architecture manufactured in groups of 16 cells to a
chip. These chips, in turn, were connected to each other in the form of a 12-way hypercube to create
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a very dense network fast enough to keep all the cells informed about each other. Conceptually,
the Connection Machines were an attempt to explore the possibilities of massive parallelism,
as exemplified by the human brain, and to transcend some of the traditional limits of the Von
Neumann architecture. A typical neuron isn’t capable of very powerful computations, but the 1012

neurons in a normal human can do amazing things. In practical terms, the CM-1 can be seen as
an example of 64K-way SIMD parallelism. Unfortunately, the cost of the special-purpose chips
was prohibitive, so the CM-5 switched to a smaller number of commercial SPARC chips, thereby
abandoning SIMD processing (like the human brain) in favor of MIMD. The descendants of the
CM-5 are very active today—for example, in the kind of parallel processing done by a Beowulf
cluster.

5.3 Optimizing Memory
To make sure that the computer runs as quickly and smoothly as possible requires two things. First,
the data the computer needs should be available as quickly as possible so that the CPU doesn’t need
to waste time waiting for it. Second, the memory should be protected from accidental rewriting
so that, for example, the user mail agent doesn’t misread data from a Web browser and mail the
contents of the page you’re looking at to someone else.

5.3.1 Cache Memory
On a computer with a 32-bit word size, each register can hold 232 (about 4 billion) patterns. In
theory, this allows up to about 4 gigabytes of memory to be used by the processor. In practice, the
amount installed on any given machine is usually much less, and the amount actually used by any
given program is usually smaller yet. Most importantly, the program generally uses only a small
fraction of the total program size at any given instant (for example, the code in a Web browser to
download a page is used only when you actually click a button).

Memory comes in many different speeds; that is, the amount of time that it takes to retrieve
a bit from memory varies from chip to chip. Because speed is valuable, the fastest memory chips
also cost the most. Because most programs use a relatively small amount of memory at a time,
most real computers use a multilevel memory structure. Although the CPU chip itself may be
running at 2 or 3 GHz, (executing one instruction every 300 to 500 trillionths of a second),
most memory chips are substantially slower, sometimes taking 50 or 100 billionths of a second
(a twentieth to a tenth of a microsecond) to respond. This may still seem fast, but it is about 400
times slower than the CPU chip itself. To reduce this memory access bottleneck, the computer
will also have a few chips of very-high-speed memory but with much smaller capacity (usually a
few megabytes at most) called cache memory. (The word is pronounced “CASH” memory, from
the French verb cacher, meaning “to hide.”) The basic idea is that frequently and recently used
memory locations are copied into cache memory so that they are available more quickly (at CPU
speeds!) when the CPU needs them. The proper design and use of cache memory can be a tricky
task, but the CPU itself takes care of the details for you, so the programmer doesn’t need to worry
about it. Most computers support two different kinds (levels) of cache: level one (L1) cache is
built into the CPU chip itself and runs at CPU speed, while level two (L2) cache is a special set
of high-speed memory chips placed next to the CPU on the motherboard. As you might expect,
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L1 cache is faster and more expensive, which means that it is the smallest but can provide the
greatest performance boost.

5.3.2 Memory Management
With this same 32-bit word size, a computer can write to a set of 232 different memory locations.
(On the 64-bit computer, of course, there are 264 different addresses/locations.) These define the
logical memory available to the program. Of course, the amount of physical memory available
on any computer depends on the chips attached, which in turn depends at least partly on how
much money the computer’s owner is able and willing to spend. Rather than referring to specific
physical locations in memory, the program refers to a particular logical address which is reinter-
preted by the memory manager to a particular physical location, or possibly even on the hard
disk.

Normally, memory management is considered to be a function of the operating system,
but many computers provide hardware support in the interests of speed, portability, and security.
Security concerns, though, make it almost essential that the user-level programs not have access
to this hardware. This means that most of the interesting parts of the memory system are invisible
to the user and are available only to programs operating in supervisor mode. As far as the user is
concerned, memory is simply a flat array the size of logical memory, any element of which can be
independently accessed. There is little fuss or complexity involved. This is important enough to be
worth repeating: user-level programs can assume that logical addresses are identical to physical
addresses and that any bit pattern of appropriate length represents a memory location somewhere
in physical memory, even if the real physical memory is considerably larger or smaller than the
logical address space.

Under the hood, as it were, is a sophisticated way of converting (and controlling the con-
version of) logical memory addresses into appropriate physical addresses. This conversion al-
lows the computer to access memory locations that directly correspond to the machine’s phys-
ical (real) memory layout This process uses a set of address substitutions to convert one ad-
dress space (logical memory) into another (physical memory). The resulting memory process
and memory address space is thus usually called virtual memory. For simplicity of expla-
nation, we’ll focus on a somewhat abstracted memory manager taken broadly from a 32-bit
PowerPC. There are several different methods of performing this sort of conversion, as detailed
here.

5.3.3 Direct Address Translation
The simplest method of determining the physical address, direct address translation, occurs
when hardware address translation has been turned off (only the supervisor can do this, for
obvious reasons). In this case, the physical address is bit for bit identical to the logical address,
and only 4 gigabytes of memory can be accessed. If two processes try to access the same logical
address, there’s no easy way to prevent it. This is usually done only in the interests of speed on a
special-purpose computer expected to run only one program at a time; otherwise, most operating
systems enforce some kind of address transtation.

5.3.4 Page Address Translation
To prevent two processes from accessing the same physical address (and if address translation
is enabled), the memory management system of the CPU actually expands logical address space
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into a third space, called virtual address space. For example, we could define a set of 24-bit
segment registers to extend the value address. In our case, the top 4 bits of the logical address will
define and select a particular segment register. The value stored in this register defines a particular
virtual segment identifier (VSID) of 24 bits (plus a few extra fields). The virtual address is
obtained by concatenating the 24-bit VSID with the lower 28 bits of the logical address, as shown
in figure 5.4. This creates a new 52-bit address capable of handling more memory and thereby
prevent collisions.

logical address (in bits)

11 bits 28 bits

segment register table (16 bits)

0

1

2

virtual segment identifier
(52 bits)

page identifier (40 bits) offset (12 bits)

page table (20 bits)

physical address (32 bits)

Figure 5.4 Diagram of idealized PowerPC-like virtual memory structure

For example, let’s say that the computer wants to access memory location 0x13572468
(a 32-bit address). The top 4 bits (0x1) indicate that the computer should look at segment
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register #1. Suppose further that this register contains the (24-bit) value 0xAAAAAA. Con-
catenating this to the original memory location yields the 52-bit VSID 0xAAAAAA3572468.
On the other hand, if another program wanted to access the same logical address, but the value
in the segment register were instead 0xBBBBBB, the VSID for this second program would be
0xBBBBBB3572468. Thus, two different programs, accessing the same logical location, would
nevertheless get two separate VSIDs. This explains how local variable #1 could be in two different
memory locations (VSIDs) for two different programs.

Of course, no machine yet built has had 252 bytes of memory (that would be about
4,000,000,000,000,000 bytes, 4 million gigabytes, or 4 petabytes—now there’s a word to drop
into dinner conversations!). What physical memory is present is actually addressed through yet
another table. Physical memory is divided into pages of 4196 (212) bytes each. Each 52-bit virtual
address can be thought of as a 40-bit page identifier (this is the 24-bit VSID and a 16-bit page
identifier extracted from the original logical address), plus a 12-bit offset within a given page.
The computer stores a set of “page tables,” in essence a hash table that stores the physical location
of each page as a 20-bit number. The 40-bit page identifier is thus converted, via a table lookup,
to a 20-bit physical page address. At the end of this process, the final 32-bit physical address is
simply the page address plus the offset.

It’s not quite as confusing as it sounds, especially if you look at figure 5.4. It involves,
however, a potentially large amount of work. So, why does the computer go through such an
involved process? There are several advantages. First, not every page in virtual memory need be
stored in physical memory. When pages are not often used, it may be possible to “swap them out”
and store them on a long-term storage device such as a peripheral. (This is the original reason for
talking about “virtual memory,” the idea that the computer can access “memory” that isn’t really
there, but instead is on the hard drive. This lets the computer run programs that are much larger
than would physically fit into memory at the expense of speed.) Another advantage is that the
same logical address can be made to refer to different physical addresses by changing the value in
the segment registers. Finally, this allows a certain degree of security to be added on a page-by-
page basis. A given page (in the page table) can be labeled “supervisor-only,” meaning that only
supervisor-level programs can read or write to locations on that page. A page can similarly be
labeled “read-only” (programs can load data from locations on that page but not save to locations
on that page); “supervisor write-only” (user-level programs can load, but only supervisor-level
programs can save); or the most inclusive, “read/write” (where any program can load or save).
This will keep user-level programs from, for instance, scribbling over crucial operating system
data.

5.4 Optimizing Peripherals
5.4.1 The Problem with Busy-Waiting
To get the best performance out of peripherals, they must not be permitted to prevent the CPU
from doing other useful stuff. Computers are so fast that they can usually outrun almost any other
physical process. As a simple example, a good human typist can type about 120 words per minute,
which means approximately one character every tenth of a second. A 1 GHz computer can add
100,000,000 numbers together between two keystrokes. Thus, a computer should be able to do
lots and lots of number crunching while still keeping up with the word processing program. But
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how does the computer respond to (infrequent, by its standards) keystrokes in a timely fashion
while still doing its job?

A dumb method of handling this involves polling, checking to see if anything useful has
happened at periodic intervals. In high-level pseudocode, the operation would look like this:

while (no key is pressed)
wait a little bit

figure out what the key was and do something

Polling is an inefficient use of the CPU, because the CPU has to spend a lot of time repeatedly
checking to determine whether or not something has happened. For this reason, it’s sometimes
called busy-waiting, because the computer is “busy” waiting for the key to be pressed and can’t
do any other useful work.

5.4.2 Interrupt Handling
A more intelligent way of dealing with an expected future event is to set up a procedure to follow
when the event occurs and then to do whatever else needs doing in the meantime. When the
event happens, one will interrupt the current task to deal with it, using the previously established
procedure.

This is more or less how most computers deal with expected but unpredictable events. The
CPU establishes several different kinds of interrupt signals that are generated under preestab-
lished circumstances such as the press of a key. When such an event occurs, the normal fetch-
execute cycle is changed slightly. Instead of loading and executing the next instruction (defined
in the PC), the CPU will consult a table of interrupt vectors that contains a program loca-
tion for each of the possible interrupts. Control is then transferred (as though through a call
or jsr to a subroutine) to that location, and the special interrupt handler will be executed
to do whatever is needful. (On computers with official programming modes, this also usually
marks the point at which the computer switches from user to supervisor mode.) At the end
of the interrupt handler, the computer will return (normally, as from a subroutine) to the main
task.

On most computers, the possible interrupts for a given chip are numbered from 0 to a small
value (like 10). These numbers also correspond to locations programmed into the interrupt vector.
When interrupt number 0 occurs, the CPU will jump to location 0x00 and execute whatever code
is stored there. Interrupt number 1 would jump to location 0x01, and so forth. Usually, all that is
stored at the interrupt location itself is a single branch instruction to transfer control (still inside
the interrupt handler) to a larger block of code that does the real work.

This interrupt handling mechanism can be generalized to handle system-internal events as
well. For example, the time-sharing aspect of the CPU can be controlled by setting an internal
timer (a detailed discussion of how such timers might work will be presented in chapter 9). When
the timer expires, an interrupt will be generated, causing the machine, first, to switch from user
to supervisor mode and, second, to branch to an interrupt handler that swaps the programming
context for the current program out and the context for the next program in. The timer can then
be reset and computation resumed for the new program.
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5.4.3 Communicating with the Peripherals: Using the Bus
As discussed in chapter 1, data must move between the CPU, memory, and peripherials using
one or more buses. This is analogous to traveling from your house to the store using one or more
roads; depending upon the quality of the roads, the skill of the drivers, and the amount of traffic,
the trip can be faster or slower. Whether you’re a computer or a shopper, you would like the trip
to be as fast as possible.

There are two key issues involved in the typical use of a bus. The first is that, electrically,
a bus is usually just a set of wires connecting all the components together at the same time. This
means that a bus acts as a small-scale broadcast medium, where every peripheral gets the same
message at the same time. The second is that only one device can use the bus at one time; if the
keyboard and hard drive both try to send data, neither will succeed. To use a bus successfully
requires discipline from all parties involved. This discipline usually takes the form of a strict
protocol involving communication in a stylized, formal way. A typical bus protocol might involve
the CPU sending a START message and then an identifier for a particular device. Every device
will receive both of these messages, but only the specific device will respond (typically with some
sort of ACKNOWLEDGE) message. All other devices have been warned by this START message
not to attempt to communicate until the CPU finishes and sends a similar STOP message. Only the
CPU and the specific device are allowed to use the bus during this time, which reduces contention
and traffic flow problems.

5.5 Chapter Review
� As a virtual machine, the JVM is freed from some practical limitations that affect the design

and performance of physical chip-based architectures.
� With the chip market as competitive as it is, engineers have developed many techniques to

squeeze better performance out of their chips. These tend to involve improvements in both
security and speed.

� One way to get better user-level performance is to improve the basic numbers—size, speed,
latency—of the chip, but this is usually a difficult and expensive process.

� Another way to improve the performance of the system (from the user’s perspective) is to allow
it to run more than one program at a time. Computers can do this via time-sharing, where the
program runs in very short spurts and programs are swapped in and out.

� When engineers know what sorts of programs will be run on a to-be-designed computer, they
can create special-purpose instructions and hardware specifically to support those programs.
An example of such a program would be computer games, which place specific demands
on the graphics processing capability of a computer. The Pentium processor provides basic
machine-level instructions to speed up graphics performance.

� Performance can also be increased by parallelism, the execution of more than one instruction
at a time. SIMD parallelism differs from MIMD parallelism in the kinds of instructions that
can be simultaneously executed.

� Significant performance enhancement can be obtained by a form of parallelism called pipelin-
ing, in which the fetch-execute cycle is broken down into several stages, each of which is in-
dependently (and simultaneously) executed. For example, by executing one instruction while
fetching the next, the computer can get 100% speedup in throughput, even while latency
remains the same.
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� Superscalar architecture, in which entire pipeline stages are replicated several times, provides
another way to speed up processing by doing the same thing several times simultaneously.

� Memory access time can be reduced by using cache memory to speed up access to frequently
used items.

� Memory management techniques such as virtual memory and paging can provide computers
with access to greater amounts of memory more quickly and securely.

� By preventing the computer from wasting time checking to determine if an expected event has
happened, interrupts can achieve substantial performance increases.

� A suitably designed bus protocol can speed up the movement of data within the computer by
reducing competition for traffic slots.

5.6 Exercises
1. What kinds of storage limitations does a physical computer have that the JVM stack can

ignore?
2. a. What advantages would a 128-bit CPU have over a 64-bit CPU?

b. How significant are these advantages?
3. Would a special-purpose instruction to store the entire contents of the stack in memory and

retrieve the contents from memory be helpful to the JVM?
4. What enhancement(s) would you make to the JVM architecture if you were in charge? Why?
5. Give two real-world examples of pipelining in addition to those mentioned in the text.
6. How would you apply branch prediction to the lookupswitch instruction?
7. Give two real-world examples of superscalar processing in addition to those given in the text.
8. How should a cache determine what items to store and what items to discard?
9. Explain how memory management allows two programs to use the same memory location at

the same time without conflict.
10. How would memory-mapped I/O interact with a virtual memory system?
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The Intel 8088

6.1 Background
In 1981, IBM released the first generation of its Personal Computer, later known to all and sundry
as the IBM-PC. As a relatively low-cost computer produced by a company whose name was a
household word (Apple already existed but was only known to the hobbyist market, and few
other computer companies you have heard of even existed at the time), it was a runaway success,
dominating business purchases of “microcomputers” almost instantly.

At that time the computer was sold with only 64K of RAM and no hard drive (people
loaded programs onto the computer from ( 51/4-inch floppy disks). The chip inside this machine,
manufactured by the Intel corporation, was designated model number 8088. Today, the legacy
of the 8088 persists in computers all over the world that are still based on the original 8088
design.

Technically, the 8088 was a second-generation chip based on the earlier 8086 design. The
differences between the two chips were subtle; both were 16-bit computers with a segmented
memory architecture. The big difference between them was that the 8086 had a 16-bit data bus,
so the entire contents of a register could be flushed to memory in a single bus operation. The
8088 had only an 8-bit data bus, so it took a little longer to load or store data from the CPU into
memory, but the chip was also a little cheaper to produce, which reduced the overall price of the
IBM-PC (and hence improved its marketability).

With the success of the 8088-based IBM-PC, Intel and IBM had a ready market for later and
improved chips. The 80286 (the 80186 was designed but never sold well as the base for a personal
computer) incorporated security features into an otherwise laughably insecure 8088, as well as
running much more quickly. This chip was the basis for the IBM-PC/Advanced Technology, also
known as the PC/AT.

The 80386 increased the number of registers and made them substantially larger (32 bits
each), making the chip even more powerful. Further improvements followed with the 80486 and
the Pentium (a renamed 80586), which will be discussed in detail in chapter 8. These later chips,
plus the original, are sometimes called the 80x86 family.

To a certain extent, the 8088 is of historical interest only; even as a low-cost microcontroller
(for example, the kind of chip that figures out how brown your toast should be or which floor to

128
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stop the elevator on), it competes with many other architectures based on more modern principles
and technology. However, later generations of the Intel 80x86 family have all adhered to the
principle of backward compatibility in the interest of preserving their existing customer base.
For example, in 1995, when the Pentium was introduced, millions of people were running software
on their existing 80486 systems. Rather than force people to buy new software as well as new
hardware (which might have caused them to buy software and hardware from another company,
like Apple), the designers made sure that programs written for the 486 would still run on the
Pentium. Since this decision was made at every stage, programs written in 1981 for the IBM-
PC should still run on a modern P4. Of course, they won’t be able to take advantage of modern
improvements such as increased speed (the original PC ran at 4 Megahertz, while a modern system
runs 1000 times faster), improved graphics resolution, and even modern devices such as mice,
USB keychain drives, and so forth. But because of backward compatibility, an understanding of
the 8088 is important to comprehand the modern Pentium architecture.

6.2 Organization and Architecture
6.2.1 The Central Processing Unit
At the grossest possible level of abstraction, the CPU of the Intel 8088 closely resembles that of
most other processors, including the JVM (figure 6.1). Data is stored in a set of general-purpose
registers, operated on by the instructions fetched and decoded inside the control unit, in keeping
with the laws of arithmetic as defined by the circuitry of the ALU. There are, however, a few
subtle but significant differences.

The first difference is that because the 8088 is a physical chip, its capacities (for example,
the number of registers) are fixed and unchangeable. The 8088 contains eight so-called “general-
purpose” registers. Unlike the JVM stack, these are not organized in any particular way, and they
are given names instead of numbers. These registers are named

AX BX CX DX
SI DI BP SP

Although these are called “general-purpose” registers, most of them are tuned with ad-
ditional hardware to make specific operations run faster. For example, the CPU has special-
purpose instructions tuned to use CX as a loop counter, and the AX/DX pair is the only pair
optimized for integer multiplication and division. The SI and DI registers support special high-
speed memory transfers (SI and DI stand for source index and destination index, respectively),
and the BP register is usually used for stack instructions for local function variables and function
parameters.

In addition to these registers, the 8088 has several special-purpose registers that can’t be used
for general computation. The most important of these is probably the IP (instruction pointer)
register, which holds the location of the next instruction to be executed. (On other machines,
this register might be called the program counter or PC, as they’re synonymous.) Four segment
registers (CS, SS, DS, and ES) are used to enable access to more memory and to structure memory
access. Finally, the FLAGS register holds a set of individual bits that describe the result of the
current computation, such as whether or not the last operation resulted in a zero, a positive, or a
negative number.
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Instruction Register (IR)

Instruction Pointer (IP)

Data Segment (DS)

Code Segment (CS)

Stack Segment (SS)

Extra Segment (ES)

FLAGS

SI

DI

BP

SP

AH AL

BH BL

CH CL

DH DL

AX

BX

CX

DX

Control Unit ALU

optional FPU coprocessor chip

Figure 6.1 Block diagram of the 8088 CPU

All of these registers are 16 bits wide. This means that the 8088 has a 16-bit word size and
that most operations (can) deal in 16-bit quantities. If for some reason a programmer wants to use
smaller representations, she can use fractions of the general-purpose registers. For example, the
AX register can be subdivided and used as two 8-bit registers, called the AH (high) and AL (low)
registers (figure 6.2). There are all just (sections of) the same register, so changes in one will effect
changes in all. If you loaded the value 0x5678 into the AX register, this would, as a side effect,
set the value in AL to 0x78 and the value in AH to 0x56. Similarly, clearing the AL register at
this point would set the value in the AX register to 0x5600. This kind of subdivision is valid for
all general-purpose registers; the BX register can be divided into the BH and BL registers, and so
on.

AX register (16 bits wide)

AH register (8 bits wide) AL register (8 bits wide)

Figure 6.2 Register subdivision in the 8088

Almost all values in the 8088 registers are stored in 16-bit (or smaller) signed two’s com-
plement notation. Unlike the JVM, the 8088 also supports unsigned integer notation. In most
operations (for example, moving data around, comparing whether two bit patterns are the same,
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or even adding two patterns), it doesn’t matter whether or not a given bit pattern is supposed
to be a signed or an unsigned quantity, but for the few in which it is important, there are two
different operations to handle the two cases. As an example, to multiply two unsigned quantities
uses the mnemonic MUL; to multiply two different signed quantities, one uses the mnemonic
IMUL.

The registers defined above handle most of the work that a 8088 computer might perform,
from memory accesses, to control structures and loops, to high-speed integer processing. For
high-speed floating point processing, a separate section of the chip is designed to be a logically
separate Floating Point Unit (FPU). This FPU has its own set of eight registers, each 80 bits
wide for high-precision operations, structured like a stack. The data stored in these registers uses
a different, and specialized, kind of floating point representation, similar to standards discussed
earlier, but with more bits for both the mantissa and the exponent. There are also a few additional
registers, both as part of the FPU (for example, the FPU has its own instruction register) and for
certain special-purpose operations.

6.2.2 The Fetch-Execute Cycle
The fetch-execute cycle on the 8088 is almost identical to that on the JVM; the value stored in
the IP register is used as a memory location, and the value stored in that location (the one pointed
to by the IP register) is copied (“fetched”) into the instruction register. Once the instruction value
has been fetched, the value in the IP register is incremented (to point to the next instruction) and
the fetched instruction is executed by the CPU.

The only limitation is the size of the IP register itself. With only 16 bits, the IP register
can access only about 65,000 different locations, and hence only (at most) about 65,000 different
instructions. This would appear to place stringent limits on the size of programs; in particular, no
program could be larger than 64K. Fortunately, the memory management techniques described
in the next section increase this limit somewhat, essentially by recruiting extra bits from other
registers to increase the address space.

6.2.3 Memory
On a computer with a 16-bit word size, each register can hold 216 (about 65,000) patterns. This
means that any register holding a memory address (for example, the IP) can point to only 65,000
different locations, which by modern standards is hardly enough to be worth the effort. (A quick
reality check: the text processing software used to typeset this book takes up 251,864 locations,
excluding the editing and printing software. Eeek.) Even in 1981, 64Kbytes of memory was
regarded as a very small amount.

There are several solutions to this problem. The easiest one is to make each pattern/location
refer not to a single byte of memory, but to a word (or even a larger unit). This reduces efficiency
when storing data items smaller than a word (such as characters in a string) but makes it possible
to address more memory.

The designers of the 8088 used a slightly more complex approach. The memory of the 8088
was divided into segments of 64 Kbytes each. Each segment contains exactly as many memory
bytes as can be addressed by a normal 16-bit register, but these addresses are interpreted relative
to a base address defining a particular segment. As you might expect from the name, the segment
definitions are stored in the so-called segment registers.
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Unfortunately, the math at this point gets a little tricky. The segment registers themselves are
16 bits wide. The actual (sometimes called the absolute) address used is calculated by multiplying
the value in the relevant segment register by 16 (equivalent to shifting its value to the left by four
binary places, or one hexadecimal place) and then adding it to the value in the appropriate
general-purpose register or IP (called the offset). For example, if the value stored in the segment
register were 0xC000, this would define a segment starting value of 0xC0000. An offset of
0x0000 would correspond to the (20-bit) location 0xC0000, while an offset of 0x35A7 would
correspond to the absolute location 0xC35A7. Each of these locations corresponds to exactly
1 byte.

Address     C000:35A7
segment offset

C 0 0 0 0

3 5 A 7+

Actual Address      C     3     5     A    7

Figure 6.3 Segment: offset calculations illustrated

There is no particular reason that a segment must start at an even multiple of 64K. Loading
a value of 0x259A would define a segment starting at the value of 0x259A0. In fact, any location
ending with a hexadecimal value of 0 is a possible starting location for a segment. In the segment
defined above, the segment value of 0x259A plus a hypothetical offset 0x8041 would yield an
absolute address of (0x259A0+0x8041) or location/byte 0x2D9E1. For simplicity, such address
pairs are often written in the form segment:offset, such as 259A:8041. In this scheme, legitimate
addresses run from 0x00000 (0000:0000) to 0xFFFFF (F000:FFFF). It should also be noted that
there are usually many segment:offset pairs that refer to a given location. The location F000:FFFF
is also the location FFFF:000F, as well as F888:777F (figure 6.3).

In common practice, the four segment registers are used in conjunction with different offset
registers to define several different types and uses of memory. They correspond (roughly) to

� CS (code segment): The code segment register is used in conjunction with the IP (instruction
pointer) to define the location in memory of the executable machine instructions (the program
code).

� DS (data segment): The data segment register is used in conjunction with the general-purpose
registers AX, BX, CX, and DX to control access to global program data.

� SS (stack segment): The stack segment register is used in conjunction with the stack registers
(SP and BP) to define stack frames, function parameters, and local variables, as discussed
below.

� ES (extra segment): The extra segment register is used to hold additional segments—for ex-
ample, if a program is too large to fit into a single code segment.
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Even with this segmented memory model, the computer could still access only 220 different loca-
tions, or 1 megabyte. Even this much memory wasn’t available in practice, since (by design) some
of this megabyte was reserved as video memory instead of general-purpose program memory.
In practical terms, programmers could only access the first 512K of memory for their programs.
Fortunately, by the time computers with more than 1 megabyte of memory became financially
practical, the design of the 8088 had been superseded by later generations of the same family,
including the Pentium. Memory access on the Pentium is substantially different, in part to avoid
this 1-megabyte restriction.

6.2.4 Devices and Peripherals
The modern computer can be attached to a bewildering array of peripherals, ranging from simple
keyboards and monitors through business accessories such as scanners and fax machines through
truly unusual specialist devices such as vending machines, toasters, and medical imaging devices.
Because 80x86-based machines are so common, it’s not unusual to see almost any device being
designed and built to interface with a 8088.

From the computer’s (and computer designer’s) point of view, however, the task is simplified
somewhat by the use of standardized interface designs and ports. For example, many computers
come with an IDE controller chip built into the motherboard and attached directly to the system
bus. This controller chip, in turn, is attached to a set of cables that will plug into any IDE-
style drive. When the controller gets the appropriate signals (on the system bus), it interprets
these signals for the drive. Any manufacturer of hard drives can simply make sure that they
follow the IDE specifications and work with (almost) any PC. The PCI (Peripheral Component
Interconnect) provides similar standardization, connecting main memory directly to a variety
of devices. Perhaps the most widely used connection out there is the USB (Universal Serial
Bus) connection. This provides a standardized high-speed connection to any USB-supported
device, ranging from a mouse to a printer. The USB controller itself will query any new gadgets
attached to figure out their names, their types, and what they do (and how they do it). The
USB port can also provide power, as well as communicate with these devices at almost network
speeds. From the programmer’s point of view, however, the advantage is that one need only
write a program to communicate with the USB controller, greatly simplifying the task of device
communication.

6.3 Assembly Language
6.3.1 Operations and Addressing
The 8088 is considered to be a textbook example of CISC (Complex Instruction Set Computing)
at work. The set of possible operations that can be performed is large, and the possible operations
are themselves correspondingly powerful. One side effect of the CISC design is that some simple
operations can be performed in several different ways using different machine operations; this
usually means that Intel’s designers decided to provide a shortcut optimization for some specific
uses of registers.

Because registers are named, instead of numbered or indexed (as in the JVM), the basic
operation format is a little different. On the JVM, it is enough to simply say “add”; the two numbers
to be added (addends) are automatically on the top of the stack, and the result is automatically
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left at the top of the stack when the addition is complete. On the 8088, things are different; the
programmer must specify where the addends are stored and where the sum should be kept.

For this reason, most 8088 instructions use a two-argument format as follows:

MNEMONIC operand1, operand2 ; possible comment

Usually the first operand is called the destination operand (sometimes abbreviated dst),
and the second operand is called the source operand (abbreviated src). The fundamental idea
is that data is taken from the source (but the source is otherwise left unchanged), while the
computation result is left in the destination. So, to add (mnemonic: ADD) the value in CX to the
value in AX (and leave the resulting sum in AX), the 8088 assembly language instruction would
be

ADD AX, CX ; really means AX = AX + CX

Because there are eight general-purpose 16-bit registers, there are 64 (8 · 8) different ADD
instructions. But in fact, there are more, since one can also add 16-bit or 8-bit values, as in

ADD AH, BL ; AH = AH + BL

The 8088 also supports several different addressing modes or ways of interpreting a given
register pattern to refer to different storage locations. In the simplest examples, given above, are
the values stored in a register are the values used in the computation. This is sometimes called
register mode addressing. By contrast, one can also use immediate mode addressing, in which
the data to be used is written into the program itself, as in

ADD AX, 1 ; AX = AX + 1

Note that this makes sense only if the 1 is the second (src) operand. Trying to use immediate
mode addressing for the destination operand will result in an error. Also note that this is an example
of the power of CISC computing, since this operation would take two separate instructions on the
JVM—one to load the integer constant 1 and another to perform the addition.

Either immediate data or register values can also be used as memory addresses, telling
the computer not what the value is but where it can be found. For example, if location BX held
the address of a particular 8-bit value, we could add that value to the current value held in CL
with the following statement. The square brackets ([ ]) show that the register BX holds a value
to be used in indirect mode (we’ll get to direct mode presently) as the address of a location in
memory:

ADD CL, [BX] ; CL = CL + whatever value is
; stored in the location indexed
; by BX
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This is a tricky concept, so let’s explore it a little bit more. Notice that these two statements
do different things:

ADD BX, 1 ; increment BX
ADD [BX], 1 ; increment the value pointed to

; by BX

How do they differ? Let’s assume that the value stored in BX is 4000. Performing the
first operation would increment the value in BX itself, making it equal to 4001. By contrast,
the second operation would leave the value in BX alone (it stays 4000) but try to increment
the value stored at memory location 4000, whatever that value was. (Actually, there would be
an error here, for reasons we will discuss in section 6.4.1. But basically, although we know
that there is a value at location 4000, we don’t know whether it’s a byte, word, doubleword, or
something else. So how can the computer increment something whose size is unknown?) Similarly,
executing

ADD AX, [4000h] ; add the value stored in 4000h to AX

looks at memory location 0x4000 (the number in brackets is automatically interpreted as a hex-
adecimal quantity because of the trailing h) to figure out what the 16-bit quantity stored there
is and then adds that quantity—not 0x4000—to whatever is stored in AX. In this case, where
no register is involved and a defined constant memory location is used, we refer to it as direct
mode.

These addressing modes can be used with the ADD operation in almost any combina-
tion, with two exceptions. It’s legitimate, for example, to add one register to another, to add
a memory location to a register or a register to a memory location, or to add an immedi-
ate value to either a register or memory. However, it’s not legal to add one memory location
directly to another memory location; one addend or the other must be placed in a register
first. It’s also illegal, and rather silly, to try to use an immediate value as the destination of
an addition. So, in the following list of operations, the first five are legal but the last two are
not.

ADD AX, BX ; register-to-register
ADD AX, [4000] ; memory-to-register
ADD AX, 4000 ; immediate-to-register
ADD [4000], AX ; register-to-memory
ADD [4000], 4000 ; immediate-to-memory
ADD [3000],[4000] ; illegal! memory-to-memory
ADD 4000, AX ; illegal! ANYTHING-to-immediate

Each of these operations and addressing modes is expressed using slightly different
machine code. In machine code, the complexity is increased by the existence of special-
purpose (and faster) instructions for the 8088 to be used when the destination is specifically
the AX register. Armed with this kind of instruction, an intelligent programmer (or compiler)
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can make the program faster and shorter by putting data to be added into AX rather than any other
register. (We’ve already seen this kind of instruction on the JVM with examples like iload 1
as a shortcut for the more general iload instruction. Confusingly, most assemblers don’t use
different mnemonics for the high-speed AX instructions; instead, the assembler program itself
will recognize when a special-purpose instruction can be used and automatically generate it. This
means that the assembly language programmer doesn’t need to worry about these instructions if
the assembler is smart enough.) This kind of register designed for high-speed arithmetic is some-
times called an accumulator, and the 8088 technically has two different ones—or at least two
parts of the same register used as accumulators. The AX register serves as a 16-bit accumulator
and the AL register as an 8-bit accumulator.

6.3.2 Arithmetic Instruction Set
This two-operand format is common for most arithmetic operations. For example, instead of
adding two numbers, one can subtract them using the SUB instruction:

SUB BX, AX ; BX = BX - AX

The 8088 also recognizes a MOV instruction for moving to and from memory or registers, using
the same two-argument conventions in which the first is the destination and the second is the
source. It also recognizes AND, OR, and XOR instructions of the same format; these all also have
the special accumulator shortcuts.

There are also a number of one-argument instructions, such as INC (increment), DEC
(decrement), NEG (negate—that is, multiply by −1), and NOT (toggle/reverse all bits in the
argument, equivalent to doing an XOR operation with a second argument of all 1s). The format
is fairly simple:

DEC AX ; AX = AX - 1

Multiplication and division are more complicated. The reason is simple: when you add
(for instance) two 16-bit integers, you get more or less a 16-bit result, which will still fit into
the 16-bit register. When you multiply these numbers, the result can be up to 32 bits long
(which will not fit). Similarly, integer division actually produces two results, the quotient and
the remainder (example: 22/5 = 4 remainder 2, just like in elementary school). The 8088 chip
thus coopts additional registers for the results of multiplication and division—and because of
the complexity of the necessary hardware, it can only use a few specific register sets for these
operations.

To multiply two numbers, the first number must already be present in the accumulator (of
whatever bit size is appropriate). The multiplication instruction itself (MUL) takes one argument,
which is the second number to multiply. The product is then placed in a pair of registers, guaran-
teeing that multiplication will never overflow. Table 6.1 shows how and where information flows
in multiplication operations

(The DX-AX register pair is sometimes abbreviated as DX:AX; the AH:AL pair is usually
abbreviated as the AX register.)
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Multiplier Multiplicand High half of product Low half of product
AL argument AH AL
AX argument DX AX

Table 6.1 Information flow in 8088 multiplication

To multiply the numbers 59 and 71 as 16-bit values, the code fragment below could be used.
First, the (decimal) value 59 is loaded into the AX register via a MOV instruction, and the value
71 is similarly loaded into the BX register. Then the value in the accumulator (AX) is multiplied
by the value in BX. The result will be left in DX:AX. Specifically, AX will hold the lowest 16
bits of the results (the decimal value 4189, stored as 0x105D), while DX holds the highest 16 bits,
which in this specific case would be all 0s.

MOV AX, 59 ; AX gets multiplicand
MOV BX, 71 ; BX gets multiplier
MUL BX ; DX:AX = AX * BX

There are actually two different multiplication instructions, one for unsigned integer multi-
plication (MUL) and one for signed integers (IMUL). The register use in both cases is the same;
the only difference is whether the highest bit in the multiplicand and multiplier is treated as a
sign bit or a data bit. For example, the value 0xFF (as an 8-bit quantity) is either -1 (as a signed
quantity) or 255 (as an unsigned quantity). MULtiplying 0xFF by itself would result in storing
0xFF01 in the AX register, while the IMUL instruction would produce 0x0001 (since −1 times
itself is, of course, 1).

Division uses the same rather complicated register sets, but in reverse. The dividend (the
number to be divided) is put into a pair of registers, either the AH:AL pair or the DX:AX pair.
The argument to the division is used as the divisor. The quotient is stored in the low half of the
original register pair and the remainder in the high half. Using a previous example:

MOV DX, 0 ; clear DX
MOV AX, 22 ; DX:AX = 22
MOV BX, 5 ; divisor is 5
DIV BX ; perform division

; DX now holds 2
; AX now holds 4

As with multiplication, there are two instructions, DIV and IDIV, performing unsigned and signed
integer division, respectively.

6.3.3 Floating Point Operations
The 8088 FPU is almost a separate, self-contained computer with its own registers and its own
idiosyncratic instruction set specifically for performing floating point operations. Actually, it is a
separate, self-contained chip, sold under the model number 8087 as a math coprococessor. Data
is transported as necessary from the main CPU of the 8088 to the coprocessor and back. The
unnamed 8087 registers are a stack (yes, just like the JVM) of eight 80-bit-wide storage locations,
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and again, just like the JVM, the instruction set is structured to address the operation type as well
as the representation type.

The FPU can store and process three different types of data: standard IEEE floating point
numbers, integer values, and a special format called binary-coded decimal (BCD), where each
4-bit group represents the binary encoding of a single base-10 digit. This format was often used
by IBM mainframe computers, because it was easy for engineers to reinterpret the binary patterns
as (intuitive) decimal numbers and vice versa. Inside the 8087, all these formats are converted to
and stored in an 80-bit format that is substantially more precise than the standard format defined
by the IEEE.

Operations for the FPU all begin with the letter F (again, this should be familiar to JVM
programmers) and operate as one might expect on the top of the stack, like the JVM or a reverse
Polish calculator. The FADD instruction pops the top two elements of the FPU stack, adds them
together, and then pushes the result. Other arithmetic operations include FSUB, FMUL, and
FDIV, which perform as expected. There are two additional operations: FSUBR and FDIVR,
which perform subtraction (division) in “reverse,” subtracting the top of the stack from the second
element instead of subtracting the second element from the top.

S I D E B A R
Other FPU Argument Formats
Although the FPU always manipulates data using an internal 80-bit “extended precision” format,
data can be loaded/stored in main memory in a variety of formats. Conversion happens at load/store
time, depending upon the operation mnemonic used. There are many different instructions, most
of which have several interpretations, as follows:

� Integers: Integer data, either 16- or 32-bit, is loaded with the FILD instruction. On later machines,
64-bit quantities can also be loaded with this instruction.

� BCD integers: Integer data in 80-bit Binary-Coded Decimal format is loaded with the FBLD
instruction.

� Floating point numbers: Floating point numbers, in 32-bit, 64-bit, and 80-bit lengths, are loaded
with the FLD instruction

Once these quantities are loaded, they are treated identically by the FPU. To store a value, replace
“LD” with “ST” in the mnemonics above.

There are also special-purpose instructions like FSQRT to handle common math functions like
square roots and trigonometric functions.

Data can be pushed (loaded) into the FPU stack via the FLD instruction. This actually
comes in three flavors: FLD loads a 32- or 64-bit IEEE floating point number from a given
memory location, FILD loads a 16- or 32-bit integer from memory (and converts it to an in-
ternal floating point number), and FBLD loads an 80-bit BCD number from memory (and
converts it). There are a few special-purpose operations for commonly used constants: FLD1
loads the value 1.0, FLDZ loads 0.0, FLDPI loads an 80-bit representation of π , and a few
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other instructions specify quantities like commonly used logarithms, such as the natural log
of 2. To move data from the FPU to storage, use some variation of the FST instruction—again,
there are variations for integer (FIST) and BCD (FBST) storage. Some operations have additional
variations, marked with a trailing -P, to pop the stack when the operation is complete (for exam-
ple, FISTP STores the Integer at the top of the stack, and then Pops the stack). One limitation of
the FPU is that data can only be loaded/stored from memory locations, not directly from ALU
registers. So a statement like

FILD AX ; Illegal! can't use register

is illegal; the value stored in AX must first be MOVed to a memory word and then loaded from
that location as follows:

MOV Location,AX ; Move AX to memory
FILD Location ; Load from memory to FPU

6.3.4 Decisions and Control Structures
Like most assembly languages, the 8088 control structures are built on unconditional and condi-
tional jump instructions, in which control is transferred to a label declared in the source code. As
with the JVM, this is actually handled by computing an offset and adding/subtracting that offset
to the current location in the program counter. The format of the jump instruction (mnemonic:
JMP) is also familiar to us:

LABEL: JMP LABEL ; silly infinite loop

Conditional jumps use a set of binary flags grouped together in the FLAGS register in
the CPU. These flags hold single-bit descriptors of the most recent result of computation; for
example, the zero flag ZF is set if and only if the result of the most recent operation (in the ALU)
was a zero. The sign flag SF contains a copy of the highest bit (what would be the sign bit if the
result is a signed integer) and is set if-and-only-if the result of the last number is negative. The
carry bit CF is set if-and-only-if the most recent computation generated a carry out of the register,
which (when unsigned calculations are being performed) signals a result too large for the register.
The overflow bit OF handles similar cases, where when signed calculations are performed, the
result is too large (or too small) for the register. There are several other flags, but these are the
main ones used.

A conditional jump has a mnemonic of of the form “Jcondition,” where “condition” describes
the flag setting that causes the jump to be taken. For example, JZ means jump-if-zero-flag-
set, while JNZ means jump-if-zero-flag-not-set. We can use this to test whether two values are
equal:

SUB AX, BX ; AX = AX - BX
; set ZF if AX now == 0

JZ ISEQUAL
; if we got here, AX didn't equal BX
JMP OUTSIDE :
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ISEQUAL:
; if we got here, AX did equal BX

OUTSIDE:
; rejoin after if/else statement

Other conditional jumps include JC/JNC (jump if CF set/clear), JS/JNS (jump if SF set/clear),
JO/JNO (jump if OF set/clear), and so forth. Unfortunately, not all of the flags have nice, clear
arithmetic interpretations, so a second set of conditional jumps are available to handle proper arith-
metic comparisons such as “greater than,” “less than or equal to,” and so forth. These instructions
interpret flags in combination as appropriate to the arithmetic relationship.

In more detail, these additional jumps expect that the flags register contains the result of
SUBtracting the first number from the second, as in the example fragment immediately above.
(This is a micro-lie; wait a bit for a more detailed explanation of the CMP instruction.) To
determine whether one signed integer is greater than another, the JG (Jump if Greater) mnemonic
can be used. Other mnemonics include JL (Jump if Less), JLE (Jump if Less than or Equal), and
JGE (Jump if Greater or Equal). These also exist in negative form—JNGE (Jump if Not Greater
or Equal) is, of course, identical to JL—and are in fact implemented as two different mnemonics
for the same instructions. Similarly, JE exists, and is equivalent to the previously defined JZ, and
JNE is the same as JNZ.

For comparison of unsigned integers, a different set of instructions is needed. To under-
stand why, consider the 16-bit quantity 0xFFFF. As a signed integer, this represents −1, which
is less than 0. As an unsigned integer, this represents the largest possible 16-bit number, a shade
over 65,000—and this, of course, is greater than 0. So the question “is 0xFFFF > 0x0000?”
has two different answers, depending upon whether or not the numbers are signed. The 8088
provides, for this purpose, a set of conditional branch instructions based on Above and Below
(i.e., JA, JB, JAE, JBE, JNA, JNB, JNAE, JNBE) for comparing unsigned numbers. So, to de-
termine if the value stored in AX would fit into an 8-bit register, the following code fragment is
used:

; version one of 8-bit safety test
SUB AX, 100h ; subtract 2ˆ8 from AX
JAE TOOBIG ; unsigned compare
; If it gets here, the number is fine
JMP OUTSIDE

TOOBIG:
; if it gets here, AX is bigger than 8 bits

OUTSIDE:
; continue doing what's needed

One problem with this code fragment is that in order to set the flags properly, the value of
AX must be modified. One possible solution is to store the value of AX (MOV it to a memory
location) and reload it after setting the flags. This would work, and the MOV instruction has been
specifically set up to leave the flags register alone and to preserve the previous settings. So, we
can rewrite our 8-bit safety test, with slightly less space and time efficiency, as



6.3 Assembly Language 141
� �

; version two of 8-bit safety test
MOV SOMEWHERE, AX ; store AX SOMEWHERE
SUB AX, 100h ; subtract 2ˆ8 from AX
MOV AX, SOMEWHERE ; restore AX, leave flags
JAE TOOBIG ; unsigned compare
; If it gets here, the number is fine
JMP OUTSIDE

TOOBIG:
; if it gets here, AX is too big

OUTSIDE:
; continue doing what's needed

The Intel instruction set provides a better solution with a special-purpose command. Specif-
ically, the CMP mnemonic performs a nondestructive subtraction. This instruction calculates the
result of subtracting the second argument from the first (as has been done in the examples above),
and sets the flags register accordingly, but does not save the subtraction result anywhere. So,
rewriting the first version as

; version three of 8-bit safety test
CMP AX, 100h ; compare 2ˆ8 to AX
JAE TOOBIG ; unsigned compare
; If it gets here, the number is fine
JMP OUTSIDE

TOOBIG:
; if it gets here, AX is bigger than 16 bits

OUTSIDE:
; continue doing what's needed

preserves the efficiency of the first version while not destroying the value stored in the
registers.

In addition to these fairly traditional comparison and branch instructions, Intel provides a
few special-purpose instructions (this is getting repetitive, isn’t it?) to support efficient loops. The
register tuned for this purpose is the CX register. Specifically, the computer can be told to jump
if the value of CX is 0 with the JCXZ instruction. Using this instruction, one can set up a simple
counter-controlled loop with

MOV CX, 100 ; loop 100 times
BEGIN:

; do something interesting
DEC CX ; subtract 1 from counter
JCXZ LOOPEXIT ; quit if done (CX==0)
JMP BEGIN ; return to BEGIN

LOOPEXIT:
; now outside of loop

Even more tersely, the LOOP instruction handles both the decrementing and the branch—it
will decrement the loop counter and branch to the target label if the counter has not yet reached
0. Thus, we can simplify the loop above to a single statement of interest:
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MOV CX, 100 ; loop 100 times
BEGIN:

; do something interesting, quit when CX == 0
LOOP BEGIN ; return to BEGIN
; now outside of loop

Using the results of floating point comparisons can also be tricky. The basic problem is that
the flags register is located in the main CPU (in the Control Unit), which also handles branch
instructions through the PC in the Control Unit. At the same time, all the floating point numbers
are stored in the FPU in a completely separate section of silicon. The data must be moved from
the FPU into the normal flags registers, using a set of special-purpose instructions perhaps beyond
the scope of this discussion.

S I D E B A R
Oh, all right. If you insist. The FPU provides both an FCOM instruction, which compares the top
two elements on the stack, and an FTST instruction, which compares the top element to 0.0. This
comparison is stored in a “status word,” the equivalent of the flags register. To use the information,
the data must be moved, first to memory (because the FPU cannot access CPU registers directly),
then to a register (because the flags register cannot access memory directly), and finally to its
eventual destination. The instruction to do the first is FSTSW (STore Status Word, which takes a
memory location as its single argument); for the second, an ordinary MOV into the AX register
suffices; and for the third, the special-purpose SAHF (Save AH in Flags) instruction is used.
Ordinary unsigned conditional jumps will then work properly. The complexity of this process
explains and illustrates in part why it can be so much faster to use integer variables when writing
a computer program.

6.3.5 Advanced Operations
The 8088 provides many more operations, of which we will only be able to touch on a few.
Many of them, perhaps most, are shortcuts to perform (common) tasks with fewer machine
instructions than would be needed using the simpler instruction(s). An example is the XCHG
(eXCHanGe) instruction, which swaps the source and destination arguments around. Another
example is the XLAT instruction, which uses the BX register as a table index and adjusts the
value in AL by the amount stored in the table. Essentially, this is a one-operation abbrevi-
ation for AL = [[AL] + BX], which would take several steps to perform using the primi-
tive operations described earlier. (It’s useful, for example, if you need to convert a string to
UPPERCASE quickly, but it doesn’t make possible anything previously impossible.)

The 8088 also supports operations on string and array types, using (yet another set of)
special-purpose instructions. We’ll see these in action a little in section 6.4.4, since strings and
arrays generally have to be be stored in memory (registers aren’t big enough).

As we will see, this tendency to use additional operations becomes much more pro-
nounced in later members of the family, and the instruction set becomes substantially larger
and more complex, to the point where almost no human programmer today knows all of the
Pentium 4 instructions in detail. (This is one reason that writing a good compiler is both tri-
cky and important. The smarter you make the compiler, the dumber the programmer can be.)
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6.4 Memory Organization and Use
6.4.1 Addresses and Variables
The segmented organization of the 8088’s memory has already been described. Every possible
register pattern represents a possible byte location in memory. For larger patterns (a 16-bit word
or a 32-bit “double,” or even an 80-bit “tbyte,” containing 10 bytes and holding an FPU value),
one can coopt two or more adjacent byte locations. As long as the computer can figure out how
many bytes are in use, accessing memory of varying sizes is fairly simple.

Unfortunately, this information is not always available to the computer. An earlier micro-lie
suggested that

ADD [BX], 1 ; increment the value pointed to
; by BX

was legal. Unfortunately, the value stored in BX is a location; therefore, there is no easy way
of knowing whether the destination is a 16-bit or an 8-bit quantity. (Similarly, we don’t know
whether we need to add 0x0001 or 0x01.) Depending upon these sizes, this statement could be
interpreted/assembled as any of three different machine instructions. The assembler (and we) need
a hint to know how to interpret [BX]. This would also apply when a specific memory address is
used directly, as in

ADD [4000h], 1 ; increment the value at 0x4000

There are two ways of giving the computer such a hint. The simpler, but less useful, is to
explain exactly what is meant in that line, and in particular, that [4000h] should be interpreted as
the address of (“pointer to”) a word (16 bits) by rewriting the line:

ADD WORD PTR [4000h], 1 ; increment the 16-bit value at 0x4000

By contrast, using BYTE PTR would force an 8-bit interpretation, and using DWORD PTR
(double word) a 32-bit one.

A more general solution is to notify the assembler in advance of one’s intention to use a
particular memory location and of the size one expects to use. The name of this memory loca-
tion can then be used as shorthand for the contents of the location as a direct mode operation.
This has approximately the same effect as declaring a variable in a higher-level language such
as Java, C++, or Pascal. Depending upon the version and manufacturer of the 8088 assem-
bly, either of the following will work to define a 16-bit variable (with names selected by the
programmer):

example1 WORD 1000 ; 1000
example2 DW 2000h ; 2000h == 0x2000

The values can now be used in direct mode more or less at will:
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MOV AX, example1 ; AX is now 1000
ADD example2, 16 ; example2 is now 2010h
CMP AX, example2 ; is AX > example2? (no)

This statement serves several purposes. First, the computer now knows that two 16-bit
chunks of memory have been reserved for program data. Second, the programmer has been
relieved of the burden of remembering exactly where these chunks are, since she can refer to
them by meaningful names. Third, the assembler already knows their sizes and can take them
into account in writing the machine code. That’s not to say that the programmer can’t override
the assembler

exple3 WORD 1234h ; define 16-bit space
ADD BYTE PTR exple3, 1 ; legal but silly

but it is very likely to result in a bug in the program. (By contrast, of course, the JVM gets very
annoyed if you try to access only part of a stored data element and generally won’t let you do it.)

Assemblers will accept a wide variety of types for memory reservation, including some
types so big that they can’t be handled easily in registers. Using the more modern syntax, any of
the following are legal definitions:

Tiny BYTE 12h ; single byte
Small WORD 1234h ; two bytes
Medium DWORD 12345678h ; four bytes
Big QWORD 1234567812345678h

; eight bytes
Huge TBYTE 12345678901234567890h

; ten bytes
; (used by FPU)

Floating point constants can be defined with either REAL4 (for 32-bit numbers), REAL8
(for 64-bit) or REAL10 (for 80-bit). The number values themselves are usually written either
normally or in exponential notation:

Sqrt2 REAL4 1.4143135 ; real number
Avogad REAL8 6.023E+23 ; exponential notation

Memory locations can be defined without initializing them by using ? as the starting value. Of
course, in this case the memory will still hold some pattern, but it’s not predictable just what it is,
and if you try to use that value, bad things will probably happen.

6.4.2 Byte Swapping
How does storage in memory compare with storage in registers? Specifically, if the 16-bit pattern
0100 1001 1000 0101 is stored in the AX register, does it have the same value as the same 16-bit
pattern stored in memory?
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0x78 0x56 0x34 0x12

Figure 6.4 Memory storage of 0x12345678, illustrating byte swapping

The answer, surprisingly, is “no.” (Perhaps it’s not that surprising, since if it really were that
simple, this section of the book probably wouldn’t exist.) Again, as a legacy of older machines,
the 8088 has a rather odd storage pattern.

When writing down numbers, people usually use so-called big-endian notation. The so-
called most significant numbers (the ones corresponding to the highest powers of the base)
are written (and stored) first, and the smaller, less significant numbers trail afterward. Quick
check for clarification: numbers are traditionally written on paper in big-endian format; the first
digit written involves the largest power of the base. The 8088 CPU similarly stores values in
registers in big-endian order. The value written above (0x4985) would thus represent the decimal
value 18821. Data stored in memory, however, are actually stored in little-endian format by
bytes. The byte with the smaller address (0x49, 0100 1001) is the least significant byte; the
second is the most. (Miss Williams, my seventh-grade English teacher, would have insisted
that, with only 2 bytes, one can’t have a “most” significant byte, only a “more” significant one.
This is one area where specialized jargon trumps traditional English grammar.) So, this pattern
in memory would represent 0x8448, almost twice as large. This pattern continues with larger
numbers, so the 32-bit quantity 0x12345678 would be stored as 4 separate memory bytes, as in
figure 6.4.

Fortunately, the programmer rarely needs to remember this. Any time data is moved
to or from memory, byte swapping happens automatically at the hardware level. Unless the
programmer explicitly overrides the assembler’s knowledge of data sizes (as in the previous
section), the only time this might become important is in dealing with large groups of data such
as arrays and their extension, strings, or in moving data from one type of machine to another.
(Of course, “rarely” doesn’t mean “never,” and when it does become important, this can be a
source of the sort of error that can make you pound your head against a wall for a week.)

6.4.3 Arrays and Strings
The same notation used to reserve a single memory location can also be used to reserve large,
multilocation blocks of memory. Values can be set using either a comma-separated list of values
or a shorthand DUP notation for repeated values. For example,

Greet BYTE 48h,45h,4Ch,4Ch,4Fh ; ASCII "HELLO"
Thing DWORD 5 DUP 0x12345678 ; 5 identical values
Empty WORD 10 DUP (?) ; 10 empty slots

define, respectively, Greet as a 5-byte array of the letters (H, E, L, L, and O), Thing as a set of
doublewords, and Empty as an array of ten 2-byte values, none of which are initialized.

To access elements of these arrays, the programmer needs to index or offset from the named
array base. If the ‘H’ in Greet were stored at 3000h, then the ‘E’ would be stored at 3001h, the first
‘L’ at 3002h, and the ‘O’ at 3004h. Of course, we don’t know where Greet happens to be stored,
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but wherever it is, the location of the ‘H’ is one less than the location of the ‘E.’ By convention,
the array name itself refers to the location of the initial value of the array. So, to load the first
three letters into the AH, BH, and CH (byte) registers, we can use

MOV AH, [Greet] ; Load H
MOV BH, [Greet + 1] ; Load E
MOV CH, [Greet + 2] ; Load L

This is actually a new (to this book, at least) addressing mode called index mode. As before,
the notation [X] means “the contents of memory stored at location X,” but the X in this case is a
rather complex value that the computer calculates on the fly. It should be intuitive that [Greet] is
the same as [Greet + 0] and Greet itself, while [Greet + 1] is the next byte over. And because the
computer knows that Greet holds bytes (as defined by the memory reservation statement), it will
assume that [Greet + 1] is also a byte.

How do we access elements of the Empty array? The initial element is simply [Empty], or
[Empty + 0], or even Empty itself. In this case, though, Empty holds WORD objects, so the next
entry is not [Empty + 1] but [Empty + 2]! Unlike most high-level languages, where arithmetic
on indices automatically takes the kind of elements involved into account, index mode addressing
on the 8088 requires the programmer to handle size issues.

Index mode addressing has more general uses involving registers. In high-level languages,
for example, one of the most common array actions is to use a variable index—for example,
accessing element a[i] inside a loop involving an integer variable i. The assembly language
equivalent uses a general-purpose register as part of the index expression. The expression [Greet
+ BX] would refer to the “BX-th” (if that word even makes sense) element of the array Greet.
By adjusting the value in BX (say, from 0 to 4), the expression [Greet + BX] will sequentially
select each element. Similarly, by adjusting the value in BX by 2, the size of a word, each time,
we can initialize the entire Empty array to 0 with

MOV CX, 10 ; 10 elements in Empty
MOV BX, 0 ; start at [Empty + 0]

BEGIN:
MOV [Empty+BX], 0 ; zero out this element
ADD BX, 2 ; move to next WORD
LOOP BEGIN ; loop until CX == 0

Only a few of the 16-bit registers can legally be used as an index in this sort of expression,
and none of the 8-bit ones are legal. Only the BX, BP, SI, and DI registers can be used; and,
bluntly, one shouldn’t mess with the BP register for this purpose, as bad things are likely to occur.
The BP register is already used by the operating system itself for its own nefarious purposes, as
discussed later in section 6.4.7.

Experienced C and C++ programmers may already be chafing at the bit for a faster and
more efficient way. Instead of calculating [Empty + BX] at each pass through the loop, why not
set BX itself to the spot where [Empty + 0] is stored and then just use [BX]? This suggests code
something like
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; warning, doesn't work!
MOV CX, 10 ; 10 elements in Empty
MOV BX, Empty ; start at [Empty+0] (WRONG!)

BEGIN:
MOV [BX], 0 ; zero out this element
ADD BX, 2 ; move to next WORD
LOOP BEGIN ; loop until CX == 0

Although the idea is good, the execution falters, mostly because MOV BX, Empty doesn’t
actually mean what we hoped it would. The assembler treats Empty as a simple byte vari-
able in direct mode and tries to move the first byte of Empty (the ‘H’) into BX. This isn’t
what we want. In fact, it isn’t even legal, since we’re trying to move a single byte into a
4-byte register, which results in a size conflict. To explicitly get a pointer variable, we use the
OFFSET keyword, which produces the memory location instead of its contents.

; improved, functional version
MOV CX, 10 ; 10 elements in Empty
MOV BX, OFFSET Empty ; start at [Empty + 0]

BEGIN:
MOV [BX], 0 ; zero out this element
ADD BX, 2 ; move to next WORD
LOOP BEGIN ; loop until CX == 0

Of course, the actual time/space improvement gained may be marginal, since the index addi-
tion is still performed within a single machine operation on the 8088. But every little improvement
may help, especially in a tight, small, often executed loop.

6.4.4 String Primitives
Strings can be implemented as arrays of characters (most often as bytes, but sometimes larger),
as with the Greet example. The 8088 also provides some so-called string primitive operations
for performing common string functions quickly and easily. These basic operations all use SI, DI,
or both—that’s the special purpose to which SI and DI are optimized—for these operations.

We’ll focus, for the moment, on the simple task of copying or moving a string from one
location to another. Depending upon the size of the string elements, there are two basic operations:
MOVSB (MOVe a String of Bytes) and MOVSW (MOVe a String of Words). This twofold division
based on size holds for all string primitives; there are also (for example) two variations for doing
comparisons, ending with B and W, respectively. So, for simplicity of explanation, we’ll fold
these similarly behaving operations together under the name MOVS?.

The MOVS? operation copies data from [SI] to [DI]. By itself, it will copy only a single
element, but it’s easy to put it in a simple loop structure. The advantage of the string primitives
is that the CPU supports automatic looping in the machine instruction, expressed at the assembly
language level as a prefix to the mnemonic. The simplest example would be the REP prefex,
as in

REP MOVSB
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This acts rather like the LOOP? instruction in that the CX register is used as a counter.
Every time this instruction is performed, the values of SI and DI will be adjusted, the value of CX
will be decremented, and the instruction will repeat until CX drops to 0.

There are two main variations in the way SI and DI are adjusted. First, the amount of the
update automatically corresponds to the size of the element specified in the MOVS? command,
so SI/DI will be changed by 1 for a Byte instruction or by 2 for a Word instruction. Second, a
special flag in the flags register (the Direction flag) controls whether the addresses are adjusted
from low to high (by adding to SI/DI) or from high to low (by subtracting). This flag is controlled
by two instructions, as in table 6.2.

Instruction Flag Status SI/DI Operation Address sequence
CLD clear (=0) addition low to high
STD set (=1) subtraction high to low

Table 6.2 Direction flag operations for string primitives

To see how this works, let’s make a couple of arrays and copy them.

Arr1 WORD 100 DUP (-1) ; source array : 100 words
Arr2 WORD 100 DUP (?) ; dest array : also 100 words

MOV SI, OFFSET Arr1 ; set source address
MOV DI, OFFSET Arr2 ; set destination address
CLD ; clear direction flag

; so goes from Arr1[0] to Arr1[99]
MOV CX, 100 ; loop over 99 words
REP MOVSW ; .. and do the copy

Another common operation is to compare two strings for equality. This can be done with
the CMPS? operation, which performs an implicit subtraction of the destination from the source.
Important safety tip: this is the reverse of the CMP instruction, which subtracts the source from the
destination! More importantly, this instruction sets the flags such that normal unsigned conditional
jumps will do The Right Thing.

Another variant of the REP prefix is particularly useful in this context. REPZ (alternatively,
REPE) loops as long as CX is not 0 and the zero flag is set. This actually means “as long as we
haven’t hit the end of the string and the strings so far have been identical,” since the zero flag is
set only when the result of the subtraction is 0, meaning that the last two characters are the same.
Using this, we can perform general string comparison operations with

MOV SI, OFFSET Astring ; set source address
MOV DI, OFFSET Bstring ; set destination address
CLD ; clear direction flag
MOV CX, 100 ; loop over (up to) 99 words
REPE CMPSW ; .. and compare
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After this code fragment has run, one of two possible things has happened. Possibility one:
CX hit 0 with the Z flag still set, in which case the two word strings are identical. So, a simple
statement like

JE STRINGSEQUAL ; the strings were equal

can branch to the appropriate section of code.

Alternatively (possibility two), the Z flag was cleared when two elements were compared
and found to be different. The detailed results of the difference (was the byte in SI greater or
less than the byte in DI?) are stored in the flags register, like the result of a CMP operation. By
examining the other flags with JB, JA, JAE, and so on, we can figure out whether the source (SI)
or destination (DI) register pointed to the smaller string. The main difficulty is that the SI and DI
registers are left pointing to the wrong spot. Specifically, the value in SI (DI) is the location just
past the place where the strings were found to differ—or alternatively, one slot past the end of the
strings.

JB SOURCESMALLER ; SI held smaller string
; if we get here, DI < SI

A third useful operation looking for the occurrence (or lack) of a particular value within
a string. (For example, a string that holds a floating point number will have a ‘.’ character;
otherwise, it would be an integer.) This is handled by the SCAS? (SCAn String) instruction.
Unlike the previous instructions, this only involves one string and hence one index register (DI).
It compares the value in the accumulator (AL or AX, depending upon the size) with each element,
setting flags and updating DI appropriately. Again, if the appropriate REP? prefix is used, it will
stop either when CX hits 0 at the end of the string or when the Z flag hits the correct value, in any
case leaving DI pointing one slot past the location of interest.

Using the REPZ prefix, we can use this operation to skip leading or trailing blanks from a
string. Assume that Astring contains an array of 100 bytes, some of which (at the beginning or
end) are space characters (ASCII 32). To find out where the first nonblank character is located,
we can use this code fragment:

MOV DI,Astring ; load string
MOV AL, 32 ; load byte accumulator with ' '
MOV CX, 100 ; 100 characters in Astring
CLD ; clear direction flag
REPE SCASB ; scan for mismatch
JE ALLBLANKS ; if Z flag set, no mismatch found
; otherwise, DI points 1 byte past first nonblank character

DEC DI ; back DI up

To skip trailing blanks, we simply start at the end (at Astring+99) and set the direction flag
so that the operation goes from right to left in the string
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MOV DI,Astring ; load string
ADD DI, 99 ; jump to end of string
MOV AL, 32 ; load byte accumulator with ' '
MOV CX, 100 ; 100 characters in Astring
STD ; set direction flag
REPE SCASB ; scan for mismatch
JE ALLBLANKS ; if Z flag set, no mismatch found
; otherwise, DI points 1 byte past first nonblank character
INC DI ; back DI up

A similar prefix, REPNZ (or REPNE), will repeat as long as the Z flag is not set, which is
to say, as long as the elements differ. So, to find the first ‘.’ (ASCII 44) in a string, we use a slight
variation on the first example:

MOV DI,Astring ; load string
MOV AL, 44 ; load byte accumulator with '.'
MOV CX, 100 ; 100 characters in Astring
CLD ; clear direction flag
REPNE SCASB ; scan for match
JNE NOPERIOD ; if Z flag clear, no match found
; otherwise, DI points 1 byte past first '.'
DEC DI ; back EDI up

Finally, the last commonly useful string primitive will copy a particular value over and
over again into a string. This can be useful to quickly zero out an array, for example. The STOS
(STOre String) copies the value in the accumulator to the string. To store all 0s in the Empty array
previously defined (an array of 10 doublewords), we can simply use

MOV DI, Empty ; store destination string
MOV CX, 10 ; 10 elements to store
MOV AX, 0 ; value to store is 0
REP STOSD

Unfortunately, this is the only support that the 8088 provides for user-defined derived types.
If the programmer wants a multidimensional array, for example, she must figure out herself how
to tile/parcel the memory locations out. Similarly, a structure or record would be represented by
adjacent memory locations alone, and no support is provided for object-oriented programming.
This must be addressed at a higher level through the assembler and/or compiler.

6.4.5 Local Variables and Information Hiding
One problem with the memory structure defined so far is that every memory location is defined
implicitly for the entire computer. In terms common to higher-level language programming, every
example of a variable we’ve seen is global—meaning that the Greet array (previously defined)
could be accessed or changed from anywhere in the program. It also means that there can only be
one variable in the entire program named Greet. Better programming practice calls for the use of
local variables, which provides some privacy and security as well as the ability to reuse names.
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Similarly, as discussed in regard to the JVM, having only jump instructions available limits the
programmer’s ability to reuse code.

6.4.6 System Stack
The solution, for both the JVM and the 8088, is to support subroutines (or subprograms). Like the
JVM’s jsr instruction, the 8088 provides a CALL instruction in conjunction with a hardware
stack. This instruction pushes the current value of the instruction pointer (IP) and executes a
branch to the location given as an argument. The corresponding RET instruction pops the top
value from the stack, loads it into the instruction pointer, and continues execution at the saved
location.

The 8088 also recognizes standard PUSH and POP instructions for moving data to and
from the machine stack. For example, good programming practice suggests that one shouldn’t
wantonly destroy the contents of registers inside subroutines, since there’s no way to be sure that
the calling environment didn’t need that data. The easiest way to make sure this doesn’t happen
is to save (PUSH) the registers that one plans to use at the beginning of the subroutine and to
restore (POP) them at the end. Both the PUSH and POP statements will accept any register or
memory location; both PUSH AX and PUSH SomeLocn are legal. To push a constant value, one
must first load it into memory or a register—and, of course, POP-ping something into a constant
doesn’t make much sense.

Most assemblers discourage the practice of using the same labels for both subroutine calls
and jump statements, although the CPU doesn’t care (after all, both of them are just numeric
values to be added to the program counter!) However, if this is not done extremely carefully,
the programmer will violate stack discipline and end up either leaving extra stuff on the stack
(resulting in filling it up and getting some sort of overflow-based error) or popping and using
garbage from an empty stack. In other words, don’t do that. For this reason, a subroutine in 8088
assembly language looks slightly different than the labels we’ve already seen:

MyProc PROC
PUSH CX ; push CX to save it
; do something extremely clever
MOV CX, 10

MyLabel:
; do something clever inside a loop 10 times
LOOP MyLabel
POP CX ; restore CX
RET

MyProc ENDP

There are a few points to pay attention to here. First, the declaration of the label MyProc
looks different from the label MyLabel (there’s no colon, for instance) to help both you and the
assembler keep track of the difference. Second, the procedure begins and ends with PROC/ENDP.
These aren’t mnemonics, merely directives, as they don’t translate into machine instructions.
They just (again) help you and the assembler structure the program. The last machine instruction
is RET, which is not only typical but required for a subroutine. Third, the CX register is used
for a loop index inside the routine, but since the value is PUSHed at the top and POP-ped at the
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bottom of the routine, the calling environment will not see any change in CX. It would be legal
(and even typical) to invoke this routine from another routine as follows:

Other PROC
MOV CX, 50 ; call MyProc 50 times

LoopTop:
CALL MyProc ; execute MyProc subroutine
LOOP LoopTop ; ... in a loop (50 times)
RET

Other ENDP

The “Other” procedure uses the same loop structure, including CX, to call MyProc 50
times, but since the CX register is protected, no errors will result. Of course, the Other procedure
itself clobbers the CX register, so someone calling Other must be careful. (A better version of
Other—the sort expected of a professional programmer—would similarly protect CX before using
it, using the same PUSH/POP instructions.)

6.4.7 Stack Frames
In addition to providing temporary storage for registers, the stack can be used to provide temporary
storage for local variables in memory. To understand how this works, we’ll first consider how the
stack itself works (figure 6.5).

0xFFFFF

0x00000

[SP + 2]

[SP - 2]

[SP]

top of stack

Figure 6.5 The CPU stack (simplified)

One of the “general-purpose” registers of the 8088, the SP register, is for all practical intents
reserved by the CPU and operating system to hold the current location of the top of the machine
stack. At the beginning of any program, the value of SP is set to a number somewhere near the top
of main memory—the part of main memory that has relatively high addresses while the program
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proc. argument

proc. argument

proc. argument

return address

old BP reg

space reserved
for local vars

saved regs

[BP] NOW POINTS HERE

[SP] NOW POINTS HERE

Figure 6.6 An 80x86 stack frame

itself is stored in much lower locations. Between the program and the top of the stack is a large
no-man’s-land of unused and empty memory.

Whenever data must be placed on the stack (typically via a PUSH or a CALL), the SP
register is decremented by the appropriate amount, usually 2. This pushes the top of the stack
2 bytes closer to the rest of the program into no-man’s-land. The value to be pushed is stored
in these “new” 2 bytes. Another PUSH would bring SP down another 2 bytes and store another
piece of data. Counterintuitively, this means that the “top” of the stack is actually the part of the
stack with the lowest (smallest) address. Contrariwise, when data is POP-ped from the stack, the
value at [SP] is copied into the argument; then SP is incremented by 2, setting it to the new “top.”
(This also applies when you execute RET and have to take [pop] the old program counter from
the stack.)

However, the stack also provides a perfect location to store local variables, since every time
a procedure is called, it results in a new top of the stack. In fact, any information that needs to be
local to the procedure, such as function arguments, local variables, saved registers, and data, can
be put on the stack. Since this is such a common task, especially in high-level languages, there’s
a standard way of structuring the stack so that different complex procedures can “play nice” with
each other.

The basic idea is called a stack frame (figure 6.6). As usually implemented, it involves
two registers, SP and BP. This is why the programmer shouldn’t mess with the BP register for
general-purpose indexing; it’s already being used in the stack frames. But because BP works as an
index register, expressions like MOV AX, [BP + 4] are legal and can be used to refer to memory
locations near BP.

With this in mind, a stack frame looks like this (starting at the top of memory, or the “bottom”
of the stack):
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public static int further(int x, int y)
{

int i,j;
i = x;
if (i < 0)

i = -x;
j = y;
if (y < 0)

j = -y;
if (i < j)

i = j;
return i;

}

Figure 6.7 Function further (int x, int y) in Java

int further(int x, int y)
{

int i,j;
i = x;
if (x < 0)

i = -x;
j = y;
if (y < 0)

j = -y;
if (i < j)

i = j;
return i;

}

Figure 6.8 Function further (int x, int y) in C/C++

� Any arguments to the procedure/subprogram
� Return address
� Old value of BP (pointed to by BP)
� Space for local variables (top pointed to by SP)
� Saved registers

How does this work? We’ll use a somewhat contrived example: I want to write the assembly
language equivalent of a function or method further() that takes two arguments and returns
the absolute value of the one more distant from 0. In Java, this method would be written as in
figure 6.7; in C/C++, it would look more like figure 6.8.

The code for the comparison itself is simple; assuming that we can move the data into AX
and BX, we can simply compare the two, and if BX is larger, move it into AX. Similarly, by
comparing the function parameters (x and y) to 0, we can either use a NEG instruction or not on
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their local variables. However, to access these properly, we need enough space on the stack to
hold these local variables.

The following code will solve that problem nicely:

Further PROC
PUSH BP ; save old BP
MOV BP, SP ; BP now points to old BP
SUB SP, 4 ; make two 16-bit local

; variables
PUSH BX ; save BX

MOV AX,[BP+2] ; get 1st argument
MOV [SP+2], AX ; and store in 1st local
CMP [SP+2],0 ; compare to 0
JGE Skip1 ; if >= don't negate
NEG [SP+2] ; otherwise negate

Skip1:

MOV AX,[BP+4] ; get 2nd argument
MOV [SP+4], AX ; and store in 2nd local
CMP [SP+4], 0 ; compare to 0
JGE Skip2 ; if >= don't negate
NEG [SP+4] ; otherwise negate

Skip2:
MOV AX, [SP+2] ; load 1st local
MOV BX, [SP+4] ; load 2nd local
CMP AX, BX ; if 1st local >= 2nd local
JGE Skip3 ; .. then don't ...
MOV BX, AX

Skip3: ; answer now in AX

POP BX ; restore old BX value
ADD SP, 4 ; destroy local vars
POP BP ; restore old BP value
RET ; still need to pop args

Further ENDP

Figure 6.9 shows the stack frame as built by this procedure. Note particularly the two
arguments passed and the locations where the old register values are stored. Finally, there are
two words of memory corresponding to the local variables i and j. At the end of the procedure,
the stack is essentially unbuilt in reverse order. Why didn’t we save and restore the value in AX?
Because AX is the register that is being used to hold the return value, and as such it will have to
be clobbered.

How does this work? We’ll use a somewhat contrived example: I want to write the assembly
language equivalent of further (−100,50) (which should, of course, return 100). In order to invoke
this procedure, the calling environment must first push two integers on the stack; then it must
find a way to get rid of those two values after the function returns. An easy way to do this
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involves the following code:

X DW -100 ; first variable
Y DW 50 ; second variable
PUSH X ; er, PUSH X
PUSH Y ; um,...
CALL FURTHER ; check it out
; AX darn well better hold 100 at this point
ADD SP, 4 ; remove X, Y from stack
; AX still better hold 100

The full stack frame built thus looks like figure 6.9.

value of X (-100)

value of Y (50)

calling PC value

old BP register value

local variable 1

local variable 2

saved BX register value

BP now points here

SP now points here

Figure 6.9 Stack frame for further (X,Y)

6.5 Conical Mountains Revisited
As a worked-out example of how arithmetic on the 8088 looks, let’s resolve the earlier problem
concerning the volume of a given mountain. As given in chapter 2, the original problem statement
is:

What is the volume of a circular mountain 450 m in diameter at the base and 150 m high?

Because the answer involves using π , at least part of the computation must be in the FPU.
We assume (for clarity) that the name/identifier “STORAGE” somehow refers to a 16-bit memory
location (as in 6.4.1; this can either be a global variable somewhere or on the stack as a local
variable), and we can use that location to move data in and out of the FPU. For simplicity, we’ll
use 16-bit integers and registers for our calculations. We assume (for clarity) integer calculations;
since none of the numbers involved are very large, this should present few problems.

First, we calculate the radius:

MOV AX, 450 ; diameter = 450m
MOV BX, 2 ; can't divide by a constant
DIV BX ; AX = 450 / 2, DX is still 0



6.6 Interfacing Issues 157
� �

The area of the base is the radius squared times π . In order to use π , we need to initialize
the FPU and move the computation there.

; AX holds radius
MUL AX ; square AX, result in DX:AX
FINIT ; initialize FPU
MOV STORAGE, AX ; move rˆ2 to memory (as integer
FILD STORAGE ; ... and move to FPU
FLDPI ; load pi = 3.1415...
FMUL ; and calculate base area

At this point, we could move the base area from the FPU back into the main ALU, but
by doing so, we lose everything to the right of the decimal point (and thus accuracy). A bet-
ter solution is to continue our calculations in the FPU, using memory location STORAGE as
a temporary location for integer data. To recap: the volume of a cone is one-third of the
volume of a corresponding cylinder, and the volume of the cylinder is the base area (already
calculated) times the height (150 m). So, the final stage of the calculations looks like this:

MOV STORAGE, 150 ; get height into the FPU
FILD STORAGE ;
FMUL ; cylinder volume = base * height
MOV STORAGE, 3 ; get 3 into the FPU for division
FILD STORAGE
FDIV ; ... and divide by 3

; for cone volume
; the result is now at the top of the FPU stack
FISTP STORAGE ; ‘P' means pop the stack after

; performing operation (storing)
; STORAGE now holds the final answer, rounded to an integer
FWAIT ; Wait for FPU to finish before

; doing anything in the ALU

6.6 Interfacing Issues
Code like the previous example is one way in which assembly language programs can interface
with the outside world; these stack frames also allow code generated from high-level languages
(with a few minor variations, so be careful) to operate. So, if you have a large Pascal or C++
program, you can code a small section (one or a few functions) in assembly language to make
sure that you have total control over the machine—to get that tiny extra burst of speed for the
animations in your game, for example.

When most people consider interfacing, though, they usually think about interfacing with
devices and peripherals. For example, how do I get data from the keyboard (where the user typed
it) to the CPU and then to the screen (where it can be seen)? The unfortunate answer is ,“it
depends.”

It depends, in fact, on many things, starting with the type of gadget you want to use, the kind
of machine you have, and the kind of operating system you’re running. Any operating system



158 Chapter 6 � The Intel 8088
� �

(Windows, Linux, MacOS, FreeBSD, etc.) is actually a special kind of computer program, one
that’s always running and tries to interpose itself between the other programs on the system and
the device hardware. It both provides and controls access to the input and output devices—which
means that if you want to do something with a device, you have to call an appropriate function
(provided by the operating system) by putting the correct arguments on the stack and then doing
a CALL on the right location. The details of these functions vary from system to system. Linux
works one way, using one set of functions. Microsoft Windows does the same thing, using a
different set of functions that need different arguments and calls. So, to interface with most
normal devices, the secret is to figure out how your operating system does it and then use the
magic handshake to get the OS to do what you want.

There are two other major approaches to interfacing with devices. Some devices, such
as the video controller, can be attached directly to the computer’s memory and automati-
cally update themselves whenever the appropriate memory changes. Obviously, this memory
is not available for other purposes (like storing programs). On the original PC (running MS-
DOS), for example, “video memory” (VRAM) started at 0xA0000, which meant that pro-
grams couldn’t use anything beyond 0x9FFFF. However, this also meant that a clever program
could cause (data to appear on the screen by putting the right values in the right loca-
tions beyond) 0xA0000. This technique, called memory-mapped I/O, could be easily imple-
mented, for example, by setting the ES segment register to 0xA000 and then using register
pairs like ES:AX instead of the more normal DS:AX as the destination argument to a MOV
instruction.

The other way devices commmunicate is through various ports (such as the serial port, a
UDP port, and so forth). This is usually called port-mapped I/O. Each of these ports (as well
as various internal data values, such as the video color palette) can be independently addressed
using a 16-bit port identification number. The OUT instruction takes two arguments, a 16-bit
port and an 8-bit data value, and simply transmits that data value to that port and thus to the
device attached at that port. What the device does with that value is up to it. A IN instruction will
read a byte of data from a specific port. Obviously, programming in this fashion requires very
detailed knowledge both of the port numbering system and of the types and meanings of data.
But with this kind of control, if you had to do so, you could hook up your fish tank to a 8088’s
printer port and, instead of printing, automatically control the temperature and aeration of the
tank.

6.7 Chapter Review
� The Intel 8088 is the forerunner of a family of chips that comprise the best-known and best-

selling CPU chips the world. Specifically, as the chip inside the original IBM-PC, it rapidly
became the most common chip on the business desktop and established IBM and Microsoft as
the dominant industrial players for most of the rest of the 20th century.

� The 8088 is a classic example of CISC chip design, a complex chip with a very large, rich
instruction set.

� The 8088 has eight named 16-bit “general-purpose” registers (although many of these are
optimized for different special purposes), as well as a number of smaller (8-bit) registers that
are physically part of the 16-bit registers and a logically (and often physically) separate Floating
Point Unit (FPU).
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� Most assembly language operations use a two-argument format where the operation mnemonic
is followed by a destination and a source argument like this:

OP dest,src ; dest = dest OP src

� Available operations include the usual arithmetic operations (although multiplication and di-
vision have special formats and use special registers), data transfers, logical operations, and
several other special-purpose operational shortcuts.

� The 8088 supports a variety of addressing modes, including immediate mode, direct mode,
indirect mode, and index mode.

� Floating point operations are performed in the FPU using stack-based notation and a special
set of operations (most of which begin with the letter F).

� The 8088 supports normal branch instructions as well as special loop instructions using the
CX register as loop counters.

� As a result of legacy support, the 8088 stores data in memory in a different format than it stores
it in registers, which can be confusing to novice programmers.

� Arrays and strings are implemented using adjacent memory locations; there are also special-
purpose string primitive operations for common string/array operations.

� The SP and BP registers are normally used to support a standardized machine stack with
standard stack frames; this makes it easy to merge assembly language code with code written
in a higher-level language.

6.8 Exercises
1. What does the idea of “a family of chips” mean?
2. Why does the 8088 have a fixed number of registers?
3. What is the difference between the BX and BL registers?
4. What is the actual address corresponding to the following segment:offset pairs?

a. 0000:0000
b. ABCD:0000
c. A000:BCD0
d. ABCD:1234

5. What is an example of a CISC instruction not found on the JVM?
6. How is the MUL instruction different from the ADD instruction?
7. What is the difference between JA and JG?
8. What is the difference between ADD WORD PTR [4000h], 1 and ADD BYTE PTR

[4000h], 1?
9. How would the 8088 handle string operations in a language (like Java) where characters are

16-bit UNICODE quantities?
10. How could so-called global variables be stored in a computer program for the 8088?
11. Does it matter to the 8088 whether parameters to a function are pushed onto the stack in

left-to-right or right-to-left order?
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The Power
Architecture

7.1 Background
The single biggest competitor to Intel-designed chips as a CPU for desktop hardware is probably
the Power architecture. Until mid-2005, the PowerPC chip was the chip used in Apple Macintosh
computers. Although Apple has switched to Intel-based chips, the Power architecture still domi-
nates in many application areas. As of November 2005, half of the 20 fastest supercomputers in
the world used Power-based chips, and all three main gaming platforms (Sony, Microsoft, and
Nintendo) plan to use Power chips for their consoles by the end of 2006. In embedded systems,
about half of all 2006 car models use a Power-based microcontroller (manufactured by Freestyle).

If the Pentium is the definitive example of Complex Instruction Set Computing (CISC)
architecture, the Power chip is the textbook version of Reduced Instruction Set Computing (RISC)
architecture.

Historically, the Power architecture originated as a joint design project in 1991 between
Apple, IBM, and Motorola. (Notice that Intel was not a player in this alliance. Why should it
have been, when it already had a dominant market position with its CISC-based x86 series?)
RISC, which IBM had been using for embedded systems (see chapter 9) for almost 20 years, was
seen as a way to get substantial performance from relatively small (and therefore inexpensive)
chips.

The key to RISC computing is that (as with so much in life) computer programs spend
most of their time doing a few relatively common operations. For example, studies have found
that about 20% of the instructions in a typical program are just load/store instructions that move
data to/from the CPU from main memory. If engineers could double the speed at which only
these instructions operated, then they could achieve about a 10% improvement in overall system
performance! So, rather than spend time and effort designing hardware to do complicated tasks,
their job was to design hardware to do simple tasks well and quickly. At the other extreme, adding
a rarely used addressing mode (for example) reduces the performance of every instruction carried
out, because the computer needs to inspect each instruction to see if it uses that mode, requiring
either more time or expensive circuitry.

160
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There are two particular aspects of a typical RISC chip architecture that usually speed up
(and simplify) computing. First, the operations themselves are usually the same size (for the
PowerPC, all instructions are 4 bytes long; on the Pentium, instruction length can vary from
1 to 15 bytes). This makes it easier and faster for the CPU to do the fetch part of the fetch-
execute cycle, since it doesn’t have to take the time to figure out exactly how many bytes to fetch.
Similarly, decoding the binary pattern to determine what operation to perform can be done faster
and more simply. And, finally, each of the instructions is individually simple enough that they
can be done quickly (usually in the time it takes to fetch the next instruction—a single machine
cycle).

The second advantage of RISC architecture has to do with groups of instructions. Not only is
it usually possible to carry out each instruction more quickly, but the small number of instructions
means that there usually aren’t huge numbers of near-synonymous variations in how to carry out
a given (high-level) computation. This makes it much easier for code to be analyzed, for example,
by an optimizing compiler. Better analysis can usually produce better (read: faster) programs,
even without the individual instruction speedup.

Of course, the down side to RISC architectures like Power is that most of the powerful
operations (for example, the Pentium’s string processing system, as described in chapter 6) don’t
exist as individual instructions and must be implemented in software. Even many of the memory
access instructions and modes are typically unavailable.

One of the design goals of the Power alliance was to develop not only a useful chip, but a
cross-compatible chip as well. Motorola and IBM, of course, already had well-established lines of
individually designed chips (for example, IBM’s RS/6000 chip and the Motorola 68000 series).
By agreeing in advance on certain principles, the Power alliance could ensure that their chips
interoperated with each other, as well as design in advance for future technological improvements.
Like the 80x86/Pentium family, Power is a family of chips (including the PowerPC subfamily)—
but unlike them, the family was designed in advance to be extensible.

This focus on flexibility has produced some odd results. First, unlike with the Intel family,
the development focus has not been exclusively on producing newer, larger, machines. From the
start, low-end desktops and even embedded system controllers have been part of the target market.
(The marketing advantages should be obvious: if your desktop workstation is 100% compatible
with the control chips used in your toaster oven factory, it is much easier to write and debug the
control software for said toaster ovens. Thus, IBM could sell not only more toaster oven controller
chips, but also more workstations.) At the same time, the alliance planned for eventual expansion
to a 64-bit world (now typified by the PowerPC G5) and defined an extensible instruction set
to handle 64-bit quantities as part of the original (32-bit) design. In addition, the PowerPC is
equipped to handle a surprising amount of variation in data storage format, as will be seen
below.

7.2 Organization and Architecture
As in most modern computers, there are at least two separate views of the system (formally
called programming models, also often called programming modes) of the PowerPC in order
to support multitasking. The basic idea is that user-level programs get limited-privilege access
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to part of the computer, while certain parts of the computer are off limits except to programs
(typically the operating system) running with special supervisor privilege. (The lack of such a
distinct programming model is one reason the 8088 is so insecure.) This keeps user programs
from interfering either with each other or with critical system resources. This discussion will
focus mostly on the user model, since that’s the most relevant one for day-to-day programming
tasks.

7.2.1 Central Processing Unit
Most of the features of the Power architecture CPU are familiar by this time (figure 7.1). There is a
(relatively large) bank of 32 “general-purpose” registers 32 bits wide in early PowerPC models like
the 601 (up to the G4) and 64 bits wide in the G5 and 970. There are also 32 floating point registers,
designated at the outset as 64 bits. Both the ALU and the FPU have their designated status/control
registers (CR and FPSCR), and there are a (relatively few) chip-specific special-purpose registers
that you probably don’t want to use to maintain compatibility among the PowerPC family. Or at
least that’s the story told to the users.

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 31

0 31
Floating Point Status and Control Register

(FPSCR)

Control Register (CR)

Control Unit

GPR0
GPR1

. . .

GPR31

General

Purpose

Registers

ALU

FPR0
FPR1

. . .

FPR31

Floating

Point

Registers

0

0

31

63

FPU

Data Cache

to main memory

Figure 7.1 Block diagram of PowerPC CPU architecture

The actual underlying physical layout is a little more complicated, because there is some
special-purpose hardware that is only available to the supervisor (that is, the operating sys-
tem). For example, there is a machine state register (MSR) that stores critical system-wide
supervisor-level information. (An example of such information is whether or not the system
is currently operating at the user or supervisor level, perhaps responding to a supervisor-level
event generated by an external peripheral. Another example of system-wide information is
the memory storage format, whether big-endian or little-endian, as discussed later.) Sepa-
rating the status of the current computation (stored in the CR and FPSCR) from the overall
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machine state makes it much easier for a multitasking environment to respond to sudden changes
without interrupting the current computation. A more subtle advantage is that the chip designer
can duplicate the CR and FPSCR and allow several different user-level programs to run at once,
each using its own register set. This process could in theory be applied to the entire user-level
register space. In particular, the PowerPC G5 duplicates both the integer and floating point pro-
cessing hardware, allowing fully parallel execution of up to four instructions from up to four
separate processes.

Another key distinction between the user’s and supervisor’s view of the chip concerns
memory access. The operating system must be able to access (and indeed control) the entire
available memory of the computer, while user-level programs are usually confined to their own
space for security reasons. The PowerPC has a built-in set of registers to manage memory access
at the hardware level, but only the supervisor has access to these. Their function is described in
the following section.

7.2.2 Memory
Memory Management
At the user level, the memory of the PowerPC is simply organized (much more simply than that
of the 8088). With a 32-bit address space, each user program has access in theory to a flat set
of 232 different memory locations. (On the 64-bit versions of the PowerPC, of course, there are
264 different addresses/locations.) These locations define the logical memory available to the
program. They can either be used as is in direct address translation (as previously defined) or as
logical addresses to be converted by the memory management hardware. In addition, the PowerPC
defines a third access method for speedy access to specific areas of memory.

Block Address Translation
If a particular block of memory must be frequently (and quickly) accessed, the CPU has another set
of special-purpose registers, the block address translation (BAT) registers, that define special
blocks of physical memory that perform a similar lookup task but use fewer steps. The BAT
registers are most often used for areas in memory representing high-speed data transfers such
as graphics devices and other similar I/O devices. If a logical address corresponds to an area of
memory labeled by a BAT register, then the whole virtual memory process is skipped and the
corresponding physical address is read directly from the BAT register.

Cache Access
The final step in memory access, irrespective of how it was achieved, is to determine whether
the desired memory location has been accessed before (recently) or, more accurately, whether the
data is stored in the CPU’s cache memory or not. Since on-chip memory is much faster to access
than memory stored off-chip in main memory, the PowerPC, like almost all modern chips, keeps
copies of recently used data available in a small bank of very-high-speed memory.

7.2.3 Devices and Peripherals
Another feature of the memory management system defined earlier is that access to I/O devices
can be handled easily within the memory management system. The use of the BAT registers
to access high-speed I/O devices has already been mentioned. A similar method (I/O controller
interface translation) can perform a similar task for memory addresses within the virtual memory
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system. Each segment register contains information besides the VSID. Among that information is
a field detailing whether this logical address refers to a peripheral. If it does, then page translation
is skipped, and instead the logical address is used to generate a sequence of instructions and
addresses for dealing with the appropriate device. This makes device access on the PowerPC as
easy as (and in practical terms identical to) memory access, as long as the operating system has
set values in the segment registers properly.

7.3 Assembly Language
7.3.1 Arithmetic
There are two obvious differences between the assemblys languages of the PowerPC and the
systems we’ve already looked at. First, although the PowerPC has a register bank (like the x86 and
Pentium), the registers are numbered instead of named. Second, Power architecture instructions
have a rather unusual three-argument format. The instruction to add two numbers would be written
as

add r3,r2,r1 # register 3 = register 2 + register 1

Notice that the second and third arguments (registers 1 and 2) remain unaffected in this
calculation (this differs from any other CPU we’ve studied) and thus can be reused later as is. Of
course, by repeating the arguments, we can get more traditional operations; for instance:

add r2,r2,r1 # is the equivalent of x86 ADD R2,R1

In general, any binary operation (arithmetic, logical, or even comparison) will be expressed
this way. This three-argument format, combined with the relatively large number of registers
available, gives the programmer or compiler tremendous flexibility in performing computations
and storing intermediate results. It also allows the computer a certain amount of leeway in re-
structuring computations on the fly as needed. If you think about the following sequence of
instructions

add r3,r2,r1 # (1) register 3 = register 2 + register 1
add r6,r5,r4 # (2) et cetera
add r9,r8,r7 # (3)
add r12,r11,r10 # (4)
add r15,r14,r13 # (5)
add r18,r17,r16 # (6)

there’s no reason that the computer to perform them in that particular order or even that a suffi-
ciently capable computer couldn’t perform them all at once.

A more interesting question is why the Power architecture works in this three-argument
way. A simple answer is, “because it can.” By design, the PowerPC uses a uniform and fairly
large size for every instruction—32 bits. With a bank of 32 registers, it takes 5 bits to specify
any given register, so specifying three registers takes about 15 of the 32 bits available, which still
means that 217 (about 128,000) different three-argument instructions could be available. Obviously,
this is more than any sane engineer would be expected to design—but rather than making add
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instructions shorter than others, the engineers found a use for the extra space in providing extra
flexibility.

However, one area they did not provide extra flexibility was memory addressing. In general,
PowerPC arithmetic and logical operations cannot access memory. Formally speaking, there
are only two addressing modes, register mode and immediate mode, as defined in previous
chapters. These are distinguished by special opcodes and mnemonics; an unmarked mnemonic
operates on three registers, while a mnemonic ending with -i operates on two registers and an
immediate 16-bit quantity as follows:

add r3,r2,r1 # register 3 = register2 + register 1
addi r6,r5,4 # register 6 = register5 + 4

(In some assemblers, there is a potential for confusion here, as the programmer is allowed to refer
to registers by number without using the r? notation. The statement add 2,2,1 would thus add
the contents of register 1 to register 2; it would not add the number 1. Better yet, don’t get careless
with the code you write, even if the assembler lets you.)

Of course, with only a 16-bit immediate quantity available (why?), we can’t do opera-
tions on the upper half of a 32-bit register. A few operations (add, and, or, and xor) have
another variation with a -is an (immediate shifted suffix that will shift the immediate operand
left by 16 bits, allowing the programmer to affect the high bits in the register directly). So the
statement

andis r3,r3,FFFF # r3 = r3 and 0xFFFF0000

would AND the contents of r3 with a 32-bit pattern of OxFFFF0000, thus essentially setting the
lower half to zero. Similarly,

andis r3,r3,0000 # r3 = r3 and 0x0000000

would zero out the entire register. Of course, the same effect could be obtained with register-to-
register operations as follows:

xor r3,r3,r3 # XOR r3 with itself (zero it out)
subf r3,r3,r3 # SUBtract r3 From itself (zero it out)

(Even on a RISC chip, there are often several different ways to accomplish the same thing.)

Most of the arithmetic and logical operations that you would expect are present; there
are operations for addition (add, addi), subtraction (subf, subfi), negation (arithmetic inverse,
neg), and (and, andi), or (or, ori), xor (et cetera), nand, nor, multiplication, and division.
There is also an extensive and powerful set of shift and rotate instructions. Not all of these
have immediate forms in the interests of simplifying the chip logic a bit (Reduced Instruction Set
Computing, after all), but few programmers will miss the convenience of an immediate-mode nand
instruction. Some assemblers also provide mnemonic aliases—for example, the not instruction
is not provided by the PowerPC CPU. It can be simulated as “nor with a constant zero” and thus
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doesn’t need to be provided. Instead, a smart assembler will recognize the not instruction and
output something equivalent without fuss. Multiplication and division, as usual, are a little more
complicated. The classic problem is that the multiplication of two 32-bit factors generally yields
a 64-bit product, which won’t fit into a 32-bit register. The PowerPC thus supports two separate
instructions mullw, mulhw, which return the low and high words, respectively, from the product.
Each of these operations takes the usual three-argument format, so

mullw r8,r7,r6

calculates the product r7 · r6 and then puts the low word into register 8. Division makes the usual
separation between signed and unsigned divides: divw and divwu. The meaning of the ‘w’ in
these mnemonics will hopefully become clear in a few paragraphs.

7.3.2 Floating Point Operations
Arithmetic instructions on floating point numbers are similar, but they use the (64-bit) floating point
registers instead of the normal register bank, and the mnemonics begin with an f. The instruction
to add two floating point numbers is thus fadd. By default, all floating point instructions operate
on double-precision (64-bit) quantities, but a variation with an internal s (e.g., faddsx) specifies
32-bit values instead. Furthermore, the FPU is capable of storing and loading data in integer
format, so conversion from/to integers can be handled within the FPU itself.

One danger of writing code on a PowerPC is that different registers share the same numbers.
For example, the instructions

fmul r7, r8, r9 # multiply something
add r7, r8, r9 # add something

both appear to operate on the same registers. This is not true. The first statement operates on floating
point registers, while the second operates on general-purpose registers. In some assemblers, a raw
number will also be interpreted as a register number under the correct circumstances. This means
that the statements

add 7, 8, 9 # add something
addi 7, 8, 9 # add something

are substantially different. The first adds the values in registers 8 and 9 together, while the second
adds the value in register 8 to the immediate integer constant 9. Caveat lector.

7.3.3 Comparisons and Condition Flags
Most computers, by default, will update the condition register appropriately after every arithmetic
or logical operation. The PowerPC is a little unusual in that regard. First, as already mentioned,
there is no single condition register. More importantly, comparisons are performed only when
explicitly requested (which helps support the idea of rearranging into a different order for speed).
The simplest way to request a comparison is to append a period (.) to the end of most integer
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operations. This will cause bits in the condition register CR0 to be set according to whether the
arithmetic result is greater than, equal to, or less than 0.

More generally, comparisons between two registers (or between a register and an immediate-
mode constant) use a variation of the cmp instruction. This is arguably the most bizarre three-
argument instruction, because it takes not only the two items to be compared (as the second and
third arguments), but also the index of a condition register. For example

cmpw CR1, r4, r5 # compare r4 to r5
# result will be in CR1

sets bits in the 4-bit condition register 1 to reflect the relative values of r4 and r5, as in
table 7.1.

meaning if bit set
bit 0 r4 < r5 (result < 0)
bit 1 r4 = r5 (result = 0)
bit 2 r4 > r5 (result > 0)

Table 7.1 Values in CR1 after cmpw
CR1, r4, r5

7.3.4 Data Movement
To move data in and out of memory, there are special-purpose load and store instructions, as
in the JVM. The general load instruction takes two arguments, the first being the destination
register and the second being the logical address to be loaded (perhaps after undergoing memory
management, as described above). As with the JVM, there are different instructions for different-
sized chunks of data to move; the instructions to load data all begin with the letter l, while the
next character indicates whether the data to be moved is a byte (b), halfword (h, 2 bytes), word (w,
4 bytes), or doubleword (d, 8 bytes; obviously available only on a 64-bit version of the PowerPC,
since only that version could store such a large quantity in a register). The load instruction can
also explicitly load both single precision (fs) and double precision (fd) floating point numbers. Of
course, not all data is loaded from memory. Theli instruction will load a constant using immediate
mode.

When loading quantities smaller than a word, there are two different ways of filling the
rest of the register. If the instruction specifies “zero loading” (using the letter z), the top part of
the register will be set to 0s, while if the instruction specifies “algebraic” (a), the top part will be
set by sign extension. Finally, there is an update mode available, specified with a u, that will be
explained in the next section.

To understand the following examples, assume that (EA), an abbreviation of “effective
address,” is a memory location that holds a appropriately sized block of memory, currently storing
a bit pattern of all 1s. The instruction wr1,(EA) would Load the Word at (EA) into register 1
and (on a 64-bit machine) zero out the rest of the register. On a 32-bit PowerPC, register 1
would hold the value 0xFFFFFFFF, while on a 64-bit machine, register 1 would hold the value
0x00000000FFFFFFFF. Table 7.2 gives some other examples of how load instructions work.
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Instruction 32-bit register result 64-bit register result

lbz r1, (EA) 0x000000FF 0x00000000000000FF
lhz r1, (EA) 0x0000FFFF 0x000000000000FFFF
lha r1, (EA) 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
lwz r1, (EA) 0xFFFFFFFF 0x00000000FFFFFFFF
ld r1, (EA) not allowed 0xFFFFFFFFFFFFFFFF

Table 7.2 Some sample PowerPC load instructions

There are a few caveats. Perhaps most obviously, there is no way to “extend” a 64-bit
doubleword quantity even on a 64-bit machine. There is also no way to operate directly on
doubleword quantities on a 32-bit PowerPC or for a 32-bit CPU to algebraically extend a word
quantity. The instruction lwa is therefore not a part of the 32-bit PowerPC instruction set, and the
lwz loads a 32-bit quantity but doesn’t zero out anything on such a machine. Most annoyingly, the
PowerPC architecture doesn’t permit algebraic extension on byte quantities, so the instruction lba
doesn’t exist either. With these exceptions, the load instructions are fairly complete and reasonably
understandable. For example, the instruction sur3, (EA) loads a single precision floating point
number from memory using the as-yet undefined “update” and “index” modes.

The operations to store data from a register in memory are similar but begin with “st” and
don’t need to deal with issues of extension. The sth r6, (EA) instruction stores the lowest 16
bits of register 6 in memory at location EA, while the sthu, sthx, or sthux instructions do the
same thing, but using update mode, index mode, or both, respectively.

7.3.5 Branches
The final elementary aspect of assembly language programming is the control/branch instructions.
As we have come to expect, the PowerPC supports both unconditional and conditional branches.
The mnemonic for an unconditional branch is simply b, with a single argument for the target
address. The mnemonics for conditional branches (several variations, summarized as b?) include
an argument for the condition register to look at as well:

bgt CR0, address # branch if bit 1 set in CR0
blt CR1, address # branch if bit 0 set in CR1
beq CR2, address # branch if bit 2 set in CR2
ble CR3, address # branch if bit 1 unset in CR3
bne CR4, address # branch if bit 2 unset in CR4
bge CR5, address # branch if bit 0 unset in CR5

The PowerPC does not support separate jump-to-subroutine instructions, but there is
a dedicated link register that performs similar tasks. There is also a specialized count re-
gister for use in loops. Both of these registers have special-purpose instructions for their use.

Despite the simplicity of RISC design, there are many more instructions available than space
permits us to look at. In particular, the supervisor-level registers such as the BAT and segment
registers have their own instructions for access. If you need to write an operating system for a
Power chip, then there are other books you’ll need to read first.
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7.4 Conical Mountains Revisited
Back to our old friend, the conical mountain, as a worked-out example. For simplicity of expres-
sion, this example assumes the availability of 64-bit operations. Also for simplicity, I assume that
the value of π is available in memory, expressed as the location (PI). As given in chapter 2, the
original problem statement is

What is the volume of a circular mountain 450 m in diameter at the base and 150 m high?

With the banks of registers available, the problem is fairly simple:

Step one is to calculate the radius, dividing the diameter (450) in half, and then to square it.

li r3, 450 # load diameter into r3
li r4, 2 # divide by 2 to get radius
divw r3, r3, r4 # put radius into r3
mullw r3, r3, r3 # square the radius

Step two is to move the data (through memory) into the FPU.

std (EA),r3 # store rˆ2 as 64-bit integer
ldf r10, (EA) # load value of rˆ2
fcfid r9, r10 # convert to float

Step three is to load pi and multiply by it.

ldf r8, (PI) # load value of pi for multiply
fmul r7, r8, r9 # multiply
fcfid r9, r10 # load value of pi for multiply

And finally, the height (150) is loaded and multiplied, and then the final quantity is divided
by 3. For clarity, we’ll first load them as integers and then pass them to the floating point processor
as before:

li r5, 150 # load height
std (EA),r5 # store as integer
ldf r6, (EA) # load height into FPU
fcfid r6, r6 # convert to float
fmul r7, r6, r7 # multiply

li r5, 3 # load constant 3
std (EA),r5 # store as integer
ldf r6, (EA) # load 3 into FPU
fcfid r6, r6 # convert to float
fmul r6, r6, r7 # multiply

Note that in this example, registers 3 to 5 are always used to hold integers and thus are
always general-purpose registers, and registers 6 to 10 are always used to hold floating point
numbers. This is for clarity of explanation only.
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7.5 Memory Organization and Use
Memory organization on the PowerPC is easy once you get past the supervisor-level memory
management. As discussed earlier, from the user’s point of view, the PowerPC provides a simple,
flat address space. The size of the memory space is a simple function of the word size of the
CPU—232 bytes (about 4 gigabytes) (GB) for a 32-bit CPU and 264 bytes for its big brothers. Of
course, no computer that could affordably be built would possess 16 exabytes of physical memory,
but this size allows room for future breakthroughs in memory cost. A memory address is thus
just a number of appropriate size; halfwords, words, and doublewords are stored at appropriately
aligned intervals within memory space. (Actually, this is a lie. Bytes are bytes. But instructions
such as ld r0, (EA) will only work when (EA) refers to an effective address whose value is a
multiple of 8. Otherwise, an intelligent assembler/compiler needs to break down the doubleword
load into up to eight partial load and shift instructions, which can slow your code down to a crawl.
So, don’t do it. Pretend instead that objects have to be stored at suitably aligned locations and
you’ll feel better for it.)

One key feature of the PowerPC is direct support for both big-endian and little-endian data
storage built into the CPU instruction set. This feature was inherited from IBM and Motorola,
which both had extensive product lines and a large body of code that needed to be supported
but had (historically) made different choices in this regard. Data stored in the CPU is always
stored in the same way, but it can be stored in memory in either normal or “byte-reversed”
format.

Apart from these complexities, the operation of addressing memory is fairly simple. The
PowerPC supports two basic addressing modes, indirect and indexed; the only difference is in the
number of registers involved.

In indirect mode, the computer calculates the effective address as the sum of a 16-bit
immediate offset and the contents of the single register specified. For example, if register 3 held
the value 0x5678, then the instruction

lwz r4, 0x1000(r3)

would load the lower 32 bits (w) of register 4 with the value stored at location 0x6678 (0x1000 +
0x5678). On a 64-bit machine, the high 32 bits are set to 0 because of the z. For most programs,
the value 0x1000 would be compiler-defined and refer to a particular offset or size of a variable
(as will be seen presently).

In indexed mode, the effective address is similarly calculated, but using two registers in
place of a constant and a register. So, the effective address is the same in

lwzx r4, r2, r3

only if the value stored in register 2 were already 0x1000. This provides a rather simple but useful
two-step way of accessing memory; the second argument can be used to define a particular block
of memory—for instance, the area where all the global program variables are stored—while the
third argument is used to select a particular offset within that block. (This is similar in spirit to but
much more flexible than the segment registers defined in the 8088.) If, for any reason, the block
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is shifted as a unit, only one register needs to be changed and the code will continue to work as
designed.

For many applications, particularly those involving arrays, it is convenient to be able to
change the register values as memory access occurs (Java programmers will already be familiar
with the ‘++’ and ‘- -’ operators). The PowerPC provides some of this functionality through
update mode, represented by a u in the mnemonic. In update mode, the calculations of the
effective address are performed as usual, as is the memory access, but the value stored in the
controlling register is then (post)updated to the effective address.

As an example, consider the effect of the following statements, presumably in the middle
of a loop:

lwzu r4, 4(r3) # access (r3+4) in update mode
add r5, r5, r4 # maintain a running sum

Assuming that r3 held the value 0x10000 at the start of this block, the first statement would
calculate an effective address of 0x10004 and load r4 with the word (4-byte) value stored at
that address. So far, all is normal. After this load is complete, the value of r3 will be updated
to 0x10004, the effective address. The next time the next 4-byte memory location, probably the
address of the next element in the word array is accessed r3 already points there. This may save
substantial time and effort. This makes array processing, or more generally processing of any
collection of items of similar size, very efficient.

Without special-purpose instructions for subroutines, there’s no standardized, hardware-
enforced notion of a system stack or a system stack pointer. Instead, the programmer (more likely,
the operating system) will recruit one or more of the registers (normally r1) to serve as stack
pointers and use normal register/memory operations to duplicate the push and pop operations.
This is not only in keeping with the RISC philosophy (why create a special-purpose pop instruction
when it can already be done?), but also allows different programs and systems to build different
stack frames. Again, one can see the work of the design by committee in this decision, as Apple,
IBM, and Motorola all had extensive code bases they wished to support, each with different and
incompatible views of the stack.

7.6 Performance Issues
7.6.1 Pipelining
As with the other chips we have examined, performance of the computer is a crucial aspect of
success. Each new instantiation of a computer needs to run faster than the previous ones. To
accomplish this, the PowerPC provides an extensive pipelined architecture (see section 5.2.4).
One easy way to make the JVM run faster is to execute it on a faster chip. In order to make
a PowerPC chip run faster, one has to make the chip itself faster, or somehow to pack more
computation into each tick of the system clock. In order to do this, the CPU has a much
more complex, pipelined, fetch-execute cycle that allows it to process several instructions at
once.

One feature of the RISC architecture is that it’s designed to work well with pipelining.
Remember that the two keys to good pipeline performance are to keep the pipeline moving
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and to keep the stages approximately uniform. The RISC instruction set is specifically designed
so that all instructions take about the same amount of time and can usually be executed in a single
machine cycle. So, in the time it takes to perform an instruction fetch, the machine can execute
an add instruction and the pipeline remains clear. This also helps explain the limited number of
address modes on a PowerPC; an instruction involving adding one memory location to another
would require four load operations and a store operation besides the simple addition, and so
would take four times as long (stalling the pipeline). Instead, the PowerPC forces this operation
to be written as four separate instructions. Because of the pipelined operation, these instructions
will still take place in the same amount of time, but will mesh more smoothly with the overall
computation, giving better performance.

Instruction fetch is another area where this kind of optimization can happen. On the Pentium,
instructions can vary in length from a single byte up to about 15 bytes. This means that it can
take up to 15 times as long to load one instruction as another, and while a very long instruction
is being loaded, the rest of the pipeline may be standing empty. By contrast, all instructions on
the PowerPC are the same length and so can be loaded in a single operation, keeping the pipeline
full.

Of course, some kinds of operations (floating point arithmetic, for example) still takes
substantial time. To handle this, the execution stage for floating point arithmetic is itself pipelined
(for example, handling multiplication, addition, and rounding in separate stages), so that it can
still handle arithmetic at a throughput of one instruction per clock cycle. In cases where, delay is
inevitable, there is a mechanism to stall the processor as necessary, but a good compiler can write
code to minimize this as far as possible.

The other easy way to break a pipeline is by loading the wrong data, fetching from the
wrong location in memory. The worst offenders in this regard are conditional branches, such as
“jump if less than.” Once this instruction has been encountered, the next instruction will come
either from the next instruction in sequence or from the instruction at the target of the jump—and
we may not know which. Often, in fact, we have no way of telling which instruction we will
need because the condition depends on the results of a computation somewhere ahead of us in
the pipeline and therefore unavailable. The PowerPC tries to help by making multiple condition
registers available. If you (or the compiler) can perform the comparison early enough that the result
is already available, having cleared the pipeline, when the branch instruction starts to execute, the
target of the branch can be determined and the correct instructions loaded.

As we will see with the Pentium, the Power architecture also incorporates elements of
superscalar architecture. Actually, superscalar design is more generally associated with RISC
architectures than with CISC chips, but a good design idea is a good design idea and likely to
be widely adopted. To review section 5.2.5, this design theory incorporates the idea of multiple
independent instructions being executed in parallel in independent sections of the CPU. Again,
the Power architecture’s simplified instruction set aids in this—arithmetic operations are sep-
arated, for example, from load/store operations or from comparison operations, and the large
number of registers makes it easy for a series of instructions to use nonoverlapping (and therefore
parallelizable) registers.

A typical PowerPC CPU will have separate modules to handle different kinds of operations
(like the distinction drawn earlier between the ALU and the FPU, only more so). Usually, a Power
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chip will have at least one “integer unit,” at least one “floating point unit,” and at least one “branch
unit” (that processes branch instructions), possibly a “load/store unit,” and so forth. The PowerPC
603 has five execution modules, separately handling integer arithmetic floating point arithmetic,
branches, loads/stores, and system register operations. In higher-end versions, commonly used
units are physically duplicated on the chip; the PowerPC G5, for example, has 10 separate modules
on the chip:

� one permute unit (doing special-purpose “permute” operations)
� one logical arithmetic unit
� two floating point arithmetic units
� two fixed-point (register-to-register) arithmetic units
� two load/store units
� one condition/system register unit
� one branch unit

With this set of hardware, the CPU can execute up to 10 different instructions at the same
time (within the same fetch-execute cycle). Within the size limits of the instruction queue, the first
load/store instruction would be sent to the load/store unit, while the first floating point instruction
would be sent to one of the floating point units, and so forth. You can see that there’s no reason,
in theory, that all the following instructions couldn’t be done at the same time:

add r3,r2,r1 # just some stuff
sub r4,r2,r1 # another fixed-point operation
xor r5,r5,r5 # zero out r5 using logical unit
faddx r7,r6,r6 # add two floating point numbers
fsubx f8,r6,r6 # zero out r8 using floating point unit
b somewhere # and branch to somewhere

Similarly, half of these instructions could be performed during this cycle and the other half
next; alternatively, these instructions could be done one at a time, but in any order convenient to
the computer, and not necessarily in the order written.

A few special properties are needed to allow this blatant, high-handed treatment of the
program code. First, none of the instructions can depend on each other; if the second instruction
changed the value in register 4 (it does) and the fifth instruction needed to use the new value, then
the fifth instruction can’t happen until at least the clock cycle after the second instruction. However,
with 32 general-purpose registers available, an intelligent compiler can usually find a way to
distribute the calculations among the registers to minimize this sort of dependency. Similarly, the
instructions have to be of different types; with only one logical unit, logical instructions have to
be executed one at a time. If part of the program consisted of 30 logical operations in a row, then
that part would fill the instruction queue and it would only be able to dispatch one instruction
at a time, basically slowing the computer down by a factor of up to 10. Again, an intelligent
compiler can try to mix instructions to make sure that instructions of various types are in the
queue.
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7.7 Chapter Review
� The PowerPC, designed by a coalition including Apple, IBM, and Motorola, is the chip in-

side most Apple desktop computers. It is an example of the RISC (Reduced Instruction Set
Computing) approach to CPU design, with relatively few instructions that can be executed
quickly.

� The Power architecture is a flexible compromise among existing designs (mainly) from Mo-
torola and IBM. Until recently, the PowerPC was the base chip for all Apple computers, and
Power chips still dominate gaming consoles. As a result, the chip is actually a family of cross-
compatible chips that differ substantially in architectural details. For example, the PowerPC
exists in both 32- and 64-bit word size variants, and individual chips have tremendous flexibil-
ity in the way they interact with software (for example, any Power chip can store data in both
big-endian and little-endian format).

� The Power CPU has a bank of 32 general-purpose registers and 32 floating point registers,
plus chip-specific special-purpose registers, much more than a Pentium/x86. The chip also
provides hardware support for memory management in several different modes, including
direct (memory-mapped) access to the I/O peripherals.

� All Power instructions are the same size (32 bits) for speed and ease of handling.
� Power assembly language is written in a three-argument format. As with most RISC chips,

there are relatively few addressing modes, and data movement in and out of the registers is
handled by specific load/store instructions separate from the arithmetic calculations.

� The PowerPC has several different condition registers (CRS) that can be independently ac-
cessed.

� In order to speed up the chip, the PowerPC executes instructions using a pipelined superscalar
architecture.

7.8 Exercises
1. What is an advantage of RISC chips over CISC chips? What is a disadvantage?
2. What are some examples of the flexibility of the Power architecture design?
3. Why does the power CPU have so many registers compared to the 8088 family?
4. What is an advantage of the three-argument format used by the PowerPC arithmetic instruc-

tions?
5. What is the difference between the and and andi instructions?
6. What is the difference between the and and andi. operations?
7. Why isn’t there a standardized, hardware-supported stack frame format for the PowerPC?
8. For pipelining, why is it important that all instructions be the same size?
9. What is an instruction provided by the JVM that is not directly provided by the PowerPC?

How could the PowerPC implement such an instruction?
10. How can rearranging the order of computations speed up a PowerPC program?
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The Intel Pentium

8.1 Background
When was the last time you priced a computer? And what kind of computer did you price? For
most people, in most of the world, the answer to the second question is probably “a Pentium.” The
Pentium computer chip, manufactured by Intel, is the best-selling hardware architecture in the
world. Even competitors such as AMD usually very careful to make sure that their chips operate,
at a bug-for-bug level, exactly as the Pentium does. Even most computers that don’t run Windows
(for example, most Linux machines) use a Pentium chip.

This means, among other things, that for the foreseeable future, if you have to write an
assembly language program for a real (silicon-based) computer, it will probably be written on
and for a Pentium. In order to take full advantage of the speed of assembly language, you have to
understand the chip, its instruction set, and how it’s used.

Unfortunately, this is a complicated task, both because the “Pentium” itself is a compli-
cated chip and because the term “Pentium” actually refers to a family of slightly different chips.
The original Pentium, manufactured in the early 1990s, has undergone continuous development,
including the Pentium Pro, Pentium II, Pentium III, and the current Pentium 4 [P4]. Development
is expected to continue, and no doubt Pentiums 5, 6, and 7 will follow unless Intel decides to
change the name while keeping the systems compatible (as happened between the 80486 and the
Pentium).

This successful development has made learning the architecture of the Pentium both eas-
ier and harder. Because of the tremendous success of the original Pentium (as well as that of
the earlier x86 family that produced the Pentium), there are millions of programs out there,
written for earlier chip versions, that people still want to run on their new computers. This
produces pressure for backward compatibility, the ability of a modern computer to run pro-
grams written for older computers without a problem. So, if you understand the Pentium ar-
chitecture, you implicitly understand most of the P4 architecture (and much of the x86 ar-
chitecture). Conversely, every new step forward adds new features but eliminate the old ones.
This makes the Pentium almost a poster child for CISC architecture, since every feature ever
desired is still around—and every design decision made, good and bad, is still reflected in
the current design. Unlike the designers of the JVM, who were able to start with a clean
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slate, the Pentium designers at each stage had to start with a working system and improve it
incrementally.

This makes the fundamental organization of the CPU chip, for example, rather complex,
like a house that has undergone addition after addition after addition. Let’s check it out. . .

8.2 Organization and Architecture
8.2.1 The Central Processing Unit
The logical abstract structure of the Pentium CPU is much like the previously described architec-
ture of the 8088, only more so. In particular, there are more registers, more bus lines, more options,
more instructions, and in general, more ways to do everything. As with the 8088, there is still
a set of eight general-purpose named registers, but they have expanded to hold 32-bit quantities
and have received new names. These registers are now

EAX EBX ECX EDX
ESI EDI EBP ESP

In fact, the EAX register (and in similar fashion the others) is simply an extension of the
previous (16-bit) AX register. Just as the AX register is divided into the AH/AL pair, the lower
16 bits of the EAX register (called the extended AX register) are the AX register from the 8088.
For this reason, old 8088 programs that use the 16-bit AX register will continue to run on a
Pentium.

EAX (32 bits)

not used AX (16 bits)

AH (8 bits) AL (8 bits)

Similarly, the 16-bit IP register has grown into the the EIP register, the extended instruction
pointer, which holds the location of the next instruction to be executed. Instead of four, we now
have six segment registers (CS, SS, DS, ES, FS, and GS) that are used to optimize memory
access to often-used areas. Finally, the EFLAGS register holds 32 instead of 16 flags. All of these
registers except the segment registers are 32 bits wide. This, in turn, implies that the Pentium has
a 32-bit word size and that most operations deal in 32-bit quantities.

Beyond this, a major change between the 8088 and the Pentium is the creation of several
different modes of operation to support multitasking. In the original 8088, any program had
unfettered access to the entire register set, and by extension to the entire memory bank or to any
peripherals attached—essentially, total control over the system and all its contents. This can be
useful. It can also be dangerous; at the risk of indulging in old “war stories,” one of the author’s
earliest professional experiences involved writing high-speed graphics programs for an original
IBM-PC and, by mistake, putting graphics data in the part of system memory used by the hard
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drive controller The system didn’t work quite right when it tried to boot using the “revised”
parameters.

To prevent this problem, the Pentium can run in several different modes that control both
the sort of instructions that can be executed and the way memory addresses are interpreted.
Two modes of particular interest are real mode, essentially a detailed recreation of the 8088
operating environment (one program running at a time, only 1 megabyte of memory available,
and no memory protection), and protected mode, which incorporates the memory management
system described later (section 8.4.1) with support for multitasking. MS-DOS, the original IBM-
PC operating system, runs in real mode, while MS-Windows and Linux both run in protected
mode.

8.2.2 Memory
The Pentium supports several different structures and ways of accessing memory, but we’ll
ignore most of them here. First, they’re complicated. Second, the complicated ones (from the
programmer’s point of view) are, for the most part, holdovers from the old 8088 architecture. If
you have to write programs for a Pentium pretending to be an 8088 in real mode, they become
relevant. When you write programs for a modern computer, the task is much simpler. Treating
memory as a flat 32-bit address structure will handle almost everything necessary at the user
level.

8.2.3 Devices and Peripherals
There are very few major differences between device interfacing on the Pentium and on the earlier
8088, again due to the Pentium’s design for compatiblity. In practical terms, of course, this has
been a tremendous advantage for the computer manufacturers, since consumers can buy a new
computer and continue to use their old peripherals rather than having to buy a new printer and
hard drive every time they upgrade a board.

However, as computers (and peripherals) have become more powerful, new methods of
interfacing have come into common use that require the device and the I/O controller to do more
of the work. For example, the direct BIOS control typical of MS-DOS programming requires a
level of access to the hardware incompatible with protected-mode programming. Instead, a user-
level program will request access to I/O hardware through a set of operating system to defined
device drivers that control (and limit) access.

8.3 Assembly Language Programming
8.3.1 Operations and Addressing
Much of the Pentium instruction set is inherited directly from the 8088. In theory, in the name
of compatibility, any program written for the 8088 will run on a Pentium. The Pentium uses the
same two-argument format and even, in most cases, the same mnemonics. The only major change
is that the mnemonics have been updated to reflect the possibility of using the extended (32-bit)
registers; the instruction

ADD EAX, EBX ; ADD 32-bit register to 32-bit register

is legal and does the obvious thing.
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Many new instructions have been created by obvious analogy to handle 32-bit quantities.
For example, to the string primitives MOVSB and MOVSW (copy a string of bytes/words, defined
in the previous chapter) has been added a new MOVSD that copies a string of doublewords (32-bit
quantities) from one memory location to another.

8.3.2 Advanced Operations
The Pentium also provides many new-from-the-ground-up operations and mnemonics, more than
can be described here. Many of them, perhaps most, are shortcuts to perform (common) tasks
with fewer machine instructions than would be needed using the simpler instruction. For example,
one instruction (BSWAP) swaps the end bytes in a 32-bit register (specified as an argument), a
task that could be performed using basic arithmetic in a dozen or so steps. Another example is
the XCHG (eXCHanGe) instruction, which swaps the source and destination arguments around.
The idea behind these particular operations is that a sufficiently powerful compiler can produce
highly optimized machine code to maximize system performance.

Another example of this sort of new instruction is the new set of control instructions, ENTER
and LEAVE, which were included to support the semantics of functions and procedures in high-level
languages such as C, C++, FORTRAN, Ada, Pascal, and so forth. As seen in section 6.4.7, local
variables in such languages are normally made by creating temporary space on the system stack
in a procedure-local frame. The new ENTER instruction largely duplicates the CALL semantics
in transferring control to a new location while saving the old program counter on the stack, but
at the same time, it builds the BP/SP stack frame and reserves space for a set of local variables,
thus replacing a half-dozen simple instructions with a single rather complex one. It also provides
some support for a nested declaration feature found in languages like Pascal and Ada (but not
C, C++, or FORTRAN). The LEAVE instruction undoes the stack frame creation as a single
instruction (although, again rather oddly, it doesn’t perform the return from a subroutine, so a RET
instruction is still needed). These instructions save a few bytes of program code, but (contrary to
the wishes of the designers) they take longer to execute as a single slow instruction than the group
of instructions they replace.

Another instruction added specifically to support high-level languages is the BOUND instruc-
tion, which checks that a value is between two specified upper and lower limits. The value to be
checked is given as the first operand, and the second operand points to two (adjacent) memory
locations giving the upper and lower limits. This allows a high-level language compiler to check
that an array can be accessed safely. Again, this is something that could be done using more tra-
ditional comparison/branch instructions, but it would take a half-dozen instructions and probably
would clobber several registers. Instead, the CISC instruction set lets the system do the operation
cleanly, quickly, and with minimal fuss.

The various modes of operation and memory management need their own set of instructions.
Examples of such instructions include VERR and VERW, which “verify” that a particular segment
can be read from or written to, respectively. Another example is the INVD instruction, which
flushes the internal cache memory to make sure that the cache state is consistent with the state of
the system’s main memory.

Finally, the continuing development of the Pentium, starting with the Pentium Pro and con-
tinuing through the PII, PIII, and P4, has added new capacities—but also new instructions and
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features—to the basic Pentium architecture. For example, the Pentium III (1999) added a set of spe-
cial 128-bit registers, each of which can hold up to four (32-bit) numbers. Among the new instruc-
tions added were (special-purpose, of course) instructions to deal with these registers, including a
set of SIMD (Single Instruction, Multiple Data) instructions that apply the same operation in paral-
lel to four separate floating point numbers at once. Using these new instructions and registers, float-
ing point performance can be increased substantially (by about four times), which means that math-
heavy programs such as computer games will run substantially faster—or, alternatively, that a good
programmer can pack graphics that are four times better into a game without slowing it down. Nice,
huh?

At this point, you are probably wondering how you can possibly be expected to remember
all these instructions. The answer, thank goodness, is that for the most part, you are not expected
to do so. The Pentium instruction set is huge, beyond the capacity of most humans who don’t work
with it daily to remember. In practical terms, only the compiler needs to know the instructions so
that it can select the appropriate specialized operation as needed.

8.3.3 Instruction Formats
Unlike other computers, most notably those with the Power architecture, and to a lesser extent the
JVM, the Pentium does not require that all of its instructions take the same number of bits. Instead,
simple operations—for example, a register-to-register ADD or a RETurn from subroutine—are
stored and interpreted in only 1 or 2 bytes, making them quicker to fetch and taking up less
space in memory or on the hard disk. More complicated instructions may require up to 15 bytes
each.

What kind of information would go into a complicated instruction? The most obvious type
is immediate-mode data, as (rather obviously), 32 bits of such data will add 4 bytes to the length
of any such instruction. Similarly, an explicit (32-bit) named address for indirect addressing also
adds 4 bytes, so the instruction

ADD [EBX], 13572468H ; add 32-bit quantity to memory

takes at least 4 bytes beyond the simple instruction. (In the previous chapter, we’ve seen how
this issue is handled in a typical RISC chip, basically by breaking the instruction above into a
half-dozen substeps.)

Beyond this, the complexity of the instruction requires more data. With so many ad-
dressing modes, the Pentium takes more bits (typically a full byte, sometimes two) to de-
fine which bit patterns are to be interpreted as registers, as memory addresses, and so forth.
If an instruction is to use a nonstandard segment (one other than the default generated for
that particular instruction type), another optional byte encodes that information, including the
segment register to use. The various REP? prefixes used in string operations are encoded in
yet another byte. These are a few examples of the complexities introduced in CISC architec-
ture. Fortunately, these complexities are relatively rare and most instructions don’t exercise
them.
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8.4 Memory Organization and Use
8.4.1 Memory Management
The simplest organization of the Pentium’s memory is as a flat 32-bit address space. Every
possible register pattern represents a possible byte location in memory. For larger patterns (for
legacy reasons, a 16-byte pattern is usually called a “word,” while an actual 32-bit word is called
a “double”), one can coopt two or more adjacent byte locations. As long as the computer can
figure out how many bytes are in use, accessing memory of varying sizes is fairly simple. This
approach is also very fast, but has a substantial security weakness in that any memory address,
including memory in use by the operating system or by other programs running on the machine, is
available to be tampered with. (Remember my hard drive controller?), So, this simple organization
(sometimes called unsegmented unpaged memory) is rarely used except for controller chips
or other applications where the computer is doing one task and needs to do it really, really
fast.

Under protected mode, additional hardware is available to prevent program tampering. The
segment registers (CS, DS, etc.) inherited from the 8088 provide a solution of sorts. As with
the 8088, each memory address in a general-purpose register will be interpreted relative to a
given segment. However, the interpretation of the segment registers in the Pentium is a little
different. Two of the 16 bits are interpreted as a protection level, while the other 14 define an
extension to the 32-bit address, creating an effective 46-bit (14 + 32) virtual or logical address.
This allows the computer to address much more than the 32-bit (4-gigabyte) address space and
to mark large areas of memory as inaccessible to a particular program, thus protecting private
data.

However, these 46-bit addresses may still need to be converted into physical addresses to
be accessed over the memory bus (which has only 32 lines and hence takes 32-bit addresses).
The task of converting from these virtual addresses to 32-bit physical addresses is handled
by the paging hardware. The Pentium contains a directory of page table entries that act as a
translation system for this conversion task. Use of the segmentation and/or paging hardware can
be enabled or disabled independently, allowing the user of the system (or, more likely, the writer
of the operating system) to tune performance to a particular application. From the user’s point of
view, much of the complexity is handled by the hardware, so you can write your program without
worrying about it.

8.5 Performance Issues
8.5.1 Pipelining
A standard modern technique for improving the performance of a chip is pipelining. The Pentium,
although less well suited in its instruction set to take advantage of pipelining than some other
chips, nevertheless uses this technique extensively (figure 8.1).

Even before the Pentium was developed, the Intel 80486 had already incorporated a five-
stage pipeline for instruction execution. The five stages are:

� Fetch: Instructions are fetched to fill one of two prefetch buffers. These buffers store up to
16 bytes (128 bits) each and operate independently of the rest of the pipeline.
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prefetch (PF)

instruction decode (ID1)

instruction decode (ID2)

execute (E)

write back (WB)

instruction decode (ID2)

execute (E)

write back (WB)

U V

Figure 8.1 Illustration of the Pentium five-stage pipeline, including superscalar U and
V pipelines

� Decode stage 1: Instruction decode is performed in two separate stages, with the first stage
acting as a type of preanalysis to determine what sort of information must be extracted (and
from where) in the full instruction. Specifically, the D1 stage extracts preliminary information
about the opcode and the address mode, but not necessarily the full details of the address(es)
involved.

� Decode stage 2: This completes the task of decoding the instruction, including identification
of displacement or immediate data, and generates control signals for the ALU.

� Execute: This stage executes the instruction.
� Write back: This stage updates registers, status flags, and cache memory as appropriate given

the results of the immediately previous stage.

This pipeline is more complicated than others we have seen (such as the Power chip),
in part because of the complexity of the instruction set it needs to process. Remember that
Pentium (and even 486) instructions can vary in length from 1 to 15 bytes. This is part of the
reason that the instruction prefetch buffers need to be so large; they must be able to hold the
next instruction completely. For similar reasons, it can take a long time to decode complicated
instructions—sometimes as long as or even longer than it takes to execute simple ones. The
number and complexity of the addressing modes are major factors, since they can add several
layers of interpretation to an otherwise simple logical or arithmetic operation. For this reason,
there are two separate decode stages to keep the pipeline flowing smoothly and quickly. The 80486
can perform most operations that do not involve memory loads at a rate of close to one operation
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per machine cycle. Even so, indirect addresses (where the value in a register is used as a memory
address) and branches can slow the pipeline down.

This pipelining is considerably more extensive on the Pentium and later versions. Not only
are there several pipelines (reflecting the superscalar architecture), but each pipeline may have
more stages. The original Pentium had two pipelines with each of the five stages listed above.
The Pentium II increased the number of pipelines and increased the number of stages per pipeline
to 12, including a special stage to determine the length of each instruction. The Pentium III uses
14-stage pipelines and the P4 uses ones with 24 stages, pipelines that complicated to discuss in
detail here. So despite not having an instruction set designed for efficient pipelines, the Pentium
has taken to them with a vengeance.

8.5.2 Parallel Operations
The Pentium incorporates two other substantial architectural features to allow truly parallel oper-
ations—performing two instructions at the same time within the CPU. Starting with the Pentium
II, the instruction set features a collection of MMX instructions specifically for multimedia
applications, such as high-speed graphics (games) or sound (again, games). These implement
a sort of SIMD (Single Instruction, Multiple Data) parallelism, whereby the same operation is
performed on several independent pieces of data.

A typical multimedia application involves processing large arrays of relatively small nu-
meric data types (for example, pixels in a screen image) and performing the same calculation on
every data type rapidly enough to present the image without noticeable flicker. To support this
operation, the Pentium II defines a set of MMX registers, each 64 bits long, holding either 8 bytes,
four words, two doublewords, or less frequently an 8-byte quadword. A sample MMX instruction
defines a single operation to be performed on all elements of the register simultaneously. For
example, the PADDB (Parallel ADD Bytes) instruction performs eight additions on the 8 separate
bytes, and the variant PAADW performs four simultaneous additions on four words. For a simple
operation like displaying a simple byte-oriented image, this allows data to be processed up to
eight times as fast as it would be using ordinary 8-bit operations.

8.5.3 Superscalar Architecture
As discussed before (section 5.2.5), the other major parallel instruction technique involves
duplication of pipeline stages or even entire pipelines. One of the difficulties in pipelining
is keeping the stages balanced; if it takes substantially longer to execute an instruction than
it did to fetch it, the stages behind it may back up. The original Pentium used the 80486
five-stage pipeline but duplicated key stages to create two pipelines, called the U and V
pipelines. Instructions can alternate between the two pipelines, or even execute two at a time,
if both pipelines are clear. More generally, a superscalar architecture will have multiple
pipelines or multiple execution units within specific stages of the pipelines to handle differ-
ent kinds of operations (like the distinction drawn earlier between the ALU and the FPU, only
more so).

Later models of the Pentium, starting with the Pentium II, extended this further. In par-
ticular, the Pentium II’s decode 1 (ID1) stage is more or less replicated three times. In theory,
this implies that the ID1 stage could take up to three times as long as other stages without slow-
ing up the overall pipeline significantly. In practice, the situation is more complex. The first
instruction decoder can handle instructions of moderate complexity, while the second and third
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decoders can only handle very simple instructions. The Pentium II hardware therefore includes
a special instruction-fetch stage that will reorder instructions to align them with the decoder;
therefore, if any one of the next three instructions in the instruction queue is complicated, it
will be automatically placed in decoder 1. Since these instructions are rather rare, it wasn’t con-
sidered necessary to add this (expensive) capacity to the second and third decoder. Finally, for
extremely complex instructions, there’s a fourth decoder, the microcode instruction sequencer
(MIS).

There’s also a duplication of hardware units at the execution stage. A special stage of the
pipeline, the reorder buffer (ROB), takes instructions and dispatches them in groups of up to five
among various execution units. These units handle, for instance, load instructions, store instruc-
tions, integer operations (divided into “simple” and “complex” types), floating point instructions
(similarly divided), and several different kinds of MMX instructions.

8.6 RISC vs. CISC Revisited
Having spent several chapters dwelling on the differences between RISC and CISC architecture,
you’ve probably notice that the practical differences are few—both the (RISC) Power chip and
the (CISC) Pentium use many of the same techniques to get the greatest possible performance
out of the machine. Part of the reason for this is competition is been enough that both groups are
willing to figure out how to use each other’s good ideas. More significantly, the lines themselves
are blurring as technology improves. Moore’s law indicated that transistor density, and hence the
amount of circuitry that can be put on a reasonably sized microchip, has been getting larger and
larger at a very fast rate. This, in turn, means that even “reduced” instruction set chips can have
enough circuitry to include useful instructions, even if these are complicated.

At the same time, the hardware has gotten fast enough to allow extremely small-scale soft-
ware emulation of traditional hardware functions. This approach, called microprogramming,
involves the creation of a CPU within the CPU with its own tiny microinstruction set. A com-
plicated machine instruction—for example, the 8088/Pentium MOVSB instruction that moves a
string of bytes from one location to another—could be implemented at the microinstruction level
by a sequence of individual microinstructions to move 1 byte each. The macroinstruction would
be translated into a possibly large set of microinstructions which are executed one at a time from
a microinstruction buffer invisible to the original programmer.

This kind of translation is the job of the various ID1 decoders in the Pentium superscalar
architecture. The second and third decoders are only capable of translating instructions into a single
microinstruction; the first decoder can handle more complicated instructions that produce up to
four microinstructions. For even more complicated instructions, the MIS acts as a lookup table
storing up to several hundred microinstructions for the really complicated parts of the Pentium
instruction set.

At a more philosophical level, the irony is that the Pentium, as currently implemented, is a
RISC chip. The individual microoperations at the core of the various execution units are the kinds
of small-scale, fast operations at the heart of a strict RISC design. The major weakness of RISC—
that it requires a sophisticated compiler to produce the right set of instructions—is handled instead
by a sophisticated instruction compiler/interpreter, using the CISC instruction set as almost an
intermediate expression stage. Programs written in a high-level language are compiled to the
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CISC instructions of the executable file, and then each instruction, when executed, is reconverted
into the RISC like microinstructions.

8.7 Chapter Review
� The Intel Pentium is a family of chips—the best-known and best-selling CPU chips in the

world. Partly as a result of effective marketing, and partly as a result of the success of previous
similar chips such as the x86 family, the Pentium (and third-party Pentium clones, made by
companies such as Advanced Micro Devices) has been established as the CPU chip of choice
for Windows and Linux-based computers.

� Partly as a result of the CISC design, and partly as a result of legacy improvements and
backward compatibility, the Pentium is a complex chip with a very large instruction set.

� Available operations include the usual arithmetic operations (although multiplication and di-
vision have special formats and use special registers), data transfers, logical operations, and
several other special-purpose operational shortcuts. The entire 8088 instruction set is available
to provide backward compatibility.

� The Pentium includes a huge number of special-purpose instructions designed to support
specific operations. For example, the ENTER/LEAVE instructions support the sorts of programs
typically resulting from compiling high-level languages such as Pascal and Ada.

� The Pentium II offers a set of multimedia (MMX) instructions that provide instruction-level par-
allelism for simple arithmetic operations. The MMX instruction set allows SIMD operations—
for instance, performing eight separate and independent additions or logical operations at once
instead of one at a time.

� The Pentium also incorporates extensive pipelining and superscalar architecture to allow gen-
uine MIMD parallelism.

� The implementation of the Pentium involves a RISC core where individual CISC instructions
are implemented in a RISC-like microinstruction set.

8.8 Exercises
1. What are four major changes between the 8088 and the Pentium?
2. Name four instructions in the Pentium that the 8088 does not have.
3. Why are there two decode stages in the Pentium pipeline but only one execute stage?
4. How could SIMD parallelism smooth cursor/pointer movement on a computer screen?
5. What purpose is served by reordering the instruction fetches in the Pentium II?



9
� �

Microcontrollers:
The Atmel AVR

9.1 Background
A microcontroller is the kind of computer used for small-scale control operations inside de-
vices that one doesn’t usually think of as being computers. Classic examples of such devices
include traffic lights, toasters, thermostats, and elevators, but better, more detailed types are the
microcontrollers that are now installed in modern automobiles. Antilock braking, for instance,
is only possible because of a microcontroller that monitors the braking system and cuts in when
the wheels lock (and the car is about to skid). Other microcontrollers search for opportunities to
fire the airbags, adjust fuel mixtures to reduce emissions, and so forth. According to Motorola, a
microcontroller manufacturer, even a low-end 2002 model passenger vehicle contained about 15
microcontrollers; a luxury car, with much better entertainment and safety features, usually had
100 or more. These numbers have only gone up since then.

There is no formal accepted definition of microcontrollers, but they usually have three
main characteristics. First, they are usually found in so-called embedded systems, running
specialized single-purpose code as part of a larger system, instead of being general-purpose
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user-programmable computers. Second, they tend to be smaller, less capable. computers. (The
Zilog Z8 Encore! microcontroller uses 8-bit words, runs at 20 MHz, can address only 64K of
memory, and sells for about $4. By comparison, a Pentium 4 processor can easily cost $250
or more for the bare processor—without memory and therefore independently useless.). Third,
as hinted at, microcontrollers are usually single-chip gadgets; their memory and most of their
peripherial interfaces are located on the same physical chip. This is more usual now than it seems,
since almost all modern computer architectures have cache memory located on the CPU chip.
The important implication is that the memory available to a microcontroller is by definition all
cache memory, and is therefore small but fast.

In this chapter, we’ll look in detail at the AVR microcontroller manufactured by the At-
mel Corporation. Of course, the AVR isn’t by any stretch of the imagination the only such
computer out there; microcontrollers are commodity items, sold by the billions. The field is
fiercely competitive; other companies that make and sell microcontrollers include Microchip,
Intel, AMD, Motorola, Zilog, Toshiba, Hitachi, and General Instrumentation. However, the
AVR (or, more accurately, the AVR family, since there are several variants of the basic AVR
design) is fairly typical in its capacities but differs in interesting ways from more main-
stream chips such as the Pentium or Power chip (made by Intel and Apple/IBM/Motorola,
respectively).

9.2 Organization and Architecture
9.2.1 Central Processing Unit
The Atmel AVR uses RISC design principles in the interests of both speed and simplicity. There
are relatively few instructions, making those that do exist both short (2 bytes, compared to the
PowerPC’s 4 bytes or the Pentium’s up to 15) and fast to execute. Each instruction is constrained
to have a standardized length of 16 bits, including the necessary arguments. The instruction set is
tuned specifically for the usual needs of a microcontroller, including a (relatively) large number
of bit instructions for the manipulation of individual electrical signals. Despite this, there are
still only about 130 different instructions (fewer than there are on the JVM). Even the AVR does
not have the smallest instruction set; Microchip makes a relatively common tiny chip—used in
toasters, as it happens—with fewer than 35 instructions.

The Atmel AVR contains 32 general-purpose registers (numbered from R0 to R31), as well
as 64 I/O registers. Each of these registers is 8 bits wide, enough for a single byte or a number
from 0 to 255 (or −128 to 127). As with the JVM, some registers can be used in pairs to permit
larger numbers to be accessed. Unusually (at least compared with the computers we’ve already
studied), these registers are physically part of memory instead of being separate from the memory
chip (figure 9.1).

For all practical purposes, the AVR provides no support for floating point numbers; the
ALU will only do operations on integer types, and on very small integers at that.

Operationally, the AVR is very similar to the computers we already know, having a special-
purpose instruction register, PC, stack pointer, and so forth.

9.2.2 Memory
Because the AVR is a microcontroller, its memory on an AVR is quite limited. Unusually, its
memory is divided into three separate banks that differ not only physically, but also in their
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Figure 9.1 AVR block architecture. Note especially the Harvard architecture (multiple
separate memory blocks) and general-purpose registers stored in memory, not in the
CPU

sizes and capacities. The exact memory capacity differs from model to model, but the capac-
ities of the AT90S2313 are representative. This machine, like most microcontrollers, is an ex-
ample of the Harvard architecture design, where different physical storage banks (and dif-
ferent data buses) are available for transferring machine instructions and data. By using two
separate paths, each memory bank can be independently tuned to maximize performance. Fur-
thermore, the computer can load instructions and data at the same time (over the two buses),
effectively doubling its speed. But for general-purpose computers, this would also ordinarily
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require two separate cache memories (one for instructions, one for data), which in turn would
reduce the amount of cache available to each memory and seriously erode cache performance.
On a microcontroller, where the memory is all cache anyway, it doesn’t have as much of an
impact.

On the AVR in particular, there are three separate banks of memory: a read-only bank
for program code (since program code shouldn’t change during the execution of a program),
a read/write bank of high-speed memory for program variables, and a third bank for long-
term storage of program data that must survive a power outage (for example, logging or
configuration information). Unlike conventional architectures, where all memory is more or
less created equal and a single virtual address space suffices to access anything, each of
these three banks is independently structured and accessed with its own address space and
instructions.

As discussed earlier, there is a fundamental distinction between ROM (Read-Only Mem-
ory), which can be read from but not written to, and RAM (Random Access Memory), which can
be both read from and written to. This distinction is more fundamental in theory than it has become
in practice, with the development of various types of memory that require extensive equipment to
scribble on but are still writeable (in an abstract, Platonic, and expensive sense). In practical terms,
the modern definition of the ROM/RAM distinction is a difference in use: whether or not the CPU is
able to write to the memory (bank). On the AVR, the first bank of memory is made of FLASH ROM.
Although FLASH memory is in theory read/write (it’s the usual type of memory used in keychain
drives), there are no circuits or instructions on the AVR to write to it. From the AVR’s perspective,
FLASH memory provides (on the AT90S2313, 2048 bytes of) nonvolatile memory, which does not
lose information when the power is removed. This memory, for all practical purposes read-only, is
organized into 16-bitwords and provides storage for the executable machine code. In particular, the
value stored in the PC is used as a word address into this particular block of memory. The AVR chip
itself cannot make any changes to the ROM, and so it can only be programmed (or reprogrammed)
by someone with appropriate external equipment. (And, in all honesty, the equipment isn’t that
expensive.)

By contrast, the second bank of memory is specifically both readable and writable. This
data memory is composed of SRAM (static random access memory). As discussed in the
sidebar, the primary difference between SRAM and DRAM (dynamic random access memory)
is that dynamic RAM requires periodic “refresh” signals from the computer circuitry to retain its
value. The AT90S2313 has fewer than 256 bytes of SRAM.

Since memory is composed of more or less the fastest data storage circuitry available,
there is no need for a separate high-speed register bank, as in more typical computers. AVR
data memory is organized as a sequence of 8-bit bytes divided into three subbanks. The first 32
bytes/words (0x00..0x1F, or $00..$1F, to use Atmel’s notation) are used as the general-purpose
registers R0..R31. The next 64 words (0x20..0x5F) are used as the 64 I/O registers, and the rest
of the SRAM provides a bank of general-purpose memory storage registers for program variables
and/or stack frames as necessary. These memory storage locations are addressed using addresses
from 0x60 up to the amount of memory built into the chip (to 0xDF on our standard example, the
AT90S2313).

Finally, the third bank uses another kind of memory, EEPROM. Like the Flash ROM,
the EEPROM bank is nonvolatile, so the data persists after the power goes off. Like SRAM,
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S I D E B A R
Kinds of Memory
A rose may be a rose may be a rose, but memory isn’t just memory. We’ve already discussed
several diffent kinds of memory—for example, the difference between RAM and ROM. In very
broad terms, engineers will talk about many different kinds of memory, each of which has an
appropriate use.

� RAM: Random Access Memory. This is the most common type of memory that people think of
when they hear about memory; binary values are stored as electrical signals. Each set of signals
(usually sets are word- or byte-sized, but they can also be individual bits) can be addressed
independently, in “random” order, hence the name. RAM is a kind of volatile memory in that
the chips require electrical power in order to hold the signal; if the power goes out, all the
information you have in RAM will disappear.

There are two broad subtypes of RAM: Dynamic RAM (DRAM) and Static RAM
(SRAM). Most of the memory you buy or see is DRAM, which is cheaper and more compact.
Each “bit” is simply stored as a charge on a single electrical capacitor (plus an associated
transistor), a device that will hold energy for a short period of time. The problem with DRAM
is that the memory trace decays inside the circuit even if the chip itself has power. SRAM will
remember values as long as the computer has power without needing refreshes. In practical
terms, this means that the computer must periodically generate refresh signals to recreate the
DRAM memory patterns. (“Periodically,” in this context, means a few thousand times a second.
This is still a relatively long period of time for a 1-GHz processor.)

By contrast, SRAM is built to be self-reinforcing, like the flip-flop circuits discussed in
appendix A. Each memory bit will typically require about 6 to 10 transistors to create, which
means that a byte of SRAM memory takes up to 10 times as much space on the chip and
costs up to 10 times as much money. On the other hand, because SRAM requires no refresh
cycles, it can be accessed more quickly. Whereas DRAM is usually used for main system
memory (where the added cost of several hundred megabytes adds up), SRAM is usually
used in small, speed-critical memory applications such as the computer’s cache memory.
(For this reason, the Atmel microcontroller uses exclusively SRAM for its writable memory;
with less than 1,000 bytes, speed dominates over price.) Despite the fact that SRAM is self-
refreshing, the transistors still need power in order to work, and SRAM will lose its signal
if power is cut off for too long (milliseconds). Thus, SRAM is still considered to be volatile
memory.

� ROM: Read-Only Memory. Whereas RAM can be both read from and written to, ROM chips
cannot be written to. A better description is that writing to ROM chips, when possible at all,
requires special operations and sometimes even special equipment. However, the advantage of
ROM is that it’s a form of nonvolatile memory, meaning that if power is removed from the
chip, the data still remains. This makes it ideal for storing, for example, photographs taken by
a digital camera.

The simplest and oldest version of ROM is structured similarly to DRAM, except that
instead of using a capacitor, each memory cell contains a diode, which is programmed by
the chip manufacturer to pass current if and only if that memory cell is supposed to hold
a 1. Since diodes do not need power and do not usually degrade, the pattern built into the
chip will remain unchanged forever unless you jump on it or something. In addition the
manufacturer must know exactly what memory values to use, and the consequences are

(continued )
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serious if the manufacturer changes its decision or makes a mistake. (The infamous 1993
Pentium fdiv bug is an example of what can go wrong with a ROM.)

ROMs can be built extremely cheaply in quantity—for pennies per chip. But what happens
if you need only 25 chips? It’s probably not worthwhile to buy an entire chip factory. Instead, it
is better to use PROM (Programmable ROM) chips. Like ROM chips, these are manufactured
with a static electrical connection at every memory cell (instead of an active element like a
capacitor or transistor). In a PROM, these connections are actually fuses that can be broken by
the application of a high enough voltage. This process, for obvious reasons, is called “burning”
a PROM. Once the PROM is burned, the electrical connections that remain (or are now broken)
are still fixed and unchanging. But because it’s impossible to unbreak a fuse, a PROM can only
be burned once.

A final type of ROM avoids this issue. EPROM (Erasable Programmable ROM) chips
use advanced quantum physics to create a semiconductor-based reusable fuse at each memory
element. To create an electrical connection, the memory location is subjected to the same over-
voltage used with the PROM. However, applying ultraviolet light for several minutes will cause
the “fuse” to reset. This will erase the entire chip, allowing it to be reprogrammed and reused.

� Hybrid memory. In an effort to achieve the best of both worlds, manufacturers have started
making so-called hybrid memory, which is supposed to be field-reprogrammable while still
having the storage advantages of ROM. A variation on EPROM technology, such as EEPROM
(Electronically Erasable Programmable ROM) chips, uses a localized electrical field to
“erase” each memory cell instead of erasing the entire chip as a whole. Because this operation
is performed electronically, it doesn’t require the cabinet-sized ultraviolet light chamber and
can be part of the distributed system.

On the other hand, writing to EEPROMs takes a long time because the cell must be exposed
to the magnetic field to erase it, which takes several milliseconds. In theory, EEPROMs
provide the same functionality as RAM, since each individual cell can be written, read, and
rewritten, but the timing (and cost issues) make it impractical. Another major problem with
EEPROMs is that they are typically capable of only a limited number of read/write cycles.

FLASH memory is one approach to speeding up the process of writing to EEPROMs. The
basic idea is simple; instead of erasing each bit individually the electrical field (for erasing)
is applied to large blocks on the chip. It takes more or less the same time to erase a block as
it does to erase a single bit, but when data must be stored in mass quantities (say, on a pen
drive like my beloved Jump Drive 2.0 Pro, manufactured by Lexar Media), the time needed to
transfer a block of data to memory dominates over the time needed to erase the sector where it
will be placed. Flash memory is widely used, not only in pen drives but also in digital camera
memory, smart cards, memory cards for game consoles, and solid-state disks in PCIMCIA
cards.

Another variation on hybrid memory is NVRAM (Non-Volatile RAM), which is actually
SRAM with an attached battery. In the event of power loss, the battery is capable of providing
the power necessary to keep memory alive in an SRAM chip. Of course, the cost of the battery
makes this kind of memory substantially more expensive than simple SRAM.

� SAM (Sequential Access Memory): No discussion of memory types would be complete
without mentioning SAM. SAM is intuitively familiar to anyone who has tried to find a
particular scene in a videotape. Unlike RAM, SAM can only be accessed in a particular
(sequential) order, which can make it slow and awkward to use in small pieces of data.
Most kinds of secondary storage—CD-ROMs, DVDs, hard drives, even magnetic tapes—are
actually SAM devices, although they usually try to provide block-level random access.
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EEPROM is electronically programmable, so the AVR CPU can write data to the EEPROM
for persistent storage (although it takes a long time, on the order of 4 ms). Unlike the SRAM,
though, there is a limited number of times that data can be rewritten (about 100,000 times, al-
though technology is always improving). This is a physical problem related to the construction
of the memory, but it should be borne in mind when writing programs for the AVR. Writing
a piece of data to the EEPROM bank just once per second will still reach the 100,000 write
limit in a little over a day. However, there’s no limit to the number of times that the com-
puter can safely read from the EEPROM. This makes the EEPROM bank ideal for storing field-
modifiable data that needs to be kept but that doesn’t change very often, such as setup/configuration
information or infrequent data logging (say, once per hour, which would give you about a
10-year lifetime). On our standard example, the EEPROM bank is organized as a set of 128
bytes.

Each of these memory banks has its own address space, so the number 0 (0x00) could
refer not only to the actual number 0, but to the lowest 2 bytes of the Flash memory, the lowest
(single) byte of EEPROM, or the lowest byte of SRAM (also known as R0). As with all assembly
language programs, the key to resolving this ambiguity is context; values stored in the PC refer
to FLASH memory, while normal register values (when read as addresses) refer to locations in
SRAM. EEPROM is accessed through special-purpose hardware that in practical terms can be
treated as a peripherial.

9.2.3 Devices and Peripherials
The AVR implements a simple kind of memory-mapped I/O. It is not designed to be used in
graphics-heavy environments, where one might be expected to display pictures consisting of
millions of bytes 20 to 30 times per second. Instead, it is expected to drive a chip where the
output goes through a few pins that are physically (and electrically) attached to the CPU circuitry.
Specifically, these pins are addressable through specific defined locations in the I/O memory bank.
Writing to I/O memory location 0x18 (SRAM memory location 0x38), for example, is defined as
writing to the “Port B Data Register” (PORTB), which in turn is equivalent to setting an electrical
signal at the eight output pins corresponding to Port B. The chip can generate enough power to
turn on a simple light-emitting diode (LED), or throw an electrical switch to connect a stronger
power source to a more power-hungry device. Similarly, reading the various bits from the register
will cause the CPU to detect the voltage level currently present at the pins, perhaps to detect if
a photocell (a so-called electric eye) is reacting to light or to determine the current temperature
reading from an external sensor.

The AVR usually provides several bidirectional data ports that can be individually defined
(on a per-pin basis) to be input or output devices. It also provides on-chip timer circuits that can
be used to measure the passage of time and/or let the chip take action on a regular, recurring basis
(such as changing a stop light every 30 seconds or taking an engine temperature reading every
millisecond). Depending on the model, there may be other built-in peripherials such as a UART
(Universal Asynchronous Receiver and Transmitter) for large-scale data transmission/reception,
an analog comparator to compare two analog sensor readings, and so forth. Unlike with larger
computers, many of the output devices (the pins) are shared by several different output devices;
the pins used for the UART are the same physical connections used for data Port B. Without
this sort of overlap, the chip would be physically much more difficult to use (having hundreds
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of pins needing individual connections), but the overlap itself means that there are several device
sets that cannot be used together. If you are using Port B, you can’t use the UART at the same
time.

The I/O memory is also where information on the current state of the CPU itself is stored.
For example, the AVR status register (SREG) is located at I/O location 0x3F (SRAM location
0x5F) and contains bits describing the current CPU status (such as whether or not the most recent
computation resulted in a 0 and/or a negative number). The stack pointer is stored at location 0x3D
(0x5D) and defines the location (in SRAM) of the active stack location. Because these registers
are treated programmatically as memory locations, interacting with I/O peripherials is as simple
as storing and reading memory locations.

9.3 Assembly Language
Like most chips, the registers on the AVR are not structured in any particular fashion. Assembly
language instructions are thus written in a two-argument format, where the destination operand
comes before the source operand. Thus

ADD R0, R1 ; R0 = R0 + R1

will cause the value of R1 to be added to the value of R0, storing the result in R0 and setting the
value of various SREG bits to reflect the outcome of the result. Confusingly, the numbers 0 and 1
will work just as well as the more understandable R0 and R1—the assembler will usually accept
either. Although superficially this looks very much like an assembly language instruction for a
Pentium or Power, it (of course) corresponds to a different machine language value specific to the
Atmel AVR.

The AVR provides most of the normal set of arithmetic and logical operations that we have
come to expect: ADD, SUB, MUL (unsigned multiply), MULS (signed multiply), INC, DEC, AND, OR,
COM (bit complement, i.e., NOT), NEG (two’s complement, i.e., negate), EOR (exclusive or), and
TST (which tests a register value and sets the flags appropriately if the value is 0 or negative).
Perhaps oddly in our view, the slow and expensive division operation is not available. Also not
available is the modulus operator or any kind of floating point support.

To speed up the sorts of computations typically done by a microcontroller, there are a
number of -I variants (SUBI, ORI, ANDI, etc.) that will take an immediate mode constant and
perform that operation on the register. For example,

ADD 0, 1 ; R0 = R0 + R1

will add register 1 to register 0. The instruction

ADDI 0, 1 ; R0 = R0 + 1, or "increment R0"

will, by constrast, add the immediate value 1 to register 0.
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There are also several instructions to perform operations on individual bits: for instance,
SBR (set bit(s) in register) or CBI (clear bit in I/O register) will set/clear individual bits in a
general-purpose or I/O register. For example,

SBR R0, FF ; R0 = R0 OR 0xFF

will set the lower 8 bits of register 0 to 1s.

The various control operations are also extensive. In addition to a wide range of branch/jump
instructions (unconditionally: JMP; conditionally: BR??, where ?? refers to different flags and
flags combinations in the SREG register; and jump to subroutine: CALL), there are a few new
operations. The SB?? operation–the first ? is an R (general-purpose register) or an I (I/O
register), the second is a C (clear bit) or S (set bit), hence SBIC = Skip if Bit in I/O
register is Clear—performs a very limited branch that skips the single next instruction if the bit
in the appropriate register is set/clear. The AVR also supports indirect jumps (unconditional:
IJMP, to subroutine: ICALL) where the target location is taken from a register (pair), specifically
the 16-bit value stored in R30:R31.

9.4 Memory Organization and Use
Normal data transfer instructions manipulate the SRAM memory bank by default. Since reg-
isters and I/O registers are for all practical purposes part of this same bank, there’s no dif-
ference between writing to a register and writing to a simple SRAM byte. However, the
arithmetic operations defined in the previous section work only with the general-purpose reg-
isters (R0..R31), so one must still be prepared to move data around within this bank. The normal
instructions for this purpose are the LDS (Load Direct from SRAM) instruction, which takes
a register as its first argument and a memory location as its second, or the corresponding SDS
(Store Direct to SRAM) instruction, which reverses the arguments and the process. The AVR
also provides three specific indirect address registers, X, Y, and Z, that can be used for indirect
addressing. These are the last six general-purpose registers, taken in pairs (so the X register is
really the R26:R27 pair), and can be used to hold (variable) addresses in memory. Using these
registers and the LD (Load inDirect) instruction, the code

CLR R26 ; Clear R26 (set it to 0)
LDI R27, 0x5F ; Load Immediate (constant value) 5F into R27
LD R0, X ; Move (X) [= value in location 5F] into R0

will copy memory location 0x005F into register 0. It first sets the two halves of the X register
individually to 0x00 and 0x5F, then uses this as an index register (we have previously seen that
0x005F is actually the SREG register). An easier way of doing this would be to use the IN
instruction, which reads the value from the specified I/O register:

IN R0, 0x3F ; Copy SREG into R0

Note that although SREG is in memory location 0x5F, it is only in I/O port number 3F.



194 Chapter 9 � Microcontrollers:The Atmel AVR
� �

Access to FLASH memory (which can, of course only be read from, not written to) is
obtained indirectly using the LPM (Load from Program Memory) instruction. The value stored
in the Z register is used as a memory address inside the program (Flash) memory area, and the
appropriate value is copied to the R0 register.

Accessing EEPROM is more difficult, largely for physics and electronics reasons. Although
an EEPROM bank is in theory read/write, writing effects actual physical change to the memory
bank. Therefore, it takes a long time to complete and can require substantial preparations (such as
powering up “charge pumps” to provide the necessary energy for the changes) that need to take
place before the write can be performed. On the AVR, the designers opted for a memory access
scheme that closely resembles the one used to access a device.

The AVR defines three I/O registers (as part of the I/O register bank in SRAM): the EEAR
(EEPROM Address Register), EEDR (EEPROM Data Register), and EECR (EEPROM Control
Register). The EEAR contains a bit pattern corresponding to the address of interest (a value
between 0 and .127 in our standard example, so the high bit should always be a 0). The EEDR
contains either the data to be written or the data that has just been read, in either case using the
data in the EEAR as the destination.

The EECR contains three control bits that individually enable read or write access to the
EEPROM memory bank. In particular, bit 0 (the least significant bit) of the EECR is defined to
be the EERE (EEPROM Read Enable) bit. To read from a given location in the EEPROM, the
programmer should take these steps:

� Load the byte address of interest into the EEAR.
� Set the EERE set to 1, allowing the read to proceed.
� Read the data.
� After the read operation is completed, find relevant data in the EEDR.

The steps used to write are a little (not much!) more complex, because there are 2 en-
abling bits that need to be set. Bit 2 is defined to be the EEMWE (EEPROM Master Write
Enable) bit; when it it set to 1, the CPU is enabled to write to the EEPROM. However, this
doesn’t actually do any writing; it simply performs the preparations for writing. The actual writ-
ing is performed by setting bit 1 (the EEWE/EEPROM Write Enable bit) to 1 after the EEMWE
has also been set to 1. The EEMWE will automatically return to 0 after a short period of time
(about four instructions). This two-phase commit process the computer from accidentally scrib-
bling once the EEPROM (and damaging important data) in the event of an unexpected program
bug.

In order to write to the EEPROM, the programmer should

� Load the byte address of interest into the EEAR.
� Load the new data into the EEDR.
� Set the EEMWE to 1, enabling writing to the EEPROM bank.
� (Within four clock cycles) Set the EEWE to 1, allowing the write to happen.
� Write the data.

The actual writing, however, can be extremely slow, taking as much as 4 ms. On a chip
running at 10 MHz, this is enough time to perform 40,000 (!) other operations. For this reason,
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it’s a good idea to make sure that the EEPROM isn’t in the middle of writing (i.e., waiting for the
EEWE bit to go to 0 after a potential current write completes) before trying any other EEPROM
operations.

9.5 Issues of Interfacing
9.5.1 Interfacing with External Devices
The EEPROM interface described in the previous section is very similar to other peripherial
interfaces. Each device is controlled (and interacted with) by a small set of defined registers in
the I/O register bank. A few examples should suffice to give the flavor of interaction.

The AT90S2313 provides as one of its built-in devices a UART attached to a set of pins
configured to drive a standard serial port. We will eliminate the physical details of the electrical
connnections, which are interesting but would bring us more into the realm of electrical engineer-
ing than of computer architecture. The CPU interacts with the UART hardware through a set of
four registers: the UART I/O Data Register (which stores the physical data to be transmitted or re-
ceived), the UART Control Register (which controls the actual operation of UART, for example by
enabling transmission or by setting operational parameters), the UART Baud Rate Register (which
controls how rapidly/slowly data is transferred), and the UART Status Register (a read-only reg-
ister that shows the current status of the UART). To send data across the UART, and thus across a
serial line, the UART I/O Data Register must first be loaded with the data to be transmitted, and the
Baud Rate Register must be loaded with a pattern representing the desired speed. To perform the
data transfer, the Control Register must be set to “Transmitter Enable” (formally speaking, bit 3 of
the UART Control Register must be set to 1). If an error occurs in transmission, appropriate bits will
be set in the Status Register, where the computer can observe them and take appropriate corrective
action.

S I D E B A R
Clocks, Clock Speed, and Timing
How do computers know what time it is? More importantly, how do they make sure that things
that need to happen at the same time do so (like all bits in a register getting loaded at once)?
The usual answer involves a controlling clock or timing circuit. This is just a simple circuit
usually hooked up to a crystal oscillator like the one in a digital watch. This oscillator will vibrate
zillions of times per second, and each vibration is captured as an electrical signal and sent to all
the electronic components. This, technically, is where the “1.5 GHz” in a computer description
comes from; the master clock circuit in such a computer is a signal with a 1.5-GHz frequency; in
other words, vibrates 1,500,000,000 times per second. As will be seen in appendix A, this clock
signal both allows needed computations to proceed and prevents spurious noise from introducing
errors.

For actions that need to be performed repeatedly, such as refreshing the screen every 30th
of a second, a slave circuit will simply count (in this case) 50,000,000 master clock cycles
and then refresh the screen. Obviously, things that need to happen fast, such as the fetch-
execute cycle, will be timed to be as short as possible, ideally occurring at a rate of one per

(continued )
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clock cycle. The baud rate on the UART controller is controlled by a similar slave circuit. The
“speed pattern” tells this circuit how many master clock ticks should occur before the UART must
change signals.

This is also the reason that overclocking works. If you have a processor designed to run at 1.5
GHz, you can adjust the master clock circuit (perhaps even change crystals) to run at 2.0 Hz. The
CPU doesn’t know that its signal is coming in too fast and will try to respond at the higher rate. If
it really is running at the rate of one fetch-execute per clock tick, it will try to fetch and execute
faster. In a sense, it’s like trying to play a record at a higher speed than normal (45 rpm instead of
33 rpm). (Ask your parents.) Sometimes this works and you just got an inexpensive 30% speed
boost. On the other hand, the CPU may not be able to respond physically to the faster speed, and
it might die horribly (for example, if the cooling is inadequate). Sometimes the CPU will overrun
the rest of the components (by asking for data faster than the memory can provide it or the bus
can move it).

Interacting with the data port(s) involves a similar process. Unlike the UART, the data ports
are configured to allow up to eight independent electrical signals to be transferred simultaneously.
Using this system, a single data port could simultaneously monitor three push buttons (as input
devices) and a switch (as an input device), while controlling four output LEDs. Each data port
is controlled by two registers, one (the Data Direction Register) defining for each bit whether it
controls an input or output device and the other (the Data Register) holding the appropriate value.
To turn on an LED connected (say) to pin 6, the programmer would first make sure that the sixth
bit of the DDR was set to 1 (configuring the pin as an output device) and then set the value in the
sixth bit of the data register to 1, bringing the pin voltage high (about 3–5 volts) and turning on
the LED. Setting this bit to 0 would correspondingly turn off the LED by setting the pin voltage
to (close to) 0 volts.

9.5.2 Interfacing with Timers
The AVR also includes several built-in timers to handle normal tasks such as measuring time or
performing an operation at regular intervals. (Think about an elevator: the door opens, the elevator
waits a fixed number of seconds, and then the door closes again. A door that stayed open only a
microsecond would be unhelpful.) Conceptually, these timers are very simple: an internal register
is set to an initial value. The timer then counts clock pulses (adding 1 to the internal register each
time), either from the internal system clock or from an external source of timing pulses, until the
internal register “rolls over” by counting from a set of all 1s to a set of all 0s. At this point, the
timer goes off and the appropriate amount of time has passed.

An example would be appropriate here. I will assume that we have a source of clock pulses
that comes once every 2 μs. Loading an 8-bit timing counter with the initial value of 6 will cause
it to increment to 7, 8, 9,. . . every 2 μs. After 250 such increments (500 μs, or about 1/2000th of
a second), the timer will “roll over” to 256, which will overflow the register to 0. At this point,
the timer can somehow signal the CPU that an appropriate amount of time has passed so that the
CPU can do whatever it was waiting for.

One common and important kind of timer is the watchdog timer, whose purpose is to
prevent the system from locking up. For example, a badly written toaster program could have
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a bug that goes into an infinite loop right after the heating element is turned on. Since infinity
is a very long time, the effect of such an infinite loop would be (at least) to burn your toast,
and very likely your table, your kitchen, and possibly your apartment building. The watchdog
works as a normal timer, except that the “signals” it sends the CPU are equivalent to pressing
the reset button and thus restarting the system in a known (sane) state. It is the responsibility of
the program to periodically reset the watchdog (sometimes called “kicking” it) to keep it from
triggering.

Although the timer itself is simple, the CPU’s actions can be less so. There are two ways
in which the CPU can interact with the timer. The first, dumb, way, is for the CPU to put itself
into a loop, polling the appropriate I/O register to see whether or not the timer has completed. If
the timer has not completed, the CPU returns to the top of the loop. Unfortunately, this method
of continuous polling (sometimes called busy-waiting) prevents the CPU from performing any
other, more useful, processing. Busy-waiting can be thought of as the process of sitting by a
telephone waiting for an important call instead of getting on with your life.

A more intelligent way of dealing with expected future events (which also applies to wait-
ing by the phone) is to set up an interrupt handler. This is more or less how the AVR deals
with expected but unpredictable events. The AVR knows a few general kinds of interrupts that
are generated under hardware-defined circumstances, such as the timer overflowing, an elec-
trical signal on an established pin, or even power-up. On the AVR in particular, the possible
interrupts for a given chip are numbered from 0 to a small value (like 10). These numbers
also correspond to locations in Flash ROM (program code) in the interrupt vector; when in-
terrupt number 0 occurs, the CPU will jump to location 0x00 and execute whatever code is
stored there. Interrupt number 1 will jump to location 0x01, and so forth. Usually, all that is
stored in the interrupt location itself is a single JMP instruction to transfer control (still inside
the interrupt handler) to a larger block of code that does the real work. (In particular, the watch-
dog timer is defined to generate the same interrupt that would be created by the reset button
or a power-on event, thus providing some protection against infinite loops and other program
bugs.)

9.6 Designing an AVR Program
As a final example, here is a design (but not completed code) showing how a microcontroller
program might work in real life. The first observation is that microcontrollers are rather specialized
computers, so there are many kinds of programs that it would be silly to write for a microcontroller.
The physical structure of the AVR yields some obvious examples. It would be silly to try to write
a program that involves many floating point calculations, for example, on a computer with no
FPU or floating point instructions. However, the AVR is a very good chip for programs within its
capacities.

For a semi-realistic example, we’ll look at a type of software that could be run practically on
a microcontroller—specifically, the design of a traffic light seen at any typical busy intersection. I
will assume that there’s a street running north/south that crosses another street running east/west,
and the city traffic planners want to make sure that traffic on only one street can move at a time.
(I also assume the usual pattern of red/yellow[amber]/green lights, meaning stop, caution, and go.)
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In order for this to work, a set of four different patterns must be presented:

Pattern number N/S light E/W Light Notes
0 Green Red Traffic flows N/S
1 Yellow Red Traffic slowing N/S
2 Red Green Traffic flows E/W
3 Red Yellow Traffic slowing E/W

Actually, this might not work. For safety’s sake, we might want to set all the lights to red
between the times when traffic goes from N/S to E/W and vice versa to allow the intersection to
clear. It would also be nice to have an emergency setting of all red lights just in case. We can add
these as three additional patterns:

Pattern number N/S light E/W Light Notes
4 Red Red Traffic about to flow N/S
5 Red Red Traffic about to flow E/W
6 Red Red Emergency

This tabulation leads to two other observations. First, all the program needs to do is to
transistion (with appropriate timing) between the patterns in the following order: 0, 1, 5, 2, 3,
4, 0,. . . Second, as with so many other microcontroller programs, there’s no real stopping point
for the program. For once, it’s not only useful but probably essential that the program run in an
infinite loop.

The easiest way to write such a program is to implement what’s called a state machine.
The “state” of such a program is simply a number representing the pattern the lights are currently
displaying (e.g, if the state is 4, all lights should be red). Each state can be held for a certain
length of time (as measured by the timer). When the timer interrupt occurs, the computer will
change the state (and the lights) and reset the timer to measure the next amount of time.

We can also use other interrupts in this state table. For example, we can attach a special
police-only switch to a pin corresponding to an external interrupt. The interrupt handler for this
interrupt will be written such that the computer goes into a specific all-red emergency state. When
that switch is closed (by the police pressing a button), the controller will immediately execute the
interrupt. Similar use of external interrupts could cause the computer to detect when/if a passing
pedestrian presses the “walk” button, causing the computer to transition to yet another state, where
the appropriate walk light is turned on for the right amount of time. And, of course, we can use
the watchdog timer to look for possible program bugs, kicking it as necessary (say, every time the
lights change); in the unlikely event that the watchdog timer triggers, we could have the program
go either to a specific preprogrammed normal state or to the emergency state on the grounds that
something has gone wrong and the system needs to be checked.

9.7 Chapter Review
� A microcontroller is a small, single-chip, limited-capacity computer used for small-scale

operations such as device control or monitoring.
� Microcontrollers are found in many kinds of gadgets and devices, most of which do not seem

(offhand) to be computers at all, such as the braking system of a car.
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� The Atmel AVR is a family of related microcontrollers with a specialized instruction set for
these sorts of tasks. The architecture of the AVR is substantially different from that of a more
typical full-service computer. For example, the AVR doesn’t have support for floating point
operations, and contains fewer than 10,000 bytes of memory, but does have extensive on-board
peripherial device support.

� Like many microcontrollers, the Atmel AVR is an example of RISC processing. There is a
relatively small number of machine instructions tuned for specific purposes.

� The AVR is an example of Harvard architecture, in which memory is divided into several
(in this case, three) different banks, each with different functions and access methods. The
registers (and I/O registers) of the AVR are located in one of the three memory banks, along
with general-purpose RAM for variable storage. The AVR also has a bank of FLASH ROM
for program storage and a bank of EEPROM for storage of static variables whose value must
survive a power outage.

� Input and output in the Atmel AVR are accomplished through I/O registers in the memory bank.
A typical device has a Control Register and a Data Register. Data to be read or written is placed
in the Data Register, and then bits in the Control Register will be manipulated appropriately to
cause the operation to happen. Different devices will have different registers and potentially
different appropriate manipulations.

� Infrequent but expected events are handled efficiently using an interrupt and its corresponding
interrupt handler. When an interrupt occurs, the normal fetch-execute cycle is modified to
branch to a predefined location where appropriate (interrupt-specific) actions can be taken.
Such interrupts are not restricted to the Atmel AVR but happen on most computers, including
the Pentium and the Power architecture.

� The AVR is a good chip for only certain kinds of programs due to the limitations of its hardware
and capacities. A typical microcontroller program is a state machine that runs forever (in an
infinite loop), performing a well-defined set of actions (like changing traffic lights) in a fixed,
predefined sequence.

9.8 Exercises
1. What are three typical characteristics of a microcontroller?
2. Why does the Atmel AVR use RISC principles in its design?
3. What components of a typical computer are not found on the Atmel AVR?
4. Is the Atmel an example of von Neumann architecture? Why or why not?
5. What’s the difference between RAM and ROM?
6. Why does SRAM cost more per byte than DRAM?
7. What are the memory banks of the Atmel AVR, and what are their uses?
8. What is the function of a watchdog timer?
9. What is meant by “memory-mapped I/O”?

10. Describe the procedure that the Atmel uses to make an LED flash off and on repeatedly.
11. How would the traffic light example be modified if we wanted the lights in emergency mode

to flash RED–OFF–RED–OFF. . . ?
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Advanced Programming
Topics on the JVM

10.1 Complex and Derived Types
10.1.1 The Need for Derived Types
To this point, the discussion of computing has focused on operations on basic, elementary types
such as integers and floating point numbers. Most problems, especially problems large or complex
enough to need computers, focus instead on less basic types. For example, to answer the question
“What’s the cheapest way to fly from Baltimore to San Francisco?” you need to understand planes,
routes, and money. The notion of money is intimately connected with floating point numbers, while
the notion of routes is more closely connected with the idea of sequences of starting and stopping
points.

From a software designer’s point of view, it’s much easier to understand a solution if
it is presented in terms of these high-level types, while the computer can only operate on
the basic types within its instruction set. The notion of derived types bridges this gap nicely.
A derived type is a complex type built from (ultimately) basic types and on which high-
order computations can be performed. The derived type “money” can be built in a straight-
forward fashion from a floating point number (or more accurately, if less straightforwardly,
from a combination of integers for the various units, like dollars and cents or perhaps pounds,
shillings, pence and farthings for a historical application). The derived type “geographical lo-
cation” can be built in a straightforward fashion from two numbers representing latitude and
longitude.

A very abstract concept such as “route” could be built from a “list” of “flights” between
“geographic locations,” each “flight” being associated with a cost, expressed in “money.” In this
example, “route” would be a derived type. The types “list,” “flight,” “money,” and “geographic
location” would also be derived types, ultimately stored and manipulated as an appropriate collec-
tion of primitive types. From the software designer’s point of view, this is a powerful advantage—if
such types can be implemented in the computer system itself and if the programmer can use com-
puter implementations of the high-level operations. Using these derived types to describe abstract,

200
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derived types allows programmers and system designers to build complex systems more easily
than they could build a single monolithic program.

Let’s start by looking in detail at some examples of derived types.

10.1.2 An Example of a Derived Type: Arrays
The Theory
One of the simplest and most common kinds of derived types is the array. From a theoretical and
platform-independent perspective, an array is a collection of elements of identical type indexed
by an integer. You can use this definition to impress someone in a data structures class, if you
have to. Meanwhile, let’s unpack it a bit: An array is an example of what’s sometimes called a
“container type,” meaning that its only purpose is to store other pieces of information for later use.
In an array, all the pieces have to be of the same type, such as all integers or all characters—but,
of course, they can have different values. Finally, the individual locations for data are addressed
using a number—specifically, an integer that references that particular element. See, not so bad!
(figure 10.1).

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007

0x3008

0x3009

0x300A

figure[0]

figure[1]

figure[2]

figure[3]

figure[4]

figure

not part of figure

short figure [  ] = new short [5];

Figure 10.1 Diagram showing the memory layout for an array
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If you have an array of 1,000 integers, how much space does that take up? Assuming a
4-byte integer, no bonus points are awarded for answering “at least 4,000 bytes.” This is true
no matter what machine one is using. However, a block of memory this big simply won’t fit
into a register. Fortunately, this isn’t a problem, since computations have to be performed on
individual data elements and not on the array as a whole. The programmer can thus use a trick
to get at the data. She stores a number corresponding to the base of the array, a location from
which all array accesses will be computed. In this case, it will be a block of memory at least
4,000 bytes long, typically the memory address of the initial element (element number 0) of the
array. The programmer also stores an offset, an integer index of the element he or she wants
to use. On the 8088 or Pentium, these numbers would be stored in two different registers, and a
specific addressing mode would tell the computer to combine them appropriately to make an array
access.

On the JVM, things are a little different, because “address modes” do not really exist.
Instead, the two numbers are pushed on the stack and a special-purpose operation is performed
to access the array appropriately. Actually, there are five special-purpose operations, depending
upon what needs to be done. In approximately the order in which they are needed, these operations
are:

� Creating a new array
� Loading a data item into an element of an array
� Retrieving a data item from an array element
� Determining the length of an array
� Destroying an array when it is no longer needed

More importantly, note that from the point of view of a high-level language programmer
(or a computer science theorist), there’s no real difference between these two approaches. That’s
because an array is fundamentally a derived type defined by its use. As long as there is some way
of performing these actions—for example, loading a value into an array element at a particular
index—the exact implementation doesn’t matter from a theoretical point of view. This point will
come up again in the discussion of classes proper.

Creation
Obviously, any array must be created before it can be used; the computer needs to reserve the
appropriate (possibly very large) block of memory. In high-level languages such as C++ or
Pascal, this is often done automatically when the array variable is declared. The statement

int sample[1000];

declares sample to be an array variable (holding elements of type “int”) and at the same time
reserves enough space for 1,000 integers, numbered from [0] to [999]. In Java, space for an array
is reserved via explicit array creation, such as with

int[] sample = new int[1000];

There is a subtle difference here. In the first example, the creation of the array is implicit
in the declaration, while in the second, the creation of the array (the allocation of the block of
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memory) is done via an explicit command (“new”). The JVM, of course, doesn’t support variable
declarations in the normal sense, but it does support array creation. This is accomplished through
the use of the machine instruction newarray. In order to create an array, the programmer (and
computer) needs to know both the size of the array to be created and the type of element it will
contain.

The newarray instruction takes a single argument, the basic type of element for the array.
The assembler is a little odd in this regard, as it expects the Java name of the type, not the type
expression. For example, to create the sample array defined above, the type would be “int,” not
the type expression I. The length of the array to be created must be available on the stack as an
integer. This length will be popped, space will be reserved for a new array of the appropriate
length and type, and then an address corresponding to the new array will be pushed to the top of
the stack. This address can be loaded and manipulated appropriately.

The JVM equivalent for defining the sample array above would look something like this:

ldc 1000 ; push 1000 as the new array length
newarray int ; create an array of integers
astore 1 ; store the new array in #1\vspace*{-4pt}

Arrays are one place where the basic types of byte and char are actually used. In calcu-
lations on the stack, byte and char values are automatically promoted to integers, and in local
variables they are still sized as 32-bit quantities. This is somewhat wasteful of space, but it wastes
less space (at most 3 bytes per local variable, a tiny number) than it would to make the JVM
capable of storing small quantities. With arrays, the wasted space could be much more significant
as the arrays grow. In fact, the JVM even provides a basic type for boolean arrays, since a machine
could choose to store up to eight boolean values in a single byte (32 in a single word) for a more
than 95% improvement in space efficiency.

Technically speaking, the newarray instruction (opcode 0xBC) will only create one-
dimensional arrays of primitive, basic types such as ints and floats. An array of derived types
is more tricky to create because the type needs to be specified. Because derived objects can be
defined more or less arbitrarily by the programmer, there is not and cannot be a standardized list
of all the possible derived types. The JVM provides an anewarray instruction (opcode 0xBD)
for one-dimensional arrays of a derived type. As before, the size must be popped off the stack,
while the type is given as an argument. However, the argument is itself rather complex (as will be
discussed below) and actually refers to a String constant in the constant pool that describes the
element type. From the JVM’s perspective, executing opcode 0xBD is much more complicated
than executing opcode 0xBC, since it requires that the JVM look up the String in the constant
pool, interpret it, check that it makes sense, and possibly load an entirely new class. From the
programmer’s perspective, there is very little difference between creating an array of a basic type
and a derived type, and one possible enhancement to an assembler such as jasmin would be to
allow the computer to determine (by examining the type of argument) whether opcode 0xBC or
0xBD is needed.

The most difficult part of creating an array of derived objects is specifying the type. For exam-
ple, to create an array of String types (see below), the fully qualified type name “java/lang/String”
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must be used. The following example shows how to create an array of 1,000 Strings:

ldc 1000 ; 1000 elements in the array
anewarray java/lang/String ; create an array of Strings

This particular instruction is very unusual and very specific to the JVM. Most computers do
not provide this sort of support at the level of the instruction set for allocating blocks of memory,
and even fewer support the idea of allocating typed blocks. However, the ability to support typed
computations even when the types involved are user-defined is critical to the cross-platform
security envisioned by the designers of the JVM.

In addition to creating simple, one-dimensional arrays, the JVM provides a shortcut in-
struction for the creation of multidimensional arrays. The multianewarray instruction (note the
somewhat tricky spelling) pops a variable number of dimensions off the stack and creates an array
of appropriate type. The first argument to multianewarray defines the type of the array (not, it
should be noted, the type of the array element) in a shorthand notation of type expressions, while
the second argument defines the number of dimensions and thus the number of stack elements
that need to be popped. For example, the following code specifies that three numbers are to be
popped off the stack, creating a three-dimensional array:

bipush 6 ; size of array in third dimension = 6
bipush 5 ; size of array in second dimension = 5
bipush 3 ; size of array in first dimension = 3
multianewarray [[[F 3 ; create a 3x5x6 array of floats

Note that the final array created has three dimensions and is of overall size 3x5x6. The first
argument, “[[[F”, defines the type of the final array as a three-dimensional array (three [’s) of
floating point numbers.

The Type System Expanded
From previous work with System.out and printing various things, you should be somewhat
familiar with the system for expressing types to the JVM. The top half of table 10.1 lists familiar
basic types (which are used in the newarray instructions and their JVM expressions, as might be
used in a call to invokevirtual or multianewarray). In addition to the basic computational
types with which we are already familiar, the JVM recognizes as basic types the byte (B), the
short (S), the char (C), and the boolean (Z), also listed in table 10.1.

Derived types, as might be expected, are derived from the expressions of underlying types.
The type description of an array, for example, is an open square bracket ([) followed by the type
of every element in the array. Note that no closing bracket is needed or, in fact, allowed. This has
confused more than one programmer. The expression for an array of integers would thus be [I,
while the expression for a two-dimensional array (a matrix) of floats would be [[F; this literally
expresses an array ([) each of whose elements is an array of floats ([F).

Classes and class types are expressed using the fully qualified class name, bracketed in front
by a capital L and in back by a semicolon (;). The system output System.out, for instance, is an
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Type JVM/Jasmin Expression

int I

long J

float F

double D

byte B

short S

char C

boolean Z

void (return type) V

array of X [X

class Y LY;

function taking X and returning Y (X)Y

Table 10.1 Type Description Expressions

object of class PrintStream, stored in the directory and package of java.io (or java/io). Thus, the
proper class expression for System.out would be Ljava/io/PrintStream;, as has been used in
many previous examples.

These type constructors can be combined as needed to express complex types. For example,
the standard Java definition of the “main” routine takes as an argument an array of Strings. In
Java, this is written with a line like this:

public static void main(String [] args)

String is typically a system-defined class in the java.lang package, so it would be expressed
as Ljava/lang/String;, while the argument is an array of such Strings. The main method does
not return anything to the calling environment and hence is declared with return type void. Thus,
our by now familiar statement at the beginning of many methods:

.method public static main([Ljava/lang/String;)V

This declares that the main method accepts an array of Strings as its only argument and
returns nothing (void). It is evident from this example that this type system is used not only in the
description of array types, but also in the definitions of methods, as will be described later.

Storing
To store an item in an array, the JVM provides several similar instructions, depending upon the
type of element. For simplicity, assume for the moment that it’s an array of integers ([I). In order
to store a value at a location in an array, the JVM needs to know three things: which array, which
location, and which value. The programmer must push these three things (in that order) onto the
stack and then execute the instruction iastore. This operation is somewhat unusual in that it
doesn’t push anything onto the stack afterward, so it has the net effect of decreasing the stack size
by three.
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bipush 10 ; need 10 elements
newarray I ; create array of 10 integers
astore_1 ; store array in location #1

iconst_0 ; load a 0 for looping
istore_2 ; and store in #2

Loop:
aload_1 ; load the array
iload_2 ; load the location
iload_2 ; load the value (which is the same as the location)
iastore ; set array[location] = value
iinc 2 1 ; add 1 to #2 (the location and value)
iload_2 ; are we done yet (is location >= 10)?
bipush 10 ; load 10 for comparison
if_icmplt Loop ; if not at 10 yet, jump to Loop and repeat
; and we're done!

Figure 10.2 Example of storing in an array

Figure 10.2 shows a simple example of how data can be stored in an array. This code fragment
first creates an array of 10 integers and then stores the numbers 0–9 in the corresponding array
elements (figure 10.3).

For other basic types, including the noncomputational types of chars and shorts, the JVM
provides appropriate types using the standard method of initial letters to define variants. For
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Figure 10.3 Memory layout for figure 10.2
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Array Element Type Store Operation Load Operation

int iastore iaload

long lastore laload

double dastore daload

float fastore faload

char castore caload

short sastore saload

byte bastore baload

boolean bastore baload

array (address) aastore aaload

object (address) aastore aaload

Table 10.2 Array operations for loading and storing
values

example, to store an element in an array of longs, use the lastore instruction. To store an
element in an array of nonbasic types (address types, such as an array of arrays or an array of
objects), the elements are stored as addresses (a), so the instruction is aastore (table 10.2). The
only tricky aspect is in distinguishing between an array of booleans and an array of bytes, both of
which begin with the letter b. Fortunately, the JVM itself can handle this ambiguity, as it uses the
instruction bastore for both byte and boolean arrays and is capable of distinguishing between
them on its own. (All right, this is a micro-lie. On most implementations of the JVM, especially the
one from Sun Microsystems, the machine doesn’t bother to distinguish and just uses bytes to store
boolean array elements. This wastes about 7 bits per boolean element, which is still acceptably
efficient.)

Storing in a multidimensional array must be performed as a sequence of stores. Because a
multidimensional array is really stored (and treated) as an array of arrays, it is first necessary to
load the relevant subarray and then to load or store in it. Figure 10.4 shows a code fragment for
placing the number 100 in one slot (specifically location [1][2]) in a matrix of integers.

bipush 3 ; second dimension is 3
bipush 4 ; first dimension is 4
multianewarray [[I 2 ; create 4x3 array of integers
astore_1 ; store array in #1

aload_1 ; load the array
iconst_1 ; we're interested in a[1][?]
aaload ; get a[1] (a row of 3 integers)
iconst_2 ; get location 2
bipush 100 ; load 100 to be placed in array a[1]
iastore ; store 100 in a[1][2]

Figure 10.4 Example of creating and storing in a multidimensional array
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Loading
As with storing, so with loading. The JVM provides a set of instructions in the ?aload family that
will extract an element from an array. To use these instructions, push the array and the desired
location. The instruction will pop these arguments and then extract and push the value stored at
that location, as in the following example.

aload_1 ; load the 1000 int array stored at #1
bipush 56 ; push the value (desired location) 56
iaload ; extract and push the integer value array[56]

Getting the Length
Getting the length of an array is easy. The arraylength instruction pops the first entry off the
stack (which must, of course, be an array) and pushes the length of the array. For example, the
code below loads the previously created sample array, takes its length, and leaves the (int) value
1000 on the stack:

aload_1 ; load previously defined sample (1000 int array)
arraylength ; pop sample, push sample's length

Destroying
In contrast to the previous operations, destroying an array when its contents are no longer needed
is very simple. In fact, it’s something that the programmer need not even think about. The JVM
standard defines that the machine itself should periodically perform garbage collection, finding
memory, class instances and variables that are no longer used by the program. Once such things
are found, they are collected and made available for reuse.

The exact definition and operation of the garbage collection routine will vary from one
JVM implementation to another. The general definition of “garbage” is that the memory location
is no longer reachable from the program. For example, if local variable #1 holds (the only copy
of the address of) an array, the array and every element in it are reachable and possibly available
for computation. If the programmer were to write over local variable #1, then, although the array
itself has not changed, it’s no longer possible to access the information in it. At this point, the
memory taken up by the array (which might be extensive) doesn’t store anything useful and might
as well be recycled for other useful purposes. The only problem is that there’s no way to predict
exactly when this recycling might happen, and it’s technically legal for a JVM implementation
not to perform garbage collection at all.

From the programmer’s perspective, there is no need to explicitly destroy an array. Popping
or overwriting all the references to the array, which will usually happen by itself in the normal
course of running the program, will cause the array to become unreachable, garbage, and therefore
recycled.

10.1.3 Records: Classes Without Methods
The Theory
The next simplest derived type is called, variously, a structure or a record. Again, like an array,
this is a container type. Unlike an array, the data stored in a record is contained in named fields
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Name (String)

Year ( I )

Team (String)

Games ( I )

At Bats ( I )

Runs ( I )

Hits ( I )

Batting Average ( F )

Babe Ruth

1923

0.393

Class Baseball Player

Figure 10.5 A partially filled record for baseball card information

and may be of different types. The record provides a method of keeping related data together in
a single logical location. If you like, you can think of a record as an electronic baseball trading
card, which carries all the information relevant to a single player (batting average, home runs hit,
times at bat, runs batted in, stolen bases, etc.) in one consistent, easy-to-transport format (figure
10.5). Each of these pieces of information would be associated with a particular field name (e.g.
“RBI” for runs batted in) and possibly would have different types (batting average is defined
as a float, while the number of home runs is an integer, and position—“shortstop”—might even
be a String). A simpler example would be a fraction with just two integer fields (numerator and
denominator).

Unlike an array, each record type must be defined separately at compile time by the program-
mer. The definition will mostly consist of a list of the necessary field names and their respective
types. These will be stored in a suspiciously familiar-looking file, as shown in figure 10.6.

This example program shows a simple instance of a record type, specifically a fraction (or
as a mathematician might put it, a rational number). Fractions are formally defined as the ratio
between two integers, named the numerator (the number on the top) and the denominator (the
number on the bottom), respectively. The two key lines in this file that define these fields are the
ones beginning with the .field directive Specifically, the line

.field public numerator I

defines a field named numerator whose value is of type “I” (for integer, as discussed above). A
field with a long value would use a ‘J’, while a field with a String (a derived type) would use
the expression “Ljava/lang/String;” as we have seen before. The public keyword indicates that
the numerator value is “public,” meaning that it can be accessed, read, and modified by other
functions and other objects in the system.

What about the rest of the file? Close inspection reveals that it’s the same boilerplate we
have been using since the first examples for the definitions of classes. The reason for this is very
simple: a record in the JVM is implemented as a class, so there is a minimal class overhead
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; structure definition for ’fraction’ types

.class public fraction

.super java/lang/Object

.field public numerator I

.field public denominator I

; boilerplate -- needed because ’structures’ are really ’classes’
.method public <init>()V

aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

Figure 10.6 A sample record defining “fraction” as a derived type

that also must be present to allow the rest of the system to interact with our newly defined
record. So, without further ado, let’s look specifically at classes as a derived type and see their
advantages.

10.2 Classes and Inheritance
10.2.1 Defining Classes
A major advance in programming technology—or more accurately, in program design—was the
development of object-oriented programming. Under this framework, large programs are de-
signed using systems of smaller interactive objects that are individually responsible for their
own data processing. A common metaphor is that of a restaurant. Diners can order any dish
they like without having to worry about preparation details; that’s the kitchen’s responsibility.
(And the cook doesn’t worry about who ordered a particular dish; that’s the server’s responsi-
bility.) This division of responsibility really pays off because a code fragment written for one
purpose can often be coopted and reused for another purpose, and a large system can be built
with relative ease as a collection of interacting objects. To continue a repeated example, the
random number generator designed in section 3.4.1 can be used any time a random number
is needed, whether for a Monte Carlo simulation, a Vegas-style casino game, or a first-person
shoot-‘em-up.

In order to structure these objects into a coherent framework, they are usually grouped into
(and written as) classes of similarly propertied objects. One random number generator is much
the same as any other, even if the detailed parameters or operations may differ. In particular, the
things that an outside observer would want to do to or with a random number generator (seed it
to a state to start generating or get a new random number from the generator) are the same. We
can then define the idea of a “random number generator” operationally—in terms not of how it
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works, but of what we can do with it. Anything that calls itself a random number generator will
have to perform those two operations.

This leads us to a familiar formal definition of a class as an abstract description of a derived
type consisting of a set of named (instead of numbered) fields of potentially different types.
(Sounds a lot like a record, doesn’t it?) The difference is that a class also contains methods,
functions that define legitimate ways to interact with the class. Finally, an object is an example
or instantiation of a class, so where a class might be an abstract concept (like a “car”), an
object would be a particular car, like the specific old VW Bug that I used to work on in high
school.

As a quick review, a class (from the outside) is a way of grouping together similarly
propertied objects that can all be interacted with in the same way. On a computer running Apple’s
OS X operating system, all windows have three buttons at the upper left corner: red, for deleting
the window; yellow, for iconifying it; and green, for expanding it. Once the user understands how
to work with any one window, she can work with all of them. This idea generalizes to the notion
of classes, objects, and methods. In particular, each object (or instance of a class) shares the same
methods or defined functions for interacting with that object. If you understand how to steer one
example of a VW Bug, you know how to steer all of them, because the “method” of steering is
identical.

This view continues to hold when programming on the JVM, because two objects are
represented as independent instances of class files, where each class is largely independent
and relies on the same methods for communicating at the JVM bytecode level. We have
already seen examples of this in previous programs, mostly in interacting with the system
output.

In detail:

� System.out (in jasmin, System/out) is a particular object.
� System/out instantiates the java/io/PrintStream class.
� All PrintStream objects have a println method.
� The println method causes a String to appear in the “usual” place, which can vary from object

to object; for System/out it appears at the standard system output such as the screen.
� To make this happen, one uses the invokevirtual instruction, which triggers the appropriate

method (println) on the appropriate object (System/out) [of the appropriate type (PrintStream)].

Each system is required (by the Java/JVM standards documents) to provide a PrintStream
class and a System/out object as a member of that class. The exact details—for example,
whether to print to a file on disk, a window on the screen, or a printer—are left to the indi-
vidual classes. Furthermore, it’s easy to set up another object (of class PrintStream) that prints
its data in a different location. Then instead of invoking the println method of System/out,
one invokes that same method of the new object and thereby prints to a file instead of to the
screen.

Java does not enforce object-oriented programming, but the designed structure of the lan-
guage makes it very easy and profitable to use it. In addition, the structure of the JVM does
not enforce object-oriented programming, but it does encourage its use. In particular, the JVM
specifically stores executable programs as class files and, as shown, makes it very easy to build
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a large-scale system using interoperating classes. We present some examples of such derived
classes below.

10.2.2 A Sample Class: String
Classes, like arrays and fields, are derived types, but the various methods included as class
definitions can make them much more difficult to understand. A typical, but still relatively
understandable, example of a derived type is the standard Java String class, defined as part
of the Java.lang (or Java/lang) package. The String class simply holds an immutable and un-
changeable string such as “Hello, world!”, perhaps to be printed; the class defines both the
type of data used in a String (usually an array of characters) and a set of methods, func-
tions, and operations which are defined as valid ways of interacting with the String class.
We’ve been using String objects for some time without having a formal understanding of their
properties.

Using a String
In addition to storing the actual string value, the String supports a wide collection of computational
methods that will inspect the String to determine its properties. For example, the charAt() method
takes an integer and returns the character at the location specified.

In Java (or an equivalent object-oriented high-level language), this function would be defined
to fit a calling scheme something like

class java.lang.String {
char charAt(int);

}

This scheme, used both for defining the function and for calling it, states that the method
charAt() is part of the class String (itself part of the java/lang package), takes a single integer
as a parameter and returns a character value. In jasmin, these same concepts would be expressed
in a slightly different syntax, using the same syntax given in table 10.1.

java/lang/String/charAt(I)C

(Quick review: this means that the symbol “charAt” is a function taking type I and returning
type C.) As we shall see, this kind of syntax is used both for defining the method itself and for
invoking the method on any particular string.

The compareTo() method compares the current String with another and determines which
one is alphabetically prior; if this (the current string) would come before the argument String
in a dictionary, either by being shorter or by having a letter earlier in the usual sorting sequence,
the integer returned will be negative. If this comes after the String argument, the return value
will be positive, and if the Strings are exactly equal, a 0 is returned. In our jasmin notation, this
method looks like this:

java/lang/String/compareTo(Ljava/lang/String;)I

Other methods specified (by the standard) as belonging to the String class include
equals(), which returns a boolean value to indicate whether one string is identical to another;
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equalsIgnoreCase(), which does the same calculation but ignoring case (so “Fred” and “fred”
are not equal but would be equalIgnoreCase); indexOf(), which returns the location of the first
occurrence of the character specified as an argument; length(), which returns the length of
the String; and toUpperCase(), which returns a new String in which all characters have been
converted to CAPITAL LETTERS. All in all, there are more than 50 separate methods, excluding
the ones implicitly inherited from the Object class, that are defined by the standard as part of the
JVM java.lang.String class.

10.2.3 Implementing a String
Under the hood, and at the bytecode level, how is a String actually implemented? The answer,
annoying but brilliant, is that it doesn’t matter! Any valid JVM class that implements the appro-
priate 50 methods, irrespective of the actual details, is a valid version of the class. As long as
other classes use only the well-defined standard methods to interact with the String class, users
will find that a well-behaved String class will serve their needs.

One (worthless) possibility for implementing a String, for example, would be as an ordered
collection of individual character variables, each representing a separate character in the String.
This has some obvious drawbacks from a programmer’s point of view, as he would need to
create many variables with names like seventyeighthcharacter. A better solution would be
to use a simple derived type such as a character array (see above). Even here, there are a few
choices. For instance, he could try to save space and use a byte array (if all of the Strings he the
designer expects to deal with are ASCII strings, then there is no need to deal with UTF-16). He
could also use an array of integer types to simplify any needed calculations. The String could
be stored in this array in normal order, so that the first element of the array corresponds to the
initial character of the string, or in reverse order (to simplify implementation of the endsWith()
method).

Similarly, he may or may not want to create a special field holding the length of the string
as an integer value. If he does so, this will make each individual String object a little larger
and a little more complex, but it will also make it faster to use the length() method. Trade-offs
like these can be important to the overall performance of the system, but they have no effect on
whether or not the programmer’s version of String is legitimate; and anyone else who uses his
String class will find that, if all methods are there and correct, their program will still work. There
doesn’t need to be any specific relationship between the String class file and the class files that use
String.

Constructing a String
String has a special method (usually called a constructor function that can be used to make a
new String. This method takes no arguments and most of the time isn’t very useful because the
String created is of 0 length and has no characters. With the notation used so far in the book, this
constructor function would be described as

java/lang/String/<init>()V

To make it easier and more useful, the String class also has many (about 11) other construc-
tors that allow you to specify the contents of the String to be created. For example, a programmer
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can duplicate an existing String by creating a new String from it as follows:

java/lang/String/<init>(Ljava/lang/String;)V

He can also create a string from a StringBuffer (which makes an immutable string from a
mutable one):

java/lang/String/<init>(Ljava/lang/StringBuffer;)V

or directly from an array of characters:

java/lang/String/<init>([C)V

any one of which would provide control over both the creation of the String as well as its contents.

10.3 Class Operations and Methods
10.3.1 Introduction to Class Operations
Classes are, in general, much more complex than arrays because they are required (or at least
allowed) to provide many more operations and many more kinds of operations than arrays. Because
of this complexity, it’s not usually practical to create a new class on the fly (although one can
always create a new object instantiating an existing class). Classes are, instead, defined via .class
files as we have been doing; the basic class properties, such as fields and methods, are defined via
jasmin directives at compile time. Once these fields and methods have been created, they can be
used by anyone on the system (with appropriate access permission).

10.3.2 Field Operations
Creating Fields
Unlike arrays, fields within classes are named, not numbered. However, fields within different
classes may be called the same thing, raising the possibility of ambiguity and confusion. For this
reason, when fields are used, they should be fully described, including the name of the class that
introduces the field.

To create a field, jasmin uses the directive .field, as illustrated below (and also in fig-
ure 10.6:

.field public AnExampleField I

This example creates a field in the current class named AnExampleField, which holds a
variable of type int. Because this field is declared “public,” it can be accessed and manipulated by
methods that are not themselves part of the current class; presumably the programmer has some
reason for this. A more realistic example (following the baseball metaphor above) can be seen in
figure 10.7.

The.fielddirective allows several other access specifications and arguments. For example,
a field can be declared “final,” meaning that its value cannot be changed from the value set in
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.field public Name Ljava/lang/String;

.field public Year I

.field public Team Ljava/lang/String;

.field public Games I

.field public AtBats I

.field public Runs I

.field public Hits I

.field public BattingAverage F

Figure 10.7 Fields for a hypothetical BaseballPlayer class (see figure 10.5)

the field definition, or it can be declared “static,” meaning that the field is associated with a class
rather than with individual objects within the class:

.field public static final double PI D = 3.1415926537898

This example defines “PI” as a static (class-oriented), final (unchangeable) double with the
value of π . If for some reason the programmer wanted to restrict the use of PI to methods within the
Example class, it could be declared “private” instead. Valid access specifications include private,
public, protected, final, and static, all of which have their usual meaning in Java.

Using Fields
Since fields are automatically part of their objects/classes, they are automatically created as part
of object creation (or, in the case of static fields, as part of class loading) and destroyed when the
corresponding object/class is swept in garbage collection. The two operations of separate interest
to the programmer are therefore storing data in a field and loading it from a field (placing it an
the stack).

The procedure for storing in a field is similar to the procedure for storing in an array, with the
significant difference that fields are named instead of numbered. As such, the putfield operation
takes the name of the relevant field as an argument (because names, as such, cannot be placed
on the stack). The programmer needs to push the address of the relevant object (whose field is to
be set) and the new value (which must be of the correct type) and then execute the appropriate
putfield instruction, as shown in figure 10.8. (The results of executing the code are show in
figure 10.9.)

Static fields, being attached to a class instead of a particular object, have a similar structure
but do not need to have an object on the stack. Instead, they are simply placed in the appropriate
class field using the instruction putstatic. If the PI example above had not been defined as
“final,” then a programmer could adjust the internal value of PI using

ldc_2w 3.0 ; load 3.0 to become the new value of PI
putstatic Example/PI D ; set PI to be 3.0 for the Example class

; of course, this wouldn't work, since PI
; was defined as 'final' above
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aload_1 ; #1 should hold the address (hence the 'a')
; of an instance of the BaseballPlayer class
; (an object of class Example)
; and specifically, Babe Ruth

ldc "Babe Ruth"; push the name to be put into the Name field
putfield BaseballPlayer/Name Ljava/lang/String;
aload_1 ; reload our object

; put 1923 into the field as an int
sipush 1923 ; push 1923 to be put into the Year field
putfield BaseballPlayer/Year I ; put 1923 into the field as an int
aload_1 ; reload our object
ldc 0.393 ; in 1923, Ruth's batting average was 0.393
putfield BaseballPlayer/BattingAverage F

; put 0.393 into the field as a float

Figure 10.8 Storing information in object fields

Name (String)

Year ( I )

Team (String)

Games ( I )

At Bats ( I )

Runs ( I )

Hits ( I )

Batting Average ( F )

Babe Ruth

1923

0.393

Class Baseball Player

Figure 10.9 Results of executing the code in figure 10.8

The JVM also provides instructions (getfield and getstatic for retrieving values from
fields. The System class (defined in java.lang, and thus formally expressed as java/lang/System)
contains a statically defined field called out that contains a PrintStream object. To get the value
of this object, we use the by now familiar line

getstatic java/lang/System/out Ljava/io/PrintStream

Because java/lang/System is a class, nothing need be on the stack and nothing will be popped
in the process of executing getstatic. When accessing a nonstatic field (using getfield), since
the value must be selected from a particular object, the object must first be pushed onto the stack:

aload_1 ; load Example object from #1
getfield Example/AnExampleField I ; push AnExampleField as int
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10.3.3 Methods
Method Introduction
In addition to fields, most classes also possess methods, ways of acting on the data stored in the
class or its objects. Methods differ from fields in that they actually compute things and therefore
contain bytecode. (As with fields, there are several different kinds of methods with different
properties; the main method, for instance, must nearly always be defined as both public and static
because of the way the JVM interpreter works. When the JVM attempts to execute a class file, it
looks for a method defined as part of the class (and not as part of any particular object, since there
are no objects of that class thus, static) to execute. Since there are no objects of that class, this
method must be publicly accessible. For this reason, every program we have yet written includes
the line

.method public static main([Ljava/lang/String;)V

as a definition of main as a public, static method.

Method Invocation Via invokevirtual
Methods are declared and defined in their corresponding class file. To use a method it must be
invoked on an appropriate object or class. There are a few basic operations that correspond to
method invocation, used in slightly different ways, depending upon the circumstances.

The most common and most straightforward way to invoke a method uses the
invokevirtual operation (opcode 0xB6). We have been using this in several chapters, and
there is nothing especially new or conceptually difficult about it. The operation pops an object
(and the arguments to the method) from the stack, invokes the appropriate method on the object,
and pushes the result, as in the following standard code:

getstatic java/lang/System/out Ljava/io/PrintStream
ldc "Hello, world!"
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

This code pushes the object System.out (a PrintStream) and one argument. By inspection
of the invokevirtual line, we can see that the stack must contain, at the top, a single argument
of type java/lang/String and below it a PrintStream object A more complicated method might
take several arguments, but they will all be specified in the invokevirtual line, so the computer
knows exactly how many arguments to pop. Below all arguments is the object whose method is
to be invoked (figure 10.10).

When such a method is invoked, control will be passed to the new method in similar fashion
to a subroutine call. However, there are a few crucial differences. First, the arguments to the
method are placed sequentially in local variables starting at #1. Local variable #0 gets a copy
of the object itself whose method is being invoked (in Java terms, #0 gets a copy of this). The
new method also gets a completely new set of local variables and a completely new (and empty)
stack.

When computation is completed, the method must return, and return with the appropriate
type expected by the method definition. From the calling environment’s viewpoint, the method
should push an element of the appropriate type at the top of the stack. From the method’s viewpoint,
it needs to know which element (and what type). There are several commands to return, starting
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aload  1 ; load Object of class Class

bipush 3    

bipush 5

ldc           5.0

invokevirtual Class/method (IIF)V    

5.0

5

3

Object

new
(empty)

stack

#0 : Object

#1: 3 

#2: 5 

#3: 5.0 

Figure 10.10 Method invocation using invokevirtual

with return, which returns nothing, i.e., is a void type, and the ?return family, which returns the
appropriate element of the appropriate type at the top of the stack; members of this family include
the usual suspects—ireturn, lreturn, freturn, dreturn—as well as areturn to return an
address or object (figure 10.11). This family does not, however, include the ret instruction, which
returns from a subroutine. It is also not legal to “fall off” the end of a method; unlike Java and
most high-level languages, there is no implicit return at the end of a method.

This can be seen in the following very simple method, which simply returns 1 if and only
if the argument is the integer 3:

.method public isThree(I)I
.limit locals 2
.limit stack 2
iload_1 ; argument, an int, is in #1
bipush 3 ; load 3 for comparison
if_icmpeq Yes ; if #1 == 3, then return 1
bipush 0 ; not equal, so return 0
ireturn

Yes:
bipush 1 ; equal, so return 1
ireturn

.end method
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bipush    6

ldc           7.0

bipush 1

ireturn

1

7.0

6

1

calling stack
destroys old
stack frame and
pushes 1 onto
calling frame

Figure 10.11 Method return using ireturn

There is a very important difference between subroutines (accessed via jsr/ret) and meth-
ods (accessed viainvokevirtual/?return). When a subroutine is called, the calling environment
and the called routine share local variables and the current stack state. With methods, each time you
start a method, you get a brand new set of local variables (all uninitialized) and a brand new stack
(empty). Because each new method invocation gets a new stack and a new set of local variables,
methods support recursion (having a method reinvoke itself) in a way that subroutines do not. To
invoke a method recursively, one can simply use the value stored in #0 as the target object and write
the invokevirtual line normally. When the method executes, it will use its own version of the
stack and local variables without affecting the main stream of computation. Upon return from the
method, the calling environment can simply pick up where it left off, using the results of the method
invocation.

Other invoke? Instructions
Since invokevirtual takes an object and its arguments to call a method, it (perhaps obviously)
isn’t suitable for use with a static method. Static methods don’t have associated objects. The
JVM provides a special invokestatic operation (as figure 10.12) for invoking static methods on
classes. This operates just as invokevirtual would (and looks very similar), except that it does
not attempt to pop an object from the stack; it only pops the arguments. It also does not bother to
place the object (this) in #0 and instead fills up the local variables with the arguments starting
from #0.

There are also a few special circumstances that call for special handling. Specifically, when
one initializes a new object (using the

<init>
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bipush    3

bipush    5

ldc           5.0

invokestatic    Class/staticmethod (IIF)V

5.0

5

3

new
(empty)

stack

#0: 3 

#1: 5 

#2: 5.0 

Figure 10.12 Static method invocation using invokestatic

method) or deals with a few tricky situations involving superclasses and private methods, there
is a special operation, invokespecial, that must be used. From the programmer’s viewpoint,
there is no difference between invokevirtual and invokespecial, but our standard boilerplate
code

.method public <init>()V
aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

illustrates the main use of invokespecial. In order to initialize an object (of any class), it is
first necessary to confirm that it has all the properties of the superclasses (for example, if a Dog
is a subclass of Animal, to initialize a Dog, one needs to make sure it’s a valid Animal). This is
accomplished by calling the initialization method on the current object (this, or local variable
#0). But because it’s an initialization method, the computer has to use invokespecial.

Declaring Classes
Classes are typically defined and declared in files with the .class extension. These files, though,
contain necessary information about the classes themselves and their relationship with other
classes that the JVM needs in order to operate properly.
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For this reason, every class file created needs to have the two directives

.class Something

.super ParentOfSomething

to define the class itself and its place in the class hierarchy. Like fields and methods, the
.class directive can also take various access specifications, such as public. The class name
(Something in the above example) should be the fully qualified name, including the name of
any packages; the class System, defined as part of the java.lang package, would contain the
fully qualified class name of java/lang/System. Similarly, the superclass should include the
fully qualified name of the immediate superclass and must be present; although most student-
written classes are subclasses of java/lang/Object, this is not a default and must be specified
explicitly.

There are a number of other directives that may or may not be present in a class file, mostly
directives of use to source debuggers. For example the .source directive tells the JVM program
the name of the file that was used to generate the class file; if something goes wrong with the
program at run time, the JVM interpreter can use this information to print more useful error
messages.

10.3.4 A Taxonomy of Classes
One important subtlety glossed over in the previous section is the existence of several different
types of class files and methods. Although they are all very similar (the actual difference in
storage usually involves just setting or clearing a few bits in the access flags in the class file),
they represent profound differences in class semantics, especially as viewed from outside the
class.

In the most common relationship between classes, objects, and methods, every object in a
class has its own set of data but is operated on by a unified collection of methods. For example,
consider the “class” of any specific model of car (let’s take, as a specific, the 2007 Honda Accord).
Obviously, these cars all operate (in theory) the same way, but they have individual properties such
as color, amount of gas in the tank, and Vehicle Identification Number. These properties would
be stored as fields in the individual Honda objects themselves. On the other hand, the headlights
are controlled in exactly the same way on every car; the “method” of turning on the headlights is
a property of the class, not of any individual car.

There are, however, certain properties of the class as a whole, such as the length of the car,
the width of the wheelbase, and the size of the gas tank. These properties can even be read directly
from the blueprints and do not need any cars to actually exist. We distinguish between class
variables, which are properties of the class itself, and instance variables, which are properties of
individual instances. In the JVM, fields that are class variables are declared as static and stored
in the class itself, instead of in individual objects:

.field color Ljava/lang/String;

.field static carLength D

Similarly, fields can be declared as final to represent that the value, whether an instance
variable or a class variable, cannot be changed:
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static fields

    wheels = 4

    tires = 4

color = “red”

type = “coupe”

VIN = xxxx

color = “blue”

type = “sedan”

VIN = yyyy

color = “red”

type = “convertible”

VIN = zzzz

Class : Car

Object : car1 Object : car2 Object : car3

instance of

instance of

instance of

Figure 10.13 Class vs. static fields. All case have the same number of wheels, but each
has its own color and vehicle identification number (VIN)

.field final vehicleIndentification Ljava/lang/String; = "whatever"

.field static final wheels I = 4

.field static final tires I = 4

In this example, the field vehicleIdentification is an instance variable that doesn’t
change (but may vary from car to car), while all cars in the class have the same fixed and
immutable number of wheels (figure 10.13). The length of a car is a property of the class, while
the color of a car is a property of the individual car object and can be changed (if one decides to
repaint, for example).

A similar distinction between instance methods and class methods holds. Most of the
programs written so far have involved a method defined as

.method public static main([Ljava/lang/String;)V

This main method is very important because, by default, whenever a Java program is run (or
a class file is executed using javamore exactly), the Java program will load the class file and look
for a method named “main.” If it finds one, it will then attempt to invoke that method with a single
argument corresponding to the rest of the words typed on the command line. The static keyword
indicates that the main method is associated with the class, not with any particular instance of the
class. For this reason, it is not necessary to create any instances of the appropriate class in order
to invoke the main method.
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; program to illustrate use of ’fraction’ structure type

.class public fractionfront

.super java/lang/Object

; boilerplate
.method public <init>()V

aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V

new fraction
invokespecial fraction/<init>()V

return
.end method

Figure 10.14 Creating a “fraction” object

In addition, we have the necessary property “public,” which indicates that this method (or
field) can be accessed from outside the class. A public method (or class) is visible and executable
to the entire system, including the JVM startup sequence, while a private method is executable
only from objects/methods within the defining class. This is, of course, implicit in the structure
of “main” itself, since it must be executable as the first method of the overall program. Other
variations on the access flags can define a class, field, or method as “final,” as before, or even as
“abstract,” which means that the class itself is just an abstraction from which no instances can
be made and that we should use one of the subclasses of this class instead. Again, the details
of these methods and properties are more relevant to an advanced Java programmer than to an
understanding of how the JVM itself works.

10.4 Objects
10.4.1 Creating Objects as Instances of Classes
A class definition, by itself, is not usually very useful for performing computations. More useful
are the instances of these “classes” as objects, actual examples of classes that can hold data,
deal with method invocations, and in general, do useful stuff. For example, the “fraction” class
defined above in the record section simply states that a fraction has two fields, a numerator and a
denominator. An actual fraction would have a specific set of values in those fields that could be
used in computation.

To create an instance of a class, it is first necessary to know the name of the class. The
jasmin statement

new ExampleClassType
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creates (allocates memory inside the computer for) a new instance of the ExampleClassType
class and pushes an address onto the method stack pointing to the new object. Merely making
space is not enough; it must also be initialized to a useful/meaningful state using one of the
constructor methods defined for that type. To do this, it is necessary to use invokespecial with
an appropriate method and set of arguments, as in figure 10.14.

Remember that the definition of the fraction class defined (using the standard boilerplate) a
single constructor method <init>, which takes no arguments. Therefore, we construct our new
fraction using the two lines

new fraction
invokespecial fraction/<init>()V

to create and initialize our fraction.

Actually, this is not very useful. The reason is that although we have just created and
initialized it, the invokespecial instruction pops our only reference to the fraction away
when it returns. As a result, our newly allocated block of memory has just been lost and is
probably now being collected as garbage. In order to retain access to our new fraction ob-
ject, we need to duplicate the address before calling invokespecial on it, as in figure 10.15
This figure also gives an example of how data can be moved to and from the fields of an
object.

10.4.2 Destroying Objects
Object destruction, again, is handled by the garbage collection system and happens any time no
pointers to an object remain in accessible locations (such as in a local variable or on the stack).

10.4.3 The Type Object
The fundamental type in any JVM system is named “Object” or, more completely,
java/lang/Object. As the root of the entire inheritance hierarchy, everything on the system
is an Object in some form. Therefore, the properties of Objects are basic properties shared by
everything in the system, and the methods of Objects are methods that can be called on anything.
These methods are not particularly exciting, because they are so basic; for example, all Objects
support an equals() method, which returns “true” if two objects are the same and “false” if they
are different.

As generic types Objects can be used as general places holders for data; a programmer could
define (or, more likely, use) a standardized List type that holds a collection of Objects, and then
use this type to store his grocery list, his class schedule, and the win/loss record of a favorite team
without modification. Most of the standard data structures defined as part of the Java language
are defined in this way so that the data they hold, being an Object, imposes no restrictions on how
to use the structures.

10.5 Class Files and .class File Structure
10.5.1 Class Files
In a typical JVM system, each independent class is stored in a class file that maintains the
necessary information for the use and execution of that particular class. Most of this information
is fairly obvious—for example, the name of the class, its relationship to other classes in the
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; second program to illustrate use of ’fraction’ structure type

.class public fractionfront2

.super java/lang/Object

; boilerplate
.method public <init>()V

aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit locals 2
.limit stack 2

; create a new ’fraction’ and store in local variable 1
new fraction ; create a new ’fraction’
dup ; duplicate to call <init>
invokespecial fraction/<init>()V ; initialize
astore_1 ; store new fraction

; assign the numerator the value 2
aload_1 ; load the fraction
iconst_2 ; push numerator value
putfield fraction/numerator I ; place 2 in numerator (as int)
; n.b. restorage of the fraction not needed!

; assign the denominator the value 3
aload_1 ; load fraction (again)
iconst_3 ; push denominator
putfield fraction/denominator I ; place 3 in denominator (as int)

; print the numerator
getstatic java/lang/System/out Ljava/io/PrintStream;
aload_1 ; load the fraction
getfield fraction/numerator I ; get and push the numerator
invokevirtual java/io/PrintStream/print(I)V ; ... and print

; print a slash
getstatic java/lang/System/out Ljava/io/PrintStream;
ldc "/"
invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

; print(ln) the denominator
getstatic java/lang/System/out Ljava/io/PrintStream;
aload_1 ; load the fraction
getfield fraction/denominator I ; get and push the denominator
invokevirtual java/io/PrintStream/println(I)V ; ... and print(ln)

return
.end method

Figure 10.15 Creating and using a “fraction” object
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Magic Number (4 bytes) 0xCAFEBABE
Minor Version Number (2 bytes)
Major Version Number (2 bytes)
Constant Pool Count (2 bytes)

1st Constant Pool entry (variable)
2nd Constant Pool entry (variable)
. . .

Access Flags (2 bytes)
This Class (2 bytes) refers to contant pool entry
Super Class (2 bytes) refers to contant pool entry
Interfaces Count (2 bytes)

0th Interface (2 bytes) refers to constant pool entry
1st Interface (2 bytes) refers to constant pool entry
. . .

Fields Count (2 bytes)
0th Field (variable size)
1st Field (variable size)
. . .

Methods Count (2 bytes)
0th Method (variable size)
1st Method (variable size)
. . .

Attributes Count (2 bytes)
0th Attribute (variable size)
1st Attribute (variable size)
. . .

Figure 10.16 Overview of the class file format

inheritance hierarchy, and the methods defined by and characteristic of the class. The exact
details of storage can be rather technical and can even vary from one JDK version to another,
so if you have a specialist’s need for the details of class file format (for example, if you are
writing a compiler that outputs JVM machine instructions), you should probably consult a detailed
technical reference like the JVM references specifications themselves.1 For a nonspecialist, the
following description (and appendix C in more detail) will give some of the flavor of a class
file.

In broad terms, a class file is stored as a set of nested tables, as in figure 10.16. The top-level
table contains basic information regarding the class, such as the version number of the JVM for
which it is was compiled, the class name, and fundamental access properties. This table also
contains a set of subtables, including a table of defined methods, fields, attributes, and direct
interfaces that the class implements. Another subtable contains the constant pool, which stores
the fundamental constant values and Strings used by the program. For example, if the value 3.1416
were needed by the class, instead of using the 4-byte floating point value itself every place it were
needed, this value would be placed in a small table of constants and the table index would be
used.

This has the effect of increasing the space efficiency of class files. Although there are overk
4 billion different floating point constants that a program might want to use, in practical terms few

1 Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification, 2nd ed. (Addison-Wesley, Boston, 1999).
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programs will use more than 100 or so. A constant pool of only 200 entries can be addressed using
a 1-byte index and thus save 3 bytes per constant access. Even a huge program that uses 60,000
constants can address any one of them with a 2-byte index. In addition to storing floating point
constants, the constant pool will hold integers, longs, doubles, and even objects such as String
constants (like the prompt “Please enter your password”, which might be stored to be printed
via a call to println). In fact, the ldc operation with which we are already familiar actually
stands for “load from the constant pool” and can be used (as we have seen) for almost any
type.

10.5.2 Starting up Classes
Before a class is available to be used by a running program it must be loaded from the disk,
linked into an executable format, and finally initialized to a known state. This process is one
of the fundamental services that a JVM program must provide in the form of the primordial
class loader, an instantiation of the standard-defined type java.lang.ClassLoader. The JVM
designer has a certain amount of leeway in determining what services the primordial class loader
can provide above a certain minimum level.

For example, to load a class, the loader usually must be able to find the class on local
storage (usually by adding the suffix .class to the name of the class), read the data stored
there, and produce an instance of java.lang.Class to describe that class. In some circum-
stances (like a Web browser or a sophisticated JVM implementation), one may need to pull
individual classes out of an archive or download appropriate applets across the network. The
primordial loader must also understand enough of the class structure to pull out the superclasses
as needed; if the class you have written extends Applet, then JVM needs to understand Applets
and their properties to run your program correctly. It is the task of the linker (which is also usually
grouped into the class loader) to connect (link) these different classes into a suitable runtime
representation.

Another important task of the JVM class loader is to verify that the bytes in the bytecode
are safe to execute. Trying to execute an integer multiplication when there are no integers on the
stack would not be safe; nor would trying to create a new instance of a class that doesn’t exist.
The verifier is responsible for enforcing most of the security rules discussed throughout this book.
Finally, the class is initialized by calling the appropriate routines to set static fields to appropriate
values and otherwise make the class into a fit state for execution.

10.6 Class Hierarchy Directives
This section pertains mainly to advanced features of the Java class hierarchy, and it can be therefore
skipped without loss of continuity.

In the real world, there can be problems with the strict type hierarchy that the JVM supports.
Because each subclass can have only one superclass, each object (or class) will inherit at most one
set of properties. Real life is rarely that neat or clean. For example, one fairly obvious hierarchy
is the standard set of biological taxa. A dog is a mammal, which in turn is a vertebrate, which
in turn is an animal, and so forth. This could be modeled easily in the JVM class hierarchy by
making Dog a subclass of Mammal, and so forth. However, in practice, Dog also inherits many
properties from the Pet category as well, a category that it shares with Cat and Hamster, but also
with Guppy, Parakeet, and Iguana (and excludes Bear, Cheetah, and other non-Pet mammals).
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So we can see that, whatever category Pet is, it crosses the lines of the standard biological
taxonomy. And because there’s no way to inherit from more than one class, there’s no easy
way within the class structure to create a class (or an Object) that is both a Mammal and a
Pet.

Java and the JVM provide a process to cover these sorts of regularities via the mechanism
of interfaces. An interface is a special sort of class-like Object (in fact, it’s stored in a file
of identical format; only a few access flags change) that defines a set of properties (fields) and
functions (methods). Individual Objects are never instances of an interface; instead, they imple-
ment an interface by explicitly encoding these properties and functions within their classes. For
example, it may be decided that among the defining properties of a Pet is the function of having
a Name and an Owner (presumably these would be access methods returning a string value),
and thus appropriate methods to determine what the name and owner actually are. Interfaces
never actually define the code for a method, but they do define methods that a programmer is
required to implement. Similarly, although interfaces can define fields, fields defined as part of
an interface must be both static and final, reflecting the fact that an individual object is never
an instance of an interface—and thus has no storage space available by virtue of the fields it
implements.

At this point, a skilled programmer can define the Dog class such that it inherits from
(extends) the Mammal class, and thus gets all the properties associated with Mammals. She can
also define the class as “implementing” the Pet interface by making sure that, among the methods
she writes in his Dog class are the appropriate methods required of every Pet.

The programmer would then define in her class file not only that the class Dog had Mammal
as a superclass, but also that it implemented the Pet interface. This would involve a new directive
as follows:

.class public Dog

.super Mammal

.implements Pet

The declaration and use of the Pet interface would be very similar to writing a normal class
file, but with two major differences. First, instead of using the .class directive to define the name
of the class, the programmer would use the .interface directive in the same way:

.interface public Pet

Second, the methods in the Pet.j files would have method declarations but no actual code
associated with them (implying that they are abstract):

.method public abstract getName()Ljava/lang/String;

.end method

.method public abstract getOwner()Ljava/lang/String;

.end method

There are also a few minor differences in use between interface types and class types. First,
interface types cannot be directly created as objects, although one can certainly create objects that
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implement interface types. In the example above, although creating a Dog is legal, creating a Pet
is not:

new Dog ; this is fine
new Pet ; this would produce an error

However, interfaces are acceptable as argument types and return values of methods. The
following code will accept any valid object whose class implements the Pet interface

invokespecial Dog/isFriendlyTo(LPet;)I

and will tell you, for example, whether or not any particular Dog is friendly to (for example) a
particular Iguana. Finally, if you have an Object that implements a particular interface but you
don’t know what class it is (as in the isFriendlyTo example above), the JVM provides a basic
instruction, invokeinterface, to allow interface methods to be invoked directly, without regard
to the underlying class. The syntax of invokeinterface is similar to that of the other invoke?
instructions but is slightly more complicated; it is also usually slower and less efficient than the
other method invocation instructions. Unless you have a specific need for interfaces, they’re best
left to specialists.

10.7 An Annotated Example: Hello, World Revisited
At this point, we are in a position to give a detailed explanation of every line in the first jasmin
example given, including the boilerplate:

.class public jasminExample

is a class directive that specifies the name of the current class

.super java/lang/Object

. . . and where it fits into the standard hierarchy (specifically, as a subclass of
java/lang/Object)

.method public <init>()V

This is the method for constructing an element of type jasminExample. It takes no arguments,
and returns nothing, with name <init>.

aload_0
invokespecial java/lang/Object/<init>()V

To initialize a jasminExample, we load the example itself and make sure it is successfully initialized
as an Object first.

return

No other initialization steps are needed, so quit the method.

.end method
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This directive ends the method definition.

.method public static main([Ljava/lang/String;)V

This is the main method, called by the Java program itself. It takes one argument, an array of
Strings, and returns nothing. It is defined as both public and static, so it can be called from outside
the class without the existence of any objects of that class.

.limit stack 2

We need two stack elements (one for System.out, one for the String).

getstatic java/lang/System/out Ljava/io/PrintStream;

Get the (static) field named “out” from the System class; it should be of type PrintStream, defined
in the java.io package.

ldc "This is a sample program."

Push the string to be printed (more accurately, push the index of that string in the constant pool).

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

Invoke the “println” method on System.out.

return

Quit the method.

.end method

This directive ends the method definition.

10.8 Input and Output: An Explanation
10.8.1 Problem Statement
The Java programming language defines much more than the syntax of the language itself. Key
to the acceptance and widespread use of the language has been the existence of various packages
to handle difficult aspects of programming, such as input and output. The java.io package,
for example, is a set of packages specifically designed to handle system input and output at a
sufficiently abstract level to be portable across platforms.

Using input and output peripherials is often one of the most difficult parts of any computer
program, especially in assembly language programming. The reason, quite simply put, is the
bewildering variety of devices and the ways they can work.

There is a big difference, at least in theory, between devices like disk drives, where the entire
input is available at any one time, and devices like a network card, where the data is available
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only on a time-sensitive and limited basis. Not only are different kinds of devices available,
but even within one broad category, there may be subtle but important differences, such as the
placement of keys on a keyboard, the presence or absence of a second mouse button, and so forth.
However, from the point of view of the programmer, these differences not only don’t matter but
would be actively confusing. An e-mail program, for instance, has the primary job of reading
input (from the user), figuring out where and to whom the mail should go, and sending it on its
way. The details of how the data arrives—does it come in bursts over an Ethernet connection?
in single keystrokes from an attached keyboard? as a massive chunk of data arriving through a
cut-and-paste operation? as a file on the hard disk?—don’t (or shouldn’t) matter to the e-mail
program.

Unfortunately, at the level of basic machine instructions, these differences can be crucial;
reading data from an Ethernet card is not the same as reading data from the disk or from the
keyboard. The advantage of a class-based system such as the one supported by the JVM is that
the classes themselves can be handled and unified, so that the programmer’s task is made a little
less confusing.

10.8.2 Two Systems Contrasted
General Peripherial Issues
To illustrate this confusion, consider the task of reading data and printing it somewhere (to the
screen or the disk). For simplicity, assume that the input device (the spot where the data is coming)
is either an attached keyboard or an attached disk. Without going into detail, a keyboard is just
a complicated switch; when a key is pressed certain electrical connections are made that allow
the computer to determine which key was pressed (and hence which character was intended) at
that time. A disk is a gadget for information storage; logically, you can think of it as a huge
array of “sectors,” each of which holds a fixed number of bytes (often 512, but not always). In
fact, it’s a little more complicated, since the information is ordered as a set of multiple platters
(each of which looks like a CD made out of magnetic tape), each platter having several numbered
concentric tracks, each track being divided into several sectors like slices of pizza (figure
10.17). To read or write a sector of data, the computer needs to know the platter number, track
number, and sector within the track—but most of the time (whew!) the hard drive controller will
take care of this.

It’s important to note a few crucial differences between these two gadgets. First, when you
read from the keyboard, you will get at most one character of information, since you only learn
the key that’s being pressed at that instant. Reading from a disk, by contrast, gives you an entire
sector of data at once. It’s also possible to read ahead on a disk and see what the next sector
contains; this is impossible on a keyboard.

Similar differences hold, depending upon the exact details of the screen to which we print.
If a window manager is running on the computer, then (of course) we will print to an individual
window and not to the screen, as we would in text mode. In text mode, for example, we always
know that printing starts at the left-hand side of the physical screen, whereas we have no idea
where the window is at any given time; it may even be moving while we’re trying to print. And,
of course, printing to the screen is entirely different from writing data to the disk, with all the
structure defined above.
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read/write head

cylinder or trackplatter or surface
sector

Figure 10.17 Structure of disks

As will be seen, the class structure of the JVM avoids much of this confusion by using a
proper class structure, unlike another common system—the Intel Pentium, running Windows 98.

The Intel Pentium
Every device you attach to a Pentium comes with a set of device drivers. This is true, in
fact, for every computer; the drivers define how to interact with the hardware. They are simi-
lar to classes and methods in this regard, except that they have no useful, unified interface. One
of the simplest sets of device drivers on any Windows box is the BIOS (Basic Input-Output
System) shipped as part of the operating system. (Actually, the BIOS predates the Pentium
chip by nearly 20 years, but the functionalism, a holdout from the original IBM-PC, is still
around.)

On the Intel Pentium, a single machine instruction (INT) is used to transfer control to the
BIOS; when this is executed, the computer inspects the value stored in a particular location (the
AX register) to determine what should be done. If the value stored is 0x7305, the computer will
access the attached disk. To do this properly, it inspects a number of other values stored in other
registers. Among these values is the number of the disk sector of interest, a memory location to
place the new data, and whether the disk should be read from or written to. In either case, at least
one sector of data will be transferred.

The same instruction that transfers control to the BIOS will also cause the computer to
read a character if the value stored in the lower half of the AX register is a 0x01. Actually, the
process is a little more complicated. If the value stored is 0x01, the computer will wait until a
key is pressed and return that character (it will also print that character to the screen). If the value
stored is 0x06, then the computer will check to see if a key is pressed this instant, and return it
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(without printing). If no key is being pressed, then nothing is returned (and a special flag is set to
indicate that). Both of these functions read only one character at a time. To read several characters
at once, if they are available in a typeahead buffer, use the stored value 0x0A, which does not
return the characters, but instead stores them in main memory.

Output has similar issues of detail. To write to a disk, one uses the same BIOS operation
used to read, while to write to the screen in text mode or a window system requires two different
operations (which are different from the read operations/values).

All this occurs after the device drivers and hardware controllers have “simplified” the task
of accessing the peripherials. The fundamental problem is that the various sorts of hardware are
too different from each other. It would be possible for a programmer to write a special-purpose
function whose sole job is, for instance, to handle input—if input is supposed to be read from the
keyboard, use operation 0x01; if it is to be read from a disk, use operation 0x7305; and in either
case, move the value read into a uniform place and in a uniform format. Such a program may or
may not be difficult to write, but it requires attention to detail, hardware knowledge, and time that
not every programmer wants to spend.

This mess is part of why Windows, the operating system, exists. Part of the functionality
of Windows is to provide this broad-brush interface for the programmer. Microsoft programmers
have taken the time to write these detailed, case-laden functions.

The JVM
By contrast, in a properly designed and constructed class-based system, this unification is delivered
by the class structure itself. In Java (and by extension in the JVM), most input and output is handled
by the class system. This allows the classes to take care of information hiding and only present
the important shared properties via methods.

To briefly review: the java.io.* package, as defined for Java 1.4, provides a variety of
classes, each with different properties for reading and writing. The most useful class for in-
put, and the one most often used, is BufferedReader. This is a fairly powerful high-level
class that allows reading from many sorts of generalized “stream” objects (figure 10.18). Ver-
sion 1.5 of Java includes additional classes, such as a Scanner, that are handled in a similar
manner.

Unfortunately, the keyboard lacks many properties that are typical of these BufferedReader
objects, but the class system provides a way to construct a BufferedReader object from other sorts
of objects. The standard Java libraries do provide an object, a field in the System class, called
System.in that usually attaches to the keyboard. This field is defined, however, to hold one of the
lowest, most primitive types of input objects—a java.io.InputStream. (Key differences between
an InputStream and a BufferedReader include the absence of buffering and the inability to read
any type other than a byte array.)

The java.io.* package also provides a special type for reading from the disk, either as a
FileInputStream or as a FileReader, both of which can be used to construct a BufferedReader.
Once this is done, access to a file is identical to access to the keyboard, since both use the some
methods as the BufferedReader class.

In the following section, we will construct a program (using the more widely available Java
1.4 semantics) to read a line from the keyboard and to copy that line to the standard output.
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BufferedReader
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Java program reading
characters

block read
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“When in the course of
human events…”

“When in the course of”

“W”

character read
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Figure 10.18 Reading a file from the disk using BufferedReader

Although the process is still complex, the complexity lies in the construction of the
BufferedReader, not in the actual data reading. For a simple one-time cost of Object construction,
any data can be read through a BufferedReader, while the corresponding program on the Intel
would need special cases and magic numbers for every I/O operation.

10.8.3 Example: Reading from the Keyboard in the JVM
An example of the code used to perform this task in Java is presented in figure 10.19. Note that
two conversions are needed, first to construct an InputStreamReader from the InputStream and
second to construct a BufferedReader from the InputStreamReader. In fact, there is even a bit of
complexity hidden in the Java code, since the actual constructor function for the BufferedReader
is defined as

public BufferedReader(Reader in)

meaning that one can construct a BufferedReader out of any sort of Reader, of which InputStream-
Reader is merely one subclass.

Object construction is handled as before in two steps. First, the new Object itself must be
created (via thenew instruction), and then an appropriate initialization method must be invoked (via
invokespecial). This program will require two new Objects to be created, an InputStreamReader
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import java.io.*;

class jvmReaderExample {
public static void main(String[] args) throws IOException {

InputStreamReader i = new InputStreamReader(System.in);
BufferedReader b = new BufferedReader(i);

String s = b.readLine();
System.out.println(s);

}
}

Figure 10.19 Sample Java program to read and echo a line from the keyboard

and a BufferedReader. Once these have been created, the BufferedReader class defines a standard
method (called “readLine”) that will read a line of text from the keyboard and return it as a String
(Ljava/lang/String;). Using this method, we can get a string and then print as usual through
System.out’s println method.

10.8.4 Solution

.class public jvmReader

.super java/lang/Object

; boilerplate needed for object creation
.method public <init>()V

aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V

.limit stack 4

; create a new object of type InputStreamReader
new java/io/InputStreamReader

; initialize constructor from System.in (InputStream)
dup
getstatic java/lang/System/in Ljava/io/InputStream;
invokespecial java/io/InputStreamReader/<init>(Ljava/io/InputStream;)V
; equivalent to new InputStreamReader(InputStream)
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; duplicate it and put it underneath InputStreamReader
dup_x1

; duplicate again and put it underneath InputStreamReader
dup_x1
; stack now holds BR, BR, ISR, BR

; eliminate unneeded BufferedReader
pop

; call constructor of BufferedReader using InputStreamReader
invokespecial java/io/BufferedReader/<init>(Ljava/io/Reader;)V

; initialized BufferedStreamReader now at top of stack

; invoke readline method to get a string (and leave at top of stack)
invokevirtual java/io/BufferedReader/readLine()Ljava/lang/String;

; get System.out
getstatic java/lang/System/out Ljava/io/PrintStream;
swap
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

return
.end method

; now create a new BufferedReader
new java/io/BufferedReader

10.9 Example: Factorials Via Recursion
10.9.1 Problem Statement
As a final example, we present code to do recursion (where one function or method invokes itself)
on the JVM using the class system. The factorial function is a widely used mathematical operation
in combinatorics and probability. For example, if someone wants to know how many different
ways there are to shuffle a (52-card) deck of cards, the answer is 52!, or 52 · 51 · . . . · 1. One nice
property of factorials is that they have an easy recursive definition in that

N ! = N · (N − 1)! for N >= 1, and 0! = 1

Using this identity, we can construct a recursive method that accepts an integer (as a value
of N ) and returns N !.

10.9.2 Design
The pseudocode for solving such a problem is straightforward and is presented as an example in
most first-year programming texts.
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To calculate N!
if (N <= 0) then

return 1
else begin

recursively calculate (N-1)!
multiply by N to get N * (N-1)!
return N * (N-1)!

end
end calculation

(Strict mathematicians will note that this pseudocode also defines the factorial of a negative
integer as 1 as well.)

In addition, a (public, static) main routine will be needed to set the initial value of N and
to print the final results. Because the main method is static, if the factorial method is not static,
we would need to create an Object instance of the appropriate class; if we defined the factorial
method as static, it can be invoked directly.

10.9.3 Solution
A worked-out solution to calculate 5! is presented here. Similar code can be used to solve almost
any recursively defined problem.

.class public factorialCalculator

.super java/lang/Object

; boilerplate needed for object creation
.method public <init>()V

aload_0

invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
; we need two stack elements, one for System.out, one for the string
.limit stack 2

bipush 5 ; push 5 to calculate 5!
invokestatic factorialCalculator/fact(I)I
; 5! is now on stack to be calculated

; get and push System.out
getstatic java/lang/System/out Ljava/io/PrintStream;

; put System.out and 5! in right order
swap

; invoke the PrintStream/println method
invokevirtual java/io/PrintStream/println(I)V

return
.end method
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iload_0 ; check if argument <= 0
ifle Exit ; if so, return 1 immediately

iload_0 ; push N

iinc 0 -1 ; compute (N-1)
iload_0 ; load (N-1)
; calculate (N-1)!
invokestatic factorialCalculator/fact(I)I
; N and (N-1)! are both on the stack
imul ; multiply to get final answer
ireturn ; and return it

Exit:
iconst_1 ; 0! is defined as 1
ireturn

.end method

.method static fact(I)I
.limit stack 2

.method static fact(I)I
.limit stack 2

10.10 Chapter Review
� The JVM, because of its strong association with the object-oriented programming language

Java, provides direct support for object-oriented programming and user-defined class types.
Both array and Object references are supported by the basic type address.

� An array is a collection of identical types indexed by an integer(s). There are individual
machine-level instructions to create, read from, or write to single-dimensional and multidi-
mensional arrays, as well as to get the length of an array.

� When arrays (or any data) are no longer useful or accessible, the JVM will automatically
reclaim the used memory via garbage collection and make it available for reuse.

� The JVM also supports records as collections of named fields and classes as records with
defined access methods. It also supports interfaces as collections of abstract methods. The
class file is the basic unit of program storage for the JVM and incorporates all three of these
types.

� Fields are accessed via getfield and putfield instructions; static (class) fields use
getstatic and putstatic.

� Classes are accessed via one of four invoke? instructions, depending on the class and the
method involved.

� Objects are created as instances of classes by the new instruction. Every class must include
appropriate constructor functions (typically named <init>) to initialize a new instance to a
sane value.

� Access to the outside world via I/O primitives is accomplished on the JVM by a standardized
set of classes and methods. For example, System.in is a static field of type InputStream
whose properties and access methods are defined by the standards documents. Reading from
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the keyboard can be accomplished by invoking the proper methods and creating the proper
classes using System.in as a base.

� Recursion can also be supported using the class system by creating new sets of local variables
at each new method invocation. This differs from the previous jsr/ret techniques, as well
as from the techniques employed on systems like the Pentium or PowerPC, where new local
variables are created on stack frames.

10.11 Exercises
1. How does the implementation of user-defined types on the JVM differ from implementations

on other machines like the 8088 or PowerPC?
2. How would space for a local array be created on a PowerPC? How would the space be

reclaimed? How do these answers differ on a JVM?
3. An array element is usually accessed via index mode on a typical computer like the Pentium.

What does the JVM use instead?
4. How are standard methods like String.toUpperCase() incorporated into the JVM?
5. What is the difference between a field and a local variable?
6. What is the difference between invokevirtual and invokestatic?
7. Why do static methods take one fewer than nonstatic arguments?
8. What is the corresponding type string for the following methods?

a. float toFloat(int)
b. void printString(String)
c. float average(int, int, int, int)
d. float average(int [])
e. double [][] convert(long [][])
f. boolean isTrue(boolean)

9. What is special about the <init> method?
10. What is the fourth byte in every class file (see appendix D)?
11. Approximately how many different String values could a single method use?

10.12 Programming Exercises
1. Write a jasmin program using the Java 1.5 Scanner class to read a line from the keyboard

and echo it.
2. Write a jasmin program using the Java AWT (or a similar graphics package) to display a copy

of the Jamaican flag on the screen.
3. Write a jasmin program to determine the current date and time.
4. Write a Time class to support arithmetic operations on times. For example, 1:35 + 2:15 is

3:50, but 1:45 + 2:25 is 4:10.
5. Write a Complex class to support addition, subtraction, and multiplication of complex numbers,

such as 3 + 4i .
6. The Fibonacci sequence can be recursively defined as follows: the first and second elements

of the sequence have the value 1. The third element is the sum of the first and second, elements,
or 2. In general, the N th Fibonacci number is the sum of the N − 1st and N − 2nd numbers.
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Write a program to read a value N from the keyboard and to (recursively) determine the N th
Fibonacci number. Why is this an inefficient way to solve this problem?

7. Write a program (in any language approved by the instructor) to read a class file from the disk
and print the number of elements in the constant pool.

8. Write a program (in any language approved by the instructor) to read a class file from the disk
and print the names of the methods defined in it.
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Digital Logic

A.1 Gates
Without the transistor, the modern computer would not be possible. As suggested by Moore’s Law
(transistor density doubles every eighteen months), the ability to fabricate and arrange transistors
is the fundamental way that data is controlled, moved, and processed within the chips at the heart
of a computer.

N P N

NPN transistor

base

emitter collector

symbol for transistor alternate symbol for transistor

Figure A.1 Sample transistors and symbols

A transistor can be regarded as a kind of electronically controlled switch. A typical transistor
and its electronic diagram are shown in figure A.1. Under normal circumstances, electricity flows
from the emitter to the collector like water through a pipe or cars through a tunnel. However, this
is possible only as long as appropriate application of an electrical signal to the base permits the
flow of electricity to pass. Without this control signal, it’s as though someone had turned off a
faucet (or set up a traffic light). When this happens, electricity can’t get through. By combining
these switches in combination, engineers can create dependency structures; electricity will flow
only if all transistors are energized, for example.
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A

A

B

B

Figure A.2 Transistors in series (top) and parallel (bottom)

Figure A.2 shows two examples of dependency structure. In the series circuit, both transis-
tors share a common path, and electricity must be able to flow through both circuits at the same
time if it is to flow from point A to point B. In the parallel circuit, each transistor has its own
current path, and any transistor can allow current to flow across the circuit.

The electrical circuit shown in figure A.3 is an example of two transistors connected
in series. In order for electricity to flow from the power source (Vcc) to the output, both

A

B

Vcc

transistor 1

transistor 2

output

pull-down resistor

AND circuit

AND gate

Figure A.3 Simplified AND gate and symbol
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Vcc

OR circuit

OR gate

output

A

B

Figure A.4 Simplified OR gate and symbol

transistors need to be signaled to allow current to pass. If either transistor is an open switch,
then electricity can’t flow. This implies that electricity can flow (there is power at the output) only
if transistor 1 is closed AND transistor 2 is closed. Similarly, in figure A.4, two transistors in
parallel, will allow current to flow if either the first transistor OR the second transistor is closed
(or both).

The basic building blocks of a computer consist of simple circuits, called gates, that imple-
ment these simple, logical signals. These gates typically contain between one and six transistors
each and implement basic logical or arithmetic operations. Remember that the basic values used
in logic are True and False. If “current is flowing” represents True, then the circuit in figure A.3 is
an implementation of the logical function AND in a simple (and somewhat idealized—don’t try
to build this at home out of Radio Shack components!) gate. Other functions available include OR
(figure A.4), NOT, NAND, and NOR. The symbols used for drawing various gates are given in
figure A.5. Note that each gate (except NOT) has two inputs and a single output. Also noted that
the NOT gate symbol has a circle (representing signal inversion) at the output line. The symbol for
a NAND (Not-AND) gate is the same as the symbol for an AND gate, but with the little inversion
circle at the output. Similarly, a NOR (Not-OR) gate is just an OR gate with the inversion circle.

A.2 Combinational Circuits
Complicated networks of gates can implement any desired logical response. For example, the
XOR (eXclusive OR) function is True if and only if exactly one, but not both, of the inputs is



244 Appendix A � Digital Logic
� �

OR gateAND gate

NAND gate NOR gate

NOT gate
XOR gate

Figure A.5 Gate types and symbols

True. In logical notation, this can be written

As: A XOR B = (A OR B) AND (NOT (A AND B))
As a truth table, this can be written as in table A.1
And finally, as a circuit, as figure A.6

The basic concept of combinatorial circuits is that the output is always a function of the
current input signal(s) without regard to signal history. Such circuits can be very useful for
implementing simple decisions or arithmetic operations. Although a full description of how to
design such circuits is beyond the scope of this appendix, figure A.7 shows how a set of gates
could implement simple binary addition (as part of the ALU of a computer).

Specifically, this circuit will accept two single-bit signals (A and B) and output both
their sum and whether or not there is a carry. (This circuit is sometimes called a “half adder.”)
Examination of the binary addition table shows that the sum of two bits is simply their XOR,
while a carry is generated if and only if both bits are 1s, or in other words, their AND. Similar
analysis can yield a more complicated design capable of incorporating a carry bit from a
previous addition stage (a “full adder”; see figure A.8) or adding several bits at one time
(as in a register). Figure A.9 shows how a 4-bit addition can be performed by four

A B Result

True True False
True False True
False True True
False False False

Table A.1 Truth table defining
eXclusive OR
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A

B

A XOR B

Figure A.6 Implementation of XOR in gates

replications of the full adder circuit; 32 replications, of course, could add together two
registers on the Pentium. One can also build a circuit to perform binary multiplication and other
operations. Multiply these simple gates by several billion, and you approach the power and
complexity of a Pentium.

A.3 Sequential Circuits
In contrast to a combinatorial circuit, a sequential circuit retains some notion of memory and
of the history of the circuit. The output of a sequential circuit depends not only on the present
input, but also on the past inputs. Another way of expressing this is to say that such a circuit has
an internal state. By using the internal state, one can store information for later use, essentially
creating the sort of memory necessary for a register.

One of the simplest sequential circuits is the S–R flip-flop, illustrated in figure A.10.
To understand this circuit, let’s first pretend that S and R are both 0 (False), Q is 0, and Q̄
is 1 (True). Since Q̄ is True, R NOR Q̄ is 1. Similarly, S NOR Q is 1. We thus see that this
configuration is internally consistent and will remain stable as long as the individual components

A
B

A + B

S

C

Figure A.7 Single-bit half adder
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A
B

S1

C1

S

Chalf adder

half adder

Figure A.8 Single-bit full adder (with carry)

A0
B0

A1
B1

A2
B2

A3
B3

S0

S3

S2

S1

C

Figure A.9 Cascaded 4-bit adder, including internal carries
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S

R

Q

Q

Figure A.10 S–R flip-flop, a circuit with memory

work (which usually means as long as they have power). A similar analysis will show that if S
and R are both 0, while Q is 1, the result will be a self-consistent, stable state.

This simple flip-flop can be used as a 1-bit memory; the value of Q is the value stored in the
memory. The signals S and R can be used to set or reset (set to 1 or 0) the flip-flop, respectively.
Observe that if S becomes 1, this will force the output of the upper NOR gate to be 0. With R 0
and Q̄ 0, the output of the lower NOR gate is 1, so the value stored is now 1. A similar process,
if R is set to 1, forces Q to 1 and Q to 0.

Unfortunately, if S and R are both 1, then bad things happen. According to the notation, Q
and Q̄ should always be opposites of each other, but if both inputs are 1, both outputs will be 0 (you
can confirm this for yourself). In a purely mathematical sense, we can regard this as the logical
equivalent of dividing by 0—something to be avoided instead of analyzed. Similarly, even a brief
power spike on one input wire can cause the flip-flop to unexpectedly change state—something
to be avoided if possible.

However, since this is to be avoided, other sorts of sequential circuits are more commonly
used in computers. Most common circuits combine control signals with timing signals (usually
called a clock signal) to synchronize the control signals and keep short-term fluctuations from
influencing the circuit’s memory. Notice that in figure A.11, the clock signal acts to enable the
flip-flop to change state. If the clock signal is low, then changes on S or R cannot affect the
memory state of the circuit.

S
Q

R

clock

Q

Figure A.11 A clocked S–R flip-flop
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Q
D

clock

Q

Figure A.12 A D flip-flop

We can extend this clocked flip-flop further to something perhaps more useful as well as
safer. The circuit diagram in figure A.12 illustrates a D flip-flop. As you can see, this circuit
has only one input beyond the clock. The D input is tied to the S input of the flip-flop, while
D̄, the complement of D, is tied to the R input. This keeps both S and R from being 1 at the
same time. When a clock pulse occurs, the value of D will be stored in the flip-flop (if the
value of D is 1, then Q becomes 1; if the value of D is 0, Q becomes 0). Until a clock pulse
occurs, changes in D will have no effect on the value of the flip-flop. This makes a D flip-flop very
valuable for copying and storing data—for example, in reading from an I/O device to a register for
later use.

Another variation on the SR flip-flop yields the T flip-flop (figure A.13). Like the D flip
flop, this is a single-input extension of the clocked S–R flip-flop, but the additional feedback wires
control how the input/clock pulse is gated through; in this circuit, the flip-flop will change state
(“toggle”) each time the input is triggered. For example, if Q is 1 (and Q̄ is 0, by extension), then
the next pulse will trigger the bottom input wire (essentially the R input in the previous circuits)
and reset the flip-flop so that Q is 0.

A.4 Computer Operations
Using these building blocks, it’s possible to build the higher-level structures associated with
computer architectures. In particular, a collection of simple 1-bit flip-flops (such as the S–R
flip-flop) can implement a simple register and hold data until it is needed. To add, for example,

Q
T

clock

Q

Figure A.13 A T flip-flop
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two 1-bit registers, the Q output of each register can be electrically connected to one input of
a simple addition circuit. The Q output of the other register would be connected to the other
adder input. The resulting output bit would be the addition of these 2 register bits, which could
be captured and stored (via a D flip-flop) in yet another register. The T flip-flop could be used
in conjunction with adder circuits to build a simple pulse counter. Of course, these descriptions
oversimplify dreadfully, but they give something of the feel for the task presented to the computer
designer.
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JVM Instruction Set

Initial: long
long

Final: float

Sample mnemonic in context (Numeric opcode value in hex)—
description

Summary: This opcode doesn’t exist but illustrates the entry for-
mat. To the right are the required initial and final stack states as
needed/created by the operation in question. Note that long and dou-
ble types take two stack slots, as shown.

Initial: int(index)
address(array ref)

Final: address (object)

aaload (0x32)—Load value from array of addresses
Summary: Pops an integer and an array of addresses (object refer-

ences) from the stack, then retrieves a value from that location in the
one-dimensional array of addresses. The value retrieved is pushed
on the top of the stack.

Initial: int(index)
address (object)

address(array ref)
Final: —

aastore (0x53)—Store value in array of addresses
Summary: Stores an address (array reference) in an array of such ad-

dresses. The top argument popped is the index defining the array
location to be used. The second argument popped is the address
value to be stored, and the third and final argument is the array itself.

Initial: —
Final: address(null)

aconst null (0x1)—Push array constant null
Summary: Pushes the machine-defined constant value null as an ad-

dress onto the operand stack.

Initial: —
Final: address

aload <varnum> (0x19) [byte/short]—Load the address from local
variable

Summary: Loads the address (object reference) from local variable
#<varnum> and pushes the value. The value of <varnum> is a byte
in the range 0..255 unless the wide operand prefix is used, in which
case it is a short in the range 0..65536. Note that subroutine return
locations cannot be loaded from stored locations via aload or any
other opcode.
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Initial: —
Final: address

aload 0 (0x2a)—Load address from local variable #0
Summary: Loads address (object reference) from local variable #0 and

pushes the value loaded onto the stack. This is functionally equivalent
to aload 0 but takes fewer bytes and is faster.

Initial: —
Final: address

aload 1 (0x2b)—Load address from local variable #1
Summary: Loads address (object reference) from local variable #1 and

pushes the value loaded onto the stack. This is functionally equivalent
to aload 1 but takes fewer bytes and is faster.

Initial: —
Final: address

aload 2 (0x2c)—Load address from local variable #2
Summary: Loads address (object reference) from local variable #2 and

pushes the value loaded onto the stack. This is functionally equivalent
to aload 2 but takes fewer bytes and is faster.

Initial: —
Final: address

aload 3 (0x2d)—Load address from local variable #3
Summary: Loads address (object reference) from local variable #3 and

pushes the value loaded onto the stack. This is functionally equivalent
to aload 3 but takes fewer bytes and is faster.

Initial: int(size)
Final: address(array)

anewarray <type> (0xbd) [int]—Create unidimensional array of
objects

Summary: Allocates space for an <one>-dimensional array of type
<type> and pushes a reference to the new array. The type is stored
in bytecode as a 4-byte index into the constant pool. The size of the
new array is popped as an integer from the top of the stack.

Initial: see original
opcode

Final: see original
opcode

anewarray quick (0xde)—Quick version of anewarray opcode
Summary: Optimized version of anewarray opcode used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: address
Final: (n/a)

areturn (0xb0)—Return from method with address result
Summary: Pops an address (object reference) from the current method

stack. This object is pushed onto the method stack of the calling envi-
ronment. The current method is terminated, and control is transferred
to the calling environment.

Initial: address(array)
ref

Final: int

arraylength (0xbe)—Take length of an array
Summary: Pops an array (address) off the stack and pushes the length

associated with that array (as an integer). For multidimensinal arrays,
the length of the first dimension is returned.

Initial: address
Final: —

astore <varnum> (0x3a) [byte/short]—Store address in local
variable

Summary: Pops an address (object reference or subroutine return loca-
tion) from the top of the stack and stores that address in local variable
#<varnum>. The value of <varnum> is a byte in the range 0..255
unless the wide operand prefix is used, in which case it is a short in
the range 0..65536.
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Initial: address
Final: —

astore 0 (0x4b)—Store address in local variable #0
Summary: Pops an address (object reference) from the top of the stack

and stores that address value in local variable #0. This is functionally
equivalent to astore 0 but takes fewer bytes and is faster.

Initial: address
Final: —

astore 1 (0x4c)—Store address in local variable #1
Summary: Pops an address (object reference) from the top of the stack

and stores that address value in local variable #1. This is functionally
equivalent to astore 1 but takes fewer bytes and is faster.

Initial: address
Final: —

astore 2 (0x4d)—Store address in local variable #2
Summary: Pops an address (object reference) from the top of the stack

and stores that address value in local variable #2. This is functionally
equivalent to astore 2 but takes fewer bytes and is faster.

Initial: address
Final: —

astore 3 (0x4e)—Store address in local variable #3
Summary: Pops an address (object reference) from the top of the stack

and stores that address value in local variable #3. This is functionally
equivalent to astore 3 but takes fewer bytes and is faster.

Initial:
address(Throwable)

Final: (n/a)

athrow (0xbf)—Throw an exception/error
Summary: Pops an address (object reference) and “throws” that object

as an exception to a predefined handler. The object must be of type
Throwable. If no handler is defined, the current method is termi-
nated and the exception is rethrown in the calling environment. This
process is repeated until either a handler is found or there are no more
calling environments, at which point the process/thread terminates.
If a handler is found, the object is pushed onto the handler’s stack
and control is transferred to the handler.

Initial: int(index)
address(array ref)

Final: int

baload (0x33)—Load value from array of bytes
Summary: Pops an integer and an array from the stack, then retrieves

a value from that location in the one-dimensional array of bytes. The
value retrieved is converted to an integer and pushed on the top of
the stack.

The baload operand is also used to load values from a boolean
array using similar semantics.

Initial: int(index)
int(byte or boolean)

address(array ref)
Final:—

bastore (0x54)—Store value in array of bytes
Summary: Stores an 8-bit byte in a byte array. The top argument

popped is the index defining the array location to be used. The sec-
ond argument popped is the byte value to be stored, and the third and
final argument is the array itself. The second argument is truncated
from an int to a byte and stored in the array.

The bastore operand is also used to store values in a boolean
array using similar semantics.
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Initial: —
Final: int

bipush <constant> (0x10 [byte])—Push [integer] byte
Summary: The byte value given as an argument (−128..127) is sign-

extended to an integer and pushed on the stack.

Initial: (n/a)
Final: (n/a)

breakpoint (0xca)—Breakpoint (reserved opcode)
Summary: This opcode is reserved for internal use by a JVM im-

plementation, typically for debugging support. It is illegal for such
an opcode to appear in a a class file, and such a class file will fail
verification.

Initial: int(index)
address(array ref)

Final: int

caload (0x34)—Load value from array of bytes
Summary: Pops an integer and an array from the stack, then retrieves

a value from that location in the one-dimensional array of characters.
The value retrieved is converted to an integer and pushed on the top
of the stack.

Initial: int(index)
int(character)

address(array ref)
Final: —

castore (0x55)—Store value in array of characters
Summary: Stores a 16-bit UTF-16 character in an array of characters.

The top argument popped is the index defining the array location
to be used. The second argument popped is the character value to
be stored, and the third and final argument is the array itself. The
second argument is truncated from an int to a character and stored in
the array.

Initial: address
Final: address

checkcast <type> (0xc0 [constant pool index])—Confirm type com-
patibility

Summary: Examines (but does not pop) the top element of the stack
to confirm that it is an address (object or arrray reference) that can
be cast to the type given as an argument—in other words, that the
object is either null, an instance of <type> (see instanceof), or
of a superclass of <type>. In bytecode, the type is represented as a
2-byte index into the constant pool (see Glossary). If the types are
not compatible, a ClassCastException will be thrown (see athrow).

Initial: see original
opcode

Final: see original
opcode

checkcast quick (0xe0)—Quick version of checkcast opcode
Summary: Optimized version of checkcast opcode used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: double
double

Final: float

d2f (0x90)—Convert double to float
Summary: Pops a two-word double off the stack, converts it to a single-

word floating point number, and pushes the result.

Initial: double
double

Final: int

d2i (0x8e)—Convert double to integer
Summary: Pops a two-word double off the stack, converts it to a single-

word intger, and pushes the result.
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Initial: double
double

Final: long
long

d2l (0x8f)—Convert double to long
Summary: Pops a two-word double off the stack, converts it to a two-

word long, and pushes the result.

Initial: double-1
double-1
double-2
double-2

Final: double
double

dadd (0x63)—Double precision addition
Summary: Pops two doubles and pushes their sum.

Initial: int(index)
address(array ref)

Final: double
double

daload (0x31)—Load value from array of bytes
Summary: Pops an integer and an array from the stack, then retrieves

a value from that location in the one-dimensional array of doubles.
The value retrieved is pushed on the top of the stack.

Initial: int(index)
double
double

address(array ref)
Final: —

dastore (0x52)—Store value in array of doubles
Summary: Stores a two-word double in an array of such a double. The

top argument popped is the index defining the array location to be
used. The second/third arguments popped are the double value to be
stored, and the final argument is the array itself.

Initial: double-1
double-1
double-2
double-2
Final: int

dcmpg (0x98)—compare doubles, returning 1 on NaN
Summary: Pops two two-word doubles off the operand stack and

pushes a −1, 0, or +1 (as an integer) as a result. If the next-to-
top number is greater than the top number, the value pushed is +1.
If the two numbers are equal, the value pushed is 0; otherwise,
the value is −1. If either or both words popped equal IEEE NaN
(Not a Number) when interpreted as a double, the result pushed
is 1.

Initial: double-1
double-1
double-2
double-2
Final: int

dcmpl (0x97)—compare doubles, returning −11 on NaN
Summary: Pops two two-word doubles off the operand stack and

pushes a −1, 0, or +1 (as an integer) as a result. If the next-to-
top number is greater than the top number, the value pushed is +1.
If the two numbers are equal, the value pushed is 0; otherwise, the
value is −1. If either or both words popped equal IEEE NaN (Not a
Number) when interpreted as a double, the result pushed is −1.

Initial: —
Final: double(0.0)

double(0.0)

dconst 0 (0xe)—Push double constant 0.0
Summary: Pushes the constant value 0.0 as a 64-bit IEEE double-

precision floating point value onto the operand stack.

Initial: —
Final: double(1.0)

double(1.0)

dconst 1 (0xf)—Push double constant 1.0
Summary: Pushes the constant value 1.0 as a 64-bit IEEE double-

precision floating point value onto the operand stack.
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Initial: double-1
double-1
double-2
double-2

Final: double
double

ddiv (0x6f)—Double precision division
Summary: Pops two two-word double precision floating point num-

bers, then pushes the result of the next-to-top number divided by the
top number.

Initial: —
Final: double

double

dload <varnum> (0x18 [byte/short])—Load double from local
variable

Summary: Loads a two-word double precision floating point number
from local variables #<varnum> and #<varnum> +1 and pushes
the value. The value of <varnum> is a byte in the range 0..255 un-
less the wide operand prefix is used, in which case it is a short in the
range 0..65536.

Initial: —
Final: double

double

dload 0 (0x26)—Load double from local variable #0/#1
Summary: Loads a double precision floating point number from local

variables #0 and #1, and pushes the value loaded onto the stack. This
is functionally equivalent to dload 0 but takes fewer bytes and is
faster.

Initial: —
Final: double

double

dload 1 (0x27)—Load double from local variable #1/#2
Summary: Loads a double precision floating point number from local

variables #1 and #2 and pushes the value loaded onto the stack. This
is functionally equivalent to dload 1 but takes fewer bytes and is
faster.

Initial: —
Final: double

double

dload 2 (0x28)—Load double from local variable #2/#3
Summary: Loads a double precision floating point number from local

variables #2 and #3 and pushes the value loaded onto the stack. This
is functionally equivalent to dload 2 but takes fewer bytes and is
faster.

Initial: —
Final: double

double

dload 3 (0x29)—Load double from local variable #3/#4
Summary: Loads a double precision floating point number from local

variables #3 and #4 and pushes the value loaded onto the stack. This
is functionally equivalent to dload 3 but takes fewer bytes and is
faster.

Initial: double-1
double-1
double-2
double-2

Final: double
double

dmul (0x6b)—Double precision multiplication
Summary: Pops two doubles and pushes their product.

Initial: double
double

Final: double
double

dneg (0x77)—Double precision negation
Summary: Pops a two-word double precision floating point number

from the stack, reverses its sign (multiplies by −1), then pushes the
result.
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Initial: double-1
double-1
double-2
double-2

Final: double
double

drem (0x73)—Double precision remainder
Summary: Pops two two-word double precision floating point num-

bers, then pushes the remainder resulting when the next-to-top num-
ber is divided by the top number.

Initial: double
double

Final: (n/a)

dreturn (0xaf)—Return from method with double result
Summary: Pops a 2-byte double precision floating point number from

the current method stack. This number is pushed onto the method
stack of the calling environment. The current method is terminated,
and control is transferred to the calling environment.

Initial: double
double

Final: —

dstore <varnum> 0x39 [byte/short])—Store double in local variable
Summary: Pops a double from the top of the stack and stores that

double value in local variables #<varnum> and #<varnum> +1.
The value of <varnum> is a byte in the range 0..255 unless the
wide operand prefix is used, in which case it is a short in the range
0..65536.

Initial: double
double

Final: —

dstore 0 (0x47)—Store double in local variable #0/#1
Summary: Pops an integer from the top of the stack and stores that

integer value in local variables #0 and #1. This is functionally equiv-
alent to dstore 0 but takes fewer bytes and is faster.

Initial: double
double

Final: —

dstore 1 (0x48)—Store double in local variable #1/#2
Summary: Pops a double from the top of the stack and stores that dou-

ble value in local variables #1 and #2. This is functionally equivalent
to dstore 1 but takes fewer bytes and is faster.

Initial: double
double

Final: —

dstore 2 (0x49)—Store double in local variable #2/#3
Summary: Pops a double from the top of the stack and stores that dou-

ble value in local variables #2 and #3. This is functionally equivalent
to dstore 2 but takes fewer bytes and is faster.

Initial: double
double

Final: —

dstore 3 (0x4a)—Store double in local variable #3/#4
Summary: Pops a double from the top of the stack and stores that dou-

ble value in local variables #3 and #4. This is functionally equivalent
to dstore 3 but takes fewer bytes and is faster.

Initial: double-1
double-1
double-2
double-2

Final: double
double

dsub (0x67)—Double precision subtraction
Summary: Pops two two-word double precision floating point num-

bers, then pushes the result of the next-to-top number minus the top
number.

Initial: word-1
Final: word-1

word-1

dup (0x59)—Duplicate top stack word
Summary: Duplicates the top word of the stack and pushes a copy.
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Initial: word-1
word-2

Final: word-1
word-2
word-1
word-2

dup2 (0x5c)—Duplicate top two stack words
Summary: Duplicates the top two words of the stack and pushes copies

at the top of the stack. Items duplicated can be two separate one-word
entries (such as ints, floats, or addresses) or a single two-word entry
(such as a long or a double).

Initial: word-1
word-2
word-3

Final: word-1
word-2
word-3
word-1
word-2

dup2 x1 (0x5d)—Duplicate top two words of stack and insert under
third word

Summary: Duplicates the top two words of the stack and inserts the
duplicate below the third word as new fourth and fifth words. Items
duplicated can be two separate one-word entries (such as ints, floats,
or addresses) or a single two-word entry (such as a long or a double).

Initial: word-1
word-2
word-3
word-4

Final: word-1
word-2
word-3
word-4
word-1
word-2

dup2 x2 (0x5e)—Duplicate top two words of stack and insert under
fourth word

Summary: Duplicates the top two words of the stack and inserts the
duplicate below the fourth word as new fifth and sixth words. Items
duplicated can be two separate one-word entries (such as ints, floats,
or addresses) or a single two-word entry (such as a long or a double).

Initial: word-1
word-2

Final: word-1
word-2
word-1

dup x1 (0x5a)—Duplicate top word of stack and insert under second
word

Summary: Duplicates the top word of the stack and inserts the dupli-
cate below the second word as a new third word.

Initial: word-1
word-2
word-3

Final: word-1
word-2
word-3
word-1

dup x2 (0x5b)—Duplicate top word of stack and insert under third
word

Summary: Duplicates the top word of the stack and inserts the dupli-
cate below the third word as a new fourth word.

Initial: float
Final: double

double

f2d (0x8d)—Convert float to double
Summary: Pops a single-word floating point number off the stack,

converts it to a two-word double, and pushes the result.
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Initial: float
Final: int

f2i (0x8b)—Convert float to int
Summary: Pops a single-word floating point number off the stack,

converts it to a single-word integer, and pushes the result.

Initial: float
Final: long

long

f2l (0x8c)—Convert float to long
Summary: Pops a single-word floating point number off the stack,

converts it to a two-word long integer, and pushes the result.

Initial: float
float

Final: float

fadd (0x62)—Floating point addition
Summary: Pops two floats and pushes their sum.

Initial: int(index)
address(array ref)

Final: float

faload (0x30)—Load value from array of bytes
Summary: Pops an integer and an array from the stack, then retrieves

a value from that location in the one-dimensional array of floats. The
value retrieved is pushed on the top of the stack.

Initial: int(index)
float

address(array ref)
Final: —

fastore (0x51)—Store value in array of addresses
Summary: Stores a single-word floating point number in an array of

such floats. The top argument popped is the index defining the array
location to be used. The second argument popped is the float value
to be stored, and the third and final argument is the array itself.

Initial: float
float

Final: int

fcmpg (0x96)—compare floats, returning −1 on NaN
Summary: Pops two single-word floating point numbers off the

operand stack and pushes a −1, 0, or +1 (as an integer) as a result.
If the next-to-top number is greater than the top number, the value
pushed is +1. If the two numbers are equal, the value pushed is 0;
otherwise, the value is −1. If either or both words popped equal IEEE
NaN (Not a Number) when interpreted as a floating point number,
the result pushed is −1.

Initial: float
float

Final: int

fcmpl (0x95)—compare floats, returning −1 on NaN
Summary: Pops two single-word floating point numbers off the

operand stack and pushes a −1, 0, or +1 (as an integer) as a result.
If the next-to-top number is greater than the top number, the value
pushed is +1. If the two numbers are equal, the value pushed is 0;
otherwise, the value is −1. If either or both words popped equal IEEE
NaN (Not a Number) when interpreted as a floating point number,
the result pushed is −1.

Initial: —
Final: float(0.0)

fconst 0 (0xb)—Push floating point constant 0.0
Summary: Pushes the constant value 0.0 as an IEEE 32-bit floating

point value onto the operand stack.

Initial: —
Final: float(1.0)

fconst 1 (0xc)—Push floating point constant 1.0
Summary: Pushes the constant value 1.0 as an IEEE 32-bit floating

point value onto the operand stack.
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Initial: —
Final: float(1.0)

fconst 2 (0xd)—Push floating point constant 2.0
Summary: Pushes the constant value 1.0 as an IEEE 32-bit floating

point value onto the operand stack.

Initial: float
float

Final: float

fdiv (0x6e)—Floating point division
Summary: Pops two single-word floating point numbers, then pushes

the result of the next-to-top number divided by the top number.

Initial: —
Final: float

fload <varnum> (0x17 [byte/short])—Load int from local variable
Summary: Loads a single-word floating point number from local vari-

able #<varnum> and pushes the value. The value of <varnum> is
a byte in the range 0..255 unless the wide operand prefix is used, in
which case it is a short in the range 0..65536.

Initial: float
float

Final: float

fmul (0x6a)—Floating point multiplication
Summary: Pops two floats and pushes their product.

Initial: —
Final: float

fload 0 (0x22)—Load float from local variable #0
Summary: Loads a single-word floating point number from local vari-

able #0 and pushes the value loaded onto the stack. This is function-
ally equivalent to fload 0 but takes fewer bytes and is faster.

Initial: —
Final: float

fload 1 (0x23)—Load float from local variable #1
Summary: Loads a single-word floating point number from local vari-

able #1 and pushes the value loaded onto the stack. This is function-
ally equivalent to fload 1 but takes fewer bytes and is faster.

Initial: —
Final: float

fload 2 (0x24)—Load float from local variable #2
Summary: Loads a single-word floating point number from local vari-

able #2 and pushes the value loaded onto the stack. This is function-
ally equivalent to fload 2 but takes fewer bytes and is faster.

Initial: —
Final: float

fload 3 (0x25)—Load float from local variable #3
Summary: Loads a single-word floating point number from local vari-

able #3 and pushes the value loaded onto the stack. This is function-
ally equivalent to fload 3 but takes fewer bytes and is faster.

Initial: float
Final: float

fneg (0x76)—Floating point negation
Summary: Pops a floating point number from the stack, reverses its

sign (multiplies by −1), then pushes the result.

Initial: float
float

Final: float

frem (0x72)—Floating point remainder
Summary: Pops two single-word floating point numbers, then pushes

the remainder resulting when the next-to-top number is divided by
the top number.

Initial: float
Final: (n/a)

freturn (0xae)—Return from method with float result
Summary: Pops a single-word floating point number from the current

method stack. This number is pushed onto the method stack of the
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calling environment. The current method is terminated, and control
is transferred to the calling environment.

Initial: float
Final: —

fstore <varnum> (0x38 [byte/short])—Store float in local variable
Summary: Pops a float from the top of the stack and stores that float

value in local variable #<varnum>. The value of <varnum> is a
byte in the range 0..255 unless the wide operand prefix is used, in
which case it is a short in the range 0..65536.

Initial: float
Final: —

fstore 0 (0x43)—Store float in local variable #0
Summary: Pops a float from the top of the stack and stores that float

value in local variable #0. This is functionally equivalent to fstore
0 but takes fewer bytes and is faster.

Initial: float
Final: —

fstore 1 (0x44)—Store float in local variable #1
Summary: Pops a float from the top of the stack and stores that float

value in local variable #0. This is functionally equivalent to fstore
1 but takes fewer bytes and is faster.

Initial: float
Final: —

fstore 2 (0x45)—Store float in local variable #2
Summary: Pops a float from the top of the stack and stores that float

value in local variable #0. This is functionally equivalent to fstore
2 but takes fewer bytes and is faster.

Initial: float
Final: —

fstore 3 (0x46)—Store float in local variable #3
Summary: Pops a float from the top of the stack and stores that float

value in local variable #0. This is functionally equivalent to fstore
3 but takes fewer bytes and is faster.

Initial: float
float

Final: float

fsub (0x66)—Floating point subtraction
Summary: Pops two single-word floating point numbers, then pushes

the result of the next-to-top number minus the top number.

Initial: address(object)
Final: value

getfield <fieldname> <type> (0xb4 [short][short])—Get object
field

Summary: Pops an address (object reference) from the stack and re-
trieves and pushes the value of the identified field. The getfield
opcode takes two parameters, the field identifier and the field type.
These are stored in the bytecode as 2-byte indices in the constant
pool (see Glossary). Unlike in Java, the field name must always be
fully qualified, including the name of the relevant class and any rel-
evant packages.

Initial: see original
opcode

Final: see original
opcode

getfield2 quick (0xd0)—Quick version of getfield for two-word
fields

Summary: Optimized version of getfield opcode used internally in
Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.



Appendix B � JVM Instruction Set 261
� �

Initial: see original
opcode

Final: see original
opcode

getfield quick (0xce)—Quick version of getfield opcode
Summary: Optimized version of getfield opcode used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: see original
opcode

Final: see original
opcode

getfield quick w (0xe3)—Quick, wide version of getfield opcode
Summary: Optimized version of getfield opcodes used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: —
Final: value

getstatic<fieldname><type> (0xb2 [short][short])—Get class field
Summary: Retrieves and pushes the value of the identified class field.

The getfield opcode takes two parameters, the field identifier and
the field type. These are stored in the bytecode as 2-byte indices in
the constant pool (see Glossary). Unlike in Java, the field name must
always be fully qualified, including the name of the relevant class
and any relevant packages.

Initial: initstack
Final: finalstack

getstatic quick (0xd2)—Quick version of getstatic opcode
Summary: Optimized version of getstatic opcode used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: see original
opcode

Final: see original
opcode

getstatic2 quick (0xd4)—Quick version of getstatic opcode for 2-
byte fields

Summary: Optimized version of getstatic opcode used internally in
Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: —
Final: —

goto <label> (0xa7 [short])—Go to label unconditionally
Summary: Transfers control unconditionally to the location marked

by <label>. In bytecode, this opcode is followed by a 2-byte offset
to be added to the current value in the PC. If the label is further away
than can be represented in a 2-byte offset, use goto w instead; the
jasmin assembler is capable of determining which opcode to use
based on its analysis of the distances.

Initial: —
Final: —

goto w <label> (0xc8 [int] )—Go to label unconditionally using wide
offset

Summary: Transfers control unconditionally to the location marked
by <label>. In bytecode, this opcode is followed by a 4-byte offset
to be added to the current value in the PC. Using this opcode makes
it possible to branch to locations more than 32,767 bytes away from
the current locations. The jasmin assembler will automatically de-
termine whether goto or goto w should be used based on its analysis
of the distances.

Initial: int
Final: int

i2b (0x91)—Convert integer to byte
Summary: Pops a single-word integer off the stack, converts it by
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truncation to a single byte (value 0..255), zero extends the result to
32 bits, and pushes the result (as an integer).

Initial: int
Final: int

i2c (0x92)—Convert integer to character
Summary: Pops a single-word integer off the stack, converts it by

truncation to a 2-byte UTF-16 character, zero extends the result to
32 bits, and pushes the result (as an integer).

Initial: int
Final: double

double

i2d (0x87)—Convert integer to double
Summary: Pops a single-word integer off the stack, converts it to a

two-word double, and pushes the result.

Initial: int
Final: float

i2f (0x86)—Convert integer to float
Summary: Pops a single-word integer off the stack, converts it to a

single-word floating point number, and pushes the result.

Initial: int
Final: long

long

i2l (0x85)—Convert integer to long
Summary: Pops a single-word integer off the stack, sign extends it to

a two-word long integer, and pushes the result.

Initial: int
Final: int

i2s (0x93)—Convert integer to short
Summary: Pops a single-word integer off the stack, converts it by trun-

cation to a signed short integer (value −32768..32767), sign extends
the result to 32 bits, and pushes the result (as an integer). Note that
the truncation can cause a change in sign as the integer’s original
sign bit is lost.

Initial: int
int

Final: int

iadd (0x60)—Integer addition
Summary: Pops two integers and pushes their sum.

Initial: int(index)
address(array ref)

Final: int

iaload (0x2e)—Load value from array of bytes
Summary: Pops an integer and an array from the stack, then retrieves

a value from that location in the one-dimensional array of integers.
The value retrieved is pushed on the top of the stack.

Initial: int
int

Final: int

iand (0x7e)—Integer logical AND
Summary: Pops two integers from the stack, calculates their bitwise

AND, and pushes the 32-bit result as an integer.

Initial: int(index)
int(value

address(array ref)
Final: —

iastore (0x4f)—Store value in array of integers
Summary: Stores a single-word integer in an array of such ints. The

top argument popped is the index defining the array location to be
used. The second argument popped is the integer value to be stored,
and the third and final argument is the array itself.

Initial: —
Final: int(0)

iconst 0 (0x03)—Push integer constant 0
Summary: Pushes the constant value 0 (0x0) as a 32-bit integer onto

the operand stack.

Initial: —
Final: int(1)

iconst 1 (0x4)—Push integer constant 1
Summary: Pushes the constant value 1 (0x1) as a 32-bit integer onto

the operand stack.
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Initial: —
Final: int(2)

iconst 2 (0x5)—Push integer constant 2
Summary: Pushes the constant value 2 (0x2) as a 32-bit integer onto

the operand stack.

Initial: —
Final: int(3)

iconst 3 (0x6)—Push integer constant 3
Summary: Pushes the constant value 3 (0x3) as a 32-bit integer onto

the operand stack.

Initial: —
Final: int(4)

iconst 4 (0x7)—Push integer constant 4
Summary: Pushes the constant value 4 (0x4) as a 32-bit integer onto

the operand stack.

Initial: —
Final: int(5)

iconst 5 (0x8)—Push integer constant 5
Summary: Pushes the constant value 5 (0x5) as a 32-bit integer onto

the operand stack.

Initial: —
Final: int(−1)

iconst m1 (0x2)—Push integer constant −1
Summary: Pushes the constant value −1 (0xFFFF) as a 32-bit integer

onto the operand stack.

Initial: int
int

Final: int

idiv (0x6c)—Integer division
Summary: Pops two integers, then pushes the integer part of the result

of the next-to-top number divided by the top number.

Initial: address
address

Final: —

if acmpeq <label> (0xa5 [short])—Compare addresses and branch if
equal

Summary: Pops two addresses (object references) from the stack. If the
next-to-top element is equal to the top element, control is transferred
to <label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: address
address

Final: —

if acmpne <label> (0xa6 [short])—Compare addresses and branch if
not equal

Summary: Pops two addresses (object references) from the stack. If
the next-to-top element is not equal to the top element, control is
transferred to <label>. Internally, the opcode is followed by a 2-
byte quantity which is treated as an offset and added to the current
value of the PC if the branch is to be taken.

Initial: int
int

Final: —

if icmpeq <label> (0x9f [short])—Compare integers and branch if
equal

Summary: Pops two integers from the stack. If the next-to-top element
is equal to the top element, control is transferred to <label>. Inter-
nally, the opcode is followed by a 2-byte quantity which is treated as
an offset and added to the current value of the PC if the branch is to
be taken.

Initial: int
Final: int

if icmpge <label> (0xa2 [short])—Compare integers and branch if
greater than or equal

Summary: Pops two integers from the stack. If the next-to-top element
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is greater than or equal to the top element, control is transferred to
<label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: int
int

Final: —

if icmpgt <label> (0xa3 [short])—Compare integers and branch if
greater than

Summary: Pops two integers from the stack. If the next-to-top element
is greater than the top element, control is transferred to <label>. In-
ternally, the opcode is followed by a 2-byte quantity which is treated
as an offset and added to the current value of the PC if the branch is
to be taken.

Initial: int
int

Final: —

if icmple <label> (0xa4 [short])—Compare integers and branch if
less than or equal

Summary: Pops two integers from the stack. If the next-to-top element
is less than or equal to the top element, control is transferred to
<label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: int
int

Final: —

if icmplt <label> (0xa1 [short])—Compare integers and branch if less
than

Summary: Pops two integers from the stack. If the next-to-top element
is less than the top element, control is transferred to <label>. Inter-
nally, the opcode is followed by a 2-byte quantity which is treated as
an offset and added to the current value of the PC if the branch is to
be taken.

Initial: int
int

Final: —

if icmpne <label> (0xa0 [short])—Compare integers and branch if
not equal

Summary: Pops two integers from the stack. If the next-to-top element
is not equal to the top element, control is transferred to <label>. In-
ternally, the opcode is followed by a 2-byte quantity which is treated
as an offset and added to the current value of the PC if the branch is
to be taken.

Initial: int
int

Final: —

ifeq <label> (0x99 [short])—Branch if equal
Summary: Pops an integer off the top of the operand stack. If the

value of the integer popped is equal to 0, control is transferred to
<label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: int
Final: —

ifge <label> (0x9c [short])—Branch if greater than or equal
Summary: Pops an integer off the top of the operand stack. If the

value of the integer popped is greater than or equal to 0, control is
transferred to <label>. Internally, the opcode is followed by a 2-byte
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quantity which is treated as an offset and added to the current value
of the PC if the branch is to be taken.

Initial: int
Final: —

ifgt <label> (0x9d [short])—Branch if greater than
Summary: Pops an integer off the top of the operand stack. If the

value of the integer popped is greater than 0, control is transferred
to <label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: int
Final: —

ifle <label> (0x9e [short])—Branch if less than or equal
Summary: Pops an integer off the top of the operand stack. If the value

of the integer popped less than or equal to 0, control is transferred
to <label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: int
Final: —

iflt <label> (0x9b [short])—Branch if less than
Summary: Pops an integer off the top of the operand stack. If the

value of the integer popped is less than 0, control is transferred to
<label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: int
Final: —

ifne <label> (0x9a [short])—Branch if not equal
Summary: Pops an integer off the top of the operand stack. If the

value of the integer popped is not equal to 0, control is transferred
to <label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: int
Final: —

ifnonnull <label> (0xc7 [short])—Branch if not null
Summary: Pops an address (object reference) off the top of the operand

stack. If the value of the address popped is not null, control is trans-
ferred to <label>. Internally, the opcode is followed by a 2-byte
quantity which is treated as an offset and added to the current value
of the PC if the branch is to be taken.

Initial: address
Final: —

ifnull <label> (0xc6 [short])—Branch if null
Summary: Pops an address (object reference) off the top of the operand

stack. If the value of the address popped is null, control is transferred
to <label>. Internally, the opcode is followed by a 2-byte quantity
which is treated as an offset and added to the current value of the PC
if the branch is to be taken.

Initial: —
Final: —

iinc <varnum> <increment> (0x84 [byte/short] [byte/short])—
Increment integer in local variable

Summary: Increments a local variable containing an increment. The
first argument defines the variable number to be adjusted, while the
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second is a signed constant amount of adjustment. Normally, the
variable can be from 0 to 255, while the increment can be any num-
ber from −128 to 127. If the wide prefix is specified, the variable
can be from 0 to 65536 and the increment can range from −32768
to 32767. The stack is not changed.

Initial: —
Final: int

iload <varnum> (0x15 [byte/short])—Load int from local variable
Summary: Loads an integer from local variable #<varnum> and

pushes the value. The value of <varnum> is a byte in the range
0..255 unless the wide operand prefix is used, in which case it is a
short in the range 0..65536.

Initial: —
Final: int

iload 0 (0x1a)—Load int from local variable #0
Summary: Loads a single-word integer from local variable #0 and

pushes the value loaded onto the stack. This is functionally equivalent
to iload 0 but takes fewer bytes and is faster.

Initial: —
Final: int

iload 1 (0x1b)—Load int from local variable #1
Summary: Loads a single-word integer from local variable #1 and

pushes the value loaded onto the stack. This is functionally equivalent
to iload 1 but takes fewer bytes and is faster.

Initial: —
Final: int

iload 2 (0x1c)—Load int from local variable #2
Summary: Loads a single-word integer from local variable #2 and

pushes the value loaded onto the stack. This is functionally equivalent
to iload 2 but takes fewer bytes and is faster.

Initial: —
Final: int

iload 3 (0x1d)—Load int from local variable #3
Summary: Loads a single-word integer from local variable #3 and

pushes the value loaded onto the stack. This is functionally equivalent
to iload 3 but takes fewer bytes and is faster.

Initial: (n/a)
Final: (n/a)

impdep1 (0xfe)—Reserved opcode
Summary: This opcode is reserved for internal use by a JVM imple-

mentation. It is illegal for such an opcode to appear in class file, and
such a class file will fail verification.

Initial: (n/a)
Final: (n/a)

impdep2 (0xff)—Reserved opcode
Summary: This opcode is reserved for internal use by a JVM imple-

mentation. It is illegal for such an opcode to appear in a class file,
and such a class file will fail verification.

Initial: int
int

Final: int

imul (0x68)—Integer multiplication
Summary: Pops two integers and pushes their product.

Initial: int
Final: int

ineg (0x74)—Integer negation
Summary: Pops an integer from the stack, reverses its sign (multiplies

by −1), then pushes the result.



Appendix B � JVM Instruction Set 267
� �

Initial: address
Final: int

instanceof <type> (0xc1 [short])—Test if object/array is of specified
type

Summary: Pops an address (object or array reference) from the stack
and determines if that object/array is compatible with that type—
either an instance of that type, an implementation of that interface,
or an instance of a relevant supertype. If it is compatible, the integer
value 1 is pushed; otherwise, 0 is pushed.

Initial: see original
opcode

Final: see original
opcode

instanceof quick (0xe1)—Quick version of instanceof opcode
Summary: Optimized version of instanceof opcode used inter-

nally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.

Initial: argN
. . .

arg2
arg1

address(object)
Final: (result)

invokeinterface <method> <Nargs> (0xb9 [short][byte][byte])—
Invoke interface method

Summary: Invokes a method defined within an interface (as opposed
to a class). Arguments to invokeinterface include the fully qual-
ified name of the method to be invoked (including the interface
name, parameter types, and return type) and the number of argu-
ments. These arguments are popped from the stack along with an
address (object reference) of an object implementing that interface.
A new stack frame is created for the called environment, and the ob-
ject and arguments are pushed onto this environment’s stack. Control
then passes to the new method/environment. Upon return, the return
value (given by ?return) is pushed onto the calling environment’s
stack.

In bytecode, the method name is stored as a 2-byte index in the
constant pool (see Glossary). The next byte stores the number of
argument words, up to 255 passed to the method. The next byte must
store the value 0 and can be used internally by the JVM to store hash
values to speed up method lookup.

Initial: see original
opcode

Final: see original
opcode

invokeinterface quick (0xda)—Quick version of invokeinterface
opcode

Summary: Optimized version of invokeinterface opcode used in-
ternally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.

Initial: see original
opcode

Final: see original
opcode

invokenonvirtual quick (0xd7)—Quick version of invokespecial
opcode

Summary: Optimized version of invokespecial opcode used inter-
nally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.
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Initial: argN
. . .

arg2
arg1

address(object)
Final: (result)

invokespecial <method> (0xb7 [short])—Invoke instance method
Summary: Invokes an instance method on an object in certain special

cases. Specifically, use invokespecial to invoke.

� the instance initialization method <init>,
� a private method of this, or
� a method in a superclass of this.

This opcode is otherwise similar to invokevirtual (q.v.). Argu-
ments to invokespecial include the fully qualified name of the
method to be invoked (including the class name, parameter types,
and return type) and the number of arguments. These arguments
are popped from the stack along with an address (object reference)
of an instance of the relevant class. A new stack frame is cre-
ated for the called environment, and the object and arguments are
pushed onto this environment’s stack. Control then passes to the new
method/environment. Upon return, the return value (given by ?re-
turn) is pushed onto the calling environment’s stack. In bytecode,
the method name is stored as a two-byte index into the constant pool
(See Glossary).

Initial: argN
. . .

arg2
arg1

Final: (result)

invokestatic <method> (0xb8 [short])—Invoke static method
Summary: Invokes a static method on a class. Arguments to

invokestatic include the fully qualified name of the method to
be invoked (including the class name, parameter types, and return
type) and the number of arguments. These arguments are popped
from the stack. A new stack frame is created for the called envi-
ronment, and arguments are pushed onto this environment’s stack.
Control then passes to the new method/environment. Upon return,
the return value (given by ?return) is pushed onto the calling envi-
ronment’s stack.

In bytecode, the method name is stored as a 2-byte index into
the constant pool (see Glossary).

Initial: see original
opcode

Final: see original
opcode

invokestatic quick (0xd9)—Quick version of invokestatic
opcode

Summary: Optimized version of invokestatic opcode used inter-
nally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.

Initial: see original
opcode

Final: see original
opcode

invokesuper quick (0xd8)—Quick version of invokespecial
opcode

Summary: Optimized version of invokespecial opcode used inter-
nally in Sun’s Just In Time (JIT) compiler. This opcode should never
appear in a .classfile that isn’t currently loaded and being executed.
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Initial: argN
. . .

arg2
arg1

address(object)
Final: (result)

invokevirtual <method> (0xb6 [short])—Invoke instance method
Summary: Invokes an instance method on an object. Arguments to

invokevirtual include the fully-qualified name of the method
to be invoked (including the class name, parameter types, and re-
turn type) and the number of arguments. These arguments are
popped from the stack along with an address (object reference)
of an instance of the relevant class. A new stack frame is cre-
ated for the called environment, and the object and arguments are
pushed onto this environment’s stack. Control then passes to the new
method/environment. Upon return, the return value (given by ?re-
turn) is pushed onto the calling environment’s stack. In bytecode, the
method name is stored as a 2-byte index into the constant pool (see
Glossary).

Initial: see original
opcode

Final: see original
opcode

invokevirtual quick (0xd6)—Quick version of invokevirtual op-
code

Summary: Optimized version of invokevirtual opcode used inter-
nally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.

Initial: see original
opcode

Final: see original
opcode

invokevirtual quick w (0xe2)—Quick version of invokevirtual op-
code (wide index)

Summary: Optimized version of invokevirtual opcode used inter-
nally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.

Initial: see original
opcode

Final: see original
opcode

invokevirtualobject quick (0xdb)—Quick version ofinvokevirtual
for methods on Object

Summary: Optimized version of invokevirtual opcode used inter-
nally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.

Initial: int
int

Final: int

ior (0x80)—integer logical OR
Summary: Pops two integers from the stack, calculates their bitwise

inclusive AOR, and pushes the 32-bit result as an integer.

Initial: int
int

Final: int

irem (0x70)—Integer remainder
Summary: Pops two single-word integers, then pushes the remainder

resulting when the next-to-top number is divided by the top number.
This operation is rather like the C or Java % operation.

Initial: int
Final: (n/a)

ireturn (0xac)—Return from method with integer result
Summary: Pops an integer from the current method stack. This integer

is pushed onto the method stack of the calling environment. The
current method is terminated, and control is transferred to the calling
environment.
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Initial: int(shift)
int(value)
Final: int

ishl (0x78)—Shift integer to the left
Summary: Pops an integer and another integer from the stack. The

value of the next-to-top integer is shifted to the left by the number of
bits indicated by the lower 6 bits of the top integer; then the resulting
long is pushed. Newly emptied places are filled with 0 bits. This is
equivalent to multiplying the value by a power of 2 but may be faster.

Initial: int(shift)
int(value)
Final: int

ishr (0x7a)—Shift integer to the right
Summary: Pops an integer and another integer from the stack. The

value of the next-to-top integer is shifted to the right by the number
of bits indicated by the lower 6 bits of the top integer; then the
resulting value is pushed. Note: this is an arithmetic shift, meaning
that the sign bit is copied to fill the newly emptied places.

Initial: int
Final: —

istore <varnum> (0x36 [byte/short])—Store integer in local variable
Summary: Pops an integer from the top of the stack and stores that

integer value in local variable #<varnum>. The value of <varnum>

is a byte in the range 0..255 unless the wide operand prefix is used,
in which case it is a short in the range 0..65536.

Initial: int
Final: —

istore 0 (0x3b)—Store integer in local variable #0
Summary: Pops an integer from the top of the stack and stores that

integer value in local variable #0. This is functionally equivalent to
istore 0 but takes fewer bytes and is faster.

Initial: int
Final: —

istore 1 (0x3c)—Store integer in local variable #1
Summary: Pops an integer from the top of the stack and stores that

integer value in local variable #1. This is functionally equivalent to
istore 1 but takes fewer bytes and is faster.

Initial: int
Final: —

istore 2 (0x3d)—Store integer in local variable #2
Summary: Pops an integer from the top of the stack and stores that

integer value in local variable #3. This is functionally equivalent to
istore 2 but takes fewer bytes and is faster.

Initial: int
Final: —

istore 3 (0x3e)—Store integer in local variable #3
Summary: Pops an integer from the top of the stack and stores that

integer value in local variable #3. This is functionally equivalent to
istore 3 but takes fewer bytes and is faster.

Initial: int
int

Final: int

isub (0x64)—Integer subtraction
Summary: Pops two single-word integers, then pushes the result of

the next-to-top number minus the top number.

Initial: int(shift)
int(value)
Final: int

iushr (0x7c)—Shift unsigned int to the right
Summary: Pops an integer and another integer from the stack. The

value of the next-to-top integer is shifted to the right by the number
of bits indicated by the lower 6 bits of the top; then the resulting
value is pushed. Note: this is a logical shift, meaning that the sign bit
is ignored and the bit value 0 is used to fill the newly emptied places.
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Initial: int
int

Final: int

ixor (0x82)—integer logical XOR
Summary: Pops two integers from the stack, calculates their bitwise

XOR (exclusive OR), and pushes the 32-bit result as an integer.

Initial: —
Final: address(locn)

jsr w <label> (0xc9 [int])—Jump to subroutine using wide offset
Summary: Pushes the location of the next instruction (PC + 5, rep-

resenting the length of the jsr w insruction itself), then executes an
unconditional branch to <label>.

Initial: —
Final: address(locn

jsr <label> (0xa8 [short])—Jump to subroutine
Summary: Pushes the location of the next instruction (PC + 3, rep-

resenting the length of the jsr insruction itself), then executes an
unconditional branch to <label>.

Initial: long
long

Final: double
double

l2d (0x8a)—Convert long to double
Summary: Pops a doubleword long integer point number off the stack,

converts it to a two-word double, and pushes the result.

Initial: long
long

Final: float

l2f (0x89)—Convert long to float
Summary: Pops a doubleword long integer point number off the stack,

converts it to a single-word floating point number, and pushes the
result.

Initial: long
long

Final: int

l2i (0x88)—Convert long to int
Summary: Pops a doubleword long integer point number off the stack,

converts it to a single-word integer, and pushes the result. Note that
this may cause a change in sign as the long’s original sign bit is
lost.

Initial: long-1
long-1
long-2
long-2

Final: long
long

ladd (0x61)—Long addition
Summary: Pops two longs and pushes their sum.

Initial: int(index)
address(array ref)

Final: long
long

laload (0x2f)—Load value from array of bytes
Summary: Pops an integer and an array from the stack, then retrieves

a value from that location in the one-dimensional array of longs. The
value retrieved is pushed onto the top of the stack.

Initial: long-1
long-1
long-2
long-2

Final: long
long

land (0x7f)—Long logical AND
Summary: Pops two longs from the stack, calculates their bitwise

AND, and pushes the 64-bit result as a long.
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Initial: int(index)
long
long

address(array ref)
Final: —

lastore (0x50)—Store value in array of longs
Summary: Stores a two-word long integer in an array of such

longs. The top argument popped is the index defining the ar-
ray location to be used. The second/third arguments popped are
the long value to be stored, and the final argument is the array
itself.

Initial: long-1
long-1
long-2
long-2

Final: int

lcmp (0x94)—Compare longs
Summary: Pops two two-word integers off the operand stack and com-

pares them. If the next-to-top value is greater than the top value, the
integer 1 is pushed. If the two values are equal, the integer 0 is pushed;
otherwise, the integer −1 is pushed.

Initial: —
Final: long(0)

long(0)

lconst 0 (0x9)—Push integer constant zero
Summary: Pushes the constant value 0 (0x0) as a 64-bit long integer

onto the operand stack.

Initial: —
Final: long(1)

long(1)

lconst 1 (0xa)—Push integer constant 1
Summary: Pushes the constant value 1 (0x1) as a 64-bit long integer

onto the operand stack.

Initial: —
Final: word

ldc <constant> (0x12 [short])—Load one-word constant
Summary: Loads and pushes a single-word entry from the constant

pool (See Glossary). <constant> can be an int, a float, or a literal
string, which is stored as an entry numbered from 0 to 255 in the
constant pool.

Initial: —
Final: word

ldc2 w <constant> (0x14 [int])—Load two-word constant
Summary: Loads and pushes a doubleword entry from the constant

pool (see Glossary). <constant> can be a double or long, which
is stored as an entry numbered from 0 to 65536 in the constant
pool.

Initial: see original
opcode

Final: see original
opcode

ldc quick (0xcb)—Quick version of ldc opcode
Summary: Optimized version of ldc opcode used internally in Sun’s

Just In Time (JIT) compiler. This opcode should never appear in a
.class file that isn’t currently loaded and being executed.

Initial: —
Final: word

ldc w <constant> (0x13 [int])—Load one-word constant with wide
access

Summary: Loads and pushes a single-word entry from the constant
pool (see Glossary). <constant> can be an int, a float, or a literal
string, which is stored as an entry numbered from 0 to 65536 in the
constant pool.

Initial: see original
opcode

Final: see original
opcode

ldc w quick (0xcd)—Quick, wide version of ldc opcode
Summary: Optimized version of ldc opcodes used internally in Sun’s

Just In Time (JIT) compiler. This opcode should never appear in a
.class file that isn’t currently loaded and being executed.
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Initial: long-1
long-1
long-2
long-2

Final: long
long

ldiv (0x6d)—Long integer division
Summary: Pops two two-word long integers, then pushes the integer

part of the result of the next-to-top number divided by the top number.

Initial: —
Final: long

long

lload <varnum> (0x16 [byte/short])—Load long from local variable
Summary: Loads a two-word long integer from local variables

#<varnum> and #<varnum>+1 and pushes the value. The value
of <varnum> is a byte in the range 0..255 unless the wide operand
prefix is used, in which case it is a short in the range 0..65536.

Initial: —
Final: long

long

lload 0 (0x1e)—Load long from local variable #0/#1
Summary: Loads a 2-byte long integer from local variables #0 and

#1 and pushes the value loaded onto the stack. This is functionally
equivalent to lload 0 but takes fewer bytes and is faster.

Initial: —
Final: long

long

lload 1 (0x1f)—Load long from local variable #1/#2
Summary: Loads a 2-byte long integer from local variables #1 and

#2 and pushes the value loaded onto the stack. This is functionally
equivalent to lload 1 but takes fewer bytes and is faster.

Initial: —
Final: long

long

lload 2 (0x20)—Load long from local variable #2/#3
Summary: Loads a 2-byte long integer from local variables #2 and

#3 and pushes the value loaded onto the stack. This is functionally
equivalent to lload 2 but takes fewer bytes and is faster.

Initial: —
Final: long

long

lload 3 (0x21)—Load long from local variable #3/#4
Summary: Loads a 2-byte long integer from local variables #3 and

#4 and pushes the value loaded onto the stack. This is functionally
equivalent to lload 3 but takes fewer bytes and is faster.

Initial: long-1
long-1
long-2
long-2

Final: long
long

lmul (0x69)—Long integer multiplication
Summary: Pops two longs and pushes their product.

Initial: long
long

Final: long
long

lneg (0x75)—Long integer negation
Summary: Pops a two-word long integer from the stack, reverses its

sign (multiplies by −1), then pushes the result.

Initial: int
Final: —

lookupswitch <args> (0xab [args])—Multiway branch
Summary: Performs a multiway branch, like the Java/C++ switch

statement. The integer at the top of the stack is popped and



274 Appendix B � JVM Instruction Set
� �

lookupswitch
1 : One
2 : Two
3 : Three
5 : Five
default:Elsewhere

Figure B.1 Example of lookupswitch

opcode (0xab) and padding
default offset

number of entries (N)
value 1
offset 1
value 2
offset 2

. . .
value N
offset N

Table B.1 Bytecode layout for lookupswitch

compared to a set of value:label pairs. If the integer is equal to value,
control is passed to the correponding label. If no value matches the
integer, control passes instead to a defined default label. Labels are
implemented as relative offsets and added to the current contents of
the PC to get the location of the next instruction to execute.

See figure B.1 for example of this statement in use.
The lookupswitch instruction has a variable number of ar-

guments, so its bytecode storage is rather tricky. After the opcode
(0xab) itself, 0 to 3 bytes of padding follow, so that the the 4-byte
default offset begins at a byte that is a mutiple of 4. The next
4 bytes define the number of value:label pairs. Each pair is stored
in succession, in order of increasing value, as a 4-byte integer and a
corresponding 4-byte offset. Table B.1 illustrates this.

Initial: long-1
long-1
long-2
long-2

Final: long
long

lor (0x81)—Long logical OR
Summary: Pops two longs from the stack, calculates their bitwise in-

clusive OR, and pushes the 64-bit result as a long.
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Initial: long-1
long-1
long-2
long-2

Final: long
long

lrem (0x71)—Long integer remainder
Summary: Pops two two-word integers, then pushes the remainder

resulting when the next-to-top number is divided by the top number.
This operation is rather like the C or Java % operation.

Initial: long
long

Final: (n/a)

lreturn (0xad)—Return from method with address result
Summary: Pops a 2-byte long integer from the current method stack.

This long is pushed onto the method stack of the calling environment.
The current method is terminated, and control is transferred to the
calling environment.

Initial: int(shift)
long
long

Final: long
long

lshl (0x79)—Shift long to the left
Summary: Pops an integer and a 64-bit long integer from the stack.

The value of the long is shifted to the left by the number of bits in-
dicated by the lower 6 bits of the integer; then the resulting long
is pushed. Newly emptied places are filled with 0 bits. This is
equivalent to multiplying the value by a power of 2 but may be
faster.

Initial: int(shift)
long
long

Final: long
long

lshr (0x7b)—Shift long to the right
Summary: Pops an integer and a 64-bit long integer from the stack.

The value of the long is shifted to the right by the number of bits
indicated by the lower 6 bits of the integer; then the resulting long is
pushed. Note: this is an arithmetic shift, meaning that the sign bit is
copied to fill the newly emptied places.

Initial: long
long

Final: —

lstore <varnum> (0x37 [byte/short])—Store long in local variable
Summary: Pops a long from the top of the stack and stores that

long value in local variables #<varnum> and #<varnum> +1. The
value of <varnum> is a byte in the range 0..255 unless the wide
operand prefix is used, in which case it is a short in the range
0..65536.

Initial: long
long

Final: —

lstore 0 (0x3f)—Store long in local variable #0/#1
Summary: Pops a long from the top of the stack and stores that long

value in local variables #0 and #1. This is functionally equivalent to
lstore 0 but takes fewer bytes and is faster.

Initial: long
long

Final: —

lstore 1 (0x40)—Store long in local variable #1/#2
Summary: Pops a long from the top of the stack and stores that long

value in local variables #1 and #2. This is functionally equivalent to
lstore 1 but takes fewer bytes and is faster.

Initial: long
long

Final: —

lstore 2 (0x41)—Store long in local variable #2/#3
Summary: Pops a long from the top of the stack and stores that long

value in local variables #2 and #3. This is functionally equivalent to
lstore 2 but takes fewer bytes and is faster.
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Initial: long
long

Final: —

lstore 3 (0x42)—Store long in local variable #3/#4
Summary: Pops a long from the top of the stack and stores that long

value in local variables #3 and #4. This is functionally equivalent to
lstore 3 but takes fewer bytes and is faster.

Initial: long-1
long-1
long-2
long-2

Final: long
long

lsub (0x65)—Long integer subtraction
Summary: Pops two two-word long integers, then pushes the result of

the next-to-top number minus the top number.

Initial: int(shift)
long
long

Final: long
long

lushr (0x7d)—Shift unsigned long to the right
Summary: Pops an integer and a 64-bit long integer from the stack.

The value of the long is shifted to the right by the number of bits
indicated by the lower 6 bits of the integer; then the resulting long
is pushed. Note: this is a logical shift, meaning that the sign bit is
ignored and the bit value 0 is used to fill the newly emptied places.

Initial: long-1
long-1
long-2
long-2

Final: long
long

lxor (0x83)—Long logical XOR
Summary: Pops two longs from the stack, calculates their bitwise XOR

(exclusive OR), and pushes the 64-bit result as a long.

Initial: address
Final: —

monitorenter (0xc2)—Obtain lock on object
Summary: The JVM monitor system enables synchronization and

coordinated access to objects among multiple threads. The
monitorenter statement pops an address (object reference) and re-
quests an exclusive lock on that object from the JVM. If no other
thread has locked that object, the lock is granted and execution con-
tinues. If the object is already locked, the thread blocks and ceases
to execute until the other thread releases the lock via monitorexit.

Initial: address
Final: —

monitorexit (0xc3)—Release lock on object
Summary: Pops an address (object reference) and releases a previously

obtained (via monitorenter) lock on that object, enabling other
threads to get locks in their turn.

Initial: dimension N
dimension N-1

.

.
dimension 1

Final: address

multianewarray <type> <N> (0xc5 [short] [byte])—Create multi-
dimensional array

Summary: Allocates space for an <N>-dimensional array of type
<type> and pushes a reference to the new array. The type is stored
in bytecode as a 2-byte index in the constant pool (see Glos-
sary), while the number of dimensions <N> is stored as a byte
value from 0 to 255. Executing this opcode pops <N> integer
elements off the stack, representing the size of the array in each
of the dimensions. The array is actually built as an array of (sub)
arrays.
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Initial: see original
opcode

Final: see original
opcode

multianewarray quick (0xdf)—Quick version of multianewarray
opcode

Summary: Optimized version of multianewarray opcode used in-
ternally in Sun’s Just In Time (JIT) compiler. This opcode should
never appear in a .class file that isn’t currently loaded and being
executed.

Initial: —
Final: address(object)

new <class> (0xbb [short])—Create new object
Summary: Creates a new object of the class specified. The type

is stored internally as a 2-byte index in the constant pool
(see Glossary).

Initial: see original
opcode

Final: see original
opcode

new quick (0xdd)—Quick version of new opcode
Summary: Optimized version of new opcode used internally in Sun’s

Just In Time (JIT) compiler. This opcode should never appear in a
.class file that isn’t currently loaded and being executed.

Initial: int(size)
Final: address(array)

newarray <typename> (0xbc [type-byte])—Create unidimensional
array of objects

Summary: Allocates space for an <1>-dimensional array of type
<typename> and pushes a reference to the new array. The new array
is popped as an integer from the top of the stack, while the type of
the array is determined by examining the byte following this opcode
according to the following table:

boolean 4 byte 8
char 5 short 9
float 6 int 10
double 7 long 11

Initial: —
Final: —

nop (0x0)—No operation
Summary: Does nothing. An operation that does nothing is sometimes

useful for timing or debugging or as a placeholder for future code.

Initial: word
Final: —

pop (0x57)—Pop single word from stack
Summary: Pops and discards the top word (an integer, float, or ad-

dress). Note that there is no matching push instruction, as pushing
is a typed operation; use, for instance, sipush or ldc.

Initial: word
word

Final: —

pop2 (0x58)—Pop two words from stack
Summary: Pops and discards the top two words (either two singleword

quantities like integers, floats, or addresses, or a single two-word
quantity such as a long or a double). Note that there is no matching
push instruction, as pushing is a typed operation; use, for instance,
ldc2 w.

Initial: value
address(object)

Final: —

putfield <fieldname> <type> (0xb5 [short][short])—Put object
field

Summary: Pops an address (object reference) and a value from the
stack and stores that value in the identified field of the object. The
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putfield opcode takes two parameters, the field identifier and the
field type. These are stored in the bytecode as 2-byte indices in the
constant pool (see Glossary). Unlike in Java, the field name must
always be fully qualified, including the name of the relevant class
and any relevant packages.

Initial: see original
opcode

Final: see original
opcode

putfield2 quick (0xd1)—Quick version of putfield opcode for
2-byte fields

Summary: Optimized version of putfield opcode used internally in
Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: see original
opcode

Final: see original
opcode

putfield quick (0xcf)—Quick version of putfield opcode
Summary: Optimized version of putfield opcode used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: see original
opcode

Final: see original
opcode

putfield quick w (0xe4)—Quick, wide version of putfield opcode
Summary: Optimized version of putfield opcodes used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: value
Final: —

putstatic <fieldname> <type> (0xb3 [short][short])—Put class
field

Summary: Pops a value from the stack and stores that value in the iden-
tified field of the specified class. The putstatic opcode takes two
parameters, the field identifier and the field type. These are stored
in the bytecode as 2-byte indices in the constant pool (see Glos-
sary). Unlike in Java, the field name must always be fully qual-
ified, including the name of the relevant class and any relevant
packages.

Initial: see original
opcode

Final: see original
opcode

putstatic2 quick (0xd5)—Alternate quick version of putstatic
opcode

Summary: Optimized version of putstatic opcode used internally in
Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: see original
opcode

Final: see original
opcode

putstatic quick (0xd3)—Quick version of putstatic opcode
Summary: Optimized version of putstatic opcode used internally in

Sun’s Just In Time (JIT) compiler. This opcode should never appear
in a .class file that isn’t currently loaded and being executed.

Initial: —
Final: —

ret <varnum> (0xa9 [byte/short])—Return from subroutine
Summary: Returns to the address stored in <varnum> after a jump to

a subroutine via jsr or jsr w. The variable number is stored as a byte
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in the range 0..255 unless the wide prefix is used, which causes the
variable to be stored as a 2-byte quantity (range 0..65536) instead.

Initial: —
Final: (n/a)

return (0xb1)—Return from method without result
Summary: Terminates the current method and transfers control back

to the calling environment.

Initial: int(index)
address(array ref)

Final: int

saload (0x35—Load value from array of bytes
Summary: Pops an integer and an array from the stack, then retrieves

a value from that location in the one-dimensional array of a 16-bit
short. The value retrieved is sign-extended to an integer and pushed
on the top of the stack.

Initial: int(index)
int(short)

address(array ref)
Final: —

sastore (0x56)—Store value in array of characters
Summary: Stores a 16-bit short integer in an array of shorts. The top

argument popped is the index defining the array location to be used.
The second argument popped is the short value to be stored, and the
third and final argument is the array itself. The second argument is
truncated from an int to a short and stored in the array.

Initial: —
Final: int

sipush <constant> (0x11 [short])—Push [integer] short
Summary: The short value given as an argument (−32768..32767) is

sign-extended to an integer and pushed on the stack.

Initial: word-1
word-2

Final: word-2
word-1

swap (0x5f)—Swap top two stack elements
Summary: Swaps the top two singleword elements on the stack. There

is, unfortunately, no swap2 instruction.

Initial: int
Final: —

tableswitch <args> (0xaa [args])—Computed branch
Summary: Performs a multiway branch, like the Java/C++ switch

statement. The integer at the top of the stack is popped and compared
to a set of value:label pairs. If the integer is equal to the value, control
is passed to the correponding label. If no value matches the integer,
control passes instead to a defined default label. Labels are imple-
mented as relative offsets and added to the current contents of the
PC to get the location of the next instruction to execute. This instruc-
tion can be executed more efficiently than the similar lookupswitch
statement (q.v.), but the values need to be consecutive and sequential.

The arguments to tableswitch include the lowest and highest
values represented by values in the table. If the integer popped from
the stack is less than the lowest value or greater than the highest
value, control is transferred to the default label. Otherwise, control is
transferred directly (without a need for comparisons) to the (integer-
low)-th label in the table.

See figure B.2 for an example of this operation in use.
The tableswitch instruction has a variable number of argu-

ments, and thus its bytecode storage is rather tricky. After the opcode
(0xaa) itself, 0 to 3 bytes of padding follow, so that the the four-byte



280 Appendix B � JVM Instruction Set
� �

tableswitch 1 3
One
Two
Three
default:Elsewhere

Figure B.2 Example of tableswitch

opcode (0xaa) and padding
default offset

low value
high value

offset 1
offset 2

. . .
offset N

Table B.2 Bytecode layout for tableswitch

default offset begins at a byte that is a mutiple of 4. The next
8 bytes define the lowest table entry and highest table values. Each
offset is then stored in numerical order as a 4-byte offset. Table B.2
illustrates this.

Initial: —
Final: —

wide (0xc4)—Specify “wide” interpretation of next opcode
Summary: This is not an opcode, but rather an opcode prefix. It indi-

cates that the arguments of the next operation are potentially larger
than usual—for example, using a local variable greater than 255 in
iload. The jasmin assembler will generate this prefix as needed
automatically.
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Opcode Summary
by Number

C.1 Standard Opcodes
0 0x0 nop 101 0x65 lsub

1 0x1 aconst null 102 0x66 fsub

2 0x2 iconst m1 103 0x67 dsub

3 0x3 iconst 0 104 0x68 imul

4 0x4 iconst 1 105 0x69 lmul
5 0x5 iconst 2 106 0x6a fmul

6 0x6 iconst 3 107 0x6b dmul

7 0x7 iconst 4 108 0x6c idiv

8 0x8 iconst 5 109 0x6d ldiv

9 0x9 lconst 0 110 0x6e fdiv

10 0xa lconst 1 111 0x6f ddiv

11 0xb fconst 0 112 0x70 irem

12 0xc fconst 1 113 0x71 lrem

13 0xd fconst 2 114 0x72 frem

14 0xe dconst 0 115 0x73 drem

15 0xf dconst 1 116 0x74 ineg

16 0x10 bipush 117 0x75 lneg

17 0x11 sipush 118 0x76 fneg

18 0x12 ldc 119 0x77 dneg

19 0x13 ldc w 120 0x78 ishl

20 0x14 ldc2 w 121 0x79 lshl

21 0x15 iload 122 0x7a ishr

22 0x16 lload 123 0x7b lshr

23 0x17 fload 124 0x7c iushr

24 0x18 dload 125 0x7d lushr

(continued )
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25 0x19 aload 126 0x7e iand

26 0x1a iload 0 127 0x7f land

27 0x1b iload 1 128 0x80 ior

28 0x1c iload 2 129 0x81 lor

29 0x1d iload 3 130 0x82 ixor

30 0x1e lload 0 131 0x83 lxor

31 0x1f lload 1 132 0x84 iinc

32 0x20 lload 2 133 0x85 i2l

33 0x21 lload 3 134 0x86 i2f

34 0x22 fload 0 135 0x87 i2d

35 0x23 fload 1 136 0x88 l2i

36 0x24 fload 2 137 0x89 l2f

37 0x25 fload 3 138 0x8a l2d

38 0x26 dload 0 139 0x8b f2i

39 0x27 dload 1 140 0x8c f2l

40 0x28 dload 2 141 0x8d f2d

41 0x29 dload 3 142 0x8e d2i

42 0x2a aload 0 143 0x8f d2l

43 0x2b aload 1 144 0x90 d2f

44 0x2c aload 2 145 0x91 i2b

45 0x2d aload 3 146 0x92 i2c

46 0x2e iaload 147 0x93 i2s

47 0x2f laload 148 0x94 lcmp

48 0x30 faload 149 0x95 fcmpl

49 0x31 daload 150 0x96 fcmpg

50 0x32 aaload 151 0x97 dcmpl

51 0x33 baload 152 0x98 dcmpg

52 0x34 caload 153 0x99 ifeq

53 0x35 saload 154 0x9a ifne

54 0x36 istore 155 0x9b iflt

55 0x37 lstore 156 0x9c ifge

56 0x38 fstore 157 0x9d ifgt

57 0x39 dstore 158 0x9e ifle

58 0x3a astore 159 0x9f if icmpeq

59 0x3b istore 0 160 0xa0 if icmpne

60 0x3c istore 1 161 0xa1 if icmplt

61 0x3d istore 2 162 0xa2 if icmpge

62 0x3e istore 3 163 0xa3 if icmpgt

63 0x3f lstore 0 164 0xa4 if icmple

64 0x40 lstore 1 165 0xa5 if acmpeq

65 0x41 lstore 2 166 0xa6 if acmpne

66 0x42 lstore 3 167 0xa7 goto

67 0x43 fstore 0 168 0xa8 jsr

68 0x44 fstore 1 169 0xa9 ret

(continued )
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69 0x45 fstore 2 170 0xaa tableswitch

70 0x46 fstore 3 171 0xab lookupswitch

71 0x47 dstore 0 172 0xac ireturn

72 0x48 dstore 1 173 0xad lreturn

73 0x49 dstore 2 174 0xae freturn

74 0x4a dstore 3 175 0xaf dreturn

75 0x4b astore 0 176 0xb0 areturn

76 0x4c astore 1 177 0xb1 return

77 0x4d astore 2 178 0xb2 getstatic

78 0x4e astore 3 179 0xb3 putstatic

79 0x4f iastore 180 0xb4 getfield

80 0x50 lastore 181 0xb5 putfield

81 0x51 fastore 182 0xb6 invokevirtual

82 0x52 dastore 183 0xb7 invokespecial

83 0x53 aastore 184 0xb8 invokestatic

84 0x54 bastore 185 0xb9 invokeinterface

85 0x55 castore 186 0xba xxxunusedxxx

86 0x56 sastore 187 0xbb new

87 0x57 pop 188 0xbc newarray

88 0x58 pop2 189 0xbd anewarray

89 0x59 dup 190 0xbe arraylength

90 0x5a dup x1 191 0xbf athrow

91 0x5b dup x2 192 0xc0 checkcast

92 0x5c dup2 193 0xc1 instanceof

93 0x5d dup2 x1 194 0xc2 monitorenter

94 0x5e dup2 x2 195 0xc3 monitorexit

95 0x5f swap 196 0xc4 wide

96 0x60 iadd 197 0xc5 multianewarray

97 0x61 ladd 198 0xc6 ifnull

98 0x62 fadd 199 0xc7 ifnonnull

99 0x63 dadd 200 0xc8 goto w

100 0x64 isub 201 0xc9 jsr w

C.2 Reserved Opcodes
The JVM standard also reserves the following opcodes:

202 0xca breakpoint
254 0xfe impdep1
255 0xff impdep2

Opcode 202 (breakpoint) is used by debuggers, while opcodes 254 and 255 are reserved
for internal use by the JVM itself. They should never appear in a stored class file; in fact, a class
file with these opcodes should fail verification.

C.3 “Quick’’Pseudo-Opcodes
In 1995, researchers at Sun Microsystems proposed the use of internal “quick” opcodes as a
method of increasing the speed and efficiency of the Java compiler. Normally, when an entry in
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the constant pool is referenced, the entry must be resolved to confirm its availability and type
compatibility. If a single statement must be executed several times, this reresolution can slow the
computer down. As part of its Just-In-Time (JIT) compiler, Sun has proposed a set of opcodes that
assume that the entry has already been resolved. When a normal opcode is executed (successfully),
it can be replaced internally with a “quick” pseudo-opcode to skip the resolution step and speed
up subsequent executions.

These pseudo-opcodes should never appear in a class file in long-term storage. Instead,
the JVM itself may rewrite the opcodes on an executing class. If done properly, this change is
completely invisible to a Java programmer or even a writer of compilers. The set of optimization
pseudo-opcodes proposed includes the following:

203 0xcb ldc quick
205 0xcd ldc w quick
206 0xce getfield quick
207 0xcf putfield quick
208 0xd0 getfield2 quick
209 0xd1 putfield2 quick
210 0xd2 getstatic quick
211 0xd3 putstatic quick
212 0xd4 getstatic2 quick
213 0xd5 putstatic2 quick
214 0xd6 invokevirtual quick
215 0xd7 invokenonvirtual quick
216 0xd8 invokesuper quick
217 0xd9 invokestatic quick
218 0xda invokeinterface quick
219 0xdb invokevirtualobject quick
221 0xdd new quick
222 0xde anewarray quick
223 0xdf multianewarray quick
224 0xe0 checkcast quick
225 0xe1 instanceof quick
226 0xe2 invokevirtual quick w
227 0xe3 getfield quick w
228 0xe4 putfield quick w

There is, of course, nothing to prevent a different implementor from using a different
optimization method or set of quick opcodes.

C.4 Unused Opcodes
Opcode 186 is unused for historical reasons, as its previous use is no longer valid in the cur-
rent version of the JVM. Opcodes 204, 220, and 229–253 are unassigned in the current JVM
specifications but might acquire assignments (and uses) in later versions.
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Class File Format

D.1 Overview and Fundamentals
As alluded to briefly in chapter 10, class files for the JVM are stored as a set of nested tables.
This is actually a slight misnomer, as the same format is used whenever classes are stored or
transmitted, so a class received over the network comes across in exactly the same format—as a
“file.” Each “file” contains the information needed for exactly one class, including the bytecode
for all of the methods, fields and data internal to the class, and properties for interacting with the
rest of the class system including name and inheritance details.

All data in class files is stored as 8-bit bytes or as multiple byte groups of 16, 32, or 64
bits. These are referred to in standards documents as u1, u2, u4, and u8, respectively, but it’s
probably easier to think of them just as bytes, shorts, ints, and longs. To prevent any confusion
between machines with different storage conventions (such as the 8088 with its byte swapping),
the bytes are defined as coming in “network order” (also called “big-endian” or “most significant
byte [MSB]” order), where the most significant byte comes first. For example, the first 4 bytes of
any JVM class file must be the so-called magic number 0xCAFEBABE (an int, obviously). This
would be stored as a sequence of 4 bytes in the order 0xCA, 0xFE, 0xBA, 0xBE.

The top-level table of a class file contains some housekeeping information (of fixed size)
and five variable-sized lower-level tables. There is no padding or alignment between the various
components, which makes it somewhat difficult to pull a specific part (such as the name of a
method) out of a class file.

The detailed top-level format of a class file (table D.1) is as follows:

The “magic number” has already been described; it serves no real purpose except to make it
easy to identify class files quickly on a system. The major and minor version numbers help track
compatibility. For example, a very old class file (or a class file compiled with a very old version of
Java) might use opcodes that no longer exist or that have changed semantics. The current version
of Java (as of early 2006) uses minor version 0 and major version 46 (0x2e), corresponding to the
new Java 5.0 release.

The fields for this class and the superclass refer to entries in the constant table (see the
next section for details) and define the name of the current class, as well as the immediate
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Size Identifier Notes

int magic number Defined value of 0xCAFEBABE

short minor version Defines which version (major and minor revisions)

short major version of JVM class file is compatible with

short constant pool count Maximum entry number in following table

variable constant pool Pool of constants used by class

short access flags Valid access types (public, static, interface, etc.)

short this class Identifier of this class type

short superclass Identifier of this class’s superclass type

short interfaces count Number of entries in following table

variable interfaces Interfaces implemented by this class

short fields count Number of entries in following table

variable fields Fields declared as part of this class

short methods count Number of entries in following table

variable methods Methods defined as part of this class

short attributes count Number of entries in following table

variable attributes Other attributes of this class

Table D.1 Detailed diagram of class-file format

superclass. Finally, the access flags field defines the access-related properties of the current
class—for example, if this class is defined as abstract, which prevents other classes from using
it as an argument to the new instruction. These properties are stored as individual flags in a single
two-word bit vector as follows:

Meaning Bit value Interpretation

public 0x0001 Class is accessible to others

final 0x0010 Class cannot be subclassed

super 0x0020 New invocation semantics

interface 0x0200 File is actually an interface

abstract 0x0400 Class can’t be instantiated

So, an access flags field of 0x0601 would define a “public” “abstract” “interface.”

D.2 Subtable Structures
D.2.1 Constant Pool
The constant pool is structured as a sequence of individual entries representing constants used
by the program. For example, a constant representing the integer value 1010 would be stored in
5 successive bytes. The last 4 bytes would be the binary representation of 1010 (as an integer),
while the first byte is a tag value defining this entry as an integer (and thus as having 5 bytes).
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Depending upon the tag types, the size and internal format of entries vary as in the following
table.

Type Value

UTF8 string 1

Integer 3

Float 4

Long 5

Double 6

Class 7

String 8

Field reference 9

Method reference 10

Interface method reference 11

Name and type 12

The structure of integers, longs, floats, and doubles is self-explanatory. For example, a
constant pool entry for an integer consists of 5 bytes, an initial byte with the value 3 (defining the
entry as an integer) and 4 bytes for the integer value itself. UTF8 strings are stored as an unsigned
length value (2 bytes in length, allowing string of up to 65,536 characters) and a variable-length
array of bytes containing the character values in the string. All literal strings in Java class files—
string constants, class names, methods and field names, etc.—are stored internally as UTF8 string
constants.

The internal fields in other types refer to the (2-byte) indices of other entries in the con-
stant pool. For example, a field reference contains 5 bytes. The first byte would be the tag
value defining a field (value 9). The second and third bytes holds the index of another entry in
the constant pool defining the class to which the field belongs. The fourth and fifth bytes hold
the index of a “name and type” entry defining the name and field. This name and type entry
has an appropriate tag (value 12) and then the indices of two UTF8 strings defining the name/
type.

There are two important caveats regarding the constant pool. For historical reasons, constant
pool entry number 0 is never used, and the initial element takes index 1. For this reason, unlike
most other array-type elements in Java (and other class file entries), if there are k constant pool
entries, the highest entry is k, not k − 1. Also, for historical reasons, constant pool entries of type
long or double are treated as two entries; if constant pool entry 6 is a long, then the next pool
entry would have index 8. Index 7, in this case, would be unused and illegal.

D.2.2 Field Table
Each field of the class is defined internally as a table entry with the following fields:



288 Appendix D � Class File Format
� �

Size Identifier Notes

short access flags Access properties of this field

short name Index of name in constant pool

short descriptor Index of type string

short attributes count Number of field attributes

variable attributes Array of field attributes

The name and type fields are simply indices into the constant pool for the name and type
descriptor strings, respectively, of the field. The access flags field is a bit vector of flags, as before
(interpretation given by the following table), defining valid access attributes for the field. Finally,
the attributes table defines field attributes just as the class attributes table does for the class as a
whole.

Meaning Bit value Interpretation

public 0x0001 Field is accessible to others

private 0x0002 Field is usable only by defining class

protected 0x0004 Field is accessible to class and subclasses

static 0x0008 Class, not instance, field

final 0x0010 Field cannot be changed

volatile 0x0040 Field cannot be cached

transient 0x0080 Field cannot be written/read by object manager

D.2.3 Methods Table
Each method defined in a class is described internally as a table entry with a format almost
identified to that of the field entry described above. The only difference is the specific values used
to represent different access flags, as given in the following table.

Meaning Bit value Interpretation

public 0x0001 Field is accessible to others

private 0x0002 Field is usable only by defining class

protected 0x0004 Field is accessible to class and subclasses

static 0x0008 Class, not instance, field

final 0x0010 Field cannot be changed

synchronized 0x0020 Invocation is locked

native 0x0100 Implemented in hardware-native language

abstract 0x0400 No implementation defined

strict 0x0800 Strict floating point semantics
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D.2.4 Attributes
Almost all parts of the class file, including the top-level table itself, contain a possible attributes
subtable. This subtable contains “attributes” created by the compiler to describe or support com-
putations. Each compiler is permitted to define specific attributes, and JVM implementations are
required to ignore attributes that they don’t recognize, so this appendix cannot provide a complete
list of possible attributes. On the other hand, certain attributes must be present, and the JVM may
not run correctly if it requires a certain attribute that is absent.

Each attribute is stored as a table with the following format:

Size Identifier Notes

short attribute name Name of attribute

int attribute length Length of attribute in bytes

variable info Contents of attribute

Probably the most obvious (and important) attribute is the Code attribute, which, as as an
attribute for a method, contains the bytecode for that particular method. The Exceptions attribute
defines the types of exceptions that a particular method may throw. In support of debuggers, the
Sourcefile attribute stores the name of the source file from which this class file was created, and
the LineNumberTable stores which byte(s) in bytecode correspond to which individual lines in
the source code. The LocalVariableTable attribute similarly define which variable (in the source
file) corresponds to which local variable in the JVM. Compiling (or assembling) with the -g flag
(on a *NIX system) will usually cause these attributes to be placed in the class file. Without this
flag, they are often omitted to save space and time.
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The ASCII Table

E.1 The Table

Hex Char Hex Char Hex Char Hex Char Hex Char Hex Char Hex Char Hex Char

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht 0a lf 0b vt 0c ff 0d cr 0e so 0f si
10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us
20 21 ! 22 ” 23 # 24 £ 25 % 26 & 27 ’
28 ( 29 ) 2a * 2b + 2c , 2d - 2e . 2f /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5a Z 5b [ 5c 5d ] 5e ˆ 5f
60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7a z 7b { 7c } 7d } 7e ˜ 7f del

Note that ASCII 0x20 (32 decimal) is a space (“ ”) character.

E.2 History and Overview
ASCII, the American Standard Code for Information Interchange, has for decades (it was
formalized in 1963, internationalized in 1968) been the most common standard for encoding
character data in binary format. Other once common formats, such as EBCDIC and Baudot, are
largely of historical interest only. The original ASCII character set defined a 7-bit standard for
encoding 128 different “characters,” including a complete set of both upper- and lowercase letters
(for American English), digits, and many symbols and punctuation marks. In addition, the first
32 entries in the ASCII table define mostly unprintable control characters such as a backspace
(entry 0x08), [horizontal] tab (entry 0x09), vertical tab (0x10), or even an audible “bell” (now
usually a beep, entry 0x07). Unfortunately, ASCII does not well support non-English languages
or even many commonly useful symbols such as →, ≤, or the British pound sign (£).
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Since almost all computers store 8-bit bytes, byte values 0x80. . . 0xFF, which do not have
a standard character interpretation, are often used for machine-dependent proprietary extensions
to the ASCII table. For example, the letter ö is used in German but not English. Microsoft has
defined an extended ASCII table (among several different sets in use by various Windows-based
programs) that uses entry 0x94 to represent this value as part of a fairly complete set of German-
specific characters; this same table defines entry 0xE2 as an uppercase �, but oddly enough
does not define an entry for lowercase γ . I suppose that the German-speaking market was more
important to the designers of this character set than the Greek-speaking one. Apple, by contrast,
does not define a meaning for the extended characters (at least for its “terminal” environment
under OS X).

The core of the problem is that a single byte, with only 256 different storage patterns, can’t
store enough different characters. Java’s solution is to use a larger character set (Unicode) and
store them as 2-byte quantities instead.
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80x86 family A family of chips manufactured by Intel, beginning with the Intel 4004 and
extending through the 8008, 8088, 80086, 80286, 80386, 80486, and the various Pentiums.
These chips form the basis of the IBM-PC and its successors and are the most common chip
architecture in use today.

absolute address The 20-bit address obtained by combining the segment:offset memory ad-
dress in an 8086-based computer.

abstract A class that contains no direct instances, only subclasses. Alternatively, an unimple-
mented method that must be implemented in subclasses.

accumulator A designated single register for high-speed arithmetic, particularly addition and
multiplication. On 80x86 computers, the [E]AX register.

actual parameter The actual value used in place of the formal parameter in a call to a function
or method.

address A location in memory; alternatively, a number used to refer to a location in memory.

addressing mode The way to interpret a bit pattern to define the actual operand for a statement.
For example, the bit pattern 0x0001 could refer to the actual constant 1, the first register, the
contents of memory location 1, and so forth. See individual modes: immediate mode, register
mode, direct mode, indirect mode, index mode.

algorithm A step-by-step, unambiguous procedure for achieving a desired goal or performing
a computation.

ALU A component of a typical machine architecture where the arithmetic and logical operations
are performed. Part of the CPU.

American Standard Code for Information Interchange See ASCII.

AND A boolean function that returns True if and only if all arguments are True; otherwise,
it returns False. An AND gate is a hardware circuit that implements an AND function on the
input electrical signals.

applet A small, portable program (application), typically delivered as part of a Web page.

Arithmetic and Logical Unit See ALU.

arithmetic shift A shift operation where the leftmost (rightmost) bit is duplicated to fill the
emptied bit locations.

array A derived type; a collection of subelements of identical type indexed by an integer.

ASCII A standard way of representing character data in binary format. The ASCII set defines
a 7-bit pattern for letters, digits, and some commonly used punctuation marks.

assembler A program to convert a source file written in assembly language to an executable
file.
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assembly language A low-level language where each human-readable statement corresponds
to exactly one machine instruction. Different computer types have different assembly
languages.

attributes A data structure in the JVM class file format used to store miscellaneous information.

backward compatibility The ability of a computer or system to duplicate the operations of
previous versions. For example, the Pentium is backward compatible with the 8088 and so
will still run programs written for the original IBM-PC.

base 1. The numeric value represented by a digit place in the numbering system. For example,
binary is base 2, while decimal is base 10 and hexadecimal is base 16.

2. The electrical connection in a transistor that controls the flow of current from the emitter
to the collecter.

BAT A method of translating logical addresses inside a memory manager to a fixed block of
physical memory.

BCD A method used by the math processor in the 80x86 family where each decimal digit of
a number is written as a corresponding 4-bit binary pattern. The number 4096, for example,
would be written in BCD as 0100 0000 1001 0110.

big-endian A storage format where the most significant bit is stored as the first and highest-
numbered bit in a word. In big-endian format, the number 32770 would be stored as binary
10000010.

binary 1. A number system where all digits are 1 or 0 and successive digits are larger by a
factor of 2. The number 31 in binary would be written as 11111.

2. A mathematical operator such as addition that takes exactly two operands.
Binary Coded Decimal See BCD.

bit A binary digit, the basic unit of information inside a computer. A bit can take two basic
values, O or 1.

bitwise Of a Boolean operation when an operation is applied individually to each respective bit
in a multi-bit structure like a byte or an integer.

block address translation See BAT.

boolean logic A logic system, named after George Boole, where operations are defined and
performed as functions on binary quantities.

branch A machine instruction that changes the value of the program counter (PC) and thus
causes the computer to begin executing at a different memory location. An equivalent term is
goto.

branch prediction An optimization technique to speed up a computer by predicting whether
or not a conditional branch will be taken.

bus A component of a typical machine architecture that acts as a connection between the CPU,
the memory, and/or peripherals.

busy-waiting Waiting for an expected event by checking to see if the event has happened inside
a loop. Compare interrupt.
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byte A collection of 8 bits. Used as a unit of memory, of representation size, or of register
capacity.

bytecode The machine language of the JVM.

cache memory A bank of high-speed memory to store frequently accessed items to improve
overall memory performance.

Central Processing Unit See CPU.

CF The Carry Flag, set when the most recent operation generated a carry out of the register,
as when two numbers are added for which the sum is too large.

CISC A computer design philosophy using many complicated special-purpose instructions.
Compare RISC.

class A collection of fields and methods defining a type of object in an object-oriented pro-
gramming environment.

class files The format used by the JVM to store classes (including records and interfaces) in
long-term storage or to deliver them over a network.

class method A method defined by an object-oriented system as a property of a class, rather
than of any particular instance of that class.

class variable A variable defined by an object-oriented system as a property of a class, rather
than of any particular instance of that class.

clock signal An electrical signal used by the computer to synchronize events and to measure
the passage of time.

CLR The virtual machine underlying Microsoft’s .NET framework.

code Executable machine instructions, as opposed to data.

collector Part of a standard transistor to which current from the emitter flows unless shut off by
a current at the base.

comment A statement in a programming language that is ignored by the computer but that may
contain information readable by and useful to humans. In jasmin, comments begin with a
semicolon (;) and extend to the end of the line.

Common Language Runtime See CLR.

compiler A program to convert a source file written in a high-level language to an executable
file.

complete/writeback A typical phase in a pipelined architecture, where the results of an oper-
ation are stored in the target locations.

Complex Instruction Set Computing See CISC.

conditional branch A branch (like ifle) that may or may not be taken, depending upon the
current machine state.

constant pool The set of constants used by a particular JVM class, as stored in the class
file.

control characters The ASCII characters with values below 0x20, which represent nonprinting
characters such as a carriage return or a ringing bell.
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Control Unit The part of the CPU that moves data in and out of the CPU and determines which
instruction to execute.

CPU The heart of the computer, where calculations take place and the program is actually
executed. Usually consists of the Control Unit and the ALU.

data memory Memory used to store program data (such as variables) instead of program code.

decimal Base 10. The usual way of writing numbers.

derived type A representation for data built up by combining basic types. For example, a
fraction type could be derived from two integers, the numerator and the denominator.

destination Where data goes. For example, in the instruction istore 3, the destination is local
variable #3.

destination index A register in the 80x86 family that controls the destination of string primitive
operations.

destination operand An operand defining the destination of an instruction; in the Pentium
instruction set, the destination operand is typically the first, as in MOV AX, BX.

device Another name for a peripheral.

device driver A program (or part of the operating system that controls a device).

diode An electrical component that lets electricity pass in only one direction; part of the makeup
of a transistor.

Direct Memory Access The capacity of a computer to let data move between main memory
and a peripheral like a graphics card without having to go through the CPU.

direct mode An addressing mode where a bit pattern is interpreted as a location in memory
holding the desired operand. In direct mode, the bit pattern 0x0001 would be interpreted as
memory location 1.

directive A statement in assembly language [in jasmin, beginning with a period (.)] that does
not translate into a machine instruction but instead gives instructions to the assembler itself.
The .limit directive is one example.

dispatch A typical state in a pipelined architecture where the computer analyzes the instruction
to determine what kind it is, gets the source arguments from the appropriate locations, and
prepares the instruction for actual execution.

dopants Impurities deliberately added to semiconductors like silicon to affect their electrical
properties. Introducing these impurities allows the construction of diodes and transistors that
are the key components of electronic equipments like computers.

DRAM A kind of RAM that requires continuous refreshing to hold data. Slower but cheaper
than SRAM. As with all RAM, if the power goes out, the memory loses its data.

dst An abbreviation for destination.

Dynamic RAM See DRAM.

EEPROM A kind of hybrid memory combining the field programmability of RAM with the
data persistence of ROM.

Electronically Erasable Programmable ROM See EEPROM.
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embedded system A computer system where the computer is an integral part of a larger en-
vironment, not an independently usable tool. An example is the computer that runs a DVD
player.

emitter Part of a standard transistor through which current flows to the collector unless shut
off at the base.

EPROM A type of PROM that can be erased, typically by several seconds of exposure to
high-powered ultraviolet light. These memories are reprogrammable, but typically not in the
field.

Erasable Programmable ROM See EPROM.

execute 1. To run a program or machine instruction.
2. A typical state in a pipelined architecture where the computer runs a previously

fetched (and dispatched) instruction.
exponent A field in an IEEE floating point representation controlling the power of 2 by which

the mantissa is multiplied.

extended AX register The 32-bit accumulator on an 80386 or later chip in the 80x86 family,
including the Pentium.

fetch 1. To load a machine instruction in preparate for performing it.
2. A typical state in a pipelined architecture where the computer loads an instruction

from main memory.

fetch-execute cycle The process by which a computer fetches an instruction to be performed,
executes that instruction, and then cyclically fetches the next instruction in sequence until the
program ends.

Fibonacci sequence The sequence 1, 1, 2, 3,. . . , where every term is the sum of its two im-
mediate predecessors.

fields Named data storage locations in a record or class.

flags Binary variables used to store data. See also flags register.

flags register A special register in the CPU that holds a set of binary flags regarding the current
state of computation. For example, if machine overflow occurs on an arithmetic calculation, a
flag (typically called the “overflow flag” or OF) will be set to 1. A later conditional branch
can examine this flag.

Flash A kind of hybrid memory combining the field programmability of RAM with the data
persistence of ROM. Commonly used in pen drives and digital cameras.

floating point 1. Any noninteger value stored by a computer.
2. A specific format for storing noninteger values in a binary form of scientific

notation. Values are stored as the product of a mantissa times 2 raised to the
power of a biased exponent.

Floating Point Unit See FPU.

FPU Special-purpose hardware attached to the CPU to handle floating point (as opposed to
integer) calculations. Now somewhat rare, as most CPUs can handle floating point operations
on board.
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formal parameter The variables used in the definition of a function or method that serve as
place holders for later actual parameters.

garbage collection The process of reclaiming memory locations that are no longer in use.
Automatic on the JVM.

gates Electrical circuits that implement boolean functions.

goto See branch.

Harvard architecture A kind of non–von Neumann architecture where code storage (for pro-
grams) is separated from data storage (for variables).

hexadecimal Base 16. A number system where all digits are 0–9 or the letters A–F and suc-
cessive digits are larger by a factor of 16. The number 33 in hexadecimal would be written as
0x31.

high 1. The upper part of a register or data value; in particular, the most significant byte of
a general-purpose regiser on the 8088.

2. See high-level.

high-level A language like Java, C++, or Pascal where a single statement may correspond to
several machine language instructions.

hybrid memory A kind of memory designed to combine the field rewritability of RAM with
the data persistence of ROM. For examples, see EEPROM or Flash.

immediate mode An addressing mode where a bit pattern is interpreted as a constant operand.
In direct mode, the bit pattern 0x0001 would be the constant 1.

implement Of an interface, to follow the interface without being an instance of it.

index mode An addressing mode where a bit pattern is interpreted as an offset from a memory
address stored in a register.

indirect address register A register, like the Pentium’s BX or the Atmel’s Y register, tuned to
be used in indirect or index mode.

indirect mode An addressing mode where a bit pattern is interpreted as a memory location
holding a pointer to the actual operand. In indirect mode, the bit pattern 0x0001 would be
interpreted as the value stored at the location referred to by the pattern in memory location 1.

infix A method of writing expressions where a binary operation comes between its arguments,
as in 3 + 4. Compare postfix or prefix.

initialize To set to a particular initial value prior to use or to call a function that performs this
task.

instance method A method defined by an object-oriented system as a property of an object
rather than its controlling class.

instance variable A variable defined by an object-oriented system as a property of an object
rather than its controlling class.

instruction In general, a command to a computer. In machine code, an individual bit pattern
representing a single operation. In assembly language, a type of statement that translates
directly into a machine instruction.
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instruction pointer See IP.

instruction queue An ordered set of instructions either waiting to be loaded or already loaded
and waiting to be executed.

instruction register (IR) The register inside the CPU that holds the current instruction for
dispatch and execution.

instruction set The set of operations that a specific CPU can carry out.

integrated circuit A circuit fabricated as a single sillicon chip instead of as many individual
components.

interface An abstract class that defines behavior shared by different objects but outside of the
normal inheritance structure.

interrupt 1. A small piece of code set up in advance to be executed when a particular event
occurs.

2. The notification to the CPU that such an event has happened and that this piece
of code should be executed.

interrupt handler A system for dealing with expected events without the overhead of busy-
waiting.

invoke To execute a method.

I/O controller A component of a typical machine architecture that controls a particular periph-
erial for input and output. The I/O controller usually accepts and interprets signals from the
bus and takes care of the details of operating a particular component like a hard drive.

I/O registers Registers used to send signals to an I/O controller, especially on the Atmel AVR.

IP The instruction pointer, a standard CPU register that holds the memory location of the
current instruction being executed.

jasmin An assembler written by Meyer and Downing for the JVM and the primary teaching
language of this book.

Java Virtual Machine See JVM.

JIT compilation A technique for speeding up execution of JVM programs by converting each
statement to an equivalent native machine language instruction.

Just In Time See JIT compilation.

JVM A virtual machine used as the basis for the Java programming language and the primary
teaching machine of this book.

label In assembly langauge, a human-readable marker for a particular line of code so that that
line can be the target of a branch instruction.

latency The amount of time it takes to accomplish something. On a computer with an instruction
latency of 1 μs, executing an instruction will take at least that much time.

linear congruential generator A common pseudorandom number generator where succes-
sive values of equations of the form newvalue = (a · oldvalue + c)%m are returned from the
generator.

link The process of converting a set of bytecode (or machine instructions) stored on disk into
an executable format.
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little-endian A storage format where the least significant bit is stored as the first and highest-
numbered bit in a word. In little-endian format, the number 32770 would be stored as binary
01000001.

llasm The assembler used with Microsoft’s .NET Framework.

load The process of transferring a set of bytecode (or machine instructions) from disk to
memory.

logical address The bit pattern stored in a register and used to access memory prior to inter-
pretation by any memory management or virtual memory routines.

logical memory The address space defined by the set of logical addresses, as distinguished
from the physical memory where the memory manager stores data.

logical shift A shift operation where the newly emptied bit location(s) are filled with the value
0. Compare arithmetic shift.

long In Java or jasmin, a data storage format for 64-bit (two-word)integer types.

low-level A language like jasmin or other assembly languages where a single statement cor-
responds to a single machine language instruction.

machine code See machine language.

machine cycle A basic time unit of a computer, typically defined as the time needed to execute
a single instruction or, alternatively, as one unit of the system clock.

machine language The binary encoding of the basic instructions of a computer program. This
is not typically written by humans, but by other programs such as compilers or assemblers.

machine state register A register describing the overall state of the computer as a set of flags.

mantissa The fractional part of a floating point number, to be multiplied by a scale factor
consisting of 2 raised to the power of a specific exponent.

math coprococessor An auxiliary chip, usually used for floating-point calculations, while the
ALU handles integer calculations.

memory manager A system for controlling a program’s access to physical memory. It typically
improves performance, increases security, and enhances the amount of memory that a program
can use.

memory-mapped I/O A method of performing I/O where specific memory locations are au-
tomatically read by the I/O controller instead of using the bus.

microcontroller A small computer, usually part of an embedded system instead of a stan-
dalone, independently programmable computer.

microprogramming Implementing a computer’s (complex) instruction set as a sequence of
smaller, RISC-like instructions.

Microsoft Intermediate Language See MSIL.

MIMD The ability of a computer to carry out two different instructions on two different pieces
of data at the same time.

MMX instructions Instructions implementing SIMD parallelism on later models of the 80x86
family of chips.
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mnemonic A human-readable statement written as part of an assembly language program that
corresponds to a specific operation or opcode.

mode See addressing mode.

modulus The formal mathematical definition of “remainder.”

monitor A subsystem of the JVM used to ensure that only one method/thread has access to a
piece of data at one time.

Monte Carlo simulation A technique for exploring a large space of possible answers by re-
peated use of random numbers.

most significant The digit or byte corresponding to the highest power of the base. For example,
in the number 361,402, the number 3 is the most significant digit. See also big-endian, little-
endian.

motherboard The board of a computer to which the CPU and the most crucial other compo-
nents are attached.

MSIL The language, corresponding to JVM bytecode, underlying Microsoft’s .NET Frame-
work.

MSR See machine state register.

nonvolatile memory Memory where the stored data is still present even after power is lost to
the system.

Non-Volatile RAM See NVRAM.

normalized form The standard format of a typical floating point number according to the IEEE
754 standard. This includes a sign bit, an 8-bit biased exponent, and a 23-bit mantissa with an
implicit leading 1.

n-type A semiconductor that has been doped with an electron-donating substance, making
these electrons available for passing current.

null A designated address referring to nothing in particular.

NVRAM Hybrid memory combining the field programmability of RAM with the data persis-
tence of ROM.

nybble A collection of 4 bits referring to a single hexadecimal digit. Used as a unit of memory,
of representation size, or of register capacity. Rare.

object-oriented programming A style of programming, popularized by languages like
Smalltalk, C++, and Java, where programs are composed of interactive collections of classes
and objects, and communication is performed by invoking methods on specific objects.

octal Base 8. Rarely used today.

OF The Overflow Flag, set when the most recent operation on signed numbers generated an
answer too large for the register.

offset The distance in memory between two locations. Usually used with regard to either a base
register (as in the 8088 memory segmentation) or the amount by which a branch instruction
changes the PC.

opcode The byte(s) corresponding to a particular operation in machine code. Compare
mnemonic.
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operands The arguments given with a particular operation; for example, the ADD instruction
usually takes two operands. On the JVM, however, the iadd instruction takes no operands,
because both arguments are already available on the stack.

operating system A program-control program used to control the availability of the machine
to user-level programs and to launch and recover from them at the appropriate time. Common
examples of operating systems include Windows, Linux, MacOS, and OS X.

operator The symbol or code indicating which particular mathematical or logical function
should be performed. For example, the operator + usually indicates addition.

OR A boolean function that returns True if and only if all arguments are True; otherwise, it
returns False. An OR gate is a hardware circuit that implements an OR function on the input
electrical signals.

overclocking Attempting to run a computer chip with a clock running faster than the chip’s
rated capacity.

overflow Broadly, when an arithmetic operation results in a value too large to be stored in the
destination. For example, multiplying two 8-bit numbers is likely to produce up to a 16-bit
result, which would overflow an 8-bit destination register.

page A block of memory used in the memory management system.

page table A table used by the memory manager to determine which logical addresses cor-
respond to which physical addresses.

paging Dividing memory into “pages.” Alternatively, the ability of a computer to move pages
from main memory to long-term storage and back in an effort to expand the memory available
to a program and to improve performance.

parallel In an electrial circuit, two components are in parallel if there is a separate path for
current that passes through each component individually. Cf. series.

parallelism In a computer, the ability to perform multiple operations at the same time. See also
MIMD and SIMD.

PC A register holding the memory location of the instruction currently being executed; chang-
ing the value of this register will result in loading the next instruction from a different location.
This is how a branch instruction works.

peripheral A component of a computer used to read, write, display, or store data or, more
generally, to interact with the outside world.

pipelining Breaking a process (typically a machine instruction execution) into several phases
like an assembly line. For example, a computer might be executing one instruction while
fetching the next one. A typical pipelined architecture can execute several different instructions
at once.

platter An individual storage surface in a hard drive.

polling Testing to see whether or not an event has happened. See busy-waiting.

port-mapped I/O A method of performing I/O where communication with the I/O controller
happens through specific ports attached to the main bus.

postfix A method of writing expressions where a binary operation comes between its arguments,
as in 34+. Compare infix or prefix.
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prefetch Fetching an instruction before the previous instruction has been executed; a crude
form of pipelining.

prefix A method of writing expressions where a binary operation comes between its arguments,
as in +34. Compare infix or postfix.

primordial class loader The main class loader responsible for loading and linking all classes
in the JVM.

program counter See PC.

programmable ROM Field-programmable but not erasable ROM. Unlike conventional ROM
chips, these chips can be programmed in small quantities without needing to set up an entire
fabrication line.

programming models (modes) A defined view of the architecture and capacity of a computer
that may be limited for security reasons.

PROM See programmable ROM.

protected mode A programming model where the capacity of the programs is typically limited
by memory management and security issues; useful for user-level programs on a multipro-
cessing system.

pseudorandom An algorithmically generated approximation of randomness.

p-type A type of semiconductor that has been doped with an electron-capturing (or “hole-
donating”) substance, making these electrons unavailable for passing current.

radix point A generalization of the idea of “decimal point” to bases other than base 10.

RAM Memory that can be both read from and written to in arbitrary locations. RAM is typically
volatile in that if power is lost, the data stored in memory will also be lost.

Random Access Memory See RAM.

Read-Only Memory See ROM.

real mode A programming model where the program has access to the entire capability of
the machine, bypassing security and memory management. Useful primarily for operating
systems and other supervisor-level programs.

record A collection of named fields but without methods.

reduced instruction set computing See RISC.

register A memory location within the CPU used to store the data or instructions currently
being operated upon.

register mode An addressing mode where a bit pattern is interpreted as a specific register. In
register mode, the bit pattern 0x0001 would be interpreted as the first register.

return The process (and typically the instruction used) to transfer control back to the calling
environment at the termination of a subroutine.

RISC A computer design philosophy using a few short general-purpose instructions. Compare
CISC.

ROM Memory that can be read from but not written to ROM is typically nonvolatile in that if
power is lost, the data stored in memory will persist.
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roundoff error Error that happens when a floating point representation is unable to represent
the exact value, usually because the defined mantissa is too short. The desired value will be
“rounded off” to the closest available representable quantity.

SAM Memory that cannot be accessed in arbitrary order but that must be accessed in a predefined
sequence, like a tape recording.

seed A value used to begin a sequence of generation of pseudorandom numbers.

segment Broadly speaking, a contiguous section of memory. More specifically, a section of
memory referenced by one of the segment registers of the 80x86 family.

segment:offset An alternative way of representing up to 20-bit logical addresses within the
16-bit registers of an Intel 8088 (or later models).

segment register A register in the 80x86 family used to define blocks of memory for purposes
such as code, stack, and data storage and to extend the available address space.

semiconductor An electrical material, midway between a conductor and an insulator, that can
be used to produce diodes, transistors, and integrated circuits.

Sequential access memory See SAM.

series In an electrial circuit, two components are in series if there is only a single path for
current that passes through both components. Cf. parallel.

SF The Sign Flag, set when the most recent operation generated a negative result.

shift An operation where bits are moved to adjacent locations (left or right) within a register.

sign bit In a signed numeric representation, a bit used to indicate whether the value is negative
or nonnegative. Typically, a sign bit value of 1 is used to represent a negative number. This is
true for both integer and floating point representations.

signed A quantity that can be both positive and negative, as opposed to unsigned quantities,
which can only be positive.

SIMD The ability of a computer to carry out the same instructions on two different pieces of
data at the same time—for example, to zero out several elements in memory simultaneously.

Single Instruction Multiple Data See SIMD.

source Where data comes from. For example, in the instruction iload 3, the source is local
variable #3.

source index A register in the 80x86 family that controls the source of string primitive opera-
tions.

source operand An operand defining the source of an instruction; in the Pentium instruction
set, the source operand is typically the source, as in MOV AX, BX.

src An abbreviation for source.

S–R flip-flop A circuit used to store a single bit value as voltage across a self-reinforcing set of
transistors.

stack A data structure where elements can be inserted (pushed) and removed only (popped) at
one end. Stacks are useful in machine architectures as ways of creating and destroying new
locations for short-term storage.
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stack frame A stack-based internal data structure used to store the local environment of a
currently executing program or subroutine.

state machine A computer program where the the computer simply changes from one named
“state” to another upon receipt of a specific input or event.

static See class method.

static RAM See SRAM.

string primitive An operation on the 80x86 family that moves, copies, or otherwise manipu-
lates byte arrays such as strings.

structure See record.

subroutine An encapsulated block of code, to be called (possibly) from several different loca-
tions over the course of a program, after which control is passed back to the point from which
it was called.

superscalar A method of achieving MIMD parallelism by duplicating pipelines or pipeline
stages to enhance performance.

supervisor A privileged programming model where the computers have the capacity to control
the system in a way normally prohibited by the security architecture, usually used by the
operating systems. See also real mode.

this In Java, the current object whose instance method is being invoked. In jasmin, an object
reference to this is always passed as local variable #0.

throughput The number of operations that can be accomplished per time unit. This may be
different from the latency on a multiprocessor that may (for example) be able to complete
several operations with identical latency at the same time, achieving effectively several times
the expected throughput.

Throwable In the JVM, an Object that can be thrown by the athrow instruction; an exception
or error.

timer A circuit that counts pulses of a clock in order to determine the amount of lapsed time.

time-sharing A form of multiprocessing where the CPU runs one program at a time in small
blocks of time, giving the illusion of running multiple programs at once.

two’s complement notation A method of storing signed integers such that addition is an
identical operation with both positive and negative numbers. In two’s complement notation,
the representation of −1 is a vector of bits whose values are all 1.

typed In a computation, representation, or operation, where the type of data processed affects
the legitimacy or validity of the results. For example, istore 0 is a typed operation, as it will
only store integers. The dup operation, by contrast, is untyped, as it will duplicate any stack
element.

U One of the two five-stage pipelines on the Intel Pentium.

unary A mathematical operator such as negation or cosine that takes exactly one operand.

unconditional Always, as in an an unconditional branch that is always taken.
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Unicode A set of character representations designed to include a greater variety of letters than
ASCII. See UTF-16.

unsigned A quantity that can be only positive or negative, as opposed to signed quantities,
which can be both positive and negative; typically, unsigned quantities cannot express as large
a range of positive values.

update mode An addressing mode where the value of a register is updated after access—for
example, by incrementing to the next array location.

user mode A programming model where the capacities of the program are limited by the security
architecture and operating system to prevent two programs from interacting harmfully.

UTF-16 An alternate character encoding to ASCII where each character is stored as a 16-bit
quantity. This allows up to 65,536 different characters in the character set, enough to include
a large number of non-English or non-Latin characters.

V One of the two five-stage pipelines on the Intel Pentium.

verifier The phase of loading where the class file is verified, or the program that performs such
verification.

verify On the JVM, the process of validating that a method or class can be successfully run
without causing security problems. For example, attempting to store a value as an integer that
had previously loaded as a floating point number will cause an error, but this error can be
caught when the class file is verified.

virtual address An abstract address in virtual memory that may or may not be physically present
in memory (and may otherwise reside in long-term storage). Cf. logical address.

virtual address space See virtual address.

virtual memory The capacity of a computer to interpret logical addresses and to convert them
to physical addresses. Also, the ability of a computer to access logical addresses that are not
physically present in main memory by storing parts of the logical address space on disk and
loading them into memory as necessary.

virtual segment identifier See VSID.

VSID A bit pattern used to expand a logical address into a much larger address space for use
by the memory manager.

watchdog timer A timer that, when triggered, resets the computer or checks to confirm that
the machine has not gone into an infinite loop or an otherwise unresponsive state.

word The basic unit of data processing in a machine, formally the size of the general-purpose
registers. As of this writing (2006), 32-bit words are typical of most commerically available
computers.

ZF The Carry Flag, set when the result of the most recent operation is a 0.
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arithmetic expressions, 35, 44,
74, 76, 82, 89, 298, 302

arithmetic shift, 52
array operations, 51, 146,

201–208, 233
arraylength, 208, 251, 283
arrays, 7, 51, 75, 145, 148, 150,

159, 171, 178, 182,
201–203, 206, 212–215, 231,
238, 293, 306

assembler, 29, 37, 55, 57, 65,
66, 71, 72, 92, 93, 99, 136,
143–145, 147, 150, 151,
165, 166, 170, 203, 293,
299

assembly language, 32, 35–37,
39, 55, 65–68, 71, 77, 83,
134, 164, 168, 174, 175,
177, 191, 192

astore, 111, 251, 252, 282
astore 0, 252, 283
astore 1, 104, 252, 283
astore 2, 283
astore 3, 283
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athrow, 283
attributes, 226, 289, 294
AVR, 46, 185, 186, 188, 189,

191–194, 196, 197, 199, 299

B

b, 168
B (type expression), 205
b?, 168
baload, 207, 252, 282
base, 21

array address, 202
numeric, 15–18, 21, 138,

145, 294, 303
part of a transistor, 11, 241,

297
bastore, 207, 252, 283
bias, exponent, 22–24
big-endian, 145, 162, 170, 174,

294
binary, 15, 43

operations, 244, 298, 302,
303

binary-coded decimal, 138, 139,
294

bipush, 38, 54, 56, 57, 82, 281
bipush 5, 72
bit, 9, 10, 12, 13, 15, 18, 19,

22, 25, 39, 52, 53, 71, 76,
77, 128–130, 139, 167, 176,
177, 186, 188–194, 196,
244–247, 293–295, 301

bitwise, 20, 52
block address translation,

163
block structure, 85, 89, 90, 93,

97, 104
BOUND, 178
BR??, 193
branch around a branch, 93
branch prediction, 119, 120,

294
breakpoint, 283
BufferedReader, 233
bus, 9, 13, 30, 39, 48, 116,

126–128, 133, 176, 180,
187, 294, 299, 300, 302

busy-waiting, 124, 125, 197,
294, 299, 302

byte, 13, 25, 26, 39, 53, 55, 56,
82, 93, 131, 146, 147, 168,
170, 178, 186, 188, 194,
207, 285, 295, 305

byte swapping, 144, 285
bytecode, 29, 31, 32, 65, 71,

72, 79, 82, 84, 92, 99, 101,
211, 213, 217, 227, 295,
299, 301

C

C (clear bit), 193
C (type expression), 205
C++ (programming language),

28, 31, 34, 38, 52, 64, 85,
86, 89, 91, 143, 157, 178,
202, 298, 301

cadd, 62
calculator, 4, 42, 43, 47, 50, 61,

138
CALL, 125, 178, 193
caload, 207, 282
castore, 207, 283
Central Processing Unit, 5–9,

13, 14, 26, 30, 35, 38, 39,
46–49, 51, 73, 88, 111,
115–118, 120–122, 124–126,
128, 129, 131, 139, 142,
145, 147, 151, 152, 157,
158, 160, 162–164, 170,
172, 174, 186, 191, 192,
195–197, 293–297, 299, 301,
303, 305

charAt(), 212
checkcast, 253, 283
checkcast quick, 284
circuits, 183

combinational, 13, 46,
188, 242–245, 293, 298,
302

combinatorial, 249, 304
integrated, 5, 11, 304
sequential, 189, 195,

244, 245, 247, 248, 304,
305

class, 29, 38, 64, 65, 70, 72, 73,
77–79, 202–205, 208–217,
219–221, 223, 226–229, 231,
233, 237, 238, 285, 293,
295, 297, 298, 301, 303

example class (Fraction), 209,
224, 296

example class (String), 70,
203–205, 212–214, 227,
239

class file, 28–30, 33, 64–66, 68,
72, 78, 79, 209, 211, 213,
214, 217, 221, 222, 224,
226, 228, 283–285, 287–289,
294, 295, 306

clock, 49, 116, 120, 173,
196, 247, 248, 295, 300,
302, 305

clock signal, 247
cmp, 167
code, 132
COM, 192
comments, 38, 71, 72, 79
compatibility

backwards, 30, 49, 129, 175,
177, 184, 285, 294

compiler, 26, 28, 32, 33, 35,
37–39, 55, 56, 65, 142, 150,
161, 164, 170, 172, 173,
178, 179, 183, 184, 295,
299, 300

complete/writeback, 119
Complex Instruction Set

Computing, 48–50, 61, 133,
134, 158, 160, 172, 175,
179, 183, 184

computation, 14, 33, 34, 38, 50,
61, 73, 76, 82, 102, 119,
120, 139, 156, 161, 172,
192, 200, 202, 204, 217,
219, 289, 293

computer, 3, 4, 10, 13, 28, 38,
42, 43, 46–48, 54, 61, 65,
67, 68, 71, 72, 74, 75, 79,
82, 122, 128, 131, 175, 177,
179, 180, 184–186, 194,
198, 241, 243, 244, 248,
294, 295
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condition flags, 129, 139–142,
148–150, 166, 176, 181,
193, 297, 300

carry flag, 139, 244, 295
overflow flag, 20, 139, 297,

301
sign flag, 139, 304
zero flag, 139, 148, 306

conical mountains, 42, 58
Console, 67, 68, 71
constant, 54–56, 74, 138, 165,

167, 192, 203, 227, 287,
293, 298

constant pool, 203, 226, 227,
253, 260, 272, 277, 278,
284–288, 295

control characters, 25, 290
Control Unit, 7, 35, 45–47, 129,

142, 194
count of steps, 96
CPU, 176, 186, 188
current value, 96

D

D (type expression), 205
d2f, 282
d2i, 53, 282
d2l, 282
dadd, 51, 283
daload, 207, 282
dastore, 207, 283
data memory, 188
dcmpg, 88, 282
dcmpl, 88, 282
dconst 0, 281
dconst 1, 281
dconst N, 55
ddiv, 50, 281
DEC, 192
default, 99
default offset, 280
destination index, 129
destination operand, 134
destination register, 302
device

controller, 8
device drivers, 177, 232

diode, 11, 296, 304
direct address translation,

122
Direct Memory Access, 117
direct mode, 143, 147, 159,

296
directives, 72, 73, 76, 78, 79,

151, 209, 214, 221, 228
M mode, 135

dispatch, 118, 173, 183,
297

divw, 166
divwu, 166
dload, 255, 281
dload 0, 282
dload 1, 282
dload 2, 282
dload 3, 282
dmul, 281
dneg, 281
do/while, 91
Downing, Troy, 66, 299
DRAM, 188
drawstring, 68
drem, 281
dreturn, 218, 283
dst, 134
dstore, 55, 256, 282
dstore 0, 283
dstore 1, 283
dstore 2, 283
dstore 3, 283
dsub, 281
dup, 26, 36, 53, 59, 103, 224,

283
dup2, 53, 283
dup2 x1, 283
dup2 x2, 283
dup x1, 54, 283
dup x2, 283
dynamic random access

memory, 189, 296

E

EEAR, 194
EECR, 194
EEDR, 194

EEMWE, 194
EERE, 194
EEWE, 194
electronic, 3, 9, 38, 190, 191,

241
electronically erasable read-only

memory, 190, 191, 194, 195,
199, 296

embedded system, 6, 28, 160,
161, 185, 297, 300

enable, 194
ENTER, 178, 184
EOR, 192
equals(), 212, 224
equalsIgnoreCase(), 213
erasable programmable

read-only memory, 190
ExampleClassType, 224
exception, 252, 305
exception handler, 252
execute, 76
execution, 7, 26, 33, 61, 65, 66,

82, 84–86, 89, 91, 97, 104,
108, 111, 118–120, 125,
129, 147, 151, 172, 176,
180–183, 186, 197, 198,
205, 215, 217, 219, 227,
232, 294, 296, 297, 299

exponent, 21–25, 131, 297,
300

extended AX register, 176

F

F, 70
F (type expression), 70, 205
f- (instruction prefix), 166
f2d, 282
f2i, 53, 282
f2l, 282
factorials, 236
fadd, 50, 51, 166, 283
faload, 207, 282
fastore, 207, 283
fcmpg, 88, 282
fcmpl, 88, 282
fconst 0, 281
fconst 1, 281
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fconst 2, 281
fconst N, 55
fdiv, 281
fetch, 26, 45, 47, 49, 61, 82,

118, 119, 172, 179–183,
187, 297

fetch-execute cycle, 6, 45–47,
49, 60, 61, 82, 83, 102, 111,
117, 120, 125, 126, 129,
131, 161, 171, 172, 179,
180, 182, 183, 187, 195,
196, 199, 297, 302, 303

Fibonacci sequence, 239
field, 208, 209, 211–217,

221, 223, 224, 226, 227,
233, 238, 285, 295, 297,
303

file input and output, 8
final, 214, 215, 221, 223,

228
flags, 139

access, 286, 288
Flash, 188, 191, 194, 197
FLASH, 199
Flash, 297
fload, 55, 259, 281
fload 0, 282
fload 1, 282
fload 2, 70, 282
fload 3, 282
Floating Point Unit, 7, 30,

182
fmul, 281
fneg, 281
for (i = −1; i>0; i++), 86
format

internal class table, 285, 287,
289

Formatter, 71
Freestyle, 160
frem, 281
freturn, 218, 283
fstore, 260, 282
fstore 0, 282
fstore 1, 282
fstore 2, 93, 283
fstore 3, 283
fsub, 281

functional components, 7, 183,
243

G

garbage collection, 208, 215,
224, 238

gates, 13, 16, 242–245, 247,
293, 302

getfield, 216, 238, 260, 261,
283

getfield2 quick, 284
getfield quick, 284
getfield quick w, 284
getstatic, 104, 216, 238, 261,

283
getstatic2 quick, 284
getstatic quick, 284
goto, 83, 87, 92, 93, 101, 111,

112, 261, 282
goto w, 92, 93, 99, 101, 261,

283
Greet, 145

H

Harvard architecture, 187, 199,
298

hexadecimal, 16
high, 130
high-level languages, 28, 32,

35, 38, 39, 42, 55, 64, 65,
79, 85, 89, 90, 97, 101, 146,
153, 157, 161, 178, 183,
184, 202, 212, 218, 295, 298

I

I, 70
I (I/O register), 193
I (type expression), 70, 203,

205, 209
I/O, 7–9, 25, 28, 32, 34, 35, 39,

46, 68, 70, 117, 124, 126,
127, 129, 133, 157, 158,
163, 164, 174, 176, 177,
186, 190, 191, 194–196,
199, 230–233, 248, 294,
296, 302

memory-mapped, 158, 174,
300

port-mapped, 158, 302
I/O controller interface

translation, 163
I/O registers, 186
i2b, 53, 282
i2c, 26, 53, 282
i2d, 282
i2f, 53, 282
i2l, 53, 76, 282
i2s, 53, 282
iadd, 36, 38, 50, 51, 55–57,

283
iaload, 207, 282
iand, 90, 112, 282
iastore, 205, 207, 283
IBM, 7, 9, 28, 30, 61, 128, 138,

158, 161
ICALL, 193
icmp, 88, 111
iconst 0, 56, 71, 103, 281
iconst 1, 54, 56, 281
iconst 2, 56, 281
iconst 3, 56, 281
iconst 4, 56, 281
iconst 5, 56, 76, 281
iconst m1, 55, 281
iconst N, 54
idiv, 51, 54, 281
if, 198
if/else, 97
if/then/else, 92
if??, 87, 111
ifeq, 87, 282
ifge, 87, 282
ifgt, 86, 87, 282
ifle, 87, 282
iflt, 87, 282
ifne, 87, 282
ifnonnull, 283
ifnull, 283
if acmpeq, 282
if acmpne, 282
if icmp??, 103, 111
if icmpeq, 89, 96, 282
if icmpge, 89, 282
if icmpgt, 89, 282
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if icmple, 89, 282
if icmplt, 89, 282
if icmpne, 89, 282
iinc, 282
IJMP, 193
iload, 2, 55, 71, 82, 117, 266,

280, 281
iload 0, 55, 117, 282
iload 1, 82, 282
iload 2, 70, 282
iload 3, 282
iload N, 85
immediate mode, 134, 159, 165,

167, 179, 181, 192, 298
impdep1, 283
impdep2, 283
implement, 228
imul, 54, 57, 281
IN, 193
INC, 192
index mode, 146, 159, 168,

298
indexOf(), 213
indirect address registers, 193
indirect jumps, 193
indirect mode, 134, 159, 170,

298
ineg, 281
infinite loop, 86, 92, 197–199
infix, 43, 44, 61, 298
information, 4
inheritance, 38, 72, 213, 220,

221, 226–228, 286, 288, 293
initialized, 227
instance, 78, 208, 221, 222,

224, 228, 293, 298
instanceof, 253, 267, 283
instanceof quick, 284
Institute for Electrical and

Electronic Engineers, 22
instruction format, 43, 71, 133,

136, 139, 159, 166, 174,
177, 179, 181, 192

instruction queue, 120, 173,
183

instruction register, 26, 45, 47,
48, 61, 116, 129, 131, 176,
186, 299

instruction set, 26–29, 32, 35,
39, 42, 43, 46–50, 71, 72,
76, 79, 83, 93, 99, 101, 117,
126, 129, 133–139, 141,
142, 147, 151, 158, 160,
161, 164, 165, 167, 168,
170, 172, 175–184, 186,
188, 192, 193, 199, 200,
203, 204, 208, 216, 218,
219, 224, 232, 295,
298–300, 303

INT, 232
Intel, 6, 30, 115, 128, 133, 160,

186
8086, 30
8088, 7, 13, 14, 30, 128–131,

133, 137, 139, 142, 145,
176, 177, 180, 183, 184,
285, 294, 301, 304

80x86, 6, 7, 14, 30, 38, 47,
49, 61, 73, 115, 117, 128,
129, 133, 134, 137, 142,
143, 146, 147, 151, 156,
158, 161, 163, 172,
174–181, 183, 184, 186,
202, 239, 245, 293, 294,
296, 297, 300, 304, 305

Itanium, 14
Pentium, 7, 14, 26, 28–30,

49, 61, 115, 126, 128,
129, 133, 142, 160, 172,
175–184, 186, 190, 192,
199, 232, 245, 293, 294,
297, 305, 306

interface, 226, 228, 229, 238
interpretation, 3, 15, 18–21, 25,

26, 28, 29, 32, 39, 47–49,
61, 82, 88, 99, 122, 131,
134, 138, 140, 143,
179–181, 183, 203, 217,
221, 293, 296, 298

interrupt handler, 125, 197,
199

interrupt handling, 117, 125,
127, 197–199, 299

interrupt vectors, 125
INVD, 178
invoke?, 219, 238

invokeinterface, 229, 267, 283
invokeinterface quick, 284
invokenonvirtual quick, 284
invokespecial, 220, 224, 234,

267, 268, 283
invokestatic, 219, 239, 268,

283
invokestatic quick, 284
invokesuper quick, 284
invokevirtual, 104, 204, 211,

217, 219, 220, 239, 268,
269, 283

invokevirtualobject quick, 284
invokevirtual quick, 284
invokevirtual quick w, 284
ior, 90, 112, 282
irem, 82, 96, 112, 281
ireturn, 218, 283
ishl, 281
ishr, 281
istore, 270, 282
istore 0, 282
istore 1, 38, 56, 57, 282
istore 2, 282
istore 3, 282
isub, 50, 283
iushr, 281
ixor, 282

J

J (type expression), 205, 209
jasmin, 37, 64, 66, 71, 72,

77–79, 87, 89, 90, 112, 212,
223

(assembler program), 66, 68,
71, 72, 78, 79, 92, 99,
203, 299

(programming language), 37,
66, 68, 70–72, 78, 79, 83,
85, 86, 88–90, 92, 94,
111, 211, 212, 214, 299,
300, 305

jasminAppletExample.class, 68
jasminAppletExample.j, 68
jasminExample, 72
jasminExample.class, 66, 72
jasminExample.j, 66
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Java
(command), 222
(programming language),

28–33, 35, 38, 39, 42,
50–52, 64, 65, 67, 68,
70–72, 75, 77–79, 85, 86,
89, 97, 99, 102, 107, 143,
154, 171, 202, 205, 211,
215, 218, 222, 228, 230,
233, 238, 283, 285, 298,
300, 301, 305

(run-time environment),
28–30, 65, 66, 68, 78,
227, 287

Java Virtual Machine, 26–32,
36–39, 47, 49–55, 57, 58,
60, 61, 64–66, 68, 70,
72–75, 77, 79, 82, 83, 86,
88, 89, 93, 97, 99, 101, 102,
115, 117, 126, 129, 130,
134, 136, 138, 144, 151,
167, 171, 175, 179, 186,
200, 202–204, 207, 208,
211, 213, 217, 221, 223,
224, 227, 228, 232, 233,
238, 283–285, 289, 295,
298, 299, 301, 303, 305, 306

java.io, 230
java.lang.Class, 227
java.lang.ClassLoader, 227
java/io/PrintStream, 211
java/lang/Object, 72, 221, 224
java/lang/System, 221
JMP, 193, 197
jrandGenerator, 77–79
jrandGenerator.class, 77, 78
jsr, 101–103, 111, 112, 219,

239, 271, 278, 282
jsr w, 101, 103, 271, 278, 283
Just In Time (JIT) compilation,

251, 253, 260, 261,
267–269, 272, 277, 278,
284, 299

L

L-; (type operator), 204, 205,
209

l2d, 282
l2f, 282
l2i, 282
label, 71, 83, 86, 92, 96,

99–101, 111, 139, 151,
299

ladd, 51, 283
laload, 207, 282
land, 282
lastore, 207, 283
latency, 118, 126, 299, 305
lcmp, 87, 282
lconst 0, 281
lconst 1, 281
lconst N, 55
LD, 170, 193
ldc, 54, 56, 227, 272, 281
ldc2 w, 54, 277, 281
ldc2 w 5, 76
ldc quick, 284
ldc w, 281
ldc w quick, 284
ldiv, 51, 281
LDS, 193
LEAVE, 178
length(), 213
lfdux, 168
li, 167
limitations, 30, 35, 101, 116,

131, 139, 151, 161, 172,
199

local variables, 55
machine, 28, 30, 39, 46, 50,

74, 115, 126
stack, 50, 76, 115

linear congruential generator,
74

link register, 168
linker, 227, 303
Linux, 64–66, 158, 302
little-endian, 145, 162, 170,

174, 300
Ljava/io/PrintStream;, 205
Ljava/lang/String;, 205, 235
lload, 87, 273, 281
lload 0, 282
lload 1, 282
lload 2, 282

lload 3, 282
lmul, 281
lneg, 281
loader, 65, 227, 300, 303
logic

Boolean, 12, 15, 293, 294,
298, 302

digital, 243
logical expression, 12
logical memory, 163
logical shift, 52
lookupswitch, 98, 99, 111, 274,

283
lor, 282
low, 130
low-level languages, 35, 294,

300
LPM, 194
lrem, 281
lreturn, 218, 283
lshl, 281
lshr, 281
lstore, 275, 276, 282
lstore 0, 282
lstore 1, 282
lstore 2, 84, 282
lstore 3, 282
lsub, 281
lushr, 281
lwa, 168
lwz, 167
lxor, 282

M

machine code, 37, 179, 188,
300

machine cycles, 6
machine language, 26, 28, 35,

39, 66, 120
machine state register, 162
Macintosh, 28, 29, 32, 49, 160
MacOS, 65, 158, 302
main(), 65
mantissa, 21, 23–25, 131, 297,

300, 304
math coprococessor, 137
memory
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cache, 9, 121, 122, 127, 163,
178, 181, 186, 188, 189,
295

hybrid, 188, 190, 296–298,
301

logical, 122
main, 7–9, 13, 35, 45–47, 51,

55, 61, 65, 73, 75, 82,
102, 115–119, 121, 122,
124, 128, 131, 133, 134,
138, 139, 142–147, 150,
152, 153, 157, 160, 163,
164, 167, 168, 170–172,
176–181, 186, 188, 189,
191–193, 196, 199, 202,
204, 208, 224, 233, 247,
293, 294, 296, 297, 298,
300–302

physical, 7, 122, 124
random access, 7, 128,

188–190, 194, 297, 298,
303

read-only, 7, 188–190, 199,
297, 298, 303

translation, 122, 163, 180
virtual, 122, 124, 127, 163,

180, 300, 306
memory management, 122, 131,

163, 170, 174, 177, 178,
180, 294, 300, 302, 303, 306

memory-mapped I/O, 127
method, 50, 55, 65, 66, 68, 70,

71, 73, 75–79, 82, 93, 115,
117, 154, 205, 208,
211–214, 217–219, 221–224,
226, 229, 233, 234, 236,
237, 285, 287, 293, 295,
298, 299, 301, 303, 305

method invocation, 68, 70, 71,
75, 77, 78, 104, 155, 211,
212, 217, 222, 234, 237, 301

Meyer, Jon, 66, 79, 299
Microcode Instruction

Sequencer, 183
microcontroller, 32, 46, 120,

128, 185, 186, 197, 198, 300
microprogramming, 183, 300
Microsoft, 29, 30, 233, 291

MMX instructions, 182–184
mnemonic, 36, 50, 51, 53, 55,

56, 61, 71, 86, 102, 131,
136, 138, 139, 141, 147,
151, 159, 165, 166, 168,
171, 177, 178, 301

modulus, 51
monitor, 276
monitorenter, 276, 283
monitorexit, 283
Monte Carlo simulation, 105,

106, 210, 301
Moore’s law, 6, 183, 241
most significant, 145
motherboard, 5
Motorola, 7, 61, 161, 186
MOVSD, 178
MUL, 192
mulhw, 166
mullw, 166
MULS, 192
multianewarray, 204, 277, 283
multianewarray quick, 284
multiprocessing, 46, 303, 305

N

n-type semiconductor, 11
NaN, 23, 88, 254, 258
NAND, 12, 13, 165
NEG, 165, 192
new, 234, 238, 277, 283
newarray, 203, 204, 283
new quick, 284
nonvolatile, 188
nop, 54, 281
NOR, 13, 165
normalized form, 23
NOT, 12, 13, 20, 165, 166
null, 253
numerator, 209
nybble, 16

O

object, 203, 205, 209–212,
214–217, 219–222, 223, 224,
227–229, 234, 237

object-oriented programming,
64, 65, 70–73, 75, 77, 79,
150, 203, 211–213, 238,
288, 295, 301, 305

offset, 92, 93, 99, 101, 103,
124, 132, 139, 145, 147,
170, 202, 293, 298, 301,
304

opcode, 35, 36, 47, 48, 51,
82, 92, 93, 99, 165, 181,
203, 217, 281, 283, 284,
285, 301

operand, 43, 52, 53, 134, 136,
178, 192, 293, 294, 296,
298, 302, 305

operating system, 7, 28, 29,
31, 65, 72, 117, 122, 124,
146, 152, 157, 158,
162–164, 168, 171, 177,
180, 211, 232, 233, 296,
302, 305

operations
arithmetic, 4, 24, 43, 47,

49–51, 53, 61, 77, 82,
116, 117, 129, 131,
135–138, 165, 166, 172,
181, 183, 184, 186, 192,
193, 244, 293

array, 145, 202
basic, 4, 6, 12, 26, 31, 35,

45, 46, 49–51, 55, 60, 61,
82, 129, 130, 134, 147,
161, 176, 178, 181–183,
186, 192, 194, 199, 202,
219, 243, 248, 296, 305

binary, 43, 44, 164, 298, 302,
303

branch, 88, 193
class, 212, 214, 217, 219,

220
comparison, 192
conversion, 53, 184
field, 214–216
illegal, 24, 31, 56, 57, 61,

102, 134, 135, 227, 287
logical, 7, 12, 20, 47, 52, 53,

165, 166, 181, 184, 192,
193, 244, 293, 294
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operations (contd.)
machine, 4, 6, 26, 35, 38,

44, 45, 48, 49, 51, 54, 56,
76, 77, 82, 88, 99, 101,
116, 117, 120, 130, 131,
133, 135, 139, 142, 159,
160, 165, 170, 172,
176–179, 181, 182, 184,
192, 193, 199, 202, 233,
243, 301

shift, 52, 53, 293, 300,
304

shortcut, 54, 55, 62, 82, 86,
88, 97, 99, 136, 142, 178,
204

stack manipulation, 53–55,
82, 184

string, 142, 145, 147–150,
159, 161

typed, 27, 35, 39, 50, 51,
53–55, 61, 70, 77–79,
87, 88, 96, 104, 111,
138, 150, 173, 178, 200,
201, 203, 204, 209, 210,
217, 224, 227, 287–289,
305

typeless, 53
unary, 43, 44, 53

operator, 43, 52
Opteron (AMD chip), 14
optimization, 13, 115, 117,

121, 129, 147, 158, 161,
172, 176, 178, 180, 284, 294

OR, 12, 13, 165, 192, 243
ORI, 165, 192
OS X, 302
out, 204
overflow, 20, 74, 136, 151, 196,

197, 297, 302

P

p-type semiconductor, 11
PAADW, 182
PADDB, 182
page, 124, 180, 302
page table entries, 180
parallel, 242, 243, 302

parallelism, 117, 120, 126,
172, 179, 182, 184, 300,
302, 305

MIMD, 120, 121, 126, 184,
300, 305

SIMD, 117, 120, 121, 126,
179, 182, 184, 300

parameters, 43, 50, 61, 68, 71,
74–78, 82, 83, 86, 99, 102,
106, 111, 129, 132, 134,
136, 137, 141, 153, 154,
158, 164, 166–168, 170,
177, 178, 192, 193,
203–205, 213, 215, 217,
219, 222, 286, 293, 296,
298, 302, 303

actual, 75
formal, 75

Pascal (programming language),
28, 34, 35, 38, 85, 88, 107,
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