ASSEMBLY LANGUAGE
PROGRAMMING
MADE CLEAR

A Systemic Approach




ASSEMBLY LANGUAGE
PROGRAMMING
MADE CLEAR

A SYSTEMATIC APPROACH

80X86 ASSEMBLY LANGUAGE COMPUTER ARCHITECTURE

Howard Dachslager, PhD

" ®
s > cognella | ssamams



Bassim Hamadeh, CEO and Publisher

Kassie Graves, Director of Acquisitions and Sales
Jamie Giganti, Senior Managing Editor

Jess Estrella, Senior Graphic Designer

Mieka Portier, Senior Acquisitions Editor

Sean Adams, Project Editor

Alisa Munoz, Licensing Coordinator

Christian Berk, Associate Production Editor
Bryan Mok, Interior Designer

Copyright © 2018 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted,
reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying, microfilming, and recording, or in any information
retrieval system without the written permission of Cognella, Inc. For inquiries regarding permissions,
translations, foreign rights, audio rights, and any other forms of reproduction, please contact the Cog-
nella Licensing Department at rights@cognella.com.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Cover image copyright © iStockphoto LP/Blackjack3D.
Printed in the United States of America

ISBN: 978-1-5165-1422-9 (pbk) / 978-1-5165-1423-6 (br)

>
s> cognella| s



To the faculty of the Computer Science

Department, Irvine College:
Seth Hochwald, Albert Murtz, and Chan Loke



TABLE OF CONTENTS

ABOUT THE AUTHOR
|. WORKING WITH INTEGER NUMBERS
I. NUMBER BASES FOR INTEGERS

INTRODUCTION
.| DEFINITION OF INTEGERS
1.2 NUMBERS IN OTHER BASES

2. RELATIONSHIPS BETWEEN NUMBER BASES

INTRODUCTION

21 SETS

2.2 ONE-TO-ONE CORRESPONDENCE BETWEEN SETS
2.3 EXPANDING NUIMBERS IN THE BASE B (N,)

2.4 CONVERTING A NUMBER IN ANY BASE B T0 ITS
CORRESPONDING NUMBER IN THE BASE 10

2.0 CONVERTING A NUMBER IN THE BASE 10 T0 ITS CORRESPONDING
NUMBER IN ANY BASE B

2.6 A DUICK METHOD OF CONVERTING BETWEEN BINARY AND
HEXADECIMAL NUMBERS

2.7 PERFORMING CONVERSIONS AND ARITHMETIC FOR DIFFERENT NUMBER BASES

3. PSELDOCODE AND WRITING ALGORITHMS

20
20
i
23

24
il

30
33

37



INTRODUCTION

3. THE ASSIGNMENT STATEMENT
3.2 MATHEMATICAL EXPRESSIONS
3.3 ALGORITHMS AND PROGRAMS
3.4 NONEXECUTABLE STATEMENTS

4. SIMPLE ALGORITHMS FOR CONVERTING BETWEEN

A NUMBER BASE AND THE BASE 10

INTRODUCTION

41 AN ALGORITHM TO CONVERT ANY POSITIVE INTEGER NUMBER IN ANY
BASEB <10TO ITS CORRESPONDING NUMBER IN THE BASE 10

4.2 AN ALGORITHM TO CONVERT ANY INTEGER NUMBER IN THE BASE 10
T0 A CORRESPONDING NUMBER IN THE BASE B < 10

3. THE [F-THEN CONDITIONAL STATEMENT

INTRODUCTION

a.| CONDITIONAL EXPRESSIONS
3.2 THE IF-THEN STATEMENT

3.3 THE IF-THEN-ELSE STATEMENT

B. THE WHILE CONDITIONAL STATEMENT

INTRODUCTION
B.I THE WHILE STATEMENT

7. COMPUTING NUMBER BASIS WITH ALGORITHMS

INTRODUCTION

TIWRITING A PROGRAM AND ALGORITHM TO CONVERT NUMBERS
IN THE BASE B <10 TO THE BASE 10

38
38
4
4F
al

a3

a4
a4

ab

bl

G2
i
G4
70

Ta

716
TG

a7

48

g8

vi = Index



7.2 WRITING AN ALGORITHM TO CONVERT A NUMBER IN THE BASE (0

T0 ITS CORRESPONDING NUMBER IN THE BASE B < D 0
8. RINGS AND MODULAR ARITHMETIC da
INTRODUETION 96
B RINGS 96
.2 THE FINITE RING R 8
8.3 SUBTRACTION FOR R 100
B.4 RINGS IN DIFFERENT BASES I
B.5 THE ADDITIVE INVERSE OF NUMBERS FOR THE
RINGSR,={0..0.0..1.0..2.... Bp,... B} 104
B.6 SPECIAL BINARY RINGS FOR ASSEMBLY LANGUAGE 108
B.7 ORDERED RELATIONS OF RINGS i
.8 SPECIAL ORDERING DF RINGS FOR ASSEMBLY LANGUAGE 113
9. ASSEMBLY LANGUAGE BASICS 17
INTRODUETION [t
5.1 DATA TYPES OF INTEGER BINARY NUMBERS t
.2 THER INTEGERS 120
.3 VARIABLES 120
5.4 ASSIGNING INTEGERS TO VARIABLES 122
9.5 REGISTERS 177
.6 TRANSFERRING DATA BETWEEN REGISTERS AND VARIABLES 137
.7 ASSEMBLY LANGUAGE STATEMENTS 140
5.8 A SAMPLE ASSEMBLY LANGUAGE WRITTEN FOR MASM
(MICROSOFT ASSEMBLER) 142

10. ARITHMETIC EXPRESSIONS 143

vii



INTRODUCTION

0.1 RING REGISTERS

10.2 WORKING WITH MODULAR ARITHMETIC FOR ADDITION AND SUBTRACTION
10.3 ASSEMBLY LANGUAGE ARITHMETIC OPERATIONS FOR INTEGERS

10.4 SPECIAL NUMERIC ALGORITHMS

1. CONSTRUCTING PROGRAMS IN ASSEMBLY
LANGUAGE PART |

INTRODUCTION

1.0 AN ASSEMBLY LANGUAGE PROGRAM TO CONVERT A POSITIVE
INTEGER NUMBER IN ANY BASE B < 10 TO ITS CORRESPONDING NUMBER
IN THE BASE 10.

1.2 AN ALGORITHM TO CONVERT ANY INTEGER NUMBER IN THE BASE 10
T0 A CORRESPONDING NUMBER IN THE BASE B < 10

12. BRANCHING AND THE IF-STATEMENTS

INTRODUCTION

121 CONDITIONAL JUMP INSTRUCTIONS FOR SIGNED ORDER

12.2 CONVERTING THE WHILE-CONDITIONAL STATEMENTS TO ASSEMBLY LANGUAGE
12.3 IF-THEN STATEMENTS

12.4 IF-THEN-ELSE STATEMENTS

12.5 TOP-DOWN STRUCTURED MODULAR PROGRAMMING

13. CONSTRUCTING PROGRAMS IN ASSEMBLY
LANGUAGE PART II

INTRODUCTION

13.1 AN ASSEMBLY LANGUAGE PROGRAM TO CONVERT A POSITIVE INTEGER
NUMBER IN ANY BASE B <10 TO ITS CORRESPONDING NUMBER IN
THE BASE 10

146
146
1aa
160
177

187

188

188

138

207

208
208

211
277
232
237

234

240

240

viii = Index



13.2 AN ALGORITHM TO CONVERT ANY INTEGER NUMBER IN THE BASE 10
T0 A CORRESPONDING NUMBER IN THE BASE B < 10

14. LOGICAL EXPRESSIONS, MASKS, AND SHIFTING

14.1 INRDDUCTIDN: LOGICAL EXPRESSIONS

14.2 LOGICAL EXPRESSIONS IN ASSEMBLY LANGUAGE

14.3 ASSIGNING LOGICAL EXPRESSIONS A LOGICAL VALUE IN ASSEMBLY LANGUAGE
14.4 MASKS

14.5 SHIFTING INSTRUCTIONS

19. INTEGER ARRAYS

INTRODUCTION

131 REPRESENTING ONE-DIMENSIONAL ARRAYS IN PSEUDOCODE

13.2 CREATING ONE-DIMENSIONAL INTEGER ARRAYS IN ASSEMBLY LANGUAGE
13.3 RESERVING STORAGE FOR AN ARRAY USING THE DUP DIRECTIVE

13.4 WORKING WITH DATA

13.3 REPRESENTING TWO-DIMENSIONAL ARRAYS IN PSEUDOCODE

16. PROCEDURES

6.1 INTODUCTION: PSEUDOCODE PROCEDURES
16.2 WRITING PROCEDURES IN ASSEMBLY LANGUAGE

|l. WORKING WITH DECIMAL NUMBERS
17. DECIMAL NUMBERS

INTRODUCTION
7.1 DEFINITION OF DECIMAL NUMBERS AND FRACTIONS

7.2 REPRESENTING POSITIVE DECIMAL NUMBERS CORRESPONDING TO
PROPER FRACTIONS IN EXPANDED FORM

243

229

260
263
268
272
274

274

280
280
283
293
236
300

303

306
313

313

320
320

321



7.3 CONVERTING DECIMAL NUMBERS TO FRACTIONS 323

1.4 CONVERTING FRACTIONS T0 DEGIMAL NUMBERS 375
175 REPRESENTATION DF DECINAL NUMBERS 31
178 DEFINIION OF DECIMAL AND FRAGTIONS 328
177 CONVERTING DECIMAL NUMBERS BETWEEN THE BASE 10 AND
AN ARBITRARY BASE 330
178 CONVERTING DECIMAL NUMBERS N A GIVEN BASE T0 FRACTIONS
INTHE SAME BASE 335
173 CONVERTING NUMBERS BETWEEN DIFFERENT BASES 336
18. WORKING WITH DECIMAL NUMBERS IN ASSEMBLY 343
181 INTRODUCTIN: REPRESENTATION OF DEGINAL NUMBERS 344
18.2 ARITHMETIC OPERATIONS LISING SCIENTIFIC REPRESENTATION 345
18.3 BOXBE FLOATING-POINT ARCHITECTURE 347
19. COMPARING AND ROUNDING FLOATING-POINT NUMBERS 38l
INTRODUCTION 382
19 INSTRUCTIONS THAT COMPARE FLOATING-POINT NUMBERS 382
19.2 ROUNDING FLOATING-POINT NUMBERS 388
20. DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS 383
INTRODUCTION 396
20,1 LOATING-POINT PUSH AND POP INSTRUCTIONS 396
20,2 THE BOXBE STACK 418
lIl. WORKING WITH STRINGS
21. DYNAMIC STORAGE: STRINGS 41a

x ® [ndex



INTRODUCTION 416

211 THE ASCII CODE 41B
21.2 STORING STRINGS 420
21.3 MORE STRING INSTRUCTIDNS 423
22. STRING ARRAYS 433
INTRODUCTION 434
22| RETRIEVING STRINGS STORED IN THE VARIABLE 435

22.2 CREATING AND STORING A ONE-DIMENSIONAL STRING ARRAY
IN THE DUP(?) DIRECTIVE 437
23. INPUT/OUTPUT 441
INTRODUCTION 447
231 DUTRUTTING STRINGS TO THE MONITOR 447
23.2 INPUTTING STRINGS FROM THE KEYBOARD 444
24. NUMERIC APPROXIMATIONS (OPTIONAL) L4T
INTRODUCTION 448
241 ASSEMBLER FLOATING-POINT NUMERIC ARPROXIMATIONS 448
24.2 SPECIAL APPROXIMATIONS 430
APPENDIX A 465
REFERENCES 471
ANSWERS T0 SELECTED EXERCISES 4T3

INDEX ada

Xi



ABOUT THE AUTHOR

Howard Dachslager received a PhD in mathematics from the University of California, Berkeley,
where he specialized in real analysis and probability theory. Prior to beginning his doctoral
studies at UC Berkeley, he earned a master’s degree in economics from the University of
Wisconsin.

After graduating from the University of Wisconsin in 1956, he went to work for Remington
Rand Co. as a machine language programmer. For the next two years he worked on various
mathematical applications, such as missile guidance systems and tracking systems of naval sea
vessels. In 1958 he was admitted as a graduate student to the department of mathematics
at UC Berkeley. To finance his education, he worked for the first year as a programmer
and programming consultant for the astronomy department at UC Berkeley. During that
year he also worked during the summer as a machine language programmer for Lockheed
Corporation in Palo Alto, California. His main duty was to find and correct errors in existing
programs. Starting his second year at UC Berkeley, he received a teaching assistantship in
the mathematics department. His main duty was to teach courses in numerical analysis and
programming. He also worked with several professors in this field.

Since completing his PhD in mathematics, he has taught mathematics and programming to
a diverse student population on many levels. As a faculty member of the Department of
Mathematics at the University of Toronto, he prepared and presented undergraduate-level
courses in mathematics. Later he returned to the mathematics and computer science depart-
ment at UC Berkeley, where he taught undergraduate mathematics and programming courses
for several years.

While working in the State Department’s Alliance for Progress program, he taught advanced
mathematics courses at a statistics institute in Santiago, Chile. Other teaching experience
includes presenting undergraduate and community college mathematics courses.

Throughout his teaching career in mathematics and computer science, he has always attempted
to find and use the most effective teaching methodologies to communicate an understanding
of mathematics and programming. Unable to find an appropriate text for use in his courses
in assembly language programming, and drawing on his own extensive teaching experience,
education, and training, he developed an assembly language text that has significantly improved
the understanding and performance of students in this language.



“Everything should be made as simple as possible, but not simpler.”

—Albert Einstein

|. WORKING WITH INTEGER NUMBERS



LHAPTER ONE

NUMBER BASES FOR INTEGERS




G = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

In order to become a proficient assembly language programmer, one needs to have a good
understanding of how numbers are represented in the assembler.To accomplish this, we start
with the basic ideas of integer numbers. In later chapters we will expand these numbers to
the various forms that are needed.We will also later study decimal numbers as floating point
numbers.

1. DEFINITION OF INTEGERS

There are three types of integer numbers: positive, negative, and zero.

Definition: The positive integer numbers are represented by the following symbols:
1,2,3,4, ...

Definition: The negative integer numbers are represented by the following symbols:
-1,-2,-3,-4, ...
Definition: The integer number zero is represented by the symbol 0.

Definition: Integers are therefore defined as the following numbers:O0, I,-1,2,-2.

Examples:
l. 123
2. -143
3. 44
4. 3333333333333
5. -72

Although the study of these numbers will give us a greater understanding of the types of
numbers we are going to be concerned with when writing assembler language program, the
reality is that the only kind of numbers the assembler can handle are integers and finite
decimals numbers. Further, we need to understand that the assembler cannot work within our
decimal number system.The assembler must convert all numbers to the base 2. The number
system that we normally work with is in the base 10, and numbers will then be converted by
the assembler to the base 2.This chapter will define and examine the various number bases,
including those we need to use when programming.



NUMBER BASES FOR INTEGERS = 7

Numbers in the base 10

Definition: The set of all numbers whose digits are 0, |, 2, 3,4, 5, 6,7, 8,9 are said to
be of the base 10.

Representing positive integers in the base 10 in
expanded form

Definition: Decimal integers in expanded form:
aa  ...aa=axl0+a xI0'+..+axI0+a
n n-| 10 n n—1 | 0

wherea, =0, 1,2,3,4,5,6,7,8,9.
Examples:
I. 235 =2*%102+ 3*|10 + 5
2. 56,768 = 5%10* + 6*10° +7*10> + 6*10 + 8
Exercises:
Write the following integers in expanded form:
(a) 56
(b) 26,578
(c) 23,556,891,010

The number system that we use is in the base 10.This because we only use the 10 digits listed
above to build our decimal number system. For the following discussion, all numbers will be

integers and nonnegative. The following table shows how starting with 0, we systematically
create numbers from these 10 digits:

0 I 2 3 4 5 6 7 8 9
10 I 12 13 14 I5 16 17 18 19
20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39




g = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The way to think about creating these numbers is best described as follows: First we list the
10 digits 0 to 9 (row I):

0,1,2,3,4,56,7,8,9.

At this points we have run out of digits. To continue, we start over again by first writing the
digit | and to the right placing the digits 0 to 9: (row 2):

10, I'l,12,13,14,15,16,17, 18, 19.

Again we have run out of digits.To continue, we start over again by first writing the digit 2 and
to the right placing the digits 0 to 9 (row 3):

20,21,22,23,24,25, 26,27, 28, 29.

Continuing this way, we can create the positive integers as shown in the above table.

1.2 NUMBERS IN OTHER BASES

From below, we observe that the numbers 0, I, 10 are in all bases. Therefore, we have the
following expanded forms:

Base 8 (N,)

Definition: Octal integers in expanded form:

= % n % n-1 %
aa _,..aa,=a*l0,+a *I10, "'+ .. +a*I10,+a

n

wherea =0,1,2,3,4,5,6,7.



NUMBER BASES FOR INTEGERS = 8

Examples:
I. 56761 =5*10*+ 6*10,. + 7%10,2 + 6*10, + |
2. 235 =2x10.2 + 3x10, + 5

This number system is called the octal number system. In the early development of computers,
the octal number system was extensively used. How do we develop the octal number system?
In the same way we showed how we developed the decimal system; by using only 8 digits:

0,1,2,3,4,5,6,7.

Note: Integer numbers that are in a base other than 10 will distinguished by a subscript N.

0, 1, 2, 3, 4, 5, 6, 7,
0, I, 12, 13, 14, 15, 16, 17,
20, 21, 22, 23, 24, 25, 26, 27,
30, 31, 32, 33, 34, 35, 36, 37,
70, 71, 72, 73, 74, 75, 76, 77,
100, o1, 102, 103, 104, 105, 106, 107,

First, we list the eight digits 0 to 7 (row [):
0,1,2,3,4,56,7.

At this point we have run out of digits. To continue, we start over again by first writing the
digit | and to the right placing the digits 0 to 7 (row 2):

10, I'l, 12,13, 14,15, 16, 17.

Again we have run out of digits.To continue, we start over again by first writing the digit 2 and
to the right placing the digits 0 to 7 (row 3):

20,21, 22,23, 24,25, 26, 27.



10 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Continuing this way, we can create the positive integers as shown in the above table. We can
easily compare the development of the decimal and octal number systems:

DECIMAL NUMBERS OCTAL NUMBERS (Base 8)
0 0,
| I,
2 2,
3 3,
4 4,
5 5,
6 6,
7 7,
8 0,
9 I,
10 12,
I 13,
12 14,
13 15,
14 16,
15 17,
16 20,
17 21,
I8 22,
19 23,
20 24,




NUMBER BASES FOR INTEGERS = 11

Exercises:

I. Write the octal number 2,370,123, in expanded form.

2. Write an example of a five-digit octal integer number.

3. In the octal number system, simplify the following expressions:
(a) 2361+ 4,
(b) 33,-2,
(c) 777,+ 3,

4. What is the largest 10-digit octal number?

5. Add on 10 more rows to the above table.

6. We wish to create a number system in the base 5 (N,). What digits
would make up these numbers?

7. Create a 2-column, 2|-row table, where the first column contains the
decimal numbers 0 to 20 and the second column consists of the cor-
responding numbers in the base 5, starting with the digit 0.

8. Write out the largest seven-digit number in the base 5.

9. In the base 5 number system, simplify the following expressions:
n, =
(@) 22,212, + 3,
(b) 23,333, + 2,

(€) 12,011,-2,

Base 2 (N,)

Definition: Binary integers in expanded form:

= % n %k n—-1 %k
aa _,..aa=a*l0"+a *I0 "'+ . +a*l0,+a

n - n

where a, = 0, 1.



12 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

(@) 101 = I*10,> + 0*10, + |

(b) 1101 = 1*10*+ I*10,° + 0%10,> + 1*10, + |
This number system is called the binary number system. Binary numbers are the most impor-
tant numbers, since all numbers stored in the assembler are in the base 2.The digits that make

these numbers are 0 and |, and they are called bits. Numbers made from these bits are called
the binary numbers.

How do we develop the binary number system? In the same way we showed how to develop
the decimal and the octal number system; by using only the two bits: 0 and |:

DECIMAL NUMBERS BINARY NUMBERS

0 0,

| 1

2 10,

3 I,

4 100,
5 101,
6 1o,
7 i,
8 1000,
9 1001,
10 1010,
I 1011,
12 1100,
13 1ol,
14 110,
15 i,




NUMBER BASES FOR INTEGERS = 13

16 10000,
17 10001,
I8 10010,
19 10011,
20 10100,

Exercises:

I. Write the binary number 10110101, in expanded form.

2.

3.

4.

Extend the above table for the integer numbers 21 to 30.

Simplify the following:
(@) 1oolt,+ 1,

(b) 1001, + 11,

(c) 1011, + 111,

Complete the following table.

OCTAL NUMBERS

BINARY NUMBERS

5.

What does the above table tell us about the relationship of the digits of

the octal system and the binary numbers?



14 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Base 16 (N,,)

Definition: Hexadecimal integers in expanded form:

= * n 4 b n-1 4 + k +
aa ,..a,a=a*l0, +a *I0, . ta*l0, +a

n—1

where a =0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
Examples:
I. 2E5=2x 10, 2+Ex 10, +5
2. 56ADF=5x10*+6x10 . +Ax10*+Dx 10, +F

The number system in the base 16 is called the hexadecimal number system. Next to the
binary number system, hexadecimal numbers are very important in that these numbers are
used extensively to help the programmer interpret the binary numeric values computed
by the assembler. Many assemblers will display the numbers only in hexadecimal.

We can easily compare the development of the decimal and hexadecimal number systems:

DECIMAL NUMBERS HEXADECIMAL NUMBERS
0 0,
| I
2 2,
3 3,
4 4,
5 5,
6 6,
7 7.
8 8,
9 9
10 A,




NUMBER BASES FOR INTEGERS = 1a

I B,
12 C,
13 D,
14 E,.
15 F,
16 10,,
17 I,
I8 12,,
19 13,
20 14,
21 15,
22 16,
23 17,
24 18,,
25 19,
26 1A,
27 IB,,
28 IC,,
29 ID,,
30 IE,,
31 IF,,
32 20,,




16 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

I. Write the hexadecimal number 4EOACI , in expanded form.

2. Extend the above table for the decimal integer numbers 33 to 50

3. Simplify n =
(a) AI6+ 6|6
(b) FFFF + 1,

(c) 100,,+E,

4. Complete the following table.

OCTAL NUMBERS

HEXADECIMAL NUMBERS

5.  Complete the following table.

HEXADECIMAL NUMBERS

BINARY NUMBERS

6. What does the above table tell you about the relationship of the

binary and hexadecimal numbers?




NUMBER BASES FOR INTEGERS = 17

PROJECT

In assembly language the basic binary numbers are made up of eight bits. A binary number of
this type is called a byte. Therefore, a byte is an eight-bit number. For example, the decimal
number 5 can be represented as the binary number 00000101.

Complete the following table.

OCTAL BYTE HEXADECIMAL BINARY DECIMAL
BYTE BYTE BYTE
00 000 000 0000 0000 00000000 0
00 000 001 0000 0001 00000001 I

3 7 7 F F (RERRERE! 255




LHAPTER TWO

RELATIONSHIPS BETWEEN NUMBER BASES




20 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

This chapter will examine the one-to-one correspondence that exists between the various
number bases.To accomplish this, we approach these number systems as sets.

2.1 SETS

Definition of a set:
A set is a well-defined collection of items where
|. each item in the set is unique
and

2. the items can be listed in any order.

Examples:
I. S={a, b, c,d}
2. A={23,-8,23.3}
3. N,={0,1,2,3,4,5, ...} (base 10)

4. N,={0,1,2,3,4,56,7,10,11,12,13, 14, 15,16, 17,20, ...} (base 8)

5. N,={0, 1,10, ', 100, 101, 110, 111, 1000, ...} (base 2)
6. N ,={0,1,2,3,4,56,7,89,A,B,C,D,E,F 10, 11,..19,IA,.. IF20 ...}
(BASE 16)
Exercises:

I. For the following bases, write out the first 10 numbers as a set in
natural order:

(@ N
(b) N
() N
(d) N

N

(e) N,

3



RELATIONSHIPS BETWEEN NUMBER BASES = 21

2. Assume we need to define a number system in the base 20 (N,).
Create N, by using digits and capital letters. Write out the first 40
numbers in their natural order.

2.2 ONE-TO-ONE CORRESPONDENCE BETWEEN SETS

Assume we have two sets: D and R.The set D is called the domain, and the set R is called
the range.

Definition of a one-to-one correspondence between sets:
We say there is a one-to-one correspondence between sets if the following rules hold:

Rule I: There exists function f : D => R: for every x contained in D, there exists a value y
such that y = f(x).

Rule 2: The function f is one-to-one
Rule 3: The function f is onto
Definition of a one to one function:
A function is said to be one-to-one if the following is true:
if f(x,) = f(x,) then x, = x, where x|, x, are contained in D.
Definition of an onto function:
A function is said to be onto if the following is true:

if for every y in R, there exists a element x in D where f(x) = y.

Change in notation

For such functions, we will use the notation:
D=>R

and x =>y

If D => R, we write

D => R,

meaning the two sets D and R are in one-to-one correspondence.



22 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:
I. Let D={1,2,3,4,5...}and R={2,4,6,8,10, 12, ...}.

Show there is a one-to-one correspondence between these two sets.

Solution:
k => 2k, where
k=1,273,...

2. D={1,2,3,4,5,...}and R={I,-1,2,-2,3,-3, ...}
Show there is a one-to-one correspondence between these two sets.
Solution:
For the odd numbers of D:
2k + | =>k + 1
where k=0,1,2,3, ...
For the even numbers of D:
2k =>-k
k=1,23,...
Combining these into one function gives:
| =>1
2 =>—|
3=>2
4=>-2

Exercises:

IfD={2,4,6,810,..}andR ={l,3,5,7,9,...}, show that D => R.



RELATIONSHIPS BETWEEN NUMBER BASES = 23

2.3 EXPANDING NUMBERS INTHE BASE B (N,)

In the base 10 system (N ),
aa ..aa =a*lO"+a *IO"'+ .. +a ¥[0+a
n | 10 n n—1 | 0

n—

Does such an expansion hold for all numbers in the base b (N,) ? The answer is yes, and the
expansion can be written as:

(@aa, ,..aa), =axIl0"+a xI0, "'+ . +axl0 +a,
The following explains the validity of this expansion.
First note that the digits of any number in a given base is:
0,1,2,... b—I.
Following these digits is the number 10:
0,1,2,... b1, 10,
Now in the base b, the following arithmetic holds:
0+0=0,0x0=0,1+0=1,1x1= I,akx0=0,akx | =a,a, X I0=ak0.
Therefore, the following rules holds for any given base:
10x10," = 10"
and

n n—| = =
alor+a | 10, +..+al0 +a,=2al00.0 +..+al0 +a

2 00..0, +..+a0, +a,
Examples
I. 2562,:2 x 1000,+ 5 x 100,+ 6 x 10,+ 2, =
2000, + 500, + 60, + 2, = 2562,
2. 10111,:1 x 10000,+ 0 x 1000,+ | x 100,+ I x 10,+ | =
10000, + 000, + 100,+ 10,+ 1 = 10111,
3. 97FA ,:9x 1000 ,+ 7 x 100, ,+ Fx 10, +A =

9000,,+ 700, + FO  + A = 97FA



24 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:
I. Find the expansions for the following numbers in their given bases:
(a) 4312322,
(b) ABCDEF,,
(c) 12322,
(d) rrriotiot,

Finding the one-to-one correspondence between
number bases

It is important to be able to find the functions that establish one-to-one correspondence
between number bases.

To assist us, we establish the following laws about one-to-one correspondence:
I. If D => R then R => D (reflexive law)
2. If A =>B and B => C then A => C (transitive law)

We begin by finding the formula that gives a one-to-one correspondence:

Nb => NIO.

2.4 CONVERTING A NUMBER INANY BASEBTO ITS
CORRESPONDING NUMBER INTHE BASE 10
We will consider two cases:b < 10 and b = |6.
Case I:b< 10
Let n_be an arbitrary number in the base b and n, be an arbitrary number in the base 10.
In chapter |, we wrote the expanded form of n, as
n,=aa  ..aa=axl0"+a xI0" "'+ .. +axl0 +a

where a, are digits of the base b.

Now we begin by defining the mapping :



RELATIONSHIPS BETWEEN NUMBER BASES = 25

10,=>b “wherek=0,...,n
and
10, is a number in the base b
and
b is a number in the base 10.
Since b < 10, b and all the numbers a are in the base b, and they are also in the base 10.
Therefore, we define the mapping:
axl0"+a xI0""'+..+axI0 +a =>a b'+a  b'"'+.+ab+a
which is a number in the base 10.
We can write this as:
n=aa ..aa, =>ab"+a b'+..+ab+a =n,
This give us a one-to-one mapping N, => N  where
N, is the set of numbers of the base b
and
N,,is the set of numbers of the base 10.
Important: All computations are performed in the base 10.
Note: The above expansion is from right to left.
Examples:
I. n,=32412, =3xI10*+2xI0° + 4102+ | xI0,' +2, =>
3 X5, +2 x5 +4 x5+ 1 x5 '+2 =
3(625) + 2(125) + 4(25) + I(5) +2=2232
Therefore, 32412, => 2232
2. n,= 1110101, =>
I oX2,, ¢+ 1, x2,°+
lox2,%+0,x2 °+

2 |
II0X2I0 + 0I0X2I0 + IIO



26 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

=64+32+16+4+1=117
Therefore, 1 110101, => 117 .
3. n,=73106,=>7 x8 *+3 x8 +1 x8 2+0 xl6 '+6, =30278
Therefore,
73106, => 30278,
Case 2:b =16
(N,=>N,):

For b = 16, we needed to replace the hexadecimal digits which are greater than 9 with the
decimal numbers 10,through decimal number |5.The reason we are able to make a corre-
spondence is that we can show there a one to one correspondence between the hexadecimal
digits and the corresponding numbers of the decimal system ( base 10) as shown in the
following table:

BASE 16

0 I 2 3 4 5 6 7 8 9 A B C D E F
BASE 10

0 I 2 3 4 5 6 7 8 9 0] 11| 12| 13| 14] I5

n,=aa  ..aa=axl0 "+a xI0 '+ . +axl0, +a
Now we begin by defining the mapping:
10,=> 16, *where k=0,...,n

Therefore, we define the mapping:

axl0r+a xI0 "'+ . . +axl0 +a =>(), 16"+ (@ _),!6"" +.+(@),
16+ (a),

where 16 is a number in the base 10 and

a =>|0 | 2 (3 4516 7891011 12]13]14]15




RELATIONSHIPS BETWEEN NUMBER BASES = 27

We can write this as:
n,=aa _ ..aa,(base 16)=>(a) 16"+ (a ), 06"""'+..+(a),l6+a=n,

This give us a one-to-one mapping N, => N .

Example:
Convert the number 2E0FA6|6to the base 10.
Solution:

2EOFA6 ,=> 2x16° + 14 x 16+ 0 x 16°+ I5x 16>+ [0x 16'+ 6 x 16°= 3018662

Exercises:
I. Convert the following numbers to the base |0.
(a) 2022301,
(b) 66061,
(c) rriotriol,
(d) 756402,
(e) AOCDS8

2.5 CONVERTINGA NUMBERINTHE BASE IOTO ITS
CORRESPONDING NUMBER IN ANY BASE B

When we converted a number from the base b to the base 10, we arrived at:
n=aa ..aa (baseb)=>n =(@),b"+ (@,  ),b""'+.*+(),b* (a),

To convert a number in the base 10 to its corresponding number in any base b, we use the
famous Euclidean division theorem, which will reverse this correspondence:

Euclidean division theorem: Assume N and b are nonnegative integers. There exist unique inte-
gers Q and R where

N,= Qb + R,where 0 <R <b.



28 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

To compute Q and R, we use the following algorithm:
Step |: Divide N by b, which will result in a decimal value in the form integer. fraction.
Step 2: From Step |, Q = integer.
Step 3: R = N-Qb.
Example:
N,=3451,b = 34
Step 1:3451/34=101.5
Step 2:Q =101
Step 3:R =3451-101 x 34 =17
Step 4: Therefore, N=Qb + R =101 x 34 + |7.

Using the Euclidean division theorem, we now show how to convert a number in the base 10
to its corresponding number in the base b.

We want to write N, in the form:N, =ab"+a b '+ . +ab+a
Step |:Factor out the number b:N = (a b""',a b""2+..+a)b+a = Qb +R where
Q=a b""'+a b2+ .. +ab+a
R=a,
Step2:Set N=Q =a b""'+a b " 2+..+ab+a
Q=Qb+R =(a b "?+a b "*+..+a )b+a where
Q,=a b""2+a b'?+..+a,
R =a,.
Step 3: Continue in this manner until Q_= 0.
N,e @ a2, ,..2 3a),
Examples:
Convert the following decimal numbers to the specified base.
I. 1625 <=> N,

Step 1:1625/8 = 203.125



RELATIONSHIPS BETWEEN NUMBER BASES = 23

a,= 1625-203 x 8 = |
Step 2:203/8 = 25.375
a, =203-25x8=3
Step 3:25/8 = 3.125
a,=25-3x8=1
Step 4:3/8 = 0.375
a,=3-0x8=3
Since Q = 0, the algorithm is completed.
1625 ,<=> (aja,a,a)),= 3131,
2. 89629 <=>N,,
Step 1:89629/16 = 5601.8125
a,= 89629-5601 x 16 = 13 <=>D
Step 2:5601/16 = 350.0625
a, =5601-350x 16 =1
Step 3:350/16 = 21.875
a,=350-21 x 16 = 14 <=>E
Step 4:21/16 = 1.3125
a,=2l-1x16=5
Step 5: 1/16 = 0.0625
a,=1-0x16=1

Therefore, 89629 <=> (a,a,aaay),, = ISEID,,.

Exercises:
I. Convert the following:
(a) 2545601 , <=> base 2

(b) 16523823, <=> base 16



30 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(c) 5321, <=> base 3
(d) 81401  <=> base 8

2. Convert the number 2245, <=> N, (Hint: first convert 2245, to a
decimal).

26 A QUICK METHOD OF CONVERTING BETWEEN
BINARY AND HEXADECIMAL NUMBERS

Of primary concern is to develop an easy conversion between binary and hexadecimal num-
bers without multiplication and division. Later we will see that the ability to convert quickly
between binary and hexadecimal decimal will be critical in learning to program in assembly
language.

To perform this conversion, we first construct a table comparing the 16 digits of the hexa-
decimal number system and the corresponding binary numbers:

HEXADECIMAL DIGITS | CORRESPONDING BINARY NUMBERS
0 0000,
| 0001,
2 0010,
3 0011,
4 0100,
5 olol,
6 ollo,
7 ollt,
8 1000,
9 1001,
A 1010,
B 1011,




RELATIONSHIPS BETWEEN NUMBER BASES = 3l

C 1100,
D 101,
E 110,
F 111,

Note: Each digit of the hexadecimal system corresponds to a number of 4 bits in the binary
number system.

Now we can convert between any binary number and hexadecimal number directly by the
following rules:

Converting a binary number to its corresponding
hexadecimal number

Given any binary number, the following steps will convert the number to a hexadecimal
number:

Step |: Group the binary number from right to left into 4 binary bit groups.

Step 2: From the table above, match the hexadecimal digit with each of the 4 binary
bit group.
Example:

orr orro 1ol otor 11ol,
6 D 5

rroriorirotolorriotl, = <=>36D5D ,

Converting a hexadecimal number to its corresponding
binary number

Given any hexadecimal number, the following steps will convert the number to a binary
number:

From the table above, match each of digits of the hexadecimal number with the corresponding
4 bit binary number.



32 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

34ABCO2DEOF =3 4 A B C 0 2 D E 0 F,
<=>00110100 1010 1011 1100 0000 0010 1101 11100000 1111,
=00110100101010111100000000101101111000001111,

Exercises:

I. Complete the table below by matching each digit of the octal number
system with its corresponding binary number.

OCTAL DIGITS CORRESPONDING BINARY NUMBERS
0 000
I 001

2. From the tables above, convert quickly the following numbers:

(@) 1110110111000110101011,<=>n,

(b) 67574112014,<=>n,

(c) 235621103,<=>n,,

(d) A2B3C4D5E6D7F  <=>n,

(e) r1orrrororiortiool,<=>n
3. Create a similar table to convert numbers of the base 4 to the base 2.
4. Using the tables, convert the following:

(@) 121301,<=>n,



RELATIONSHIPS BETWEEN NUMBER BASES = 33

(b) 121301,<=>n,

(c) 10011100110,<=> n,

2.7 PERFORMING CONVERSIONS AND ARITHMETIC
FOR DIFFERENT NUMBER BASES

Definition n,=>n : Assume n,=> nloand n,=>n then n,=>n

Example:
Convert 5762, => n,
Solution:
5762,=>n = 3058, =>n, = 44213,

Given any number base, one can develop arithmetic operations so that we can perform addi-
tion, subtraction, and multiplication between integers. For example, ABC23,  + 5 = ABC28,..
Performing operations such as addition, subtraction, and multiplication within the given num-
ber system can be very confusing and prone to errors.The best way to do such computations
is to convert the numbers to the base 10 and then perform arithmetic operations only in
the base 10. Finally, convert the resulting computed number back to the original base. The
following theorem assures us that there is a consistency in arithmetic operations when we
convert any number to the base 0.

Theorem: Invariant properties of arithmetic operations between bases:

I. Invariant property of addition: If N, <=> N_and M, <=> M_then N, +
Mb<=> Nc+ Mc

2. Invariant property of subtraction: If N, <=> N_and M, <=> M_then
N, - M, <=>N_-M
3. Invariant property of multiplication: If N,<=> N_and M,<=> M_then N,

X Mb<=> ch Mc

The following algorithm will allow us to perform arithmetic operations using the above
theorem.

Step |: Convert each number to the base 10:n, =>n ;m, =>m

Step 2: Perform the arithmetic operation on the converted numbers:

(@ n+m =>n +m =>n+m
b b 10 10 c c



34 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(b) n—m, =>n, —m =>n-m
(€) nyxm =>n_ xm =>n xm
Step 3: Convert the resulting number from step 2 back to the original base.
Examples:
I. Perform 2367 + 471123,
Step 1:2367,=>2x8 +3 x 8+ 6x8+7=1271
471123, => 4x8° + 7x8* + Ix8’ + Ix82 + 2x8 + 3 = 160339
Step 2: 1271 ,+ 160339, = 161610 ,
Step 3:Through long division,
161610,,=> 473512,
Step 4:Therefore,
2367,+ 471123,= 473512,
2. Perform 56AF02 , x 682FA
Step 1:56AF02 ,=>5x 16>+ 6 x 16*+10x 16+ I5x 162+ 0 x 16'+ 2 =15680898

682FA  => 426746,

Step 2: 5680898  x 426746 = 2,424,300,497,908
Step 3:Through long division,

2,424,300,497,908, => 234739 |EBF4,
Step 4:Therefore,

56AF02  x 682FA = 234739 1EBF4
3. Perform 1011101101, ~10101011,
Step I:

1011101101, =>749

lorotolrt => 171,

Step 2:749,,~171,,= 578 ,



RELATIONSHIPS BETWEEN NUMBER BASES = 3a

Step 3:Through long division,
578 ,=> 1001000010,
Step 4:Therefore,
1011101101~10101011,= 1001000010,

Note: Since we are only working with integer numbers, we will postpone division for later
chapters.

Exercises:

I. Perform the following:
(@) (212,+2222,) x 101,
(b) (1orror,—=1rior) x 1iot,
(c) AB2F x 23D+ 2F5,
(d 2,A,
(e) EFI56, = N,
(f) (212, x2222,) - 101, = N,

2. For each of the above examples, verify the result in step 3.

3. Using the laws of arithmetic, show that for any number in the base b, N,

=aa  ...a 2,3 <b can be written in the expanded form:
= n n-|
N,=axl0" +a xI0 '+ .. +axl0 +a,

4. Show that |0”b=> b"IO

PROJECT

Show that the one-to-one function f~': NIO > Nb is the inverse of f: Nb => NIO

(Hint: Show f~' (f(n,)) =n,)



LHAPTER THREE

PSELDOCODE AND WRITING ALGORITHMS




38 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

This chapter will explain the basics of computer programming. This involves defining a set of
instructions, called pseudocode, that when written in a specific order will perform desired
tasks.When completed, such a sequence of instructions is call a computer program.The word
pseudocode indicates that the codes are independent of any specific computer language. We
use this code as a guide to writing the desired programs in assembly language.

The form of the assignment statement is:
VARIABLE :=VALUE
where
VARIABLE is a name that begins with a letter and can be letters or digits.

VALUE is any numeric value of the base 10, variable or mathematical expressions.

3.1 THEASSIGNMENT STATEMENT

Note: Frequently, instructions are referred to as statements.

The assignment statement is used to assign a numeric value to a variable.

Rules of assighment statements
R1:The left-hand side of an assignment statement must be a variable.

R2:The assignment statement will evaluate the right-hand side of the statement first and will
place the result in the variable name specified on the left-side of the assignment statement.
The quantities on the right-hand side are unchanged; only the variable on the left-hand side is
changed. Always read the assignment statement from right to left.

Examples:

ASSIGNMENT STATEMENTS | X X2 | XYZ | SAM | TURNS

X2:=3 3
XYZ =23 3 23
TURNS := XYZ 3 23 23

X2:=5 5 23 23




PSEUDOCODE AND WRITING ALGORITHMS = 33

Exercises:

I. Complete the following table.

ASSIGNMENT T YZ2 TABLE | FORM TAB
STATEMENTS

YZ2 :=3

TABLE :=YZ2

YZ2 := 1123

FORM :=TABLE

YZ2 := FORM

2. Which of the following are illegal assignment statements? State the
reason.

@) XYZ:= XYZ
(b) 23 :=SI
(c) 2ZX := XZ

(d) MARY MARRIED := JOHN

Exchanging the contents of two variables

An important task is swapping or exchanging the contents of two variable. The following
example shows how this is done:

Example:
ASSIGNMENT STATEMENTS X Y TEMP
X:=4 4
Y =12 4 12
TEMP := X 4 12 4
X:=Y 12 12 4
Y :=TEMP 12 4 4

Note: To perform the swap, we needed to create an additional variable TEMP.



40 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

I. Assume we have the following assignments:

A B C D

10 20 30 40

Write a series of assighment statements that will rotate the values of A, B, C, and D as shown
in the table below:

A B C D

40 10 20 30

Only use | temporary variable.

2. The following instructions

S:=R
R:=T
T:=S

will exchange the contents of the variables R and T. a.True  b. False

3. The following instructions

A:=2
B:=3
Z:=A
A:=B
B:=27Z

will exchange the contents of the variables A and B.  (2).True (b). False



PSEUDOCODE AND WRITING ALGORITHMS = 41

4.
X:=5
Y:=10
Z:=2
Z:=X
X:=Y
Y =Z

The above sequence of commands will exchange the values in the variables
and

3.2 MATHEMATICAL EXPRESSIONS

Our system has the following mathematical operators that can be used to evaluate mathematical
expressions:

MATHEMATICAL SYMBOL EXAMPLE | RESTRICTIONS

OPERATOR

Multiplication X*Y 3*5 =15 none

Integer Division X%Y 7%2 =3 y#0

Modulo n r=ymodn =7 mod 2 0<r<n
y=qn+r 7=3¥2+ |
Addition x+y 2+4=6 none
Subtraction X—y 5-9=-+4 none

IMPORTANT: All numbers are of type integer.



42 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Order of operations
The following are the order of operations:

» parenthesis, multiplication, integral division, modulo n, addition, and
subtraction

* when in doubt, make use of parenthesis.

Examples:
ASSIGNMENT STATEMENTS X Y
X:=4 4
Y :=5 4 5
X = 26X + 3*%Y + X 27 5
ASSIGNMENT STATEMENTS X Y
X:=4 4
Y :=5 4 5
X = 2(X +Y)¥(X +Y) + X 166 5

Important: Remember to always evaluate assignment statements from right to left.
Iterative addition
Addition of several numbers can be computed using repetitive addition:
§=58+X
Examples:

I. Add, using repetitive addition, the numbers 2, 4, 6, 8.



PSEUDOCODE AND WRITING ALGORITHMS = 43

ASSIGNMENT STATEMENTS S X
$:=0 0
X =2 0 2
S:=S5+X 2 2
X =4 2 4
S:=S+X 6 4
X:=6 6 6
S:=S+X 12 6
X:=8 12 8
S:=S5+X 20 8

2. Add the digits of 268:2 + 6 + 8

INSTRUCTIONS N R SUM
N:= 268 268
SUM:=0 268 0
R:=N MOD 10 268 8 0
SUM:=SUM + R 268 8 8
N:=N-R 260 8 8
N:=N=+10 26 8 8
R:=NMOD 10 26 6 8
SUM :=SUM + R 26 6 14




44 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

N:=N-R 20 14
N:=N= 10 2 1 4
R:=NMOD I0 2 14
SUM:=SUM + R 2 16
N:=N-R 0 16
N:=N=+10 0 16
Exercises:
I. Complete the table below.
ASSIGNMENT STATEMENTS
X:=2
X = X*X
X=X+X
X = X*X
2. Complete the table below.
ASSIGNMENT STATEMENTS w
X:=5
W:=2
U:=4

W = WHW + U + WKW + U + W)

X:=X*X+U




PSEUDOCODE AND WRITING ALGORITHMS = 44

3. Complete the table below.

ASSIGNMENT STATEMENTS

X:=3

X:=Z + X*X

Z=X+Z+1

TE=TI+Z=+TI +TI

4. Evaluate the following expressions:

(@) 2+ 3%4

(b) 2 + 2%2%2 + 4-3
(c) 2+ 2%2%2 + (7-3)
d) 17+2

() 17+2

) 16+2

(8) 3+9+3

(hy 3+8+3

() 3+79+3

() 3 +2%2%2 + 8%2-5
(k) 3 +2%2%2 + (8%2-5)

5. Set up a table for evaluating the following sequence of instructions:

NUMI :=0

NUM2 := 20



46 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

NUM3 := 30
SUMI := NUMI + NUM2
SUM2 := NUM2 + NUM3
TOTAL := NUMI + NUM2 + NUM3
AVGI := SUMI +2
AVG2 := SUM2 + 2
AVG :=TOTAL + 3
6. Set up a table for evaluating the following sequence of instructions:
X:=2
X:=2X+ X
=28+ X
= 28X+ X

X
X
X =28+ X
X:=2X+ X
X

= 28X + X

3.3 ALGORITHMS AND PROGRAMS

Definition of an algorithm:
An algorithm is a sequence of instructions that solves a given problem.
Definition of a program:
A program is a sequence of instructions and algorithms.
Examples
I. Assume N and P are positive integers.We can write
N = QP + R where R <P.

The following algorithm and program will demonstrate how to compute and store Q and R.



PSEUDOCODE AND WRITING ALGORITHMS = 47

Algorithm

ASSIGNMENT STATEMENTS

EXPLANATION

Q:=N=+P COMPUTES AND STORES THE
INTEGRAL
R:=NMODP COMPUTES AND STORES THE
REMAINDER R
Task |: Store the number 957.
Task 2: Store the number 35.
Task 3: Find Q and R for 957 = Q*35 + R.
Program
ASSIGNMENT STATEMENTS N P Q R
N := 957 957
P:=35 957 35
Q:=N=P 957 35 27
R:=NMODP 957 35 27 12

2. We define n- factorial:
N! = N*¥(N=1)*¥(N=2) ... *(I)

for N, a positive integer.

The following algorithm uses the repetitive multiplication statement to compute N!



43 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

ASSIGNMENT STATEMENTS

EXPLANATION

NFACTORIAL := N

SET THE INITIAL VALUE

N:=N - |

REDUCES N BY |

NFACTORIAL:= NFACTORIAL*N

N:=N - |

NFACTORIAL:= NFACTORIAL*N

N:=N - |

NFACTORIAL:= NFACTORIAL*N

N:=N - |

NFACTORIAL:= NFACTORIAL*N

TERMINATES WHEN N = |

The following program computes 5!

Program
ASSIGNMENT STATEMENTS N NFACTORIAL
N:=5 5
NFACTORIAL := N 5 5
N:= N — | 4 5
NFACTORIAL:= NFACTORIAL*N 4 20
N:=N- 1 3 20




PSEUDOCODE AND WRITING ALGORITHMS = 48

NFACTORIAL:= NFACTORIAL*N 3 60
N:=N — | 2 60
NFACTORIAL:= NFACTORIAL*N 2 120
N:=N — | I 120
NFACTORIAL:= NFACTORIAL*N I 120

3. The Fibonacci sequence

To create a Fibonacci sequence, we begin with the numbers 0 and 1.

Step I:Add the above two numbers (0 + | = I) and insert the number in the above
sequence:

0, 1,1
Step 2: Add the last two numbers (I + | = 2) of the above sequence and insert the

number in the above sequence:
0,1,1,2

Step 3:Add the last two numbers (I + 2 = 3) of the above sequence and insert the
number in the above sequence:

01,1,2,3
Continue as often as desired.

The following algorithm uses the above steps to compute the Fibonacci sequence to a desired
number of members of the sequence.

Algorithm
ASSIGNMENT STATEMENTS EXPLANATION
FIBON_NUMI :=0 FIRST VALUE OF THE SEQUENCE
FIBON_NUM2 : = | SECOND VALUE OF THE SEQUENCE

SUM OF THE LAST TWO VALUES OF

SUM := FIBON_NUMI + FIBON_NUM2 THE SEQUENCE




a0 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

FIBON_NUMI:= FIB_NUM2

PLACE THE NUMBER IN THE
SEQUENCE

FIBON_NUM2 := SUM

PLACE THE NUMBER IN THE
SEQUENCE

SUM := FIBON_NUMI + FIBON_NUM2

SUM OF THE LAST TWO VALUES OF
THE SEQUENCE

FIBON_NUMI:= FIB_NUM2

PLACE THE NUMBER IN THE
SEQUENCE

FIBON_NUM2 := SUM

PLACE THE NUMBER IN THE
SEQUENCE

SUM := FIBON_NUMI + FIBON_NUM2

SUM OF THE LAST TWO VALUES OF
THE SEQUENCE

FIBON_NUMI:= FIB_NUM2

PLACE THE NUMBER IN THE
SEQUENCE

FIBON_NUM2 := SUM

PLACE THE NUMBER IN THE
SEQUENCE

The following program will generate the first six numbers of the Fibonacci sequence:

0,1,1,2,3,5,8

Program

ASSIGNMENT
STATEMENT

FIBON_NUMI

FIBON_NUM2 | SUM

FIBON_NUMI :=0

FIBON_NUM2 : = |

SUM := FIBON_NUMI +
FIBON_NUM2




PSEUDOCODE AND WRITING ALGORITHMS = af

FIBON_NUMI:= FIB_NUM2 | I I
FIBON_NUM2 := SUM I I I
SUM := FIBON_NUMI + | | 2
FIBON_NUM2
FIBON_NUMI:= FIB_NUM2 I I 2
FIBON_NUM2 := SUM I 2 2
SUM := FIBON_NUMI + | ) 3
FIBON_NUM2
FIBON_NUMI:= FIB_NUM2 2 2 3
FIBON_NUM2 := SUM 2 3 3
SUM := FIBON_NUMI + ) 3 5
FIBON_NUM2
FIBON_NUMI:= FIB_NUM2 3 3 5
FIBON_NUM2 := SUM 3 5 5
SUM := FIBON_NUMI + 3 5 8
FIBON_NUM2
FIBON_NUMI:= FIB_NUM2 5 5 8
FIBON_NUM2 := SUM 5 8 8
Exercises:

I. Write a program that computes 10!

2. Write a program that will compute a Fibonacci sequence where each
number in the sequence is less than 50.

3.4 NONEXECUTABLE STATEMENTS

All assignment statements are executable statements:When the assembler encounters the state-
ment, it will be executed.



a2 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

There are however, nonexecutable statements.The first one we will here introduce is the REM
statement.

Definition of the REM statement:
The form of the REM statement is:

REM: comment; where comment can be any words made up of alphanumericcharacters.

Example:

STATEMENTS X Y SUM

REM:The following program will assign numbers to X
andY and then add them

X:=34 34
Y =100 34 100
SUM := X +Y 34 100 134

PROJECT

Assume the numbers n;,n,, ... n_
I. Write an algorithm that will perform iterative multiplication.
2. Using this algorithm, write a program to compute n = 34%226%|2%44*5

3. Define a®N = aN

Write an algorithm to perform a*N.



LHAPTER FOUR

SIMPLE ALGORITHMS FOR CONVERTING
BETWEEN A NUMBER BASE AND THE BASE 10




a4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

This chapter will show how to write algorithms to convert a number in the base b (b <10) to
its corresponding number in the base 10 and from a number in the base 10 to its correspond-
ing number in the base b (b <10). These algorithms are based on the conversion methods
developed in chapter 2.To help us write these algorithms, we first create a sample program
from a specific example. Once the program is written, we will use it as a guide to create the
algorithm. Later chapters will generalize these algorithms.

4.1 ANALGORITHMTO CONVERT ANY POSITIVE
INTEGER NUMBER INANY BASEB < IOTOITS
CORRESPONDING NUMBER INTHE BASE 10

To convert between an integer number in any base b to its corresponding number in the base
10, we recall from chapter 2 the following formula:

n=aa ..aa <=>ab" a b'.+ab+a base |0
n n-| 170 n + n-l | 0

Example

The following program will convert the number 267, to its corresponding number in the
base 10:

n, = 267, <=> 2x82+ 6x8' + 7x8° = 2(64) + 6(8) + 7 = 183

Program

PSEUDOCODE INSTRUCTIONS | N8 [ P | A [ NIO0O | BASE

NI0:=0 0

N8 := 267 267 0
BASE := 8 267 0 8
P:=1 267 | 0 8

A := N8 MOD 10 267 I 7 0 8




SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND THE BASE 10 = 54

NI10 := NI0 + A*P 267 I 7 7 8
N8 := N8 + 10 26 I 7 7 8
P := P*BASE 26 8 7 7 8

A :=N8MOD 10 26 8 6 7 8

NI0 := NI0 + A*P 26 8 6 55 8
N8 := N8 + 10 2 8 6 55 8
P := P*BASE 2 64 6 55 8

A := N8 MOD 10 2 64 2 55 8

NI0 := NI0 + A*P 2 64 2 183 8
N8 := N8 + 10 0 64 2 183 8

Therefore, 2678 => 183 0

Using the above program as a model, the following algorithm will convert any positive integer
number in the base b < 10 to its corresponding number in the base 10:

Algorithm

PSEUDOCODE INSTRUCTIONS

A:=NMOD 10

Nw:= NI0+A*P

N:=N=+10

P := P*BASE




ab = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

I. Modify the above program to convert the number 5632, to the cor-
responding number in the base 10.

2. Modify the above program to convert the number 1101, to the cor-
responding number in the base |0.

4.2 ANALGORITHMTO CONVERT ANY INTEGER
NUMBER INTHE BASE 10 TO A CORRESPONDING
NUMBER INTHEBASEB < 10

Using the Euclidean division theorem explained in chapter 2, we now review how to convert
numbers in the base 10 to any in the base b < |0.

Step |:We want to write n in the form:n =ab"+a b™'+..+ab+a,
Step 22N =Qb+R=(a b a b"?.+a)b+a
Here,Q=a b™'+a b"?+.+ab+a =(a b ?+a b'?..+a)b+a
and R = a,
Step 3:Set N = Q.
Q=Qb+R =(a b?+a b"?..+a )b+a where
Q,=a b™?+a b'?..+a
and R, =a,
Step 4: Continue in this manner, until Q = 0.
Example
Convert the following decimal numbers to the specified base:
I. 1625 =>n,

Step I: 1625 = 203*8 + |



SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND THE BASE (0 = 87

Step 3:25 = 3*8 + |

Therefore,n = 3*%8% + |*82 + 3*8 + | & n, = 3131.

Program

Task: Convert the integer number 1625 to the base 8.

PSEUDOCODE NIO Q N8 R BA P TEN
NI10 := 1625 1625
BASE := 8 1625 8
TEN := 10 1625 8 10
P:=10 1625 8 10 10
N8 := 0 1625 0 8 10 10
R:=NI0O MOD BASE | 1625 0 I 8 10 10
Q:= (NI0-R) = BASE | 1625 | 203 0 | 8 10 10
N8:= N8 + R 1625 | 203 | | 8 10 10
NI0:= Q 203 203 | | 8 10 10
R:= NI0 MOD BASE | 203 203 | 3 8 10 10
Q:= (NI0-R) = BASE | 203 25 | 3 8 10 10
N8 := N8 + R*P 203 25 31 3 8 10 10
P := P*TEN 203 25 3 3 8 100 10
NI0:=Q 25 25 3 3 8 100 10
R := N10 MOD BASE 25 25 3 | 8 100 10




ad = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Q:= (NI10-R) + BASE 25 3 31 100 10
N8 := N8 + R*P 25 3 131 100 10
P := P*TEN 25 3 131 1000 10
NI10:=Q 3 3 131 1000 10
R := NI10 MOD BASE 3 3 131 1000 10
Q:= (NI10-R) + BASE 3 0 131 1000 10
N8:= N8 + R*P 3 0 3131 1000 10
NI10:=Q 0 0 3131 1000 10

1625 => 3131,

Algorithm

PSEUDOCODE INSTRUCTIONS

P:=10

N,:=0

R := N,,MOD BASE

Q:= (N,—R) + BASE

N,:=N, + R

NIO:=Q

R := N, ,MOD BASE

Q:= (N10-R) + BASE

N,:= N, + R*P

P := P*10




SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND THE BASE 10 = o8

Exercises:

I. Use the above algorithm to write a program to convert the decimal
number 2543 to octal.

2. Write an algorithm to convert any decimal number a a to the base 2.

PROJECT

(a) Write a program that will convert the number 2356, => n_where
b=29.

(b) Write an algorithm that will convert a number n_ to n_where b, c
< 10.



LHAPTER FIVE

THE IF-THEN CONDITIONAL STATEMENT




62 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

The statements used so far are called unconditional statements. Each statement performs
its task without any conditions placed on it. This chapter will discuss conditional statements.
The manner in which these instructions are carried out will depend on various conditions in
the programs and algorithms.We begin by defining and explaining conditional expressions.

5.1 CONDITIONAL EXPRESSIONS

We begin with the definition of conditional values.
Definition of conditional values:

Conditional values take on the value TRUE or FALSE. Each conditional value is determined by
six relational operators preceded and followed by numeric values or variables.

Definition of six relational operators

The six relational operators are:
Operator Interpretation
l. = Equality
2. <> Inequality
3. < Less than
4. > Greater than
5. <= Less than or equal to
6. >= Greater than or equal to
Examples Values
5=2+3 TRUE
9 <> 3%3 FALSE

4<=4 TRUE



THE IF-THEN CONDITIONAL STATEMENT = &3

Exercises

I. Evaluate the following conditional expressions:
(@) 3+3=6
(b) 8>=10
(c) 7<>7
Definition of conditional expressions:

Conditional expressions are conditional values connected by three logical operators.

Definition of the three logical operators

Logical operators connect conditional expressions and return a value of TRUE or False. The
three logical operators are:

Operator Interpretation
NOT NOT conditional expression (TRUE if the conditional expression
is FALSE; FALSE if the if the conditional expression is TRUE).

Conditional expression AND conditional expression (TRUE if all the

AND - .
conditional expressions are true).

Conditional expression OR conditional expression (TRUE if one or

OR more of the conditional expressions are TRUE).

Values returned by operators

NOT TRUE FALSE
NOT FALSE TRUE TRUE
AND TRUE TRUE
TRUE AND FALSE FALSE
FALSE AND FALSE FALSE
TRUE OR TRUE TRUE
TRUE OR FALSE TRUE

FALSE OR FALSE FALSE



G4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

Conditional expressions Value
(2<3)OR (5=7) TRUE
NOT (2 <= 2) FALSE
NOT ((2>0)AND 3 <>2+ 1)) TRUE

5.2 THE IF-THEN STATEMENT

Definition of the if-then statement:
The form of the if-then statement is:
IF conditional expression THEN
BEGIN
statements
END
If the conditional expression is TRUE, then the
BEGIN
statements
END
will be carried out.
If the conditional expression is FALSE, then the
BEGIN
statements
END

will NOT be carried, out and the program will go to the instruction following the END.



THE IF-THEN CONDITIONAL STATEMENT = Ba

The BEGIN and END statements are nonexecutable statements.
The

BEGIN

statements

END

is called a compound statement.

Examples:
Program
PSEUDOCODE INSTRUCTIONS X Y
X:=5 5
IF X =5THEN
BEGIN
10
X :=2¥X
END
Y:=2 10 2
IF X =YTHEN
BEGIN
10 2
X :=2¥X
END
X:=100 100 2

The following program will perform the following tasks:
Task |:Assign three numbers.

Task 2: Count the number of negative numbers.



&6 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Program
PSEUDOCODE Xl X2 X3 COUNT
Xl:=6 6
X2:=-5 6 -5
X3 :=-25 6 -5 -25
COUNT =0 6 -5 -25 0
IF XI <0THEN
BEGIN
6 -5 -25 0
COUNT := COUNT + |
END
IF X2 < 0 THEN
BEGIN
6 -5 -25 I
COUNT := COUNT + |
END
IF X3 <0THEN
BEGIN
6 -5 -25 2

COUNT := COUNT + |
END

Exercises:

I. Modify the above program so that it performs the followingtasks:
Task |:Assign four numbers.
Task 2: Count the number of positive numbers entered.

Task 3:Add the positive numbers.



THE IF-THEN CONDITIONAL STATEMENT = &7

2. Modify the above program so that it performs the following tasks:

Task 1:Assign four numbers.

Task 2: Multiply the negative numbers.

Examples:

I. The following algorithm will perform the following task:

Task I: Find the largest of three numbers.

Algorithm

PSEUDOCODE INSTRUCTIONS

EXPLANATION

LARGEST := XI

We start by assuming X1 is the
largest

IF X2 > LARGEST THEN
BEGIN
LARGEST := X2

END

If the contents of X2 is larger than
the contents of LARGEST replace
LARGEST with the contents of X2.

IF X3 > LARGEST THEN
BEGIN
LARGEST := X3

END

If the contents of X3 is larger than
the contents of LARGEST replace
LARGEST with the contents of X3,

2. The following program will perform the following tasks:

Task |:Assign three numbers.

Task 2: Find the largest of these three numbers.




&8 « ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Program

PSEUDOCODE INSTRUCTIONS | XI X2 [ X3 | LARGEST
Xl :=5 5
X2:=6 5 6
X3:=10 5 6 10
LARGEST := XI 5 6 10 5
IF X2 > LARGEST THEN
BEGIN
5 6 10 6
LARGEST := X2
END
IF X3 > LARGEST THEN
BEGIN
5 6 10 10
LARGEST := X3
END
3. The following program will perform the following tasks:
Task |:Assign two numbers to variables.
Task 2: If the number is negative, change it to its absolute value.
Program
PSEUDOCODE INSTRUCTIONS X Y
X:=123 23
Y :=-17 23 -17




THE IF-THEN CONDITIONAL STATEMENT = &9

IF X <O0THEN
BEGIN
X :=-1*X

END

23 -17

IFY < 0 THEN
BEGIN
Y = -1¥Y

END

23 17

Exercises:

I. Complete the table below.

PSEUDOCODE INSTRUCTIONS

X:=2
Y:=5
Z:=-4

IF (X +Y + Z) <> X*Y THEN
BEGIN
X 1= (X -Y)+X
Y = X + 2%Y
Z:=X-2
END

IF (X -Y + Z) <> X +Y THEN
BEGIN
X 1= 2%(X - Y)+X
Y:=X-3Z

Z:=X+2

END




70 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2. Assume X is an integer. Explain what the following algorithm does:
IF 2*¥(X + 2) = X THEN
BEGIN
X = 3*X-I
END
IF 2*¥(X + 2) <> X THEN
BEGIN
X :=25X + |
END

3. Write an algorithm to find the second-largest number among four
numbers.

5.3 THE IF-THEN-ELSE STATEMENT

Definition of the if-then-else statement:
The form of the if-then-else statement is:

IF conditional expression THEN

BEGIN

statements |

END
ELSE

BEGIN

statements 2

END

If the conditional expression is TRUE, statements | following the THEN will be carried out,
and the program will skip statements 2.

If the conditional expression is FALSE, statements | following the THEN will not be carried
out, and the program will execute statements 2.



THE IF-THEN CONDITIONAL STATEMENT = 71

Examples:

I. The following program will perform the following tasks:
Task |:Assign two positive integer numbers to variables.
Task 2: If the number is even, add | to the number.

Task 3:If the number is odd, subtract | from the number.

Program
PSEUDOCODE INSTRUCTIONS X Y
X:=123 23
Y =44 23 44

IF 2%(X+2) = X THEN

BEGIN

22 44
X=X+

END

ELSE

X=X-1

END

IF 2*(Y+2) =Y THEN
BEGIN 22 45

Y: =Y+ |

END
ELSE
Y:=Y-|

END




72 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2. The following program will perform the following tasks:
Task |:Assign two numbers.

Task 2: Find the smaller of the two numbers.

Program
PSEUDOCODE INSTRUCTIONS X Y SMALLEST
X:=723 723
Y := 54 723 54
IF X <YTHEN 723 54
BEGIN 723 54
SMALLEST := X 723 54
END 723 54
ELSE 723 54
BEGIN 723 54
SMALLEST : =Y 723 54 54
END 723 54 54
PROJECT

The bubble sort algorithm

Perhaps the most important application of computers is the ability to sort data. Data is either
sorted in ascending or descending order. For the following four numbers, we will state the
tasks that show how the bubble sort algorithm is applied using the if-then statement to move
the highest remaining numbers to the right.

List of numbers (unsorted)



THE IF-THEN CONDITIONAL STATEMENT = 73

X2

X3

X4

Task |: Move the highest number to variable X4.

Task 2: Move the next-highest number to variable X3.
Task 3: Move the next-highest number to variable X2.

Write a program using the bubble sort tasks to sort the numbers below in ascending order.

Xl X2 X3 X4

23 17 3 I




LHAPTER SIX

THE WHILE CONDITIONAL STATEMENT




76 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

So far in our programs, we have not had the ability to perform repetitive operations.This chap-
ter will define the WHILE statement, which will allow us to make such repetitive operations.

6.1 THEWHILE STATEMENT
Definition of the WHILE statement:
The form of the while statement is:

WHILE conditional statement

BEGIN

statements

END

where the statements enclosed in the BEGIN-END are repeated as long as the conditional
expression is true.

If the conditional statement is false, then the statement following the END will be executed.

Examples:
I. The following is an algorithm that will compute the sum of the numbers
| to R.
Algorithm
PSEUDOCODE INSTRUCTIONS EXPLANATION
N:=1 N<= |
SUM:=0 SUM <=0
WHILE N =R
BEGIN

SUM:=SUM + N

SUM & SUM + N

N:=N+ I

N<=N+I

END




THE WHILE CONDITIONAL STATEMENT = 77

Program

The following program will compute the sum of the numbers | to 5.

PSEUDOCODE CYCLE OF
INSTRUCTIONS INSTRUCTIONS SUM N
N:=1I N:=1I 1
SUM:=0 SUM =0 0 I
WHILE N <=5 WHILE N <=5 0 |
BEGIN BEGIN 0 |

SUM:=SUM + N SUM:=SUM + N | |

N:=N+ | N:=N+ | I 2

SUM:=SUM + N 3 2

N:=N+I 3 3

SUM:=SUM + N 6 3

=N+ | 6 4

SUM + N 10 4

N+ | 10 5

SUM + N 15 5

N+ | 15 6

END END 15 6

2. The following algorithm will sum all the proper divisors of a positive
integer number

N > |.A proper divisor d of an integer number N is a number where | <
d <N and

N MOD d = 0.To find all the proper divisors, we only need to check all
values of d = N+2



78 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

PSEUDOCODE INSTRUCTIONS EXPLANATION

SUM:=0

D:=2 A DIVISOR

WHILE D <= N + 2

BEGIN

IFNMODD=0 CHECKTO SEE IF D DIVIDES N

BEGIN

SUM:=SUM + D IF D DIVIDES NADD D TO SUM

END

D:=D+ |

END

Program

The following program will find and add the sum of all proper divisors of 8.

PSEUDOCODE CYCLE OF
INSTRUCTIONS INSTRUCTIONS N SUM D
N:= 18 N:=18 18
SUM:=0 SUM =0 18 0
D:=2 D:=2 18 0 2
WHILE D <= N + 2 WHILED <= N + 2 18 0 2
BEGIN BEGIN 18 0 2




THE WHILE CONDITIONAL STATEMENT = 73

IFNMODD=0 IFNMODD =0 18 0 2
BEGIN BEGIN 18 0 2
SUM:=SUM+D SUM:=SUM + D 18 2 2
END END 18 2 2
D:=D+ 1 D:=D+ I 18 2 3
IFNMOD D=0 18 2 3

BEGIN 18 2 3

SUM:=SUM + D 18 5 3

END 18 5 3

D=D+1 18 5 4

IFNMODD =0 18 5 4

BEGIN 18 5 4

SUM = SUM + D 18 5 4

END 18 5 4

D:=D+ I 18 5 5

IFNMODD=0 18 5 5

BEGIN 18 5 5

SUM:=SUM + D 18 5 5

END 18 5 5

D=D+1 18 5 6

IFNMODD =0 18 5 6

BEGIN 18 5 6




80 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

SUM = SUM + D 18 11 6
END 18 I 6
D:=D+ I 18 I 7
IFNMODD=0 18 Il 7
BEGIN 18 I 7
SUM:=SUM + D 18 I 7
END 18 I 7
D=D+1 18 I 8
IFNMODD =0 18 I 8
BEGIN 18 I 8
SUM:=SUM + D 18 I 8
END 18 I 8
D:=D+I 18 I 9
IFNMOD D=0 18 Il 9
BEGIN 18 I 9
SUM:=SUM + D 18 20 9
END 18 20 9
D:=D+1 18 20 10
END END 18 20 10

3. Length of numbers:

Definition of the length of a number:

The length of a number is the number of digits that define the number.




THE WHILE CONDITIONAL STATEMENT = &I

Example:

2654 is of length 4.

Algorithm
The following algorithm computes the length of any positive integer.
PSEUDOCODE INSTRUCTIONS EXPLANATION
COUNT =0 WILL COUNT # OF DIGITS
WHILE N <> 0 N IS THE POSITIVE INTEGER
BEGIN
COUNT := COUNT + | WILL COUNT # OF DIGITS
N:=N=10 REDUCES THE LENGTH OF N
END
Program

The following program will compute the length of the number 431.

CYCLE OF
PSEUDOCODE INSTRUCTIONS N COUNT
N: =431 N := 43| 431
COUNT :=0 COUNT =0 431 0
WHILE N <> 0 WHILE N <>0 431 0
BEGIN BEGIN 431 0
COUNT := COUNT + | I COUNT := COUNT + | I 431 I




82 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

N:=N=10 N:=N=10 43 I
COUNT := COUNT + | 43 2
N:=N=10 4 2
COUNT := COUNT + | 4 3
N:=N=10 0 3
END END 0 3
4. Adding digits
Algorithm
The following algorithm will sum the digits of an integeraa ...a;:a +a_ +... +a,
PSEUDOCODE INSTRUCTIONS EXPLANATION

SUM:=0 USED TO ADD THE DIGITS
WHILE N <>0
BEGIN
R:=NMOD 10 R«a

k

SUM:=SUM +R

SUM«a +a  +..+a

N := N-R

NUMBER < a_..a

0

N:=N=10

END




THE WHILE CONDITIONAL STATEMENT = B3

Program

The following program will add the digits of the number 579.

PSEUDOCODE CYCLE OF
INSTRUCTIONS INSTRUCTIONS N R | SUM
N := 579 N := 579 579
SUM:=0 SUM:=0 579 0
WHILE N <>0 WHILE N <>0 579 0
BEGIN BEGIN 579 0
R:=N MODIO R:= N MOD 10 579 9 0
SUM:=SUM +R SUM :=SUM + R 579 9 9
N := N-R 570 9 9
N:=N-=+10 N:=N-=+10 57 9 9
R:=N MODIO 57 7 9
SUM:=SUM +R 57 7 16
50 7 16
N:=N=10 5 7 16
R: =N MODIO 5 5 16
SUM:=SUM + R 5 5 21
0 5 21
END 0 5 21




84 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

Write an algorithm that performs the following tasks:
Task |: Find the proper divisors of a positive integer N.
Task 2: Sum the proper divisors.

Write an algorithm that will multiply all the proper divisors of a posi-
tive integer number N > 1.

A factorial number, written as N, is defined as N! = N(N-1)(N-2) ...
(2)(1), where N is a positive integer > 1.

Write a program that will perform the following tasks:
Task |: Enter a positive integer number N > 1.
Task 2: Compute N!.

For the following program, what is the final value assigned to S?

K:=2

S=0
WHILE K < 10
BEGIN

S =S+ 2¥K + |
K:=K+ I
END

A positive integer greater than | is prime if it has no proper divisors.
Write a program that will find all prime numbers less than 25.

. Find the final value R computed in the following program:

K:=0

R :=2258-K*55
WHILER >0
BEGIN

K:=K +I



THE WHILE CONDITIONAL STATEMENT = 83

R :=2258 -K*55
END
R:=R+55

7. For the following program, what is the final value X?

K:=1
X:=2
WHILE K <=6
BEGIN
X:=X+3
K:=K+ 1|
END

8. For the following program, what is the final value X?
K:=1
X:=2
WHILE K <=6
BEGIN
X :=X*3
K:=K+ |

END

PROJECT

I. A polynomial is defined as P (x) = a x"+ a_
X is any number.

X"+ +ax +a where

One way of evaluating P(x) without using exponents is to write

P(X)=(..((a,x*ta, _,)x+a )x+a ,)x+..+a)x+a



86 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:
P3(X) = ((33X + az)x + aI)X + ao
Pé(x) = (((((aéx + as)x + a4)x + aa)x + az)x + al)x +a,

Write an algorithm that will perform P (x) using the evaluation of P(x) without using expo-
nents with the following restrictions:

a are integersand 0 <a < 9.



LHAPTER SEVEN

COMPUTING NUMBER BASIS
WITH ALGORITHMS




88 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

This chapter will show how to write algorithms and programs that will convert numbers from
one base to another. The methods used are based on the conversion formulas thathave been
developed in several of the previous chapters.

7.1 WRITING A PROGRAMAND ALGORITHMTO

CONVERT NUMBERS INTHE BASEB < I0TOTHE
BASE 10

In chapter 2 we saw that to convert numbers in any base b to its corresponding number in
the base 10, we use the following formula:

N,=aa ..aa=>ab"+a b™'+.. +ab+a
n n-l 170 n n-1 | 0

Example:
N, = 4671 => 4%83 + 6*82 + 78 + | = 2048 + 384 + 56 + | = 2489

Program

The following program will convert the number 4671 to the base |0.

CYCLE OF
INSTRUCTIONS INSTRUCTIONS N8 NIO
N8 := 4671 N8 := 4671 4671
P:=1 P:=1 4671
NI0O:=0 NIO:=0 4671 0
WHILE N8 <> 0 WHILE N8 <> 0 4671 0
BEGIN BEGIN 4671 0
R := N8 MOD I0 R := N8 MOD I0 4671 0
N8 := N8-R N8 := N8-R 4670 0
N8:= N8 + 10 N8:= N8 + |0 467 0




COMPUTING NUMBER BASIS WITH ALGORITHMS = 83

NI10:=NIO0 + R*P NI10:=NIO + R* P 467 | I |
P := 8*P P := 8*P 467 I I 8
R := N8 MOD I0 467 I 7 8
N8 := N8-R 460 I 7 8
N8:= N8 + |0 46 I 7 8
NI10 := NI0 + R*P 46 57 7 8
P .= 8*P 46 57 7 64
R := N8 MOD I0 46 57 6 64
N8:= N8—R 40 57 6 64
N8:= N8 + 10 4 57 6 64
NI10 := NI0 + R*P 4 441 6 64
P := 8*P 4 441 6 512
R := N8 MOD I0 4 441 4 512
N8:= N8—R 0 441 4 512
N8:= N8 + 10 0 441 4 512
NI10 := NI0 + R*P 0 2489 4 512
P .= 8*P 0 2489 4 4096
END END 0 2489 4 4096




40 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

The following algorithm will convert a number in the base b < 10 to the base 10.

INSTRUCTIONS

P:=1

NIO:=0

WHILE N8 <> 0

BEGIN

R:=N8 MOD I0

N8 := N8 —R

N8:= N8 + |0

NI10 := NI0 + R*P

P := 8*P

END

Exercise:

I. Write a program that will convert the number 231, to the base 10 and
complete a table as above.

7.2 WRITING ANALGORITHMTO CONVERTA
NUMBER INTHE BASE 10TO ITS CORRESPOND-
ING NUMBER INTHE BASEB < 10

Example:

The following method will convert the number 523 to the base 8:
a,= 523 mod 8 =3

523 + 8 =65



COMPUTING NUMBER BASIS WITH ALGORITHMS = 81

a,=65mod 8=
65+8=28
a,=8mod8=0
8+8=1
a,= | mod 8=
1 +8=0

523 - 1013,

Algorithm

The following algorithm will convert any positive integer to any number in the base b < 10.

INSTRUCTIONS

EXPLANATION

K:=1

SUM:=0

WHILE N <> 0

BEGIN

A := N MOD BASE

THE REMAINDER WHICH ISTO BE ADDED

SUM := SUM + A*K ab"+a b'..+ab+a
N:=N=+=B B is the base
K := 10*K

END




42 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Program:

The following program will convert the number 523 to the base 8.

CYCLE OF
INSTRUCTIONS INSTRUCTIONS NIO | A N8 K
NI10 := 523 NI10 := 523 523
K:=1 K:=1 523 I
N8:=0 N8 :=0 523 0 I
WHILE N10 <> 0 WHILE N10 <> 0 523 0 I
BEGIN BEGIN 523 0 I
A :=NI0OMOD 8 A :=NI0MOD 8 523 3 0 I
N8 := N8 + A*K N8 := N8 + A*K 523 3 3 I
NIO:=NIO =8 NIO:=NIO =8 65 3 3 I
K:=10*K K:=10*K 65 3 3 10
A:=NI0MOD 8 65 I 3 10
N8 := N8 + A*K 65 I 13 10
NIO:=NIO =8 8 I 13 10
K:=10*K 8 I 13 100
A :=NI10MOD 8 8 0 13 100
N8 := N8 + A*K 8 0 13 100
NIO:=NIO =+ 8 | 0 13 100

K:= 10*K I 0 13 1000




COMPUTING NUMBER BASIS WITH ALGORITHMS = 83

A :=NI0OMOD 8 | I 13 1000

N8 := N8 + A*K | I 1013 1000

NI10:=NI0+8 0 I 1013 1000

K:= 10*K 0 I 1013 10000

END END 0 I 1013 10000
Exercises:

I. Write a program and complete the table that converts the decimal
number 25 to base 2.

2. Write a program and complete the table that will print the first 100
numbers in the base 8.

PROJECT

Write a program that will convert the number 23, to the base 5.



LHAPTER EIGHT

RINGS AND MODULAR ARITHMETIC




46 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

Modular arithmetic plays a major role when doing arithmetic in assembly language.We will
see in the next chapter that the number systems we will be working with are not infinite in
number.To perform arithmetic on finite systems, we need to use modular arithmetic.We start
with the definition of rings.

8.1 RINGS

Definition of a ring:

A ring R is a set of numbers having two binary operations: addition & and multiplication ®
with the following rules:

Rule I: Closure under addition.

Rule 2: Closure under multiplication.
Rule 3: Contains an additive identity.
Rule 4: Contains a multiplicative identity.

Rule 5: For every number n there is an additive inverse ~n.

Definition of the above rules:

Rule I:If n,m are numbers in R,then c =n @ mis in R.

Rule 2:If n, m are numbers in R, then c =n ® mis in R.

Rule 3: Contains a number © in R, where for every number nin R,n @& ©

I
>

Rule 4: Contains a number | in R, where for every number nin R,n ® = n.
Rule 5: For every number n in R, there is a number —n in R where n @ —n = 0.
There are two general type of rings: infinite and finite.
Example of an infinite ring
I. All integers:R ={0, I,-1,2,-2,3,-3,... }

Rule I: Let @ = +.The sum of two integer numbers is an integer
number.

Rule 2: Let ® = *.The product of two integer numbers is an integer
number.



RINGS AND MODULAR ARITHMETIC = 37

Rule 3: Let ® = 0.If n is an integer number, then n + 0 = n.
Rule 4: The number | is an integer and n*| = n.
Rule 5: Assume n is in R . Let ~n = -n.Therefore,n + ~n = 0.
Important: For rings, there is no subtraction operation.
Example of a finite ring
One well-known finite ring is the hourly clocktime:
R={1,2,3,4,56,7,8910,11, 12}
For addition or multiplication, we use the traditional system.
For example: | @5=6,2® 11 =1,360 12=3,50®2=10,6 ® 3 = 6, etc.
Now we show that the R is a ring, by verifying the five rules:
Rule I:If n,m are numbers in R,then c = n @ mis in R.
Rule 2:If n, m are numbers in R,then c =n ® mis in R.
Rule 3: Contains a number ® = |12 where for every number nin R,n @ 12 = n.
Rule 4: Contains a number | where for every number nin R,n ® | = n.
Rule 5: For every number n in R, there is a number ~n where n @ ~n = 2.

To verify this rule, we use the following table, which shows that every number of R has an
additive inverse:n @ ~n = | 2.

Hour I 2 3 4 5 6 7 8 9 10 ] Il 12

~ hour w987 |e]|s|43]2]1]n

hour@~hour | 12| 12| 1212|1212 12|12|12|12]|12]12

Exercises:

I. Assume R is clock time. Simplify the following:
Q) 708d~7D Il d~4
(b) 2Q@(6 & ~10)
(o) ~ 12~ ® (I ~9)]



48 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2. Assume R is military time:R = {I, 2, 3, ..., 24}

@ 7018 (~7621) @ (~23)

(b) 22Q(16 @ (~10))

(c) ~21Q[2®~21) & (Il & ~19)]
3. Show that the set R ={0, I,-1,2,-2,4,-4,6,-6,... £ 2n, ...} is not a ring.
4. Show that the set R ={0, I, 3,-3,5-7,...,£ 2n + |} is not a ring.

5. Assume R ={0, 1,-1,2,-2,3,-3,4, -4, ...}. Define @ and ® are defined
under the following rules:

Rule kn@® m=n+m+2

Rule 2: n® m = n *m

(2) Find ©.

(b) For nin R, find ~ n, the additive inverse of n.

(c) Show R is a ring.

8.2 THE FINITE RING R

For assembly language, the most important set of numbersare R = {0, 1,2, 3, ..., N-1},

where N > |.

We want R to be a ring.To do this, we need to define operations of addition and multiplication:
Definition of addition a @ b: If a and b are members of R, then ab = (a + b)mod N.
Definition of multiplication a®b: If a and b are members of R, then a®b = (a*b)mod N.

Note: The mod operator is defined in chapter 3.

Examples
R,=1{0,1,2,3,4,5,6,7} then
56&7=(5+7)mod(8) = I12mod(8) = 4
5® 6 = (5%6)mod(8) = 30mod(8) = 6

2@ 5=(2+5)mod(8) = 7mod(8) =7



RINGS AND MODULAR ARITHMETIC = 33

(6®7)®6=[(42)mod(8)] ®6=2@6=8mod8=0
R,={000,001,010,011,100, IOI,110, 111}
(101 + 0l I)mod 1000 = (1000)mod 1000 = 0
Exercises:
I. For R;={0, 1,2, 3, 4}, simplify:
(@) 4®4
(b) [(42) R4 4] X3
(c) 334
2. For R,={0, I, 2, ..., 7}, verify if the following are true:
(@ 6®(7®5)=(6®7) & (6®5)
(b) (4®3) ®7 = 4® (3Q7)
(c) 4d3)BD7=400(3®7)

3. For the following finite rings, find the additive inverse of each number

in the ring.
@ Ry,
n 0 | 2 3 4 5 6 7 8 9
~n
(b) R,
n 0 |
~n
(c) R,

~n




100 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(d) Ry
n 0 | 2 3 4 5 6 7 8 9 o1 {12113 147]15
~n

(e) RHex
n 0 I 2 3 4 5 6 7 8 9| A|B|C|D]|E F
~n

4. For R = {0, I, 2, ..., N=I},what is the additive identity? What is the
multiplicative identity?

8.3 SUBTRACTION FORR

How do we subtract two numbers in R? We accomplish this using the following definition:

Definition of subtraction a—b for a and b in R:
a © b = (a + ~b)mod(N), where
a and ~b are values in the ring R = {0, I, 2, ..., N-I}

Examples:

Assume ring R, = {0, 1,2, 3,4, 5, 6,7}, then

6 ©3=(6+~3)mod(8) = (6 + 5)mod(8) = || mod(8) =3

507 = (5 +~7)mod(8) = (5 + I)mod(8) = 6 mod(8) = 6

~4 6 3 = (~4 + ~3)mod(8) = (4 + 5) mod(8) = 9 mod(8) = |

Exercises:

I. Assume a byte ring. If n < 256, and ~n = n, find all solutions.



RINGS AND MODULAR ARITHMETIC = 101

2. Are the following true or false for numbers in R ? Show examples of
each.

(@) ~~a=a?
(b) ~a~b)=b~a

() ~a+~b=~(a+b)

8.4 RINGS IN DIFFERENT BASES

So far we have built our finite rings in the decimal number system.We will now define binary
and hexadecimal rings, which play an important role in the assembly language.

Definition of a binary finite ring:
Assume we are in a binary number system.
We define R,={0, I, 10, ', 100, ...,N }
Examples
I. R,={000,001,010,011, 100, 101, 110, I'l'l}

2. R, = {0000, 0001, 0OIO, OOII, 0100, OlOI, 0110, OI11, 1000, 1001,
(010,101 1,1100,1101,1110, 1111}

Definition of a hexadecimal finite ring:
Assume we are in a hexadecimal number system.We define
R,=1{0,1,2,3,4,56,7,89,AB,C,DEFIOII, ... N}
Examples:
I. R,={0,1,2,3,4,56,7,8,9,A,B,C,D,E,F}

2. R,={0,1,2,3,4,56,7,8,9,A,B,C,D,E,F 10,11, 12,13, 14,15, 16, 17,
18,19, 1A, 1B, IC, ID, IE, IF}

Exercises:
I. For the finite ring R ;= {0, 1,2, 3,4,5,6,7,8,9,A,B, C, D, E, F}, find:
(a) 98
(b) 5®B



102 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2. For the finite ring R, = {00000000, 00000001, ..., I I I 11111}, find:
(a) 10010110 @ 01010111
(b) 11010111 © 10101010
(c) 11010111®10101010

Modular arithmetic in the base b
As in the decimal number system, we define
r,=a,mod(n,) = where
a,=q *n +r,
and
r,<n,

To easily perform such modular arithmetic, we will use the following results:

r,= (a)mod n <=>r = (a, )modn
Similarly, we have
a, ®c = (a+c)modn <=>(a,+c Jmodn,

a, ®c, = (3, *c,)mod n, <=> (a,;* ¢, )mod n
Examples:
I. Octal numbers: {0, 1,2,3,4,5,6,7,10, 11, 12,13, 14,15, 16, 17,20, ...}
(@) 762,mod (52,) <=> 498 mod (42 ) = 36  <=> 44,
Therefore, 762, mod (52,) = 44,

(b) (771,+ 236,) mod (106,) <=> (505, + 158, )mod (70,)) = (663,,)
mod (70,)) = 33,,<=> 41,

Therefore, (771,+ 236,) mod (106,) = 41,

(c) (771,%*236,) mod (106,) <=> (505, *158, )mod (70,) = (79790 ,)
mod (70 ) = 60, <=> 74,

Therefore, (77|8*2368) mod (|06a) = 748



RINGS AND MODULAR ARITHMETIC = 103

2. Binary numbers:
(@) 100110, mod (1101,) <=> 38 mod (13 ) =12 <=> 1100,

Therefore, 100110, mod (1101,) = 1100,

(b) (110111, + 11011)) mod (I111) <=> (55, + 27 )mod (15,)
(82,,) mod (15,) =7,,<=> 111,

Therefore, (110111,+ 11011,) mod (I111,) =111,

() (110111, *11011)) mod (I111)) <=> (55, %* 27, )mod (I5,)
(1485 ) mod (I5,) =0, <=>0,

Therefore, (I1O111,*11011,) mod (I111,) =0
3. Hexadecimal numbers:
(@) 9A23F  mod (AD,,) <=> 631359, mod (173,) = 82 <=>52
Therefore, 9A23F mod (AD ) = 52,

(b) (AC230IF +27DDI ) mod (AD,,) <=> (180498463, + 163281 )
mod (173,,) = (180661744 ) mod (173,) 93,,<=> 5D,

Therefore, (AC230IF ,+ 27DD1 ) mod (AD,,) = 5D,,

(c) (AC230IF *27DDI ) mod (AD,) <=> (180498463, *163281 )
mod (173,,) = (9471969537103, ) mod (173,) = 135 ,<=> 87,

Therefore, (AC230IF *27DDI ) mod (AD,,) = 87 ,
Exercises:
I. Assume a byte ring.If a @ b = 0,does b = ~a and a = ~b?
2. Simplify the following:
(@) 251, mod(301F))
(b) (235432 + 251,)mod(301F,)
(c) (235432% 251,)mod(301F))

The additive inverse of a number

Recall the definition of an additive inverse:



104 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Definition of an additive inverse:
Assume a is a number in a ring. The additive inverse is a number
~ a in the ring where ~a + a = 0.
Example:
I. Assume we have the following bytering:
R,=1{0,1,2,3,4,5,6,7}
Ifa=5then~a=3
since

(55 *+3;)mod 8, =8, mod8,=0

8.5 THE ADDITIVE INVERSE OF NUMBERS FORTHE
RINGSR ={0...0,0... 1,0...2,...,B B, ..., B}

Definition of B,8; ..., B.:
The number is a positive integer f B, ...p_where the digits are all equal and , = b-1.
Examples

I. R,={0000,0001,0002,0003, 0004, ..., 9999}

2. R,={0000,0001,00010,0011,0100, ..., I'111}

3. R;={000, 001, 002,003,004, ..., 777}

4. R,,={00,01,02,03,04, ..., FF}

For these types of rings, we can easily compute the additive inverse of a number by taking
the complement of a number. The following is the definition of a complement of a number:

Definition of a complement of a number a” = a,a,a, ...a " in R:
n

LetR={0...0,0...1,0...2,...,ppp ... p}. The complement of a number a =aa,,...a_in

I S ’

H ! —
Risa’=aa,a,”... a_
r—

where a,” = f—a,

The following tables give the digit complements of important number systems for the assem-
bly language.



RINGS AND MODULAR ARITHMETIC = 103

Binary
ak
ak’
a +a/
Decimal
a, 6 7 8 9
a’ 3 2 | 0
a + ak’ 9 9 9 9
Octal
a, 5 6 7
a/ 2 | 0
a +a’ 7 7 7

Hexadecimal




106 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:
I. R,={00,01,02,03,..., 99}
25'=74
2. R,=1{00,01,02,03,...,77}
42 '=35
3. R,,={000,001,002,003,..., FFF}
0C4’=F3B
4. R, ={000,001,010,011,100,101,110,1'11}
101’=010
The following rule, can be useful to compute the inverse of a number:

Rule: ~a=a " "+ |

Examples:
I. R,={000000, 000001, ..., [T 1111}
a=10010l,
a’=0Ill0l0,
~100101,=011010,+ 1=011011,
a @~a = (100101 + 011010 + I) mod (1000000) = (11111l + I)mod

(1000000) = (1000000)mod (1000000) = 0
2. R,,={00,01,02,03, ..., FF}
a=9C
9C '=63
~9C =63+ 1 =64
9CP 64 = (9C + 63 + I)mod 100 = (FF+ I)mod 100 =0

Question: Why doesn’t the assembly language allow us to do normal subtraction? It is not
the assembly language that prevents this, it is the way the computer circuitry is designed. To
allow subtraction would require doubling the circuitry. Since subtraction can be accomplished
by adding the additive inverse, the design of computers is simpler and faster. Also, since only
binary numbers are used to represent numbers, the complement of a binary number is simply



RINGS AND MODULAR ARITHMETIC = 107

changing the Os to Is and the |s to Os. Therefore, the additive inverse of a binary number is
the complement plus |.

Exercises:

I. Assume a word ring. For each of the following binary numbers, find
their additive inverses.

(2) looli1oo0l10 (b) 11ol10l1 (c) 1olol0l10

2. For the octal ring R,= {0, 1, 2, 3,4,5,6,7, 10, ..., 77},compute the
following:
(a) 43656 (b) 55655 (c) ~10656 (d) ~43-656

3. Assume we have the hexadecimal ring: R|6 ={0,1,2,3,4,56,7,8,9,A,
B,C,D,EF 10, ..., FF}. Find the following:

@) ~AC  (b) A99~55 (c) ~I0O5E  (d) (~10)O(~5E)

Modular arithmetic for ringsR, ={0...0,0 ... 1,0... 2,...,
B,B,... B,},B,= b-I
In this section, we will study the modular arithmetic a, mod(BB,... p_+ I).
First observe that ,... B+ | = 10,"
Examples:

I. 77,+ 1 =100, = 10, ?

2. FFFFF  + 1 =100000 ,=10,°

3. LEELEELL, + 1 =100000000, = 10, ®
Therefore, for R, the following examples will show how to evaluate

a, mod(BpB,... B, + 1) = a, mod(10,").
Examples:

I. 253, mod(77 + ) = 253, mod(10,%) = 253, mod(100,)

Solution:

253, = 2¥100, + 53,



108 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8.6

Therefore,
253, mod(77,+ 1) = 53,
2. AC23D,, mod(FFF + 1) = AC23D,, mod(1000 ,)
Solution:
AC23D,,=AC  *1000 + 23D,
Therefore,
AC23D, mod(FFF + 1) = 23D ,
3. 111001101, mod(l111,+ 1) = 111000101, mod(10000,)
Solution:
[11001101,=11100,*%10000,+ 1101,
Therefore, 111001101, mod(I111,+ 1) = 1101,
From these examples, the following formula evolves:

(a2, 2,,-23), = (a2

nn-1"n2"" non-l°°

., )10+ (aa,  ...a,a),

Therefore, (a,a_,a_,...a,a), mod(10¥) = (aa_, ...a 23y,

non-1"n2°""

SPECIAL BINARY RINGS FOR ASSEMBLY
LANGUAGE

In assembly language we will need to be concerned about following three special binary rings,
which will be used throughout the assembly language.

THE BYTE THE WORD
RING FING THE DWORD
(8 bits) (16 bits) (32 bits)
00000000 0000000000000000 00000000000000000000000000000000
00000001 0000000000000001 00000000000000000000000000000001
00000010 0000000000000010 00000000000000000000000000000010
0000001 1 000000000000001 | 0000000000000000000000000000001 1




RINGS AND MODULAR ARITHMETIC = 103

00000100 0000000000000100 00000000000000000000000000000100
00000101 0000000000000101 00000000000000000000000000000101
00000110 0000000000000110 000000000000000000000000000001 10
00000111 00000000000001 11 000000000000000000000000000001 11
00001000 0000000000001000 00000000000000000000000000001000

To better understand these three rings, we will now study them as equivalent rings in the
base 10.

THE BYTE RING THE WORD RING THE DWORD
(8 bits) (16 bits) (32 bits)

0 0 0

| | |

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9
255 65,535 4,294,967,295




110 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises

I. Convert the above each of the binary table to hexadecimal.

2. Assume we have a binary number n,=a a,a,...a = | Il ... |, consisting
of n | bits.

Show n,=> N = 2|
Hint: Show (2™'+ 22+ 23+ ... 2 + 1)(2-1) = 2.
3. Using exercise 2, show the following:
(a) The largest decimal number in the byte ring is 255.
(b) The largest decimal number in the word ring is 65,535.

(c) The largest decimal number in the dword ring is 4,294,967,295.

Modular arithmetic for the byte ring (in decimal)

The modulus formula is r = m mod (256).

Examples:
I. 50254 = (5 + 254) mod(256) = 259 mod(256) = 3
2. 164®21 = (164*21)mod(256) = 5,442,444 mod(256) = 140

100 ©253 = (100-253)mod(256) = -153 mod(256) = 103 mod(256) = 103

Exercises
I. Compute:
(2) 122122 (c) 175®222Q13
(b) 162®31 (d) (1756222) ®13

2. Find the additive inverse for the following:

@) 214 (b) 0 (c) 128

Modular arithmetic for the word ring (in decimal)

The modulus formula is r = m mod (65,536).



RINGS AND MODULAR ARITHMETIC = {1l

I. 5254 = (5 + 254) mod(65,536) = 259 mod(65,536) = 259

2. 23,641®500 = (23,641*500) mod(65,536) = 11,820,500 mod(65,536)
= 24,020

Exercises:

I. Find the additive inverse for the following:
(2) 214 (b) 0 (c) 60000
2. Compute:

@) 1220122 (b) 162®31 (c) 175®222®13 (d) (1756222) @13

Modular arithmetic for the dword ring (in decimal)
The modulus formula is r = m mod (4,294,967,296).

I. 3,000,000,0005 4,254,256,111 = (7,254,256,1 1 1) mod(4,294,967,296)
=2,959,288,815

2. 2,323,641®3,200,241,001 = (2,323,641®3,200,241,001) mod(4,294,
967,296) = 465,288,199,804,641mod(4,294,967,296) = 1,507,727,073

Exercises:
I. Find the additive inverse for the following:
(@) 214 (b) 0 (c) 60000
2. Compute:
() 127,567,22202,123,567,222 (b) 127,567,222 ® 2,123,567,222
(c) 175®222®13,000 (d) (1756222) ®I13
3. Convert the decimal number ~ 202 to a binary number in a

(2) byte ring (b) word ring (c) dword ring

8.7 ORDERED RELATIONS OF RINGS

Definition of an ordered relationship of a ring:



112 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Assume we have the following ring R, = {0, I, 2, ..., N-1} containing N numbers. A set of
ordered pairs of these numbers is defined as {(a,b)}, where a and b are numbers in R and the
order is defined by some given rule. Such a set of ordered pairs of numbers is defined as an
ordered relationship of the ring R .

Examples:

R=1{0,1,2,3,4}

A natural set of ordered pairs

Definition: A natural set of ordered pairs is where the numbers (a, b) are defined in their order
of magnitude: A natural set of ordered pairs for ring R, would be

{(0,0),(0,1),(0,2),(0,3), (0, 4), (I, 1), (1,2), (1, 3), (1,4), (2, 2), (2, 3), (2,4), (3, 3), (3. 4), (4, 4)}.

Note: In this example, the ordered pair is defined as (a, b), where b is greater than a or b is
equal to a.

For all ordered pairs of this type, we will use the following symbols:
a equals to b:a = b, where
b is greater than a or a is less than b:a <b

These symbols will be used to describe the ordered pair relationships of the number in the
ring:

The pair (a, a) will be written as a = a.
If a # b, the pair (a, b) will be written as a< b.

For example, the pair (2, 2) will be written as 2 = 2, but the pair (3, 4) will be written as
3 <4.Therefore,we have 0 < | <2 <3 <4

Other sets of ordered pairs
The following is another example of a set of ordered pairs of the ring R:
{(4.0),(4.1),(4.2),(4.3),(4.4),3,0),3,1).(3,2),(3,3),(2,0), (2, 1), (2,2), (1, 0), (1, 1), (0, 0)}.
Using our special symbols

=, <

we will still have (a, b) where a = a,and a < b where a # b.



RINGS AND MODULAR ARITHMETIC = 113

Therefore, for our ordered pair the following will hold true:

4<0,4<1,4<2,4<3,4=43<0,3<1,3<2,3=3,2<0,2<1,2=2,1<0,1<1,]1
=1,0=0.

Laws of ordered relations

For the above special sets of ordered pairs, the following two laws apply:
I. Reflexive law: For each number a in the ring, a = a.
2. Transitive law:If a <band b < c,thena <c.

Exercises:

I. For the ring R = {0, I, 2, 3, 4}, using the special symbols, write out the
relations of the ordered pair:

{(0,0), (1, 1), (1,0),(2,2), (2, 1), (2,0), (3,3), (3,2), (3, 1), (3, 0), (4, 4), (4, 3), (4, 2), (4, 1), (4, 0)}.

2. Show for the ring R = {0, I, 2, 3, 4} that the above two laws hold for
both the natural and the ordered pairs:

{(0,0), (1, 1),(1,0),(2,2), (2, 1), (2,0),(3,3), 3,2), (3, 1), 3, 0), (4, 4), (4. 3), (4, 2), (4, 1), (4,0)}-

8.8 SPECIAL ORDERING OF RINGS FOR
ASSEMBLY LANGUAGE

In assembly language, we will need to be concerned about following three special binary rings:
bytes, words, and dwords. For each of these rings, the assembly language will recognize two
types of ordered pairs:

I. The natural order pairs
2. The signed order pairs

For demonstration purposes, all the rings will be represented as decimal integer numbers.

Ordered pairs for the byte ring

In decimal, we will write the byte ringas R ={0, I,2,3,...,255}.



14 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The natural order

The natural order for R is:

{(0,0), (0, 1), ..., (0,255), (I, 1), (1, 2), ..., (1, 255), (2, 2), (2. ,3) ..., (2, 255), ..., (255,
255)},

which can be written as

0 I 2 3 4 5 6 251 252 253 254 255

where the ordered pairs can be seen as a list of numbers in their increasing order:
0<I1<2<3<..<254<255.

For an example, we can write 5 < 214,211 < 244,255 = 255.

The signed order

128 | 129 253 | 254 | 255 0 | 2 3 126 | 127

where the ordered pairs can be seen as a list of numbers in their increasing order:
128<129<130<...<255<0<I<2<..<126<127.

In the following table, the second row gives the “traditional” representation of additive inverse
of the numbers

0,1,2,3,..., 126, 127.

128 129 253 | 254 [ 255 0 I 2 3 126 127

-128 | -127 -3 -2 -1 0 I 2 3 126 127

The next table gives the binary representation.



RINGS AND MODULAR ARITHMETIC = 1

128 129 | ... | 254 | 255 0 I 2 e 126 127

1000 | 1000 | ... | ILIL | 1111 | 0000 | 0000 [ 0000 | --- orrr | olrl

Therefore, sticking to our rules on ordered relationships, we have, for example:
251 = 251,
251 <0
5<122
254 < |5.
Therefore, in decimal we have
128 <129<130<...<254<255<0<1<2<3<..<126<127.
Exercises:
I. Construct a natural order table for the values the word ring.
2. Construct a signed order table for the values of the word ring.
3. Construct a natural order table for the values the dword ring.

4. Construct a signed order table for the values of the dword ring.

PROJECT

We defined a mod(n) as
r = a mod(n) = where
a=q*n+r
andr <n.

Write an algorithm, without using the mod instruction, that given a and n (base 10), it will
calculate r.



LHAPTER NINE

ASSEMBLY LANGUAGE BASICS




118 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

A close examination of our pseudolanguage programs reveals that such programs are made up
of four major components: numbers, arithmetic expressions, variables, and instructions. This
chapter will demonstrate at an elementary level how these four components are defined and
used in the assembly language.Also for this chapter, as well as several subsequent chapters, all
numbers will be integers.

9.1 DATATYPES OF INTEGER BINARY NUMBERS

First we must understand that when programming in assembly language, all numbers are
converted by the assembler into binary numbers of a well-defined data type. Most assemblers
will only recognize the following three data types of binary integer numbers:

I. 8-bit binary numbers
2. |6-it binary numbers
3. 32-bit binary numbers
Special names are given to each of these data types: bytes, words, and dwords.
Definition: A byte is an 8-bit binary number.
Definition: A word is a | 6-bit binary number.
Definition: A dword (i.e., double word) is a 32-bit binary number.

Important: All numbers must be defined as a given data type by the programmer in order
for the assembler to process the program.

Examples:
|. byte (8 bits)
(@)
I T T T I
(b)




ASSEMBLY LANGUAGE BASICS = 113

2. word (16 bits)

(2)
IIOOIEIIOOOOIEOIOIOI
(b)
|00||200|||00|20|0||
3. dword (32 bits)
()
Il00|§|0|0|||0§0||||||o§|o||0|||§00||I
(b)
Iooooiooooooooio oooooooio 00ofl o1 |§o I oI

Exercises

For the examples above of bytes:
I. Find the binary complements.
2. Find the binary additive inverses.

3. Find the equivalent numbers in the hexadecimal base.



120 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.2 OTHER INTEGERS

Besides binary numbers, the assembler recognize three other number bases: decimal, octal,
and hexadecimal. Except for the decimal numbers, all numbers must be followed by the fol-
lowing suffixes.

NUMBER SYSTEM BASE SUFFIX
Hexadecimal 16 h
Binary 2 b
Octal 8 o
Decimal 10 none (or d)
Examples

(@) €239ch  (b) 10110Ib  (c) 237710  (d) 349%h

Exercises
I. For the examples above, convert each to decimal.

2. Which of the following are valid numbers?

@) 2397h (b) 10110110 c) 01101101h

9.3 VARIABLES

As in the pseudo language code, variables are names that will contain numbers.The following
rules are required when defining a variable name in assembly language.

I. The first character of the variable name must begin with either a letter
(A,B,...,Z,a,b,...,z),an underscore (_), or a symbol (@, ?, or $).
The other characters can also be digits.

2. They are not case sensitive.

3. The maximum number of characters in the name is 247.



ASSEMBLY LANGUAGE BASICS = 121

Examples

(2) apple_of my_eye
(b) S23x

(c) $money2

(d) hdachslager@ivc

(e) Xl_or_X2

Variable types

H X

(8 v

(h) $124

(i) _ @yahoo

(i) 22

As in binary numbers, variables are of three data types: byte, word, and dword. We will identify
the data types asfollows:

variable name  byte

variable name  word

variable name dword

Examples:

l.
2.

3.

x byte
Number word

Large_ Number_dword

Exercise:

I. Which of the following are legal variable names?

(2) _apple_of my_eye
(b) S_23x

(c) $money2&

(d) hdachslager@ivc.edu

(e) 1XorXx2



122 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.4 ASSIGNING INTEGERS TO VARIABLES

There are two ways to assign an integer to a variable:
* By initialing the variable when the variable’s data type is defined

* By using the mov assignment instruction

Initialing the variable
To initialize the variable, we use the form:

variable name data type integer

Examples

x byte I1ol1olb

I ollo 1101 I

y byte 5Ah

I 010l 1010 I

z byte 250
I I 1010 I

x word 1o1ol10110Ib

I 0000

o101 o110

1101 I




ASSEMBLY LANGUAGE BASICS = 123

5.
y word ID5Ah
I 0001 110l 0101 1010 I
6.
z word 65500
I Ty Ty 1ol 1100 I
7.
x dword 110101111010101000110101101101b
|00|| otol | 1110 1010 | 1000 ol | orro 1101 I
8.
y dword 2ABCID5Ah
|00|o§ 1oto | 1011 oo | oool ol | oror |0|o|
9.
z dword 4294967216
I 1 e | e | te | rorn iooool

Exercises:

I. Verify that the conversions to binary are correct for examples | to 9
above.

2. For examples | to 9 above, convert each data type to its hexadecimal
value.



124 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Defining a variable without initialization

If you do not wish to initialize the variable, use the symbol ? in place of theinteger.

Examples:

x byte ?

y word ?

z dword ?

Using the mov assignment instruction

The mov instruction is of the general form: mov destination, source where the destination
must be a variable or register (discussed below) and the source can be an integer, variable,
or register.

The mov instruction can be used in five ways:

MOVE INSTRUCTION ORDER OF ASSIGNMENT
mov register |, register2 register| <= register2
mov register, variable register <= variable
mov variable, register variable <= register
mov register, integer register <= integer
mov variable, integer variable <= integer




ASSEMBLY LANGUAGE BASICS = 124

Note: The definition of registers is given in the next section.

Important: You cannot use the mov instruction to move data contained in one variable
directly into another variable: mov variable, variable is not a legal statement.

The following rules apply:
Rule I: The destination and the source cannot both be variables.

Rule 2: If the source is a variable, then both the destination and the source must be
of the same data type.

Rule 3: All hexadecimal numbers must begin with a digit (0 to 9)

Examples:
l.
x byte ?

mov x, |011010b

I 010l 1010 I

z byte ?

mov z, 8Fh

I 1000

y byte ?

mov Yy, 252

1100 I




126 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

x word ?

mov x, 10011001011010b

I oolo

z word ?

o110 ol0l

1010 I

mov z, | D8Fh

I 0001

y byte ?

110l 1000

mov y, 65010

x dword ?

1101 (RN

oolo I

mov x, |0101110101010011001011010b

Ioooo 0010 | 1011 1010 | 1010 o110 | ool |0|o|
8.

z dword ?

mov z, 0ACEF | D8Fh

I |0|o§ 11oo | 1110 it | oool 1ol | 1000 nx I




ASSEMBLY LANGUAGE BASICS = 127

y dword ?

mov Yy, 4194967096

1010 0000 1010 0001 1110 0011

1000 I

Note
I. mov x,A23F h is not valid by rule 3. However mov x, 0A23F h is valid.
2. mov X,y is not valid by Rule I.

Exercises:
I. Verify that the conversions to binary are correct for examples | to 9 above.

2. For examples | to 9 above, convert each data type to its hexadecimal value.

9.5 REGISTERS

Registers are used by the programmer for storing data and performing arithmetic operations.

There are three types of registers that are used for arithmetic operations and storage: 32 bit,
16 bit, and 8 bit.

Important: All three types of registers are rings.

The 32-bit registers
The 32-bit registers that we have are EAX, EBX, ECX, EDX.

These four registers are used to store 32-bit binary numbers.They all can be used to perform
arithmetic operations. However, the recommended convention is to use only the EAX for
arithmetic operations and the other three 32-bit registers for temporary storage. These
registers will be broken into four bytes sections:

32 25 24 17 16 9 8 I

where each byte is divided into two 4 bits.



128 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

l.

mov eax, 5

EAX

I 0000 0000 | o0ooo 0000 | o0ooo 0000 | 0000 0101 I
2.

mov ebx, 10101010010b

EBX

I 0000 0000 | o0ooo 0000 | 0000 o101 | ool 0010 I
3.

mov ecx, 0A93F2CAh

ECX

Ioooo 1010 | 1001 ooll | rir 0010 | 1100 |0|0I
4,

mov edx, 3457711 1o

EDX

|00|| 0100 | orol ortt | orr 0001 | o000l 0001 I

Exercises:

I. Explain why the following instructions will cause an error:

(a) mov eax, D2h



ASSEMBLY LANGUAGE BASICS = 123

(b) x byte ?
mov eax, X
(c) mov eax, 3ABDDI2EIh
2. For exercise |, what can be done so D2h can be stored in EAX?

3. Complete the following table, using only binary numbers in EAX.

ASSEMBLY CODE EAX

mov eax, 2D3Fh

mov eax, 3h

mov eax, 1010101b

mov eax, 434789

mov eax, 4DFAI1101lh

mov eax 267541 lo

4. Complete the following table, using only hexadecimal numbers in EAX.

ASSEMBLY CODE EAX

mov eax, 2D3Fh

mov eax, 3h

mov eax, 1010101b

mov eax, 434789

mov eax, 4DFAI1101lh

mov eax 267541 lo

It is important to realize, as we demonstrated, that only binary numbers are stored in the
variables and registers, irrespective of the number system we are using. However, since binary
numbers are difficult to read, most debuggers for the assembly language will display the



130 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

contents of the registers as well as the variables in the equivalent hexadecimal number system
(base 16). The following table gives the equivalent values between the binary digits and the
hexadecimal digits.

0000 0001 oolo ooll 0100 olol ollo olll 1000 1001
0 I 2 3 4 5 6 7 8 9
1010 01 100 110l 110 [l
A B C D E F

Examples
I. mov edx, 9AB120h
EDX
BASE 2: 0000 | 0000 | 100l | 1010 | IOII [ 0OOI | OOIO | 0000
BASE 16: 0 0 9 A B | 2 0
2. mov ecx, 5953189d
ECX
BASE 2: 0000 [ 0000 f OlOI [ IOIO J 1101 | OIlO | 1010 |OIOI
BASE |6: 0 0 5 A D 6 A 5

Most of our mathematical experiences has been working with numbers in the base 10.
Therefore, if our debugger returns the numbers in our registers as well as variables in
hexadecimal, frequently we will need to translate these numbers into the base 10. How do
we do this? Well, we could use the methods we have learned so far to find the equivalent
hexadecimal numbers in the base 10. However, doing this is not practical. It would be better
to use a calculator that will quickly go from one base to another. Microsoft Windows XP and
Vista provide such a calculator.



ASSEMBLY LANGUAGE BASICS = 131

Examples

I. mov eax, 10001 100b

EAX

BASE 2: | 0000 | 0000 | 0000 | 0000 | 0000 , 0000 | 1000 | 1100

BASE 16: 0|0 OIO 0|0 8|C

BASE 10: 140

2. mov ebx, 0DF3h

EBX

0000 | 0000 , 11O J 1111

BASE|6:0|0 OIO OID F|3

BASE 10: 3571
3. movecx, 0111 01T 1101 1110 1110 1110 1011 0111 b
ECX
BASE 2: |otti ottt oo itio) trioftorr o
----------- I R il e el e el e i

BASE 16: 7|7 DIE EIE B|7

BASE 10: 2,011,098,807

Exercises:

I. Complete the following:

(2) mov eax, 278901



132 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

EAX

BASE 16: -

BASE 10:

(b) mov eax, 3ABCD | 0Fh

EAX

BASE 16:

BASE 10:

(c) mov edx, 27721010

EDX

BASE 16:

BASE 10:

(d) mov eax, 278901

EAX

BASE 16:




ASSEMBLY LANGUAGE BASICS = 133

(e) mov ecx, 3ABCDI0Fh

ECX

L — -+ = = 4
1
1
1

T
}
L}
T D .
}
L}
L

R T ——
1
1
1

BASE 10:

(f) mov edx, 27721010

EDX

BASE 10:

2. What is the largest number:

(2) binary integer of type BYTE?

(b) octal integer of type BYTE?

(c) decimal integer associated with type BYTE?
3. What is the largest:

(2) binary integer of type WORD?

(b) octal integer of type WORD?

(c) decimal integer associated with type WORD?
4. What is the largest:

(2) binary integer of type DWORD!?

(b) octal integer of type DWORD?

(c) decimal integer associated with type DWORD?



134 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The 16-bit registers

The 16-bit registers are AX, BX, CX, and DX. Each of these registers occupies the right-most
part of the corresponding 32-bit registers.

EAX AX
32 25 24 17 16 9 8 |
EBX BX
32 25 24 17 16 9 8 |
ECX cX
32 25 24 17 16 9 8 |
EDX DX
32 25 24 17 16 9 8 |
Example:
INSTRUCTIONS| 32 1 25 |24 i 17 |16} 9 | 8 | 1
mov eax, 3C293567h | 3 c | 2 9 3 5 6 7
mov ax, 9BCh 3 c | 2 9 0 9 B C
mov ax, 56325d 3 c | 2 9 | b c | o F

Note: When working with a |6-bit register, the other bits of the 32-bit register are not affected.



ASSEMBLY LANGUAGE BASICS = 133

The 8-bit registers

The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and DL.AH occupies the left-most bits of
AX, AL occupies the right-most 8 bits of AX, and so on.

EAX AX
32 24 16 8 I
I AH AL I
EBX BX
I BH BL I
ECX CX
I CH CL I
EDX DX
I DH DL I
Examples
INSTRUCTIONS 32 25 24 17 16 9 8 |
mov eax, 7293567h 0 7 2 9 3 5 6 7
mov ax, 9BCh 0 7 2 9 0 9 B C
mov ah, 5 0 7 2 9 0 5 B C
mov al, OEh 0 7 2 9 0 5 0 E
mov al, 251 0 7 2 9 0 5 F B

Note: When working with an 8-bit register, the other bits of the 16-bit and 32-bit registers
are not affected.



136 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Mixing registers

Rule:The assembler will not allow mixing of registers of different data types.The following are
examples of errors in programming:

mov eax, bx
mov cX, eax
mov dx, al
Exercises
I. Complete the following tables using hexadecimal numbers only.

32 25 24 17 16 9 8 |

INSTRUCTIONS

mov eax, 293567h

mov ax, 9BCh

mov ax, 3D32h

mov ax, 5h

mov ax, 3h

mov eax, 1267

mov ax, 3AF4h

mov ah, 27h

mov al, 25




ASSEMBLY LANGUAGE BASICS = 137

INSTRUCTIONS
mov eax, | 12937234

mov ax, 9BCh

mov al, 5

mov ah, OEh

mov al, 2

9.6 TRANSFERRING DATA BETWEEN REGISTERS
AND VARIABLES

Rule:The assembler will not allow mixing of registers and variables of different data types.The
following are examples of errors in programming.

Examples:

.

x word 23
mov eax, X
2.

x byte 23
mov ax, X
3.

y byte 2dh
mov eax, y

The following examples demonstrate how integer data is transferred using the mov
instruction.



136 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

.

x dword 23
mov eax, X
2.

x dword 23
y dword ?
mov ebx, X

mov Y, ebx

3.

x dword 3A7Fh

mov ax, X

4.

x word 3A7Fh
y word ?

mov bx, x

mov Y, bx

Transferring data from one variable to another variable

The above examples show how to transfer the contents of one variable to another variable.

The following algorithm demonstrates x :=y.

ASSEMBLY
PSEUDOCODE AL PSEUDOCODE LANGUAGE CODE
EAX :=Y mov eax, y
X:=Y
X:= EAX mov X, eax




ASSEMBLY LANGUAGE BASICS = 133

The following program will perform the following tasks:
Task |: Store the number 23 in x.
Task 2: Store the number 59 iny.

Task 3: Store the contents of x in y.

AL PSEUDOCODE ASSEMBLY LANGUAGE CODE
X =23 mov x, 23
Y =59 mov y, 59
EAX = X mov eax, x
Y := EAX mov y, eax
Exercises

I. Modify the above program by initializing the values in x and y without
using the mov instruction.

2. Complete the following table.

AL PSEUDOCODE AL CODE X Y EAX EBX
X =23 mov x, 23
Y =59 mov y, 59
EAX := X mov eax, x
EBX :=Y mov ebx, y
X := EBX mov x, ebx
Y = EAX mov y, eax

3. In exercise |, what does the code accomplish?



140 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.7 ASSEMBLY LANGUAGE STATEMENTS

In assembly language there are three basic statements: instructions, directives, and macros.

Definition of instructions

An instruction is translated by the assembler into one or more bytes of object code, which
will be translated into machine language. The general form of an instruction is:

label: (optional) mnemonic operand(s) ; comment (optional)
where mnemonic is an instruction and operands can be numeric value, variable, or register.
Example:
label: mov eax, 23h ;This is an instruction.
There are two kinds of instructions:
I. nonexecutable codes

2. executable codes

Example of a nonexecutable instruction: the comment
Definition of a comment: A comment is any string of characters preceded by a semicolon (;).
The comment is ignored by the assembler.
Example:

mov eax, 2 ; Transfer the number 2 into the register EAX.

The instruction mov eax, 2 will be executed by the assembler, but the string following the
semicolon will be ignored by the assembler.

The label

All instructions can be preceded by a label ending in a colon (:). The rules for the label are
basically the same as variables.



ASSEMBLY LANGUAGE BASICS = 141

Example:

XyZ: mov eax, -4
Later we will see how labels are used in programing.
Definition of a directive:

A directive instructs the assembler to take a certain action.

Variable data type declarations

A variable has to be designated as one of the following types: BYTE, WORD, or DWORD.
Definition of a BYTE: A byte consists of 8 bits.

Definition of a WORD: A word consists of 2 bytes (16 bits).

Definition of a DWORD: A double word (DWORD) consists of 4 bytes (32 bits). The form of
the variable data type declarations is the following:

variable name  data type numeric value assigned or ?

Examples

Num  BYTE 23 ; will define Num as an 8-bit byte and will convert the number 23 to binary
and store it in the variable Num.

Num  WORD ? ; will define Num as a 16-bit word but will not assign a value to Num.

Num DWORD 0ACD35h ; will define Num as a 32-bit dword and will convert
the number OACDES5h to binary and store it in the variable Num.

Note: You may place a label in front of the variable declaration, but the colon (:) is not
allowed.

Exercises:

I. What is the largest integer number in the base 10 that can be store in
a variable of type BYTE?

2. What is the largest integer number in the base 10 that can be store in
a variable of type WORD?

3. What is the largest integer number in the base 10 that can be store in
a variable of type DWORD?



142 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4. What is the largest integer number in the base |6 that can be store in
a variable of type BYTE?

5. What is the largest integer number in the base 16 that can be store in
a variable of type WORD?

6. What is the largest integer number in the base |6 that can be store in
a variable of type DWORD?

7. What is the largest integer number in the base 8 that can be store in a
variable of type BYTE?

8. What is the largest integer number in the base 8 that can be store in a
variable of type WORD?

9. What is the largest integer number in the base 8 that can be store in a
variable of type DWORD?

Exercise:

Assume the above program is run. For the table below, fill in the final values stored.

EAX EBX A B C D E F

9.8 A SAMPLE ASSEMBLY LANGUAGE WRITTEN FOR
MASM (MICROSOFT ASSEMBLER)

The following is a complete assembly language program written for the MASM (Microsoft
Assembler). For instructions on using this assembler, see References.



ASSEMBLY LANGUAGE BASICS = 143

; This program assigns values to registers
; Last update: 2/10/17

.386
.MODEL FLAT
.STACK 4096

.DATA

byte 40
byte 30
dword 10
byte 50
word 20

i B = W o

.CODE ; start of main program code

_start:
)
; code inserted here
)
mov ebx, |5h
mov ecx, 20h
mov eax, d
moyv ax, f
mov ah, e
PUBLIC _start

END ; end of source code

PROJECT

Write an assembly language program that will rearrange numbers so that they are in increas-
ing order, as shown below:

A B C D E
BEFORE 40 30 10 50 20
AFTER 10 20 30 40 50

Do not add any additional variables.



LHAPTER TEN

ARITHMETIC EXPRESSIONS




146 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

Our next step in becoming assembly language programmers is to learn how to create arith-
metic expressions. Those who have studied higher-level programming languages know that
assigning arithmetic expressions to variables generally follows the normal assignment state-
ments. For example, in pseudocode we can write instructions such as X =:2 + 3. However, in
assembly language, it is not possible to directly write such an assignment statement.To be able
to create arithmetic expressions in assembly language, we first study what are unsigned/signed
integer numbers, followed by the arithmetic operations that are available to us.We then learn
how to build arithmetic expressions using these types of numbers as needed.

10.1 RING REGISTERS

In chapter 9 (section 9.6), we saw that there are three important rings in the assembly
language: byte rings, word rings, and dword rings. The three types of registers—EAX (EBX,
ECX, EDX),AX (BX, CX, DX),and AH,AL (BH, BL, CH, CL, DH, DL)—are rings; they conform
to the modular rules of arithmetic. The modular formula is:

r = m mod N where
N = 256, for the byte rings:AH,AL (BH, BL, CH, CL, DH, DL),
N = 65,536, for the word rings:AX (BX, CX, DX),

N = 4,294,967,296 ,for the dword rings: EAX (EBX, ECX, EDX).

Additive inverses

Since the finite rings do not have negative numbers, as we have with ordinary numbers in the
base 10, we need to approach the creation of “negative” numbers in these rings by the follow-
ing reasoning: In the ordinary base 10 number system, negative numbers are additive inverses
of nonnegative numbers, and nonnegative numbers are additive inverses of negative numbers.
Therefore, we can create additive numbers in the rings by associating each number of the ring
with its corresponding additive inverse. To accomplish this, we begin with the definition of
unsigned and signed integers. (See chapter 8 for the definition of additive inverse for a ring and
section 8.8 where we first introduce the concept of unsigned and signed binary integers.)

Unsigned and signed binary integers
We start with an arbitrary ring of binary integer numbers:

R={0...00,0...01,0...10,0 ... Il,....001 ... 1,10...00,10 ... 01,10 ... 10, 10
Ol T



ARITHMETIC EXPRESSIONS = 147

For rings of this type, we have the following definitions:

Definition of an unsigned binary integer number:

An unsigned binary integer number has as its extreme left-most bit the bit number zero (0).
Definition of a signed binary integer:

A signed binary integer number has as its extreme left-most bit the bit number one (I).

We see above that the ring R can be divided into two subsets consisting of those binary
number that are unsigned:

{0...00,0...01,0... 10,0 ... Il,...0ll...1}%
and those that signed:

{10...00,10 ... 01,10 ... 10,10 ... OI1, ..., I1...1}.

The 8-bit ring as unsigned binary and integer numbers

The following table contains the integer numbers of the base 10 and their 8-bit unsigned
binary representation.

NONNEGATIVE INTEGERS UNSIGNED BINARY
BASE 10 REPRESENTATION
0 00 00 00 00
| 00 00 00Ol
2 000000 10
3 000000 I1
4 000001 00
5 000001l Ol
6 000001l IO
7 000001 I1




148 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8 00 00 10 00
9 0000 1001
127 ortriril

Next we need to convert the 8-bit binary numbers to their 8-bit additive inverse numbers.
From chapter 8, we use the following formula:

The additive inverse of aa,a;a,a.aa a, equals

a,’a,a,’a,’a,’a,’a,’"+ |

/7 —
(aa,2;2,2,2,2,a)'+ | =a 'a,aa,aaa’a,

23747576 78
where

A H —
a/=1lifa =0

and

In the following table, unsigned and signed binary numbers are listed so that each of two
columns are additive inverses of each other.

INTEGERS BINARY INTEGERS BINARY
BASE 10 | REPRESENTATION § BASE 10 | REPRESENTATION

0 00 00 00 00 0 00 00 00 00

I 00 00 00 Ol 255 el

2 00 0000 10 254 [riririo

3 000000 11 253 1ol

4 00 0001 00 252 I 1r1noo

5 000001 Ol 251 [1rrionl

6 000001 IO 250 111010




ARITHMETIC EXPRESSIONS = 143

7 000001 I1 249 111100l
8 00 0010 00 248 I 111000
9 0000 100l 247 I1rror il
127 ortritril 129 10 00 00 Ol
128 10 00 00 00 128 10 00 00 00

Note: In the above table, the binary numbers in each of the columns are additive inverses of
each other.

Examples:
I. Convert the binary number representing 5 to its additiveinverse.

Step |:The integer number 5:00000101.

Step 2: The additive inverse of 00000101 equals [1111010 + |
[1rrtort.

2. Convert the binary number representing 3 to its additive inverse.
Step |:The integer number 3: 0000001 |.

Step 2: The additive inverse of 00000011 equals [1111100 + |
[111rol.

The following table gives the representation of the above table as hexadecimal numbers. Most

assemblers will display the binary numbers in registers as their corresponding hexadecimal
values.

INTEGERS | HEXADECIMAL | INTEGERS | HEXADECIMAL
BASE 10 NUMBERS BASE 10 NUMBERS

0 00 0 00

I ol 255 FF




[all = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2 02 254 FE
3 03 253 FD
4 04 252 FC
5 05 251 FB
6 06 250 FA
7 07 249 F9
8 08 248 F8
9 09 247 F7
127 7F 129 8l
128 80 128 80

Note: In the above table, the hexadecimal numbers in each of the columns are additive
inverses of each other.

Exercises:
I. Assuming the following numbers are bytes. Find their additive inverse.
(2) 100101b (b) 2Eh (c) 222d
2. Find the binary representation of the following numbers:

(@) -8lh (b) —1010111b (c) —28h

The 16-bit ring

The following table contains the 16-bit ring divided into columns that are additive inverses
of each other.



ARITHMETIC EXPRESSIONS = faf

INTEGERS BINARY INTEGERS BINARY
BASE 10 | REPRESENTATION | BASE 10 | REPRESENTATION
0 00 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00

| 00 00 00 00 00 00 00 OI 65535 1 T T T O I Y N O

2 00 00 00 00 000000 10 65534 I T T T T I T I I I A )

3 00 00 00 00 00 00 00 11 65533 IErrrrrrrrrrnol

4 00 000000000001 00 65532 1 T T T T I A I I A0 0]

5 00 00 00 00 00 00 01 OI 65531 Irrrrrrrrrrrionl

6 00 00000000000I 10 65530 I T I O I I O B AR O I )

7 00 00 00 00 00 00 OI 11 65529 1 T I I I I Y A N0 D0

8 00 00 00 00 00 00 10 00 65528 IErrrrrrrrtn 1000

9 00 00 00 00 00 00 1001 65527 I T T O I O I O 1 A
32767 (O T I O O Y O 32769 10 00 00 00 00 00 00 OI
32768 10 00 00 00 00 00 00 00 32768 10 00 00 00 00 00 00 00

Note: In the above table, the binary numbers in each of the columns are additive inverses of
each other.

The following table gives the representation of the binary numbers as hexadecimal numbers.

INTEGERS | HEXADECIMAL INTEGERS | HEXADECIMAL
BASE 10 NUMBERS BASE 10 NUMBERS

0 00 00 0 00 00

I 00 0l 65535 FF FF




1a2 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2 00 02 65534 FF FE
3 00 03 65533 FF FD
4 00 04 65532 FF FC
5 00 05 65531 FF FB
6 00 06 65530 FF FA
7 00 07 65529 FF F9
8 00 08 65528 FF F8
9 00 09 65527 FF F7
32767 7F FF 32769 80 0l
32768 80 00 32768 80 00

Note: In the above table, the hexadecimal numbers in each of the columns are additive inverses
of each other.

Exercises
I. Assume the following numbers are words. Find their additive inverse.
(2) 100101b (b) 2Eh (c) 222d
2. Find the binary representation of the following numbers:

(a) -8lh (b) =1010111b () -28h

The 32-bit ring

The following table contains the 32-bit ring divided into columns that are additive inverses
of each other.



ARITHMETIC EXPRESSIONS = 133

INTEGERS BINARY INTEGERS BINARY
BASE 10 | REPRESENTATION ] BASE 10 |REPRESENTATION

32 BITS 32 BITS

0 00—-00 00 00 00 0 00—-00 00 00 00

I 00—-00 00 00 O 4,294,967,295 [l—11r 1l

2 00—-00 00 00 10 4,294,967,294 [1—-11 1110

3 00—-00 00 00 11 4,294,967,293 [1—-11 11110l

4 00—-00 00 OI 00 4,294,967,292 [1—-11 111100

5 00—-00 00 01 Ol 4,294,967,291 [1—11 111011

6 00—-00 0001l 10 4,294,967,290 [1—11 111010

7 00—-00 0001 I1 4,294,967,289 [1—-11 11100l

8 00—-00 00 10 00 4,294,967,288 [1—- 11 11 00 00

9 00—-00 00 10 Ol 4,294,967,287 [1— 11110111

2,147,483,647 Ol—-11 111111 2,147,483,649 10—-00 00 00 O

2,147,483,648 [0—-00 00 00 00 2,147,483,648 [0—-00 00 00 00

Note: In the above table, the binary numbers in each of the columns are additive inverses of

each other.




1a4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following table gives the representation of the binary numbers as hexadecimal numbers.

INTEGERS | HEXADECIMAL INTEGERS HEXADECIMAL
BASE 10 NUMBERS BASE 10 NUMBERS

0 00 00 00 00 0 00 00 00 00
I 00 00 00 Ol 4,294,967,295 FF FF FF FF
2 00 00 00 02 4,294,967,294 FF FF FF FE
3 00 00 00 03 4,294,967,293 FF FF FF FD
4 00 00 00 04 4,294,967,292 FF FF FF FC
5 00 00 00 05 4,294,967,291 FF FF FF FB
6 00 00 00 06 4,294,967,290 FF FF FF FA
7 00 00 00 07 4,294,967,289 FF FF FF F9
8 00 00 00 08 4,294,967,288 FF FF FF F8
9 00 00 00 09 4,294,967,287 FF FF FF F7

2,147,483,647 7F FF FF FF 2,147,483,649 80 00 00 O

2,147,483,648 80 00 00 00 2,147,483,648 80 00 00 00

Note: In the above table, the hexadecimal numbers in each of the columns are additive
inverses of each other.

Exercises:

I. Find the additive inverse of the following numbers in binary as well as
the number system:

(2) 100101b (b) 2E h (c) 222d
2. Find the binary representation of the following numbers:

@) -8lh (b) —1010111b  (c) -28h



ARITHMETIC EXPRESSIONS = 133

10.2 WORKINGWITH MODULAR ARITHMETIC
FORADDITION AND SUBTRACTION

Since all registers and data types in assembly language are restricted to three finite rings: bite
rings, word rings, and dword rings—it is important to understand how modular arithmetic
computes arithmetic expressions.The modular formula is r = m mod N where

Base 10:

N =256, for the byte rings:AH,AL (BH, BL, CH, CL, DH, DL)

N = 65,536, for the word rings: AX (BX, CX, DX)

N = 4,294,967,296  for the dword rings: EAX (EBX, ECX, EDX)
Base 16:

N = 100, for the byte rings:AH,AL (BH, BL, CH, CL, DH, DL)

N = 10000, for the word rings: AX (BX, CX, DX)

N = 100000000 , for the dword rings: EAX (EBX, ECX, EDX)
Exercises:

I. Find N, for byte rings, word rings, and dword rings.

2. Find N, for byte rings, word rings, and dword rings.

Addition on finite rings
Addition on byte rings:

2,,® b= (3, + by) mod 256,

Example
PSEUDOCODE AL PSEUDOCODE y 4 AL
AL :=205d 205
Z :=205d + 1274 AL :=AL + 127d 76
Z:=AL 76 76




[ab = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:
205127 = (205 + 127) mod 256 = (332) mod 256 = 76

a, o b|6= (a|6+ blé) mod |00|6

Example:
PSEUDOCODE AL PSEUDOCODE y 4 AL
AL := 9Dh 9Dh
Z := 9Dh + 8Fh AL := AL + 8Fh 2Ch
Z:=AL 2Ch 2Ch
Solution:

9D, @ 8F, .= (9D, + 8F, ) mod 100,,=> (157 .+ 143 ) mod 256, = 300 mod 256 =
44,=>2C,,

Exercises:
I. Add over a byte ringsN = 11011101, 01001111,
2. Add over a byte ring: N =277, @164,

Addition on word rings:

a, b= (a,,+ b,,) mod 65,536,

Example:
PSEUDOCODE AL PSEUDOCODE y 4 AX
AX:= 505584 50558
Z :=50,558d + 32,456d AX := AX + 32456d 17478
Z :=AX 17478 17478




ARITHMETIC EXPRESSIONS = 157

Solution:
5055832456 = (50558+32456) mod 65,536 = 17478

a,®db,=(a,+b,) mod 10000

Example:
PSEUDOCODE AL PSEUDOCODE y A AX
AX:= EF7Fh EF7Fh
Z := EF7Fh +DDFFh AX := AX+ DDFFh CD7Eh
Z:=AX CD7Eh CD7Eh
Solution:

EF7Fh @DDFFh= (EF7Fh + DDFFh) mod 10000, => (61311 + 56831 ) mod 65536, =>
52606, ,=> CD7Eh

Exercises:
I. Add over a word ringtN = 1100 1111 1101 I'101,&1010 I'110 1001 I111,
2. Add over a word ring: N =157677 @ 177164,

Addition on dword rings:

a,,@®b,,= (a,,+ b,,) mod 4,294,967,296 ,

Example:
PSEUDOCODE AL PSEUDOCODE y 4 EAX
7 = 301321454 + EAX:= 30132145d 30132145d
324567784 EAX := EAX + 32456778d 62588923d

Z := EAX 62588923d 62588923d




[aB = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

30132145, 32456778 = (30132145+32456778) mod 4294967296 = 62588923

Example
PSEUDOCODE AL PSEUDOCODE Z EAX
EAX:= FB9EF7Fh F B9 EF 7Fh
Z := FB9EF7Fh
EAX := EAX + EEDDFFh 10 A8 CD 7Eh
+EEDDFFh

Z:=AX 10A8CD7Eh 10 A8 CD 7Eh

Solution:

Since 10A8CD7E , < 100000000 , it follows that
I0A8CD7E,, mod 100000000 ,= I0A8CD7E,,
Exercises
I. Add over a dword ringgN = 1100 [111 1101 | I0I2®I 111110 1001 [11 l,

2. Add over a dword ring: N =215076755,@ 173757164,

Subtraction on finite rings

Subtraction on byte rings:

Definition of ~n:

Given the number n, ~n is defined as the adaptive inverse of n:
~n = 256-n.
(n + ~n)mod 256 = [n + (256—n)]mod 256.

Definition of subtraction:

2,,0b,,= (3, + ~ bj)mod 256,



ARITHMETIC EXPRESSIONS = 153

Examples:

I. 205 ©15,= (205 + ~I5) mod 256 = [205 + (256-15) Jmod 256 =
(446) mod 256 = 190

2. (3,,0150,,) = (3 + ~150) mod 256 = [3 + (256-150)] mod 256 = [109]
mod 256 = 109

3. 8D,,06E, = (8D + ~6E) mod 100, = [8D + (100 ,~6E) Jmod 100, =
(11F) mod 100, = IF

Solution:

8D, 66E,,=>141, ,© 110, = (141+ ~110) mod 256 = (141 + 146)mod 256 = 287 mod 256
=3I

Exercises:

Assume a byte ring.

Find:
I. ~201,
2. ~EF
3. ~ 277,
4. ~11 110010,

5. (~250,)©252,,
6. (~A7) © (~EE)
7. 772,6 ~1427,
8. ~(11111001,8101010 11,

Assume a word ring.

Find:
9. ~6780,,
10. ~35 ED
1. ~175673,

2. ~10 10 11 11110010,



160 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

13.
4.
5.

(~6550,)©22221
(~A734) © (~EEAD)

110772,© ~12642,

Assume a dword ring.

Find:

20.
21.
22.
23.

. ~99456780
. ~567ED24F
. ~11124767565,

oo,

~[43465756 )© (~45754, )]
(~A734) © (~EEAD)
700772, © (~54533,)
(1111001111 111001,©100001 101010 11))

10.3 ASSEMBLY LANGUAGE ARITHMETIC OPERATIONS
FOR INTEGERS

The following is a list of the important arithmetic operations for integers.

Addition (+)

Definition: Form of the assembly language add instruction: add register, source, where the fol-
lowing rules apply:

Rule I: The integers may be unsigned or signed.

Rule 2: The source can be a register, variable, or numeric value.

Rule 3: The resulting sum will be stored in the register.

Rule 4: Data types for the register and source must always be the same.



ARITHMETIC EXPRESSIONS = 16!

Examples:
.
PSEUDOCODE AL PSEUDOCODE ASSEMBLY CODE
EAX := 2d mov eax, 2d
Z:=2+3
EAX := EAX + 3d add eax, 3d
Z := EAX mov z, eax
2. Complete the table in hexadecimal numbers.
ASSEMBLY CODE EAX AX AH AL X
x dword 2 2h
mov eax, 12345 00 00 : 30 39h 30 39h 30h 3%9h 2h
add eax, x 00 00 : 30 3Bh 30 3Bh 30h 3Bh 2h
3.
ASSEMBLY CODE EAX AX AH AL X
x word |h |
mov ax, Offffh 00 00 : ff ff ff ff ff ff I
add ax, x 00 00 : 00 00 00 00 00 00 I




162 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.
ASSEMBLY CODE EAX AX AH AL X
x byte 2h 2
mov eax, 0 0000 ; 0000 | 0000 00 00 2
mov al, Offh 0000 , 00 ff 00 ff 00 f 2
add al, x 0000 , 000l 00Ol 00 0l 2
5.
ASSEMBLY CODE EAX AX AH AL
mov ah, 200d . 200 200 200
add ah, 150 . 94 94 94
6.
ASSEMBLY CODE EAX AX AH AL X
x byte 2h 2
mov eax, 0 0000 | 0000 00 00 00 00 2
mov ah, Offh 0000 , ff00 ff 00 f 00 2
add ah, x 0000 , Ol 00 01 00 ol 00 2




ARITHMETIC EXPRESSIONS = 163

7.
AL AL
PSEUDOCODE EAX AXIX|IY | W
PSEUDOCODE| CODE
x word ?
— — y dword
Y := 223h Y := 223h Sa3n 223
W :=79223h W :=79223h w dword 223179223
AX:= 2h m°2"hax’ 00 00 00 02/0002( 22379223
X:=2h + 3h AX :=AX + 3h |add ax, 3h| 00 00 00 05 |0005| |[223(79223
X := AX mov, x, ax | 00 00 00 05 [0005| 5 |223 79223
EAX:= W m°‘£veax' 00 07 92 239223 5 22379223
Wi =W +Y EAX := EAX+Y |add eax,y|00 07 94 46|9446| 5 [223| 79223
W := EAX m:;’xw’ 00 07 94 46 |9446| 5 [ 22379446
Exercises:

I. Complete the following tables.

Complete the table with hexadecimal numbers.

ASSEMBLY CODE EAX AX AH AL X

x dword 2

mov eax, 2345

add eax, x




164 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL

x word Ah

mov eax, Offfffh

add ax, x

Complete the table with hexadecimal numbers.

ASSEMBLY CODE EAX AX AH AL

x dword 100

mov eax, 54321

add eax, x

ASSEMBLY CODE EAX AX AH

mov eax, 9fffffffh

add ah, Ih

2. Complete the table below in hexadecimal.

PSEUDO | AL PSEUDOCODE | AL CODE |EAX|AX

x word ?

y dword 223h
w dword 79223h

W =W +Y




ARITHMETIC EXPRESSIONS = 163

X:=2+3

3. Complete the table below in hexadecimal.

PSEUDO | AL PSEUDOCODE | ALCODE (EAX |AX (X |Y|W

x word ?

y dword 223h
w dword 79223h

W =W +Y

X:=2+3

Subtraction (-)

Definition: Form of the subtraction instruction: sub register, source, where the following rules
apply:

Rule I: The integers may be signed or unsigned.

Rule 2: The source can be a register, variable, or numeric value.



166 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Rule 3: The resulting subtraction will be stored in the register.

Rule 4: Data types for the register and source must always be the same.

Examples:

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY CODE
Z:= 2h-3h EAX := 2h mov eax, 2h
EAX := EAX - 3h sub eax, 3h
Z:=EAX mov z, eax
2.
ASSEMBLY CODE EAX AX AH AL X
x dword [0h 10
mov eax, 12345678h 12 34 : 56 78 56 78 56 78 10
sub eax, x 12 34 : 56 68 56 68 56 68 10
3.
ASSEMBLY CODE EAX AX AH | AL X
x dword 23544420h 23 54 44 20
mov eax, 12345678h 12 34 : 56 78 56 78 56 78 23 54 44 20
sub eax, x EE EO : 1258 1258 12 68 23 54 44 20




ARITHMETIC EXPRESSIONS = 167

4,
ASSEMBLY CODE EAX AX AH | AL X
x byte 70h 70
mov eax, 50h 00 00 : 00 50 00 50 00 50 70
sub al, x 00 00 : 00 30 00 EO 00 EO 70
Exercises:

I. Complete the following table in hexadecimal.

PSEUDOCODE | ALPSEUDOCODE C(A)LDE EAX | X | Y | Z
x dword ?
y dword ?
z dword ?
EAX := 0CD2h
X := CD2h-2h EAX := EAX-2h
X := EAX
X :=421h X := 421h
Y := 4E75h Y := 4E75h
EAX := X
Z:= X =Y EAX := EAX —Y

Z :=EAX




166 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL

x dword 5677h

mov eax, 0C|1234h

sub eax, x

ASSEMBLY CODE EAX AX AH AL

x word 0ab%h

mov eax, Occal8h

sub ax, x
4,
ASSEMBLY CODE EAX AX AH AL
x byte 0dh

mov eax, 12345678h

sub al, x

Multiplication (*)
Definition: There are 2 multiplication instructions we can use: mul and imul.
* Form of the mul instruction: mul source

* Form of the imul instruction: imul source, where the following rules apply:



ARITHMETIC EXPRESSIONS = 163

Rule I: The register used for multiplication is always EAX.
Rule 2a: For the mul instruction, the integers that are multiplied must be unsigned.

Rule 2b: For the imul instruction, the integers can be either unsigned, signed order,
or both.

Rule 3: The source can be a register or a variable. The source cannot be a numeric
value.

Rule 4: The location of the other number (accumulator) to be multiplied is in one
of the following registers:

* AL, if the source is a byte
¢ AXif the source is a word
¢ EAX, if the source is a double word

Rule 5: The resulting product will be located in the accumulator under the following
rules:

* If the data type is a byte (8 bits), then the resulting product (16 bits) will be

located in AX.
Example:
ASSEMBLY CODE EAX AX AH AL X
x byte 10h 10
mov al, 23h 00 00 00 23 00 23 00 23 10
mul x 00 00 02 30 02 30 02 30 10

If the data type is a word (16 bits), then the resulting product (32) bits will have its low-order
16 bits going to the AX register and its high-order |6 bits going to the DX register.



170 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:
ASSEMBLY CODE EAX AX DX X
x word 100h 100
mov ax, |1234h 0000 12 34 12 34 100
m 00 00 34 00 34 00 0012 100

If the data type is a dword (32 bits), then the resulting product (64) bits will have its low-order

32 bits going to the EAX register and its high-order 32 bits going to the EDX register.

Example:
ASSEMBLY CODE EAX EDX X
x dword 100h 100
mov eax, 1234567h 0l 23 45 67 100
mul x 23 45 67 00 00 00 00 01 100
Exercises:
I. Complete the following tables.
ASSEMBLY CODE EAX AX AH AL X
x byte OEDh
mov al, 9Fh

mul x




ARITHMETIC EXPRESSIONS = 171

ASSEMBLY CODE EAX | AX AH AL EDX X

x word 2EF2h

mov ax, 26DCh

mul x

ASSEMBLY CODE EAX | AX AH AL EDX X

x dword 46A577DEh

mov eax, 7EA769Fh

mul x

ASSEMBLY CODE EAX AX AH AL X

x byte 5Ah

mov al, 2Fh

mul x

ASSEMBLY CODE EAX | AX | AH AL EDX X

x word 65EEh

mov al, 2Fh

mul x




172 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX | AX AH AL EDX X

x dword 8BBOBB44h

mov eax, | DFF872Fh

mul x

Division (+)

For this type of division, we are only performing integer division. The following is the defini-
tion of integer division:

Definition of integer division n + m:
Given unsigned integers n and m, we say n is divided by m, where
n = q*m + r, where
0<r<m.
n+m=gq
n=(n+m*m+r
Note: The general terminology is as follows:
n: dividend
m: divisor
q: quotient
r: remainder

Examples:

(@) 9+4: 9=2%¥4+ | whereq=2andr = |

(b) 356 +7: 356 = 50*7 + 6 whereq=50andr =6

356 +7=q=50



ARITHMETIC EXPRESSIONS = 173

(c) 78 +99:78 = 0%99 + 78 where q =0 and r =78
78 +99=0
Exercises:

I. For the following integer division, find the division form: n = g*m + r,
base 10:

(2) 143 +3 (b) 3,457 + 55 (c) 579 +2 (d) 23 + 40
There are 2 division instructions we will use: div and idiv.
¢ Form of the div instruction: div source

Rule I: The register used for integer division is always EAX.

Rule 2: The source is the divisor (m).

Rule 3: The source can be in a register or variable, but it cannot be a numeric value.

Rule 4: The following gives us the locations of n,m, q,and r:

If the source (m) is a byte, then the dividend (n) is stored in the AX register. After execution,

Form of the idiv instruction: idiv source, where the following rules apply:

the quotient (q) will be stored in the AL register and the remainder (r) in the AH register.

Example;
ASSEMBLY CODE EAX AX AH AL X
x byte 10h 10
mov ax, 456h 00 00 04 04 56 04 56 10
div x 00 00 06 45 06 45 06 45 10

If the source (m) is a word, then the dividend (n) is stored in the AX register. Before executing,
the EDX must be assigned a numeric value. After execution, the quotient (q) will be stored in

AX and the remainder (r) in DX.




174 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:
ASSEMBLY CODE EAX AX DX X
x word 100h 100
mov edx,0 00 00 00 00 100
mov ax, 9378h 00 00 93 78 93 78 00 00 00 00 100
div x 00 00 00 93 00 93 00 00 00 78 100

If the source (m) is a double word, then the dividend (n) is stored in the EAX register. Before
executing, the EDX must be assigned a numeric value.After execution, the quotient (q =n + m)
will be stored in the EAX register and the remainder(r) in the EDX register.

Example:
ASSEMBLY CODE EAX EDX X
x dword |0h 10
mov edx, Oh 00 00 00 00 10
mov eax, 378h 00 00 03 78 00 00 00 00 10
div x 00 00 00 37 00 00 00 08 10

Note: Whenever we use div in this text, we assume the source is a double word.

Rule 5:

* The div instruction should only be used when the dividend and divisor are
both unsigned.

¢ The idiv instruction can be used when the dividend and divisor can be
either signed, unsigned, or both.



ARITHMETIC EXPRESSIONS = 174

The following table summarizes rule 3:

DIVIDEND (N) DIVISOR (M) Q=N=+M | REMAINDER
AX byte: register or variable AL AH
AX word: register or variable AX DX
EAX dword: register or variable EAX EDX

Important: When programming in Visual Studio, one must assign the number 0 to the EDX

register before each div or idiv instruction.

Exercises:

Complete the following tables.

I. Complete the following tables in hexadecimal.

ASSEMBLY CODE

EAX

EDX

x dword E722Ch

mov edx, 0

mov eax, 5670F3AAh

div x

ASSEMBLY CODE

EAX

AX

EDX X

x word 2567h

mov edx,0

mov ax, 9D37h

div x




[76 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL

x byte OFDh

mov ax, 0ABB6h

div x

2. Complete the following tables in hexadecimal.

ASSEMBLY CODE EAX EDX

x dword 95ef 22ch

mov edx, 0

mov eax, 0d9def3aah

div x

ASSEMBLY CODE EAX AX EDX

x word 5f67h

mov edx,0

mov ax, 0dacfd378h

div x

ASSEMBLY CODE EAX AX AH AL

x byte Ofdh

mov ax, 0fa56h

div x




ARITHMETIC EXPRESSIONS = 177

10.4 SPECIAL NUMERIC ALGORITHMS

In this section, we will study how to write assembly language algorithms for special numeric
expressions. To assist us, we will first use pseudocodes and assembly language (AL) pseudo-
code as our guide.The following are several important algorithms.

* Interchanging values

Algorithm
PSEUDOCODE AL PSEUDOCODE AL CODE
EAX:= X mov eax, X
TEMP:= X
TEMP:= EAX mov temp, eax
EAX:=Y mov eax, Y
X=Y
X:= EAX mov X, eax
EAX:=TEMP mov eax, temp
Y:= TEMP
Y := EAX mov Yy, eax
Example
AL AL
PSEUDOCODE XY EAX T
PSEUDOCODE | CODE
X := 254h X := 254h mov x, 254h | 254
Y := 100h Y := 100h mov y, 100h | 254 | 100
EAX := X mov eax,x |254| 100 00 00 02 54
T=X
T := EAX mov t,eax |254|100]| 00 00 02 54 |254




178 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

EAX:=Y mov eax,y | 254 | 100| 00 00 01 00 | 254
X:=Y

X:= EAX mov x,eax [ 100| 100| 00 0001 00 |254

EAX:=T mov eax,t | 100| 100 00 00 02 54 | 254
Y:=T

Y := EAX mov y,eax | 100|254 | 00 00 02 54 | 254

The exponential operator: Although we define an exponential operator in assembly, the expo-
nential operator does not exist in the assembly language.

One way to create an exponential operation in assembly language is to perform repetitive

multiplication of the same number. The following algorithm will perform such a task:

Algorithm
PSEUDOCODE AL PSEUDOCODE AL CODE
P:=1 P:=1 mov p, |

EAX:= X mov eax, X

P:= X*P EAX:= EAX*P mul p
P:=EAX mov p, eax
EAX:= X mov eax, X

P:= X*P EAX:= EAX*P mul p
P:=EAX mov p, eax
EAX:= X mov eax, X

P:= X*P EAX:= EAX*P mul p
P:=EAX mov p, eax




ARITHMETIC EXPRESSIONS = 178

Example

Compute x: = 10 *

AL PSEUDOCODE | ALCODE | X EAX P
P:=1h mov p, | |
X:=10h mov X, |10 10 |
EAX:= X mov eax, X 10 00000010 |

EAX:= EAX*P mul p 10 00 0000 IO I
P:= EAX mov p, eax 10 000000 10 10
EAX:= X mov eax, X 10 000000 10 10

EAX:= EAX*P mul p 10 00 0001 00 10
P:= EAX mov p, eax 10 000001 00 100
EAX:= X mov eax, X 10 00000010 100

EAX:= EAX*P mul p 10 00 00 10 00 100
P:= EAX mov p, eax 10 00 00 10 00 1000
EAX:= X mov eax, X 10 00000010 1000

EAX:= EAX*P mul p 10 0001 00 00 1000
P:= EAX mov p, eax 10 00 01 00 00 10000

Sum the digits of a positive integer a,a,a, ... a

n




180 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example

Sum the digits of 268.

AL
PSEUDOCODE N EAX |SUM |EDX| T
PSEUDOCODE
T:=10d T:=10d 10
N:= 268d N :=268d 268 10
SUM := 0d SUM := 0d 268 0 10
EAX:= N 268 268 0 10
EAX:=EAX =T 268 26 0 8 10
R:=NMODT
EDX:= EAX MOD T
268 26 0 8 10
R:= EDX
N:=N + [0d N:= EAX 26 26 0 8 10
EDX:= EDX + SUM 26 26 0 8 10
SUM:= SUM + R
SUM:= EDX 26 26 8 8 10
EAX:=EAX +T 26 2 8 6 10
R=NMODT EDX:= EAXMODT
26 2 8 6 10
R:= EDX
N:=N + 10d N:= EAX 2 2 8 6 10
EDX:= EDX + SUM 2 2 8 14 10
SUM:=SUM + R
SUM:= EDX 2 2 14 14 10
EAX:=EAX +T 2 0 14 2 10
R:=NMODT EDX:= EAXMOD T
2 0 14 2 10
R:= EDX
N:=N + [0d N:= EAX 0 0 14 2 10
EDX:= EDX + SUM 0 0 14 16 10
SUM:= SUM + R
SUM:= EDX 0 0 16 16 10




ARITHMETIC EXPRESSIONS = 181

PSEUDOCODE AL PSEUDOCODE AL CODE
TEN := 10d TEN := 10d mov ten, |10
N:= 268d N := 268d mov n, 268
SUM:=0 SUM:=0 mov sum, 0
EAX:= N mov eax, n
EDX:= 0 mov edx,0
R := N MOD TEN
EAX:= EAX+TEN div ten
R:= EDX mov r, edx
N:=N =+ 10 N:= EAX mov n, eax
EDX:= EDX + SUM add edx, sum
SUM:= SUM + R
SUM:= EDX mov sum, edx
EDX:=0 mov edx,0
R:= N MOD TEN EAX:= EAX+TEN div ten
R:= EDX mov r, edx
N:=N =+ 10 N:= EAX mov n, eax
EDX:= EDX + SUM add edx, sum
SUM:= SUM + R
SUM:= EDX mov sum, edx
EDX:= 0 mov edx,0
R:= N MOD TEN EAX:= EAX+TEN div ten
R:= EDX mov r, edx
N:=N =+ 10 N:= EAX mov n, eax
EDX:= EDX + SUM add edx, sum
SUM:= SUM + R
SUM:= EDX mov sum, edx




182 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

PSEUDOCODE AL PSEUDO AL CODE
SUM:=0 SUM =0 mov sum, 0

R := N MOD TEN EAX:= N mov eax, n
EDX:=0 mov edx, 0

EAX:= EAX + TEN div ten
R:= EDX mov r, edx
N:=N =+ 10 N:= EAX mov n, eax

SUM:= SUM + R

EDX:= EDX + SUM

add edx, sum

SUM:= EDX mov sum, edx
R:= N MOD TEN EDX:=0 mov edx, 0
EAX:= EAX =+ TEN div ten
R:= EDX mov r, edx
N:=N =+ 10 N:= EAX mov n, eax

SUM:= SUM + R

EDX:= EDX + SUM

add edx, sum

SUM:= EDX mov sum, edx
R:= N MOD TEN EDX:=0 mov edx, 0
EAX:= EAX =+ TEN div ten
R:= EDX mov r, edx
N:=N = |0 N:= EAX mov n, eax

SUM:= SUM + R

EDX:= EDX + SUM

add edx, sum

SUM:= EDX

mov sum, edx

* Factorial n! = n(n—1)(n-2) ..

()




ARITHMETIC EXPRESSIONS = 183

Example

51 = 5(4)(3)(2)(1) = 120

AL PSEUDOCODE AL CODE EAX EBX
EAX := 5d mov eax, 5 00000005
EBX := 5d mov ebx, 5 00000005 00000005
EBX := EBX-1d sub ebx, | 00000005 00000004
EAX := EAX*EBX mul ebx 00000020 00000004
EBX := EBX-1d sub ebx, | 00000020 00000003
EAX := EAX*EBX mul ebx 00000060 00000003
EBX := EBX-Id sub ebx, | 00000060 00000002
EAX := EAX*EBX mul ebx 00000120 00000002
EBX := EBX-1d sub ebx, | 00000120 00000001
EAX := EAX*EBX mul ebx 00000120 0000001

Note: See last page for the complete assembly language program.

Algorithm
AL PSEUDOCODE AL CODE
EAX := N mov eax , n
EBX := N mov ebx , n
EBX := EBX - | sub ebx , |

EAX := EAX*EBX mul ebx




184 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

P(x) =ax"+a_,

x4 +axta

For simplicity, we will evaluate P(x) where n = 5 using the following formula:

P(x) =ax*+ax*+ax®+ax’+ax+a = ((ax+a)x+a)x+a)x+a)x+a,

P(x) =ax"+a x"'+ ..

|
a)x+a,

Example

tax+ax*+ax+ta =(..((qx+a, )x+..

+a)x ta)x+

P(2) = 7525 + 4524 + 2607 + |0%22 + 852 + 3 = ((((7%2 + 4)%2 + 2)*2 + 10)*2 + 8)*2 + 3 = 363

PSEUDOCODE | AL PSEUDOCODE | ALCODE | P EAX X
X:=2d X:=12d mov X, 2 2
P:=7d P:=7d mov p, 7 7 2

EAX:= P mov eax, p 7 00000007 | 2
EAX:= EAX*X mul x 7 00000014 | 2
P:= P*X + 4d
EAX:= EAX + 4d add eax, 4 7 | 00000018 | 2
P:= EAX mov p, eax 18 | 00000018 | 2
P:= P*X + 2d EAX:= P mov eax, p 18 | 00000018 | 2
EAX:= EAX*X mul x 18 | 00000036 | 2
EAX:= EAX + 2d add eax, 2 18 | 00000038 | 2
P:= EAX mov p, eax 38 | 00000038 | 2
EAX:= P mov eax, p 38 | 00000038 | 2
EAX:= EAX*X mul x 38 | 00000076 | 2
P:= P*X + 10d
EAX:= EAX + |0d add eax, 10 38 | 00000086 | 2
P:= EAX mov p, eax 86 00000086 2




ARITHMETIC EXPRESSIONS = 183

EAX:= P mov eax, p 86 00000086 | 2
EAX:= EAX*X mul x 86 | 00000172 | 2
P:= P*X + 8d
EAX:= EAX + 8d add eax, 8 86 | 00000180 | 2
P:= EAX mov p, eax 180 | 00000180 | 2
EAX:= P mov eax, p 180 | 00000180 | 2
EAX:= EAX*X mul x 180 | 00000360 | 2
P:= P*X + 3d
EAX:= EAX + 3d add eax, 3 180 | 00000363 | 2
P:= EAX mov p, eax 363 | 00000363 2

Model program

; This program computes 5!
.386

.model flat
.stack 4096

.data

factorial dword ?
.CODE

_start:

mov eax , 5

mov ebx, 5

sub ebx, |

mul ebx

sub ebx, |

mul ebx

sub ebx, |

mul ebx

sub ebx, |

mul ebx

mov factorial, eax
public _start
end




186 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECT
a.Write a general algorithm that can be used to convert any integer number N, => N, where b
< 10.

Using this algorithm, write a complete assembly language program, written for the MASM, that
will convert the integer 2987, to N,.



LHAPTER ELEVEN

CONSTRUCTING PROGRAMS IN ASSEMBLY
LANGUAGE PART |




188 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

Chapters 9 and 10 gave the basics of the assembly language code. From these basics we
need to use the syntax to construct complete programs in assembly language. Professional
programmers use several different methods for writing programs, such as flow diagrams,
pseudocode, and several others. In this chapter we will use pseudocode to guide us in writing
assembly language programs.We will employ a four-step process.

Step |:Analyze the objectives of the program.

Step 2: Convert the objectives of the program into pseudocode algorithm.
Step 3: Convert the algorithm into AL pseudocode.

Step 4: Convert the algorithm AL pseudocode into assembly language code.

To demonstrate these four steps, we will write programs to convert integer numbers from
one base to another. In chapter 2, we developed the mathematics to convert bases. From
chapter 2, we see that to convert numbers from an arbitrary base to the base 10, we need
to evaluate

ab"+a b+ ... +ab’+ab’+ab+a,
n n-1 3 2 | 0
which is a polynomial of one variable.

However, in assembly language, there is no syntax that will directly allow us to perform
exponential operations. The easiest way to evaluate the above expression is to linearize the
polynomial.

Definition of linearizing a polynomial:
Given a polynomial of one variable, we write:

ab"+a b™'+.. +abl+ab’+ab+a =(.((ax+a,_ )b+..+a)b+ta)b+a)b+a,

4n-1

In the following number base conversions, we will use the four steps mentioned above.

1. ANASSEMBLY LANGUAGE PROGRAMTO
CONVERT A POSITIVE INTEGER NUMBER IN
ANY BASEB < 10TO ITS CORRESPONDING
NUMBER IN THE BASE 10.

Step |:Analyze the objectives of the program.

To convert between an integer number in any base b to its corresponding number in the base
10, we recall from chapter 2 the following formula:



CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = (89

N,=a a  ..aa<ab +a b”+.. +ab+a baselO.
n n-l n 0 n n-1 | 0
Example:

The following manual method will convert the number 2567, to its corresponding number in
the base 10:

N, = 2567,=> (28 + 5)*8 +6)*8 + 7 = ((21)*8 +6)*8 + 7 = |74%8 + 7 = 1399, .

To convert the number 2567 to the base 10, we first need to write a sample program in
pseudocode and assembly language to capture the digits 2, 5, 6, and 7 from the number. The
following programs will perform such a task.

Step 2: Convert the objectives of the program into a pseudocode algorithm.

Program: Capture the digits of 2567,

PSEUDOCODE N A D
N:= 2567 2567
D:= 1000 2567 1000
A=N=D 2567 2 1000
N:= N MOD D 567 2 1000
D:= 100 567 2 100
A=N=D 567 5 100
N:= N MOD D 67 5 100
D:= 10 67 5 10
A=N=D 67 6 10
N:= N MOD D 7 6 10
D:= | 7 6 |
A=N=D 7 7 |
N:= N MOD D 0 7 0




130 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 3: Convert the pseudocode algorithm into AL pseudocode.

PSEUDOCODE | ALPSEUDOCODE| N |A| D |EAX | EDX
N:= 2567 N:= 2567 2567
D:= 1000 D:=1000 2567 1000
EAX:= N 2567 1000 | 2567
EAX:= EAX =+ D 2567 1000 2
A=N=D
EDX:= EAX MOD D 2567 1000 2 567
A:= EAX 2567 | 2 | 1000 2 567
N:= N MOD D N:= EDX 567 | 2 | 1000 2 567
D:= 100 D:= 100 567 | 2 100 2 567
EAX:=N 567 | 2 100 567 567
EAX:=EAX + D 567 | 2 100 5 567
A=N=D
EDX:= EAX MOD D 567 | 2 100 5 67
A:=EAX 567 | 5 100 5 67
N:= N MOD D N:= EDX 67 5 100 5 67
D:= 10 D:= 10 67 5 10 5 67
A=N=D EAX:=N 67 5 10 67 67
EAX:=EAX + D 67 5 10 6 67
EDX:= EAX MOD D 67 5 10 6 7
A:=EAX 67 6 10 6 7
N:= N MOD D N:= EDX 7 6 10 6 7




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = 131

D:= 1 D:=1 7 6 | 6 7
EAX:=N 7 6 | 7 7
EAX:=EAX + D 7 6 | 7 7

A=N=+D
EDX:= EAX MOD D 7 6 | 7 7
A:=EAX 7 7 | 7 7
N:= N MOD D N:= EAX 7 7 | 7 7

Step 4: Convert the AL pseudocode algorithm into assembly language code.

PSEUDOCODE | AL PSEUDOCODE | ASSEMBLY LANGUAGE
N:= 2567 N:= 2567 mov n, 2567
D:= 1000 D:=1000 mov d, 1000

A=N=+D EAX:= N mov eax, n
EAX:= EAX + D mov edx, 0

EDX:= EAX MOD D divd
A:= EAX mov a, eax
N:= N MOD D N:= EDX mov n, edx
D:= 100 D:= 100 mov d, 100
EAX:=N mov eax, n
EAX:=EAX + D mov edx, 0

A=N=+D

EDX:= EAX MOD D divd

A:=EAX mov a, eax




132 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

N:= N MOD D N:= EDX mov n, edx
D:=10 D:= 10 mov d, 10
EAX:=N mov eax, n
EAX:=EAX + D mov edx, 0
A=N =+ D
EDX:= EAX MOD D div d
A:=EAX mov a, eax
N:= N MOD D N:= EDX mov n, edx
D:= | D:= 1 mov d, |
EAX:=N mov eax, n
EAX:=EAX + D mov edx, 0
A=N=+D
EDX:= EAX MOD D div d
A:=EAX mov a, eax
N:= N MOD D N:= EDX mov n, edx

Note: See model assembly language program.At the end of this chapter.

Step |:Analyze the objectives of the program.

Program: Write a sample program to compute

N, = 2567,=> N = ((2%8 + 5)*8 +6)*8 + 7 = 1399, .

Step 2: Convert the objectives of the program into pseudocode algorithm.

PSEUDOCODE N A SUM
N:= 2567 2567
SUM:=0 2567 0




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = 133

D:= 1000 2567 0 1000
A=N=+D 2567 2 0 1000
N:= N MOD D 567 2 0 1000
SUM:= SUM + A 567 2 2 1000
SUM:= SUM*8 567 2 16 1000
D:= 100 567 2 16 100
A=N=D 567 5 16 100
N:= N MOD D 67 5 16 100
SUM:= SUM + A 67 5 21 100
SUM:= SUM*8 67 5 168 100
D:=10 67 5 168 10
A=N=D 67 6 168 10
N:= N MOD D 7 6 168 10
SUM:= SUM + A 7 6 174 10
SUM:= SUM*8 7 6 1392 10
DIVISOR:= | 7 6 1392 1
A=N=D 7 7 1392 I
SUM:= SUM + A 7 7 1399 I




134 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 3: Convert the algorithm pseudocode into AL pseudocode.

AL
PSEUDOCODE | ...\ o ~op | N |A[SUM| D |EAX|EDX
N:= 2567 N:= 2567 2567
E:=8 E:=8 2567
SUM:= 0 SUM:= 0 2567 0
D:= 1000 D:= 1000 2567 0 1000
EAX:= N 2567 0 1000 | 2567
EAX:= EAX+D 2567 0 1000 2
A:=N=+D
EDX:= EAX MOD D | 2567 0 1000 2 567
A:= EAX 2567 | 2 0 1000 2 567
N:= N MOD D N:= EDX 567 | 2 0 1000 2 567
EAX:= SUM 567 | 2 0 1000 0 567
SUM:= SUM + A EAX:= EAX + A 567 | 2 0 1000 2 567
SUM:= EAX 567 | 2 2 1000 2 567
EAX:= SUM 567 | 2 2 1000 2 567
SUM:= SUM*E EAX:= EAX*E 567 | 2 2 1000 16 567
SUM:= EAX 567 | 2 16 1000 16 567
D:= 100 D:= 100 567 | 2 16 100 16 567
EAX:= N 567 | 2 16 100 | 567 567
EAX:= EAX + D 567 | 2 16 100 5 567
A=N=+D
EDX:=EAX MODD| 567 |2 16 100 5 67
A:= EAX 567 | 5 16 100 5 67
N:= N MOD D N:= EDX 67 |5 16 100 5 67




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = 134

EAX:= SUM 67 | 5| 16 [100] 16 | 67 |8
SUM:= SUM +A EAX:=EAX+A | 67 5] 16 | 100 | 21 67 |8
SUM:= EAX 67 [5]| 21 | 100 | 21 67 |8
EAX:= SUM 67 |5 21 [100] 21 67 |8
SUM:= SUM*E EAX:= EAX*E 67 |5 21 |[100]| 168 | 67 |8
SUM:= EAX 67 |5 168 | 100 | 168 | 67 |8
D:= 10 D:= 10 67 [5]| 168 | 10 | 168 | 67 |8
A=N+D EAX:= N 67 [5]| 168 | 10 | 67 | 67 |8
EAX:= EAX+D 67 [5] 168 | 10 | 6 67 |8
EDX:= EAXMODD| 67 |5 168 [ 10 | & 7 |8
A:= EAX 67 |6 168 | 10 | 6 7 |8
N:= N MOD D N:= EDX 7 |e| 168 | 10| 6 7 |8
EAX:= SUM 7 |e6| 168 | 10 | 168 7 |8
SUM:= SUM + A EAX:= EAX + A 7 |e| 168 | 10 | 174 7 |8
SUM:= EAX 7 el 174 | 10| 174 7 |8
EAX:= SUM 7 el 174 | 10| 174 7 |8
SUM:= SUM*E EAX:= EAX*E 7 6| 174 | 10 | 1392 7 |8
SUM:= EAX 7 |ef1392] 10 |1392] 7 |38
D:= | D:= | 7 el 1392 1 |1392] 7 |38
EAX:= N 7 6| 1392] 1 7 7 |s
EAX:= EAX + D 7 e 1392 1| 7 7 |8

A=N=+D
EDX:= EAXMODD| 7 |6 1392 | 1 7 o |s
A:= EAX 7 7] 1392 1 7 o |s
EAX:= SUM 7 (7] 1392 1 [1392] o |8
SUM:= SUM +A EAX:= EAX + A 7 (71392 1 [1399] o |8
SUM:= EAX 7 (71399 1 [1399] o |8




136 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 4: Convert the algorithm AL pseudocode into assembly language code.

PSEUDOCODE AL PSEUDOCODE AL CODE
N:= 2567 N:= 2567 mov n, 2567
E=8 E=8 mov e, 8
SUM:=0 SUM:=0 mov sum, 0
D:= 1000 D:= 1000 mov d, 1000
EAX:= N mov eax, n
EAX:= EAX = D mov edx, 0
A=N=+D
EDX:= EAX MOD D divd
A:= EAX mov a, eax
N:= N MOD D N:= EDX mov n, edx
EAX:= SUM mov eax, sum
SUM:= SUM + A EAX:= EAX + A add eax, a
SUM:= EAX mov sum, eax
EAX:= SUM mov eax, sum
SUM:= SUM*E EAX:= EAX*E mul e
SUM:= EAX mov sum, eax
D:= 100 D:= 100 mov d, 100
EAX:= N mov eax, n
EAX:= EAX + D mov edx, 0
A=N=+D
EDX:= EAX MOD D divd
A:= EAX mov a, eax
N:= N MOD D N:= EDX mov n, edx
EAX:= SUM mov eax, sum
SUM:= SUM + A EAX:= EAX + A add eax, a
SUM:= EAX mov sum, eax




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = 137

EAX:= SUM mov eax, sum
SUM:= SUM*E EAX:= EAX*E mul e
SUM:= EAX mov sum, eax
D:=10 D:=10 mov d, |10
EAX:= N mov eax, n
EAX:= EAX =+ D mov edx, 0
A=N+D
EDX:= EAX MOD D div d
A:= EAX mov a, eax
N:= N MOD D N:= EDX mov n, edx
EAX:= SUM mov eax, sum
SUM:= SUM + A EAX:= EAX + A add eax, a
SUM:= EAX mov sum, eax
EAX:= SUM mov eax, sum
SUM:= SUM*E EAX:= EAX*E mul e
SUM:= EAX mov sum, eax
D:=1 D:= 1000 mov d, 100
EAX:= N mov eax, n
EAX:= EAX + D mov edx,0
A=N=+D
EDX:= EAX MOD D divd
A:= EAX mov a, eax
N:= EDX mov eax, sum
SUM:= SUM + A EAX:= SUM add eax, a

EAX:= EAX + A

mov sum, eax




136 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises
I. Use the manual method to linearize the number 230451 to convert it
to its corresponding number in the base 0.
2. Use the manual method to linearize the number ||| |0I2to convert it

to its corresponding number in the base |0.

11.2 ANALGORITHMTO CONVERT ANY INTEGER
NUMBER INTHE BASE 10 TO A CORRESPONDING
NUMBER INTHEBASEB < 10

Step |:Analyze the objectives of the program.

Using the Euclidean division theorem, we now review how to use the manual method to
convert a number in the base 10 to a number in the base b.

Step |:We want to write N in the form:N =ab"+a  b""'+ .. +ab+a,
Step2xN=Qb+R=(ab"'+a b 2+..+a)b+a,
Here,Q =ab™ +a b"?+..+ab+a =(ab"+a b+..+a)b+aandR=a,
Step 3:Set N = Q.
Q=Qb+R =(b"?+a b+ ..+a)b+a
where
Q,=ab"?+a b+ .. +a
R, =a,
Step 4: Continue in this manner, until Qn =0.
Example
Convert the following decimal numbers to the specified base.
I. 1625 => N,
Step 1: 1625 = (1625 + 8)*8 + | = 203*8 + |
a, = |

0

Step 2:203 = (203 + 8) *8 + 3 = 25%8 + 3



CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = (33

Therefore, 1625 => N, = 3*8° + %8> + 3*8 + | => N, = 3131,
Program: Convert the integer number 1625 to the base 8.

Step 2: Convert the objectives of the program into pseudocode algorithm.

PSEUDOCODE N SUM | TEN MUL BASE R
BASE := 8 8
N := 1625 1625 8
SUM:=0 1625 0 8
MUL := | 1625 0 | 8
TEN := 10 1625 0 10 I 8
R := N MOD BASE 1625 0 10 I 8 I
N:= N + BASE 203 0 10 I 8 I
R := R*MUL 203 0 10 I 8 I
SUM:= SUM + R 203 | 10 I 8 I
MUL:= MUL*TEN 203 | 10 10 8 |
R := N MOD BASE 203 | 10 10 8 3
N:= N + BASE 25 I 10 10 8 3
R := R*MUL 25 I 10 10 8 30
SUM:= SUM + R 25 31 10 10 8 30




200 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MUL:= MUL*TEN 25 31 10 100 8 30
R := N MOD BASE 25 31 10 100 8 |
N:= N + BASE 3 31 10 100 8 |
R := R*MUL 3 31 10 100 8 100
SUM:= SUM + R 3 131 10 100 8 100
MUL:= MUL*TEN 3 131 10 1000 8 100
R := N MOD BASE 3 131 10 1000 8 3
N:= N + BASE 0 131 10 1000 8 3
R := R*MUL 0 131 10 1000 8 3000
SUM:=SUM + R 0 3131 10 1000 8 3000
Step 3: Convert the algorithm pseudocode into AL pseudocode.
PSEUDOCODE AL N M EAX | EDX
PSEUDOCODE
B:=8 B:=8
N := 1625 N := 1625 1625
$=0 S:=0 1625
M:= | M:= | 1625 I
T=10 T:=10 1625 I
EAX:= N 1625 I 1625
EAX:= EAX + B 1625 I 203
R:=N MOD B
EDX:= EAX MOD B | 1625 I 203 1
R:= EDX 1625 I 203 I




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = 201

N:=N +B N:= EAX 203 0 | | 203 I
EAX:= R 203 0 | | | I
R := R*M EAX:= EAX*M 203 0 | | I I
R:= EAX 203 0 | | I I
EAX:=S 203 0 | | 0 I
S=S+R EAX:= EAX+ R 203 0 | | I I
S:= EAX 203 | | | I I
EAX:=M 203 | | | I I
M:= M*T EAX:= EAX*T 203 | | | 10 I
M:= EAX 203 | 10 | 10 I
EAX:= N 203 | 10 I 203 I
EAX:= EAX + B 203 | 10 I 25 I

R:=NMOD B
EDX:= EAXMOD B | 203 | 10 I 25 3
R:= EDX 203 I 10 3 25 3
N:=N+B N:= EAX 25 I 10 3 25 3
EAX:= R 25 I 10 3 3 3
R := R*M EAX:= EAX*M 25 I 10 3 30 3
R:= EAX 25 I 10 30 30 3
EAX:=S 25 I 10 30 | 3
S=S+R EAX:= EAX + R 25 I 10 30 31 3
S:= EAX 25 31 10 30 31 3




202 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

EAX:=M 25 31 10 30 10
M:= M*T EAX:= EAX*T 25 31 10 30 100
M:= EAX 25 31 100 | 30 100

EAX:= N 25 31 100 | 30 25

EAX:= EAX + B 25 31 100 | 30 3

R:= N MOD B

EDX:= EAX MOD B 25 31 100 | 30 3

R:= EDX 25 31 100 | 3

N:=N +B N:= EAX 3 31 100 | 3

EAX:= R 3 31 100 | I
R := R*M EAX:= EAX*M 3 31 100 | 100
R:= EAX 3 31 100 | 100 | 100

EAX:= S 3 31 100 | 100 31

S=S+R EAX:= EAX + R 3 31 100 | 100 | 131
S:= EAX 3 131 ( 100 | 100 131
EAX:=M 3 131 | 100 | 100 100
M:= M*T EAX:= EAX*T 3 131 | 100 | 100 [ 1000
M:= EAX 3 131 | 1000 | 100 [ 1000

EAX:= N 3 131 | 1000 | 100 3

EAX:= EAX + B 3 131 | 1000 | 100 0

R:= N MOD B

EDX:= EAX MOD B 3 131 | 1000 | 100 0

R:= EDX 3 131 [ 1000 | 3 0

N:=N +B N:= EAX 0 131 | 1000 3 0




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = 203

EAX:= R 0 131 | 1000 | 3 3 3
R := R*M EAX:= EAX*M 0 131 [ 1000 | 3 3000 3
R:= EAX 0 131 | 1000 [3000| 3000 3
EAX:= S 0 131 | 1000 (3000 131 3
S$:=S§+R EAX:= EAX + R 0 131 | 1000 (3000 3131 3
S:= EAX 0 3131 1000 |3000| 3131 3

1625 => 3131,

Step 4: Convert the algorithm AL pseudocode into assembly language code.

PSEUDOCODE AL PSEUDOCODE AL CODE
B:=8 B:=8 mov b, 8
N := 1625 N := 1625 mov n, 1625
S:=0 S:=0 mov s, 0
M:= 1 M:= mov m, |
T=10 T:=10 mov t, 10
EAX:= N mov eax, n
EAX:= EAX + B mov edx,0
R:= N MOD B
EDX:= EAX MOD B div b
R:= EDX mov r, edx
N:=N+B N:= EAX mov n, eax
EAX:= R mov eax, r
R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax




204 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

EAX:=S mov eax, s
S=S+R EAX:= EAX + R add eax, r
S:= EAX mov s, eax
EAX:=M mov eax, m
M:= M*T EAX:= EAX*T mul t
M:= EAX mov m, eax
EAX:= N mov eax, n
EAX:= EAX + B mov edx, 0
R:=NMODB
EDX:= EAX MOD B divb
R:= EDX mov r, edx
N:=N +B N:= EAX mov n, eax
EAX:= R mov eax, r
R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax
EAX:=S mov eax, s
S:==S+R EAX:= EAX + R add eax, r
S:= EAX mov s, eax
EAX:= M mov eax, m
M:= M*T
EAX:= EAX*T mul t
M:= EAX mov m, eax
EAX:= N mov eax, n
EAX:= EAX + B mov edx,0
R:=N MOD B
EDX:= EAX MOD B div b
R:= EDX mov r, edx




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART | = 205

N:=N+B N:= EAX mov n, eax
EAX:= R mov eax, r

R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax
EAX:= S mov eax, s
S:==S+R EAX:= EAX + R add eax, r
S:= EAX mov s, eax
EAX:=M mov eax, m

M:= M*T EAX:= EAX*T mul t
M:= EAX mov m, eax
EAX:= N mov eax, n
EAX:=EAX + B mov edx,0

R:=N MOD B

EDX:= EAX MOD B divb
R:= EDX mov r, edx
N:=N+B N:= EAX mov n, eax
EAX:=R mov eax, r

R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax
EAX:=S mov eax, s
S=S§+R EAX:= EAX + R add eax, r
S:= EAX mov s, eax

Model Assembly Language

section | I.1).

Program: Capture the digits of 2567, (see the program in




206 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

; This program capture the digits of 25678

.386
.model flat

.stack 4096
.data

n dword ?
d dwoprd ?
a dword ?

.code
_start:

mov n, 2567
mov d, 1000
mov eax, n
divd

mov a, eax
mov n, edx
mov d, 100
mov eax, n
divd

mov a, eax
mov n, edx
mov d, 10
mov eax, n
divd

mov a, eax
mov n, edx

mov d, |
mov eax, n
divd

mov a, eax
mov n, edx

public _start
end

PROJECT

Modify the general algorithm in chapter 10 with appropriate while statement(s) to make the
program as general as possible.



LHAPTER TWELVE

BRANCHING AND THE IF-STATEMENTS




208 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

We are now ready to study the necessary assembly language instructions to convert the
while-conditional and if-then pseudocodes, defined in chapters 5 and 6, to assembly code.To
do this conversion, we need two types of jump instructions: conditional jump instructions and
unconditional jump instructions.

12.1 CONDITIONAL JUMP INSTRUCTIONS FOR
SIGNED ORDER

The basic form in assembly language consists of two instructions:
* The compare instructions: cmp operand|, operand2
* The conditional jump instructions: jump j condition label

The above instruction are always written in the above order. The operands can be numeric
values, registers, or variables.

The compare (cmp) instructions

The following table gives the type of operandl and operand2 that are allowed. Additional
jump instructions in assembly language will be discussed in later chapters.

OPERANDI OPERAND2

numeric byte
register 8 bits (byte) . o bi
register 8 bits

variable byte

numeric byte
numeric word
register 16 bits (word)
register |16 bits (word)

variable word




BRANCHING AND THE IF-STATEMENTS = 209

numeric byte
numeric dword
register 32 bits (dword)
register 32 bits (dword)

variable dword

numeric byte
variable byte: 8 bits (byte)
register 8 bits (byte)

numeric byte
variable word: 16 bits (word) numeric word

register word

numeric byte
variable dword: 32 bits numeric dword

register 32 bits

AL numeric byte
AX numeric word
EAX numeric dword

Note: The instruction cmp X,y are not valid in assembly language.

Examples:

l.
x dword 236

cmp eax, X

cmp ebx, eax



210 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

cmp X, eax

cmp x,25767h

Exercises

I. Which of the following are valid? If not, indicate why.

a. b. c. d. e.

x dword 456h cmp eax, X cmp X, eax cmp X%, 235 cmp 235, x
y dword 44444h

cmp X,y

The conditional jump instructions for signed order numbers

To perform the pseudocode WHILE statement in assembly language, we now introduce the
conditional jump instructions for signed order numbers.

From chapter 8, the following are the signed order of the numbers for the three types of
rings:

The binary ring (8 bits)
Ry128<129<130<...<254<255<0<1<2<..<126<127
R;:80<8l<82<..<FE<FF<00<01<02<..<7E<T7F

The word ring (16 bits)

R ;32768 < 32769 <32770 < ... <65535<0<1<2<..<32766 < 32767
R,8000<8001<8002<..<FFFF<0000<000l<0002<...<7FFE<T7FFF
The dword ring (32 bits)

R, 12147483648 < 2147483649 < ... < 4,294,967,295 <0 < I< ... < 2147483647
R,,:80000000<80000001I <...<FFFFFFFF<00000000<...<7FFFFF FF

The following is a table of the conditional jumps for the signed order of rings in assembly
language.



BRANCHING AND THE F-STATEMENTS = 211

Mnemonic' Description

jump to the label if operand!| = operand 2;

Ie jump if equal to

jump to the label if operand| # operand 2;

Ine jump if not equal to

jump to the label if operand| < operand 2;

e jump if not greater or equal

jump to the label if operand| > operand 2;

jnle jump if not less than or equal

e jump to the label if operand| 2 operand 2;
18 jump if greater than or equal

jump to the label if operand| < operand 2;
jump if less than or equal

jump to the label if operand| < operand 2;
jump if less than

jump to the label if operand| = operand 2;
jump if not less than

. jump to the label if operand| > operand 2;
18 jump if greater than

in jump to the label if operand| < operand 2;
Ing jump if not greater than

I. All of the above jump instructions must be preceded by the cmp
instruction.

Examples:

l.
mov al,10; al is operand|
cmp al,2;2 is operand?2

je xyz; since the contents of al is not equal to 2, a jump does not occur.

xyz:;a label



212 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4a.

4b.

mov al, 10; al is operand|
cmp al,2 ;2 is operand2

jne xyz ; since the contents of al is not equal to 2, a jump occurs.

xyz:;a label

mov ax,32770 ; ax is operand|
cmp ax,2; 2 is operand2

jnge xyz ; since the contents of ax is not greater than 2, a jump does occur.

xyz:;a label

mov eax,80000000h; eax is operand|,
cmp al,2;2 is operand?

jge xyz ; since the contents of al is not greater than or equal to 2,a jump
does not occur

occurs.

xyz: ; a label

mov al,0 ; al is operand|

cmp al,129; 129 is operand2

jge xyz ; since the contents of al is greater than or equal to 129, a jump
occurs.

xyz: ; a label



BRANCHING AND THE F-STATEMENTS = 213

5a.
mov al,255 ; al is operand|
cmp al,2;2 is operand?2

jle xyz ; since the contents of al is less than or equal to 2, a jump
occurs.

xyz:; a label

5b.
mov al,2 ; al is operand|
cmp al,255; 255 is operand2

jle xyz ; since the contents of al is greater than 255, a jump does not
occurs.

xyz:;a label

mov al,10 ;al is operand|

cmp al,2;2 is operand?2

jnle al ; since the contents of al is not less than or equal to 2, a jump
occurs.

xyz:;a label

mov al,128 ; al is operand|

cmp al,255; 255 is operand2

jl xyz ; since the contents of al is less than 255, a jump occurs.

xyz:;a label



214 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

mov al,10 ;al is operand| cmp al,2; 2 is operand2

jnl xyz ; since the contents of al is not less than 2, a jump occurs.

xyz: ; a label

mov al,10 ;al is operand|
cmp al,2; 2 is operand2

jg xyz ; since the contents of al is greater than 2, a jump occurs.

xyz: ; a label

10.
mov al,10 ;al is operand|
cmp al,2;2 is operand2

jng xyz ; since the contents of al is greater than 2, a jump does
not occur.

xyz: ; a label

Exercises: Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump?

I. cmp al,n
je xyz
Xyz:

2. cmp al,n
jne xyz

Xyz:



BRANCHING AND THE IF-STATEMENTS = 215

. cmp al,n
jnge xyz
Xyz:

. cmpal,n
jge xyz.
Xyz:

. cmp al,n
jle xyz.
Xyz:

. cmpal,n
jnle xyz
Xyz:

. cmp al,n
jl xyz:
Xyz:

. cmpal,n
jnl xyz
Xyz:

. cmp al,n
ig xyz

Xyz:



216 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The unconditional jump instruction

The form of the unconditional jump instruction is jmp label; a jump will automatically occur.

Example:

jmp Xyz ;

xyz: ;a label

The conditional jump instructions for the natural order (unsigned)

From chapter 8, the following are the natural order of the numbers for the three types
of rings:

The binary ring (8 bits)

R|0:0< 1 <2<..<I15<16<17<..<240<...<254<..<255
Riz00<01<02<..<OF<I0<IlI<..<FO<..<FE<..<FF

The word ring (16 bits)
Rp0O<1<2<..<255<256<...<5l1<..<65280<...<65534 <65535
R,:0000<0001<0002<..<00FF<0l00<...<0l FF<...<FFO00<...<FFFE<FFFF
The dword ring (32 bits)

R;0<..<255<..<65535<...<16777215 < ... < 2147483647

R,,:00 00 00 00 < 00 00 00 FF < ... <00 00 FF FF < ... < FF FF FF < ... < FF FF FF FF

The following is a table of the conditional jumps for the natural order of rings (unsigned) in
assembly language.



BRANCHING AND THE [F-STATEMENTS = 217

Mnemonic Description
o jump to the label if operand| = operand 2;
l jump if equal to
e jump to the label if operand| # operand 2;
l jump if not equal to
ine jump to the label if operand! = operand 2;
J jump if greater than or equal
o jump to the label if operand!| > operand 2;
l jump if greater than
be jump to the label if operand| < operand 2;
l jump if less than or equal
ina jump to the label if operand| < operand 2;
l jump if less than or equal
b jump to the label if operand| < operand 2;
l jump if less than
inb jump to the label if operand| = operand 2;
J jump if greater than or equal
inae jump to the label if operand| < operand 2;
J jump if less than
‘nbe jump to the label if operand| > operand 2;
l jump if greater than
Examples:

l.
mov al,10 ;al is operand|
cmp al,2;2 is operand2

je xyz ; since the contents of al is not equal to 2, a jump does not occur.

xyz: ; a label



218 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

mov al,10 ;al is operand|
cmp al,2;2 is operand?2

jne xyz ; since the contents of al is not equal to 2, a jump occurs.

xyz:;a label

mov al,210 ; al is operand|
cmp al,2;2 is operand?

ja xyz ; since the contents of al is greater than 2, a jump occurs.

xyz :;a label

mov al, 10; al is operand|
cmp al, 2;2 is operand?

jae xyz; since the contents of al is greater than or equal to 2, a jump
occurs.

xyz:;a label

mov al, 2; al is operand|

cmp al, 2; 255 is operand2

jbe xyz; since the contents of al is less than or equal to 255, a jump
occurs.

xyz:;a label



BRANCHING AND THE IF-STATEMENTS = 213

mov al, 128; al is operand|
cmp al, 255; 255 is operand2

jbe xyz ; since the contents of al is less than 255, a jump occurs.

xyz; ; a label

mov al, 10;al is operand|
cmp al, 2;2 is operand?2

je xyz; since the contents of al is not equal to 2, a jump does not occurs.

xyz; ; a label

mov al, 10;al is operand|
cmp al, 2;2 is operand?2

jne xyz; since the contents of al is not equal to 2,a jump occurs.

xyz ;; a label

Exercises: Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump?

I
cmp al,n
jbe xyz

Xyz:

cmp al,n
jnb xyz

Xyz:



220 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

cmp al,n
ja xyz

Xyz:

cmp al,n
jnae xyz

Xyz:

cmp al,n
jae xyz

Xyz:

cmp al,n
je xyz

Xyz:

cmp al,n
jb xyz

Xyz:

cmp al,n
jnb xyz

Xyz:

cmp al,n
jnbe xyz

Xyz:



BRANCHING AND THE IF-STATEMENTS = 221

12.2 CONVERTING THE WHILE-CONDITIONAL
STATEMENTS TO ASSEMBLY LANGUAGE

We will use the pseudocode examples from chapter 6 to demonstrate how the jump instruc-
tions can be used to convert while statements.

Example:

Write a partial program that will sum the numbers from | to 6.

PSEUDOCODE | CYCLE OF INSTRUCTIONS | TOTAL | N
N:=1 N:=1
TOTAL :=0 TOTAL := 0 0
WHILE N <=6 WHILE N <=6 0
BEGIN BEGIN 0
TOTAL :=TOTAL + N TOTAL :=TOTAL + N |
N:=N+I N:=N+ I I
TOTAL :=TOTAL + N 3
N:=N+I 3
TOTAL :=TOTAL + N 6
N: =N+ | 6
TOTAL :=TOTAL + N 10
N: =N+ I 10
TOTAL :=TOTAL + N 15
N:=N+ I I5
TOTAL :=TOTAL + N 21
N:=N+I 21
END END 21




222 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

AL PSEUDOCODE
CYCLE OF

PSEUDOCODE INSTRUCTION TOTAL EAX
N:= 1 N:= |

TOTAL :=0 TOTAL :=0 0
WHILE N <=6 WHILE N <=6 0
BEGIN BEGIN 0

EAX :=TOTAL 0 0

TOTAL :=TOTAL +N EAX:= EAX + N 0 I

TOTAL := EAX I I

EAX :=N I I

N:=N+I EAX := EAX + | I 2

N:= EAX I 2

EAX :=TOTAL I I

EAX:= EAX + N 2 3

TOTAL := EAX 3 3

EAX :=N 3 2

EAX := EAX + | 3 3

N:= EAX 3 3

EAX :=TOTAL 3 3

EAX:= EAX + N 3 6

TOTAL := EAX 6 6

EAX :=N 6 3




BRANCHING AND THE IF-STATEMENTS = 223

EAX := EAX + | 6 3 4
N:= EAX 6 4 4
EAX :=TOTAL 6 4 6
EAX:= EAX + N 6 4 10
TOTAL := EAX 10 4 10
EAX := N 10 4 4
EAX := EAX + | 10 4 5
N:= EAX 10 5 5
EAX :=TOTAL 10 5 10
EAX:= EAX + N 10 5 I5
TOTAL := EAX 15 5 15
EAX := N 15 5 5
EAX := EAX + | 15 5 6
N:= EAX 15 6 6
EAX :=TOTAL 15 6 I5
EAX:= EAX + N 15 6 21
TOTAL := EAX 21 6 21
EAX := N 21 6 6
EAX := EAX + | 21 6 7
N:= EAX 21 7 7
END END 21 7 7




224 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE AL PSEUDOCODE | ASSEMBLY CODE
N:= 1| N := | mov n, |
TOTAL:=0 TOTAL =0 mov total, 0
WHILE N <=6 WHILE N <=6 while: cmp n, 6
BEGIN BEGIN jg endl
EAX :=TOTAL mov eax, total
TOTAL:=TOTAL + N EAX:= EAX + N add eax, n
TOTAL := EAX mov total, eax
EAX := N mov eax, n
N:=N + | EAX := EAX + | add eax, |
N:= EAX mov n, eax
END END imp while
end [:
Exercises

I. Rewrite the above program in a AL pseudocode where only registers
(not variables) are used.

2. Modify the above program by replacing jg with jle.

3. Modify the above program by writing an assembly language algorithm
that would allow the user to sum arbitrary numbers | + 2 +3 + ... + m.

4. For the number | + 2 + 3+ ...

+ n = n(n + 1)/2, modify the above

program to check if the program is adding correctly and inform the
user if it is or is not working correctly.

5. Write an assembly language pseudocode algorithm to compute
2+ 22+ 32+ ... + M? for a given positive integer N.




BRANCHING AND THE [F-STATEMENTS = 224

Example

Program: Compute the length of the number 431.

CYCLE OF
INSTRUCTIONS INSTRUCTIONS N COUNT
N: = 431 N := 431 431
COUNT := 0 COUNT := 0 43 0
WHILE N <> 0 WHILE N <>0 431 0
BEGIN BEGIN 431 0
COUNT := COUNT + | COUNT := COUNT + | 43 I
N:=N=+10 N := N+ 10 43 |
COUNT := COUNT + | 43 2
N := N+ 10 4 2
COUNT := COUNT + | 4 3
N:=N +10 0 3
END END 0 3
AL PSEUDOCODE
PSEUDOCODE CYCLE N [ COUNT | EAX | EDX
TEN:= 10 TEN:= 10
N: = 431 N := 431 431
COUNT := 0 COUNT := 0 43 0
WHILE N <> 0 WHILE N <>0 43 0
BEGIN BEGIN 431 0




225 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

EAX: = COUNT 431 0
COUNT := COUNT + | EAX:= EAX + | 43 |
COUNT:= EAX 431 |
EAX:= N 431 431
EAX:= EAX = TEN Q431 43
N := N +TEN

EDX:= EAXMODI0 J 431 43
N:= EAX 43 43

EAX: = COUNT 43 I
EAX:= EAX + | 43 2
COUNT:= EAX 43 2
EAX:= N 43 43
EAX:= EAX + TEN 43 4
EDX:= EAXMODI0 || 43 4
N:= EAX 4 4

EAX: = COUNT 4 2
EAX:= EAX + | 4 3
COUNT:= EAX 4 3
EAX:= N 4 4
EAX:= EAX + TEN 4 0
N:= EAX 0 0
END 0 0




BRANCHING AND THE [F-STATEMENTS = 227

PSEUDO
INSTRUCTIONS | AL PSEUDOCODE | ASSEMBLY CODE
TEN:= 10 TEN:= 10 mov ten, |10
N: =431 N: =431 mov n, 43|
COUNT =0 COUNT =0 mov count, 0
WHILE N <> 0 WHILE N <> 0 while: cmp n, 0
BEGIN BEGIN begin: je end|
EAX: = COUNT mov eax, count
COUNT:= COUNT + |
EAX:= EAX + | add eax, |
COUNT:= EAX mov count, eax
EAX:= N mov eax, n
mov edx, 0
N +TEN EAX:= EAX +TEN
div ten
N:= EAX mov n, eax
END END jmp while
endl:

12.3 IF-THEN STATEMENTS

The assembly language does not have an IF-THEN statement as defined in higher programming
languages. However, we can obtain many of the same results by using the jump instructions as
defined above.The following table gives instructions on how to emulate many of the IF-THEN
statements for signed numbers.



228 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO IF-THEN
INSTRUCTIONS

JUMP INSTRUCTIONS

IF operand! > oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: jng end
(instructions)

end:

IF operand! 2 oprand 2 THEN
BEGIN
(instructions)

END

cmp operandl, operand 2
begin: jnge end
(instructions)

end:

IF operand! = oprand 2 THEN
BEGIN
(instructions)

END

cmp operand |, operand 2
begin: jne end
(instructions)

end:

IF operand| # oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: je end
(instructions)

end:

IF operand! < oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: jnl end
(instructions)

end:

IF operand! < oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: jg end
(instructions)

end:

The following table gives instructions on how to emulate many of the if-then statements for

unsigned numbers.




BRANCHING AND THE F-STATEMENTS = 223

PSEUDO IF-THEN
INSTRUCTIONS

JUMP INSTRUCTIONS

IF operand! > oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: jbe end
(instructions)

end:

IF operand! 2 oprand 2 THEN
BEGIN
(instructions)

END

cmp operandl, operand 2
begin: jb end
(instructions)

end:

IF operand! = oprand 2 THEN
BEGIN
(instructions)

END

cmp operandl, operand 2
begin: jne end
(instructions)

end:

IF operand| # oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: je end
(instructions)

end:

IF operand| < oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: jae end
(instructions)

end:

IF operand| < oprand 2 THEN
BEGIN
(instructions)

END

cmp operand|, operand 2
begin: jnbe end
(instructions)
end:

Example

I. The following program will perform the following tasks:

Task |: Check if the number 12103 is divisible by 7.

Task 2: If divisible by 7, then place 0 in x.




230 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO-INSTRUCTIONS Y X S
X:=12103 12103
S:=7 12103 7
Y := (X = S)*S 12103 12103 7
IF X =YTHEN 12103 12103 7
BEGIN 12103 12103 7
X:=0 12103 0 7
END 12103 0 7
PSEUDO-
INSTRUCTIONS AL PSEUDOCODE Y X EAX
X:=12103 X:=12103 12103
S:=7 S:=7 12103
EAX:= X 12103 12103
EAX:= EAX + S 12103 1729
Y := (X + S)*S EDX:= EAX MOD S 12103 1729
EAX:= EAX*S 12103 12103
Y:= EAX 12103 12103 12103
EAX:= X 12103 12103 1729
IF X =YTHEN CMP EAX,Y 12103 12103 1729
JNE END 12103 12103 1729
BEGIN BEGIN 12103 12103 1729
X:= X:=0 12103 0 1729
END END 12103 0 1729




BRANCHING AND THE IF-STATEMENTS = 23

PSEUDO-INSTRUCTIONS | AL PSEUDOCODE | AL INSTRUCTIONS
X:=12103 X:= 12103 mov x, 12103
S:=7 S:==7 mov s, 7
EAX:= X mov eax, X
mov edx, 0
Y := (X + S)*S EAX:= EAX=+S
EDX:= EAX MOD S divs
EAX:= EAX*S
mul s
Y:= EAX mov y, eax
IF X =YTHEN EAX:= X mov eax, X
CMP EAX,Y cmp eax, y
JNE END jne end
BEGIN BEGIN ;begin
X = X:=0 mov x, 0
END END end:

Exercises:

From chapter 5, we have the following algorithm.

PSEUDO-INSTRUCTIONS EXPLANATION
LARGEST :=XI We start by assuming Xl is the largest

IF X2> LARGEST THEN If the contents of X2 is larger than the

BEGIN .
LARGEST :=X2 contents of LARGEST replace LARGEST with
END the contents of X2

IF X3 > LARGEST THEN
BEGIN
LARGEST :=X3
END

If the contents of X3 is larger than the
contents of LARGEST replace LARGEST with
the contents of X3




237 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2. Write the assembly language algorithm to replicate the pseudocode:
IFa<x<bTHEN

BEGIN

3. Write the assembly language algorithm to replicate the pseudocode:
IFx =aorx=bTHEN

BEGIN

12.4 IF-THEN-ELSE STATEMENTS

Recall from chapter 5 the form of this conditional statement:

IF conditional expression THEN
BEGIN statements |
END
ELSE
BEGIN
statements 2
END

If the conditional expression is TRUE, statements| following the THEN will be carried
out and the program will skip statements 2.

If the conditional expression is FALSE, statements | following the THEN will not be
carried out and the program will execute statements 2.

Since the assembly language does not have if-then-else statements, the following table shows
how the jumps can be used to simulate this type of instruction for signed numbers.




BRANCHING AND THE IF-STATEMENTS = 233

IF-THEN-ELSE PSEUDO-
INSTRUCTIONS

SIGN JUMP INSTRUCTIONS

IF operand| > operand 2 THEN
BEGIN
(instructions)

END
ELSE
(instructions)

END

cmp operand|, operand 2
beginl: jng end|
(instructions)
end |:jg
(instructions)
end2:

IF operand! = operand 2 THEN
BEGIN
(instructions)

END
ELSE
(instructions)

END

cmp operand|l, operand 2
beginl:jnge end|
(instructions)
end |:jge end2
(instructions)
end2:

IF operand! = operand 2 THEN
BEGIN
(instructions)

END
ELSE
(instructions)

END

cmp operand |, operand 2
beginl:jne end|
(instructions)
end |:je end2
(instructions)
end2:

IF operand| # operand 2 THEN
BEGIN
(instructions)

END
ELSE
(instructions)

END

cmp operand|, operand 2
beginl: je end|
(instructions)
endl:jne end2
(instructions)
end2:

IF operand| < operand 2 THEN
BEGIN
(instructions)

END
ELSE
(instructions)

END

cmp operand|, operand 2
beginl:jnl endl
(instructions)
endl:jl end2
(instructions)
end2:




234 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

IF operand| < operand 2 THEN
BEGIN
(instructions)

END
ELSE
BEGIN
(instructions)

cmp operandl,operand 2
beginl: jg endl
(instructions)
endl:jng end2
(instructions)
end2:

The following table shows how the jumps can be used to simulate this type of instruction for unsigned

numbers.

IF-THEN-ELSE PSEUDO-
INSTRUCTIONS

UNSIGN JUMP
INSTRUCTIONS

IF operand| > operand 2 THEN
BEGIN
(instructions)

END
ELSE
BEGIN
(instructions)

END

cmp operand|, operand 2
beginl:jna end|l
(instructions)
endl: jnbe end2
(instructions)
end2:

IF operand! = operand 2 THEN
BEGIN
(instructions)

END
BEGIN
ELSE
(instructions)

END

cmp operand |, operand 2
beginl:jb endl
(instructions)
endl:jnb end2
(instructions)
end2:

IF operand! = operand 2 THEN
BEGIN
(instructions)

END
ELSE
BEGIN
(instructions)

END

cmp operand|, operand 2
beginl:jne end|
(instructions)
endl:je end2
(instructions)
end2:




BRANCHING AND THE IF-STATEMENTS = 233

IF operand| # operand 2 THEN

cmp operand|, operand 2

BEGIN
instructions beginl:je endl
( ) ginl:]
END (instructions)
ELSE endl:jne end2
BEGIN (instructions)
(instructions) end2:
END
<
IF operand| < operand 2 THEN cmp operand|, operand 2
BEGIN L
. : beginl: jnb end|
(instructions) ; .
(instructions)
END ndl:jb end2
ELSE enc b e
. . (instructions)
(instructions) end2:
END ’
IF operand| < operand 2 THEN
BEGIN cmp operand |, operand 2
(instructions) beginl: jg endl
END (instructions)
ELSE endl:jna end2
BEGIN (instructions)
(instructions) end2:
END

Example
PSEUDO-INSTRUCTIONS ASSEMBLY CODE
N:=7 mov n, 7
M:=5 mov m, 5
beginl:cmp n, 2

IFN=2THEN jne end|

BEGIN mov eax, n

N:=N+5 add eax, 5

END mov n, eax
endl:




236 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

begin2: je end2

ELSE

mov eax, h

BEGIN
add eax, 5
M=N+5

mov m, eax

END
end2:

Exercise

Assume n is a nonnegative integer.We define n factorial as:
n!'=n(n-1)(n-2) ... (2)(1) for n > 0 and 0! = |.Write an assembly
language pseudocode program that will compute the value of 10!

Modify the above problem as an algorithm for an arbitrary n integer.

Application: Assume we have N distinct objects, and r of these objects
are randomly selected.

The number of ways that this can be done, where order is important,
is (P. = N!Y/(N-r)L.

Write an assembly language pseudocode algorithm that will perform
the following tasks:

Task|:Assign the integer N and r.
Task2: compute: (P = N!/(N -r)!.

The number of ways that this can be done, where order is not impor-
tant, is

N!
r'(N —r)!

Write an assembly language pseudocode algorithm that will perform
the following tasks:

Task I:Assign the integer N and .

N!

Task 2: compute: m

. Write an assembly language algorithm that will compute the absolute

value of [x —y]|.




BRANCHING AND THE IF-STATEMENTS = 237

12.5 TOP-DOWN STRUCTURED MODULAR
PROGRAMMING

To program using top-down structured modular programming, we first begin with a list of
tasks that we want to process in the specified order:

Task |I: ——

Task 2: ———

Task ni ——

Next we write pseudocode for each task in a given module as follows.

Task |: Module |

Finally, we rewrite the pseudocode in assembly language.



238 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Basic rules

I. After writing the tasks, first we write the code for module | and check
for errors. Once all errors, if any, are corrected, we write module 2 and
check for errors.We continue in this manner.

2. We only use jumps to perform branching within the same module. If we
need to jump to outside the module, we can branch down to another
module, or if the program is menu driven, we can jump to the module
that contains the menu.

PROJECT

Write an AL algorithm that will find the correspondence for the given number N => M
where

p

a, B are selected base numbers; o, p = 2,3, ....,9, 16; a # .



LHAPTER THIRTEEN

CONSTRUCTING PROGRAMS IN
ASSEMBLY LANGUAGE PART II




240 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

Now that we can create logical and while statements in assembly language, we return to the
programs and algorithms in chapter || to rewrite them in the most general form.Therefore,
the following algorithms and programs will be modeled after those in chapter I1.

13.1 AN ASSEMBLY LANGUAGE PROGRAMTO
CONVERT A POSITIVE INTEGER NUMBER IN ANY
BASEB < I0TO ITS CORRESPONDING NUMBER IN
THE BASE 10

Examples

I.The following method will convert the number 2567, to its corresponding number in the
base 10:

N, = 2567, => ((2*8 + 5)*8 + 6)*8 + 7 = ((21)*8 + 6)*8 + 7 = 174%8 + 7 = 1399.

To convert the number 2567, to the base 10, we first need to write a sample program in
pseudocode and assembly language to capture the digits 2, 5, 6, and 7 from the number. The
following programs will perform such a task.

Program: Capture the digits of 2567,

PSEUDO-INSTRUCTIONS N A D
N:= 2567 2567
D:= 1000 2567 1000
A:= N+D 2567 2 1000
N:= N MOD D 567 2 1000
D:=D=10 567 2 100
A:= N+D 567 5 100
N:= N MOD D 67 5 100




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 241

D:= D+10 67 5 10

A:= N=D 67 6 10

N:= N MOD D 7 6 10

D:= D+10 7 6 I

A:= N+D 7 7 |

N:= N MOD D 0 7 0
CYCLE OF CODES | AL PSEUDOCODE | N EAX [EDX| D | T

N:= 2567 N:= 2567 2567

T:=10 T:=10 2567 10
D:= 1000 D:= 1000 2567 0 1000 | 10
WHILE N <> 0 WHILE N <> 0 2567 1000 | 10
BEGIN BEGIN 2567 1000 | 10
A:=N~+D EAX := N 2567 2567 1000 | 10
Eéf(‘:)i :E: AE;‘;: 5[')3 o B 2567 2 | 567 | 1000 | 10
A := EAX 2567 2 567 | 1000 | 10
N:= N MOD D N:= EDX 567 2 567 | 1000 | 10
D=D=+T EAX :=D 567 1000 [ 567 | 1000 | 10
EDE)?:)TE :QXMZ)TD o [ 5¢7 100 | 0 | 1000 | 10
D := EAX 567 100 0 100 | 10




242 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

A=N=D EAX := N 567 567 0 100 | 10
EAX := EAX + D

Epx= Eax Mob D 1 567 5 67 100 | 10

A := EAX 567 5 67 100 | 10

N:= N MOD D N:= EDX 67 5 67 100 | 10

D:=D+ 10 EAX := D 67 100 67 100 | 10
EAX := EAX =T

EDX := EAX MODT | ¢/ 10 0 100 110

D := EAX 67 10 0 o |10

A:=N=+D EAX := N 67 67 0 o |10
EAX := EAX + D

EDX = EAXMoD D | ¢/ £ y 1o

A:= EAX 67 6 7 0o |10

N:= N MOD D N:= EDX 7 6 7 10 |10

D:=D = 10 EAX := D 7 10 7 10 |10
EAX := EAX =T

EDX := EAX MOD T 7 ! Y 10 Y

D:= EAX 7 | 0 | 10

A=N<+D EAX := N 7 7 0 | 10
EAX := EAX + D

EDX := EAX MOD D 7 7 0 ! 10

A := EAX 7 7 0 | 10

N:= N MOD D N:= EDX 0 7 0 | 10

END END 0 7 0 | 10




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 243

PSEUDOCODE AL PSEUDOCODE AL CODE

N:= 2567 N:= 2567 mov n, 2567
T:=10 T=10 mov t, |0

D:= 1000 D:= 1000 mov d, 1000

while: cmp n, 0

WHILE N <> 0 WHILE N <> 0
je endl
BEGIN BEGIN ;begin
A=N~+D EAX := N mov eax, n
EAX := EAX +D o7 asb
EDX:= EAX MOD D .
div d
A := EAX mov a, eax
N:= N MOD D N:= EDX mov n, edx
Di=D =T EAX :=D mov eax, t
EAX:= EAX+T o7 eesb
EDX := EAXMODT :

div t
mov d, eax
jmp while

END END endl:
Exercise
I. Let N, = ajaa, ... a_.Write an assembly language algorithm that will

sum the digits of N.

2. Program: Write a sample program to compute

N, = 2567, => N, = ((2*8 + 5)*8 + 6)*8 + 7 = 1399.



244 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO-INSTRUCTIONS N SUM D T
N:= 2567 2567
SUM:=0 2567 0
T=10 2567 0 10
D:= 1000 2567 0 1000 10
A:= N%D 2567 0 1000 10
SUM:= SUM + A 2567 2 1000 10
SUM:= SUM*8 2567 16 1000 10
N:= N MOD D 567 16 1000 10
D:= D%T 567 16 100 10
A:= N%D 567 16 100 10
SUM:= SUM + A 567 21 100 10
SUM:= SUM*8 567 168 100 10
N:= N MOD D 67 168 100 10
D:= D%T 67 168 10 10
A:= N%D 67 168 10 10
SUM:= SUM + A 67 174 10 10
SUM:= SUM*8 67 1392 10 10
N:= N MOD D 7 1392 10 10
D:= D%T 7 1392 | 10
A:= N%D 7 1392 I 10
SUM:= SUM + A 7 1399 I 10




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 243

nglle(s)F AL;SSEISD o N S |EAX|EDX| D T
N:= 2567 N:= 2567 2567
E:=8 E:=8 2567

$:=0 $:=0 2567 (]

T:=10 T:=10 2567 0 10

D := 1000 D := 1000 2567 0 1000 10

WHILED <> | | WHILED <> | | 2567 0 1000 10

BEGIN BEGIN 2567 0 1000 10

A=N=+D EAX := N 2567 0 | 2567 1000 10

EAX := EAX = D j§ 2567 0 2 567 | 1000 10

A := EAX 2567 0 2 567 | 1000 10

S=S+A EAX :=S 2567 0 (] 567 | 1000 10

EAX := EAX + A f§ 2567 0 2 567 | 1000 10

S := EAX 2567 2 2 567 | 1000 10

S:= S*E EAX := S 2567 2 2 567 | 1000 10

EAX := EAX *E [ 2567 2 16 567 | 1000 10

S := EAX 2567 16 16 567 | 1000 10

N := N MOD D EAX := N 2567 16 | 2567 | 567 | 1000 10

EAX := EAX = D j§ 2567 16 2 567 | 1000 10

N := EDX 567 16 2 567 | 1000 10




245 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

D:=D =+ 10 EAX :=D 567 16 1000 | 567 1000 10
EAX:= EAX =T @ 567 16 100 0 1000 10

D:= EAX 567 16 100 0 100 10

EAX := N 567 16 567 0 100 10

EAX :=EAX +DJ 567 16 5 67 100 10

A = EAX 2567 16 5 67 100 10

S=S+A EAX =S 2567 16 16 67 100 10
EAX:= EAX +A j 567 16 21 67 100 10

S:= EAX 567 21 21 67 100 10

= S*E EAX =S 567 21 21 67 100 10

EAX := EAX *E 567 21 168 0 100 10

S := EAX 567 168 168 0 100 10

N:= N MOD D EAX := N 567 168 567 0 100 10
EAX :=EAX +=DJ 567 168 5 67 100 10

N := EDX 67 168 5 67 100 10

D:=D =+ 10 EAX :=D 67 168 100 67 100 10
EAX:= EAX +T 67 168 10 0 100 10

D:= EAX 67 168 10 0 10 10

EAX := N 67 168 67 0 10 10

EAX:=EAX =D 67 168 6 7 10 10

A := EAX 67 168 6 7 10 10




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART 11 = 247

S=S+A EAX:= S 67 6 168 168 7 0 [ 8] 10
EAX:= EAX + A 67 6 168 174 7 10 | 810
S:= EAX 67 6 174 174 7 o [ 8] 10
S:= S*E EAX =S 67 6 174 174 7 0o [8] 10
EAX := EAX *E 67 6 174 | 1392 0 0 (8] 10
S := EAX 67 6 | 1392 | 1392 0 0 [8] 10
N:= N MOD D EAX := N 67 6 | 1392 67 0 10 | 810
EAX := EAX + D 7 6 | 1392 6 7 o [8] 10
N := EDX 7 6 | 1392 6 7 0 (8] 10
D:=D + 10 EAX :=D 7 6 | 1392 10 7 0 [ 8] 10
EAX:= EAX =T 7 6 | 1392 | 0 10 [ 8] 10
D:= EAX 7 6 | 1392 I 0 I 8110
END END 7 6 | 1392 I 0 I 8110
S=S+A EAX =S 7 7 | 1392 | 1392 0 I 8110
EAX:= EAX + A 7 7 | 1392 | 1399 0 I 8|10
S:= EAX 7 7 11399 | 1399 0 I 8|10
PSEUDOCODE AL PSEUDOCODES AL CODE
N := 2567 N:= 2567 mov n, 2567

E:=8 mov e, 8

S: S:=0 mov s, 0

T: T=10 mov t, |10




248 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

D := 1000 D := 1000 mov d, 1000
WHILE D <> | WHILE D <> | while: cmp d. |
je endl
BEGIN BEGIN ;begin
EAX := N mov eax, n
EAX := EAX + D mov edx, 0
A=N+D
div d
A := EAX mov a, eax
EAX =S mov eax, s
Ss==S+A EAX := EAX + A add eax, a
S := EAX mov s, eax
EAX := S mov eax, s
S:= S*E EAX := EAX *E mul e
S := EAX mov s, eax
EAX := N mov eax, n
N:= N MOD D EAX =N+ D mov' edx,0
div d
N := EDX mov n, edx
EAX :=D mov eax, d
D:=D =+ 10 mov edx, 0
EAX:= EAX =T
div t
D:= EAX mov d, eax
END END jmp while
EAX =S end: mov eax, s
S=S+A EAX:= EAX + A add eax, a
S:= EAX mov s, eax




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 243

13.2 ANALGORITHMTO CONVERT ANY INTEGER
NUMBER INTHE BASE 10 TO A CORRESPONDING
NUMBER INTHEBASEB < 10

Using the Euclidean division theorem, we now review how to use the manual method to
convert a number in the base |10 to a number in the base b.

Step |: We want to write N in the form:
N=ab"+a b'+..+ab+a
Step 2:
N=Qb+R=(ab™+a b..+a)b+a;

Here, Q = ab™ + a b ... + ab + a = (ab™ + a b™ ... +a)b + a
And R=a_

Step 3:Set N = Q.
Q=Qb+R =(ab"+a b. +a)b+a,
Where Q, =ab™ +a_ b™.. . +a,
R, =a,
Step 4: Continue in this manner until Q_= 0.
Example:
Convert the following decimal numbers to the specified base.
I. 1625 => N,
Step |: 1625 = (1625 + 8)*8 + | = 203*8 + |



230 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Therefore, 1625 => N, = 3%8° + |%8% + 3*8 + | « Ng = 3I3|g.

Program: Pseudocode to convert the integer number 1625 to the base 8.

PSEUDOCODE N SUM TEN MUL | BASE R
BASE := 8 8
N := 1625 1625 8
SUM:=0 1625 0 8
MUL := | 1625 0 I 8
TEN := 10 1625 0 10 I 8
R := N MOD BASE 1625 0 10 I 8 I
N:= N + BASE 203 0 0] I 8 |
R := R*MUL 203 0 10 I 8 |
SUM:= SUM + R 203 1 10 I 8 I
MUL:= MUL*TEN 203 I 10 10 8 I
R := N MOD BASE 203 I 10 10 8 3
N:= N + BASE 25 I 10 10 8 3
R := R*MUL 25 I 10 10 8 30
SUM:= SUM + R 25 31 10 10 8 30
MUL:= MUL*TEN 25 31 10 100 8 30
R := N MOD BASE 25 31 10 100 8 I
N:= N + BASE 3 31 10 100 8 I
R := R*MUL 3 31 10 100 8 100




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 23l

SUM:= SUM + R 3 131 10 100 8 100
MUL:= MUL*TEN 3 131 10 1000 8 100
R := N MOD BASE 3 131 10 1000 8 3
N:= N + BASE 0 131 10 1000 8 3
R := R*MUL 0 131 10 1000 8 3000
SUM:=SUM + R 0 3131 10 1000 8 3000
CYCLE OF
CODES AL PSEUDOCODE| N ) M EAX |EDX|B
B:=8 B:=8 8
N := 1625 N := 1625 1625 8
$=0 S:=0 1625 0 8
M:= M:= 1625 0 8
T:=10 T=10 1625 0 8
WHILEN <> 0 WHILE N <> 0 1625 0 8
BEGIN BEGIN 1625 0 8
R:= N MOD EAX:= N 1625| 0 1625 8
EAX:= EAX =+ B 1625| 0 203 8
EDX:= EAX MOD 1625 0 203 I 8
R:= EDX 1625 0 203 I 8
N:=N +B N:= EAX 203 0 203 I 8
R := R*M EAX:= R 203 0 I I 8
EAX:= EAX*M 203 0 I I 8
R:= EAX 203 0 I I 8




232 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

S=S+R EAX:= S 203 0 I | 0
EAX:= EAX + R 203 0 I | |
S:= EAX 203 | I | I
M:= M*T EAX:=M 203 I I | I
EAX:= EAX*T 203 I I | 10
M:= EAX 203 I 10 | 10
R:= N MOD EAX:= N 203 I I | 203
EAX:= EAX + B 203 I I | 25
R:= EDX 203 I I 3 25
N:=N+B N:= EAX 25 I 10 3 25
R := R*M EAX:=R 25 I 10 3 3
EAX:= EAX*M 25 I 10 3 30
R:= EAX 25 I 10 30 30
S=S+R EAX:=S 25 I 10 30 I
EAX:= EAX + R 25 I 10 30 31
S:= EAX 25 31 10 30 31
M:= M*T EAX:= M 25 31 10 | 10
EAX:= EAX*T 25 31 10 I 100
M:= EAX 25 31 100 I 100
R:= N MOD EAX:= N 25 31 100 I 25
EAX:= EAX + B 25 31 100 I 3
EDX:= EAX MOD B 25 31 100 I 3
R:= EDX 25 31 100 I 3
N:=N+B N:= EAX 3 31 100 I 3




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 253

R := R*M EAX:=R 3 31 100 I I I 8
EAX:= EAX*M 3 31 100 I 100 I 8

R:= EAX 3 31 10 100 100 I 8

S=S+R EAX:= S 3 31 100 100 31 I 8
EAX:= EAX + R 3 31 100 100 131 I 8

S:= EAX 3 131 100 100 131 I 8

M:= M*T EAX:=M 3 131 100 100 100 I 8
EAX:= EAX*T 3 131 100 1 1000 I 8

M:= EAX 3 131 | 1000 I 1000 I 8

R:= N MOD EAX:= N 3 131 | 1000 I 3 I 8
EAX:= EAX + B 3 131 | 1000 I 0 I 8

EDX:= EAX MOD B 3 131 | 1000 I 0 3 8

R:= EDX 3 131 | 1000 3 0 3 8

N:=N+B N:= EAX 0 131 | 1000 3 0 3 8
R := R*M EAX:=R 0 131 | 1000 3 3 3 8
EAX:= EAX*M 0 131 | 1000 3 3000 3 8

R:= EAX 0 131 ] 1000 (3000 3000 3 8

S=S§+R EAX:=S 0 131 | 1000 3000 131 3 8
EAX:= EAX + R 0 131 | 1000 [3000( 3131 3 8

S:= EAX 0 3131 1000 [3000( 3131 3 8

M:= M*T EAX:=M 0 3131 1000 |3000| 1000 3 8
EAX:= EAX*T 0 3131 1000 |3000 (10000 3 8

M:= EAX 0 313110000 ( 3000 | 0000 3 8

END END 0 |[3131] 10000 | 3000 10000 3 8

1625 => 3131,



234 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE AL PSEUDOCODE AL CODE
B:=8 B:=8 mov b, 8
N := 1625 N := 1625 mov n, 1625
S=0 $:=0 mov s, 0
M:= | M:= | mov m, |
T:=10 T:=10 mov t, 10
WHILE N <> 0 WHILE N <> 0 while: cmp n, 0
BEGIN BEGIN begin: je end|
EAX:= N mov eax, n
EAX:= EAX+B mov edx, 0
R:= N MOD B
EDX:= EAX MOD B div b
R:= EDX mov r, edx
N:=N +B N:= EAX mov n, eax
EAX:=R mov eax, r
R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax
EAX:= S mov eax, s
S:=S+R EAX:= EAX + R add eax, r
S:= EAX mov s, eax
EAX:= M mov eax, m
M:= M*T EAX:= EAX*T mul t
M:= EAX mov m, eax
jmp while
END END end:

1625 => 3131,




CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 254

Note: See following model program.

; This program converts 1625 = 3131,
.386

.MODEL FLAT
.STACK 4096

.DATA

n dword ?
s dword ?
m dword ?
r dword ?
b dword ?
t dword ?

.CODE

_start:

;start assembly language code
mov b, 8

mov n, 1625
mov s, 0

mov m, |

mov t, |0
Whilel:cmp n, 0
begin: je end|
mov eax, n

mov edx,0

div b

mov r, edx

mov n, eax

mov eax, r




23b = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

mul m

mov r, eax
mov eax, s
add eax, r
mov s, eax
mov eax, m
mul t

mov m , eax

jmp whilel
endl:

;end of assembly language code
PUBLIC_start

END

PROJECTS

|. Definition of prime numbers: A positive integer number N > | is said to
be a prime number if N mod(k) = 0 only for k =1 and k = N.

Definition of a pair-wise odd sequence: An infinite pair of numbers
2N+ ,2N +3);N=1,2,3, ...

Definition of pair-wise prime numbers: Those number pairs in the above
sequence where both numbers are prime.

Examples: (3, 5), (5,7), (11, 13), ...

(a) Write an AL algorithm that checks an arbitrary pair-wise number
to determine if it is a pair-wise prime number.

(b) From the algorithm, write an AL program to determine if (3335787,
3335789) is a pair-wise prime numbers.



CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART Il = 257

2. The Fibonacci numbers

The Fibonacci numbers are a sequence of integer numbers generated
as follows:

Step |:Start with O, I.

Step 2:The next number is generated by adding the previous two num-
bers: 0, I, I.

Step 3:To generate the next number, continue by adding the previous
two numbers:0,1,1,2,3,5,8, 13,21, ...

Write an assembly language program that will generate a sequence N
Fibonacci numbers.



LHAPTER FOURTEEN

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING




260 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.1 INRODUCTION: LOGICAL EXPRESSIONS

Logical expressions and values are similar to conditional expressions as defined in chapters 5
and 6. However, due to the nature of the applications, we will use different terminology in
this chapter.

Definition of logical values:

Logical values are of two types: true and false.

Definition of logical identifiers:

Logical identifiers are registers and variables that are assigned only values true and false.
Definition of logical operators:

There are three binary logical operators and one unary logical operator:

The binary logical operators are .AND., .OR., and .XOR.The unary logical operator is .NOT.
Definition of logical expressions:

A logical expression is made up of logical values, logical identifiers connected by logical
operators.

The following table gives the logical values that result from the four logical operators.

OPERATORS RESULTING VALUE

true .OR. true = true
OR true .OR. false = true
T false .OR. true = true
false .OR. false = false

true .AND. true = true
true .AND. false = false

AND. false .AND. true = false
false .AND. false = false
true .XOR. true = false
true .XOR. false = true

XOR. false . XOR. true = true
false . XOR. false = false

NOT. .NOT. true = false

.NOT. false = true




LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 26l

Examples
I. Logical value:
5=2+3
takes on the value true.
2. Logical identifiers: X where
X:=(5=1-4)
X takes on the value false.
3. true .AND. (X = false) takes on the value false.
Y;=5
VALUE := true
(.NOT. (VALUE = true)) .OR. (Y < 3)
The above expression takes on the value false .OR. false = false.
4. Z:=0
Y = true
.NOT. ((Z < 2) .XOR. (Y = false))

takes on the value false.

Relational operators
The following six relational operators connect the logical values and identifiers.
Definition of six relational operators:

The six relational operators are:

Operator Interpretation
l. = Equality
2. <> Inequality
3. < Less than
4. > Greater than
5. <= Less than orequal to
6. >= Greater than or equal to



267 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples Values
5=2+3 true
9 <>3*3 false
4 <=4 true
-17 <7 true
(7=2+3).0OR. (4<1) false
LOGICAL EXPRESSIONS VALUES
(5=2-4) .OR.(2 <> 3) false .OR. true = true
(5 =2-4) .AND. (2 <> 3) false .AND. true = false
(5 =2-4) XOR. (2 <>3) false XOR.true = true
.NOT. (5 = 2-4) .NOT. (5 = 2-4) = true

Logical Statements
Definition of logical statements:

A logical statement is a an instruction where the variables are declared to be logical identi-
fiers, and these variables can be assigned logical values resulting from logical expressions.

Example:
PSEUDOCODE X Y L y 4
X:=4 4
Y:=6 4 6
L=(X+Y =10) 4 6 true
Z =L .XOR. (X-Y <>0) 4 6 true False
Z:=7Z AND.L 4 6 true False




LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 263

Exercise:

Complete the following.

PSEUDOCODE X Y L y4
X:=2
Y:=5

Li= (X + 2%Y > 2)

Z := NOT. (L .OR. (.NOT. (X-Y <> 0)))

Z := (NOT. (L .AND. (Z .OR. L)) .XOR. Z

Example:
The following program demonstrates how these logical expressions can be used in a program.
Task|:Assign three integer numbers.

Task 2: If the sum of these numbers is greater than 10 but less than 20, divide
the sum by 2; otherwise, compute the average of these numbers.

For the following program, assume the numbers 3, 4, and 9 are assigned.

PSEUDOCODE X | vy | z S L
X:=3 3
Y:=4 3 4
Z:=9 3 4 9
S=X+Y+Z 3 4 9 16
L:=(S> 10) .AND. (S < 20) 3 4 9 16 true
IF L = true THEN 3 4 9 16 true
BEGIN 3 4 9 16 true




264 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

S:=S%2 3 4 9 8 true
END 3 4 9 8 true
ELSE 3 4 9 8 true

BEGIN 3 4 9 8 true

S:= 5%3 3 4 9 8 true
END 3 4 9 8 true

Exercises

In the following program, indicate if the following statements are correct or
incorrect.

X:=2

Z: = true

V:= .NOT. (true .OR. false)

V:= (.NOT. (V .OR.V)) .AND.V

Evaluate the following expressions:

(@) (NOT. (true . XOR true)) .AND. (.NOT. (false .OR. true))
(b) (.NOT. (true .XOR false)) .OR. (.NOT. (true .OR. false))
(c) .NOT. ((NOT.(true .XOR. false)) .AND. ((true .OR. false)))
Evaluate the following expressions:

(2) (.NOT. (true .AND. true) = false) .OR. false

(b) (.NOT. (false .AND. true) = true) .XOR. false

(c) ((NOT. (false .AND. false) = true) .OR. true

(d) (.NOT. (true .OR. true) = false) .AND. false

(e) (.NOT. (false .OR. true) = true) .AND. false

(f) (NOT. (false .OR false) = true) .AND. true

Is the following statement true or false?

(.NOT. (false .XOR. true) = true) .AND. false




LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 264

14.2 LOGICAL EXPRESSIONS IN ASSEMBLY LANGUAGE

In assembly language the value true is associated with the integer number |, and the value false
is associated with the integer number 0.The four logical operations in assembly language are

given by the following table.

PSEUDO LANGUAGE ASSEMBLY LANGUAGE
LOGICAL OPERATORS LOGICAL OPERATORS
.AND. And
.OR. Or
XOR. Xor
.NOT. Not

The following table gives the logical values in assembly language that result from the above
four logical operators.

ASSEMBLY LANGUAGE
LOGICAL OPERATORS RESULTING VALUE
and land | =1
land0 =0
Oand I =0
0and0=0
lorl =1
or lor0=1
Oor | =1
Oor0=0
W
| xor 0 =1
0xor | =1
Oxor0=0
W
not 0 = |




266 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The Format Of The Assembly Language
Logical Operators

The following are the formats of the four assembly language logical operators:
and destination, source
or destination, source
xor destination, source
not destination
Definition of destination:
A destination is always a register where the logical value is assigned.
Definition of source:

The source is a logical identifier, logical value (0 or |), or register containing a logical value. If
the source is an identifier variable or register, then the source must be of the same data type
as the destination data type.

Important: The not logical instruction will change, in the register, the 0 bits to the | bits and
the | bits to the 0 bits.

Examples

The and operator

ASSEMBLY LANGUAGE AL
mov al, | 00 00 00 01
and al, | 00000001
and al, 0 00 00 00 00
mov al, 0 00 00 00 00
and al, 0 00 00 00 00




LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 267

The or operator

ASSEMBLY LANGUAGE AL
mov al, | 00000001
oral, | 00 000001
oral,0 00 000001
mov al, 0 00 00 00 00
oral,0 00 00 00 00
The xor operator
ASSEMBLY LANGUAGE AL
mov al, | 00 00 0001
xor al, | 00 00 00 00
xor al, 0 00 00 00 00
xor al, | 0000000l
The not operator
ASSEMBLY LANGUAGE AL
mov al, | 00 000001
not al [rrririo
not al 00 00 00 Ol
mov al, 0 00 00 00 00
not al Ll
not al 00 00 00 00




268 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.3 ASSIGNING LOGICAL EXPRESSIONS A LOGICAL

VALUE IN ASSEMBLY LANGUAGE

The following examples will demonstrate how to create logical expressions and assign their

logical values.

Examples:

I. Calculate the union of two logical variables where X is true and Y is

false.
PSEUDO- AL ASSEMBLY AL
CODE PSEUDOCODE | LANGUAGE
X:= true X:= true mov X, |
Y:= false Y:= false mov y, 0
AL:=X mov al, x |
Z:= X .OR.Y .OR.AL,Y oral,y |
Z:=AL mov z, al I

2. The following is an assembly language algorithm that evaluates

(A .AND.

Solution:
mov al, a
and al, b
mov bl, a
and bl, c

or al, bl

B) .OR. (A .AND. C).



LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 269

Exercises:

I. Complete the following table.

PSEUDO- AL ASSEMBLY
CODE PSEUDOCODE | LANGUAGE

X:=true
Y:= false
Z:= X .AND.Y

2. Write an assembly language algorithm that evaluates

A .AND. (B .OR. C).

When programming in assembly language, we cannot use logical statements directly. To per-
form logical statements, we need to use the compare and jump statements described in
chapter 12.This is done by assigning values | or 0 so that the compare and the appropriate
jump statements can properly evaluate and carry out the logical statements desired. The
following example shows how this is done.

Example:
We wish to write an assembly language program that will perform the following tasks:
Task I:Assign two numbers to x and y.

Task 2: If both numbers are greater than 10, compute the sum of the two
numbers.

Task 3: If at least one of the numbers is less than or equal to 10, compute
the product of the two numbers.



270 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE X Y y 4 LOG
X:=5
Y:= 60 60
LOG:= (X > 10) .AND. (Y > 10) 60 false
IF LOG = true THEN 60 false
BEGIN 60 false
Z=X+Y 60 false
END 60 false
ELSE 60 false
BEGIN 60 false
Z:= X*Y 60 300 false
END 60 300 false
PSEUDOCODE AL Y| Z |LOG|EAX|EBX
X:=5 mov X, 5
Y:= 60 mov Y, 60 60
LOG := (X > 10) .AND. (Y > 10) mov eax, 0 60 0
mov ebx, 0 60 0 0
cmp %, 10 60 0 0
jng LI 60 0 0
mov eax, | 60 0 0
Ll:cmpy, 10 60 0 0
jng L2 60 0 0
mov ebx, | 60 0 I
L2: and eax, ebx 60 0 I
mov log, eax 60 0 0 I




LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 271

IF LOG = true THEN cmp log, | 5160 0 0 I
BEGIN beginl:jneendl | 5 | 60 0 0 I
Z=X+Y mov eax, X 5160 0 0 |
add eax, y 5160 0 0 I

mov z, eax 5160 0 0 |

END endl: 5160 0 0 I
ELSE je end2 5160 0 0 I
BEGIN begin2: 5160 0 0 I
Z:= X*¥Y mov eax, X 5|60 5 0 |
mul y 5160 5 300 I

mov z, eax 5160|300 5 300 I

END end2: 5160|300 0 300 I

Exercises

I. For the above program, assume x = 20 and y = 30. With these values,
change the above program.

2. For the above program, assume x = 2 and y = 3. With these values,
change the above program.

3. Write an assembly language algorithm that will perform the following
tasks:

Task|:Assign two positive integer numbers x and y.
Task 2:1f x > 10 and y > 10, then compute x +y.
Task 3:1f x > 10 and y < 10, then compute x*y.

Task 4:1f x < 10 and y > 10, then compute 2¥(x + y).

Task 5:1f x < 10 and y < 10, then compute 3*(x + y).



272 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.4 MASKS

Definition of a mask:

A mask is a binary integer number (BYTE, WORD, DWORD) used with a selected logical
operator (and, or, xor) that will be matched bit-by-bit with the corresponding binary number
contained in a selected register.

The Mask Instruction
Definition of the mask instruction:
logical operator destination, source,

where the destination and source are defined above. If the source is an identifier, the destina-
tion and source must be of the same data type.

For this instruction, matching the following resulting values will hold the following.

ASSEMBLY LANGUAGE
LOGICAL OPERATORS RESULTING VALUE
land | =1
land0=0
and
Oand I =0
0and0=0
lorl =1
or lor0=1
Oor0=0
| xor | =0
| xor 0 =1
xor
Oxor |l =1
Oxor0=0




LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 273

Examples:

Assume AX and BX contain the following binary numbers:
AX:0110 1110 11000011
BX: 1001 11000101 1011
Here, BX will be the mask.
The following examples will show how the mask works, resulting in changing of bits in AX:
and ax, bx;
AX:0110 1110 11000011
BX: 1001 I100 0101 1011

)
AX:0000 1100 0100 0011

or ax, bx;
AX:0110 111011000011
BX: 1001 11000101 1011

)
AX:IEEE o ol 1orl

Xor ax, bx;
AX:0110 111011000011
BX: 1001 11000101 1011

)
AX: 11110010 1001 1000



274 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

Assume CX contains an arbitrary number. For the following assembly instructions, explain
what changes to CX; if any, result from the following masks:

. and cx, cx

2. or cx, cx

3. xor cx, cx

4. and cx, (not cx)
5. or cx, (not cx)

6. xor cx, (not cx)

14.5 SHIFTING INSTRUCTIONS

There are two types of shifting instructions: the shift instructions and the rotation
instructions.

The Shift Instructions

The shift instructions move the bits in a register to the left or to the right by a designated
number. The following are the shift instructions:

shl register, n; will shift the bits in the register to the left by n places.The extreme left bits will
fall out of the register. Added bits will be the bit 0. The added bit(s) will be in bold.

shr register, n; will shift the bits in the register to the right by n places. The extreme right bits
will fall out of the register, but the left added bits will be the bit 0. The added bit(s) will be in
bold.

Examples
For the following examples, assume the register AX contains 1011 0100 1110 I011.
shlax, | ;1011 0100 1110 1011
&

orro 1ool riorotrio



LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 273

shl ax,4 1011 0100 1110 1011
&

olroo 1o 1ol 0000

shrax, | ;1011 0100 I110 1011
=

olol 1oloolliolol

shrax,4 1011 0100 I110 1011
=

0000 1011 0100 1110

Multiplication and Division Applications

One important application of the left shift results in multiplying the original number by a
power of 2.

Examples:

I. Assume AX contains 0000 0000 0000 00l I, which is equal to the
number 3d.

shl ax, | will result in AX changed to 000 0000 0000 00110, which is
equal to the number 6d.

2. Assume AX contains 0000 0000 0000 0011, which is equal to the
number 3d.

shl ax, 2 will result in AX changed to 0000 0000 0000 1100, which is
equal to the number 12d.

One important application of the right shift results in dividing the original
number by a power of 2.

3. Assume AX contains 0000 0000 0000 OI10, which is equal to the
number 6d.

shr ax, | will result in AX changed to 0000 0000 0000 001 I, which is
equal to the number 3d.



276 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The Rotation Instructions

There are two types of rotation instructions:

rol destination, n; rotate the bits to the left n places. The bits that are shifted off the left-hand
side replace the bits that are added on the right-hand side.

ror destination, n; rotate the bits to the right n places. The bits that are shifted off the right-
hand side replace the bits that are added on the left-hand side.

Examples
I. Assume AX contains 1100 0000 0000 0101.
rol ax, 2 will result in AX changed to 0000 0000 0001 OI1I1.
2. Assume AX contains | 100 0000 0000 0101.

ror ax, 3 will result in AX changed to 1011 1000 0000 0000.

;This is the above program.
.386

.model flat
.stack 4096

.data

n dword ?
s dword ?
m dword ?
r dword ?
b dword ?
t dword ?

.code

_start:

;start assembly language code
mov X, 5

mov y, 60

mov eax, 0




LOGICAL EXPRESSIONS, MASKS, AND SHIFTING = 277

mov ebx, 0
cmp x, 10

jng L1

mov eax, |
Ll:ecmpy, 10
jng L2

mov ebx, |

L2: and eax, ebx
mov log, eax
cmp log, |
beginl: jne end|
mov eax, X

add eax, y

mov z, eax
endl:

je end2

begin2:

mov eax, X

mul y

moyv Z, eax

end?2:

;end of assembly language code

public _start

End




278 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECTS
I. There are important equations in logical expression:
Morgan’s law I: .NOT. (A .OR. B) = (NOT.A) .AND. (.NOT. B)
Morgan’s law Il: .NOT. (A .AND. B) = (.(NOT.A) .OR. ((NOT. B)

For each law, write an AL program that ‘proves’ the two laws are true
for all possible values of A and B.

2. A .AND. (B .OR.C) = (A .AND. B) .OR. (A .AND.C)

is referred to as the distributive law.Write an AL program that proves
the law is true for all possible values of A, B, and C.

3. Two different positive integer numbers are said to be relatively prime
if both numbers have no common divisors other than the number 1.

Examples
The numbers 51 and 32 are relatively prime, since they have no common divisors.
The numbers 22 and 40 are not relatively prime, since 2 divides both numbers.

Write an assembly language algorithm that will determine if 1,048,576 and 387,420,489 are
relatively prime.



LHAPTER FIFTEEN

INTEGER ARRAYS




280 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

So far, we have seen that we can save integer numeric values in variables such as x, y, z, and so
on. Restricting ourselves to only variables of this type does not allow us to effectively store
large amount of data.To accomplish this, we need to define arrays (tables).We first introduce
one-dimensional arrays in pseudocode.

15.1 REPRESENTING ONE-DIMENSIONAL ARRAYS
IN PSEUDOCODE

Definition of a one-dimensional array:

A one-dimensional array is a collection of cells that all have the same name but are distin-
guished from one another by the use of subscripts. A subscript is a positive integer number in
parentheses that follows the array’s name.

Examples
I. a(l),a(2),a(3),...,a(99),2a(100)
2. num(l), num(2), ..., num(999), num(1000)

In the first example, the array named a can store 100 pieces of data, and the in the second
example, the array named num can store 1,000 pieces of data.

Rules for arrays
I. The array name is a valid identifier.
2. Each subscript must be a positive integer.

3. Integer numeric values can be stored in these array cells.

Examples
a(10):=3
num(100) := -7

sum := a(10) + num(100)



INTEGER ARRAYS = 28

Programming examples
The following program in pseudocode will perform the following tasks:

Task 1:

Task 2:

Task 3:

Task 4:

Task I:Store the numbers 2,4, 6, ..., 1000 in array cells.
Task 2: Add the numbers in the cells.

Task 3: Compute the average.

Task 4: Store all the numbers that are greater than the average.

k=1

=0

WHILE j < 1000
BEGIN

ji= 2*K

num(k) := j
ki=k + |

END

total:= 0

k:=0

WHILE k < 500
k:==k+ 1

total := total + num(k)
END

average : = total/500

k:=0
WHILE k < 500
k:=k+ 1

IF num(k) > average THEN
Store(k) := num(k)
END



287 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

Write a pseudocode algorithm that will perform the following tasks:
Task |: Store the numbers 2,22 23, ...,2" in array cells.
Task 2: Add the numbers in the cells.

Task 3: Compute the integer average (the average without the
remainder).

Finding the largest value: Write a pseudocode algorithm that will per-
form the following tasks:

Task |: Store n nonnegative integers in an array.
Task 2: Find the largest value.

Converting positive decimal integers into binary: Write a pseudocode
algorithm that will perform the following task:

Task I: Convert a nonnegative integer number into binary and store the
binary digits in an array.

Writing numbers backward: Write a pseudocode algorithm that per-
forms the following tasks:

Task |: Store a positive integer number.
Task 2: Store the digits in an array backward.

A proper divisor of a positive integer N is an integer that is not equal
to | or N and divides N without a remainder. For example, the proper
divisors of 21 are 3,and 7.

Write a pseudocode algorithm that performs the following tasks:
Task |: Store a positive integer number N.
Task 2: Find and store in an array all the proper divisors of N.

The Fibonacci number sequence: The Fibonacci numbers are the
following:

0,1,1,2,3,58,13, ..,

where0+ 1 =1, +1=2,1+2=3,2+3=5,and so on.



INTEGER ARRAYS = 283

The general rule is to add the previous two numbers in the sequence to
get the next number.Write a pseudocode algorithm that will perform the
following tasks:

Task |:Store a positive integer N.

Task 2: Compute and store in an array all Fibonacci numbers less than
or equal to N.

15.2 CREATING ONE-DIMENSIONAL INTEGER ARRAYS
IN ASSEMBLY LANGUAGE

There are several ways to create a one-dimensional integer array. We begin by starting an
array at the location of a given variable.We define an array using the directive instruction in
the data portion of the program.We will use the directive

variable name data type ?
to establish the location in memory of the cell a(l).

Since the assembler will determine the beginning location of the first cell of the array, we
can capture the location with the lea instruction. The following is the definition of the lea
instruction in the instruction portion of the program:

The lea 32-bit register, variable name of the
array instruction

Definition of the lea instruction:

The lea instruction will store into any 32-bit register, the first byte location of a variable.

Example
x byte ?
lea ebx, x

In this example the lea instruction will store in ebx, the first byte location of the variable x.
Before we discuss arrays in assembly language, we need to better understand how data is
stored in main memory. All integer data are represented as bytes, words, or dwords. All of
these are made up of bytes: the double word (DWORD) is made up of 4 bytes (32 bits); the
word (WORD) is made up of 2 bytes, and the byte (BYTE) is made up of | byte.We can think
of the main memory as a large memory table made up of columns and rows; each cell of the
table is a byte, each identified with a numeric location.



284 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

For example, assume the identifiers x and y are defined as double words and assigned the
values 3h and 5875h, respectively:

x dword 3h
y dword 5875h

Assume the assembler selects in memory cell locations | to 4 for x and 13 to 16 for y. Our
memory table would look something like the following.

I 2 3 4
1 1 1 1
1 1 1 1
o , 0 0o , 0 0o ., 0 o ., 3
: : : :
13 14 | 15 16 |
1 1 1 1
o , 0 o ., 0 5 , 8 7 . 5
! ! | !

Creating a one-dimensional array of a given data type

When we create an array, we can store the array elements as three types of data: byte, word,
and dword.

The following steps will define and set up the array.
Step |: Define the variable name and its data type byte.

Step 2: Using the lea instruction, store the first byte location in a 32-bit
register.



INTEGER ARRAYS = 283

Examples

.

x byte ?
lea ebx, x
2.

y word ?
lea eax,y
3.

z dword ?

lea edx, z

Storing data in the array using a variable’s location

The following definition is the assignment statement that will allow us to perform data assign-
ments to and from memory cells:

mov [register], source instruction.

where the register must be a 32-bit register, and the source can be a register of the same
data type as the variable.

Definition: mov [register], source

The mov [register], source instruction will store the number in the source register directly
in the memory location indicated by the contents of the register, where the following rules

apply:
Rule I:The lea instruction will establish the first byte location.
Rule 2: The register must be EAX, EBX, ECX, or EDX.
Rule 3:The source can be a register of the same data type as the variable.

Rule 4:The [register] indicates the cell location where the bytes are to be
located.

The [register] is called the indirect register.

For all examples in this chapter, we assume all numbers are represented as hexadecimals.



286 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

The following examples show how arrays of different data types are created and data is
stored.

AL CODE AL X
x byte 68h 68
lea ebx, x 68
mov al, 9Ah 9A 68
mov [ebx], al 9A 9A
2.
AL CODE AX X
x word ?
lea ebx, x
mov ax, 237Ah 23 7A
mov [ebx], ax 23 7A 23 7A
3.
AL CODE EAX X
x dword 17223FDh 01 72 23 FD
lea ebx, x 0l 72 23 FD
mov eax, 0A637Ah 00 0A 63 7A 01 7223 FD
mov [ebx], eax 00 0A 63 7A 00 0A 63 7A




INTEGER ARRAYS = 287

4. The following program will store numbers |13h, 29h,25h into the array

X of type BYTE.

Important: Since we are storing in individual bytes, we increment by |I.

5. The following program will store numbers |3h, 29h, and 25h in the

array of type WORD.

PSEUDOCODE AL CODE AL X
Array X x byte ? byte byte byte
lea ebx,x | 2 3
X(1):=13h mov al, 13h 13
mov [ebx], al 13 13
add ebx, | 13 13
X(2):=2%h mov al, 2%h 29 I3
mov [ebx], al 29 13 29
add ebx, | 29 13 29
X(3):=25h mov al, 25h 25 13 29
mov [ebx], al 25 13 29 25

PSEUDOCODE | AL CODE
Array X x word ?
lea ebx,x
X(1):=13h mov ax, I13h | 00 13

mov [ebx], ax

0013

add ebx, 2

00 I3

X
word | | word 2 | word 3
00 I3
00 I3




288 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

X(2):=2%h mov ax, 29h | 00 29
mov [ebx], ax | 00 29

add ebx, 2 00 29

X(3):=25h mov ax, 25h | 00 25
mov [ebx],ax | 00 25

Important: Since we are storing in individual bytes for each word, we
increment by 2.

6. The following program will store numbers |3h, 29h, and 25h in the
array of type DWORD.

PSEUDOCODE | AL CODE EAX X
x dword ?
Array X dword | dword 2 dword 3
lea ebx, x
mov eax, |3h |00 00 00 I3
X(1):=13h mov [ebx], eax [ 00 00 00 |3 [§00 00 00 I3
add ebx, 4 000000 134000000 13
mov eax, 29h |00 00 00 29§00 00 00 13
X(2):=2%h mov [ebx], eax| 00 00 00 29§00 00 00 13§00 00 00 29
add ebx, 4 00 00 00 29900 00 00 13400 00 00 29
mov eax, 25h |00 00 00 25800 00 00 13§00 00 00 29
X(3):=25h
mov [ebx], eax| 00 00 00 25§00 00 00 13§00 00 00 29400 00 00 25

Important: Since we are storing in individual bytes for each dword, we
increment by 4.




INTEGER ARRAYS = 289

Exercise

I. Write an assembly language program that will store the first 50 positive
odd numbers.

Storing data in the array without a variable’s location
Arrays can also be created without using a variable location by simply using the
mov [register], source instruction

where the source is a register, contain the location where the first byte of the array is to be
stored. For this instruction the following rules apply:

Rule I:The register must be EAX, EBX, ECX, or EDX.
Rule 2:The source can be a register of any data type.

Rule 3:The [register] indicates the cell location where the bytes are to
be located.

The [register] is called the indirect register.

Examples
.
AL CODE EBX AL [EBX]
mov ebx, 403030h 00 40 30 30
mov al, 9Ah 00 40 30 30 00 9A
mov [ebx], al 00 40 30 30 00 9A 00 00 00 9A
2.
AL CODE EBX AX [EBX]
mov ebx, 403030h 00 40 30 30
mov ax, 569Ah 00 40 30 30 56 9A
mov [ebx], ax 00 40 30 30 56 9A 00 00 56 9A




230 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.
AL CODE EBX EAX [EBX]
mov ebx, 403030h 00 40 30 30
mov eax, 2AC6756Ah 00 40 30 30 2A C6 75 6A
mov [ebx], eax 00 40 30 30 2A C6 75 6A 2A C6 75 6A
4.
EAX EBX BYTES
AL CODE | 2 4 5 6 7 8
mov eax, |h
mov ebx, 7D712Eh 007D7I12E
mov [eax], ebx 007D712E 0(7|D|7 2(E
mov eax, 5h 007D712E 0(7|D|7 2| E
mov ebx. 00568923 0l7|D|7 2 |E
mov [eax], ebx 00568923 0l7|D|7 2|E|0|[O0|5(6|8[9(2]3
mov ebx, 3h 00000003 017|D|7 2|E|O0|O|5(6)|8[9(2]3
mov [eax], ebx 00000003 0l7|D|7 2|E|0|lO|OfO|OfO|0O]|3

Exercise:
I. Write an
tasks:

Task |: Store the first 50 positive odd numbers.

Task 2: Retrieve the first 50 positive odd numbers stored in task |.

assembly language program that will perform the following




INTEGER ARRAYS = 281

Retrieving data from an array
The elements of an array can be retrieved using the following instruction:
mov source, [register]

The mov source, [register] instruction will retrieve the number in the array at its beginning
location and store it in the source, where the following rules apply:

Rule 1:The register must be EAX, EBX, ECX, or EDX.

Rule 2:The source must be a register of the same data type as the original
array.

Rule 3:The [register] indicates the cell location where the bytes are to be
located.

The [register] is called the indirect register.

Examples:
.
AL CODE EBX AL [EBX] CL
mov ebx, 403030h 00403030
mov al, 9Ah 00403030 9A
mov [ebx], al 00403030 9A 9A
mov cl, [ebx] 00403030 9a 9A 9A
2.
AL CODE EBX AX [EBX] CX
mov ebx, 403030h 00403030
mov ax, 569Ah 00403030 569A
mov [ebx], ax 00403030 569A 569A

mov cx, [ebx] 00403030 569A 569A 569A




237 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

AL CODE EBX EAX [EBX] ECX
mov ebx, 403030h 00403030
mov eax, 2AC6756Ah | 00403030 | 2AC6756A
mov [ebx], eax 00403030 | 2AC6756A | 2AC6756A
mov ecx, [ebx] 00403030 | 2AC6756A | 2AC6756A | 2AC6T756A

The following example is an extension of the above example and shows
how the data from the array can be retrieved.

4.

AL CODE AL X
I:abZ;i,i( byte | byte 2 byte 3
mov al, 13h 13
mov [ebx], al 13 13
add ebx, | 13 13
mov al, 29h 29 13
mov [ebx], al 29 13 29
add ebx, | 29 13 29
mov al, 25h 25 13 29
mov [ebx],a | 25 13 29 25
sub ebx, 2; Retrieving data 25 13 29 25
mov al, [ebx] 13 13 29 25
add ebx, | 13 13 29 25
mov al, [ebx] 29 13 29 25
add ebx, | 29 13 29 25
mov al, [ebx] 25 13 29 25




INTEGER ARRAYS = 233

Exercise:

Array lists

Extend the following program so that the array data stored can be
retrieved to the register ax.

AL CODE EAX X
)I(e:zg;ijx? dword | dword 2 dword 3
mov eax, |3h 000000 13
mov [ebx],eax | 000000 13 § 000000 I3
add ebx, 4 000000 I3 @ 000000 I3
mov eax, 2%h 00 00 00 29 § 00 00 00 I3
mov [ebx],eax | 00 00 0029 |§ 000000 I3 § 00 00 00 29
add ebx, 4 00 00 00 29 |§ 00 00 00 I3 | 00 00 00 29
mov eax, 25h 00 00 00 25 § 00 00 00 I3 | 00 00 00 29
mov [ebx],eax [ 00 00 0025 j§ 000000 |3 § 00 00 00 29 | 00 00 00 25

An alternative way to create one-dimensional arrays is to list the array elements in the
following directive:

variable name data type n, n,, ..

There are three directives of this type:

variable name byte type n,n,, ... ,n
variable name word type n,n,, ..., n

variable name dword type n,n,, ... , n

m

m

m

., n_, where the list is of the same data type.



234 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

The following examples show how to retrieve listed arrays.

AL CODE AL X
byte | byte 2 byte 3
x byte 3h, 7dh, 99h 03 7d 99
lea ebx, x 03 7d 99
mov al, [ebx] 03 03 7d 99
add ebx, | 03 03 7d 99
mov al, [ebx] 07 03 7d 99
add ebx, | 07 03 7d 99
mov al, [ebx] 99 03 7d 99
AL CODE AX X
word | word 2 word 3
x word 37f2h,723dh, defah 37 2 72 3d de fa
lea ebx, x 37 12 72 3d de fa
mov ax, [ebx] 37 f2 37 f2 72 3d de fa
add ebx, 2 372 37 2 72 3d de fa
mov ax, [ebx] 72 3d 37 f2 72 3d de fa
add ebx, 2 72 3d 37 2 72 3d de fa
mov ax, [ebx] de fa 37 12 72 3d de fa




INTEGER ARRAYS = 233

3.
AL CODE EAX X
dword | dword |dword 3
x dword 4437f2h, 21723dh, d276efah 4437f2821723djjd276efa
lea ebx, x 4437f2§21723d | d276efa
mov eax, [ebx] 00 44 37 f2 §4437f2§21723d | d276efa
add ebx, 4 00 44 37 f2 §4437f2§21723d | d276efa
mov eax, [ebx] 002172 3dQ4437f2§21723d jf d276efa
add ebx, 4 00 21 72 3d 44372 21723d | d276efa
mov eax, [ebx] 0d 27 6e fa Q44372 21723d | d276efa

15.3 RESERVING STORAGE FOR AN ARRAY USING
THE DUP DIRECTIVE

There are times when it is important to set aside a block of memory that array values will
be stored in. The reason is that without reserving a block of memory, data or code can
be destroyed when cells are filled by an array. In fact, it is recommended that, where pos-
sible, the DUP directive be used when creating arrays. To accomplish this, we define an array
A(dimension) using the following directive instruction in the data portion of the program:

variable name type dimension DUP (?)
Examples:
I. x byte 100 dup (?)
will create an array with a dimension of 100 byte cells.
2. x word 100 dup (?)

will create an array with a dimension of 100 WORD cells, consisting of
200 bytes.



236 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3. x dword 100 dup (?)

will create an array with a dimension of 100 DWORD cells, consisting
of 400 bytes.

Note: The lea instruction will still be used to determine the first byte posi-
tion of the array.

Exercise:

I. Write an assembly language program that will perform the following
task: store in a dimensioned array the first 100 positive numbers.

15.4 WORKING WITH DATA
The following instruction will allow data to be directly stored in an array cell:
mov DATATYPE PTR.

In order to avoid ambiguity about the data type, this instruction informs the assembler that
the numeric value to be stored is to be identified as a given data type.

This instruction is defined as
mov data type PTR [register], numeric value.
For this move instruction, the following are the three different forms of the instruction:
* mov byte PTR [register], numeric value;
will define the size of the numeric value to be stored as a byte.
* mov word PTR [register], numeric value;
will define the size of the numeric value to be stored as a word.
* mov dword PTR [register], numeric value;
will define the size of the numeric value to be stored a dword.

Note: mov [register], source does not modify the contents of the register in question.



INTEGER ARRAYS = 237

Examples:
I
AL CODE EBX [EBX]
mov ebx, 403030h 00 40 30 30
mov byte ptr [ebx], 9ah 00 40 30 30 00 00 00 9a
2.
AL CODE EBX [EBX]
mov ebx, 403030h 00 40 30 30
mov word ptr [ebx], 679ah 00 40 30 30 679a
3.
AL CODE EBX [EBX]
mov ebx, 403030h 403030
mov dword ptr [ebx], 23 [abc9ah 403030 23 labc9a

Arithmetic operators using [register]

For the following two integer arithmetic operators—addition and subtraction—the indirect

register [register] can be a source for the following arithmetic instructions:

* add register [register]
* add [register], register
* sub register, [register]

* sub [register], register



238 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:
l.
AL CODE EAX X
x byte 6h 06
lea ebx, x 06
mov eax, 2h 00 00 00 02 06
add eax, [ebx] 00 00 00 08 06
2.
AL CODE EAX X
x byte 2h 02
lea ebx, x 02
mov eax, 8h 00 00 00 08 02
sub eax, [ebx] 00 00 00 06 02
Exercises:
I. Complete the following table.
BYTES
AL INSTRUCTIONS [Eax |ebx (10|11 | 12|13 |14]|I5|16(17 |18

mov eax, 2ACDI16 h

mov ebx, 10h

add ebx, |h

mov [ebx], eax

add [ebx], ebx

add eax, ebx




INTEGER ARRAYS = 233

2. Assume we have two arrays, x and y, containing the elements:
x:2,7,9,10
y: 123,56, 11,9.

Write an assembly language program that will multiply the corresponding array elements and
store the resulting product in an array z.

The cmp using [register]

The cmp instruction can be used to compare array elements.The instruction is of the follow-
ing forms:

cmp [register], register

cmp register, [register]

Example:
AL CODE EAX X
x byte 6h 06
lea ebx, x 06
mov eax, 7h 00 00 00 07 06
cmp eax, [ebx] 00 00 00 07 06
ja bigger 00 00 00 07 06
jp not_bigger 00 00 00 07 06
bigger: mov eax, Oh 00 00 00 00 06
jmp finished 00 00 00 00 06
not_bigger: mov eax, |h 00 00 00 00 06
finished: 00 00 00 00 06




300 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

15.5 REPRESENTING TWO-DIMENSIONAL ARRAYS
IN PSEUDOCODE

Definition of a two-dimensional arrays name(r,c):

A two-dimensional array is a collection of cells that all have the same name but are distin-
guished from one another by the use of two subscripts.A subscript is a positive integer number
in parentheses that follows the array’s name. The two-dimensional array can be indicated by
name(r,c) where r is the number of rows and c the number of columns.

The following are the way the values of the two-dimensional array are written:
a(l,1),a(1,2),a(1,3), ...,a(l,c),
a(2,1),a(2,2),a(2,3), ...,a(2,c),

a(r1),a(r2),a(r3), ..., aa (rc)
Such an array is said to have r rows and c columns.

The following table shows the structure of the two-dimensional array.

row/c ol | 2 3 4 5 6 7 -k--| c
| a(l,1) | a(l,2) | a(1,3) | a(1,4) | a(1,5) | a(1,6) | a(1,7) | a(1,8) | a(l,k) | a(l,c)
2 a(2,1) | a(2,2) [ a(2,3) | 2(2,4) | a(2,5) | a(2,6) | 2(2,7) | a(2,8) | a(2,k) | a(2,c)
3 a(3,1) | a(3,2) [ a(3,3) | a(3,4) | a(3,5) | a(3,6) | a(3,7) | a(3,8) | a(3,k) | a(3,c)
4 a(4,1) | a(4,2) [ a(4,3) | a(4,4) | a(4,5) | a(4,6) | 2(4,7) | 2(4,8) | a(4.k) | a(4,c)
5 a(5,1) | a(5,2) [ a(5,3) | a(5,4) | a(5,5) | a(5,6) | a(5,7) | a(5,8) | a(5,k) | a(5,c)
j a(i.1) | aG2) | aG3) | aG4) | aG5) | 2G.6) | aG7) | 2Gi8) | aGik) | ao)
r a(rl) | a(n2) | a(n3) | a(r4) | a(r5) | a(r6) | a(n7) | a(r8) | a(j,k) | a(rc)




INTEGER ARRAYS = 301

where a(j,k) are the numerical values of the array.

However, we have one small problem:The assembly language really only provides storing of data
for one-dimensional arrays. Therefore, to program two-dimensional arrays, we need to change
the two-dimensional array into a one-dimensional array. To do this, first we note that the two-
dimensional array is made up of rows that are stacked one on top of each other.To convert the
two-dimensional array into a one-dimensional array, take each row and connectively arrange
them one by one to make the new one-dimensional array. To demonstrate how this is done, we
use as an example a two-dimensional array consisting of 3 rows and 10 columns:

ric | 2 3 4 5 6 7 8 9 10

1| a(1) | a1,2) | a1,3) | a(1,4) | a(1,5) | a(1,6) | a(1,7) | a(1,8) | a(1,9) | a(1,10)

2 [a@1) [ a@22) [ a23) | 224) | 22.5) | 22.6) | 2(2.7) | 22.8) | a2.k) | a(2, 10)

3 |a3.0) | aB3.2) | 23.3) | a(3.4) | a(3.,5) | a3.6) | a(3.7) | 2(3.8) | a(3.k) | a(3.10)

Row | Row 2 Row 3
a(l,1) a(1,2) a(1,3) ... a(2,1) a(2,2) a(2,3) ... a(3,1) a(3,2) a(3,3) ...
... a(1,10) ... a(2,10) ...a(3,10)

Now we need to change a(i,j) into an array element of one subscript for the above one-
dimensional array.We define a(t) as the following:

a(10r-10 + ¢) = a(r,c) for

Using the above formula, we have:

r=l:a(l) = a(l,1);a(2) = a(1,2); a(3) = a(1,3); a(4) = a(l,4); a(5) = a(1,5); a(6) = a(1,6)
a(7) = a(1,7);a(8) = a(1,8);a(9) = a(1,9);a(10) = a(1,10)

r=2a(l1) = a2 1);a(12) = a2,2); a(13) = a(2,3); a(14) = a(2,4); a(15) = a(2,5);

a(16) = a(2,6) a(17) = a(2,7); a(18) = a(2,8); a(19) = a(2,9); a(20) = a(2,10);

r=3:a(21) = a(3,1); 2(22) = a(3,2); a(23) = a(3,3); a(24) = a(3,4);2(25) = a(3,5);

a(26) = a(3,6) a(27) = a(3,7); 2(28) = a(3,8); 2(29) = a(3,9); a(30) = a(3,10);



302 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Which gives our one-dimensional array:

Row | Row 2 Row 3

a(1) a(2) a(3) ... a(10) a(l1)a(12) a(13) ... 220) | a(21) a(22) a(23) ... a(30)

Example

The following program in pseudocode will perform the following task:

Task: Assign array values a(r,c) =r + 2¢,for | <r <100; | <c=< 10

Program

WHILEc < 10
BEGIN

a(r,c) :=r + 2%
c=c+ |

END

re=r+|

END

Exercise:

I. Write an assembly language program that will generate the above array.



INTEGER ARRAYS = 303

Model program

; The following program is a partial program that will store numbers 2,4,6,..., 10,000 into
an array a.

.386

.MODEL FLAT
.STACK 4096
.DATA

a dword 5000 dup (?) ;Array a(dim 5000)

.CODE
_start:

lea ebx, a

mov k, |
whilel: cmp k, 5000
begin: jg end

; begin

mov eax, k
mul 2

mov [ebx], eax
mov eax, k
add eax, |

mov k, eax
add ebx, 4

jmp whilel
end:

;end of assembly language code

PUBLIC_start

end




304 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECTS

I. Write a assembly language algorithm to convert a number N in the
base a to its corresponding number M in the base 10 by performing the
following tasks:

Task |: Store each digit of N in a separate cell of an array.
Task 2: From these digits, convert N to M.
Task 3: Store each digit of M in a separate cell of another array.
Task 4: Store the number M in a dword variable.
Hint: Use the method in chapter 2 that shows how to convert N, => N,.

2.

(2) Write an assembly language algorithm that will find and store the
first N prime numbers in an array.

(b) Write an assembly language program that will find and store the
first 100 prime numbers in an array.

Assume an array was already created with N elements located at a
declared data type.Write an assembly language algorithm that will do
the following:

3. Find and retrieve a single value of the array.

4. Find the largest value of the array.



LHAPTER SIXTEEN

PROCEDURES




306 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

16.1 INTODUCTION: PSEUDOCODE PROCEDURES

As in higher programming languages, we will need to use procedures (subroutines) repeatedly
in many of our assembly language programs. These procedures in a sense can be thought of
as algorithms, in that they can stand alone and be used repeatedly in different programs. For
pseudocode, the following will be the definition of the main body of the procedure:

DEFINITION OF PSEUDCODE PROCEDURES
PROCEDURE name of procedure
BEGIN
(instructions)
END
We will assume the following rules apply to procedures:
Rule I:All procedures will be local to the main program.
Rule 2: All procedures will be located at the end of the main program.
Rule 3:All variables are global.

Rule 4:The procedure will be ignored by the assembler, unless it is called
by the call instruction.

Definition of the call instruction
CALL name of procedure
We will assume the following rules apply to the call instruction:

Rule I:All call instructions can be inserted anywhere inside the main
program.

Rule 2:When the call instruction is activated, transfer is made to the first
instruction of the procedure.

Rule 3:The END at the end of the procedure will transfer back to the
instruction immediately following the call instruction.



PROCEDURES = 307

Examples:

|. The exponential operator p = a™. Although we define an exponential operator in pseudocode,
the exponential operator does not exist in the assembly language. Therefore, we need to cre-
ate a procedure that will perform the exponential operator that we have in our pseudocode.
For the following procedure, we will compute p = a", where

a>0
n=0
PROCEDURE exponential
BEGIN
P:=1
K:=1
WHILE K< N
BEGIN
P:= A*P
K=K+ 1
END
IF N:= 0 THEN
BEGIN
P=A
END

I. The following program will use the above procedure and will perform
the following task:

Task: Compute and store 57, 2'°.

PSEUDOCODE
A:=5
N:=7
CALL EXPONENTIAL
EXPI:=P
A:=2
N:= 10




308 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

CALL EXPONENTIAL
EXP2:= P
PROCEDURE EXPONENTIAL
BEGIN
P:=1
K:=1
WHILE K £ N
BEGIN

P:= A*P
K=K+ |
END
IF N:= 0 THEN
BEGIN
P:=1
END

2. The following procedure will perform the following tasks:

Task |: Compare the relative size of two different integer numbers x and y.

Task 2: Return the larger of the two numbers.

PROCEDURE compare
BEGIN

IF x >yTHEN

BEGIN

larger := x

ELSE

BEGIN

larger :=y

END

Write a program using the above procedure that will perform the following task:

Task |: Compare two pairs of different integer numbers and store the

larger in different variables.



PROCEDURES = 308

PSEUDOCODE X [ Y | LARGER | LARGERI | LARGER2
X:=5 5
Y:=10 5 10
CALL COMPARE 5 10
LARGERI|:= LARGER 5 10 10 10
X:=12 12 10 10 10
Y:=7 12 7 10 10
CALL COMPARE 12 7 10 10
LARGER?2 := LARGER 12 7 12 10 12
PROCEDURE COMPARE
BEGIN
IF X >YTHEN
BEGIN
LARGER := X
END
ELSE
BEGIN
LARGER :=Y
END
3. The following procedure will perform the following task:
Task: For any positive integer N, compute the value sum=1+2+3+ ... + N.

PROCEDURE sum
BEGIN

total := 0

k:=1

WHILE k < N
BEGIN

total := total + k
k:=k+ I

END

END




310 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Write a program using the above the procedure that will perform the

following tasks:

Task |:Store the sum of the numbers [,2,3, ..., 100.
Task 2: Store the sum of the numbers |, 2,3, ..., 150.

Task 3: Store the sum of the numbers [, 2, 3, ...,250.

PSEUDOCODE N TOTAL | TOTALI | TOTAL2 | TOTAL3
N:= 100 100
CALL SUM 100
TOTALI :=TOTAL 100 5050 5050
N:= 150 150 5050 5050
CALL SUM 150 11325 5050
TOTAL2:=TOTAL 150 1325 5050 11325
N := 250 250 1325 5050 11325
CALL SUM 250 11325 5050 11325
TOTAL3:=TOTAL 250 125500 5050 11325 125500

PROCEDURE SUM
BEGIN
TOTAL:=0
K:=1
WHILEK = N

BEGIN
TOTAL :=TOTAL + K
K=K+
END
END




PROCEDURES = 31

4. The following procedure will perform the following tasks:
Task |: Compare four array integer values.
Task 2: Find and return the smallest integer value.

PROCEDURE array

BEGIN

smallest := a(l)

IF a(2) < smallest THEN

BEGIN

smallest := a(2)

END

IF a(3) < smallest THEN

BEGIN

smallest := a(3)

END

IF a(4) < smallest THEN

BEGIN

smallest := a(4)

END

END

Write a program using the above procedure that will perform the following tasks:

Task |: Find and store the smallest of the numbers 5,7, 2, and 10.

Task 2: Find and store the smallest of the numbers 57, 1001, 2222, and 43.



312 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROCEDURE ARRAY
BEGIN
SMALLEST :=A(l)

IF A(2) < SMALLEST THEN
BEGIN
SMALLEST := A(2)
END

IF A(3) < SMALLEST THEN
BEGIN
SMALLEST := A(3)

END

IF A(4) < SMALLEST THEN
BEGIN
SMALLEST := A(4)
END
END

PSEUDOCODE |A(l) | A(2) | A(3) | A(4) | SMALLEST |SI | S2
A(l) =5 5
AQ) =7 5 7
A(3) =2 5 7 2
A(4) = 10 5 7 2 10
CALL ARRAY 5 7 2 10
SI:= SMALLEST 5 7 2 10 2
A(l) := 57 57 7 2 10 2
A(2) := 1001 57 | 1001 | 2 10 2
A(3) := 2222 57 | 1001 [ 2222 10 2
A4) = 43 57 | 1001 | 2222 | 43 2
CALL ARRAY 57 | 1001 | 2222 | 43 2
$2:= SMALLEST 57 | 1001 | 2222 | 43 43




PROCEDURES = 313

Exercises

I. Write an algorithm and procedure in pseudocode that will perform the
following tasks:

Task |: Store the following positive integer numbers in an array:
nn+l,n+2,n+3,..,n+mm>0.
Task 2: Add the numbers stored in the array.

2. Rewrite exercise | in assembly language.

16.2 WRITING PROCEDURES IN ASSEMBLY LANGUAGE

The assembly language syntax is very similar to pseudocode:

Body of the procedure
identifier ~ PROC NEAR 32; identifier: the procedure’s name
(instructions)
ret ;will jump to the code following the call instruction.
identifier ENDP; Terminates the body of the procedure.
The call instruction is simply:
call identifier

Examples:

I. From example | above, complete the table below.

ASSEMBLY LANGUAGE
PSEUDOCODE | AL PSEUDOCODE CODE
A:=5 A:=5 mov a, 5
N:=7 N:=7 mov n, 7
CALLEXPONENTIAL CALL EXPONENTIAL call exponential
EXPI:=P EAX:= P mov eax, p
EXPI:= EAX mov expl, eax




314 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

A=2

A=2

mov a, 2

N:= 10

N:= 10

mov n, |0

CALL EXPONENTIAL

CALL EXPONENTIAL

call exponential

EXP2:= P

PROCEDURE
EXPONENTIAL

EAX:= P

moyv eax, p

EXP2:= EAX

PROCEDURE
EXPONENTIAL

mov exp2, eax

exponential PROC NEAR 32

BEGIN

BEGIN

begin:

P:=1

P:=1

mov p, |

K:=1

K:==1

mov k, |

WHILE K = N

WHILE K= N

whilel: cmp k, n

jg endl

BEGIN

beginl:

EAX:= P

moyv eax, p

MUL A

mul a

P:= EAX

mov p, eax

EAX:= K

mov eax, k

EAX:= EAX + |

add eax, |

K:= EAX

mov k, eax

END

jmp whilel

endl:

IF N:= 0 THEN

IF N:= 0 THEN

cmp ebx, 0

jg end2

begin2:

mov p, |

end2:

ret
expontential ENDP




PROCEDURES = 31a

2. From example 3 above, complete the table below.

ASSEMBLY LANGUAGE
PSEUDOCODE AL PSEUDOCODE CODE
N := 100 N:= 100 mov n, 100
CALL SUM CALL SUM call sum

TOTALI:=TOTAL

TOTALI :=TOTAL

mov eax, total mov totall, eax

N:= 150

N:= 150

mov n, |50

CALL SUM

CALL SUM

call sum

TOTAL2:=TOTAL

TOTAL2:=TOTAL

mov eax, total mov total2, eax

N := 250 N:= 250 mov n, 250
CALL SUM CALL SUM call sum
TOTAL3:=TOTAL TOTAL3:= EBX mov eax, total mov total2, eax

PROCEDURE SUM
BEGIN

TOTAL :=0
K:=1
WHILE K < N
BEGIN

TOTAL :=TOTAL + K
K=K+

END
END

PROCEDURE SUM
BEGIN
TOTAL:=0

K:=1
WHILE TOTAL < N

BEGIN
EAX:=TOTAL
EAX:= EAX + |
TOTAL:= EAX

END
END

sum PROC NEAR 32

mov total, 0

mov k, |
cmp total, n
begin:

mov eax, total
add eax, |

mov total, eax
jle begin
ret
sum ENDP




316 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercise:

I. Write an assembly language algorithm that computes
l+a+a + .. +a"

where a > 0and N > 0.

PROJECT

Write an algorithm that will compute and add all prime numbers from N to M by using a
procedure. Have the main algorithm set the values of N and M, and let the procedure compute

the prime numbers and their sum.

From the algorithm, write a program that sums all prime numbers from 10 to 200.



|l. WORKING WITH DECIMAL NLMBERS



LHAPTER SEVENTEEN

DECIMAL NUMBERS




320 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

So far we have only worked with integers in assembly language. For many assembly language
compilers, decimal numbers are also available. In order be become a proficient assembly language
programmer, one needs to have a good understanding of how decimal numbers are represented
in the assembler. To accomplish this, we start with the basic ideas of decimal numbers in the
base 10. In later chapters, we will expand these numbers to the various forms that are needed.

17.1 DEFINITION OF DECIMAL NUMBERS
AND FRACTIONS

Definition of decimal numbers in the base 10:

Decimal numbers are numbers of the following forms:
maaa, ...a
or
m.aaa, ...a2a2a,a;...a ... 2,33, ... 2 ...

where m is an integer and a, a,,a, ... are nonnegative integers.

There are three types of decimal numbers: positive, negative, and zero.

Examples:

0.123, —-0.06143, 4.54, 33.248248..., =72.77777777777
Definition of fractions:

Fractions are defined as * N/M, where N and M represent arbitrary integers, with the
restriction that M # 0.

2/3, —4/7, 173, 124/456, 717, 0/4, 400/200
There are two types of fractions: proper and improper.
Definition: A proper positive fraction N/M is a fraction where 0 <N < M.
Examples:
2/3, —4/7, 1/3, 124/456
Definition: An improper positive fraction N/M is a fraction where N 2 M > 0.
5/2, 716, 10/ 5

Note: In this chapter, we are primarily interested in positive proper fractions.



DECIMAL NUMBERS = 321

Exercises:
I. Which of the following fractions can be reduced to integer numbers?
(a) 1446/558  (b) 12356/2333 (c) 458/3206  (d) 1138/569
2. Rewrite the following numbers as fractions:
(@) (1/2)/(5/7) (b) (212/124)/(5) (c) (1/3)/(2/3)
3. Which of the following fractions are proper?
() 3/2 (b) 234/567 (c) 2

Note: For the following presentation, we will only consider decimal numbers that are gener-
ated from positive fractions.

17.2 REPRESENTING POSITIVE DECIMAL NUMBERS
CORRESPONDING TO PROPER FRACTIONS IN
EXPANDED FORM

Any fraction can be represented by a decimal number. Since we are mainly interested in
fractions that are proper, this means that all corresponding decimal numbers we study will
be less than I.

There are two types of decimal numbers: finite and infinite.

Definition of finite decimal numbers:

Finite decimal numbers are written in the form:
0aana,...a

where

0aaa,...a =a/l0+a/l0*+a/I0*+ ... +a/l0"

n | 2 3 n
and
a (k=1,2,...,n) are nonnegative integers.

Note: Finite decimal numbers can also be negative numbers.



322 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

0.579 = 5/10 + 7/100 + 9/1000
0.3579 = 0.3579 = 3/10 + 5/100 + 7/1000 + 9/10000
0.49607 = 4/10 + 9/100 + 6/1000 + 0/10000 + 7/100000
0.005411 =0/10 + 0/100 + 5/1000 + 4/10000 + 1/100000 + 1/1000000 =
5/1000 + 4/10000 + 1/100000 + 1/1000000
Definition of infinite decimal numbers:

Infinite decimal numbers are written in the form:

0aaa,...aaaa;...a ...2a3,...a_ ...
where
0aaa,...aaaa,...a ...a23,...a ...~

a/l0+a/l10*+a/l0*...+a/l0"+a /10 +a/l0™+a/I0™ + ... +a/l0™+ ...
and
a, (k=1,2,...,) are nonnegative integers.

k

To avoid the complications of working with infinite expansions, we will use the following
notation:
0aaa,...a aaa;...a ...223,...2 ... =0.aa,...2

17273 n

Also, we will assume that all the laws of arithmetic work when applied to infinite decimal
numbers.

Examples:
0.798798... = 0.798
0.015981598... = 0.01598
0.66...=0.6,
0.13241324... = 0.01324

0.25897897897... = 0.25897



DECIMAL NUMBERS = 323

Examples:

1/2=10.5,2/3=0.666... = 0.6 1/4 =0.25, 1/3=0.333...0.3

213/999 = 0.213213213... = 0.213,16/3 = 5.333... = 5.3

Exercises
I. Expand the following in the form:0.aa,...a =0.a2,a,..2232.3, ..a_ ..
n 17273 no 17273 n

(a) 0.2357 (b) 0.0097

2. Expand the following in the form
0aaa,...a aaa; ...a ...a2,3, ... ... =

(a) 0.0768907689... (b) 0.00235559055590...

3. Write the following fractions as decimal numbers using the upper bar
notation where necessary:

@ 5/12 (b)) -7/18  (c) 5/6  (d) 117 (e) =3/7

17.3 CONVERTING DECIMAL NUMBERS
TO FRACTIONS

Finite decimal numbers can easily be converted to fractions by writing them first in the form:
0aaa,...a =a/l0+a/l0>+a/I0>+ .. +a/l0"=
n | 2 3 n
(a, ¥10™" +a, *10" + ... +a *|10™ + ... +a)/I0"

and then summing the terms with a common denominator.

Examples
0.5=5/10
0.579 = 5/10 + 7/100 + 9/1000 = (5%100 + 7*10 + 9)/1000 = 579/1,000
0.3579 = 3/10 + 5/100 + 7/1000 + 9/10000 = (3*1000 + 5%100 + 7%10 + 9)/10000

= 3,579/10,000

0.49607 = (4/10 + 9/100 + 6/1000 + 0/10000 + 7/100,000) = 49607/100,000
0.005411 = 0/10 + 0/100 + 5/1000 + 4/10000 + 1/100000 + 1/1000000 =
(5%1000 + 4%100 + 1/10 + 1)/1000000 = 541 1/1,000,000



324 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises

I. Write the decimal numbers as fractions:
(2) 0.0235 (b) O.1111215 (c) 0.999999

Infinite decimal numbers of type 0.aa, ... a_can also be converted into a fraction.The follow-
ing algorithm will demonstrate how this is done:

Step I:x=0.aa,...2

n

. n %y =
Step 2: 10" *x = aa,a,....a_a,a,a,....2

n

By subtracting x from 10" *x we can incorporate the above algorithm into a single basic
formula:

Example:

Convert 0.21657 to a fraction:

———— 21657 _ 21657 _ 21657
021657 =05 1 =100000 — 1 ~ 99999

Exercises

I. Write the following decimal numbers as fractions:

(a) 0.23

(b) 0.73

(c) 0.8

(d) 0.101

(e) 0.3

(g) 23.468

(h) 2.0078

(i) 0.24679852

2. Write the following decimal numbers as a single fraction p/q where p
and q are integers:

(a) 0.7323 +0.83



DECIMAL NUMBERS = 323

(b) 0.7323-0.83
(c) 0.7323 *0.83
(d) 0.7323/0.83
3. Write the following decimal numbers as a decimal number O.W

(a) 0.7323 + 0.0083

(b) 0.7323 - 0.0083

17.4 CONVERTING FRACTIONSTO
DECIMAL NUMBERS

Assume that N/M is a positive proper fraction.We define the decimal representation of N/M as:
M/N=a /10 +a, /10> +a/I0*+ ...
where a,_are nonnegative integers.
The following example will demonstrate the conversion from a fraction to a decimal number.
Example

Convert 3/7 to its decimal representation.

3/7=a,/10 +a,/10>+a,/10° +a,/10* + a,/10°+a,/10° + a /107 + ...

Step I:

10(3/7) = 30/7 = (28 + 2)/7 =4 + 2/7 =

a/l0+a,/10+a, /10> +a,/10°+a,/10*+a,/10°+a,/10% ...

a, =4

2/7=a,/10+a,/10 +a,/10°+a,/10>+a,/10*+a /10°+a, /10% ...
Step 2:

10(2/7) =20/7 = (14 + 6)/ 7=2+6/7 =
a,+a,/10*+a,/10*+a,/10*+a /10°+a, /10%+ ...
a =2

6/7=a,/10+a, /10> +a /10*+a, /10*+a, /10°+ ..



326 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 3:
10(6/7) = 60/7 = (56 + 4)/7 =8+ 4/7=a,+a,/10+a /10*+a, /I10*+a /10*+ ...
a,=8
4/7 =a,/10+a,/10>+a,/10°+ ...

Step 4:
10(4/7) = 40/7 = (35 +5)/7=5+5/7=a,+a, /10 +a /10°+ ...
a, =5
5/7=a,/10+a /10*+ ...

Step 5:
10(5/7) =50/7 = (49 + 1)/7=7 + 1/7=a,+a, /10 +a, /10*+ ...
a, =7
1/7=a,/10+a,/10*+ ...

Step 6:

10(1/7) = 10/7 + (7 +3)/7 =1 +3/7 =a,+a, /10 + ...

a, = |
3/7=a,/10 + ...
Since we cycled back to 3/7, we can write:
3/7 = 0.42857 142857142857 142857142857143... = 0.42857 1
Exercise
Convert the following fractions to decimals:
I. 4/9
2. 3/8

3. 67/5



DECIMAL NUMBERS = 327

17.5 REPRESENTATION OF DECIMAL NUMBERS

Every finite decimal number has two representations.

Examples
(a) 0.9
Step 1:x = 0.9 = 0.99...
Step 2: 10x = 9.99...

Step 3: Subtract the equation in step | from the equation in step 2:
9% =9

Step 4:x = 09=1
(b) 0.009
Step 1:0.009 = 9/100 = 1/100 = 0.01
(c) 24.9
24.9=24+09=24+ | =25
(d) 0.23549
0.23549 = 0.2354 + 0.00009 = 0.2354 + 0.0001 = 0.2355
Exercises
I. Convert the following into integer form:
(a) 2819  (b) 41256.9
2. Write the following in fraction form:
(@) 0.238  (b) 0.00791  (c) 0.1110000

3. Explain why we cannot convert, using the above algorithm, the follow-
ing number into a fraction:

0.272772777277772777772...

From your analysis, does such a number exist?



328 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

DIFFERENT NUMBER BASES FOR FRACTIONS

INTRODUCTION

In chapters | and 2, we restricted our studies to integer numbers of different bases.We now
move on to the study of decimal numbers of different bases. It is important to understand that
to become a successful assembly programmer, one has to have a complete understanding of
how both integer and decimal numbers work within the assembler system.

17.6 DEFINITION OF DECIMAL AND FRACTIONS

In the first part of this chapter, we defined finite and infinite decimal numbers in expanded
form in the base 10 as:

a,=0aaa,...a =a/l0+a/l0*+ .. +a/l0"
EIO = (0.aja,3,...a 2a,2,...2 ...),, = (O.W)|0 =
a/l0+a/l0*+ ... +a/l0"+a/10™" +a /0™ + ... +a/l0" +...
Examples
0.25=2/10 + 5/10?
0.0625 = 6/10% + 2/103 + 5/10*
0.3333...=3/10 + 3/102 + 3/10° + ...

0.285714=2/10+8/10+ 5/103+ 7/10* + 1/10° + 4/10° + 2/107 + 8/108 + 5/10° + 7/10'" + 1/10"
+4/1072+ ... +

In a similar manner, we can define finite and infinite decimal numbers less than | for any base
b in expanded form:

Definition: A finite nonnegative decimal number less than | can be written in the base b as:
a, = (0.aaa,...a), =a/l0 +a/l02+ ... +a/l0"
where
0<a <b(k=12,..n),
a, =a/l0, +a/l02+ ... +a/l0"=0.a +0.0a+..+0.00..0a

Definition: An infinite decimal number less than | can be written in the base b as:



DECIMAL NUMBERS = 323

;b =(0.aa,3,...a 33,3,...a,...), = (O.m)b =a/l0, +a 102+ ... +
a /10" +a /10" +a /102 + . +a/l02+ .. ..

where

0<a<b(k=l,2,..)

;b =a/l0, +a/102>+ ... +a/l0"+..=0a +0.0a,+ ... +0.00...0a +...

Note: We are only using these decimal expansions to indicate the various positions of the
decimal point, not for computational values.

Examples
o.rriol, =1/10, + I/I02Z + I/I023+ 0/I02“ + I/I025
0.02756, = 0/10, + 2/I082+ 7/I083 + 5/I084 +6/10°
0.98C7DF,, =9/10,, + 8/I0|62 + C/I0|63 + 7/I0|6“ + D/IOI‘,,5 + F/I0|6" + ...
Exercises
I. Write the following numbers in expanded form:
(a) 0.231120, (b) o.rrrrriol, (c) 0.232323, (d) 0.ABC2,

An alternative way of representing infinite expansion of numbers of the base b is:

——— _(aa,...2)
0.2, ... an)b=ﬁ
b

where IO“b— | = blb2 bn; bk= b-1Lk=1,2,...,n

Examples

(a) 0.97865 = 97865,,/99999,,; where b = 10; 105 —I = 99999,

IO;
(b) 0.632, = 632,/777; where b = 8; 10 —| = 777,

(c) 0.T2EA29,, = 12EA29,/ FFFFFF, ;where b = 16; 10, 5| = FFFFFF

16’

(d) 0.T0I, =101 /111 ;where b =2; 1021 = I11,



330 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

17.7 CONVERTING DECIMAL NUMBERS BETWEEN
THE BASE 10 AND AN ARBITRARY BASE

As we stated in chapter 2, it is important to be able to convert integer numbers from a given
number base to corresponding integer numbers in any other base. Similarly, we wish to do
the same for fractions. First we will define the corresponding decimal number (n, < I) that
corresponds to a unique decimal number in the base 10.

Converting a finite decimal number in any base b to its cor-
responding decimal number in the base 10

From chapter 2, when converting from a number in base b to a number in base 10, we have
10, — b, and therefore 10," —b "

It follows that the following formula gives a one-to-one correspondence from a finite decimal
number in the base b to a unique finite decimal number in the base 10:

= —_ 2 2 =
n=(0.aa,...a)=2/10 +a/lI0*+ ... +a/l0"=>a/b +a/b*+..+a/b" =n,

Note: All computation is done in decimals.

Examples:
(@)
0.321,=3/4+2/4*+1/4° =3/442/16+1/64=0.7540.1254+0.015625=0.890625
(b)
0.11011,=1/2+1/2°4+1/2*+1/2°=0.540.2540.0625=0.03125=0.84375 |
(c)
0.9AF ,=>9/16+10/16°+15/16°=0.5625+0.0390625+0.003662109375
=0.605224609375,
Exercises:
I. Convert the following numbers to the base 10:

(@) 0231120, (b) O.11111101,  (c) 0232323, (d) ABC2,



DECIMAL NUMBERS = 331

Converting an infinite decimal number in any base b to its
corresponding decimal number in the base 10

The following formula will convert any infinite decimal number in the base b to its cor-
responding decimal number in the base 10:

2=0a2aa ..a = = 2 n
a,=0apa,a,...a =(0aaa,..a aaa,...a ...), =a/l0, +a/l0*+ ... +al/lO"+
a/lo™" +a/l0™2+ ... +a/l02+ ...
| b 2 b n b
a=0aa,...a =>a/b+alb’+..+a/b"+alb™ +a/b"?+ . +abl+..

Here we use the formula:

- (22,2, ...2), _
a=0aa =227 1 Tolb o

a,...a T >N, /(b,"~ 1)

Examples
(a) Find 0.3,=>N,,
Step I:b =4
Step 2:n = |
Step 3:0.§4 =3,/(10,-1)=>3 /(4-1),=1,
(b) Find 0.101,= N |
Step I:b =2
Step2:n =3
Step 3:0.101 = 101,/(10°% = 1) = 5, /(2°,,— D=(5/T),,
Exercises:
I. Convert the following numbers to the base 10:

(@) 06, (b) 001001, (c) 0.A5C,  (d) 0.00365,

Converting a finite decimal number in the base 10 to its corresponding decimal
number in any base b

n,=(@/10+a/l0*+ ... +a/l0") - (0aa,..a ..),
In converting from base b to base 10, we have the equation

al/b, +a/b 2+ ...+al/b =n,



332 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following examples will demonstrate how to solve the values a;:
Examples:
Convert the following decimal numbers to the indicated base.
(@) Convert 0.2 to the base 4.
Step 1:0.2,,=a/4+a/4+a/4+ ..
Step 2:4%(0.2) = 0.8 =a, +a /4 +a,/4 + ...
Step 3:Since a, is an integer,a, = 0.
Step 4:0.8 =a,/4 +a /4 + ...
Step 5:4%(0.8) =32 =a, +a,/4 + ...
Step 6:2, = 3
Step 7:0.2=a,/4 +a /4> + ...
Since we are back to step |, the decimal number in the base 4 can be written as:
0.2,,= n,=0.0303... 0.(a,a,), = 0.03,
(b) Convert 0.9, to the base |6.
Step 1:09 =a/l6 +a/l6*+a/l6 + ...
Step 2: 16%(0.9) = 144 =2a +a/l6+a/lI6 + ..
Step 3:Since a, is an integer, 14 - a = E
Step4:0.4 =a,/16 +a,/16> + ...
Step 5: 16%(0.4) = 6.4 =a, +a,/16 + ...
Step 6:2, = 6
Step 7:0.4=a,/16 +a,/16> + ...

Step 8:Since we are back to step 4, the decimal number can be
written as:

0.9,, < N, = 0.E666... = 0.E6
() Convert 0.8 to the base 2.
Step 1:0.8=a /2 +a,/22 +a /2’ + ...

Step 2:2%(0.8) = 1.6 =a, +a,/2 +a,/2* + ...



DECIMAL NUMBERS = 333

Step 3:a, = |

Step 4:0.6 =a,/2 +a,/2* + ...

Step 5:2%(0.6) = 1.2 =a, +a,/2 + ...
Step 6:a, = |

Step 7:0.2=a,/2 +a,/2> + ...

Step 8:2%(0.2) =04 =a,+a,/2 + ...
Step 9:a, =0

Step 10:0.4=2a,/2 +a,/2* + ...

Step 11:2%(0.4) = 0.8 =a, +a,/2 + ...
Step 12:a,=0

Step 13:0.8=2a,/2 +a,/2> + ...

At this point, we are back to step I:
Step 14:Therefore,

0.8 = 0.a,a,2,2, = 0.1100,

1727374
Checking out computation

By applying the above formula:

- (aa,...a),,
4= o - |

we can check to see if we correctly converted the finite decimal number.

Example

Let us check to see that we correctly converted 0.8 to binary 0.1100,.

Step l:a, = 0.1100

Step2:b =2

Step3:n=4

Step 4: Substituting in the above formula gives

0.1100, = 1100,/(10,*~ 1) = 1100/1111 - 12 /15 =0.8.



334 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:
I. Convert 0.6 , to the following:
(a) base 2 (b) base 4 (c) base 8 (d) base |6

2. Show 0.021, < 0.15

Converting an infinite decimal number in the base 10 to its
corresponding decimal number in any base b

We will use the same method of converting a finite decimal number in the base 10 to any
number in the base b by replacing the finite decimal number by an infinite decimal number.

Example
I. Convert and check your results.
Convert: O.ilo to base 2
02,=2/9=2a/2+a/2+2a/2’ + ...

2(2/9) =4/9=a+aj2+a/2>+a/2+ ...
a=0
4/9 =aj2 +a /2> +a /2 + ...
2(4/9) =8/9 =a,+a/2+a, 22 +a 2+ ..
a,=0
(8/9) =a,/2+ a2 +a /2’ + ...
2(8/9)=16/9=9+7)/9=a,+a/2+a/2+ ..
a, =1
719 =aj2 +a/2*+a/2}+ ...
2(7/19) = 14/9 =9 + 5)/9 =a, +a,/2 +a/2* + ...
a, = |
5/9=a/2 +a,/2" + ...
2(5/9) =10/9 =9+ 1)/9=a,+a/2>+ ...
a, = |

2(1/19) =2/9 = +a,/2*+a/2} + ...



DECIMAL NUMBERS = 333

a, =0

0.2,,=>0.001110,

— 110, _
Check: 001110,= => 14, /63 ,=02

RN
Exercise:

I. Convert 0'T|o to base 5

17.8 CONVERTING DECIMAL NUMBERS IN A GIVEN
BASETO FRACTIONS INTHE SAME BASE

Finite decimal numbers in the base b can easily be converted to fractions by writing them
first in the form:

(0aaa,...a) =a /10 +a,/10*a, /10>+ .. +a /0"
=[@,, *10,"+a, *10 "2+ ... +a, *10 "+ .. +a )]/I0"],.

Examples:
0.5, = (5/10),
0.1011,=1/10,+ 0/100, + 1/1000, + 1/10000,
= (I*1000, + I*10, + 1)/10000,
= (1011/10000),
0.3DF2,, =3/10,,+ D/100,, + F/1000,, + 2/10000 , = (3*1000 , + D*100
+ F*10,, +2)/10000 = (3DF2/10000),,

Exercise:

I. Write the following decimal numbers as fractions:
(a) 0.0235, (b) O.110111, (c) 0.999999,,

Infinite decimal numbers of type 0.aa,... a_, can also be converted into a fraction by using
the basic formula developed in this chapter:

—— (aa,...a)
0.(aj, ... an)bzﬁ
where 10"~ 1 =dd, ... d

andd, =b-| (k=1,2,...,n), the largest digit in the base b.



336 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples
0.723, = 723 ,/(1000,~ 1) =723, /777,
0.10,= 10,/(100,- 1) = 10, /11,
0.3FA9,, = 3FA9, /(10000 ,~ 1) = 3FA9, /FFFF,,

Exercise

I. Write the following decimal numbers as fractions in the same base:

(a) o.010l, (b) 0.000723, c. 0235.7237, d. 02C5.7239 ,

17.9 CONVERTING NUMBERS BETWEEN
DIFFERENT BASES

There exists a one-to-one correspondence between different bases. This can be shown by
converting a number in one base to the base |0 and then convert this number to the other
base.

Examples

(@) 0.2, =>N,
0.2,=>N =2/4=05
0.5,=a/6+a/6>+al6’+ ...
6%0.5=2a +a/6+a,/6*+...=3.0
a, =3,a,=0,2,=0,
0.5 =>0.3,
0.2, =>0.3,

(b) 0.6, > N,

0.6 - N, =6/8=75
075=a/2+a/2*+a,/2> + ...
2%(0.75) =a, +a/2+a,/2?+ ... = |5
a, =1

05=a/2+a/2+ ...



DECIMAL NUMBERS = 337

(c)

205 =a,+a/2+ ... = |

0.5 - 0.11,
0.68 — 0.11,
0A,— N,

0.A = N, =10/16 = 0.625,,

0.625=a/2+a/2? +a 2 + ...

25(0.625) = a, + a2 +a/2% +

2%(0.25) =a, +a,/2 + ... = 0.5

2%(0.5) =a, + a2+ ... = |

0.625 , — 0.101,

0.A, - 0.101,

...=1.25

Quick conversions between the base 2 and base 16

With no computation, we can convert a number in the base 2 to its corresponding number
in the base 16

To convert from the base 2 to the base 16 or conversely, we need to construct the following

BASE 2 DIGITS BASE 16 DIGITS
Binary Hexadecimal
0000 0
0001 I
oolo 2
0ol1 3




338 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

0100 4
0101 5
olrlo 6
ol 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
[T F

Converting a finite decimal number less than |

The following two rules show how to convert a finite binary number to a hexadecimal
number:

I. From left to right, group the digits of the binary number in groups of
four; adding zeros at the end if necessary.

2. Match each group of these four digits with the corresponding hexadeci-
mal digits from the above table.

Example:
Convert 0.1101111011, to its corresponding hexadecimal digit.

We first write: 0.1101111011,=0.1101 1110 1100,.

Next we match from the above table the corresponding hexadecimal digit:

o.rrorrriort,=o0.1101 1110 1100 => 0.DEC,,

0. D E C

16

To convert a finite hexadecimal number to a binary number, just match each hexadecimal digit
with the corresponding binary digits in the above table.



DECIMAL NUMBERS = 338

Example

Convert 0.F3DB , to its corresponding binary number.

0.F3DB , = 0. F 3 D B— 0111100111101 1011,
0. (e ooll 1101 loll

Exercises:

I. Using this quick conversion, convert the following binary numbers to
hexadecimal:

(a) o.olrololol, (b) o.0001111101,

2. Using this quick conversion, convert the following hexadecimal num-
bers to binary:

(a) 0.5623, (b) 0.ACF230A,
3. In the example above, we converted 0.1101111011, — 0.DEC ,
Use another conversion method. Is the result the same?
4. Set up a quick conversion system between the base 2 and the base 8.
5. Convert (@) O.110111011, to the base 8.
(b) Convert 0.23461, to the base 2.
6. Use quick conversion to convert 0.76123; to the base |6.
Converting an infinite decimal number less than |
When converting an infinite binary number to hexadecimal, we to use the following rules:

I. From left to right, group the digits of the binary number in groups of
four; adding zeros at the end if necessary. If we cannot group the digits
in groups of four, expand the binary number to a minimal number of
digits that will allow the grouping.

2. Match each group of these four digits with the corresponding hexadeci-
mal digits from the above table.



340 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example

Convert 0.1001, to hexadecimal.

0.1001,=10.1001 1001 100l ..=>09

16

0.9 9 9...
Example
Convert O.mz to hexadecimal.
o.110110IT =0.1101 1011 1101 1011 1101 10l ...= 0.DB,,
0.D B D B D B
Example
Convert O.EZ to hexadecimal.
Since we don’t have a multiple of four digits, we expand:
0.1010,=0.101010101010101l0... => O.Klé
0.A A A A..
Example
Convert O.IOTI2 to hexadecimal.
Since we don’t have a multiple of four digits, we expand:
0.101 = 0.101101101101... o.rorr ofio friol...= 0'%“,
0.B 6 D
Example
Convert O.MIG to binary.

0.9A3DD,,

< 0.1001 1010 0011 1101 1101 =0.1001 1010 OOl [IOI 1101,




DECIMAL NUMBERS = 341

Exercises:

I. Convert O.WZ to a hexadecimal number.

2. Convert the following binary numbers to hexadecimal:
(@) 0.1,
(b) 0.10111,
(c) o.101101101,

3. Convert O.Wz to a hexadecimal number.

4. Show that the largest positive 32-bit number 0.1111...1, corresponds
to the decimal number

| —1/2%2

5. Explain why we cannot convert, using our above algorithm, the follow-
ing number into a fraction:

0.272772777277772777772...

PROJECT
Find each expression and a, and ¢, for k = 1,2, 3,4, 5.
%:L =>L= (i.'_i.i.i.* ) N
0.654321,, M, M, o 10> 108 7
(i + ; + # + )

o 102 10° 16



LHAPTER EIGHTEEN

WORKING WITH DECIMAL NUMBERS
IN ASSEMBLY




344 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

18.1 INTRODUCTION: REPRESENTATION OF
DECIMAL NUMBERS

So far in assembly language, we have only worked with integer numbers. We will now study
how we can represent and work with fractions represented as numbers with a decimal point.
These numbers will be called decimal numbers. When such numbers are used in assembly
language programming, they are frequently represented as ordinary decimal numbers or
scientific notation.

Definition of ordinary decimal numbers

An ordinary decimal number is of the form t a .aa, ... a , where a, are nonnegative integers.

Examples:

23.4, -55.0101, 0.00154, 9.0

Definition of scientific representation of decimal numbers

The representation of a decimal number in a scientific format is of the form * n*10% where n
is an integer, * represents the multiplication operation, and k is always a non-positive integer.
The value k is called the exponent, and the factional part is called the mantissa.

Definition of floating-point representation of decimal numbers
In assembly language, decimal numbers represented in the form
taaa,...a xEtn

and are called floating-point numbers, where a is a positive digit.



WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 343

Examples:
REPRESENTATION
23.4 234%107! 2.34 EI
—-55.0101 —550101*10* —5.50101E |
0.00154 154%]10- .54 E -3
-79.0 -79 *10° -79E I
9.0 9 *1Q° 9EO

Exercise:

I. Write the following in scientific and floating-point representation:

0.00234 45.356 -32

18.2 ARITHMETIC OPERATIONS USING SCIENTIFIC
REPRESENTATION

Multiplication
To multiply two numbers in scientific notation, we simply multiply the integer numbers and

add the exponents:

(NF107)(M*107) = (N*M)*10n ™

Examples:
(0.234)(0.05667) = (234*103)(5667*10°) = (234)(5667)*10® = 1326078*|0® =

1326078 E -8



346 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following partial assembly language code will compute (0.234)(0.05667):
mov eax, 234
mov ebx, -3
mul 5667
add ebx, -5
Exercises:
I. Write the following using scientific representation.
- 575.345%0.00234  678%0.03*2.135  0.0034*0.221

2. Write assembly language codes that will compute the above.

Addition and subtraction

To add or subtract two numbers using scientific representation, the exponents must be
equal:

N*10" £ M*10™ = (N £ M) *10"
Example:
0.234 + 0.05667 = 234*1073 + 5667*10 = 23400%10~° + 5667*10~ =
(23400+ 5667)*10° = 29067*10-°
The following assembly language code will compute 0.234 + 0.05667:
mov eax, 23400
mov ebx, -5
add eax, 5667
Exercises:
Write the following using scientific representation:
I. =575.345 + 0.00234 678 + 0.03 +2.135 0.0034 - 0.221

2. Write assembly language codes that will compute the above.



WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 347

Long division
To divide two decimal numbers using scientific representation, we have the following form:
(N *107)/(M * 10m) = (N/M)* 10"~ ™.

Example:

1.0.00258/23.456 = (258%10%) / (23456*10%) = (258/23456)10-°*3 = (258/23456) 10

18.3 80X86 FLOATING-POINT ARCHITECTURE

The MASM compiler has the ability to handle ordinary and floating-point decimal numbers.
The following are definitions of the representation given by MASM for decimal numbers.

Definition of float:

An ordinary decimal representation. The number is represented as a 32-bit number.
Definition of double decimal:

An ordinary decimal representation. The number is represented as a 64-bit number.
Definition of long double:

A floating-point representation. The number is represented as an 80-bit number.

The following are data type registers that are available: TBYTE, REAL4, REAL8, REAL10.The
table below gives the specifications for each of these data types.

DIRECTIVE # OF BYTES NUMBERTYPE
REAL4 4 float decimal
REALS 8 double decimal
REALIO 10 long double, floating point

QWORD 8 integer
TBYTE 10 long double, floating point

Along with these data types, we still can use the integer data types: BYTE, WORD, DWORD.



348 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Important: Except the QWORD data type, all the above data types are only represented in
the base 10.The QWORD follows the data type representation for integer numbers.

Examples:
.DATA
w TBYTE 0.236; will assign the number 2.36 to the identifier w as 2.36E-1.
x reald 234 will assign the number 2.34 to the identifier x as 2.34.

y real8 0.00678; will assign 0.00678 to the identifier y as 0.00678.
z reall0 23554.5678 will assign 23554.5678 to the identifier z as 2.35545678E4.

q qword 10 will assign 10 to the identifier q as an integer.

Rules for assigning floating-point numbers
The following are rules for assigning floating-point numbers:

* All identifiers are initially assigned floating-point numbers, where they are
defined in the data part of the program.

* All other assignments are done by passing the contents of the variables to
the various floating-point registers.

Floating-point registers

The registers EAX, EBX, ECX, and EDX cannot be used directly when working with floating-
point numbers. Instead, we have eight data registers, each 80 bits long. Their names are ST or
ST(0), ST(I), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7). These eight registers are shown stacked
vertically top down and should be visualized as follows.

ST
ST(I)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 343

Exercise:
I. What is the largest value (base 10) that can be stored in ST(k)?

The operands of all floating-point instructions begin with the letter f. The following will give
the most important floating-point instructions according to their general functions.Additional
floating-point instructions will be discussed in a later chapter of this book.

Storing data from memory to the registers

For demonstration purposes, we will assume the registers have the following numbers.

ST 10.0
ST(1) 15.0
ST(2) 20.0
ST(3) 25.0
ST(4)

ST(5)
ST(6)
ST(7)

The following are the floating-point instructions that will store data from memory to a given
register.

- fid
MNEMONIC OPERAND ACTION
. The real number from memory is
Fid memory variable (real) stored in ST
Example
.DATA
x REAL4 30.0

fld x ; stores the content of x in register ST and pushes the other values
down.



da0 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 30.0
ST(1) 15.0 10.0
ST(2) 20.0 15.0
ST(3) 25.0 20.0
ST(4) 25.0
ST(5)
ST(6)
ST(7)
+ fild
MNEMONIC OPERAND ACTION
fild variable memory The integer number from memory
(integer) is stored in ST, converted to floating
point, and data is pushed down.
Example:
.DATA
x DWORD 50

fild x ; stores the content of x (integer value) in register ST and pushes the
other values down.




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 33l

REGISTER | BEFORE EXECUTION | AFTER EXECUTION
ST 10.0 50.0
ST(1) 15.0 10.0
ST(2) 20.0 5.0
ST(3) 25.0 20.0
ST(4) 25.0
ST(5)
ST(6)
ST(7)
. fid
MNEMONIC OPERAND ACTION
fid st(k) The number in st(k) is stored in ST, and
data is pushed down.
Example:

fld st(2) ; stores the contents of register st(2) in register ST and pushes
the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 20.0
ST(1) 15.0 10.0
ST(2) 20.0 15.0
ST(3) 25.0 20.0




32 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST(4) 25.0

ST(5)

ST(6)

ST(7)

Important: Once the stack is full, additional stored data will cause the bottom values to be
lost. Also the finit instruction will clear all the values in the register.

Copying data from the stack

We will assume the registers have the following numbers.

ST 10.0
ST(1) 15.0
ST(2) 20.0
ST(3) 25.0
ST(4)

ST(5)
ST(6)
ST(7)

The following are the floating-point instructions that will copy data from stack.

e fst

MNEMONIC | OPERAND ACTION

Fst st(k) Makes a copy of ST and stores the value in ST (k)




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 333

Example:

fst ST(2) ; stores the content of ST in ST(2).

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 10.0
ST(I) 15.0 15.0
ST(2) 20.0 10.0
ST(3) 25.0 25.0
ST(4)
ST(5)
ST(6)
ST(7)
+ fst
MNEMONIC OPERAND ACTION
. Makes a copy of ST and stores the
fit memory variable (real) value in a real memory location
Example:
.DATA
x real4?

fst x ; stores the content of ST in x. The stack is not affected.




Ja4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

REGISTER | BEFORE EXECUTION | AFTER EXECUTION
ST 10.0 10.0
ST(I) 15.0 15.0
ST(2) 20.0 20.0
ST(3) 25.0 25.0
ST(4)
ST(5)
ST(6)
ST(7)
+ fist
MNEMONIC | OPERAND ACTION
fist memory variable | Converts to integer a copy of ST and stores the
'S (integer) rounded value in an integer memory location
Example:
.DATA
x DWORD?

fist x ; stores the content of ST as an integer number in x.




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 354

REGISTER | BEFORE EXECUTION | AFTER EXECUTION

ST 10.0 10.0

ST(1) 5.0 5.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Exchanging the contents of the two floating-point registers

We will assume the registers have the following numbers.

ST 10.0
ST(1) 15.0
ST(2) 20.0
ST(3) 25.0
ST(4)
ST(5)
ST(6)
ST(7)




36 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following are the floating-point instructions that will exchange the contents of two float-
ing- point registers.

* fxch
MNEMONIC OPERAND ACTION
fxch None Exchanges the content of ST and ST(I)
Example:

fxch ; exchanges the content of ST and ST(I).

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 10.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

« fxch

MNEMONIC OPERAND ACTION

fxch st(k) Exchanges the content of ST and ST(k)




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 337

Example:

fxch st(3) ; exchanges the content of ST and ST(3).

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 25.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 10.0

ST(4)

ST(5)

ST(6)

ST(7)

Adding contents of the two floating-point registers

We will assume the registers have the following numbers.

ST 10.0
ST(1) 15.0
ST(2) 20.0
ST(3) 25.0
ST(4)
ST(5)
ST(6)
ST(7)




38 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following are the floating-point instructions that will add the contents of two floating-
point registers.

+ fadd
MNEMONIC OPERAND ACTION
fadd st(k), st then STI?kd)diss Sr;(all(;caenddbs):r ';che sum
Example

fadd st(3), st ; adds ST(3) and ST; then ST(3) is replaced by the sum.

REGISTER BEFORE EXECUTION | AFTER EXECUTION
ST 10.0 10.0
ST(I) 15.0 15.0
ST(2) 20.0 20.0
ST(3) 25.0 35.0
ST(4)
ST(5)
ST(6)
ST(7)
* fadd
MNEMONIC | OPERAND ACTION
Adds ST and ST(k);
fadd st st(k) then ST is replaced by the sum




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 338

Example:

fadd st, st(3) ; adds the content of ST and ST(3); then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 35.0
ST(1) 15.0 5.0
ST(2) 20.0 20.0
ST(3) 25.0 25.0
ST(4)
ST(5)
ST(6)
ST(7)
- fadd
MNEMONIC OPERAND ACTION
e memory variable (real) Adds ST and the contents of a real
variable; then ST is replaced by the sum
Example:
x REAL4 12.0

fadd x ; adds the content of ST and x; then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 22.0
ST(1) 5.0 5.0
ST(2) 20.0 20.0




360 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST(3)

25.0

25.0

ST(4)

ST(5)

ST(6)

ST(7)

» fiadd

MNEMONIC

OPERAND

ACTION

fiadd

memory variable Adds ST and the contents of an integer
(integer) variable; then ST is replaced by the sum.

Example

x DWORD

70

fadd x ; adds the content of ST and x; then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 80.0

ST(1) 15.0 5.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 36

Subtracting the contents of the two floating-point registers

The following are the floating-point instructions that will subtract the contents of two float-

ing- point registers.

* fsub
» fsbur
MNEMONIC | OPERAND ACTION
fsub st(k), st then ST(k)C;n;eP:raecsesz(;EseT;ifference.
fsbur st(k), st then ST(kg:;ZTZ:It:cSeZTt:yS;rh(le();ifference.
Example

fsub st(3), st ; computes ST(3)-ST; then ST(3) is replaced by the difference.

REGISTER BEFORE EXECUTION | AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 15.0

ST(4)

ST(5)

ST(6)

ST(7)

. fsub

¢ fsubr




362 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MNEMONIC | OPERAND ACTION
Fsub st, st(k) then ST ci:;orrzgll::cisdst;l;_f:e( kd)i;fference
Fsubr st, st(k) then ST iCSOEEIl;ZZSdSL(IE)h;SZ;ﬁerence
Example:

fsub st, st(l) ; computes st—st(1); then st is replaced by the difference.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 -5.0

ST(1) 5.0 5.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

. fsub

- fsubr

MNEMONIC OPERAND ACTION
foub memory (real ) then ST i replaced by the diffesnce
fsubr memory (real) then ST i replaced by the difecence




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 363

Example:

x REAL412.0

fsub x ; calculates st—x; then st is replaced by the difference.

REGISTER | BEFORE EXECUTION | AFTER EXECUTION
ST 10.0 -2.0
ST(1) 15.0 15.0
ST(2) 20.0 20.0
ST(3) 25.0 25.0
ST(4)
ST(5)
ST(6)
ST(7)
« fisub
* fisubr
MNEMONIC | OPERAND ACTION
fisub memory (integer) Calculates ST—integer number; then ST is
replaced by the difference
e | memory(ager) | e s number T, hen ST
Example:

x DWORD 70

fisub x ; calculates st—x; then st is replaced by the difference.




364 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

REGISTER BEFORE EXECUTION | AFTER EXECUTION

ST 10.0 - 60.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Multiplying the contents of the two floating-point registers

The following are the floating-point instructions that will multiply the contents of two float-

ing- point registers.

. fmul
MNEMONIC OPERAND ACTION
Fmul st(k), st then STTE)ItiT lrf;l:e(:z)baynfh?;roduct
Example:

fmul st(3), st ; multiplies st(3) and st; then st(3) is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 10.0
ST(1) 15.0 15.0
ST(2) 20.0 20.0




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 364

ST(3) 25.0 250.0

ST(4)

ST(5)

ST(6)

ST(7)

e fmul

MNEMONIC | OPERAND ACTION

Multiplies ST(k) and ST;

fmul st st(k) then ST is replaced by the product

Example:

fmul st, st(3) ; multiplies st(3) and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION | AFTER EXECUTION

ST 10.0 250.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)




366 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

* fmul
MNEMONIC OPERAND ACTION
Multiplies ST and real variable;
fmul memory variable (real) then ST is replaced by the
product
Example:
x REAL4 35.0

fmul x ; multiplies x and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 350.0
ST(1) 15.0 15.0
ST(2) 20.0 20.0
ST(3) 25.0 25.0
ST(4)
ST(5)
ST(6)
ST(7)
* fmul
MNEMONIC OPERAND ACTION
frul memory variable (integer) Multiplies integer variable and ST;

then ST is replaced by the product




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 367

Example

x DWORD 45

fmul x ; multiplies x and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION | AFTER EXECUTION

ST 10.0 450.0

ST(1) 15.0 15.0

ST() 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Dividing the contents of floating-point registers

The following are the floating-point instructions that will divide the contents of floating-point
registers.

« fdiv
e fdivr
MNEMONIC | OPERAND ACTION
fdiv st(k), st then ST(IS;Oin:;raSc::jr(ll:)z/tﬁz;quotient
fdivr st(k), st then ST(SiTS:;fasc:Z/biz(hkg;quotient




368 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

fdiv st(1), st ; computes st(l)/st; then st(l) is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 5.0

ST(I) 15.0 3.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

+  fdiv

* fdivr

MNEMONIC (| OPERAND ACTION

. Computes ST/ ST(k);

fdiv st st(k) then ST is replaced by the quotient
. Computes ST(k)/ ST;

fdivr st st(k) then ST is replaced by the quotient

Example

fdiv st, st(2) ; computes st/ st(2); then st is replaced by the quotient.




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 369

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 0.25

ST(I) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

* fdiv

* fdivr

MNEMONIC OPERAND ACTION

. ) Computes ST/ real variable;

fdiv memory variable (real ) then ST is replaced by the quotient
. . Computes real variable/ST;

fdivr memory variable (real ) then ST is replaced by the quotient

Example:
x real4 10.0

fdiv x ; computes st/ x; then st is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 5.0 0.5
ST(1) 15.0 15.0
ST(2) 20.0 20.0
ST(3) 25.0 25.0




370 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST(4)
ST(5)
ST(6)
ST(7)
« fidv
* fidvr
MNEMONIC OPERAND ACTION
- . Computes ST/ integer variable; then ST is
fidiv memory (integer) .
replaced by the quotient
- . Computes integer variable /ST; then ST is
fidivr memory (integer) .
replaced by the quotient
Example
x DWORD 5

fdiv x ; computes st/ x; then st is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 1.0

ST(1) 15.0 5.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 371

Summary tables of floating-point arithmetic operations

Store data from memory to a given register

MNEMONIC OPERAND ACTION
fld variable memory (real) The real number from memory is stored
Y in ST, and data is pushed down
The integer number from memory is
fild variable memory (integer) | stored in ST, converted to floating-point,
and data is pushed down
The number in st(k) is stored in ST, and
fid st(k) data is pushed down
Copy data from the stack
MNEMONIC OPERAND ACTION
Makes a copy of ST and stores the
Fst st(k) value in ST(k)
Est ey vEtEsa (Rl Makes a copy of ST and stores. the
value in a real memory location
Converts to integer a copy of ST and
fist memory (integer) stores the rounded value in an integer
memory location

Exchange the contents of the two floating-point registers

MNEMONIC OPERAND ACTION
Fxch (none) Exchanges the content of ST and ST(I)
Fxch st(k) Exchanges the content of ST and ST(k)




372 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Add contents of the two floating-point registers

MNEMONIC OPERAND ACTION
Fadd st(K), st Adds ST(k) and ST; then ST(k) is
replaced by the sum
Fadd st, st(k) Adds ST and ST(k); then ST is replaced
by the sum
Fadd ey vestEble () Adds ST and the contents of a real
y variable; then ST is replaced by the sum
Fiadd ey vEriEbl (hmme) Adds ST and the contents of an integer
Y & variable; then ST is replaced by the sum

Subtract the contents of the two floating-point registers

MNEMONIC OPERAND ACTION
Fisub memory (integer) Calculates ST—integer number; then ST is
Y g replaced by the difference
Fisubr memory (integer) Calculates integer number—ST; then ST is
Y & replaced by the difference
Computes ST-ST(k);
Fsbur st(k), s¢ then ST(k) is replaced by the difference
Fsub memory (real ) Calculates ST—real number;
y then ST is replaced by the difference
Computes ST-ST(k);
Fsub st st(k) then ST is replaced by the difference
Computes ST(k)-ST;
Fsub st(k), st then ST(k) is replaced by the difference
Computes ST(k)-ST;
Fsubr st st(k) then ST is replaced by the difference
Calculates real number—ST;
fsubr memory (real)

then ST is replaced by the difference




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 373

Multiply the contents of the two floating-point registers

MNEMONIC OPERAND ACTION
Multiplies ST(k) and ST; then ST is
fmul st, st(k) replaced by the product
fmul st(K), st Multiplies ST(k) and ST; then ST (k) is
replaced by the product

. Multiplies ST and real variable; then ST

fmul memory variable (real) .
is replaced by the product
fmul ey v i) Multiplies integer variable and ST; then
y & ST is replaced by the product

Divide the contents of floating-point registers

MNEMONIC OPERAND ACTION
. Computes ST(k) / ST;
fdiv st(k), st then ST(k) is replaced by the quotient
. Computes ST / ST(k);
fdiv st st(k) then ST is replaced by the quotient
fdiv memory variable (real ) Computes ST / real variable;
Y then ST is replaced by the quotient
. Computes ST / ST(k);
fdivr st(k), st then ST(k) is replaced by the quotient
. Computes ST(k) / ST;
fdive st st(k) then ST is replaced by the quotient
fdivr memory variable (real ) Computes real variable / ST;
Y then ST is replaced by the quotient
fidiv memory variable (integer) CompLil:erse;L!;Sffi;::ﬂiii;ihen ST
fidivr memory variable (integer) CompLilzerseIl)r;;:izrb\;azlha:fu/of;;nihen ST




374 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Miscellaneous floating-point instructions

MNEMONIC | OPERAND ACTION
fabs (none) Replaces the contents of ST with it absolute value
Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST -10.0 10.0
2.
MNEMONIC | OPERAND ACTION
fchs (none) Replaces the contents of ST with—-ST

Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 -10.0
3.
MNEMONIC | OPERAND ACTION
frndint (none) Rounds ST to an integer value
Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 12.424 12.0




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 373

Example:

A harmonic sum is defined by the sum | + /2 + [/3 + ... + ... + I/n.

The following pseudocode programs will compute | + 1/2 + 1/3 + 1/4 + 1/5 + 1/6.

PSEUDOCODE INSCEI'YRfJLCET?OFNS SUM N [ ONE
SUM:=0.0 SUM:=0.0 0.0 I
N:=1 N :=| 0.0 |
ONE:= | ONE:= | 0.0 I |
WHILE N <=6 WHILE N <=6 0.0 I I
BEGIN BEGIN 0.0 I I

SUM :=SUM + I/N SUM:= SUM+I/ N | I I

N:=N+ | N:=N + | I 2 I

SUM:= SUM+I/ N 1.5 2 I

N:=N+| 1.5 3 I

SUM:= SUM+ I/N 1.8333...33333 3 I

N:=N+ | 1.833...33333 4 I

SUM:= SUM+ I/N 2.0833....33333 | 4 I

N:=N+I| 2.0833....33333 5 I

SUM:= SUM+ |/N 2.2833...33333 5 I

N:=N+ | 2.2833...33333 6 I

SUM:= SUM+ |/N 2.45 6 I

N:=N+| 2.45 7 I

END END 2.45 7 I




376 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE AL PSEUDO CODE ASSEMBLY CODE
SUM:=0.0 SUM :=0.0 sum real4 0.0
N:= I N := | n byte |
ONE:= | ONE:= | one byte |
WHILE N <= 6 WHILEN < 6 Whilel:cmp n, 6 jg end|
SUM :=SUM + I/N ST := ONE fld one
N:=N + |
ST:= ST/N fidiv n
ST:=SUM + ST fadd sum
SUM:= ST fst sum
EAX := N mov eax, n
EAX := EAX + | add eax, |
N:= EAX mov n, eax
END jmp whilel
endl:
Exercises

I. Write an assembly program to compute the sum:

124 1/22+ 1/32+ 1/42 + 1/5% + 1/6%

2. It can be shown that2 =1 + /2 + [/22 + [/23 + ...

(@) Write an AL algorithm to compute S = | + 1/2 + 1/22 + /23 + ... + |/2",

(b) Write an AL algorithm to find for a given n The error =2 - S .

3. It can be shown that 1/4 = /3 = /32 + |/33—1/3*+ ....

Write an AL algorithm to find for a given n the sum = /3 — [/32+ |/33— |/3*+ ...+ /3",




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 377

4. The determinate of a square table plays a major rule in mathematics.
The following is a definition of a 2-by-2 determinate:

A= nooAp _
- =33, 9,3,

a'2I a22

Write an algorithm that will compute an arbitrary 2-by-2 determinate.

Interchanging integer and floating-point numbers

The following table demonstrates how integer numbers and floating-point numbers are inter-
changed (all numbers are decimal).

AS CODE N X Y y 4 ST(0)
n dword ?
x real4 2.0 2.0
y real4 23.7 2.0 23.7
z real4 55.4 2.0 23.7 55.4
fld x 2.0 23.7 55.4 2.0
fist n 2 2.0 23.7 55.4 2.0
fid y 2 2.0 23.7 55.4 23.7
fist n 24 2.0 23.7 554 23.7
fid z 24 20 23.7 55.4 55.4
fist n 55 20 23.7 55.4 55.4




378 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Model program

; This program will compute the harmonic sum
s L+ 12+ 1/3+1/4+1/5+1/6

.386

.model flat

.stack 4096

.data

sum real4 0.0
n byte |

one byte |

.code

_start:

;start assembly language code

whilel cmp n, 6
jg endl

fild one

fidiv n

fadd sum

fst sum

mov eax, n

add eax, |

mov n, eax

jmp whilel

end:
;end of assembly language code
public _start

end




WORKING WITH DECIMAL NUMBERS IN ASSEMBLY = 373

PROJECTS

|. It can be shown that

4 4
—+... %

Il 2n + |

4 4 4 4
Tnd-—+— — —+ — —
3 5 7 9

(a) Write an assembly language algorithm to approximate .
(b) Write an assembly language program to approximate ©t for n = |0.
2. The solution of a 2-by-2 system of equations:

The determinate of a square table plays a major rule in mathematics. The following is a
definition of a 2-by-2 determinate:

=33, 9,3,

21 22
Write an algorithm that will compute an arbitrary 2-by-2 determinate.

Cramer’s rules

Assume we wish to solve the following 2-by-2 system of equations:

a'IIX + a'IZ)l = bI

aZIX + aZZy = bZ

The following Cramer’s rules give us a solution of the above system of equations, where

b, 2,
b, ay
X —_
A
3 [
- |2 2
y —_
A

Write an algorithm that solves any 3 a 2-by-2 system of equations. Make sure that A does
not equal zero.



LHAPTER NINETEEN

COMPARING AND ROLNDING
FLOATING-POINT NUMBERS




382 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

19.1 INSTRUCTIONS THAT COMPARE
FLOATING-POINT NUMBERS
When we are comparing floating-point numbers, we cannot directly use the instruction cmp.

Instead, we have the following instructions that allow us to compare the register ST to a
second operand.

MNEMONIC OPERAND ACTION
fcom (none) Compares ST and ST(I)
fcom st(k) Compares ST and ST(k)
. Compares ST and a real number in
fcom variable memory (real)
memory
ficom variable memory (integer) Compares ST and an integer
number in memory
ftst (none) Compares ST and 0.0

The status word register

When one of the comparison instructions is made, the contents of a special |6-bit register,
called the status word register, is modified. The comparison instruction will assign bits (0 or I)
to the bits 9, I I, and |5 of the status word.

The status word register cannot be directly accessed. In order to evaluate the bits in the
status word, we can, with the following two instructions, copy the contents of the status word
to a memory variable or the AX register:

MNEMONIC OPERAND ACTION

Copies the status register

fstsw variable (word) memory (integer) .
into memory

Copies the status register

fstsw AX into AX




COMPARING AND ROUNDING FLOATING-POINT NUMBERS = 383

Examples:

x dword ?
fcom
fstsw x

fstsw ax

Interpretation of the contents of the status word

When a comparison is made, the table below gives the bit values that are assigned to the
status word by the comparison instructions.

COMPARISON STATUSWORD

BIT POSITION 615114131211 [l0O)9|8|7|6|5]|4]|3|2]]1

ST>secondoperand [ x | 0 | x | x| x| 0| x| 0| x| x| x]|x]|x|x]|x]|x

ST <secondoperand | x | O [ x [ x | x [ O | x| D | x| x|[x]|x|x|x]x]x

ST=secondoperand [ x | I [ x [ x| x [0 | x| O | x| x|[x]|x]|x|x]x]x

Where the values x are 0 or |.

Since we are not sure what the other bits are in the status word, we need to create a mask
that will convert the bits represented above by x’s to the bit 0. By doing this, we can make
correct comparisons. The following mask will be used.

BIT POSITION (16| I5(14]13|12]11 |10 9|8 |7 |6 |5([43]|2]]1

MASK (binary) (O |1 |JO]JOJO]l|JO|Il]|]O|OfOfO]O|O]O]O

The following codes show the effect of the mask on the possible contents of the status word
resulting from a comparison instruction.



384 « ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST > second operand

AL CODE AX MASK
mov mask,0100010100000000b 0100010100000000b
fstsw ax; stores the contents XOXXXOX0XXXXXXXXb 0100010100000000b
of the status word in ax
and ax, mask 0000000000000000b 0100010100000000b
ST < second operand
AL CODE AX MASK

mov mask, 010001010000000b

0100010100000000b

fstsw ax; stores the contents
of the status word in ax

XOxxx0x | xxxxxxxxb

0100010100000000b

and ax, mask

0000000100000000b

0100010100000000b

ST = second operand

AL CODE

AX

MASK

mov mask,0100010100000000b

0100010100000000b

fstsw ax; stores the contents of
the status word in ax

X | xxx0x0xxxxxxxxb

0100010100000000b

and ax, mask

0100000000000000b

0100010100000000b

Performing jumps

From above, we see that comparison instructions only set the status word. Therefore, to
make our jump instructions from chapter 12 work, we need to check the contents of the
status word. In order to make the comparison, we must first store the status word in a vari-
able (word) or the ax register and then use the above mask, as shown above. The following

examples should give us a clear idea of how this is done.




COMPARING AND ROUNDING FLOATING-POINT NUMBERS = 383

Examples:

I. Assume each of the registers in the stack have been previously assigned
values. The following pseudocode and AL pseudocode will perform the

following tasks:

Task |: If y is larger than x, then assign the contents of y to the memory

location z.

Task 2:If y is smaller than x, then assign contents of x to the memory

location z.

Task 3: If y is equal to %, then assign zero to the memory location z.

PSEUDOCODE

AL PSEUDOCODE

mov mask, 010001010000000b

mov MASK, 010001010000000b

ST:=Y

; COMPARE ST, X

IFY > X THEN
AX:= STATUS- WORD
AX:= AX .AND. MASK
IF AX = 0000000000000000b THEN
BEGIN BEGIN
EAX:=Y
Z=Y
Z:= EAX
END END
IFY < X THEN IF AX = 0000000100000000b THEN
BEGIN BEGIN
EAX:= X
Z=X
Z:= EAX
END END
IFY = X THEN IF AX:= 01000000000000000b THEN
BEGIN BEGIN
Z=0 Z=0
END END




386 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Using the above pseudocode and AL pseudocode, the below partial assembly language pro-

gram will find the larger of two positive x and y where x =7 and y = 2.

AL PSEUDOCODE AL CODE Z | ST AX
m=010001010000000b | o o F(q)%on(;booo b
X=7 mov X, 7
Y:=2 mov y, 2
ST:=Y fild y 2
COMPARE ST, X fcom x 2
AX:= STATUS-WORD fstsw ax 2 X0xxx0x I xxXxxXXXXXb
AX:= AX .AND. M and ax,m 2 0000000 100000000b
X = STTHEN 01000000000000006 2 0000000 100000000b
ine LI 2 0000000100000000b
BEGIN begin: 2 0000000100000000b
Z:=0 mov z, 0 2 0000000100000000b
END end: jmp end2 2 00000001 00000000b
X < STTHEN oooolé(;b;?go?))c()’oow 2 0000000 100000000b
ine begin2 2 00000001 00000000b
BEGIN begin: 2 0000000100000000b
EAX:= X mov eax, X 2 0000000100000000b
Z:= EAX mov z, eax 2 00000001 00000000b
END end: jmp end2 2 0000000100000000b
IF X > ST THEN 2 0000000100000000b
BEGIN begin2: 2 0000000100000000b
EAX := X mov eax, X 2 0000000100000000b
Z:= EAX mov z, eax 71 2 0000000 100000000b
END end2: 71 2 0000000100000000b




COMPARING AND ROUNDING FLOATING-POINT NUMBERS = 387

2. The following program will compute the harmonic sum
[+ 1/2+1/3+ ...+ 1/n until 1/n < e,where 0 <e<|.
Assume e = 0.00001.

Note: See model program below.

PSEUDOCODE AL PSEUDO CODE ASSEMBLY CODE
E:= 0.00001 E:= 0.00001 e real4 0.00001
F=1.0 F=1.0 freal4 1.0
SUM :=0.0 SUM:= 0.0 sum real4 0.0
N:= I N:= 1.0 nreal4 1.0
ONE:= | ONE:= 1.0 one real4, 1.0

001 oomﬁg&)ooow MASK:= 0100010100000006 ol OOI(T;IO(\)/I?(?(S)'(;’OOOb
WHILE: ST = F whilel: fld f
FCOME fcom e
AX:= STATUS WORD fstsw ax
WHILEF 2 E AX:= AX .AND. MASK and ax, mask
IFAX = 100h THEN 00000001000000006
JUMP END je endl
BEGIN BEGIN BEGIN
ST:= SUM fld sum
SUM:= SUM + F ST:=ST+F fadd f
SUM:= ST fst sum
ST:=N fid n
N:= N + ONE ST:= ST + ONE fadd one
N:=S§ fst n
ST:= ONE fld one
F= ONE/N ST:= ST/N fdiv n
F:= ST fst f
JUMP WHILE jmp whilel
END END end:




388 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

19.2 ROUNDING FLOATING-POINT NUMBERS

In order to write such programs, we need to be able to truncate decimal values.The contents
of the control register (see below) determine how data is to be rounded when data in the ST
register is transferred to an integer variable.There are four types of rounding:

*  Normal rounding of the number to an integer

* Rounding the number up to the nearest integer

* Rounding the number down to the nearest integer
* Truncating the number to its integer value

The following table gives the hexadecimal representation of the contents of the control
register that is needed to perform rounding in ST.

BYTE POSITION 2 |
Round the number to the nearest integer. 00 00
Round the number up to the nearest integer. 08 00
Round the number down to the nearest integer. 04 00
Truncate the number to its integer value. 06 00

Examples:
I. 23.678 => 24, normal rounding to an integer
2. 23.678 => 24, rounded up to the nearest integer
3. 23.678 => 23, rounded down to the nearest integer

4. 23.678 => 23, truncated to its integer value

The control register

The control register is a |6-bit register that determines the kind of rounding that is to take
place. When copying a value from the ST register to an integer variable, the | 1th and 12th
bits of the control register have to be modified to determine what type of rounding is to take
place.This can be accomplished by transferring to the control register one of the bytes in the
table above.



COMPARING AND ROUNDING FLOATING-POINT NUMBERS = 389

The table below contains the instructions that will copy the contents of an integer variable
from and to the control register.

MNEMONIC OPERAND ACTION

Copies the contents of the control

fstew memory variable (integer) . ;
register to a memory variable

Copies the contents of the memory

fldew memory variable (integer . .
y (integer) variable to the control register

To round a number to the desired type, the following order has to be followed:
I. Copy the desired byte, from the table above, to the control register.
2. Copy the contents of ST to a given integer variable.

Examples:

I. Normal rounding

;29=>3
.data

n word ?

x real4 2.9
round word Oh

.code
_start:

fid x ; 2.9 => st(0)
fldew round; Oh => control register
fist n; 3=>n

public _start

end




390 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2. Rounding down

;29=>2

.data

n word ?

x real4 2.9

round word 0400h

.code
_start :

fld x ; 2.9 => st(0)
fldew round; 0400h => control register
fist n; 2=>n

public _start

end

3. Rounding up

;2.1 =>3

.data

n word ?

x real4 2.1

round word 0800h

.code
_start:

fid x ; 2.1 => st(0)
fldew round; 0800h => control register
fist n; 3=>n

public _start

end




COMPARING AND ROUNDING FLOATING-POINT NUMBERS = 331

4. Truncating

;29=>2

.data

n word ?

x real4 2.9

round word 0600h

.code
_start :

fld x ; 2.9 => st(0)
fldew round; 0600h => control register
fist n; 2=>n

public _start

end

Exercises:

I. Write an AL program that will perform the following:
(a) Store in a variable the decimal representation of the number 1/7.
(b) Round the number to 10 places of accuracy.

2. It can be shown that 2 = | + 1/2 + /22 + 1/23 + ..

Write an AL program to compute the S = | + 1/2 +1/22 + ... + |/2"
where the error =2 —Sn < [0™ is for a given value of n.

3. It can be shown that | +2 + ... + N=N (N + [)/2

Write an AL algorithm that will compute and store the number:
.0 +2.0 + ... + N.O and compute, if any, the error
[ (1.0 +2.0+ ... + N.0) - N.O(N.O + 1.0)/2.0].

4. The determinate of a square table plays a major role in mathematics.
The following is a definition of a 2-by-2 determinate:

A= nooo2p _
- T332,

a'2I a'22

Write an algorithm that will compute an arbitrary 2-by-2 determinate
and check that | A |>E > 0, for a given E.



392 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Model program

; This program will compute the harmonic sum

P+ 1/2+1/3+ ...+ 1/n
;until
;l/n <e,

;where 0 < e < |

;Assume e = 0.00001

.386

.MODEL FLAT

.STACK 4096

.DATA

.CODE

e real4 0.00001
freal4 1.0

sum real4 0.0
n real4 1.0

one real4, 1.0

_start:

;start assembly language code




COMPARING AND ROUNDING FLOATING-POINT NUMBERS = 333

mov mask ,010001010000000 b

whil l: fld f
fcom e
fstsw ax

and ax, mask
comp ax, 0000000010000000b
je end

begin:

fld sum

fadd f

fst sum

fild n

fadd one

fst n

fld one

fdiv n

fst f
jmpwhil |

end:

;end of assembly language code

PUBLIC_start

END




334 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECT

3 3 3 3
l. Itcanbeshownthat4z3+7+Z+?+?+?+...+ y

3
To approximate 4, we compute the above sum untill ol < 10™
for a positive value of M
(a) Write an assembly language algorithm to approximate 4.

(2) Write an assembly language program to approximate 4 for M = |0.

2. It can be shown th e e, A e A
. It can be shown that T ~ —3 5 7 9 || ..._2n+|

S I B ST B IR I

R Sy T s T Ty T T el

where

4 4 4 4
R =+ + + +... %
n 2n + | 2n + 3 2n+5 4n — |

Write an AL program that will for a value of n, will make |R_| < /10" for M >0

d ” . 4 i + i i + i i + + 4
and wi apprOXImate T = 3 5 7 9 | T 4n0 — |




LHAPTER TWENTY

DYNAMIC STORAGE FOR DECIMAL
NUMBERS: STACKS




396 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

Chapter |5 demonstrated how arrays in assembly language allow the programmer to store
a large amount of integer numeric data sequentially in memory locations. This chapter will
show two other types of instructions in assembly language that perform dynamic storage for
decimal numbers: the push and pop instructions.

Definition of push instructions:
Push instructions will insert data into registers or memory locations.
Definition of pop instructions:

Pop instructions may remove data from registers or memory locations and insert data into
registers or memory locations.

20.1 FLOATING-POINT PUSH AND POP
INSTRUCTIONS

The following instructions will bring about pushes and pops that are used in floating-point
programming. They are part of the instruction sets that were first introduced in chapter 8.

As you will recall, the operands of all floating-point instructions begin with the letter f.When
storing or changing data in the registers, the following floating-point instructions will cause
the data that is replaced in the register to be pushed down to the registers below or up to
the registers above.

Storing data from memory to the registers

We will assume the registers have the following numbers.

ST 10.0
ST(1) 5.0
ST(2) 20.0
ST@3) 25.0
ST(4)
ST(5)
ST(6)
ST(7)




OYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 387

The following are the floating-point instructions that will store data from memory to a given
register.

MNEMONIC OPERAND ACTION
fd | The real number from memory is stored in ST,
memory (real) and data is pushed down.

Example:

.DATA
x REAL4 30.0

fld x; stores the content of x (real) into register ST and pushes the other
values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 30.0
ST(1) 15.0 10.0
ST(2) 20.0 15.0
ST(3) 25.0 20.0
ST(4) 25.0
ST(5)
ST(6)
ST(7)
MNEMONIC OPERAND ACTION
The integer number from memory is stored
fild E?ni:;err); in ST, converted to floating-point, and data is
pushed down.




398 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

.DATA
x DWORD 50

fild x; stores the content of x (integer) in register ST and pushes the other
values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 50.0
ST(I) 15.0 10.0
ST(2) 20.0 15.0
ST(3) 25.0 20.0
ST(4) 25.0
ST(5)
ST(6)
ST(7)
MNEMONIC | OPERAND ACTION
The number in st(k) is stored in ST, and data is
fid st(k) pushed down.
Example:

fld st(2); stores the number 20.0 into register ST and pushes the other
values down.



OYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 383

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 20.0

ST(1) 5.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

Important: Once the stack is full, additional stored data will cause the bottom values to be
lost. Also, the finit instruction will clear all the values in the register.

Copying data from the stack

We will assume the registers have the following numbers.

ST 10.0
ST(1) 15.0
ST(2) 20.0
ST(3) 25.0
ST(4)
ST(5)
ST(6)
ST(7)




400 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MNEMONIC | OPERAND ACTION
Makes a copy of ST and stores the value in
fstp st(k) ST(k).ST is popped off the stack by moving the
data up.
Example:

fstp ST(2); stores the content of ST in ST(2) and then pops ST off the stack
by moving the data up.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 15.0
ST(1) 15.0 10.0
ST(2) 20.0 25.0
ST(3) 25.0
ST(4)
ST(5)
ST(6)
ST(7)
MNEMONIC | OPERAND ACTION
fotp memory (real) Makes a copy of ST and stores the value in a
real memory location. ST is popped off the stack.
Example:
.DATA
x real 4

fstp x; stores the content of ST in x. ST is popped off the stack.




OYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 401

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 15.0
ST(I) 15.0 20.0
ST(2) 20.0 25.0
ST(3) 25.0
ST(4)
ST(5)
ST(6)
ST(7)
MNEMONIC OPERAND ACTION
Converts to integer a copy of ST and
fstp memory (integer) stores the value in an integer memory
location. ST is popped off the stack.

Example
.DATA
x DWORD ?

fstp x; stores the content of ST as an integer number in x.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(I) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)




402 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Adding contents of the two floating-point registers

We will assume the registers have the following numbers.

ST 10.0
ST(1) 15.0
ST(2) 20.0
ST(3) 25.0
ST(4)

ST(5)
ST(6)
ST(7)

The following are the floating-point instructions that will add the contents of two floating-
point registers.

MNEMONIC | OPERAND ACTION
First it pops both ST and ST(!); next it adds ST
fadd none and ST( I); finally the sum is pushed onto the
stack.
Example:

fadd; first it pops both st and st(l); next it adds st and st(1); finally the sum
is pushed onto the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 45.0

ST(1) 15.0 20.0




OYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 403

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

Adds ST(k) and ST; ST(k) is replaced by the sum

faddp st(k), st and ST is popped from the stack.

Example:

faddp st(2), st; adds ST(2) and ST; ST(2) is replaced by the sum, and ST is
popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 30.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)




404 » ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Subtracting the contents of the two floating-point registers

The following are the floating-point instructions that will subtract the contents of two
floating-point registers.

MNEMONIC (| OPERAND ACTION
fsub none First it pops ST and ST(1); next it calculates
ST(1)-ST; next it pushes the difference into ST.
fsubr none First it pops ST and ST(1); next it calculates
ST-ST(1); next it pushes the difference into ST.
Example:

fsub; first it pops st and st(1); next it calculates st(l)—st; next it pushes the
difference into st.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 2.0

ST(1) 15.0 27.0

ST(2) 27.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)




DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 404

MNEMONIC OPERAND ACTION
Example:

fsubp st(l), st; computes st(l)—st; replaces st(l) by the difference; finally
pops ST from the stack.

REGISTER BEFORE EXECUTION | AFTER EXECUTION

ST 10.0 5.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Multiplying the contents of the two floating-point registers

The following are the floating-point instructions that will multiply the contents of two
floating-point registers.

MNEMONIC

OPERAND

ACTION

fmul

none

First it pops both ST and ST(I); next it multiplies ST
and ST(1); finally the product is pushed onto the stack.




406 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

fmul; first it pops both st and st(1); next it multiplies st and st(1); finally the
product is pushed onto the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 500.0
ST(I) 15.0 20.0
ST(2) 20.0 25.0
ST(3) 25.0
ST(4)
ST(5)
ST(6)
ST(7)
MNEMONIC | OPERAND ACTION
Multiplies ST(k) and ST; ST(k) is replaced by
fmulp st(k), st the product, and ST is popped from the stack.
Example:

fmulp st(3), st; multiplies st(3) and st; then st(k) is replaced by the product
and st is popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 5.0
ST(1) 15.0 20.0
ST(2) 20.0 250.0
ST(3) 25.0

ST(4)




DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 407

ST(5)

ST(6)

ST(7)

Dividing the contents of floating-point registers

The following are the floating-point instructions that will divide the contents of floating-point

registers.
MNEMONIC | OPERAND ACTION
fdiv none First it pops both ST and ST(I); next it computes
ST(I)/ ST; finally the quotient is pushed onto the stack.
fdivr none First it pops both ST and ST(1); next it computes ST/
ST(1); finally the quotient is pushed onto the stack.
Example:

fdiv; first it pops both st and st(l); next it computes ST(I)/ ST; finally the
quotient is pushed onto the stack.

REGISTER BEFORE EXECUTION | AFTER EXECUTION

ST 5.0 1.25

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)




408 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MNEMONIC | OPERAND ACTION
i s9:5t |G awent Nexs S s popped rom dh stk
Example:

fidivp st(2); computes st(2) /st; then st(2) is replaced by the quotient, and
ST is popped from the stack.

REGISTER BEFORE EXECUTION | AFTER EXECUTION

ST 5.0 15.0

ST(1) 15.0 4.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)




OYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 408

Instructions that compare floating-point numbers

MNEMONIC | OPERAND ACTION
fcomp (none) Compares ST and ST(1); then pops the stack
fcomp st(k) Compares ST and ST(k); then pops the stack
feomp memory (real) Compares ST and a real number in memory;

then pops the stack

Compares ST and an integer number in memory;

fcomp memory (integer) then pops the stack

fcompp (none) Compares ST and ST(I); then pops the stack twice

20.2 THE 80X86 STACK
The directive
.STACK 4096

in the assembly language has the assembler reserve of 4096 bytes of storage. This will allow
the programmer to temporarily store integer data in this location. The instruction to store
data sequentially is the push instruction.

The push instruction
The syntax of the push instruction is push source where the source can be any of the following:
* 16-bit register (AX, BX, CX, DX)
» 32-bit register (EAX, EBX, EDX, EDX)
* A declared word or double word variable
* A numeric byte, word or double word
The push instruction will sequentially store data in the stack starting at the initial location.

Note: For simplicity, we will only push 32-bit registers or numeric values.



410 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

I. Complete the table. Use only hexadecimal numbers.

Example:
AL CODE EAX STACK
mov eax, 52B6h 52B6
push eax 52B6 00 (00 (52| Bé6
mov eax, 23A7h 23A7 00 [ 00 | 52 | B6
push eax 23A7 00|00 (23| A7Qg00 | 00 |52 ]|B6
mov eax,
7234671 1h 72346711 §00 | 00| 23 | A7 Q00 | 00 | 52 | B6
push eax 72346711 Q72|34 |67 ( 11 g00| 00 (23| A, 52 | B6
Exercises

AL CODE

AX

STACK

mov ax, 23deh

push ax

mov ax, 3425

push ax

mov ax, 7f7ah

push eax

2. Complete the table. Use only hexadecimal numbers.

AL CODE

EAX

STACK

mov eax, 0

push eax

mov eax, 243544h

push eax

mov eax, [001111b

push eax




OYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS = 411

Other push instructions

pushw

When a numeric integer is to be pushed into the stack, to prevent confusion, the assembler
needs to be informed as to its data type.The following push instructions perform this task:

» pushw source where source is a numeric value.
This push instruction will identify the numeric value to be stored as a word.
» pushd source where source is a numeric value.

This push instruction will identify the numeric value to be stored as a
doubleword.

The pop instruction

The pop instruction will copy data from the stack, using the rule “last in first copied,” and
store the data at the designated destination. The data copied will be popped from the stack,
and the remaining data will be pushed up the stack.

The syntax of the pop instruction is pop destination where the destination can be any of the
following:

* 16-bit register (AX, BX, CX, DX)
* 32-bit register (EAX, EBX, EDX, EDX)

¢ A declared word or double word variable

Examples:
I
AL CODE | EAX EBX STACK

mov eax, 52B6h | 52B6
push eax 52B6 00 | 00 | 52 | B6

mov eax, 23A7h | 23A7 00 00 52 B6é
push eax 23A7 00 | 00 | 23 | A7 Qg 00 | 00O | 52 | Bé6
pop ebx 23A7 | 000023A7Q 00 | 00 | 52 | B6

pop ebx 23A7 | 000052B6




412 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.
AL CODE | EAX EBX STACK
mov eax, 52B6h | 52Bé
push eax 52B6 00 [ OO | 52 | B6
pushw 3AB4h 52B6 3A | B4 | 00 | OO g 52 | B6
pushd 636AD%h | 52B6 00 | 63 | 6A | DOR3A | B4 | 00 | 00
pop ebx 52B6 | 00636AD9f} 3A | B4 | 00 | 0O
pop ebx 52B6 | 3AB40000

Note: Perhaps the best use of the push and pop instructions is to give the programmer
additional temporary storage.

Exercises:
|. Store in a stack the sequence I, 2, ..., 100.

2. In exercise | take the numbers from the stack and compute the number
12 +22+32+ ...+ 100%

PROJECT

Write an assembly language program that will find and store in the stack all positive integer
numbers between | and N that are prime.



lIl. WORKING WITH STRINGS



LHAPTER TWENTY-ONE

DYNAMIC STORAGE: STRINGS




416 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

So far in this book, we have only been working with numeric data. In this chapter, we will
define and work with string data. Strings are very important in that they can be used to
communicate with the programmer and user.

We start with the definition of a string and its numeric representation: the ASCIl code.

21.1 THEASCII CODE

Definition of a string:

A string is a sequence of printable characters such as numbers, letters, spaces, and special
symbols : $, *, and so on enclosed in single quotation marks: ' ’.

Examples:

'Hello!', 'Sam lives here', '"To be or not to be', 'x =2y + 3z.'

All data entered must be represented as numeric values. In assembly language, as well as many
computer languages, the numeric representation of the ASCII code is used.

ASCII (American Standard Code for Information Interchange) is a character encoding based
on the English alphabet. ASCIl codes represent text in computers, communications equip-
ment, and other devices that work with text. Most modern character encoding systems have
a historical basis in ASCII.

ASCIl was first published as a standard in 1967 and was last updated in 1986. It currently
defines codes for 33 nonprinting, mostly obsolete control characters that affect how text is
processed, plus 95 printable characters (starting with the space character).

ASCII is strictly a 7-bit code; meaning that it uses the bit patterns representable with seven
binary digits (a range of 0 to 127 decimal) to represent character information. For example,
three important codes are the null code (00), carriage return (0D), and line feed (0A).

The following is a table of the ASCII code along with each string’s symbol associated with its
hexadecimal number value.



OYNAMIC STORAGE: STRINGS = 417

ASCII table
ASCII ASCII
SYMBOL |HEX |DEC NAME SYMBOL | HEX|DEC| NAME
00 0 Null @ 40 64 At
SOH ol I Start of header A 41 65
STX 02 2 Start of text B 42 66
ETX 03 3 End of text C 43 67
EOT 04 4 tra::nii:sfion D 44 68
ENG 05 5 Enquire E 45 69
ACK 06 6 Acknowledge F 46 70
BEL 07 7 Bell G 47 71
BS 08 8 Backspace H 48 72
HT 09 9 Horizontal tab | 49 73
LF 0A 10 Line feed J 4A 74
VT 0B I Vertical tab K 4B 75
FF 0C 12 Form feed L 4C 76
CR oD 13 Carriage return M 4D 77
SO OE 14 Shift out N 4E 78
S OF 15 Shift in @) 4F 79
DLE 10 16 Data link escape P 50 80
DCI I 17 Device control | Q 51 8l
DC2 12 18 | Device control 2 R 52 82
DC3 13 19 | Device Control 3 S 53 83
DC4 14 20 | Device control 4 T 54 84




418 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

NAK 15 | 21 Negative 55 | 85
acknowledge
SYN 16 22 | Synchronous idle 56 86
ETB 17 23 End .of transmis- 57 87
sion block
CAN 18 24 Cancel 58 88
EM 19 25 End of medium 59 89
SUB 1A 26 Substitute 5A 90
Open square
ESC IB 27 Escape 5B 91
bracket
FS I1C 28 File separator 5C 92 Backslash
GS ID 29 | Group separator 5D 93 Close square
bracket
RS IE 30 |Record separator SE 94 Circumflex
us IF 31 Unit separator 5F 95 | Underscore
SP 20 32 Space or blank 60 96 | Single quote
! 21 | 33 | Fxclamation 61 | 97
point
“ 22 34 Quotation mark 62 98
# 23 | 35 | Mumbersign 63 | 99
(pound sign)
$ 24 36 Dollar sign 64 100
% 25 37 Percent sign 65 101
& 26 38 Ampersand 66 102
‘ 27 | 39 | Apostrophe 67 | 103
(single quote)
( 28 | 40 Opening 68 | 104
parenthesis
) 29 4] |Close parenthesis 69 105




OYNAMIC STORAGE: STRINGS = 413

% 2A 4 Aster.isk (star ] 6A 106
sign)

+ 2B 43 Plus sign k 6B 107
, 2C 44 Comma I 6C 108
- 2D 45 Hyphen (minus) m 6D 109

2E 46 Dot (period) n 6E 110
/ 2F 47 Forward slash o 6F 11
0 30 48 Zero p 70 112
I 31 49 q 71 113
2 32 50 r 72 114
3 33 51 s 73 15
4 34 52 t 74 116
5 35 53 u 75 17
6 36 54 s 76 118
7 37 55 w 77 119
8 38 56 X 78 120
9 39 57 y 79 121

3A 58 Colon y4 7A 122
; 3B 59 Semicolon { 7B 123 Open curly

bracket
< 3C 60 Less than | 7C 124 OR (pipe)
= 3D | el Equality } 7D | 125 | Closecurly
bracket

> 3 | 62 | Greater than ~ 7€ | 126 Eq‘glﬂee)“ce
? 3F 63 Question mark DEL 7F 127 Delete

Note: The associated ASCII codes are always in hexadecimal.



420 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

21.2 STORING STRINGS

In this chapter, we will find that there are several instructions to store strings in registers as
well as defined variables.

* mov register, string
* mov variable, string
The register and the variable can be of any data type.

When a string is stored, each character of the string is converted to its hexadecimal ASCII
code. For example, the string '- x3' is made up of four characters (counting the space but
not the single quotation marks). The assembler will convert the four characters into the
corresponding ASII code:

Examples:
ASSEMBLY CODE EAX
mov eax, - x3' 2D 20 78 33

ASSEMBLY CODE X

X byte ?

mov x, '/’ 2F

Exercise:

Convert the following strings to ASCII code.

ASSEMBLY CODE EAX

mov eax,‘+YZ*

mov eax,‘/’

mov eax, ‘* %’




OYNAMIC STORAGE: STRINGS = 421

The string variables

Since all strings are converted by the assembler into integer bytes, we use the normal direc-
tives to define the variables as bytes, words, or double words.

Examples

x BYTE 20 DUP (?); This directive will assign 20 blank bytes to the variable x.

2. Hamlet BYTE ‘To be or not to be’; The assembler will set aside |8 bytes
containing the ASCII codes.

54 [ 6F | 60 | 62| 65|60 | 65|72 (60| 6E|65]|54)|60]|54]65(60]|62]65

array_x DWORD 4 DUP ‘- 23’; The assembler will set aside dwords containing the ASCII
code *- 23’ .

2D | 60 | 32 |33 |2D | 60 | 32 | 33 |2D | 60 | 32 | 33 | 2D | 60 | 32 | 33

Exercise:

I. Complete the following tables.

Hamlet BYTE ‘Brevity is the soul of wit’

A natural question should be raised: How does the programmer assign strings to registers
and variables without using directly the above type of directives? For example, the above x
variable has 20 blank bytes assigned to it for storage. Therefore, we should be able to assign
any string of 20 characters’ length or less to the variable x.



427 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Since string data are changed to ASCII code by the assembler, we can use, as shown above,
the mov instruction to assign a string to a register or a variable. However, there are times
when we want to copy strings stored in one variable to another variable.We should note that
transferring some strings through a register may not be possible, due to the size of the string.
The following sections will give the necessary instructions to perform such tasks.

The movs instructions

To move strings from one variable to another variable, we define the following three movs
instructions:

Definition of movsb:

The movsb will move the bytes of a variable, byte by byte, to another variable. The movsb
instruction has no operands.

Definition of movsw:

The movsw will move the words of a variable, word by word, to another variable. The movsw
instruction has no operands.

Definition of movsd:

The movsd will move the dwords of a variable, dword by dword, to another variable. The
movsd instruction has no operands.

Since the three movs instructions have no operands, the assembler has to know which vari-
able is the source of the string and which variable is the destination. The location of these
variables is to be stored in the ESI and the EDI registers.

The ESI and EDI registers

Definition ESI:

The ESI register must contain the location of the source variable.

Definition EDI:

The EDI register must contain the location of the destination variable.

The lea instruction

In order to store the locations in these two registers, we use the lea instruction:
Definition of lea:

The form of the lea instruction is lea register, variable name

where, for this application, the registers are esi or edi.



DYNAMIC STORAGE: STRINGS = 423

Once the esi and edi are initialized, the movs instructions will increment these registers under
the following rules:

I. The movsb will cause the esi and edi to be incremented to the next byte.
2. The movsw will cause the esi and edi to be incremented to the next word.

3. The movsd will cause the esi and edi to be incremented to the next dword.

Example:
ASSEMBLY CODE X Y
x dword ‘- x3’ 2D 20 78 33
y dword ? 2D 20 78 33
lea esi, x 2D 20 78 33
lea edi,y 2D 20 78 33
Movsb 2D 20 78 33 33
Movsb 2D 20 78 33 78 33
Movsb 2D 20 78 33 20 78 33
Movsb 2D 20 78 33 2D 20 78 33
Exercises:

I. Hamlet DWORD ‘To be or not to be’

Write an AL program that will move the string in variable Hamlet to the variable Shakespeare
DWORD ?

21.3 MORE STRING INSTRUCTIONS

The following are additional string instructions that can be very useful when working with
strings.



424 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The stos instruction

There are three stos instructions:

Definition: stosb copies a byte stored in the AL register to the destination variable.

Example:
acooe | ey | b
x byte ?
mov al, & &
lea edi, x &
stosb & &

Definition: stosw copies a word stored in the AX register to the destination variable.

Example:
aucoe | P | oy
x word ?
mov ax, ‘-9’ -9
lea edi, x 9
stosw -9 9

Definition: stosd copies a word stored in the EAX register to the destination variable.




OYNAMIC STORAGE: STRINGS = 423

Example:
avcope | EXOTRT ! | ey
x dword ?
mov eax, ‘home’ home
lea edi, x home
Stosd home Home

The lods instruction

There are three lods instruction:

Definition: lodsb copies a source stored in the byte variable to the AL register.

Example:
ncope | ALERessel | X
X byte ‘# #
lea esi, x ”
Lodsb # ”

Definition: lodsw copies a source stored in the word variable to the AX register.

Example:
acooe | BT mbon | by
x word ‘$7 $7
lea esi, x $7
Lodsw $7




426 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Definition: lodsd copies a source stored in the word variable to the EAX register.

Example:

xdword ‘Bach* Bach
lea esi, x Bach
Lodsd Bach

The rep instruction

Definition: The rep instruction is a prefix to several other instructions to perform a given
repetitive task. The number of repetitions is a given number stored in the ECX register.When
completed, the ECX register will contain zero (0).

Examples:
I
nwcove | eox | Rl | Xy

x dword ?

mov al,‘V A

lea edi, x A

mov ecx, 4 4 A

rep stosb 0 A N R N




OYNAMIC STORAGE: STRINGS = 427

2.
AX (Words in
AL CODE | ECX | ASCII symbols) [ X (Words in ASCII symbols)
x word 5 dup (?)
mov ax, ‘WA’ WA
lea edi, x WA
mov ecx, 5 5 WA
rep stosw 0 WA WA | WA | WA | WA | WA

cope | eox | X | X OVt s
x dword 4 dup (?)
mov eax,1234’ 1234
lea edi, x 1234
mov ecx, 4 4 1234
rep stosd 0 1234 1234 | 123 | 123 | 123

Exercise:
|I. Complete the table below:
Y
(DWords in
AL CODE ECX | ASClisymbols) X

x dword 4 dup (?)

Y dword ‘1234’

mov ecx, 4




428 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

lea esi, y

lea edi, x

rep movsd

Other repeat instructions

Depending on the suffix, the following are additional versions of the rep instruction:

Definition: the repe prefix is to repeat while ECX > 0 and the suffix opera-
tion compute a value equal to 0.

Definition: the repz prefix is to repeat while ECX > 0 and the suffix opera-
tion compute a value equal to 0.

Definition: the repne prefix is to repeat while ECX > 0 and the suffix
operation compute a value not equal to 0.

Definition: the repnz prefix is to repeat while ECX > 0 and the suffix
operation compute a value not equal to 0.

Note: repz/repe and repnz/repne pairs are equivalent instructions. Also, all repeat instruc-
tions can be used in conjunction with procedures. In this way multiple instructions can be

repeated.

The cmps instruction

There are three cmps instructions:

.

Definition: cmpsb compares the binary source and binary designation
strings. It does not have operands.

Definition: cmpsw compares the word source and word designation strings.
It does not have operands.

Definition: cmpsd compares the double word and double word designation
strings. It does not have operands.

Note: The cmps instructions should be used in conjunction with the jump instructions of

chapter 11.

The following is a table of the conditional jumps for the signed order of rings in assembly

language.



DYNAMIC STORAGE: STRINGS = 423

Mnemonic Description

jump to the label if source = destination;

Je

jump if equal to

jump to the label if source # destination;
Jne
jump if not equal to

jump to the label if source < destination;

Inge
jump if not greater or equal to

jump to the label if source > destination;
Jnle
jump if not less than or equal

jump to the label if source 2 destination;

Jge
jump if greater than or equal

jump to the label if source < destination;
Jle
jump if less than or equal

jump to the label if source < destination;

JI

jump if less than

jump to the label if source 2 destination;
Inl
jump if not less than

jump to the label if source > destination;

Jg
jump if greater than

jump to the label if source < destination;
Ing

jump if not greater than

Note: Remember that the string comparisons are actually the comparisons of the numeric
values associated with the strings.



430 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The scas instruction

The scan string instruction, scas, is used to scan a string for the presence of a given string
element. The scan string is the designation string, and the element that is being searched for
is in a given register.

There are three scas instructions:

» Definition: The scasb requires that the element being searched for is in the
AL register.

* Definition: The scasw requires that the element being searched for is in the
AX register.

* Definition: The scasd requires that the element being search for is in the
EAX register.

Note: To scan the entire string for the given elements, the repne prefix is used with the scas
instruction.

Algorithm: Checks to see if a string has a given element of a byte size.

ASSEMBLY LANGUAGE
COMMENTS
CODE
string location byte ‘string’
mov al, ‘byte element’
lea edi,stringlocation ‘string’ is the string to check if it contains the byte
element.
mov ecx, n The number of bytes containing string
mov eax, ecx Will contain the location of the element
repne scasb Checks byte by byte.Will stop checking if the byte
is found.
sub eax, ecx Location of the element if it exists in the string.




DYNAMIC STORAGE: STRINGS = 43

Example:

x dword ‘Bach’
mov al, ‘c’
lea edi, x
mov ecx, 4
mov eax, ecx
repne scasb
sub eax, ecx
Exercise:

I. Write a program that will find the position location of “f” in the string
‘I live in California’.

PROJECT

I. Write an assembly language program that will convert an arbitrary
string “a a,a, ... a ” to it number valueaaa, ... a .

2. Write an assembly language program that will convert an arbitrary
integer number aa,a, ... a_to the string“aaa, ... a".
n 17273 n



LHAPTER TWENTY-TWD

STRING ARRAYS




434 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

In chapter |5, we created one-dimensional integer arrays. In this chapter, we will create arrays
that contain strings. We will see that the string arrays and integer arrays share many of the
same rules.

The following are the ways string(s) can be stored using the directive in the data portion of
the program.We can use the following directives:

* variable name data type ?
* variable name data type string
* variable name data type string_|1, string_2, ..., string_n
* variable name data type dimension dup(?)
Examples:
variable name data type ?
. x byte?
will allow a one-character string to be stored in x.
2. x word ?
will allow a two-character string to be stored in x.
3. x dword?
will allow a four-character string to be stored in x.
variable name data type string
I. x byte a string of any length

will allow any size string to be stored in an array starting in location x.
x byte 'abcde’.

2. x word string

will allow a string of two characters to be stored in x.
x word 'ab'

3. x dword string

will allow a string of four characters to be stored in x.
x dword 'abcd’



STRING ARRAYS = 433

variable name data type string_|, string_2, ..., string_n
I. x byte string_I, string_2, ..., string_n

will allow a list of strings of any length starting in location x. x byte 'a’,
1 | I I I I
b, 'c','d".

2. x word string_|1, string_2, ..., string_n

will allow a list of strings of two characters each starting in location x.
x word 'ab’, 'cd’, 'ef', 'gh'.

3. x dword string_|, string_2, ..., string_n

will allow a list of strings of four characters each starting in location x.
x dword 'abed’, 'efgh’, 'ijkl', 'mnop'.

variable name data type dimension dup(?)
will create a string array with a given dimension and data type.

Note: As in chapter 14, the lea instruction will still be used to determine the first byte
position of the array.

22.1 RETRIEVING STRINGS STORED INTHE VARIABLE

The following examples will demonstrate how strings are retrieved from the variables.

Examples:
l.
AL CODE AL BYTE | BYTE 2 BYTE 3
x byte 'abc' a b c
lea ebx, x a b d
mov al, [ebx] a a b c
add ebx, | a a b c
mov al, [ebx] b a b c
add ebx, | b a b C
mov al, [ebx] c a b d




436 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.
AL CODE AL BYTE | BYTE 2 BYTE 3
x byte 'a', 'b', 'c' a b c
lea ebx, x a b c
mov al, [ebx] a a b c
add ebx, | a a b ¢
mov al, [ebx] b a b d
add ebx, | b a b C
mov al, [ebx] c a b c
3.
AL CODE AX WORD | WORD 2 | WORD 3
x word 'ab', 'cd','ef' ab cd ef
lea ebx, x ab cd ef
mov ax, [ebx] ab ab cd ef
add ebx, 2 ab ab cd ef
mov ax, [ebx] cd ab cd ef
add ebx, 2 cd ab cd ef
mov ax, [ebx] ef ab cd ef




STRING ARRAYS = 437

4.
AL CODE EAX (| DWORD | | DWORD 2 | DWORD 3
x dword 'abed’, 'ef','ghi’ abcd ef ghi
lea ebx, x abcd ef ghi
mov eax, [ebx] abcd abcd ef ghi
add ebx, 4 abcd abcd ef ghi
mov eax, [ebx] ef abcd ef ghi
add ebx, 4 ef abcd ef ghi
mov eax, [ebx] ghi Abcd ef Ghi

Exercises:

I. Write an AL program that will retrieve the string: “Brevity is the soul
of wit” from the variable SHAKESPEARE word “Brevity is the soul of

1)

wit".

2. Rewrite the above exercise so that the repetitive instructions are car-

ried out in a loop.

22.2 CREATING AND STORING A ONE-DIMENSIONAL
STRING ARRAY INTHE DUP(?) DIRECTIVE

The following steps will define and set up the array.

Step |: Define the directive variable name data type dimension dup(?)

Step 2: Using the lea instruction, store the first byte location in a 32-bit

register.

Example
x byte 10 (?)

lea ebx, x



438 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Storing data in a string array

In the assembler, we can use any of the registers EAX, EBX, ECX, and EDX. The following
definition is the assignment statement that will allow us to perform data assignments to and
from memory cells:

mov [register], source instruction

Definition: mov [register], source where the following rules apply:
Rule I: The registers must be EAX, EBX, ECX, or EDX.
Rule 2: The source can be any register or variable.

Rule 3: The [register] indicates the cell locations where the bytes are to
be located.

The [register] is called the indirect register.
Rule 4: The lea instruction will establish the first byte location.

The mov [register], source instruction will store the string in the source register or variable in
the memory location indicated by the contents of the register.

Examples:
The following examples show how string arrays are created and stored.

I. The following program will store the strings a, b, and c in the array of
type BYTE.

PSEUDOCODE AL CODE AL

X
Array X X bylt:a IeOb(:( ;:I)l(lp(?) Byte | Byte 2 Byte 3

X(1) = 'a' mov al, 'a’ a
mov [ebx], al a
add ebx, | a
X(2):='b' mov al, 'b' b

mov [ebx], al b a

b

]

[V

[V

[N

add ebx, | b

V]




STRING ARRAYS = 438

X(3):="'c' mov al, 'c’ c

mov [ebx], al C

Important: Since we are storing into individual bytes, we increment by |.

2. The following program will store numbers ab, cd, and ef in the array of

type WORD.
PSEUDOCODE | AL CODE | AX X
Array X x word ? Word | Word 2 Word 3
lea ebx,x
mov ax, 'ab' ab
X(1) := "ab’ mov [ebx], ax ab ab
add ebx,2 ab ab
mov ax, 'cd’ cd ab
X(2):= 'cd' mov [ebx], ax cd ab cd
add ebx,2 cd ab cd
mov ax, 'ef" ef ab cd
X(3):= "ef'
mov [ebx],ax ef ab cd ef

Important: Since we are storing in individual bytes for each word, we increment by 2.

3. The following program will store numbers ‘abcd’, ‘efgh’, and ‘ijk’ in the
array of type DWORD.



440 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO AL CODE EAX X
?
Array X x dword 2 Dword | | Dword2 | Dword 3
lea ebx,x
mov eax, 'abed’ abcd
X(1) := abcd' mov [ebx], eax abcd abcd
add ebx, 4 abcd abcd
mov eax, 'efgh' efgh abcd
X(2):= 'efgh' mov [ebx], eax efgh abcd efgh
add ebx, 4 efgh abcd efgh
mov eax, 'ijk' ijk abcd efgh
X(3):= "ijk'
mov [ebx], eax ijk abcd efgh ljk

Important: Since we are storing in individual bytes for each dword, we increment by 4.

Exercises

I. Write an AL program that will retrieve the string “Brevity is the soul of
wit” from the variable

2. SHAKESPEARE byte “Brevity is the soul of wit”

and copy it into the variable:

HAMLET byte 100 dup(?)

3. Rewrite the above exercise so that the repetitive instructions are car-
ried out in a loop.

PROJECT

Assume we have two string variables:

Shakespeare byte ‘Brevity is the soul of wit’ and

Poet byte “The problem is not in the stars but within ourselves’

Write an AL program that will interchange the contents of the two variables.




LHAPTER TWENTY-THREE

INPUT/0UTPUT




442 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

The 80x86 MASM assembler provides the Kernel32 library of program utilities, which includes
input/out instructions. In this chapter, we will examine programs that will perform the follow-
ing functions:

* Output strings to the monitor

* Input strings from the keyboard

23.1 OUTPUTTING STRINGSTO THE MONITOR

The following is a complete program that will output to the screen the message: “Good
morning America!”

The following directives are used to input and output string data:

* ExitProcess PROTO NEAR32 stdcall, dwExitCode:WORD where
PROTO is a directive that prototypes the function ExitProcess and
ExitProcess is a directive that is used to terminate a program.

* GetStdHandle

The GetStdHandle returns in EAX a handle for the I/O device.

Examples:

Program

;A complete program that will output to the screen the message: “Good morning
America!”

.386

.MODEL FLAT




INPUT/OUTPUT = 443

;Setup for Writing to the Monitor

GetStdHandle PROTO NEAR32 stdcall, nStdHandle:DWORD
WriteFile PROTO NEAR32 stdcall,

hFile:DWORD, IpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,
IpPNumberOfBytesWritten:NEAR32, IpOverlapped:NEAR32

STD_OUTPUT EQU -11

cr EQU 0dh ; carriage return character
If EQU 0ah ; line feed

.STACK 4096

.DATA

message BYTE ‘Good morning America!’; This is the message that will be displayed on
the monitor

size DWORD 21; Number of characters in message
written DWORD ?

message_out DWORD ?

.CODE

; The following instructions will print the message “Good morning America!”
start:

INVOKE GetStdHandle, ; Prepare output

STD_OUTPUT ; — to screen
mov message_out, eax;

INVOKE WriteFile, ; Initial output

message_out, : screen hardware location
NEAR32 PTR message, size, ; size of message

NEAR32 PTR written, ; bytes written

0 ; overlapped mode

INVOKE ExitProcess, o
PUBLIC _start
END

; exit with return code o




444 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

23.2 INPUTTING STRINGS FROMTHE KEYBOARD

The following complete program will perform the following tasks.
Task 1:A message to the monitor will prompt the user to enter a message.

Task 2: Allow the user to enter a message.

Example:

;A complete program that will allow the user to enter a message and enter data from
the keyboard.

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

GetStdHandle PROTO NEAR32 stdcall,
nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,

hFile:DWORD, IpBuffer:NEAR32, nNumberOFCharsToRead:DWORD,
IpPNumberOfBytesRead:NEAR32, [pOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,

hFile:DWORD, IpBuffer:NEAR32, nNumberOFCharsToWrite:DWORD,
IpPNumberOfBytesWritten:NEAR32, IpOverlapped:NEAR32

STD_INPUT EQU -10
STD_OUTPUT EQU -11

.STACK 4096
.DATA

request BYTE “Please enter a message ?”
CrLf  BYTE 0ah, 0dh

Enter_message BYTE 80 DUP (?)
read_in DWORD ?

written_out DWORD ?
handle_Out DWORD ?
handle_In DWORD ?




INPUT/0UTPUT = 443

.code
; The following instructions will print the message “Please enter a message”
_start:
;WRITE REQUEST
INVOKE GetStdHandle, ; get handle for console output
STD_OUTPUT
mov handle_|In, eax
INVOKE WriteFile,
handle_In,
NEAR32 PTR request, 80,
NEAR32 PTR written_out,
0

; The following instructions will allow a message to be entered from the keyboard.
; INPUT DATA

INVOKE GetStdHandle, ;get handle for console output
STD_INPUT

mov handle_In, eax

INVOKE ReadFile,

handle_In,

NEAR32 PTR Enter_message,

80,

NEAR32 PTR read_in,

0

INVOKE ExitProcess, 0

INVOKE ExitProcess, o ; exit with return code o

PUBLIC_start
END




445 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECT

Write a program that will perform the following two tasks:

* An arbitrary number of hexadecimal numbers can be entered from the
keyboard and stored in an array.

* The numbers can be retrieved from the array, converted to decimal, and
displayed on the monitor.



LHAPTER TWENTY-
FOUR

NUMERIC APPROXIMATIONS (DPTIONAL)




448 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

Numeric approximations play an important role in assembly language programming. The
assembler that you use will provide some numeric algorithms, but in most cases the program-
mer will have to program several necessary numeric algorithms. For example, at this point
we cannot even approximate the square root of a number. Unless the assembler provides a
square root approximation algorithm, the programmer will have to write such an algorithm
usually in the form of a procedure. At this point, in passing, we should note the following
additional floating-point instructions that are provided by the 80x86 Assembly Language.

ASSEMBLER FLOATING-POINT NUMERIC
APPROXIMATIONS

The following floating-point instructions are provided by the assembler to compute approxi-
mations for specific functions.

24.1

MNEMONIC OPERAND ACTION
fsin (none) Replaces the contents of ST by sin(ST)
2.
MNEMONIC OPERAND ACTION
fcos (none) Replaces the contents of ST by cos(ST)
3.
MNEMONIC OPERAND ACTION
Replaces the contents of ST by sin(ST),
fsincos (none) pushes the stack down, and then replaces the
contents of ST by cos(ST)




NUMERIC APPROXIMATIONS (OPTIONAL) = 443

4.
MNEMONIC OPERAND ACTION
fptan (none) Replaces the contents of ST by tan(ST)
5.
MNEMONIC OPERAND ACTION
fldpi (none) Replaces the contents of ST by &
6.
MNEMONIC OPERAND ACTION
fld12e (none) Replaces the contents of ST by log, (e).
7.
MNEMONIC OPERAND ACTION
fld12¢ (none) Replaces the contents of ST by log, (10).
8.
MNEMONIC OPERAND ACTION
fldlog2 (none) Replaces the contents of ST by log , (2).
9.
MNEMONIC OPERAND ACTION
fldin2 (none) Replaces the contents of ST by log_ (2).




430 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

10.
MNEMONIC OPERAND ACTION
fsqrt (none) Replaces the contents of ST by its square root

24.2 SPECIAL APPROXIMATIONS

Although the above are useful, we will need more powerful algorithms that we can call as
procedures in our assembly language. We begin with the Newton interpolation method.

Newton interpolation method

The Newton interpolation method is a powerful method for approximation-solving solutions
of equations. First we will show how it can be used to write an algorithm f or compute an
approximation of the square root of any nonnegative number. Then we will apply Newton’s
method to approximate the nth root of any appropriate number.

Roots of an equation

Assume you have an equation y = f(x), represented by the graph below. The root(s) of the
equation is (are) the value(s) of x where the graph crosses the x-axis (f(x) = 0) . First, we start
with an initial value x,. Next, we compute the tangent line of the curve at x,.We next find the
point x, where the tangent line crosses the x-axis. Continuing, we compute the tangent line of
the curve at x,, and we find the point x, where the tangent line crosses the x-axis. From the
graph we see that this will lead to a sequence of numbers x;, X, X,, ..., X, .... that will converge
at one of the roots of the equation.

The Newton interpolation method gives us the following sequential formulas:

f(xy)
X =X —— -
| 0 f/ (Xo)

3 f(x)
Xk+| - Xk - f,(X )
k

where f ’(x,) are the slopes of the tangent lines.



NUMERIC APPROXIMATIONS (OPTIONAL) = 4af

Using the Newton interpolation method to approximate "a
of a number where a > 0

Assume we wish to approximate the nth root of a number a, Ya, using Newton’s interpolation
method. We start by defining f(x) as

f(x) =x"—a
which has a root Ya

It can be shown that f'(x) = n x™', which gives use a formula for the slopes of the tangent
lines.We therefore have:

f(x) =x"—a

/ = n-1
f'(x) = nx,

Example:

Assume we wish to approximate \5 using Newton’s approximation method.
Step I:f(x) x2—=5

Step 2:f'(x,) = 2x

Step 3:x,,, =X — o ;k=0,1,2, ...

Step 4: First we set x, = 3

X, =5 32-5
X, =X, — =3- =3-2/3=7/3=2333 ...
2x, 2(3)
x2=5 _ 23?-5
X, =X, — =23 -———=—=12.236067978 ...
2x, 2(2.3)

Since \5 = 2.236067978 is accurate to 8 places we see that if we let x, = 2.236067978...

will give us at least 8 places of accuracy.



432 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

A pseudo-code algorithm for approximating the square root +a, where a = 0.

INSTRUCTIONS EXPLANATION
X:=A+1 X IS LARGER THAN ROOT OFA.
WHILE N >0 N ISTHE POSITIVE INTEGER
BEGIN
X2-A x2-a
X:=X- X =X —
2*X kxd k 2x,
N:=N-1|
END
PROJECTS

I. Using the above pseudo-code algorithm for approximating the square
root ~/a. where a 2 0, write an assembly language program that will
approximate the square root.

2. Modify the above pseudo-code algorithm by replacing the number a by
its absolute value.

3. We say that two numbers x, y are at least equal to the nth place if
[x—y]| < 1/10°

For example, the 2 numbers 7.12567890435656 and 7.12567890438905
are at least equal to the 10th place since

| 7.12567890435656 — 7.12567890438905 | = 0.00000000003249 < 1/10'°

4. Modify the above pseudo-code algorithm that will terminate the com-
putation x_ when |x_ —x | <I/10"
Explain why this would be the better way of estimating the square root +/fa.
5. For problem 4, write an assembly language program.

6. Write a pseudo-code algorithm that will approximate the nth root 3.



NUMERIC APPROXIMATIONS (OPTIONAL) = 403

7. From problem 6, write an assembly language program.

8. Write an assembly language program that will approximate a™", where
m, n are positive integers.

Using polynomials to approximate transcendental functions
and numbers

As you may recall, real polynomials are of the forma x" +a_ x™' ... +ax + a, where a,_are
real numbers (k =0, I, ..., n).

The following transcendental functions and numbers can often play an important part in any
assembly language program:

Transcendental functions: e, In(x), sin(x), cos(x), tan"'(x).
Transcendental numbers: e, .

The following are polynomial approximations of transcendental functions:

2 n
X

ex|l+ —+—+ .. +— —00<x<o00;n=0,1,2,...
I! 2! n!

X3 XS 7 In X7_n+| 0 | 2
sinxX) xx— —+ — - —+ ...+ (- ——,—00<x<oo;n=
() 3! 5! 7! =1 @n+ 1)’ ’ B

X2 X4 X6 2n
cosX)m | — —+—— - ——+ .+ (-I) ,—00<x<o0;n=0,1,2,...
2! 4! 6! (2n)!

3

X 5 7 X2n+|
tan'(x) & x — 3 +

_ X_+ +( I)n

,—1<x<In=012...
2n + |

(1=, (=% (=%
2 3 n

In(x) = {l —x + E0<x<lin=12,..

In(x) ~ (I — L) + L(I —L)2+ L(I —L)3 + ... +L(I —L)" I <x;n=1,2,...
X 2 X 3 X n X

Using the above approximations, the following transcendental numbers e and © can be
approximated:

| I I
'+ —+—+...+—;n=0,1,2,...
I 2! n!



434 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

T | | |
L an()m = — + — — —+ .+ (=)
4 - ran(l) 3 5 7 D
Therefore,

Mo b e ot )y o)
TERIT T T T I+ |

;n=0,1,2,...

Pseudocode algorithms for approximating transcendental

functions and numbers

The following pseudocode algorithm will estimate:

2 X"
el + —+—+
I 2! n!
INSTRUCTIONS EXPLANATION
K:=0 COUNTER
SUM_EX =0 WILL SUM POLYNOMIAL
WHILE K < N WILL COMPUTE N TIMES
BEGIN

SUM_EX := SUM_EX + X¥/K!

X“WRITTEN AS A PROCEDURE
K! WRITTEN AS A PROCEDURE

K=K+l

END

The following pseudocode algorithm will estimate:

x3 X x’
sin(x) = x — 30 + T 7+ o=

2n+ |

@n + 1!




NUMERIC APPROXIMATIONS (OPTIONAL) = 423

INSTRUCTIONS EXPLANATION
K:=0 COUNTER
SUM_SIN:=0 WILL SUM POLYNOMIAL
WHILEK < N WILL COMPUTE NTIMES
BEGIN

SUM_SIN := SUM_SIN +
(=1)FEXRH 12K + 1)

X*WRITTEN AS A PROCEDURE K!
WRITTEN AS A PROCEDURE

K=K+

END

The following pseudocode algorithm will estimate:

INSTRUCTIONS EXPLANATION
K:=0 COUNTER
SUM_COS :=0 WILL SUM POLYNOMIAL
WHILEK =N WILL COMPUTE N TIMES
BEGIN

SUM_COS := SUM_COS +
(- 1)< /(2K )!

X“WRITTEN AS A PROCEDURE K!
WRITTEN AS A PROCEDURE

K:=K+ 1|

END




43b = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following pseudocode algorithm will estimate:

X5 7

X3
tan™! ANX— — + —
an~'(x) & x 3 5

X ey
-t D)

INSTRUCTIONS

EXPLANATION

K:=0

COUNTER

SUM_INTAN := 0

WILL SUM POLYNOMIAL

WHILE K = N

WILL COMPUTE N TIMES

BEGIN

SUM_INTAN := SUM_INTAN +
(- 1)<EXK 1 /K +])!

X*WRITTEN AS A PROCEDURE

K:=K+ 1l

END

The following pseudocode algorithm will estimate:

(=2, (=%, (1=x"

In(x) % — {(l —x) +

E0<x<lin=12,..

2 3
In(x) = (I - L) + L(I - L)2 + L(I - L)3 + .t L(I - L)n I <x;n=1,2, ...
X 2 X 3 X n X
INSTRUCTIONS EXPLANATION
IFO< X< |THEN
BEGIN
K:=1 COUNTER
SUM_LN:=0 WILL SUM POLYNOMIAL
WHILE K = N WILL COMPUTE N TIMES




NUMERIC APPROXIMATIONS (OPTIONAL) = 437

BEGIN

SUM_LN := SUM_LN—(1-X)* /K X“WRITTEN AS A PROCEDURE

K:=K+ |

END

ELSE

BEGIN

SUM_LN:=0 WILL SUM POLYNOMIAL

WHILE K £ N WILL COMPUTE N TIMES

BEGIN

SUM_LN := SUM_LN + (I-1/X)* /K X“WRITTEN AS A PROCEDURE

K=K+

END

END

PROJECTS

l.
2.

Using the above algorithm, write a pseudocode to estimate the number e.
Using the above algorithm, write a pseudocode to estimate the number .
For each of the above algorithms, write an assembly language program.

The error created by using the above polynomial approximation is
written as E(x) = transcendental function—polynomial for the sin(x),
cos(x), tan”'(x) functions,

| |n+|

Ex) € = —
n:

Modify the above algorithms so that the program terminates when
|[E(x)] = 1/10" Also, write an assembly language program for each of
these algorithms.



438 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Monte Carlo simulations

Monte Carlo simulations solve certain types of problems through the use of random numbers.
These problems can be broken down into sampling models, which will give us an approxima-
tion of the solution of the given problem. In order apply these simulation techniques, we need
to develop algorithms that will generate random numbers. In most cases these generated
random numbers will have a uniform distribution.

Definition: A uniform distribution of random numbers is a sequence of numbers in which each

has equal probability of occurring and the numbers are generated independently of each other.

Example

If we toss a die 100 times, we will generate a sequence of 100 numbers, and each number
(1,2,3,4,5, 6) has a 1/6 probability of appearing.

Since we have to generate the random sequence internally in the assembler, we cannot inde-
pendently generate the numbers. The best we can do is generate sequences that correlate
very closely to independent uniform distributions. These types of generated sequences are
called pseudo-random number generators (PRNG).

For our Monte Carlo simulation problems, we will use two types of PRNGs:

* John von Neumann’s middle square method

* D.H.Lehmer’s linear congruence method

John von Neumann’s middle square method

Description: This method is very simple. Take any given number, square it, and remove the
middle digits of the resulting number as your “random” number, then use it as the seed for
the next iteration. For example, assume we start with the “seed” number |111. Squaring
the number [111 would result in 1234321, which we can write as 01234321, an eight-digit
number. From this number, we extract the middle four digits, 2343, as the “random” number.
Repeating this process again would give 23432 = 05489649. Again, extract the middle four
digits, which will yield 4896. Repeating this process will give a sequence of PRNGs.

To write an assembly language program, use the following steps:

Step |: Store a four-digit decimal number into EAX.
Step 2: Square this number.

Step 3: Integer divide the number in EAX by 1000.
Step 4: Integer divide the number in EAX by 100000.
Step 5: Move the remainder in EDX to EAX.

Step 6: Repeat steps 2-5.



NUMERIC APPROXIMATIONS (OPTIONAL) = 403

The following partial assembly language program will perform these steps an undetermined

number of times.

ASSEMBLY LANGUAGE EAX EDX
mov eax, 651 | 6511
mul eax 42393121
div 100 423931 21
div 10000 42 3931
mov eax, edx 3931 3931
(Repeat above instructions.)

Example:

The following pseudocode will simulate the tossing of a die 100 times.

INSTRUCTIONS EXPLANATION
N:= 100 NUMBER OF TOSSES
EAX := 6511 SEED

LABEL: EAX := EAX* EAX

SQUARE SEED

EAX := EAX/100

EDX := EAX/10000

SEED

SEED := EDX

DIE := EDX /6 + |

N:=N-I

COUNT

EAX := SEED

IFN <>0THEN

BEGIN

JUMP LABEL

END




460 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECTS

I. Write a partial assembly language program from the die pseudocode
program.

2. Write a partial assembly language program that will perform the fol-
lowing tasks:

Task |:Toss a die 100 times.
Task 2: Compute the number of times the number 6 occurs.

3. Write a partial assembly language program that will perform the fol-
lowing tasks:

Task |:Toss a pair of dice 100 times.
Task 2: Sum the resulting numbers for each toss.
Task 3: Compute the number of times the number 7 occurs.

4. Write a partial assembly language program that will perform the fol-
lowing tasks:

Task |:Toss a coin 100 times.
Task 2: Count the number of times “heads” appears.

5. Write a partial assembly language program that will compute 100
random numbers x where 0 < x < |.

. D.H. Lehmer’s linear congruence method
The linear congruence method for generating PRNGs uses the linear recurrence relation:
X ,, =ax +b (mod m)wheren=0,1,2,...

n+l

Lehmer proposed the following values:

m =108+ |
a=123

b=0

x, = 47594118

These values will result a repetition period of 5,882,352.



NUMERIC APPROXIMATIONS (OPTIONAL) = 4&I

Using these values, the following partial program will compute an undermined number of
random numbers x where 0 £ x < 108 + |.

ASSEMBLY LANGUAGE CODE

mov m, 10000000|; number m = 108 + |

mov x, 47594118

mov a, 23

moyv eax, X

mul a

div m; remainder stored in edx

mov eax, edx

mul a

(Repeat the above in bold.)

2. Monte Carlo approximations

Random sampling from a population can be applied in solving simple and complex mathematics
and scientific problems. This type of application is known as a Monte Carlo approximation.To
best illustrate this method, assume we wish to approximate by random sampling the number =.
One method is to use a unit square that contains a circle of radius I.

We know that the area of a circle of radius | is . However, for simplicity, we will only examine
one quadrant, as shown in the figure below, where r = | and the area is n/4.

The following steps will approximate =.

Step |: Generate a pair of random numbers (x, y) where 0 < x,y < |.To
generate these numbers, we will use linear congruence method in
the following form:



457 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

X =a|xn+b| (mod ml) wheren=0,1,2, ...

n+l
Y.., =3y, +b,(modm)wheren=0,1,2,...

x=x . /m

n+1 |
Y =Y, . /m,

Step 2:If x2 + y2 < | then (x, y) lies in the circle of the first quadrant, and
we will assume success.

Step 3: Generating N pairs (x, y), the law of large number states that
#successes/N — 7/4, for large values of N.

The following pseudocode algorithm will perform this sampling and approximate x.

INSTRUCTIONS

K:=1

SUCCESS :=0

WHILEK = N

BEGIN

X := (Al*X + Bl) MOD Ml

Y := (A2*Y + B2) MOD M2

IF (X2 +Y?) < | THEN

BEGIN

SUCCESS := SUCCESS + |

END

K=K+

END

PIE := 4%(SUCCESS/ N)




NUMERIC APPROXIMATIONS (OPTIONAL) = 463

PROJECTS

I. From the above pseudocode algorithm, write a assembly language
algorithm.

2. To test the above assembly language algorithm, write an assembly lan-
guage program for different values of m, a, and b.

3.The Gambler’s Ruin

Assume a gambler with initial capital of n dollars plays a game against a casino. Assume the
following rules of the game:

¢ For each bet, he bets one dollar.
* The gambler will play until he wins m dollars, where m > n or goes broke.
* For each bet, the gambler’s chance of winning is p, where 0 <p < I.

For different values of p, write an assembly language program that will compute the number
of times he bets.

PROJECTS

Bose-Einstein Statistics

In physics, the Bose-Einstein statistics deal with the number of ways to place m indistinguish-
able particles into n distinguishable cells. This is analogous to placing m indistinguishable balls
into n distinguishable urns.

The number of distinguishable arrangement is

n+m-|
m

), where each distinguishable arrangement has equal probability.

Assume that m < n.Write an assembly language program, using Monte Carlo approximations,
that will approximate the probability that each cell has at most one particle.

Note: (E) = k'(nnilk)"



APPENDIX A

SIGNED NUMBERS AND THE EFLAG SIGNALS




466 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

It is important to keep in mind that when working with integer numbers, the numbers are
contained in a ring of a given data type.When we preform arithmetic operations, it is possible
that the resulting computations do not always return the expected values as they would appear
in the ordinary integer number system. For example, we would expect the simple expression
2-3 to return a value of -|. But if our number system is an 8-bit ring, we will obtain the result
255, which is the additive inverse of - 1. Let us assume for further discussion that the register we
will work with in this chapter is the register AL, which is an 8-bit ring. Further, we will assume
the following table is a signed order representation of this ring in decimal (see chapter 8):

128 | 129 253 | 254 | 255 0 | 2 3 126 | 127

128 | 127 3 2 I 0 255 | 254 | 253 130 | 129

where the bottom row represents the additive inverse of the above values.

If we wish to write a program that will print out the true value -1, how is this done when the
instructions

move al, 2
sub al, 3
will return the value 255 in the register AL?

To print the correct -1, we need to write AL instructions that will perform the following
tasks:

Task |:Test what value resulted in the subtraction: 255.

Task 2: Convert 255 into its additive inverse: |.

Task 3: Store in a variable the ASCI| code for -1:2D31 (see chapter 23).
Task 4: Print this ASCIl code (see chapter 25).

Performing operations such as task | is the main emphasis of this chapter.



SIGNED NUMBERS AND THE EFLAG SIGNALS = 467

THE EFLAGS

The EFLAG is a 32-bit register where some of its 32 bits indicate three important types of
flag signals resulting from arithmetic or logical operations:

* The sign flag

* The carry flag

* The overflow flag
The EFLAG is of the form:

3231302928272625242322212019181716151413121110987654321

Before defining these important flags, we make the following observation: When performing
arithmetic or logical operations, we first assign a numeric integer to a byte register that has
a 0 or | bit at its left-most bit position. If, after the operation, the resulting binary value will
have a 0 or | in its left-most bit position. If this bit is the same or different than the left-most
bit of the original value, a change may occur in the various flags listed above.

Definition of the sign flag:

After an arithmetic or logical operation on an integer value in a byte register, if the resulting
binary number has at its left-most position a I, then the sign flag will be assigned a value | to
its 8th bit; otherwise a value 0.

Depending on the result of the operation, the Eflag is of the form:

32 coocnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 8 7 6 5 4 3 02 |

32 oo 8 7 65 4 302




468 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Definition of the overflow flag:

The overflow flag (OF) tells whether a carry flipped the sign of the most significant bit in the
result so that it is different from the most significant bits of the arguments. If numbers are
interpreted as unsigned, the overflow flag is irrelevant, but if they are interpreted as signed,
OF means the result was negative.

Depending on the result of the overflow flag, the Eflag is of the form:

32 s 12 11109 8 7 6 54 3 2

Definition of the carry flag:

The carry flag becomes | if an addition, multiplication, AND, OR, and so on results in a value
larger than the register meant for the result.

Depending on the result of the carry flag, the Eflag is of the form:




SIGNED NUMBERS AND THE EFLAG SIGNALS = 4E3

EFLAG JUMP INSTRUCTIONS

The eflag bits cannot be directly accessed. However, the following jump instructions can be
used to jump to a designated instruction:

JUMP INSTRUCTION RESULT
js Jump if sign bit is turned on.
jns Jump if sign bit is turned off.
jc Jump if carry bit is turned on.
jnc Jump if carry bit is turned off.
jo Jump if overflow bit is turned on.
jno Jump if overflow bit is turned off.

Muiltiplication

There are two types of multiplication operations: mul and imul (see chapter 10). The mul
instruction is when the numbers are considered as unsigned (natural order), and the imul
instruction is when the numbers are considered as signed. The mul instruction will set the
carry and overflow flags depending on the value of the left-most bit.

The imul instruction will set the carry if the resulting number is too large. This will result in
the edx register not equal to zero.



REFERENLCES

Intel 80x86 Assembly Language OpCodes:
www.mathemainzel.info/files/x86asmref.html

Visual Studio Express 2015 (free) :
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

Kernal32 Library



ANSWERS TO SELECTED
EXERCISES




474 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

1.1 Definition of Integers

Exercises
I. Write the following integers in expanded form:
() 56 (b) 26,578 (c) 23,556,891,010
Solution:
(a) 5%10 +6 (b) 2*10*+ 6*10°+ 5%102+ 7*10 +8

(c) 2*10' + 3*[0° + 5%108% + 5*%]07 + 6*|0°+ 8*10° + 9*[0*+ |*]0°
+1*10

1.2 Numbers in Other Bases

Exercises

I. Write the octal number 2370123, in expanded form.

Solution:

2,370,123, = 2%10° + 3*10° + 7%10* + 0*10° + 110% + 2*]0 + 3*10°

3. In the octal number system, simplify the following expressions:

(a) 2361, +4, (b) 33,2,  (c) 777,+3,
Solutions:
(a) 2365, () 31, (c) 1002,
DECIMAL NUMBERS OCTAL NUMBERS (Base 8)
0 0,
| I,
2 2,
3 3,
4 4,




CHAPTER | ANSWERS TO SELECTED EXERCISES = 474

5 5,
6 6,
7 7,
8 10,
9 1,
10 12,
I 13,
12 14,
13 15,
14 6,
15 17,
16 20,
17 21,
18 22,
19 23,
20 24,




476 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

DECIMAL NUMBERS OCTAL NUMBERS (Base 8)
0 0,
| I,
2 2,
3 3,
4 4,
5 5,
6 6,
7 7,
8 10,
9 I,
10 12,
Il 13,
12 14,
13 IS,
14 6,
15 17,
16 20,
17 21,
18 22,
19 23,
20 24,




CHAPTER | ANSWERS TO SELECTED EXERCISES = 477

5. Add on 10 more rows to the above table

Solution:
DECIMAL NUMBERS OCTAL NUMBERS (Base 8)
0 0,
| I,
2 2,
3 3,
4 4,
5 5,
6 6,
7 7,
8 10,
9 I,
10 12,
N 13,
12 14,
13 15,
14 16,
15 17,
16 20,
17 21,




478 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

18 22,
19 23,
20 24,
21 25,
22 26,
23 27,
24 30,
25 31,
26 32,
27 33,
28 34,
29 35,
30 36,

7. Add on 10 more rows to the above table the second column will
consists of the corresponding numbers in the base 5, starting with the

digit 0.
Solution:
DECIMAL NUMBERS NUMBERS (Base 5)
0 0,
| I
2 2




CHAPTER | ANSWERS TO SELECTED EXERCISES = 478

4 4,
5 10,
6 I,
7 12,
8 13,
9 14,
10 20,
I 21,
12 22
13 23,
14 24,
15 30,
16 31,
17 32,
18 33,
19 34,
20 40,

9. In the base 5 number system simplify the following expressions:
(@) 22212, + 3, (b) 23333,+ 2, (c) 12011,-2,
Solution:
(a) 22220, (b) 23340, (c) 12004,

I'l. Extend the above table for the integer numbers 21-30.



480 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution
DECIMAL NUMBERS BINARY NUMBERS
21 10101,
22 10110,
23 10111,
24 11000,
25 11001,
26 11010,
27 1ol1,
28 11100,
29 1101,
30 11110,

3. Complete the following table:

OCTAL NUMBERS BINARY NUMBERS




CHAPTER | ANSWERS TO SELECTED EXERCISES = 481

Solution:
OCTAL NUMBERS BINARY NUMBERS

0, 0,

le l,

2, 10,

3, I,

4, 100,
5, 101,
6, 10,
7, L,
10, 1000,
I, 1001,
12, 1010,
13, 1ol
14, 1100,
15, Lol,
16, 1o,

I5. Write the hexadecimal number 4EOACI , in expanded form.




482 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

4EOACI = 4¥10% + EX10% + 0¥10% + A*|0% + C*I0' + |*]0°

I7. Simplify n = (a) A, +6,

Solutions:

(@) 10,

(b) FFFF +1,,

(b) 10000,

9. Complete the followingtable:

Solution:

(c) 100, +E,

(c) 10E,,

HEXADECIMAL NUMBERS

BINARY NUMBERS

0, 0,
e I,

2, 0,
3, I,
4, 100,
5,6 101,
6, 1o,
7. i,
8, 1000,
9, 1001,
A, 1010,
B, 1011,
C, 1100,
D 101,




CHAPTER | ANSWERS TO SELECTED EXERCISES = 483

1o,

i,

1 0000,

1 0001,

1 0010,

1 00I1,

1 0100,

1010l

2

1 0110,

1olll,

1 1000,

1 1001,

1 1010,

11011,

1 1100,

11101,

I 1110,

i,

10 0000,

10 0001,

10 0010,




484 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

23, 10 0011,
24, 10 0100,
25, 100101,
26, 10 0110,
27, 100111,
28, 10 1000,
29,, 10 1001,
2A, 10 1010,
2B, 10 1011,
2C,, 10 1100,
D, 10 1101,
2E, 10 1110,
2F,, 10 1111,




CHAPTER 2 ANSWERS TO SELECTED EXERCISES = 483

2.1 Sets

Exercises:

I. For the following bases, write out the first 10 numbers as a set in
natural order:

@ N, (b) N, () Ny (d) Ny (e) N,
Solution:

(@) N,={0,1,2,10,11,12,20,21,22,30}

(b) N,={0,1,2,3,10,11,12,13,20,21,22}

() N,={0,1,2,3,4,10,11,12,13,14}

(d) N,={0,1,2,3,4,5,10,11,12,13}

(e) N,={0,1,2,3,4,5,6,10,11,12}

2.2 One to One Correspondence Between Sets
Exercises:

I 1f D ={2,4,6,8,10,..} and R = {1,3,5,7,9,...}, show that D&R.
Solution

2k = 2k - |

for k = 1,2,3,4,...

2.3 Expanding Numbers in the Base b (N,).
I. Find the expansions for the following numbers in their give bases:
(a) 4312322, (b) ABCDEF, (c) 12322, (d) Il1l110110I,
Solutions:
(@) 4% 10°+3 % 10°+ 1 % 10*+2 % 10°+3 % 10.2+2% 10, +2
(b) A% 10 *+BxI10 *+Cx10 *+D %10 2+E* 10 +F
() I1*x10*+2% 10>+3 % 10,2+2% 10,+2

(d) 19k 10,2+ 1 3 10,7+ 1 10,5+ | % 10,5+0 % 10,%+ 1 & 10,7+ 1 k10,2+0 %10, + |



486 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.4 Converting numbers in any base b to its corresponding
number in the base 10

Exercises:
I. Convert the following numbers to the base 0.
(a) 2022301, (b) 66061, (c) IlIOIIOIl, (d) 756402, (e) AOCDS

Solutions:

(a) 96445, (b) 43795, (c) 237, (d) 253186, (e) 658648,

2.5 Converting numbers in the base 10 to its
corresponding number in any base b

Exercises:
I. Convert the following:
(a) 2545601 , < base 2
(b) 16523823 <« base |6
(c) 5321, < base3
(d) 81401 < base 8.
Solutions:
(a) lootllorrororriiioooool, (b) FC222F, (c) 21022002,
(d) 236771,

2.6 A Quick Method of Converting Between Binary and
Hexadecimal numbers

Exercises:

I. Complete the table below that matching the digits of the octal number
system with its corresponding binary numbers:



CHAPTER 2 ANSWERS TO SELECTED EXERCISES = 487

OCTAL DIGITS CORRESPONDING BINARY NUMBERS
0 000
| 001
Solution:
l.
OCTAL DIGITS CORRESPONDING BINARY NUMBERS
0 000
| 001
2 ol0
3 oll
4 100
5 101
6 110
7 11
2.
BASE 4 BASE 2
0 00
| ol

2 10




488 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Create a similar table to convert numbers of the base 4 to the base 2.

Solution:
BASE 4 BASE 2
0 00
I ol
2 10
3 I

2.7 Performing Arithmetic For Different Number Bases

Exercise:
I. Perform the following:
(@) (212, +2222)*101, (b) (rortol, —rioly)*rniol,
(c) AB2F *23D,, +2F5, (d) 2%,
Solution:

l.
(a) 11201010221, (b) 1110100000, (c) D53E24, (d) 400

(e) EFI56, = 222314121 (f) 47D6



CHAPTER 3 ANSWERS TO SELECTED EXERCISES = 483

3.1 TheAssignment Statement

Exercises:

I. Complete the following table:

ASSIGNMENT T YZ2 TABLE | FORM TAB
STATEMENTS
YZ2 :=3
TABLE:=YZ2
YZ2 :=1123
FORM:=TABLE
YZ2 :=FORM
Solution:
2_?_::;’:125'_:; T YZ2 TABLE FORM TAB
YZ2 :=3 3
TABLE:=YZ2 3 3
YZ2 :=1123 1123 3
FORM:=TABLE 1123 3 3
YZ2 :=FORM 1123 3 1123
Exercises:

3. Assume we have the following assignments:

A B C D

10 20 30 40




430 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Write a series of assignment statements which will rotate the values of A, B, C, D as show in
the table below:

A B C D
40 10 20 30
Solution:
AMteNT | s | s [ e | o | Tew
TEMP :=A 10 20 30 40 10
A:=D 40 20 30 40 10
D :=TEMP 40 20 30 10 10
TEMP:=B 40 20 30 10 20
B:=D 40 10 30 10 20
D:=TEMP 40 10 30 20 20
TEMP :=C 40 10 30 20 30
C:=D 40 10 20 20 30
D:=TEMP 40 10 20 30 30

5. The following instructions

A:=2
B :=3
Z:=A
A :=B
B:=Z

will exchange the contents of the variables A and B. (a). True (b).False

Solution:

true



CHAPTER 3 ANSWERS TO SELECTED EXERCISES = 431

3.2 Mathematical Expressions

Exercises:

I. Complete the table:

ASSIGNMENT STATEMENTS X
X =2
X :=X*X
X=X+X
X :=X*X
Solution:
ASSIGNMENT STATEMENTS X
X =2 2
X :=XHX 4
X=X+X 8
X :=X*X 64

3. Complete the table below.

ASSIGNMENT STATEMENTS X TI y 4

X:=3

Z:=15

TI:=10

X:=Z+X*X

Z:=X+Z+I

TE=TI +Z+TI +TI




432 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:
ASSIGNMENT STATEMENTS X TI y A
X:=3 3
Z =I5 3 15
TI:=10 3 10 15
X:=Z+X*X 24 10 I5
Z:=X+Z+I 24 10 40
TI=TI + Z=TI +TI 40 24 40
5. Set up a table for evaluating the following sequence of instructions.
NUMI :=0
NUM2 :=20
NUM3 :=30
SUMI := NUMI +NUM2
SUM2 := NUM2 +NUM3
TOTAL := NUMI + NUM2 +NUM3
AVGI := SUMI +2
AVG2 := SUM2 +2
AVG := TOTAL+3
Solution:
NUMI [NUM2|NUM3 | SUMI [SUM2 [TOTAL | AVGI | AVG2 | AVG
0
0 20
0 20 30
0 20 30 20




CHAPTER 3 ANSWERS TO SELECTED EXERCISES = 433

0 20 30 20 50 70

0 20 30 20 50 70 10

0 20 30 20 50 70 10 25

0 20 30 20 50 70 10 25 I

3.3 Algorithms and Programs

Exercises:

I. Write a program that computes [0!

Solution:

N :=10

NFACTORIAL :=10

N:=N-1
NFACTORIAL:=NFACTORIAL*N
N:=N-1
NFACTORIAL:=NFACTORIAL*N
N:=N-1
NFACTORIAL:=NFACTORIAL*N
N:=N-1
NFACTORIAL:=NFACTORIAL*N
N:=N-1
NFACTORIAL:=NFACTORIAL*N
N:=N-1
NFACTORIAL:=NFACTORIAL*N
N:=N-1
NFACTORIAL:=NFACTORIAL*N
N:=N-1

NFACTORIAL:=NFACTORIAL*N



434 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.1 AnAlgorithm to Convert any Positive Integer Number
In any Base b < 10 To Its Corresponding Number in the

Base 10.
Exercises:
PSEUDO-CODE INSTRUCTIONS (| N8 | P A [ NIO | BASE
N10:=0 0
N8 :=267 267 0
BASE :=8 267 0 8
P:=I 267 | 0 8
A := N8 MOD 1|0 267 | 7 0 8
NI0 := NI0+A*P 267 | 7 7 8
N8 := N8 =10 26 | 7 7 8
P :=P*BASE 26 8 7 7 8
A :=N8 MOD I0 26 8 6 7 8
NI10 := NI10 +A*P 26 8 6 55 8
N8 := N8 =10 2 8 6 55 8
P :=P*BASE 2 64 6 55 8
A := N8 MOD 10 2 8 2 55 8
NI10 := NI0+A*P 2 8 2 183 8
N8 := N8 =10 0 8 2 183 8

Modify the above program to convert the number 56328 to the corresponding number in the
base 10.



CHAPTER 4 ANSWERS TO SELECTED EXERCISES = 43a

Solution:

PSEUDO-CODE INSTRUCTIONS

N10:=0

N8 :=5632

BASE :=8

P:=I

A := N8 MOD 10

NI10 := NI10+A*P

N8 := N8 =10

P :=P*BASE

A:=N8MOD 10

NI10 := NI0 +A*P

N8 := N8 =10

P :=P(BASE

A := N8 MOD 10

NI10 := NI10+A*P

N8 := N8 =10

P:=P*BASE

A:=N8MOD 10

NI10 := NI0 +A*P




436 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.2 AnAlgorithm to Convert any Integer Number in the
Base 10 to a Corresponding Number in the Base b <10.

Program

Task: Convert the integer number 1625 to the base 8.

PSEUDO-CODE NIO Q N8 R BA P TEN
NI10 :=1625 1625
BASE :=8 1625 8
TEN :=10 1625 8 10
P:=10 1625 8 10 10
N8 :=0 1625 0 8 10 10
R:= NIOMOD BASE | 1625 0 I 8 10 10
Q:= (N10-R) +BASE | 1625 | 203 0 | 8 10 10
N8:= N8 +R 1625 | 203 I | 8 10 10
NI0 :=Q 203 | 203 | | 8 10 10
R:= NIOMODBASE | 203 | 203 | 3 8 10 10
N8 := N8 +R*P 203 25 31 3 8 10 10
P :=P*TEN 203 25 3 3 8 100 10
NI0 :=Q 25 25 3 3 8 100 10
R:= NIOMODBASE | 25 25 3 I 8 100 10
Q:= (N10 - R)+BASE 25 3 3 | 8 100 10
N8 := N8 +R(P 25 3 131 | 8 100 10
P :=P(TEN 25 3 13 | 8 1000 10
NI0 :=Q 3 3 13 | 8 1000 10
R:= NI0 MOD BASE 3 3 13 3 8 1000 10
Q:= (N10 -R)+BASE 3 0 13 3 8 1000 10
N8:= N8 +R(P 3 0 3131 3 8 1000 10
NI10 :=Q 0 0 3131 3 8 1000 10




CHAPTER 4 ANSWERS TO SELECTED EXERCISES = 487

I. Use the above algorithm to write a program to convert the decimal

number 2543|0 to octal.
Solution:

PSEUDO-CODE INSTRUCTIONS

NI10 :=2543

BASE :=8

TEN :=10

P:=10

N8 :=0

R := NI10 MOD BASE

Q:= (N0 - R) + BASE

N8:= N8 +R

NI0 :=Q

R:= NI0 MOD BASE

N8 := N8 +R*P

P :=P*TEN

NI0 :=Q

R:= NI0 MOD BASE

Q:= (N10 - R)+BASE

N8 := N8 +R*P

P :=P*TEN

NI0 :=Q

R:= NI0 MOD BASE

Q:= (N10 -R)+BASE

N8:= N8 +R*P

NI0 :=Q




438 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

5.1 Conditional Expressions
Exercises:
I. Evaluate the following conditional expressions:
() 3+3=6 (b) 8>=10 (c) 7<>7

Solutions:

(a) TRUE (b) FALSE (c) FALSE

5.2 The If-Then Statement
Exercises:
I. Modify the above program so that it performs the following tasks:
Task |:Assign 4 numbers.
Task 2: Counts the number of positive numbers entered.

Task 3:Add the positive numbers.

Solution:

PSEUDO-CODE INSTRUCTIONS

Xl :=6

X2 :=-5

X3 :=-25

X4:=100

COUNT :=0

IF X1 > 0THEN
BEGIN
COUNT := COUNT +1
END




CHAPTER 3 ANSWERS TO SELECTED EXERCISES = 433

IF X2 >0THEN
BEGIN
COUNT := COUNT +1
END

IF X3 > 0THEN
BEGIN
COUNT := COUNT +1
END

IF X4 > 0 THEN
BEGIN
COUNT := COUNT +I
END

SUM:=0

IF X1 >0THEN
BEGIN
SUM := SUM +XI
END

IF X2 >0THEN
BEGIN
SUM:= SUM +X2
END

IF X3 >0THEN
BEGIN

SUM := SUM +X3
END

IF X4> 0 THEN
BEGIN
SUM := SUM +X4
END




a00 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3. Complete the table below

PSEUDO-CODE INSTRUCTIONS X Y y A
X :=2 2
Y :=5 2 5
Z:=-4 2 5 -4
IF (X +Y + Z) <> X*Y THEN 2 5 -4
BEGIN 2 5 -4
X := (X -Y)+X a0 s | 4
Y =X +2(Y -1 9 -4
Z:=X-2 -1 9 -3
END -1 9 -3
IF(X-Y +Z)<>X+YTHEN -1 9 -3
BEGIN -1 9 -3
X 1= 2¥(X -Y)+X 20 9 -3
Y :=X-3*Z 20 29 -3
Z:=X+2 20 29 22
END 20 29 22




CHAPTER 3 ANSWERS TO SELECTED EXERCISES = a0

Solution
PSEUDO-CODE INSTRUCTIONS X Y y A
X :=2 2

Y :=5 2 5
Z:=-4 2 5 -4
IF (X +Y + Z) <> X*YTHEN 2 5 -4
BEGIN 2 5 -4
X 1= (X -Y)+X a | s | -4
Y = X +2(Y -1 9 -4
Z:=X-2 -1 9 -3
END -1 9 -3
IF(X-Y +Z)<>X+YTHEN -1 9 -3
BEGIN -1 9 -3
X = 2%(X -Y)+X 20 9 -3
Y :=X-3*Z 20 29 -3
Z:=X+2 20 29 22
END 20 29 22

5. Write an algorithm to find the second largest number amongst 4 numbers.
Assume all the numbers are positive and different.



a02 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution

PSEUDO-CODE INSTRUCTIONS

LARGEST :=XI

IF X2 > LARGEST THEN
BEGIN

LARGEST :=X2

END

IF X3 > LARGEST THEN
BEGIN

LARGEST :=X3

END

IF X4 > LARGEST THEN
BEGIN

LARGEST :=X4

IF LARGEST = XI THEN
BEGIN

Xl :=0

END

IF LARGEST = X2 THEN
BEGIN

X2 :=0

END

IF LARGEST = X3 THEN
BEGIN

X3 :=0

END

IF LARGEST = X4 THEN
BEGIN

X4 :=0

END
SECOND_LARGEST :=XI
IF X2 > SECOND_LARGEST THEN
BEGIN
SECOND_LARGEST :=X2
END

IF X3 > SECOND_LARGEST THEN
BEGIN
SECOND_LARGEST :=X3
END

IF X4 > LARGEST THEN
BEGIN

SECOND_ LARGEST :=X4
END



CHAPTER & ANSWERS TO SELECTED EXERCISES = aD3

6.1 TheWhile Statement

Exercises:

I. Write an algorithm that performs the following tasks:
Task |: Finds the proper divisors of a positive integer N >2,

Task 2: Sum the proper divisors.

Solution:

PSEUDO-CODE INSTRUCTIONS

SUM_DIVISORS :=0

DIVIDE :=2

WHILE N <>DIVIDE

BEGIN

R := N MODDIVIDE

IFR=0THEN

BEGIN

SUM_DIVISORS := SUM_DIVISORS +DIVIDE

END

DIVIDE := DIVIDE +1

END

3. A factorial number, written as N/, is defined as
N! = N(N - 1)(N-2)...(2)(I)
where N is a positive integer >1.

Write an algorithm that will compute N!



a04 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution

FACTORIAL :=1

K :=1

WHILE K < N

BEGIN

K:=K+I

FACTORIAL :=K*FACTORIAL

END

PSEUDO-CODE INSTRUCTIONS

X :=0

DIVIDE :=2

WHILE N <>DIVIDE

BEGIN

R := N MOD DIVIDE

IFR=0THEN
BEGIN
DIVIDE := N - |

END

DIVIDE := DIVIDE +1

END




CHAPTER & ANSWERS TO SELECTED EXERCISES = 504

7. For the following program below, what is the final value X:

K =1

X:=2
WHILE K <=6
BEGIN
X:=X+3
K:=K+I
END

Solution:

24



06 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

7.1 Writing a Program and Algorithm to Convert numbers
in the Base b < |10 to the Base 10:

Exercise:

I. Write a program and complete the table that will convert the number
231, to the base 10 and complete a table as above.

Solution:
INSTRUCTIONS
N4:=231
P:=1
NI10 :=0
WHILE N4 <>0
BEGIN
R := N4 MODIO
N4 := N4 -R
N4:=N4+10
NI0 := N10+R*P
P :=4*P
END

7.2 Writing an Algorithm to Convert Numbers in the base
10 to its Corresponding Number in the Base b<l0.
Exercises:

I. Write a program and complete the table that converts the decimal
number 25 to base 2.



CHAPTER 7 ANSWERS TO SELECTED EXERCISES = 507

Solution:

INSTRUCTIONS

NI0 :=25

K:=l

N2 :=0

WHILE N10 <>0

BEGIN

A :=NI0MOD 2

N2 := N2 +A*K

NI0 :=NI10+2

K :=10*K

END




a08 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8.1 Rings
Exercises:
I. Assume R is clock time. Simplify the following:
@ 708~7D Il d~4
(b) 2®(6 & ~10)
() ~11[2®~11)® (I ~9)]
Solutions:
(@ 3
(b) 4
(c) 4
3. Show that the set R ={0, I,-1,2,-2,4,-4,6,-6, ... 2n, ...} is not ring.
Solution

R has no odd numbers greater than | .Since | + 2 = 3 and 3 is not in R, the set R is not
a ring.

5. Assume R = {0, I,-1, 2, -2, 3, -3, 4, -4, ...}. Define ® and ® are defined
under the following rules:

Rl:n@®m=n+(m+2).

R2Z2n® m=n

(2) Find ©.

(b) For nin R, find ~n, the additive inverse of n.

(c) Show Ris a ring.



CHAPTER 8 ANSWERS TO SELECTED EXERCISES = a3

Solution:

(a)
nN®d O=n+ O+2n @ O=n+ O +2
Therefore © = -2

(b)
nr~n=n+-n+2=0=-2Therefore ~n=-n-4
nr~n=n+-n+2 =n+(-n+-4)+2=-2=0

(c)

Since the five rules hold is a ring.

8.2 The Finite Ring R
Exercises:
I. For R=1{0,1,2,3,4},simplify:
(a) 4®4
Solution
4®4 = (4*4)mod(5) = |
(b) [(402)®404]1®3
Solution
(4®2) = 6 mod (5) = |
(482)®4 = 24 mod (5) = 4
(4®2)@4®4 = 4®4 = mod(5)= 3
[(402)®4D4]®3 = [3]®3 = 9 mod 5 = 4
(c) 3@(3D4)
Solution

3@(304) = 3®((3 + 4) mod 5)) = 3@(2) = |



all = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3. For the following finite rings, find the additive inverse of each number

in the ring:
Solutions
@ Ry,
n 0 | 2 3 4 5 6 7 8
~n 0 9 8 7 6 5 4 3 2
(b) R,
n 0 |
~n 0 |
(c) Ry
N 0 | 2 3 4 5 6
~n 0 7 6 5 4 3 2
(d Ry
dn| O | 2 3 4 5 6 7 8 9 ol 112113114115
~nl|l O IS 141312111 [10] 9 8 7 6 5 4 3 2 |
(e) RHssx
n 0 | 2 3 4 5 6 7 8 9 A B C D E F
~n| O F E D| C B A 9 8 7 6 5 4 3 2 |




CHAPTER & ANSWERS TO SELECTED EXERCISES = al

8.3 Subtraction for R

Exercises:

I. Assume a byte ring. If n < 256, and ~n = n, find all solutions.
Solution:
(n + ~n)mod 256 = (n + n)mod(256) = (2n)mod(256) = 0.Therefore, 2n = 256 or 0.

Hence n = 128, or 0.

8.4 Rings in Different Bases

Exercises:

I. For the finite ring R, ={0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} find:
(a) 98
(b) 5®B

Solution:

(@ 9,88,=09,*+8,)mod(l0,)=>(9,*+8,)mod 16 =17mod 16 =1 =>1

| 6

(b) 5®B=(5,*Il )mod(10,)=>(5,*I7 )mod(l6,) =85 mod(l6 )=5 =>5,

Modular arithmetic in the base b.

Exercises:

I. If Assume a byte ring. If a®db = 0 does b = ~a and a = ~b?

Solution:

Yes. a®b =(a + b)mod 256 =0



al2 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8.5 The Additive Inverse of Numbers for the Rings
R, ={0...0,0...1,0...2,..,8,8, ..., B}

Exercises:

Solutions:

Solutions:

Assume a word ring. For each of the following binary numbers, find
their additive inverses:

@) 10011100110  (b) 11011011  (c) 10101010
(a) ~10011100110 =~000001001100110=1111101100011010
(b) ~11011011 = ~000000001 1011011 = 1111111100100100

(c) ~10101010 = ~00000000101010IO="1I1III110OIOIOIIO
Assume we have the hexadecimal ring:
R, =10,1,2,3,4,5,6,738,9,A,B,C,DEFIO,..,FF}. Find the following:

@ ~AC  (b) A9S~55  (c) ~I0S5E  (d) ~I0O~5E

(@) ~AC = ~ 10101100, = 01010100, = 54,
(b) A9O~55=_A9 +55= I1111110, = FE
(c) ~10O5E=~(10+FE)=~E = ~1110,=0010, =2,

(d) ~10©~5E = ~10 + 5E =(~ 00010000,) + 01011110,= 11110000,
+01011110,=11001110,= CE

(@) ~AC = ~ 10101100,=01010100 , = 54,
(b) A9S~55=.A9 +55= I1111110, = FE
(c) ~1085E=~(10+FE)=~E=~1110,=0010, =2,

(d) ~10©~5E = ~10 + 5E =(~ 00010000,) + 01011110, = I 110000,
+01011110,= 11001110, = CE



CHAPTER 8 ANSWERS TO SELECTED EXERCISES = 513

8.6 Special Binary Rings For Assembly Language

THE BYTE RING | THE WORD RING THE DWORD
(8 bits) (16 bits ) (32 bits)
00000000 0000000000000000 00000000000000000000000000000000
00000001 000000000000000| 00000000000000000000000000000001
00000010 0000000000000010 00000000000000000000000000000010
0000001 1 000000000000001 | 0000000000000000000000000000001 1
00000100 0000000000000100 00000000000000000000000000000100
00000101 0000000000000101 00000000000000000000000000000101
00000110 00000000000001 10 000000000000000000000000000001 10
00000111 00000000000001 1 000000000000000000000000000001 I 1
00001000 0000000000001000 00000000000000000000000000001000
(NENEREN RERERRRRRRRRERY! FEEEEEEEE e e el

Exercises:

I. Convert the above binary tables to hexadecimal.

Solution:

THE BYTE RING THE WORD RING THE DWORD
(8 bits) (16 bits ) (32 bits)
00 00 00 00 00 00
0l 000l 00 00 00 O1




al4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

02 00 02 00 00 00 02
03 .00 03 .00 00 00 03

.0004 00 00 00 04

00 05 00 00 00 05
09 00 09. 00 00 00 09
0A 00 0A 00 00 00 0A
0B 00 0B 00 00 00 0B
0C 00 0C 00 00 00 0C
0D 00 0D 00 00 00 0D
OE 00 OE 00 00 00 OE
OF 00 OF 00 00 00 OF
10 00 10 00 00 00 10
I 00 11 00 00 00 |1
FF FF FF FF FF FF FF




CHAPTER 8 ANSWERS TO SELECTED EXERCISES = ala

3. Using exercise 2 , show that
(2) the largest decimal number in the byte ring is 255.
(b) the largest decimal number in the word ring is 65,535.
(c) the largest decimal number in the dword ring is 4,294,967,295.
Solution:
(a) 28-1=256-1=255
(b) 2'¢-1 = 65536 -1 = 65,535

(c) 23%2- 1 =4294967296 - |= 4,294,967,295

Modular arithmetic for the byte ring (in decimal)
Exercises:
I. Compute:

@) 1229122 (b) 162@31  (c) 175@222@13  (d) (1756222)®13
Solution:

(@) 1220122 = 244

(b) 162®31 = (162¥31) mod 256 = (5022) mod 256 = 158

(c) 175®222®13 = (175%222%13 mod 256 = 505050 mod 256 = 218

(d) (1756222)®13 = [(175 + 222)*13] mod 256 = 5161 mod 256 = 4l

Modular arithmetic for the word ring (in decimal)
Exercises:
I. Find the additive inverse for the following:
() 214 (b) O (c) 60000
Solutions:

(2) [214 + (65536 - 214)]mod 65536 = (214 + 65322)mod 65536 = 0.
Therefore, ~214 = 65322



alb = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(b) [0 + (65536 - 0)Jmod 65536 = (0 + 65536)mod 65536 = 0.
Therefore, ~0 = 65536

(c) [60000 + (65536 -60000)]Jmod 65536 = (60000 +5536)mod 65536 =0.
Therefore, ~60000 = 5536

Modular arithmetic for the dword ring (in decimal).
Exercises:
I. Find the additive inverse for the following:
(a) 214 (b) O (c) 60000

Solution:

(2) [214+ (4294967296 - 214)]mod 4294967296 = (214 + 4294967082)
mod 4294967296 = 0.Therefore, ~214 = 4294967082

(b) [0 + (4294967296 - 0)Jmod 4294967296 = (0 + 4294967296)mod
4294967296 = 0.Therefore, ~0 = 4294967296

(c) [60000 + (4294967296 - 60000)jmod 4294967296 = (60000
+ 4294907296)mod 4294967296 = 0. Therefore, ~60000 =
4294907296

3. Convert the decimal number - 202 ; to a binary number in a
(2) byte ring (b) word ring (c) dword ring.

Solution:

() (202 + 256 - 202)mod 256 = (202 + 54)mod 256 = 0, Therefore,
-202 = ~54=> 1101 10,

(b) (202 + 65536 - 202)mod 65536 = (202 +65334)mod 65536 = 0,
Therefore, -202 = ~65334 => [ 111111100110110?

(c) (202 + 4294967296 - 202)mod 4294967296 = (202 + 4294967094)
mod 4294967296 = 0, Therefore,

-202 = ~4294967094 => LI LII1TLLEEETLLLEEETTErroorionio,



CHAPTER 8 ANSWERS TO SELECTED EXERCISES = al7

8.7 Ordered Relations of Rings 2

Exercises:

I. For the ring R = {0,1,2,3,4}, using the special symbols, write out the
relations of the ordered pair:

{(0,0), (1,1),(1,0),(2,2), (2,1), (2,0), (3,3), (3,2), (3,1), (3,0), (4,4), (4.3),(4,2), (4,1),(4,0)}
Solution:

0=0,1=I,1<0,2=2,2<I,2<0,3=3,3<2,3<1,3<0,4544 < 3,4<2,4< 1,4<0

8.8 Special Ordering of Rings For Assembly Language

Exercises:

I. Construct a natural order table for the values the word ring.

Solution:

0 I 2 3 4 5 6 ---- | 65531 | 65532 | 65533 | 6553 [ 65535

3. Construct a natural order table for the values the dword ring.

Solution:

0 I 2 3 4 . 4294967293 4294967294 4294967295




alf = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.1 DataTypes of Integer Binary Numbers
Exercises:
For the examples above of bytes,

I. find the binary complements.

Solutions:

(a) 10010001
(b) 11111010

3. find the equivalent numbers in the hexadecimal base.

Solution:

(a) 9AE7AB73
(b) B6

9.2 Other Integers

Examples:

(a) €239ch (b) 101101b (c) 237710 (d) 349%h

Exercises:

I. For the examples above, convert each to decimal.

Solution:

(a) 926620 (b) 45 (c) 10233 (d) 13465

9.3 Variables

Exercises:
Which of the following are legal variable names:

(2) _apple_of my_eye (b) S_23x (c) $money2&
(d) hdachslager@ivc.edu (e) [ XorX2



CHAPTER 3 ANSWERS TO SELECTED EXERCISES = 518

Solution:

All but e.

9.5 Registers

Exercises:
I. Explain why the follow instructions will cause an error:
(a) mov eax, D2h
(b) x byte ?
mov eax, X

(c) mov eax, 3ABDDI2EIh

Solutions:
(a) Hexadecimal must begin with a number value 0,...,9
(b) eax and x are of different data types.
(c) The number is too large.

3. Complete the following table, using only binary numbers in EAX:
ASSEMBLY CODE EAX
mov eax, 2D3Fh 0000 | 0000 g 0000 | 0000 @ OOIO | [I1OI gooll [ IIll

mov eax, 3h 0000 | 0000 g 0000 | 0000 g 0000 [ 0000 g 0000 | 0OII

mov eax, |[010I0Ib |§ 0000 | 0000 @ 0000 | 0000 @ 0000 | 0000 § OI101 | OlOI

mov eax, 434789 0000 | 0000 g 0000 | OIIO g 1010 [ OOIO g O110 | OlOI

mov eax, 4DFAI10Ih § 0100 1101 i 1010 § 0001 | 000! § 0000 | 0001
mov eax 267541 1o 0000 | 0000 g OOOO (1O IIGOILIlI| IOl 1TgOOOO | I OOI
Exercises:

I. Complete the following:
(a) mov eax, 278901



a20 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solutions:
EAX
BASE 2: OOOOEOOOO OOOOEOIOO 0I00i000| OIIIEOIOI
ease e o Po o i s

BASE 10: | 2789 0l

(b) mov eax ,3ABCDI0Fh

EAX

BASE 2: § o1 11010l 1011 1 1100 f 11011 0001 o000 1 1111
-------- ——— - - BBy
BASE 16:] 3 A B . C D . | 0 . F
BASE 10: 985452 815

(c) mov edx,277210l0

EDX
BASE 2: 0000 ' 0000 | 1011 * 1111 Joroo ! o100 Jor0o ! 000l
BASE I6:] 0 ' © 0 , B F . 4 4 |
BASE 10: 783425

(d) mov eax , 278901

EAX
BASE 2: ] 0000 1 000 | 0000 1 0100 § 01001 0001 FOIII 10I0I
——————— SR R I R e e e
10 1 1 1
——————— e T T . R i
BASES: ] ©0 . ! 0, 4 FO, 5 6 , 5

BASE 16: 0 0 0 4 4 I 7 5




CHAPTER 3 ANSWERS TO SELECTED EXERCISES = a2t

(e) mov ecx ,3ABCDI0OFh

EAX
BASE 2: 0011 1010 f§ 1011 1100 f 1101 0001 oooof||||
BASE 8: 0 P 0 07 , 25 71 , 15 04 | 17

BASE 10:/985452815

(f) mov edx,27721010

EDX

BASE 2: | 0000 0000 lf 0000 ! 1011 J 111! o100 o100 ! ooor
Basete:] o o o e Iri e
BASE 10: | 783425. | |

Mixing Registers
Exercise:
I. Complete the following tables using hexadecimal numbers only:

32 25 24 17 16 9 8 I

INSTRUCTIONS
mov eax, 293567h

mov ax, 9BCh

mov ax, 3D32h

mov ax, 5h

mov ax, 3h

mov eax, 1267

mov ax, 3AF4h

mov ah, 27h

mov al, 25




22 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

I. Complete the following tables using hexadecimal numbers only :

32 25 24 17 16 9 8 I

| | | |

INSTRUCTIONS . . . .
mov eax, 293567h 0 : 0 2 : 9 3 : 5 6 : 7
mov ax, 9BCh 0 : 0 2 : 9 0 : 9 B : C
mov ax, 3D32h 0 : 0 2 : 9 3 : D 3 : 2
mov ah, 5Ch 0 : 0 2 : 9 5 : C 3 : 2
mov ax, 3h 0 : 0 2 : 9 0 : 0 0 : 3
mov eax, 1267 0 : 0 0 : 0 0 : 4 F : 3
mov ax, 3AF4h 0 : 0 0 : 0 3 : A F : 4
mov ah, 27h 0 : 0 0 : 0 2 : 7 F : 4
mov al, 25 0 I 0 0 I 0 2 I 7 I I 9

9.6 Transferring data between registers and variables

Exercises:

I. Modify the above program by initializing the values in x, y without using

the mov instruction.

Solution:
AL PSEUDO CODE | ASSEMBLY LANGUAGE CODE
X:=123 X BYE 23
Y :=59 Y BYTE 59
EAX := X mov eax, X
Y := EAX mov y,eax




CHAPTER 3 ANSWERS TO SELECTED EXERCISES = 523

3. In exercise |, what does the code accomplish?

Solution:

Replace Y with the contents of X.

9.7 Assembly Language Statements

Exercises:

I. What is the largest integer number base 10 that can be store in a
variable of type BYTE.

Solution:

255

3. What is the largest integer number base |0 that can be store in a
variable of type DWORD.

Solution:

4294967295

5. What is the largest integer number base 16 that can be store in a
variable of type WORD.

Solution:

FF FF

7. What is the largest integer number base 8 that can be store in a variable
of type BYTE.

Solution:

9. What is the largest integer number base 8 that can be store in a variable
of type DWORD.

Solution:

37777777777



24 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercise:

I. Assume the above program is run. For the table below, fill as hexadeci-

mal numbers, the final values stored.

EAX EBX A D F
Solution:
EAX EBX A B D E F
00000EOF 00000015 28 IE 0000000A 32 0014




CHAPTER 10 ANSWERS TO SELECTED EXERCISES = 824

Introduction

10.1 Ring Registers

Additive Inverses
The 8 bit ring as unsigned binary and integer numbers.

Exercises:

I. Find the additive inverse of the following numbers in binary as well as
the number system given:

(2) 100101b (b) 2Eh (c) 222d

Solution:

@) 11011011b (b) D2 h (c) 34d

The 16 bit rings
Exercises:
I. Assuming the following numbers are words. Find their additive inverse.

(a) 100101b (b) 2Eh (c) 222 d

Solutions:

(@) tirrrrrrrioriol b (b) FFD2h (c) 65314d

The 32 bit rings

Note:in the above table, the hexadecimal numbers in each of the columns areadditive inverses
of each other.

Exercises:

I. Find the additive inverse of the following numbers in binary as well as
the number system given:

(a) 100101b (b) 2E h (c) 222d

Solutions:

@ TIVLLCEETEEEE T L LT iion1oiib - (b) FFFFFFD2 h
(c) 4,294,967,296 - 222



a2b = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

10.2 Working with Modular Arithmetic for Addition
and Subtraction

Exercises:
I. Find N, for byte rings, word rings, and dword rings.

Solution:

100000000, 10000000000000000,, 100000000000000000000000000000000,

Addition on finite rings

Addition on byte rings:

Exercises:

I. Add over a byte ring: N = 11011101, + 01001111,

Solution:

(11011101 +01001111.) mod 100000000, => (221 + 79)mod 256 =
300 mod 256 = 4 => 100,

Addition on word rings:

Exercises:
3. Add overa word ringc N= 1100 I'lll [1OI [TOI+I1010 I'110 1001 1111,
Solution:
[100 [IFE IOl 1ol +1010 1110 1001 1111, => (53213 + 44703) mod 65536 =
97916mod 65536 =32380 => I11111001111100,

Addition on dword rings:

Exercises:

5. Add over a dword ring: N = 1100 1111 [IOI 11OL+111 1110 1001 1111,
Solution:

F100 LI IO TIOL+1EE THI0 1001 1111, => (53213 + 32415)mod 4294967296 =

85628 => 101001 11001111100,



CHAPTER 10 ANSWERS TO SELECTED EXERCISES = 327

Subtraction on finite rings

Subtraction on byte rings:

Exercises:

Assume a byte ring:

Find:
7. ~201,,
Solution:
256 — 201 = 55 =~201 ,
9. ~277,
Solution:
~277,=>~191 , =256 — 191 = 65 => 101,
I'l.(~250,)©252
Solution
(~250,)©25210 = (6)©(252,,) = (6 + ~252)mod 256 = (6 + 4)mod 256 = 10
13. 772, © ~1427,
Solution:

772, © ~1427, = (772, + ~~1427,) mod 400, = (772, + 1427,) mod 400, =
(2421,)mod 400,
=>1297mod 256 = |7 => 21,

Assume a word ring:
Find:
15. ~6780

Solution:

~6780 = 65536 - 6780 = 58756

17. ~175673,

Solution:

~175673, => ~64443 = 65536 — 64443 = 1093 => 2105,



a28 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

19. (~6550,)©22221 ,

Solution:
(~6550,,)©22221, = {(65536 — 6550) + ~22221]mod (65536) =
[58986 + (65536 — 22221)]mod 65536 = [58986 + 43315]mod 65536 = 102301
modé65536 = = 102301

21. 110772, © ~12642,

Solution:

110772, © ~12642, => 373700 ~5538 = > 373700(65535 - 5538) = 37370 ©59997
= (37370 + ~59997)mod 65536 = (37370 + 65536 — 59997)mod 65536 =

(37370 + 5539)mod 65536 = 42909 mod65536 = 42909 =>123635,

Assume a dword ring

Find:
23. ~99456780,
Solution:
~99456780 = 4294967296 — 99456780 = 4195510516
25. ~11124767565,
Solution:
~ 11124767565 = 40000000000, — 11124767565, = | 1124767565,
27. ~[43465756,)©(~45754 )]
Solution:

~[43465756 )O(~45754 )] = ~[43465756 )O( 4294967296 - 45754 )] =
~[43465756 )O( 4294921542 )] =

~{(43465756 + (4294967296 — 429492 1542)mod 4294967296 } =

= ~{[43465756)+ 45754]}mod 4294967296 = ~43511510mod 4294967296 =

(4294967296 —43511510) mod 4294967296 = 4251455786



CHAPTER 10 ANSWERS TO SELECTED EXERCISES = 528

29. 700772, © (~54533,)
Solution:
700772, © (~54533,) => 229882 , © (~22875,)) =
229882, © (4294967296 — 22875, )
= 229882, © 4294944421 = [229882, + (4294967296 — 4294944421 )]mod
4294967296 = [229882  + 22875)]mod 4294967296 = [252757]mod

4294967296 = 252757

10.3 Assembly Language Arithmetic Operations
For Integers

Addition (+):
Exercises:
I. Complete the following tables:

Complete the table with hexadecimal numbers.

Solutions:

ASSEMBLY CODE EAX AX AH AL X
x dword 2 2h
mov eax, 12345 00 00 30 39h 30 3%9h 30h 39h 2h
add eax, x 00 00 30 3Bh 30 3Bh 30h 3Bh 2h

ASSEMBLY

EAX AX AH AL X
CODE

x dword 100 64h
mov eax, 54321 0000D431h D4 31h D4h 3lh 64h
add eax, x 00 00 D495h D495h D4h 95h 64h




330 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL
mov eax, 9fffffffh 9f ff ff ffh ff ffh ffh ffh
add ah, | 9f ff 00 ffh 00 ffh 00h ffh
Subtraction (-):
Exercises:
I. Complete the following table in hexadecimal:
PSEUDO- | AL PSEUDO-
AL CODE EAX X Y
CODE CODE
x dword ?
y dword ? z
dword ?
_ mov eax,
EAX := 0CD2h 0CD2h 0CD2
X := 0CD2h
- 2h EAX := EAX - 2h sub eax, 2h 0CDO
X := EAX mov X, eax 0CDO 0CDO
X :=42lh X :=421lh mov X, 42lh 0CDO 421
Y := 4E75h Y := 4E75h mov y,421h 0CDO 421 4E75
EAX := X mov eax, X 421 421 4E75
Z=X-Y EAX := EAX -Y sub eax, y FFFFBS5AC 4E75
421
Z := EAX mov z,eax FFFFB5AC 421 4E75
y A
FFFFB5AC




CHAPTER 10 ANSWERS TO SELECTED EXERCISES = a3l

ASSEMBLY CODE EAX AX AH AL X
x word 0ab9h 0AB9
mov eax,0ccal8h 000CCAIS CAIlS8 CA 18 0AB9
sub ax, x 000C BF5F BF5F BF 5F 0AB9
Multiplication
(*): Exercises:
I. Complete the following tables:
ASSEMBLY CODE EAX AX AH | AL | EDX X
x byte OEDh ED
mov al, 9Fh 00 00 00 9F 00 9F 00 9F ED
mul x 00 00 93 33 9333 93 33 ED
ASSEMBLY CODE EAX AX AL EDX X
x word 2EF2h 2EF2
mov ax, 26DCh 00 00 26 DC 26 DC DC 2EF2
mul x EF F8 EF F8 F8 08 39 2EF2
ASSEMBLY CODE EAX EDX X
x dword 46A577DEh 46 A5 77 DE
mov eax, TEA769Fh 7 EA76 9F 46 A5 77 DE
mul x C8 FI Cé6 E2 02 i'; 3A 46 A5 77 DE




332 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Division (+):
Exercises:
I. For the following integer division, find the division form:n =q+ m +r:
(a) 143+3 (b) 3,457+55 (c) 579+2 (d) 23+ 40
Solutions:
(a) 143 =47%¥3 +2 (b) 3457 = 62*55 + 47 (c) 579 =289%2+|
(d) 23 =0*%40 + 23
Exercises:

Complete the following table:

I. complete the following tables in hexadecimal :

ASSEMBLY CODE EAX EDX X
x dword E722Ch E722C
mov edx, 0 0 E722C
mov eax,5670F3AAh 56 70 F3 AA 0 E722C
div x 00 00 05 FB 00 0C 26 86 E722C
ASSEMBLY CODE EAX AX EDX
x word 2567h = m 2567
mov edx,0 0 0 2567
mov ax, 9D37h=n 00 00 9D 57 9D57 0 2567
div x 00 00 00 04 00 04 00 00 07 9B 2567




CHAPTER 10 ANSWERS TO SELECTED EXERCISES = 333

ASSEMBLY CODE EAX AX AH AL
x byte OFDh
mov ax, 0ABB6h 00 00 AB B6 AB B6

div x 00 00 AB B6 AB B6 BD AD
X
FD
FD
FD




a34 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

1.1 An Assembly Language Program to Convert a
Positive Integer Number In any Base b < 10 to its

Corresponding Number in the Base 10.

Exercise

Solution:

Use the manual method to linearize the number 230451, that will
convert it to its corresponding number in the base 10.

230451, => N, = ((((2*8 + 3)%6 + 0)*6) + 4)*6 + 5)%6 + | = 19615

11.2 An Algorithm to Convert any Integer Number in the
Base 10 to a Corresponding Number in the Base b < 10.

Exercise:
|. Use the above algorithm to write a program to convert the
decimal number 2543, to octal.
Solution:
PSEUDO-CODE AL PSEUDO-CODE AL CODE
B:=8 B:=8 mov b, 8
N := 2543 N := 2543 mov n, 2543
S:=0 S:=0 mov s, 0
M:= | M:= | mov m, |
T:=10 T:=10 mov t, 10
EAX:= N mov eax, n
R := N MOD B A o g mov edx,0 div b
R:= EDX mov r, edx




CHAPTER 11 ANSWERS TO SELECTED EXERCISES = 334

N:= N+B N:= EAX mov n, eax
EAX:=R mov eax, r
R:=R*M
EAX:= EAX(M mul m
R:= EAX mov r, eax
EAX:=S mov eax, s
S:=S+R EAX:= EAX +R add eax, r
S:= EAX mov s, eax
EAX:=M mov eax, m
M:= M*T EAX:= EAX*T mul t
M:= EAX mov m eax
EAX:=N mov eax, n
=N MODB EAX;E?E(A;(;BDEEXF mov edx,0 div b
R:= EDX mov r, edx
N:= N+B N:= EAX mov n, eax
EAX:=R mov eax, r
R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax
EAX:=S mov eax, s
S:=S+R EAX:= EAX + R add eax, r
S:= EAX mov s, eax
EAX:=M mov eax, m
M:= M*T EAX:= EAX*T mul t
M:= EAX mov m eax




336 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

R:=NMODB

EAX:=N

mov eax, n

EAX:= EAX+B EDX:=

mov edx,0 div b

EAX MOD B

R:= EDX mov r, edx
N:= N+B N:= EAX mov n, eax
EAX:=R mov eax, r

R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax
S:=S+R EAX:=S mov eax, s
EAX:= EAX + R add eax, r
S:= EAX mov s, eax
EAX:=M mov eax, m

M:= M*T EAX:= EAX*T mul t
M:= EAX mov m eax
EAX:= N mov eax, n

R := N MOD B EAX::EA)P:?DEEX:: EAX mov edx,0 div b

R:= EDX mov r, edx
N:= N+B N:= EAX mov n, eax
EAX:=R mov eax, r

R := R*M EAX:= EAX*M mul m
R:= EAX mov r, eax
EAX:=S mov eax, s
S:=S+R EAX:= EAX + R add eax, r
S:= EAX mov s, eax




CHAPTER 12 ANSWERS TO SELECTED EXERCISES = 337

12.1 Conditional Jump Instructions for Signed Order

Exercises:

I. Which of the following are valid. If not indicate why.

a. b. c. d. e.

x dword 456h cmp eax, X cmp X, eax cmp x, 235 cmp 235, x
y dword 44444h

cmp X,y

Solution:

a. Is not correct. Cannot use cmp X,y

e.ls not correct. Operand | cannot be a numerical value.

The conditional jump instructions for signed order numbers.

Exercises:

Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump:

l. 2, 3.
cmp al,n cmp al,n cmp al,n
je xyz jne xyz jnge xyz
Xyz: Xyz: Xyz:
4. 5. 6.
cmp al,n cmp al,n cmp al,n
jge xyz. jle xyz. jnle al
Xyz: Xyz Xyz
7. 8. 9.
cmp al,n cmp al,n cmp al,n
jl xyz jnl xyz jg xyz
Xyz Xyz: Xyz:
10.
cmp al,n;
jnl xyz:

Solutions:

l. Yes 3. No 5. Yes 7. No 9. No



338 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The unconditional jump instruction

Exercises:

Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump:

l. 2. 3.

cmp aln cmp aln cmp aln

jbe xyz jnb xyz ja xyz

Xyz: Xyz: Xyz:

4. 5. 6.

cmp aln cmp aln cmp aln

jnae xyz. jae xyz. je xyz

Xyz: Xyz Xyz

7. 8. 9.

cmp aln cmp aln cmp aln

jb xyz jnb xyz jnbe xyz

Xyz Xyz: Xyz:
Solution:

I. True .A jump occurs 3. No.A jump does not occur.
5. True A jump occurs 7. No.A jump does not occur.

9. No. A jump does not occur.

12.2 Converting the While-Conditional Statements to
Assembly Language

Exercises:

I. Rewrite the above program in a AL pseudo-code where only registers
(not variables) are used.

Solution:

AL PSEUDO CODE

BX =1

CX:=0




CHAPTER 12 ANSWERS TO SELECTED EXERCISES = 338

WHILE BX <=6

BEGIN

EAX := CX

EAX:= EAX + BX

CX :=EAX

EAX := BX

EAX := EAX + |

BX:= EAX

END

3. Modify the above program by writing an assembly language algorithm
that would allow the user to sum arbitrary numbers | +2 + 3 + ..+ m.

Solution:

ASSEMBLY CODE

mov n, |

mov total, 0

while:cmp n, m

ja end

mov eax, total

add eax, n

mov total, eax

moyv eax, n

add eax, |

moyv n, eax

jmp while end:

5. Write an assembly language pseudo code algorithm to compute

12+ 22+ 32+ + M



a40 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

AL PSEUDO CODE

N := 1|

EAX:=0

WHILE N <=M

BEGIN

EBX :=N

SQN:= EBX*N

EAX:= EAX + SQON

N:=N + 1|

END

SUM := EAX

12.3 If-Then Statements

Exercises:
I. From Chapter 5, we have the followingalgorithm.
PSEUDO -
INSTRUCTIONS EXPLANATION

LARGEST := XI

We start by assuming X1 is the largest

IF X2 > LARGEST THEN
BEGIN
LARGEST := X2
END

If the contents of X2 is larger than the contents of
LARGEST replace LARGEST with the contents of X2

IF X3 > LARGEST THEN
BEGIN
LARGEST := X3
END

If the contents of X3 is larger than the contents of
LARGEST replace LARGEST with the contents of X3




CHAPTER 12 ANSWERS TO SELECTED EXERCISES = o4l

Write the assembly language code to replicate the pseudo-code:

Solution:

PSEUDO - INSTRUCTIONS

ASSEMBLY LANGUAGE

LARGEST := XI

mov eax, x|
mov largest, eax

IF X2 > LARGEST THEN
BEGIN
LARGEST := X2
END

cmp X2, largest
begin: jbe end
mov largest, x2

end

IF X3 > LARGEST THEN
BEGIN
LARGEST := X3
END

cmp x3, largest
begin: jbe end
mov largest, x3

end

3. Write the assembly language algorithm to replicate the pseudo-code:

IFx =aorx=bTHEN
BEGIN

Solution:

PSEUDO - INSTRUCTIONS

ASSEMBLY LANGUAGE

mov eax, X
IF X =ATHEN
cmp X, a
BEGIN
begin: jne end
END mmnnn
end
IF X = BTHEN cmp x,b
BEGIN begin: jne end




42 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

12.4 If-Then - Else Statements

Exercise:

I. Assume n is a non-negative integer.We define n factorial as:n! = n(n -1)
(n -2)... (2)(1) for

n > 0 and 0! = |.Write an assembly language psuedo code program that will compute
the value 10!.

Solution:

AS PSEUDO CODE

N:= 10

EAX := |

WHILE N > | THEN

BEGIN

EAX := EAX*N

EBX:= N

EBX :=EBX - |

N:= EBX

END

FACTORIAL := EAX

END:

Application: Assume we have N distinct objects and r of these objects are randomly
selected.

3. The number of ways that this can be done, where order is important is

P = NUN =),



CHAPTER 12 ANSWERS TO SELECTED EXERCISES = 543

Write an assembly language algorithm that will perform the following tasks:
Task|:Assign the integer N and r.
Task2: compute (P = NY/(N —r)!.

Solution:

AS PSEUDO CODE

EAX := |

WHILE N > | THEN

BEGIN

EAX := EAX*N

EBX:= N

EBX :=EBX — |

N:= EBX

END

NFACTORIAL := EAX

Q=N-R

IF Q = 0THEN

BEGIN

Q=1

END

EAX:= |

WHILE Q > | THEN

BEGIN




44 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

EAX := EAX*Q

EBX:= Q

EBX := EBX - |

Q:= EBX

END

QFACTORIAL := EAX

PNR : = NFACTORIAL+QFACTORIAL

END:

5. Write an assembly language psuedo code algorithm that will compute
the absolute value of

[x -yl

Solution:

PSEUDO - INSTRUCTIONS

IFX-Y >= THEN
BEGIN
ABSOLUTE:= X -Y
END

IFX-Y <O0THEN
BEGIN
ABSOLUTE:=Y - X
END




CHAPTER 13 ANSWERS TO SELECTED EXERCISES = 54a

13.1 An Assembly Language Program to Convert a Positive

Integer Number In any Base b < 10 to its Corresponding
Number in the Base 10.

Exercise:

I. Let N, = apaa, ...a_.Write an assembly language algorithm that will

sum the digits of N.

Solution:
PSEUDO-CODE AL PSEUDOCODE ALCODE
EBX:=0 EBX:=0 movebs,0
NUM:=N NUM:=N mov num,n
T:=10 T:=10 mov t,10
D:=10"M D:= 10"M mov d, 10 m
while: cmp num,0
WHILE NUM <>0 WHILE NUM <>0
jeend
BEGIN BEGIN ;begin
EAX :=NUM mov eax,nhun
divd
A :=EAX mov a,eax
EBX:= EBX +A EBX:= EBX +A add ebx,a
NUM:= N MODD NUM:=EDX mov num,edx
EAX :=D mov eax,t
EAX := EAX+TEDX := e 2l
D:=D+T EAXMODPT divt
mov d,eax
D :=EAX
jmp while
END END end:




a4b = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.1 Logical Expressions

Logical Statements

Exercise:

I. Complete the following:

PSEUDO - CODE

X:=2

Y:=5

Li= (X + 2%Y > 2)

Z := .NOT. (L .OR. (NOT. ( X - Y <> 0)))

Z := (NOT.(L .AND. (Z .OR. L)) .XOR.Z

Solution:

PSEUDO - CODE

X:=2

Y:=5

Li= (X + 2*Y > 2)

true

Z := .NOT. (L .OR. (NOT. ( X -Y <> 0)))

true

false

Z := (NOT.(L .AND. (Z .OR. L)) .XOR. Z

true

false




CHAPTER 14 ANSWERS TO SELECTED EXERCISES = 347

Exercises:

I. In the following program, indicate if the following statements are cor-
rect or incorrect.

X:=2
Z := true
V := .NOT. (true .OR. false)

V:= ((NOT.(V .OR.V)) .AND.V
Solution:
all correct

3. Evaluate the following expressions:

Solutions:

(a) true

(b) true

(c) true

(d) false

(e) false

(f) true



a48 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.3 Assigning to Logical Expressions a Logical Value in

Assembly Language

Exercises:

Complete the table:

PSEUDO- AL PSEUDO- ASSEMBLY AL
CODE CODE LANGUAGE
X:= true
Y:= false
Z:= X .AND.Y
Solution:
PSEUDO- AL PSEUDO- ASSEMBLY AL
CODE CODE LANGUAGE
X:= true X:=1 mov X, |
Y:= false Y:=0 mov Y,0
AL:= X mov al, x |
Z:= X .AND.Y AND ALY and al,y 0
Z:=AL mov z, al 0




CHAPTER 14 ANSWERS TO SELECTED EXERCISES = 943

PSEUDOCODE AL Y| Z [LOG|EAX|EBX
X:=5 mov X, 5
Y:= 60 mov Y, 60 60
LOG := (X > 10) .AND. (Y > 10) mov eax, 0 60 0
mov ebx, 0 60 0 0
cmp x, 10 60 0 0
jng LI 60 0 0
mov eax, | 60 0 0
Ll:cmpy, 10 60 0 0
jng L2 60 0 0
mov ebx, | 60 0 I
L2: and eax, ebx 60 0 |
mov log, eax 60 0 0 I
IF LOG = true THEN cmp log, | 60 0 0 I
BEGIN beginl:jne endl 60 0 0 I
Z=X+Y mov eax, X 60 0 0 I
add eax,y 60 0 0 I
mov z, eax 60 0 0 I
END endl: 60 0 0 I
ELSE je end2 60 0 0 I
BEGIN begin2: 60 0 0 I
Z:= X*Y mov eax, X 60 5 0 I
mul y 60 5 300 I
mov z, eax 60 | 300 5 300 I
END end2: 60 | 300 0 300 I




aall = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercise:

I. For the above program, assume x = 20 and y = 30. With these values,
change the above program.

Solution:

PSEUDO-CODE AL X Y EAX | EBX
X:=120 mov x, 20 20
Y:=30 mov Y, 30 20 30
mov eax, 0 20 30 0
mov ebx, 0 20 30 0 0
cmp %, 10 20 30 0 0
jng L1 20 30 0 0
mov eax, | 20 30 | 0
LOG := (X > 10) .AND. (Y > 10)
Ll:cmpy, 10 20 30 I 0
jng L2 20 30 I 0
mov ebx, | 20 30 | |
L2: and eax,ebx 20 30 0 |
mov log, eax 20 30 0 |
IF LOG = true THEN cmp log, | 20 30 0 I
BEGIN beginl:jne | 55 | 39 0 |
end|
mov eax, X 20 30 0 |
Z=X+Y add eax, y 20 30 0 |
mov z, eax 20 30 0 |
END endl: 20 30 0 I




CHAPTER 14 ANSWERS TO SELECTED EXERCISES = aal

ELSE je end2 20 30 0 I
BEGIN begin2: 20 30 0 I
mov eax, X 20 30 20 I

Z:= X*Y mul y 20 30 600 I

mov z, eax 20 30 600 600 |

END end2: 20 30 600 600 I

14.4 Masks

Exercises:

Assume CX contains an arbitrary number. For the following assembly instructions, explain
what changes to CX; if any, result from the following masks:

. and cx, cx

Solution:

Since both are the same register, cx will not change.
3. xor cx, cx

Solution:

Since both are the same register, cx all bits will change to 0.
5. or cx, (not cx)

Solution:

| or 0 = |I. Therfore all the bits will be changed to I.



a2 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

15.1 Representing One-Dimensional Arrays in Pseudo-Code
Exercises:
I. Write a pseudo- code algorithm that will perform the following tasks:
Taskl: Stores the numbers 2,22, 23, ..., 2" in array cells.
Task2: Add the numbers in the cells.
Task3: Compute the integer average. (The average without the remainder.)
Solution:
TASK I:
j=1
WHILE J< n
BEGIN

a(j) := @
=i

END

TASK 2:
sum:=0

=1

sum:= sum + a(j)
=i+l

END

TASK 3:

integer_average:= sum + n

3. Converting positive decimal integers into binary.
Write a pseudo- code algorithm that will perform the following tasks:
Taskl: Convert a positive number into binary

Task 2: Store the binary digits into an array.



CHAPTER 15 ANSWERS TO SELECTED EXERCISES = 333

Solution:

PSEUDO-CODE

TAKE 1:B=2

N := BINARY

S:=0

M:=
k=1
T=10

WHILE N <> 0

BEGIN

R:=NMOD B

TEMP(k ):= R

N:= N+B

R := R*M

Ss=S+R

M:= M*T

ki=k + 1

END

TASK 2:

d=k-1

k:=1

While | <d

A(k):= TEMP(d)

d:i=d - |

ki=k+ 1

END




a4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

5. A proper divisor of a positive integer N is an integer that is not equal
to | or N and divides N without a remainder.

For example the proper divisors of 21 are 2,3,7 .

Write a pseudo- code algorithm that perform the following tasks:
Task|: Store a positive integer number N.

Task2: Find and store in array all the proper divisors of N.

Solution:
Task |:
N:=n
Task 2:
k:=2
] =1
WHILE k £ N - |
BEGIN
R := N MOD k
IFR=0
BEGIN
A() =k
jo=j+
END
k:=k+ 1
END

15.2 Creating One Dimensional Integer Arrays In Assembly
Language
Exercise:

I. Write a assembly language program that will store the first 50 positive
odd numbers.



CHAPTER 1o ANSWERS TO SELECTED EXERCISES = 354

Solution:

X byte ?

mov two,2

mov k, 0

lea ebx, x ; location of array in ebx

while: cmp k,51; k counter

je exit

mov eax ,k;

mul two

add eax, |; odd number in eax

mov [ebx], al ; store odd number in [ebx]
add ebx, |; moves to next byte

mov ecx, k

add ecx, |

mov k, ecx; adds one to k and stores it into ecx
jmp while

exit:

Storing data in the array without a variable’s location

Exercise:
|I. Complete the table below.
BYTES
AL EAX| EBX | 2 (3 4 516 |7 |8
INSTRUCTIONS
mov eax, 2

mov ebx, 7D12Eh

mov [eax], ebx

mov eax, 4

mov ebx, 568923h

mov [eax], ebx

mov ebx, 3

mov [eax], ebx




aab = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:
BYTES

AL EAX| EBX | 2 3 4 5 6 7|8

INSTRUCTIONS
mov eax, 2h 2 : : : : : : : :
mov ebx, 7D 12Eh 2 |o0o007DI2| | X X X X X X X
mov [eax], ebx 2 | 0007DI2 | oio 057 D, I ZEE X X X
mov eax, 4h 4 |0007DI2 | , oio oi7 DEI ZEE X X X
mov ebx, 568923h 4 |0056892 | , oio oi7 Dil 2 E| X X
mov [eax], ebx 4 | 0056892 | , oio oi7 oio Si6 si9 2&3 X
mov ebx, 3h 4 |0000000 | , ofo 057 ofo 556 859 253 X
mov [eax], ebx 4 | 0000000 | , oio oi7 oio oio oio oi3 X

Retrieving data from an array

Exercise:

I. Extend the following program so that the array data stored can be
retrieved to the register ax.

AL CODE EAX X
x dword ? dword | dword 2 dword 3
lea ebx,x
mov eax, |3h 000000 13
mov [ebx], eax 000000 13 00 0000 I3
add ebx,4 00 0000 13 00 0000 13
mov eax,2%h 00 00 00 29 00 00 00 13




CHAPTER 1o ANSWERS TO SELECTED EXERCISES = 3a7

mov [ebx],eax 00 00 00 29 000000 13 00 00 00 29
add ebx,4 00 00 00 29 000000 I3 00 00 00 29
mov eax,25h 00 00 00 25 000000 I3 00 00 00 29
mov [ebx],eax 00 00 00 25 000000 I3 00 00 00 29 00 00 00 25

Solution:
AL CODE EAX X
x dword ?
lea ebx.x dword | dword 2 dword 3
mov eax, |3h 000000 I3
mov [ebx], eax 000000 I3 000000 I3
add ebx,4 00 00 00 I3 00 0000 13
mov eax,2% 00 00 00 29 00 00 00 13
mov [ebx],eax 00 00 00 29 00 00 00 13 00 00 00 29
add ebx,4 00 00 00 29 00 0000 13 00 00 00 29
mov eax,25h 00 00 00 25 00 00 00 13 00 00 00 29
mov [ebx],eax 00 00 00 25 00 00 00 I3 00 00 00 29 g 00 00 00 25
sub ebx, 8 00 00 00 25 00 00 00 I3 00 00 00 29 00 00 00 25
mov al, [ebx] 000000 I3
demd | 0000001
mov al, [ebx] 00 00 00 29
wdemd | 00000025
mov al, [ebx] 00 00 00 25




aaf = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

15.3 Reserving Storage for an Array Using the DUP
Directive.

Exercise:
Write a program that will perform the following task: store in a dimensioned array the first

100 positive numbers.
Solution:

x byte 100 dup (?)
Lea ebx, x

mov al, |

while: cmp al, 101

je exit

mov [ebx], al

add ebx, |

add al, |

jmp while

exit:

15.4 Working with Data

Exercise:

I. Complete the following table:

AL

INSTRUCTIONS | €% ebx 9 (10 (11 | 12|13 |14 (15|16 17

mov eax, 2ACDI16 h

mov ebx, |0h

add ebx, |h

mov [ebx], eax

add [ebx], ebx

add eax, ebx




CHAPTER 15 ANSWERS TO SELECTED EXERCISES = a8

Solution:

BYTES

AL CODE eax ebx | 10|11 (12|13 |14 |I5]16|17 (18

mov eax,
2ACD | 6h 002ACDI6

mov ebx, 10h 002ACDI16 10

add ebx, |h 002ACDI16 ll

mov [ebx], eax [ 002ACDI16 I 0 0 2 A|]C|D | 6

add [ebx],ebx | 002ACDI16 Il 0 0 2 A|C|D| 2 7

add eax,ebx | 002ACD27 |1 0 0 2 A C D 2 7




ab0 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

16.1 Pseudo-code Procedures

Exercises:

I. Write in pseudo-code an algorithm and procedure that will perform
the following tasks:

Task|: Store the following positive integer numbers in an array:
nn+l,n+2,n+3.,n+m, m>0.
Task2: Add the numbers stored in the array.

Solution:

PSEUDO-CODE

N:=n

M:=m

CALL ARRAY

PROCEDURE ARRAY
BEGIN
TASKI: k=10

WHILE k = M
BEGIN

X(k) ==n+k
ke=k + 1

END

TASK2: SUM:= 0
k=0
WHILE k # M
SUM:= SUM + X(k)

ki=k + 1
END
END




CHAPTER 16 ANSWERS TO SELECTED EXERCISES = a6

16.2 Writing procedures in Assembly Language
Exercises:
I. Write an assembly language algorithm thatcomputes

| +a+a2 +. . ++a+. .. +aN
where a > 0 and N > 0.

Solution:

SUM:=0

J==0

R:=0

WHILER = N

BEGIN

CALL EXPONENTIAL

SUM:= SUM + P

R:=R + |

END

PROCEDURE exponential

P:=1

K:=0

WHILEK = R

BEGIN

P.:= A*P

K=K+ |

END

ret

expontential ENDP



ab2 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

17.1 Definition of Decimal Numbers and Fractions.
I. Which of the following fractions can be reduced to integer numbers:
(a) 1446/558 (b) 12356/2333 (c) 458/3206 (d) 1138/569
Solution:
d
3. Which of the following fractions are proper:
() 3/2 (b) 234/567 (c) 112

Solution:

b, ¢

17.2 Representing positive decimal numbers corresponding
to proper fractions in expanded form.

I. Expand the following in the form: 0.aja,...a = 0.aa,3a,..223a;, ...a
.22,3,...2

n

(a) 0.2357 (b) 0.0097
Solution:

(a) 0.2357 = 0.235723572357... (b) 0.0097 = 0.009700970097...

3. Write the following fractions as decimal numbers using the upper bar
notation where necessary:

@@) 5/12  (b) -7/8  (c) 5/6  (d) 1/7  (e) -3/7

Solution:
(a) 5/12=0.416 (b) -7/8=-0.875 (c) 5/6 =0.83 (d) 1/7 = 0.142857
(e) —3/7 =-0.428571

17.3 Converting Decimal Numbers to Fractions:
I. Write the decimal numbers as fractions:

(@) 0.0235  (b) 0.1111215  (c) 0.999999



CHAPTER 17 ANSWERS TO SELECTED EXERCISES = 563

Solution:

(2) 0.0235 =235/10000
(b) O.1111215=1111215/10000000
(c) 0.999999 = 999999/1000000

I. Write the following decimal numbers as fractions:
(@ 023  (b) 073  (c) 0.8  (c) 0.101  (e) 0.3
(g) 23.468 (h) 2.0078 (i) 0.24679852

Solution:

(a) 0.23=23/99 (b) 0.73=73/99 (c) 0.8=8/9 (d) 0.101 = 101/999
(e) 0.3=3/9 (g) 23.468 = 23468/1000  (h) 2.0078 = 20078/10000

I. 0.24679852 = 0.246 + 0.0007985279852...= 246/1000 + 0.7985279852... 246/1000
+79852/99999 =
[(246)99999]/[(1000)(99999)] + [(79852)(1000)]/[(1000)(99999)] =
[(246)(99999) + (79852)(1000)]/[(1000)(99999)] = [24599754 + 79852000]/99999000 =
104,451,754/99,999,000

3. Write the following decimal numbers as a decimalnumber 0.aa, ... a:

(2) 0.7323 + 0.0083 (b) 0.7323 —0.0083
Solution:

(a) 0.7323 + 0.0083 = 0.7406

(b) 0.7323 —0.0083 = 0.7240

17.4 Converting Fractions to Decimal Numbers:

I. Convert the following fractions to decimal: 4/9

Solution:

Step I:
4/9 =a /10 +a,/10>+a,/10° +a,/10* +a,/10°+a /10°+a /10" + ...

10(4/9) = 40/9 = (36 + 4)/9 =4 + 4/9 =a, +a,/10'+a,/102+ a,/10°+ a2 /10*+
a /105+a,/10¢+ ...

a, =4



ab4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 2:

3.

Solution:

4/9 =a,/10' +a,/10* +a,/10° +a,/10* +a,/10°+ a,/10°+ ...

10(4/9) = 40/9 =4+ 4/9 =a,+a,/10'+2a,/10°+a,/10°+a /10*+a /10° + ...
a, =4

4/9 =a, /10" +a, /10> +a,/10° +a,/10* +a /10° + ...

End of cycle: 4/9 = 0.44444444...= 0.4

67/5

67/5=(65+2)/5=13+2/5=134

17.5 Representation of Decimal Numbers

Solutions:

Solutions:

Convert the following into integer form:

(a) 281.9  (b) 41256.9

(@) 282  (b) 41257

. Explain why we cannot convert, using our above algorithm, the follow-

ing number into a fraction:

0.272772777277772777772...

From your analysis, does such a number exist?

All rational numbers N/M when dividing integer M into N at most can have a finite number of
distinct numbers which will repeat over and over again.

0.272772777277772777772...

This number exists but it is not a rational number.



CHAPTER 17 ANSWERS TO SELECTED EXERCISES = aba

17.6 Definition of Decimal and Fractions
I. Write the following numbers in expanded form:
(a) 0.231120, (b) O.11111101, (c) 0.232323, (d) 0.ABC2,
Solutions
(a) 0.231120, =2/10, + 3/10,>+ 1/10,2 + 1/10,* + 2/10,> + 0/10°
(b) O.LTLIITIOL, = 1/10,+ 1/10,2+ 17102 + 1/10,* + 1/10,° + 1/10,6+ 0/10,7 + 1/10,}
(c) 0.232323, =2/10, + 3/10,> + 2/10,. + 3/10,* + 2/10,> + 3/10,°

(d) 0.ABC2,,=A/I0, +B/10,2+ C/10 2+ 2/10,*

17.7 Converting Decimal Numbers Between The base 10
and an Arbitrary Base

I. Convert the following numbers to the base 10:
Solutions:
(@) 0.231120, | 2/4 + 3/4> + |/4° + 1/4* + 2/4°
(b) O.TTITTION, | /24 1722+ 1/23 + 1/2% + 1/2° + 1/2¢ + 1/28
(c) 0.232323,|2/8 + 3/8> + 2/8° + 3/8* + 2/8° + 3/8°

(d) 0.ABC2,, | 10/16 + I1/16* + 12/16® + 2/16*

Converting infinite decimal numbers in any base b to its
corresponding decimal numbers in the base 10:

I. Convert the following numbers to the base 10:
Solutions:
(a) 0.6,=6,/(108—1),=6 /(8-1),=6,7,
(b) O.WZ = 1001,/(10% = 1),=9,/(2°, = 1),,=9,4/31 0
(c) O.Rlé =A5C/(10° .~ 1) .= 2652, /(4096  ,— 1) ,=2652 /4095

(d) 0.00365, = 365,/(105, — 1), = 245 /(8° - 1),, = 245 /(32767),,



b6 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Converting finite decimal numbers in the base 10 to its cor-
responding decimal numbers in any base b:

Checking out computation.
I. Convert 0.6 , to the

(a) base 2 (b) base 4 (c) base 8 (d) base 16

Solutions:

(a) base 2
0.6 =a/2+aj2*+ ..
2006) = 1.2=a +a/2+a/2"+ ...
a, =1
02=a/2+a/2>+a/2’+ ..
2(02) =04 =a,+a/2+a/2"+ ..
a,=0
04=a/2+a/2*+a/2’+a/2'+ ...
2(04)=08=a,+a/2+a/2+a/2+ ...
a, =0
08=a/2+a/2?+a/2’+ ...
2(08)=1.6=a,+a/2+a/2>+ .. ...
a; = |
0.6 =+a/2+a/2>+ ...
0.6 | 0.1100,

(b) base 4

0.6=a/4+al4+..
40.6) =24 =a +aj4+aj4+ ..

24=a +al4+aj/4+ ...



CHAPTER 17 ANSWERS TO SELECTED EXERCISES = 867

(c)

(d)

a, =2

0.4=a/4+a/4+.

4(04) = 1.6 =a,+a/4+ ..
a, = |

0.6 =a,/4+ ..

0.6 = 0.21,

base 8

0.6 =2a/8+a,/8 + ..

8(0.6) =4.8 =2, +a,/8 +a,//82 + ...

a, =4
0.8=+2a/8+a//8+ ..
8(0.8) =64 =a,+a/8+ ..
a,=6
8(04)=32=a,+2a,/8 ...
a, =3

02=a,/8+a/8 ...

8(0.2) = 1.6 =a,+2a/8 ...
0.6 | 0.463,

base 16

0.6 =a/l6+all6*+ ..

16(0.6) = 9.6 =a,+a/l6+a/l6 ...

a, =9

0.6 =a/16+a,/16" ...

0.6 109,



b8 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Converting infinite decimal numbers in the base 10 to its
corresponding decimal numbers in any base b:

I. Convert: O.Tloto base 5

Solution:
base 5
0.1,= 1/9 =a/5+a/52+a/5+..
5(1/9) =5/9 =a +a)/5+a/5+al5 ..
a, =0
5/9 =a,/5 +a,/5" +a,/5 ...
5(5/9) =25/9 = (18 +7)/9=2+7/9=a+a/5+a/5 +a /5 ...
a, =2
719 =a,/5 +a,/5 +a,/5 ...
5(7/9) =35/9 = (27 +8)/9 =3 +8/9 =a, +a,/5 +a,/5 ...
a, =3
8/9 =a/5+a/5" +al/5 ...
5(8/9) = 40/9 = (36+4)/9 = 4+4/9 = a,+a /5 + /5" ...
a, =4
4/9 = a5 +a/5% +...
5(4/9) =20/9 = (18 +2)/9 =2+ 2/9 =a, +al5 ..
a, =2
2/9 =aJ5 +al5"..
5(2/9) = 10/9 =1 + 1/9 =a, +a/5.
a, = |
/9 =a/5+ ..
0.1, => 023421,
CHECK:

23421, 1736, _ -
=> =0.
444444, 15620, o

0.023421,=



CHAPTER 17 ANSWERS TO SELECTED EXERCISES = 563

17.8 Converting Decimal Numbers In a Given Base To
Fractions In The Same Base

I. Write the decimal numbers as fractions:
(a) 0.0235, (b) O.110111, (c) 0.999999,,
Solutions:
(a) 0.0235, =235,/10000,
(b) O.110111,=110111,/1000000,
(c) 0.999999,, = 999999,,/1000000,,

I. Write the decimal numbers as fractions in the same base:

Solutions:
(@) 0.0101,=101,/(10000, - 1) = 101/1111,
(b) 0.000723, = 723,/(1000000, — 1) = 723,/777777,
(c) 0235.7237, =235 + 7237,/(10000, — I) = 235 + 7237/777777,

(d) 02C5.7239,, = 2C5,, + 7239, ,/(10000,,— |) = 2C5 , + 7239, /FFFF

17.9 Converting Numbers Between Different Bases
Converting a finite decimal number less than one

I. Using this quick conversion, convert the following binary numbers to
hexadecimal:

(a) o.0rrololol, (b) 0.0001111101,
Solutions:

(a) 0.0110 1010 1000, | 0.6A8

(b) 0.0001 11110100, 0.114,

3. In the example above, we converted 0.1101111011,| 0.DEC,,.

Solution:

0.1101111011,= 0.3564, = 0.DEC,,.



a70 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

5. Convert (a) 0.110111011, to the base 8. (b) Convert 0.23461,
to the base 2.

Solutions:
(@) 0.110111011, to the base 8. = 673,

(b) Convert 0.23461, to the base 2.= 10011100110001,

Converting an infinite decimal number less than one
I. Convert 0.1011, to a hexadecimal number. :

Solution:

3. Convert 0.11011, to hexadecimal:.
Solution:
o.r1ort,=0.1101 1110 rrrrorrl 1011 ....= 0.DEFB,,

5. Explain why we cannot convert, using our above algorithm, the follow-
ing number into a fraction:

0.2727727772777727777712...

Solution:

It is not a rational number since it is not made up of a finite cycle of digits.



CHAPTER 18 ANSWERS TO SELECTED EXERCISES = a71

18.1 Representation of Decimal Numbers
I. Write the following in scientific and floating point representation:
0.00234 45.356 - 32
Solutions:
0.00234 = 234*%10°
0.00234 = 2.34E-3
45.356 = 45356 *10-3
45.356 = 4.5356E|
-32=-32*%10°

-32 = -32E0

18.2 Arithmetic Operations Using Scientific Representation

Multiplication
I. Write the following using scientific representation.

Solutions:
575.345%0.00234 = (- 575345*10 -3)*(234*10°) = (- 575345)*(234) *10% =
= 134630730 *10 -8
678%0.03*%2.135 = (678%10° )*(3* 10 -2 )*(2135%10 -3 ) = (678)*(3)*(2135) *10° =
= 42590 *10°®

0.0034%0.221 = (34*10)*(221*107)

Addition and Subtraction

I. -575.345 + 0.00234 678 + 0.03 +2.135 0.0034 - 0.221



72 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solutions:
- 575.345 + 0.00234 = - 575345 * [0 + 234 * 10° = - 57534500 * 105 + 234 * |10° =
= (- 57534500 + 234) *105 = -57534266 * 10-*
678 + 0.03 +2.135=678* 10°+ 3 * 102+ 2135 * |03 =

678000 * 103 + 30 * 10 + 2135 * 10 = (678000 + 30 + 2135) * 103 = 680165 *
103

0.0034 - 0.221 =34 * 10*-221 *10°=34*10%-2210* 10*= (34 -2210) * 10*
=-2176 ¥ 10*

Long Division
I. Write the following in a scientific notation form.
a. 5/7 b. 0.23/0.035

2. Using the above algorithm, convert [/7 to a 7 place decimal
representation.

3. Rewrite the above program in pseudo-code using a while statement.
From this program write an assembly language.

18.3 80X86 Floating-Point Architecture

I. What is the largest value (base 10) that can be stored in ST(k)?

Solution:

280 = 1208925819614629174706175

Miscellaneous floating point instructions
I. Write an assembly program to compute the sum:

124 1722+ 1/32 + | /4% + /52 + /6%



CHAPTER 18 ANSWERS TO SELECTED EXERCISES = 373

Solution:

PSEUDO CODE

FP AL
ONE:= 1.0 one real4 1.0
N:= 1.0 n real4 1.0
K:=1 k byte |
Q=1.0 qreal4 1.0
SUM:=0 sum real4 0
WHILE K £ 6 while: cmp k, 6 jg end
BEGIN begin
ST:=1.0 fld n
ST:= 1.0/N fdiv n
ST:= ST/N fdiv n
Q:=ST fst q
ST:= SUM fld sum
ST:=ST+Q fadd q
SUM:= ST fst sum
fld n
N:=N + 1.0 fadd one
fst n
mov eax, k
K=K+ 1 add eax, |
mov k, eax
jmp while
END

end:




74 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Interchanging integer and floating point numbers.

3. It can be shown that 1/4 = 1/3 - /32 + 1/33-1/3*+ ...

Write an AL algorithm to find for a given n the sum = 1/3 - /3% + |/33

= 1/30

Solution:

PSEUDO CODE

FP AL

ST:= MINUS-ONE

ST:= ST/THREE

SUM:=2/3 sum real4 0
ONE:= 1.0 one real4 1.0
TWO:= 2.0 two real 2.0
THREE:= 3.0 three real 3.0
MINUSONE:= -| N byte n
N:=n k byte 2
K:=2 minusone real4 -1.0
M- O-D-T:=0 minusonedivthree real4 0
CE:=0 CE real4 0
ST:=TWO fld two
ST:= ST /THREE fdiv three
SUM:= ST fst sum

fld minusone

fdiv three

M-O-D-T:=ST fst minusonedivthree
CE:=ST fst ce
WHILE K £ n while: cmp k, n jg end

ST:= CE

fld ce

- 13+




CHAPTER 18 ANSWERS TO SELECTED EXERCISES = a7a

ST:= ST*M-O-D-T fmul minusonedivthree
CE:=ST fst ce
ST:= SUM fld sum
8ST:=ST + CE fadd ce
SUM:= ST EAX:=K fst sum mov eax, k
EAX:= EAX + | add eax, |
K:= EAX mov k, eax
END jmp while end:




76 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

19.1 The control register
Exercise:
I. Write a AL program that will perform the following:
|. Store in a variable the decimal representation of the number 1/7

2. Round the number to 10 places of accuracy.

Solution:

PSEUDO-CODE FP AL
ZERO:= 0 zero word 0
ONE:= |.0 one real4 1.0
TEN:= 10 Ten word 10

SEVEN:= 7.0 seven real4 7.0
ST:= ONE fld one
ST:= ST/SEVEN fidiv seven
ST:= ST*10 fmul ten
Control register:= ZERO fldew zero
ST:- ST/TEN fidiv ten

3. It can be shown that | +2 + ...+ N = N(N + [)/2.

Write an AL algorithm that will compute and store the number: 1.0 + 2.0 +
compute, if any, the error [(1.0 + 2.0 + ... + N.0) - N.O(N.0 +1.0)/2.0|.

...+ N.0 and

Solution
PSEUDO CODE FP AL

ONE:= 1.0 one real4 1.0
N:=n.0 n real4 n.0
K:=1.0 k real4 1.0

WHILE K < n.0
ST:=ST + K
END
ERROR:= |ST - N*(N+ 1)/2]




CHAPTER 20 ANSWERS TO SELECTED EXERCISES = 377

20.2 The 80x86 Stack

Exercise:

I. Complete the table. Use only hexadecimal numbers.

AL CODE AX STACK

mov ax, 23deh

push ax

mov ax, 3425

push ax

mov ax, 7f7ah

push eax
Solution:
AL CODE AX STACK
mov ax, 23deh 23dc
push ax 23dc 23 | dc
mov ax, 3425 0dé61 23 | dc
push ax 0dé1 0d | 6l |23 ]dc
mov ax, 7f7ah 717a Od |61 |23 |dc
push eax 717a 71| 7a|0d|61]23]dc




a78 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The pop instruction

Exercise:
I. Store in a stack the sequence 1,2,...,100.
Solution:
Pseudo - Code AL
N:= 100 n byte 100
K:=1 k byte |
WHILE K < N whiI.e: cmp k,n
ja end
EAX:=K mov eax,k
PUSH EAX push eax
EAX:= EAX + | add eax, |
K:= EAX mov k,eax
END jmp while
end:




CHAPTER 21 ANSWERS TO SELECTED EXERCISES = 574

21.2 Storing Strings

I. Convert the following strings to its ASCll codes:

ASSEMBLY CODE EAX

mov eax, ‘+YZ’

mov eax,‘/’

mov eax, ‘* %’

Solution:
ASSEMBLY CODE EAX
mov eax, +YZ’ 2B 20 59 5A
mov eax, ‘/’ 2F
mov eax, * %’ 2A | 20 25
The string variables:
|I. Complete the following tables:
Hamlet BYTE ‘Brevity is the soul of wit’
Solution:
Hamlet BYTE ‘Brevity is the soul of wit’
42 72 65 76 69 74 79 20 69 73
74 68 65 20 73 6F 75 6C 20 6F
66 20 77 69 74




a0 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

21.2

I. Hamlet DWORD ‘To be or not to be’

Write a AL program that will move the string in variable Hamlet to the variable Shakespeare
DWORD?

Solution:

ASSEMBLY LANGUAGE PROGRAM

Hamlet dword 5 dup ‘To be or not to be’

Shakespeare dword 5 dup ?

lea esi, Hamlet

lea edi, Shakespeare

Movsd

Movsd

Movsd

Movsd

Movsd

The rep instruction

Exercises:

I. Complete the table below:

Y X
AL CODE ECX (DWords in (DWords in ASCI-
ASClisymbols) Isymbols)
x dword 4 dup (?)
Y dword
‘123456789abcde’

mov ecx, 4




CHAPTER 21 ANSWERS TO SELECTED EXERCISES = a8l

lea esi,y

lea edi, x

rep movsd

Solution:
Y
DWords
AL CODE ECX (in ASCII X
symbols)
x dword 4 dup (?)
Y dword ‘1234’ 31323334
mov ecx, 4 4 31323334
lea esi,y 4 31323334
lea edi, x 4 31323334
rep movsd 0 31323334 31323334 (31323334 | 31323334 | 31323334

The scas instruction

Exercise:

I. Write a program that will find the position location of “f” in the of the
string ‘| live in California’

Solution:
x dword 20 dup ‘l live in California’
mov al, ‘f’
lea edi, x
mov ecx, 20
mov eax, ecx
repne scasb

sub eax, ecx




ad2 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

22.1 Retrieving strings stored in the variable

Exercises:

I. Write a AL program that will retrieve the string: ‘Brevity is the soul of
wit’ from the variable

SHAKESPEARE word ‘Brevity is the soul of wit’

Solution:

Shakespeare word ‘Brevity is the soul of wit’
lea ebx,Shakespeare
mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]
add ebx,2

mov ax,[Shakespeare]



CHAPTER 22 ANSWERS TO SELECTED EXERCISES = 583

22.2 Creating and storing a one dimensional string array
into the dup(?) directive.

Exercises:

I. Write a AL program that will retrieve the string ‘Brevity is the soul of
wit’ from the variable

SHAKESPEARE byte ‘Brevity is the soul of wit’ and copy it into the variable

HAMLET byte 100 dup(?)

Solution:

Shakespeare word ‘Brevity is the soul of wit’
Hamlet word?

lea ebx, Shakespeare
lea ecx, Hamlet

mov ax, [Shakespeare]
add ebx, 2

mov [ecx], ax

add ecx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax



ad4 = ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ecx, 2

mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax

add ecx, 2

add ebx, 2

mov ax, [Shakespeare]
mov [ecx], ax



INDEX

A

Adding contents of the two floating-point
registers, 357

Additive identity, 96, 100

Additive inverse, definition, 96, 103, 104

Algorithm, 27, 33

arithmetic expressions, 145

arrays. See integer arrays; string arrays

Assembler Floating Point Numeric
Approximations, 448

Assembly language add instruction,
definition, 160

Assembly language basics, 117

Binary finite ring, definition, 101

Binary integers in expanded form, definition,

I
Branching and the if-statements, 207
Byte, 17

C

Call instruction, definition, 306

carry flag, definition, 468

Closure under addition, definition, 96
Closure under multiplication, definition, 96
Cmpsb, definition, 428

Cmpsd, definition, 428

Cmpsw, definition, 428

Comment, 430

Compare(cmp) Instructions, 208
compare instructions, 208

Complement of a number, definition, 104

Computing number basis with algorithms,
87

Conditional Expressions, definition,
62,63

conditional jump instructions, 208

Conditional Jump Instructions for Signed
Order, 208

Conditional jump instructions for the
natural order (unsigned), 216

conditional values, definition, 62

Constructing programs in assembly
language, 187,239

Control register, 388

Converting the While-Conditional
Statements to Assembly Language, 221

Copying data from the stack, 352, 399

D

Decimal integers in expanded form,
definition, 7

Decimal Numbers Base , definition, 320

D.H. Lehmer's Linear Congruence Method,
458, 460

Directive, 141

Dividing the contents of floating-point
registers, 367, 407

double-decimal, definition, 347

Dword, definition, | 18

dynamic storage for decimal numbers, 396

Dynamic storage: strings, 415

E

EDI, definition, 422
ESI, definition, 422



Exchanging the contents of the two
floating-point registers, 355

F

fabs, 374

fadd, 358

fchs, 374

fcom, 383

fcomp, 409

fcompp, 409

fdiv, 367, 368

fdivp, 408

fdivpr, 408

fdivr, 367, 368

fiadd, 360, 372

ficom, 382

fidv, 370

fidvr, 370

fild, 350

Finite decimal numbers, definition, 321

fist, 354

fisub, 363

fisubr, 363

fld, 349

fldew, 389

float, definition, 347

Floating Point Representation of Decimal
Numbers, definition, 344

fmul, 364

fmulp, 406

Fractions, definition, 320

frndint, 374

fsbur, 361

fst, 352, 353

fstcw, 389

fstp, 400, 401

fstsw, 382

fsub, 361

Fsub, 362

fsubp, 405

fsubpr, 405

fsubr, 361

ftst, 382

fxch, 356

G

Gambler's Ruin, 463

H

Hexadecimal finite ring, definition, 101
Hexadecimal integers in expanded form,
definition, 14

IF-THEN-ELSE Statement, definition, 70

IF-THEN Statement, definition, 64

Improper positive fraction N/M, definition,
320

Imul instruction, definition, 168

Infinite decimal numbers, definition, 322

Inputting Strings from the keyboard, 444

Instructions that Compare Floating-Point
numbers, 382, 409

Integer arrays, 279

Integer division n+m, definition, 172

Integers, definition, 160

Intel 80x86 Assembly Language OpCodes,
471

Invariant properties, 33

J

John Von Neumann's Middle Square Method,
458

L

Label, 140

Lea, definition, 283

Length of a number, definition, 80
Linearizing a polynomial, definition, 188
Lodsb, definition, 425

Lodsd, definition, 426

Lodsw, definition, 425

Logical expressions, 259



Logical Expressions, definition, 260

Logical identifiers, definition, 260

Logical operators, definition, 260

logical statements, definition, 262

Logical values are of two types: true, false,
definition, 260

long-double, definition, 347

M

Mask, definition, 272

Modular arithmetic , definition, 96
Monte Carlo Simulations, 458

mov [register], source, definition, 285
Movsb, definition, 422

Movsd, definition, 422

mov source, definition, 291

Movsw, definition, 422

Mul instruction, definition, 168
Multiplicative identity, definition, 96

Multiplying the contents of the two floating-

point registers, 364

N

Natural set of ordered pairs, definition, | 12

Newton Interpolation Method, 450
NUMBER BASES FOR INTEGERS, 5
Numbers and Fractions, definition, 320
Numeric approximations, 447

o

Octal integers in expanded form, definition,

8

One to one correspondence between sets,
definition, 21

One to one function, definition, 21

Onto function, definition, 21

Ordered relationship of a ring, definition,
I

Ordinary decimal numbers , definition, 344

Outputting Strings to the Monitor, 442

overflow flag, definition, 468

P

Pop instruction, 396
procedures, 305, 306
Program, definition, 46

Proper positive fraction N/M, definition, 320

Pseudo-code and Writing Algorithms, 37
Pseudo-code procedures, definition, 306
Push instructions, definition, 396

pushw, 41|

Q

QWORD, 347, 348

R

REAL registers, 349

Relations Between Number Bases, 19
REM statement, definition, 52

Repe prefix, definition, 428

Rep instruction, definition, 426

Repne prefix, definition, 428

Repnz prefix, definition, 428

Repz prefix, definition, 428

Ring addition, definition, 96

Ring multiplication, definition, 96

Rings and modular arithmetic, 95
Rings definition, 96

Ring subtraction, definition, 100
Rotation instructions, definition, 274, 276
Rounding Floating Point Numbers, 388

S

Scasb, definition, 430

Scasd, definition, 430

Scasw, definition, 430

Sets, definition, 20

Shift instructions, definition, 274
Signed binary integer, definition, 147
sign flag, definition, 467

Six Relational Operators, definition, 62
ST, 348



Status word register, 382

Storing data from memory to the registers,
349, 396

Stosb, definition, 424

Stosd, definition, 424

Stosw,definition, 424

String arrays, 433

String, definition, 416

Subtracting the contents of the two
floating-point registers, 361, 404

Subtraction instruction, definition, 165

Summary Tables of Floating Point Arithmetic
Operations, 37|

T

TBYTE definition, 347

Three Logical Operators, definition, 63

Top Down Structured Modular
Programming, definition, 237

U

unconditional jump instruction, definition,
216

Unsigned binary integer number, definition,
147

Using Polynomials to Approximate
Transcendental Functions and Numbers,
453

A\

Visual Studio Express 2015 (free)
Reference, 471

w

WHILE statement, definition, 76
Word definition, 141



	Table of Contents
	About the Author
	I. Working with Integer Numbers
	1. Number Bases for Integers
	2. Relationships Between Number Bases
	3. Pseudocode and Writing Algorithms 
	4. Simple Algorithms for Converting Between a Number Base and the Base 10
	5. The If-Then Conditional Statement 
	6. The Whole Conditional Statement
	7. Computing Number Basis with Algorithms
	8. Rings and Modular Arithmetic
	9. Assembly Language Basics
	10. Arithmetic Expressions
	11. Constructing Programs in Assembly Language Part I
	12. Branching and the If-Statements
	13. Constructing Programs in Assembly Language Part II
	14. Logical Expressions, Masks, and Shifting
	15. Integer Arrays
	16. Procedures

	II. Working with Decimal Numbers
	17. Decimal Numbers
	18. Working with Decimal Numbers in Assembly
	19. Comparing and Rounding Floating-Point Numbers
	20. Dynamic Storage for Decimal Numbers: Stacks

	III. Working with Strings
	21. Dynamic Storage: Strings
	22. String Arrays
	23. Input/Output
	24. Numberic Approximations (Optional)

	Appendix A
	References
	Answers to Selected Exercises
	Index

