

Download from finelybook 7450911@qq.com

2

World Headquarters
Jones & Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through
most bookstores and online booksellers. To contact Jones & Bartlett
Learning directly, call 800-832-0034, fax 978-443-8000, or visit our
website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications

are available to corporations, professional associations, and other qualified

organizations. For details and specific discount information, contact the special

sales department at Jones & Bartlett Learning via the above contact information

or send an email to specialsales@jblearning.com.

Copyright © 2015 by Jones & Bartlett Learning, LLC, an Ascend
Learning Company

All rights reserved. No part of the material protected by this copyright
may be reproduced or utilized in any form, electronic or mechanical,
including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright
owner.

The content, statements, views, and opinions herein are the sole
expression of the respective authors and not that of Jones & Bartlett
Learning, LLC. Reference herein to any specific commercial product,

Download from finelybook 7450911@qq.com

3

mailto:info@jblearning.com
http://www.jblearning.com
http://www.jblearning.com
mailto:specialsales@jblearning.com

process, or service by trade name, trademark, manufacturer, or
otherwise does not constitute or imply its endorsement or
recommendation by Jones & Bartlett Learning, LLC and such
reference shall not be used for advertising or product endorsement
purposes. All trademarks displayed are the trademarks of the parties
noted herein. Introduction to 80x86 Assembly Language and
Computer Architecture, Third Edition, is an independent publication
and has not been authorized, sponsored, or otherwise approved by
the owners of the trademarks or service marks referenced in this
product.

There may be images in this book that feature models; these models
do not necessarily endorse, represent, or participate in the activities
represented in the images. Any screenshots in this product are for
educational and instructive purposes only. Any individuals and
scenarios featured in the case studies throughout this product may be
real or fictitious, but are used for instructional purposes only.

Production Credits
Chief Executive Officer: Ty Field
President: James Homer
Chief Product Officer: Eduardo Moura
Executive Publisher: William Brottmiller
Publisher: Cathy L. Esperti
Acquisitions Editor: Laura Pagluica
Editorial Assistant: Brooke Yee
Associate Marketing Manager: Cassandra Peterson
Director of Production: Amy Rose
Composition: Laserwords Private Limited, Chennai, India
Cover Design: Kristin E. Parker
Director of Photo Research and Permissions: Amy Wrynn

Download from finelybook 7450911@qq.com

4

Cover Image: Lines: © echo3005/ShutterStock, Inc.; binary code
© echo3005/ShutterStock, Inc.
Printing and Binding: Edwards Brothers Malloy
Cover Printing: Edwards Brothers Malloy

Library of Congress Cataloging-in-Publication Data
Detmer, Richard C.

Introduction to 80X86 assembly language and computer architecture
/ Richard C. Detmer. — Third edition.

pages cm

Includes index.

ISBN 978-1-284-03612-1 (pbk.) — ISBN 1-284-03612-X (pbk.) 1.
Computer architecture. 2. Assembly languages (Electronic
computers) 3. Intel 80x86 series microprocessors. I. Title.

 QA76.9.A73D48 2015

 004.2’2—dc23

2013034084

6048

Printed in the United States of America
18 17 16 15 14 10 9 8 7 6 5 4 3 2 1

Download from finelybook 7450911@qq.com

5

For my mother, Emma Langenhop Detmer Baldwin Toombs, and
my uncle,
Carl E. Langenhop, both of whom encouraged me to become a
scholar.

Download from finelybook 7450911@qq.com

6

CONTENTS

Preface

Chapter 1 Representing Data in a Computer

1.1 Binary and Hexadecimal Numbers

1.2 Character Codes

1.3 Unsigned and Signed Integers

1.4 Integer Addition and Subtraction

1.5 Other Systems for Representing Numbers

1.6 Chapter Summary

Chapter 2 Parts of a Computer System

2.1 PC Hardware: Memory

2.2 PC Hardware: The CPU

2.3 PC Hardware: Input/Output Devices

2.4 PC Software

Download from finelybook 7450911@qq.com

7

2.5 Chapter Summary

Chapter 3 Elements of Assembly Language

3.1 Assembly Language Statements

3.2 A Complete 32-Bit Example Using the Debugger

3.3 Data Declarations

3.4 Instruction Operands

3.5 A Complete 32-Bit Example Using Windows
Input/Output

3.6 Input/Output and Data Conversion Using Macros
Defined in IO.H

3.7 64-Bit Examples

3.8 Chapter Summary

Chapter 4 Basic Instructions

4.1 Copying Data

4.2 Integer Addition and Subtraction Instructions

4.3 Multiplication Instructions

4.4 Division Instructions

Download from finelybook 7450911@qq.com

8

4.5 Chapter Summary

Chapter 5 Branching and Looping

5.1 Unconditional Jumps

5.2 Conditional Jumps, Compare Instructions, and if
Structures

5.3 Implementing Loop Structures

5.4 for Loops in Assembly Language

5.5 Arrays

5.6 Chapter Summary

Chapter 6 Procedures

6.1 The 80x86 Stack

6.2 32-Bit Procedures with Value Parameters

6.3 Additional 32-Bit Procedure Options

6.4 64-Bit Procedures

6.5 Macro Definition and Expansion

6.6 Chapter Summary

Download from finelybook 7450911@qq.com

9

Chapter 7 Bit Manipulation

7.1 Logical Operations

7.2 Shift and Rotate Instructions

7.3 Converting an ASCII String to a 2’s Complement Integer

7.4 Chapter Summary

Chapter 8 String Operations

8.1 Using String Instructions

8.2 Repeat Prefixes and More String Instructions

8.3 Character Translation

8.4 Converting a 2’s Complement Integer to an ASCII String

8.5 Chapter Summary

Chapter 9 Floating Point Operations

9.1 Floating Point Formats

9.2 80x86 Floating Point Architecture

9.3 Converting Floating Point to and from ASCII

9.4 Single-Instruction Multiple-Data Instructions

Download from finelybook 7450911@qq.com

10

9.5 Floating Point Assembly Language Procedures with
C/C++

9.6 Chapter Summary

Appendix A Hexadecimal/ASCII Conversion

Appendix B Assembler Reserved Words

Appendix C Answers to Selected Exercises

Index

Download from finelybook 7450911@qq.com

11

PREFACE

The first edition of Introduction to 80x86 Assembly Language and
Computer Architec ture emphasized computer architecture over
assembly language. In the years since it was published, assembly
language use has declined but the need for a computer scientist to
understand how the computer works “on the inside” has not. The
Second Edition emphasized basic 80x86 architecture even more than
the first. I remain convinced that learning a real instruction set and
writing assembly language programs for a real computer are excellent
ways to become acquainted with the basics of computer architecture.
This emphasis on computer architecture continues with the Third
Edition.

New to the Third Edition

The text has been updated to be used with Visual Studio® 2012,
although it remains compatible with earlier versions of Visual Studio.
All programs presented in this book have been tested using Visual
Studio® 2012, Professional Edition. There are over 100 new exercises
and programming exercises. The design has been improved, with
clearer layout and easier-to-read illustrations. There has been a major
effort to eliminate errors. Ancillary materials include PowerPoint
lecture outlines, sample examinations, and answers to all exercises
for instructors. Additionally, all program examples in this text are
provided for students and instructors on the book’s website at
http://www.jblearning.com/catalog/9781284036121/. The book

Download from finelybook 7450911@qq.com

12

http://www.jblearning.com/catalog/9781284036121/

remains suitable as a standalone text in an assembly language course
or as a supplement in a computer architecture course

Features of the Second Edition

There were several major changes in the Second Edition, also
incorporated in the Third Edition. For many people the most
significant was the use of the Microsoft® Visual Studio®
environment instead of stand-alone software. Visual Studio is widely
used in academic and professional settings, and provides a robust
environment for editing, assembling, debugging, and executing
programs. Microsoft® DreamSpark (https://www.dreamspark.com/
(formerly the Microsoft Academic Alliance) makes Visual Studio and
other development software available to academic institutions at very
low cost.

The 80x86 microprocessor family has expanded considerably in the
past few years. This book continues to emphasize basic architecture;
that is, features that are found on most CPUs, not just the 80x86 line.
Since 64-bit processors now commonly power new PCs and 64-bit
operating systems are now popular, this book includes 64-bit
architecture. Much of the time 64-bit instructions are just “more of
the same,” but there are a few major differences. This book’s topics
are arranged so that 64-bit operations can be covered or omitted at
the instructor’s discretion. It is impossible in a textbook to provide
full coverage of all 80x86 instructions. Intel® provides
comprehensive documentation on their website
(http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html).

Download from finelybook 7450911@qq.com

13

https://www.dreamspark.com/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

The Second Edition had decreased emphasis on input/output, with
corresponding increased emphasis on using the debugger to see what
is going on inside the computer. Macros for I/O, macros for
converting from an ASCII string to a 2’s complement integer, and
macros for converting from a 2’s complement integer to an ASCII
string were included. The macros for I/O used dialog boxes and
message boxes instead of console I/O.

Chapter 6, “Procedures,” was changed to focus on the cdecl protocol.
Using a standard protocol makes it possible to cover calling assembly
language procedures from a high-level language or an HLL procedure
from assembly language. The very different 64-bit procedure protocol
was also covered.

Chapter 9, “Floating Point Operations,” had major updates. Since all
current 80x86 CPUs have floating point units, it no longer discussed
how to code floating point operations using processors without an
FPU. It covered some SSE instructions because these are normally
used instead of the FPU for FP operations in 64-bit mode. It omitted
inline assembly but includes calling assembly language procedures
with floating point parameters from a high-level language.

The chapter on binary coded decimal (BCD) was omitted in the
Second Edition, although BCD representations were still covered
lightly in Chapter 1, “Representing Data in a Computer.” Chapter 8,
“String Operations,” was retained because these instructions provide
a striking example of the complex instruction set nature of the 80x86.

The First Edition listed the number of clock cycles required for each
instruction on different 80x86 CPUs. With current pipelined CPUs

Download from finelybook 7450911@qq.com

14

this information is almost irrelevant, and thus has been omitted. The
previous chapter-ending “something extra” sections were eliminated,
but much of their content was incorporated in appropriate places
within the chapters.

Instructor and Student Resources

I always remind my students that they don’t receive answers to
exercises on an exam or in real life and need to develop confidence in
their own answers. However, at the request of a few instructors and
many students, I have included answers to selected exercises in
Appendix C. These exercises are marked with an asterisk (*) within
the chapters. Answers to all exercises are available to registered
instructors at http://www.jblearning.com/catalog/9781284036121/.
PowerPoint lecture slides, code from the text, and sample
examination questions are also available at this site.

Acknowledgments

Thank you to the reviewers, Cynthia Fry, Baylor University; Bruce
Johnston, University of Wisconsin–Stout; and Evan Noynaert,
Missouri Western State University, for their valuable feedback.
Thanks also to those who reviewed the manuscript of prior editions.

I would like to thank the many students who have taken my 80x86
assembly language classes over the last 20+ years. They have always
made teaching worthwhile.

Download from finelybook 7450911@qq.com

15

http://www.jblearning.com/catalog/9781284036121/

REPRESENTING DATA IN A

COMPUTER

CHAPTER

1

1.1 Binary and Hexadecimal Numbers

1.2 Character Codes

1.3 Unsigned and Signed Integers

1.4 Integer Addition and Subtraction

1.5 Other Systems for Representing Numbers

1.6 Chapter Summary

When you program in a high-level language (like Java or C++), you
use variables of different types (such as integer, float, or character).
Once you have declared variables, you do not have to worry about
how the data are represented in the computer. When you deal with a
computer at the machine level, however, you must be more concerned
with how data are stored. Often you have the job of converting data
from one representation to another. This chapter covers some
common ways that data are represented in a microcomputer. Chapter
2 gives an overview of microcomputer hardware and software.
Chapter 3 illustrates how to write an assembly language program that
directly controls execution of the computer’s native instructions.

Download from finelybook 7450911@qq.com

16

1.1 Binary and Hexadecimal Numbers

A computer uses bits (binary digits, each an electronic state
representing zero or one) to denote values. We represent such binary
numbers using the digits 0 and 1 and a base 2 place-value system.
This binary number system is like the decimal system except that the
positions (right to left) are 1’s, 2’s, 4’s, 8’s, 16’s (and higher powers of
2) instead of 1’s, 10’s, 100’s, 1000’s, 10000’s (powers of 10). For
example, the binary number 1101 can be interpreted as the decimal
number 13.

Binary numbers are so long that they are awkward to read and write.
For instance, it takes the 8 bits 11111010 to represent the decimal
number 250, or the 15 bits 111010100110000 to represent the decimal
number 30000. The hexadecimal (base 16) number system
represents numbers using about one fourth as many digits as the
binary system. Conversions between hexadecimal and binary are so
easy that hex can be thought of as shorthand for binary. The
hexadecimal system requires 16 digits. The digits 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9 are used just as in the decimal system; A, B, C, D, E, and F
are used for the decimal numbers 10, 11, 12, 13, 14, and 15,
respectively. Either uppercase or lowercase letters can be used for the
new digits.

The positions in hexadecimal numbers correspond to powers of 16.
From right to left, they are 1’s, 16’s, 256’s, and so on. The value of the

Download from finelybook 7450911@qq.com

17

hex number 9D7A is 40314 in decimal, since

Figure 1.1 shows small numbers expressed in decimal, hexadecimal,
and binary systems. It is worthwhile to memorize this table or to be
able to construct it very quickly.

You have now seen how to convert binary or hexadecimal numbers to
decimal. How can you convert numbers from decimal to hex? From
decimal to binary? From binary to hex? From hex to binary? We show
how to do these conversions manually, but often the easiest way is to
use a calculator that allows numbers to be entered in decimal,
hexadecimal, or binary. Conversion between bases is normally a
matter of pressing a key or two. These calculators (typically ones that
have keys labeled A through F) can do arithmetic directly in binary or
hex as well as decimal, and often have a full range of other functions
available. One warning: Many of these calculators use seven segment
displays and display the lower case letter b so that it looks almost like
the numeral 6. Other characters may also be difficult to read.

Download from finelybook 7450911@qq.com

18

Figure 1.1

Decimal, hexadecimal, and binary numbers

A calculator accessory is available with the Microsoft Windows
operating system. Figure 1.2 shows the Windows 7 version; other
Windows versions have slightly different displays. The Windows
calculator may look like a four-function calculator when you start it. If
so, choose View/Programmer (View/Scientific with earlier Windows
versions) to reveal the hex mode, and select the Hex and Dword radio
buttons. (The meaning of Dword will be explained later in this
chapter.) Use the keyboard or click the display buttons to enter a hex
number, and then click the Dec radio button to convert to decimal.
Figure 1.2 illustrates this for the conversion of 9D7A to 40314 done by
hand previously.

Download from finelybook 7450911@qq.com

19

With the Windows 7 calculator, the binary form of the number is
always shown with bits numbered right to left. With other Windows
versions, the Bin radio button can be used to obtain a binary result.
However, a calculator isn’t needed to convert a hexadecimal number
to its equivalent binary form. In fact, many binary numbers are too
long to be displayed on a typical calculator. Instead, simply substitute
4 bits for each hex digit. The bits are those found in the third column
of Figure 1.1. Pad with leading zeros, as needed. For example,

3B8E216 = 11 1011 1000 1110 00102

The subscripts 16 and 2 are used to indicate the base of the system in
which a number is written; they are usually omitted when there is
little chance of confusion. The extra spaces in the binary number are
just to make it more readable; vertical bars (|) work just as well as
separators. Note that the rightmost hex digit 2 was converted to 0010,
including leading zeros. It was not necessary to convert the leading 3
to 0011, although it would have been correct since leading zeros do
not change the value of a number.

Download from finelybook 7450911@qq.com

20

Figure 1.2

Base conversion with Windows calculator accessory

Source: Used with permission from Microsoft.

To convert binary numbers to hexadecimal format, reverse the
previous steps: Break the binary number into groups of 4 bits,
starting from the right, and substitute the corresponding hex digit for
each group of 4 bits. For example,

1011011101001101111 = 101|1011|1010|0110|1111 = 5BA6F

Download from finelybook 7450911@qq.com

21

You have seen how to convert a binary number to an equivalent
decimal number. However, instead of converting a long binary
number directly to decimal, it is faster to convert it to hex, and then
convert the hex number to decimal. Again using the above 19-bit-long
number,

10110111010011011112
= 101 1011 1010 0110 1111
= 5BA6F16
= 5 × 65536 + 11 × 4096 + 10 × 256 + 6 × 16 + 15 × 1
= 37540710

Figure 1.3

Decimal-to-hex conversion algorithm

Figure 1.3 shows an algorithm for converting a decimal number to its
hex equivalent. It produces the hex digits of the answer right to left.
The algorithm is expressed in pseudocode. It illustrates some of the
pseudocode conventions that will be used for algorithms and program
designs in this text: := for assignment; = for logical equality; repeat-
until for a post-test loop; semicolons to terminate statements;
indentation of loop bodies; and liberal use of words. This algorithm
can be slightly modified to convert a number in any base system to its

Download from finelybook 7450911@qq.com

22

equivalent in any other base system. Just do the arithmetic in the
original base system, repeatedly dividing by the new base.

EXAMPLE

As an example, the decimal-to-hex algorithm is traced for the decimal number

5876:

• Since a repeat-until loop is a post-test loop structure, the controlling condition is

not checked until after the body has been executed the first time.

• Divide 16 into 5876 (DecimalNumber).

• 367 is not zero. Divide it by 16.

• 22 is not zero. Divide it by 16.

• 1 is not zero. Divide it by 16.

Download from finelybook 7450911@qq.com

23

• 0 is zero, so the until loop terminates. The answer is 16F416.

The octal (base 8) number system is used with some computer
systems. Octal numbers are written using digits 0 through 7. Most
calculators that do hex arithmetic also handle octal values. The Oct
radio button on the Windows calculator is used to display results in
octal. It is easy to convert a binary number to octal by writing the
octal equivalent for each group of three bits, or to convert from octal
to binary by replacing each octal digit by 3 bits. To convert from
decimal to octal, one can use an algorithm that is the same as the
decimal to hex scheme except that you divide by 8 instead of 16 at
each step.

 Exercises 1.1

Supply the missing two forms for each number.

Download from finelybook 7450911@qq.com

24

The author’s office has a “binary clock,” the display of which is an
array of LEDs as shown above. The first two columns give the 10’s
and 1’s digits of the hour, the next two columns give the minutes, and

Download from finelybook 7450911@qq.com

25

the last two give the seconds, each in binary where a lit LED means 1
and an unlit LED means 0. The illustration shows 02:49:16. Identify
the time shown on each clock display.

25.

26.

*27.

1.2 Character Codes

Download from finelybook 7450911@qq.com

26

Letters, numerals, punctuation marks, and other characters are
represented in a computer by assigning a numeric value to each
character. Several schemes for assigning these numeric values have
been used. The system commonly used with microcomputers is the
American Standard Code for Information Interchange (abbreviated
ASCII and pronounced ASK-ee).

The ASCII system uses 7 bits to represent characters, so that values
from 000 0000 to 111 1111 are assigned to characters. This means that
128 different characters can be represented using ASCII codes. The
ASCII codes are usually given as hex numbers from 00 to 7F or as
decimal numbers from 0 to 127. There are several extended versions
of ASCII. One common version assigns characters from 80 to FF; you
may have seen some of their graphic representations if you tried to
display a nontext file on your screen. The Unicode system uses 16
bits to represent a character, with 65,636 values making it possible to
represent characters from most of the written languages in the world.
ASCII characters are the first 128 Unicode characters, 0000 to 007F,
each formed by simply appending nine leading 0 bits to the ASCII
code.

Appendix A has a complete listing of ASCII codes. Using this table,
you can check that the message

Computers are fun.

can be coded in ASCII, using hex numbers, as

Download from finelybook 7450911@qq.com

27

Note that a space, even though it is invisible, has a character code
(hex 20).

Numbers can be represented using character codes. For example, the
ASCII codes for the date October 21, 1976 are

with the number 21 represented using ASCII codes 32 31, and the
number 1976 represented using 31 39 37 36. This is very different
from the binary representation in the last section, where 2110 =
101012 and 197610 = 111101110002. Computers use both of these
representations for numbers: ASCII for input and output, and binary
for internal computations.

The ASCII code assignments may seem rather arbitrary, but there are
certain patterns. The codes for uppercase letters are contiguous, as
are the codes for lowercase letters. The codes for an uppercase letter
and the corresponding lowercase letter differ by exactly 1 bit. Bit 5 is
0 for an uppercase letter and 1 for the corresponding lowercase letter,
while other bits are the same. (Bits in most computer architectures
are numbered right to left, starting with 0 for the rightmost bit.) For
example,

Download from finelybook 7450911@qq.com

28

• uppercase M codes as 4D16 = 10011012

• lowercase m codes as 6D16 = 11011012

The printable characters are grouped together from 2016 to 7E16.
(A space is considered a printable character.) Numerals 0, 1, . . ., 9
have ASCII codes 3016, 3116, . . ., 3916, respectively.

The characters from 0016 to 1F16, along with 7F16, are known as
control characters. For example, the ESC key on an ASCII
keyboard generates a hex 1B code. The abbreviation ESC stands for
“extra services control” but most people say “escape.” The ESC
character is often sent in combination with other characters to a
peripheral device like a printer to turn on a special feature. Since such
character sequences are not standardized, they are not covered in this
text.

Carriage return (CR) and line feed (LF) are two frequently used ASCII
control characters. The 0D16 code for CR is generated by an ASCII
keyboard when the Enter key is pressed. When CR is sent to an ASCII
display it causes the cursor to move to the beginning of the current
line, without going down to a new line. When CR is sent to an ASCII
printer (at least one of older design), it causes the print head to move
to the beginning of a line. The 0A16 code for LF causes an ASCII
display to move the cursor straight down, or a printer to roll the paper
up one line, in both cases without going to the beginning of a new
line. To display a message and move to the beginning of a new line, it
is necessary to send the message characters plus CR and LF
characters to the screen or printer.

Download from finelybook 7450911@qq.com

29

Lesser-used control characters include form feed (0C16), which
causes many printers to eject a page; horizontal tab (0916), which is
generated by the Tab key on the keyboard; back space (0816),
generated by the Backspace key; and delete (7F16), generated by the
Delete key. Notice that the Backspace and Delete keys do not generate
the same codes. The bell character (0716) causes an audible signal
when output to the display.

Many large computers represent characters using Extended Binary
Coded Decimal Information Code (abbreviated EBCDIC and
pronounced “ib-SEE-dick” or “eb-SEE-dick”). The EBCDIC system is
only used in this text as an example of another coding scheme when
translation from one coding system to another is discussed.

 Exercises 1.2

1. Each of the following hexadecimal numbers can be interpreted as
representing a decimal number or a pair of ASCII codes. Give both
interpretations.

(a) 2A45

*(b) 7352

(c) 2036

(d) 106E

(e) 4861

Download from finelybook 7450911@qq.com

30

(f) 3925

2. Find the ASCII codes for the characters in each of the following
strings. Don’t forget spaces and punctuation. Carriage return and line
feed are shown by CR and LF, respectively, written together as CRLF
so that it will be clear that there is no space character between them.

(a) January 1 is New Year’s Day.CRLF

*(b) George said, “Ouch!”

(c) R2D2 was C3P0’s friend.CRLF[0 is the numeral zero]

(d) Your name?

(e) Enter value:

(f) History, like beauty, depends largely on the beholder.

(g) 25 + 37 − 18 = ?

3. What would be displayed if you output each of the following
sequences of ASCII codes to a computer’s screen?

(a) 62 6C 6F 6F 64 2C 20 73 77 65 61 74 20 61 6E 64 20 74 65 61 72
73

(b) 6E 61 6D 65 0D 0A 61 64 64 72 65 73 73 0D 0A 63 69 74 79 0D 0A

*(c) 4A 75 6E 65 20 31 31 2C 20 31 39 34 37 0D 0A

Download from finelybook 7450911@qq.com

31

(d) 24 33 38 39 2E 34 35

(e) 49 44 23 3A 20 20 31 32 33 2D 34 35 2D 36 37 38 39

(f) 47 72 65 65 74 69 6E 67 73 21

(g) 32 30 31 36 20 69 73 20 61 20 6C 65 61 70 20 79 65 61 72

1.3 Unsigned and Signed Integers

It is now time to look more carefully at how numbers are actually
represented in a computer. We have looked at two schemes to
represent numbers—by using ASCII codes or by using binary integers
(often expressed in hex). However, there are two problems with these
methods: (1) the number of bits available for representing a number
is limited, and (2) it is not clear how to represent a negative number.

Chapter 2 discusses computer hardware, but for now you need to
know that memory is divided into bytes, each byte containing 8
bits1. Suppose you want to use ASCII codes to represent a number in
memory. A single ASCII code is normally stored in a byte. Recall that
ASCII codes are 7 bits long; the extra (left-hand, or high-order) bit is
set to 0. To solve the second representation problem mentioned
earlier, you can simply include the code for a minus sign. For
example, the ASCII codes for the four characters −817 are 2D, 38, 31,
and 37. To solve the first problem, you could always agree to use a
fixed number of bytes, perhaps padding on the left with ASCII codes
for zeros or spaces. Alternatively, you could use a variable number of
bytes, but agree that the number ends with the last ASCII code for a
digit; that is, terminating the string with a nondigit. (A null byte 00

Download from finelybook 7450911@qq.com

32

is often used for this purpose.)

Suppose you want to use internal representations for numbers
corresponding to their binary values. Then you must choose a fixed
number of bits for the representation. Most central processing units
can do arithmetic on binary numbers having a few specific lengths.
For the Intel 80x86 family, these lengths are 8 bits, a byte; 16 bits, a
word2; 32 bits, a doubleword; and 64 bits, a quadword.

As an example, look at the word-length binary representation of 697:

69710 = 10101110012 = 00000010101110012

Leading zeros have been added to make 16 bits. Writing this in hex in
a word, you have

This illustrates a convention that is followed in many places in this
text. Strips of boxes will represent sequences of bytes. The contents of
a single byte will be represented in hex, with 2 hex digits in each byte,
because a single hex digit corresponds to 4 bits. The doubleword
representation of 697 simply has more leading zeros.

What we now have is a good system of representing nonnegative, or
unsigned numbers—a predetermined length holding a binary
representation padded with leading 0 bits, if needed. This system

Download from finelybook 7450911@qq.com

33

cannot represent negative numbers. Also, for any given length, there
is a largest unsigned number that can be represented, for example
FF16 or 25510 for byte length.

The 2’s complement system is similar to the above scheme for
unsigned numbers, but it allows representation of negative numbers.
Numbers will be a fixed length, so that you might refer to the
“doubleword-length 2’s complement representation” of a number.
The 2’s complement representation for a nonnegative number is
almost identical to the unsigned representation, that is, you represent
the number in binary with enough leading zeros to fill up the desired
length. There is one additional restriction—for a positive number, the
leftmost bit must be zero. This means, for example, that the most
positive number that can be represented in word-size 2’s complement
form is 01111111111111112 or 7FFF16 or 3276710.

As you have probably already guessed, the leftmost bit is always 1 in
the 2’s complement representation of a negative number. You might
also guess that the rest of the representation is just the same as for
the corresponding positive number, but unfortunately the situation is
more complicated than that. That is, you cannot simply change the
leading bit from 0 to 1 to get the negative version of a number.

A hex calculator makes it easy to convert a negative decimal number
to 2’s complement form. For instance, with the Windows calculator, if
the decimal display shows −200 and the Hex radio button is clicked
when Qword length is also selected, the display will show
FFFFFFFFFFFFFF38. Note that this number has a leading 1 bit since
the leading hex digit is F (1111). If the Dword, Word, or Byte lengths
are selected, the result will be FFFFFF38, FF38, or 38, respectively.

Download from finelybook 7450911@qq.com

34

Notice that these are the same except for the number of leading 1 bits
(hex F digits). Unfortunately, 38 is not a correct answer because the
magnitude of −200 is too large to represent as a byte-size 2’s
complement number. One way you can tell that the answer is
incorrect is that 3816 = 001110002, a positive number. Later in this
section we take a closer look at how big a number can be for word-size
representations, and the exercises ask about other sizes.

Let’s concentrate on word-length representations for a while. We just
looked at converting −200 to 2’s complement. If you use the Windows
calculator with Word length selected, the Hex display gives FF38.
Now click the Dec radio button. With the Windows 7 calculator, the
display will go back to −200. However, with earlier Windows
calculators, instead of going back to −200, the display showed 65336!
The reason is simple—the word FF38 has two interpretations: the
unsigned number equivalent to 6533610, and the signed (2’s
complement) number equivalent to −20010. Similarly, an 80x86 CPU
cannot determine which interpretation is intended; it is up to the user
to select the correct one for the context.

Here is a way you can get the correct decimal interpretation for a
negative 2’s complement number using an earlier Windows
calculator. Assume that the calculator is in Hex mode, Word length,
with FF38 on the display. If you click the +/− key, the calculator
performs a 2’s complement operation and displays C8. Now click
Dec, and the calculator displays 200. If you click +/− again, then you
see −200.

The 2’s complement operation is equivalent to finding the negative of
a number; that is, it is the negation operation. If you start with the

Download from finelybook 7450911@qq.com

35

representation for a negative number, you will get its positive
counterpart. If you start with a positive number, you will get its
negative counterpart. (Note: The +/− key triggers the 2’s complement
operation with many handheld calculators in Hex mode, but not all.)

The 2’s complement representation of a negative number can also be
found without a calculator. One method is to first express the
unsigned number in hex, and then subtract this hex number from
1000016 to get the word-length representation. The number you
subtract from is, in hex, a 1 followed by the number of 0’s in the
length of the representation, for example, 10000000016 (8 zeros) to
get the doubleword-length representation. (What would you use for a
byte-length 2’s complement representation? For a quadword-length
2’s complement representation?) In binary, the number of zeros is the
length in binary digits. This binary number is a power of 2, and
subtraction is sometimes called “taking the complement,” so this
operation is the source of the term “2’s complement.”

EXAMPLE

The word-length 2’s complement representation of the decimal number –76 is

found by first converting the unsigned number 76 to its hex equivalent 4C, then by

subtracting 4C from 10000.

Since you cannot subtract C from 0, you have to borrow 1 from 1000, leaving FFF.

Download from finelybook 7450911@qq.com

36

After borrowing, the subtraction is easy. The units digit is

1016 — C16 = 1610 — 1210 = 4 (in decimal or hex),

and the 16’s position is

F16 — 4 = 1510 — 410 = 1110 = B16

It is not necessary to convert the hex digits to decimal to subtract them if you

learn the addition and subtraction tables for single hex digits.

The process of subtracting a number from 1 followed by an
appropriate number of 0’s is the manual version of the 2’s
complement operation. It is equivalent to the operation that the
Windows calculator performs when you press the +/− key. It is a little
confusing that “2’s complement” refers both to a representation
system and to an operation on numbers in that system. (Note: If you
actually do the arithmetic 10000 −4C with the Windows calculator,
you will have to select Dword or Qword length first because 10000 is
too large to fit in a word.)

Note that any time you take the 2’s complement of a number and then
take the 2’s complement of the result, you get back to the original
number. For a word-size number N, ordinary algebra gives you

N = 10000 — (10000 — N)

For example, using the word-length 2’s complement value F39E,

10000 — (10000 — F39E) = 10000 — C62 = F39E

This says again that the 2’s complement operation corresponds to

Download from finelybook 7450911@qq.com

37

negation. Because of this, if you start with a bit pattern representing a
negative number, the 2’s complement operation can be used to find
the positive (unsigned) number corresponding to it.

EXAMPLE

The word-length 2’s complement number E973 represents a negative value since

the sign bit (leading bit) is 1 (E = 1110). Taking the 2’s complement finds the

corresponding positive number.

10000 — E973 = 168D = 577310

This means that the decimal number represented by E973 is –5773.

Since a given 2’s complement representation is a fixed length,
obviously there is a maximum size number that can be stored in it.
For a word, the largest positive number stored is 7FFF, since this is
the largest 16-bit-long number that has a high-order bit of 0 when
written in binary. The hex number 7FFF is 32767 in decimal. Positive
numbers written in hex can be identified by a leading hex digit of 0
through 7.

Negative numbers are distinguished by a leading bit of 1,
corresponding to hex digits of 8 through F. The word-length 2’s
complement representations range from 8000 to FFFF. The two
extreme values convert to decimal as follows:

10000 — 8000 = 8000 = 3276810,

so 8000 is the representation of −32768. Similarly,

Download from finelybook 7450911@qq.com

38

10000 — FFFF = 1,

so FFFF is the word-length 2’s complement representation of −1.
Recall that the largest positive decimal integer that can be
represented as a word-length 2’s complement number is 32767; the
range of decimal numbers that can be represented in word-length 2’s
complement form is −32768 to 32767.

 Exercises 1.3

1. Find the doubleword-length 2’s complement representation of each
of the following decimal numbers:

*(a) 3874

(b) 1000000

(c) −100

(d) −55555

(e) −4

(f) 32767

2. Find the word-length 2’s complement representation of each of the
following decimal numbers:

(a) 845

(b) 15000

Download from finelybook 7450911@qq.com

39

(c) 100

*(d) −10

(e) −923

(f) −32767

3. Find the byte-length 2’s complement representation of each of the
following decimal numbers:

(a) 23

*(b) 111

(c) −100

(d) −55

(e) 99

(f) −15

4. Each of these 32-bit doublewords can be interpreted as either a 2’s
complement number or an unsigned number. Find the decimal
integer that corresponds to each interpretation.

(a) 00 00 F3 E1

*(b) FF FF FE 03

Download from finelybook 7450911@qq.com

40

(c) 98 C2 41 7D

(d) FF FF FF 78

(e) 56 2B 7F 1E

(f) D1 7A C3 15

5. Each of these 16-bit words can be interpreted as either a 2’s
complement number or an unsigned number. Find the decimal
integer that corresponds to each interpretation.

(a) 00 A3

(b) FF FE

*(c) 6F 20

(d) B6 4A

(e) AB 05

(f) 53 D2

6. Each of these 8-bit bytes can be interpreted as either a 2’s
complement number or an unsigned number. Find the decimal
integer that corresponds to each interpretation.

*(a) E1

(b) 7C

Download from finelybook 7450911@qq.com

41

(c) FF

(d) 3E

(e) 59

(f) 95

7. (a) Find the range of signed decimal integers (smallest to largest)
that can be stored in 2’s complement form in a byte.

(b) Find the range of unsigned decimal integers that can be stored in
a byte.

*8. (a) Find the range of signed decimal integers (smallest to largest)
that can be stored in 2’s complement form in a word.

(b) Find the range of unsigned decimal integers that can be stored in
a word.

9. (a) Find the range of signed decimal integers (smallest to largest)
that can be stored in 2’s complement form in a doubleword.

(b) Find the range of unsigned decimal integers that can be stored in
a doubleword.

10. This section showed how to take the 2’s complement of a number
by subtracting it from an appropriate power of 2. An alternative
method is to write the number in binary (using the correct number of
bits for the length of the representation), change each 0 bit to 1 and
each 1 bit to 0 (this is called “taking the 1’s complement”), and then

Download from finelybook 7450911@qq.com

42

adding 1 to the result (discarding any carry into an extra bit). Show
that these two methods are equivalent.

1.4 Integer Addition and Subtraction

One of the reasons that the 2’s complement representation scheme is
commonly used to store signed integers in computers is that addition
and subtraction operations for signed integers are identical to the
corresponding operations for unsigned integers. This means that the
CPU does not need separate circuitry for signed and unsigned
addition or subtraction operations. This section discusses addition
and subtraction of integers, and introduces the concepts of carry and
overflow, which can be used to determine whether the results of an
operation are “correct.”

We first give several examples of addition operations. The 80x86
architecture uses the same addition instructions for unsigned and
signed numbers. Although 32 bits (doubleword) is the preferred
integer size in the 80x86 architecture, these examples use word-size
numbers in the interest of brevity. The concepts illustrated are exactly
the same for byte-size, word-size, doubleword-size, or quadword-size
operands.

First, 0A07 and 01D3 are added. These numbers are positive whether
they are interpreted as unsigned numbers or as 2’s complement
numbers. The decimal version of the addition problem is given on the
right.

Download from finelybook 7450911@qq.com

43

The answer is correct since BDA16 = 303410.

Next, 0206 and FFB0 are added. These are, of course, positive as
unsigned numbers, but interpreted as 2’s complement signed
numbers, 0206 is a positive number and FFB0 is negative. This
means that there are two decimal versions of the addition problem.
The signed one is given first, then the unsigned version.

There certainly appears to be a problem, because the result will not
even fit in a word. In fact, since 101B6 is the hex version of 65974,
there is no way to represent the correct sum of unsigned numbers in a
word. However, if the numbers are interpreted as signed and you
ignore the extra 1 on the left, then the word 01B6 is the 2’s
complement representation of the decimal number 438.

Now FFE7 and FFF6 are added, both negative numbers in a signed
interpretation. Again, both signed and unsigned decimal
interpretations are shown.

Again the sum in hex is too large to fit in 2 bytes, but if you throw
away the extra 1, then FFDD is the correct word-length 2’s
complement representation of −35.

Each of the last two additions has a carry out of the usual high-order

Download from finelybook 7450911@qq.com

44

bit position into an extra bit. The remaining bits do not give the
correct unsigned result. In fact, carry always indicates that the answer
is wrong if the operands are interpreted as unsigned. Although in
these examples the remaining bits gave the correct 2’s complement
representation, this is not always the case, even for signed numbers.
Consider the addition of the following two positive numbers:

There was no carry out of the high-order bit, but the signed
interpretation is plainly incorrect since AC99 represents the negative
number −21351. Intuitively what went wrong is that the decimal sum
44185 is bigger than the maximum value 32767 that can be stored in
the 2 bytes of a word. (See Exercise 1.3.8.) However, when these
numbers are interpreted as unsigned, the sum is correct.

Here is another example showing a “wrong” answer, this time
resulting from adding two numbers that are negative in their signed
interpretation.

This time there is a carry, but the remaining four hex digits 76EF
cannot be the correct signed answer since they represent the positive
number 30447. Again, intuition tells you that something had to go
wrong because −32768 is the most negative number that can be
stored in a word.

Download from finelybook 7450911@qq.com

45

In the previous examples with “incorrect” signed interpretations,
overflow occurred. Computer hardware can detect overflow as it
performs addition, and the signed sum will be correct if there is no
overflow. The computer actually performs addition in binary, of
course, and the process is logically a right-to-left pairwise addition of
bits, very similar to the procedure that humans use for decimal
addition. As the computer adds a pair of bits, sometimes there is a
carry (of 1) into the next column to the left. This carry is added to the
sum of these 2 bits, and so on. The column of particular interest is the
leftmost one, the sign position. There may be a carry into this position
and/or a carry out of this position into the “extra” bit. This “carry out”
(into the extra bit) is what was called just “carry” earlier and was seen
as the extra hex 1. Figure 1.4 identifies when overflow does or does
not occur. The table can be summarized by saying that overflow
occurs when the number of carries into the sign position is different
from the number of carries out of the sign position.

Figure 1.4

Overflow in addition

Each of the previous addition examples is now shown again, this time
in binary. Carries are written above the two numbers.

Download from finelybook 7450911@qq.com

46

This example has no carry into the sign position (bit 15) and no carry
out, so there is no overflow. The carries into bits 1, 2, and 3 have no
significance with respect to overflow.

This example has a carry into the sign position and a carry out, so
there is no overflow.

Again, there is both a carry into the sign position and a carry out, so
there is no overflow.

Overflow does occur in this addition since there is a carry into the
sign position, but no carry out.

Download from finelybook 7450911@qq.com

47

There is also overflow in this addition since there is a carry out of the
sign bit, but no carry in.

In a computer, subtraction a − b of numbers a and b is usually
performed by taking the 2’s complement of b and adding the result to
a. This corresponds to adding the negation of b. For example, for the
decimal subtraction 195 − 618 = −423,

is changed to addition of FD96, the 2’s complement of 026A.

The hex digits FE59 represent −423. Looking at the previous addition
in binary, you have

Notice that there was no carry in the addition. However, this
subtraction did involve a borrow. A borrow occurs in the subtraction
a − b when b is larger than a as unsigned numbers. Computer

Download from finelybook 7450911@qq.com

48

hardware can detect a borrow in subtraction by looking at whether a
carry occurred in the corresponding addition. If there is no carry in
the addition, then there is a borrow in the subtraction. If there is a
carry in the addition, then there is no borrow in the subtraction.
(Remember that “carry” by itself means “carry out.”)

Here is one more example. Doing the decimal subtraction 985 − 411 =
574 using word-length 2’s complement representations,

is changed to addition of FE65, the 2’s complement of 019B.

Discarding the extra 1, the hex digits 023E represent 574. This
addition has a carry, so there is no borrow in the corresponding
subtraction.

Overflow is also defined for subtraction. When you think like a
person, you can detect it by the wrong answer that you expect when
you know the difference is going to be outside of the range that can be
represented in the chosen length for the representation. A computer
detects overflow in subtraction by determining whether overflow
occurs in the corresponding addition problem. If overflow occurs in
the addition problem, then it occurs in the original subtraction
problem; if it does not occur in the addition, then it does not occur in
the original subtraction. There was no overflow in either of the

Download from finelybook 7450911@qq.com

49

previous subtraction examples. Overflow occurs if you use word-
length 2’s complement representations to attempt the subtraction
−29123 − 15447. As a human, you know that the correct answer
−44570 is outside the word-size range −32,768 to +32,767. In the
computer hardware

is changed to addition of C3A9, the 2’s complement of 3C57.

There is a carry out of the sign position, but no carry in, so overflow
occurs.

Although examples in this section used word-size 2’s complement
representations, the same techniques apply when performing
addition or subtraction with byte-size, doubleword-size, or
quadword-size 2’s complement numbers.

 Exercises 1.4

For each problem, perform the addition or subtraction operation,
giving the sum or difference in hex using the same number of hex
digits as the original two operands. For each operation, state whether
or not overflow occurs. For each sum, state whether or not there is a
carry; for each difference state whether or not there is a borrow. For
each problem, interpret the operations as 2’s complement signed and

Download from finelybook 7450911@qq.com

50

convert the problem to the equivalent decimal problem; verify that
the signed interpretation is correct when there is no overflow. For
each problem, interpret the operands as unsigned and convert the
problem to the equivalent decimal problem; verify that the unsigned
interpretation is correct when there is no carry (borrow for
subtraction).

 *1. 003F + 02A4

 2. 1B48 + 39E1

 3. 6C34 + 5028

 4. 7FFE + 0002

 *5. FF07 + 06BD

 6. 2A44 + D9CC

 7. FFE3 + FC70

 8. FE00 + FD2D

 *9. FFF1 + 8005

10. 8AD0 + EC78

11. 9E58 − EBBC

12. EBBC − 9E58

Download from finelybook 7450911@qq.com

51

*13. EBBC − 791C

14. 791C − EBBC

15. FFFF3B3A + FFFFCD40

16. FFFFFF7D + 00000082

17. FFFFFF7C + 00000082

18. 78E2A51E + 7D345BA4

19. 7E + 75

20. 8D + A3

21. 5E + 4B

22. FF + 01

1.5 Other Systems for Representing Numbers

Sections 1.2 and 1.3 presented commonly used systems for
representing numbers in computers, strings of character codes (often
ASCII), binary representation for unsigned integers, and 2’s
complement representation for signed integers. This section
introduces three additional schemes: 1’s complement, binary coded
decimal (BCD), and floating point. The 1’s complement system is an
alternative scheme for representing signed integers; it is used in a few
computer systems, but not the Intel 80x86 family. Binary coded
decimal can be thought of as halfway from ASCII to binary; while

Download from finelybook 7450911@qq.com

52

there are a few 80x86 instructions designed to operate on BCD
representations, they are not covered in this text. Floating point
forms are used to represent noninteger values; they are discussed
more fully in Chapter 9. The primary reason for introducing 1’s
complement, BCD, and floating point here is to illustrate that there
are many alternative representations for numeric data, each valid
when used in the correct context.

The 1’s complement system is similar to 2’s complement. A fixed
length is chosen for the representation and a positive integer is simply
the binary form of the number, padded with one or more leading
zeros on the left to get the desired length. To take the negative of the
number, each bit is “complemented”—each zero is changed to one
and each one is changed to zero. This operation is sometimes referred
to as taking the 1’s complement of a number. Although it is easier to
negate an integer using 1’s complement than 2’s complement, the 1’s
complement system has several disadvantages, the most significant
being that it is harder to design circuitry to add or subtract numbers
in this form. There are two representations for zero (Why?) which is
an awkward situation. Also, a slightly smaller range of values can be
represented; for example, −127 to 127 for an 8-bit length, instead of
−128 to 127 in a 2’s complement system.

The byte length 1’s complement representation of the decimal
number 97 is just the value 0110 0001 in binary (61 in hex). Changing
each 0 to 1 and each 1 to 0 gives 1001 1110 (9E in hex), the byte length
1’s complement representation of −97.

There is a useful connection between taking the 1’s complement and
taking the 2’s complement of a binary number. If you take the 1’s

Download from finelybook 7450911@qq.com

53

complement of a number and then add 1, you get the 2’s complement.
This is sometimes easier to do by hand than the subtraction method
presented in Section 1.3. You were asked to verify the equivalence of
these methods in Exercise 1.3.10.

In binary coded decimal (BCD) schemes, each decimal digit is
coded with a string of bits with fixed length, and these strings are
pieced together to form the representation. Most frequently 4 bits are
used for each decimal digit; the choices for bit patterns are shown in
Figure 1.5. Only these 10-bit patterns are used.

One BCD representation of the decimal number 926708 is 1001 0010
0110 0111 0000 1000. Using 1 hex digit as shorthand for 4 bits, and
grouping 2 hex digits per byte, this BCD representation can be
expressed in 3 bytes as

Notice that the BCD representation in hex looks just like the decimal
number.

Download from finelybook 7450911@qq.com

54

Figure 1.5

Binary coded decimal representation

Often BCD numbers are encoded using some fixed number of bytes.
For purposes of illustration, assume a 4-byte representation. For now,
the question of how to represent a sign will be ignored; without
leaving room for a sign, eight binary coded decimal digits can be
stored in 4 bytes. Given these choices, the decimal number 3691 has
the BCD representation

Notice that the doubleword 2’s complement representation for the
same number would be 00 00 0E 6B, and that the ASCII codes for the
four numerals are 33 36 39 31.

It is not as efficient for a computer to do arithmetic with numbers in a
BCD format as with 2’s complement numbers. It is usually very

Download from finelybook 7450911@qq.com

55

inefficient to do arithmetic on numbers represented using ASCII
codes. However, ASCII codes are the only method so far for
representing a number that is not an integer. For example, 78.375 can
be stored as 37 38 2E 33 37 35. Floating point representation
systems allow for nonintegers to be represented, or at least closely
approximated.

Floating point schemes store numbers in a form that corresponds to
scientific notation. The example below shows how to convert the
decimal number 78.375 into IEEE single precision format, which
is 32 bits long. (IEEE is the abbreviation for the Institute of Electrical
and Electronics Engineers.) This format was one of several sponsored
by the Standards Committee of the IEEE Computer Society and
approved by the IEEE Standards Board and the American National
Standards Institute (ANSI). It is one of the floating point formats
used by 80x86 processors.

First, 78.375 must be converted to binary. In binary, the positions to
the right of the binary point (it is not appropriate to say decimal point
for the “.” in a binary number) correspond to negative powers of 2
(1/2, 1/4, 1/8, etc.), just as they correspond to negative powers of 10
(1/10, 1/100, etc.) in a decimal number. Since 0.375 = 3/8 = 1/4 + 1/8
= 0.012 + 0.0012, 0.37510 = 0.0112. The whole part 78 is 1001110 in
binary, so

78.37510 = 1001110.0112

Next, this is expressed in binary scientific notation with the mantissa
written with 1 before the binary point.

Download from finelybook 7450911@qq.com

56

1001110.0112 = 1.001110011 × 26

The exponent is found exactly as it is in decimal scientific notation by
counting the number of positions the point must be moved to the
right or left to produce the mantissa. The notation here is really
mixed; it would be more proper to write 26 as 10110, but it is more
convenient to use the decimal form. Now the floating point number
can be pieced together:

• left bit 0 for a positive number (1 means negative)

• 1000 0101 for the exponent. This is the actual exponent of 6, plus a
bias of 127, with the sum, 133, in 8 bits.

• 00111001100000000000000, the fraction expressed with the
leading 1 removed and padded with zeros on the right to make 23 bits

The entire number is then 0 10000101 00111001100000000000000.
Regrouping gives 0100 0010 1001 1100 1100 0000 0000 0000, or, in
hex

This example worked out easily because 0.375, the noninteger part of
the decimal number 78.375, is a sum of negative powers of 2. Most
numbers are not as nice, and usually a binary fraction is chosen to
closely approximate the decimal fraction. Techniques for choosing
such an approximation are not covered in this text.

To summarize, the following steps are used to convert a decimal

Download from finelybook 7450911@qq.com

57

number to IEEE single format:

• The leading bit of the floating point format is 0 for a positive
number and 1 for a negative number.

• Write the unsigned number in binary.

• Write the binary number in binary scientific notation f23 f22 . . . f0 ×
2e, where f23 = 1. There are 24 fraction bits, but it is not necessary to
write trailing 0’s.

• Add a bias of 12710 to the exponent e. This sum, in binary form, is
the next 8 bits of the answer, following the sign bit. (Adding a bias is
an alternative to storing the exponent as a signed number.)

• The fraction bits f22 f21 . . . f0 form the last 23 bits of the floating
point number. The leading bit f23 (that is always 1) is dropped.

Computer arithmetic on floating point numbers is usually much
slower than with 2’s complement integers. However, the advantages
of being able to represent nonintegral values or very large or small
values often outweigh the relative inefficiency of computing with
them.

 Exercises 1.5

Express each of the following decimal numbers as a word-length 1’s
complement number.

*1. 175

Download from finelybook 7450911@qq.com

58

*2. −175

3. −43

4. 43

Use BCD to encode each of the following decimal numbers in 4 bytes.
Express each answer in hex digits, grouped 2 per byte.

*5. 230

6. 1

7. 12348765

8. 17195

Use IEEE single format to encode each of the following decimal
numbers in single-precision floating point.

9. 175.5

10. −1.25

11. −11.75

12. 45.5

1.6 Chapter Summary

All data are represented in a computer using electronic signals. These

Download from finelybook 7450911@qq.com

59

can be interpreted as patterns of binary digits (bits). These bit
patterns can be thought of as binary numbers. Numbers can be
written in decimal, hexadecimal, or binary forms.

For representing characters, most microcomputers use ASCII codes.
One code is assigned for each character, including nonprintable
control characters.

Integer values are represented in a predetermined number of bits. An
unsigned integer is simply the number in binary. Signed integers are
stored in 2’s complement form; a positive number is stored as a
binary number (with at least one leading zero to make the required
length), and the pattern for a negative number can be obtained by
subtracting the positive form from a 1 followed by as many 0’s as are
used in the length. A 2’s complement negative number always has a
leading 1 bit. A hex calculator, used with care, can simplify working
with 2’s complement numbers.

Addition and subtraction are easy with 2’s complement numbers.
Since the length of a 2’s complement number is limited, there is the
possibility of a carry, a borrow, or overflow.

Other formats in which numbers are stored are 1’s complement,
binary coded decimal (BCD), and floating point.

1Some early computer systems used byte sizes different from 8 bits.

2Some other computer architectures use a word size different from 16
bits.

Download from finelybook 7450911@qq.com

60

PARTS OF A COMPUTER SYSTEM CHAPTER

2

2.1 PC Hardware: Memory

2.2 PC Hardware: The CPU

2.3 PC Hardware: Input/Output Devices

2.4 PC Software

2.5 Chapter Summary

A practical computer system consists of hardware and software. The
major hardware components of a typical microcomputer system are a
central processing unit (CPU), memory circuits, a keyboard for input,
a visual display, specialized input/output devices like a mouse or a
network card, and one or more disk drives to store programs and
data. Software refers to the programs that the hardware executes,
including system software and application software.

These basic components vary from one computer system to another.
This chapter discusses how the memory and CPU look to the
assembly language programmer for a particular class of
microcomputers, those using 80x86 microprocessors, where 80x86
refers to the series of products that began with the Intel 8086 and

Download from finelybook 7450911@qq.com

61

8088 and continues through current processors such as the Intel
Core i7. It also refers to most Advanced Micro Devices (AMD)
processors since these execute essentially the same instruction set.
This text assumes a computer that has an 80386 or higher processor
and a Microsoft Windows operating system such as XP, Vista, or
Windows 8. The bulk of this text is concerned with using assembly
language to program these systems, with the intent of showing how
such systems work at the hardware level. Some of the differences
between 32-bit and 64-bit architectures and operating environments
are covered.

2.1 PC Hardware: Memory

The memory in a computer is logically a collection of “slots,” each of
which can store 1 byte of instructions or data. Each memory byte has
a numeric label called its physical address. The 32-bit processors
such as the Pentium use 32-bit labels, each of which can be expressed
as 8 hex digits. The first address is 0000000016 and the last address
can be as large as the unsigned number FFFFFFFF16. Figure 2.1
shows a logical picture of the possible memory in a 32-bit PC. Since
FFFFFFFF16 = 4,294,967,295, a 32-bit PC can contain up to
4,294,967,296 bytes of memory, or 4 GB. Remember that 210 = 1 KB
(kilobyte), 220 = 1 MB (megabyte), 230 = 1 GB (gigabyte), and 240 = 1
TB (terabyte).

Prior to the 80386 chip, the 80x86 family of processors could only
directly address 220 bytes of memory. They used 20-bit physical
addresses, often expressed as 5-hex-digit addresses ranging from
00000 to FFFFF.

Download from finelybook 7450911@qq.com

62

The 64-bit 80x86 processors can operate in either 32-bit or 64-bit
mode. When in 32-bit mode, they use 32-bit addresses just like 32-bit
processors. In 64-bit mode they internally store 64-bit addresses.
However, processors that are in production at the time this text is
being written address far less memory than the theoretical maximum
of 264 bytes. For example, the Intel Core i7 uses a maximum of 32 GB
(= 2?) of memory, while some Intel Xeon processors will address up
to 16 TB (= 2?) of memory.

Physically a PC’s memory consists of integrated circuits (ICs). Many
of these chips provide random access memory (RAM) that can
be written to or read from by program instructions. The contents of
RAM chips are lost when the computer’s power is turned off. Other
ICs are read only memory (ROM) chips that permanently retain
their contents, and which can be read from but not written to.

The assembly language programs in this text use a flat memory
model. This means that the programs actually encode 32-bit or 64-bit
addresses logically to reference locations in a single memory space
where data and instructions are stored.

The Intel 80x86 architecture also provides for a segmented
memory model. In the 8086/8088 CPU, this is the only memory
model available. With the 8086/8088, the PC’s memory is visualized
as a collection of segments, each segment 64 KB long, starting on an
address that is a multiple of 16. This means that one segment starts at
address 00000, another (overlapping the first) starts at address 16
(0001016), another starts at address 32 (0002016), and so on. Notice
that the starting address of a segment ends in 0 when written in hex.
The segment number of a segment consists of the first 4 hex digits

Download from finelybook 7450911@qq.com

63

of its physical address.

Figure 2.1

Logical picture of PC memory in 32-bit system

A program written for the 8086/8088 does not encode a 5-hex-digit
address. Instead, each memory reference depends on its segment
number and a 16-bit offset from the beginning of the segment.
Normally only the offset is encoded, and the segment number is
deduced from context. The offset is the distance from the first byte of
the segment to the byte being addressed. In hex an offset is between
0000 and FFFF16. The notation for a segment–offset address is the 4-
hex-digit segment number followed by a colon (:) followed by the 4-
hex-digit offset.

As an example, 18A3:5B27 refers to the byte that is 5B27 bytes from
the beginning of the segment starting at address 18A30. Add the
starting address and the offset to get the 5-hex-digit address.

From the 80386 on, 80x86 processors have had both 16-bit and 32-
bit segmented memory models available. Segment numbers are still

Download from finelybook 7450911@qq.com

64

16-bits long, but they do not directly reference a segment in memory.
Instead, a segment number is used as an index into a table that
contains the actual 32-bit starting address of the segment. In the 32-
bit segmented model, a 32-bit offset is added to that starting address
to compute the actual address of the memory operand. Segments can
be logically useful to a programmer—in the segmented Intel model,
the programmer normally assigns different memory segments to
code, data, and a system stack. The 80x86 flat memory model is really
a 32-bit segmented model with all segment registers containing the
same value.

When a 64-bit processor is in 32-bit mode, it operates as described in
the previous paragraph. However, segmented memory is not used in
64-bit mode.

In reality, the address generated by a program is not necessarily the
physical address at which an operand is stored as the program
executes. There is an additional layer of memory management
performed by the operating system and the 80x86 CPU. A paging
mechanism is used to map the program’s addresses into physical
addresses. Paging is useful when a logical address generated by a
program exceeds the maximum address in the physical memory
actually installed in a computer. It can also be used to swap parts of a
program from disk as needed when the program is too large to fit into
physical memory. The memory management mechanism will be
transparent to us as we program in assembly language.

 Exercises 2.1

1. Suppose that you buy a 32-bit PC with 512 MB of RAM. What is the

Download from finelybook 7450911@qq.com

65

8-hex-digit address of the “last” byte of installed memory?

*2. Suppose that you buy a 64-bit PC with 1 GB of RAM. What is the
16-hex-digit of the “last” byte of installed memory?

3. Suppose that you buy a 64-bit PC with 4 GB of RAM. What is the
16-hex-digit of the “last” byte of installed memory?

4. This section states that an Intel Core i7 processor can address up to
32 GB of memory. What power of 2 is 32 GB?

5. This section states that some Intel Xeon processors can address up
to 16 TB of memory. What power of 2 is 16 TB?

6. Suppose that you discover that RAM addresses 000C0000 to
000C7FFF are reserved for a PC’s video adapter in a 32-bit computer.
How many bytes of memory is this?

7. Suppose that you have an Intel 8086. Find the 5-hex-digit address
that corresponds to each of these segment:offset pairs:

*(a) 2B8C:8D21 (b) 059A:7A04 (c) 1234:5678

2.2 PC Hardware: The CPU

The 8086/8088 CPU can execute over 200 different instructions.
This instruction set has been expanded significantly as the 80x86
processor family has grown. Much of this text is concerned with using
these instructions to implement programs so that you understand
machine-level computer capabilities. There are other processor
families that execute different instruction sets. However, many have a

Download from finelybook 7450911@qq.com

66

similar architecture, so that the basic principles you learn about
80x86 CPUs also apply to these systems.

An 80x86 CPU contains registers, each an internal storage location
that can be accessed much more rapidly than a location in RAM. The
application registers are of most concern to the programmer.
These are the basic program execution registers, as well as floating
point registers, MMX, and XMM registers in some of the processors.
A 32-bit 80x86 CPU (from 80386 on) has 16 basic program
execution registers. Typical instructions transfer data between these
registers and memory or perform operations on data stored in the
registers or in memory. All of these registers have names, and some of
them have special purposes. Their names are given below and some of
the special purposes are described. You will learn additional special
purposes later.

The EAX, EBX, ECX, and EDX registers are called data registers or
general registers. The EAX register is sometimes known as the
accumulator because it is the destination for many arithmetic
results. An example of an instruction using the EAX register is

add eax, 158

that adds the decimal number 158 (converted to doubleword-length
2’s complement form) to the number already in EAX, replacing the
number originally in EAX by the sum. (Full descriptions of the add
instruction and others mentioned here are in Chapter 4.)

Each of EAX, EBX, ECX, and EDX is 32 bits long. The Intel
convention is to number bits right to left starting with 0 for the low-

Download from finelybook 7450911@qq.com

67

order bit, so that if you view one of these registers as 4 bytes, then the
bits are numbered like this:

Parts of the EAX register can be addressed separately from the whole.
The low-order word, bits 0–15, is known as AX.

The instruction

sub ax, 10

subtracts 10 from the word stored in AX without changing any of the
high-order bits (16–31) of EAX.

Similarly, the low-order byte (bits 0–7) and the high-order byte (bits
8–15) of AX are known as AL and AH, respectively.

The instruction

mov ah, '*'

copies 2A, the ASCII code for an asterisk, to bits 8–15, without
changing any of the other bits of EAX.

Download from finelybook 7450911@qq.com

68

The EBX, ECX, and EDX registers also have low-order words BX, CX,
and DX, which are divided into high-order and low-order bytes BH
and BL, CH and CL, and DH and DL. Each of these parts can be
changed without altering other bits. It may be a surprise that there
are no comparable names for the high-order words in EAX, EBX,
ECX, and EDX—you cannot reference bits 16–31 independently by
name.

The 8086 through 80286 processors have four 16-bit general
registers called AX, BX, CX, and DX. The “E” was added for
“extended” with the 32-bit 80386 registers. The 80386 and later
architectures effectively include the original 16-bit architecture.

There are four additional 32-bit registers that Intel also calls general
registers: ESI, EDI, ESP, and EBP. In fact, you can use these registers
for operations like arithmetic, but normally you should save them for
their special purposes. The ESI and EDI registers are index
registers, where SI stands for “source index” and DI stands for
“destination index.” One of their uses is to indicate memory addresses
of the source and destination when strings of characters are copied
from one place to another in memory. They can also be used to
implement array indexes. The names SI and DI can be used for the
low-order words of ESI and EDI, respectively, but we have no
occasion to do this.

The ESP register is the stack pointer for the system stack. It is
sometimes changed directly by a program, but is more frequently
changed automatically when data is pushed onto the stack or popped
from the stack. One use for the stack is in procedure (subroutine)
calls. The address of the instruction following the procedure call

Download from finelybook 7450911@qq.com

69

instruction is stored on the stack. When it is time to return, this
address is retrieved from the stack. You will learn much more about
the stack and the stack pointer register in Chapter 6.

The EBP register is the base pointer register. Normally the only
data item accessed in the stack is the one at the top of the stack.
However, the EBP register is often used to mark a fixed point in the
stack other than the stack top, so that data near this point can be
accessed. This is especially important with procedure calls and will be
discussed in Chapter 6.

In addition to the eight general-purpose registers, 32-bit 80x86 CPUs
have six 16-bit segment registers: CS, DS, ES, FS, GS, and SS. In
the older 16-bit segmented memory model, the CS register contains
the segment number of the code segment, the area of memory storing
instructions currently being executed. Since a segment is 64 KB long,
the length of a program’s collection of instructions is often limited to
64 KB; a longer program requires that the contents of CS be changed
while the program is running. Similarly, DS contains the segment
number of the data segment, the area of memory storing most data.
The SS register contains the segment number of the stack segment,
where the stack is maintained. The ES register contains the segment
number of the extra data segment that could have multiple uses. The
FS and GS registers were added with the 80386, and make possible
easy access to two additional data segments.

With the flat 32-bit memory model we use, the segment registers
become essentially irrelevant to the programmer. The operating
system gives each of CS, DS, ES, and SS values. Recall that each value
is a pointer to a table entry that includes the actual starting address of

Download from finelybook 7450911@qq.com

70

the segment. That table also includes the size of your program, so that
the operating system can indicate an error if your program
accidentally or deliberately attempts to write in another area.
However, all of this is transparent to the programmer who can just
think in terms of 32-bit addresses.

The 32-bit instruction pointer, or EIP register, cannot be directly
accessed by an assembly language programmer. The CPU has to fetch
instructions to be executed from memory, and EIP keeps track of the
address of the next instruction to be fetched. If this were an older,
simpler computer architecture, the next instruction to be fetched
would also be the next instruction to be executed. However, an 80x86
CPU actually fetches instructions to be executed later while it is still
executing prior instructions, making the assumption (usually correct)
that the instructions to be executed next will follow sequentially in
memory. If this assumption turns out to be wrong, for example, if a
procedure call is executed, then the CPU throws out the instructions it
has stored, sets EIP to contain the address of the procedure, and then
fetches its next instruction from the new address.

In addition to prefetching instructions, an 80x86 CPU actually starts
execution of an instruction before it finishes execution of prior
instructions. This use of pipelining increases effective processor
speed.

The final register is called the flags register. The name EFLAGS
refers to this register, but this mnemonic is not used in instructions.
Some of its 32 bits are used to set some characteristic of the 80x86
processor. Other bits, called status flags, indicate the outcome of
execution of an instruction. Some of the flag register’s 32 bits are

Download from finelybook 7450911@qq.com

71

named, and the names we use most frequently are given in Figure 2.2

Bit 11 is the overflow flag (OF). It is set to 0 following an addition in
which no overflow occurred and to 1 if overflow did occur. Similarly,
bit 0, the carry flag (CF), indicates the absence or presence of a carry
out from the sign position after an addition. Bit 7, the sign flag,
contains the left bit of the result after some operations. Since the left
bit is 0 for a non-negative 2’s complement number and 1 for a
negative number, SF indicates the sign. Bit 6, the zero flag (ZF), is set
to 1 if the result of an operation is zero, and to 0 if the result is
nonzero. Bit 2, the parity flag, is based only on the low-order 8 bits of
a result; it is set to 1 if an even number of these bits are 1’s and to 0 if
an odd number of these bits are 1’s. Other flags will be described later
when their uses are clearer.

Figure 2.2

Selected EFLAGS bits

As an example of how flags are set by instructions, consider again the
instruction

add eax, 158

Download from finelybook 7450911@qq.com

72

This instruction affects CF, OF, PF, SF, and ZF. Suppose that EAX
contains the word FF FF FF F3 prior to execution of the instruction.
Since 15810 corresponds to the doubleword 00 00 00 9E, this
instruction adds FF FF FF F3 and 00 00 00 9E, putting the sum 00
00 00 91 in the EAX register. It sets the carry flag CF to 1 since there
is a carry, the overflow flag OF to 0 since there is no overflow, the sign
flag SF to 0 (the leftmost bit of the sum 00 00 00 91), and the zero
flag ZF to 0 since the sum is not zero. The parity flag PF is set to 0
since 1001 0001 (the low-order byte 91 in binary) contains three 1
bits, an odd number.

The 32-bit 80x86 application registers are summarized in Figure 2.3
All but the earliest 32-bit 80x86 processors also contain a collection
of registers for floating point operations. These are discussed in
Chapter 9. In addition, many 80x86 processors have MMX and XMM
registers; these are also discussed further in Chapter 9.

In the evolution of the 80x86 family, just as the 32-bit architecture
effectively extended the 16-bit architecture, the 64-bit architecture
extends the 32-bit architecture. There are sixteen 64-bit general
registers. The 64-bit register RAX extends the 32-bit register EAX,
RBX extends EBX, and so forth. However, there are eight new 64-bit
general registers named R8, R9, R10, R11, R12, R13, R14, and R15.
Just as you can refer to the low-order word of EAX as AX in a 32-bit
environment, you can refer to the low-order doubleword of RAX as
EAX in a 32-bit environment. For the new registers R8–R15, you
append a D to refer to the low-order doubleword. For example, R9D
refers to the low-order 32 bits of R9. Similarly, R11W refers to the
low-order word (16 bits) of R11, and R15B refers to the low-order byte
of R15.

Download from finelybook 7450911@qq.com

73

Figure 2.3

32-bit 80x86 application registers

Recall that in the 32-bit architecture, you can also access bits 8–16 of
EAX, EBX, ECX, and EDX using names AH, BH, CH, and DH,
respectively. These bytes cannot be accessed by name with some 64-
bit instructions.

Index registers ESI and EDI are extended to 64-bit registers RSI and

Download from finelybook 7450911@qq.com

74

RDI, respectively. Low-order doublewords can be referenced as ESI
and EDI. ESP and EBP are extended to 64-bit registers RSP and RBP,
respectively.

Segment registers have not changed in the 64-bit architecture.
However, recall that they are essentially unused when the processor is
operating in 64-bit mode.

In the 64-bit environment, the instruction pointer is the 64-bit
register RIP. The flags are stored in the 64-bit register RFLAGS. The
low-order 32 bits correspond exactly to EFLAGS. Intel
documentation says that the high-order 32 bits of RFLAGS are
“reserved.”

Here is an example of an instruction that is legal in a 64-bit program,
but not in a 32-bit program:

add rax, r12

This adds the quadword in R12 to the quadword in RAX, replacing
the value in RAX.

Figure 2.4 summarizes the basic program execution registers in the
64-bit architecture. It does not list floating point, MMX, and XMM
registers, the other application registers.

Download from finelybook 7450911@qq.com

75

Figure 2.4

64-bit 80x86 application registers

 Exercises 2.2

1. Draw a diagram showing the relationship between the ECX, CX,

Download from finelybook 7450911@qq.com

76

CH, and CL registers.

2. Draw a diagram showing the relationship between the RBX, EBX,
BX, and BL registers.

*3. Draw a diagram showing the relationship between the R12, R12D,
R12W, and R12B registers.

4. For each add instruction in this problem, assume that EAX
contains the given contents before the instruction is executed, and
give the contents of EAX as well as the values of the CF, OF, SF, and
ZF flags after the instruction is executed:

EAX Before Instruction

(a) 00 00 00 45 add eax, 45

*(b) FF FF FF 45 add eax, 45

(c) 00 00 00 45 add eax, -45

(d) FF FF FF 45 add eax, -45

*(e) FF FF FF FF add eax, 1

Download from finelybook 7450911@qq.com

77

(f) 7F FF FF FF add eax, 100

(g) 00 00 00 99 add eax, 1

(h) 00 00 03 AF add eax, 10

2.3 PC Hardware: Input/Output Devices

A CPU and memory make a computer, but without input devices to
get data or output devices to display or write data the computer is not
usable for many purposes. Typical I/O devices include a keyboard
and a mouse for input, a monitor to display output, and a disk drive
for data and program storage.

An assembly language programmer has multiple ways to look at I/O
devices. At the lowest level, each device uses a collection of addresses
or ports in the I/O address space. There are 64-KB port addresses in
the 80x86 architecture, and a typical I/O device uses three to eight
ports. These addresses are distinct from ordinary memory addresses.
The programmer uses instructions that output data or commands to
these ports, or input data or status information from them. Such
programming is very tedious and the resulting programs are difficult
to reuse with different computer systems.

Instead of using separate port addresses, a computer system can be

Download from finelybook 7450911@qq.com

78

designed to use addresses in the regular memory address space for
I/O device access. Such a design is said to use memory-mapped
input/output. Although memory-mapped I/O is possible with the
80x86, it is not used with most PCs.

Many operating systems, including Windows XP and later Windows
versions, put the CPU in a protected mode that does not allow
ordinary application programs directly to access I/O ports. They
provide a variety of input and output procedures that are much easier
to use than is port-level I/O.

 Exercises 2.3

It was stated in this section that there are 64-KB port addresses.

1. How many addresses is this (in decimal)?

*2. Assuming that the first address is 0, what is the last address?

3. Express the range of port addresses in hex.

2.4 PC Software

Without software, computer hardware is virtually useless. Software
refers to the programs or procedures that are executed by the
hardware. This section discusses different types of software.

2.4.1 PC Software: The Operating System

A general-purpose computer system needs an operating system to
enable it to run other programs. The original IBM PC usually ran the

Download from finelybook 7450911@qq.com

79

operating system known as PC-DOS; compatible systems used the
very similar operating systems called MS-DOS. DOS stands for disk
operating system. All of these operating systems were developed
by Microsoft Corporation; PC-DOS was customized by IBM to work
on the IBM PC, and the versions of MS-DOS that ran on other
computer systems were sometimes customized by their hardware
manufacturers. Later versions of PC-DOS were produced solely by
IBM.

The DOS operating systems provide the user a command line
interface. DOS displays a prompt (such as C: \>) and waits for the
user to type a command. When the user presses the Enter (or Return)
key, DOS interprets the command. The command may be to perform
a function that DOS knows how to do (such as displaying the
directory of file names on a disk), or it may be the name of a program
to be loaded and executed.

Many users prefer a graphical user interface that displays icons
representing tasks or files, so that the user can make a selection by
clicking on an icon with a mouse. Microsoft Windows provides a
graphical user interface for PCs. The versions through Windows 3.1
enhanced the operating environment, but still required DOS to run.
Windows 95 included a major revision of the operating system, which
was no longer sold separately from the graphical user interface. In
Windows 95 the graphical user interface became the primary user
interface, although a command line interface was still available. The
Windows operating system has continued to evolve and is currently
available in many versions.

2.4.2 PC Software: Text Editors

Download from finelybook 7450911@qq.com

80

A text editor is a program that allows the user to create or modify
text files that are stored on secondary storage like a hard disk. A text
file is a collection of ASCII codes. The text files of most interest in this
text are assembly language source code files—files that contain
assembly language statements. A text editor is sometimes used to
prepare a data file.

Microsoft Windows includes a text editor called Notepad. This full-
screen editor uses all or part of the monitor display as a window into
the file. The user can move the window up or down (or left or right
when the window is narrow) to display different portions of the file.
To make changes to the file, cursor control keys or the mouse are
used to move the cursor to the place to be modified, and the changes
are entered. Notepad can be used to write or modify assembly
language source programs, but we do most editing in an integrated
development environment, discussed below.

Word processors are text editors that provide extra services for
formatting and printing documents. For example, when one uses a
text editor, usually the Enter key must be pressed at the end of each
line. However, a word processor usually wraps words automatically to
the next line as they are typed, so that Enter or some other key is used
only at the end of a paragraph. The word processor takes care of
putting the words on each line within specified margins. A word
processor can sometimes be used as an editor to prepare an assembly
language source code file, but some word processors store formatting
information with the file along with the ASCII codes for the text. Such
extra information may make the file unsuitable as an assembly
language source code file, so it is safest to avoid a word processor
when editing an assembly language source program.

Download from finelybook 7450911@qq.com

81

2.4.3 PC Software: Language Translators and the Linker

Language translators are programs that translate a programmer’s
source code into a form that can be executed by the computer. These
are usually not provided with an operating system. Language
translators can be classified as interpreters, compilers, or assemblers.

Interpreters directly decipher a source program. To execute a
program, an interpreter looks at a line of source code and follows the
instructions of that line. Programs written in the Basic or Lisp
languages are often executed by an interpreter. Although the
interpreter itself may be a very efficient program, interpreted
programs often execute relatively slowly. An interpreter is generally
convenient because it allows a program to be quickly changed and
run. The interpreter itself is sometimes a large program.

Compilers start with source code and produce object code that
consists mostly of instructions to be executed by the intended CPU.
High-level languages such as Fortran, Cobol, C, and C++ are
commonly compiled. The object code produced by a compiler must
often be linked or combined with other object code to make a
program that can be loaded and executed. This requires a utility
called a linker, usually provided with a compiler. Instead of
producing code for a particular CPU, some compilers produce an
intermediate code that can be very efficiently interpreted; this is
common with Java compilers.

An assembler is used much like a compiler, but it translates
assembly language rather than a high-level language into machine
code. The resulting files must normally be linked to prepare them for

Download from finelybook 7450911@qq.com

82

execution. Because assembly language is closer to machine code than
a high-level language, the job of an assembler is somewhat simpler
than the job of a compiler. Assemblers historically existed before
compilers.

Using again the assembly language instruction cited in Section 2.2,

add eax, 158

is translated by the assembler into the 5 object code bytes 05 00 00
00 9E. The first byte 05 is the op code (operation code) that says to
add the number contained in the next 4 bytes to the doubleword
already in the EAX register. The doubleword 00 00 00 9E is the 2’s
complement representation of 15810.

A debugger allows a programmer to control execution of a program,
stepping through instructions one at a time, or pausing at a preset
breakpoint. When the program is temporarily stopped, the
programmer can examine the contents of variables in a high-level
language, or registers or memory in assembly language. A debugger is
useful both to find errors and to “see inside” a computer to find out
how it executes programs.

Integrated development environments use a single interface to
access an editor, a compiler, an assembler, and a linker. They also
initiate execution of the program being developed, and frequently
provide other utilities, such as a debugger. An integrated
development environment is convenient, but may not always be
available for a particular programming language.

Download from finelybook 7450911@qq.com

83

2.5 Chapter Summary

This chapter discussed the hardware and software components that
make up a PC microcomputer system.

The major hardware components are the CPU and memory. The CPU
executes instructions and uses its internal registers for instruction
operands and results, and to determine addresses of data and
instructions stored in memory. Objects in memory can be addressed
by 32-bit addresses with a 32-bit CPU and by 64-bit addresses with a
64-bit CPU. In a flat memory model, such addresses are effectively
actual addresses. In a segmented memory model, addresses are
calculated from a starting address determined from a segment
number, and an offset within the segment.

Input/output at the hardware level uses a separate collection of
addresses called “ports.” Input/output is usually done through
operating systems procedure calls.

An operating system is a vital software component. Through a
command line or a graphical user interface, it interprets the user’s
requests to carry out commands, or to load and execute programs.

A text editor, an assembler, and a linker are necessary software tools
for the assembly language programmer. These may be separate
programs or available as part of an integrated development
environment. A debugger is also a useful programmer’s tool.

Download from finelybook 7450911@qq.com

84

ELEMENTS OF ASSEMBLY LANGUAGE CHAPTER

3

3.1 Assembly Language Statements

3.2 A Complete 32-Bit Example Using the Debugger

3.3 Data Declarations

3.4 Instruction Operands

3.5 A Complete 32-Bit Example Using Windows Input/Output

3.6 Input/Output and Data Conversion Using Macros Defined in
IO.H

3.7 64-Bit Examples

3.8 Chapter Summary

This chapter tells how to write and execute assembly language
programs in the Visual Studio 2012 environment. The first section
describes the statements that are accepted by Visual Studio’s
assembler. Then there is an example of a complete assembly language
program, with instructions on how to assemble, link, and execute this
program using Visual Studio’s debugger. Sections 3.3 and 3.4 provide
additional information about operands for data definition directives

Download from finelybook 7450911@qq.com

85

and executable instructions, respectively. Section 3.5 gives an
example of an assembly language program that employs input and
output, and Section 3.6 describes in more detail the I/O macros used
in this text. Section 3.7 presents examples of programs that use 64-bit
registers and describes how to use Visual Studio for assembly
language in a 64-bit operating system.

3.1 Assembly Language Statements

An assembly language source code file consists of a collection of
statements. Most statements fit easily on an 80-character line, a
good limit to observe so that source code can easily be printed or
displayed in a window. However, the assembler allows much longer
statements; these can be extended over more than one physical line
using backslash (\) characters at the end of each line except the last.

Figure 3.1 shows a short but complete assembly language program.
This example is used here and in the next section of this chapter to
illustrate basic assembly statements and the mechanics of editing,
assembling, linking, and executing a program with execution under
the control of the debugger.

Because assembly language programs are far from self-documenting,
it is important to use an adequate number of comments. A comment
can be used on any line. A semicolon (;) begins the comment, and the
comment then extends until the end of the line. An entire line is a
comment if the semicolon is in column 1, or a comment can follow
working parts of a statement. Our example has comments on most
lines. As important as they are for the human reader, comments are
ignored by the assembler.

Download from finelybook 7450911@qq.com

86

Figure 3.1

Example assembly language program

There are three types of functional assembly language statements:
instructions, directives, and macros. An instruction is translated by
the assembler into 1 or more bytes of object code (machine code) that
is executed at run time. Each instruction corresponds to one of the
operations that the 80x86 CPU can perform. Our program has five
instructions:

mov eax, number

Download from finelybook 7450911@qq.com

87

add eax, 158
mov sum, eax
mov eax, 0
ret

The first of these instructions copies the doubleword in memory at
the location identified by number to the EAX register in the CPU. The
second adds a doubleword representation of 158 to the current
doubleword in the EAX register. The third copies the doubleword in
the EAX register to the doubleword in memory identified by sum. The
last two instructions exit to the operating system. Much of this text
describes the formats and uses of 80x86 instructions.

A directive tells the assembler to take some action. Such an action
generally does not result in machine instructions and may or may not
cause object code to be generated. In our example program, the
directive

.586

tells the assembler to recognize 80x86 instructions that use 32-bit
operands. The directive

.MODEL FLAT

tells the assembler to generate code for flat memory model execution.
These directives and many others start with a period, but others do
not.

Our example program contains several other directives. The directive

Download from finelybook 7450911@qq.com

88

.STACK 4096 tells the assembler to generate a request to the
operating system to reserve 4096 bytes for the system stack. The
system stack is used at execution time for procedure calls and local
storage. A stack containing 4096 bytes is large enough for most
programs.

The .DATA directive tells the assembler that data items are about to
be defined in a data segment. Each DWORD directive tells the
assembler to reserve a doubleword of memory for data, the first
identified with the label number and initialized to FFFFFF97
(−10510), the second identified with the label sum and given the
default initial value of 00000000. Section 3.3 provides additional
information about data definition directives.

The .CODE directive tells the assembler that the next statements are
executable instructions in a code section. The PROC directive
marks the beginning of a procedure and the ENDP directive the end
of a procedure. The END directive on the last line tells the assembler
to stop assembling statements. The label main on the PROC and END
directives names the procedure. In the console32 environment
(described in Section 3.2), you must call your procedure main.

A macro is “shorthand” for a sequence of other statements—
instructions, directives, or even other macros. The assembler expands
a macro to the statements it represents, and then assembles the
resulting statements. Our example program uses no macros. You will
see several examples of macros in Sections 3.5 and 3.6.

A statement that is more than just a comment almost always contains
a mnemonic that identifies the purpose of the statement, and may

Download from finelybook 7450911@qq.com

89

have three other fields: name, operand, and comment. These
components must be in the following order:

name mnemonic operand(s) ; comment

For example, a program might contain the statement

zeroCount: mov ecx, 0 ; initialize count to zero

The name field ends with a colon (:) when used with an instruction.
However, when used with a directive, the name field has no colon.
The mnemonic in a statement indicates a specific instruction,
directive, or macro. Some statements have no operand, others have
one, others have more. If there is more than one, operands are
separated by commas; spaces can also be added. Sometimes a single
operand has components with spaces between them, making it look
like more than one operand.

One use for the name field is symbolically to reference an
instruction’s address in memory. Other instructions can then easily
refer to the labeled instruction. If the add instruction in the sample
program needed to be repeatedly executed in a program loop, then it
could be coded

addLoop: add eax, 158

The instruction can then be the destination of a jmp (jump)
instruction, the assembly language version of a goto:

jmp addLoop ; repeat addition

Download from finelybook 7450911@qq.com

90

Notice that the colon does not appear at the end of the name addLoop
in the jmp instruction.

High-level language loop structures like while or for are not available
in machine language. However, they can be implemented using jmp
or other instructions. You will learn how this is done in Chapter 5.

It is often useful to have a line of source code consisting of just a
name, for example

endWhile1:

Such a label might mark the end of a while loop. Technically it
references the address of whatever instruction follows the loop, but
you don’t have to know what that next statement is to complete
coding of the while loop.

Names and other identifiers used in assembly language are formed
from letters, digits, and special characters. The allowable special
characters are underscore (_), question mark (?), dollar sign ($), and
at sign (@). The special characters are rarely used in this text. A name
may not begin with a digit. An identifier may have up to 247
characters, so that it is easy to form meaningful names. The
assembler does not allow instruction mnemonics, directive
mnemonics, register designations, and other words that have a
special meaning to the assembler to be used as names. Appendix B
contains a list of reserved identifiers.

Assembly language statements can be entered using either uppercase
or lowercase letters. Normally the assembler does not distinguish

Download from finelybook 7450911@qq.com

91

between uppercase and lowercase. It can be instructed to distinguish
within identifiers, but this is only needed when you are linking to a
program written in a language that is case-sensitive. Mixed-case code
is easier for people to read than code written in all uppercase or
lowercase. All uppercase code is especially difficult to read. The
convention followed for programs in this text is to use mostly
lowercase source code except for uppercase directives.

The assembler accepts code that is almost impossible for a person to
read. However, since your programs will also be read by other people,
you should make your code as readable as possible. Good program
formatting and use of lowercase letters will help.

Recall that assembly language statements can contain name,
mnemonic, operand, and comment fields. A well-formatted program
has these fields aligned as you read down the program. Always put
names in column 1. Mnemonics might all start in column 12,
operands might all start in column 18, and comments might all start
in column 30—the particular columns are not as important as being
consistent. Blank lines are allowed in an assembly language source
file; they visually separate sections of assembly language code, just
like breaking a written narrative into paragraphs.

 Exercises 3.1

1. Name and describe the three types of assembly language
statements.

2. For each combination of characters in this problem, determine
whether it is an allowable label (name). If not, give a reason.

Download from finelybook 7450911@qq.com

92

(a) repeat

(b) exit

*(c) more

(d) EndIf

*(e) 2much

(f) add

(g) if

(h) add2

(i) EndOfProcessLoop

3.2 A Complete 32-Bit Example Using the Debugger

This section describes how actually to run the example shown in
Figure 3.1 in the Microsoft Visual Studio 2012 environment. It
assumes that you already have Visual Studio 2012 installed on your
computer. The easiest way to generate a new project is to start with
the console32 project folder in the software collection provided for
this text. Before the steps are given, we give a brief description of the
text’s provided software.

The software used in this text is available from the text’s page on the
publisher’s web site. It provides a framework for using Visual Studio
to run assembly language programs. Although this text describes the

Download from finelybook 7450911@qq.com

93

files used with Visual Studio 2012, there are also versions that work
with Visual Studio 2008 and Visual Studio 2010. Assembly language
programming in all these environments is similar.

Figure 3.2

Framework packages used in this text

Each software package includes four folders: console32,
windows32, console64, and windows64. The packages are
summarized in Figure 3.2. Packages whose names end in “32”
produce 32-bit assembly language programs, even when used with a
64-bit operating system. The packages whose names end in “64”
produce 64-bit programs and can only be used if your computer has a
64-bit operating system.

The packages whose names start with “console” provide a framework
for writing assembly language programs that demonstrate how 80x86
instructions work. They have no provision for input or output, but in

Download from finelybook 7450911@qq.com

94

the Visual Studio environment, the debugger allows you to see how
registers and memory are affected by the instructions. This is all that
is required to understand how the computer works on the inside, the
major objective of this text.

The packages whose names start with “windows” add the ability to do
simple input and output using macros that are described later in this
chapter. These macros expand to instructions that call procedures
written in the C programming language. These C procedures actually
do the input or output, but it is not necessary to understand them in
order to use the I/O macros. Since you are still using the Visual
Studio environment, the debugger is available with windows32 and
windows64 programs, too, and is frequently very useful.

Copy the console32 folder to a convenient location on your computer.
You may rename the folder to describe the particular project, perhaps
example1.

Open the project folder by double-clicking on it. Inside you will see a
file named console32.sln and a folder named console32. (If you don’t
see the .sln extension, you can use the options in your version of
Windows to show extensions.) Do not rename the inner console32
folder even if you renamed the folder that contains it. Double-click
console32.sln to start Visual Studio 2012. You will see a screen similar
to the one shown in Figure 3.3. Visual Studio 2012 is highly
configurable so you may not see exactly the same window
arrangement. You can always return to the default windows layout by
clicking the Window option and then choosing Reset Window
Layout.

Download from finelybook 7450911@qq.com

95

Figure 3.3

Project newly opened in Visual Studio 2012

Look in the Solution Explorer window and click the symbol to the
left of console32. This opens up a list showing folders External
Dependencies, Header Files, Resource Files, and Source Files, all but
the first empty since this project does not yet have user files
associated with it. We now want to add our program as a source file.
Right-click Source Files, click Add, then New Item Be sure that
Code is selected under Visual C++. Type a name for the file in the
Name box. Figure 3.4 shows the name entered as example1.asm. You
can choose a different name, but be sure that it ends with the .asm
extension. Finally click the Add button. A text editor window named
example1.asm opens.

Download from finelybook 7450911@qq.com

96

You now have a choice. You can carefully type the code from Figure
3.1 into the example1.asm text editor window, or you can use
Notepad to open fig3-1.asm from the Code folder of this text’s
software, select the entire contents (using control-A, for example),
copy the text (control-C), click in the example1.asm window, and
paste the text (control-V). The copy-and-paste method is definitely
easier than typing the file!

You are now ready to execute the program. When you drop down the
Debug menu in Visual Studio, you see a Start Debugging option, with
F5 given as the shortcut key. You can either click on Start Debugging
or just press F5 without opening the Debug menu. If you get a
message that says “This project is out of date” click Yes to assemble,
link, and initiate execution of the program. There are other options in
the Build menu to do this, but just pressing F5 for a new program or
after any change is usually the fastest method to launch your
program.

After clicking F5 you will see text indicating progress of the assembly
and linking process, and a console window will briefly open and close
as the program executes. You will then see “Ready” at the bottom of
the window.

Download from finelybook 7450911@qq.com

97

Figure 3.4

Adding a new assembly language file

What happened? The answer is that the computer followed our
instructions exactly, but the program has no input or output and it
executed in an instant. What we need to do now is to slow down
program execution and “look inside” the computer to see what is
going on as the program executes.

If necessary, scroll down in the example1.asm code window until the
first mov instruction is visible. Click next to this statement in the bar
at the left of the window. You will then see a red dot marking a
breakpoint, a place at which program execution will halt. Your
Visual Studio display should then look something like the one shown

Download from finelybook 7450911@qq.com

98

in Figure 3.5. (Note: A breakpoint can be removed by clicking the red
dot.)

Launch program execution by pressing F5. This time you may see the
console window, or it may be hidden behind your Visual Studio
window. Our program isn’t going to use the console window, but you
must not close it since technically the program is a console
application. However, you can minimize it to reduce screen clutter.
Execution is halted at the breakpoint, at the beginning of our
program.

We now want to arrange windows so that we can see contents of
registers and relevant memory. There should be two windows
showing under your source code, labelled Autos and Call Stack. Click
in the title bar of the Autos window and drag it down to the middle of
the entire Visual Studio window until you see an arrow pointing down
and the bottom portion of the big window is shaded. Then drop the
Autos window and it should occupy a strip along the bottom of the
entire window. Next drag the Call Stack window to the arrow that
points to the right side of the Autos window and drop it. Click in the
Autos window and in the drop-down Debug menu select the first
option (Windows) and then Registers. Repeat the Debug-Windows
option, selecting Memory and then Memory 1. You will then see a
Memory 1 window with several tabs at the bottom. Drag the Registers
tab to the tab collection at the bottom of the Call Stack window on the
bottom right. Click on the Memory 1 tab in the bottom left window.
You should have two collections of tabbed windows at the bottom of
your screen with Memory 1 in the left window and Registers in the
right window. (Remember that if you need to start over at any point,
you can select the top-level Window option, and Reset Window

Download from finelybook 7450911@qq.com

99

Layout.)

Figure 3.5

Program ready for execution with breakpoint set

Type &number in the Address box of the Memory 1 window. The
C/C++ “address-of” operator is used here to select memory starting at
the address of the variable number. You should now see a display
similar to the one in Figure 3.6.

The Memory 1 window shows in hex what is stored in memory
starting at number. In this display, number is stored at address
002F4000, but it may be different with a different system or at a
different time. For each byte having an interpretation as a printable
ASCII character, that character is shown to the right of the hex listing.

Download from finelybook 7450911@qq.com

100

An extended ASCII set is used, so unusual characters may appear.
Control characters are displayed as periods on the right.

Here we see that the 4 bytes at number contain 97 ff ff ff. This is
slightly surprising, since −10510 is FF FF FF 97 in 2’s complement
form. The reason for this is that the Intel architecture stores multi-
byte integers in little endian form, that is, the bytes are reversed
from the order you would usually expect, with the low-order bytes
stored before the high-order bytes. We only have to think about little
endian representation when looking at a memory display.

Figure 3.6

Program halted at first instruction

Look at the Registers window. Most of the register contents aren’t

Download from finelybook 7450911@qq.com

101

meaningful—the registers simply contain whatever is left over from
other usage. However, EIP contains the address of the first mov
instruction since it is the instruction about to be executed. Press F10
to execute this instruction. (This is Step Over in the Debug menu.) In
the Registers window, the contents of EAX and of EIP both become
red to indicate that they have changed. EIP now contains the address
of the add instruction, the next instruction to be executed. The yellow
arrow on the left of the source code also points at the next instruction
to be executed. EAX contains FFFFFF97, the value from number
shown in high-order byte first order. The computer did exactly what
we told it to—it copied the doubleword in memory at the address
referenced by number into EAX.

Press F10 again. Now EAX, EIP, and EFL are in red. EIP has changed
to be the address of the third instruction. EAX contains the sum of
FFFFFF97 and 0000009E, or 00000035. The low-order word of
EFLAGS is 021716 = 0000 0010 0001 0111 2, where bits 0, 6, 7, and
11 have been highlighted. Recall that bit 0 is the carry flag, so CF=1
says there was a carry in this addition. Bit 11 is the overflow flag, so
OF=0 says there was no overflow. Bit 6 is the zero flag and ZF=0 says
that the result is not zero. Finally, bit 7 is the sign flag, and SF=0 says
that the result is not negative.

Press F10 again. This time the Memory 1 display changes as the
00000035 from EAX is copied to the second doubleword of the
memory display. Since doublewords are stored in little endian form,
you will see 35 00 00 00. Notice that EFL didn’t change—more on
which instructions actually affect flags is discussed in Chapter 4.

The program is now ready to execute the code

Download from finelybook 7450911@qq.com

102

mov eax, 0 ; exit with return code 0
ret

that exits to the calling program (in this case the operating system),
returning a 0 value that indicates no errors. You should not use F10 to
step through this code because no debug code is available. Just push
F5 or click the continue button to exit the program.

The console window closes, and your Registers and Memory 1
windows also close. You can run the program again by pressing F5,
and the Registers and Memory 1 windows will reopen—you don’t
have to arrange windows again. If you ever need to terminate
execution early, you can click the stop debugging button on the
toolbar, or select the stop debugging option from the Debug menu.

The console32 Visual Studio project has an assembly option set that
causes a listing file to be generated when your program is
assembled. This file shows the source and the object code generated
by the assembler. It is sometimes helpful to locate an assembly error
(although double-clicking on the error message in the output window
usually puts the cursor on the offending line of code). However, it is
invaluable in understanding the assembly process.

Download from finelybook 7450911@qq.com

103

Figure 3.7

Listing file

In our example, the listing file is named example1.lst. (If you chose a
different name from example1.asm, the listing file will have the name
you chose with an extension of .lst.) You can open it by clicking the
Open File icon in the toolbar, and then double-clicking example1.lst.
It appears in an editor window with a new tab. The first part of the
listing file is displayed in Figure 3.7. Sections 3.3 and 3.4 describe
some listing file entries.

 Programming Exercises 3.2

1. Modify the sample program to change the value of number to -253,

Download from finelybook 7450911@qq.com

104

and the second instruction to add 74 to the number in EAX.
Assemble, link, and execute the program. Explain the changes that
are displayed in registers and memory after execution of each
instruction.

2. Modify the sample program to add two numbers stored in memory
at number1 and number2, respectively. (Hint: Copy number1 to EAX,
and then use add eax, number2 to add the second number.) Continue
to store the total in memory at sum. Assemble, link, and execute the
program. Explain the changes that are displayed in registers and
memory after execution of each instruction.

3. Modify the sample program to subtract 1000 from the number
stored at number. Hint: Copy number to EAX, and then use sub
eax,1000 to subtract 1000. Store the difference in memory at diff.
Assemble, link, and execute the program. Explain the changes that
are displayed in registers and memory after execution of each
instruction.

3.3 Data Declarations

This section explains the formats of operands used in BYTE, WORD,
DWORD, and QWORD directives. Most of the information also
applies to constant operands in instructions, since simple constants
are written the same way in directives and in instructions.

Numeric operands can be expressed in decimal, hexadecimal, binary,
or octal notations. The assembler assumes that a number is decimal
unless the number has a suffix indicating another base or a .RADIX
directive (not used in this text) changes the default number base. The

Download from finelybook 7450911@qq.com

105

suffixes that may be used are

Suffix Base Number System

H 16 hexadecimal

B 2 binary

O or Q 8 octal

none 10 decimal

Any of these suffixes can be coded in uppercase or lowercase. The
letter Q is easier to read than O on the rare occasions when you might
need to code a constant in octal.

A hexadecimal value must start with a digit. You must, for example,
code 0a8h instead of a8h to get a constant with value A816. The
assembler will interpret a8h as a name.

Now for some examples: The directive

byte0 BYTE 01111101b

Download from finelybook 7450911@qq.com

106

reserves 1 byte of memory and initializes it to 7D. This is equivalent to
any of the following directives

byte0 BYTE 7dh
byte0 BYTE 125
byte0 BYTE 175q
byte0 BYTE '{'

since 11111012 = 7D16 = 12510 = 1758 and 7D16 is the ASCII code for a
left brace. The choice of number systems should depend on the use
planned for the constant. A binary value is appropriate when you
need to think of the value as a sequence of 8 separate bits, as in one of
the logical operations covered in Chapter 7. A character in
apostrophes is appropriate if you are using the value as a character.

A BYTE directive reserves storage for 1 or more bytes of data. If a data
value is numeric, it can be thought of as signed or unsigned. The
decimal range of unsigned values that can be stored in a single byte is
0 to 255. The decimal range of signed values that can be stored in a
single byte is −128 to 127. The assembler will generate an error
message for a BYTE directive with a numeric operand outside the
range −255 to 255 (even though values from −255 to −129 do not
assemble to meaningful constants). Here are several examples. The
comments in the examples indicate the initial values of the bytes that
are reserved.

Download from finelybook 7450911@qq.com

107

The situation for WORD, DWORD, and QWORD directives is similar.
Each operand of a WORD directive is stored in a word, DWORD in a
doubleword, or QWORD in a quadword. Doublewords are usually the
best choice for integers. Since 4 bytes can store a signed number in
the range −2,147,483,648 to 2,147,483,647 or an unsigned number
from 0 to 4,294,967,295, you should restrict operand values to the
range −2,147,483,648 to 4,294,967,295. Similarly, each operand for a
WORD directive should be restricted to the range −32,768 to 65,535.
The following examples give the initial values reserved for a few
doublewords and words. Quadwords are used primarily in a 64-bit
environment, but the assembler recognizes the QWORD directive in a
32-bit environment.

Download from finelybook 7450911@qq.com

108

One of the points of these examples is that different operands can
result in the same stored value. For instance, note that the DWORD
directives with operands 4294967295 and –1 both generate words
containing FFFFFFFF. This value can be thought of as either the
unsigned number 4,294,967,295 or the signed number –1, depending
on the context in which it is used.

In addition to numeric operands, the BYTE directive allows character
operands with a single character or string operands with many
characters. Either apostrophes (') or quotation marks (") can be used
to designate characters or delimit strings. They must be in pairs; you
cannot put an apostrophe on the left and a quotation mark on the
right. A string delimited with apostrophes can contain quotation
marks, and one delimited with quotation marks can contain
apostrophes, making it possible to have strings containing these
special characters. Unless there is reason to do otherwise, this text

Download from finelybook 7450911@qq.com

109

follows the convention of putting single characters between
apostrophes and strings of characters between quotation marks.

Each of the following BYTE directives is allowable.

The same values are stored for char1 and char2. As noted before, the
directive you use should depend on the context of the code. If you are
trying to store the letter m, it is wasted effort to look up the ASCII
code 6D16—the assembler has a built-in ASCII chart! Notice that the
delimiters, the apostrophes or quotation marks on the ends of the
character or string, are not themselves stored.

BYTE, WORD, DWORD, and QWORD directives may have multiple
operands separated by commas. The directive

dwords DWORD 10, 20, 30, 40

reserves four doublewords of storage with initial values 0000000A,
00000014, 0000001E, and 00000028. The directives

result in the same 3 bytes being reserved.

The DUP operator can be used to generate multiple uninitialized
values data fields as well as fields with known values. Its use is limited
to BYTE, WORD, DWORD, QWORD, and other directives that

Download from finelybook 7450911@qq.com

110

reserve storage. The directive

DblArray DWORD 100 DUP(999)

reserves 100 doublewords of storage, each initialized to 000003E7.
This is an effective way to initialize elements of an array. If one needs
a string of 50 asterisks, then

stars BYTE 50 DUP('*')

will do the job. If one wants 25 asterisks separated by spaces, then

starsAndSpaces BYTE 24 DUP("* "), '*'

reserves these 49 bytes and assigns the desired initial values.

To reserve space without assigning any particular initial value, use the
operand ?. This reserves the appropriate number of bytes for the
directive. These bytes are logically undefined; in fact the assembler
assigns 00 to each byte. The ? operand may be used with DUP, for
example,

wordArray DWORD 100 DUP (?)

to reserve 100 “undefined” doublewords, each actually containing
00000000.

An operand of a BYTE, WORD, DWORD, QWORD, or other
statement can be an expression involving arithmetic or other
operators. These expressions are evaluated by the assembler at
assembly time, not at run time, with the resulting value used for

Download from finelybook 7450911@qq.com

111

assembly. It is rarely helpful to use an expression instead of the
equivalent value, but sometimes it can contribute to clearer code. The
following directives are equivalent, each reserving a word with an
initial hex value of 00000090.

Each symbol defined by a BYTE, WORD, DWORD, or QWORD
directive is associated with a length. The assembler notes this length
and checks to be sure that symbols are used appropriately in
instructions. For example, the assembler will generate an error
message if

char BYTE 'x'

is used in the data segment and

mov EAX, char ; illegal, different sizes

is used in the code segment—the EAX register is a doubleword long,
but char is associated with a single byte of storage.

The Microsoft assembler recognizes several additional directives for
reserving storage. These include TBYTE for a 10-byte integer, REAL4
for reserving a 4-byte floating point number, REAL8 for an 8-byte
floating point number, and REAL10 for a 10-byte floating point
number. It also has directives to distinguish signed bytes, words, and
doublewords from unsigned. We use a few of these directives in
Chapter 9.

Download from finelybook 7450911@qq.com

112

Let us look again at three data section lines from the listing file in
Figure 3.7 (slightly edited to save space):

The first DWORD directive generates a doubleword containing
FFFFFF97. The second DWORD directive generates a doubleword
containing 00000000. These values are shown in the second column
of numbers. The first column of numbers contains addresses. The
assembler assumes that the data segment starts at address
00000000. (This is adjusted when the program is linked and loaded.)
Therefore, the assembly time address associated with number is
00000000. Since number is 4 bytes long starting at 00000000, the
next available space is at address 00000004. This becomes the
assembly time address of sum. Notice that the length of sum isn’t
needed to tell its starting address, but we know if there were a third
data item, it would be at address 00000008. The next section looks at
how these assembly time data locations are used in machine code.

Although data definition directives are often coded with a label, this is
not required. For example, you might code

Since there are two DWORD directives, each with a single operand,
two doublewords are reserved in the data segment. The first can be
referenced by value1. The second can be referenced by value1+4 as it
is assembled 4 bytes after the first doubleword.

Download from finelybook 7450911@qq.com

113

 Exercises 3.3

Find the initial values that the assembler will generate for each
directive below. Write your answer using 2 hex digits for each byte
generated. (Hint: You can check an answer by putting the directive in
the data section of the sample program, and then looking at the
listing file after assembly.)

Download from finelybook 7450911@qq.com

114

3.4 Instruction Operands

There are three basic types of instruction operands: (1) constants; (2)
CPU register designations; and (3) references to memory locations.
There are several ways of referencing memory; two of the simpler
ways are discussed in this section, and more complex methods will be

Download from finelybook 7450911@qq.com

115

explained later in this text.

Many instructions have two operands. In general, the first operand
gives the destination of the operation, although it may also designate
a source that will be replaced by the result of the operation. The
second operand identifies a source for the operation, never the
destination. For example, when

mov al, '/'

is executed, the byte 2F (the ASCII code for the slash /) will be loaded
into the AL register, replacing the previous byte. The second operand
‘/’ specifies the constant source. When

add eax, number1

is executed, EAX gets the sum of the doubleword in memory
referenced by number1 and the old contents of EAX. The first
operand EAX specifies the source for one doubleword as well as the
destination for the sum; the second operand number1 identifies the
memory location for the other of the two doublewords that are added
together.

Figure 3.8 lists the addressing modes used by Intel 80x86
microprocessors, giving the location of the data for each mode. For an
immediate mode operand, the data to be used is built into the
instruction before it is executed; once there it is constant.1 Normally
the data is placed in the instruction by the assembler, although it can
be inserted by the linker or loader, depending on the stage at which
the value can be determined. The programmer writes an instruction

Download from finelybook 7450911@qq.com

116

including an actual value, or a symbol standing for a constant value.
For a register mode operand, the data to be used is in a register. To
indicate a register mode operand, the programmer simply codes the
name of the register. A register mode operand can be coded as a
source or as a destination, but an immediate mode operand cannot be
a destination.

Here is a line from the code section of the Figure 3.7 listing file:

00000005 05 0000009E add eax, 158 ; add 158

The instruction mnemonic is add, the first operand EAX is obviously
a register operand, and the second operand 158 is immediate. The
number 00000005 is the assembly-time address of this instruction.
The assembler starts assembling instructions at address 00000000,
so whatever was assembled before this instruction took 5 bytes. This
instruction also takes 5 bytes, an opcode 05 (in this case saying to
add a doubleword built into the instruction to EAX), and the 4 bytes
0000009E of the doubleword representation of 158. Collectively,
these 5 bytes are called the object code for this instruction. The
listing file shows this object code, and since there is no address to be
modified it is exactly the machine code that will be executed.

Figure 3.8

Download from finelybook 7450911@qq.com

117

80x86 addressing modes

Figure 3.9

Two 80x86 memory addressing modes

Here is another example where the first operand is register mode and
the second operand is immediate mode. The object code (taken from
an assembler listing file) is shown as a comment.

mov al, '/' ; B0 2F

The opcode B0 says to copy the next byte into AL, and the byte after
the opcode contains the ASCII code 2F for a slash.

Memory addresses can be calculated several ways; Figure 3.9 lists the
two most common in a 32-bit 80x86 environment. Any memory
mode operand specifies a source of data in memory, or specifies a
destination address in memory. A direct mode operand has its 32-
bit address built into the instruction. Generally the programmer will
code a name that appears on a directive that reserves space in the
data segment, and the assembler will translate this into the address.

Here is the third code segment line from the Figure 3.7 listing file:

0000000A A3 00000004 R mov sum, eax ; sum to memory

Download from finelybook 7450911@qq.com

118

In this instruction, the second operand EAX is obviously register
mode. The operand sum clearly references memory. In assembly
language written for a 32-bit environment, any memory reference
coded as just a name will be direct. Here we can see exactly how the
instruction is assembled. It starts with opcode A3, which says to copy
a doubleword from EAX to the memory location specified in the
instruction. The next 4 bytes 00000004 give the assembly time
location of that destination. (Recall that sum appears in the data
segment at assembly time address 00000004.) The value of sum is
not stored at address 00000004 at execution time. The R following
the address in the assembly listing says that this address is
relocatable—it will be adjusted to the run-time address by the linker
and loader. You can tell from Figure 3.6 that sum was actually at
address 002F4004 when the program was executed on the author’s
computer.

Our example program has no instruction with a register indirect
memory operand. Here is what one looks like. The comment gives the
object code you would see in a listing file.

add eax, [edx] ; 03 02

Figure 3.10

Download from finelybook 7450911@qq.com

119

Register indirect addressing

The first operand EAX obviously is register mode, and the second
operand is register indirect mode. Notice that there are only 2
bytes of object code, not enough to contain a 32-bit memory address.
Instead, the second byte contains bits that say to use the address in
the EDX register to locate the second doubleword operand. In other
words, the second number is not in EDX, but its address is. The
square bracket notation ([]) indicates indirect addressing in assembly
language. Figure 3.10 illustrates how register indirect addressing
works in this example.

Any of the general registers EAX, EBX, ECX, and EDX or the index
registers ESI and EDI can be used for register indirect addressing.
The base pointer EBP can also be used, but for an address in the stack
rather than for an address in the data segment; this is used for
procedure parameters. Although the stack pointer ESP can be used
for register indirect addressing in special circumstances, we have no
need to do so in 32-bit code.

With register indirect mode, the register serves like a pointer variable
in a high-level language. The register contains the location of the data
to be used in the instruction, not the data itself. When the size of the
memory operand is ambiguous, the PTR operator must be used to
give the size to the assembler. For example, the assembler will give an
error message for

mov [ebx], 0 ; ambiguous destination size

because it cannot tell whether the destination is a byte, word,

Download from finelybook 7450911@qq.com

120

doubleword, or quadword. If it is a byte, you can use

mov BYTE PTR [ebx], 0 ; store 00 byte in memory

For a word, doubleword, or quadword destination, use WORD PTR,
DWORD PTR, or QWORD PTR, respectively. In an instruction like

add eax, [edx]

it is not necessary to use DWORD PTR [edx] because the assembler
assumes that the source will be a doubleword, the size of the
destination EAX.

A few instructions have no operand. Many have a single operand.
Sometimes an instruction with no operand requires no data to
operate on or an instruction with one operand needs only one value.
Other times the location of one or more operands is implied by the
instruction and is not coded. For example, one 80x86 instruction for
multiplication is mul, which might be coded

mul bh

Only one operand is given for this instruction; the other value to be
multiplied is always in the AL register. The mul instructions are fully
explained in the next chapter.

 Exercises 3.4

Assuming a 32-bit operating environment, identify the mode of each
operand in the following instructions. (Note: There are two operands
in each instruction; identify both modes.) For a memory operand,

Download from finelybook 7450911@qq.com

121

specify whether it is direct memory mode or register indirect memory
mode. Assume that the instructions are in a program also containing
the code

3.5 A Complete 32-Bit Example Using Windows
Input/Output

The example program presented in Figure 3.1 includes no input or
output. To see what it actually does, we traced the execution one
instruction at a time using the debugger and looked at the state of
memory and registers while execution was paused. While this is very
helpful to understand how a computer works on the inside, our
primary objective in this text, we are accustomed to programs that
input data, do some computations, and output results. This section
presents a simple example that does I/O using macros developed for
this text. They are described more completely in Section 3.6. They are
available in the windows32 framework.

In addition to adding I/O, this new example serves to emphasize the
fact that data is represented in multiple forms—we use ASCII

Download from finelybook 7450911@qq.com

122

characters for input and output and 2’s complement doubleword
integers for computation. Obviously something is necessary to do the
conversions from one format to another. We use macros developed
for this text to do these tasks, too. These macros are introduced here,
described more fully in Section 3.6, and have their internal workings
explained in later chapters.

Here is a design for the program:

prompt for the first number;
input ASCII characters representing the first number;
convert the characters to a 2’s complement doubleword;
store the first number in memory;
prompt for the second number;
input ASCII characters representing the second number;
convert the characters to a 2’s complement doubleword;
store the second number in memory;
add the two numbers;
convert the sum to a string of ASCII characters;
display a label and the characters representing the sum;

This design is implemented by the complete program shown in Figure
3.11. The parts are explained below. This program is already built into
the windows32 Visual Studio project included with the software for
this text. Copy the windows32 folder to a convenient location on your
computer. You can rename the folder, possibly example2. Open the

Download from finelybook 7450911@qq.com

123

folder and start Visual Studio by double-clicking windows32.sln. This
Visual Studio project contains two header files, a resource file, and
three source files. The example.asm source file contains the assembly
language code shown in Figure 3.11. As with the earlier console32
example, you can run your program by pressing F5. You will not need
to set a breakpoint since execution will pause with both input and
output.

There are many similarities between this program and the simpler
program in Figure 3.1. It starts with opening comments and the .586
and .MODEL FLAT directives. The first new statement is the directive
INCLUDE io.h that says to process the header file io.h just as if its
lines were physically in the source code at this point. The header file
io.h contains descriptions of the macros that are used for I/O and for
conversions between ASCII and integer formats.

The data segment is longer than for our earlier example. It has two
doublewords to store the 2’s complement versions of our two
numbers, two character strings to prompt for the numbers, and a
string to label the output. In addition, there is a 40-byte-long
undefined string used to input ASCII characters that will be converted
to 2’s complement form for computation, and an 11-byte-long string
that will be used for holding the ASCII version of the sum. Note that
each of the strings used for output is null-terminated, that is, with a
final 0 operand that will be stored as a 00 byte.

The code segment contains one PROC named _MainProc. The
Windows32 code framework we are using actually starts execution
with a C program’s function main. This framework is designed to
always call _MainProc from main, so this must be the name of our

Download from finelybook 7450911@qq.com

124

assembly language procedure. Chapter 6 carefully examines
procedure calls.

Figure 3.11

Assembly language program with I/O

Download from finelybook 7450911@qq.com

125

The statement

input prompt1, string, 40 ; read ASCII characters

is a macro with three operands. It expands to instructions that call a
procedure to display a Windows dialog box that looks like

The first operand specifies the label that appears in the dialog box for
this program, the string in memory referenced by prompt1. This
serves to prompt the user for what is expected in the text box. The
user should enter a number in the text box and then click OK. After
OK is clicked, the ASCII codes for whatever has been entered in the
text box are copied to the destination specified by the second
operand, here string. The third operand must always be the length of
the destination string—40 in this case because 40 bytes are reserved
for string in the data segment. There is nothing special about the
choice of 40 in this example other than the fact that it provides a
longer string than you would expect a user to enter. In general, you
want to be somewhat generous with the size of an input area—you
might be expecting the user to enter 7, but the user might type several
leading spaces before 7, or might type the numerically equivalent
000000000007.

The next statement in _MainProc

Download from finelybook 7450911@qq.com

126

atod string ; convert to integer

is a macro with a single operand. Its name stands for “ASCII to
double” and it expands to instructions that call a procedure to scan
memory starting at the location specified by the operand looking for
the ASCII representation for a number. It converts the ASCII
representation to the corresponding 2’s complement doubleword
integer. This doubleword is always stored in EAX—no destination
operand is allowed.

The third statement requires little explanation. This mov instruction
copies the doubleword in EAX to a doubleword in memory at
number1.

Obviously, statements 4 through 6 of _MainProc repeat the task for
the second number. One thing to notice is that although the final
result is copied to a separate doubleword, the same 40-byte input
area is reused—we need each ASCII representation only long enough
to convert it to a 2’s complement doubleword.

The two instructions

just add the two doublewords. This is similar to the addition done in
the first example program, the difference being that the second
number added is stored in memory instead of as an immediate
operand built into the instruction. You might notice that the second
number is already in EAX following the atod macro, so we could have
simply added the first number. This code implements the design

Download from finelybook 7450911@qq.com

127

element “add the two numbers” in the way that is done most often,
even though this isn’t the most efficient implementation for this
particular situation.

The sum in EAX is in 2’s complement form. It must be converted to
an ASCII representation for display purposes. This is the job of the
macro

dtoa sum, eax ; convert to ASCII characters

The “double to ASCII” macro has two operands, specifying a
destination string and a doubleword source, respectively. The
destination string must be exactly 11 bytes long because the procedure
called by the dtoa code always stores exactly 11 ASCII code bytes at
the destination. The destination will often be terminated with a null
byte in the data segment, but the dtoa macro does not generate a
trailing null byte.

The statement

output resultLbl, sum ; output label and sum

is a macro that expands to statements calling a procedure to display a
Windows message box. The string specified by the first operand is
used as a label, and the string specified by the second operand is the
message. It might look like

Download from finelybook 7450911@qq.com

128

To terminate the program, the last two instructions put a value of 0 in
EAX to indicate no error, and execute a ret (return) instruction. This
returns control to the C program that called _MainProc. The reader
familiar with C or C++ will recognize the similarity to the return 0
statement that usually terminates function main written in C/C++.

Although this program doesn’t require the debugger to see results, it
is still very instructive to run it under the debugger to see what is
actually happening in registers and memory. Set a breakpoint at the
first statement, start the program, and arrange memory and register
windows as done in Section 3.2. Start the memory display at the
address of number1. Your display should be similar to the one shown
in Figure 3.12.

Notice that the memory display is more interesting this time. The first
8 bytes are undefined memory (actually null bytes) for number1 and
number2, but next you see the ASCII codes for the strings defined in
prompt1 and prompt2. Because they are ASCII codes, the
corresponding characters appear in the display. The 40 bytes of
string resulted in null bytes, but then you see the ASCII codes for
resultLbl.

Now press F10 to execute the code associated with the input macro,
type −5247 in the dialog box, and click OK. The memory display will
then be similar to the one in Figure 3.13.

Download from finelybook 7450911@qq.com

129

Notice that the ASCII codes 2D, 35, 32, 34, and 37 have now been
added to the memory display in the area associated with string.

Figure 3.12

Program halted at first instruction

Now press F10 to execute the code to which the atod macro expands.
The register display changes to show FFFFEB81 in EAX. The macro
has done its job of converting the ASCII representation of −5247 to
the doubleword 2’s complement representation. One more press of
F10 copies FFFFEB81 from EAX to memory at number1, where you
can see it in little endian form in Figure 3.14.

Step through the next three statements, this time entering 486 in the

Download from finelybook 7450911@qq.com

130

dialog box. The resulting display is shown in Figure 3.15. One small
thing to notice is that the memory at string starts with 34 38 36 00
37, the ASCII codes for 4, 8, and 6, respectively, followed by a null
byte, followed by the 37 code left over from the 7 in −5247. The input
macro provided the null byte to terminate its string, and this ensures
that atod doesn’t pick up extra characters from prior input when
scanning memory for digits of an integer.

After executing the next three statements, the display looks like the
one shown in Figure 3.16. EAX still contains FFFFED67, the sum of
−5247 and 486 as a 2’s complement doubleword. Memory starting at
sum has 20 20 20 20 20 20 2d 34 37 36 31, ASCII codes for six
spaces, a minus sign, 4, 7, 6, and 1, that is, the ASCII representation
for the sum −4761 padded with leading spaces. This string is
displayed in the final message box after you click continue to finish
execution.

Download from finelybook 7450911@qq.com

131

Figure 3.13

Text from dialog box stored in string

Download from finelybook 7450911@qq.com

132

Figure 3.14

ASCII codes converted to 2’s complement

Download from finelybook 7450911@qq.com

133

Figure 3.15

Program ready to add numbers

Download from finelybook 7450911@qq.com

134

Figure 3.16

Program ready to output sum

 Programming Exercises 3.5

1. Starting with the windows32 project, modify the example program
given in this section to prompt for, input and add three numbers, and
display the sum. Run the program several times with different data.
Trace execution using the debugger.

2. The instruction sub eax, label will subtract the doubleword at label
from the doubleword already in the EAX register. Starting with the
windows32 project, modify the example program given in this section
to prompt for and input two numbers, subtract the second number

Download from finelybook 7450911@qq.com

135

from the first, and finally, display the result. Run the program several
times with different data. Trace execution using the debugger. Note:
“sum” is not an appropriate description for the difference of two
numbers.

3.6 Input/Output and Data Conversion Using Macros
Defined in IO.H

The header file io.h included in the windows32 project defines six
macros: one for input, one for output, and four for conversions
between ASCII and 2’s complement formats. The I/O macros
facilitate input and output in a Windows environment, and the
conversion macros can be used whenever ASCII/integer conversions
are needed. Both doubleword-size and word-size conversions are
available, but recall that doubleword integers are the preferred size.
The six macros are summarized in Figure 3.17.

The job of the input macro is to prompt for and input a string of
characters. It causes a Windows dialog box to open. The label of the
dialog box will be the string in memory referenced by the first
operand. The dialog box has an OK button. If no entry is made in the
dialog box and OK is pressed, a message box appears with “Warning
—Nothing entered.” Otherwise, characters that have been entered in
the dialog box are copied to memory when OK is pressed. These
characters are followed in memory by a null (00) byte. The second
operand references the destination address, and the third operand is
a constant that gives the number of bytes reserved at the destination.
If too many characters are entered in the dialog box, the extra
characters are truncated.

Download from finelybook 7450911@qq.com

136

The output macro generates a Windows message box displaying two
strings. The first string provides a label for the message box and the
second string appears in the main message area. These strings are
referenced by the first and second parameters, respectively. Each
must be null-terminated.

The output message box valueMsg string will appear on multiple
lines if it contains newline characters. For example, if the data
segment contains

addrLbl BYTE "address", 0
strCity BYTE "123 Main Street", 0dh, 0ah, "Bigtown, NY", 0

and

output addrLbl, strCity

is executed, then the following message box is displayed.

Download from finelybook 7450911@qq.com

137

Figure 3.17

Macros in IO.H

The street and city lines of the message are separated in the strCity
operand by 0D and 0A bytes, carriage return and linefeed characters.
Actually, either of these separators will work by itself, but we followed
the “MS-DOS” convention for separating text lines.

Download from finelybook 7450911@qq.com

138

Although the input macro can be used to input any string, commonly
we use it to input a string that is the ASCII representation of an
integer. To use this number for arithmetic, it is necessary to convert it
to “internal” form. This is the job done by the atod (“ASCII to
double”) or atow (“ASCII to word”) macro. They work the same way
except that atod produces a doubleword-length 2’s complement
number in EAX, while atow produces a word-length 2’s complement
number in AX. Each has a single operand referencing an address in
the data segment at which to start scanning memory. The scan
process skips leading spaces. After spaces, if any, there can be a plus
(+) or minus (−) character. Immediately following the sign, if any,
there must be ASCII codes 30 to 39; that is, characters ‘0’ through ‘9.’
The value that corresponds to the aggregate of these digits is
computed, negated if there was a minus sign, and returned in EAX or
AX.

The atod or atow macro code stops scanning memory when it comes
to a nondigit (except for optional leading spaces and sign, of course).
Often this nondigit is a null byte. In the event that there is no digit, 0
is returned. In the event that there are too many digits so that the
resulting number is too large for the destination register, the return
value is undefined, but there is no way to detect this error other than
unexpected results.

The dtoa (“double to ASCII”) and wtoa (“word to ASCII”) macros
perform conversions from 2’s complement to ASCII representations.
They are very similar except that dtoa starts with a doubleword
source and produces an 11-byte-long string, while wtoa starts with a
word source and produces a 6-byte-long string. In both cases, the
second operand specifies the source; it can be in a register or in

Download from finelybook 7450911@qq.com

139

memory. The first operand specifies the destination address in
memory. The dtoa macro always produces 11 ASCII codes, so the
destination area will be 11 bytes long. Similarly, the wtoa macro
always produces six ASCII codes, so the destination area will be 6
bytes long.

Let’s look at an example. If EBX contains the 2’s complement number
FFFFC9D3, the corresponding decimal value is –13869, so the
statement

dtoa dest, ebx

will produce ASCII codes 20 20 20 20 20 2D 31 33 38 36 39 starting
at dest. Similarly, if EBX contains 000000F4, the corresponding
decimal value is 244 and the dtoa macro will produce 20 20 20 20 20
20 20 20 32 34 34, padding with leading spaces. Notice that no
trailing null byte is generated—often a destination area in the data
segment will have a trailing extra null byte defined, for instance

dest BYTE 11 DUP(?), 0

Sometimes the 11-byte destination area is much longer than necessary
for the size of the source number. This is particularly true for
doubleword values. The extra bytes are always filled on the left with
20 (space) codes. Why is the dtoa macro written to always generate 11
ASCII codes? The answer is to keep it simple. In decimal the range of
integers that can be stored in 2’s complement form in a word is
−4,294,967,296 to 4,294,967,295, so for a big negative number 11
bytes are actually needed, but never more. Exercise 3.6.1 asks you to
explain why 6 bytes are used for wtoa.

Download from finelybook 7450911@qq.com

140

Except for atod and atow, each of the macros defined in io.h is
designed to leave general registers unchanged. The macros atod and
atow obviously change EAX and AX, respectively, since this is their
job. However, these macros change no other general register.

 Exercises 3.6

1. Why wasn’t the wtoa macro designed to produce a smaller number
of ASCII codes? Explain what is important about the number 6.

*2. Given the data segment definitions

response1 BYTE 20 DUP(?)

askLbl BYTE "Please enter a number", 0

and the code segment macro

input askLbl, response1, 20

(a) What bytes will be stored in the data segment at response1 if −578
is entered in the dialog box and OK is pressed?

(b) If the macro

atod response1

follows the above input macro, what will be stored in the EAX
register?

3. Given the data segment definitions

Download from finelybook 7450911@qq.com

141

nameIn BYTE 30 DUP(?)

namePrompt BYTE "Please enter your name", 0

and the code segment macro

input namePrompt, nameIn, 30

(a) What bytes will be stored in the data segment at nameIn if Mary
Smith is entered in the dialog box and OK is pressed?

(b) If the macro atod nameIn

follows the above input macro, what will be stored in the EAX
register? (Note: The atod macro would normally not follow the input
macro in this situation.)

4. Suppose a program contains the data segment definitions

value1 DWORD ?

sumLbl BYTE "The result is", 0

result1 BYTE 11 DUP(?), " total", 0

and the code segment macro

dtoa result1, value1

(a) Assuming that at run time the doubleword referenced by value1
contains FFFFFF1A, what bytes will be placed in memory at result1 by

Download from finelybook 7450911@qq.com

142

the dtoa macro?

(b) If the dtoa macro is followed by

output sumLbl, result1

draw a picture that shows what the resulting message box will look
like.

5. Suppose that the EBX register contains 0000007C and that the
data segment of a program contains

volLbl BYTE "Volume is", 0

volume BYTE 11 DUP (?), " cubic inches", 0

(a) Assuming that the statement dtoa volume, ebx is executed, show
(in hex) what will be in the 11 memory bytes starting at volume. (5
points)

(b) Assuming that the dtoa statement in part (a) is followed by the
statement

output volLbl, volume

draw a picture of the message box that will be displayed, including the
contents.

3.7 64-Bit Examples

When Visual Studio 2012 is installed on a 64-bit 80x86 CPU using a

Download from finelybook 7450911@qq.com

143

64-bit operating system, 64-bit assembly language programs can be
assembled and executed using steps similar to those described in
Sections 3.2 and 3.5 for 32-bit programs. These steps are described in
this section.

Figure 3.18 displays a 64-bit version of the simple program shown in
Figure 3.1 and discussed in Section 3.2. The first difference to note is
that the 64-bit version has no .586, .MODEL FLAT, or .STACK
directives; these are not needed nor are they recognized in the 64-bit
environment. (Stack size can be adjusted using a Visual Studio project
property.) The data segment reserves quadwords for number and
sum instead of doublewords, and the code segment uses the 64-bit
register RAX instead of the 32-bit register EAX. It exits by putting 0
in RAX and executing a ret instruction.

This project is put together much as described in Section 3.2 for the
32-bit example. Copy the console64 project folder from this text’s
source files. As with the console32 project, you can rename the outer
folder, but not the inner folder. Double-click on the console64.sln file
to start Visual Studio and open the project. Look in the Solution
Explorer window and click the symbol to the left of console64.
Right-click Source Files, click Add, then New Item Check that
Code is selected on the left. Type a name for the file in the Name box
being sure it ends with the .asm extension. Finally, click the Add
button. Copy the file fig3-18.asm into the text editor window.

Download from finelybook 7450911@qq.com

144

Figure 3.18

Example assembly language program

Download from finelybook 7450911@qq.com

145

Figure 3.19

Program stopped at breakpoint

Put a breakpoint at the first mov instruction. Launch the program by
pressing F5. When the program stops at the breakpoint, open a
memory window to display memory starting at &number and open
the registers window. The resulting display will look similar to the
one in Figure 3.19.

Several things are different about this display. The Registers window
shows 64-bit registers, including the new general registers R8 to R15.
The Memory1 window shows 64-bit addresses and you can see the
quadword representation of −105 at the beginning of the block of
memory. As in the 32-bit environment, the program is traced by
repeatedly pressing F10; to terminate the program you should press

Download from finelybook 7450911@qq.com

146

F5 or the Continue button when you come to the ret statement.

Figure 3.20 shows part of the listing file. It is somewhat surprising
that assembly time addresses are shown as only 32 bits. However, the
data segment reserves two quadwords, as expected. In the code
segment, the immediate operand 158 for the add instruction is
encoded as a doubleword, even though it will be added to a
quadword. Each of the two mov instructions references memory, but
there are only 4 bytes built into the instruction for an address. The
reason for this is that “direct” memory references are encoded using
RIP-relative addressing, a memory addressing mode not even
available in 32-bit mode. With RIP-relative addressing the memory
operand is located as a displacement from the address in the code
segment of the next instruction. A 32-bit displacement locates
memory 231 bytes before or after the instruction, and it is not difficult
for the linker and loader to place the data and code segments within 2
GB of each other! It is left as an exercise to verify that, for this
example, the 4 bytes in the first mov instruction at execution time are
actually the displacement from the add instruction to number in the
data segment.

Download from finelybook 7450911@qq.com

147

Figure 3.20

Listing file for 64-bit program

The project windows64 in this text’s source files contains a 64-bit
version of the windows32 program that first appeared in Figure 3.11
It appears now in Figure 3.21. In the 64-bit environment, the
procedure’s name must be MainProc, without the leading underscore
used in the 32-bit environment. This code has the same omissions as
the 64-bit console application, namely, the .586, .MODEL FLAT, and
.STACK directives. The only other changes are the statements that
appear at the beginning and end of the code:

Download from finelybook 7450911@qq.com

148

The first of these statements reserves stack space for the use of this
procedure, and the second statement releases it. They are required
because MainProc calls other procedures inside the macro code for
the input and output macros. This is explained more fully when 64-
bit procedure protocol is discussed in Chapter 6.

Download from finelybook 7450911@qq.com

149

Figure 3.21

64-bit program using Windows I/O

Although the underlying code is different, exactly the same six macros
are defined in the 64-bit version of io.h as are defined in the 32-bit
version. These were described in Section 3.6. In particular, there are

Download from finelybook 7450911@qq.com

150

not new “atoq” or “qtoa” macros. This may seem like an omission
since there are quadword registers in the 64-bit environment.
However, it turns out that 32-bit integers are still the default size in
most 64-bit environments. There is also no educational advantage to
adding more conversion routines. The reader who misses “atoq” and
“qtoa” is invited to write them—the various pieces of atod and dtoa
are explained in later chapters.

The windows64 project is built and executed identically to the
windows32 project. Of course, if you set breakpoints and examine
memory and registers, you will see 64-bit memory addresses and 64-
bit registers.

 Exercise 3.7

1. Assemble and run the console64 program in Figure 3.18, stopping
at the add instruction. Note the run-time address of number (the
address at which the Memory1 display begins). Note the address of
the add instruction (the value in the RIP register). Open a Memory2
window that starts at the address main, and find the displacement in
the first mov instruction (the 4 bytes following 48 8b 05, stored in
little endian order). Verify that the address of the add instruction plus
the displacement equals the address of number.

 Programming Exercises 3.7

These exercises are identical to those in Section 3.5.

1. Starting with the windows64 project, modify the example program
given in this section to prompt for, input and add three numbers, and

Download from finelybook 7450911@qq.com

151

display the sum. Run the program several times with different data.
Trace execution using the debugger.

2. The instruction sub eax, label will subtract the doubleword at label
from the doubleword already in the EAX register. Starting with the
windows64 project, modify the example program given in this section
to prompt for and input two numbers, subtract the second number
from the first, and finally, display the result. Run the program several
times with different data. Trace execution using the debugger. Note:
“sum” is not an appropriate description for the difference of two
integers.

3.8 Chapter Summary

This chapter introduced 80x86 assembly language as translated by
the Visual Studio 2012 assembler.

Assembly language comments start with a semicolon. Other
statements have the format

name mnemonic operand(s) ; comment

where some of these fields may be optional.

The three types of assembly language statements are

• instructions—each corresponds to a CPU instruction

• directives—tell the assembler what to do

• macros—expand into additional statements

Download from finelybook 7450911@qq.com

152

An assembly language program consists mainly of a data segment in
which variables are defined and a code segment that contains
statements to be executed at run time. To get an executable program,
one must translate the program to object code using an assembler
and then link the program using a linker. An executable program can
be traced with a debugger. All of these tools are integrated in Visual
Studio 2012.

BYTE, WORD, DWORD, and QWORD directives reserve bytes,
words, doublewords, and quadwords of storage, respectively, and
optionally assign initial values.

Instruction operands have three modes:

• immediate—data built into the instruction

• register—data in a register

• memory—data in storage

Memory mode operands come in several formats, two of which are

• direct—at an address in the instruction

• register indirect—data at an address in a register

The 64-bit environment uses RIP-relative addressing instead of direct
memory addressing.

Several macros for input and output are defined in the file io.h. They
call procedures with source code in the file io.asm. The macros are

Download from finelybook 7450911@qq.com

153

• output—to display a label and a result string in a message box

• input—to input a string using a dialog box

• atod—to convert a string to a doubleword-length 2’s complement
number

• dtoa—to convert a doubleword-length 2’s complement number to a
string

• atow—to convert a string to a word-length 2’s complement number

• wtoa—to convert a word-length 2’s complement number to a string

There are minor differences in the steps for building a 32-bit Visual
Studio project and a 64-bit Visual Studio project. There are also
minor differences in the assembly language code.

1One can write self-modifying code, that is, code that changes its
own instructions as it executes. This is considered a very poor
programming practice.

Download from finelybook 7450911@qq.com

154

BASIC INSTRUCTIONS CHAPTER

4

4.1 Copying Data

4.2 Integer Addition and Subtraction Instructions

4.3 Multiplication Instructions

4.4 Division Instructions

4.5 Chapter Summary

This chapter covers instructions used to copy data from one location
to another and instructions used for integer arithmetic. It specifies
what types of operands are allowed for the various instructions. After
studying this chapter you will know how to copy data between
memory and CPU registers, and between two registers. You will also
know how to use 80x86 addition, subtraction, multiplication, and
division instructions, and how execution of these instructions affects
flags. You will know some of the details of how the assembler encodes
80x86 instructions for execution.

4.1 Copying Data

Most computer programs copy data from one location to another.

Download from finelybook 7450911@qq.com

155

With a high-level language, this is the job of a simple assignment
statement. With 80x86 machine language, copying is done by mov
(“move”) instructions. Each mov instruction has the form

mov destination, source

and copies a single byte, word, doubleword, or (in 64-bit mode)
quadword value from the source operand location to the destination
operand location. The value stored at the source location is not
changed. The destination location is the same size as the source. No
mov instruction changes any 80x86 flag.

The C++ or Java assignment statement

count = number;

might correspond directly to the assembly language instruction

mov count, ecx ; count := number

assuming that the ECX register contains the value of number and that
count references a doubleword in memory. The analogy between
high-level language assignment statements and mov instructions
cannot be carried too far. For example, the assignment statement

count = 3*number + 1;

cannot be coded with a single mov instruction. Several instructions
are required to evaluate the right-hand expression and place the
resulting value in the destination location.

Download from finelybook 7450911@qq.com

156

One limitation of the 80x86 architecture is that not all “logical”
combinations of source and destination operands are allowed. In
particular, you cannot have both source and destination in memory
The instruction

mov count, number ; illegal for two memory operands

is not allowed if both count and number reference memory locations.
In fact, no 80x86 instruction encodes two memory operands.

All 80x86 mov instructions are coded with the same mnemonic. The
assembler selects the correct opcode and other bytes of the object
code by looking at the operands as well as the mnemonic.

As was discussed in Chapter 2, instructions sometimes affect various
flag bits in the flags register. In general, an instruction may have one
of three effects:

• no flags are altered

• specific flags are given values depending on the results of the
instruction

• some flags may be altered, but their settings cannot be predicted

All mov instructions fall in the first category—no mov instruction
changes any flag.

Figure 4.1 lists mov instructions that have a byte-size destination.
Since the source and destination sizes must match, this means that
the source is also a byte. This table shows the opcode and the total

Download from finelybook 7450911@qq.com

157

number of object code bytes for each instruction. Except as noted,
operand formats and object code are the same for 32-bit and 64-bit
mode. The operand patterns shown in Figure 4.1 include most of the
possibilities that appear for all 80x86 instructions, so we take time to
explain them carefully before showing mov instruction formats for
other size operands.

Download from finelybook 7450911@qq.com

158

Figure 4.1

mov instructions with byte destination

Look at the first group of instructions in Figure 4.1. These are a bit
unusual in that there is a distinct opcode for each destination register.
However, when you consider that mov instructions are probably the
most commonly used instructions, it makes sense that the designers
of the 80x86 architecture would make these take as few bytes of
object code as possible. For these instructions, the first byte of the
object code is the opcode and the second byte is the immediate
operand. For instance, the instruction

mov dl, 10 ; object code B2 0A

has the decimal value 10 stored as the byte-size hex value 0A. The
opcode code and immediate value complete the 2 bytes of object code
promised in the last column of the table.

Now look at the row of the table where the source and destination
both say register 8. This row actually stands for mov instructions
with 64 possible operand combinations—any of AL, AH, BL, BH, CL,
CH, DL, or DH for the source or for the destination. The opcode for
any of these possibilities is always 8A, and the second object code
byte identifies the registers. This byte, which Intel documentation
refers to as the ModR/M byte, has many uses in encoding
instructions. The ModR/M byte always has three fields, the first of
which is a 2-bit Mod (“mode”) field in bits 7 and 6. The other two
fields are each 3 bits long, and these fields have different meanings in
different instructions. However, for instructions with two register

Download from finelybook 7450911@qq.com

159

operands, Mod=11 and the next field (called Reg for “register”) in bits
5, 4, and 3 encodes the destination, while the final field (called R/M
for “register/memory”) in bits 2, 1, and 0 encodes the source register.
The 8-bit register encodings used are shown in Figure 4.2.

As an example, the instruction mov ch, bl will have object code 8A
EB, where the ModR/M byte EB is pieced together from 11 101 011; 11
for register to register, 101 for CH, and 011 for BL.

The next two rows of the table have a register destination and a
memory source. Notice that the first row is redundant since AL is a
register 8. Recall that EAX is known as the “accumulator.” In older
architectures, the accumulator was often the only register that could
be used for arithmetic operations, but as CPUs have been given more
features, the ability to use other registers has been added. The
accumulator is still the register of choice because the object code is
sometimes slightly more compact (takes fewer bytes) when the
accumulator is used. AL is the 8-bit accumulator, and because it takes
5 bytes of object code instead of 6 to use the A0 opcode, this is the
choice that the assembler makes for destination AL and memory
direct source.

Download from finelybook 7450911@qq.com

160

Figure 4.2

80x86 8-bit register codes

As an example, suppose that memByte references a byte in memory.
Then the opcode for mov al, memByte will be A0. In 32-bit systems,
the remaining 4 bytes are the address in memory of memByte. In 64-
bit systems, the remaining 4 bytes are the displacement from RIP to
the address of memByte.

Consider the instruction mov bl, memByte. Since BL is not the
accumulator, the opcode is 8A and the number of object code bytes is
“2+”; this notation means that there are at least 2 bytes of object
code, but the number depends on the mode of the memory operand.
The second byte of object code is a ModR/M byte. Direct memory
addressing is always encoded with Mod=00 and R/M=101, while the
Reg field encodes the destination 011 (for BL) in this example. This
makes the Mod/R/M byte 1D (00 011 101). The source address for
memByte takes 4 additional bytes. With direct memory mode, “2+”
always means “2+4,” so that the actual number of bytes of object code

Download from finelybook 7450911@qq.com

161

is 6.

However, for register indirect mode (the only other 32-bit memory
addressing mode we have covered so far), Mod=00, Reg encodes the
destination, and R/M encodes the register used as the “pointer.”
Figure 4.3 lists additional register encodings for 32-bit and 16-bit
registers.

As an example, suppose mov al, [ebx] is assembled. The accumulator
AL is not special except for direct memory addressing, so the opcode
will be 8A, and the ModR/M byte will consist of Mod=00 for register
indirect memory addressing, Reg=000 for AL, and R/M= 011 for
EBX, making 00 000 011 or 03. No other object code is needed, so
the assembler generates 8A 03. In general, for register indirect mode,
“2+” means “2+0” or just 2.

Figure 4.3

More 80x86 register codes

Continuing down Figure 4.1, the next row is for immediate-to-

Download from finelybook 7450911@qq.com

162

memory moves. Each of these instructions has opcode C6, a ModR/M
byte, additional address bytes (if needed), and finally a byte
containing the immediate operand. The address is encoded as
described above for memory-to-register moves. If, for example,
smallCounter references a byte in memory and the instruction mov
smallCounter, 100 is assembled, the assembler will generate 7 (3+4)
bytes of object code, C6 05 xx xx xx xx 64, where xx xx xx xx
represents the address in memory, and 64 is the byte-size hex version
of 100. The ModR/M byte 05 is 00 000 101, Mod=00 and R/M=101
for direct memory addressing, with the Reg field not needed and set
to 000.

As another example, consider mov BYTE PTR [edx], −1 with the
memory destination using register indirect mode. The opcode is still
C6 and the immediate byte (which always comes last) is now FF for
−1. The second byte is the ModR/M byte with Mod=00 for register
indirect, Reg=000 (unused), and R/M=010 for EDX, making 00 000
010 or 02. The object code is therefore C6 02 FF.

The next two rows of Figure 4.1 are for register-to-memory mov
instructions. These are encoded just like the memory-to-register mov
instructions, but with different opcodes for different directions.
Again, there is a special, slightly more compact version for use when
AL is the source and direct memory addressing is used for the
destination.

Finally we come to the instructions in Figure 4.1 that work only with a
64-bit processor. These are very similar to the instructions above,
except that the opcode is preceded by an extra byte, here 41, 44, or 45,
shown in italics because technically it is not part of the opcode. In 64-

Download from finelybook 7450911@qq.com

163

bit mode, this byte is a REX prefix. It is used only when the
instruction uses one of the 64-bit registers or uses a 64-bit operand.
The first 4 bits of any REX prefix are always 0100 (416). Recall that
there are 16 general registers in a 64-bit 80x86 processor, but the Reg
and R/M fields of the ModR/M byte each contain 3 bits, only enough
to encode eight different registers. Bit 2 of the REX prefix is
combined with the 3 Reg bits in the ModR/M byte, making 4 bits to
encode 16 register possibilities. Similarly, bit 0 of the REX prefix is
appended as the high-order bit of the R/M field to give 16 possibilities
there, too. The idea is simple, but the details are messy, so we will not
attempt to assemble 64-bit instructions by hand.

One thing to note is that AH, BH, CH, and DH may not be used in
combination with R8B–R15B. There are 16 8-bit registers when you
count these 12 plus AL, BL, CL, and DL, but the machine code
designers chose to make DIL, SIL, BPL, and SPL available for 8-bit
operations instead of AH, BH, CH, and DH. We have no occasion to
code instructions with DIL, SIL, BPL, or SPL operands.

Each instruction in Figure 4.4 has a doubleword destination. They are
very similar to the byte-destination instructions in Figure 4.1. The
opcodes are different, and the instructions with immediate operands
have more bytes of object code because a 4-byte immediate value
rather than a 1-byte immediate value is assembled into the
instruction. Let’s look at how a few of these instructions are
assembled.

First, mov edx, 1000 will have opcode BA and the remaining bytes of
the object code will be 000003E8, 1000 as a doubleword integer.
Next, if dblOp references a doubleword in memory, mov eax, dblOp

Download from finelybook 7450911@qq.com

164

will have 5 bytes of object code, the opcode A1 followed by the 32-bit
address of dblOp. Finally, mov dblOp, esi will have 6 bytes of object
code, the opcode 89, the ModR/M byte, 4 bytes for the address of
dblOp. The ModR/M byte will have mod=00 and R/M=101, the
combination always used for direct memory addressing, and reg=110
for ESI (see Figure 4.3), combined to give 00 110 101. This makes the
object code 89 35 xx xx xx xx, where the x’s stand for the address
bytes.

Download from finelybook 7450911@qq.com

165

Figure 4.4

mov instructions with doubleword destination

Download from finelybook 7450911@qq.com

166

Figure 4.5

mov instructions with word destination

Figure 4.5 shows mov instructions that copy a word source to a word
destination. This table is very similar to Figure 4.4, the major
difference being a new prefix byte in front of each opcode.

Download from finelybook 7450911@qq.com

167

Instructions for 32-bit and 16-bit operands actually have the same
opcodes. A 32-bit 80x86 processor maintains a segment
descriptor for each active

segment. One bit of this descriptor determines whether operands are
16-bit or 32-bit length by default. With the assembly and linking
options used in this text, this bit is set to 1 to indicate 32-bit
operands. Therefore, the B8 opcode means, for instance, to copy the
immediate doubleword following the opcode to EAX, not an
immediate word to AX. If you code a 16-bit instruction, then the
assembler inserts the prefix byte 66 in front of the object code. In
general, the prefix byte 66 tells the assembler to switch from the
default operand size (32 bit or 16 bit) to the alternative size (16 bit or
32 bit) for the single instruction that follows the prefix byte.

To make this clearer, suppose you assemble a program containing the
following three instructions.

mov al, 155
mov ax, 155
mov eax, 155

The assembly listing shows the object code as follows.

Recall that an immediate operand is actually assembled into the
object code. Each of these instructions contains 155 converted to
binary in the appropriate length, 9B in the first instruction, 009B in

Download from finelybook 7450911@qq.com

168

the second, and 0000009B in the third. The first instruction has
opcode B0, but both of the other instructions have opcode B8. The 66
byte shown in the second instruction is the prefix byte that tells the
assembler to switch from 32-bit operand size to 16 bit for this
instruction.

A 64-bit 80x86 processor runs in either legacy 32-bit mode, exactly as
described previously, or in 64-bit mode. Different code segments can
be in different modes at the same time. In 64-bit mode, the default
operand size is still 32 bits.

Figure 4.6 shows the mov instructions with a quadword destination.
Obviously these are only available in 64-bit processors. The first 16
rows are not surprising, showing separate instructions for loading a
64-bit immediate operand in a 64-bit register. Each consists only of a
REX prefix, the opcode, and the 8 bytes of the immediate operand.
The next two rows show a feature that we have not seen in previous
instructions; the immediate value stored in the instruction is a
doubleword even though the destination is a quadword. Storing a
doubleword saves 4 bytes of object code. The immediate doubleword
is sign-extended to a quadword as it is stored in the destination,
that is, the sign bit (bit 31) in the source is copied to each of bits 32–
63 in the destination. This ensures that 2’s complement signed
numbers are properly represented, but in rare instances could cause a
large unsigned number to be incorrectly extended to 64 bits. Also, the
REX prefix for each of the last five rows is shown as 4x since there is
more than one possible value in each row.

Particularly with older processors, instructions that access memory
are slower than instructions that use data in registers. A programmer

Download from finelybook 7450911@qq.com

169

should plan to keep frequently used data in registers when possible.

Figure 4.6

mov instructions with quadword destination

When you first look at all the mov instructions in Figures 4.1, 4.4, 4.5
and 4.6 you may think that you can use them to copy any source value
to any destination location. However, there are many seemingly

Download from finelybook 7450911@qq.com

170

logical combinations that are not available. These include:

• a move with both source and destination in memory

• any move where the operands are not the same size

• a move of several objects

You may need to do some of these operations. We describe next how
to accomplish some of them.

Although there is no mov instruction to copy from a memory source
to a memory destination, two moves using an intermediate register
can do the job. For doubleword-length data in memory referenced by
count and number, the illegal instruction

mov count, number ; illegal for two memory operands

can be replaced by

each using the accumulator EAX and one direct memory operand.
Some register other than EAX could be used, but each of these
instructions using the accumulator requires 5 bytes, while each of the
corresponding instructions using some other register takes 6 bytes—
EAX is chosen in the interest of compact code.

Suppose you have numeric data stored in a doubleword at dblSize,
but you want the byte-size version at byteSize. Assuming that the

Download from finelybook 7450911@qq.com

171

high-order 24 bits are not significant, you can do this with

Going the other way, if an unsigned or positive value is stored at
byteSize and we want the doubleword equivalent at dblSize, then

does the job. Notice that the first move ensures that each of the three
high-order bytes in EAX contains 0 rather than unknown values left
over from prior operations. Later we will see other instructions to
extend the length of a number.

Suppose that you have source and destination locations declared as

and that you want to copy all four doublewords from the source to the
destination. One way to do this is with eight instructions

Download from finelybook 7450911@qq.com

172

An address like source+4 refers to the location 4 bytes (one
doubleword) after the address of source. Since the four doublewords
reserved at source are contiguous in memory, source+4 refers to the
second doubleword. This code clearly would not be space efficient if
you needed to copy 40 or 400 doublewords. In Chapter 5 you will
learn how to set up a loop to copy multiple objects.

The 80x86 has a very useful xchg instruction that exchanges data in
one location with data in another location. It accomplishes in a single
instruction the operation that often requires three high-level language
instructions. Suppose value1 and value2 are being exchanged. In a
design or a high-level language, this might be done using

If value1 is stored in the EAX register and value2 is stored in EBX, we
might use ECX for temp and directly implement this design with

The xchg instruction makes the code shorter and clearer.

xchg eax, ebx ; swap value1 and value2

It is much easier to write one instruction than three, and the resulting
code is easier to understand.

Figure 4.7 lists the various forms of the xchg instruction. Although
the table does not show it, the first operand can be a memory operand

Download from finelybook 7450911@qq.com

173

when the second operand is a register; the assembler effectively
reverses the order of the operands and uses the form shown in the
table. The xchg instructions illustrate again that the accumulator
sometimes plays a special role in a computer’s architecture. The
instructions that swap another register with the accumulator take 1
byte (plus prefix bytes) instead of 2. Notice again that the word,
doubleword, and quadword instructions are the same except for
prefix bytes. We will take advantage of this in future tables to make
them more compact.

Note that you cannot use an xchg instruction to swap two memory
operands. In general, 80x86 instructions do not allow two memory
operands to be encoded. Like mov instructions, xchg instructions do
not alter any status flag. That is, after execution of an xchg
instruction, the bits of the flags register remain the same as before
execution of the instruction.

Download from finelybook 7450911@qq.com

174

Download from finelybook 7450911@qq.com

175

Figure 4.7

xchg instructions

 Exercises 4.1

Download from finelybook 7450911@qq.com

176

1. For each part of this problem, assume the “before” values when the
given mov instruction is executed. Give the requested “after” values.

*2. Give the opcode and number of bytes of object code (including
prefix bytes) for each instruction in Exercise 1.

*3. Include each instruction (a)–(g) from Exercise 1 in a short
program. Assemble the program and examine the listing file. If the
object code has a ModR/M byte, give the value for each of the three
fields and, if possible from the discussion in this section, interpret the
value of each field.

4. For each part of this problem, assume the “before” values when the
given xchg instruction is executed. Give the requested “after” values.

Download from finelybook 7450911@qq.com

177

*5. Give the opcode and number of bytes of object code (including
prefix bytes) for each instruction in Exercise 4.

6. Note that xchg cannot swap two values in memory. Write a
sequence of mov and/or xchg instructions to swap doublewords
stored at value1 and value2. Pick instructions that give the smallest
possible total number of bytes of object code. Assume that any
register 32 you want to use is available.

4.2 Integer Addition and Subtraction Instructions

The Intel 80x86 microprocessor has add and sub instructions to
perform addition and subtraction using byte-, word-, doubleword-, or
quadword-length operands. The operands can be interpreted as
unsigned numbers or 2’s complement signed numbers. The 80x86
architecture also has inc and dec instructions to increment (add 1 to)
and decrement (subtract 1 from) a single operand, and a neg
instruction that negates (takes the 2’s complement of) a single
operand.

One difference between the instructions covered in this section and

Download from finelybook 7450911@qq.com

178

the mov and xchg instructions of Section 4.1 is that add, sub, inc, dec
and neg instructions all update flags in the flags register. The SF, ZF,
OF, PF, and AF flags are set according to the value of the result of the
operation. For example, if the result is negative, then the sign flag SF
will be set to one; if the result is zero, then the zero flag ZF will be set
to one. The carry flag CF is also given a value by each of these
instructions except inc and dec.

Each add instruction has the form

add destination, source

When executed, the integer at source is added to the integer at
destination and the sum replaces the original value at destination.
Each sub instruction has the form

sub destination, source

When a sub instruction is executed, the integer at source is subtracted
from the integer at destination and the difference replaces the old
value at destination. For subtraction, it is important to remember
that the difference calculated is destination – source or “operand 1
minus operand 2.” With both add and sub instructions, the source
(second) operand is unchanged. Here are some examples showing
how these instructions function at execution time.

EXAMPLE

Download from finelybook 7450911@qq.com

179

Download from finelybook 7450911@qq.com

180

Addition and subtraction instructions set the sign flag SF to be the
same as the high-order bit of the result. Thus, when these instructions
are used to add or subtract 2’s complement integers, SF=1 indicates a
negative result. The zero flag ZF is 1 if the result is zero, and 0 if the
result is nonzero. The carry flag CF records a carry out of the high-
order bit with addition, or a borrow with subtraction. The overflow
flag OF records overflow, discussed in Chapter 1.

One reason that 2’s complement form is used to represent signed
numbers is that it does not require special hardware for addition or
subtraction—the same circuits can be used to add unsigned numbers
and 2’s complement numbers. The flag values have different
interpretations, though, depending on the operand type. For instance,
if you add two large unsigned numbers and the high-order bit of the
result is 1, then SF will be set to 1, but this does not indicate a negative
result, only a relatively large sum. For an add with unsigned
operands, CF=1 would indicate that the result was too large to store in
the destination, but with signed operands, OF=1 would indicate a size
error.

Figure 4.8 gives information for both addition and subtraction
instructions. For each add there is a corresponding sub instruction
with exactly the same operand types and number of bytes of object
code, so that it is redundant to make separate tables for add and sub
instructions. Also, in the interest of more compact tables, prefix bytes
are not shown with the opcode and are not counted in the number of
bytes. Recall that 16-bit instructions will have a 66 prefix byte and
instructions that only work in 64-bit mode will have a 4x prefix. The
64-bit mode rows do not include entries for R8B–R15B because these
are identical to the register 8 entries except for prefix bytes.

Download from finelybook 7450911@qq.com

181

With the 80x86, one memory operand can be encoded. Many
computer architectures have no instructions for arithmetic when the
destination is a memory operand. Some other processors allow two
memory operands for arithmetic operations.

With add and sub, as with mov, the accumulator again has special
instructions, this time when RAX, EAX, AX, or AL is the destination
and the source is immediate. These instructions take one less byte of
object code than the corresponding instructions for other registers.

The total number of object code bytes for instructions with “+” entries
in Figure 4.8 can be calculated once you know the memory operand
type. In particular, for direct mode, there are 4 additional bytes for
the 32-bit address. For register indirect mode, no additional object
code is required.

Notice that an immediate source can be a single byte even when the
destination is a word, doubleword, or quadword. Since immediate
operands are often small, this makes the object code more compact.
Byte-size operands are sign-extended to the destination size at run
time before the addition or subtraction operation. If the original
operand is negative (viewed as 2’s complement number), then it is
extended with FF bytes (1 bits) to get the corresponding word-or
doubleword-length value. A nonnegative operand is simply extended
with 00 bytes. In both cases this is equivalent to copying the original
sign bit to the high-order bit positions.

A similar sign extension takes place in the instructions where the
destination is a 64-bit register or a memory quadword and the source
is an immediate doubleword. Addition and subtraction instructions

Download from finelybook 7450911@qq.com

182

do not permit 64-bit immediate operands. If you need to add or
subtract a large immediate operand, you could use a mov instruction
to put it in a register, and then use the register as the source for the
add or sub.

It may be surprising that some add and sub instructions have the
same opcode. In such cases, the reg field in the ModR/M byte
distinguishes between addition and subtraction. In fact, these same
opcodes are used for additional instructions, most of which are
covered later in this text. Figure 4.9 shows how the reg field is
encoded for these opcodes and some others.

Suppose a program has dbl at address 000001C8 in the data section
and contains the following instructions:

add ebx, 1000
sub ebx, 1000
add dbl, 1000
sub dbl, 1000
add ebx, 10

Download from finelybook 7450911@qq.com

183

Figure 4.8

add and sub instructions

Download from finelybook 7450911@qq.com

184

Figure 4.9

reg field for specified opcodes

Then the assembly listing will contain

Notice the difference between the first and last instructions. Each has
the register 32 destination operand EBX. The assembler could use the
81 opcode for both and encode the immediate operand 10 as
0000000A. However, it chooses the 83 opcode for the last instruction
in order to generate more compact code. The immediate value 0A will
be extended to 0000000A when the instruction is executed.

The immediate operand 1000 will not fit in a byte, so the first four
instructions encode it as the doubleword 000003E8. Look at the
ModR/M byte in each of the first two instructions; C3 in the add
instruction breaks down into 11 000 011, and EB in the sub
instruction breaks down into 11 101 011. Notice that the reg values of

Download from finelybook 7450911@qq.com

185

000 and 101 are what Figure 4.9 shows for add and sub instructions
with opcode 81. Also recall from Figure 4.3 that EBX is encoded as
011, the value in the r/m field of both instructions. The 11 in the mod
field indicates an immediate operand.

Now look at the two instructions that have destination dbl. You can
see this direct memory operand’s address encoded as 000001C8. The
ModR/M bytes of 05 and 2D for the add and sub instructions,
respectively, break down into 00 000 101 and 00 101 101. The reg
fields again distinguish between addition and subtraction, and the
combination of 00 in mod and 101 in r/m means direct memory
addressing.

The inc (increment) and dec (decrement) instructions are special-
purpose addition and subtraction instructions, always using 1 as an
implied source. They have the forms

inc destination

and

dec destination

Like the add and sub instructions, these instructions are paired with
respect to allowable operand types and bytes of object code. They are
summarized together in Figure 4.10. Prefix bytes are not shown and
are not counted in the bytes of object code.

Notice the 4x opcodes used for single byte inc and dec instructions
with register 16 and register 32 operands. These are exactly the bit

Download from finelybook 7450911@qq.com

186

patterns used for REX prefixes in 64-bit mode. In a 64-bit
environment the assembler chooses the FF opcode, and uses the reg
field of the ModR/M as shown in Figure 4.9 to distinguish between
inc and dec, and the R/M field to identify the destination register.
This 2-byte form could be used in 32-bit mode also, but the assembler
normally chooses the more compact 1-byte form.

Download from finelybook 7450911@qq.com

187

Figure 4.10

inc and dec instructions

The inc and dec instructions treat the value of the destination
operand as an unsigned integer. They affect the OF, SF, and ZF flags
just like addition or subtraction of one, but they do not change the
carry flag CF. Here are examples showing the execution of a few
increment and decrement instructions:

EXAMPLE

The inc and dec instructions are especially useful for incrementing
and decrementing counters. They sometimes take fewer bytes of code
than corresponding addition or subtraction instructions. For
example, the instructions

Download from finelybook 7450911@qq.com

188

add ecx, 1 ; increment loop counter

and

inc ecx ; increment loop counter

are functionally equivalent. The add instruction requires 3 bytes of
object code (3 bytes instead of 6 because the immediate operand will
fit in 1 byte), while the inc instruction uses only 1 byte. This example
uses a register for a counter. In general, a register is the best place to
keep a counter, if one can be reserved for this purpose.

A neg instruction negates, or finds the 2’s complement of, its single
operand. When a positive value is negated the result is negative; a
negative value will become positive. Zero remains zero. Each neg
instruction has the form

neg destination

Figure 4.11 shows allowable operands for neg instructions.

Here are four examples illustrating how the neg instructions operate.
In each case the “after” value is the 2’s complement of the “before”
value.

EXAMPLE

Download from finelybook 7450911@qq.com

189

Figure 4.11

neg instructions

We now look at an example of a complete, if unexciting, program that
uses these new instructions. The program starts with integer values
for three numbers x, y, and z in memory doublewords, and evaluates
the expression − (x + y − 2z + 1), leaving the result in EAX. The

Download from finelybook 7450911@qq.com

190

design implemented is

result := x;
add y to result, giving x + y;
temp := z;
temp := temp + temp, to get 2*z;
subtract temp from result, giving x + y – 2*z;
add 1 to result, giving x + y – 2*z + 1;
negate result, giving – (x + y – 2*z + 1);

To write an assembly language program, you need to plan how
registers and memory will be used. The problem specifies that the
result will be in EAX, so the only decision is what to use for temp.
Since the “next” general register EBX has no assigned use, it is a good
choice.

Download from finelybook 7450911@qq.com

191

Figure 4.12

Program to evaluate – (x + y – 2z + 1)

Figure 4.12 shows the source program listing. This console32
program closely follows the design, and the program’s comments are
taken from the design. Comments that simply repeat the instruction
mnemonics are not useful. Notice that the value of 2*z is found by
adding z to itself; multiplication will be covered in the next section,
but it is more efficient to compute 2*z by addition anyway.

Download from finelybook 7450911@qq.com

192

You should always test a program by predicting results for sample
data. In this program there is only one set of data. Use a calculator to
find that −(35 + 47 − 2*26 + 1) has value −31, or FFFFFFE1 as a 2’s
complement doubleword. If you set a breakpoint at the first
instruction, launch the debugger with F5, and step through the
program to the end, the debugger shows the screen pictured in Figure
4.13. The correct result is in EAX.

The debugger memory display in Figure 4.13 shows memory starting
at x, so that the first 12 bytes are the doublewords containing 35, 47,
and 26. The debugger allows the user to change a value in memory or
a register, but this can be confusing. One of the programming
exercises at the end of this section asks you to modify this sample
program to provide dialog box input for x, y, and z and message box
output for the value of the expression.

You may wonder how an 80x86 CPU can add integers larger than
doubleword size. Earlier CPUs only had instructions to add byte-size
integers; how did they handle 16- or 32-bit numbers? The answer is
that in addition to regular addition instructions, CPUs have add with
carry instructions. These work just like regular addition instructions
except that the current value (0 or 1) of the carry flag is added to the
normal sum. To add large integers, break them down into whatever
size parts the CPU will handle. Use ordinary addition on the
rightmost part to get the low-order part of the sum. Then add the next
pieces using add with carry instructions. This process is very similar
to the procedure most students learn for addition of decimal
numbers. It can be continued for as many parts as necessary since the
add with carry instruction sets the carry flag just like an ordinary add
instruction. The procedure for subtraction of large numbers is

Download from finelybook 7450911@qq.com

193

similar, using a subtract with borrow instruction.

Figure 4.13

Execution of sample program

Source: Used with Permission from Microsoft.

 Exercises 4.2

1. For each instruction, give the 80x86 opcode and the total number
of bytes of object code, including prefix bytes. Assume you are in 32-
bit mode and that wordOp and dblOp reference a word and
doubleword in data, respectively. You can check your answers by
assembling the instructions in a short console32 program.

*(a) add ax,wordOp

Download from finelybook 7450911@qq.com

194

(b) sub wordOp,ax

(c) sub eax,10

(d) add dblOp,10

(e) add eax,[ebx]

(f) sub [ebx],eax

*(g) sub dl,ch

(h) add bl,5

(i) inc ebx

(j) dec al

(k) dec dblOp

*(l) inc BYTE PTR [esi]

(m) neg eax

(n) neg bh

*(o) neg dblOp

(p) neg DWORD PTR [ebx]

2. For each instruction, give the 80x86 opcode and the total number

Download from finelybook 7450911@qq.com

195

of bytes of object code, including prefix bytes. Assume you are in 64-
bit mode and that wordOp, dblOp, and quadOp reference a word,
doubleword, and quadword in data, respectively. You can check your
answers by assembling the instructions in a short console64 program.

(a) add ax,wordOp

(b) sub dblOp,ebx

(c) sub rax,10

*(d) add quadOp,1000

*(e) inc r10b

(f) dec wordOp

(g) neg rdx

(h) inc QWORD PTR [rdx]

3. For each part of this problem, assume the “before” values when the
given instruction is executed. Give the requested “after” values.

Download from finelybook 7450911@qq.com

196

 Programming Exercises 4.2

1. Using the windows32 or windows64 framework, modify the
program in Figure 4.12 to use the input macro to prompt for and
input values for x, y, and z, and the output macro to display an
appropriate label and the value of the expression. You will also use
the data conversion macros from io.h as appropriate.

2. Using the console32 or console64 framework, write a complete
assembly language program that computes in EAX the value of the
expression x − 2y + 4z for doublewords in memory at x, y, and z.
Choose the current month (1–12), day (1–31), and year (all four
digits) for the values of x, y, and z, and predict the result before
building the program and executing it under control of the debugger.

Download from finelybook 7450911@qq.com

197

(Hint: You don’t need a multiplication instruction for 4*z.)

3. Using the windows32 or windows64 framework, modify the
program in Programming Exercise 2 to use the input macro to
prompt for and input values for x, y, and z, and the output macro to
display an appropriate label and the value of the expression. You will
also use the data conversion macros from io.h as appropriate.

4. Using the console32 or console64 framework, write a complete
assembly language program that computes in EAX the value of the
expression 2(−a + b − 1) + c for doublewords in memory at a, b, and
c. Choose your area code for a, the first three digits of your local
phone number for b, and the last four digits of your local phone
number for c, and predict the result before building the program and
executing it under control of the debugger.

5. Using the windows32 or windows64 framework, modify the
program in Programming Exercise 4 to use the input macro to
prompt for and input values for a, b, and c, and the output macro to
display an appropriate label and the value of the expression. You will
also use the data conversion macros from io.h as appropriate.

6. Using the console32 or console64 framework, write a complete
assembly language program that computes in EAX the perimeter
(2*length + 2*width) of a rectangle where the length and width are in
memory doublewords. Choose the dimensions of a racquetball court
for the length and width, and predict the result before building the
program and executing it under control of the debugger. (Hint: You
can find the dimensions of a racquetball court at the USA Racquetball
web site.)

Download from finelybook 7450911@qq.com

198

7. Using the windows32 or windows64 framework, modify the
program in Programming Exercise 6 to use the input macro to
prompt for and input values for length and width, and the output
macro to display an appropriate label and the value of the perimeter.
You will also use the data conversion macros from io.h as
appropriate.

4.3 Multiplication Instructions

The 80x86 architecture has two multiplication instruction
mnemonics. Any imul instruction treats its operands as signed
numbers; the sign of the product is determined by the usual rules for
multiplying signed numbers. A mul instruction treats its operands as
unsigned binary numbers; the product is also unsigned.

There are fewer variants of mul than of imul, so we consider it first.
The mul instruction has a single operand; its format is

mul source

The source operand can be byte-, word-, doubleword-, or quadword-
length (quadword in 64-bit mode only). It can be in a register or in
memory, but cannot be immediate. The location of the other number
to be multiplied is always the accumulator—AL for a byte source, AX
for a word source, EAX for a doubleword source, and RAX for a
quadword source. If source has byte length, then it is multiplied by
the byte in AL; the product is 16 bits long, with destination the AX
register. If source has word length, then it is multiplied by the word in
AX; the product is 32 bits long, with its low-order 16 bits going to the
AX register and its high-order 16 bits going to the DX register. This is

Download from finelybook 7450911@qq.com

199

often written DX:AX. If source is a doubleword, then it is multiplied
by the doubleword in EAX; the product is 64 bits long, with its low-
order 32 bits in the EAX register and its high-order 32 bits in the
EDX register, written EDX:EAX. If source is a quadword, then it is
multiplied by the quadword in RAX; the product is 128 bits long, with
its low-order 64 bits in the RAX register and its high-order 64 bits in
the RDX register, written RDX:RAX. For byte multiplication, the
original value in AX is replaced. For word multiplication the original
values in AX and DX are both wiped out. For doubleword
multiplication the values in EAX and EDX are replaced by the
product. Similarly, for quadword multiplication the values in RAX
and RDX are replaced by the product. In each case the source
operand is unchanged unless it is half of the destination location.

At first glance, it may seem strange that the product is twice the
length of each factor. However, this also occurs in ordinary decimal
multiplication—if, for example, two 4-digit numbers are multiplied,
the product will be 7 or 8 digits long. Computers that have
multiplication operations often put the product in double-length
locations so that there is no danger that the destination location will
be too small.

You may also wonder why the 80x86 places a 32-bit product in DX
and AX instead of EAX. This is because the mul instruction existed in
the 8086, 8088, 80186, and 80286 processors with their 16-bit
registers, and when the 80386 introduced 32-bit registers it was
designed to extend the earlier architecture. Later processors
continued the compatibility with earlier designs.

Figure 4.14 summarizes the allowable operand types for mul

Download from finelybook 7450911@qq.com

200

instructions. Notice that no immediate operand is allowed in a mul.

Even when provision is made for double-length products, it is useful
to be able to tell whether the product is the same size as the source,
that is, if the high-order half is zero. With mul instructions, the carry
flag CF and overflow flag OF are cleared to 0 if the high-order half of
the product is zero, but are set to 1 if the high-order half of the
product is not zero. These are the only meaningful flag values
following multiplication operations; previously set values of AF, PF,
SF, and ZF flags may be destroyed. In Chapter 5 (Branching and
Looping), instructions that check flag values will be covered; it is
possible to check that the high-order half of the product can be safely
ignored.

Here are some examples to illustrate how the mul instructions work.

Figure 4.14

mul instructions

Download from finelybook 7450911@qq.com

201

EXAMPLE

The first example shows multiplication of doublewords in EAX and
EBX. The contents of EDX are not used in the multiplication but are
replaced by the high-order 32 bits of the 64-bit product
000000000000000A. The carry and overflow flags are cleared to 0
since EDX contains 00000000. The second example is the same as
the first, except that the operands are word size. The contents of DX
are not used in the multiplication but are replaced by the high-order
16 bits of the 32-bit product 0000000A. The carry and overflow flags
are cleared to 0 since DX contains 0000. The high-order 16 bits of
each of EAX and EDX are unchanged. The third example shows
multiplication of EAX by itself, illustrating that the explicit source for
the multiplication can be the same as the other, implicit factor. The

Download from finelybook 7450911@qq.com

202

final example shows multiplication of the byte in AL by a byte at
factor in memory with value equivalent to the unsigned number
25510. The product is the unsigned 16-bit number 04FB16, and since
the high-order half (in AH) is not zero, both CF and OF are set to 1.

The signed multiplication instructions use mnemonic imul. There are
three formats, each with a different number of operands. The first
format is

imul source

the same as for mul, with source containing one factor and the
accumulator the other. As with mul the source operand cannot be
immediate. The destination is AX, DX:AX, EDX:EAX, or RDX:RAX
depending on the size of the source operand. The carry and overflow
flags are set to 1 if the bits in the high-order half are significant, and
cleared to 0 otherwise. The high-order half will contain all 1 bits for a
negative product, but this is not significant if the sign position of the
low-order half is also 1. Similarly, all high-order bits of 0 are
significant if the sign bit of the low-order half is 1. This can be
summarized by saying that CF and OF are set to 1 if any bit in the
high-order half is different from the sign bit in the low-order half.

Single-operand imul instructions are summarized in Figure 4.15.
Notice that this table is identical to Figure 4.14. Even the opcodes are
the same for mul and single-operand imul instructions, with the reg
field in the ModR/M byte of the instruction distinguishing the two.
Figure 4.9 shows reg = 100 for mul and reg = 101 for imul.

Download from finelybook 7450911@qq.com

203

Figure 4.15

imul instructions (single-operand format)

The second imul format is

imul destination register, source

With this format the source operand can be in a register, in memory,
or immediate. The other factor is in the destination register, so that
this format is similar to those for add and sub instructions. Register
and memory operands must be words, doublewords, or quadwords,
not bytes. The product must fit in the destination register; if it does,
CF and OF are cleared to 0; if not, they are set to 1.

Figure 4.16 summarizes two-operand imul instructions. Note that
some of these instructions have 2-byte-long opcodes. Immediate
operands for all size destinations can be a single byte that is sign-
extended before multiplication. For word and doubleword operations,
an immediate operand can also be a word or doubleword,

Download from finelybook 7450911@qq.com

204

respectively. However, for a quadword destination, only byte and
doubleword immediate operands are available; either is sign-
extended to 64 bits.

The third imul format is

imul register, source, immediate

With this version, the first operand, a register, is only the destination
for the product; the two factors are the contents of the register or
memory location given by source and the immediate value. Operands
register and source are the same size: 16-bit, 32-bit, or 64-bit.
Immediate operands are treated the same as with the two-operand
format—byte size if small enough, otherwise word or doubleword, in
all cases sign-extended to the size of the source operand. If the
product will fit in the destination register, then CF and OF are cleared
to 0; if not, they are set to 1. The three-operand imul instructions are
summarized in Figure 4.17.

Download from finelybook 7450911@qq.com

205

Figure 4.16

imul instructions (two-operand format)

Download from finelybook 7450911@qq.com

206

Figure 4.17

imul instructions (three-operand format)

Some examples will help show how the imul instructions work.

EXAMPLE

Download from finelybook 7450911@qq.com

207

The first three examples are the single-operand format and each
product is twice the length of its operands. The first example shows
doublewords in EAX (the implied operand) and EBX being
multiplied, with the result in EDX:EAX. The second example is the
word-size version of the first, where only the values in AX and BX are
multiplied and the result is in DX:AX. The third example shows 5 in
AL being multiplied by −1 in the memory byte at factor, giving a
word-size product equivalent to −5 in AX. In each case CF and OF are
cleared to 0 since the high-order half of the product is not significant.

Download from finelybook 7450911@qq.com

208

The fourth example shows the two-operand format, with 10 in EBX
multiplied by the immediate operand 10, and the result of 100 in
EBX. The EDX register is not used with the two-operand format
unless it is specified as the destination. CF and OF are cleared to 0
since the product fits in EBX. In the next-to-last example, two
negative numbers are multiplied, giving a positive result.

The last example shows the three-operand format, with 8F216
multiplied by 100010 to give 22F15016—too large to fit in BX. The
flags CF and OF are set to 1 to indicate that the result is too large, and
the low-order digits are saved in BX.

Earlier 80x86 CPUs processed each instruction in a fixed number of
clock cycles. As the line developed, the same instruction would often
take fewer clock cycles on a newer processor than on its predecessor.
This, along with higher clock rates, contributes to faster speeds of
newer computers. Current 80x86 processors use pipelining to
effectively process more than one instruction at a time. This makes it
difficult to determine the exact timing of any instruction. However,
generally multiplication instructions are among the slower 80x86
instructions to execute. If, for example, you want to multiply the value
in EAX by 2, it is more efficient to use

add eax, eax ; double the value

Download from finelybook 7450911@qq.com

209

Figure 4.18

Program to find the area of a rectangle

than

Download from finelybook 7450911@qq.com

210

imul eax, 2 ; double the value

Whether you are programming in assembly language or a high-level
language, avoid using multiplication when a simple addition will do
the job.

As you have seen in this section, the 80x86 architecture includes
multiplication instructions in three formats. You may have noted that
the destination of the product cannot be a memory operand. This may
sound restrictive, but some processors have even greater limitations.
In fact, most 8-bit microprocessors, including the Intel 8080, had no
multiplication instruction; any multiplication had to be done using a
software routine.

This section concludes with an example of a windows32 program that
will input the length and width of a rectangle in memory, calculate its
area (length*width), and display the result. (Admittedly, this is a job
much better suited for a hand calculator than for a computer program
in assembly language or any other language.) Figure 4.18 shows the
source code for the program. Note that the program uses mul rather
than imul for finding the product—lengths and widths are positive
numbers. You may wonder why the variables that hold the length and
width are named long and wide rather than the more obvious choices
of length and width. The reason is that length and width are reserved
words for the assembler. If you get an unusual error when assembling
a program, check Appendix B to see whether you accidentally used a
reserved word as an identifier.

Figure 4.19 shows a sample run of the program. If you use the
debugger to view registers right after the mul instruction, you will see

Download from finelybook 7450911@qq.com

211

the product in EAX, but you will also see that EDX has been set to all
zeros—the actual product computed by the mul instruction is 64 bits
long.

Figure 4.19

Execution of program to calculate area of rectangle

 Exercises 4.3

1. For each part of this problem, assume the “before” values when the
given instruction is executed. Give the requested “after” values.

Download from finelybook 7450911@qq.com

212

*2. Give the opcode and the number of bytes of object code (including
prefix bytes) for each instruction in Exercise 1.

3. For each part of this problem, assume the “before” values when the
given instruction is executed. Give the requested “after” values.

Download from finelybook 7450911@qq.com

213

*4. Give the opcode and the number of bytes of object code (including
prefix bytes) for each instruction in Exercise 3.

5. Suppose you need to evaluate the polynomial

p(x) = 5x3 − 7x2 + 3x − 10

for some value of x. If this is done in the obvious way, as

5*x*x*x − 7*x*x + 3*x − 10

there are six multiplications and three additions/subtractions. An
equivalent form, based on Horner’s scheme for evaluation of
polynomials, is

((5*x − 7)*x + 3)*x − 10

This has only three multiplications.

Suppose that the value of x is in the EAX register.

(a) Write 80x86 assembly language statements that will evaluate p(x
the “obvious” way, putting the result in EAX.

Download from finelybook 7450911@qq.com

214

(b) Write 80x86 assembly language statements that will evaluate p(x
using Horner’s scheme, again putting the result in EAX.

(c) Compare the number of bytes of object code required for the code
fragments in (a) and in

(b) above.

6. The 80x86 architecture has distinct instructions for multiplication
of signed and unsigned numbers. It does not have separate
instructions for addition of signed and unsigned numbers. Why are
different instructions needed for multiplication but not for addition?

 Programming Exercises 4.3

1. Using the windows32 or windows64 framework, write a complete
80x86 assembly language program that prompts for and inputs the
length, width, and height of a box and computes and displays its
volume (length * width * height).

2. Using the windows32 or windows64 framework, write a complete
80x86 assembly language program that prompts for and inputs the
length, width, and height of a box and calculates and displays its
surface area 2*(length*width + length*height + width*height).

3. Suppose that someone has a certain number of coins (pennies,
nickels, dimes, quarters, 50-cent pieces, and dollar coins) and wants
to know the total value of the coins, and how many coins there are.
Using the windows32 or windows64 framework, write a program to
help. Specifically, use the following design.

Download from finelybook 7450911@qq.com

215

prompt for and input the number of pennies;

total := number of pennies;

numberOfCoins := number of pennies;

prompt for and input the number of nickels;

total := total + 5 * number of nickels;

add number of nickels to numberOfCoins;

prompt for and input the number of dimes;

total := total + 10 * number of dimes;

add number of dimes to numberOfCoins;

prompt for and input the number of quarters;

total := total + 25 * number of quarters;

add number of quarters to numberOfCoins;

prompt for and input the number of 50-cent pieces;

total := total + 50 * number of 50-cent pieces;

add number of 50-cent pieces to numberOfCoins;

prompt for and input the number of dollars;

Download from finelybook 7450911@qq.com

216

total := total + 100 * number of dollars;

add number of dollars to numberOfCoins;

display the number of coins, the dollar value and the cents;

The final display will be in a single message box with a label that says
“Coin Information” and three lines of message, the first saying
“Number of coins” and giving the number, the second saying
“Dollars” and giving the value of total div 100, and the third
displaying “Cents” and the value of total mod 100. Assume that all
values will fit in doublewords. (Hint: Convert the total to ASCII, and
the last two characters are total mod 100, while the preceding
characters are total div 100.)

4. Using the windows32 or windows64 framework, write a complete
80x86 assembly language program that prompts for and inputs the
base and height of a triangle and displays its area. Hint: The area of a
triangle is 0.5*base*height, so if you evaluate 5*base*height your
answer will be 10 times too large. After you use the dtoa macro to
convert the too-large answer to ASCII, replace the last byte by a null
byte to terminate the string before displaying it using the output
macro.

4.4 Division Instructions

The Intel 80x86 instructions for division mirror those of the single-
operand multiplication instructions; idiv is for division of signed 2’s
complement integers and div is for division of unsigned integers.
Recall that the single-operand multiplication instructions start with a

Download from finelybook 7450911@qq.com

217

multiplier and multiplicand and produce a double-length product.
Division instructions start with a double-length dividend and a
single-length divisor, and produce a single-length quotient and a
single-length remainder. The 80x86 has instructions that can be used
to produce a double-length dividend prior to division.

The division instructions have formats

idiv source

and

div source

Figure 4.20

Operands and results for 80x86 division instructions

The source operand identifies the divisor. The divisor can be in a
register or memory but not immediate. Both div and idiv use an
implicit dividend (the operand you are dividing into). If source is byte
length, then the double-length dividend is word size and it must be in
the AX register. If source is word length, then the dividend is always
the doubleword in DX:AX, that is, with its high-order 16 bits in the
DX register and its low-order 16 bits in the AX register. If source is

Download from finelybook 7450911@qq.com

218

doubleword length, then the dividend is a quadword (64 bits) in
EDX:EAX, that is, with its high-order 32 bits in the EDX register and
its low-order 32 bits in the EAX register. If source is quadword
length, then the dividend is the double quadword (128-bit number) in
RDX:RAX, that is, with its high-order 64 bits in the RDX register and
its low-order 64 bits in the RAX register.

The table in Figure 4.20 summarizes the locations of the dividend,
divisor, quotient, and remainder for 80x86 division instructions.

The source operand (the divisor) is not changed by a division
instruction. After a word in AX is divided by a byte-length divisor, the
quotient will be in the AL register and the remainder will be in the AH
register. After a doubleword in DX and AX is divided by a word-
length divisor, the quotient will be in the AX register and the
remainder will be in the DX register. After a quadword in EDX and
EAX is divided by a doubleword-length divisor, the quotient will be in
the EAX register and the remainder will be in the EDX register. After
a 128-bit integer in RDX:RAX is divided by a quadword-length
divisor, the quotient will be in the RAX register and the remainder
will be in the RDX register.

For all division operations the dividend, divisor, quotient, and
remainder are defined by the equation

dividend = quotient*divisor + remainder

For unsigned div operations the dividend, divisor, quotient, and
remainder are all treated as nonnegative numbers. For signed idiv
operations, the sign of the quotient is determined by the signs of the

Download from finelybook 7450911@qq.com

219

dividend and divisor using the ordinary rules of signs; the sign of the
remainder is always the same as the sign of the dividend.

Division instructions do not set flags to any meaningful values. They
may change previously set values of AF, CF, OF, PF, SF, or ZF flags.

Some examples show how the division instructions work.

EXAMPLE

In both of these examples, the decimal number 100 is divided by 13.
Since

100 = 7 * 13 + 9

the quotient is 7 and the remainder is 9. For the doubleword-length
divisor, the quotient is in EAX and the remainder is in EDX. For the
byte-length divisor, the quotient is in AL and the remainder is in AH.

For operations where the dividend or divisor is negative, equations
analogous to the one above are

100 = (−7) * (−13) + 9 (100/−13, quotient −7, remainder 9)
−100 = (−7) * 13 + (−9) (−100/13, quotient −7, remainder −9)

Download from finelybook 7450911@qq.com

220

−100 = 7 * (−13) + (−9) (−100/−13, quotient 7, remainder −9)

Note that in each case the sign of the remainder is the same as the
sign of the dividend. The following examples reflect these equations
for doubleword-size divisors of 13 or −13. In the second and third
examples, the dividend −100 is represented as the 64-bit number FF
FF FF FF FF FF FF 9C in EDX:EAX.

EXAMPLE

Finally, here are two examples to help illustrate the difference
between signed and unsigned division. Using signed division, −511 is
divided by −32, giving a quotient of 15 and a remainder of −31. With
the unsigned division, 65025 is divided by 255, giving a quotient of
255 and a remainder of 0.

EXAMPLE

Download from finelybook 7450911@qq.com

221

With multiplication, the double-length destination in each single-
operand format guarantees that the product will fit in the destination
location—nothing can go wrong during a single-operand
multiplication operation. However, there can be errors during
division. One obvious cause is an attempt to divide by zero. A less
obvious reason is a quotient that is too large to fit in the single-length
destination; if, say, 0002468A is divided by 0002, the quotient 12345
is too large to fit in the AX register. If an error occurs during the
division operation, the 80x86 generates an exception. The routine, or
interrupt handler, that services this exception will vary from system
to system.

Figure 4.21 lists the allowable operand types for div and idiv
instructions. These instructions have the same opcodes, with the reg
field of the ModR/M byte distinguishing them as shown in Figure 4.9

When arithmetic is being done with operands of a given length, the
dividend must be converted to double length before a division
operation is executed. For unsigned division, a doubleword-size
dividend must be converted to quadword size with leading zero bits in
the EDX register. This can be accomplished many ways, two of which
are

Download from finelybook 7450911@qq.com

222

Figure 4.21

div and idiv instructions

Figure 4.22

Instructions to prepare for signed division

mov edx, 0

and

sub edx, edx

Download from finelybook 7450911@qq.com

223

Similar instructions can be used to put a zero in RDX, DX, or AH
prior to unsigned division by a quadword, word, or byte, respectively.

The situation is more complicated for signed division. A positive
dividend must be extended with leading 0 bits, but a negative
dividend must be extended with leading 1 bits. The 80x86 has
instructions specifically for this task. The cbw, cwd, cdq, and cqo
instructions are the first ones we have seen that have no operand. The
cbw instruction always has AL as its source and AX as its destination,
cwd always has AX as its source and DX:AX as its destination, cdq
always has EAX as its source and EDX:EAX as its destination, and
cqo always has RAX as its source and RDX:RAX as its destination.
The source register is not changed, but is extended as a signed
number into AH, DX, EDX, or RDX. These instructions are
summarized together in Figure 4.22.

The cbw (convert byte to word) instruction extends the 2’s
complement number in the AL register half to word length in AX. The
cwd (convert word to double) instruction extends the word in AX to a
doubleword in DX and AX. The cdq (convert double to quadword)
instruction extends the doubleword in EAX to a quadword in EDX
and EAX. The cqo instruction extends the quadword in RAX to a
double quadword in RDX and RAX. Each instruction copies the sign
bit of the original number to each bit of the high-order half of the
result. None of these instructions affect flags. Some examples are:

EXAMPLE

Download from finelybook 7450911@qq.com

224

This section concludes with another simple program—this one to
convert Celsius (centigrade) temperatures to Fahrenheit. Figure 4.23
gives the source code. The formula implemented is

F = (9/5) * C + 32

Download from finelybook 7450911@qq.com

225

Figure 4.23

Convert Celsius temperature to Fahrenheit

Download from finelybook 7450911@qq.com

226

Figure 4.24

Celsius to Fahrenheit program execution

where F is the Fahrenheit temperature and C is the Celsius
temperature. The program starts with a Celsius value of 35 stored in a
doubleword in memory at cTemp, and ends with the corresponding
Fahrenheit value stored in another doubleword at fTemp. Any value
could be used, of course, instead of 35.

Since the arithmetic instructions covered so far perform only integer
arithmetic, the program gives the integer to which the fractional
answer would round. It is important to multiply 9 times cTemp before
dividing by 5—the integer quotient 9/5 would be simply 1. Dividing
cTemp by 5 before multiplying by 9 produces larger errors than if the
multiplication is done first. (Why?) To get a rounded answer, half the

Download from finelybook 7450911@qq.com

227

divisor is added to the dividend before dividing. Since the divisor in
this formula is 5, the number 2 is added for rounding. Notice that the
cdq instruction is used to extend the partial result before division.

Figure 4.24 shows the debugger display at the end of the program. If
you trace the arithmetic by hand, 35*9+2 is 317. Dividing 317 by 5
gives 63 with a remainder of 2 (still visible in EDX). Finally, adding
32 to 63 gives the 95 that shows as 5F16 in EAX and in the second
doubleword of the memory display.

 Exercises 4.4

1. For each part of this problem, assume the “before” values when the
given instruction is executed. Give the requested “after” values. Some
of these instructions will cause division errors; identify such
instructions.

Download from finelybook 7450911@qq.com

228

*2. Give the opcode and the number of bytes of object code (including
prefix bytes) for each instruction in Exercise 1.

3. This section mentioned two methods of zeroing EDX prior to
unsigned division, using

mov edx,0

or

sub edx,edx

Which instruction requires fewer bytes of code?

Download from finelybook 7450911@qq.com

229

 Programming Exercises 4.4

1. The formula for converting a Fahrenheit to a Celsius temperature is

C = (5/9) * (F − 32)

Using the windows32 or windows64 framework, write a complete
80x86 assembly language program to prompt for a Fahrenheit
temperature and calculate and display the corresponding Celsius
temperature.

2. Using the windows32 or windows64 framework, write a complete
80x86 assembly language program that prompts for and inputs four
grades with separate dialog boxes, and calculates the sum and the
average (sum/4) of the grades. Display the sum and average on two
lines of a message box, each line with an appropriate label.

3. Using the windows32 or windows64 framework, write a complete
80x86 assembly language program that prompts for and inputs four
grades Grade1, Grade2, Grade3, and Grade4. Suppose that the last
grade is a final exam grade that counts twice as much as the other
three. Calculate the sum (adding the last grade twice) and the average
(sum/5). Display the sum and average on two lines of a message box,
each line with an appropriate label.

4. Using the windows32 or windows64 framework, write a complete
80x86 assembly language program that prompts for and inputs four
grades Grade1, Grade2, Grade3, and Grade4, and four weights stored
in doublewords Weight1, Weight2, Weight3, and Weight4. (This will
take eight dialog boxes.) Each weighting factor indicates how many

Download from finelybook 7450911@qq.com

230

times the corresponding grade is to be counted in the sum. The
weighted sum is

WeightedSum =
Grade1*Weight1+Grade2*Weight2+Grade3*Weight3+Grade4*Weight4
and the sum of the weights is

SumOfWeights = Weight1 + Weight2 + Weight3 + Weight4

Calculate the weighted sum, the sum of the weights, and the weighted
average (WeightedSum/SumOfWeights). Display the weighted sum
and average on two lines of a message box, each line with an
appropriate label.

5. Using the windows32 or windows64 framework, write a complete
program that will input values for a, b, and c and display the value of
the expression

Do not round.

6. One way to calculate the harmonic mean of two numbers x and y is
using the expression

Using the windows32 or windows64 framework, write a complete
80x86 assembly language program to prompt for and input two
numbers and then calculate and display their harmonic mean in
ddd.d format. Hint: Multiply by 20 instead of 2 to get an extra digit.

Download from finelybook 7450911@qq.com

231

Then after you use the dtoa macro to convert the 10-times-too-large
number to ASCII, copy (1 byte at a time) the last four characters of the
string to the string you will actually display. The string for display
might be defined

hMeanOut BYTE 3 DUP(?), '.', ?, 0

4.5 Chapter Summary

The Intel 80x86 mov instruction is used to copy data from one
location to another. All but a few combinations of source and
destination locations are allowed. The xchg instruction swaps the data
stored at two locations.

The 80x86 architecture has a full set of instructions for arithmetic
with byte-length, word-length, doubleword-length, and quadword-
length (in 64-bit mode) integers. The add and sub instructions
perform addition and subtraction; inc and dec add and subtract 1,
respectively. The neg instruction negates its operand; that is, it takes
the 2’s complement of the operand.

There are two multiplication and two division mnemonics. The imul
and idiv instructions assume that their operands are signed 2’s
complement numbers; mul and div assume that their operands are
unsigned. Many multiplication instructions start with single-length
operands and produce double-length products; other formats form a
product the same length as the factors. Division instructions always
start with a double-length dividend and single-length divisor; the
operation results in a single-length quotient and a single-length
remainder. The cbw, cwd, cdq, and cqo instructions aid in producing

Download from finelybook 7450911@qq.com

232

a double-length dividend before signed division. Flag settings indicate
possible errors during multiplication; an error during division
produces a hardware exception that invokes a procedure to handle
the error.

Instructions that have operands in registers are generally faster than
those that reference memory locations. Multiplication and division
instructions are slower than addition and subtraction instructions.

Download from finelybook 7450911@qq.com

233

BRANCHING AND LOOPING CHAPTER

5

5.1 Unconditional Jumps

5.2 Conditional Jumps, Compare Instructions, and if Structures

5.3 Implementing Loop Structures

5.4 for Loops in Assembly Language

5.5 Arrays

5.6 Chapter Summary

Computers derive much of their power from their ability to selectively
execute code and from the speed at which they execute repetitive
algorithms. Programs in high-level languages like Java or C++ use if–
then, if–then–else, and case structures to selectively execute code,
and loop structures such as while (pretest) loops, until (posttest)
loops, and for (counter-controlled) loops to repetitively execute code.
Some high-level languages have a goto statement for unconditional
branching. Somewhat more primitive languages (like older versions
of FORTRAN or BASIC) depend on fairly simple if statements and an
abundance of goto statements for both selective execution and
looping.

Download from finelybook 7450911@qq.com

234

The 80x86 assembly language programmer’s job is similar to the old
FORTRAN or BASIC programmer’s job. The 80x86 microprocessor
can execute some instructions that are roughly comparable to for
statements, but most branching and looping is done with 80x86
statements that are similar to, but even more primitive than, simple
and goto statements. The objective of this chapter is to describe the
machine implementation of design/language structures such as if–
then, if–then–else, while, until, and for. Loops are often used with
arrays, and addressing modes useful for array access are also covered.

5.1 Unconditional Jumps

The 80x86 jmp (“jump”) instruction corresponds to goto in a high-
level language. As coded in assembly language, jmp usually has the
form

jmp statementLabel

where statementLabel corresponds to the name field of some other
assembly language statement. Recall that the name field is followed
by a colon (:) when used to label an executable statement. The colon
is not used in the jmp instruction itself. As an example, if there were
alternative conditions under which a program should be terminated,
its code might contain

Figure 5.1 shows a complete example, a program that will loop

Download from finelybook 7450911@qq.com

235

indefinitely, calculating 1+2+ . . . +n at the nth loop iteration. The
program implements the following pseudocode design.

number := 0;

sum := 0;

forever loop

 add 1 to number;

 add number to sum;

end loop;

You must plan register and memory use to code a design like this. In
this implementation, number is stored in EBX and sum is stored in
EAX. No data is stored in memory.

Figure 5.2 shows the debugger window after the loop body has been
executed one time. A breakpoint has been set at the jmp instruction,
making it possible to examine the contents of sum (EAX) and count
(EBX) before proceeding. Notice that both sum and count are 1 the
first time the breakpoint is reached. Press F5 or click the Continue
button to execute the jmp instruction and the loop body again.
Figure 5.3 shows the debugger window after executing the loop body
six times; number (EBX) contains 6 and sum (EAX) contains 1516

Download from finelybook 7450911@qq.com

236

(2110), the correct result for 1+2+3+4+5+6. The program can be
terminated by clicking the Stop button .

Figure 5.1

Program with forever loop

Download from finelybook 7450911@qq.com

237

Figure 5.2

Program paused after first loop body execution

Download from finelybook 7450911@qq.com

238

Figure 5.3

Program after six loop body iterations

The one jmp in the program in Figure 5.1 transfers control to a point
that precedes the jmp statement itself. This is called a backward
reference. The code

illustrates a forward reference.

There are several 80x86 jmp instructions. All work by changing the
value in the instruction pointer register EIP (RIP in 64-bit mode) so
that the next instruction to be executed comes from a new address
rather than from the address immediately following the current
instruction. The most common jump instructions are relative jumps
that change the instruction pointer by adding a positive or negative
displacement for a forward or backward reference, respectively. There
are also indirect jumps that get the new value for the instruction
pointer from a register or from memory. We will not use indirect
jumps in this text, but they are included in Figure 5.4 and discussed
briefly. Not included are far jumps that change the code segment
register as well as the instruction pointer; these are not used with flat
memory model programming.

The object code for each relative jump instruction contains the
displacement of the target instruction from the jmp itself. This
displacement is added to the address of the next instruction to find

Download from finelybook 7450911@qq.com

239

the address of the target. The displacement is a signed number,
positive for a forward reference and negative for a backward
reference. For the relative short version of the instruction, only a
single displacement byte is stored; this is sign-extended before the
addition. The relative near format includes a 32-bit displacement.
This is simply added to EIP in 32-bit mode, but is sign-extended
before being added to RIP in 64-bit mode.

Figure 5.4

jmp instructions.

The 8-bit displacement in a relative short jump can serve for a target
statement up to 128 bytes before or 127 bytes after the jmp
instruction. This displacement is measured from the byte following
the object code of the jmp itself since at the time an instruction is
being executed, the instruction pointer logically contains the address
of the next instruction to be executed. The 32-bit displacement in a
relative near jump instruction can serve for a target statement up to
2,147,483,648 bytes before or 2,147,483,647 bytes after the jmp
instruction.

There is no difference in the coding for a relative short jump and for a
relative near jump. In order to generate more compact code, the

Download from finelybook 7450911@qq.com

240

assembler uses a short jump if the target is within the smaller range.
A near jump is automatically used if the target is more than 128 bytes
away.

The indirect jump instructions use an address for the target rather
than a displacement. However, this address is not encoded in the
instruction itself. Instead, it is either in a register or in memory. Thus
the format

jmp edx

means to jump to the address stored in EDX. The memory indirect
jump format can use any valid reference to memory. If targetAddr is
declared as a DWORD in the data section, then

jmp targetAddr

jumps to the address stored in that doubleword, not to that point in
the data section. Using register indirect addressing, you could have

jmp DWORD PTR [ebx]

that causes a jump to the address stored at the doubleword whose
address is in EBX! Fortunately, these indirect forms are rarely
needed.

 Exercises 5.1

1. If the statement

hardLoop: jmp hardLoop

Download from finelybook 7450911@qq.com

241

is executed, it continues to execute “forever.” What is the object code
for this statement? (If you can’t figure it out, put the statement in a
program, assemble the program, and look at the listing file.)

*2. Identify the type (i.e., relative near, relative short, register
indirect, or memory indirect) of each jmp instruction in the following
code fragment.

 Programming Exercises 5.1

1. Using the console32 or console64 framework, modify the program
in Figure 5.1 so that after the nth iteration of the loop, EAX contains
1*2* . . . *n.

2. Using the windows32 or windows64 framework, write a program
that will repeatedly prompt for a number using a dialog box. After
each number is entered, display the sum and average of all numbers
entered so far using separate message boxes for the sum and the
average. (Note: You can terminate the program by clicking the stop
button when the dialog box is waiting for a number.)

Download from finelybook 7450911@qq.com

242

5.2 Conditional Jumps, Compare Instructions, and if
Structures

Conditional jump instructions make it possible to implement if
structures, other selection structures, and loop structures in 80x86
machine language. There are many of these instructions. Each has the
format

j-- targetStatement

where the last part of the mnemonic (shown here by dashes)
identifies the condition under which the jump is to be executed. If the
condition holds, then the jump takes place; otherwise, the next
instruction (the one following the conditional jump) is executed.

With one exception (the jcxz/jecxz instruction, covered in Section
5.4), the “conditions” considered by the conditional jump instructions
we will study are settings of various flags in the flag registers. For
example, the instruction

jz endWhile

means to jump to the statement with label endWhile if the zero flag
ZF is set to 1; otherwise, fall through to the next statement. (The
mnemonic jz stands for “jump if zero.”)

Conditional jump instructions do not modify the flags; they only react
to previously set flag values. Recall how the flags in the flag register
get values in the first place. Some instructions (like mov) leave flags
unchanged, some (like add) explicitly set some flags according to the

Download from finelybook 7450911@qq.com

243

value of a result, and still others (like div) unpredictably alter some
flags, leaving them with unknown values.

Suppose, for example, that the value in the EAX register is added to a
sum representing an account balance and three distinct treatments
are needed, depending on whether the new balance is negative, zero,
or positive. A pseudocode design for this could be

Assuming balance is stored in a doubleword in memory and value is
stored in EAX, the following 80x86 code fragment implements this
design.

Appropriate flags are set or cleared by the add instruction. No other

Download from finelybook 7450911@qq.com

244

instruction shown in the above code fragment changes the flags. The
design checks first for (balance < 0).

The code does this with the instruction

jns elseIfZero

which says to jump to elseIfZero if the sign flag is not set, that is, if
(balance < 0) is not true. The code following this instruction
corresponds to statements following the first then in the design, that
is, what should be done if (balance < 0) is true. The statement

jmp endBalanceCheck

at the end of this block of statements is necessary so that the CPU
skips the statements that correspond to the other cases. If the first
conditional jump transfers control to elseIfZero, then the balance
must be nonnegative (zero or positive). The design checks to see
whether the balance is zero; the instruction

elseIfZero: jnz elsePos

jumps to elsePos if the zero flag ZF=0. The last instruction that sets
flags is the add at the beginning, so the jump occurs if the balance was
not zero. The code for the (balance=0) case follows this conditional
jump and must again end with an unconditional jump to
endBalanceCheck. Finally, the code that corresponds to the else in the
design is at elsePos. Just as in a high-level language, a third check is
not needed because the only remaining possibility is that balance is
positive. This last block of code does not need a jump to

Download from finelybook 7450911@qq.com

245

endBalanceCheck since execution will fall through to this point.

The 80x86 code above directly corresponds to the order of statements
in the design. When you code in assembly language, you should
initially follow a careful design, and then, if there is a need to make
the code really efficient, examine it to see whether there are places
where you can improve it. This corresponds to what happens in many
high-level language compilers. Most initially produce machine
language that corresponds to the order of the high-level language
statements being translated. Some compilers may then optimize the
code, rearranging some statements for efficiency.

In the previous code, the label endBalanceCheck is on a line by itself.
Technically this label references the address of whatever statement
follows it, but it is far simpler to treat it as the part of the current
design structure without worrying about what comes next. If what
comes after this structure is changed, the code for this structure can
remain the same. If the next statement requires another label, that is
perfectly OK—multiple labels can reference the same instruction in
memory. Labels are not part of object code, so extra labels do not add
to the length of object code or to execution time.

When writing code to mirror a design, you may want to use labels like
if, then, else, and endif. Unfortunately, IF, ELSE, and ENDIF are
assembler directives and they cannot be used as labels. In addition,
IF1, IF2, and several other desirable labels are also reserved for use as
directives. One solution is to use long, descriptive labels like
elseIfZero in the above example. Since no reserved word contains an
underscore, another solution is to use labels like if_1 and endif_2 that
parallel keywords in the original design.

Download from finelybook 7450911@qq.com

246

The terms set a flag and reset a flag are often used to mean “give
the value 1” to a flag and “give the value 0” to a flag, respectively.
(Sometimes the word clear is used instead of reset.) As you have
seen, there are many instructions that set or reset flags. However, a
cmp (compare) instruction’s only job is to set or reset flags, and it is
probably the most common way to establish flag values.

Each cmp instruction compares two operands and sets or resets AF,
CF, OF, PF, SF, and ZF. The only job of a cmp instruction is to fix flag
values; this is not just a side effect of some other operation. Each has
the form

cmp operand1, operand2

A cmp executes by calculating operand1 minus operand2, exactly like
a sub instruction; the value of the difference and what happens in
performing the subtraction determines the flag settings. A cmp
instruction is unlike sub in that the value at the operand1 location is
not changed. The flags that are of most interest in this text are CF,
OF, SF, and ZF. The carry flag CF is set if there is a borrow for the
subtraction and reset if no borrow is required. The overflow flag OF is
set if there is an overflow and reset otherwise. The sign flag SF is set if
the difference represents a negative 2’s complement number (the
leading bit is 1) and is reset if the number is zero or positive. Finally,
the zero flag ZF is set if the difference is zero and is reset if it is
nonzero.

Here are a few examples showing how the flags are set or reset when
some representative byte-length numbers are compared. Recall that
the subtraction operation is the same for signed and unsigned (2’s

Download from finelybook 7450911@qq.com

247

complement) values. Just as a single-bit pattern can be interpreted as
a signed number or an unsigned number, flag values have different
interpretations after comparison of signed or unsigned values. The
“interpretation” columns in the following table show the relationship
of the operands under both signed and unsigned interpretations.

What flag values characterize the relations equal, less than, and
greater than? Equality is easy; the ZF flag is set if and only if
operand1 has the same value as operand2 no matter whether the
numbers are interpreted as signed or unsigned. This is illustrated by
Example 1—less than and greater than take more analysis.

When you first think about less than, it seems as if the carry flag
should be set for a borrow whenever operand1 is less than operand2
This logic is correct if one interprets the operands as unsigned
numbers. Examples 3, 5, 6, and 8 all have operand1 < operand2 as
unsigned numbers, and these are exactly the examples where CF=1.
Therefore, for unsigned numbers, CF=0 means operand1 ≥
operand2. Strict greater-than inequality for unsigned numbers is

Download from finelybook 7450911@qq.com

248

characterized by CF=0 and ZF=0, that is, operand1 ≥ operand2 and
operand1 ≠ operand2.

Examples 3, 5, 7, and 9 have operand1 < operand2 as signed
numbers. What characterizes this situation is that SF≠OF. In the
remaining examples, SF=OF and operand1 ≥ operand2 as signed
numbers. Strict greater-than inequality for unsigned numbers is
characterized by SF=OF and ZF=0, that is, operand1 ≥ operand2 and
operand1 ≠ operand2.

The cmp instructions are listed in Figure 5.5. Looking back at Figure
4.8, you see that the entries in the various columns are almost all the
same as for sub instructions. There are alternative opcodes for some
operand combinations—the ones listed are those chosen by the Visual
Studio assembler.

A few reminders are in order about immediate operands. These can
be coded in your choice of bases or as characters. Assuming that
wordOp references a word in the data segment, each of the following
is allowable.

Note that an immediate operand must be the second operand. The
instruction

cmp 100, total ; illegal

will not assemble since the first operand is immediate.

Download from finelybook 7450911@qq.com

249

Finally, it is time to list the conditional jump instructions; they are
shown in Figure 5.6. Many of these have alternative mnemonics that
generate exactly the same machine code; these describe the same set
of conditions a different way. Often one mnemonic is more natural
than the other for implementation of a given design. The table is in
three parts; the first two list instructions that are appropriate for use
after comparison of signed and unsigned operands, respectively. The
third part lists additional conditional jump instructions.

Conditional jump mnemonics correspond to comparison of the first
operand to the second operand in a preceding cmp instruction. For
example, for the instruction jg, “jump if greater” means to jump if
operand1 > operand2.

No conditional jump instruction changes any flag value. Each
instruction has a short version and a near version. Just as with short
unconditional jump instructions, a short conditional jump encodes a
single-byte displacement and can transfer control 128 bytes before or
127 bytes after the address of the byte following the instruction itself.
A short conditional jump requires 2 bytes of object code, one for the
opcode and one for the displacement. A near conditional jump
encodes a 32-bit displacement in addition to a 2-byte opcode, giving a
total length of 6 bytes. It can transfer control up to 2,147,483,648
bytes backward or 2,147,483,647 forward.

Download from finelybook 7450911@qq.com

250

Figure 5.5

cmp instructions

Download from finelybook 7450911@qq.com

251

Download from finelybook 7450911@qq.com

252

Figure 5.6

Conditional jump instructions

One more pair of examples will illustrate the difference between the
conditional jumps appropriate after comparison of signed and
unsigned numbers. Suppose a value is stored in EAX and some action
needs to be taken when that value is larger than 100. If the value is
unsigned, one might code

cmp eax, 100

Download from finelybook 7450911@qq.com

253

ja bigger

The jump would be chosen for any value bigger than 0000006416,
including values between 8000000016 and FFFFFFFF16, that
represents both large unsigned numbers and all negative 2’s
complement numbers. If the value in EAX is interpreted as signed,
then the instructions

cmp eax,100

jg bigger

are appropriate. The jump will only be taken for values between
00000065 and 7FFFFFFF, not for those bit patterns that represent
negative 2’s complement numbers.

We now look at three examples showing implementation of if
structures. The implementations are consistent with what a high-level
language compiler would use. First consider the design

if value < 10

then

add 1 to smallCount;

else

add 1 to largeCount;

Download from finelybook 7450911@qq.com

254

end if;

Suppose that value is stored in the EBX register and that smallCount
and largeCount reference doublewords in memory. The following
80x86 code implements this design.

Note that this code is completely self-contained; you do not need to
know what comes before or after in the overall design to implement
this portion. You must have a plan for making labels, though, to avoid
duplicates and reserved words. A compiler often produces a label
consisting of a letter followed by a sequence number, but most of the
time we can do better as humans writing code.

Now consider the design

if (total ≥ 100) or (count = 10)

then

add value to total;

end if;

Download from finelybook 7450911@qq.com

255

Assume that total and value reference doublewords in memory, and
that count is stored in the ECX register. Here is assembly language
code to implement this design.

Notice that the design’s or requires two cmp instructions. If either of
the corresponding tests is passed, then the addition is performed.
(Why was the addition done with two statements? Why not use add
total, value?) This code implements a shortcut or—if the first
condition is true, then the second is not checked at all. The code
implemented for some languages always checks both operands of an
or operation, even if the first is true.

Finally consider the design

if (count > 0) and (ch = backspace)

then

subtract 1 from count;

end if;

Download from finelybook 7450911@qq.com

256

For this third example, assume that count is in the ECX register and
ch is in the AL register. This design can be implemented as follows.

This compound condition uses and, so both parts must be true in
order to execute the action. This code implements a shortcut and—if
the first condition is false, then the second is not checked at all.

In each of the previous implementation examples, the order of the
statements in the assembly language code follows the order of the
design statements. It is important to adopt a consistent pattern of
coding that accurately codes the design. Often to make the code flow
the same as the design, you must use “negative” conditional jumps
such as

jng endCheckCh ; done if not

in the last example. It may be tempting to use the equivalent
mnemonic jle instead of jng, but the original design contains (count >
0) and it is easy to make an error changing jng to the equivalent
mnemonic jle. The mnemonic jng is closer to the original design than
is jle. A common error is to use “less than” instead of “less than or
equal to” as the opposite of “greater than.”

Download from finelybook 7450911@qq.com

257

 Exercises 5.2

1. Assume for each part of this problem that the EAX register contains
00 00 00 4F and the doubleword referenced by value contains FF FF
FF 38. Determine whether each of the conditional jump statements
causes a jump to dest.

2. Each part of this problem gives a design with an if structure and
some assumptions about how the variables are stored in an assembly
language program. Give a fragment of assembly language code that
implements the design. The assembly language code should flow the
same as the design.

Download from finelybook 7450911@qq.com

258

Download from finelybook 7450911@qq.com

259

5.3 Implementing Loop Structures

Most programs contain loops. Commonly used loop structures
include while, until, and for loops. This section describes how to
implement all three of these structures in 80x86 assembly language.
The next section describes additional instructions that can be used to
implement for loops.

A while loop can be indicated by the following pseudocode design.

while continuation condition loop

. . . { loop body }

Download from finelybook 7450911@qq.com

260

end while;

A while loop is a pretest loop—the continuation condition, a Boolean
expression, is checked first; if it is true, then the body of the loop is
executed. The continuation condition is then checked again.
Whenever the value of the Boolean expression is false, execution
continues with the statement following end while.

An 80x86 implementation of a while loop follows a pattern much like
this one.

It sometimes takes several statements to check the value of the
Boolean expression. If it is determined that the value is false, then
there will be a jump to endWhile. If it is determined that the
continuation condition is true, then the code will either fall through to
the loop body or there will be a jump to its label. Notice that the loop
body ends with a jmp to go check the condition again. Two common
mistakes are to omit this jump or to jump to the body instead.

The label while in this model is not allowed in actual code since this is
a reserved word for the assembler. In fact, the assembler has a
WHILE directive that simplifies writing code for while loops. It is not

Download from finelybook 7450911@qq.com

261

used in this text as our main concern is understanding how structures
are implemented at the machine language level.

For an example, suppose that the design

while (sum < 1000) loop

. . . { loop body }

end while;

is to be coded in 80x86 assembly language. Assuming that sum
references a doubleword in memory, one possible implementation is

The statement jnl endWhileSum directly implements the design. As
discussed for if implementations, you should avoid the equivalent jge
alternative both because jnl is closer to the design and because of the
danger of choosing the wrong mnemonic when reversing the
inequality.

For an example showing a complete loop body, suppose that the

Download from finelybook 7450911@qq.com

262

integer base 2 logarithm of a positive integer number needs to be
determined. The integer base 2 logarithm of a number is the largest
integer x such that 2x ≤ number. The following design does the job.

x := 0;

twoToX := 1;

while twoToX ≤ number loop

multiply twoToX by 2;

add 1 to x;

end while;

subtract 1 from x;

Assuming that number references a doubleword in memory, the
following 80x86 code implements the design, using the EAX register
for twoToX and the ECX register for x.

Download from finelybook 7450911@qq.com

263

Figure 5.7 shows a sample run of this code. The value of number
stored in memory is 750. A breakpoint has been set at the exit code.
The program has executed from its beginning to the breakpoint. The
ECX register contains 9, the correct value for log2(750) since 29=512,
the largest power of 2 less than or equal to 750.

Figure 5.7

Calculating log2(number)

Download from finelybook 7450911@qq.com

264

Often the continuation condition in a while is compound, having two
parts connected by Boolean operators and or or. Both operands of an
and must be true for a true conjunction. With an or, the only way the
disjunction can be false is if both operands are false.

Changing a previous example to include a compound condition,
suppose that the following design is to be coded.

while (sum < 1000) and (count ≤ 24) loop

. . . { loop body }

end while;

Assuming that sum references a doubleword in memory and the value
of count is in ECX, an implementation is

Modifying the example one more time, next is a design with an or
instead of an and.

Download from finelybook 7450911@qq.com

265

while (sum < 1000) or (flag = 1) loop

. . . { loop body }

end while;

This time, assume that sum is in the EAX register, and that flag is a
single byte in the BL register. Here is 80x86 code that implements the
design.

Notice the difference in the previous two examples. For an and the
loop is exited if either operand of the compound condition is false.
For an or the loop body is executed if either operand of the compound
condition is true.

The body of a for loop, a counter-controlled loop, is executed once for
each value of a loop index (or counter) in a given range. In some high-
level languages, the loop index can be some type other than integer; a
design for assembly language implementation usually has an integer

Download from finelybook 7450911@qq.com

266

index. A for loop can be described by the following pseudocode.

for index := initialValue to finalValue loop

. . . { loop body }

end for;

A for loop can easily be translated into a while structure.

index := initialValue;

while index ≤ finalValue loop

. . . { loop body }

add 1 to index;

end while;

Such a while is readily coded in 80x86 assembly language.

An until loop is a posttest loop—the condition is checked after the

Download from finelybook 7450911@qq.com

267

body of the loop is executed. In general, an until loop can be
expressed as follows in pseudocode.

repeat

. . . { loop body }

until termination condition;

The body of the loop is executed at least once; then the termination
condition is checked. If it is false, then the body of the loop is
executed again; if true, execution continues with the statement
following the loop.

An 80x86 implementation of an until loop usually looks like the
following code fragment.

If the code to check the termination condition determines that the
value is false, then there will be a jump to until. If it is determined
that the value is true, then the code will either fall through to
endUntil or there will be a jump to that label.

Other loop structures can also be coded in assembly language. The

Download from finelybook 7450911@qq.com

268

forever loop is frequently useful. As it appears in pseudocode, it
almost always has an exit loop statement to transfer control to the
end of the loop; this is often conditional, that is, in an if statement.

This section ends with an example of a complete program. Suppose
you really want to become a millionaire. You devise a scheme to go to
work for a rich, but not very intelligent, employer. You negotiate a
contract in which you agree to be paid 1 cent for the first day of work,
2 cents for the second day, 4 cents for the third day, 8 cents for the
fourth day, and so on, with your wage doubling each day. What is the
minimum number of days of work you should require in the contract
to be sure that you earn a total of $1 million?

Obviously a loop is needed in the solution’s design. A counter-
controlled loop is not appropriate since we do not know how many
times to iterate. Either a while loop or an until loop will work with a
properly structured design. Here is a pseudocode design that uses a
while loop.

nextDaysWage := 1;

totalEarnings := 0;

day := 0;

while totalEarnngs < 100000000 loop

add nextDaysWage to totalEarnings;

Download from finelybook 7450911@qq.com

269

multiply nextDaysWage by 2;

add 1 to day;

end loop;

Notice that the limit on total earnings is expressed in cents; $1 million
has been converted to 100,000,000 cents. For an implementation, we
choose to keep totalEarnings in EAX, nextDaysWage in EBX, and
day in ECX. Figure 5.8 shows a screenshot with the debugger paused
at the exit point of the program. How many days are needed to earn
$1 million? What was your wage on the last day? What were your
total earnings for these days?

Figure 5.8

Download from finelybook 7450911@qq.com

270

Becoming a millionaire

 Exercises 5.3

1. Each part of this problem contains a design with a while loop.
Assume that sum references a doubleword in the data segment and
that count is in the ECX register. Give a fragment of 80x86 code that
implements the design.

(a) sum := 0;

count := 1;

while (sum < 1000) loop

add count to sum;

add 1 to count;

end while;

*(b) sum := 0;

count := 1;

while (sum < 1000) and (count ≤ 50) loop

add count to sum;

add 1 to count;

Download from finelybook 7450911@qq.com

271

end while;

(c) sum := 0;

count := 100;

while (sum < 1000) or (count ≥ 0) loop

add count to sum;

subtract 1 from count;

end while;

(d) count := 0;

sum := 500;

while (count ≤ 60) and (sum > 200) loop

subtract count from sum;

add 5 to count;

end while;

(e) count:= 0;

sum:= 200;

while (count ≤ 100) or (sum < 300) loop

Download from finelybook 7450911@qq.com

272

add count to sum;

add 5 to count;

end while;

2. Each part of this problem contains a design with an until loop.
Assume that sum references a doubleword in the data segment and
that count is in the ECX register. Give a fragment of 80x86 code that
implements the design.

(a) sum := 0;

count := 1;

repeat

add count to sum;

add 1 to count;

until (sum > 5000);

(b) sum := 0;

count := 1;

repeat

add count to sum;

Download from finelybook 7450911@qq.com

273

add 1 to count;

until (sum > 5000) or (count = 40) ;

*(c) sum := 0;

count := 1;

repeat

add count to sum;

add 1 to count;

until (sum ≥ 5000) and (count > 40);

(d) count := 30;

sum := 50;

repeat

add count to sum;

subtract 1 from count;

until (count = 0) or (sum ≥ 400);

(e) count := 30;

sum := 50;

Download from finelybook 7450911@qq.com

274

repeat

subtract count from sum;

add 3 to count;

until (count > 50) and (sum ≥ 600);

3. Each part of this problem contains a design with a for loop. Assume
that sum references a doubleword in the data segment and that count
is in the ECX register. Give a fragment of 80x86 code that
implements the design. (Hint: Change each for loop to the equivalent
while structure.)

(a) sum := 0;

for count := 1 to 100 loop

count to add sum;

end for;

*(b) sum := 0;

for count := -10 to 50 loop

add count to sum;

end for;

(c) sum := 1000;

Download from finelybook 7450911@qq.com

275

for count := 100 downto 50 loop

subtract 2*count from sum;

end for;

 Programming Exercises 5.3

1. Modify the design for the program in Figure 5.8 to use an until loop
instead of a while loop. Using the console32 or console64 framework,
implement your modified design and run it under the debugger.

2. Keeping a console32 program, modify the program in Figure 5.8 to
look for the number of days it takes to earn $40 million. Hint: The
program will fail if you simply change the immediate value in the cmp
instruction. (Why?) An additional change to the program will make it
work. What is the largest total earnings for which this design will
work? Would it make a difference if you changed to the console64
framework? Why?

3. Using the windows32 or windows64 framework, design and
implement a program that will use a dialog box to prompt for an
integer n, compute the sum of the integers from 1 to n, and use a
message box to display the sum.

4. Using the console32 or console64 framework, design and
implement a program that will find the smallest integer n for which 1
+ 2 + . . . + n is at least 1000 and run it under the debugger.

5. Using the windows32 or windows64 framework, design and

Download from finelybook 7450911@qq.com

276

implement a program that will use a dialog box to prompt for an
integer n, compute the sum 12 + 22 + 32 + . . . + n2, and use a message
box to display the sum.

6. The greatest common divisor of two positive integers is the largest
integer that evenly divides both numbers. The following algorithm
will find the greatest common divisor of number1 and number2.

gcd := number1;

remainder := number2;

repeat

dividend := gcd;

gcd := remainder;

remainder := dividend mod gcd;

until (remainder = 0);

Using the windows32 or windows64 framework, write a program
that uses dialog boxes to prompt for and input values for number1
and number2, implements the above design to find their greatest
common divisor, and uses a message box to display the GCD.

Download from finelybook 7450911@qq.com

277

7. Using the windows32 or windows64 framework, design and
implement a program that will use a dialog box to prompt for the
length and width of a rectangle, and display the rectangle’s area in a
message box. For each input, use an until loop to ensure that the
measurement is a positive number. For example, for the length, you
might use the design

repeat

prompt and input length;
if length ≤ 0
then

display "Length must be positive";

end if;

until length > 0;

8. Using the windows32 or windows64 framework, design and
implement a program that will use a dialog box to prompt for an
integer targetValue, and calculate and display the value of nbrTerms
where nbrTerms is the smallest integer such that

12 + 22 + 32 + . . . + nbrTerms2 ≥ targetValue

5.4 for Loops in Assembly Language

Download from finelybook 7450911@qq.com

278

Often the number of times the body of a loop must be executed is
known in advance, either as a constant that can be coded when a
program is written, or as the value of a variable that is assigned before
the loop is executed. The for loop structure is ideal for coding such a
loop.

The previous section showed how to translate a for loop into a while
loop. This technique always works and is often the best way to code a
for loop. However, the 80x86 microprocessor has instructions that
make coding certain for loops very easy.

Consider the following two for loops, the first of which counts
forward and the second of which counts backward.

for index := 1 to count loop

. . . { loop body }

end for;

and

for index := count downto 1 loop

. . . { loop body }

Download from finelybook 7450911@qq.com

279

end for;

Each loop body executes count times. If the value of index is not
needed within the body of the loop, then the loop that counts down is
equivalent to the loop that counts up, although the design may not be
as natural. Backward for loops are very easy to implement in 80x86
assembly language with the loop instruction.

The loop instruction has the format

loop statementLabel

where statementLabel is the label of a statement that is a short
displacement (128 bytes backward or 127 bytes forward) from the
loop instruction. The loop instruction takes two bytes of object code,
opcode E2 and the byte-size displacement.

The loop instruction causes the following actions to take place:

• The value in ECX is decremented.

• If the new value in ECX is zero, then execution continues with the
statement following the loop instruction.

• If the new value in ECX is nonzero, then a jump to the instruction at
statementLabel takes place.

Although the ECX register is a general register, it has a special place
as a counter in the loop instruction and in several other 80x86

Download from finelybook 7450911@qq.com

280

instructions. No other register can be substituted for ECX in these
instructions. In practice this often means that when a loop is coded,
ECX is not used for other purposes. In 64-bit mode, the action is
exactly the same except that RCX is used instead of ECX.

The backward for loop structure

for count := 20 downto 1 loop

. . . { loop body }

end for;

can be coded as follows in 80x86 assembly language using the loop
instruction.

The counter in the ECX register will be 20 the first time the loop body
is executed and will be decremented to 19 by the loop instruction. The
value 19 is not zero, so control transfers to the start of the loop body
at label forCount. The second time the loop body is executed, the ECX
register will contain 19. The last time the loop body is executed, the
value in ECX will be 1. ECX will be decremented to zero by the loop

Download from finelybook 7450911@qq.com

281

instruction, the jump to forCount will not be taken, and execution will
continue with the instruction following the loop instruction.

The obvious label to mark the body of a for loop is for. Unfortunately
this is a reserved word for the assembler. It is used for a directive that
simplifies coding of for loops. Since our primary interest is in
learning how the computer works at the machine level, this directive
is not used.

Now suppose that the doubleword in memory referenced by number
contains the number of times a loop body is to be executed. The
80x86 code to implement a backward for loop could be

This code gives surprising results if the value stored at number is
zero. If it is zero, then the loop body is executed, the zero value is
decremented to FFFFFFFF (borrowing to do the subtraction), the
loop body is executed again, the value FFFFFFFF is decremented to
FFFFFFFE, and so forth. The body of the loop is executed
4,294,967,296 times before the value in ECX gets back down to zero!
To avoid this problem, one could code

Download from finelybook 7450911@qq.com

282

If number is a signed value and might be negative, then

jle endFor ; skip loop if number <= 0

is a more appropriate conditional jump.

There is another way to guard a for loop so that it is not executed
when the value in ECX is zero. The 80x86 architecture has a jecxz
conditional jump instruction that jumps to its destination if the value
in the ECX register is zero. Using the jecxz instruction, the previous
example can be coded as

The jexcz instruction is 2 bytes long, the opcode E3 plus a single-byte
displacement. Like the other conditional jump instructions, jecxz
affects no flag value. In 64-bit mode, there is also a jrcxz instruction
that checks RCX. It has the same object code as jecxz.

The jecxz instruction can also be used to code a backward for loop

Download from finelybook 7450911@qq.com

283

when the loop body is longer than 127 bytes, too large for the loop
instruction’s single-byte displacement. For example, the structure

for counter := 50 downto 1 loop

. . . { loop body }

end for;

could be coded as

However, since the dec instruction sets or resets the zero flag ZF, the
conditional jump jz endFor can be used just as effectively.

It is often convenient to use a loop statement to implement a for loop,
even when the loop index increases and must be used within the body
of the loop. The loop statement uses ECX to control the number of
iterations, while a separate counter serves as the loop index. For
example, to implement the for loop

Download from finelybook 7450911@qq.com

284

for index := 1 to 50 loop

. . . { loop body using index }

end for;

the EBX register might be used to store index counting from 1 to 50,
while the ECX register counts down from 50 to 1.

 Exercises 5.4

1. Each part of this problem has a for loop implemented with a loop
statement. How many times is each loop body executed?

(a)

*(b)

Download from finelybook 7450911@qq.com

285

(c)

*(d)

2. Each part of this problem contains a design with a for loop. Assume
that sum references a doubleword in the data segment. Give a
fragment of 80x86 code that implements the design. Use a loop
statement appropriately in the code.

(a) sum := 0;

for count := 50 downto 1 loop

add count to sum;

end for;

*(b) sum := 0;

for count := 1 to 50 loop

Download from finelybook 7450911@qq.com

286

add count to sum;

end for;

(c) sum := 0;

for count := 1 to 50 loop

add (2*count − 1) to sum;

end for;

(d) sum := 0;

for count := 1 to 50 loop

add count*count to sum;

end for;

 Programming Exercises 5.4

1. Using the windows32 or windows64 framework, design and
implement a program that will use a dialog box to prompt for an
integer n, compute the sum 12 + 22 + 32 + . . . + n2, and use a message
box to display the sum. Use a for loop in your design and implement
it with a loop instruction.

2. The binomial coefficient is defined for integers
Design and implement a windows32 or windows64 program that will

Download from finelybook 7450911@qq.com

287

use dialog boxes to prompt for and input n and k, compute with
the above formula, and use a message box to display the binomial
coefficient. Hint: Do not calculate n! and k! separately. Instead,

calculate .

5.5 Arrays

Programs frequently use arrays to store collections of data values.
Loops are commonly used to manipulate the data in arrays. Storage
for an array can be reserved using the DUP directive in the data
segment of a program. This section shows two ways to access one-
dimensional arrays in 80x86 assembly language.

Suppose that you have a collection of nbrElts doubleword integers
stored in memory at nbrArray, and that the value of nbrElts is also
stored in a doubleword in memory. You want to process this array,
first finding the average of the numbers and then adding 10 to each
number that is smaller than the average. Here is a design to do this.

{ find sum and average }

sum := 0;

get address of first array element;

for count := nbrElts downto 1 loop

add doubleword at address in array to sum;

Download from finelybook 7450911@qq.com

288

get address of next array element;

end for;

average := sum/nbrElts;

{ add 10 to each number less than average }

get address of first array element;

for count := nbrElts downto 1 loop

if doubleword of array < average

then

add 10 to doubleword;

end if;

get address of next array element;

end for;

This design contains the curious statements “get address of first array
element” and “get address of next array element.” These reflect the
particular assembly language implementation, one that works well if
the task at hand involves moving sequentially through the elements
stored in an array. The 80x86 feature that makes this possible is

Download from finelybook 7450911@qq.com

289

register indirect addressing, first discussed in Chapter 3. Our
implementation code will use the EBX register to contain the address
of the word currently being accessed; recall that [ebx] references the
doubleword at the address in the EBX register rather than the
doubleword in the register itself. In the 80x86 architecture any of the
general registers EAX, EBX, ECX, and EDX or the index registers EDI
and ESI are appropriate for use as a “pointer.” However, the ECX
register is often reserved for use as a loop counter. Similarly, the ESI
and EDI registers are often reserved for use with strings that are
usually arrays of characters. String operations will be covered in
Chapter 8. The program listing appears in Figure 5.9.

For our console32 implementation, we allow space for 100
doublewords in nbrArray, but only use the first 5 to test. The sum is
calculated in EAX and, after division by nbrElts, the average is in the
same register. Figure 5.10 shows the program executing under the
debugger, stopped at a breakpoint right before the first loop starts
iterating. Notice that ECX contains the number of elements and EBX
contains 01364000, the same address that the memory display shows
for the address of nbrArray (&nbrarray). The lea instruction has
placed this address into EBX.

Download from finelybook 7450911@qq.com

290

Figure 5.9

Process array

Download from finelybook 7450911@qq.com

291

Figure 5.10

Setting up an array process loop

The mnemonic lea stands for “load effective address.” The lea
instruction has the format

lea destination, source

The destination is usually a 32-bit general register; the source is any
reference to memory. The address of the source is loaded into the
register. (Contrast this with mov destination, source where the value
at the source address is copied to the destination.) The lea instruction

Download from finelybook 7450911@qq.com

292

has opcode 8D.

Notice that you get the address of the next doubleword in the array by
adding 4 to the current address in EBX since each doubleword is 4
bytes long. Step through a couple of iterations of the loop to watch
EBX change as the next array elements are added to sum. Then clear
the first breakpoint and set a breakpoint at the second lea instruction
and let the first loop complete. Figure 5.11 shows the debugger
display. ECX has decremented to zero. EAX contains 2116 and this is
correct because the average of these five numbers is 33.8.

Figure 5.11

Download from finelybook 7450911@qq.com

293

Average of numbers in array

Finally, set another breakpoint at the end of the program and click
the Continue button. Figure 5.12 shows the final display. Notice that
in memory 1916 has been changed to 2316, 0f16 has been changed to
1916, and 2016 has been changed to 2a16, that is, each number less
than 2116 has had 10 added to it.

Figure 5.13 shows the same program rewritten for a 64-bit
environment. It still processes an array of doublewords, but other
details are changed. In particular, RBX is used to point to each array
element. Also, RCX is used as the counter register by the loop
instruction in 64-bit mode, but we cannot simply copy the value of
nbrElts to RCX since the sizes don’t match. To solve this problem, all
64 bits of RCX are cleared before copying the value of nbrElts to the
low-order 32 bits. The only other changes to the program are
eliminating the directives that the 64-bit assembler does not use.

If you were planning to code this program in a high-level language
like Java or C++, the first loop design might look like

for index := 0 to nbrElts-1 loop

add nbrArray[index] to sum;

end for;

Download from finelybook 7450911@qq.com

294

Figure 5.12

Small numbers in array changed

Download from finelybook 7450911@qq.com

295

Figure 5.13

Process array (64-bit version)

Figure 5.14 gives a console32 program that comes close to directly

Download from finelybook 7450911@qq.com

296

implementing this design. Only the body of main is shown since the
rest is identical to the first version of the program in Figure 5.9. What
is new is that ECX performs exactly the function of index in the above
design—it counts from 0 up to nbrElts−1. Instead of using register
indirect addressing to reference the array element, we use indexed
addressing. The address format nbrArray[4*ecx] is assembled into
an address with a displacement that is the address of nbrArray, ECX
as an index register, and 4 as a scaling factor for the index. When
executed, the operand used is at the address that is at the sum of the
displacement and four times the contents of the index register. In
other words, the first operand is at nbrArray+0, the second at
nbrArray+4, and so on. The advantage of using indexed addressing is
that array elements do not have to be accessed in sequential order.

The 80x86 architecture has additional addressing modes. The most
complicated is based and indexed. One format in assembly
language looks like 100[ebx+8*ecx]. In this example the address of
the operand is calculated as the contents of EBX plus eight times the
contents of ECX plus 100. Notice that the function of the
displacement 100 in this example is exactly the same as the function
of the starting address nbrArray in the previous example. The only
allowable scaling factor values are 2, 4, and 8.

Recall that object code often contains a ModR/M byte. If the R/M
field has value 100 and the Mod field has value 00, 01, or 10, then an
additional SIB byte follows the ModR/M byte to encode information
about the scale factor, the index register, and the base register. The
scale field is 2 bits long and has values 00 for no scaling, 01 for scale
factor 2, 10 for 4, and 11 for 8. The remaining two fields are each 3
bits long and designate index and base registers using the encodings

Download from finelybook 7450911@qq.com

297

shown in Figure 4.3. In 64-bit mode, REX prefixes extend this
encoding.

Figure 5.14

Process array using indexed addressing

 Exercises 5.5

1. Modify the program in Figure 5.9, replacing the second loop by one
that changes each number larger than average to zero.

2. Modify the program in Figure 5.9, replacing the second loop by one

Download from finelybook 7450911@qq.com

298

that changes each number within 5 of the average to the average.
Include values equal to average−5 or to average+5.

3. Assemble each instruction in a console32 program, examine the
listing file, and explain how each field of the ModR/M byte and each
field in the SIB byte relates to the corresponding part of the assembly
language source code.

*(a) add 1000[ebx+4*esi], edx

(b) mov DWORD PTR 1000[ecx+8*edi], 5000

 Programming Exercises 5.5

1. The following design will input numbers into an array or
doublewords, using the sentinel value −9999 to terminate input.

nbrElts := 0;

get address of array;

prompt for and input number;

while number ≠ −9999 loop

add 1 to nbrElts;

store number at address;

Download from finelybook 7450911@qq.com

299

add 4 to address;

prompt for and input number;

end while;

Implement this design in a windows32 or windows64 program that
uses a dialog box to prompt for and input each number. Assume that
no more than 100 numbers will be entered. Use a single message box
to report the sum of the numbers, how many numbers were entered
(not counting the sentinel value), the average of the numbers, and the
count of array entries that are greater than or equal to the average
value.

2. Using the windows32 or windows64 framework, write a program
that uses a dialog box to input a string of characters into charStr,
recalling that the input macro terminates a string with a null byte

(00). Process this string as an array of characters, replacing each
uppercase letter in charStr by its lowercase equivalent, leaving every
other character unchanged. Use a message box to display the
modified string.

3. There are many ways to determine prime numbers. Here is a
design for one way to find the first 100 primes. Implement this design
in 80x86 assembly language. Using the console32 or console64
framework, write a program that stores the primes in an array of
doublewords primeArray, and examine the contents of primeArray

Download from finelybook 7450911@qq.com

300

using the debugger.

prime[1] := 2; { first prime number }

prime[2] := 3; { second prime number }

primeCount := 2;

candidate := 5; { first candidate for a new prime }

while primeCount < 100 loop

index := 1;

while (index ≤ primeCount)

and (prime[index] does not evenly divide candidate) loop

add 1 to index;

end while;

if (index > primeCount)

then {no existing prime evenly divides the candidate, so it is a new
prime}

add 1 to primeCount;

Download from finelybook 7450911@qq.com

301

prime[primeCount] := candidate;

end if;

add 2 to candidate;

end while;

4. It is often necessary to search an array for a given value. Using the
windows32 or windows64 framework, write a program that inputs a
collection of integers into an array of doublewords and then
sequentially searches for values stored in the array. Implement the
following design.

nbrElts := 0;

get address of array;

prompt for and input number;

while (number > 0) loop

add 1 to nbrElts;

store number at address in array;

get address of next array element;

Download from finelybook 7450911@qq.com

302

prompt for and input number;

end while;

repeat

prompt for and input keyValue;

get address array;

count := 1;

forever loop

if count > nbrElts

then

display keyValue, "not in array";

exit loop;

end if;

if keyValue = current element of array

then

display keyValue, "is element", count;

exit loop;

Download from finelybook 7450911@qq.com

303

end if;

add 1 to count;

get address of next array element;

end loop;

prompt for and input response;

until (response = 'N') or (response = 'n');

5. Suppose that nbrArray is a 1-based array of doubleword integers
(that is, the first index is 1, not 0). The first nbrElts values in
nbrArray can be sorted into increasing order using the selection
sort algorithm.

for position := 1 to nbrElts-1 loop

smallSpot := position;

smallValue := nbrArray [position];

for i := position+1 to nbrElts loop

if nbrArray [i] < smallValue

Download from finelybook 7450911@qq.com

304

then

smallSpot := i;

smallValue := nbrArray [i];

end if;

end for;

nbrArray [smallSpot] := nbrArray [position];

nbrArray [position] := smallValue;

end for;

Implement this algorithm in a console32 or console64 program,
testing with an array of 20 doubleword integers. Use scaled and
indexed addressing appropriately to address array elements, noting
that the algorithm as written starts with index 1, not index 0. Execute
your program under the debugger.

6. Using the windows32 or windows64 framework, write a program
that uses a dialog box to input a string of characters into charStr,
recalling that the input macro terminates a string with a null byte
(00). Treat this string as an array of characters and determine the
length of the string, how many lowercase letters it contains, how
many uppercase letters it contains, how many digits ('0' to '9') it
contains, and how many spaces it contains. Report these five results

Download from finelybook 7450911@qq.com

305

in a single message box.

7. Suppose that array1 and array2 are arrays of doublewords, each
sorted into increasing order. Assume that there are count1 values in
array1 and count2 values in array2, with at least one unused slot in
each array following the significant values. Assuming 1-based array
indexing, here is a design for merging the numbers from the two
arrays into a new sorted array3.

array1[count1+1] := largestPossibleInteger;

array2[count2+1] := largestPossibleInteger;

index1 := 1;

index2 := 1;

for index3 := 1 to count1+count2 loop

if array1[index1] < array2[index2]

then

array3[index3] := array1[index1];

add 1 to index1;

else

Download from finelybook 7450911@qq.com

306

array3[index3] := array2[index2];

add 1 to index2;

end if;

Using the console32 or console64 framework, write a program to
implement this design. Test your program with the following data
(but also test with other data).

array1 DWORD −3, 5, 10, 15, 18, 15 DUP (?)

array2 DWORD −12, −7, 0, 9, 16 DUP (?)

array3 DWORD 40 DUP (?)

8. The inner product of two vectors is the sum of the products of
corresponding terms. For instance, given [3, 6, 5] and [2, −4, 1] (each
stored as an array with 3 elements), the inner product is 3*2 + 6*(−4)
+ 5*1 = −13. Using the console32 or console64 framework, write a
program to compute the inner product of two doubleword integer
vectors, stored in arrays at vector1 and vector2, respectively. Assume
that the common length of the vectors is stored in memory at the
doubleword vLength. Leave the inner product in EAX.

5.6 Chapter Summary

This chapter introduced 80x86 instructions that can be used to
implement many high-level design or language features including if

Download from finelybook 7450911@qq.com

307

statements, various loops structures, and arrays.

The jmp instruction unconditionally transfers control to a destination
statement. It has several versions, including one that jumps to a short
destination 128 bytes before or 127 bytes after the jmp, and one that
jumps to a near destination a 32-bit displacement away. The jmp
instruction is used in implementing various loop structures, typically
transferring control back to the beginning of the loop, and in the if–
then–else structure at the end of the “then code” to transfer control to
endif so that the else code is not also executed. A jmp statement
corresponds directly to the goto statement that is available in most
high-level languages.

Conditional jump instructions examine the settings of one or more
flags in the flag register and jump to a destination statement or fall
through to the next instruction depending on the flag values.
Conditional jump instructions have short and near displacement
versions. There is a large collection of conditional jump instructions.
They are used in if statements and loops, often in combination with
compare instructions, to check Boolean conditions.

The cmp (compare) instructions have the sole purpose of setting or
resetting flags in the flags register. Each compares two operands and
assigns flag values. The comparison is done by subtracting the second
operand from the first. The difference is not retained as it is with a
sub instruction. Compare instructions often precede conditional jump
instructions.

Loop structures like while, until, and for loops can be implemented
using compare, jump, and conditional jump instructions. The loop

Download from finelybook 7450911@qq.com

308

instruction provides another way to implement many for loops. To
use the loop instruction, a counter is placed in the ECX register prior
to the start of the loop. The loop instruction itself is at the bottom of
the loop body; it decrements the value in ECX and transfers control to
a destination (normally the first statement of the body) if the new
value in ECX is not zero. This results in the body of the loop being
executed the number of times originally placed in the ECX register.
The conditional jump jecxz instruction can be used to guard against
executing such a loop when the initial counter value is zero.

Storage for an array can be reserved using the DUP directive in the
data segment of a program. The elements of an array can be
sequentially accessed by putting the address of the first element of the
array in a register, and adding the size of an array element repeatedly
to get to the next element. The current element is referenced using
register indirect addressing. The lea (load effective address)
instruction is commonly used to load the initial address of the array.
More complicated addressing modes can be used for nonsequential
access of array elements.

Download from finelybook 7450911@qq.com

309

PROCEDURES CHAPTER

6

6.1 The 80x86 Stack

6.2 32-Bit Procedures with Value Parameters

6.3 Additional 32-Bit Procedure Options

6.4 64-Bit Procedures

6.5 Macro Definition and Expansion

6.6 Chapter Summary

The 80x86 architecture enables implementation of procedures that
are similar to those in a high-level language. In fact, 80x86
procedures can be called from high-level language programs or can
call high-level language procedures. There are three main concepts
involved: (1) how to transfer control from a calling program to a
procedure and back, (2) how to pass parameter values to a procedure
and results back from the procedure, and (3) how to write procedure
code that is independent of the calling program. In addition,
sometimes a procedure must allocate local variable space. The
hardware stack is used to accomplish each of these jobs. This chapter
begins with a discussion of the 80x86 stack. Sections 6.1 to 6.3 cover

Download from finelybook 7450911@qq.com

310

operations in 32-bit mode only, while Section 6.4 describes
differences for 64-bit mode. The final section discusses macros,
sometimes used to substitute for procedure calls, and used by the io.h
file in windows32 and windows64 projects to call procedures.

6.1 The 80x86 Stack

32-bit programs in this text have allocated stacks with the code

.STACK 4096

This .STACK directive tells the assembler to reserve 4096 bytes of
uninitialized storage. The operating system initializes the stack
pointer register ESP to the address of the first byte above the 4096
bytes in the stack. A larger or smaller stack could be allocated,
depending on the anticipated usage in the program.

64-bit programs do not use the .STACK directive. Stack size is
changed by specifying new values for the Stack Reserve Size and
Stack Commit Size properties found in PROJECT/project
Properties/configuration properties/Linker/System. The default
values of 1MB and 4KB, respectively, are ample for our programs.

The stack is most often used by pushing doublewords on it, or by
popping them off it. This is done automatically as part of the
execution of call and return instructions (see Section 6.2). It is also
done manually with push and pop instructions. This section covers
the mechanics of push and pop instructions, describing how they use
the stack.

Download from finelybook 7450911@qq.com

311

Source code for a push instruction has the syntax

push source

The source operand can be a register 16, a register 32, a segment
register, a word in memory, a doubleword in memory, an immediate
byte, an immediate word, or an immediate doubleword. The only
byte-size operand is immediate, and is sign-extended to a word or
doubleword to get the value actually pushed on the stack. Figure 6.1
lists some allowable operand types, omitting segment registers that
we will not use. The usual mnemonic for a push instruction is just
push. However, if there is ambiguity about the size of the operand (as
there would be with a small immediate value) then you can use pushw
or pushd mnemonics to specify word-size or doubleword-size
operands, respectively. The WORD PTR and DWORD PTR operators
are used with memory operands when needed.

When a push instruction is executed for a doubleword-size operand,
the stack pointer ESP is decremented by 4. Recall that initially ESP
contains the address of the byte just above the allocated space.
Subtracting 4 makes ESP point to the top doubleword in the stack.
The operand is then stored at the address in ESP, that is, at the high-
memory end of the stack space. Execution is similar for a word-size
operand, except that ESP is decremented by 2 before the operand is
stored.

EXAMPLE

We now show an example of execution of two push instructions. It assumes that

ESP initially contains 00600200. The first push decrements ESP to 006001FC

Download from finelybook 7450911@qq.com

312

and then stores the contents of EAX at that address. Notice that the low-order and

high-order bytes are reversed in memory. The second push decrements ESP to

006001F8 and stores FFFFFF10 (−24010) at that address.

Download from finelybook 7450911@qq.com

313

Figure 6.1

push instructions

You can use the debugger to watch these instructions actually
execute. After you assemble a program starting with

mov eax, 83b547a2h

push eax

pushd -240

the assembly listing displays

Download from finelybook 7450911@qq.com

314

This is expected from the opcodes listed in Figure 4.1 for mov and
Figure 6.1 for push. Figure 6.2 gives the Visual Studio display after
the EAX register has been initialized with 83B547A2. We just want to
see the top few bytes of the stack, so we note that ESP contains
0041FAAC. (It might have another value at another time or on
another computer.) To display the top 16 bytes, we open a memory
view starting at address 0x0041FA9C. These bytes are shown on the
top two lines of the memory window. Notice that the stack contains
“junk” values, zeros in this case.

Figure 6.2

Stack test prior to push operation

Download from finelybook 7450911@qq.com

315

Figure 6.3

EAX has been pushed onto the stack

Now execute the push instruction. The resulting display is shown in
Figure 6.3. Notice that ESP now contains 0041FAA8, that is, it has
been decremented by 4. The last 4 bytes on the second memory line
(in gray) show the doubleword stored at the new stack pointer
address. The bytes from EAX have been stored backward in memory.
Finally execute the pushd instruction. The resulting display is shown
in Figure 6.4. ESP now contains 0041FAA4, again decremented by 4.
The first 4 bytes of the second memory line show the value of −240,
again with the bytes of FFFFFF10 stored in reverse order.

Download from finelybook 7450911@qq.com

316

If additional operands were pushed onto the stack, ESP would be
decremented further and the new values stored. No push instruction
affects any flag bit.

Notice that a stack “grows downward,” contrary to the image that you
may have of a typical software stack.1 Also notice that the only value
on the stack that is readily available is the last one pushed; it is at the
address in ESP. Furthermore, ESP changes frequently as you push
values and as procedure calls are made. In the next section you will
learn a way to establish a fixed reference point in the middle of the
stack using the EBP register, so that values near that point can be
accessed without having to pop off all the intermediate values.

Download from finelybook 7450911@qq.com

317

Figure 6.4

−240 has been pushed onto the stack

Notice that the instruction add esp, 8 precedes the usual exit code.
This effectively removes the two values from the stack, allowing a
normal exit from the program. You will see more why this is
necessary later in this chapter.

Pop instructions do the opposite job of push instructions. Each pop
instruction has the format

pop destination

where destination can reference a word or doubleword in memory,
any register 16, any register 32, or any segment register except CS.
(The push instruction does not exclude CS.) The pop instruction gets
a doubleword-size value from the stack by copying the doubleword at
the address in ESP to the destination, then incrementing ESP by 4.
The operation for a word-size value is similar, except that ESP is
incremented by 2. Figure 6.5 gives information about pop
instructions for different destination operands. Segment registers are
again omitted. Pop instructions do not affect flags.

EXAMPLE

Here is an example to show how pop instructions work. The doubleword at the

address in ESP is copied to ECX before ESP is incremented by 4. The values

popped from the stack are physically still there even though they logically have

been removed. Note again that the bytes of a doubleword are stored backward in

memory in the 80x86 architecture.

Download from finelybook 7450911@qq.com

318

Figure 6.5

Download from finelybook 7450911@qq.com

319

pop instructions

Figure 6.6

pushf and popf instructions

We have noted previously that registers are a scarce resource when
programming. One use of push and pop instructions is to temporarily
save the contents of a register on the stack. Suppose, for example, that
you are using EDX to store some program variable, but need to do a
division that requires you to extend a dividend into EDX:EAX prior to
the operation. One way to avoid losing the value in EDX is to push it
on the stack.

This example assumes that you don’t need the remainder the division
operation puts in EDX. If you do need the remainder, it could be
copied somewhere else before popping the saved value back to EDX.

As the above example shows, push and pop instructions are often
used in pairs. When we examine how the stack is used to pass
parameters to procedures, you will see a way to logically discard
values from the stack without popping them to a destination location.

Download from finelybook 7450911@qq.com

320

In a 32-bit environment the stack is created on a doubleword
boundary, that is, the address in ESP will be a multiple of 4. It is
important to keep the stack top on a doubleword boundary for certain
system calls. Therefore, with few exceptions, you should always push
doubleword values on the stack, even though the 80x86 architecture
allows words to be used.

In addition to the ordinary push and pop instructions, there are
special mnemonics to push and pop flag registers. These are pushf
(pushfd for the extended flag register) and popf (popfd for the
extended flag register). These are summarized in Figure 6.6. They are
sometimes used in procedure code. Obviously, popf and popfd
instructions change flag values; these are the only push or pop
instructions that change flags.

The 80x86 architecture has pushad and popad instructions that push
or pop all general-purpose registers with a single instruction. These
are rarely useful and do not work in 64-bit mode, so they are not used
in this text.

 Exercises 6.1

1. For each instruction, give the opcode and the number of bytes of
object code including prefix bytes. Assume that double references a
doubleword in memory.

(a) push ax

(b) pushd 10

Download from finelybook 7450911@qq.com

321

*(c) push ebp

(d) pop ebx

(e) pop double

(f) pop dx

(g) pushfd

2. For each part of this problem, assume the “before” values when the
given instructions are executed. Give the requested “after” values.
Trace execution of the instructions by drawing pictures of the stack.

3. Many microprocessors do not have an instruction equivalent to
xchg. With such systems, a sequence of instructions like the following
can be used to exchange the contents of two registers:

push eax

push ebx

Download from finelybook 7450911@qq.com

322

pop eax

pop ebx

Explain why this sequence works to exchange the contents of the EAX
and EBX registers. Compare the number of bytes of code required to
execute this sequence with those required for the instruction xchg
eax,ebx.

4. Another alternative to the xchg instruction is to use

push eax

mov eax, ebx

pop ebx

Explain why this sequence works to exchange the contents of the EAX
and EBX registers. Compare the number of bytes of code required to
execute this sequence with those required for the instruction xchg
eax,ebx.

6.2 32-Bit Procedures with Value Parameters

The word procedure is used in high-level languages to describe a
subprogram that is almost a self-contained unit. The main program
or another subprogram can call a procedure by including a statement
that consists of the procedure name followed by a parenthesized list
of arguments to be associated with the procedure’s formal
parameters.

Download from finelybook 7450911@qq.com

323

Many high-level languages distinguish between a procedure that
performs an action and a function that returns a value. A function is
similar to a procedure except that it is called by using its name and
argument list in an expression. It returns a value associated with its
name; this value is then used in the expression. All subprograms in
C/C++ are technically functions in this sense, but these languages
allow for functions that return no value.

In assembly language and in some high-level languages the term
procedure is used to describe both types of subprograms: those that
return values and those that do not. The word procedure is used in
both senses in this text.

Procedures are valuable in assembly language for the same reasons as
in high-level languages—they help divide programs into manageable
tasks and they isolate code that can be used multiple times within a
single program, or that can be saved and reused in other programs.
Sometimes assembly language can be used to write more efficient
code than is produced by a high-level language compiler, and this
code can be put in a procedure called by a high-level program that
does tasks that don’t need to be as efficient.

Recall the major main concepts listed in the introduction to this
chapter: (1) how to transfer control from a calling program to a
procedure and back, (2) how to pass parameter values to a procedure
and results back from the procedure, and (3) how to write procedure
code that is independent of the calling program. These can be
handled in many ways in assembly language, and this section
describes one particular protocol, called cdecl in Microsoft
documentation. It is the default convention used in C programs in the

Download from finelybook 7450911@qq.com

324

Visual Studio environment. Figure 6.7 gives a complete windows32
program that is used to illustrate aspects of this protocol.

Download from finelybook 7450911@qq.com

325

Figure 6.7

Procedure example

The code for a procedure always follows a .CODE directive. The body
of a procedure is bracketed by PROC and ENDP directives. Each of

Download from finelybook 7450911@qq.com

326

these directives has a label that gives the name of the procedure. With
windows32 programs _MainProc is a procedure. Additional
assembly language procedures can go in the same code segment
before or after _MainProc. They can even be in separate files;
information for how to do this is in the next section.

Let’s first look at how to transfer control from _MainProc to the
procedure fctn1. This is done by the instruction

call fctn1

In general, a call instruction saves the address of the next instruction
(the one immediately following the call), then transfers control to the
procedure code. It does this by pushing EIP onto the stack and then
changing EIP to contain the address of the first instruction of the
procedure.

Transferring control back from a procedure is accomplished by
reversing the above steps. A ret (return) instruction pops the stack
into EIP, so that the next instruction to be executed is the one at the
address that was pushed on the stack by the call. There is almost
always at least one ret instruction in a procedure and there can be
more than one. If there is only one ret, it is ordinarily the last
instruction in the procedure since subsequent instructions would be
unreachable without “spaghetti code.” Although a call instruction
must identify its destination, the ret does not—control will transfer to
the instruction following the most recent call. The address of that
instruction is stored on the 80x86 stack.

The syntax of the 80x86 call statement is

Download from finelybook 7450911@qq.com

327

call destination

Figure 6.8 lists some of the 80x86 call instructions. No call
instruction modifies any flag. All of the procedure calls used in this
text will be the first type, near relative. For a near relative call, the 5
bytes of the instruction consist of the E8 opcode plus the
displacement from the next instruction to the first instruction of the
procedure. The transfer of control when a procedure is called is
similar to the transfer of a relative jump, except that the old contents
of EIP are pushed.

Near indirect calls encode a register 32 or a reference to a doubleword
in memory. When the call is executed, the contents of that register or
doubleword are used as the address of the procedure. This makes it
possible for a call instruction to go to different procedures different
times.

All far calls must provide both new CS contents and new EIP
contents. With far direct calls, both of these are coded in the
instruction, and these 6 bytes plus the 1 for the opcode make the 7
seen in Figure 6.8. With far indirect calls, these are located at a 6-byte
block in memory, and the address of that block is coded in the
instruction. The extra byte is a ModR/M byte. Far calls were very
important when the segmented memory model was used.

The return instruction ret is used to transfer control from a procedure
body back to the calling point. Its basic operation is simple: it simply
pops the address previously stored on the stack and loads it into the
instruction pointer EIP. Since the stack contains the address of the
instruction following the call, execution will continue at that point. A

Download from finelybook 7450911@qq.com

328

near return just has to restore EIP. A far return instruction reverses
the steps of a far call, restoring both EIP and CS; both of these values
are popped from the stack. No ret instruction changes any flag.

Figure 6.8

call instructions

There are two formats for the ret instruction. The more common form
has no operand, and is simply coded

ret

The other version has a single operand, and is coded

ret count

The operand count is added to the contents of ESP after completion
of the other steps of the return process (popping EIP and, for a far
procedure, CS). This can be useful if other values (parameters in
particular) have been saved on the stack just for the procedure call;
this is not used with the cdecl protocol, however. Figure 6.9 lists the
various formats of ret instructions.

Download from finelybook 7450911@qq.com

329

Using a high-level language, a procedure definition often includes
parameters (sometimes called formal parameters) that are
associated with arguments (also called actual parameters) when
the procedure is called. For the procedure’s pass-by-value (in)
parameters, values of the arguments (which may be expressions) are
copied to the parameters when the procedure is called, and these
values are then referenced in the procedure using their local names
(the identifiers used to define the parameters). Reference (pass-by-
location or in-out) parameters associate a parameter identifier with
an argument that is a single variable, and can be used to pass a value
either to the procedure from the caller or from the procedure back to
the caller. Reference parameters are covered in the next section.

Our example code in Figure 6.7 has two arguments (number1 and
number2) in _MainProc that are passed by value to two parameters
(x and y) in fctn1. We now look at how to pass parameter values to a
procedure and results back from the procedure. The second part of
this is simple—if the procedure returns a single doubleword value,
then it puts that value in EAX to be used by the calling program.
Notice that this is exactly what fctn1 does in the program in Figure
6.7; after some preliminaries (explained next), it computes the
desired value in EAX where it is available back in _MainProc. With
the cdecl protocol, only the EAX register may be used for this
purpose.

Doubleword parameters are passed to the procedure by pushing them
on the stack. In the cdecl protocol, the parameters are pushed on the
stack in the opposite order in which they appear in the parameter list
—the last parameter value is pushed first and the first parameter
value is pushed last. The code that calls fctn1 in _MainProc is

Download from finelybook 7450911@qq.com

330

Figure 6.9

ret instructions

The first two statements obviously push the argument values on the
stack prior to the procedure call. The purpose of the last statement is
to remove the values from the stack following return from the
procedure. If the stack is not cleaned up and a program repeatedly
calls a procedure, eventually the stack will fill up causing a run-time
error with modern operating systems. Arguments could be removed
using the alternative form of the ret statement that specifies an
operand, but the cdecl protocol specifically leaves the stack cleanup
task to the calling program. The arguments could be removed by
popping the values off the stack, but it is more efficient to simply add
the number of bytes of parameters to ESP, moving the stack pointer
above the values.

Now, we look at how a procedure retrieves parameter values from the
stack. Upon entry to the procedure, the stack looks like the left
illustration in Figure 6.10. The two arguments—now the parameter

Download from finelybook 7450911@qq.com

331

values—have been pushed on the stack by the calling program and the
return address has been pushed on the stack by the call instruction.
The first instructions executed by the procedure are

This is known as entry code. The first two instructions will always
be the pair shown. They preserve EBP so that it can be restored before
returning, and set EBP to point at a fixed place in the stack that can
be used to locate parameters. The third instruction is needed in this
procedure so that EBX can be used for computations within the
procedure and then restored before return; this makes its use in the
procedure transparent to the calling program. After these three
instructions are executed, the stack looks like the right illustration in
Figure 6.10.

There are 8 bytes stored between the address stored in EBP and the
first parameter (x) value. Parameter 1 can be referenced using based
addressing by [ebp+8]. The second parameter (y) value is 4 bytes
higher on the stack; its reference is [ebp+12]. The code

copies the value of the first parameter from the stack into EAX and
the value of the second parameter from the stack into EBX in order to
compute the desired promised result.

Download from finelybook 7450911@qq.com

332

You may wonder why EBP is used at all. Why not just use ESP as a
base register? The principal reason is that ESP is likely to change, but
the instruction mov ebp,esp loads EBP with a fixed reference point in
the stack. This fixed reference point will not change as other
instructions in the procedure are executed, even if the stack is used
for other purposes, for example, to push additional registers or to call
other procedures.

Download from finelybook 7450911@qq.com

333

Figure 6.10

Establishing base pointer in procedure entry code

Download from finelybook 7450911@qq.com

334

Figure 6.11

cdecl protocol

We now come to the third major concept, how to write procedure
code that is independent of and preserves the environment for the
calling program. You have already seen most of the code for this.
Basically, the entry code pushes each register that will be used by the
procedure, and the exit code pops them in the opposite order.
Obviously, you must not save and restore EAX when a value is being
returned in EAX. The exit code for our example consists of

EBP is always restored last since it is always saved first. This example
only used EBX for computations, but it is not unusual to save and
restore several registers. Figure 6.11 summarizes the cdecl protocol.

Download from finelybook 7450911@qq.com

335

 Exercises 6.2

*1. Suppose that the procedure exercise1 is called by the instruction
call exercise1

If this call statement is at address 00402000 and ESP contains
00406000 before the call, what return address will be on the stack
when the first instruction of procedure exercise1 is executed? What
will be the value in ESP?

2. Suppose that a procedure begins with this entry code

Assume that this procedure has three doubleword parameters whose
formal order is first x, then y, and last z. Draw a picture of the stack
following execution of the above code. Include parameters, return
address, and show the bytes to which EBP and ESP point. Give the
based address with which each parameter can be referenced.

 Programming Exercises 6.2

For each of these exercises follow the cdecl protocol for the specified
procedure and write a short console32 or windows32 test-driver
program to test the procedure.

1. Write a procedure discr that could be described in C/C++ by

int discr(int a, int b, int c)

Download from finelybook 7450911@qq.com

336

// return the discriminant b*b-4*a*c

that is, its name is discr, it has three doubleword integer parameters,
and it is a value-returning procedure.

2. Write a value-returning procedure min2 to find the smaller of two
doubleword integer parameters.

3. Write a value-returning procedure max3 to find the largest of three
doubleword integer parameters.

4. Programming Exercise 5.3.6 has an algorithm for finding the
greatest common divisor of two positive integers. Write a procedure
gcd to implement this algorithm. It might be described in C/C++ by
int gcd(int number1, int number2), that is, its name is gcd, it has two
doubleword integer parameters, and it is a value-returning procedure.

5. The volume of a pyramid with a rectangular base is given by the
formula h*x*y/3 where h is the height of the pyramid, x is the length,
and y is the width of the base. Write a procedure pVolume that
implements the function described by the following C/C++ function
header:

int pVolume(int height, int length, int width);

// return volume of pyramid with rectangular base

6.3 Additional 32-Bit Procedure Options

The previous section’s main example showed how to pass arguments
to parameters by value. With a reference parameter, the address of

Download from finelybook 7450911@qq.com

337

the argument instead of its value is passed to the procedure.
Reference parameters are used for several purposes, two of which are
to send a large argument (for example, an array or a structure) to a
procedure, or to send results back to the calling program as argument
values. This section begins with an example that illustrates both of
these uses of reference parameters.

Consider the procedure for which the C++ function prototype could
be written

void minMax(int arr[], int count, int& min, int& max);
// Set min to smallest value in arr[0],..., arr[count−1]
// Set max to largest value in arr[0],..., arr[count−1]

In C++, the notation int arr[] indicates that the address of the integer
array arr will be passed, and int& instead of int says that the
addresses of integer variables min and max will be passed. Figure
6.12 shows an implementation of this procedure in a console32
program. It also includes a simple test driver that establishes
locations for an array and the smallest and largest numbers to be
stored, and calls minMax, pushing the four parameters, three of
which are addresses. Note that there are 16 bytes of parameters to
remove after the call.

Download from finelybook 7450911@qq.com

338

Download from finelybook 7450911@qq.com

339

Figure 6.12

Procedure using address parameters

Download from finelybook 7450911@qq.com

340

Figure 6.13

Procedure using address parameters

The minMax procedure follows a straightforward design that is in the
comments of the procedure. Notice that several registers are used and
their contents are saved in the entry code and restored in the exit
code. The reader should draw the stack picture to see where the
parameters are placed on the stack. Immediately after the entry code,
the various parameters are copied into registers. The minMax
procedure uses indirect addressing extensively, based addressing to
retrieve the parameters, and register indirect addressing to access the
array sequentially. Register indirect addressing is also used as EBX

Download from finelybook 7450911@qq.com

341

and EDX point at min and max, in this case the doublewords
allocated for minimum and maximum, respectively, in the test driver.
As an alternative to starting min at the largest possible integer and
max at the smallest possible integer, each could have been initialized
to the first array element’s value. This takes slightly more code. Figure
6.13 shows a debugger window with the program paused following
the call; the memory window has been set to start at the address of
minimum.

Procedure minMax required the use of several registers in its
implementation. Using registers is almost always preferable to using
memory but there simply aren’t enough of them to implement
complex algorithms. Some procedures need to have local variables in
memory. The standard way to do this is to allocate space for them on
the stack. Figure 6.14 outlines procedure code to do this. It is a minor
modification of the right side of Figure 6.11 with the new steps shown
in bold.

Figure 6.14

Download from finelybook 7450911@qq.com

342

Procedure code with local variable space

Here is a simplified, not-to-scale picture of the stack with local
storage reserved.

Just as doubleword parameters above the reference point can be
referenced by [ebp+8], [ebp+12], and so on, the first doubleword in
the local variable space below the reference point can be accessed by
[ebp-4], the next below by [ebp-8], and so on. C and C++ compilers
normally allocate all local variables on the stack. There are several
difficulties with doing this in assembly language, not the least of
which is remembering where a particular local variable is stored in
the stack.

The two new steps are obviously implemented by sub esp,n and mov
esp,ebp, where n is the number of bytes of local storage you want to
reserve. You may be wondering why the “deallocation” step isn’t add
esp,n. The answer is that it could be, but the mov instruction is both
simpler and safer. It is safer because it will still restore the correct
value to ESP even if the saved registers were not properly popped off
the stack.

Download from finelybook 7450911@qq.com

343

A recursive procedure or function is one that calls itself, either
directly or indirectly. The best algorithms for manipulating many data
structures are recursive. It is frequently very difficult to code certain
algorithms in a programming language that does not support
recursion.

Figure 6.15

Towers of Hanoi puzzle

It is almost as easy to code a recursive procedure in 80x86 assembly
language as it is to code a non-recursive procedure. If parameters are
passed on the stack and local variables are stored on the stack, then
each call of the procedure gets new storage allocated for its
parameters and local variables. There is no danger of the arguments
passed to one call of a procedure being confused with those for
another call because each call has its own stack frame. If registers are
properly saved and restored, then the same registers can be used by
each call of the procedure.

This section gives one example of a recursive procedure in 80x86
assembly language. It solves the Towers of Hanoi puzzle, pictured in
Figure 6.15 with four disks. The object of the puzzle is to move all

Download from finelybook 7450911@qq.com

344

disks from source spindle A to destination spindle B, one at a time,
never placing a larger disk on top of a smaller disk. Disks can be
moved to spindle C, a spare spindle. For instance, if there are only
two disks, the small disk can be moved from spindle A to C, the large
one can be moved from A to B, and finally the small one can be
moved from C to B.

In general, the Towers of Hanoi puzzle is solved by looking at two
cases. If there is only one disk, then the single disk is simply moved
from the source spindle to the destination. If the number of disks
nbrDisks is greater than one, then the top (nbrDisks-1) disks are
moved to the spare spindle, the largest one is moved to the
destination, and finally the (nbrDisks-1) smaller disks are moved
from the spare spindle to the destination. Each time (nbrDisks-1)
disks are moved, exactly the same procedure is followed, except that
different spindles have the roles of source, destination, and spare.
Figure 6.16 expresses the algorithm in pseudocode.

Figure 6.17 lists 80x86 code that implements the design as a
windows32 program. The code is a fairly straightforward translation
of the pseudocode design, with each recursive procedure call in move
implemented just like the call in the main program. Note that
although the spindles are designated by single characters, these
characters are passed in doublewords to ensure that the stack stays
on a doubleword boundary. A high-level language compiler would
probably calculate nbrDisks-1 twice—once for each recursive call
where it is used—but we can be a little more efficient and calculate it
just one time. This value is computed in EAX and will be there after
the intervening code because subsequent calls save and restore EAX.
The last thing to note is that variables in the data section are used by

Download from finelybook 7450911@qq.com

345

procedure move. In general, use of global variables is discouraged,
but here it is simpler and more efficient than allocating local variables
on the stack. They are only being used for display of a single
instruction and do not need to be preserved between calls. Figure 6.18
shows a sample run of this program.

Figure 6.16

Pseudocode for Towers of Hanoi Solution

Download from finelybook 7450911@qq.com

346

Download from finelybook 7450911@qq.com

347

Download from finelybook 7450911@qq.com

348

Figure 6.17

Towers of Hanoi solution

Download from finelybook 7450911@qq.com

349

Figure 6.18

Towers of Hanoi sample run

One of the reasons for using procedures is so that code that performs
a useful task can be reused in other programs. Although you can
always just copy and paste code from one program to another, it is
often more convenient to package a procedure in a separate file, and
then simply include the file in another project. We now return to the
first example of this section and show how it can be split into separate

Download from finelybook 7450911@qq.com

350

files. The test-driver code is shown in Figure 6.19 and the procedure
code is in Figure 6.20. There is little new here except that the test-
driver file needs an EXTERN directive to identify minMax as a
procedure. The procedure file must repeat directives that are also
used in the test-driver file: .586, .MODEL FLAT, .CODE, and END. It
is not necessary to have another .STACK directive, and in a
windows32 program INCLUDE io.h is only needed if the procedure is
using the macros defined in io.h. In the Visual Studio environment
the two .asm files will be separate source files.

Download from finelybook 7450911@qq.com

351

Figure 6.19

Test driver for minMax in separate file

Download from finelybook 7450911@qq.com

352

Figure 6.20

minMax in separate file

How can you call a high-level language procedure from assembly
language or an assembly language procedure from a high-level

Download from finelybook 7450911@qq.com

353

language? The answer is by carefully following the calling protocol
used by the compiler for the high-level language. The Visual Studio C
compiler uses the cdecl protocol. The windows32 projects that you
have been using for programs with input and output already do this.
For example, the file framework.c contains the code

Execution begins with WinMain that basically just calls your
assembly language procedure MainProc. However, recall that the
name of your procedure is not MainProc, but _MainProc. The code
generated by the C compiler follows the cdecl text decoration
convention of appending a leading underscore. In general, to call an
assembly language procedure from a Visual Studio C program,
prototype the function to describe it, name the assembly language
procedure with the same name prefixed with an underscore, and
follow the cdecl protocols in the assembly language code.

A windows32 project also calls C functions in framework.c from
expansions of the output and input macros. For example, the
definition code for the output macro contains

Download from finelybook 7450911@qq.com

354

This is clearly a call to procedure _showOutput, which is showOutput
in framework.c. The assembly language code must add the
underscore to the name because the assembler does not decorate the
name, but the C compiler will. In general, text decoration is only a
concern when you are mixing high-level and assembly language
procedures, not when you are entirely writing in assembly language
where no text decoration is generated or in C where the compiler
takes care of text decoration automatically.

The Visual Studio programming environment uses several other
procedure protocols, one of which is stdcall. The stdcall protocol is
similar to cdecl, the biggest differences being that the procedure
rather than the caller must remove parameters from the stack (which
makes the ret instruction with an operand very handy!) and the text
decoration convention is much more complex, involving not only a
leading underscore but a trailing at sign (@) followed by a decimal
number that is the number of bytes of parameters. The fastcall
protocol gives yet another set of conventions. With fastcall,
parameters are passed in registers. The important point here is that
when you are mixing assembly language and a high-level language,
you must know what protocol the high-level language compiler is
using and follow it carefully.

 Exercises 6.3

Download from finelybook 7450911@qq.com

355

*1. Give entry code and exit code for a procedure that reserves 8 bytes
of storage on the stack for local variables. Assuming that this space is
used for two doublewords, give the based address with which each
local variable can be referenced.

2. Figure 6.11 gave the steps for calling code and procedure code using
the cdecl protocol. Write down the corresponding lists for the stdcall
protocol.

 Programming Exercises 6.3

For each of these exercises follow the cdecl protocol for the specified
procedure and write a short console32 or windows32 test-driver
program to test the assembly language procedure.

1. Suppose that a procedure is described in C/C++ by void
toUpper(char str[]), that is, its name is toUpper, and it has a single
parameter that is the address of an array of characters. Assuming that
the character string is null-terminated, implement toUpper so that it
changes each lowercase letter in the string to its uppercase
equivalent, leaving all other characters unchanged.

2. Suppose that a procedure is described in C/C++ by int
upperCount(char str[]), that is, its name is upperCount, it has a single
parameter that is the address of an array of characters, and it returns
an integer. Assuming that the character string is null-terminated,
implement upperCount so that it returns a count of how many
uppercase letters appear in the string.

3. Programming Exercise 5.5.5 gave the selection sort algorithm.

Download from finelybook 7450911@qq.com

356

Implement this algorithm in a procedure whose C/C++ description
could be

void selectionSort(int nbrArray[], int nbrElts)

; sort nbrArray[0] .. nbrArray[nbrElts−1]

; into increasing order using selection sort

The first parameter will be the address of the array.

4. Write a procedure avg to find the average of a collection of
doubleword integers in an array. Procedure avg will have three
parameters in the following order:

(1) The address of the array.

(2) The number of integers in the array (passed as a doubleword).

(3) The address of a doubleword at which to store the result.

5. Write a value-returning procedure search to search an array of
doublewords for a specified doubleword value. Procedure search will
have three parameters:

(1) The value for which to search (a doubleword integer).

(2) The address of the array.

(3) The number n of doublewords in the array (passed as a
doubleword).

Download from finelybook 7450911@qq.com

357

Return the position (1,2, . . .,n) at which the value is found, or return
0 if the value does not appear in the array.

6. The factorial function is defined for a nonnegative integer
argument n by

Write a value-returning procedure named factorial that implements
this recursive definition.

7. The greatest common divisor (GCD) of two positive integers m and
n can be calculated recursively by the function described below in
pseudocode.

function gcd(m, n : integer) : integer;

if n = 0

then

return m;

else

remainder := m mod n;

return gcd(n, remainder);

Download from finelybook 7450911@qq.com

358

end if;

Write a value-returning procedure named gcd that implements this
recursive definition.

8. Write a procedure arrMax that implements the function described
by the following C/C++ function header:

int arrMax(int arr[], int nbrElts);

// if nbrElts <= 0 returns −99999

// otherwise returns maximum of the first nbrElts

// elements of arr

The first parameter of arrMax is the address of the first doubleword
of the array arr.

9. Write a procedure hasLower that implements the function
described by the following C/C++ function header:

int hasLower(char str[]);

// precondition: str is a null terminated string

// postcondition: returns true (−1) if str contains at least

// one lowercase letter; otherwise returns false (0)

Download from finelybook 7450911@qq.com

359

The parameter of hasLower is the address of the first byte of the
string str.

10. Programming Exercise 5.5.7 gave an algorithm for merging two
sorted integer arrays into a third sorted array. Write a procedure
arrayMerge that implements that design in a procedure described by
the following C/C++ function header:

11. The inner product of two vectors is the sum of the products of
corresponding terms. For instance, given [3, 6, 5] and [2, −4, 1] (each
stored as an array with 3 elements), the inner product is 3*2 + 6*(−4)
+ 5*1 = −13. Write a procedure innerProduct that implements the
function described by the following C/C++ function header:

int innerProduct(int vector1[], int vector2[], int vLength); // returns
the inner product of vector1 and vector2,

// each with vLength components

The first two parameters are the addresses of the two arrays.

6.4 64-Bit Procedures

This section describes the differences in the 32-bit procedure protocol

Download from finelybook 7450911@qq.com

360

and the 64-bit procedure protocol. First we look at the additional
push and pop instructions available in 64-bit mode. These are shown
in Figures 6.21 and 6.22. The entries in these tables are very similar to
those for 32-bit mode instructions (see Figures 6.1 and 6.5 in this
chapter’s first section). There are entries for all 16 64-bit general
registers. The REX prefix 41 is used for R8–R15.

One important difference in 32- and 64-bit modes is that you cannot
use 32-bit register or memory operands with 64-bit push and pop
instructions. The available immediate operand sizes for push remain
byte, word, and doubleword—quadword is not added. Also, the
pushad and popad instructions in 32-bit mode do not exist in 64-bit
mode, nor are there instructions to push and pop all 16 64-bit
registers.

Figure 6.21

Download from finelybook 7450911@qq.com

361

64-bit mode push instructions

Figure 6.22

64-bit mode pop instructions

Just as it is important to keep the stack on a doubleword boundary in
a 32-bit environment, it is important to keep it on a quadword
boundary in a 64-bit environment. Therefore, you almost always push
and pop quadwords.

The 64-bit versions of instructions call and ret are very similar to the
32-bit versions. The tables for call and ret instructions are not
repeated since they are exactly the same tables as in 32-bit
instructions mode shown in Figures 6.8 and 6.9. A push instruction
pushes a 64-bit return address onto the stack before loading RIP with
the procedure’s address, and a pop instruction pops the 64-bit return
address from the stack into RIP.

Download from finelybook 7450911@qq.com

362

Where the 64-bit protocol is most different is in parameter
conventions. With the 32-bit architecture, registers are often a scarce
resource. The 64-bit architecture doubles the number of available
registers, making it more practical to pass arguments in registers, and
the 64-bit protocol takes advantage of this. Arguments that can be
passed as quadwords (including bytes, words, and doublewords) are
extended to quadword length, if necessary. The first four arguments
are always passed in the registers shown in Figure 6.23. Additional
arguments, if any, are passed on the stack.

In a 64-bit environment, a calling procedure must reserve space on
the stack for arguments. Normally, the procedure does this in entry
code. The windows64 programs in this text start with

sub rsp, 120 ; reserve stack space for MainProc

that generates enough space for 15 quadwords. The bottom part of the
reserved space is reserved for arguments. If there is a fifth argument,
then it is copied to [RSP+32], a sixth to [RSP+40], and so on. After
the return address (8 bytes) is pushed on the stack, the called
procedure will then find these values at [RSP+40], [RSP+48], and so
on. Why start 32 bytes from the bottom? This is to leave space in the
stack for the first four parameters, even though they are in the
registers. The called procedure can use this space to copy any of the
first four argument values.

Download from finelybook 7450911@qq.com

363

Figure 6.23

64-bit registers used to pass arguments

Registers can be pushed by entry code and popped by exit code
similar to the way they are done in the 32-bit environment. However,
this is usually done before the local stack space is reserved. Once the
local stack space is established, there should be no change to RSP
before a subsequent procedure is called. This makes it possible to use
RSP and based addressing to locate parameters and local variables.
However, you can use RBP as a frame pointer if needed.

RAX is used to return a single quadword value. Microsoft
documentation labels registers RAX, RCX, RDX, and R8–R11 as
volatile, meaning that the called procedure is free to change them.
Similarly, RBX, RDI, RSI, RBP, RSP, and R12–R15 are called
nonvolatile, meaning that a called procedure has the responsibility
of preserving them. In practice, sometimes it is safest to preserve any
register that you don’t want destroyed by a called procedure. For
example, in windows64 projects, the atod macro includes the code

Download from finelybook 7450911@qq.com

364

Notice that the registers are saved in the stack area above the area
reserved for copying the first four parameters. This code preserves
RBX even though it should be nonvolatile.

Figure 6.24 shows the listing of a console64 version of the program
whose console32 version appeared in Figure 6.12. It is noticeably
simpler than the 32-bit version. The four arguments are simply
placed in registers and then used in the procedure. The procedure
minMax itself does not call additional procedures, so it does not need
to establish local stack space. One difference is that the 32-bit
minMax simply places the largest and smallest possible values in the
caller’s data at the addresses passed in the third and fourth
parameters, respectively, but since there is no immediate quadword
to memory mov in the 64-bit architecture, the immediate values are
first placed in RAX and then copied to their destinations.

Download from finelybook 7450911@qq.com

365

Download from finelybook 7450911@qq.com

366

Figure 6.24

64-bit procedure using address parameters

We conclude this section with an example of an assembly language
procedure called from a C main program. The C test driver is shown
in Figure 6.25 and the assembly language procedure is shown in
Figure 6.26. These are separate source files in a console64 project.
One of the satisfying things about this program is that if you launch it
with control-F5, you can actually see the output in the console
window!

You may wonder why add5 uses EAX instead of RAX to accumulate
the sum. With the Visual Studio 2012 C compiler, an int is a 32-bit

Download from finelybook 7450911@qq.com

367

integer. The C compiler passes the five arguments in quadwords, but
the high-order half of each quadword is undefined, so add5 just adds
the low-order doublewords that contain the integers. This C compiler
uses long long to designate a quadword integer; long int is still 32
bits.

Another point of this example is to show how a fifth argument is
handled in a procedure—in this case it is located at [RSP+40] since
no registers needed to be saved in add5. Finally, note that the C
compiler did not use text decoration in the 64-bit environment so that
the called procedure could be named simply add5.

Figure 6.25

C test driver for 64-bit procedure

Download from finelybook 7450911@qq.com

368

Figure 6.26

64-bit procedure to add five integers

 Exercises 6.4

1. Suppose that the entry code for a 64-bit procedure saves no register
and reserves no local stack space. How do you find each of the
following quadword parameter values in the body of the procedure?

(a) parameter 1

*(b) parameter 3

(c) parameter 5

*(d) parameter 7

Download from finelybook 7450911@qq.com

369

2. Suppose that the entry code for a 64-bit procedure is

push rsi

push r12

How do you find each of the following quadword parameter values in
the body of the procedure?

(a) parameter 1

*(b) parameter 3

(c) parameter 5

*(d) parameter 7

3. Suppose that the entry code for a 64-bit procedure is

push rsi

push r12

sub rsp, 48

How do you find each of the following quadword parameter values in
the body of the procedure?

(a) parameter 1

*(b) parameter 3

Download from finelybook 7450911@qq.com

370

(c) parameter 5

*(d) parameter 7

 Programming Exercises 6.4

For each of these exercises follow the 64-bit protocol for the specified
procedure. Embed the procedure and a test-driver program in a
console64 project. The test-driver program may be written either in
assembly language or C.

1. Write a value-returning procedure min2 to find the smaller of two
quadword integer parameters.

2. Write a value-returning procedure max6 to find the largest of six
quadword integer parameters.

3. Suppose that a value-returning procedure is described in C/C++ by
int alphaCount(char str[]), that is, its name is alphaCount, it has a
single parameter that is the address of an array of characters, and it
returns a doubleword integer. Assuming that the character string is
null-terminated, implement alphaCount so that it returns a count of
how many letters (lowercase or uppercase) appear in the string.

4. Programming Exercise 5.5.5 gave the selection sort algorithm.
Implement this algorithm in a procedure whose C/C++ description
could be

void selectionSort(long long nbrArray[], int nbrElts) // sort
nbrArray[0] .. nbrArray[nbrElts–1]

Download from finelybook 7450911@qq.com

371

// into increasing order using selection sort

The first parameter will be the address of the array. Notice that the
array is an array of quadwords and the count of how many elements is
a doubleword.

5. Write a procedure avg to find the average of a collection of
quadword integers in an array. Procedure avg will have three
parameters in the following order:

(1) The address of the array.

(2) The number of integers in the array (passed as a doubleword).

(3) The address of a quadword at which to store the result.

6. The factorial function is defined for a nonnegative integer
argument n by

Write a value-returning procedure named factorial that implements
this recursive definition. Pass the argument as a doubleword integer,
but return a quadword result.

7. Programming Exercise 5.5.7 gave an algorithm for merging two
sorted integer arrays into a third sorted array. Write a procedure
arrayMerge that implements that design in a procedure described by
the following C/C++ function header:

Download from finelybook 7450911@qq.com

372

Each of the arrays is an array of doublewords; count1 and count2 are
also doublewords. Parameters 1, 3, and 5 are the addresses of the
three arrays.

8. Programming Exercise 6.3.11 defined the inner product of two
vectors. Write a procedure innerProduct that implements the
function described by the following C/C++ function header:

int innerProduct(int vector1[], int vector2[], int vLength);

// returns the inner product of vector1 and vector2,

// each with vLength components

Each of the vectors is an array of doublewords; vLength is also a
doubleword. The first two parameters are the addresses of the two
arrays.

6.5 Macro Definition and Expansion

A macro was defined in Chapter 3 as a statement that is shorthand for
a sequence of other statements. The assembler expands a macro to
the statements it represents, and then assembles these new
statements. The windows32 and windows64 programs in previous

Download from finelybook 7450911@qq.com

373

chapters have made extensive use of macros defined in the file io.h.
This section explains how to write macro definitions and tells how the
assembler uses these definitions to expand macros into other
statements.

A macro definition resembles a procedure definition in a high-level
language. The first line gives the name of the macro being defined and
a list of parameters; the main part of the definition consists of a
collection of model statements that describe the action of the macro
in terms of the parameters. A macro is called much like a high-level
language procedure, too—the name of the macro is followed by a list
of arguments.

These similarities are superficial. A procedure call in a high-level
language is compiled into a sequence of instructions to push
parameters on the stack followed by a call

Figure 6.27

Macro to add two integers

instruction, whereas a macro call actually expands into statements
given in the macro, with the arguments substituted for the
parameters used in the macro definition. Code in a macro is repeated
every time a macro is called, but there is just one copy of the code for

Download from finelybook 7450911@qq.com

374

a procedure. Macros may execute more rapidly than procedure calls
since there is no overhead for passing parameters or for call and ret
instructions, but this is usually at the cost of more bytes of object
code.

Every macro definition is bracketed by MACRO and ENDM
directives. The format of a macro definition is

The parameters in the MACRO directive are ordinary symbols,
separated by commas. The assembly language statements may use the
parameters as well as registers, immediate operands, or symbols
defined outside the macro. The statements may even include macro
calls.

A macro definition can appear anywhere in an assembly language
source code file as long as the definition comes before the first
statement that calls the macro. It is good programming practice to
place macro definitions near the beginning of a source file or in a
separate file that is included with the INCLUDE directive.

This section gives several examples of macro definitions and macro
calls. Figure 6.27 lists the definition of a macro add2 that finds the
sum of two parameters, putting the result in the EAX register. The
parameters used to define the macro are nbr1 and nbr2. These labels
are local to the definition. The same names could be used for other
purposes in the program, although some human confusion might
result.

Download from finelybook 7450911@qq.com

375

The statements to which add2 expands depends on the arguments
used in a call. For example, the macro call

add2 value, 30 ; value + 30

expands to

The statement

add2 value1, value2 ; value1 + value2

expands to

The macro call

add2 eax, ebx ; sum of two values

expands to

Note that the instruction mov eax, eax is legal, even if it accomplishes
nothing.

However, the macro call

Download from finelybook 7450911@qq.com

376

add2 ebx, eax ; sum of two values

expands to

that will double the value in EBX, not add the values in EBX and
EAX.

In each of these examples the first argument is substituted for the
first parameter nbr1 and the second argument is substituted for the
second parameter nbr2. Each macro results in mov and add
instructions, but because the types of arguments differ, the object
code will vary.

If one of the arguments is missing, the macro will still be expanded.
For instance, the macro

add2 value

expands to

The argument value replaces nbr1 and an empty string replaces nbr2
The assembler will report an error, but it will be for the illegal add
instruction that results from the macro expansion, not directly
because of the missing argument.

Download from finelybook 7450911@qq.com

377

Similarly, the macro call

add2, value

expands to

The comma in the macro call separates the first missing argument
from the second argument, value. An empty argument replaces the
parameter nbr1. The assembler will again report an error, this time
for the illegal mov instruction.

Note again that the definition and expansion for the add2 macro
contain no ret instruction. Although macros look much like
procedures, they generate in-line code when the macro call is
expanded at assembly time.

Figure 6.28 shows the definition of a macro swap that will exchange
the contents of two doublewords in memory. It is very similar to the
80x86 xchg instruction that will not work with two memory
operands.

As with the add2 macro, the code generated by calling the swap
macro depends on the arguments used. For example, the call

swap [ebx], [ebx+4] ; swap adjacent words in array

expands to

Download from finelybook 7450911@qq.com

378

It might not be obvious to the user that the swap macro uses the EAX
register, so the push and pop instructions in the macro protect the
user from unexpectedly losing the contents of this register.

Figure 6.28

Macro to swap two memory words

Figure 6.29

Macro to find smaller of two memory words

Download from finelybook 7450911@qq.com

379

Figure 6.29 gives a definition of a macro min2 that finds the
minimum of two doubleword signed integers, putting the smaller in
the EAX register. The code for this macro must implement a design
with an if statement, and such a design usually has at least one
assembly language statement with a label. If an ordinary label were
used, then it would appear every time a min2 macro call was
expanded and the assembler would produce error messages because
of duplicate labels. The solution is to use a LOCAL directive to define
a symbol endIfMin that is local to the min2 macro.

The LOCAL directive is used only within a macro definition and goes
at the beginning of the definition. It lists one or more symbols,
separated by commas, that are used within the macro definition. Each
time the macro is expanded and one of these symbols is needed, it is
replaced by a symbol starting with two question marks and ending
with four hexadecimal digits (??0000, ??0001, etc.). The same ??
dddd symbol replaces the local symbol each instance the local symbol
is used in one particular expansion of a macro call. The same symbols
may be listed in LOCAL directives in different macro definitions or
may be used as regular symbols in code outside of macro definitions.

The macro call

min2 [ebx], ecx ; find smaller of two values

might expand to the code

Download from finelybook 7450911@qq.com

380

Here, endIfMin has been replaced the two instances it appears within
the macro definition by ??000C in the expansion. Another expansion
of the same macro in a single file would have a different number after
the question marks.

The assembler has several directives that control how macros and
other statements are shown in listing files. The most useful are

• .LIST that causes statements to be included in the listing file,

• .NOLIST that completely suppresses the listing of all statements,
and

• .NOLISTMACRO that selectively suppresses macro expansions
while allowing the programmer’s original statements to be listed.

The file io.h starts with a .NOLIST directive so that macro definitions
do not clutter the listing of a program that includes it. Similarly io.h
ends with .NOLISTMACRO and .LIST directives so that macro
expansion listings do not obscure the programmer’s code, but original
statements are listed.

We conclude this section by looking at two of the macro definitions in
io.h. Figure 6.30 shows the atod and dtoa macro definitions. Like the
other macro definitions in io.h, these simply expand to procedure

Download from finelybook 7450911@qq.com

381

calls, and the real work is done by the procedures. The expansion of
atod is simpler, both because it has only one parameter, and because
atodproc returns the needed value in EAX. This means that EAX can
also be used temporarily to push the necessary parameter onto the
stack.

The situation is more complicated with dtoa. There is no safe choice
of a register to use to push parameter values onto the stack. You can
save and restore any register—here EBX is used—but if that register
contains the source value, then its contents will be destroyed when
the destination parameter is handled. To ensure that the expansion
works even when the original source argument is EBX, the instruction
mov ebx,[esp+4] restores the original value of EBX after handling the
destination parameter and before handling the source parameter.
This could have been accomplished by a pair of pop and push
instructions.

Download from finelybook 7450911@qq.com

382

Figure 6.30

atod and dtoa macro definitions

 Exercises 6.5

1. Using the macro definition for add2 given in Figure 6.27, show the
sequence of statements to which each of the following macro calls
expands.

*(a) add2 25, ebx

(b) add2 ecx, edx

(c) add2 ; no argument

2. Using the macro definition for swap given in Figure 6.28, show the
sequence of statements to which each of the following macro calls
expands.

*(a) swap value1, value2

(b) swap temp, [ebx]

(c) swap value

3. Using the macro definition for min2 given in Figure 6.29, show the
sequence of statements to which each of the following macro calls
expands.

*(a) min2 value1, value2

Download from finelybook 7450911@qq.com

383

(Assume the local symbol counter is at 000A.)

(b) min2 ecx, value

(Assume the local symbol counter is at 0019.)

 Programming Exercises 6.5

Assemble each macro definition below in a short console32 or
console64 test-driver program.

1. Write a definition of a macro add3 that has three doubleword
integer parameters and puts the sum of the three numbers in the EAX
register.

2. Write a definition of a macro max2 that has two doubleword
integer parameters and puts the maximum of the two numbers in the
EAX register.

3. Write a definition of a macro min3 that has three doubleword
integer parameters and puts the minimum of the three numbers in
the EAX register.

4. Write a definition of a macro toUpper with one parameter, the
address of a byte in memory. The code generated by the macro will
examine the byte, and if it is the ASCII code for a lowercase letter,
replace it by the ASCII code for the corresponding uppercase letter.

6.6 Chapter Summary

This chapter has discussed protocols for implementing procedures in

Download from finelybook 7450911@qq.com

384

the 80x86 architecture. There are three main concepts involved: (1)
how to transfer control from a calling program to a procedure and
back, (2) how to pass parameter values to a procedure and results
back from the procedure, and (3) how to write procedure code that is
independent of the calling program. The stack serves several
important purposes in procedure implementation. When a procedure
is called, the address of the next instruction is stored

on the stack before control transfers to the first instruction of the
procedure. A return instruction retrieves this address from the stack
in order to transfer control back to the correct point in the calling
program. Argument values (or their addresses) can be pushed onto
the stack to pass them to a procedure; when this is done, the base
pointer EBP and based addressing provide a convenient mechanism
for accessing the values in the procedure. The stack can be used to
provide space for a procedure’s local variables. The stack is also used
to “preserve the environment”—for example, register contents can be
pushed onto the stack when a procedure begins and popped off before
returning to the calling program so that the calling program does not
need to worry about what registers might be altered by the procedure.

In the 32-bit environment there are several protocols used for
procedures. This chapter emphasized the cdecl protocol that is also
used by the Visual Studio C compiler. Following this protocol makes it
possible to have a C function call an assembly language procedure, or
an assembly language procedure call a C function.

There is just one standard procedure protocol in the 64-bit
environment. It uses registers rather than the stack to pass the first
four argument values.

Download from finelybook 7450911@qq.com

385

A macro is a statement that is shorthand for a sequence of other
statements. The assembler expands a macro to the statements it
represents, and then assembles these new statements.

1Of course, if you draw the picture so that lower memory addresses
are at the top, then it “grows upward.” The author’s preference is to
draw the pictures so that when ESP is decremented, its “pointer”
moves down.

Download from finelybook 7450911@qq.com

386

BIT MANIPULATION CHAPTER

7

7.1 Logical Operations

7.2 Shift and Rotate Instructions

7.3 Converting an ASCII String to a 2’s Complement Integer

7.4 Chapter Summary

A computer contains many integrated circuits that enable it to
perform its functions. Each chip incorporates from a few to many
thousand logic gates, each an elementary circuit that performs
Boolean and, or, exclusive or, or not operations on bits that are
represented by electronic states. The CPU is usually the most complex
integrated circuit in a PC.

Previous chapters have examined the 80x86 microprocessors’
instructions for moving data, performing arithmetic operations,
branching, and utilizing subroutines. The 80x86 and other CPUs can
also execute instructions that perform Boolean operations on
multiple pairs of bits at one time. This chapter defines the Boolean
operations and describes the 80x86 instructions that implement
them. It also covers instructions that cause bit patterns to shift or
rotate in a byte, word, or doubleword. Although bit manipulation

Download from finelybook 7450911@qq.com

387

instructions are very primitive, they are widely used in assembly
language programming, often because they provide the sort of control
that is rarely available in a high-level language.

7.1 Logical Operations

Many high-level languages allow variables of Boolean type, that is,
variables that are capable of storing true or false values. Virtually all
high-level languages allow expressions with Boolean values to be used
in conditional (if) statements. In assembly language the Boolean
value true is identified with the bit value 1 and the Boolean value false
is identified with the bit value 0. Figure 7.1 gives the definitions of the
Boolean operations using bit values as the operands. The or operation
is sometimes called “inclusive or” to distinguish it from “exclusive or”
(xor). The only difference between or and xor is for two 1 bits; 1 or 1 is
1, but 1 xor 1 is 0, that is, exclusive or corresponds to one operand or
the other true, but not both.

Download from finelybook 7450911@qq.com

388

Figure 7.1

Definitions of logical operations

The 80x86 has and, or, xor, and not instructions that implement the
logical operations. The formats of these instructions are

The first three instructions act on pairs of bytes, words, doublewords,
or quadwords performing the logical operations on the bits in

Download from finelybook 7450911@qq.com

389

corresponding positions from the two operands. For example, when
the instruction and ebx,ecx is executed, bit 0 from the EBX register is
“anded” with bit 0 from the ECX register, bit 1 from EBX is “anded”
with bit 1 from ECX, and so forth to bit 31 from EBX and bit 31 from
ECX. The results of these 32 and operations are put in the
corresponding positions in the destination EBX.

The not instruction has only a single operand. It changes each 0 bit in
that operand to 1 and each 1 bit to 0. For example, if the AL register
contains 10110110 and the instruction not al is executed, then the
result in AL will be 01001001. This is sometimes called “taking the 1’s
complement” of the operand.

The not instruction does not affect any flag. However, each of the
other three Boolean instructions affects CF, OF, PF, SF, and ZF. The
carry flag CF and overflow flag OF flags are both reset to 0. The sign
flag SF and the zero flag ZF are set or reset according to the value of
the result of the operation. For instance, if the result is a pattern of all
0 bits, then ZF will be set to 1; if any bit of the result is not 0, then ZF
will be reset to 0. The parity flag, which we have not used, is set or
reset corresponding to the parity of just the low-order byte of the
result.

The and, or, and xor instructions all accept the same types of
operands and require the same number of bytes of object code. They
are summarized together in Figure 7.2. Information about the not
instruction is given in Figure 7.3.

It is interesting to note that Figure 7.2 is almost identical to Figure
4.8 that showed add and sub instructions. Also, Figure 7.3 is almost

Download from finelybook 7450911@qq.com

390

identical to Figure 4.11 that showed neg instructions. In both cases,
the available operand formats are identical and even many of the
opcodes are the same. Recall that when the opcodes are the same, the
ModR/M byte of the instruction distinguishes between add, sub, and
or, and xor instructions; Figure 4.9 showed the reg field for these
instructions.

Following are some examples showing how the logical instructions
work. Many hex calculators and the Windows calculator perform the
logical operations directly. To compute the results by hand, you
expand each hex value to binary, do the logical operations on
corresponding pairs of bits, and convert the result back to hex. These
expansions are shown in the examples. We have chosen word-size
operands to keep the examples smaller.

Download from finelybook 7450911@qq.com

391

Figure 7.2

and, or, and xor instructions

Download from finelybook 7450911@qq.com

392

Figure 7.3

not instruction

EXAMPLE

Each of the logical instructions has a variety of uses. One application
of the and instruction is to clear selected bits in a destination. Note

Download from finelybook 7450911@qq.com

393

that if any bit value is “anded” with 1, the result is the original bit. On
the other hand, if any bit value is “anded” with 0, the result is 0.
Because of this, selected bits in a destination can be cleared by
“anding” the destination with a bit pattern that has 1s in positions
that are not to be changed and 0s in positions that are to be cleared.

For example, to clear all but the last 4 bits in the EAX register, the
following instruction can be used.

and eax, 0000000fh ; clear high-order 28 bits of EAX

If EAX originally contained 4C881D7B, this and operation would
yield 0000000B:

Only one of the leading zeros is needed in 0000000fh, but coding
seven zeros helps clarify the purpose of this operand. The trailing hex
digit f corresponds to 1111 in binary, providing the four 1s that will
leave the last 4 bits in EAX unchanged.

A value that is used with a logical instruction to alter bit values is
often called a mask. The assembler accepts numeric values in
decimal, hexadecimal, binary, and octal formats. Hex and binary are
preferred for constants used as masks since the bit pattern is obvious
for binary values or easy to figure out for hex values.

As illustrated above, the and instruction is useful when selected bits
of an operand need to be cleared. The or instruction is useful when
selected bits of an operand need to be set to 1 without changing other

Download from finelybook 7450911@qq.com

394

bits. Observe that if the value 1 is combined with either a 0 or 1 using
the or operation, then the result is 1. However, if the value 0 is used
as one operand, then the result of an or operation is the other
operand.

The exclusive or instruction will complement selected bits of a byte or
word without changing other bits. This works since 0 xor 1 is 1 and 1
xor 1 is 0, that is, combining any bit with 1 using an xor operation
results in the opposite of the bit value.

A second use of logical instructions is to implement high-level
language Boolean operations. One byte in memory could be used to
store eight Boolean values. If such a byte is at flags, then the
statement

and flags, 11011101b ; flag5 := false; flag1 := false

assigns value false to bits 1 and 5, leaving the other values unchanged.
(Recall that bits are numbered from right to left, starting with zero for
the rightmost bit.)

If the byte in memory at flags is being used to store eight Boolean
values, then an or instruction can assign true values to any selected
bits. For instance, the instruction

or flags, 00001100b ; flag3 := true; flag2 := true

assigns true values to bits 2 and 3 without changing the other bits.

If the byte in memory at flags is being used to store eight Boolean

Download from finelybook 7450911@qq.com

395

values, then an xor instruction can negate selected values. For
instance, the design statement

flag6 := NOT flag6;

can be implemented as

xor flags, 01000000b ; flag6 := not flag6

A third application of logical instructions is to perform certain
arithmetic operations. Suppose that the value in the EAX register is
interpreted as an unsigned integer. The expression (value mod 32)
could be computed using the following sequence of instructions.

Following these instructions, the remainder (value mod 32) will be in
the EDX register. The following alternative sequence leaves the same
result in the EDX register without, however, putting the quotient in
EAX.

This choice is more efficient than the first one. It works because the
value in EDX is a binary number; as a sum it is

bit31*231 + bit30*230 + ... + bit2*22 + bit1*2 + bit0

Since each of these terms from bit31*231 down to bit5*25 is divisible
by 32 (25), the remainder upon division by 32 is the bit pattern

Download from finelybook 7450911@qq.com

396

represented by the trailing 5 bits, those left after masking by
0000001F. Similar instructions will work whenever the second
operand of the mod operation is a power of 2.

A fourth use of logical instructions is to manipulate ASCII codes.
Recall that the ASCII codes for digits are 3016 for 0, 3116 for 1, and so
forth, to 3916 for 9. Suppose that the AL register contains the ASCII
code for a digit, and that the corresponding integer value is needed in
EAX. If the value in the high-order 24 bits in EAX is known to be
zero, then the instruction

sub eax, 00000030h ; convert ASCII code to integer

will do the job. If the high-order bits in EAX are unknown, then the
instruction

and eax, 0000000fh ; convert ASCII code to integer

is a much safer choice. It ensures that all but the last 4 bits of EAX are
cleared. For example, if the EAX register contains 5C3DF036, junk in
the high-order bits and the ASCII code for the character 6 in AL, then
and eax,0000000fh produces the integer 00000006 in EAX.

The or instruction can be used to convert an integer value between 0
and 9 in a register to the corresponding ASCII character code. For
example, if the integer is in BL, then the following instruction
changes the contents of BL to the ASCII code.

or bl,30h ; convert digit to ASCII code

Download from finelybook 7450911@qq.com

397

If BL contains 04, then the or instruction will yield 34:

With the 80x86 processors, the instruction add bl,30h does the same
job using the same number of object code bytes. However, the or
operation is more efficient than addition with some CPUs.

An xor instruction can be used to change the case of the ASCII code
for a letter. Suppose that the CL register contains the ASCII code for
some uppercase or lowercase letter. The ASCII code for an uppercase
letter and the ASCII code for the corresponding lowercase letter differ
only in the value of bit 5. For example, the code for the uppercase
letter S is 5316 (010100112) and the code for lowercase s is 7316
(011100112). The instruction

xor cl, 00100000b ; change case of letter in CL

“flips” the value of bit 5 in the CL register, changing the value to the
ASCII code for the other case letter. Similarly, if CL contains the
ASCII code of a letter of unknown case, then or cl, 00100000b will
force it to be lowercase, and and cl, 11011111b will force it to be
uppercase.

The 80x86 instruction set includes test instructions that function the
same as and instructions except that destination operands are not
changed. This means that the only job of a test instruction is to set
flags. (Remember that a cmp instruction is essentially a sub
instruction that sets flags but does not change the destination

Download from finelybook 7450911@qq.com

398

operand.) One application of a test instruction is to examine a
particular bit of a byte or word. The following instruction tests bit 13
of the EDX register.

test edx, 00002000h ; check bit 13

Note that 00002000 in hex is the same as 0000 0000 0000 0000
0010 0000 0000 0000 in binary, with bit 13 equal to 1. Often this
test instruction would be followed by a jz or jnz instruction, and the
effect would be to jump to the destination if bit 13 were 0 or 1,
respectively.

The test instruction can also be used to get information about a value
in a register. For example,

test ecx, ecx ; set flags for value in ECX

“ands” the value in the ECX register with itself, resulting in the
original value. (“Anding” any bit with itself gives the common value.)
The flags are set according to the value in ECX. The instruction

and ecx, ecx ; set flags for value in ECX

will accomplish the same goal and is equally efficient. However, using
test makes it clear that the only purpose of the instruction is testing.

The various forms of the test instruction are listed in Figure 7.4. They
are almost the same as for and, or, and xor instructions. Notice that
the figure does not show a source operand in memory. However, the
assembler lets you code a register destination with a memory source

Download from finelybook 7450911@qq.com

399

and transposes the operands to have the memory operand first, one of
the allowable formats.

Figure 7.4

test instructions

 Exercises 7.1

1. For each part of this problem, assume the “before” values when the
given instruction is executed. Give the requested “after” values. (The

Download from finelybook 7450911@qq.com

400

operands are word size to reduce the number of pairs of bits to
combine.)

2. Recall the two methods given in this section for computing (value
mod 32) when value is an unsigned integer in the EAX register:

Find the total number of bytes of object code necessary for each of
these methods.

*3. Suppose that value is an unsigned integer in the EAX register.
Give appropriate instructions to compute (value mod 8) putting the
result in the EBX register and leaving EAX unchanged.

Download from finelybook 7450911@qq.com

401

4. Suppose that each bit of the doubleword at flags represents a
Boolean value, with bit 0 for flag0, and so forth, up to bit 31 for
flag31. For each of the following design statements, give a single
80x86 instruction to implement the statement.

(a) flag2 := true;

*(b) flag5 := false; flag16 := false; flag19 := false;

(c) flag12 := NOT flag12;

5. (a) Suppose that the AL register contains the ASCII code for an
uppercase letter. Give a logical instruction (other than xor) that will
change its contents to the code for the corresponding lowercase letter.

*(b) Suppose that the AL register contains the ASCII code for a
lowercase letter. Give a logical instruction (other than xor) that will
change its contents to the code for the corresponding uppercase
letter.

 Programming Exercises 7.1

1. The Pascal programming language includes the predefined function
odd that has a single doubleword integer parameter and returns true
for an odd integer and false for an even integer. Following the cdecl
protocol, write a procedure that implements this function in assembly
language, returning −1 in EAX for true and 0 in EAX for false. Use an
appropriate logical instruction to generate the return value. Test your
procedure by assembling it with a main program that calls it.

Download from finelybook 7450911@qq.com

402

2. In two-dimensional graphics, programming a rectangular region of
the plane is mapped to the display; points outside this region are
clipped. The region, bounded by four lines x = xmin, x = xmax, y =
ymin, and y = ymax, can be pictured

An outcode (or region code) is associated with each point (x, y) of
the plane. This 4-bit code is assigned according to the following rules:

• bit 0 (rightmost) is 1 if the point is to the right of the region, that is
> xmax; it is 0 otherwise.

• bit 1 is 1 if the point is left of the region (x < xmin).

• bit 2 is 1 if the point is above the region (y > ymax).

• bit 3 is 1 if the point is below the region (y < ymin).

The diagram on the previous page shows the outcodes for each of the
nine regions of the plane.

(a) Suppose that the outcode for point (x1, y1) is in the low-order 4
bits of AL, that the outcode for point (x2, y2) is in the low-order 4
bits of BL, and that other bits of these registers are reset to 0. Give a
single 80x86 statement that will set ZF to 0 if the two points are both
inside the rectangular region and to 0 otherwise. The value in AL or

Download from finelybook 7450911@qq.com

403

BL may be changed.

(b) Suppose that the outcode for point (x1, y1) is in the low-order 4
bits of AL, that the outcode for point (x2, y2) is in the low-order 4 bits
of BL, and that other bits of these registers are reset to 0. Give a single
80x86 statement that will set ZF to 0 if the two points are both on the
same side of the rectangular region. (“Both on the same side” means
both right of x = xmax, both left of x = xmin, both above y = ymax, or
both below y = ymin.) The value in AL or BL may be changed.

(c) Write a procedure setcode that returns the outcode for a point (x,
y). Specifically, setcode has six doubleword integer parameters: x, y,
xmin, xmax, ymin, and ymax, in this order. Return the outcode in the
low-order 4 bits of the AL register, assigning 0 to each of the higher-
order bits in EAX. Follow the cdecl protocol. Test your procedure by
assembling it with a main program that calls it.

3. Following the cdecl protocol, write a 32-bit assembly language
procedure toLower with one parameter, the address of a null-
terminated string str. toLower will change every uppercase letter in
str to lowercase without changing any other character. Test your
procedure by calling it from an assembly language test-driver
program in the console32 or windows32 environment.

4. Following the 64-bit protocol, write a 64-bit assembly language
procedure toLower with one parameter, the address of a null-
terminated string str. toLower will change every uppercase letter in
str to lowercase without changing any other character. Test your
procedure by calling it from an assembly language or C test-driver
program in the console64 environment.

Download from finelybook 7450911@qq.com

404

7.2 Shift and Rotate Instructions

The logical instructions introduced in the previous section enable the
assembly language programmer to set or clear bits in a word or byte
stored in a register or memory. Shift and rotate instructions enable
the programmer to change the position of bits within a quadword,
doubleword, word, or byte. This section describes the shift and rotate
instructions and gives examples of some ways that they are used.

Shift instructions slide the bits in a location given by the destination
operand to the left or to the right. The direction of the shift can be
determined from the last character of the mnemonic—sal and shl are
left shifts; sar and shr are right shifts. Shifts are also categorized as
logical or arithmetic—shl and shr are logical shifts; sal and sar are
arithmetic shifts. The difference between logical and arithmetic shifts
is explained below. The table in Figure 7.5 summarizes the
mnemonics.

The source code format of any shift instruction is

s-- destination, count

There are three versions of the count operand. This operand can be
the number 1, another number serving as a byte-size immediate
operand, or the register specification CL. The original 8086/8088
CPU had only the first and third of these options.

Download from finelybook 7450911@qq.com

405

Figure 7.5

Shift instructions

An instruction having the format

s-- destination, 1

causes a shift of exactly one position within the destination location.
With the format

s-- destination, immediate8

an immediate operand of 0 to 255 can be coded. However, most of the
80x86 family mask this operand by 000111112, that is, they reduce it
mod 32 before performing the shift. (This is 001111112 for mod 64 in
64-bit mode.) This makes sense because you cannot do over 32
meaningful shift operations to an operand no longer than a
doubleword. In the final format,

s-- destination, cl

the unsigned count operand is in the CL register. Again, most 80x86
CPUs reduce the count mod 32 or mod 64 before beginning the shifts.

Arithmetic and logical left shifts are identical; the mnemonics sal and

Download from finelybook 7450911@qq.com

406

shl are synonyms that generate the same object code. When a left
shift is executed, the bits in the destination slide to the left and 0 bits
fill in on the right. The bits that fall off the left are lost except for the
very last one shifted off; it is saved in the carry flag CF. The sign flag
SF, zero flag ZF, and parity flag PF are assigned values corresponding
to the final value in the destination location. The overflow flag OF is
undefined for a multiple-bit shift; for a single-bit shift (count=1) it is
reset to 0 if the sign bit of the result is the same as the sign bit of the
original operand value, and set to 1 if they are different.

Arithmetic and logical right shifts are not the same. With both, the
bits in the destination slide to the right and the bits that fall off the
right are lost except for the very last one shifted off that is saved in
CF. For a logical right shift (shr) 0 bits fill in on the left. However,
with an arithmetic right shift (sar) copies of the original sign bit are
used to fill in on the left. Therefore, for an arithmetic right shift, if the
original operand represents a negative 2’s complement number, then
the new operand will have leading 1 bits for each position shifted and
will also be negative. As with left shifts, the values of SF, ZF, and PF
depend on the result of the operation. The overflow flag OF is
undefined for a multiple-bit shift. For a single-bit logical right shift
shr, OF is set to the sign bit of the original operand. Notice that this is
equivalent to saying that it is reset to 0 if the sign bit in the result is
the same as the sign bit in the original operand value, and set to 1 if
they are different, so OF with a logical right shift gives an indication
of sign change. With a single-bit arithmetic right shift sar OF is
always cleared—the sign bits of the original and new value are always
the same.

Some hex calculators can directly do shift operations. The Windows

Download from finelybook 7450911@qq.com

407

calculator has Lsh (left shift) and Rsh (arithmetic right shift) buttons.
For hand evaluation, you write the operand in binary, shift filling in
with 0’s or 1’s as appropriate, regroup the bits, and then translate the
new bit pattern back to hex. Things are a little simpler for a multiple-
bit shift that shifts four positions or some multiple of four positions;
in this case each group of 4 bits corresponds to 1 hex digit, so one can
think of shifting hex digits instead of bits. Here are a few examples
that illustrate execution of shift instructions; each example begins
with a word containing the hex value A9 D7 (1010 1001 1101 0111 in
binary). The bit(s) shifted off are separated by a vertical line in the
original value. An arrow shows the direction bits are shifted. The
added bit(s) are in bold in the new value.

EXAMPLE

Download from finelybook 7450911@qq.com

408

Download from finelybook 7450911@qq.com

409

Figure 7.6

Shift and rotate instructions

Figure 7.6 gives the opcode and number of bytes required using
various operand types in shift instructions. All four types of shifts
discussed so far, as well as the rotate instructions discussed next,
share opcodes. The size of the destination and the type of the count
operand are implied by the opcode. As with some other instructions,
the reg field of the ModR/M byte of the object code is used to choose
among the different types of shifts and rotates, as well as between
register and memory destinations. (See Figure 4.9.)

Download from finelybook 7450911@qq.com

410

The shift instructions are quite primitive, but they have many
applications. One of these is to do certain multiplication and division
operations. In fact, for processors without multiplication instructions,
shift instructions are a crucial part of routines to perform
multiplication. Even with the 80x86 architecture, some products may
be computed more rapidly with shift operations than with
multiplication instructions.

In a multiplication operation where the multiplier is 2, a single-bit
left shift of the multiplicand results in the product in the original
location. The product will be correct unless the overflow flag OF is
set. It is easy to see why this works for unsigned numbers; shifting
each bit to the left one position makes it the coefficient of the next
higher power of 2 in the binary representation of the number. A
single-bit left shift also correctly doubles a signed operand. In fact,
one can use multiplication by 2 on a hex calculator to find the result
of a single-bit left shift.

A single-bit right shift can be used to efficiently divide an unsigned
operand by 2. Suppose, for example, that the EBX register contains
an unsigned operand. Then the logical right shift shr ebx,1 shifts each
bit in EBX to the position corresponding to the next lower power of 2,
resulting in half the original value. The original units bit is copied into
the carry flag CF, and is the remainder for the division.

If EBX contains a signed operand, then the arithmetic right shift sar
ebx,1 does almost the same job as an idiv instruction with a divisor of
2. The difference is that if the dividend is an odd, negative number,
then the quotient is rounded down; that is, it is one smaller than it
would be using an idiv instruction. For a concrete example, suppose

Download from finelybook 7450911@qq.com

411

that the EDX register contains FFFFFFFF and the EAX register
contains FFFFFFF7, so that EDX:EAX has the quadword 2’s
complement representation for −9. Assume also that ECX contains
00000002. Then idiv ecx gives a result of FFFFFFFC in EAX and
FFFFFFFF in EDX, that is, a quotient of −4 and a remainder of −1.
However, if FFFFFF7 is in EBX, then sar ebx,1 gives a result of
FFFFFFFB in EBX and 1 in CF, a quotient of −5 and a remainder of
+1. Both quotient–remainder pairs satisfy the equation

dividend = quotient*divisor + remainder

but with the −5 and +1 combination, the sign of the remainder differs
from the sign of the dividend, contrary to the rule followed by idiv.

Instead of multiplying an operand by 2, it can be doubled by either
adding it to itself or by using a left shift. A shift is sometimes slightly
more efficient than addition and either is generally more efficient
than multiplication. To divide an operand by 2, a right shift is the
only alternative to division, and is typically faster; however, as we
have seen, the right shift is not quite the same as division by 2 for a
negative dividend. To multiply or divide an operand by 4, 8, or some
other small power of 2, either repeated single-bit shifts or one
multiple-bit shift can be used.

Shifts can be used in combination with other logical instructions to
combine distinct groups of bits into a byte, word, or doubleword, or to
separate the bits in a byte, word, or doubleword into different groups.
Figure 7.7 shows a procedure hexToAscii that will convert a
doubleword operand to a sequence of 8 bytes in memory; each byte
contains the ASCII code for the corresponding hex digit in the

Download from finelybook 7450911@qq.com

412

operand. For example, if the operand is B70589A4, then the
procedure will generate 42 37 30 35 38 39 41 34. A test driver that
hard-codes this particular source operand is shown with the
procedure. The screenshot in Figure 7.8 shows the test program about
to exit. You can see the result highlighted in memory.

To do its job, hexToAscii must extract eight groups of 4 bits each from
the operand. Each group of 4 bits represents a decimal value from 0
to 15, and each group must be converted to the corresponding ASCII
character. This character is a digit 0 through 9 for integer value 0
(00002) through 9 (10012) or a letter A through F for integer value 10
(10102) through 15 (11112).

Download from finelybook 7450911@qq.com

413

Download from finelybook 7450911@qq.com

414

Figure 7.7

Procedure to convert a doubleword to hex

Figure 7.8

Download from finelybook 7450911@qq.com

415

Result of calling hexToAscii

The eight characters are stored right to left in contiguous bytes of
memory as they are generated. The operand is initially copied into
EAX and then is repeatedly shifted right to get the next 4 bits at the
right-hand end. The design for the middle of the program is

for index := 8 downto 1 loop

copy value to EBX;

mask off all but last 4 bits in EBX;

if value in BL ≤ 9

then

convert value in BL to a character 0 through 9;

else

convert value in BL to a letter A through F;

end if;

store BL in memory at address destination+index-1;

shift value right 4 bits to position next group of 4 bits;

Download from finelybook 7450911@qq.com

416

end for;

In the code, the instruction

and ebx, 0000000fh ; mask off all but last 4 bits

masks off all but the last 4 bits in EDX. The if is implemented by

A value from 0 to 9 is converted to the ASCII code for a digit using the
or instruction; add edx,30h would work just as well here. To convert
numbers 0A to 0F to the corresponding ASCII codes 41 to 46 for
letters A to F, the value ‘A’–10 is added to the number. This actually
adds the decimal number 55, but the code used is clearer than add
bl,55. After the ASCII code is stored, the shr instruction shifts the
value in EAX right 4 bits, discarding the hex digit that was just
converted to a character.

In addition to the shift instructions discussed in this text, there are
“double-shift” instructions that use a register as a source of fill bits for
a register or memory destination, instead of using just 0’s or 1’s to fill.
These instructions have mnemonics shrd and shld, and syntax

sh-d destination, source register, count

Download from finelybook 7450911@qq.com

417

We don’t need these instructions in this text.

Rotate instructions are similar to shift instructions. With shift
instructions the bits that are shifted off one end are discarded while
vacated space at the other end is filled by 0’s (or 1’s for a right
arithmetic shift of a negative number). With rotate instructions the
bits that are shifted off one end of the destination are used to fill in
the vacated space at the other end.

Rotate instruction formats are the same as single-shift instruction
formats. A single-bit rotate instruction has the format

r-- destination, 1

and there are two multiple-bit versions

r-- destination, immediate8
r-- destination, cl

The instructions rol (rotate left) and ror (rotate right) can be used for
byte, word, doubleword, or quadword operands in a register or in
memory. As each bit “falls off” one end, it is copied to the other end of
the destination. In addition, the last bit copied to the other end is also
copied to the carry flag CF. The overflow flag OF is the only other flag
affected by rotate instructions. It is undefined for multi-bit rotates,
and familiarity with its definition for single-bit rotate instructions is
not needed in this text.

As an example, suppose that the DX register contains D25E and the
instruction

Download from finelybook 7450911@qq.com

418

rol dx, 1

is executed. In binary, the operation looks like

resulting in 1010 0100 1011 1101 or A4BD. The carry flag CF is set to 1
since a 1 bit rotated from the left end to the right.

Opcodes and number of bytes for rotate instructions are identical to
those for shift instructions. They were shown in Figure 7.6.

The rotate instruction

ror eax, 4 ; shift next digit to right

could be used instead of the shift instruction in procedure hexToAscii
(see Figure 6.7). Since eight 4-bit rotations result in all bits being
rotated back to their original positions, this leaves the value in EAX
unchanged at the end. There is no advantage in this particular
program, but there could be in similar applications.

There is an additional pair of rotate instructions, rcl (rotate through
carry left) and rcr (rotate through carry right). Each of these
instructions treats the carry flag CF as if it were part of the
destination. This means that rcl eax,1 shifts bits 0 through 30 of EAX
left one position, copies the old value of bit 31 into CF, and copies the
old value of CF into bit 0 of EAX. The rotate through carry
instructions obviously alter CF; they also affect OF, but no other flag.
The opcodes for rotate through carry instructions are the same as the

Download from finelybook 7450911@qq.com

419

corresponding shift instructions and were shown in Figure 7.6.

 Exercises 7.2

1. For each part of this problem, assume the “before” values when the
given instruction is executed. Give the requested “after” values.

2. Compare the total number of bytes of object code for each of these
alternative ways of dividing the unsigned integer in the EAX register
by 32:

Download from finelybook 7450911@qq.com

420

3. Compare the total number of bytes of object code for each of these
alternative ways of multiplying the value in the EAX register by 32:

4. Suppose that each of value1, value2, and value3 references a byte
in memory and that an unsigned integer is stored in each byte.
Assume that the first value is no larger than 31 so that it has at most 5
significant bits and at least 3 leading 0 bits. Similarly assume that the
second value is no larger than 15 (4 significant bits) and the third
value is no larger than 127 (7 bits).

(a) Give code to pack all three of these numbers into a 16-bit word in
the AX register, copying the low-order 5 bits from value1 to bits 11–15
of AX, the low-order 4 bits from value2 to bits 7–10 of AX, and the
low-order 7 bits from value3 into bits 0–6 of AX.

*(b) Give code to unpack the 16-bit number in the AX register into 5-
bit, 4-bit, and 7-bit numbers, padding each value with zeros on the
left to make 8 bits, and storing the resulting bytes at value1, value2,
and value3, respectively.

*5. The instructions

Download from finelybook 7450911@qq.com

421

multiply the value in EAX by 3. Write similar code sequences that use
shift and addition instructions to efficiently multiply by 5, 7, 9, and
10.

 Programming Exercises 7.2

1. Write a procedure binaryToAscii that converts a doubleword
integer to a string of exactly 32 0 or 1 characters representing its value
as an unsigned binary number. Follow cdecl protocols. The procedure
will have two parameters:

(1) The doubleword value.

(2) The address of the 32-byte-long destination string.

Use a rotate instruction to extract the bits one at a time, left to right,
recalling that jc or jnc instructions look at the carry bit. Write a short
test driver to test your procedure.

2. A byte can be represented using three octal digits. Bits 7 and 6
determine the left octal digit (which is never larger than 3); bits 5, 4,
and 3 the middle digit; and bits 2, 1, and 0 the right digit. For
instance, 110101102 is 11 010 1102 or 3268. The value of a word is
represented in split octal by applying the 2–3–3 system to the high-
order and low-order bytes separately. Write a procedure splitOctal
that converts a word to a string of exactly seven characters
representing the value of the number in split octal; two groups of
three digits separated by a space. Follow cdecl protocols. The
procedure will have two parameters:

Download from finelybook 7450911@qq.com

422

(1) The word value (passed as the low-order word of a doubleword)

(2) The address of the 7-byte-long destination string

Write a short test driver to test your procedure.

3. Write a procedure arrMix that starts with two doubleword integer
arrays arr1 and arr2 and builds a third array arr3. In positions 0–7
and 17–23 each element of arr3 gets the corresponding bits from the
same element of arr1, and in positions 8–15 and 24–31 the
corresponding bits from the same element of arr2. Follow cdecl
protocols. A C/C++ header for arrMix looks like

void arrMix(int arr1[], int arr2[], int arr3[], int count);

// for i=0, 1,...,count-1 bits 0–7 and 17–23 of arr3[i] come

// from arr1[i] and bits 8–15 and 25–31 come from arr2[i]

4. Write a procedure mixBits that takes a doubleword integer
sourceInt and returns a doubleword integer where bits 0–7 of
sourceInt are bits 8–15 of the result, bits 8–15 of sourceInt are bits
24–31 of the result, bits 16–23 of sourceInt are bits 0–7 of the result,
and bits 24–31 of sourceInt are bits 16–23 of the result. Follow cdecl
protocols. A C/C++ header for mixBits looks like

Download from finelybook 7450911@qq.com

423

7.3 Converting an ASCII String to a 2’s Complement Integer

The atod macro has been used to scan an area of memory containing
an ASCII representation of an integer, producing the corresponding
doubleword-length 2’s complement integer in the EAX register. This
section describes the windows32 version of atod and the procedure it
calls as examples of this sort of operation. Code is similar for the
windows64 components.

The atod macro expands into the following sequence of instructions.

These instructions simply call procedure atodproc passing a single
argument, the address of the string of ASCII characters to be scanned.
The EAX register is not saved by the macro code since the result is to
be returned in EAX. The actual source identifier is used in the
expanded macro, not the name source.

The actual ASCII to 2’s complement integer conversion is done by the
procedure atodproc whose source code is in the file io.asm in the
windows32 package. This source code is shown in Figure 7.9. The
procedure begins with standard entry code and ends with standard
exit code. The first job of atodproc is to skip leading spaces, if any.
This is implemented with a straightforward while loop. Note that
BYTE PTR [esi] uses register indirect addressing to reference a byte
of the source string. Following the while loop, ESI points at some
non-blank character.

Download from finelybook 7450911@qq.com

424

The main idea of the procedure is to compute the value of the integer
by implementing the following left-to-right scanning algorithm.

value := 0;

while pointing at code for a digit loop

multiply value by 10;

convert ASCII character code to integer;

add integer to value;

point at next byte in memory;

end while;

Download from finelybook 7450911@qq.com

425

Download from finelybook 7450911@qq.com

426

Figure 7.9

ASCII to doubleword integer conversion

This design works for an unsigned number; a separate multiplier is
used to give the correct sign to the final signed result. The second job
of the procedure, after skipping blanks, is to determine this
multiplier; 1 for a positive number or −1 for a negative number. The
multiplier, stored in local variable space on the stack, is given the
default value 1 and changed to −1 if the first non-blank character is a
minus sign. If the first non-blank character is either a plus or a minus
sign, then the address in ESI is incremented to skip over the sign
character.

Now the main design is executed and the value is accumulated in the

Download from finelybook 7450911@qq.com

427

EAX register. There are no checks for errors—if the number is too
large to store in a doubleword, for example, then the returned value
will simply be wrong. The main loop terminates as soon as ESI points
at any character code other than one for a digit. Thus the memory
scan is terminated by a space, comma, letter, null, or any nondigit.

If the accumulated value in the EAX registers less than 8000000016
it is multiplied by the saved +1 or −1 sign. If the accumulated value is
greater than 8000000016, then the returned value will be incorrect. If
it is exactly equal to 8000000016 and there was a minus sign, then it
already has the correct result (−2,147,483,64810); but again, no error
checking is done.

 Exercise 7.3

1. It was noted above that atodproc does not check for errors such as
the number being too large to store in a doubleword. How could this
particular error be detected? Can other errors in the input string
cause incorrect output? If so, how could these errors be detected?

 Programming Exercises 7.3

1. Write a procedure binToInt that has a single parameter: the
address of a string. This procedure will be similar to atodproc except
that it will convert a string of characters representing an unsigned
binary number to a doubleword-length 2’s complement integer in
EAX. The procedure should skip leading blanks, and then accumulate
a value until a character that does not represent a binary digit (0 or 1
only) is encountered. Follow cdecl protocols. Test your procedure
with a test driver.

Download from finelybook 7450911@qq.com

428

2. Write a procedure hexToInt that has a single parameter: the
address of a string. This procedure will be similar to atodproc except
that it will convert a string of characters representing an unsigned
hexadecimal number to a doubleword-length 2’s complement integer
in EAX. The procedure should skip leading blanks, and then
accumulate a value until a character that does not represent a hex
digit is encountered. (Valid characters are 0 through 9, A through F,
and a through f.) Follow cdecl protocols. Test your procedure with a
test driver.

7.4 Chapter Summary

This chapter has explored various 80x86 instructions that allow bits
in a byte, word, or doubleword destination to be manipulated. The
logical instructions and, or, and xor perform Boolean operations
using pairs of bits from a source and destination. Applications of
these instructions include setting or clearing selected bits in a
destination. The not instruction takes the 1’s complement of each bit
in its destination operand, changing each 0 to a 1 and each 1 to a 0.
The test instruction is the same as the and instruction except that it
only affects flags; the destination operand is unchanged.

Shift instructions move bits left or right within a destination operand.
These instructions come in single-bit and multiple-bit versions.
Single-bit shifts use 1 for the second operand; multiple-bit versions
use CL or an immediate value for the second operand and shift the
destination the number of positions specified. Vacated positions are
filled by 0 bits in all single-shift operations except for the arithmetic
right shift of a negative number for which 1 bit is used. Shift
instructions can be used for efficient, convenient multiplication or

Download from finelybook 7450911@qq.com

429

division by 2, 4, 8, or some higher power of 2.

Rotate instructions are similar to shift instructions. However, the bit
that falls off one end of the destination fills the void on the other end.
Shift or rotate instructions can be used in combination with logical
instructions to extract groups of bits from a location or to pack
multiple values into a single byte or word.

Download from finelybook 7450911@qq.com

430

STRING OPERATIONS CHAPTER

8

8.1 Using String Instructions

8.2 Repeat Prefixes and More String Instructions

8.3 Character Translation

8.4 Converting a 2’s Complement Integer to an ASCII String

8.5 Chapter Summary

Computers are frequently used to manipulate character strings as
well as numeric data. In data processing, application names,
addresses, and so forth must be stored and sometimes rearranged.
Text editor and word processor programs must be capable of
searching for and moving strings of characters. An assembler must be
able to separate assembly language statement elements, identifying
those that are reserved mnemonics. Even when computation is
primarily numerical, it is often necessary to convert a character string
to an internal numerical format when a number is entered at the
keyboard, or to convert an internal format to a character string for
display purposes.

An 80x86 microprocessor has instructions to manipulate character

Download from finelybook 7450911@qq.com

431

strings. The same instructions can manipulate strings of words,
doublewords, or (in 64-bit mode) quadwords. This chapter covers
80x86 instructions that are used to handle strings, with emphasis on
character strings. The tasks that can be accomplished with these
instructions can also be completed with the simpler instructions
previously covered. String instructions are included partly to
illustrate that the 80x86 architecture represents the complex
instruction set computer (CISC) class of computers. Many additional
complex 80x86 instructions are not covered in this text.

8.1 Using String Instructions

There are five 80x86 instructions designed for string manipulation:
movs (move string), cmps (compare string), scas (scan string), stos
(store string), and lods (load string). The movs instruction is used to
copy a string from one memory location to another. The cmps
instruction is designed to compare the contents of two strings. The
scas instruction can be used to search a string for one particular
value. The stos instruction can store a new value in some position of a
string. Finally, the lods instruction copies a value out of some position
of a string.

A string in the 80x86 architecture refers to a contiguous collection of
bytes, words, doublewords, or quadwords in memory. Strings are
commonly defined in a program’s data segment using such directives
as

Download from finelybook 7450911@qq.com

432

Note that strings and arrays are actually the same except for the way
we look at them.

Each string instruction applies to a source string, a destination string,
or both. The bytes, words, doublewords, or quadwords of these
strings are processed one at a time by the string instruction. Register
indirect addressing is used to locate the individual string elements.
The 80x86 instructions access elements of the source string using the
address in the source index register ESI. Elements in the destination
string are accessed using the address in the destination index register
EDI. In 64-bit mode, RSI and RDI are used by default; however, the
remainder of this chapter refers to just ESI and EDI.

Since the source and destination addresses of string elements are
always given by ESI and EDI, respectively, no operands are needed to
identify these locations. Without any operand, however, the
assembler cannot tell the size of the string element to be used. For
example, just movs by itself could say to move a byte, word,
doubleword, or quadword. To avoid this ambiguity, special versions
of the mnemonics define the element size—instructions that operate
on bytes use a b suffix, word string instructions use a w suffix,
doubleword string instructions use a d suffix, and quadword string
instructions use a q suffix. For example, movsb is used to move byte
strings and movsd is used to move doubleword strings. Any of these
instructions assemble as a movs and none use an operand because the
assembler knows the element size from the mnemonic.

The assembler has an alternative way of distinguishing the operand
size, which is to actually include source and destination operands.
These operands are ignored except for their size attribute, so they can

Download from finelybook 7450911@qq.com

433

be misleading. We do not use this alternative coding style.

Although a string instruction operates on only one string element at a
time, it always gets ready to operate on the next element. It does this
by changing the source index register ESI and/or the destination
index register EDI to contain the address of the next element of the
string(s). When byte-size elements are being used, the index registers
are changed by one; for words, ESI and EDI are changed by two; for
doublewords, the registers are changed by four; and for quadwords,
the registers are changed by eight.

Figure 8.1

cld and std instructions

The 80x86 can move either forward through a string (from lower to
higher addresses) or backward (from higher to lower addresses). The
movement direction is determined by the value of the direction flag
DF: bit 10 of the flags register. If DF is set to 1, then the addresses in
ESI and EDI are decremented by string instructions, causing right-to-
left string operations. If DF is clear (0), then the values in ESI and
EDI are incremented by string instructions, so that strings are
processed left to right.

The 80x86 has two instructions whose sole purpose is to reset or set

Download from finelybook 7450911@qq.com

434

the direction flag DF. The cld instruction clears DF to 0 so that ESI
and EDI are incremented by string instructions and strings are
processed left to right. The std instruction sets DF to 1 so that ESI and
EDI are decremented by string instructions and strings are processed
backward. Neither instruction affects any flag other than DF. Data
about these instructions appear in Figure 8.1.

Finally, it is time to present all the details about a string instruction.
The move string instruction movs copies one string element (byte,
word, doubleword, or quadword) from a source string to a destination
string. The source element at address ESI is copied to address EDI.
After the string element is copied, both index registers are changed by
the element size (1, 2, 4, or 8), incremented if the direction flag DF is
0, or decremented if DF is 1. The movs instruction does not affect any
flag. It comes in movsb, movsw, movsd, and movsq versions; Figure
8.2 gives information about each form.

Figure 8.3 gives an example of a program that uses the movs
instruction. The important part of the example is the procedure
strcopy. This procedure has two parameters that give the destination
and source addresses of byte (character) strings. The source string is
assumed to be null-terminated. Procedure strcopy produces an exact
copy of the source string at the destination location, terminating the
destination string by a null byte.

Download from finelybook 7450911@qq.com

435

Figure 8.2

movs instructions

Download from finelybook 7450911@qq.com

436

Download from finelybook 7450911@qq.com

437

Figure 8.3

String copy program

The procedure uses only registers ESI and EDI. The values for ESI
and EDI are the arguments that were pushed on the stack: the
addresses of the first pair of source and destination string bytes. The
direction flag is cleared for left-to-right copying. Since the procedure
must clear the direction flag and the caller may be depending on it to
have the opposite value, the entry code saves the flags register in
addition to ESI and EDI.

After initialization the procedure executes this pseudocode design:

while next source byte is not null

copy source byte to destination;

increment source index;

Download from finelybook 7450911@qq.com

438

increment destination index;

end while;

put null byte at end of destination string;

To check whether the next source byte is null, the statement

cmp BYTE PTR [esi],0 ; null source byte?

is used. Recall that the notation [esi] indicates register indirect
addressing, so that the element at the address in ESI is used, that is,
the current byte of the source string. The operator BYTE PTR is
necessary since the assembler cannot tell from the operands whether
byte, word, doubleword, or quadword comparison is needed. Copying
the source byte and incrementing both index registers is
accomplished by the movsb instruction. Finally,

mov BYTE PTR [edi],0 ; terminate destination string

serves to move a null byte to the end of the destination string since
EDI was incremented after the last byte of the source was copied to
the destination. Again, the operator BYTE PTR tells the assembler
that the destination is a byte rather than a word or doubleword.

The program to test strcopy simply uses a dialog box to input a string
from the keyboard, calls strcopy to copy it somewhere else, and
finally displays the string copy. The most interesting part of the test
driver is the collection of instructions used to call the procedure.

Download from finelybook 7450911@qq.com

439

The source string for a movs instruction usually does not overlap the
destination string. However, occasionally this is useful. Suppose that
you want to initialize the 80-character-long string at starSlash with
the pattern */, repeated 40 times. The following code can do this task.

In this example, the first time movsb is executed, a * from the first
string position is copied to the third position. In the next iteration, a /
is copied from the second to the fourth position. The third time, a * is
copied from the third to the fifth position, and so on. The next section
introduces an easier way to repeat a movs instruction.

Both the windows32 and windows64 output macros call a C function
showOutput that in turn calls a library function MessageBox. Neither
the 32-bit nor the 64-bit MessageBox function works correctly if the
direction flag is set. As a result the output macro model statements
include a cld instruction. This could affect a program that uses the
output macro in the middle of a loop that is processing a string
backward.

 Exercises 8.1

*1. What will be the output of the following windows32 program?

Download from finelybook 7450911@qq.com

440

2. Repeat Exercise 1, replacing the setup code with

3. Repeat Exercise 1, replacing the setup code with

4. Repeat Exercise 1, replacing the setup code with

 Programming Exercise 8.1

Download from finelybook 7450911@qq.com

441

1. Write a windows32 or windows64 program that reserves a 1024-
byte-long area named byteArea. Use a dialog box to input strings one
at a time into another 80-byte-long area named stringIn. Copy the
first string to the beginning of byteArea, then append carriage return
(0D16) and linefeed (0A16) characters to the end of the copy. Copy the
next string from stringIn to byteArea, starting right after the first
string’s linefeed. Terminate input when the first character of stringIn
is $ and append a null byte to the destination right after the last
string’s linefeed. Finally, use the output macro to display all the
characters in byteArea in a message box. The result should be the
strings that were entered, one per line.

8.2 Repeat Prefixes and More String Instructions

Each 80x86 string instruction operates on one string element at a
time. However, the 80x86 architecture includes three repeat
prefixes that change the string instructions into versions that repeat
automatically, either for a fixed number of iterations or until some
condition is satisfied. The three repeat prefixes actually correspond to
two different single-byte codes; these are not themselves instructions,
but supplement machine codes for the primitive string instructions,
making new instructions.

Figure 8.4 shows two program fragments, each of which copies a
fixed number of characters from sourceStr to destStr. The number of
characters is loaded into the ECX register from count. The code in
part (a) uses a loop instruction. Since the count of characters might
be zero, the loop is guarded by a jecxz instruction. The body of the
loop uses movsb to copy one character at a time. The loop instruction
takes care of counting loop iterations. The program fragment in part

Download from finelybook 7450911@qq.com

442

(b) is functionally equivalent to the one in part (a). After the count is
copied into ECX, it uses the repeat prefix rep with a movsb
instruction; the rep movsb instruction does the same thing as the last
four lines in part (a).

The rep prefix is normally used with the movs instructions and with
the stos instruction (discussed later in this section). It causes the
following design to be executed.

Figure 8.4

Copying a fixed number of characters of a string

while count in ECX > 0 loop

Download from finelybook 7450911@qq.com

443

perform primitive instruction;

decrement ECX by 1;

end while;

Note that this is a while loop. The primitive instruction is not
executed at all if ECX contains zero. It is not necessary to guard a
repeated string instruction as you often must do with an ordinary for
loop implemented with the loop instruction.

The other two repeat prefixes are repe (with equivalent mnemonic
repz) and repne (same as repnz). The mnemonic repe stands for
“repeat while equal” and repz stands for “repeat while zero.”
Similarly, repne and repnz mean “repeat while not equal” and “repeat
while not zero,” respectively. Each of these repeat prefixes is
appropriate for use with the two string instructions cmps and scas
that affect the zero flag ZF.

The names of these mnemonics partially describe their actions. Each
instruction works the same as rep, iterating a primitive instruction
while ECX is not zero. However, each also examines ZF after the
string instruction is executed. The repe and repz continue iterating
while ZF=1, as it would be following a comparison where two
operands were equal. The repne and repnz continue iterating while
ZF=0, as it would be following a comparison where two operands
were different. Each new instruction that is formed with a repeat
prefix and a primitive string instruction affects flags only as the

Download from finelybook 7450911@qq.com

444

original primitive string instruction would; that is, there is no
additional adjustment resulting from the changes to ECX. The three
repeat prefixes are summarized in Figure 8.5. Note that rep and repz
(repe) generate exactly the same code.

The repz and repnz prefixes do not produce true while loops with the
conditions shown in Figure 8.5. The value in ECX is checked prior to
the first iteration of the primitive instruction, as it should be with a
while loop. However, ZF is not checked until after the primitive
instruction is executed. In practice, this is very convenient since the
instruction is skipped for a zero count, but the programmer does not
have to do anything special to initialize ZF prior to repeated
instructions.

The cmps instructions, summarized in Figure 8.6, compare elements
of source and destination strings. Chapter 5 explained how a cmp
instruction subtracts two operands and sets flags based on the
difference. Similarly, cmps subtracts two string elements and sets
flags based on the difference; neither operand is changed. If a cmps
instruction is used in a loop, it is appropriate to follow cmps by
several of the conditional jump instructions, depending on the design
being implemented. Repeat prefixes are often used with cmps
instructions. In fact, for the task of finding if two strings are identical,
the repe prefix is a perfect companion for cmps.

Download from finelybook 7450911@qq.com

445

Figure 8.5

Repeat prefixes

Figure 8.6

cmps instructions (use ESI and EDI).

It is often necessary to search for one string embedded in another.
Suppose that the task at hand is to find the position (if any) at which
the string at key appears in the string at target. One simple algorithm
to do this is

position := 1;

while position ≤ (targetLength − keyLength + 1) loop

if key matches the substring of target starting at position

then

Download from finelybook 7450911@qq.com

446

report success;

exit process;

end if;

add 1 to position;

end while;

report failure;

This algorithm checks to see if the key string matches the portion of
the target string starting at each possible position. Using 80x86
registers, checking for one match can be done as follows:

ESI := address of key;

EDI := address of target + position - 1;

ECX := length of key;

forever loop

if ECX = 0 then exit loop; end if;

compare [ESI] and [EDI] setting ZF;

Download from finelybook 7450911@qq.com

447

increment ESI;

increment EDI;

decrement ECX;

if ZF = 0 then exit loop; end if;

end loop;

if ZF = 1

then

match was found;

end if;

The forever loop is exactly what is done by the repeated string
instruction repe cmpsb. Since the loop is terminated when either ECX
= 0 or when ZF = 0, it is necessary to be sure that the last pair of
characters compared were the same; this is the reason for the extra if
structure at the end of the design. Figure 8.7 shows a complete
program that implements this design.

The scan string instruction scas is used to scan a string for the
presence or absence of a particular string element. The string that is
examined is a destination string; that is, the address of the element
being examined is in the destination index register EDI. The

Download from finelybook 7450911@qq.com

448

accumulator contains the element being scanned for, for example, AL
with a scasb instruction or EAX with a scasd. Figure 8.8 summarizes
the scas instructions.

The program shown in Figure 8.9 inputs a string and a character and
uses repne scasb to locate the position of the first occurrence of the
character in the string. It then displays the part of the string from the
character to the end. The length of the string is calculated using the
strlen procedure that previously appeared in Figure 8.7; this time we
assume that strlen is assembled in a separate file. The lea instruction
is used to load the offset of the string to be searched and cld ensures a
forward search.

After the search, the destination index EDI will be one greater than
desired since a string instruction always increments index registers
regardless of whether flags were set. If the search succeeded, EDI will
contain the address of the character following the one that matched
with AL, or the address of the character after the end of the string if
ECX was decremented to zero. The dec edi instruction takes care of
both cases, backing up to the position of the matching character if
there was one, or to the null byte at the end of the string otherwise.
The string length was incremented so that the null character would be
included in the search. The output macro displays the last portion of
the string, whose address is in EDI.

The store string instruction stos copies a byte, a word, a doubleword,
or a quadword from the accumulator to an element of a destination
string. A stos instruction affects no flag, so only the rep prefix is
appropriate for use with it. When repeated with rep, it copies the
same value into consecutive positions of a string. For example, the

Download from finelybook 7450911@qq.com

449

following code will store spaces in the first 30 bytes of string.
Information about the stos instructions is in Figure 8.10.

Download from finelybook 7450911@qq.com

450

Figure 8.7

String search program

Download from finelybook 7450911@qq.com

451

Figure 8.8

scas instructions (use EDI and accumulator)

Download from finelybook 7450911@qq.com

452

Figure 8.9

Program to find character in string

Figure 8.10

stos instructions (use EDI and accumulator)

The load string instruction lods is the final string instruction. This
instruction copies a source string element to the accumulator. A lods

Download from finelybook 7450911@qq.com

453

instruction sets no flag. It is possible to use a rep prefix with lods but
it is not helpful—all values except for the last string element would be
replaced as successive values were copied to the accumulator. If string
elements require some processing, it is sometimes convenient to set
up a loop whose body starts with a lods instruction to get the element,
then processes the element, and finally uses a stos instruction to store
the modified element. The lods instructions are summarized in Figure
8.11.

Figure 8.11

lods instructions (use ESI and accumulator)

 Exercises 8.2

For exercises 1–8, assume that the data segment contains

1. Suppose that the following instructions are executed:

Download from finelybook 7450911@qq.com

454

Assuming that 00417000 is the address loaded in ESI and 00417005
is loaded in EDI, what will be the values stored in ESI and EDI
following the repne cmpsb instruction? What will be stored in ECX?

*2. Suppose that the following instructions are executed:

Assuming that 00417000 is the address loaded in ESI and 00417005
is loaded in EDI, what will be the values stored in ESI and EDI
following the repe cmpsb instruction? What will be stored in ECX?

3. Suppose that the following instructions are executed:

Assuming that 00417005 is the address loaded in EDI, what will be
the value stored in EDI following the repe scasb instruction? What
will be stored in ECX?

4. Suppose that the following instructions are executed:

Assuming that 00417005 is the address loaded in EDI, what will be
the value stored in EDI following the repne scasb instruction? What

Download from finelybook 7450911@qq.com

455

will be stored in ECX?

*5. Suppose that the following instructions are executed:

Assuming that 00417005 is the address loaded in EDI, what will be
the value stored in EDI following the rep stosb instruction? What will
be stored in ECX? What will be stored in the destination string?

6. Suppose that the following instructions are executed:

Assuming that 00417000 is the address loaded in ESI and 00417005
is loaded in EDI, what will be the values stored in ESI and EDI
following the for loop? What will be stored in ECX? What will be
stored in the destination string?

7. Suppose that the following instructions are executed:

Assuming that 00417000 is the address loaded in ESI and 00417005

Download from finelybook 7450911@qq.com

456

is loaded in EDI, what will be the values stored in ESI and EDI
following the rep movsb instruction? What will be stored in ECX?
What will be stored in the destination string?

8. Suppose that the following instructions are executed:

Assuming that 00417000 is the address loaded in ESI and 00417005
is loaded in EDI, what will be the values stored in ESI and EDI
following the rep movsb instruction? What will be stored in ECX?
What will be stored in the destination string?

9. Assume that the data segment contains

Assuming that ESI starts at 00010000 and EDI starts at 00010005,
what will be the values stored in ESI and EDI following the repne
cmpsb instruction? What will be stored in ECX?

10. Assume that the data segment contains

Download from finelybook 7450911@qq.com

457

Assuming that ESI starts at 00010004 and EDI starts at 00010009,
what will be the values stored in ESI and EDI following the repe
cmpsb instruction? What will be stored in ECX?

 Programming Exercises 8.2

1. Write a procedure index to find the position of the first occurrence
of a character in a null-terminated string. Specifically, the procedure
must have two parameters: (1) a character (passed as the low-order
byte of a doubleword), and (2) the address of a string. Return the
position of the character within the string; return zero if the character
is not found. Follow the cdecl or 64-bit protocol, depending on your
environment. Write a short test driver to test your procedure.

2. Write a procedure append that will append one null-terminated
string to the end of another. Specifically, the procedure must have
two parameters: (1) the address of string1 and (2) the address of
string2. The procedure will copy the characters of string2 to the end
of string1 with the first character of string2 replacing the null byte at
the end of string1, and so on. Follow the cdecl or 64-bit protocol,
depending on your environment. Write a short test driver to test your
procedure. (Warning: There must be enough space reserved in the
data section after the null byte of the first string to hold the characters
from the second string.)

Download from finelybook 7450911@qq.com

458

3. Write a complete program that prompts for and inputs a person’s
name in the “LastName, FirstName” format and builds a new string
with the name in the format “FirstName LastName”. A comma and a
space separate the names originally and there is no character (except
the null) following FirstName; only a space separates the names in
the new string. After you generate the new string in memory, display
it.

4. Write a complete program that prompts for and inputs a person’s
name in the “LastName FirstName” format and builds a new string
with the name in the format “FirstName LastName”. One or more
spaces separate the names originally and there may be spaces
following FirstName. Only a single space separates the names in the
new string. After you generate the new string in memory, display it.

5. Write a complete program that prompts for and inputs a string and
a single character. Construct a new string that is identical to the old
one except that it is shortened by removing each occurrence of the
character. After you generate the new string in memory, display it.

6. Write a complete program that prompts for and inputs a sentence
and a single word. Construct a new sentence that is identical to the
old one except that it is shortened by removing each occurrence of the
word. After you generate the new sentence in memory, display it.

7. Write a complete program that prompts for and inputs a sentence
and two words. Construct a new sentence that is identical to the old
one except that each occurrence of the first word is replaced by the
second word. After you generate the new sentence in memory, display
it.

Download from finelybook 7450911@qq.com

459

8. Write a procedure countChar that returns the number of
occurrences of a character in a string. Specifically, countChar must
have two parameters: (1) the character and (2) the address of the
string. Follow cdecl or 64-bit protocol depending on the environment
for which you are coding. Include a test driver to check the procedure.

9. Write a procedure countDifferences with two parameters, string1
and string2, each a null-terminated string. The procedure will return
the number of positions where the character in string1 differs from
the corresponding character in string2. If the strings are not the same
length, stop counting when you come to the end of the shorter string.
Follow cdecl or 64-bit protocol depending on the environment for
which you are coding. Include a test driver to check the procedure.

8.3 Character Translation

Sometimes character data are available in one format but need to be
in another format for processing. One instance of this occurs when
characters are transmitted between two computer systems, one
normally using ASCII character codes and the other normally using
EBCDIC character codes. Another time character codes need to be
altered is to transmit them to a device that cannot process all possible
codes; it is sometimes easier to replace the unsuitable codes by
acceptable codes than to delete them entirely.

The 80x86 instruction set includes the xlat instruction to translate
one character to another character. In combination with other string-
processing instructions, it can easily translate characters in a string.

The xlat instruction requires only 1 byte of object code, the opcode

Download from finelybook 7450911@qq.com

460

D7. Prior to execution, the character to be translated is in the AL
register. The instruction works by using a translation table in the data
segment to look up the translation of the byte in AL. This translation
table normally contains 256 bytes of data, one for each possible 8-bit
value in AL. The byte at offset zero in the table (the first byte) is the
character to which 00 is translated. The byte at offset one is the
character to which 01 is translated. In general, xlat uses the character
being translated as a zero-based index into the table, and the byte at
that index then replaces the character in AL.

The xlat instruction has no operand. The EBX register must contain
the address of the translation table. (RBX is used in 64-bit mode.)

Figure 8.12 lists a short console32 program that translates each
character of string in place; that is, it replaces each character by its
translation using the original location in memory. This program again
makes use of the strlen procedure that first appeared in Figure 8.7.
Here it is in a separately assembled file, not shown in Figure 8.12. The
heart of the program is the translation table and the sequence of
instructions

These instructions implement a for loop with the design

Download from finelybook 7450911@qq.com

461

for index := 1 to stringLength loop

load source character into AL;

translate character in AL;

copy character in AL to destination;

end for;

Each ASCII code is translated to another ASCII code by this program.
Uppercase letters are translated to lowercase, lowercase letters and
digits are unchanged, and all other characters are translated to
spaces. The difficult part of the program is building the translation
table. Its construction involves looking at a table of ASCII codes (see
Appendix A). For this program the translation table is defined by

Careful counting will show that exactly 256 bytes are defined. Recall
that a BYTE directive stores the ASCII code of each character
operand. Each of the first 48 bytes of the table will contain the ASCII
code for a space (blank), 2016. Therefore, if the code in the AL register
represents any of the first 48 ASCII characters—a control character,
or one of the printable characters from 2016 (space) to 2F16 (/)—it
will be translated to a space.

Note that it is legal to translate a character to itself. Indeed, this is

Download from finelybook 7450911@qq.com

462

what will happen for digits; the ASCII codes 3016 to 3916 for digits 0
through 9 appear at offsets 3016 to 3916. The codes for the seven
characters : through @ are next in an ASCII chart; each of these will
be translated to a space. The next ASCII characters are the uppercase
letters and the next entries in the table are codes for the lowercase
letters. For example, the table contains 6116 at offset 4116, so an
uppercase A (ASCII code 4116) will be translated to a lowercase a
(ASCII code 6116). The next six blanks are at the offsets 9116 ([)
through 9616 ('), so that each of these characters is translated to a
blank. The ASCII code for each lowercase letter is assembled at an
offset equal to its value, so each lowercase letter is translated to itself.
Finally, the translation table contains 133 ASCII codes for blanks;
these are the destinations for {, |, }, ~, DEL, and each of the 128-bit
patterns starting with a 1, none of them codes for ASCII characters.

Download from finelybook 7450911@qq.com

463

Figure 8.12

Translation program

Download from finelybook 7450911@qq.com

464

Figure 8.13

Output from translation program

Figure 8.13 shows screen dumps from the program running under the
debugger, cropped to display just memory starting at the address of
string. Notice that “strange” characters are not deleted—they are
replaced by blanks.

 Exercises 8.3

*1. Here is a partial hexadecimal/EBCDIC conversion table:

Give a translation table that would be suitable for xlat translation of
EBCDIC codes for letters, digits, space, period, and comma to the
corresponding ASCII codes, translating every other EBCDIC code to a

Download from finelybook 7450911@qq.com

465

null character.

2. Give a translation table that would be suitable for xlat translation
of ASCII codes for lowercase letters to the corresponding uppercase
letters, leaving all other characters unchanged.

 Programming Exercise 8.3

1. In the United States, decimal numbers are written with a decimal
point separating the integral part from the fractional part and with
commas every three positions to the left of the decimal point. In many
European countries, decimal numbers are written with the roles of
commas and decimal points reversed. For example, the number
1,234,567.89 would be written 1.234.567,89. Write a windows32
program that will interchange commas and periods, translating a
string of characters representing either format of number to the other
format. Use the xlat instruction with a translation table that
translates a period to a comma, a comma to a period, each digit to
itself, and any other character to a space. Use a dialog box to prompt
for and input the number to be translated. Translate the string. Use a
message box to display an appropriate label and the reformatted
number.

8.4 Converting a 2’s Complement Integer to an ASCII String

The dtoa macro has been used to convert 2’s complement integers to
strings of ASCII characters for output. In this section we examine the
code for dtoa and the dtoaproc procedure it calls. The dtoaproc uses
only one string instruction, but it provides a good example of string
manipulation.

Download from finelybook 7450911@qq.com

466

The dtoa macro expands into the following sequence of instructions.

These instructions call procedure dtoaproc passing source and
destination arguments on the stack. The actual source and
destination are used in the expanded macro, not the macro
parameters source and dest used in the model statements. So that the
user does not need to worry about register contents being altered,
EBX is initially saved on the stack and is restored at the end of the
sequence. Other registers used by dtoaproc are preserved by the
procedure itself. There is still a problem if the macro call was dtoa
dest, ebx, a reasonably likely possibility. To avoid this problem, the
original value in EBX is recovered from the stack before the source
argument is pushed on the stack. Notice that there is no protection
for the less likely possibility of the macro call dtoa [ebx], source or
some other indirect addressing form using EBX; in this case the
macro will not work correctly. The macro could be bypassed,
however, using a direct call to dtoaproc.

The real work of 2’s complement integer to ASCII conversion is done
by the procedure dtoaproc. The source code, from file io.asm, is
shown in Figure 8.14. The procedure follows cdecl conventions. Entry
code preserves the flags register since the direction flag will be cleared
by the body, and the caller may be assuming the opposite value.

Download from finelybook 7450911@qq.com

467

The basic idea of the procedure is to build a string of characters right
to left by repeatedly dividing the number by 10, using the remainder
to determine the rightmost character. For instance, dividing the
number 2895 (B4F16) by 10 gives a remainder of 5 and a quotient of
289 (12116), the last digit of the number, and a new number with
which to repeat the process. This scheme works nicely for positive
numbers, but a negative number must be changed to its absolute
value before starting the division loop. To complicate things further,
the bit pattern 8000000016 represents the negative number
−2,147,483,64810, but +2,147,483,648 cannot be represented in 2’s
complement form in a doubleword.

Download from finelybook 7450911@qq.com

468

Download from finelybook 7450911@qq.com

469

Figure 8.14

Doubleword to ASCII conversion procedure

After the entry code, the source value parameter is copied to EAX and
the destination address to EDI. The procedure then checks for the
special case 8000000016. If this is the source, then the ASCII codes
for −2147483648 are moved one at a time to the destination, using
the fact that the destination address is in EDI. The location for the
minus sign is in the EDI register, so register indirect addressing can
be used to put this character in the correct memory byte. The location
for the character 2 is one byte beyond the address contained in EDI;

Download from finelybook 7450911@qq.com

470

this address is referenced by [edi+1]. The remaining nine characters
are similarly put in place, and the procedure is exited.

The general case of the procedure starts by putting 10 leading blanks
in the 11-byte-long destination field. The procedure does this with a
rep stosb that uses EDI to point to successive bytes in the destination
field. Note that EDI is left pointing at the last byte of the destination
field.

The procedure then stores the correct “sign” in the CL register. A
blank is used for a number greater than or equal to zero, and minus
character (−) is used for a negative number. A negative number is also
negated, giving its absolute value for subsequent processing.

Finally the main idea is executed. The divisor 10 is placed in the EBX
register. The nonnegative number is extended to a quadword by
putting 0 in EDX. Division by the 10 in EBX gives a remainder from 0
to 9 in EDX, the last decimal digit of the number. This is converted to
the corresponding ASCII code by adding 3016—recall that the ASCII
codes for digits 0 through 9 are 3016 through 3916. The ASCII code is
then placed in the destination string, and EDI is decremented to point
at the next position to the left.

This process is repeated until the quotient is 0. Finally the “sign”
stored in CL (blank or −) is copied to the immediate left of the last
code for a digit. Other positions to the left, if any, were previously
filled with blanks.

 Exercises 8.4

Download from finelybook 7450911@qq.com

471

*1. Why does dtoaproc use a destination string 11 bytes long?

2. Suppose that negative numbers are not changed before the division
loop of dtoaproc begins, and that an idiv instruction is used rather
than a div instruction in this loop. Recall that when a negative
number is divided by a positive number, both quotient and remainder
will be negative. For instance, −1273 = 10*(−127) + (−3). How could
the rest of the division loop be modified to produce the correct ASCII
codes for both positive and negative numbers?

3. The only string instruction used by procedure dtoaproc is rep
stosb. Recall that the string instructions are handy, but not really
needed. Rewrite that portion of the code so that no string instruction
is used.

 Programming Exercises 8.4

1. Rewrite dtoaproc, adding a length parameter. Specifically, the new
dtoaNew will be a procedure with three parameters:

(1) The 2’s complement number to convert to ASCII characters (a
doubleword)

(2) The address of the ASCII string (a doubleword)

(3) The desired length of the ASCII string (a doubleword)

The number will be converted to a string of ASCII characters starting
at the offset in the data segment. If the length is less than the actual
number of characters needed to display the number, fill the entire

Download from finelybook 7450911@qq.com

472

field with pound signs (#). If the length is larger than needed, pad
with extra spaces to the left of the number.

2. Rewrite dtoaproc, changing it to a procedure dtovlaproc (“decimal
to variable length ASCII”) that produces a null-terminated string of
minimal length to hold the resulting ASCII representation at the
specified destination address. (There will not be a leading space if the
number is positive.)

3. Rewrite dtoaproc, changing it to a procedure udtoaproc (“unsigned
decimal to ASCII”), that treats its source as an unsigned number and
that generates a 10-byte-long string of ASCII characters representing
the number as decimal. (Why 10?)

8.5 Chapter Summary

The word string refers to a collection of consecutive bytes, words,
doublewords, or quadwords in memory. The 80x86 instruction set
includes five instructions for operating on strings: movs (to move or
copy a string from a source to a destination location), cmps (to
compare two strings), scas (to scan a string for a particular element),
stos (to store a given value in a string), and lods (to copy a string
element into the accumulator). Each of these has mnemonic forms
ending with b, w, d, or q to give the size of the string element.

A string instruction operates on one string element at a time. When a
source string is involved, the source index register ESI contains the
address of the string element. When a destination string is involved,
the destination index register EDI contains the address of the string
element. An index register is incremented or decremented after the

Download from finelybook 7450911@qq.com

473

string element is accessed, depending on whether the direction flag
DF is reset to zero or set to one; the cld and std instructions are used
to give the direction flag a desired value.

Repeat prefixes rep, repe (repz), and repne (repnz) are used with
some string instructions to cause them to automatically repeat. The
number of times to execute a primitive instruction is placed in the
ECX register. The conditional repeat forms use the count in ECX but
will also terminate instruction execution if the zero flag gets a certain
value; these are appropriate for use with the cmps and scas
instructions which set or reset ZF.

The xlat instruction is used to translate the characters of a string. It
requires a 256-byte-long translation table that starts with the
destination byte to which the source byte 00 is translated and ends
with the destination byte to which the source byte FF is translated.
The xlat instruction can be used for such applications as changing
ASCII codes to EBCDIC codes, or for changing the case of letters
within a given character coding system.

The dtoa macro expands to code that calls a procedure dtoaproc.
Basically this procedure works by repeatedly dividing a nonnegative
number by 10, and using the remainder to get the rightmost character
of the destination string.

The 80x86 microprocessors are classified as complex instruction set
computers. The string instructions provide good illustrations of why
they are CISC machines.

Download from finelybook 7450911@qq.com

474

FLOATING POINT OPERATIONS CHAPTER

9

9.1 Floating Point Formats

9.2 80x86 Floating Point Architecture

9.3 Converting Floating Point to and from ASCII

9.4 Single-Instruction Multiple-Data Instructions

9.5 Floating Point Assembly Language Procedures with C/C++

9.6 Chapter Summary

This text has concentrated on integer representations of numbers
since all 80x86 microprocessors have a variety of instructions to
manipulate integers. Most 80x86 microprocessors also have
instructions to manipulate numbers stored in floating point formats.

The first section of this chapter describes the floating point formats
used in the 80x86 architecture. Section 9.2 describes the floating
point architecture, which has a completely new set of registers and
instructions. Section 9.3 tells how to convert floating point values to
and from readable formats. Section 9.4 describes the single-
instruction multiple-data registers and instructions that provide an

Download from finelybook 7450911@qq.com

475

alternative way to do some floating point operations. Finally, Section
9.5 further illustrates how to use assembly language procedures with
C/C++ programs in the Visual Studio environment.

9.1 Floating Point Formats

Floating point schemes store numbers in forms that correspond
closely to scientific notation. Section 1.5 described the IEEE single-
precision format, one of the three floating point formats used in
80x86 processors. Recall that it is a 32-bit format consisting of a sign
bit, an 8-bit biased exponent (the actual exponent in a normalized
binary exponential format plus 127), and a 23-bit fraction (the
fraction in the exponential format without the leading 1 bit). Section
1.5 gave the following steps to convert a decimal number to single-
precision format:

1. Use a leading 0 bit for a positive number or 1 for a negative
number.

2. Write the unsigned decimal number in binary.

3. Write the binary number in binary scientific notation f23.f22 . . . f0
× 2e, where f23 = 1. There are 24 fraction bits, including trailing 0’s.

4. Add a bias of 12710 to the exponent e. This sum, in binary form, is
the next 8 bits of the floating point number, following the sign bit.

5. The fraction bits f22f21 . . . f0 form the last 23 bits of the floating
point number. The leading bit f23 (which is always 1) is dropped.

Download from finelybook 7450911@qq.com

476

In the data section of an assembly language program, the REAL4
directive generates 4 bytes of storage, optionally initialized to a single
floating point value. For example,

number1 REAL4 78.375

results in

00000000 429CC000 number1 REAL4 78.375

in the listing file.

The second floating point format the 80x86 uses is the 64-bit IEEE
double-precision format. It is very similar to the single-precision
format except the exponent has a bias of 1023 and is stored in 11 bits,
and the fraction is stored in 52 bits. Using −78.375, the negative of
the example in Section 1.5,

−78.37510 = −1.001110011 × 26

The sign bit is 1, the exponent is 6 + 1023 = 1029 = 100 0000 0101,
and the fraction is 00111001100 . . . 0 with enough trailing zeros to
make 52 bits. Piecing this together into a quadword and regrouping
gives 1100 0000 0101 0011 1001 1000 0000 . . . 0000 or
C053980000000000 in hex.

In the data section of an assembly language program, the REAL8
directive generates 8 bytes of storage, optionally initialized to a
double-precision floating point value. For example,

Download from finelybook 7450911@qq.com

477

number2 REAL8 -78.375

results in

in the listing file. The statement is displayed on two lines because of
its length.

The third 80x86 floating point format is an 80-bit format known as
double extended-precision. It again starts with the sign bit. It
uses a 15-bit exponent with a bias of 16,383. The fraction is 64 bits
long and, different from the single- and double-precision formats,
does include the leading 1 bit. Again using 78.375 as an example

78.37510 = 1.001110011 × 26

The sign bit is 0, the exponent is 6 + 16383 = 16389 = 100 0000
0000 0101, and the fraction is 100111001100 . . . 0 with enough
trailing zeros to make 64 bits. Piecing this together into 10 bytes and
regrouping gives 0100 0000 0000 0101 1001 1100 1100 0000. .
.0000 or 40059CC0000000000000 in hex.

In the data section of an assembly language program, the REAL10
directive generates 10 bytes of storage, optionally initialized to an
extended real floating point value. For example,

number3 REAL10 78.375

results in

Download from finelybook 7450911@qq.com

478

in the listing file. Again, the statement is displayed on two lines
because of its length.

Using a bias in the exponent’s representation is an alternative to
storing a signed number in 2’s complement form. With single format,
the largest biased exponent FF (eight 1 bits) and the smallest biased
exponent 00 are reserved to represent special values. In general, an
exponent of all 0 bits or all 1 bits is special for each floating point
format. This means that the largest actual exponent in single format
is 254 – 127, or 127. The largest fraction is 1.111111111111111111111112,
which is almost 10.02 = 210. This means that the largest single
floating point value is approximately 2 × 2127 or about 3.40 × 1038.
Verification of other minima and maxima is left as exercises.

The single format has 24 significant fraction bits, the implied leading
1 bit plus the 23 bits that are stored, for 223 distinct patterns. Since
223 = 8,388,608, the single format has about seven decimal digits of
precision. Verification of other precision calculations is left as
exercises. Figure 9.1 summarizes information about the three floating
point formats.

The formats described above are for normalized representations,
ones where the binary scientific notation mantissa is written starting
with 1 and the binary point. These are the commonly used
representations. Obviously zero cannot be normalized. A pattern of all
0 bits represents +0. A 1 followed by 0 bits represents −0. The IEEE
standards and the 80x86 architecture provide for other non-
normalized values. The IEEE standards even define formats for +∞

Download from finelybook 7450911@qq.com

479

and −∞, and NaN (“not a number”), a format that is used when a
calculation leads to a nonrepresentable value.

Figure 9.1

Floating point formats

Obviously not all real numbers can be represented in any given
floating point system—there are infinitely many real numbers and
only a finite number of bit patterns in 32, 64, or 80 bits. Many
decimal numbers, such as our example 73.375 and all whole numbers
unless the magnitude is too large, have exact representations. The
numbers that can be exactly represented are not evenly distributed.
On the real number line, they are very dense around 0.0 and then
become more and more sparse as you move toward larger and larger
values. In other words, for a real number without an exact
representation, if it is close to 0.0, the floating point approximation
will be very close, but if it is huge, the difference in the number and its
best floating point approximation may be large in an absolute sense.

 Exercises 9.1

Find the single-precision floating point representation of each of the

Download from finelybook 7450911@qq.com

480

following numbers:

1. 175.5

2. −1.25

*3. −11.75

4. 45.5

5. 0.09375

6. −0.0078125

7. 3160.0

8. −31.0

Find the double-precision floating point representation of each of the
following numbers:

9. 175.5

10. −1.25

11. −11.75

12. 45.5

*13. 0.09375

Download from finelybook 7450911@qq.com

481

14. −0.0078125

15. 3160.0

16. −31.0

Find the extended double-precision floating point representation of
each of the following numbers:

17. 175.5

18. −1.25

19. −11.75

*20. 45.5

21. 0.09375

22. −0.0078125

23. 3160.0

24. −31.0

Find the decimal number corresponding to each of the following
single-precision floating point representations:

25. C26A0000

26. 46FB0800

Download from finelybook 7450911@qq.com

482

Find the decimal number corresponding to each of the following
double-precision floating point representations:

27. 407A44570A3D70A4

*28. BFA4000000000000

Find the decimal number corresponding to each of the following
extended double-precision floating point representations:

29. 4008FA00000000000000

30. BFFEA0000000000000009

31. Show that 1.18 × 10−38 is the approximate minimum value for a
normalized single-precision floating point number.

32. Show that 1.79 × 10308 is the approximate maximum value for a
normalized double-precision floating point number.

*33. Show that 2.23 × 10−308 is the approximate minimum value for
a normalized double-precision floating point number.

34. Show that 1.19 × 104932 is the approximate maximum value for a
normalized extended double-precision floating point number.

35. Show that 3.37 × 10−4932 is the approximate minimum value for a
normalized extended double-precision floating point number.

36. Show that the decimal precision for a double-precision floating
point number is approximately 15 digits.

Download from finelybook 7450911@qq.com

483

*37. Show that the decimal precision for an extended double-
precision floating point number is approximately 19 digits.

38. Most decimal fractions do not have exact binary representations.
Suppose that x is a decimal number with 0 < x < 1. One way to get a
good n-bit binary approximation is to repeatedly check if 2−j “fits” in
x for j = 1, 2, . . . n. If it does, put a 1 in the representation and
subtract 2−j from x; if not, put a 0 in the representation. Expand this
idea to a complete pseudocode algorithm.

39. Most decimal fractions do not have exact binary representations.
Suppose that x is a decimal number with 0 < x < 1. Multiply x by 2. If
the result is greater than or equal to 1, the next bit of the binary
expansion is 1; otherwise it is 0. In either case, keep just the fractional
part of 2*x. Repeat the process for as many bits as are desired.
Expand this idea to a complete pseudocode algorithm. (This is an
alternative method to the method described in Exercise 38.)

9.2 80x86 Floating Point Architecture

The floating point unit (FPU) of an 80x86 microprocessor is
almost independent of the rest of the chip. It has its own internal
registers, separate from the registers used by integer operations. It
executes instructions to perform floating point arithmetic operations,
including commonplace operations such as addition or
multiplication, and more complicated operations such as evaluation
of some transcendental functions like sine or logarithm. Not only can
it transfer floating point operands to or from memory, it can also
transfer integer or binary coded decimal (BCD) operands to or from
the coprocessor, converting between formats as part of the transfer.

Download from finelybook 7450911@qq.com

484

The FPU has eight data registers, each 80 bits long. The extended
double-precision floating point format is used for values stored in
these registers. The registers are organized as a stack—for example,
when the fld (floating load) instruction is used to transfer a value
from memory to the floating point unit, the value is loaded into the
register at the top of the stack, and data stored in the stack top and
other registers are pushed down one register. However, some
instructions can access registers below the stack top, so that the
organization is not a pure stack.

The names of the eight floating point registers are

• ST, the stack top, also called ST(0);

• ST(1), the register just below the stack top;

• ST(2), the register just below ST(1);

• ST(3), ST(4), ST(5), ST(6); and

• ST(7), the register at the bottom of the stack.

In addition to the eight data registers, the floating point unit has
several 16-bit control registers, one of which is the status word.
Some of the status word bits are assigned values by floating point
comparison instructions, and these bits must be examined in order
for the 80x86 to execute conditional jump instructions based on
floating point comparison.

Before considering the floating point instructions, a few notes are in

Download from finelybook 7450911@qq.com

485

order. Each floating point mnemonic starts with the letter F, a letter
that is not used as the first character of any non-floating instruction.
Most floating point instructions act on the stack top ST, or on ST and
one other operand in another floating point register, or in memory.
No floating point instruction can transfer data between an 80x86
general register (such as EAX) and a floating point register—transfers
must be made using a memory location for intermediate storage.
(There is, however, an instruction to transfer the status word to AX.)

The floating point instructions are examined in groups, starting with
instructions to push operands onto the stack. Figure 9.2 lists these
mnemonics. This text does not include opcodes of number of bytes of
object code for floating point instructions. Most of the instructions
have 1- or 2-byte opcodes, and no additional bytes of object code
unless there is a memory operand.

Figure 9.2

Floating point load instructions

Download from finelybook 7450911@qq.com

486

Some examples illustrate how these instructions work. Suppose that
the floating point register stack contains

with values shown in decimal rather than in IEEE floating point
format. (As you will see shortly, the debugger also shows floating
point register contents in decimal.) If the data segment contains

then the values assembled will be 41200000 for fpValue and
00000014 for intValue. If the instruction fld fpValue is executed, the
register stack will contain

Download from finelybook 7450911@qq.com

487

The original values have all been pushed down one register position
on the stack. Starting with these values, if the instruction fld st(2) is
now executed, the register stack will contain

Notice that the value 2.0 from ST(2) has been pushed onto the top of
the stack, but not removed from the stack. Starting with these values,
assume that the instruction fild intValue is executed. The new
contents of the register stack will be

Download from finelybook 7450911@qq.com

488

What is not obvious here is that the 32-bit value 00000014 is
converted to an 80-bit extended double-precision floating point
value. An integer operand must be word length, doubleword length,
or quadword length—byte-length integer operands are not allowed.

Finally, if the instructions fldz and fldpi are executed in this order, the
FPU register stack will contain

Download from finelybook 7450911@qq.com

489

The stack is now full. No further value can be pushed onto the stack
unless some value is popped from the stack, or the stack is cleared.
The instruction finit initializes the floating point unit and clears the
contents of all eight registers. Often a program that uses the floating
point unit will include the statement

finit ; initialize the FPU

near the beginning of the code. It may be desirable to reinitialize the
floating point unit at points in the code, but normally this is not
required since values will be popped from the floating point stack, not
allowed to accumulate on the stack.

The debugger lets you trace floating point operations. Floating point
register contents are shown by right-clicking in the Registers
windows and selecting Floating Point. Figure 9.3 shows a screen
dump following execution of the code shown in the fig9-3.asm
window. Notice that floating point register contents are shown as
decimal numbers in an E-format, rather than in hex representing the
actual bits.

Figure 9.4 lists the floating point instructions that are used to copy
data from the stack top to memory, or to another floating point
register. These instructions are mostly paired—one instruction of
each pair simply copies ST to its destination while the other
instruction is identical, except that it copies ST to its destination and
also pops ST off the register stack.

A few examples illustrate the actions of and the differences between
these instructions. Assume that the directive

Download from finelybook 7450911@qq.com

490

intValue DWORD ?

Figure 9.3

Debugger view of floating point execution

Source: Used with permission from Microsoft.

Download from finelybook 7450911@qq.com

491

Figure 9.4

Floating point data store instructions

is coded in the data segment. Suppose that the floating point register
stack contains

The left diagram shows the resulting stack if fist intValue is executed

Download from finelybook 7450911@qq.com

492

and the right diagram shows the resulting stack if fistp intValue is
executed. In both cases, the contents of intValue will be 0000000A,
the doubleword 2’s complement integer version of the floating point
number 10.0.

The situation is a bit more confusing when the destination is one of
the floating point registers. Suppose that at execution time the
floating register stack contains

Download from finelybook 7450911@qq.com

493

The left diagram shows the resulting stack if fst st(2) is executed and
the right diagram shows the resulting stack if fstp st(2) is executed. In
the first case, a copy of ST has been stored in ST(2). In the second
case, the copy has been made, and then the stack has been popped.

In addition to the load and store instructions previously listed, the
floating point unit has an fxch instruction that will exchange the
contents of ST with another floating point register. With no operand,

fxch ; exchange ST and ST(1)

will exchange the contents of the stack top and ST(1) just below ST on
the stack. With a single operand, for example,

fxch st(3) ; exchange ST and ST(3)

will interchange ST with the specified register. The instruction cannot
be used to exchange ST with a value in memory.

Download from finelybook 7450911@qq.com

494

Figure 9.5 shows the floating point addition instructions. There are
versions for adding the contents of ST to another register, contents of
any register to ST, a real number from memory to ST, or an integer
number from memory to ST. The faddp instruction pops the stack top
after adding it to another register, so that both operands are
destroyed.

A few examples illustrate how the floating point addition instructions
work. Suppose that the data segment contains the directives

Figure 9.5

Floating point addition instructions

and that the floating point register stack contains

Download from finelybook 7450911@qq.com

495

After the instruction

fadd st, st(3)

is executed, the stack contains

Starting with these stack values, after the two instructions

fadd fpValue

Download from finelybook 7450911@qq.com

496

fiadd intValue

are executed, the contents of the stack are

Finally, if the instruction

faddp st(2),st

is executed, the stack will contain

Download from finelybook 7450911@qq.com

497

Subtraction instructions are displayed in Figure 9.6. The first six
instructions are very similar to the corresponding addition
instructions. The next six subtraction instructions are the same
except that the operands are subtracted in the opposite order. This is
convenient because subtraction is not commutative.

An example illustrates the difference between the parallel subtraction
instructions. Suppose that the floating point register stack contains

Download from finelybook 7450911@qq.com

498

Figure 9.6

Floating point subtraction instructions

The following two diagrams show the results after executing the
instructions fsub st,st(3) and fsubr st,st(3).

Download from finelybook 7450911@qq.com

499

Multiplication and division instructions are listed in Figures 9.7 and
9.8, respectively. Multiplication instructions have the same forms as
the addition instructions in Figure 9.5. Division instructions have the
same forms as subtraction instructions in Figure 9.6, that is, the R
versions reverse the operands’ dividend and divisor roles.

Figure 9.7

Download from finelybook 7450911@qq.com

500

Floating point multiplication instructions

Figure 9.8

Floating point division instructions

Figure 9.9 describes four miscellaneous floating point instructions.
Additional instructions including trigonometric, exponential, and
logarithmic functions are not listed in this text.

Download from finelybook 7450911@qq.com

501

The floating point unit provides a collection of instructions to
compare the stack top ST to a second operand. These are listed in
Figure 9.10. Recall that the floating point unit has a 16-bit control
register called the status word. The comparison instructions assign
values to bits 14, 10, and 8 in the status word; these “condition code”
bits are named C3, C2, and C0, respectively. These flags are set as
follows:

Figure 9.9

Miscellaneous floating point instructions

Download from finelybook 7450911@qq.com

502

Figure 9.10

Floating point comparison instructions (set C3, C2, C0)

The “not comparable” alternative can occur if one of the operands is
the IEEE representation for NaN (not a number), for example.

Figure 9.11

FPU status word access

If a comparison is made in order to determine program flow, simply
setting flags in the status word is no help. Conditional jump
instructions look at bits in the flag register in the 80x86, not the
status word in the floating point unit. Consequently, the status word
must be copied to memory or to the AX register before its bits can be
examined by an 80x86 instruction, perhaps with a test instruction.
There is also a sahf instruction (below) that copies AH into the flag
register so that conditional jump instructions can be used without
testing AX. The floating point unit has two instructions to store the
status word; these are summarized in Figure 9.11.

Download from finelybook 7450911@qq.com

503

Here is an example sequence of instructions for comparing floating
point numbers:

The new instruction here is sahf, which copies AH into the low-order
8 bits of the EFLAGS register. Conveniently, this puts C3 (originally
bit 14) in the ZF position (bit 6), C2 (bit 10) in the PF position (bit 2),
and C0 (bit 8) in the CF position (bit 0). Now you can use the
conditional jump instructions that examine bits in the flags register.
Recall the mnemonics listed as appropriate for use after comparison
of unsigned operands in Figure 5.6. These examine combinations of
ZF and CF and are exactly the ones to use for floating point
comparisons. Since C2 now corresponds to PF, you could use jp or jnp
to do a “safety check” for a valid comparison.

The sahf instruction is not valid in 64-bit mode. However, there is
another option that also works in 64-bit mode and in later 32-bit
processors. The fcomi and fcomip instructions work just like fcom
and fcomp for ST and another stack value, except that they directly
set ZF, PF, and CF, avoiding the need for the fstsw and sahf steps
illustrated earlier. These instructions are shown in Figure 9.12.

This section concludes by utilizing some of the floating point
instructions in a complete example. Recall that for the quadratic
equation

ax2 + bx + c = 0

Download from finelybook 7450911@qq.com

504

the quadratic formula gives two roots

Figure 9.12

Floating point comparison instructions (set ZF, PF, CF)

Download from finelybook 7450911@qq.com

505

Download from finelybook 7450911@qq.com

506

Figure 9.13

Find roots of quadratic equation

Download from finelybook 7450911@qq.com

507

Figure 9.14

Find roots of quadratic equation

Source: Used with Permission from Microsoft.

The following algorithm incorporates the quadratic formula to
compute the roots, if they exist.

discr := b*b - 4*a*c;

if discr ≥ 0

then

 x1 := (-b + sqrt(discr))/2*a;

 x2 := (-b - sqrt(discr))/2*a;

end if;

Figure 9.13 lists a console32 program that implements this algorithm.
Each of the variables a, b, c, discr, x1, and x2 has storage reserved in
memory. (The coefficients a, b, and c have been coded as aa, bb, and
cc partly because they are more visible, but mostly because the 32-bit
assembler treats c as a reserved word.) The screenshot in Figure 9.14
shows this program’s state just before the second root is stored and

Download from finelybook 7450911@qq.com

508

popped from the stack—you can see its value (−2.5) in ST (ST0).
Input and output will be added to this program in the next section.

 Exercises 9.2

1. Suppose that a program’s data segment contains

and that code executed so far by the program has not changed these
values. Suppose also that the floating point register stack contains

Assume that these values are correct before each of the following
instructions is executed; do not use the “after” state of one problem as
the “before” state of the next problem. Draw a picture to show the
contents of the floating point register stack and give the value of
fpValue (as a decimal number) and of intValue (as an integer) after
execution of the instruction.

Download from finelybook 7450911@qq.com

509

2. Suppose that a program’s data segment contains

fpValue REAL4 1.5

intValue DWORD 9

and that code executed so far by the program has not changed these
values. Suppose also that the floating point register stack contains

Assume that these values are correct before each of the following
instructions is executed. Give the contents of the status word flags C3,

Download from finelybook 7450911@qq.com

510

C2, and C0 after execution of the instruction.

*(a) fcom

(b) fcom st(3)

(c) fcom fpValue

(d) ficom intValue

For the next two parts, also give the contents of the stack following
execution of the instructions.

*(e) fcomp

(f) fcompp

 Programming Exercises 9.2

1. Modify the coefficients in the program in Figure 9.13 so that there
will be exactly one real root. Trace execution of the program.

2. Modify the coefficients in the program in Figure 9.13 so that there
will be no real root. Trace execution of the program.

3. The following algorithm approximates the cube root of a real
number x.

root := 1.0;

Download from finelybook 7450911@qq.com

511

repeat

oldRoot := root;

root := (2.0*root + x/(root*root)) / 3.0;

until (|root – oldRoot| < smallValue);

Implement this design in a console32 program, embedding the value
for x in the data section, using 0.001 for smallValue, and leaving root
in ST where you can easily examine it with the debugger. Test your
program with different values for x.

4. The harmonic mean of real numbers x and y is given by . Write a
console32 or console64 program that starts with REAL4 values for x
and y in the data segment, calculates their harmonic mean, and stores
it at hMean in the data segment. You will have the answer in ST
before saving it at hMean; use the debugger at that point to check
your calculations.

5. The geometric mean of real numbers x and y is given by . Write a
console32 or console64 program that starts with REAL4 values for x
and y in the data segment, calculates their geometric mean, and
stores it at gMean in the data segment. You will have the answer in
ST before saving it at gMean; use the debugger at that point to check
your calculations.

6. The volume of a circular cone with height h and base radius r is

Download from finelybook 7450911@qq.com

512

given by πr2h/3. Write a console32 or console64 program that starts
with REAL4 values for r and h in the data segment, calculates volume
of the corresponding cone, and stores it at coneVol in the data
segment. You will have the answer in ST before saving it at coneVol;
use the debugger at that point to check your calculations.

9.3 Converting Floating Point to and from ASCII

This section describes a procedure to facilitate conversion of decimal
numbers to floating point format from a readable (ASCII) format, and
a procedure that converts from floating point to ASCII. With these
procedures and the input and output macros from io.h, we then
modify the quadratic equation solver in Figure 9.13 to input
coefficients and output roots. Section 9.5 covers an alternative way of
providing I/O—by making the equation solver a procedure that is
called from C and C++ main programs that do the I/O.

The ASCII to floating point conversion algorithm is given in Figure
9.15. It is similar to the algorithm used for the procedure atodproc
described in Section 7.3. It scans memory at the address given by its
parameter, interpreting the characters as a floating point number. It
looks for a leading minus sign and a decimal point anywhere in the
input string. The scan is terminated by a nondigit.

This algorithm is implemented in a procedure atofproc with one
parameter, the address of the string. It returns the floating point
value in ST. The procedure code appears in Figure 9.16, along with a
simple console32 test driver.

Download from finelybook 7450911@qq.com

513

Figure 9.15

ASCII to floating point algorithm

This implementation of the ASCII to floating point algorithm (Figure
9.16) uses ST for value and ST(1) for divisor except for one short
segment where they are reversed in order to modify divisor. After the

Download from finelybook 7450911@qq.com

514

procedure entry code, the instructions

fld1 ; divisor := 1.0
fldz ; value := 0.0

initialize these two variables. Note that the value 1.0 for divisor ends
up in ST(1) because it is pushed down by the fldz instruction.

Other local variables are stored on the stack at the locations shown in
the program comments. Notice that they are coded using not only
[ebp−x] but also with the size and type of the operand.

Download from finelybook 7450911@qq.com

515

Download from finelybook 7450911@qq.com

516

Figure 9.16

ASCII to floating point code

The design element

Download from finelybook 7450911@qq.com

517

value := 10*value + float(digit);

is implemented by the code

Note that the floating point unit converts the integer 10 to floating
point for the multiplication and the integer version of digit to floating
point for the addition.

To implement “multiply divisor by 10,” the number to be multiplied
must be in ST. The instructions

take care of swapping divisor and value, carrying out the
multiplication in ST, and then swapping back.

When it is time to execute “value := value / divisor” the instruction

fdivr ; value := value / divisor

pops value from ST and divisor from ST(1), computes the quotient,
and pushes it back to ST. Notice that the fdiv version of this
instruction would incorrectly compute “divisor/ value.” The
instruction fchs changes the sign of value if a leading minus sign was
noted in the ASCII string.

The code in Figure 9.16 includes a simple test driver for atofproc.
Figure 9.17 shows the execution state in the debugger after atofproc is

Download from finelybook 7450911@qq.com

518

called and just before the result is popped from the floating point
stack. It is instructive to trace the entire program and watch the value
accumulate in ST.

Next we look at a procedure to convert a single floating point
parameter to “E notation.” The procedure generates a 12-byte-long
ASCII string consisting of

• A leading minus sign or a blank

• A digit

• A decimal point

• Five digits

• The letter E

• A plus sign or a minus sign

• Two digits

This string represents the number in base-10 scientific notation. For
example, for the decimal value 145.8798, the procedure would
generate the string b1.45880E+02 (where b represents a blank.)
Notice that the ASCII string contains a rounded value.

Figure 9.18 presents the design for the floating to ASCII procedure.
After the leading space or minus sign is generated, most of the work
necessary to get the remaining characters is done before they are
actually produced. The value is repeatedly multiplied or divided by 10

Download from finelybook 7450911@qq.com

519

until it is at least 1.0 but less than 10.0. Multiplication is used if the
value is initially less than 1; the number of multiplications gives the
negative power of 10 required for scientific notation. Division is used
if the value is initially 10.0 or more; the number of divisions gives the
positive power of 10 required for scientific notation.

Figure 9.17

ASCII to floating point execution

Source: Used with Permission from Microsoft.

Download from finelybook 7450911@qq.com

520

Download from finelybook 7450911@qq.com

521

Figure 9.18

Floating point to ASCII conversion algorithm

Only five digits will be displayed after the decimal point. The value
between 1.0 and 10.0 is rounded by adding 0.000005; if the sixth

Download from finelybook 7450911@qq.com

522

digit after the decimal point is 5 or greater, this will be reflected in the
digits that are actually displayed. It is possible that this addition gives
a sum of 10.0 or more; if this happens, the value is divided by 10
again and the exponent is incremented.

With a value at least 1.0 but under 10.0, truncating to an integer gives
the digit that goes before the decimal point. This digit and the decimal
point are placed in the destination string. Then the remaining five
digits can be generated by repeatedly subtracting the whole part from
the value, multiplying the remaining fraction by 10, and truncating
the new value to an integer.

After the “fraction” of the ASCII string is generated, the letter E, a
plus or minus sign for the exponent, and the exponent digits are
generated. The exponent will contain at most two digits—the single
IEEE notation provides for numbers as large as 2128, which is less
than 1039.

Figure 9.19 shows this design implemented in a procedure named
ftoaproc, along with a short console32 test driver. The procedure has
two parameters: (1) the floating point value to be converted and (2)
the address of the destination string.

After customary procedure entry code, the destination address is
copied to EDI and the value to be converted to ASCII is copied to ST.
Most of the code is a straightforward implementation of the design.
Once the value is adjusted to be at least 1.0 but less than 10.0,
truncating the value gives the digit that goes before the decimal point.
This is done with the fisttp instruction, but it is necessary to copy the
value first since the truncating integer store doesn’t come in a “non-

Download from finelybook 7450911@qq.com

523

pop” version. This single digit is easily converted to the corresponding
ASCII code. After subtracting the integer value from the whole value
and multiplying by 10.0, the process can be repeated to get the next
digit. Notice that if the number being converted is 0.0, this process
simply results in a string of 0 characters.

Changing the exponent to two ASCII characters uses a “trick.” The
exponent in AX is nonnegative and less than 40 when the following
code is executed.

Dividing by 10 puts the quotient (the high-order base-10 digit) in AL
and the remainder (the low-order digit) in AH. These are
simultaneously converted to ASCII by the or instruction, and are then
stored in the destination string. This technique will work whenever
the number being converted is in AX and is 99 or less.

Download from finelybook 7450911@qq.com

524

Download from finelybook 7450911@qq.com

525

Download from finelybook 7450911@qq.com

526

Figure 9.19

Floating to ASCII procedure and test driver

Download from finelybook 7450911@qq.com

527

Figure 9.20

Execution of ftoaproc procedure

Source: Used with Permission from Microsoft.

Figure 9.20 shows the debugger’s display of this program right before
it exits. The memory 1 window shows memory starting at the address
of source. You can see the result string starting in the fifth byte.

Now we combine code already written into a complete windows32
program that prompts for the coefficients of a quadratic equation,
solves the equation, and displays the roots. Getting each coefficient is

Download from finelybook 7450911@qq.com

528

a two-part process, first using the input macro to get the coefficient as
a string of ASCII characters, then using atofproc to interpret this
string as a floating point number. Display of the roots is similar
—ftoaproc gives the ASCII string corresponding to a root and the
output macro displays the string.

Figure 9.21 lists the program. The ftoaproc and atofproc procedures
have been put in separate files. The heart of the main program is the
same as the quadratic equation solver in Figure 9.13, with input code
before and output code after. The inset shows the output window
from a sample run solving the equation 2x2 − x − 15 = 0.

Download from finelybook 7450911@qq.com

529

Download from finelybook 7450911@qq.com

530

Figure 9.21

Quadratic equation solver with I/O

 Exercises 9.3

Download from finelybook 7450911@qq.com

531

1. What will procedure atofproc return for a null-terminated
character string containing “1234” and no other character? In other
words, what will it do if there is no decimal point?

*2. What will procedure atofproc return for a null-terminated
character string containing “12..34” and no other character? In other
words, what will it do if there are two decimal points?

3. What will procedure atofproc return for a null-terminated
character string containing “--12.34” and no other character? In other
words, what will it do if there are two leading minus signs?

4. Why was procedure ftoaproc designed to produce six significant
decimal digits and a two-digit exponent?

 Programming Exercises 9.3

1. Write a complete windows32 program that will prompt for and
input a decimal value for the radius of a circle, and will calculate and
display the circumference and the area of the circle. Use the input
macro and atofproc procedure for input and the ftoaproc procedure
and output macro for output.

2. The following algorithm approximates the cube root of a real
number x.

root := 1.0;

repeat

Download from finelybook 7450911@qq.com

532

oldRoot := root;

root := (2.0*root + x/(root*root)) / 3.0;

until (|root oldRoot| < smallValue);

Write a complete windows32 program to input a value for x and
display root, using 0.001 for smallValue. Use the input macro and
atofproc procedure for input and the ftoaproc procedure and output
macro for output.

3. Improve the quadratic equation solver program (Figure 9.21), so
that it displays “no solution” if b2 − 4ac < 0.

4. Design and implement a procedure dbltoaproc that is similar to
ftoaproc except that it works for a double floating point value. What
is the appropriate format for the destination string? (Hint: See Figure
9.1.) Parameters will be (1) the address of a double floating point
value and (2) the address of the ASCII destination string. Write a
short test driver for your procedure, and view the results with the
debugger.

5. Write a procedure ftoaproc1 that will convert a single floating point
number to an ASCII string in fixed point format. Specifically, the
procedure will have four parameters:

(1) A single floating point value

(2) The address of the destination string

Download from finelybook 7450911@qq.com

533

(3) A doubleword containing the total number n of characters in the
string to be generated

(4) A doubleword containing the number of digits d to be generated
after the decimal point

The output string will consist of a leading blank or minus sign, the
integer part of the value in n−d−2 positions (with leading blanks as
needed), a decimal point, and the fractional part of the value rounded
to d positions.

 Write a short console32 or windows32 test driver for your
procedure, and view the results with the debugger.

6. The harmonic mean of real numbers x and y is given by . Write
a complete windows32 program that will prompt for and input
decimal values for x and y, calculate their harmonic mean, and
display the result.

7. The geometric mean of real numbers x and y is given by . Write a
complete windows32 program that will prompt for and input decimal
values for x and y, calculate their geometric mean, and display the
result.

8. The volume of a circular cone with height h and base radius r is
given by πr2h/3. Write a complete windows32 program that will
prompt for and input decimal values for the radius and height of a
cone, calculate the cone’s volume, and display the result.

9.4 Single-Instruction Multiple-Data Instructions

Download from finelybook 7450911@qq.com

534

Single-instruction multiple-data (SIMD) instructions operate on
several operands at once with a single instruction. The 80x86 family
has had some form of SIMD instructions since the Pentium II,
starting with MMX technology and continuing through several
generations of streaming SIMD extensions (SSE). All current
80x86 CPUs include these features.

MMX technology added eight 64-bit register designations, MM0
through MM8. These were not independent registers—they were
physically the same as the registers in the floating point stack,
basically ignoring the high-order 16 bits of each floating point
register. The contents of a single MMX register can be viewed as eight
byte-size integers, four word-size integers, two doubleword-size
integers, or one quadword-size integer. The MMX instruction set
includes instructions to pack multiple values into an MMX register
(pinsrw, for example), or to unpack the parts. Other instructions can
simultaneously operate on all the components in two operands. For
example, after four words are loaded into each of MM0 and MM1,
then the single instruction paddw mm0, mm1 simultaneously adds
the four pairs of integers, putting the sums in MM0. MMX technology
is not further covered in this text.

SSE first appeared in the Pentium III processor. Its features include
eight new 128-bit registers, XMM0 through XMM7. These are not
aliased to any floating point or other registers—they are actually new
storage. The 64-bit architecture added eight more XMM registers,
XMM8 through XMM15. In the original SSE architecture, a single
128-bit register could hold four 32-bit floating point numbers, and a
typical SSE instruction would simultaneously operate on four pairs of
floating point numbers. Later SSE extensions added several other

Download from finelybook 7450911@qq.com

535

ways of viewing a single XMM register as multiple components, but
these are not covered in this text.

Figure 9.22 lists selected SSE instructions. Most of these come in
“scalar” (ss) and “packed” (ps) versions. The packed versions operate
simultaneously on four pairs of floating point operands. The scalar
versions operate only on the low-order operand, ignoring the other
three. The scalar instructions are often used in 64-bit programming
for floating point operations instead of using the floating point unit,
which is the reason for including SSE in this text.

Programming floating point operations with SSE is similar to
programming integer operations with general registers in 32-bit or
64-bit mode. Figure 9.23 shows a console64 program to compute

, given single-precision floating point values for a, b, and c in
memory. The result is stored in memory at discr.

Download from finelybook 7450911@qq.com

536

Figure 9.22

Selected SSE instructions

Download from finelybook 7450911@qq.com

537

Figure 9.23

Compute using SSE

Figure 9.24 is a screenshot showing the program halted just before
exiting. The XMM registers are displayed by right-clicking in the
Registers display window and then selecting SSE. Note that each
XMM register is displayed as 32 hex digits (128 bits) and as four
decimal values. For instance, XMM0 shows 41300000, the floating
point representation for 11.0, the value that has been computed for
discr.

Download from finelybook 7450911@qq.com

538

The comiss comparison instruction sets flags exactly as fcomi does for
the floating point unit. This means that the “unsigned” conditional
jump instructions are appropriate following these instructions.

Figure 9.24

Execution of program to compute using SSE

Source: Used with Permission from Microsoft.

 Exercises 9.4

For each of these exercises, assume the following contents of XMM0
and XMM1 before the instruction is executed.

Download from finelybook 7450911@qq.com

539

What will be in XMM0 following execution of each instruction given?

*1. movss xmm0, xmm1

2. addss xmm0, xmm1

3. subss xmm0, xmm1

*4. mulss xmm0, xmm1

5. divss xmm0, xmm1

6. sqrtss xmm0, xmm1

7. rcpss xmm0, xmm1

8. addps xmm0, xmm1

*9. subps xmm0, xmm1

10. mulps xmm0, xmm1

11. divps xmm0, xmm1

For each of these exercises, assume the following contents of XMM0
and memory before the instruction is executed.

Download from finelybook 7450911@qq.com

540

What will be in XMM0 following execution of each instruction below?

12. movss xmm0, mem128

13. addss xmm0, mem128

14. movps xmm0, mem128

15. addss xmm0, mem128

 Programming Exercises 9.4

1. The geometric mean of two numbers x and y is defined by .
Write a console64 program that starts with single-precision floating
point values for x and y in memory and uses SSE instructions to
compute the geometric mean and store it at mean.

2. The harmonic mean of two numbers x and y is defined by

Write a console64 program that starts with single-precision floating
point values for x and y in memory and uses SSE instructions to
compute the harmonic mean and store it at mean.

3. The volume of a circular cone with height h and base radius r is
given by πr2h/3. Write a console64 program that starts with single-

Download from finelybook 7450911@qq.com

541

precision floating point values for r and h in memory and uses SSE
instructions to compute the cone’s volume and store it at cVol. You
may use original floating point instructions to get a value for π in
memory.

9.5 Floating Point Assembly Language Procedures with
C/C++

Sometimes the power of assembly language makes it possible or
easier or more efficient to code parts of a program in assembly
language than in a high-level language. These parts may need critical
optimization, or may implement low-level algorithms that would be
difficult or impossible to code in the high-level language. However,
the bulk of programming is better done in a high-level language.
Section 6.3 showed some examples of calling an assembly language
procedure from a C function, and a C function from an assembly
language procedure. This section extends the information in Section
6.3 to floating point examples.

First, we take the quadratic equation-solving program and make it
into a procedure roots. The listing of this procedure is in Figure 9.25
The C-style function header describes its five parameters, the first
three being the single-precision floating point coefficients a, b, and c
of the quadratic equation ax2 + bx + c = 0, and the fourth and fifth
being the addresses to put the floating point roots. The procedure
name is decorated with a leading underscore since it will be called
from a 32-bit C program. The code that finds the roots is exactly what
we have seen before in this chapter.

Download from finelybook 7450911@qq.com

542

Figure 9.25

Quadratic equation-solving procedure

Download from finelybook 7450911@qq.com

543

Figure 9.26

C test driver for roots procedure

Figure 9.26 shows a simple C program to input coefficient values and
display results. This program and roots are part of the same
console32 project. Figure 9.27 shows a sample run of the program.
Screen and font colors have been reversed for readability. A
breakpoint was set at the end of the C program.

If you prefer C++ to C, you can use the C++ test driver shown in
Figure 9.28, combined in a console32 project with the assembly
language roots procedure in Figure 9.22. The only notable feature of
this C++ code is the “C” specification in the extern directive. This tells
the C++ compiler to call roots using C linkage conventions. Figure
9.29 shows a sample run.

Download from finelybook 7450911@qq.com

544

In the 32-bit environment a procedure that returns a single floating
point value does so in ST. This is analogous to returning a single
integer value in the accumulator. We have seen several examples of
how floating point arguments are passed in a 32-bit environment—
basically on the stack exactly as integer arguments are passed.

We now take a brief look at how floating point arguments are passed
in a 64-bit environment. In 64-bit mode, a single floating point value
is returned in XMM0. The first four floating point parameters are
passed in XMM0, XMM1, XMM2, and XMM3. If floating point and
integer parameters are mixed, then RCX, RDX, R8, and R9 are used
for the integer parameters, and the XMM registers are used for the
floating point parameters. For example, if there are three parameters,
an integer and two floats, in this order, then the integer would be
passed in RCX, the first float in XMM1, and the second float in
XMM2. If, on the other hand, the three parameters were a float, an
integer, and a float, in this order, then the first float would be passed
in XMM0, the integer in RDX, and the second float in XMM2.
Parameters beyond four are passed on the stack.

Download from finelybook 7450911@qq.com

545

Figure 9.27

Sample run of C/assembly program

Download from finelybook 7450911@qq.com

546

Figure 9.28

C++ test driver for roots procedure

Download from finelybook 7450911@qq.com

547

Figure 9.29

Sample run of C++/assembly program

Figure 9.30 shows roots implemented as a value-returning procedure
in a console64 program. Note how the parameters are passed:
floating point coefficients a in XMM0, b in XMM1, and c in XMM2,
but the address of x1 in R9 since an address is an integer. The fifth
parameter, the address of x2, is passed on the stack. This procedure
works with either the C driver shown in Figure 9.26 or the C++ driver
shown in Figure 9.28—neither requires any change in the source
code, although obviously the 32-bit and 64-bit C and C++ compilers
generate very different code.

Some high-level language compilers have the ability to translate a
program that includes in-line assembly code. This permits most of a

Download from finelybook 7450911@qq.com

548

program to be written in the high-level language, with a few parts
written in assembly language. With Visual Studio 2012, the 32-bit
C++ compiler allows in-line assembly, but the 64-bit C++ compiler
does not. With the 32-bit compiler, the embedded assembly language
code format looks like

Download from finelybook 7450911@qq.com

549

Figure 9.30

Quadratic equation-solving procedure (64-bit version)

The in-line assembly language code is preceded by the __asm
keyword (beginning with two underscores), and braces surround the

Download from finelybook 7450911@qq.com

550

assembly language statements. The assembly language statements
can reference C++ variables declared outside the braces. Almost any
statements can appear in in-line assembly language, including integer
instructions, floating point instructions, and statements with labels.

 Programming Exercises 9.5

Any of these exercises can be done in a 32-bit or a 64-bit
environment. Note that in the 32-bit environment you will need to
decorate each procedure name with a leading underscore.

1. Write a complete program that will prompt for and input a decimal
value for the radius of a circle, and will calculate and display
(appropriately labeled) the circumference and the area of the circle.
Do the input and output with C or C++. Write two assembly language
procedures, circumference and area, each with one floating point
parameter giving the radius, and each returning the appropriate
value. Call these procedures from your C/C++ program to do the
floating point calculations.

2. The volume of a pyramid with a square base b units on a side and a
height h is given by . Write an assembly language procedure
pVolume with two floating point parameters, the base and the height,
and returning the volume of the pyramid. Call this procedure from a
C or C++ driver that inputs values for the base and height and
outputs the volume.

3. The roots procedure will fail if b2 − 4ac < 0. Modify the procedure
to add a sixth Boolean parameter success that will be set to false if the
procedure fails and to true if it succeeds. A modified C header would

Download from finelybook 7450911@qq.com

551

look like

void roots(float a, float b, float c, float* x1, float* x2, int* success)

and would return −1 for true and 0 for false. A modified C++ header
would look like

void roots(float a, float b, float c, float& x1, float& x2, bool& success)

and the assembly language procedure will treat success as the address
of a byte-size integer and store 1 for true or 0 for false.

4. The following algorithm approximates the cube root of a real
number x.

root := 1.0;

until (|root − oldRoot| < smallValue) loop

oldRoot := root;

root := (2.0*root + x/(root*root)) / 3.0;

end until;

Implement this algorithm as a value-returning assembly language
procedure cuberoot with two float parameters: (1) x and (2)

Download from finelybook 7450911@qq.com

552

smallValue. Write a C or C++ program to input values for x and
smallValue, call cuberoot, and display the computed value.

5. The harmonic mean of real numbers x and y is given by . Write
an assembly language procedure hMean with two floating point
parameters, x and y, and returning their harmonic mean. Call this
procedure from a C or C++ driver which inputs values for the
numbers, calls hMean, and outputs the harmonic mean.

6. The geometric mean of real numbers x and y is given by . Write
an assembly language procedure gMean with two floating point
parameters, x and y, and returning their geometric mean. Call this
procedure from a C or C++ driver that inputs values for the numbers,
calls gMean, and outputs the geometric mean.

7. The volume of a circular cone with height h and base radius r is
given by πr2h/3. Write an assembly language procedure coneVol with
two floating point parameters, r and h, and returning the cone’s
volume. Call this procedure from a C or C++ driver which inputs
values for the radius and height, calls coneVol, and outputs the
volume.

9.6 Chapter Summary

The 80x86 uses three formats for floating point numbers, single (32
bits), double (64 bits), and extended double (80 bits). Each format
consists of a sign, a biased exponent, and a fraction.

The 80x86 floating point unit (FPU) contains eight 80-bit data
registers, organized as a stack. Each register stores an extended real

Download from finelybook 7450911@qq.com

553

floating point value. The FPU executes a variety of instructions from
load and store, to simple arithmetic, to complex transcendental
functions.

Conversion between floating point and ASCII representations is
similar to that previously described for integers. The easiest ASCII
format to scan is a simple decimal format. The simplest ASCII format
to produce is E-notation.

Several generations of 80x86 processors have included single-
instruction multiple-data instructions. The streaming SIMD
extensions (SSE) add XMM registers and floating point instructions
that are often used in the 64-bit environment.

Assembly language procedures can be called from C or C++ programs
using standard linkage conventions. A single float is returned on the
top of the floating point stack in 32-bit mode, or in the XMM0
register in 64-bit mode. In 32-bit mode, parameter passing is the
same for integers and floats. However, in 64-bit mode, float
parameters are passed in XMM registers.

Download from finelybook 7450911@qq.com

554

HEXADECIMAL/ASCII CONVERSION APPENDIX

A

00 NUL (null)

01 SOH

02 STX

03 ETX

04 EOT

05 ENQ

06 ACK

07 BEL (bell)

08 BS (backspace)

09 HT (tab)

0A LF (linefeed)

0B VT

Download from finelybook 7450911@qq.com

555

0C FF (form feed)

0D CR (return)

0E SO

0F SI

10 DLE

11 DC1

12 DC2

13 DC3

14 DC4

15 NAK

16 SYN

17 ETB

18 CAN

19 EM

1A SUB

1B ESC (“escape”)

Download from finelybook 7450911@qq.com

556

1C FS

1D GS

1E RS

1F US

20 space

21 !

22 “

23 #

24 $

25 %

26 &

27 ’ (apostrophe)

28 (

29)

2A *

2B +

Download from finelybook 7450911@qq.com

557

2C , (comma)

2D –

2E .

2F /

30 0

31 1

32 2

33 3

34 4

35 5

36 6

37 7

38 8

39 9

3A :

3B ;

Download from finelybook 7450911@qq.com

558

3C <

3D =

3E >

3F ?

40 @

41 A

42 B

43 C

44 D

45 E

46 F

47 G

48 H

49 I

4A J

4B K

Download from finelybook 7450911@qq.com

559

4C L

4D M

4E N

4F O

50 P

51 Q

52 R

53 S

54 T

55 U

56 V

57 W

58 X

59 Y

5A Z

5B [

Download from finelybook 7450911@qq.com

560

5C \

5D]

5E ^

5F _

60 `

61 a

62 b

63 c

64 d

65 e

66 f

67 g

68 h

69 i

6A j

6B k

Download from finelybook 7450911@qq.com

561

6C l

6D m

6E n

6F o

70 p

71 q

72 r

73 s

74 t

75 u

76 v

77 w

78 x

79 y

7A z

7B {

Download from finelybook 7450911@qq.com

562

7C |

7D }

7E ~

7F DEL

Download from finelybook 7450911@qq.com

563

ASSEMBLER RESERVED WORDS APPENDIX

B

Words that are reserved only for the 32-bit assembler are in italics.
Words that are reserved only for the 64-bit assembler are in bold. All
other words are reserved with both assemblers.

$

%OUT

.

.186

.286

.286C

.286P

.287

.386

.386C

Download from finelybook 7450911@qq.com

564

.386P

.387

.486

.486P

.586

.586P

.686

.686P

.8086

.8087

.ALPHA

.ALLOCSTACK

.BREAK

.CODE

.CONST

.CONTINUE

Download from finelybook 7450911@qq.com

565

.CREF

.DATA

.DATA?

.DOSSEG

.ELSE

.ELSEIF

.ENDIF

.ENDPROLOG

.ENDW

.ERR

.ERR1

.ERR2

.ERRB

.ERRDEF

.ERRDIF

.ERRDIFI

Download from finelybook 7450911@qq.com

566

.ERRE

.ERRIDN

.ERRIDNI

.ERRNB

.ERRNDEF

.ERRNZ

.EXIT

.FARDATA

.FARDATA?

.FPO

.IF

.K3D

.LALL

.LFCOND

.LIST

.LISTALL

Download from finelybook 7450911@qq.com

567

.LISTIF

.LISTMACRO

.LISTMACROALL

.MMX

.MODEL

.MSFLOAT

.NO87

.NOCREF

.NOLIST

.NOLISTIF

.NOLISTMACRO

.PUSHFRAME

.PUSHREG

.RADIX

.REPEAT

.SAFESEH

Download from finelybook 7450911@qq.com

568

.SALL

.SAVEREG

.SAVEXMM128

.SEQ

.SETFRAME

.SFCOND

.STACK

.STARTUP

.TFCOND

.TYPE

.UNTIL

.UNTILCXZ

.WHILE

.XALL

.XCREF

.XLIST

Download from finelybook 7450911@qq.com

569

.XMM

?

@B

@F

AAA

AAD

AAM

AAS

ADC

ADD

ADDPD

ADDPS

ADDR

ADDSD

ADDSS

ADDSUBPD

Download from finelybook 7450911@qq.com

570

ADDSUBPS

AESDEC

AESDECLAST

AESENC

AESENCLAST

AESIMC

AESKEYGENASSIST

AH

AL

ALIAS

ALIGN

ALTENTRY

AND

ANDNPD

ANDNPS

ANDPD

Download from finelybook 7450911@qq.com

571

ANDPS

ARPL

ASSUME

AX

BASIC

BH

BL

BLENDPD

BLENDPS

BLENDVPD

BLENDVPS

BOUND

BP

BPL

BSF

BSR

Download from finelybook 7450911@qq.com

572

BSWAP

BT

BTC

BTR

BTS

BX

BYTE

C

CALL

CARRY?

CATSTR

CBW

CDQ

CDQE

CH

CL

Download from finelybook 7450911@qq.com

573

CLC

CLD

CLFLUSH

CLGI

CLI

CLTS

CMC

CMOVA

CMOVAE

CMOVB

CMOVBE

CMOVC

CMOVE

CMOVG

CMOVGE

CMOVL

Download from finelybook 7450911@qq.com

574

CMOVLE

CMOVNA

CMOVNAE

CMOVNB

CMOVNBE

CMOVNC

CMOVNE

CMOVNG

CMOVNGE

CMOVNL

CMOVNLE

CMOVNO

CMOVNP

CMOVNS

CMOVNZ

CMOVO

Download from finelybook 7450911@qq.com

575

CMOVP

CMOVPE

CMOVPO

CMOVS

CMOVZ

CMP

CMPEQPD

CMPEQPS

CMPEQSD

CMPEQSS

CMPLEPD

CMPLEPS

CMPLESD

CMPLESS

CMPLTPD

CMPLTPS

Download from finelybook 7450911@qq.com

576

CMPLTSD

CMPLTSS

CMPNEQPD

CMPNEQPS

CMPNEQSD

CMPNEQSS

CMPNLEPD

CMPNLEPS

CMPNLESD

CMPNLESS

CMPNLTPD

CMPNLTPS

CMPNLTSD

CMPNLTSS

CMPORDPD

CMPORDPS

Download from finelybook 7450911@qq.com

577

CMPORDSD

CMPORDSS

CMPPD

CMPPS

CMPS

CMPSB

CMPSD

CMPSQ

CMPSS

CMPSW

CMPUNORDPD

CMPUNORDPS

CMPUNORDSD

CMPUNORDSS

CMPXCHG

CMPXCHG8B

Download from finelybook 7450911@qq.com

578

CMPXCHG16B

CMPXCHG8B

CODE

COMISD

COMISS

COMM

COMMENT

CPUID

CQO

CR0

CR2

CR3

CR4

CR10

CR11

CR12

Download from finelybook 7450911@qq.com

579

CR13

CR14

CR15

CR8

CR9

CRC32

CS

CVTDQ2PD

CVTDQ2PS

CVTPD2DQ

CVTPD2PI

CVTPD2PS

CVTPI2PD

CVTPI2PS

CVTPS2DQ

CVTPS2PD

Download from finelybook 7450911@qq.com

580

CVTPS2PI

CVTSD2SI

CVTSD2SS

CVTSI2SD

CVTSI2SS

CVTSS2SD

CVTSS2SI

CVTTPD2DQ

CVTTPD2PI

CVTTPS2DQ

CVTTPS2PI

CVTTSD2SI

CVTTSS2SI

CWD

CWDE

CX

Download from finelybook 7450911@qq.com

581

DAA

DAS

DB

DD

DEC

DF

DH

DI

DIL

DIV

DIVPD

DIVPS

DIVSD

DIVSS

DL

DOSSEG

Download from finelybook 7450911@qq.com

582

DPPD

DPPS

DQ

DR0

DR1

DR2

DR3

DR6

DR7

DR10

DR11

DR12

DR13

DR14

DR15

DR8

Download from finelybook 7450911@qq.com

583

DR9

DS

DT

DUP

DW

DWORD

DX

EAX

EBP

EBX

ECHO

ECX

EDI

EDX

ELSE

ELSEIF

Download from finelybook 7450911@qq.com

584

ELSEIF1

ELSEIF2

ELSEIFB

ELSEIFDEF

ELSEIFDIF

ELSEIFDIFI

ELSEIFE

ELSEIFIDN

ELSEIFIDNI

ELSEIFNB

ELSEIFNDEF

EMMS

END

ENDIF

ENDM

ENDP

Download from finelybook 7450911@qq.com

585

ENDS

ENTER

EQ

EQU

ES

ESC

ESI

ESP

EVEN

EXITM

EXTERN

EXTERNDEF

EXTRACTPS

EXTRN

EXTRQ

F2XM1

Download from finelybook 7450911@qq.com

586

FABS

FADD

FADDP

FAR

FAR16

FAR32

FBLD

FBSTP

FCHS

FCLEX

FCMOVB

FCMOVBE

FCMOVE

FCMOVNB

FCMOVNBE

FCMOVNE

Download from finelybook 7450911@qq.com

587

FCMOVNU

FCMOVU

FCOM

FCOMI

FCOMIP

FCOMP

FCOMPP

FCOS

FDECSTP

FDISI

FDIV

FDIVP

FDIVR

FDIVRP

FEMMS

FENI

Download from finelybook 7450911@qq.com

588

FFREE

FFREEP

FIADD

FICOM

FICOMP

FIDIV

FIDIVR

FILD

FIMUL

FINCSTP

FINIT

FIST

FISTP

FISTTP

FISUB

FISUBR

Download from finelybook 7450911@qq.com

589

FLAT

FLD

FLD1

FLDCW

FLDENV

FLDENVD

FLDENVW

FLDL2E

FLDL2T

FLDLG2

FLDLN2

FLDPI

FLDZ

FMUL

FMULP

FNCLEX

Download from finelybook 7450911@qq.com

590

FNDISI

FNENI

FNINIT

FNOP

FNSAVE

FNSAVED

FNSAVEW

FNSTCW

FNSTENV

FNSTENVD

FNSTENVW

FNSTSW

FOR

FORC

FORTRAN

FPATAN

Download from finelybook 7450911@qq.com

591

FPREM

FPREM1

FPTAN

FRAME

FRNDINT

FRSTOR

FRSTORD

FRSTORW

FS

FSAVE

FSAVED

FSAVEW

FSCALE

FSETPM

FSIN

FSINCOS

Download from finelybook 7450911@qq.com

592

FSQRT

FST

FSTCW

FSTENV

FSTENVD

FSTENVW

FSTP

FSTSW

FSUB

FSUBP

FSUBR

FSUBRP

FTST

FUCOM

FUCOMI

FUCOMIP

Download from finelybook 7450911@qq.com

593

FUCOMP

FUCOMPP

FWAIT

FWORD

FXAM

FXCH

FXRSTOR

FXSAVE

FXTRACT

FYL2X

FYL2XP1

GE

GETSEC

GOTO

GROUP

GS

Download from finelybook 7450911@qq.com

594

GT

HADDPD

HADDPS

HIGH

HIGH32

HIGHWORD

HLT

HSUBPD

HSUBPS

IDIV

IF

IF1

IF2

IFB

IFDEF

IFDIF

Download from finelybook 7450911@qq.com

595

IFDIFI

IFE

IFIDN

IFIDNI

IFNB

IFNDEF

IMAGEREL

IMUL

IN

INC

INCLUDE

INCLUDELIB

INS

INSB

INSD

INSERTPS

Download from finelybook 7450911@qq.com

596

INSERTQ

INSTR

INSW

INT

INTO

INVD

INVEPT

INVLPG

INVLPGA

INVOKE

INVVPID

IRET

IRETD

IRETDF

IRP

IRPC

Download from finelybook 7450911@qq.com

597

JA

JAE

JB

JBE

JC

JCXZ

JE

JECXZ

JG

JGE

JL

JLE

JMP

JNA

JNAE

JNB

Download from finelybook 7450911@qq.com

598

JNBE

JNC

JNE

JNG

JNGE

JNL

JNLE

JNO

JNP

JNS

JNZ

JO

JP

JPE

JPO

JRCXZ

Download from finelybook 7450911@qq.com

599

JS

JZ

LABEL

LAHF

LAR

LDDQU

LDMXCSR

LDS

LE

LEA

LEAVE

LENGTH

LENGTHOF

LES

LFENCE

LFS

Download from finelybook 7450911@qq.com

600

LGDT

LGS

LIDT

LLDT

LMSW

LOCAL

LOCK

LODS

LODSB

LODSD

LODSQ

LODSW

LOOP

LOOPD

LOOPE

LOOPED

Download from finelybook 7450911@qq.com

601

LOOPEW

LOOPNE

LOOPNED

LOOPNEW

LOOPNZ

LOOPNZD

LOOPNZW

LOOPW

LOOPZ

LOOPZD

LOOPZW

LOW

LOW32

LOWWORD

LROFFSET

LSL

Download from finelybook 7450911@qq.com

602

LSS

LT

LTR

LZCNT

MACRO

MASK

MASKMOVDQU

MASKMOVQ

MAXPD

MAXPS

MAXSD

MAXSS

MFENCE

MINPD

MINPS

MINSD

Download from finelybook 7450911@qq.com

603

MINSS

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

MMWORD

MOD

MONITOR

MOV

MOVAPD

MOVAPS

MOVD

Download from finelybook 7450911@qq.com

604

MOVDDUP

MOVDQ2Q

MOVDQA

MOVDQU

MOVHLPS

MOVHPD

MOVHPS

MOVLHPS

MOVLPD

MOVLPS

MOVMSKPD

MOVMSKPS

MOVNTDQ

MOVNTDQA

MOVNTI

MOVNTPD

Download from finelybook 7450911@qq.com

605

MOVNTPS

MOVNTQ

MOVNTSD

MOVNTSS

MOVQ

MOVQ2DQ

MOVS

MOVSB

MOVSD

MOVSHDUP

MOVSLDUP

MOVSQ

MOVSS

MOVSW

MOVSX

MOVSXD

Download from finelybook 7450911@qq.com

606

MOVUPD

MOVUPS

MOVZX

MPSADBW

MUL

MULPD

MULPS

MULSD

MULSS

MWAIT

NAME

NE

NEAR

NEAR16

NEAR32

NEG

Download from finelybook 7450911@qq.com

607

NOP

NOT

OFFSET

OPATTR

OPTION

OR

ORG

ORPD

ORPS

OUT

OUTS

OUTSB

OUTSD

OUTSW

OVERFLOW?

OWORD

Download from finelybook 7450911@qq.com

608

PABSB

PABSD

PABSW

PACKSSDW

PACKSSWB

PACKUSDW

PACKUSWB

PADDB

PADDD

PADDQ

PADDSB

PADDSW

PADDUSB

PADDUSW

PADDW

PAGE

Download from finelybook 7450911@qq.com

609

PALIGNR

PAND

PANDN

PARITY?

PASCAL

PAUSE

PAVGB

PAVGUSB

PAVGW

PBLENDVB

PBLENDW

PCLMULHQHDQ

PCLMULHQLQDQ

PCLMULLQHDQ

PCLMULLQLQDQ

PCLMULQDQ

Download from finelybook 7450911@qq.com

610

PCMPEQB

PCMPEQD

PCMPEQQ

PCMPEQW

PCMPESTRI

PCMPESTRM

PCMPGTB

PCMPGTD

PCMPGTQ

PCMPGTW

PCMPISTRI

PCMPISTRM

PEXTRB

PEXTRD

PEXTRQ

PEXTRW

Download from finelybook 7450911@qq.com

611

PF2ID

PF2IW

PFACC

PFADD

PFCMPEQ

PFCMPGE

PFCMPGT

PFMAX

PFMIN

PFMUL

PFNACC

PFPNACC

PFRCP

PFRCPIT1

PFRCPIT2

PFRSQIT1

Download from finelybook 7450911@qq.com

612

PFRSQRT

PFSUB

PFSUBR

PHADDD

PHADDSW

PHADDW

PHMINPOSUW

PHSUBD

PHSUBSW

PHSUBW

PI2FD

PI2FW

PINSRB

PINSRD

PINSRQ

PINSRW

Download from finelybook 7450911@qq.com

613

PMADDUBSW

PMADDWD

PMAXSB

PMAXSD

PMAXSW

PMAXUB

PMAXUD

PMAXUW

PMINSB

PMINSD

PMINSW

PMINUB

PMINUD

PMINUW

PMOVMSKB

PMOVSXBD

Download from finelybook 7450911@qq.com

614

PMOVSXBQ

PMOVSXBW

PMOVSXDQ

PMOVSXWD

PMOVSXWQ

PMOVZXBD

PMOVZXBQ

PMOVZXBW

PMOVZXDQ

PMOVZXWD

PMOVZXWQ

PMULDQ

PMULHRSW

PMULHRW

PMULHUW

PMULHW

Download from finelybook 7450911@qq.com

615

PMULLD

PMULLW

PMULUDQ

POP

POPA

POPAD

POPAW

POPCNT

POPCONTEXT

POPF

POPFD

POR

PREFETCH

PREFETCHNTA

PREFETCHT0

PREFETCHT1

Download from finelybook 7450911@qq.com

616

PREFETCHT2

PREFETCHW

PROC

PROTO

PSADBW

PSHUFB

PSHUFD

PSHUFHW

PSHUFLW

PSHUFW

PSIGNB

PSIGND

PSIGNW

PSLLD

PSLLDQ

PSLLQ

Download from finelybook 7450911@qq.com

617

PSLLW

PSRAD

PSRAW

PSRLD

PSRLDQ

PSRLQ

PSRLW

PSUBB

PSUBD

PSUBQ

PSUBSB

PSUBSW

PSUBUSB

PSUBUSW

PSUBW

PSWAPD

Download from finelybook 7450911@qq.com

618

PTEST

PTR

PUBLIC

PUNPCKHBW

PUNPCKHDQ

PUNPCKHQDQ

PUNPCKHWD

PUNPCKLBW

PUNPCKLDQ

PUNPCKLQDQ

PUNPCKLWD

PURGE

PUSH

PUSHA

PUSHAD

PUSHAW

Download from finelybook 7450911@qq.com

619

PUSHCONTEXT

PUSHD

PUSHF

PUSHFD

PUSHW

PXOR

QWORD

R10

R10B

R10D

R10W

R11

R11B

R11D

R11W

R12

Download from finelybook 7450911@qq.com

620

R12B

R12D

R12W

R13

R13B

R13D

R13W

R14

R14B

R14D

R14W

R15

R15B

R15D

R15W

R8

Download from finelybook 7450911@qq.com

621

R8B

R8D

R8W

R9

R9B

R9D

R9W

RAX

RBP

RBX

RCL

RCPPS

RCPSS

RCR

RCX

RDI

Download from finelybook 7450911@qq.com

622

RDMSR

RDPMC

RDTSC

RDTSCP

RDX

REAL10

REAL4

REAL8

RECORD

REP

REPE

REPEAT

REPNE

REPNZ

REPT

REPZ

Download from finelybook 7450911@qq.com

623

RET

RETD

RETF

RETN

RETW

ROL

ROR

ROUNDPD

ROUNDPS

ROUNDSD

ROUNDSS

RSI

RSM

RSP

RSQRTPS

RSQRTSS

Download from finelybook 7450911@qq.com

624

SAHF

SAL

SAR

SBB

SBYTE

SCAS

SCASB

SCASD

SCASQ

SCASW

SDWORD

SECTIONREL

SEG

SEGMENT

SETA

SETAE

Download from finelybook 7450911@qq.com

625

SETB

SETBE

SETC

SETE

SETG

SETGE

SETL

SETLE

SETNA

SETNAE

SETNB

SETNBE

SETNC

SETNE

SETNG

SETNGE

Download from finelybook 7450911@qq.com

626

SETNL

SETNLE

SETNO

SETNP

SETNS

SETNZ

SETO

SETP

SETPE

SETPO

SETS

SETZ

SFENCE

SGDT

SHL

SHLD

Download from finelybook 7450911@qq.com

627

SHORT

SHR

SHRD

SHUFPD

SHUFPS

SI

SIDT

SIGN?

SIL

SIZE

SIZEOF

SIZESTR

SKINIT

SLDT

SMSW

SP

Download from finelybook 7450911@qq.com

628

SPL

SQRTPD

SQRTPS

SQRTSD

SQRTSS

SQWORD

SS

ST

STC

STD

STDCALL

STGI

STI

STMXCSR

STOS

STOSB

Download from finelybook 7450911@qq.com

629

STOSD

STOSQ

STOSW

STR

STRUC

STRUCT

SUB

SUBPD

SUBPS

SUBSD

SUBSS

SUBSTR

SUBTITLE

SUBTTL

SWAPGS

SWORD

Download from finelybook 7450911@qq.com

630

SYSCALL

SYSENTER

SYSEXIT

SYSRET

SYSRETQ

TBYTE

TEST

TEXTEQU

THIS

TITLE

TR3

TR4

TR5

TR6

TR7

TYPE

Download from finelybook 7450911@qq.com

631

TYPEDEF

UCOMISD

UCOMISS

UD2

UNION

UNPCKHPD

UNPCKHPS

UNPCKLPD

UNPCKLPS

VARARG

VERR

VERW

VMCALL

VMCLEAR

VMCLI

VMCPUID

Download from finelybook 7450911@qq.com

632

VMDXDSBL

VMDXENBL

VMGETINFO

VMHLT

VMIRETD

VMLAUNCH

VMLOAD

VMMCALL

VMPOPFD

VMPTRLD

VMPTRST

VMPUSHFD

VMREAD

VMRESUME

VMRUN

VMSAVE

Download from finelybook 7450911@qq.com

633

VMSDTE

VMSETINFO

VMSGDT

VMSIDT

VMSLDT

VMSPLAF

VMSTI

VMSTR

VMWRITE

VMXOFF

VMXON

WAIT

WBINVD

WHILE

WIDTH

WORD

Download from finelybook 7450911@qq.com

634

WRMSR

XADD

XCHG

XGETBV

XLAT

XLATB

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM10

XMM11

Download from finelybook 7450911@qq.com

635

XMM12

XMM13

XMM14

XMM15

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM8

XMM9

XMMWORD

XOR

XORPD

XORPS

Download from finelybook 7450911@qq.com

636

XRSTOR

XSAVE

XSAVEOPT

XSETBV

ZERO?

Download from finelybook 7450911@qq.com

637

ANSWERS TO SELECTED EXERCISES APPENDIX

C

 Exercises 1.1 (page 6)

2. 1010 1101 AD 173

11. 1010 0101 0010 1110 A52E 42286

20. 10 1110 1010 1011 2EAB 11947

27. 03:46:32

 Exercises 1.2 (page 9)

1. (b) 29522 or sR

2. (b) 47 65 6f 72 67 65 20 73 61 69 64 2c 20 22 4f 75 63 68 21 22

3. (c) June 11, 1947CRLF

Download from finelybook 7450911@qq.com

638

 Exercises 1.3 (page 14)

1. (a) 00000F22

2. (d) FFF6

3. (b) 6F

4. (b) −509 signed; 4,294,966,787 unsigned

5. (c) 28,448 signed or unsigned

6. (a) −31 signed; 225 unsigned

8. (a) −32,768 to +32,767; (b) 0 to 65,535

 Exercises 1.4 (page 19)

1. 003F + 02A4

sum: 02E3, no overflow, no carry

signed and unsigned check: 63 + 676 = 739

5. FF07 + 06BD

sum: 05C4, no overflow, carry

signed check: −249 + 1725 = 1476

unsigned check: 65287 + 1725 = 67012 ≠ 1476

Download from finelybook 7450911@qq.com

639

 329

9. FFF1 + 8005

sum: 7FF6, overflow, carry

signed check: −15 + (−32763) = −32778 ≠ 32758

unsigned check: 65521 + 32773 = 98294 ≠ 32758

13. EBBC − 791C = EBBC + 86E4

difference: 72A0, overflow, no borrow

signed check: −5188 − 31004 = −36192 ≠ 29344

unsigned check: 60348 − 31004 = 29344

 Exercises 1.5 (page 23)

1. 00AF

2. FF50

5. 00 00 02 30

11. C13C0000

 Exercises 2.1 (page 27)

2. 230 = 230 = 4000000016, so the last address is

Download from finelybook 7450911@qq.com

640

000000003FFFFFFF

7. (a) 2B8C0 + 8D21 = 345E1

 Exercises 2.2 (page 34)

3.

4. (b) EAX: FFFFFF72 CF 0 OF 0 SF 1 ZF 0

(e) EAX: 00000000 CF 1 OF 0 SF 0 ZF 1

 Exercises 2.3 (page 34)

2. 65,535

 Exercises 3.1 (page 43)

2. (c) more: OK (e) 2much: not allowed (starts with numeral)

 Exercises 3.3 (page 54)

1. B7

3. B7

Download from finelybook 7450911@qq.com

641

7. 44

10. 3C 3E 3C 3E 3C 3E 3C 3E 3C 3E (shown as 00000005 [3E3C],
but the assembler displays the bytes backwards)

21. FFF0BDC0

25. 00000000 00000001 00000002 00000003

38. 0001 0001 0001 0001 0001 0001 0001 0001 (shown as
00000008 [0001])

41. FFFFFFFFFFFFFFF6

 Exercises 3.4 (page 59)

1. direct, immediate

4. register, register indirect

7. direct, immediate

 Exercises 3.6 (page 70)

2. (a) 2D 35 37 38 (b) FFFFFDBE

 Exercises 4.1 (page 91)

1.

(a) EBX: 00 00 01 A2, ECX: 00 00 01 A2

Download from finelybook 7450911@qq.com

642

(d) AX: 00 4B

(h) RAX: FF FF FF FF FF FF FF FF

2.

(a) opcode 8B, 2 bytes

(d) opcode B4, 2 bytes

(h) opcode C7, 7 bytes

3.

(a) mod-reg-r/m byte D9 = 1101 1001 = 11 011 001, mod 11 for
register to register, reg 011 for EBX, and r/m 001 for ECX

(d) no mod-reg-r/m byte

(h) no mod-reg-r/m byte

4.

(a) EBX: 00 00 01 A2, ECX: 00 00 FF 75

(d) AX: D9 4B, BX: 5C 01

5.

(a) opcode 87, 2 bytes

Download from finelybook 7450911@qq.com

643

(d) opcode 86, 2 bytes

 Exercises 4.2 (page 102)

1.

(a) opcode 03, 7 bytes (g) opcode 2A, 2 bytes (l) opcode FE, 2 bytes
(o) opcode F7, 6 bytes

2.

(d) opcode 81, 11 bytes (e) opcode FE, 3 bytes

3.

(a) EBX: 00 00 01 17, ECX: 00 00 01 A2, SF=0, ZF=0, CF=1, OF=0

(e) EAX: 00 00 00 00, SF=0, ZF=1, CF=0, OF=0

(i) EAX: 00 00 00 00, SF=0, ZF=1

(q) R11: 00 00 00 00 00 00 00 04, SF=0, ZF=0

 Exercises 4.3 (page 112)

1.

(b) EAX: 00 00 15 A8, EDX: FF FF FF 1E, CF=OF=1

(f) EAX: 00 00 0F FE, DX: 00 00 00 00, CF=OF=0

Download from finelybook 7450911@qq.com

644

(j) AX: 04 74, CF=OF=1

2.

(b) opcode F7, 6 bytes

(f) opcode F7, 2 bytes

(j) opcode F6, 2 bytes

3.

(a) BX: 00 00 0F FE, CF=OF=0

(c) EAX: 00 00 EB 6E, CF=OF=0

(h) EBX: FFFF FF74, CF=OF=0

4.

(a) opcode 0F AF, 3 bytes

(c) opcode 6B, 3 bytes

(h) opcode 6B, 3 bytes

 Exercises 4.4 (page 121)

1.

(a) EDX: 00 00 00 04, EAX: 00 00 00 0A

Download from finelybook 7450911@qq.com

645

(d) division error

(h) EDX: 00 00 00 05, EAX: 00 00 00 2B

2.

(a) opcode F7, 2 bytes

(d) opcode F7, 3 bytes

(h) opcode F7, 2 bytes

 Exercises 5.1 (page 130)

2. jmp doAgain (after 3 instructions), relative short

jmp doAgain (after 200 instructions), relative near

jmp addrStore, memory indirect

jmp eax, register indirect

jmp DWORD PTR [edi], memory indirect

 Exercises 5.2 (page 139)

1. (a) no jump (e) no jump

2.

(a)

Download from finelybook 7450911@qq.com

646

(d)

 Exercises 5.3 (page 147)

1. (b)

2. (c)

Download from finelybook 7450911@qq.com

647

3. (b)

 Exercises 5.4 (page 153)

1.

(b) 1

(d) 4,294,967,295

2. (b)

 Exercises 5.5 (page 161)

3. (a) ModR/M = 94 = 10 010 100, mod 10 and R/M=100 to require
SIB, reg 010 for EDX source. SIB = B3 = 10 110 011, scale 10 for 4,
index 110 for ESI, base 011 for EBX

 Exercises 6.1 (page 174)

Download from finelybook 7450911@qq.com

648

1. (c) opcode 55, 1 byte

2. (a)

 Exercises 6.2 (page 182)

1. return address on stack: 00402005

ESP: 00405FFC

 Exercises 6.3 (page 195)

Download from finelybook 7450911@qq.com

649

 Exercises 6.4 (page 203)

1. (b) in R8 (d) at [RSP+56]

2. (b) in R8 (d) at [RSP+72]

3. (b) in R8 (d) at [RSP+120]

 Exercises 6.5 (page 210)

 Exercises 7.1 (page 221)

 Exercises 7.2 (page 232)

1. (a) AX: 516A, CF 1, OF 1

Download from finelybook 7450911@qq.com

650

(c) AX: D45A, CF 1, OF 0

(d) AX: 516B, CF 1

(k) AX: 516B, CF 1

2. (a) 5 + 5 + 2 = 12 bytes

3. (b) 3 bytes

4. (b) one of many solutions

 Exercises 8.1 (page 244)

1. Message box with title “the modified string is” displaying
“ABCDEABCDJ”

 Exercises 8.2 (page 254)

2. ESI = 00417003, EDI = 00417008, ECX = 00000002

Download from finelybook 7450911@qq.com

651

5. EDI = 0041700A, ECX = 00000000, memory at dest 2a 2a 2a 2a
2a

 Exercises 8.3 (page 260)

 Exercises 8.4 (page 264)

1. Because −2147483648 and some other large negative numbers
have 11 characters.

 Exercises 9.1 (page 270)

3. C13C0000

13. 3FB8000000000000

20. 4004B600000000000000

28. −0.0390625

33. A biased exponent of 00000000001 corresponds to an actual
exponent of −1022. To be normalized, the fraction must start with a 1
bit, so that the smallest actual fraction is 1.02 or 110. This gives a
minimum value of 1 × 2−1022, which is approximately 2.23 × 10−308

37. 64 fraction bits corresponds to 264 possible values, between 1019

Download from finelybook 7450911@qq.com

652

and 1020 values.

 Exercises 9.2 (page 289)

Download from finelybook 7450911@qq.com

653

Download from finelybook 7450911@qq.com

654

2. (a) ST < ST(1) so C3 = 0, C2 = 0, C0 = 1

(e) ST < ST(1) so C3 = 0, C2 = 0, C0 = 1

 Exercises 9.3 (page 305)

2. 414570a4 or 12.34

 Exercises 9.4 (page 309)

Download from finelybook 7450911@qq.com

655

Download from finelybook 7450911@qq.com

656

INDEX

The index that appeared in the print version of this title was intentionally removed from the eBook. Please use the
search function on your eReading device to search for terms of interest. For your reference, the terms that appear
in the print index are listed below.

A

accumulator

add instruction

addition instructions

floating point

integer

addition operation

addps instruction

address of operator

addressing modes

addss instruction

AH register

Download from finelybook 7450911@qq.com

657

AL register

and operation

and instruction

application register

argument

arithmetic shift

array

ASCII

converting to integer

converting to floating point

assembler

atod macro atow macro

AX register

B

backward reference

base pointer

Download from finelybook 7450911@qq.com

658

based and indexed addressing

basic program execution register

BCD. See binary coded decimal

BH register

binary coded decimal (BCD)

binary number

convert to decimal

convert to hex

bit

BL register

Boolean variable

borrow

breakpoint

BX register

byte

BYTE directive

Download from finelybook 7450911@qq.com

659

C

call instruction

carry in

carry out

carry

cbw instruction

cdecl protocol

cdq instruction

CH register

CL register

cld instruction

clear flag

cmp instruction

cmps instruction

.CODE directive

code section

Download from finelybook 7450911@qq.com

660

comiss instruction

command line interface

comment

compiler

conditional jump

console32 project

console64 project

control character

counter-controlled loop

CPU

cqo instruction

CS register

cwd instruction

CX register

D

.DATA directive

Download from finelybook 7450911@qq.com

661

data register

data segment

debugger

dec instruction

decimal to hex conversion

DF

DH register

direct mode

directive

disk operating system

div instruction

division instructions

floating point

integer

divps instruction

divss instruction

Download from finelybook 7450911@qq.com

662

DL register

DOS

double extended precision

double shift

double-precision

doubleword

converting to ASCII

DS register

dtoa macro

DUP operator

DWORD PTR operator

DWORD directive

DX register

E

EAX register

EBCDIC

Download from finelybook 7450911@qq.com

663

EBP register

EBX register

ECX register

EDI register

EDX register

EFLAGS register

80x86

EIP register

END directive

ENDM directive

ENDP directive

entry code

ES register

ESI register

ESP register

exit code

Download from finelybook 7450911@qq.com

664

EXTERN directive

F

fabs instruction

fadd instruction

faddp instruction

false

fastcall protocol

fchs instruction

fcom instruction

fcomi instruction

fcomip instruction

fcomp instruction

fcompp instruction

fdiv instruction

fdivp instruction

fdivpr instruction

Download from finelybook 7450911@qq.com

665

fdivr instruction

fiadd instruction

ficom instruction

ficomp instruction

fidiv instruction

fidivr instruction

fild instruction

fimul instruction

finit instruction

fist instruction

fistp instruction

fisttp instruction

fisub instruction

fisubr instruction

.586 directive

flags register

Download from finelybook 7450911@qq.com

666

flat memory model

fld instruction

fld1 instruction

fldl2e instruction

fldl2t instruction

fldlg2 instruction

fldln2 instruction

fldpi instruction

fldz instruction

floating point instructions

absolute value

addition

change sign

comparison

division

exchange

Download from finelybook 7450911@qq.com

667

load

multiplication

round to integer

square root

store

subtraction

floating point representation

converting from decimal

converting to ASCII

double extended precision

double-precision

normalized

single precision

floating point unit

fmul instruction

fmulp instruction

Download from finelybook 7450911@qq.com

668

for loop

forever loop

forward reference

FPU

frndint instruction

FS register

fsqrt instruction

fst instruction

fstp instruction

fstsw instruction

fsub instruction

fsubp instruction

fsubpr instruction

fsubr instruction

ftst instruction

function

Download from finelybook 7450911@qq.com

669

fxch instruction

G

general register

goto

graphical user interface

GS register

H

hexadecimal number

convert to binary

convert to decimal

I

I/O device

identifier

idiv instruction

IEEE single precision format

If structure

Download from finelybook 7450911@qq.com

670

immediate mode

imul instruction

inc instruction

INCLUDE directive

index register

indexed addressing

indirect jump

input macro

input/output

instruction pointer

instruction

integrated development environment

interpreter

J

jecxz instruction

jmp instruction

Download from finelybook 7450911@qq.com

671

jrcxz instruction

L

lea instruction

linker

.LIST directive

listing file

little endian

local variable

LOCAL directive

lods instruction

logic gate

logical shift

loop instruction

M

MACRO directive

macro

Download from finelybook 7450911@qq.com

672

memory

flat memory model

logical picture of

segmented memory model

memory address mode

based

based and indexed

direct

indexed

register indirect

RIP-relative

memory-mapped input/output

MM registers

MMX

mnemonic

Mod field

Download from finelybook 7450911@qq.com

673

.MODEL directive

ModR/M byte

mov instruction

movs instruction

movss instruction

movups instruction

mul instruction

mulps instruction

multiplication instructions

floating point

integer

N

name field

NaN

near displacement

neg instruction

Download from finelybook 7450911@qq.com

674

.NOLIST directive

.NOLISTMACRO directive

nonvolatile

not operation

not instruction

null byte

O

object code

octal number

OF

offset

1’s complement system

opcode

operand

or operation

or instruction

Download from finelybook 7450911@qq.com

675

output macro

overflow flag

overflow

P

packed SSE

paging

parameter

parity flag

PF

physical address

pipelining

pop instruction

popad instruction

popf instruction

popfd instruction

port

Download from finelybook 7450911@qq.com

676

posttest loop

pretest loop

printable character

PROC directive

procedure

call

entry code

exit code

independent code

local variables

parameter

recursive

return from

64-bit

push instruction

pushd instruction

Download from finelybook 7450911@qq.com

677

pushf instruction

pushfad instruction

pushfd instruction

pushw instruction

Q

quadword

quotient after integer division

QWORD directive

R

R/M field

R8 register

R9 register

R10 register

R11 register

R12 register

R13 register

Download from finelybook 7450911@qq.com

678

R14 register

R15 register

.RADIX directive

RAM

random access memory

RAX register

RBP register

RBX register

rcl instruction

rcr instruction

RCX register

RDI register

RDX register

read only memory

REAL4 directive

REAL8 directive

Download from finelybook 7450911@qq.com

679

REAL10 directive

recursive procedure

reference parameter

Reg field

register codes

register indirect mode

register mode

register

relative jump

relocatable

remainder after integer division

repeat prefix

rep

repe

repne

repnz

Download from finelybook 7450911@qq.com

680

repz

reset flag

Reset Window Layout

ret instruction

REX prefix

RFLAGS

RIP register

RIP-relative

rol instruction

ROM

ror instruction

rotate instructions

rounding in integer division

RSI register

RSP register

S

Download from finelybook 7450911@qq.com

681

sahf instruction

sal instruction

sar instruction

scalar SSE

scaling factor

scas instruction

segment descriptor

segment number

segment register

segmented memory model

separate code file

set flag

SF

shift instructions

shl instruction

shld instruction

Download from finelybook 7450911@qq.com

682

short displacement

shr instruction

shrd instruction

SIB byte

sign flag

sign-extend

SIMD

single precision format

single-instruction multiple-data instructions

software

source code

sqrtss instruction

SS register

SSE

instructions

ST floating point register

Download from finelybook 7450911@qq.com

683

ST(n) floating point register

stack pointer

stack

.STACK directive

statement

status flag

status word

std instruction

stdcall protocol

stos instruction

streaming SIMD extensions

string

sub instruction

subps instruction

subss instruction

subtraction instructions

Download from finelybook 7450911@qq.com

684

floating point

integer

subtraction operation

T

TBYTE directive

test instruction

text decoration

text editor

Towers of Hanoi puzzle

translation table

true

2’s complement operation

2’s complement system

converting to decimal

U

Unicode

Download from finelybook 7450911@qq.com

685

unsigned number

until loop

V

value parameter

Visual Studio

volatile

W

WHILE directive

while loop

Windows calculator

windows32

project

windows64

project

word processor

WORD PTR operand

Download from finelybook 7450911@qq.com

686

word

converting to ASCII

WORD directive

wtoa macro

X

xchg instruction

xlat instruction

XMM registers

xor operation

xor instruction

Z

zero flag

ZF

Download from finelybook 7450911@qq.com

687

