

ASSEMBLY LANGUAGE
PROGRAMMING

MADE CLEAR
A SYSTEMATIC APPROACH

80X86 ASSEMBLY LANGUAGE COMPUTER ARCHITECTURE

Howard Dachslager, PhD

Bassim Hamadeh, CEO and Publisher
Kassie Graves, Director of Acquisitions and Sales
Jamie Giganti, Senior Managing Editor
Jess Estrella, Senior Graphic Designer
Mieka Portier, Senior Acquisitions Editor
Sean Adams, Project Editor
Alisa Munoz, Licensing Coordinator
Christian Berk, Associate Production Editor
Bryan Mok, Interior Designer

Copyright © 2018 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted,
reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying, microfilming, and recording, or in any information
retrieval system without the written permission of Cognella, Inc. For inquiries regarding permissions,
translations, foreign rights, audio rights, and any other forms of reproduction, please contact the Cog-
nella Licensing Department at rights@cognella.com.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Cover image copyright © iStockphoto LP/BlackJack3D.

Printed in the United States of America

ISBN: 978-1-5165-1422-9 (pbk) / 978-1-5165-1423-6 (br)

To the faculty of the Computer Science
Department, Irvine College:

Seth Hochwald, Albert Murtz, and Chan Loke

TABLE OF CONTENTS
ABOUT THE AUTHOR	 1

I.  WORKING WITH INTEGER NUMBERS

1. NUMBER BASES FOR INTEGERS	 5
INTRODUCTION	 6

1.1 DEFINITION OF INTEGERS	 6

1.2 NUMBERS IN OTHER BASES	 8

2. RELATIONSHIPS BETWEEN NUMBER BASES	 19
INTRODUCTION	 20

2.1 SETS	 20

2.2 �ONE-TO-ONE CORRESPONDENCE BETWEEN SETS	 21

2.3 EXPANDING NUMBERS IN THE BASE B (NB)	 23

2.4 �CONVERTING A NUMBER IN ANY BASE B TO ITS
CORRESPONDING NUMBER IN THE BASE 10� 24

2.5 �CONVERTING A NUMBER IN THE BASE 10 TO ITS CORRESPONDING
NUMBER IN ANY BASE B� 27

2.6 �A QUICK METHOD OF CONVERTING BETWEEN BINARY AND
HEXADECIMAL NUMBERS� 30

2.7 PERFORMING CONVERSIONS AND ARITHMETIC FOR DIFFERENT NUMBER BASES	 33

3. PSEUDOCODE AND WRITING ALGORITHMS	 37

vi • Index

INTRODUCTION	 38

3.1 THE ASSIGNMENT STATEMENT	 38

3.2 MATHEMATICAL EXPRESSIONS	 41

3.3 ALGORITHMS AND PROGRAMS	 46

3.4 NONEXECUTABLE STATEMENTS	 51

4. �SIMPLE ALGORITHMS FOR CONVERTING BETWEEN
A NUMBER BASE AND THE BASE 10	 53

INTRODUCTION	 54

4.1 �AN ALGORITHM TO CONVERT ANY POSITIVE INTEGER NUMBER IN ANY
BASE B < 10 TO ITS CORRESPONDING NUMBER IN THE BASE 10� 54

4.2 �AN ALGORITHM TO CONVERT ANY INTEGER NUMBER IN THE BASE 10
TO A CORRESPONDING NUMBER IN THE BASE B < 10� 56

5. THE IF-THEN CONDITIONAL STATEMENT	 61
INTRODUCTION	 62

5.1 CONDITIONAL EXPRESSIONS	 62

5.2 THE IF-THEN STATEMENT	 64

5.3 THE IF-THEN-ELSE STATEMENT	 70

6. THE WHILE CONDITIONAL STATEMENT	 75
INTRODUCTION	 76

6.1 THE WHILE STATEMENT	 76

7. COMPUTING NUMBER BASIS WITH ALGORITHMS	 87
INTRODUCTION	 88

7.1 �WRITING A PROGRAM AND ALGORITHM TO CONVERT NUMBERS
IN THE BASE B < 10 TO THE BASE 10� 88

vii

7.2 �WRITING AN ALGORITHM TO CONVERT A NUMBER IN THE BASE 10
TO ITS CORRESPONDING NUMBER IN THE BASE B < 10� 90

8. RINGS AND MODULAR ARITHMETIC	 95
INTRODUCTION	 96

8.1 RINGS	 96

8.2 THE FINITE RING R	 98

8.3 SUBTRACTION FOR R	 100

8.4 RINGS IN DIFFERENT BASES	 101

8.5 �THE ADDITIVE INVERSE OF NUMBERS FOR THE
RINGS Rb = {0 … 0, 0 … 1, 0 … 2, …, β1β2 …, βN}� 104

8.6 SPECIAL BINARY RINGS FOR ASSEMBLY LANGUAGE	 108

8.7 ORDERED RELATIONS OF RINGS	 111

8.8 SPECIAL ORDERING OF RINGS FOR ASSEMBLY LANGUAGE	 113

9. ASSEMBLY LANGUAGE BASICS	 117
INTRODUCTION	 118

9.1 DATA TYPES OF INTEGER BINARY NUMBERS	 118

9.2 OTHER INTEGERS	 120

9.3 VARIABLES	 120

9.4 ASSIGNING INTEGERS TO VARIABLES	 122

9.5 REGISTERS	 127

9.6 TRANSFERRING DATA BETWEEN REGISTERS AND VARIABLES	 137

9.7 ASSEMBLY LANGUAGE STATEMENTS	 140

9.8 �A SAMPLE ASSEMBLY LANGUAGE WRITTEN FOR MASM
(MICROSOFT ASSEMBLER)� 142

10. ARITHMETIC EXPRESSIONS	 145

viii • Index

INTRODUCTION	 146

10.1 RING REGISTERS	 146

10.2 WORKING WITH MODULAR ARITHMETIC FOR ADDITION AND SUBTRACTION	 155

10.3 ASSEMBLY LANGUAGE ARITHMETIC OPERATIONS FOR INTEGERS	 160

10.4 SPECIAL NUMERIC ALGORITHMS	 177

11. �CONSTRUCTING PROGRAMS IN ASSEMBLY
LANGUAGE PART I	 187

INTRODUCTION	 188

11.1 �AN ASSEMBLY LANGUAGE PROGRAM TO CONVERT A POSITIVE
INTEGER NUMBER IN ANY BASE B < 10 TO ITS CORRESPONDING NUMBER
IN THE BASE 10.� 188

11.2 �AN ALGORITHM TO CONVERT ANY INTEGER NUMBER IN THE BASE 10
TO A CORRESPONDING NUMBER IN THE BASE B < 10� 198

12. BRANCHING AND THE IF-STATEMENTS	 207
INTRODUCTION	 208

12.1 CONDITIONAL JUMP INSTRUCTIONS FOR SIGNED ORDER	 208

12.2 CONVERTING THE WHILE-CONDITIONAL STATEMENTS TO ASSEMBLY LANGUAGE	 221

12.3 IF-THEN STATEMENTS	 227

12.4 IF-THEN-ELSE STATEMENTS	 232

12.5 TOP-DOWN STRUCTURED MODULAR PROGRAMMING	 237

13. �CONSTRUCTING PROGRAMS IN ASSEMBLY
LANGUAGE PART II	 239

INTRODUCTION	 240

13.1 �AN ASSEMBLY LANGUAGE PROGRAM TO CONVERT A POSITIVE INTEGER
NUMBER IN ANY BASE B < 10 TO ITS CORRESPONDING NUMBER IN
THE BASE 10� 240

ix

13.2 �AN ALGORITHM TO CONVERT ANY INTEGER NUMBER IN THE BASE 10
TO A CORRESPONDING NUMBER IN THE BASE B < 10� 249

14. LOGICAL EXPRESSIONS, MASKS, AND SHIFTING	 259
14.1 INRODUCTION: LOGICAL EXPRESSIONS	 260

14.2 LOGICAL EXPRESSIONS IN ASSEMBLY LANGUAGE	 265

14.3 �ASSIGNING LOGICAL EXPRESSIONS A LOGICAL VALUE IN ASSEMBLY LANGUAGE� 268

14.4 MASKS	 272

14.5 SHIFTING INSTRUCTIONS	 274

15. INTEGER ARRAYS	 279
INTRODUCTION� 280

15.1 REPRESENTING ONE-DIMENSIONAL ARRAYS IN PSEUDOCODE	 280

15.2 CREATING ONE-DIMENSIONAL INTEGER ARRAYS IN ASSEMBLY LANGUAGE	 283

15.3 RESERVING STORAGE FOR AN ARRAY USING THE DUP DIRECTIVE	 295

15.4 WORKING WITH DATA	 296

15.5 REPRESENTING TWO-DIMENSIONAL ARRAYS IN PSEUDOCODE	 300

16. PROCEDURES	 305
16.1 INTODUCTION: PSEUDOCODE PROCEDURES	 306

16.2 WRITING PROCEDURES IN ASSEMBLY LANGUAGE	 313

II.  WORKING WITH DECIMAL NUMBERS

17. DECIMAL NUMBERS	 319
INTRODUCTION	 320

17.1 DEFINITION OF DECIMAL NUMBERS AND FRACTIONS	 320

17.2 �REPRESENTING POSITIVE DECIMAL NUMBERS CORRESPONDING TO
PROPER FRACTIONS IN EXPANDED FORM� 321

x • Index

17.3 CONVERTING DECIMAL NUMBERS TO FRACTIONS	 323

17.4 CONVERTING FRACTIONS TO DECIMAL NUMBERS	 325

17.5 REPRESENTATION OF DECIMAL NUMBERS	 327

17.6 DEFINITION OF DECIMAL AND FRACTIONS	 328

17.7 �CONVERTING DECIMAL NUMBERS BETWEEN THE BASE 10 AND
AN ARBITRARY BASE� 330

17.8 �CONVERTING DECIMAL NUMBERS IN A GIVEN BASE TO FRACTIONS
IN THE SAME BASE� 335

17.9 CONVERTING NUMBERS BETWEEN DIFFERENT BASES	 336

18. WORKING WITH DECIMAL NUMBERS IN ASSEMBLY	 343
18.1 INTRODUCTION: REPRESENTATION OF DECIMAL NUMBERS	 344

18.2 ARITHMETIC OPERATIONS USING SCIENTIFIC REPRESENTATION	 345

18.3 80X86 FLOATING-POINT ARCHITECTURE	 347

19. COMPARING AND ROUNDING FLOATING-POINT NUMBERS	 381
INTRODUCTION	 382

19.1 INSTRUCTIONS THAT COMPARE FLOATING-POINT NUMBERS	 382

19.2 ROUNDING FLOATING-POINT NUMBERS	 388

20. DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS	 395
INTRODUCTION	 396

20.1 FLOATING-POINT PUSH AND POP INSTRUCTIONS	 396

20.2 THE 80X86 STACK	 409

III.  WORKING WITH STRINGS

21. DYNAMIC STORAGE: STRINGS	 415

xi

INTRODUCTION	 416

21.1 THE ASCII CODE	 416

21.2 STORING STRINGS	 420

21.3 MORE STRING INSTRUCTIONS	 423

22. STRING ARRAYS	 433
INTRODUCTION	 434

22.1 RETRIEVING STRINGS STORED IN THE VARIABLE	 435

22.2 �CREATING AND STORING A ONE-DIMENSIONAL STRING ARRAY
IN THE DUP(?) DIRECTIVE� 437

23. INPUT/OUTPUT 	 441
INTRODUCTION	 442

23.1 OUTPUTTING STRINGS TO THE MONITOR	 442

23.2 INPUTTING STRINGS FROM THE KEYBOARD	 444

24. NUMERIC APPROXIMATIONS (OPTIONAL)	 447
INTRODUCTION	 448

24.1 ASSEMBLER FLOATING-POINT NUMERIC APPROXIMATIONS	 448

24.2 SPECIAL APPROXIMATIONS	 450

APPENDIX A	 465

REFERENCES	 471

ANSWERS TO SELECTED EXERCISES� 473

INDEX� 585

ABOUT THE AUTHOR
Howard Dachslager received a PhD in mathematics from the University of California, Berkeley,
where he specialized in real analysis and probability theory. Prior to beginning his doctoral
studies at UC Berkeley, he earned a master’s degree in economics from the University of
Wisconsin.

After graduating from the University of Wisconsin in 1956, he went to work for Remington
Rand Co. as a machine language programmer. For the next two years he worked on various
mathematical applications, such as missile guidance systems and tracking systems of naval sea
vessels. In 1958 he was admitted as a graduate student to the department of mathematics
at UC Berkeley. To finance his education, he worked for the first year as a programmer
and programming consultant for the astronomy department at UC Berkeley. During that
year he also worked during the summer as a machine language programmer for Lockheed
Corporation in Palo Alto, California. His main duty was to find and correct errors in existing
programs. Starting his second year at UC Berkeley, he received a teaching assistantship in
the mathematics department. His main duty was to teach courses in numerical analysis and
programming. He also worked with several professors in this field.

Since completing his PhD in mathematics, he has taught mathematics and programming to
a diverse student population on many levels. As a faculty member of the Department of
Mathematics at the University of Toronto, he prepared and presented undergraduate-level
courses in mathematics. Later he returned to the mathematics and computer science depart-
ment at UC Berkeley, where he taught undergraduate mathematics and programming courses
for several years.

While working in the State Department’s Alliance for Progress program, he taught advanced
mathematics courses at a statistics institute in Santiago, Chile. Other teaching experience
includes presenting undergraduate and community college mathematics courses.

Throughout his teaching career in mathematics and computer science, he has always attempted
to find and use the most effective teaching methodologies to communicate an understanding
of mathematics and programming. Unable to find an appropriate text for use in his courses
in assembly language programming, and drawing on his own extensive teaching experience,
education, and training, he developed an assembly language text that has significantly improved
the understanding and performance of students in this language.

“Everything should be made as simple as possible, but not simpler.”

—Albert Einstein

I. WORKING WITH INTEGER NUMBERS

CHAPTER ONE
NUMBER BASES FOR INTEGERS

6 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
In order to become a proficient assembly language programmer, one needs to have a good
understanding of how numbers are represented in the assembler. To accomplish this, we start
with the basic ideas of integer numbers. In later chapters we will expand these numbers to
the various forms that are needed. We will also later study decimal numbers as floating point
numbers.

1.1	 DEFINITION OF INTEGERS
There are three types of integer numbers: positive, negative, and zero.

Definition: The positive integer numbers are represented by the following symbols:
1, 2, 3, 4, …

Definition: The negative integer numbers are represented by the following symbols:

–1, –2, –3, –4, …

Definition: The integer number zero is represented by the symbol 0.

Definition: Integers are therefore defined as the following numbers: 0, 1, –1, 2, –2.

Examples:
1.	 123

2.	 –143

3.	 44

4.	 3333333333333

5.	 –72

Although the study of these numbers will give us a greater understanding of the types of
numbers we are going to be concerned with when writing assembler language program, the
reality is that the only kind of numbers the assembler can handle are integers and finite
decimals numbers. Further, we need to understand that the assembler cannot work within our
decimal number system. The assembler must convert all numbers to the base 2. The number
system that we normally work with is in the base 10, and numbers will then be converted by
the assembler to the base 2. This chapter will define and examine the various number bases,
including those we need to use when programming.

NUMBER BASES FOR INTEGERS • 7

Numbers in the base 10
Definition: The set of all numbers whose digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are said to
be of the base 10.

Representing positive integers in the base 10 in
expanded form

Definition: Decimal integers in expanded form:

an an – 1 … a1 a0 = an x 10n + an – 1 x 10n – 1 + … + a1 x 10 + a0

where ak = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Examples:

1.	 235 = 2*102 + 3*10 + 5

2.	 56,768 = 5*104 + 6*103 +7*102 + 6*10 + 8

Exercises:

Write the following integers in expanded form:

(a)	 56

(b)	 26,578

(c)	 23,556,891,010

The number system that we use is in the base 10. This because we only use the 10 digits listed
above to build our decimal number system. For the following discussion, all numbers will be
integers and nonnegative. The following table shows how starting with 0, we systematically
create numbers from these 10 digits:

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

8 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

:::::::: ::::::: :::::::: ::::::::: :::::::::: ::::::::: :::::::: ::::::::: ::::::::: ::::::::::

90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109

::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: :::::::::

The way to think about creating these numbers is best described as follows: First we list the
10 digits 0 to 9 (row 1):

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

At this points we have run out of digits. To continue, we start over again by first writing the
digit 1 and to the right placing the digits 0 to 9: (row 2):

10, 11, 12, 13, 14, 15, 16, 17, 18, 19.

Again we have run out of digits. To continue, we start over again by first writing the digit 2 and
to the right placing the digits 0 to 9 (row 3):

20, 21, 22, 23, 24, 25, 26, 27, 28, 29.

Continuing this way, we can create the positive integers as shown in the above table.

1.2	 NUMBERS IN OTHER BASES
From below, we observe that the numbers 0, 1, 10 are in all bases. Therefore, we have the
following expanded forms:

Base 8 (N8)
Definition: Octal integers in expanded form:

an an – 1 ... a1 a0 = an*108
n + an – 1

 * 108
n – 1 + ... + a1

 * 108 + a0

where ak = 0, 1, 2, 3, 4, 5, 6, 7.

NUMBER BASES FOR INTEGERS • 9

Examples:

1.	 56761 = 5*108
4 + 6*108

3 + 7*108
2 + 6*108 + 1

2.	 235 = 2x108
2 + 3x108 + 5

This number system is called the octal number system. In the early development of computers,
the octal number system was extensively used. How do we develop the octal number system?
In the same way we showed how we developed the decimal system; by using only 8 digits:

0, 1, 2, 3, 4, 5, 6, 7.

Note: Integer numbers that are in a base other than 10 will distinguished by a subscript N.

08 18 28 38 48 58 68 78

108 118 128 138 148 158 168 178

208 218 228 238 248 258 268 278

308 318 328 338 348 358 368 378

:::::::: ::::::: :::::::: ::::::::: :::::::::: ::::::::: :::::::: :::::::::

708 718 728 738 748 758 768 778

1008 1018 1028 1038 1048 1058 1068 1078

::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: :::::::::

First, we list the eight digits 0 to 7 (row 1):

0, 1, 2, 3, 4, 5, 6, 7.

At this point we have run out of digits. To continue, we start over again by first writing the
digit 1 and to the right placing the digits 0 to 7 (row 2):

10, 11, 12, 13, 14, 15, 16, 17.

Again we have run out of digits. To continue, we start over again by first writing the digit 2 and
to the right placing the digits 0 to 7 (row 3):

20, 21, 22, 23, 24, 25, 26, 27.

10 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Continuing this way, we can create the positive integers as shown in the above table. We can
easily compare the development of the decimal and octal number systems:

DECIMAL NUMBERS OCTAL NUMBERS (Base 8)

0 08

1 18

2 28

3 38

4 48

5 58

6 68

7 78

8 108

9 118

10 128

11 138

12 148

13 158

14 168

15 178

16 208

17 218

18 228

19 238

20 248

::::::::::::::::::::: ::::::::::::::::::::::::

NUMBER BASES FOR INTEGERS • 11

Exercises:
1.	 Write the octal number 2,370,1238 in expanded form.

2.	 Write an example of a five-digit octal integer number.

3.	 In the octal number system, simplify the following expressions:

(a)	 23618 + 48

(b)	 338 – 28

(c)	 7778 + 38

4.	 What is the largest 10-digit octal number?

5.	 Add on 10 more rows to the above table.

6.	 We wish to create a number system in the base 5 (N5). What digits
would make up these numbers?

7.	 Create a 2-column, 21-row table, where the first column contains the
decimal numbers 0 to 20 and the second column consists of the cor-
responding numbers in the base 5, starting with the digit 0.

8.	 Write out the largest seven-digit number in the base 5.

9.	 In the base 5 number system, simplify the following expressions:

	 n5 =

(a)	 22,2125 + 35

(b)	 23,3335 + 25

(c)	 12,0115 – 25

Base 2 (N2)
Definition: Binary integers in expanded form:

an an – 1 ... a1 a0 = an*102
n + an – 1*102

n – 1 + ... + a1*102 + a0

where ak = 0,1.

12 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

(a)	 101 = 1*102
2 + 0*102 + 1

(b)	 11011 = 1*102
4 + 1*102

3 + 0*102
2 + 1*102 + 1

This number system is called the binary number system. Binary numbers are the most impor-
tant numbers, since all numbers stored in the assembler are in the base 2. The digits that make
these numbers are 0 and 1, and they are called bits. Numbers made from these bits are called
the binary numbers.

How do we develop the binary number system? In the same way we showed how to develop
the decimal and the octal number system; by using only the two bits: 0 and 1:

DECIMAL NUMBERS BINARY NUMBERS

0 02

1 12

2 102

3 112

4 1002

5 1012

6 1102

7 1112

8 10002

9 10012

10 10102

11 10112

12 11002

13 11012

14 11102

15 11112

NUMBER BASES FOR INTEGERS • 13

16 100002

17 100012

18 100102

19 100112

20 101002

::::::::::::::::::::: ::::::::::::::::::::::::

Exercises:
1.	 Write the binary number 1101101012 in expanded form.

2.	 Extend the above table for the integer numbers 21 to 30.

3.	 Simplify the following:

(a)	 100112 + 12

(b)	 10112 + 112

(c)	 101112 + 1112

4.	 Complete the following table.

OCTAL NUMBERS BINARY NUMBERS

08

18

28

38

::::::::: ::::::::::::::

168

5.	 What does the above table tell us about the relationship of the digits of
the octal system and the binary numbers?

14 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Base 16 (N16)
Definition: Hexadecimal integers in expanded form:

an an – 1 ... a1 a0 = an*1016
n + an – 1*1016

n – 1 + ... + a1*1016 + a0

where ak = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Examples:

1.	 2E5 = 2 x 1016
2 + E x 1016 + 5

2.	 56ADF = 5 x 1016
4 + 6 x 1016

3 + A x 1016
2 + D x 1016 + F

The number system in the base 16 is called the hexadecimal number system. Next to the
binary number system, hexadecimal numbers are very important in that these numbers are
used extensively to help the programmer interpret the binary numeric values computed
by the assembler. Many assemblers will display the numbers only in hexadecimal.

We can easily compare the development of the decimal and hexadecimal number systems:

DECIMAL NUMBERS HEXADECIMAL NUMBERS

0 016

1 116

2 216

3 316

4 416

5 516

6 616

7 716

8 816

9 916

10 A16

NUMBER BASES FOR INTEGERS • 15

11 B16

12 C16

13 D16

14 E16

15 F16

16 1016

17 1116

18 1216

19 1316

20 1416

21 1516

22 1616

23 1716

24 1816

25 1916

26 1A16

27 1B16

28 1C16

29 1D16

30 1E16

31 1F16

32 2016

::::::::::: ::::::::::::::::

16 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:
1.	 Write the hexadecimal number 4E0AC116 in expanded form.

2.	 Extend the above table for the decimal integer numbers 33 to 50

3.	 Simplify n16 =

(a)	 A16 + 616

(b)	 FFFF16 + 116

(c)	 10016 + E16

4.	 Complete the following table.

OCTAL NUMBERS HEXADECIMAL NUMBERS

08

18

28

38

::::::::: ::::::::::::::

268

5.	 Complete the following table.

HEXADECIMAL NUMBERS BINARY NUMBERS

016

116

216

316

::::::::: ::::::::::::::

2F16

6.	 What does the above table tell you about the relationship of the
binary and hexadecimal numbers?

NUMBER BASES FOR INTEGERS • 17

PROJECT
In assembly language the basic binary numbers are made up of eight bits. A binary number of
this type is called a byte. Therefore, a byte is an eight-bit number. For example, the decimal
number 5 can be represented as the binary number 00000101.

Complete the following table.

OCTAL BYTE HEXADECIMAL
BYTE

BINARY
BYTE

DECIMAL
BYTE

00 000 000 0000 0000 00000000 0

00 000 001 0000 0001 00000001 1

:::::::::::::::: ::::::::::::: ::::::::::::: ::::::::::

3	 7	 7 	 F	 F 11111111 255

CHAPTER TWO
RELATIONSHIPS BETWEEN NUMBER BASES

20 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
This chapter will examine the one-to-one correspondence that exists between the various
number bases. To accomplish this, we approach these number systems as sets.

2.1	 SETS
Definition of a set:

A set is a well-defined collection of items where

1.	 each item in the set is unique

	 and

2.	 the items can be listed in any order.

Examples:

1.	 S = {a, b, c, d}

2.	 A = {23, –8, 23.3 }

3.	 N10 = {0, 1, 2, 3, 4, 5, …} (base 10)

4.	 N8 = {0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, …} (base 8)

5.	 N2 = {0, 1, 10, 11, 100, 101, 110, 111, 1000, …} (base 2)

6.	 N16 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, ... 19, 1A, ... 1F, 20 ... }
(BASE 16)

Exercises:

1.	 For the following bases, write out the first 10 numbers as a set in
natural order:

(a)	 N3

(b)	 N4

(c)	 N5

(d)	 N6

(e)	 N7

RELATIONSHIPS BETWEEN NUMBER BASES • 21

2.	 Assume we need to define a number system in the base 20 (N20).
Create N20 by using digits and capital letters. Write out the first 40
numbers in their natural order.

2.2	� ONE-TO-ONE CORRESPONDENCE BETWEEN SETS
Assume we have two sets: D and R. The set D is called the domain, and the set R is called
the range.

Definition of a one-to-one correspondence between sets:

We say there is a one-to-one correspondence between sets if the following rules hold:

Rule 1: There exists function f : D => R: for every x contained in D, there exists a value y
such that y = f(x).

Rule 2: The function f is one-to-one

Rule 3: The function f is onto

Definition of a one to one function:

A function is said to be one-to-one if the following is true:

if f(x1) = f(x2) then x1 = x2 where x1, x2 are contained in D.

Definition of an onto function:

A function is said to be onto if the following is true:

if for every y in R, there exists a element x in D where f(x) = y.

Change in notation
For such functions, we will use the notation:

D => R

and x => y

If D => R, we write

D => R,

meaning the two sets D and R are in one-to-one correspondence.

22 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

1.	 Let D = {1, 2, 3, 4, 5, …} and R = {2, 4, 6, 8, 10, 12, …}.

Show there is a one-to-one correspondence between these two sets.

Solution:

k => 2k, where

k = 1, 2, 3, …

2.	 D = {1, 2, 3, 4, 5, …} and R = {1, –1, 2, –2, 3, –3, …}

Show there is a one-to-one correspondence between these two sets.

Solution:

For the odd numbers of D:

2k + 1 => k + 1

where k = 0, 1, 2, 3, …

For the even numbers of D:

2k =>–k

k = 1, 2, 3, …

Combining these into one function gives:

1 => 1

2 => –1

3 => 2

4 => –2

5 => 3

6 => –3

7 => 4

8 => –4

:::::::::

Exercises:

If D = {2, 4, 6, 8, 10, …} and R = {1, 3, 5, 7, 9, …}, show that D => R.

RELATIONSHIPS BETWEEN NUMBER BASES • 23

2.3 	 EXPANDING NUMBERS IN THE BASE B (NB)
In the base 10 system (N

10
),

anan – 1 ... a1a0 = an*10n + an – 1*10n – 1 + ... + a1 *10 + a0

Does such an expansion hold for all numbers in the base b (Nb) ? The answer is yes, and the
expansion can be written as:

(anan – 1 ... a1a0)b = anx10b
n + an – 1x10b

n – 1 + ... + a1x10b + a0

The following explains the validity of this expansion.

First note that the digits of any number in a given base is:

0, 1, 2, … b–1.

Following these digits is the number 10:

0, 1, 2, … b–1, 10b.

Now in the base b, the following arithmetic holds:

0 + 0 = 0, 0 x 0 = 0, 1 + 0 = 1, 1 x 1 = 1, ak x 0 = 0, ak x 1 = ak, ak x 10 = ak0.

Therefore, the following rules holds for any given base:

10bx10b
n = 10b

n + 1

and

an10b
n + an – 1 10b

n – 1 + ... + a110b + a0 = an100...0b + ...+ a110b + a0 =

an00...0b + ...+ a10b + a0.

Examples

1.	 25628 : 2 x 10008 + 5 x 1008 + 6 x 108 + 28 =

	 20008 + 5008 + 608 + 28 = 25628

2.	 101112 : 1 x 100002 + 0 x 10002 + 1 x 1002 + 1 x 102 + 1 =

	 100002 + 0002 + 1002 + 102 + 1 = 101112

3.	 97FA16 : 9 x 100016 + 7 x 10016 + F x 1016 + A16 =

	 900016 + 70016 + F016 + A16 = 97FA16

24 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:
1.	 Find the expansions for the following numbers in their given bases:

(a)	 43123225

(b)	 ABCDEF16

(c)	 123224

(d)	 1111011012

Finding the one-to-one correspondence between
number bases
It is important to be able to find the functions that establish one-to-one correspondence
between number bases.

To assist us, we establish the following laws about one-to-one correspondence:

1.	 If D => R then R => D (reflexive law)

2.	 If A => B and B => C then A => C (transitive law)

We begin by finding the formula that gives a one-to-one correspondence:

Nb => N10.

2.4	� CONVERTING A NUMBER IN ANY BASE B TO ITS
CORRESPONDING NUMBER IN THE BASE 10

We will consider two cases: b < 10 and b = 16.

Case 1: b < 10

Let nb be an arbitrary number in the base b and n10 be an arbitrary number in the base 10.

In chapter 1, we wrote the expanded form of nb as

nb = an an – 1 ... a1 a0 = anx10b
n + an – 1x10b

n – 1 + ... + a1x10b + a0

where ak are digits of the base b.

Now we begin by defining the mapping :

RELATIONSHIPS BETWEEN NUMBER BASES • 25

10b
k => b10

k where k = 0, …, n

and

10b is a number in the base b

and

b is a number in the base 10.

Since b < 10, b and all the numbers ak are in the base b, and they are also in the base 10.

Therefore, we define the mapping:

anx10b
n + an – 1x10b

n – 1 + ... + a1x10b + a0 ⇒ an b
n + an – 1 b

n – 1 +...+ a1b + a0

which is a number in the base 10.

We can write this as:

nb = anan – 1... a1a0 => anb
n
 + an – 1b

n – 1 + ... + a1b + a0 = n10

This give us a one-to-one mapping Nb => N10 where

Nb is the set of numbers of the base b

and

N10 is the set of numbers of the base 10.

Important: All computations are performed in the base 10.

Note: The above expansion is from right to left.

Examples:

1.	 n5 = 324125 = 35x105
4 + 25x105

3 + 45x105
2 + 15x105

1 + 25 =>

	 310x510
4 + 210x510

3 + 410x510
2 + 110x510

1 + 210 =

	 3(625) + 2(125) + 4(25) + 1(5) + 2 = 223210

	 Therefore, 324125 => 223210

2.	 n2 = 11101012 =>

	 110x210
6 + 110x 210

5 +

	 110x 210
4 + 010x 210

3 +

	 110x210
2 + 010x210

1 + 110

26 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

	 = 64 + 32 + 16 + 4 + 1 = 11710

	 Therefore, 11101012 => 11710 .

3.	 n8 = 731068 => 710x810
4 + 310x810

3 + 110x 810
2 + 010x1610

1 + 610 = 3027810

	 Therefore,

	 731068 => 3027810

Case 2: b = 16

(N16 => N10):

For b = 16, we needed to replace the hexadecimal digits which are greater than 9 with the
decimal numbers 10,through decimal number 15. The reason we are able to make a corre-
spondence is that we can show there a one to one correspondence between the hexadecimal
digits and the corresponding numbers of the decimal system (base 10) as shown in the
following table:

BASE 16

0 1 2 3 4 5 6 7 8 9 A B C D E F

BASE 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n16 = an an–1 ... a1 a0 = anx1016
 n + an–1x1016

n–1 + ... + a1x1016 + a0

Now we begin by defining the mapping:

1016
k=> 1610

k where k = 0, …, n

Therefore, we define the mapping:

anx10b
n + an – 1x10b

n – 1 + ...+ a1x10b + a0 => (an)10 16n + (an – 1)10 16n – 1 +...+ (a1)10
16 + (a0)10

where 16 is a number in the base 10 and

an => 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RELATIONSHIPS BETWEEN NUMBER BASES • 27

We can write this as:

n16 = anan – 1 … a1a0 (base 16) => (an)1016n + (an – 1)1016n – 1 +…+ (a1)1016 + a0 = n10

This give us a one-to-one mapping Nb => N10.

Example:
Convert the number 2E0FA616 to the base 10.

Solution:

2E0FA616 => 2x165 + 14 x 164+ 0 x 163+ 15 x 162+ 10 x 161+ 6 x 160 = 301866210

Exercises:
1.	 Convert the following numbers to the base 10.

(a)	 20223016

(b)	 660619	

(c)	 111011012

(d)	 7564028

(e)	 A0CD816

2.5	� CONVERTING A NUMBER IN THE BASE 10 TO ITS
CORRESPONDING NUMBER IN ANY BASE B

When we converted a number from the base b to the base 10, we arrived at:

nb = anan – 1… a1a0 (base b) => n10 = (an)10 b
n + (an – 1)10 b

n – 1 +...+ (a1)10 b
 + (a0)10

To convert a number in the base 10 to its corresponding number in any base b, we use the
famous Euclidean division theorem, which will reverse this correspondence:

Euclidean division theorem: Assume N and b are nonnegative integers. There exist unique inte-
gers Q and R where

N10 = Qb + R, where 0 ≤ R < b.

n

28 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

To compute Q and R, we use the following algorithm:

Step 1: Divide N by b, which will result in a decimal value in the form integer. fraction.

Step 2: From Step 1, Q = integer.

Step 3: R = N–Qb.

Example:

N10 = 3451, b = 34

Step 1: 3451/34 = 101.5

Step 2: Q = 101

Step 3: R = 3451–101 x 34 = 17

Step 4: Therefore, N = Qb + R = 101 x 34 + 17.

Using the Euclidean division theorem, we now show how to convert a number in the base 10
to its corresponding number in the base b.

We want to write N10 in the form: N10 = anb
n + an – 1b

n – 1 + ... + a1b + a0

Step 1: Factor out the number b: N10 = (an b
n –1

 + an – 1b
n – 2 + ... + a1)b + a0 = Qb + R where

	 Q = an b
n – 1

 + an – 1b
n – 2 + ... + a2 b + a1

	 R = a0

Step 2: Set N = Q = an b
n – 1

 + an – 1b
n – 2 + ... + a2 b + a1

	 Q = Q1b + R1 = (an b
n – 2

 + an – 1b
n – 3 + ... + a2)b + a1 where

	 Q1 = an b
n – 2

 + an – 1b
n -3 + ... + a2,

	 R1 = a1.

Step 3: Continue in this manner until Qn = 0.

N10 ⇔ (an an – 1 ... a1 a0)b

Examples:

Convert the following decimal numbers to the specified base.

1.	 162510 <=> N8

Step 1: 1625/8 = 203.125

RELATIONSHIPS BETWEEN NUMBER BASES • 29

	 a0 = 1625–203 x 8 = 1

Step 2: 203/8 = 25.375

	 a1 = 203–25 x 8 = 3

Step 3: 25/8 = 3.125

	 a2 = 25–3 x 8 = 1

Step 4: 3/8 = 0.375

	 a3 = 3–0 x 8 = 3

Since Q = 0, the algorithm is completed.

	 162510 <=> (a3a2a1a0)8 = 31318

2.	 8962910 <=> N16

Step 1: 89629/16 = 5601.8125

	 a0 = 89629–5601 x 16 = 13 <=> D

Step 2: 5601/16 = 350.0625

	 a1 = 5601–350 x 16 = 1

Step 3: 350/16 = 21.875

	 a3 = 350–21 x 16 = 14 <=>E

Step 4: 21/16 = 1.3125

	 a4 = 21–1 x 16 = 5

Step 5: 1/16 = 0.0625

	 a5 = 1–0 x 16 = 1

Therefore, 89629 <=> (a4a3a2a1a0)16 = 15E1D16.

Exercises:
1.	 Convert the following:

(a)	 254560110 <=> base 2

(b)	 1652382310 <=> base 16

30 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(c)	 532110 <=> base 3

(d)	 8140110 <=> base 8

2.	 Convert the number 22456 <=> N4 (Hint: first convert 22456 to a
decimal).

2.6 	� A QUICK METHOD OF CONVERTING BETWEEN
BINARY AND HEXADECIMAL NUMBERS

Of primary concern is to develop an easy conversion between binary and hexadecimal num-
bers without multiplication and division. Later we will see that the ability to convert quickly
between binary and hexadecimal decimal will be critical in learning to program in assembly
language.

To perform this conversion, we first construct a table comparing the 16 digits of the hexa-
decimal number system and the corresponding binary numbers:

HEXADECIMAL DIGITS CORRESPONDING BINARY NUMBERS

0 00002

1 00012

2 00102

3 00112

4 01002

5 01012

6 01102

7 01112

8 10002

9 10012

A 10102

B 10112

RELATIONSHIPS BETWEEN NUMBER BASES • 31

C 11002

D 11012

E 11102

F 11112

Note: Each digit of the hexadecimal system corresponds to a number of 4 bits in the binary
number system.

Now we can convert between any binary number and hexadecimal number directly by the
following rules:

Converting a binary number to its corresponding
hexadecimal number
Given any binary number, the following steps will convert the number to a hexadecimal
number:

Step 1: Group the binary number from right to left into 4 binary bit groups.

Step 2: From the table above, match the hexadecimal digit with each of the 4 binary
bit group.

Example:

1101101101010111012 =
011 0110 1101 0101 11012 <=> 36D5D163 6 D 5 D

Converting a hexadecimal number to its corresponding
binary number
Given any hexadecimal number, the following steps will convert the number to a binary
number:

From the table above, match each of digits of the hexadecimal number with the corresponding
4 bit binary number.

32 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

34ABC02DE0F16 = 3	 4	 A	 B	 C	 0	 2	 D	 E	 0	 F16

	 <=> 0011 0100 1010 1011 1100 0000 0010 1101 1110 0000 11112

	 = 001101001010101111000000001011011110000011112

Exercises:

1.	 Complete the table below by matching each digit of the octal number
system with its corresponding binary number.

OCTAL DIGITS CORRESPONDING BINARY NUMBERS

0 000

1 001

2.	 From the tables above, convert quickly the following numbers:

(a)	 11101101110001101010112 <=> n8

(b)	 675741120148 <=> n2

(c)	 2356211038 <=> n16

(d)	 A2B3C4D5E6D7F16 <=> n2

(e)	 1101110101101110012 <=> n16

3.	 Create a similar table to convert numbers of the base 4 to the base 2.

4.	 Using the tables, convert the following:

(a)	 1213014 <=> n2

RELATIONSHIPS BETWEEN NUMBER BASES • 33

(b)	 1213018 <=> n4

(c)	 100111001102 <=> n4

2.7	� PERFORMING CONVERSIONS AND ARITHMETIC
FOR DIFFERENT NUMBER BASES

Definition nb => nc : Assume nb => n10 and n10 => nc then nb => nc

Example:
Convert 57628 => n5

Solution:

57628 => n10 = 305810 => n5 = 442135

Given any number base, one can develop arithmetic operations so that we can perform addi-
tion, subtraction, and multiplication between integers. For example, ABC2316 + 516 = ABC2816.
Performing operations such as addition, subtraction, and multiplication within the given num-
ber system can be very confusing and prone to errors. The best way to do such computations
is to convert the numbers to the base 10 and then perform arithmetic operations only in
the base 10. Finally, convert the resulting computed number back to the original base. The
following theorem assures us that there is a consistency in arithmetic operations when we
convert any number to the base 10.

Theorem: Invariant properties of arithmetic operations between bases:

1.	 Invariant property of addition: If Nb <=> Nc and Mb <=> Mc then Nb +
Mb <=> Nc + Mc

2.	 Invariant property of subtraction: If Nb <=> Nc and Mb <=> Mc then
Nb – Mb <=> Nc – Mc

3.	 Invariant property of multiplication: If Nb<=> Nc and Mb<=> Mc then Nb
x Mb <=> Nc x Mc

The following algorithm will allow us to perform arithmetic operations using the above
theorem.

Step 1: Convert each number to the base 10: nb => n10; mb => m10

Step 2: Perform the arithmetic operation on the converted numbers:

(a)	 n
b + m

b => n
10

+ m
10 => n

c
+ m

c

34 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(b)	 nb–mb => n10–m10 => nc–mc

(c)	 nb x mb => n10 x m10 => nc x mc

Step 3: Convert the resulting number from step 2 back to the original base.

Examples:

1.	 Perform 23678 + 4711238

Step 1: 23678 => 2x83 + 3 x 82 + 6 x 8 + 7 = 127110

	 4711238 => 4x85 + 7x84 + 1x83 + 1x82 + 2x8 + 3 = 16033910

Step 2: 127110 + 16033910 = 16161010

Step 3: Through long division,

	 16161010 => 4735128

Step 4: Therefore,

	 23678 + 4711238 = 4735128

2.	 Perform 56AF0216 x 682FA16

Step 1: 56AF0216 =>5 x 165 + 6 x 164 +10 x 163 + 15 x 162 + 0 x 161 + 2 = 568089810

	 682FA16 => 42674610

Step 2: 568089810 x 42674610 = 2,424,300,497,90810

Step 3: Through long division,

	 2,424,300,497,90810 => 2347391EBF416

Step 4: Therefore,

	 56AF0216 x 682FA16 = 2347391EBF416

3.	 Perform 10111011012–101010112

Step 1:

	 10111011012 => 74910

	 10101011 => 17110

Step 2: 74910–17110 = 578 10

RELATIONSHIPS BETWEEN NUMBER BASES • 35

Step 3: Through long division,

	 578 10 => 10010000102

Step 4: Therefore,

	 10111011012–101010112 = 10010000102

Note: Since we are only working with integer numbers, we will postpone division for later
chapters.

Exercises:

1.	 Perform the following:

(a)	 (2123 + 22223) x 1013

(b)	 (1011012 – 11012) x 111012

(c)	 AB2F16 x 23D16 + 2F516

(d)	 216A16

(e)	 EF15616 ⇒ N5

(f)	 (2123 x22223) - 1013 ⇒ N16

2.	 For each of the above examples, verify the result in step 3.

3.	 Using the laws of arithmetic, show that for any number in the base b, Nb
= an an–1 … a1 a0, ak < b can be written in the expanded form:

	 Nb = anx10b
n + an–1x10b

n–1 + ... + a1x10b + a0

4.	 Show that 10n
b
 ⇒ bn

10

PROJECT
Show that the one-to-one function f –1 : N10 ⇒ Nb is the inverse of f: Nb => N10

(Hint: Show f –1 (f(nb)) = nb)

CHAPTER THREE
PSEUDOCODE AND WRITING ALGORITHMS

38 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
This chapter will explain the basics of computer programming. This involves defining a set of
instructions, called pseudocode, that when written in a specific order will perform desired
tasks. When completed, such a sequence of instructions is call a computer program. The word
pseudocode indicates that the codes are independent of any specific computer language. We
use this code as a guide to writing the desired programs in assembly language.

The form of the assignment statement is:

VARIABLE := VALUE

where

VARIABLE is a name that begins with a letter and can be letters or digits.

VALUE is any numeric value of the base 10, variable or mathematical expressions.

3.1	 THE ASSIGNMENT STATEMENT
Note: Frequently, instructions are referred to as statements.

The assignment statement is used to assign a numeric value to a variable.

Rules of assignment statements
R1: The left-hand side of an assignment statement must be a variable.

R2: The assignment statement will evaluate the right-hand side of the statement first and will
place the result in the variable name specified on the left-side of the assignment statement.
The quantities on the right-hand side are unchanged; only the variable on the left-hand side is
changed. Always read the assignment statement from right to left.

Examples:

ASSIGNMENT STATEMENTS X X2 XYZ SAM TURNS

X2 := 3 3

XYZ := 23 3 23

TURNS := XYZ 3 23 23

X2 := 5 5 23 23

PSEUDOCODE AND WRITING ALGORITHMS • 39

Exercises:

1.	 Complete the following table.

ASSIGNMENT
STATEMENTS

T YZ2 TABLE FORM TAB

YZ2 := 3

TABLE :=YZ2

YZ2 := 1123

FORM :=TABLE

YZ2 := FORM

2.	 Which of the following are illegal assignment statements? State the
reason.

(a)	 XYZ := XYZ

(b)	 23 := S1

(c)	 2ZX := XZ

(d)	 MARY MARRIED := JOHN

Exchanging the contents of two variables
An important task is swapping or exchanging the contents of two variable. The following
example shows how this is done:

Example:

ASSIGNMENT STATEMENTS X Y TEMP

X := 4 4

Y :=12 4 12

TEMP := X 4 12 4

X := Y 12 12 4

Y := TEMP 12 4 4

Note: To perform the swap, we needed to create an additional variable TEMP.

40 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

1.	 Assume we have the following assignments:

A B C D

10 20 30 40

Write a series of assignment statements that will rotate the values of A, B, C, and D as shown
in the table below:

A B C D

40 10 20 30

Only use 1 temporary variable.

2.	 The following instructions

S := R

R :=T

T := S

will exchange the contents of the variables R and T.	 a. True 	 b. False

3.	 The following instructions

A := 2

B := 3

Z := A

A := B

B := Z

will exchange the contents of the variables A and B.	 (a). True 	 (b). False

PSEUDOCODE AND WRITING ALGORITHMS • 41

4.	

X := 5

Y := 10

Z := 2

Z := X

X := Y

Y := Z

The above sequence of commands will exchange the values in the variables _____
and _____.

3.2 	 MATHEMATICAL EXPRESSIONS
Our system has the following mathematical operators that can be used to evaluate mathematical
expressions:

MATHEMATICAL
OPERATOR

SYMBOL EXAMPLE RESTRICTIONS

Multiplication X*Y 3*5 = 15 none

Integer Division X%Y 7%2 = 3 y ≠ 0

Modulo n r = y mod n
y = qn + r

1= 7 mod 2
7 = 3*2 + 1

0 < r < n

Addition x + y 2 + 4 = 6 none

Subtraction x–y 5–9 =–4 none

IMPORTANT: All numbers are of type integer.

42 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Order of operations
The following are the order of operations:

•	 parenthesis, multiplication, integral division, modulo n, addition, and
subtraction

•	 when in doubt, make use of parenthesis.

Examples:

ASSIGNMENT STATEMENTS X Y

X := 4 4

Y :=5 4 5

X := 2*X + 3*Y + X 27 5

ASSIGNMENT STATEMENTS X Y

X := 4 4

Y :=5 4 5

X := 2*(X + Y)*(X + Y) + X 166 5

Important: Remember to always evaluate assignment statements from right to left.

Iterative addition

Addition of several numbers can be computed using repetitive addition:

S := S + X

Examples:

1.	 Add, using repetitive addition, the numbers 2, 4, 6, 8.

PSEUDOCODE AND WRITING ALGORITHMS • 43

ASSIGNMENT STATEMENTS S X

S := 0 0

X := 2 0 2

S := S + X 2 2

X := 4 2 4

S := S + X 6 4

X : = 6 6 6

S := S + X 12 6

X := 8 12 8

S := S + X 20 8

2.	 Add the digits of 268: 2 + 6 + 8

INSTRUCTIONS N R SUM

N:= 268 268

SUM := 0 268 0

R := N MOD 10 268 8 0

SUM := SUM + R 268 8 8

N := N – R 260 8 8

N := N ÷ 10 26 8 8

R := N MOD 10 26 6 8

SUM := SUM + R 26 6 14

44 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

N := N – R 20 6 14

N := N ÷ 10 2 6 14

R := N MOD 10 2 2 14

SUM := SUM + R 2 2 16

N := N – R 0 2 16

N := N ÷ 10 0 2 16

Exercises:

1.	 Complete the table below.

ASSIGNMENT STATEMENTS X

X := 2

X := X*X

X := X + X

X := X*X

2.	 Complete the table below.

ASSIGNMENT STATEMENTS X U W

X:=5

W:= 2

U := 4

W := W*(W + U ÷ W)*(W + U ÷ W)

X := X*X + U

PSEUDOCODE AND WRITING ALGORITHMS • 45

3.	 Complete the table below.

ASSIGNMENT STATEMENTS X T1 Z

X:=3

Z := 15

T1:=10

X:=Z + X*X

Z:=X + Z + 1

T1:=T1 + Z ÷ T1 + T1

4.	 Evaluate the following expressions:

(a)	 2 + 3*4

(b)	 2 + 2*2*2 ÷ 4–3

(c)	 2 + 2*2*2 ÷ (7–3)

(d)	 17 ÷ 2

(e)	 17 ÷ 2

(f)	 16 ÷ 2

(g)	 3 + 9 ÷ 3

(h)	 3 + 8 ÷ 3

(i)	 3 + 79 ÷ 3

(j)	 3 + 2*2*2 ÷ 8*2–5

(k)	 3 + 2*2*2 ÷ (8*2–5)

5.	 Set up a table for evaluating the following sequence of instructions:

NUM1 := 0

NUM2 := 20

46 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

NUM3 := 30

SUM1 := NUM1 + NUM2

SUM2 := NUM2 + NUM3

TOTAL := NUM1 + NUM2 + NUM3

AVG1 := SUM1 ÷ 2

AVG2 := SUM2 ÷ 2

AVG := TOTAL ÷ 3

6.	 Set up a table for evaluating the following sequence of instructions:

X := 2

X := 2*X + X

X := 2*X + X

X := 2*X + X

X := 2*X + X

X := 2*X + X

X := 2*X + X

3.3	 ALGORITHMS AND PROGRAMS
Definition of an algorithm:

An algorithm is a sequence of instructions that solves a given problem.

Definition of a program:

A program is a sequence of instructions and algorithms.

Examples

1.	 Assume N and P are positive integers. We can write

N = QP + R where R < P.

The following algorithm and program will demonstrate how to compute and store Q and R.

PSEUDOCODE AND WRITING ALGORITHMS • 47

Algorithm

ASSIGNMENT STATEMENTS EXPLANATION

Q := N ÷ P COMPUTES AND STORES THE
INTEGRAL

R := N MOD P COMPUTES AND STORES THE
REMAINDER R

Task 1: Store the number 957.

Task 2: Store the number 35.

Task 3: Find Q and R for 957 = Q*35 + R.

Program

ASSIGNMENT STATEMENTS N P Q R

N := 957 957

P := 35 957 35

Q := N ÷ P 957 35 27

R := N MOD P 957 35 27 12

2.	 We define n- factorial:

N! = N*(N–1)*(N–2) … *(1)

for N, a positive integer.

The following algorithm uses the repetitive multiplication statement to compute N!

48 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

ASSIGNMENT STATEMENTS EXPLANATION

NFACTORIAL := N SET THE INITIAL VALUE

N:= N – 1 REDUCES N BY 1

NFACTORIAL:= NFACTORIAL*N

N:= N – 1

NFACTORIAL:= NFACTORIAL*N

N:= N – 1

NFACTORIAL:= NFACTORIAL*N

::::::::::::::::::::

N:= N – 1

NFACTORIAL:= NFACTORIAL*N TERMINATES WHEN N = 1

The following program computes 5!

Program

ASSIGNMENT STATEMENTS N NFACTORIAL

N:= 5 5

NFACTORIAL := N 5 5

N:= N – 1 4 5

NFACTORIAL:= NFACTORIAL*N 4 20

N:= N – 1 3 20

PSEUDOCODE AND WRITING ALGORITHMS • 49

NFACTORIAL:= NFACTORIAL*N 3 60

N:= N – 1 2 60

NFACTORIAL:= NFACTORIAL*N 2 120

N:= N – 1 1 120

NFACTORIAL:= NFACTORIAL*N 1 120

3.	 The Fibonacci sequence

To create a Fibonacci sequence, we begin with the numbers 0 and 1.

Step 1: Add the above two numbers (0 + 1 = 1) and insert the number in the above
sequence:

	 0, 1, 1

Step 2: Add the last two numbers (1 + 1 = 2) of the above sequence and insert the
number in the above sequence:

	 0, 1, 1, 2

Step 3: Add the last two numbers (1 + 2 = 3) of the above sequence and insert the
number in the above sequence:

	 0, 1, 1, 2, 3

Continue as often as desired.

The following algorithm uses the above steps to compute the Fibonacci sequence to a desired
number of members of the sequence.

Algorithm

ASSIGNMENT STATEMENTS EXPLANATION

FIBON_NUM1 := 0 FIRST VALUE OF THE SEQUENCE

FIBON_NUM2 : = 1 SECOND VALUE OF THE SEQUENCE

SUM := FIBON_NUM1 + FIBON_NUM2 SUM OF THE LAST TWO VALUES OF
THE SEQUENCE

50 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

FIBON_NUM1:= FIB_NUM2 PLACE THE NUMBER IN THE
SEQUENCE

FIBON_NUM2 := SUM PLACE THE NUMBER IN THE
SEQUENCE

SUM := FIBON_NUM1 + FIBON_NUM2 SUM OF THE LAST TWO VALUES OF
THE SEQUENCE

FIBON_NUM1:= FIB_NUM2 PLACE THE NUMBER IN THE
SEQUENCE

FIBON_NUM2 := SUM PLACE THE NUMBER IN THE
SEQUENCE

:::::::::::::::::::::::::::::::; ::::::::::::::::::::::::::::

SUM := FIBON_NUM1 + FIBON_NUM2 SUM OF THE LAST TWO VALUES OF
THE SEQUENCE

FIBON_NUM1:= FIB_NUM2 PLACE THE NUMBER IN THE
SEQUENCE

FIBON_NUM2 := SUM PLACE THE NUMBER IN THE
SEQUENCE

The following program will generate the first six numbers of the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8

Program

 ASSIGNMENT
STATEMENT FIBON_NUM1 FIBON_NUM2 SUM

FIBON_NUM1 := 0 0

FIBON_NUM2 : = 1 0 1

SUM := FIBON_NUM1 +
FIBON_NUM2 0 1 1

PSEUDOCODE AND WRITING ALGORITHMS • 51

FIBON_NUM1:= FIB_NUM2 1 1 1

FIBON_NUM2 := SUM 1 1 1

SUM := FIBON_NUM1 +
FIBON_NUM2 1 1 2

FIBON_NUM1:= FIB_NUM2 1 1 2

FIBON_NUM2 := SUM 1 2 2

SUM := FIBON_NUM1 +
FIBON_NUM2 1 2 3

FIBON_NUM1:= FIB_NUM2 2 2 3

FIBON_NUM2 := SUM 2 3 3

SUM := FIBON_NUM1 +
FIBON_NUM2 2 3 5

FIBON_NUM1:= FIB_NUM2 3 3 5

FIBON_NUM2 := SUM 3 5 5

SUM := FIBON_NUM1 +
FIBON_NUM2 3 5 8

FIBON_NUM1:= FIB_NUM2 5 5 8

FIBON_NUM2 := SUM 5 8 8

Exercises:

1.	 Write a program that computes 10!

2.	 Write a program that will compute a Fibonacci sequence where each
number in the sequence is less than 50.

3.4 	 NONEXECUTABLE STATEMENTS
All assignment statements are executable statements: When the assembler encounters the state-
ment, it will be executed.

52 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

There are however, nonexecutable statements. The first one we will here introduce is the REM
statement.

Definition of the REM statement:

The form of the REM statement is:

REM: comment; where comment can be any words made up of alphanumeric characters.

Example:

 STATEMENTS X Y SUM

REM: The following program will assign numbers to X
and Y and then add them

X := 34 34

Y := 100 34 100

SUM := X + Y 34 100 134

PROJECT
Assume the numbers n1, n2, … nm

1.	 Write an algorithm that will perform iterative multiplication.

2.	 Using this algorithm, write a program to compute n = 34*226*12*44*5

3.	 Define a^N = aN

Write an algorithm to perform a^N.

CHAPTER FOUR
SIMPLE ALGORITHMS FOR CONVERTING
BETWEEN A NUMBER BASE AND THE BASE 10

54 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
This chapter will show how to write algorithms to convert a number in the base b (b <10) to
its corresponding number in the base 10 and from a number in the base 10 to its correspond-
ing number in the base b (b <10). These algorithms are based on the conversion methods
developed in chapter 2.To help us write these algorithms, we first create a sample program
from a specific example. Once the program is written, we will use it as a guide to create the
algorithm. Later chapters will generalize these algorithms.

4.1 	� AN ALGORITHM TO CONVERT ANY POSITIVE
INTEGER NUMBER IN ANY BASE B < 10 TO ITS
CORRESPONDING NUMBER IN THE BASE 10

To convert between an integer number in any base b to its corresponding number in the base
10, we recall from chapter 2 the following formula:

nb = anan-1... a1a0 <=> anb
n
 + an-1b

n–1 ... + a1b + a0 base 10

.

Example

The following program will convert the number 2678 to its corresponding number in the
base 10:

n8 = 2678 <=> 2x82 + 6x81 + 7x80 = 2(64) + 6(8) + 7 = 18310

.

Program

PSEUDOCODE INSTRUCTIONS N8 P A N10 BASE

N10:= 0 0

N8 := 267 267 0

BASE := 8 267 0 8

P := 1 267 1 0 8

A := N8 MOD 10 267 1 7 0 8

SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND THE BASE 10 • 55

N10 := N10 + A*P 267 1 7 7 8

N8 := N8 ÷ 10 26 1 7 7 8

P := P*BASE 26 8 7 7 8

A := N8 MOD 10 26 8 6 7 8

N10 := N10 + A*P 26 8 6 55 8

N8 := N8 ÷ 10 2 8 6 55 8

P := P*BASE 2 64 6 55 8

A := N8 MOD 10 2 64 2 55 8

N10 := N10 + A*P 2 64 2 183 8

N8 := N8 ÷ 10 0 64 2 183 8

Therefore, 2678 => 18310

Using the above program as a model, the following algorithm will convert any positive integer
number in the base b < 10 to its corresponding number in the base 10:

Algorithm

PSEUDOCODE INSTRUCTIONS

N
10
:= 0

P := 1

A := N
b
MOD 10

N
10
:= N

10
+ A*P

N
b
:= N

b
÷ 10

P := P*BASE

:::::::::::::::::::::

56 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

1.	 Modify the above program to convert the number 56328 to the cor-
responding number in the base 10.

2.	 Modify the above program to convert the number 11012 to the cor-
responding number in the base 10.

4.2 	� AN ALGORITHM TO CONVERT ANY INTEGER
NUMBER IN THE BASE 10 TO A CORRESPONDING
NUMBER IN THE BASE B < 10

Using the Euclidean division theorem explained in chapter 2, we now review how to convert
numbers in the base 10 to any in the base b < 10.

Step 1: We want to write n in the form: n = anb
n
 + an-1b

n–1 +... + a1b + a0

Step 2: N = Qb + R = (an b
n–1

 + an-1b
n -2 ... + a1)b + a0

Here, Q = an b
n–1

 + an-1b
n -2 +... + a2 b + a1 = (an b

n–2
 + an-1b

n -3 ... + a2)b + a1

and R = a0

Step 3: Set N = Q.

Q = Q1b + R1 = (an b
n–2

 + an-1b
n -3 ... + a2)b + a1 where

Q1 = an b
n–2

 + an-1b
n -3 ... + a2

and R1 = a1

Step 4: Continue in this manner, until Qn = 0.

Example

Convert the following decimal numbers to the specified base:

1.	 1625 => n8

	 Step 1: 1625 = 203*8 + 1

	 a0 = 1

	 Step 2: 203 = 25*8 + 3

	 a1 = 3

SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND THE BASE 10 • 57

	 Step 3: 25 = 3*8 + 1

	 a2 = 1

	 Step 4: 3 = 0*8 + 3

	 a3 = 3

Therefore, n = 3*83 + 1*82 + 3*8 + 1 ⇔ ng = 3131.

Program

Task: Convert the integer number 1625 to the base 8.

PSEUDOCODE N10 Q N8 R BA P TEN

N10 := 1625 1625

BASE := 8 1625 8

TEN := 10 1625 8 10

P := 10 1625 8 10 10

N8 := 0 1625 0 8 10 10

R := N10 MOD BASE 1625 0 1 8 10 10

Q:= (N10–R) ÷ BASE 1625 203 0 1 8 10 10

N8:= N8 + R 1625 203 1 1 8 10 10

N10 := Q 203 203 1 1 8 10 10

R := N10 MOD BASE 203 203 1 3 8 10 10

Q:= (N10–R) ÷ BASE 203 25 1 3 8 10 10

N8 := N8 + R*P 203 25 31 3 8 10 10

P := P*TEN 203 25 31 3 8 100 10

N10 := Q 25 25 31 3 8 100 10

R := N10 MOD BASE 25 25 31 1 8 100 10

58 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Q:= (N10–R) ÷ BASE 25 3 31 1 8 100 10

N8 := N8 + R*P 25 3 131 1 8 100 10

P := P*TEN 25 3 131 1 8 1000 10

N10 := Q 3 3 131 1 8 1000 10

R := N10 MOD BASE 3 3 131 3 8 1000 10

Q:= (N10–R) ÷ BASE 3 0 131 3 8 1000 10

N8:= N8 + R*P 3 0 3131 3 8 1000 10

N10 := Q 0 0 3131 3 8 1000 10

1625 => 31318

Algorithm

PSEUDOCODE INSTRUCTIONS

P := 10

Nb := 0

R := N10 MOD BASE

Q:= (N10–R) ÷ BASE

Nb:=Nb + R

N10 := Q

R := N10 MOD BASE

Q:= (N10–R) ÷ BASE

Nb := Nb + R*P

P := P*10

N10 := Q

:::::::::::::::::::::::::::::::::::::::

SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND THE BASE 10 • 59

Exercises:
1.	 Use the above algorithm to write a program to convert the decimal

number 254310 to octal.

2.	 Write an algorithm to convert any decimal number a1a0 to the base 2.

PROJECT
(a)	 Write a program that will convert the number 23567 => nb where

b = 9.

(b)	 Write an algorithm that will convert a number nb to nc where b, c
< 10.

CHAPTER FIVE
THE IF-THEN CONDITIONAL STATEMENT

62 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
The statements used so far are called unconditional statements. Each statement performs
its task without any conditions placed on it. This chapter will discuss conditional statements.
The manner in which these instructions are carried out will depend on various conditions in
the programs and algorithms. We begin by defining and explaining conditional expressions.

5.1	 CONDITIONAL EXPRESSIONS
We begin with the definition of conditional values.

Definition of conditional values:

Conditional values take on the value TRUE or FALSE. Each conditional value is determined by
six relational operators preceded and followed by numeric values or variables.

Definition of six relational operators

The six relational operators are:

Operator Interpretation

1.	 = Equality

2.	 <> Inequality

3. 	 < Less than

4. 	 > Greater than

5. 	 <= Less than or equal to

6.	 >= Greater than or equal to

Examples	 Values

5 = 2 + 3	 TRUE

9 <> 3*3	 FALSE

4 <= 4	 TRUE

THE IF-THEN CONDITIONAL STATEMENT • 63

Exercises

1.	 Evaluate the following conditional expressions:

(a)	 3 + 3 = 6

(b)	 8 >= 10

(c)	 7 <> 7

Definition of conditional expressions:

Conditional expressions are conditional values connected by three logical operators.

Definition of the three logical operators
Logical operators connect conditional expressions and return a value of TRUE or False. The
three logical operators are:

Operator Interpretation

NOT NOT conditional expression (TRUE if the conditional expression

is FALSE; FALSE if the if the conditional expression is TRUE).

AND Conditional expression AND conditional expression (TRUE if all the
conditional expressions are true).

OR Conditional expression OR conditional expression (TRUE if one or
more of the conditional expressions are TRUE).

Values returned by operators

NOT TRUE	 FALSE

NOT FALSE TRUE 	 TRUE

AND TRUE	 TRUE

TRUE AND FALSE 	 FALSE

FALSE AND FALSE 	 FALSE

TRUE OR TRUE 	 TRUE

TRUE OR FALSE	 TRUE

FALSE OR FALSE	 FALSE

64 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

Conditional expressions	 Value

(2 < 3) OR (5 = 7)	 TRUE

NOT (2 <= 2)	 FALSE

NOT ((2 > 0) AND (3 <> 2 + 1))	 TRUE

5.2 	 THE IF-THEN STATEMENT

Definition of the if-then statement:
The form of the if-then statement is:

IF conditional expression THEN

BEGIN

statements

END

If the conditional expression is TRUE, then the

BEGIN

statements

END

will be carried out.

If the conditional expression is FALSE, then the

BEGIN

statements

END

will NOT be carried, out and the program will go to the instruction following the END.

THE IF-THEN CONDITIONAL STATEMENT • 65

The BEGIN and END statements are nonexecutable statements.

The

BEGIN

statements

END

is called a compound statement.

Examples:

Program

PSEUDOCODE INSTRUCTIONS X Y

X := 5 5

IF X = 5 THEN

BEGIN

X := 2*X

END

10

Y := 2 10 2

IF X = Y THEN

BEGIN

X := 2*X

END

10 2

X := 100 100 2

The following program will perform the following tasks:

Task 1: Assign three numbers.

Task 2: Count the number of negative numbers.

66 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Program

PSEUDOCODE X1 X2 X3 COUNT

X1 := 6 6

X2 := -5 6 -5

X3 := -25 6 -5 -25

COUNT := 0 6 -5 -25 0

IF X1 < 0 THEN

BEGIN

COUNT := COUNT + 1

END

6 -5 -25 0

IF X2 < 0 THEN

BEGIN

COUNT := COUNT + 1

END

6 -5 -25 1

IF X3 < 0 THEN

BEGIN

COUNT := COUNT + 1

END

6 -5 -25 2

Exercises:

1.	 Modify the above program so that it performs the following tasks:

	 Task 1: Assign four numbers.

	 Task 2: Count the number of positive numbers entered.

	 Task 3: Add the positive numbers.

THE IF-THEN CONDITIONAL STATEMENT • 67

2.	 Modify the above program so that it performs the following tasks:

	 Task 1: Assign four numbers.

	 Task 2: Multiply the negative numbers.

Examples:

1.	 The following algorithm will perform the following task:

	 Task 1: Find the largest of three numbers.

Algorithm

PSEUDOCODE INSTRUCTIONS EXPLANATION

LARGEST := X1 We start by assuming X1 is the
largest

IF X2 > LARGEST THEN

BEGIN

LARGEST := X2

END

If the contents of X2 is larger than
the contents of LARGEST replace
LARGEST with the contents of X2.

IF X3 > LARGEST THEN

BEGIN

LARGEST := X3

END

If the contents of X3 is larger than
the contents of LARGEST replace
LARGEST with the contents of X3,

2.	 The following program will perform the following tasks:

	 Task 1: Assign three numbers.

	 Task 2: Find the largest of these three numbers.

68 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Program

PSEUDOCODE INSTRUCTIONS X1 X2 X3 LARGEST

X1 := 5 5

X2 := 6 5 6

X3 := 10 5 6 10

LARGEST := X1 5 6 10 5

IF X2 > LARGEST THEN

BEGIN

LARGEST := X2

END

5 6 10 6

IF X3 > LARGEST THEN

BEGIN

LARGEST := X3

END

5 6 10 10

3.	 The following program will perform the following tasks:

	 Task 1: Assign two numbers to variables.

	 Task 2: If the number is negative, change it to its absolute value.

Program

PSEUDOCODE INSTRUCTIONS X Y

X := 23 23

Y := -17 23 -17

THE IF-THEN CONDITIONAL STATEMENT • 69

IF X < 0 THEN

BEGIN

X := -1*X

END

23 -17

IF Y < 0 THEN

BEGIN

Y := -1*Y

END

23 17

Exercises:

1.	 Complete the table below.

PSEUDOCODE INSTRUCTIONS X Y Z
 X := 2

 Y := 5

 Z := -4

IF (X + Y + Z) <> X*Y THEN

BEGIN

X : = (X - Y)÷X

Y := X + 2*Y

Z : = X - 2

END

IF (X - Y + Z) <> X +Y THEN

BEGIN

X : = 2*(X - Y)÷X

Y := X - 3*Z

Z : = X + 2

END

70 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	 Assume X is an integer. Explain what the following algorithm does:

	 IF 2*(X ÷ 2) = X THEN

	 BEGIN

	 X : = 3*X–1

	 END

	 IF 2*(X ÷ 2) <> X THEN

	 BEGIN

	 X := 2*X + 1

	 END

3.	 Write an algorithm to find the second-largest number among four
numbers.

5.3	 THE IF-THEN-ELSE STATEMENT

Definition of the if-then-else statement:
The form of the if-then-else statement is:

IF conditional expression THEN

BEGIN

statements 1

END

ELSE

BEGIN

statements 2

END

If the conditional expression is TRUE, statements 1 following the THEN will be carried out,
and the program will skip statements 2.

If the conditional expression is FALSE, statements 1 following the THEN will not be carried
out, and the program will execute statements 2.

THE IF-THEN CONDITIONAL STATEMENT • 71

Examples:

1.	 The following program will perform the following tasks:

	 Task 1: Assign two positive integer numbers to variables.

	 Task 2: If the number is even, add 1 to the number.

	 Task 3: If the number is odd, subtract 1 from the number.

Program

PSEUDOCODE INSTRUCTIONS X Y

X := 23 23

Y := 44 23 44

IF 2*(X÷2) = X THEN

BEGIN

X := X + 1

END

ELSE

X := X - 1

END

22 44

IF 2*(Y÷2) = Y THEN

BEGIN

Y := Y + 1

END

ELSE

Y := Y - 1

END

22 45

72 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	 The following program will perform the following tasks:

	 Task 1: Assign two numbers.

	 Task 2: Find the smaller of the two numbers.

Program

PSEUDOCODE INSTRUCTIONS X Y SMALLEST

X := 723 723

Y := 54 723 54

IF X < Y THEN 723 54

BEGIN 723 54

SMALLEST := X 723 54

END 723 54

ELSE 723 54

BEGIN 723 54

SMALLEST : = Y 723 54 54

END 723 54 54

PROJECT

The bubble sort algorithm

Perhaps the most important application of computers is the ability to sort data. Data is either
sorted in ascending or descending order. For the following four numbers, we will state the
tasks that show how the bubble sort algorithm is applied using the if-then statement to move
the highest remaining numbers to the right.

List of numbers (unsorted)

THE IF-THEN CONDITIONAL STATEMENT • 73

X1 X2 X3 X4

W x y z

Task 1: Move the highest number to variable X4.

Task 2: Move the next-highest number to variable X3.

Task 3: Move the next-highest number to variable X2.

Write a program using the bubble sort tasks to sort the numbers below in ascending order.

X1 X2 X3 X4

23 17 3 1

CHAPTER SIX
THE WHILE CONDITIONAL STATEMENT

76 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
So far in our programs, we have not had the ability to perform repetitive operations. This chap-
ter will define the WHILE statement, which will allow us to make such repetitive operations.

6.1 THE WHILE STATEMENT
Definition of the WHILE statement:

The form of the while statement is:

WHILE conditional statement

BEGIN

statements

END

where the statements enclosed in the BEGIN–END are repeated as long as the conditional
expression is true.

If the conditional statement is false, then the statement following the END will be executed.

Examples:
1.	 The following is an algorithm that will compute the sum of the numbers

1 to R.

Algorithm

PSEUDOCODE INSTRUCTIONS EXPLANATION

N := 1 N<= 1

SUM := 0 SUM <= 0

WHILE N ≤ R

BEGIN

SUM := SUM + N SUM ⇐ SUM + N

N := N + 1 N <= N + 1

END

THE WHILE CONDITIONAL STATEMENT • 77

Program

The following program will compute the sum of the numbers 1 to 5.

PSEUDOCODE
INSTRUCTIONS

CYCLE OF
INSTRUCTIONS SUM N

N := 1 N := 1 1

SUM := 0 SUM := 0 0 1

WHILE N <= 5 WHILE N <= 5 0 1

BEGIN BEGIN 0 1

SUM := SUM + N SUM := SUM + N 1 1

N := N + 1 N := N + 1 1 2

SUM := SUM + N 3 2

N := N + 1 3 3

SUM := SUM + N 6 3

N := N + 1 6 4

SUM := SUM + N 10 4

N := N + 1 10 5

SUM := SUM + N 15 5

N := N + 1 15 6

END END 15 6

2.	 The following algorithm will sum all the proper divisors of a positive
integer number

N > 1. A proper divisor d of an integer number N is a number where 1 <
d < N and

N MOD d = 0. To find all the proper divisors, we only need to check all
values of d ≤ N÷2

78 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

PSEUDOCODE INSTRUCTIONS EXPLANATION

SUM := 0

D := 2 A DIVISOR

WHILE D <= N ÷ 2

BEGIN

IF N MOD D = 0 CHECK TO SEE IF D DIVIDES N

BEGIN

SUM := SUM + D IF D DIVIDES N ADD D TO SUM

END

D := D + 1

END

Program

The following program will find and add the sum of all proper divisors of 18.

PSEUDOCODE
INSTRUCTIONS

CYCLE OF
INSTRUCTIONS N SUM D

N:= 18 N := 18 18

SUM := 0 SUM := 0 18 0

D := 2 D := 2 18 0 2

WHILE D <= N ÷ 2 WHILE D <= N ÷ 2 18 0 2

BEGIN BEGIN 18 0 2

THE WHILE CONDITIONAL STATEMENT • 79

IF N MOD D = 0 IF N MOD D = 0 18 0 2

BEGIN BEGIN 18 0 2

SUM := SUM + D SUM := SUM + D 18 2 2

END END 18 2 2

D := D + 1 D := D + 1 18 2 3

IF N MOD D = 0 18 2 3

BEGIN 18 2 3

SUM := SUM + D 18 5 3

END 18 5 3

D := D + 1 18 5 4

IF N MOD D = 0 18 5 4

BEGIN 18 5 4

SUM := SUM + D 18 5 4

END 18 5 4

D := D + 1 18 5 5

IF N MOD D = 0 18 5 5

BEGIN 18 5 5

SUM := SUM + D 18 5 5

END 18 5 5

D := D + 1 18 5 6

IF N MOD D = 0 18 5 6

BEGIN 18 5 6

80 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

SUM := SUM + D 18 11 6

END 18 11 6

D := D + 1 18 11 7

IF N MOD D = 0 18 11 7

BEGIN 18 11 7

SUM := SUM + D 18 11 7

END 18 11 7

D := D + 1 18 11 8

IF N MOD D = 0 18 11 8

BEGIN 18 11 8

SUM := SUM + D 18 11 8

END 18 11 8

D := D + 1 18 11 9

IF N MOD D = 0 18 11 9

BEGIN 18 11 9

SUM := SUM + D 18 20 9

END 18 20 9

D := D + 1 18 20 10

END END 18 20 10

3.	 Length of numbers:

Definition of the length of a number:

The length of a number is the number of digits that define the number.

THE WHILE CONDITIONAL STATEMENT • 81

Example:
2654 is of length 4.

Algorithm
The following algorithm computes the length of any positive integer.

PSEUDOCODE INSTRUCTIONS EXPLANATION

COUNT := 0 WILL COUNT # OF DIGITS

WHILE N <> 0 N IS THE POSITIVE INTEGER

BEGIN

COUNT := COUNT + 1 WILL COUNT # OF DIGITS

N := N ÷ 10 REDUCES THE LENGTH OF N

END

Program

The following program will compute the length of the number 431.

PSEUDOCODE
CYCLE OF

INSTRUCTIONS N COUNT

N: = 431 N := 431 431

COUNT := 0 COUNT := 0 431 0

WHILE N <> 0 WHILE N <>0 431 0

BEGIN BEGIN 431 0

COUNT := COUNT + 1 COUNT := COUNT + 1 431 1

82 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

N := N ÷ 10 N := N ÷ 10 43 1

COUNT := COUNT + 1 43 2

N := N ÷ 10 4 2

COUNT := COUNT + 1 4 3

N := N ÷ 10 0 3

END END 0 3

4.	 Adding digits

Algorithm

The following algorithm will sum the digits of an integer anan–1 … a0 : an + an–1 + … + a0.

PSEUDOCODE INSTRUCTIONS EXPLANATION

SUM := 0 USED TO ADD THE DIGITS

WHILE N <>0

BEGIN

R := N MOD 10 R ⇐ ak

SUM := SUM + R SUM ⇐ an + an - 1 + ... + ak

N := N–R NUMBER ⇐ an ... a0

N := N ÷ 10

END

THE WHILE CONDITIONAL STATEMENT • 83

Program

The following program will add the digits of the number 579.

PSEUDOCODE
INSTRUCTIONS

CYCLE OF
INSTRUCTIONS N R SUM

N := 579 N := 579 579

SUM := 0 SUM := 0 579 0

WHILE N <>0 WHILE N <>0 579 0

BEGIN BEGIN 579 0

R := N MOD10 R := N MOD 10 579 9 0

SUM := SUM + R SUM := SUM + R 579 9 9

N := N–R N := N – R 570 9 9

N := N ÷ 10 N := N ÷ 10 57 9 9

R := N MOD10 57 7 9

SUM := SUM + R 57 7 16

N := N – R 50 7 16

N := N ÷ 10 5 7 16

R := N MOD10 5 5 16

SUM := SUM + R 5 5 21

N := N – R 0 5 21

END END 0 5 21

84 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

1.	 Write an algorithm that performs the following tasks:

	 Task 1: Find the proper divisors of a positive integer N.

	 Task 2: Sum the proper divisors.

2.	 Write an algorithm that will multiply all the proper divisors of a posi-
tive integer number N > 1.

3.	 A factorial number, written as N!, is defined as N! = N(N–1)(N–2) …
(2)(1), where N is a positive integer > 1.

	 Write a program that will perform the following tasks:

	 Task 1: Enter a positive integer number N > 1.

	 Task 2: Compute N!.

4.	 For the following program, what is the final value assigned to S?

	 K := 2

	 S := 0

	 WHILE K < 10

	 BEGIN

	 S := S + 2*K + 1

	 K := K + 1

	 END

5.	 A positive integer greater than 1 is prime if it has no proper divisors.
Write a program that will find all prime numbers less than 25.

6.	 Find the final value R computed in the following program:

	 K := 0

	 R := 2258–K*55

	 WHILE R > 0

	 BEGIN

	 K := K +1

THE WHILE CONDITIONAL STATEMENT • 85

	 R :=2258 -K*55

	 END

	 R := R + 55

7.	 For the following program, what is the final value X?

	 K := 1

	 X : = 2

	 WHILE K <= 6

	 BEGIN

	 X := X + 3

	 K : = K + 1

	 END

8.	 For the following program, what is the final value X?

	 K := 1

	 X : = 2

	 WHILE K <= 6

	 BEGIN

	 X := X* 3

	 K : = K + 1

	 END

PROJECT
1.	 A polynomial is defined as Pn(x) = anx

n
 + an – 1 x

n – 1 + … + a1x + a0 where
x is any number.

	 One way of evaluating P(x) without using exponents is to write

	 Pn(x) = (… (((an x + an – 1)x + an – 2) x + an – 2) x + … + a1)x + a0

86 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

P3(x) = ((a3x + a2)x + a1)x + a0

P6(x) = (((((a6x + a5)x + a4)x + a3)x + a2)x + a1)x + a0

Write an algorithm that will perform Pn(x) using the evaluation of P(x) without using expo-
nents with the following restrictions:

ak are integers and 0 ≤ ak ≤ 9.

CHAPTER SEVEN
COMPUTING NUMBER BASIS
WITH ALGORITHMS

88 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
This chapter will show how to write algorithms and programs that will convert numbers from
one base to another. The methods used are based on the conversion formulas that have been
developed in several of the previous chapters.

7.1	� WRITING A PROGRAM AND ALGORITHM TO
CONVERT NUMBERS IN THE BASE B < 10 TO THE
BASE 10

In chapter 2 we saw that to convert numbers in any base b to its corresponding number in
the base 10, we use the following formula:

Nb = anan-1… a1a0 => an b
n + an-1 b

n-1 + … + a1b + a0

Example:

N8 = 4671 => 4*83 + 6*82 + 7*8 + 1 = 2048 + 384 + 56 + 1 = 248910

Program

The following program will convert the number 4671
8
to the base 10.

INSTRUCTIONS
CYCLE OF

INSTRUCTIONS N8 N10 R P

N8 := 4671 N8 := 4671 4671

P := 1 P : = 1 4671 1

N10 := 0 N10 := 0 4671 0 1

WHILE N8 <> 0 WHILE N8 <> 0 4671 0 1

BEGIN BEGIN 4671 0 1

R := N8 MOD 10 R := N8 MOD 10 4671 0 1 1

N8 := N8–R N8 := N8–R 4670 0 1 1

N8:= N8 ÷ 10 N8:= N8 ÷ 10 467 0 1 1

COMPUTING NUMBER BASIS WITH ALGORITHMS • 89

N10 := N10 + R*P N10 := N10 + R* P 467 1 1 1

P := 8*P P := 8*P 467 1 1 8

R := N8 MOD 10 467 1 7 8

N8 := N8–R 460 1 7 8

N8:= N8 ÷ 10 46 1 7 8

N10 := N10 + R*P 46 57 7 8

P := 8*P 46 57 7 64

R := N8 MOD 10 46 57 6 64

N8:= N8–R 40 57 6 64

N8:= N8 ÷ 10 4 57 6 64

N10 := N10 + R*P 4 441 6 64

P := 8*P 4 441 6 512

R := N8 MOD 10 4 441 4 512

N8:= N8–R 0 441 4 512

N8:= N8 ÷ 10 0 441 4 512

N10 := N10 + R*P 0 2489 4 512

P := 8*P 0 2489 4 4096

END END 0 2489 4 4096

90 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

The following algorithm will convert a number in the base b < 10 to the base 10.

INSTRUCTIONS

P := 1

N10 := 0

WHILE N8 <> 0

BEGIN

R := N8 MOD 10

N8 := N8 – R

N8:= N8 ÷ 10

N10 := N10 + R*P

P := 8*P

END

Exercise:

1.	 Write a program that will convert the number 2314 to the base 10 and
complete a table as above.

7.2	� WRITING AN ALGORITHM TO CONVERT A
NUMBER IN THE BASE 10 TO ITS CORRESPOND-
ING NUMBER IN THE BASE B < 10

Example:

The following method will convert the number 523 to the base 8:

a0 = 523 mod 8 = 3

523 ÷ 8 = 65

COMPUTING NUMBER BASIS WITH ALGORITHMS • 91

a1 = 65 mod 8 = 1

65 ÷ 8 = 8

a2 = 8 mod 8 = 0

8 ÷ 8 = 1

a3 = 1 mod 8 = 1

1 ÷ 8 = 0

523 → 10138

Algorithm

The following algorithm will convert any positive integer to any number in the base b < 10.

INSTRUCTIONS EXPLANATION

K : = 1

SUM := 0

WHILE N <> 0

BEGIN

A := N MOD BASE THE REMAINDER WHICH IS TO BE ADDED

SUM := SUM + A*K anb
n + an-1b

n - 1 ... + a1b + a0

N := N ÷ B B is the base

K := 10*K

END

92 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Program:

The following program will convert the number 523 to the base 8.

INSTRUCTIONS CYCLE OF
INSTRUCTIONS N10 A N8 K

N10 := 523 N10 := 523 523

K : = 1 K : = 1 523 1

N8 := 0 N8 := 0 523 0 1

WHILE N10 <> 0 WHILE N10 <> 0 523 0 1

BEGIN BEGIN 523 0 1

A := N10 MOD 8 A := N10 MOD 8 523 3 0 1

N8 := N8 + A*K N8 := N8 + A*K 523 3 3 1

N10 := N10 ÷ 8 N10 := N10 ÷ 8 65 3 3 1

K := 10*K K := 10*K 65 3 3 10

A := N10 MOD 8 65 1 3 10

N8 := N8 + A*K 65 1 13 10

N10 := N10 ÷ 8 8 1 13 10

K := 10*K 8 1 13 100

A := N10 MOD 8 8 0 13 100

N8 := N8 + A*K 8 0 13 100

N10 := N10 ÷ 8 1 0 13 100

K := 10*K 1 0 13 1000

COMPUTING NUMBER BASIS WITH ALGORITHMS • 93

A := N10 MOD 8 1 1 13 1000

N8 := N8 + A*K 1 1 1013 1000

N10 := N10 ÷ 8 0 1 1013 1000

K := 10*K 0 1 1013 10000

END END 0 1 1013 10000

Exercises:

1.	 Write a program and complete the table that converts the decimal
number 25 to base 2.

2.	 Write a program and complete the table that will print the first 100
numbers in the base 8.

PROJECT
Write a program that will convert the number 238 to the base 5.

CHAPTER EIGHT
RINGS AND MODULAR ARITHMETIC

96 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
Modular arithmetic plays a major role when doing arithmetic in assembly language. We will
see in the next chapter that the number systems we will be working with are not infinite in
number. To perform arithmetic on finite systems, we need to use modular arithmetic. We start
with the definition of rings.

8.1	 RINGS
Definition of a ring:

A ring R is a set of numbers having two binary operations: addition ⊕ and multiplication ⊗
with the following rules:

Rule 1: Closure under addition.

Rule 2: Closure under multiplication.

Rule 3: Contains an additive identity.

Rule 4: Contains a multiplicative identity.

Rule 5: For every number n there is an additive inverse ~n.

Definition of the above rules:

Rule 1: If n, m are numbers in R, then c = n ⊕ m is in R.

Rule 2: If n, m are numbers in R, then c = n ⊗ m is in R.

Rule 3: Contains a number ⊙ in R, where for every number n in R, n ⊕ ⊙ = n.

Rule 4: Contains a number 1 in R, where for every number n in R, n ⊗1 = n.

Rule 5: For every number n in R, there is a number –n in R where n ⊕ –n = 0.

There are two general type of rings: infinite and finite.

Example of an infinite ring

1.	 All integers: R = {0, 1, -1, 2, -2, 3, -3, … }

	 Rule 1: Let ⊕ = +. The sum of two integer numbers is an integer
number.

	 Rule 2: Let ⊗ = *. The product of two integer numbers is an integer
number.

RINGS AND MODULAR ARITHMETIC • 97

	 Rule 3: Let Θ = 0. If n is an integer number, then n + 0 = n.

	 Rule 4: The number 1 is an integer and n*1 = n.

	 Rule 5: Assume n is in R . Let ~n = -n. Therefore, n + ~n = 0.

Important: For rings, there is no subtraction operation.

Example of a finite ring

One well-known finite ring is the hourly clock time:

R = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

For addition or multiplication, we use the traditional system.

For example: 1 ⊕ 5 = 6, 2 ⊕ 11 = 1, 3 ⊕ 12 = 3, 5 ⊗ 2 = 10, 6 ⊗ 3 = 6, etc.

Now we show that the R is a ring, by verifying the five rules:

Rule 1: If n, m are numbers in R, then c = n ⊕ m is in R.

Rule 2: If n, m are numbers in R, then c = n ⊗ m is in R.

Rule 3: Contains a number ⊙ = 12 where for every number n in R, n ⊕ 12 = n.

Rule 4: Contains a number 1 where for every number n in R, n ⊗1 = n.

Rule 5: For every number n in R, there is a number ~n where n ⊕ ~n = 12.

To verify this rule, we use the following table, which shows that every number of R has an
additive inverse: n ⊕ ~n = 12.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

~ hour 11 10 9 8 7 6 5 4 3 2 1 12

hour ⊕ ~ hour 12 12 12 12 12 12 12 12 12 12 12 12

Exercises:

1.	 Assume R is clock time. Simplify the following:

(a)	 7 ⊕ 8 ⊕ ~7 ⊕ 11 ⊕ ~ 4

(b)	 2⊗(6 ⊕ ~10)

(c)	 ~ 11⊗[(2⊗~11) ⊗ (11⊕ ~9)]

98 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	 Assume R is military time: R = {1, 2, 3, …, 24}

(a)	 7 ⊕ 18 ⊕ (~7 ⊕ 21) ⊕ (~23)

(b)	 22⊗(16 ⊕ (~10))

(c)	 ~ 21⊗[(2⊗~21) ⊗ (11 ⊕ ~19)]

3.	 Show that the set R = {0, 1, -1, 2, -2, 4, -4, 6, -6, … ± 2n, …} is not a ring.

4.	 Show that the set R = {0, 1, 3, -3, 5,–7, …, ± 2n + 1} is not a ring.

5.	 Assume R = {0, 1, -1, 2, -2, 3, -3, 4, -4, …}. Define ⊕ and ⊗ are defined
under the following rules:

	 Rule 1: n ⊕ m = n + m + 2

	 Rule 2: n⊗ m = n *m

(a)	 Find ⊙.

(b)	 For n in R, find ~ n, the additive inverse of n.

(c)	 Show R is a ring.

8.2	 THE FINITE RING R
For assembly language, the most important set of numbers are R = {0, 1, 2, 3, …, N–1},

where N > 1.

We want R to be a ring. To do this, we need to define operations of addition and multiplication:

Definition of addition a ⊕ b: If a and b are members of R, then a⊕b = (a + b)mod N.

Definition of multiplication a⊗b: If a and b are members of R, then a⊗b = (a*b)mod N.

Note: The mod operator is defined in chapter 3.

Examples

R8 = {0, 1, 2, 3, 4, 5, 6, 7} then

5 ⊕ 7 = (5 + 7)mod(8) = 12mod(8) = 4

5 ⊗ 6 = (5*6)mod(8) = 30mod(8) = 6

2 ⊕ 5 = (2 + 5) mod(8) = 7mod(8) = 7

RINGS AND MODULAR ARITHMETIC • 99

(6 ⊗ 7) ⊕ 6 = [(42)mod(8)] ⊕ 6 = 2 ⊕ 6 = 8mod 8 = 0

R2 = {000, 001, 010, 011,100, 101,110, 111}

(101 + 011)mod 1000 = (1000)mod 1000 = 0

Exercises:

1.	 For R5 = {0, 1, 2, 3, 4}, simplify:

(a)	 4⊗4

(b)	 [(4 ⊕ 2) ⊗4 ⊕ 4] ⊗3

(c)	 3 ⊗ (3 ⊕ 4)

2.	 For R8 = {0, 1, 2, …, 7}, verify if the following are true:

(a)	 6 ⊗ (7 ⊕ 5) = (6⊗7) ⊕ (6⊗5)

(b)	 (4⊗3) ⊗7 = 4⊗ (3⊗7)

(c)	 (4 ⊕ 3) ⊕ 7 = 4 ⊕ (3 ⊕ 7)

3.	 For the following finite rings, find the additive inverse of each number
in the ring.

(a)	 R10

n 0 1 2 3 4 5 6 7 8 9

~n

(b)	 R2

n 0 1

~n

(c)	 Rg

n 0 1 2 3 4 5 6 7

~n

100 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(d)	 R16

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~n

(e)	 RHex

n 0 1 2 3 4 5 6 7 8 9 A B C D E F

~n

4.	 For RN = {0, 1, 2, …, N–1}, what is the additive identity? What is the
multiplicative identity?

8.3 	 SUBTRACTION FOR R
How do we subtract two numbers in R? We accomplish this using the following definition:

Definition of subtraction a–b for a and b in R:
a ⊖ b = (a + ~b)mod(N), where

a and ~b are values in the ring RN = {0, 1, 2, …, N–1}

Examples:

Assume ring R8 = {0, 1, 2, 3, 4, 5, 6, 7}, then

6 ⊖ 3 = (6 + ~3)mod(8) = (6 + 5)mod(8) = 11 mod(8) = 3

5 ⊖7 = (5 + ~ 7)mod(8) = (5 + 1)mod(8) = 6 mod(8) = 6

~4 ⊖ 3 = (~4 + ~3)mod(8) = (4 + 5) mod(8) = 9 mod(8) = 1

Exercises:
1.	 Assume a byte ring. If n < 256, and ~n = n, find all solutions.

RINGS AND MODULAR ARITHMETIC • 101

2.	 Are the following true or false for numbers in Rn? Show examples of
each.

(a)	 ~~ a = a ?

(b)	 ~(a ~ b) = b ~ a

(c)	 ~ a + ~ b = ~(a + b)

8.4	 RINGS IN DIFFERENT BASES
So far we have built our finite rings in the decimal number system. We will now define binary
and hexadecimal rings, which play an important role in the assembly language.

Definition of a binary finite ring:

Assume we are in a binary number system.

We define R2 = {0, 1, 10, 11, 100, …, N }

Examples

1.	 R2 = {000, 001, 010, 011, 100, 101, 110, 111}

2.	 R2 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,
1010,1011,1100,1101,1110, 1111}

Definition of a hexadecimal finite ring:

Assume we are in a hexadecimal number system. We define

R16 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, …, N}

Examples:

1.	 R16 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

2.	 R16 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 1A, 1B, 1C, 1D, 1E, 1F }

Exercises:

1.	 For the finite ring R16 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, find:

(a)	 9 ⊕ 8

(b)	 5⊗B

102 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	 For the finite ring R2 = {00000000, 00000001, …, 11111111}, find:

(a)	 10010110 ⊕ 01010111

(b)	 11010111 ⊖ 10101010

(c)	 11010111⊗10101010

Modular arithmetic in the base b
As in the decimal number system, we define

rb = ab mod(nb) = where

ab = qb *nb + rb

and

rb < nb

To easily perform such modular arithmetic, we will use the following results:

rb = (ab)mod nb <=> r10 = (a10)mod n10 .

Similarly, we have

ab ⊕ cb = (ab + cb)mod nb <=> (a10 + c10)mod n10

ab ⊗cb = (ab *cb)mod nb <=> (a10 * c10)mod n10 .

Examples:

1.	 Octal numbers: {0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, …}

(a)	 7628 mod (528) <=> 49810 mod (4210) = 3610 <=> 448

	 Therefore, 7628 mod (528) = 448

(b)	 (7718 + 2368) mod (1068) <=> (50510 + 15810)mod (7010) = (66310)
mod (7010) = 3310 <=> 418

	 Therefore, (7718 + 2368) mod (1068) = 418

(c)	 (7718 *2368) mod (1068) <=> (50510 *15810)mod (7010) = (7979010)
mod (7010) = 6010 <=> 748

	 Therefore, (7718 *2368) mod (1068) = 748

RINGS AND MODULAR ARITHMETIC • 103

2.	 Binary numbers:

(a)	 1001102 mod (11012) <=> 3810 mod (1310) = 1210 <=> 11002

	 Therefore, 1001102 mod (11012) = 11002

(b)	 (1101112 + 110112) mod (11112) <=> (5510 + 2710)mod (1510) =
(8210) mod (1510) = 710 <=> 1112

	 Therefore, (1101112 + 110112) mod (11112) = 1112

(c)	 (1101112 *110112) mod (11112) <=> (5510 * 2710)mod (1510) =
(148510) mod (1510) = 010 <=> 02

	 Therefore, (1101112 *110112) mod (11112) = 0

3.	 Hexadecimal numbers:

(a)	 9A23F16 mod (AD16) <=> 63135910 mod (17310) = 8210 <=> 5216

	 Therefore, 9A23F16 mod (AD16) = 5216

(b)	 (AC2301F16 + 27DD116) mod (AD16) <=> (18049846310 + 16328110)
mod (17310) = (18066174410) mod (17310) 9310 <=> 5D16

	 Therefore, (AC2301F16 + 27DD116) mod (AD16) = 5D16

(c)	 (AC2301F16*27DD116) mod (AD16) <=> (18049846310 *16328110)
mod (17310) = (2947196953710310) mod (17310) = 13510 <=> 8716

	 Therefore, (AC2301F16*27DD116) mod (AD16) = 8716

Exercises:

1.	 Assume a byte ring. If a ⊕ b = 0, does b = ~a and a = ~b?

2.	 Simplify the following:

(a)	 2516 mod(301F6)

(b)	 (235432 + 2516)mod(301F6)

(c)	 (235432* 2516)mod(301F6)

The additive inverse of a number
Recall the definition of an additive inverse:

104 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Definition of an additive inverse:

Assume a is a number in a ring. The additive inverse is a number

~ a in the ring where ~a + a = 0.

Example:

1.	 Assume we have the following bytering:

	 R8 = {0, 1, 2, 3, 4, 5, 6, 7}

	 If a = 5, then ~ a = 3

	 since

	 (58 + 38)mod 88 = 88 mod 88 = 0

8.5	� THE ADDITIVE INVERSE OF NUMBERS FOR THE
RINGS Rb = {0 … 0, 0 … 1, 0 … 2, …, β1β2 …, βN}

Definition of β1β2 …, βn:

The number is a positive integer β1β2 …βn where the digits are all equal and βk = b–1.

Examples

1.	 R10 = {0000, 0001, 0002, 0003, 0004, …, 9999}

2.	 R2 = {0000, 0001, 00010, 0011, 0100, …, 1111}

3.	 R8 = {000, 001, 002, 003, 004, …, 777}

4.	 R16 = {00, 01, 02, 03, 04, …, FF}

For these types of rings, we can easily compute the additive inverse of a number by taking
the complement of a number. The following is the definition of a complement of a number:

Definition of a complement of a number a´ = a1a2a3 …an´ in R:

Let R = {0 … 0, 0 … 1, 0 … 2, …, βββ … β}. The complement of a number a = a1a2a3 … an in
R is aʹ = a1ʹa2ʹa3ʹ … anʹ

where akʹ = β–ak

The following tables give the digit complements of important number systems for the assem-
bly language.

RINGS AND MODULAR ARITHMETIC • 105

Binary

ak 0 1

akʹ 1 0

ak + akʹ 1 1

Decimal

ak 0 1 2 3 4 5 6 7 8 9

ak ʹ 9 8 7 6 5 4 3 2 1 0

ak + akʹ 9 9 9 9 9 9 9 9 9 9

Octal

ak 0 1 2 3 4 5 6 7

akʹ 7 6 5 4 3 2 1 0

ak + akʹ 7 7 7 7 7 7 7 7

Hexadecimal

ak 0 1 2 3 4 5 6 7 8 9 A B C D E F

akʹ F E D C B A 9 8 7 6 5 4 3 2 1 0

ak + akʹ F F F F F F F F F F F F F F F F

106 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

1.	 R10 = {00, 01, 02, 03, …, 99}

	 25 ʹ = 74

2.	 R8 = {00, 01, 02, 03, …, 77}

	 42 ʹ = 35

3.	 R16 = {000,001,002,003,..., FFF}

	 0C4ʹ = F3B

4.	 R2 = {000, 001, 010, 011, 100,101,110,111}

	 101ʹ = 010

The following rule, can be useful to compute the inverse of a number:

Rule: ~a = a ʹ + 1

Examples:

1.	 R2 = {000000, 000001, …, 111111}

	 a = 1001012

	 a ʹ = 0110102

	 ~1001012 = 0110102 + 1= 0110112

	 a ⊕~a = (100101 + 011010 + 1) mod (1000000) = (111111 + 1)mod
(1000000) = (1000000)mod (1000000) = 0

2.	 R16 = {00, 01, 02, 03, …, FF}

	 a = 9C

	 9C ʹ = 63

	 ~9C = 63 + 1 = 64

	 9C⊕ 64 = (9C + 63 + 1)mod 100 = (FF+ 1)mod 100 = 0

Question: Why doesn’t the assembly language allow us to do normal subtraction? It is not
the assembly language that prevents this, it is the way the computer circuitry is designed. To
allow subtraction would require doubling the circuitry. Since subtraction can be accomplished
by adding the additive inverse, the design of computers is simpler and faster. Also, since only
binary numbers are used to represent numbers, the complement of a binary number is simply

RINGS AND MODULAR ARITHMETIC • 107

changing the 0s to 1s and the 1s to 0s. Therefore, the additive inverse of a binary number is
the complement plus 1.

Exercises:

1.	 Assume a word ring. For each of the following binary numbers, find
their additive inverses.

(a)	 10011100110	 (b)   11011011	 (c)   10101010

2.	 For the octal ring R8 = {0, 1, 2, 3, 4, 5, 6, 7, 10, …, 77}, compute the
following:

(a)	 43⊖56	 (b)   55⊖55	 (c)   ~10⊖56	 (d)   ~43-⊖56

3.	 Assume we have the hexadecimal ring: R16 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, F, 10, …, FF}. Find the following:

(a)	 ~ AC	 (b)   A9⊖~55	 (c)   ~10⊖5E	 (d)   (~10)⊖(~5E)

Modular arithmetic for rings Rb = {0 … 0, 0 … 1, 0 … 2, …,
β1β2 … βn }, βk = b–1
In this section, we will study the modular arithmetic ab mod(β1β2 … βn + 1).

First observe that β1β2 … βn + 1 = 10b
n

Examples:

1.	 778 + 1 = 1008 = 108
2

2.	 FFFFF16 + 1 = 100000 16 = 1016
5

3.	 111111112 + 1 = 1000000002 = 102
8

Therefore, for Rb , the following examples will show how to evaluate

ab mod(β1β2 … βn + 1) = ab mod(10b
n).

Examples:

1.	 2538 mod(77 + 1) = 2538 mod(108
2) = 2538 mod(1008)

	 Solution:

	 2538 = 2*1008 + 538

	

108 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

	 Therefore,

	 2538 mod(778 + 1) = 538

2.	 AC23D16 mod(FFF + 1) = AC23D16 mod(100016)

	 Solution:

	 AC23D16 = AC16 *100016 + 23D16

	 Therefore,

	 AC23D16 mod(FFF16 + 1) = 23D16

3.	 1110011012 mod(11112 + 1) = 1110001012 mod(100002)

	 Solution:

	 1110011012 = 111002 *100002 + 11012

Therefore, 1110011012 mod(11112 + 1) = 11012

From these examples, the following formula evolves:

(anan-1an-2 ... a1a0)b = (anan-1…ak+1)10k + (akak-1-1…a1 a0)b

Therefore, (anan-1an-2…a1 a0)b mod(10k) = (akak-1-1…a1 a0)b

8.6	� SPECIAL BINARY RINGS FOR ASSEMBLY
LANGUAGE

In assembly language we will need to be concerned about following three special binary rings,
which will be used throughout the assembly language.

THE BYTE
RING

(8 bits)

THE WORD
RING

(16 bits)

THE DWORD

(32 bits)

00000000 0000000000000000 00000000000000000000000000000000

00000001 0000000000000001 00000000000000000000000000000001

00000010 0000000000000010 00000000000000000000000000000010

00000011 0000000000000011 00000000000000000000000000000011

RINGS AND MODULAR ARITHMETIC • 109

00000100 0000000000000100 00000000000000000000000000000100

00000101 0000000000000101 00000000000000000000000000000101

00000110 0000000000000110 00000000000000000000000000000110

00000111 0000000000000111 00000000000000000000000000000111

00001000 0000000000001000 00000000000000000000000000001000

:::::::::::::::: :::::::::::::::::::::::::::: ::

11111111 1111111111111111 11111111111111111111111111111111

To better understand these three rings, we will now study them as equivalent rings in the
base 10.

THE BYTE RING

(8 bits)

THE WORD RING

(16 bits)

THE DWORD

(32 bits)

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

:::::::::::::::: :::::::::::::::: ::::::::::::::::

255 65,535 4,294,967,295

110 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises

1.	 Convert the above each of the binary table to hexadecimal.

2.	 Assume we have a binary number n2 = a1 a2 a3 … an = 111 … 1, consisting
of n 1 bits.

	 Show n2 => N10 = 2n–1

	 Hint: Show (2n–1 + 2n–2 + 2n–3 + … 2 + 1)(2–1) = 2n–1.

3.	 Using exercise 2, show the following:

(a)	 The largest decimal number in the byte ring is 255.

(b)	 The largest decimal number in the word ring is 65,535.

(c)	 The largest decimal number in the dword ring is 4,294,967,295.

Modular arithmetic for the byte ring (in decimal)
The modulus formula is r = m mod (256).

Examples:

1.	 5⊕254 = (5 + 254) mod(256) = 259 mod(256) = 3

2.	 164⊗21 = (164*21)mod(256) = 5,442,444 mod(256) = 140

	 100 ⊖253 = (100–253)mod(256) = -153 mod(256) = 103 mod(256) = 103

Exercises

1.	 Compute:

(a)	 122⊕122

(b)	 162⊗31

(c)	 175⊗222⊗13

(d)	 (175⊕222) ⊗13

2.	 Find the additive inverse for the following:

(a)	 214	 (b)   0	 (c)  128

Modular arithmetic for the word ring (in decimal)
The modulus formula is r = m mod (65,536).

RINGS AND MODULAR ARITHMETIC • 111

1.	 5⊕254 = (5 + 254) mod(65,536) = 259 mod(65,536) = 259

2.	 23,641⊗500 = (23,641*500) mod(65,536) = 11,820,500 mod(65,536)
= 24,020

Exercises:

1.	 Find the additive inverse for the following:

(a)	 214	 (b)   0	 (c)   60000

2.	 Compute:

(a)	 122⊕122	 (b)   162⊗31	 (c)   175⊗222⊗13	 (d)   (175⊕222) ⊗13

Modular arithmetic for the dword ring (in decimal)
The modulus formula is r = m mod (4,294,967,296).

1.	 3,000,000,000⊕ 4,254,256,111 = (7,254,256,111) mod(4,294,967,296)
= 2,959,288,815

2.	 2,323,641⊗3,200,241,001 = (2,323,641⊗3,200,241,001) mod(4,294,
967,296) = 465,288,199,804,641mod(4,294,967,296) = 1,507,727,073

Exercises:

1.	 Find the additive inverse for the following:

(a)	 214	 (b)   0	 (c)   60000

2.	 Compute:

(a)	 127,567,222⊕2,123,567,222 	 (b)   127,567,222 ⊗ 2,123,567,222

(c)	 175⊗222⊗13,000 	 (d)   (175⊕222) ⊗13

3.	 Convert the decimal number ~ 202 to a binary number in a

(a)	 byte ring 	 (b)   word ring 	 (c)   dword ring

8.7 	 ORDERED RELATIONS OF RINGS
Definition of an ordered relationship of a ring:

112 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Assume we have the following ring R10 = {0, 1, 2, …, N–1} containing N numbers. A set of
ordered pairs of these numbers is defined as {(a,b)}, where a and b are numbers in R and the
order is defined by some given rule. Such a set of ordered pairs of numbers is defined as an
ordered relationship of the ring R10.

Examples:

R = {0, 1, 2, 3, 4}

A natural set of ordered pairs
Definition: A natural set of ordered pairs is where the numbers (a, b) are defined in their order
of magnitude: A natural set of ordered pairs for ring R10 would be

{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}.

Note: In this example, the ordered pair is defined as (a, b), where b is greater than a or b is
equal to a.

For all ordered pairs of this type, we will use the following symbols:

a equals to b: a = b, where

b is greater than a or a is less than b: a < b

These symbols will be used to describe the ordered pair relationships of the number in the
ring:

The pair (a, a) will be written as a = a.

If a ≠ b, the pair (a, b) will be written as a< b.

For example, the pair (2, 2) will be written as 2 = 2, but the pair (3, 4) will be written as
3 < 4. Therefore, we have 0 < 1 < 2 < 3 < 4.

Other sets of ordered pairs
The following is another example of a set of ordered pairs of the ring R:

{(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (3 ,0), (3, 1), (3, 2), (3, 3), (2, 0), (2, 1), (2, 2), (1, 0), (1, 1), (0, 0)}.

Using our special symbols

=, <

we will still have (a, b) where a = a, and a < b where a ≠ b.

RINGS AND MODULAR ARITHMETIC • 113

Therefore, for our ordered pair the following will hold true:

4 < 0, 4 < 1, 4 < 2, 4 < 3, 4 = 4, 3 < 0, 3 < 1, 3 < 2, 3 = 3, 2 < 0, 2 < 1, 2 = 2, 1 < 0, 1 < 1, 1
=1, 0 = 0.

Laws of ordered relations
For the above special sets of ordered pairs, the following two laws apply:

1.	 Reflexive law: For each number a in the ring, a = a.

2.	 Transitive law: If a < b and b < c, then a < c.

Exercises:

1.	 �For the ring R = {0, 1, 2, 3, 4}, using the special symbols, write out the
relations of the ordered pair:

{(0, 0), (1, 1), (1, 0), (2, 2), (2, 1), (2, 0), (3, 3), (3, 2), (3, 1), (3, 0), (4, 4), (4, 3), (4, 2), (4, 1), (4, 0)}.

2.	 Show for the ring R = {0, 1, 2, 3, 4} that the above two laws hold for
both the natural and the ordered pairs:

{(0, 0), (1, 1), (1, 0), (2, 2), (2, 1), (2, 0), (3, 3), (3, 2), (3, 1), (3, 0), (4, 4), (4, 3), (4, 2), (4, 1), (4,0)}.

8.8	� SPECIAL ORDERING OF RINGS FOR
ASSEMBLY LANGUAGE

In assembly language, we will need to be concerned about following three special binary rings:
bytes, words, and dwords. For each of these rings, the assembly language will recognize two
types of ordered pairs:

1.	 The natural order pairs

2.	 The signed order pairs

For demonstration purposes, all the rings will be represented as decimal integer numbers.

Ordered pairs for the byte ring
In decimal, we will write the byte ring as R = {0, 1, 2, 3, …, 255}.

114 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The natural order
The natural order for R is:

{(0, 0), (0, 1), …, (0, 255), (1, 1), (1, 2), …, (1, 255), (2, 2), (2 ,3) …, (2, 255), …, (255,
255)},

which can be written as

0 1 2 3 4 5 6 … 251 252 253 254 255

where the ordered pairs can be seen as a list of numbers in their increasing order:

0 < 1 < 2 < 3 < … < 254 < 255.

For an example, we can write 5 < 214, 211 < 244, 255 = 255.

The signed order

128 129 … 253 254 255 0 1 2 3 … 126 127

where the ordered pairs can be seen as a list of numbers in their increasing order:

128 < 129 < 130 < … < 255 < 0 < 1 < 2 < … < 126 < 127.

In the following table, the second row gives the “traditional” representation of additive inverse
of the numbers

0, 1, 2, 3, …, 126, 127.

128 129 … 253 254 255 0 1 2 3 … 126 127

-128 -127 … -3 -2 -1 0 1 2 3 … 126 127

The next table gives the binary representation.

RINGS AND MODULAR ARITHMETIC • 115

128 129 … 254 255 0 1 2 --- … … 126 127

1000 1000 … 1111 1111 0000 0000 0000 --- … 0111 0111

Therefore, sticking to our rules on ordered relationships, we have, for example:

251 = 251,

251 < 0

5 < 122

254 < 15.

Therefore, in decimal we have

128 < 129 < 130 < … < 254 < 255 < 0 < 1 < 2 < 3 < … < 126 < 127 .

Exercises:

1.	 Construct a natural order table for the values the word ring.

2.	 Construct a signed order table for the values of the word ring.

3.	 Construct a natural order table for the values the dword ring.

4.	 Construct a signed order table for the values of the dword ring.

PROJECT
We defined a mod(n) as

r = a mod(n) = where

a = q *n + r

and r < n.

Write an algorithm, without using the mod instruction, that given a and n (base 10), it will
calculate r.

CHAPTER NINE
ASSEMBLY LANGUAGE BASICS

118 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
A close examination of our pseudolanguage programs reveals that such programs are made up
of four major components: numbers, arithmetic expressions, variables, and instructions. This
chapter will demonstrate at an elementary level how these four components are defined and
used in the assembly language. Also for this chapter, as well as several subsequent chapters, all
numbers will be integers.

9.1 	 DATA TYPES OF INTEGER BINARY NUMBERS
First we must understand that when programming in assembly language, all numbers are
converted by the assembler into binary numbers of a well-defined data type. Most assemblers
will only recognize the following three data types of binary integer numbers:

1.	 8-bit binary numbers

2.	 16-it binary numbers

3.	 32-bit binary numbers

Special names are given to each of these data types: bytes, words, and dwords.

Definition: A byte is an 8-bit binary number.

Definition: A word is a 16-bit binary number.

Definition: A dword (i.e., double word) is a 32-bit binary number.

Important: All numbers must be defined as a given data type by the programmer in order
for the assembler to process the program.

Examples:

1.	 byte (8 bits)

(a)	

0 1 1 0 1 1 1 0

(b)	

0 0 0 0 0 1 0 1

ASSEMBLY LANGUAGE BASICS • 119

2.	 word (16 bits)

(a)	

1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0

(b)	

0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1

3.	 dword (32 bits)

(a)	

1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1

(b)	

0 1 0 1 1 0 1 1 0

Exercises

For the examples above of bytes:

1.	 Find the binary complements.

2.	 Find the binary additive inverses.

3.	 Find the equivalent numbers in the hexadecimal base.

120 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.2 	 OTHER INTEGERS
Besides binary numbers, the assembler recognize three other number bases: decimal, octal,
and hexadecimal. Except for the decimal numbers, all numbers must be followed by the fol-
lowing suffixes.

NUMBER SYSTEM BASE SUFFIX

Hexadecimal 16 h

Binary 2 b

Octal 8 o

Decimal 10 none (or d)

Examples

(a)	 e239ch	 (b)   101101b	 (c)   23771o	 (d)   3499h

Exercises
1.	 For the examples above, convert each to decimal.

2.	 Which of the following are valid numbers?

(a)	 2397h		 (b)   1011011o		 c)   01101101h

9.3	 VARIABLES
As in the pseudo language code, variables are names that will contain numbers. The following
rules are required when defining a variable name in assembly language.

1.	 The first character of the variable name must begin with either a letter

	 (A, B, …, Z, a, b, …, z), an underscore (_), or a symbol (@, ?, or $).

	 The other characters can also be digits.

2.	 They are not case sensitive.

3.	 The maximum number of characters in the name is 247.

ASSEMBLY LANGUAGE BASICS • 121

Examples

(a)	 apple_of_my_eye

(b)	 S23x

(c)	 $money2

(d)	 hdachslager@ivc

(e)	 X1_or_X2

(f)	 X

(g)	 y

(h)	 $124

(i)	 _ @yahoo

(j)	 z2

Variable types
As in binary numbers, variables are of three data types: byte, word, and dword. We will identify
the data types as follows:

variable name	 byte

variable name 	 word

variable name 	 dword

Examples:

1.	 x byte

2.	 Number word

3.	 Large_Number_dword

Exercise:
1.	 Which of the following are legal variable names?

(a)	 _apple_of_my_eye

(b)	 S_23x

(c)	 $money2&

(d)	 hdachslager@ivc.edu

(e)	 1XorX2

122 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.4 	 ASSIGNING INTEGERS TO VARIABLES
There are two ways to assign an integer to a variable:

•	 By initialing the variable when the variable’s data type is defined

•	 By using the mov assignment instruction

Initialing the variable
To initialize the variable, we use the form:

variable name	 data type	 integer

Examples

1.	

	 x	 byte	 1101101b

0110 1101

2.	

	 y	 byte	 5Ah

0101 1010

3.	

	 z	 byte	 250

1111 1010

4.	

	 x	 word	 10101101101b

0000 0101 0110 1101

ASSEMBLY LANGUAGE BASICS • 123

5.	

y 	 word	 1D5Ah

0001 1101 0101 1010

6.	

z	 word	 65500

1111 1111 1101 1100

7.	

x	 dword	 110101111010101000110101101101b

0011 0101 1110 1010 1000 1101 0110 1101

8.	

y	 dword	 2ABC1D5Ah

0010 1010 1011 1100 0001 1101 0101 1010

9.	

z	 dword	 4294967216

1111 1111 1111 1111 1111 1111 1011 0000

Exercises:

1.	 Verify that the conversions to binary are correct for examples 1 to 9
above.

2.	 For examples 1 to 9 above, convert each data type to its hexadecimal
value.

124 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Defining a variable without initialization
If you do not wish to initialize the variable, use the symbol ? in place of the integer.

Examples:
x byte ?

y word ?

z dword ?

Using the mov assignment instruction

The mov instruction is of the general form: mov destination, source where the destination
must be a variable or register (discussed below) and the source can be an integer, variable,
or register.

The mov instruction can be used in five ways:

MOVE INSTRUCTION ORDER OF ASSIGNMENT

mov register1, register2 register1 <= register2

mov register, variable register <= variable

mov variable, register variable <= register

mov register, integer register <= integer

mov variable, integer variable <= integer

ASSEMBLY LANGUAGE BASICS • 125

Note: The definition of registers is given in the next section.

Important: You cannot use the mov instruction to move data contained in one variable
directly into another variable: mov variable, variable is not a legal statement.

The following rules apply:

Rule 1: The destination and the source cannot both be variables.

Rule 2: If the source is a variable, then both the destination and the source must be
of the same data type.

Rule 3: All hexadecimal numbers must begin with a digit (0 to 9)

Examples:
1.	

	 x byte ?

	 mov x, 1011010b

0101 1010

2.	

	 z byte ?

	 mov z, 8Fh

1000 1111

3.	

	 y byte ?

	 mov y, 252

1111 1100

126 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.	

	 x word ?

	 mov x, 10011001011010b

0010 0110 0101 1010

5.	

	 z word ?

	 mov z, 1D8Fh

0001 1101 1000 1111

6.	

	 y byte ?

	 mov y, 65010

1111 1101 1111 0010

7.	

	 x dword ?

	 mov x, 10101110101010011001011010b

0000 0010 1011 1010 1010 0110 0101 1010

8.	

	 z dword ?

	 mov z, 0ACEF1D8Fh

1010 1100 1110 1111 0001 1101 1000 1111

ASSEMBLY LANGUAGE BASICS • 127

9.	

	 y dword ?

	 mov y, 4194967096

1111 1010 0000 1010 0001 1110 0011 1000

Note

1.	 mov x, A23F h is not valid by rule 3. However mov x, 0A23F h is valid.

2.	 mov x,y is not valid by Rule 1.

Exercises:

1.	 Verify that the conversions to binary are correct for examples 1 to 9 above.

2.	 For examples 1 to 9 above, convert each data type to its hexadecimal value.

9.5	 REGISTERS
Registers are used by the programmer for storing data and performing arithmetic operations.

There are three types of registers that are used for arithmetic operations and storage: 32 bit,
16 bit, and 8 bit.

Important: All three types of registers are rings.

The 32-bit registers
The 32-bit registers that we have are EAX, EBX, ECX, EDX.

These four registers are used to store 32-bit binary numbers. They all can be used to perform
arithmetic operations. However, the recommended convention is to use only the EAX for
arithmetic operations and the other three 32-bit registers for temporary storage. These
registers will be broken into four bytes sections:

	 32	 25	 24	 17	 16	 9	 8	 1

where each byte is divided into two 4 bits.

128 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

1.	

	 mov eax, 5

	 EAX

0000 0000 0000 0000 0000 0000 0000 0101

2.	

	 mov ebx, 10101010010b

	 EBX

0000 0000 0000 0000 0000 0101 0101 0010

3.	

	 mov ecx, 0A93F2CAh

	 ECX

0000 1010 1001 0011 1111 0010 1100 1010

4.	

	 mov edx, 34577111o

	 EDX

0011 0100 0101 0111 0111 0001 0001 0001

Exercises:

1.	 Explain why the following instructions will cause an error:

(a)	 mov eax, D2h

ASSEMBLY LANGUAGE BASICS • 129

(b)	 x byte ?

	 mov eax, x

(c)	 mov eax, 3ABDD12E1h

2.	 For exercise 1, what can be done so D2h can be stored in EAX?

3.	 Complete the following table, using only binary numbers in EAX.

	 ASSEMBLY CODE	 EAX

mov eax, 2D3Fh

mov eax, 3h

mov eax, 1010101b

mov eax, 434789

mov eax, 4DFA1101h

mov eax 2675411o

4.	 Complete the following table, using only hexadecimal numbers in EAX.

	 ASSEMBLY CODE	 EAX

mov eax, 2D3Fh

mov eax, 3h

mov eax, 1010101b

mov eax, 434789

mov eax, 4DFA1101h

mov eax 2675411o

It is important to realize, as we demonstrated, that only binary numbers are stored in the
variables and registers, irrespective of the number system we are using. However, since binary
numbers are difficult to read, most debuggers for the assembly language will display the

130 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

contents of the registers as well as the variables in the equivalent hexadecimal number system
(base 16). The following table gives the equivalent values between the binary digits and the
hexadecimal digits.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

0 1 2 3 4 5 6 7 8 9

1010 1011 1100 1101 1110 1111

A B C D E F

Examples

1.	 mov edx, 9AB120h

	 EDX

BASE 2: 0000 0000 1001 1010 1011 0001 0010 0000

BASE 16: 0 0 9 A B 1 2 0

2.	 mov ecx, 5953189d

	 ECX

BASE 2: 0000 0000 0101 1010 1101 0110 1010 0101

BASE 16: 0 0 5 A D 6 A 5

Most of our mathematical experiences has been working with numbers in the base 10.
Therefore, if our debugger returns the numbers in our registers as well as variables in
hexadecimal, frequently we will need to translate these numbers into the base 10. How do
we do this? Well, we could use the methods we have learned so far to find the equivalent
hexadecimal numbers in the base 10. However, doing this is not practical. It would be better
to use a calculator that will quickly go from one base to another. Microsoft Windows XP and
Vista provide such a calculator.

ASSEMBLY LANGUAGE BASICS • 131

Examples

1.	 mov eax, 10001100b

	 EAX

BASE 2: 0000 0000 0000 0000 0000 0000 1000 1100

BASE 16: 0 0 0 0 0 0 8 C

BASE 10: 140

2.	 mov ebx, 0DF3h

	 EBX

BASE 2: 0000 0000 0000 0000 0000 1101 1111 0011

BASE 16: 0 0 0 0 0 D F 3

BASE 10: 3571

3.	 mov ecx, 0111 0111 1101 1110 1110 1110 1011 0111 b

	 ECX

BASE 2: 0111 0111 1101 1110 1110 1110 1011 0111

BASE 16: 7 7 D E E E B 7

BASE 10: 2,011,098,807

Exercises:

1.	 Complete the following:

(a)	 mov eax, 278901

132 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

	 EAX

BASE 2:

BASE 16:

BASE 10:

(b)	 mov eax, 3ABCD10Fh

	 EAX

BASE 2:

BASE 16:

BASE 10:

(c)	 mov edx, 2772101o

	 EDX

BASE 2:

BASE 16:

BASE 10:

(d)	 mov eax, 278901

	 EAX

BASE 2:

BASE 8:

BASE 16:

ASSEMBLY LANGUAGE BASICS • 133

(e)	 mov ecx, 3ABCD10Fh

	 ECX

BASE 2:

BASE 8:

BASE 10:

(f)	 mov edx, 2772101o

	 EDX

BASE 2:

BASE 8:

BASE 10:

2.	 What is the largest number:

(a)	 binary integer of type BYTE?

(b)	 octal integer of type BYTE?

(c)	 decimal integer associated with type BYTE?

3.	 What is the largest:

(a)	 binary integer of type WORD?

(b)	 octal integer of type WORD?

(c)	 decimal integer associated with type WORD?

4.	 What is the largest:

(a)	 binary integer of type DWORD?

(b)	 octal integer of type DWORD?

(c)	 decimal integer associated with type DWORD?

134 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The 16-bit registers
The 16-bit registers are AX, BX, CX, and DX. Each of these registers occupies the right-most
part of the corresponding 32-bit registers.

EAX	 AX

32	 25	 24	 17	 16	 9	 8	 1

EBX	 BX

32	 25	 24	 17	 16	 9	 8	 1

ECX	 CX

32	 25	 24	 17	 16	 9	 8	 1

EDX	 DX

32	 25	 24	 17	 16	 9	 8	 1

Example:

INSTRUCTIONS 32 25 24 17 16 9 8 1

mov eax, 3C293567h 3 C 2 9 3 5 6 7

mov ax, 9BCh 3 C 2 9 0 9 B C

mov ax, 56325d 3 C 2 9 D C 0 F

Note: When working with a 16-bit register, the other bits of the 32-bit register are not affected.

ASSEMBLY LANGUAGE BASICS • 135

The 8-bit registers
The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and DL. AH occupies the left-most bits of
AX, AL occupies the right-most 8 bits of AX, and so on.

EAX	 AX

32	 24	 16	 8	 1

AH AL

EBX	 BX

BH BL

ECX	 CX

CH CL

EDX	 DX

DH DL

Examples

INSTRUCTIONS 32 25 24 17 16 9 8 1

mov eax, 7293567h 0 7 2 9 3 5 6 7

mov ax, 9BCh 0 7 2 9 0 9 B C

mov ah, 5 0 7 2 9 0 5 B C

mov al, 0Eh 0 7 2 9 0 5 0 E

mov al, 251 0 7 2 9 0 5 F B

Note: When working with an 8-bit register, the other bits of the 16-bit and 32-bit registers
are not affected.

136 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Mixing registers
Rule: The assembler will not allow mixing of registers of different data types. The following are
examples of errors in programming:

mov eax, bx

mov cx, eax

mov dx, al

Exercises

1.	 Complete the following tables using hexadecimal numbers only.

	 32	 25	 24	 17	 16	 9	 8	 1

INSTRUCTIONS

mov eax, 293567h

mov ax, 9BCh

mov ax, 3D32h

mov ax, 5h

mov ax, 3h

mov eax, 1267

mov ax, 3AF4h

mov ah, 27h

mov al, 25

ASSEMBLY LANGUAGE BASICS • 137

2.	 	 32	 25	 24	 17	 16	 9	 8	 1

INSTRUCTIONS

mov eax, 112937234

mov ax, 9BCh

mov al, 5

mov ah, 0Eh

mov al, 2

9.6 	� TRANSFERRING DATA BETWEEN REGISTERS
AND VARIABLES

Rule: The assembler will not allow mixing of registers and variables of different data types. The
following are examples of errors in programming.

Examples:
1.	

x word 23

mov eax, x

2.	

x byte 23

mov ax, x

3.	

y byte 2dh

mov eax, y

The following examples demonstrate how integer data is transferred using the mov
instruction.

138 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:
1.	

x dword 23

mov eax, x

2.	

x dword 23

y dword ?

mov ebx, x

mov y, ebx

3.	

x dword 3A7Fh

mov ax, x

4.	

x word 3A7Fh

y word ?

mov bx, x

mov y, bx

Transferring data from one variable to another variable
The above examples show how to transfer the contents of one variable to another variable.
The following algorithm demonstrates x := y .

PSEUDOCODE AL PSEUDOCODE ASSEMBLY
LANGUAGE CODE

X:= Y
EAX := Y mov eax, y

X:= EAX mov x, eax

ASSEMBLY LANGUAGE BASICS • 139

The following program will perform the following tasks:

Task 1: Store the number 23 in x.

Task 2: Store the number 59 in y.

Task 3: Store the contents of x in y.

AL PSEUDOCODE ASSEMBLY LANGUAGE CODE

X := 23 mov x, 23

Y := 59 mov y, 59

EAX := X mov eax, x

Y := EAX mov y, eax

Exercises

1.	 Modify the above program by initializing the values in x and y without
using the mov instruction.

2.	 Complete the following table.

AL PSEUDOCODE AL CODE X Y EAX EBX

X := 23 mov x, 23

Y := 59 mov y, 59

EAX := X mov eax, x

EBX := Y mov ebx, y

X := EBX mov x, ebx

Y := EAX mov y, eax

3.	 In exercise 1, what does the code accomplish?

140 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.7	 ASSEMBLY LANGUAGE STATEMENTS
In assembly language there are three basic statements: instructions, directives, and macros.

Definition of instructions
An instruction is translated by the assembler into one or more bytes of object code, which
will be translated into machine language. The general form of an instruction is:

label: (optional) mnemonic	 operand(s) ; comment (optional)

where mnemonic is an instruction and operands can be numeric value, variable, or register.

Example:

label: mov eax, 23h ; This is an instruction.

There are two kinds of instructions:

1.	 nonexecutable codes

2.	 executable codes

Example of a nonexecutable instruction: the comment
Definition of a comment: A comment is any string of characters preceded by a semicolon (;).

The comment is ignored by the assembler.

Example:

mov eax, 2 ; Transfer the number 2 into the register EAX.

The instruction mov eax, 2 will be executed by the assembler, but the string following the
semicolon will be ignored by the assembler.

The label
All instructions can be preceded by a label ending in a colon (:). The rules for the label are
basically the same as variables.

ASSEMBLY LANGUAGE BASICS • 141

Example:

xyz: mov eax, -4

Later we will see how labels are used in programing.

Definition of a directive:

A directive instructs the assembler to take a certain action.

Variable data type declarations
A variable has to be designated as one of the following types: BYTE, WORD, or DWORD.

Definition of a BYTE: A byte consists of 8 bits.

Definition of a WORD: A word consists of 2 bytes (16 bits).

Definition of a DWORD: A double word (DWORD) consists of 4 bytes (32 bits). The form of
the variable data type declarations is the following:

variable name	 data type	 numeric value assigned or ?

Examples

Num	 BYTE 23 ; will define Num as an 8-bit byte and will convert the number 23 to binary
and store it in the variable Num.

Num	 WORD	?	 ; will define Num as a 16-bit word but will not assign a value to Num.

Num	 DWORD	 0ACD35h	 ; will define Num as a 32-bit dword and will convert
the number 0ACDE5h to binary and store it in the variable Num.

Note: You may place a label in front of the variable declaration, but the colon (:) is not
allowed.

Exercises:
1.	 What is the largest integer number in the base 10 that can be store in

a variable of type BYTE?

2.	 What is the largest integer number in the base 10 that can be store in
a variable of type WORD?

3.	 What is the largest integer number in the base 10 that can be store in
a variable of type DWORD?

142 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.	 What is the largest integer number in the base 16 that can be store in
a variable of type BYTE?

5.	 What is the largest integer number in the base 16 that can be store in
a variable of type WORD?

6.	 What is the largest integer number in the base 16 that can be store in
a variable of type DWORD?

7.	 What is the largest integer number in the base 8 that can be store in a
variable of type BYTE?

8.	 What is the largest integer number in the base 8 that can be store in a
variable of type WORD?

9.	 What is the largest integer number in the base 8 that can be store in a
variable of type DWORD?

Exercise:

Assume the above program is run. For the table below, fill in the final values stored.

EAX EBX A B C D E F

9.8	� A SAMPLE ASSEMBLY LANGUAGE WRITTEN FOR
MASM (MICROSOFT ASSEMBLER)

The following is a complete assembly language program written for the MASM (Microsoft
Assembler). For instructions on using this assembler, see References.

ASSEMBLY LANGUAGE BASICS • 143

; This program assigns values to registers
; Last update: 2/10/17

.386

.MODEL FLAT

.STACK 4096

.DATA
a	 byte 40
b 	 byte 30
d 	 dword 10
e 	 byte 50
f	 word 20

.CODE	 ; start of main program code

_start:
;
; code inserted here
;

mov ebx, 15h
mov ecx, 20h
mov eax, d
mov ax, f
mov ah, e

PUBLIC _start

END	 ; end of source code

PROJECT
Write an assembly language program that will rearrange numbers so that they are in increas-
ing order, as shown below:

A B C D E

BEFORE 40 30 10 50 20

AFTER 10 20 30 40 50

Do not add any additional variables.

CHAPTER TEN
ARITHMETIC EXPRESSIONS

146 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
Our next step in becoming assembly language programmers is to learn how to create arith-
metic expressions. Those who have studied higher-level programming languages know that
assigning arithmetic expressions to variables generally follows the normal assignment state-
ments. For example, in pseudocode we can write instructions such as X =: 2 + 3. However, in
assembly language, it is not possible to directly write such an assignment statement. To be able
to create arithmetic expressions in assembly language, we first study what are unsigned/signed
integer numbers, followed by the arithmetic operations that are available to us. We then learn
how to build arithmetic expressions using these types of numbers as needed.

10.1	 RING REGISTERS
In chapter 9 (section 9.6), we saw that there are three important rings in the assembly
language: byte rings, word rings, and dword rings. The three types of registers—EAX (EBX,
ECX, EDX), AX (BX, CX, DX), and AH, AL (BH, BL, CH, CL, DH, DL)—are rings; they conform
to the modular rules of arithmetic. The modular formula is:

r = m mod N where

N = 25610 for the byte rings: AH, AL (BH, BL, CH, CL, DH, DL),

N = 65,53610 for the word rings: AX (BX, CX, DX),

N = 4,294,967,29610 for the dword rings: EAX (EBX, ECX, EDX).

Additive inverses
Since the finite rings do not have negative numbers, as we have with ordinary numbers in the
base 10, we need to approach the creation of “negative” numbers in these rings by the follow-
ing reasoning: In the ordinary base 10 number system, negative numbers are additive inverses
of nonnegative numbers, and nonnegative numbers are additive inverses of negative numbers.
Therefore, we can create additive numbers in the rings by associating each number of the ring
with its corresponding additive inverse. To accomplish this, we begin with the definition of
unsigned and signed integers. (See chapter 8 for the definition of additive inverse for a ring and
section 8.8 where we first introduce the concept of unsigned and signed binary integers.)

Unsigned and signed binary integers
We start with an arbitrary ring of binary integer numbers:

R = {0 … 00, 0 … 01, 0 … 10, 0 … 11, …. 011 … 1, 10 … 00, 10 … 01, 10 … 10, 10
… 011, …, 11…1}.

ARITHMETIC EXPRESSIONS • 147

For rings of this type, we have the following definitions:

Definition of an unsigned binary integer number:

An unsigned binary integer number has as its extreme left-most bit the bit number zero (0).

Definition of a signed binary integer:

A signed binary integer number has as its extreme left-most bit the bit number one (1).

We see above that the ring R can be divided into two subsets consisting of those binary
number that are unsigned:

{0 … 00, 0 … 01, 0 … 10, 0 … 11, … 011…1};

and those that signed:

{10 … 00, 10 … 01, 10 … 10, 10 … 011, …, 11…1}.

The 8-bit ring as unsigned binary and integer numbers
The following table contains the integer numbers of the base 10 and their 8-bit unsigned
binary representation.

NONNEGATIVE INTEGERS
BASE 10

UNSIGNED BINARY
REPRESENTATION

0 00 00 00 00

1 00 00 00 01

2 00 00 00 10

3 00 00 00 11

4 00 00 01 00

5 00 00 01 01

6 00 00 01 10

7 00 00 01 11

\

148 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8 00 00 10 00

9 00 00 10 01

::::: :::::

127 01 11 11 11

Next we need to convert the 8-bit binary numbers to their 8-bit additive inverse numbers.
From chapter 8, we use the following formula:

The additive inverse of a1a2a3a4a5a6a7 a8 equals

(a1a2a3a4a5a6a7a8)ʹ + 1 = a1ʹa2ʹa3ʹa4ʹa5ʹa6ʹa7ʹa8ʹ+ 1

where

akʹ = 1 if ak = 0

and

akʹ = 0 if ak = 1.

In the following table, unsigned and signed binary numbers are listed so that each of two
columns are additive inverses of each other.

INTEGERS
BASE 10

BINARY
REPRESENTATION

INTEGERS
BASE 10

BINARY
REPRESENTATION

0 00 00 00 00 0 00 00 00 00

1 00 00 00 01 255 11 11 11 11

2 00 00 00 10 254 11 11 11 10

3 00 00 00 11 253 11 11 11 01

4 00 00 01 00 252 11 11 11 00

5 00 00 01 01 251 11 11 10 11

6 00 00 01 10 250 11 11 10 10

ARITHMETIC EXPRESSIONS • 149

7 00 00 01 11 249 11 11 10 01

8 00 0010 00 248 11 11 10 00

9 00 00 10 01 247 11 11 01 11

::::: ::::: :::: ::::

127 01 11 11 11 129 10 00 00 01

128 10 00 00 00 128 10 00 00 00

Note: In the above table, the binary numbers in each of the columns are additive inverses of
each other.

Examples:

1.	 Convert the binary number representing 5 to its additive inverse.

	 Step 1: The integer number 5: 00000101.

	 Step 2: The additive inverse of 00000101 equals 11111010 + 1 =
11111011.

2.	 Convert the binary number representing 3 to its additive inverse.

	 Step 1: The integer number 3: 00000011.

	 Step 2: The additive inverse of 00000011 equals 11111100 + 1 =
11111101.

The following table gives the representation of the above table as hexadecimal numbers. Most
assemblers will display the binary numbers in registers as their corresponding hexadecimal
values.

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

0 00 0 00

1 01 255 FF

150 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2 02 254 FE

3 03 253 FD

4 04 252 FC

5 05 251 FB

6 06 250 FA

7 07 249 F9

8 08 248 F8

9 09 247 F7

::::: ::::: :::: ::::

127 7F 129 81

128 80 128 80

Note: In the above table, the hexadecimal numbers in each of the columns are additive
inverses of each other.

Exercises:

1.	 Assuming the following numbers are bytes. Find their additive inverse.

(a)	 100101b	 (b)    2E h	 (c)   222 d

2.	 Find the binary representation of the following numbers:

(a)	 –81h	 (b)   –1010111b	 (c)   –28h

The 16-bit ring
The following table contains the 16-bit ring divided into columns that are additive inverses
of each other.

ARITHMETIC EXPRESSIONS • 151

INTEGERS
BASE 10

BINARY
REPRESENTATION

INTEGERS
BASE 10

BINARY
REPRESENTATION

0 00 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00

1 00 00 00 00 00 00 00 01 65535 11 11 11 11 11 11 11 11

2 00 00 00 00 00 00 00 10 65534 11 11 11 11 11 11 11 10

3 00 00 00 00 00 00 00 11 65533 11 11 11 11 11 11 11 01

4 00 00 00 00 00 00 01 00 65532 11 11 11 11 11 11 11 00

5 00 00 00 00 00 00 01 01 65531 11 11 11 11 11 11 10 11

6 00 00 00 00 00 00 01 10 65530 11 11 11 11 11 11 10 10

7 00 00 00 00 00 00 01 11 65529 11 11 11 11 11 11 10 01

8 00 00 00 00 00 00 10 00 65528 11 11 11 11 11 11 10 00

9 00 00 00 00 00 00 10 01 65527 11 11 11 11 11 11 01 11

:::: :::: :::: :::

32767 01 11 11 11 11 11 11 11 32769 10 00 00 00 00 00 00 01

32768 10 00 00 00 00 00 00 00 32768 10 00 00 00 00 00 00 00

Note: In the above table, the binary numbers in each of the columns are additive inverses of
each other.

The following table gives the representation of the binary numbers as hexadecimal numbers.

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

0 00 00 0 00 00

1 00 01 65535 FF FF

152 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2 00 02 65534 FF FE

3 00 03 65533 FF FD

4 00 04 65532 FF FC

5 00 05 65531 FF FB

6 00 06 65530 FF FA

7 00 07 65529 FF F9

8 00 08 65528 FF F8

9 00 09 65527 FF F7

:::: :::: :::: ::::

32767 7F FF 32769 80 01

32768 80 00 32768 80 00

Note: In the above table, the hexadecimal numbers in each of the columns are additive inverses
of each other.

Exercises

1.	 Assume the following numbers are words. Find their additive inverse.

(a)	 100101b	 (b)   2E h	 (c)   222 d

2.	 Find the binary representation of the following numbers:

(a)	 –81h	 (b)   –1010111b	 (c)   -28h

The 32-bit ring
The following table contains the 32-bit ring divided into columns that are additive inverses
of each other.

ARITHMETIC EXPRESSIONS • 153

INTEGERS
BASE 10

BINARY
REPRESENTATION

32 BITS

INTEGERS
BASE 10

BINARY
REPRESENTATION

32 BITS

0 00—-00 00 00 00 0 00—-00 00 00 00

1 00—-00 00 00 01 4,294,967,295 11—-11 11 11 11

2 00—-00 00 00 10 4,294,967,294 11—-11 11 11 10

3 00—-00 00 00 11 4,294,967,293 11—-11 11 11 01

4 00—-00 00 01 00 4,294,967,292 11—-11 11 11 00

5 00—-00 00 01 01 4,294,967,291 11—-11 11 10 11

6 00—-00 00 01 10 4,294,967,290 11—-11 11 10 10

7 00—-00 00 01 11 4,294,967,289 11—-11 11 10 01

8 00—-00 00 10 00 4,294,967,288 11—- 11 11 00 00

9 00—-00 00 10 01 4,294,967,287 11—- 11 11 01 11

:::: :::: :::: ::::

2,147,483,647 01—-11 11 11 11 2,147,483,649 10—-00 00 00 01

2,147,483,648 10—-00 00 00 00 2,147,483,648 10—-00 00 00 00

Note: In the above table, the binary numbers in each of the columns are additive inverses of
each other.

154 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following table gives the representation of the binary numbers as hexadecimal numbers.

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

0 00 00 00 00 0 00 00 00 00

1 00 00 00 01 4,294,967,295 FF FF FF FF

2 00 00 00 02 4,294,967,294 FF FF FF FE

3 00 00 00 03 4,294,967,293 FF FF FF FD

4 00 00 00 04 4,294,967,292 FF FF FF FC

5 00 00 00 05 4,294,967,291 FF FF FF FB

6 00 00 00 06 4,294,967,290 FF FF FF FA

7 00 00 00 07 4,294,967,289 FF FF FF F9

8 00 00 00 08 4,294,967,288 FF FF FF F8

9 00 00 00 09 4,294,967,287 FF FF FF F7

:::: :::: :::: :::::::::

2,147,483,647 7F FF FF FF 2,147,483,649 80 00 00 01

2,147,483,648 80 00 00 00 2,147,483,648 80 00 00 00

Note: In the above table, the hexadecimal numbers in each of the columns are additive
inverses of each other.

Exercises:

1.	 Find the additive inverse of the following numbers in binary as well as
the number system:

(a)	 100101b	 (b)   2E h	 (c)   222 d

2.	 Find the binary representation of the following numbers:

(a)	 –81h	 (b)   –1010111b	 (c)   -28h

ARITHMETIC EXPRESSIONS • 155

10.2 	�WORKING WITH MODULAR ARITHMETIC
FOR ADDITION AND SUBTRACTION

Since all registers and data types in assembly language are restricted to three finite rings: bite
rings, word rings, and dword rings—it is important to understand how modular arithmetic
computes arithmetic expressions. The modular formula is r = m mod N where

Base 10:

N = 25610 for the byte rings: AH, AL (BH, BL, CH, CL, DH, DL)

N = 65,53610 for the word rings: AX (BX, CX, DX)

N = 4,294,967,29610 for the dword rings: EAX (EBX, ECX, EDX)

Base 16:

N = 10016 for the byte rings: AH, AL (BH, BL, CH, CL, DH, DL)

N = 1000016 for the word rings: AX (BX, CX, DX)

N = 10000000016 for the dword rings: EAX (EBX, ECX, EDX)

Exercises:

1.	 Find N2 for byte rings, word rings, and dword rings.

2.	 Find N8 for byte rings, word rings, and dword rings.

Addition on finite rings
Addition on byte rings:

a10⊕ b10= (a10 + b10) mod 25610

Example

PSEUDOCODE AL PSEUDOCODE Z AL

Z := 205d + 127d

AL := 205d 205

AL := AL + 127d 76

Z := AL 76 76

156 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

205⊕127 = (205 + 127) mod 256 = (332) mod 256 = 76

a16⊕ b16= (a16 + b16) mod 10016

Example:

PSEUDOCODE AL PSEUDOCODE Z AL

Z := 9Dh + 8Fh

AL := 9Dh 9Dh

AL := AL + 8Fh 2Ch

Z := AL 2Ch 2Ch

Solution:

9D16⊕ 8F16= (9D16 + 8F16) mod 10016 => (15710 + 14310) mod 25610 = 300 mod 256 =
4410 => 2C16

Exercises:

1.	 Add over a byte ring: N = 110111012⊕ 010011112

2.	 Add over a byte ring: N =2778 ⊕1648

Addition on word rings:

a10⊕b10= (a10 + b10) mod 65,53610

Example:

PSEUDOCODE AL PSEUDOCODE Z AX

Z := 50,558d + 32,456d

AX:= 50558d 50558

AX := AX + 32456d 17478

Z := AX 17478 17478

ARITHMETIC EXPRESSIONS • 157

Solution:

50558⊕32456 = (50558+32456) mod 65,536 = 17478

a16⊕ b16= (a16 + b16) mod 1000016

Example:

PSEUDOCODE AL PSEUDOCODE Z AX

Z := EF7Fh +DDFFh

AX:= EF7Fh EF7Fh

AX := AX+ DDFFh CD7Eh

Z := AX CD7Eh CD7Eh

Solution:

EF7Fh ⊕DDFFh= (EF7Fh + DDFFh) mod 1000016 => (6131110 + 5683110) mod 6553610 =>
5260610 => CD7Eh

Exercises:

1.	 Add over a word ring: N = 1100 1111 1101 11012⊕1010 1110 1001 11112

2.	 Add over a word ring: N =1576778 ⊕1771648

Addition on dword rings:

a10⊕b10= (a10 + b10) mod 4,294,967,29610

Example:

PSEUDOCODE AL PSEUDOCODE Z EAX

Z := 30132145d +
32456778d

EAX:= 30132145d 30132145d

EAX := EAX + 32456778d 62588923d

Z := EAX 62588923d 62588923d

158 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

3013214510⊕3245677810 = (30132145+32456778) mod 4294967296 = 62588923

Example

PSEUDOCODE AL PSEUDOCODE Z EAX

Z := FB9EF7Fh

+EEDDFFh

EAX:= FB9EF7Fh F B9 EF 7Fh

EAX := EAX + EEDDFFh 10 A8 CD 7Eh

Z := AX 10A8CD7Eh 10 A8 CD 7Eh

Solution:

Since 10A8CD7E16 < 10000000016, it follows that

10A8CD7E16 mod 10000000016 = 10A8CD7E16

Exercises

1.	 Add over a dword ring: N = 1100 1111 1101 11012⊕111 1110 1001 11112

2.	 Add over a dword ring: N =2150767558 ⊕ 1737571648

Subtraction on finite rings
Subtraction on byte rings:

Definition of ~n:

Given the number n, ~n is defined as the adaptive inverse of n:

~n = 256–n.

(n + ~n)mod 256 = [n + (256–n)]mod 256.

Definition of subtraction:

a10⊖b10 = (a10 + ~ b10)mod 25610

ARITHMETIC EXPRESSIONS • 159

Examples:

1.	 20510⊖1510 = (205 + ~15) mod 256 = [205 + (256–15)]mod 256 =
(446) mod 256 = 190

2.	 (310⊖15010) = (3 + ~150) mod 256 = [3 + (256–150)] mod 256 = [109]
mod 256 = 109

3.	 8D16⊖6E16 = (8D + ~6E) mod 10016 = [8D + (10016–6E)]mod 10016 =
(11F) mod 10016 = 1F

Solution:

8D16⊖6E16 =>14110 ⊖ 11010 = (141+ ~110) mod 256 = (141 + 146)mod 256 = 287 mod 256

= 31

Exercises:

Assume a byte ring.

Find:

1.	 ~ 20110

2.	 ~ EF

3.	 ~ 2778

4.	 ~11 11 00 102

5.	 (~25010)⊖25210

6.	 (~A7) ⊖ (~EE)

7.	 7728 ⊖ ~14278

8.	 ~(11 11 10 012⊖10 10 10 112)

Assume a word ring.

Find:

9.	 ~678010

10.	 ~35 ED

11.	 ~1756738

12.	 ~10 10 11 11 11 00 102

160 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

13.	 (~655010)⊖2222110

14.	 (~A734) ⊖ (~EEAD)

15.	 1107728 ⊖ ~126428

Assume a dword ring.

Find:

16.	 ~9945678010

17.	 ~567ED24F

18.	 ~111247675658

19.	 ~10 10 11 11 112

20.	 ~[4346575610)⊖ (~4575410)]

21.	 (~A734) ⊖ (~EEAD)

22.	 7007728 ⊖ (~545338)

23.	 (11 11 00 11 11 11 10 012 ⊖10 00 01 10 10 10 112)

10.3 	�ASSEMBLY LANGUAGE ARITHMETIC OPERATIONS
FOR INTEGERS

The following is a list of the important arithmetic operations for integers.

Addition (+)
Definition: Form of the assembly language add instruction: add register, source, where the fol-
lowing rules apply:

Rule 1: The integers may be unsigned or signed.

Rule 2: The source can be a register, variable, or numeric value.

Rule 3: The resulting sum will be stored in the register.

Rule 4: Data types for the register and source must always be the same.

ARITHMETIC EXPRESSIONS • 161

Examples:

1.	

PSEUDOCODE AL PSEUDOCODE ASSEMBLY CODE

Z := 2 + 3
EAX := 2d mov eax, 2d

EAX := EAX + 3d add eax, 3d

Z := EAX mov z, eax

2.	 Complete the table in hexadecimal numbers.

ASSEMBLY CODE EAX AX AH AL X

x dword 2 2h

mov eax, 12345 00 00 30 39h 30 39h 30h 39h 2h

add eax, x 00 00 30 3Bh 30 3Bh 30h 3Bh 2h

3.	

ASSEMBLY CODE EAX AX AH AL X

x word 1h 1

mov ax, 0ffffh 00 00 ff ff ff ff ff ff 1

add ax, x 00 00 00 00 00 00 00 00 1

162 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.	

ASSEMBLY CODE EAX AX AH AL X

x byte 2h 2

mov eax, 0 00 00 00 00 00 00 00 00 2

mov al, 0ffh 00 00 00 ff 00 ff 00 ff 2

add al, x 00 00 00 01 00 01 00 01 2

5.	

ASSEMBLY CODE EAX AX AH AL

mov ah, 200d 200 200 200

add ah, 150 94 94 94

6.	

ASSEMBLY CODE EAX AX AH AL X

x byte 2h 2

mov eax, 0 00 00 00 00 00 00 00 00 2

mov ah, 0ffh 00 00 ff 00 ff 00 ff 00 2

add ah, x 00 00 01 00 01 00 01 00 2

ARITHMETIC EXPRESSIONS • 163

7.	

PSEUDOCODE AL
PSEUDOCODE

AL
CODE EAX AX X Y W

x word ?

Y := 223h Y := 223h y dword
223h 223

W := 79223h W := 79223h w dword 223 79223

X:= 2h + 3h

AX:= 2h mov ax,
2h 00 00 00 02 0002 223 79223

AX := AX + 3h add ax, 3h 00 00 00 05 0005 223 79223

X := AX mov, x, ax 00 00 00 05 0005 5 223 79223

W := W + Y

EAX:= W mov eax,
w 00 07 92 23 9223 5 223 79223

EAX := EAX+Y add eax, y 00 07 94 46 9446 5 223 79223

W := EAX mov w,
eax 00 07 94 46 9446 5 223 79446

Exercises:

1.	 Complete the following tables.

	 Complete the table with hexadecimal numbers.

ASSEMBLY CODE EAX AX AH AL X

x dword 2

mov eax, 12345

add eax, x

164 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL X

x word Ah

mov eax, 0fffffh

add ax, x

Complete the table with hexadecimal numbers.

ASSEMBLY CODE EAX AX AH AL X

x dword100

mov eax, 54321

add eax, x

ASSEMBLY CODE EAX AX AH AL

mov eax,9fffffffh

add ah, 1h

2.	 Complete the table below in hexadecimal.

PSEUDO AL PSEUDOCODE AL CODE EAX AX X Y W

x word ?

y dword 223h
w dword 79223h

W := W + Y

ARITHMETIC EXPRESSIONS • 165

X := 2 + 3

3.	 Complete the table below in hexadecimal.

PSEUDO AL PSEUDOCODE AL CODE EAX AX X Y W

x word ?

y dword 223h
w dword 79223h

W := W + Y

X := 2 + 3

Subtraction (-)
Definition: Form of the subtraction instruction: sub register, source, where the following rules
apply:

Rule 1: The integers may be signed or unsigned.

Rule 2: The source can be a register, variable, or numeric value.

166 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Rule 3: The resulting subtraction will be stored in the register.

Rule 4: Data types for the register and source must always be the same.

Examples:

1.	

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY CODE

Z:= 2h-3h EAX := 2h mov eax, 2h

EAX := EAX - 3h sub eax, 3h

Z:=EAX mov z, eax

2.	

ASSEMBLY CODE EAX AX AH AL X

x dword 10h 10

mov eax, 12345678h 12 34 56 78 56 78 56 78 10

sub eax, x 12 34 56 68 56 68 56 68 10

3.	

ASSEMBLY CODE EAX AX AH AL X

x dword 23544420h 23 54 44 20

mov eax, 12345678h 12 34 56 78 56 78 56 78 23 54 44 20

sub eax, x EE E0 12 58 12 58 12 68 23 54 44 20

ARITHMETIC EXPRESSIONS • 167

4.	

ASSEMBLY CODE EAX AX AH AL X

x byte 70h 70

mov eax, 50h 00 00 00 50 00 50 00 50 70

sub al, x 00 00 00 30 00 E0 00 E0 70

Exercises:

1.	 Complete the following table in hexadecimal.

PSEUDOCODE AL PSEUDOCODE AL
CODE EAX X Y Z

x dword ?

y dword ?

z dword ?

X := CD2h–2h

EAX := 0CD2h

EAX := EAX–2h

X := EAX

X := 421h X := 421h

Y := 4E75h Y := 4E75h

Z:= X – Y

EAX := X

EAX := EAX – Y

Z := EAX

168 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	

ASSEMBLY CODE EAX AX AH AL X

x dword 5677h

mov eax, 0C1234h

sub eax, x

3.	

ASSEMBLY CODE EAX AX AH AL X

x word 0ab9h

mov eax, 0cca18h

sub ax, x

4.	

ASSEMBLY CODE EAX AX AH AL X

x byte 0dh

mov eax, 12345678h

sub al, x

Multiplication (*)
Definition: There are 2 multiplication instructions we can use: mul and imul.

•	 Form of the mul instruction: mul source

•	 Form of the imul instruction: imul source, where the following rules apply:

ARITHMETIC EXPRESSIONS • 169

Rule 1: The register used for multiplication is always EAX.

Rule 2a: For the mul instruction, the integers that are multiplied must be unsigned.

Rule 2b: For the imul instruction, the integers can be either unsigned, signed order,
or both.

Rule 3: The source can be a register or a variable. The source cannot be a numeric
value.

Rule 4: The location of the other number (accumulator) to be multiplied is in one
of the following registers:

•	 AL, if the source is a byte

•	 AX, if the source is a word

•	 EAX, if the source is a double word

Rule 5: The resulting product will be located in the accumulator under the following
rules:

•	 If the data type is a byte (8 bits), then the resulting product (16 bits) will be
located in AX.

Example:

ASSEMBLY CODE EAX AX AH AL X

x byte 10h 10

mov al, 23h 00 00 00 23 00 23 00 23 10

mul x 00 00 02 30 02 30 02 30 10

If the data type is a word (16 bits), then the resulting product (32) bits will have its low-order
16 bits going to the AX register and its high-order 16 bits going to the DX register.

170 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

ASSEMBLY CODE EAX AX DX X

x word 100h 100

mov ax, 1234h 00 00 12 34 12 34 100

m 00 00 34 00 34 00 00 12 100

If the data type is a dword (32 bits), then the resulting product (64) bits will have its low-order
32 bits going to the EAX register and its high-order 32 bits going to the EDX register.

Example:

ASSEMBLY CODE EAX EDX X

x dword 100h 100

mov eax, 1234567h 01 23 45 67 100

mul x 23 45 67 00 00 00 00 01 100

Exercises:

1.	 Complete the following tables.

ASSEMBLY CODE EAX AX AH AL X

x byte 0EDh

mov al, 9Fh

mul x

ARITHMETIC EXPRESSIONS • 171

ASSEMBLY CODE EAX AX AH AL EDX X

x word 2EF2h

mov ax, 26DCh

mul x

ASSEMBLY CODE EAX AX AH AL EDX X

x dword 46A577DEh

mov eax, 7EA769Fh

mul x

2.	

ASSEMBLY CODE EAX AX AH AL X

x byte 5Ah

mov al, 2Fh

mul x

ASSEMBLY CODE EAX AX AH AL EDX X

x word 65EEh

mov al, 2Fh

mul x

172 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL EDX X

x dword 8BB0BB44h

mov eax, 1DFF872Fh

mul x

Division (÷)
For this type of division, we are only performing integer division. The following is the defini-
tion of integer division:

Definition of integer division n ÷ m:

Given unsigned integers n and m, we say n is divided by m, where

n = q*m + r, where

0 ≤ r < m.

n ÷ m = q

n = (n ÷ m)*m + r.

Note: The general terminology is as follows:

n: dividend

m: divisor

q: quotient

r: remainder

Examples:

(a)	 9 ÷ 4:	 9 = 2*4 + 1 where q = 2 and r = 1

	 9 ÷ 4 = q = 2

(b)	 356 ÷ 7:	 356 = 50*7 + 6 where q = 50 and r = 6

	 356 ÷ 7 = q = 50

ARITHMETIC EXPRESSIONS • 173

(c)	 78 ÷ 99: 78 = 0*99 + 78 where q = 0 and r = 78

	 78 ÷ 99 = 0

Exercises:

1.	 For the following integer division, find the division form: n = q*m + r,
base 10:

(a)   143 ÷ 3	 (b)   3,457 ÷ 55	 (c)   579 ÷ 2	 (d)   23 ÷ 40

There are 2 division instructions we will use: div and idiv.

•	 Form of the div instruction: div source

•	 Form of the idiv instruction: idiv source, where the following rules apply:

Rule 1: The register used for integer division is always EAX.

Rule 2: The source is the divisor (m).

Rule 3: The source can be in a register or variable, but it cannot be a numeric value.

Rule 4: The following gives us the locations of n, m, q, and r:

If the source (m) is a byte, then the dividend (n) is stored in the AX register. After execution,
the quotient (q) will be stored in the AL register and the remainder (r) in the AH register.

Example;

ASSEMBLY CODE EAX AX AH AL X

x byte 10h 10

mov ax, 456h 00 00 04 04 56 04 56 10

div x 00 00 06 45 06 45 06 45 10

If the source (m) is a word, then the dividend (n) is stored in the AX register. Before executing,
the EDX must be assigned a numeric value. After execution, the quotient (q) will be stored in
AX and the remainder (r) in DX.

174 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

ASSEMBLY CODE EAX AX DX X

x word 100h 100

mov edx,0 00 00 00 00 100

mov ax, 9378h 00 00 93 78 93 78 00 00 00 00 100

div x 00 00 00 93 00 93 00 00 00 78 100

If the source (m) is a double word, then the dividend (n) is stored in the EAX register. Before
executing, the EDX must be assigned a numeric value. After execution, the quotient (q = n ÷ m)
will be stored in the EAX register and the remainder(r) in the EDX register.

Example:

ASSEMBLY CODE EAX EDX X

x dword 10h 10

mov edx, 0h 00 00 00 00 10

mov eax, 378h 00 00 03 78 00 00 00 00 10

div x 00 00 00 37 00 00 00 08 10

Note: Whenever we use div in this text, we assume the source is a double word.

Rule 5:

•	 The div instruction should only be used when the dividend and divisor are
both unsigned.

•	 The idiv instruction can be used when the dividend and divisor can be
either signed, unsigned, or both.

ARITHMETIC EXPRESSIONS • 175

The following table summarizes rule 3:

DIVIDEND (N) DIVISOR (M) Q = N ÷ M REMAINDER

AX byte: register or variable AL AH

AX word: register or variable AX DX

EAX dword: register or variable EAX EDX

Important: When programming in Visual Studio, one must assign the number 0 to the EDX
register before each div or idiv instruction.

Exercises:

Complete the following tables.

1.	 Complete the following tables in hexadecimal.

ASSEMBLY CODE EAX EDX X

x dword E722Ch

mov edx, 0

mov eax, 5670F3AAh

div x

ASSEMBLY CODE EAX AX EDX X

x word 2567h

mov edx,0

mov ax, 9D37h

div x

176 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL X

x byte 0FDh

mov ax, 0ABB6h

div x

2.	 Complete the following tables in hexadecimal.

ASSEMBLY CODE EAX EDX X

x dword 95ef 22ch

mov edx, 0

mov eax, 0d9def3aah

div x

ASSEMBLY CODE EAX AX EDX X

x word 5f67h

mov edx,0

mov ax, 0dacfd378h

div x

ASSEMBLY CODE EAX AX AH AL X

x byte 0fdh

mov ax, 0fa56h

div x

ARITHMETIC EXPRESSIONS • 177

10.4	 SPECIAL NUMERIC ALGORITHMS
In this section, we will study how to write assembly language algorithms for special numeric
expressions. To assist us, we will first use pseudocodes and assembly language (AL) pseudo-
code as our guide. The following are several important algorithms.

• Interchanging values

Algorithm

PSEUDOCODE AL PSEUDOCODE AL CODE

TEMP:= X
EAX:= X mov eax, x

TEMP:= EAX mov temp, eax

X:= Y
EAX:= Y mov eax, y

X:= EAX mov x, eax

Y:= TEMP
EAX:= TEMP mov eax, temp

Y := EAX mov y, eax

Example

PSEUDOCODE AL
PSEUDOCODE

AL
CODE X Y EAX T

X := 254h X := 254h mov x, 254h 254

Y := 100h Y := 100h mov y, 100h 254 100

T:= X
EAX := X mov eax, x 254 100 00 00 02 54

T := EAX mov t, eax 254 100 00 00 02 54 254

178 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

X:= Y
EAX:= Y mov eax, y 254 100 00 00 01 00 254

X:= EAX mov x, eax 100 100 00 00 01 00 254

Y:= T
EAX:= T mov eax, t 100 100 00 00 02 54 254

Y := EAX mov y, eax 100 254 00 00 02 54 254

The exponential operator: Although we define an exponential operator in assembly, the expo-
nential operator does not exist in the assembly language.

One way to create an exponential operation in assembly language is to perform repetitive
multiplication of the same number. The following algorithm will perform such a task:

Algorithm

PSEUDOCODE AL PSEUDOCODE AL CODE

P:= 1 P:= 1 mov p, 1

P:= X*P

EAX:= X mov eax, x

EAX:= EAX*P mul p

P:=EAX mov p, eax

P:= X*P

EAX:= X mov eax, x

EAX:= EAX*P mul p

P:=EAX mov p, eax

:::::::::: ::::::::::: :::::::::::::::::

P:= X*P

EAX:= X mov eax, x

EAX:= EAX*P mul p

P:=EAX mov p, eax

ARITHMETIC EXPRESSIONS • 179

Example

Compute x: = 1016
4

AL PSEUDOCODE AL CODE X EAX P

P := 1h mov p, 1 1

X:=10h mov x, 10 10 1

EAX:= X mov eax, x 10 00 00 00 10 1

EAX:= EAX*P mul p 10 00 00 00 10 1

P:= EAX mov p, eax 10 00 00 00 10 10

EAX:= X mov eax, x 10 00 00 00 10 10

EAX:= EAX*P mul p 10 00 00 01 00 10

P:= EAX mov p, eax 10 00 00 01 00 100

EAX:= X mov eax, x 10 00 00 00 10 100

EAX:= EAX*P mul p 10 00 00 10 00 100

P:= EAX mov p, eax 10 00 00 10 00 1000

EAX:= X mov eax, x 10 00 00 00 10 1000

EAX:= EAX*P mul p 10 00 01 00 00 1000

P:= EAX mov p, eax 10 00 01 00 00 10000

Sum the digits of a positive integer a1a2a3 … an

180 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example

Sum the digits of 268.

PSEUDOCODE AL
PSEUDOCODE N R EAX SUM EDX T

T := 10d T := 10d 10
N:= 268d N := 268d 268 10
SUM := 0d SUM := 0d 268 0 10

R := N MOD T

EAX:= N 268 268 0 10
 EAX:=EAX ÷ T

EDX:= EAX MOD T

 R:= EDX

268 26 0 8 10

268 8 26 0 8 10

N:= N ÷ 10d N:= EAX 26 8 26 0 8 10

SUM:= SUM + R
EDX:= EDX + SUM 26 8 26 0 8 10

SUM:= EDX 26 8 26 8 8 10

R:= N MOD T

EAX:=EAX ÷ T

EDX:= EAX MOD T

 R:= EDX

26 8 2 8 6 10

26 6 2 8 6 10

N:= N ÷ 10d N:= EAX 2 6 2 8 6 10

SUM:= SUM + R
EDX:= EDX + SUM 2 6 2 8 14 10

SUM:= EDX 2 6 2 14 14 10

R:= N MOD T

 EAX:=EAX ÷ T

EDX:= EAX MOD T

 R:= EDX

2 6 0 14 2 10

2 2 0 14 2 10

N:= N ÷ 10d N:= EAX 0 2 0 14 2 10

SUM:= SUM + R
EDX:= EDX + SUM 0 2 0 14 16 10

SUM:= EDX 0 2 0 16 16 10

ARITHMETIC EXPRESSIONS • 181

PSEUDOCODE AL PSEUDOCODE AL CODE

TEN := 10d TEN := 10d mov ten, 10

N:= 268d N := 268d mov n, 268

SUM := 0 SUM := 0 mov sum, 0

R := N MOD TEN

EAX:= N mov eax, n

EDX:= 0

EAX:= EAX÷ TEN

mov edx,0

div ten

R:= EDX mov r, edx

N:= N ÷ 10 N:= EAX mov n, eax

SUM:= SUM + R
EDX:= EDX + SUM add edx, sum

SUM:= EDX mov sum, edx

R:= N MOD TEN

EDX:= 0

EAX:= EAX÷ TEN

mov edx,0

div ten

R:= EDX mov r, edx

N:= N ÷ 10 N:= EAX mov n, eax

SUM:= SUM + R
EDX:= EDX + SUM add edx, sum

SUM:= EDX mov sum, edx

R:= N MOD TEN

EDX:= 0

EAX:= EAX÷ TEN

mov edx,0

div ten

R:= EDX mov r, edx

N:= N ÷ 10 N:= EAX mov n, eax

SUM:= SUM + R
EDX:= EDX + SUM add edx, sum

SUM:= EDX mov sum, edx

182 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Algorithm

PSEUDOCODE AL PSEUDO AL CODE

SUM := 0 SUM := 0 mov sum, 0

R := N MOD TEN EAX:= N mov eax, n

EDX:= 0 mov edx, 0

EAX:= EAX ÷ TEN div ten

R:= EDX mov r, edx

N:= N ÷ 10 N:= EAX mov n, eax

SUM:= SUM + R
EDX:= EDX + SUM add edx, sum

SUM:= EDX mov sum, edx

R:= N MOD TEN EDX:= 0

EAX:= EAX ÷ TEN

mov edx, 0

div ten

R:= EDX mov r, edx

N:= N ÷ 10 N:= EAX mov n, eax

SUM:= SUM + R EDX:= EDX + SUM add edx, sum

SUM:= EDX mov sum, edx

::::::::: ::::::::: :::::::::::

R:= N MOD TEN EDX:= 0

EAX:= EAX ÷ TEN

mov edx, 0

div ten

R:= EDX mov r, edx

N:= N ÷ 10 N:= EAX mov n, eax

SUM:= SUM + R
EDX:= EDX + SUM add edx, sum

SUM:= EDX mov sum, edx

• Factorial n! = n(n–1)(n–2) … (1)

ARITHMETIC EXPRESSIONS • 183

Example

5! = 5(4)(3)(2)(1) = 120

AL PSEUDOCODE AL CODE EAX EBX

EAX := 5d mov eax, 5 00000005

EBX := 5d mov ebx, 5 00000005 00000005

EBX := EBX–1d sub ebx, 1 00000005 00000004

EAX := EAX*EBX mul ebx 00000020 00000004

EBX := EBX–1d sub ebx, 1 00000020 00000003

EAX := EAX*EBX mul ebx 00000060 00000003

EBX := EBX–1d sub ebx, 1 00000060 00000002

EAX := EAX*EBX mul ebx 00000120 00000002

EBX := EBX–1d sub ebx, 1 00000120 00000001

EAX := EAX*EBX mul ebx 00000120 0000001

Note: See last page for the complete assembly language program.

Algorithm

AL PSEUDOCODE AL CODE

EAX := N mov eax , n

EBX : = N mov ebx , n

EBX := EBX - 1 sub ebx , 1

EAX := EAX*EBX mul ebx

:::::::::::::::::::::: ::::::::::::::::::::

184 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

P(x) = anx
n + an-1 x

n-1 + … + a1x +a0

For simplicity, we will evaluate P(x) where n = 5 using the following formula:

P(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2
 + a1x + a0 = ((((a5x + a4) x + a3) x + a2) x + a1) x + a0

P(x) = anx
n + an-1 x

n-1 + … + a3x
3 + a2x

2 + a1x + a0 = (…(((anx + a4n-1) x + … + a3)x + a2) x +
a1) x + a0

Example

p(2) = 7*25 + 4*24 + 2*23 + 10*22 + 8*2 + 3 = ((((7*2 + 4)*2 + 2)*2 + 10)*2 + 8)*2 + 3 = 363

PSEUDOCODE AL PSEUDOCODE AL CODE P EAX X

X:= 2d X := 2d mov x, 2 2

P:= 7d P:= 7d mov p, 7 7 2

P:= P*X + 4d

EAX:= P mov eax, p 7 00000007 2

EAX:= EAX*X mul x 7 00000014 2

EAX:= EAX + 4d add eax, 4 7 00000018 2

P:= EAX mov p, eax 18 00000018 2

P:= P*X + 2d EAX:= P mov eax, p 18 00000018 2

EAX:= EAX*X mul x 18 00000036 2

EAX:= EAX + 2d add eax, 2 18 00000038 2

P:= EAX mov p, eax 38 00000038 2

P:= P*X + 10d

EAX:= P mov eax, p 38 00000038 2

EAX:= EAX*X mul x 38 00000076 2

EAX:= EAX + 10d add eax, 10 38 00000086 2

P:= EAX mov p, eax 86 00000086 2

ARITHMETIC EXPRESSIONS • 185

P:= P*X + 8d

EAX:= P mov eax, p 86 00000086 2

EAX:= EAX*X mul x 86 00000172 2

EAX:= EAX + 8d add eax, 8 86 00000180 2

P:= EAX mov p, eax 180 00000180 2

P:= P*X + 3d

EAX:= P mov eax, p 180 00000180 2

EAX:= EAX*X mul x 180 00000360 2

EAX:= EAX + 3d add eax, 3 180 00000363 2

P:= EAX mov p, eax 363 00000363 2

Model program

; This program computes 5!
.386
.model flat
.stack 4096
.data
factorial dword ?
.CODE
_start:
mov eax , 5
mov ebx, 5
sub ebx, 1
mul ebx
sub ebx, 1
mul ebx
sub ebx,1
mul ebx
sub ebx,1
mul ebx
mov factorial, eax
public _start
end

186 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECT
a. Write a general algorithm that can be used to convert any integer number N10 => Nb where b

< 10.

Using this algorithm, write a complete assembly language program, written for the MASM, that
will convert the integer 298710 to N6.

CHAPTER ELEVEN
CONSTRUCTING PROGRAMS IN ASSEMBLY
LANGUAGE PART I

188 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
Chapters 9 and 10 gave the basics of the assembly language code. From these basics we
need to use the syntax to construct complete programs in assembly language. Professional
programmers use several different methods for writing programs, such as flow diagrams,
pseudocode, and several others. In this chapter we will use pseudocode to guide us in writing
assembly language programs. We will employ a four-step process.

Step 1: Analyze the objectives of the program.

Step 2: Convert the objectives of the program into pseudocode algorithm.

Step 3: Convert the algorithm into AL pseudocode.

Step 4: Convert the algorithm AL pseudocode into assembly language code.

To demonstrate these four steps, we will write programs to convert integer numbers from
one base to another. In chapter 2, we developed the mathematics to convert bases. From
chapter 2, we see that to convert numbers from an arbitrary base to the base 10, we need
to evaluate

anb
n + an-1 b

n-1 + … + a3b
3 + a2b

2 + a1b + a0,

which is a polynomial of one variable.

However, in assembly language, there is no syntax that will directly allow us to perform
exponential operations. The easiest way to evaluate the above expression is to linearize the
polynomial.

Definition of linearizing a polynomial:

Given a polynomial of one variable, we write:

anb
n + an-1 b

n-1 + … + a3b
3 + a2b

2 + a1b + a0 = (…(((anx + a4n-1) b + … + a3)b + a2) b + a1) b + a0.

In the following number base conversions, we will use the four steps mentioned above.

11.1	� AN ASSEMBLY LANGUAGE PROGRAM TO
CONVERT A POSITIVE INTEGER NUMBER IN
ANY BASE B < 10 TO ITS CORRESPONDING
NUMBER IN THE BASE 10.

Step 1: Analyze the objectives of the program.

To convert between an integer number in any base b to its corresponding number in the base
10, we recall from chapter 2 the following formula:

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 189

Nb = an an-1 … an a0 ↔ anb
n + an-1 b

n-1 + … + a1b + a0 base 10.

Example:

The following manual method will convert the number 25678 to its corresponding number in
the base 10:

N8 = 25678 => ((2*8 + 5)*8 +6)*8 + 7 = ((21)*8 +6)*8 + 7 = 174*8 + 7 = 139910.

To convert the number 25678 to the base 10, we first need to write a sample program in
pseudocode and assembly language to capture the digits 2, 5, 6, and 7 from the number. The
following programs will perform such a task.

Step 2: Convert the objectives of the program into a pseudocode algorithm.

Program: Capture the digits of 25678.

PSEUDOCODE N A D

N:= 2567 2567

D:= 1000 2567 1000

A:= N ÷ D 2567 2 1000

N:= N MOD D 567 2 1000

D:= 100 567 2 100

A:= N ÷ D 567 5 100

N:= N MOD D 67 5 100

D:= 10 67 5 10

A:= N ÷ D 67 6 10

N:= N MOD D 7 6 10

D:= 1 7 6 1

A:= N ÷ D 7 7 1

N:= N MOD D 0 7 0

190 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 3: Convert the pseudocode algorithm into AL pseudocode.

PSEUDOCODE AL PSEUDOCODE N A D EAX EDX

N:= 2567 N:= 2567 2567

D:= 1000 D:=1000 2567 1000

A:= N ÷ D

EAX:= N 2567 1000 2567

EAX:= EAX ÷ D 2567 1000 2

EDX:= EAX MOD D 2567 1000 2 567

A:= EAX 2567 2 1000 2 567

N:= N MOD D N:= EDX 567 2 1000 2 567

D:= 100 D:= 100 567 2 100 2 567

A:= N ÷ D

EAX:=N 567 2 100 567 567

EAX:=EAX ÷ D 567 2 100 5 567

EDX:= EAX MOD D 567 2 100 5 67

A:=EAX 567 5 100 5 67

N:= N MOD D N:= EDX 67 5 100 5 67

D:= 10 D:= 10 67 5 10 5 67

A:= N ÷ D EAX:=N 67 5 10 67 67

EAX:=EAX ÷ D 67 5 10 6 67

EDX:= EAX MOD D 67 5 10 6 7

A:=EAX 67 6 10 6 7

N:= N MOD D N:= EDX 7 6 10 6 7

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 191

D:= 1 D:= 1 7 6 1 6 7

A:= N ÷ D

EAX:=N 7 6 1 7 7

EAX:=EAX ÷ D 7 6 1 7 7

EDX:= EAX MOD D 7 6 1 7 7

A:=EAX 7 7 1 7 7

N:= N MOD D N:= EAX 7 7 1 7 7

Step 4: Convert the AL pseudocode algorithm into assembly language code.

PSEUDOCODE AL PSEUDOCODE ASSEMBLY LANGUAGE

N:= 2567 N:= 2567 mov n, 2567

D:= 1000 D:=1000 mov d,1000

A:= N ÷ D EAX:= N mov eax, n

EAX:= EAX ÷ D mov edx, 0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

D:= 100 D:= 100 mov d, 100

A:= N ÷ D

EAX:=N mov eax, n

EAX:=EAX ÷ D mov edx, 0

EDX:= EAX MOD D div d

A:=EAX mov a, eax

192 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

N:= N MOD D N:= EDX mov n, edx

D:= 10 D:= 10 mov d, 10

A:= N ÷ D

EAX:=N mov eax, n

EAX:=EAX ÷ D mov edx, 0

EDX:= EAX MOD D div d

A:=EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

D:= 1 D:= 1 mov d,1

A:= N ÷ D

EAX:=N mov eax, n

EAX:=EAX ÷ D mov edx, 0

EDX:= EAX MOD D div d

A:=EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

Note: See model assembly language program. At the end of this chapter.

Step 1: Analyze the objectives of the program.

Program: Write a sample program to compute

N8 = 25678 => N = ((2*8 + 5)*8 +6)*8 + 7 = 139910.

Step 2: Convert the objectives of the program into pseudocode algorithm.

PSEUDOCODE N A SUM D

N:= 2567 2567

SUM:= 0 2567 0

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 193

D:= 1000 2567 0 1000

A:= N ÷ D 2567 2 0 1000

N:= N MOD D 567 2 0 1000

SUM:= SUM + A 567 2 2 1000

SUM:= SUM*8 567 2 16 1000

D:= 100 567 2 16 100

A:= N ÷ D 567 5 16 100

N:= N MOD D 67 5 16 100

SUM:= SUM + A 67 5 21 100

SUM:= SUM*8 67 5 168 100

D:= 10 67 5 168 10

A:= N ÷ D 67 6 168 10

N:= N MOD D 7 6 168 10

SUM:= SUM + A 7 6 174 10

SUM:= SUM*8 7 6 1392 10

DIVISOR:= 1 7 6 1392 1

A:= N ÷ D 7 7 1392 1

SUM:= SUM + A 7 7 1399 1

194 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 3: Convert the algorithm pseudocode into AL pseudocode.

PSEUDOCODE AL
PSEUDOCOD N A SUM D EAX EDX E

N:= 2567 N:= 2567 2567

E:= 8 E:= 8 2567 8

SUM:= 0 SUM:= 0 2567 0 8

D:= 1000 D:= 1000 2567 0 1000 8

A:= N ÷ D

EAX:= N 2567 0 1000 2567 8

EAX:= EAX÷D 2567 0 1000 2 8

EDX:= EAX MOD D 2567 0 1000 2 567 8

A:= EAX 2567 2 0 1000 2 567 8

N:= N MOD D N:= EDX 567 2 0 1000 2 567 8

SUM:= SUM + A

EAX:= SUM 567 2 0 1000 0 567 8

EAX:= EAX + A 567 2 0 1000 2 567 8

SUM:= EAX 567 2 2 1000 2 567 8

SUM:= SUM*E

EAX:= SUM 567 2 2 1000 2 567 8

EAX:= EAX*E 567 2 2 1000 16 567 8

SUM:= EAX 567 2 16 1000 16 567 8

D:= 100 D:= 100 567 2 16 100 16 567 8

A:= N ÷ D

EAX:= N 567 2 16 100 567 567 8

EAX:= EAX ÷ D 567 2 16 100 5 567 8

EDX:= EAX MOD D 567 2 16 100 5 67 8

A:= EAX 567 5 16 100 5 67 8

N:= N MOD D N:= EDX 67 5 16 100 5 67 8

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 195

SUM:= SUM + A

EAX:= SUM 67 5 16 100 16 67 8

EAX:= EAX + A 67 5 16 100 21 67 8

SUM:= EAX 67 5 21 100 21 67 8

SUM:= SUM*E

EAX:= SUM 67 5 21 100 21 67 8

EAX:= EAX*E 67 5 21 100 168 67 8

SUM:= EAX 67 5 168 100 168 67 8

D:= 10 D:= 10 67 5 168 10 168 67 8

A:= N ÷ D EAX:= N 67 5 168 10 67 67 8

EAX:= EAX÷D 67 5 168 10 6 67 8

EDX:= EAX MOD D 67 5 168 10 6 7 8

A:= EAX 67 6 168 10 6 7 8

N:= N MOD D N:= EDX 7 6 168 10 6 7 8

SUM:= SUM + A

EAX:= SUM 7 6 168 10 168 7 8

EAX:= EAX + A 7 6 168 10 174 7 8

SUM:= EAX 7 6 174 10 174 7 8

SUM:= SUM*E

EAX:= SUM 7 6 174 10 174 7 8

EAX:= EAX*E 7 6 174 10 1392 7 8

SUM:= EAX 7 6 1392 10 1392 7 8

D:= 1 D:= 1 7 6 1392 1 1392 7 8

A:= N ÷ D

EAX:= N 7 6 1392 1 7 7 8

EAX:= EAX ÷ D 7 6 1392 1 7 7 8

EDX:= EAX MOD D 7 6 1392 1 7 0 8

A:= EAX 7 7 1392 1 7 0 8

SUM:= SUM + A

EAX:= SUM 7 7 1392 1 1392 0 8

EAX:= EAX + A 7 7 1392 1 1399 0 8

SUM:= EAX 7 7 1399 1 1399 0 8

196 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 4: Convert the algorithm AL pseudocode into assembly language code.

PSEUDOCODE AL PSEUDOCODE AL CODE
N:= 2567 N:= 2567 mov n, 2567

E:= 8 E:= 8 mov e, 8

SUM:= 0 SUM:= 0 mov sum, 0

D:= 1000 D:= 1000 mov d, 1000

A:= N ÷ D

EAX:= N mov eax, n

EAX:= EAX ÷ D mov edx, 0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

SUM:= SUM + A

EAX:= SUM mov eax, sum

EAX:= EAX + A add eax, a

SUM:= EAX mov sum, eax

SUM:= SUM*E

EAX:= SUM mov eax, sum

EAX:= EAX*E mul e

SUM:= EAX mov sum, eax

D:= 100 D:= 100 mov d, 100

A:= N ÷ D

EAX:= N mov eax, n

EAX:= EAX ÷ D mov edx, 0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

SUM:= SUM + A

EAX:= SUM mov eax, sum

EAX:= EAX + A add eax, a

SUM:= EAX mov sum, eax

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 197

SUM:= SUM*E

EAX:= SUM mov eax, sum

EAX:= EAX*E mul e

SUM:= EAX mov sum, eax

D:= 10 D:= 10 mov d, 10

A:= N ÷ D

EAX:= N mov eax, n

EAX:= EAX ÷ D mov edx, 0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

SUM:= SUM + A

EAX:= SUM mov eax, sum

EAX:= EAX + A add eax, a

SUM:= EAX mov sum, eax

SUM:= SUM*E

EAX:= SUM mov eax, sum

EAX:= EAX*E mul e

SUM:= EAX mov sum, eax

D:= 1 D:= 1000 mov d, 100

A:= N ÷ D

EAX:= N mov eax, n

EAX:= EAX ÷ D mov edx,0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

SUM:= SUM + A

N:= EDX mov eax, sum

EAX:= SUM add eax, a

EAX:= EAX + A mov sum, eax

198 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises

1.	 Use the manual method to linearize the number 2304516 to convert it
to its corresponding number in the base 10.

2.	 Use the manual method to linearize the number 1111012 to convert it
to its corresponding number in the base 10.

11.2	� AN ALGORITHM TO CONVERT ANY INTEGER
NUMBER IN THE BASE 10 TO A CORRESPONDING
NUMBER IN THE BASE B < 10

Step 1: Analyze the objectives of the program.

Using the Euclidean division theorem, we now review how to use the manual method to
convert a number in the base 10 to a number in the base b.

Step 1: We want to write N in the form: N = anb
n + an – 1 b

n – 1 + … + a1b + a0.

Step 2: N = Qb + R = (anb
n –1 + an – 1 b

n – 2 + … + a1) b + a0.

Here, Q = anb
n-1 + an-1 b

n - 2 + … + a2b + a1 = (anb
n-2 + an-1 b

n-3 + … + a2) b + a1 and R = a0.

Step 3: Set N = Q.

	 Q = Q1b + R1 = (anb
n – 2 + an – 1 b

n – 3 + … + a2) b + a1

	 where

	 Q1 = anb
n – 2 + an – 1 b

n – 3 + … + a2

	 R1 = a1

Step 4: Continue in this manner, until Qn = 0.

Example

Convert the following decimal numbers to the specified base.

1.	 1625 => N8

Step 1: 1625 = (1625 ÷ 8)*8 + 1 = 203*8 + 1

a0 = 1

Step 2: 203 = (203 ÷ 8) *8 + 3 = 25*8 + 3

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 199

a1 = 3

Step 3: 25 = (25 ÷ 8)*8 + 1 = 3*8 + 1

a2 = 1

Step 4: 3 = (3 ÷ 8)*8 + 3 = 3

a3 = 3

Therefore, 1625 => N8 = 3*83 + 1*82 + 3*8 + 1 => N8 = 31318

Program: Convert the integer number 1625 to the base 8.

Step 2: Convert the objectives of the program into pseudocode algorithm.

PSEUDOCODE N SUM TEN MUL BASE R

BASE := 8 8

N := 1625 1625 8

SUM := 0 1625 0 8

MUL := 1 1625 0 1 8

TEN := 10 1625 0 10 1 8

R := N MOD BASE 1625 0 10 1 8 1

N:= N ÷ BASE 203 0 10 1 8 1

R := R*MUL 203 0 10 1 8 1

SUM:= SUM + R 203 1 10 1 8 1

MUL:= MUL*TEN 203 1 10 10 8 1

R := N MOD BASE 203 1 10 10 8 3

N:= N ÷ BASE 25 1 10 10 8 3

R := R*MUL 25 1 10 10 8 30

SUM:= SUM + R 25 31 10 10 8 30

200 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MUL:= MUL*TEN 25 31 10 100 8 30

R := N MOD BASE 25 31 10 100 8 1

N:= N ÷ BASE 3 31 10 100 8 1

R := R*MUL 3 31 10 100 8 100

SUM:= SUM + R 3 131 10 100 8 100

MUL:= MUL*TEN 3 131 10 1000 8 100

R := N MOD BASE 3 131 10 1000 8 3

N:= N ÷ BASE 0 131 10 1000 8 3

R := R*MUL 0 131 10 1000 8 3000

SUM:= SUM + R 0 3131 10 1000 8 3000

Step 3: Convert the algorithm pseudocode into AL pseudocode.

PSEUDOCODE AL
PSEUDOCODE N S M R EAX EDX

B := 8 B := 8

N := 1625 N := 1625 1625

S:= 0 S:= 0 1625 0

M:= 1 M:= 1 1625 0 1

T:= 10 T:= 10 1625 0 1

R := N MOD B

EAX:= N 1625 0 1 1625

EAX:= EAX ÷ B 1625 0 1 203

EDX:= EAX MOD B 1625 0 1 203 1

R:= EDX 1625 0 1 1 203 1

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 201

N:= N ÷ B N:= EAX 203 0 1 1 203 1

R := R*M

EAX:= R 203 0 1 1 1 1

EAX:= EAX*M 203 0 1 1 1 1

R:= EAX 203 0 1 1 1 1

S:= S + R

EAX:= S 203 0 1 1 0 1

EAX:= EAX+ R 203 0 1 1 1 1

S:= EAX 203 1 1 1 1 1

M:= M*T

EAX:= M 203 1 1 1 1 1

EAX:= EAX*T 203 1 1 1 10 1

M:= EAX 203 1 10 1 10 1

R := N MOD B

EAX:= N 203 1 10 1 203 1

EAX:= EAX ÷ B 203 1 10 1 25 1

EDX:= EAX MOD B 203 1 10 1 25 3

R:= EDX 203 1 10 3 25 3

N:= N ÷ B N:= EAX 25 1 10 3 25 3

R := R*M

EAX:= R 25 1 10 3 3 3

EAX:= EAX*M 25 1 10 3 30 3

R:= EAX 25 1 10 30 30 3

S:= S + R

EAX:= S 25 1 10 30 1 3

EAX:= EAX + R 25 1 10 30 31 3

S:= EAX 25 31 10 30 31 3

202 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

M:= M*T

EAX:= M 25 31 10 30 10 3

EAX:= EAX*T 25 31 10 30 100 3

M:= EAX 25 31 100 30 100 3

R := N MOD B

EAX:= N 25 31 100 30 25 3

EAX:= EAX ÷ B 25 31 100 30 3 3

EDX:= EAX MOD B 25 31 100 30 3 1

R:= EDX 25 31 100 1 3 1

N:= N ÷ B N:= EAX 3 31 100 1 3 1

R := R*M

EAX:= R 3 31 100 1 1 1

EAX:= EAX*M 3 31 100 1 100 1

R:= EAX 3 31 100 100 100 1

S:= S + R

EAX:= S 3 31 100 100 31 1

EAX:= EAX + R 3 31 100 100 131 1

S:= EAX 3 131 100 100 131 1

M:= M*T

EAX:= M 3 131 100 100 100 1

EAX:= EAX*T 3 131 100 100 1000 1

M:= EAX 3 131 1000 100 1000 1

R := N MOD B

EAX:= N 3 131 1000 100 3 1

EAX:= EAX ÷ B 3 131 1000 100 0 1

EDX:= EAX MOD B 3 131 1000 100 0 3

R:= EDX 3 131 1000 3 0 3

N:= N ÷ B N:= EAX 0 131 1000 3 0 3

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 203

R := R*M

EAX:= R 0 131 1000 3 3 3

EAX:= EAX*M 0 131 1000 3 3000 3

R:= EAX 0 131 1000 3000 3000 3

S:= S + R

EAX:= S 0 131 1000 3000 131 3

EAX:= EAX + R 0 131 1000 3000 3131 3

S:= EAX 0 3131 1000 3000 3131 3

1625 => 31318

Step 4: Convert the algorithm AL pseudocode into assembly language code.

PSEUDOCODE AL PSEUDOCODE AL CODE

B := 8 B := 8 mov b, 8

N := 1625 N := 1625 mov n, 1625

S:= 0 S:= 0 mov s, 0

M:= 1 M:= 1 mov m, 1

T:= 10 T:= 10 mov t, 10

R := N MOD B

EAX:= N mov eax, n

EAX:= EAX ÷ B

EDX:= EAX MOD B

mov edx,0

div b

R:= EDX mov r, edx

N:= N ÷ B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

204 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M*T

EAX:= M mov eax, m

EAX:= EAX*T mul t

M:= EAX mov m, eax

R := N MOD B

EAX:= N mov eax, n

EAX:= EAX ÷ B

EDX:= EAX MOD B

mov edx, 0

div b

R:= EDX mov r, edx

N:= N ÷ B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M*T
EAX:= M mov eax, m

EAX:= EAX*T mul t

M:= EAX mov m, eax

R := N MOD B

EAX:= N mov eax, n

EAX:= EAX ÷ B

EDX:= EAX MOD B

mov edx,0

 div b

R:= EDX mov r, edx

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART I • 205

N:= N ÷ B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M*T

EAX:= M mov eax, m

EAX:= EAX*T mul t

M:= EAX mov m, eax

R := N MOD B

EAX:= N mov eax, n

EAX:=EAX ÷ B

EDX:= EAX MOD B

mov edx,0

div b

R:= EDX mov r, edx

N:= N ÷ B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

Model Assembly Language Program: Capture the digits of 25678 (see the program in
section 11.1).

206 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

; This program capture the digits of 25678

.386

.model flat

.stack 4096

.data
n dword ?
d dwoprd ?
a dword ?

.code
_start:
mov n, 2567
mov d, 1000
mov eax, n
div d
mov a, eax
mov n, edx
mov d, 100
mov eax, n
div d
mov a, eax
mov n, edx
mov d, 10
mov eax, n
div d
mov a, eax
mov n, edx

mov d, 1
mov eax, n
div d
mov a, eax
mov n, edx

public _start
end

PROJECT
Modify the general algorithm in chapter 10 with appropriate while statement(s) to make the
program as general as possible.

CHAPTER TWELVE
BRANCHING AND THE IF-STATEMENTS

208 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
We are now ready to study the necessary assembly language instructions to convert the
while-conditional and if-then pseudocodes, defined in chapters 5 and 6, to assembly code. To
do this conversion, we need two types of jump instructions: conditional jump instructions and
unconditional jump instructions.

12.1	 �CONDITIONAL JUMP INSTRUCTIONS FOR
SIGNED ORDER

The basic form in assembly language consists of two instructions:

•	 The compare instructions: cmp operand1, operand2

•	 The conditional jump instructions: jump j condition label

The above instruction are always written in the above order. The operands can be numeric
values, registers, or variables.

The compare (cmp) instructions
The following table gives the type of operand1 and operand2 that are allowed. Additional
jump instructions in assembly language will be discussed in later chapters.

OPERAND1 OPERAND2

register 8 bits (byte)
numeric byte

register 8 bits

variable byte

register 16 bits (word)

numeric byte

numeric word

register 16 bits (word)

variable word

BRANCHING AND THE IF-STATEMENTS • 209

register 32 bits (dword)

numeric byte

numeric dword

register 32 bits (dword)

variable dword

variable byte: 8 bits (byte)
numeric byte

register 8 bits (byte)

variable word: 16 bits (word)

numeric byte

numeric word

register word

variable dword: 32 bits

numeric byte

numeric dword

register 32 bits

AL

AX

EAX

numeric byte

numeric word

numeric dword

Note: The instruction cmp x,y are not valid in assembly language.

Examples:

1.	

	 x dword 236

	 cmp eax, x

2.	

	 cmp ebx, eax

210 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.	

	 cmp x, eax

4.	

	 cmp x, 25767h

Exercises

1.	 Which of the following are valid? If not, indicate why.

a.	 b.	 c.	 d.	 e.
x dword 456h	 cmp eax, x	 cmp x, eax	 cmp x, 235	 cmp 235, x
y dword 44444h
cmp x, y

The conditional jump instructions for signed order numbers
To perform the pseudocode WHILE statement in assembly language, we now introduce the
conditional jump instructions for signed order numbers.

From chapter 8, the following are the signed order of the numbers for the three types of
rings:

The binary ring (8 bits)

R10: 128 < 129 < 130 < … < 254 < 255 < 0 < 1 < 2 < …< 126 < 127

R8: 80 < 81 < 82 < … < FE < FF < 00 < 01 < 02 < … < 7E < 7F

The word ring (16 bits)

R10: 32768 < 32769 <32770 < … < 65535 < 0 < 1 < 2 < … < 32766 < 32767

R16: 80 00 < 80 01 < 80 02 < … < FF FF < 00 00 < 00 01 < 00 02 < … < 7F FE < 7F FF

The dword ring (32 bits)

R10 : 2147483648 < 2147483649 < … < 4,294,967,295 < 0 < 1< … < 2147483647

R32 : 80 00 00 00 < 80 00 00 01 < … < FF FF FF FF < 00 00 00 00 < … < 7F FF FF FF

The following is a table of the conditional jumps for the signed order of rings in assembly
language.

BRANCHING AND THE IF-STATEMENTS • 211

Mnemonic1 Description

je jump to the label if operand1 = operand 2;
jump if equal to

jne jump to the label if operand1 ≠ operand 2;
jump if not equal to

jnge jump to the label if operand1 < operand 2;
jump if not greater or equal

jnle jump to the label if operand1 > operand 2;
jump if not less than or equal

jge jump to the label if operand1 ≥ operand 2;
jump if greater than or equal

jle jump to the label if operand1 ≤ operand 2;
jump if less than or equal

jl jump to the label if operand1 < operand 2;
jump if less than

jnl jump to the label if operand1 ≥ operand 2;
jump if not less than

jg jump to the label if operand1 > operand 2;
jump if greater than

jng jump to the label if operand1 ≤ operand 2;
jump if not greater than

1.	 All of the above jump instructions must be preceded by the cmp
instruction.

Examples:

1.	

	 mov al,10; al is operand1

	 cmp al,2; 2 is operand2

	 je xyz; since the contents of al is not equal to 2, a jump does not occur.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

212 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	

	 mov al, 10; al is operand1

	 cmp al,2 ; 2 is operand2

	 jne xyz ; since the contents of al is not equal to 2, a jump occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

3.	

	 mov ax,32770 ; ax is operand1

	 cmp ax,2; 2 is operand2

	 jnge xyz ; since the contents of ax is not greater than 2, a jump does occur.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

4a.	

	 mov eax,80000000h; eax is operand1,

	 cmp al,2; 2 is operand2

	 jge xyz ; since the contents of al is not greater than or equal to 2, a jump
does not occur

	 occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

4b.	

	 mov al,0 ; al is operand1

	 cmp al,129; 129 is operand2

	 jge xyz ; since the contents of al is greater than or equal to 129, a jump
occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

BRANCHING AND THE IF-STATEMENTS • 213

5a.	

	 mov al,255 ; al is operand1

	 cmp al,2; 2 is operand2

	 jle xyz ; since the contents of al is less than or equal to 2, a jump
occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

5b.	

	 mov al,2 ; al is operand1

	 cmp al,255; 255 is operand2

	 jle xyz ; since the contents of al is greater than 255, a jump does not
occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

6.	

	 mov al,10 ; al is operand1

	 cmp al,2; 2 is operand2

	 jnle al ; since the contents of al is not less than or equal to 2, a jump
occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

7.	

	 mov al,128 ; al is operand1

	 cmp al,255; 255 is operand2

	 jl xyz ; since the contents of al is less than 255, a jump occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

214 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8.	

	 mov al,10 ; al is operand1 cmp al,2; 2 is operand2

	 jnl xyz ; since the contents of al is not less than 2, a jump occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

9.	

	 mov al,10 ; al is operand1

	 cmp al,2;	 2 is operand2

	 jg xyz ; since the contents of al is greater than 2, a jump occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

10.	

	 mov al,10 ; al is operand1

	 cmp al,2; 2 is operand2

	 jng xyz ; since the contents of al is greater than 2, a jump does
not occur.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

Exercises: Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump?

1.	 cmp al, n

	 je xyz

	 xyz:

2.	 cmp al,n

	 jne xyz

	 xyz:

BRANCHING AND THE IF-STATEMENTS • 215

3.	 cmp al, n

	 jnge xyz

	 xyz:

4.	 cmp al, n

	 jge xyz.

	 xyz:

5.	 cmp al, n

	 jle xyz.

	 xyz:

6.	 cmp al, n

	 jnle xyz

	 xyz:

7.	 cmp al, n

	 jl xyz:

	 xyz:

8.	 cmp al, n

	 jnl xyz

	 xyz:

9.	 cmp al, n

	 jg xyz

	 xyz:

216 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The unconditional jump instruction

The form of the unconditional jump instruction is jmp label; a jump will automatically occur.

Example:

jmp xyz ;

:::::::::::::::::: ; instructions

xyz: ; a label

The conditional jump instructions for the natural order (unsigned)

From chapter 8, the following are the natural order of the numbers for the three types
of rings:

The binary ring (8 bits)

R10: 0 < 1 < 2 < … < 15 < 16 < 17 < … < 240 < … < 254 < … < 255

R8: 00 < 01 < 02 < … < 0F < 10 < 11 < …< F0 < … < FE < … < FF

The word ring (16 bits)

R10: 0 < 1 < 2 < … < 255 < 256 < … < 511 < … < 65280 < …< 65534 < 65535

R16: 00 00 < 00 01 < 00 02 < …< 00 FF < 01 00 < …< 01 FF <… < FF 00 < … < FF FE < FF FF

The dword ring (32 bits)

R10: 0 < … < 255 < … < 65535 < … < 16777215 < … < 2147483647

R10: 00 00 00 00 < 00 00 00 FF < … < 00 00 FF FF < … < FF FF FF < … < FF FF FF FF

The following is a table of the conditional jumps for the natural order of rings (unsigned) in
assembly language.

BRANCHING AND THE IF-STATEMENTS • 217

Mnemonic Description

je jump to the label if operand1 = operand 2;
jump if equal to

jne jump to the label if operand1 ≠ operand 2;
jump if not equal to

jae jump to the label if operand1 ≥ operand 2;
jump if greater than or equal

ja jump to the label if operand1 > operand 2;
jump if greater than

jbe jump to the label if operand1 ≤ operand 2;
jump if less than or equal

jna jump to the label if operand1 ≤ operand 2;
jump if less than or equal

jb jump to the label if operand1 < operand 2;
jump if less than

jnb jump to the label if operand1 ≥ operand 2;
jump if greater than or equal

jnae jump to the label if operand1 < operand 2;
jump if less than

jnbe jump to the label if operand1 > operand 2;
jump if greater than

Examples:

1.	

	 mov al,10 ; al is operand1

	 cmp al,2; 2 is operand2

	 je xyz ; since the contents of al is not equal to 2, a jump does not occur.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

218 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	

	 mov al,10 ; al is operand1

	 cmp al,2; 2 is operand2

	 jne xyz ; since the contents of al is not equal to 2, a jump occurs.

	 :::::::::::::::::: ; instructions

	 xyz: ; a label

3.	

	 mov al,210 ; al is operand1

	 cmp al,2; 2 is operand2

	 ja xyz ; since the contents of al is greater than 2, a jump occurs.

	 :::::::::::::::::: ; instructions

	 xyz : ; a label

4.	

	 mov al, 10; al is operand1

	 cmp al, 2; 2 is operand2

	 jae xyz; since the contents of al is greater than or equal to 2, a jump
occurs.

	 :::::::::::::::::::::::::::::: ; instructions

	 xyz: ; a label

5.	

	 mov al, 2; al is operand1

	 cmp al, 2; 255 is operand2

	 jbe xyz; since the contents of al is less than or equal to 255, a jump
occurs.

	 :::::::::::::::::::::::::::::: ; instructions

	 xyz: ; a label

BRANCHING AND THE IF-STATEMENTS • 219

6.	

	 mov al, 128; al is operand1

	 cmp al, 255; 255 is operand2

	 jbe xyz ; since the contents of al is less than 255, a jump occurs.

	 :::::::::::::::::::::::::::::: ; instructions

	 xyz; ; a label

7.	

	 mov al, 10; al is operand1

	 cmp al, 2; 2 is operand2

	 je xyz; since the contents of al is not equal to 2, a jump does not occurs.

	 :::::::::::::::::::::::::::::: ; instructions

	 xyz; ; a label

8.	

	 mov al, 10; al is operand1

	 cmp al, 2; 2 is operand2

	 jne xyz; since the contents of al is not equal to 2, a jump occurs.

	 :::::::::::::::::::::::::::::: ; instructions

	 xyz ; ; a label

Exercises: Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump?

1.	

	 cmp al, n

	 jbe xyz

	 xyz:

2.	

	 cmp al, n

	 jnb xyz

	 xyz:

220 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.	

	 cmp al, n

	 ja xyz

	 xyz:

4.	

	 cmp al, n

	 jnae xyz

	 xyz:

5.	

	 cmp al, n

	 jae xyz

	 xyz:

6.	

	 cmp al, n

	 je xyz

	 xyz:

7.	

	 cmp al, n

	 jb xyz

	 xyz:

8.	

	 cmp al, n

	 jnb xyz

	 xyz:

9.	

	 cmp al, n

	 jnbe xyz

	 xyz:

BRANCHING AND THE IF-STATEMENTS • 221

12.2	 �CONVERTING THE WHILE-CONDITIONAL
STATEMENTS TO ASSEMBLY LANGUAGE

We will use the pseudocode examples from chapter 6 to demonstrate how the jump instruc-
tions can be used to convert while statements.

Example:
Write a partial program that will sum the numbers from 1 to 6.

PSEUDOCODE CYCLE OF INSTRUCTIONS TOTAL N

N := 1 N := 1 1

TOTAL := 0 TOTAL := 0 0 1

WHILE N <= 6 WHILE N <= 6 0 1

BEGIN BEGIN 0 1

TOTAL := TOTAL + N TOTAL := TOTAL + N 1 1

N := N + 1 N := N + 1 1 2

TOTAL := TOTAL + N 3 2

N := N + 1 3 3

TOTAL := TOTAL + N 6 3

N := N + 1 6 4

TOTAL := TOTAL + N 10 4

N := N + 1 10 5

TOTAL := TOTAL + N 15 5

N := N + 1 15 6

TOTAL := TOTAL + N 21 6

N := N + 1 21 7

END END 21 7

222 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE

AL PSEUDOCODE
CYCLE OF

INSTRUCTION TOTAL N EAX

N := 1 N := 1 1

TOTAL := 0 TOTAL := 0 0 1

WHILE N <= 6 WHILE N <= 6 0 1

BEGIN BEGIN 0 1

TOTAL := TOTAL + N

EAX := TOTAL 0 1 0

EAX:= EAX + N 0 1 1

TOTAL := EAX 1 1 1

N := N + 1

EAX := N 1 1 1

EAX := EAX + 1 1 2 2

N:= EAX 1 2 2

EAX := TOTAL 1 2 1

EAX:= EAX + N 2 2 3

TOTAL := EAX 3 2 3

EAX := N 3 2 2

EAX := EAX + 1 3 2 3

N:= EAX 3 3 3

EAX := TOTAL 3 3 3

EAX:= EAX + N 3 3 6

TOTAL := EAX 6 3 6

EAX := N 6 3 3

BRANCHING AND THE IF-STATEMENTS • 223

EAX := EAX + 1 6 3 4

N:= EAX 6 4 4

EAX := TOTAL 6 4 6

EAX:= EAX + N 6 4 10

TOTAL := EAX 10 4 10

EAX := N 10 4 4

EAX := EAX + 1 10 4 5

N:= EAX 10 5 5

EAX := TOTAL 10 5 10

EAX:= EAX + N 10 5 15

TOTAL := EAX 15 5 15

EAX := N 15 5 5

EAX := EAX + 1 15 5 6

N:= EAX 15 6 6

EAX := TOTAL 15 6 15

EAX:= EAX + N 15 6 21

TOTAL := EAX 21 6 21

EAX := N 21 6 6

EAX := EAX + 1 21 6 7

N:= EAX 21 7 7

END END 21 7 7

224 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE AL PSEUDOCODE ASSEMBLY CODE

N:= 1 N := 1 mov n, 1

TOTAL:= 0 TOTAL := 0 mov total, 0

WHILE N <= 6 WHILE N <= 6 while: cmp n, 6

BEGIN BEGIN jg end1

TOTAL:= TOTAL + N

EAX := TOTAL mov eax, total

EAX:= EAX + N add eax, n

TOTAL := EAX mov total, eax

N:= N + 1

EAX := N mov eax, n

EAX := EAX + 1 add eax, 1

N:= EAX mov n, eax

END END jmp while
end 1:

Exercises

1.	 Rewrite the above program in a AL pseudocode where only registers
(not variables) are used.

2.	 Modify the above program by replacing jg with jle.

3.	 Modify the above program by writing an assembly language algorithm
that would allow the user to sum arbitrary numbers 1 + 2 + 3 + … + m.

4.	 For the number 1 + 2 + 3+ … + n = n(n + 1)/2, modify the above
program to check if the program is adding correctly and inform the
user if it is or is not working correctly.

5.	 Write an assembly language pseudocode algorithm to compute
12 + 22 + 32 + … + M2 for a given positive integer N.

BRANCHING AND THE IF-STATEMENTS • 225

Example

Program: Compute the length of the number 431.

INSTRUCTIONS
CYCLE OF

INSTRUCTIONS N COUNT

N: = 431 N := 431 431

COUNT := 0 COUNT := 0 431 0

WHILE N <> 0 WHILE N <>0 431 0

BEGIN BEGIN 431 0

COUNT := COUNT + 1 COUNT := COUNT + 1 431 1

N := N ÷ 10 N := N÷ 10 43 1

COUNT := COUNT + 1 43 2

N := N÷ 10 4 2

COUNT := COUNT + 1 4 3

N := N ÷10 0 3

END END 0 3

PSEUDOCODE
AL PSEUDOCODE

CYCLE N COUNT EAX EDX

TEN:= 10 TEN:= 10

N: = 431 N := 431 431

COUNT := 0 COUNT := 0 431 0

WHILE N <> 0 WHILE N <>0 431 0

BEGIN BEGIN 431 0

226 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

COUNT := COUNT + 1

EAX: = COUNT 431 0 0

EAX:= EAX + 1 431 0 1

COUNT:= EAX 431 1 1

N := N ÷ TEN

EAX:= N 431 1 431

EAX:= EAX ÷ TEN 431 1 43

EDX:= EAX MOD10 431 1 43 1

N:= EAX 43 1 43 1

EAX: = COUNT 43 1 1 1

EAX:= EAX + 1 43 1 2 1

COUNT:= EAX 43 2 2 1

EAX:= N 43 2 43 1

EAX:= EAX ÷ TEN 43 2 4 1

EDX:= EAX MOD10 43 2 4 3

N:= EAX 4 2 4 3

EAX: = COUNT 4 2 2 3

EAX:= EAX + 1 4 2 3 3

COUNT:= EAX 4 3 3 3

EAX:= N 4 3 4 3

EAX:= EAX ÷ TEN 4 3 0 4

N:= EAX 0 3 0 4

END 0 3 0 4

BRANCHING AND THE IF-STATEMENTS • 227

PSEUDO
INSTRUCTIONS AL PSEUDOCODE ASSEMBLY CODE

TEN:= 10 TEN:= 10 mov ten, 10

N: = 431 N: = 431 mov n, 431

COUNT := 0 COUNT := 0 mov count, 0

WHILE N <> 0 WHILE N <> 0 while: cmp n, 0

BEGIN BEGIN begin: je end1

COUNT:= COUNT + 1
EAX: = COUNT mov eax, count

EAX:= EAX + 1 add eax, 1

COUNT:= EAX mov count, eax

N ÷ TEN

EAX:= N mov eax, n

EAX:= EAX ÷ TEN
mov edx, 0

div ten

N:= EAX mov n, eax

END END jmp while
end1:

12.3	 IF-THEN STATEMENTS
The assembly language does not have an IF-THEN statement as defined in higher programming
languages. However, we can obtain many of the same results by using the jump instructions as
defined above. The following table gives instructions on how to emulate many of the IF-THEN
statements for signed numbers.

228 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO IF-THEN
INSTRUCTIONS JUMP INSTRUCTIONS

IF operand1 > oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jng end
(instructions)

end:

IF operand1 ≥ oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jnge end
(instructions)

end:

IF operand1 = oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jne end
(instructions)

end:

IF operand1 ≠ oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: je end
(instructions)

end:

IF operand1 < oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jnl end
(instructions)

end:

IF operand1 ≤ oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jg end
(instructions)

end:

The following table gives instructions on how to emulate many of the if-then statements for
unsigned numbers.

BRANCHING AND THE IF-STATEMENTS • 229

PSEUDO IF-THEN
INSTRUCTIONS JUMP INSTRUCTIONS

IF operand1 > oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jbe end
(instructions)

end:

IF operand1 ≥ oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jb end
(instructions)

end:

IF operand1 = oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jne end
(instructions)

end:

IF operand1 ≠ oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: je end
(instructions)

end:

IF operand1 < oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jae end
(instructions)

end:

IF operand1 ≤ oprand 2 THEN
BEGIN

(instructions)
END

cmp operand1, operand 2
begin: jnbe end
(instructions)

end:

Example

1.	 The following program will perform the following tasks:

Task 1: Check if the number 12103 is divisible by 7.

Task 2: If divisible by 7, then place 0 in x.

230 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO-INSTRUCTIONS Y X S

X := 12103 12103

S := 7 12103 7

Y := (X ÷ S)*S 12103 12103 7

IF X = Y THEN 12103 12103 7

BEGIN 12103 12103 7

X := 0 12103 0 7

END 12103 0 7

PSEUDO-
INSTRUCTIONS AL PSEUDOCODE Y X S EAX

X := 12103 X:= 12103 12103

S:= 7 S := 7 12103 7

Y := (X ÷ S)*S

EAX:= X 12103 7 12103

EAX:= EAX ÷ S 12103 7 1729

EDX:= EAX MOD S 12103 7 1729

EAX:= EAX*S 12103 7 12103

Y:= EAX 12103 12103 7 12103

IF X = Y THEN

EAX:= X 12103 12103 7 1729

CMP EAX, Y 12103 12103 7 1729

JNE END 12103 12103 7 1729

BEGIN BEGIN 12103 12103 7 1729

X := 0 X := 0 12103 0 7 1729

END END 12103 0 7 1729

BRANCHING AND THE IF-STATEMENTS • 231

PSEUDO-INSTRUCTIONS AL PSEUDOCODE AL INSTRUCTIONS

X := 12103 X:= 12103 mov x, 12103

S:= 7 S := 7 mov s, 7

Y := (X ÷ S)*S

EAX:= X mov eax, x

EAX:= EAX÷S
EDX:= EAX MOD S

EAX:= EAX*S

mov edx, 0

div s

mul s

IF X = Y THEN

Y:= EAX mov y, eax

EAX:= X mov eax, x

CMP EAX, Y cmp eax, y

JNE END jne end

BEGIN BEGIN ;begin

X := 0 X := 0 mov x, 0

END END end:

Exercises:

1.	

	 From chapter 5, we have the following algorithm.

PSEUDO-INSTRUCTIONS EXPLANATION

LARGEST :=X1 We start by assuming XI is the largest

IF X2> LARGEST THEN
BEGIN

LARGEST :=X2
END

If the contents of X2 is larger than the
contents of LARGEST replace LARGEST with

the contents of X2

IF X3 > LARGEST THEN
BEGIN

LARGEST :=X3
END

If the contents of X3 is larger than the
contents of LARGEST replace LARGEST with

the contents of X3

232 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	 Write the assembly language algorithm to replicate the pseudocode:

	 IF a < x ≤ b THEN

	 BEGIN

	 ::::::::::::::::

	 END

3.	 Write the assembly language algorithm to replicate the pseudocode:

	 IF x = a or x = b THEN

	 BEGIN

	 :::::::::::::::::

	 END

12.4 	IF-THEN-ELSE STATEMENTS
Recall from chapter 5 the form of this conditional statement:

IF conditional expression THEN

BEGIN statements 1

END

ELSE

BEGIN

statements 2

END

If the conditional expression is TRUE, statements1 following the THEN will be carried
out and the program will skip statements 2.

If the conditional expression is FALSE, statements 1 following the THEN will not be
carried out and the program will execute statements 2.

Since the assembly language does not have if-then-else statements, the following table shows
how the jumps can be used to simulate this type of instruction for signed numbers.

BRANCHING AND THE IF-STATEMENTS • 233

IF-THEN-ELSE PSEUDO-
INSTRUCTIONS SIGN JUMP INSTRUCTIONS

IF operand1 > operand 2 THEN
BEGIN

(instructions)
END
ELSE

(instructions)
END

cmp operand1, operand 2
begin1: jng end1
(instructions)

end 1: jg
(instructions)

end2:

IF operand1 ≥ operand 2 THEN
BEGIN

(instructions)
END
ELSE

(instructions)
END

cmp operand1, operand 2
begin1: jnge end1

(instructions)
end 1:jge end2
(instructions)

end2:

IF operand1 = operand 2 THEN
BEGIN

(instructions)
END
ELSE

(instructions)
END

cmp operand1, operand 2
begin1: jne end1

(instructions)
end 1:je end2
(instructions)

end2:

IF operand1 ≠ operand 2 THEN
BEGIN

(instructions)
END
ELSE

(instructions)
END

cmp operand1, operand 2
begin1: je end1
(instructions)
end1: jne end2
(instructions)

end2:

IF operand1 < operand 2 THEN
BEGIN

(instructions)
END
ELSE

(instructions)
END

cmp operand1, operand 2
begin1: jnl end1
(instructions)
end1: jl end2
(instructions)

end2:

234 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

IF operand1 ≤ operand 2 THEN
BEGIN

(instructions)
END
ELSE

BEGIN
(instructions)

cmp operand1,operand 2
begin1: jg end1
(instructions)
end1: jng end2
(instructions)

end2:

The following table shows how the jumps can be used to simulate this type of instruction for unsigned
numbers.

IF-THEN-ELSE PSEUDO-
INSTRUCTIONS

UNSIGN JUMP
INSTRUCTIONS

IF operand1 > operand 2 THEN
BEGIN

(instructions)
END
ELSE

BEGIN
(instructions)

END

cmp operand1, operand 2
begin1: jna end1
(instructions)

end1: jnbe end2
(instructions)

end2:

IF operand1 ≥ operand 2 THEN
BEGIN

(instructions)
END

BEGIN
ELSE

(instructions)
END

cmp operand1, operand 2
begin1: jb end1
(instructions)
end1: jnb end2
(instructions)

end2:

IF operand1 = operand 2 THEN
BEGIN

(instructions)
END
ELSE

BEGIN
(instructions)

END

cmp operand1, operand 2
begin1: jne end1

(instructions)
end1:je end2
(instructions)

end2:

BRANCHING AND THE IF-STATEMENTS • 235

IF operand1 ≠ operand 2 THEN
BEGIN

(instructions)
END
ELSE

BEGIN
(instructions)

END

cmp operand1, operand 2
begin1: je end1
(instructions)
end1:jne end2
(instructions)

end2:

IF operand1 < operand 2 THEN
BEGIN

(instructions)
END
ELSE

(instructions)
END

cmp operand1, operand 2
begin1: jnb end1

(instructions)
end1:jb end2
(instructions)

end2:

IF operand1 ≤ operand 2 THEN
BEGIN

(instructions)
END
ELSE

BEGIN
(instructions)

END

cmp operand1, operand 2
begin1: jg end1
(instructions)
end1: jna end2
(instructions)

end2:

Example

PSEUDO-INSTRUCTIONS ASSEMBLY CODE

N := 7 mov n, 7

M := 5 mov m, 5

IF N = 2 THEN

BEGIN

N := N + 5

END

begin1: cmp n, 2

jne end1

mov eax, n

add eax, 5

mov n, eax

end1:

236 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ELSE

BEGIN

M = N + 5

END

begin2: je end2

mov eax, n

add eax, 5

mov m, eax

end2:

Exercise

1.	 Assume n is a nonnegative integer. We define n factorial as:
n! = n(n – 1)(n – 2) … (2)(1) for n > 0 and 0! = 1. Write an assembly
language pseudocode program that will compute the value of 10!

2.	 Modify the above problem as an algorithm for an arbitrary n integer.

	 Application: Assume we have N distinct objects, and r of these objects
are randomly selected.

3.	 The number of ways that this can be done, where order is important,
is NPr = N!/(N – r)!.

	 Write an assembly language pseudocode algorithm that will perform
the following tasks:

	 Task1: Assign the integer N and r.

	 Task2: compute: NPr = N!/(N – r)!.

4.	 The number of ways that this can be done, where order is not impor-
tant, is

N!
r!(N – r)!

	 Write an assembly language pseudocode algorithm that will perform
the following tasks:

	 Task 1: Assign the integer N and r.

	 Task 2: compute: 
N!

r!(N – r)!

5.	 Write an assembly language algorithm that will compute the absolute
value of |x – y|.

BRANCHING AND THE IF-STATEMENTS • 237

12.5	 �TOP-DOWN STRUCTURED MODULAR
PROGRAMMING

To program using top-down structured modular programming, we first begin with a list of
tasks that we want to process in the specified order:

Task 1: ———

Task 2: ———

Task 3: ———

::::::::::::::::::::

Task n: ———

Next we write pseudocode for each task in a given module as follows.

Task 1: Module 1

::::::::::::::::::::::::::

↓

Task 2: Module 2

::::::::::::::::::::::::::

↓

Task 3: Module 3

::::::::::::::::::::::::::

↓
::

:::::::::::::::::::::::

Task n: Module n

::::::::::::::::::::::::::

Finally, we rewrite the pseudocode in assembly language.

238 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Basic rules
1.	 After writing the tasks, first we write the code for module 1 and check

for errors. Once all errors, if any, are corrected, we write module 2 and
check for errors. We continue in this manner.

2.	 We only use jumps to perform branching within the same module. If we
need to jump to outside the module, we can branch down to another
module, or if the program is menu driven, we can jump to the module
that contains the menu.

PROJECT
Write an AL algorithm that will find the correspondence for the given number Nα => Mβ
where

α, β are selected base numbers; α, β = 2, 3,, 9, 16; α ≠ β.

CHAPTER THIRTEEN
CONSTRUCTING PROGRAMS IN
ASSEMBLY LANGUAGE PART II

240 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
Now that we can create logical and while statements in assembly language, we return to the
programs and algorithms in chapter 11 to rewrite them in the most general form. Therefore,
the following algorithms and programs will be modeled after those in chapter 11.

13.1	� AN ASSEMBLY LANGUAGE PROGRAM TO
CONVERT A POSITIVE INTEGER NUMBER IN ANY
BASE B < 10 TO ITS CORRESPONDING NUMBER IN
THE BASE 10

Examples
1. The following method will convert the number 25678 to its corresponding number in the
base 10:

N8 = 25678 => ((2*8 + 5)*8 + 6)*8 + 7 = ((21)*8 + 6)*8 + 7 = 174*8 + 7 = 1399.

To convert the number 25678 to the base 10, we first need to write a sample program in
pseudocode and assembly language to capture the digits 2, 5, 6, and 7 from the number. The
following programs will perform such a task.

Program: Capture the digits of 25678.

PSEUDO-INSTRUCTIONS N A D

N:= 2567 2567

D:= 1000 2567 1000

A:= N÷D 2567 2 1000

N:= N MOD D 567 2 1000

D:= D÷10 567 2 100

A:= N÷D 567 5 100

N:= N MOD D 67 5 100

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 241

D:= D÷10 67 5 10

A:= N÷D 67 6 10

N:= N MOD D 7 6 10

D:= D÷10 7 6 1

A:= N÷D 7 7 1

N:= N MOD D 0 7 0

CYCLE OF CODES AL PSEUDOCODE N A EAX EDX D T

N:= 2567 N:= 2567 2567

T:= 10 T:= 10 2567 10

D:= 1000 D:= 1000 2567 0 1000 10

WHILE N <> 0 WHILE N <> 0 2567 1000 10

BEGIN BEGIN 2567 1000 10

A:= N ÷ D EAX := N 2567 2567 1000 10

EAX := EAX ÷ D
EDX:= EAX MOD D 2567 2 567 1000 10

A := EAX 2567 2 2 567 1000 10

N:= N MOD D N:= EDX 567 2 2 567 1000 10

D:= D ÷ T EAX := D 567 2 1000 567 1000 10

EAX:= EAX ÷ T
EDX := EAX MOD T 567 2 100 0 1000 10

D := EAX 567 2 100 0 100 10

242 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

A:= N ÷ D EAX := N 567 2 567 0 100 10

EAX := EAX ÷ D
EDX:= EAX MOD D 567 2 5 67 100 10

A := EAX 567 5 5 67 100 10

N:= N MOD D N:= EDX 67 5 5 67 100 10

D:= D÷ 10 EAX := D 67 5 100 67 100 10

EAX := EAX ÷ T
EDX := EAX MOD T 67 5 10 0 100 10

D := EAX 67 5 10 0 10 10

A:= N ÷ D EAX := N 67 5 67 0 10 10

EAX := EAX ÷ D
EDX := EAX MOD D 67 5 6 7 10 10

A:= EAX 67 6 6 7 10 10

N:= N MOD D N:= EDX 7 6 6 7 10 10

D:= D ÷ 10 EAX := D 7 6 10 7 10 10

EAX := EAX ÷ T
EDX := EAX MOD T 7 6 1 0 10 10

D:= EAX 7 6 1 0 1 10

A:= N ÷ D EAX := N 7 6 7 0 1 10

EAX := EAX ÷ D
EDX := EAX MOD D 7 6 7 0 1 10

A := EAX 7 7 7 0 1 10

N:= N MOD D N:= EDX 0 7 7 0 1 10

END END 0 7 7 0 1 10

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 243

PSEUDOCODE AL PSEUDOCODE AL CODE

N:= 2567 N:= 2567 mov n, 2567

T:= 10 T:= 10 mov t, 10

D:= 1000 D:= 1000 mov d, 1000

WHILE N <> 0 WHILE N <> 0
while: cmp n, 0

je end1

BEGIN BEGIN ;begin

A:= N ÷ D EAX := N mov eax, n

EAX := EAX ÷D
EDX:= EAX MOD D

mov edx, 0

div d

A := EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

D:= D ÷ T EAX := D mov eax, t

EAX:= EAX÷T
EDX := EAX MOD T

mov edx, 0

div t

D := EAX
mov d, eax

jmp while

END END end1:

Exercise

1.	 Let N10 = a0a1a2 … am. Write an assembly language algorithm that will
sum the digits of N.

2.	 Program: Write a sample program to compute

	 N8 = 25678 => N10 = ((2*8 + 5)*8 + 6)*8 + 7 = 1399.

244 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO-INSTRUCTIONS N A SUM D T

N:= 2567 2567

SUM:= 0 2567 0

T:= 10 2567 0 10

D:= 1000 2567 0 1000 10

A:= N%D 2567 2 0 1000 10

SUM:= SUM + A 2567 2 2 1000 10

SUM:= SUM*8 2567 2 16 1000 10

N:= N MOD D 567 2 16 1000 10

D:= D%T 567 2 16 100 10

A:= N%D 567 5 16 100 10

SUM:= SUM + A 567 5 21 100 10

SUM:= SUM*8 567 5 168 100 10

N:= N MOD D 67 5 168 100 10

D:= D%T 67 5 168 10 10

A:= N%D 67 6 168 10 10

SUM:= SUM + A 67 6 174 10 10

SUM:= SUM*8 67 6 1392 10 10

N:= N MOD D 7 6 1392 10 10

D:= D%T 7 6 1392 1 10

A:= N%D 7 7 1392 1 10

SUM:= SUM + A 7 7 1399 1 10

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 245

CYCLE OF
CODES

AL PSEUDO
CODES N A S EAX EDX D E T

N:= 2567 N:= 2567 2567 8

E:= 8 E:= 8 2567 8

S := 0 S := 0 2567 0 8

T:=10 T:= 10 2567 0 8 10

D := 1000 D := 1000 2567 0 1000 8 10

WHILE D <> 1 WHILE D <> 1 2567 0 1000 8 10

BEGIN BEGIN 2567 0 1000 8 10

A:= N÷ D EAX := N 2567 0 2567 1000 8 10

EAX := EAX ÷ D 2567 0 2 567 1000 8 10

A := EAX 2567 2 0 2 567 1000 8 10

S:= S + A EAX := S 2567 2 0 0 567 1000 8 10

EAX := EAX + A 2567 2 0 2 567 1000 8 10

S := EAX 2567 2 2 2 567 1000 8 10

S:= S*E EAX := S 2567 2 2 2 567 1000 8 10

EAX := EAX *E 2567 2 2 16 567 1000 8 10

S := EAX 2567 2 16 16 567 1000 8 10

N := N MOD D EAX := N 2567 2 16 2567 567 1000 8 10

EAX := EAX ÷ D 2567 2 16 2 567 1000 8 10

N := EDX 567 2 16 2 567 1000 8 10

246 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

D:= D ÷ 10 EAX :=D 567 2 16 1000 567 1000 8 10

EAX:= EAX ÷ T 567 2 16 100 0 1000 8 10

D:= EAX 567 2 16 100 0 100 8 10

A:= N ÷ D EAX := N 567 2 16 567 0 100 8 10

EAX := EAX ÷ D 567 2 16 5 67 100 8 10

A := EAX 2567 5 16 5 67 100 8 10

S:= S + A EAX := S 2567 5 16 16 67 100 8 10

EAX:= EAX + A 567 5 16 21 67 100 8 10

S:= EAX 567 5 21 21 67 100 8 10

S:= S*E EAX := S 567 5 21 21 67 100 8 10

EAX := EAX *E 567 5 21 168 0 100 8 10

S := EAX 567 5 168 168 0 100 8 10

N:= N MOD D EAX := N 567 5 168 567 0 100 8 10

EAX := EAX ÷ D 567 5 168 5 67 100 8 10

N := EDX 67 5 168 5 67 100 8 10

D:= D ÷ 10 EAX :=D 67 5 168 100 67 100 8 10

EAX:= EAX ÷ T 67 5 168 10 0 100 8 10

D:= EAX 67 5 168 10 0 10 8 10

A:= N ÷ D EAX := N 67 5 168 67 0 10 8 10

EAX := EAX ÷ D 67 5 168 6 7 10 8 10

A := EAX 67 6 168 6 7 10 8 10

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 247

S:= S + A EAX:= S 67 6 168 168 7 10 8 10

EAX:= EAX + A 67 6 168 174 7 10 8 10

S:= EAX 67 6 174 174 7 10 8 10

S:= S*E EAX := S 67 6 174 174 7 10 8 10

EAX := EAX *E 67 6 174 1392 0 10 8 10

S := EAX 67 6 1392 1392 0 10 8 10

N:= N MOD D EAX := N 67 6 1392 67 0 10 8 10

EAX := EAX ÷ D 7 6 1392 6 7 10 8 10

N := EDX 7 6 1392 6 7 10 8 10

D:= D ÷ 10 EAX :=D 7 6 1392 10 7 10 8 10

EAX:= EAX ÷ T 7 6 1392 1 0 10 8 10

D:= EAX 7 6 1392 1 0 1 8 10

END END 7 6 1392 1 0 1 8 10

S:= S + A EAX := S 7 7 1392 1392 0 1 8 10

EAX:= EAX + A 7 7 1392 1399 0 1 8 10

S:= EAX 7 7 1399 1399 0 1 8 10

PSEUDOCODE AL PSEUDOCODES AL CODE

N := 2567 N:= 2567 mov n, 2567

E:=8 E:= 8 mov e, 8

S := 0 S := 0 mov s, 0

T:= 10 T:= 10 mov t, 10

248 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

D := 1000 D := 1000 mov d, 1000

WHILE D <> 1 WHILE D <> 1 while: cmp d,1
je end1

BEGIN BEGIN ;begin

A:= N ÷ D

EAX := N mov eax, n

EAX := EAX ÷ D mov edx, 0

div d

A := EAX mov a, eax

S:= S + A

EAX := S mov eax, s

EAX := EAX + A add eax, a

S := EAX mov s, eax

S:= S*E

EAX := S mov eax, s

EAX := EAX *E mul e

S := EAX mov s, eax

N:= N MOD D

EAX := N mov eax, n

EAX := N ÷ D mov edx,0
div d

N := EDX mov n, edx

D:= D ÷ 10

EAX :=D mov eax, d

EAX:= EAX ÷ T
mov edx, 0

div t

D:= EAX mov d, eax

END END jmp while

S:= S + A

EAX := S end: mov eax, s

EAX:= EAX + A add eax, a

S:= EAX mov s, eax

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 249

13.2 	�AN ALGORITHM TO CONVERT ANY INTEGER
NUMBER IN THE BASE 10 TO A CORRESPONDING
NUMBER IN THE BASE B < 10

Using the Euclidean division theorem, we now review how to use the manual method to
convert a number in the base 10 to a number in the base b.

Step 1: We want to write N in the form:

N = anb
n + an-1b

n-1 + ... + a1b + a0

Step 2:

N = Qb + R = (anb
n-1 + an-1b

n-2 … + a1)b + a0

Here, Q = anb
n-1 + an-1b

n-2 … + a2b + a1 = (anb
n-2 + an-1b

n-3 … +a2)b + a1
And R= a0

Step 3: Set N = Q.

Q = Q1b + R1 = (anb
n-2 + an-1b

n-3… + a2)b + a1

Where Q1 = anb
n-2 + an-1b

n-3…+a2

R1 = a1

Step 4: Continue in this manner until Qn = 0.

Example:

Convert the following decimal numbers to the specified base.

1.	 1625 => N8

	 Step 1: 1625 = (1625 ÷ 8)*8 + 1 = 203*8 + 1

	 a0 = 1

	 Step 2: 203 = (203 ÷ 8)*8 + 3 = 25*8 + 3

	 a1 = 3

	 Step 3: 25 = (25 ÷ 8)*8 + 1 = 3*8 + 1

	 a2 = 1

	 Step 4: 3 = (3 ÷ 8)*8 + 3 = 3

	 a3 = 3

250 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Therefore, 1625 => N8 = 3*83 + 1*82 + 3*8 + 1 ↔ Ng = 3131g.

Program: Pseudocode to convert the integer number 1625 to the base 8.

PSEUDOCODE N SUM TEN MUL BASE R

BASE := 8 8

N := 1625 1625 8

SUM := 0 1625 0 8

MUL := 1 1625 0 1 8

TEN := 10 1625 0 10 1 8

R := N MOD BASE 1625 0 10 1 8 1

N:= N ÷ BASE 203 0 10 1 8 1

R := R*MUL 203 0 10 1 8 1

SUM:= SUM + R 203 1 10 1 8 1

MUL:= MUL*TEN 203 1 10 10 8 1

R := N MOD BASE 203 1 10 10 8 3

N:= N ÷ BASE 25 1 10 10 8 3

R := R*MUL 25 1 10 10 8 30

SUM:= SUM + R 25 31 10 10 8 30

MUL:= MUL*TEN 25 31 10 100 8 30

R := N MOD BASE 25 31 10 100 8 1

N:= N ÷ BASE 3 31 10 100 8 1

R := R*MUL 3 31 10 100 8 100

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 251

SUM:= SUM + R 3 131 10 100 8 100

MUL:= MUL*TEN 3 131 10 1000 8 100

R := N MOD BASE 3 131 10 1000 8 3

N:= N ÷ BASE 0 131 10 1000 8 3

R := R*MUL 0 131 10 1000 8 3000

SUM:= SUM + R 0 3131 10 1000 8 3000

CYCLE OF
CODES AL PSEUDOCODE N S M R EAX EDX B

B := 8 B := 8 8

N := 1625 N := 1625 1625 8

S:= 0 S:= 0 1625 0 8

M:= 1 M:= 1 1625 0 1 8

T:= 10 T:= 10 1625 0 1 8

WHILE N <> 0 WHILE N <> 0 1625 0 1 8

BEGIN BEGIN 1625 0 1 8

R:= N MOD EAX:= N 1625 0 1 1625 8

EAX:= EAX ÷ B 1625 0 1 203 8

EDX:= EAX MOD 1625 0 1 203 1 8

R:= EDX 1625 0 1 1 203 1 8

N:= N ÷ B N:= EAX 203 0 1 1 203 1 8

R := R*M EAX:= R 203 0 1 1 1 1 8

EAX:= EAX*M 203 0 1 1 1 1 8

R:= EAX 203 0 1 1 1 1 8

252 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

S:= S + R EAX:= S 203 0 1 1 0 1 8

EAX:= EAX + R 203 0 1 1 1 1 8

S:= EAX 203 1 1 1 1 1 8

M:= M*T EAX:= M 203 1 1 1 1 1 8

EAX:= EAX*T 203 1 1 1 10 1 8

M:= EAX 203 1 10 1 10 1 8

R:= N MOD EAX:= N 203 1 1 1 203 1 8

EAX:= EAX ÷ B 203 1 1 1 25 3 8

R:= EDX 203 1 1 3 25 3 8

N:= N ÷ B N:= EAX 25 1 10 3 25 3 8

R := R*M EAX:= R 25 1 10 3 3 3 8

EAX:= EAX*M 25 1 10 3 30 3 8

R:= EAX 25 1 10 30 30 3 8

S:= S + R EAX:= S 25 1 10 30 1 3 8

EAX:= EAX + R 25 1 10 30 31 3 8

S:= EAX 25 31 10 30 31 3 8

M:= M*T EAX:= M 25 31 10 1 10 3 8

EAX:= EAX*T 25 31 10 1 100 3 8

M:= EAX 25 31 100 1 100 3 8

R:= N MOD EAX:= N 25 31 100 1 25 3 8

EAX:= EAX ÷ B 25 31 100 1 3 3 8

EDX:= EAX MOD B 25 31 100 1 3 1 8

R:= EDX 25 31 100 1 3 1 8

N:= N ÷ B N:= EAX 3 31 100 1 3 1 8

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 253

R := R*M EAX:= R 3 31 100 1 1 1 8

EAX:= EAX*M 3 31 100 1 100 1 8

R:= EAX 3 31 10 100 100 1 8

S:= S + R EAX:= S 3 31 100 100 31 1 8

EAX:= EAX + R 3 31 100 100 131 1 8

S:= EAX 3 131 100 100 131 1 8

M:= M*T EAX:= M 3 131 100 100 100 1 8

EAX:= EAX*T 3 131 100 1 1000 1 8

M:= EAX 3 131 1000 1 1000 1 8

R:= N MOD EAX:= N 3 131 1000 1 3 1 8

EAX:= EAX ÷ B 3 131 1000 1 0 1 8

EDX:= EAX MOD B 3 131 1000 1 0 3 8

R:= EDX 3 131 1000 3 0 3 8

N:= N ÷ B N:= EAX 0 131 1000 3 0 3 8

R := R*M EAX:= R 0 131 1000 3 3 3 8

EAX:= EAX*M 0 131 1000 3 3000 3 8

R:= EAX 0 131 1000 3000 3000 3 8

S:= S + R EAX:= S 0 131 1000 3000 131 3 8

EAX:= EAX + R 0 131 1000 3000 3131 3 8

S:= EAX 0 3131 1000 3000 3131 3 8

M:= M*T EAX:= M 0 3131 1000 3000 1000 3 8

EAX:= EAX*T 0 3131 1000 3000 10000 3 8

M:= EAX 0 3131 10000 3000 10000 3 8

END END 0 3131 10000 3000 10000 3 8

1625 => 31318

254 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE AL PSEUDOCODE AL CODE

B := 8 B := 8 mov b, 8

N := 1625 N := 1625 mov n, 1625

S:= 0 S:= 0 mov s, 0

M:= 1 M:= 1 mov m, 1

T:= 10 T:= 10 mov t, 10

WHILE N <> 0 WHILE N <> 0 while: cmp n, 0

BEGIN BEGIN begin: je end1

R := N MOD B

EAX:= N mov eax, n

EAX:= EAX÷B

EDX:= EAX MOD B

mov edx, 0

div b

R:= EDX mov r, edx

N:= N ÷ B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M*T

EAX:= M mov eax, m

EAX:= EAX*T mul t

M:= EAX mov m, eax

jmp while

END END end:

1625 => 31318

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 255

Note: See following model program.

; This program converts 1625 ⇒ 31318
.386

.MODEL FLAT

.STACK 4096

.DATA
n dword ?
s dword ?
m dword ?
r dword ?
b dword ?
t dword ?

.CODE

_start:

;start assembly language code

mov b, 8

mov n, 1625

mov s, 0

mov m, 1

mov t, 10

While1: cmp n, 0

begin: je end1

mov eax, n

mov edx,0

div b

mov r, edx

mov n, eax

mov eax, r

256 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

mul m

mov r, eax

mov eax, s

add eax, r

mov s, eax

mov eax, m

mul t

mov m , eax

jmp while1
end1:

;end of assembly language code

PUBLIC_start

END

PROJECTS
1.	 Definition of prime numbers: A positive integer number N > 1 is said to

be a prime number if N mod(k) = 0 only for k = 1 and k = N.

	 Definition of a pair-wise odd sequence: An infinite pair of numbers
(2N + 1, 2N + 3); N = 1, 2, 3, …

	 Definition of pair-wise prime numbers: Those number pairs in the above
sequence where both numbers are prime.

		 Examples: (3, 5), (5, 7), (11, 13), …

(a)	 Write an AL algorithm that checks an arbitrary pair-wise number
to determine if it is a pair-wise prime number.

(b)	 From the algorithm, write an AL program to determine if (3335787,
3335789) is a pair-wise prime numbers.

CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II • 257

2.	 The Fibonacci numbers

	 The Fibonacci numbers are a sequence of integer numbers generated
as follows:

	 Step 1: Start with 0, 1.

	 Step 2: The next number is generated by adding the previous two num-
bers: 0, 1, 1.

	 Step 3: To generate the next number, continue by adding the previous
two numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, …

	 Write an assembly language program that will generate a sequence N
Fibonacci numbers.

CHAPTER FOURTEEN
LOGICAL EXPRESSIONS, MASKS, AND SHIFTING

260 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.1	 INRODUCTION: LOGICAL EXPRESSIONS
Logical expressions and values are similar to conditional expressions as defined in chapters 5
and 6. However, due to the nature of the applications, we will use different terminology in
this chapter.

Definition of logical values:

Logical values are of two types: true and false.

Definition of logical identifiers:

Logical identifiers are registers and variables that are assigned only values true and false.

Definition of logical operators:

There are three binary logical operators and one unary logical operator:

The binary logical operators are .AND., .OR., and .XOR. The unary logical operator is .NOT.

Definition of logical expressions:

A logical expression is made up of logical values, logical identifiers connected by logical
operators.

The following table gives the logical values that result from the four logical operators.

OPERATORS RESULTING VALUE

.OR.

true .OR. true = true
true .OR. false = true
false .OR. true = true
false .OR. false = false

.AND.

true .AND. true = true
true .AND. false = false
false .AND. true = false
false .AND. false = false

.XOR.

true .XOR. true = false
true .XOR. false = true
false .XOR. true = true
false .XOR. false = false

.NOT. .NOT. true = false
.NOT. false = true

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 261

Examples

1.	 Logical value:

			 5 = 2 + 3

	 takes on the value true.

2.	 Logical identifiers: X where

	 X := (5 = 1–4)

	 X takes on the value false.

3.	 true .AND. (X = false) takes on the value false.

	 Y ;= 5

	 VALUE := true

	 (.NOT. (VALUE = true)) .OR. (Y < 3)

	 The above expression takes on the value false .OR. false = false.

4.	 Z := 0

	 Y = true

	 .NOT. ((Z < 2) .XOR. (Y = false))

	 takes on the value false.

Relational operators
The following six relational operators connect the logical values and identifiers.

Definition of six relational operators:

The six relational operators are:

Operator Interpretation
1. = Equality

2. <> Inequality

3. < Less than

4. > Greater than

5. <= Less than orequal to

6. >= Greater than or equal to

262 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples Values
5 = 2 + 3 true

9 <> 3*3 false

4 <= 4 true

-17 < -7 true

(7 = 2 + 3) .OR. (4 < 1) false

LOGICAL EXPRESSIONS VALUES

(5 = 2–4) .OR. (2 <> 3) false .OR. true = true

(5 = 2–4) .AND. (2 <> 3) false .AND. true = false

(5 = 2–4) .XOR. (2 <> 3) false .XOR. true = true

.NOT. (5 = 2–4) .NOT. (5 = 2–4) = true

Logical Statements
Definition of logical statements:

A logical statement is a an instruction where the variables are declared to be logical identi-
fiers, and these variables can be assigned logical values resulting from logical expressions.

Example:

PSEUDOCODE X Y L Z

X := 4 4

Y := 6 4 6

L:= (X + Y = 10) 4 6 true

Z := L .XOR. (X–Y <> 0) 4 6 true False

Z := Z .AND. L 4 6 true False

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 263

Exercise:

Complete the following.

PSEUDOCODE X Y L Z

X := 2

Y := 5

L:= (X + 2*Y > 2)

Z := .NOT. (L .OR. (.NOT. (X–Y <> 0)))

Z := (.NOT. (L .AND. (Z .OR. L)) .XOR. Z

Example:
The following program demonstrates how these logical expressions can be used in a program.

Task1: Assign three integer numbers.

Task 2: �If the sum of these numbers is greater than 10 but less than 20, divide
the sum by 2; otherwise, compute the average of these numbers.

For the following program, assume the numbers 3, 4, and 9 are assigned.

PSEUDOCODE X Y Z S L

X:= 3 3

Y:= 4 3 4

Z:= 9 3 4 9

S := X + Y + Z 3 4 9 16

L: = (S > 10) .AND. (S < 20) 3 4 9 16 true

IF L = true THEN 3 4 9 16 true

BEGIN 3 4 9 16 true

264 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

S:= S%2 3 4 9 8 true

END 3 4 9 8 true

ELSE 3 4 9 8 true

BEGIN 3 4 9 8 true

S:= S%3 3 4 9 8 true

END 3 4 9 8 true

Exercises

1.	 In the following program, indicate if the following statements are correct or
incorrect.

	 X: = 2

	 Z: = true

	 V: = .NOT. (true .OR. false)

	 V: = (.NOT. (V .OR. V)) .AND. V

2.	 Evaluate the following expressions:

(a)	 (.NOT. (true .XOR true)) .AND. (.NOT. (false .OR. true))

(b)	 (.NOT. (true .XOR false)) .OR. (.NOT. (true .OR. false))

(c)	 .NOT. ((NOT.(true .XOR. false)) .AND. ((true .OR. false)))

3.	 Evaluate the following expressions:

(a)	 (.NOT. (true .AND. true) = false) .OR. false

(b)	 (.NOT. (false .AND. true) = true) .XOR. false

(c)	 (.NOT. (false .AND. false) = true) .OR. true

(d)	 (.NOT. (true .OR. true) = false) .AND. false

(e)	 (.NOT. (false .OR. true) = true) .AND. false

(f)	 (.NOT. (false .OR false) = true) .AND. true

4.	 Is the following statement true or false?

	 (.NOT. (false .XOR. true) = true) .AND. false

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 265

14.2	 LOGICAL EXPRESSIONS IN ASSEMBLY LANGUAGE
In assembly language the value true is associated with the integer number 1, and the value false
is associated with the integer number 0. The four logical operations in assembly language are
given by the following table.

PSEUDO LANGUAGE
LOGICAL OPERATORS

ASSEMBLY LANGUAGE
LOGICAL OPERATORS

.AND. And

.OR. Or

.XOR. Xor

.NOT. Not

The following table gives the logical values in assembly language that result from the above
four logical operators.

ASSEMBLY LANGUAGE
LOGICAL OPERATORS RESULTING VALUE

and 1 and 1 = 1

1 and 0 = 0

0 and 1 = 0

0 and 0 = 0

1 or 1 = 1

or 1 or 0 = 1

0 or 1 = 1

0 or 0 = 0

xor 1 xor 1 = 0

1 xor 0 = 1

0 xor 1 = 1

0 xor 0 = 0

not not 1 = 0

not 0 = 1

266 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The Format Of  The Assembly Language
Logical Operators
The following are the formats of the four assembly language logical operators:

and destination, source

or destination, source

xor destination, source

not destination

Definition of destination:

A destination is always a register where the logical value is assigned.

Definition of source:

The source is a logical identifier, logical value (0 or 1), or register containing a logical value. If
the source is an identifier variable or register, then the source must be of the same data type
as the destination data type.

Important: The not logical instruction will change, in the register, the 0 bits to the 1 bits and
the 1 bits to the 0 bits.

Examples

The and operator

ASSEMBLY LANGUAGE AL

mov al, 1 00 00 00 01

and al,1 00 00 00 01

and al, 0 00 00 00 00

mov al, 0 00 00 00 00

and al, 0 00 00 00 00

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 267

The or operator

ASSEMBLY LANGUAGE AL

mov al, 1 00 00 00 01

or al, 1 00 00 00 01

or al, 0 00 00 00 01

mov al, 0 00 00 00 00

or al, 0 00 00 00 00

The xor operator

ASSEMBLY LANGUAGE AL

mov al, 1 00 00 00 01

xor al, 1 00 00 00 00

xor al, 0 00 00 00 00

xor al, 1 00 00 00 01

The not operator

ASSEMBLY LANGUAGE AL

mov al, 1 00 00 00 01

not al 11 11 11 10

not al 00 00 00 01

mov al, 0 00 00 00 00

not al 11 11 11 11

not al 00 00 00 00

268 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.3	� ASSIGNING LOGICAL EXPRESSIONS A LOGICAL
VALUE IN ASSEMBLY LANGUAGE

The following examples will demonstrate how to create logical expressions and assign their
logical values.

Examples:

1.	 Calculate the union of two logical variables where X is true and Y is
false.

PSEUDO-
CODE

AL
PSEUDOCODE

ASSEMBLY
LANGUAGE X Y Z AL

X:= true X:= true mov x, 1 1

Y:= false Y:= false mov y, 0 1 0

Z:= X .OR. Y

AL:=X mov al, x 1 0 1

.OR. AL, Y or al, y 1 0 1

Z:= AL mov z, al 1 0 1 1

2.	 The following is an assembly language algorithm that evaluates

	 (A .AND. B) .OR. (A .AND. C).

Solution:

	 mov al, a

	 and al, b

	 mov bl, a

	 and bl, c

	 or al, bl

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 269

Exercises:

1.	 Complete the following table.

PSEUDO-
CODE

AL
PSEUDOCODE

ASSEMBLY
LANGUAGE X Y Z AL

X:= true

Y:= false

Z:= X .AND. Y

2.	 Write an assembly language algorithm that evaluates

	 A .AND. (B .OR. C).

When programming in assembly language, we cannot use logical statements directly. To per-
form logical statements, we need to use the compare and jump statements described in
chapter 12. This is done by assigning values 1 or 0 so that the compare and the appropriate
jump statements can properly evaluate and carry out the logical statements desired. The
following example shows how this is done.

Example:

We wish to write an assembly language program that will perform the following tasks:

Task 1: Assign two numbers to x and y.

Task 2: �If both numbers are greater than 10, compute the sum of the two
numbers.

Task 3: �If at least one of the numbers is less than or equal to 10, compute
the product of the two numbers.

270 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE X Y Z LOG

X:= 5 5

Y:= 60 5 60

LOG:= (X > 10) .AND. (Y > 10) 5 60 false

IF LOG = true THEN 5 60 false

BEGIN 5 60 false

Z:= X + Y 5 60 false

END 5 60 false

ELSE 5 60 false

BEGIN 5 60 false

Z:= X*Y 5 60 300 false

END 5 60 300 false

PSEUDOCODE AL X Y Z LOG EAX EBX
X:= 5 mov x, 5 5

Y:= 60 mov y, 60 5 60

LOG := (X > 10) .AND. (Y > 10) mov eax, 0 5 60 0

mov ebx, 0 5 60 0 0

cmp x, 10 5 60 0 0

jng L1 5 60 0 0

mov eax, 1 5 60 0 0

L1: cmp y, 10 5 60 0 0

jng L2 5 60 0 0

mov ebx, 1 5 60 0 1

L2: and eax, ebx 5 60 0 1

mov log, eax 5 60 0 0 1

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 271

IF LOG = true THEN cmp log, 1 5 60 0 0 1

BEGIN begin1: jne end1 5 60 0 0 1

Z:= X + Y mov eax, x 5 60 0 0 1

add eax, y 5 60 0 0 1

mov z, eax 5 60 0 0 1

END end1: 5 60 0 0 1

ELSE je end2 5 60 0 0 1

BEGIN begin2: 5 60 0 0 1

Z:= X*Y mov eax, x 5 60 5 0 1

mul y 5 60 5 300 1

mov z, eax 5 60 300 5 300 1

END end2: 5 60 300 0 300 1

Exercises

1.	 For the above program, assume x = 20 and y = 30. With these values,
change the above program.

2.	 For the above program, assume x = 2 and y = 3. With these values,
change the above program.

3.	 Write an assembly language algorithm that will perform the following
tasks:

	 Task1: Assign two positive integer numbers x and y.

	 Task 2: If x > 10 and y > 10, then compute x + y.

	 Task 3: If x > 10 and y ≤ 10, then compute x*y.

	 Task 4: If x ≤ 10 and y > 10, then compute 2*(x + y).

	 Task 5: If x ≤ 10 and y ≤ 10, then compute 3*(x + y).

272 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.4	 MASKS
Definition of a mask:

A mask is a binary integer number (BYTE, WORD, DWORD) used with a selected logical
operator (and, or, xor) that will be matched bit-by-bit with the corresponding binary number
contained in a selected register.

The Mask Instruction
Definition of the mask instruction:

logical operator		 destination, source,

where the destination and source are defined above. If the source is an identifier, the destina-
tion and source must be of the same data type.

For this instruction, matching the following resulting values will hold the following.

ASSEMBLY LANGUAGE
LOGICAL OPERATORS RESULTING VALUE

and

1 and 1 = 1

1 and 0 = 0

0 and 1 = 0

0 and 0 = 0

or

1 or 1 = 1

1 or 0 = 1

0 or 0 = 0

xor

1 xor 1 = 0

1 xor 0 = 1

0 xor 1 = 1

0 xor 0 = 0

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 273

Examples:

Assume AX and BX contain the following binary numbers:

AX: 0110 1110 1100 0011

BX: 1001 1100 0101 1011

Here, BX will be the mask.

The following examples will show how the mask works, resulting in changing of bits in AX:

and ax, bx;

AX: 0110 1110 1100 0011

BX: 1001 1100 0101 1011

			 ↓

AX: 0000 1100 0100 0011

::::::::::::::::::::::::::::

or ax, bx;

AX: 0110 1110 1100 0011

BX: 1001 1100 0101 1011

			 ↓

AX: 1111 1110 1101 1011

:::::::::::::::::::::::::::

xor ax, bx;

AX: 0110 1110 1100 0011

BX: 1001 1100 0101 1011

			 ↓

AX: 1111 0010 1001 1000

274 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

Assume CX contains an arbitrary number. For the following assembly instructions, explain
what changes to CX, if any, result from the following masks:

1.	 and cx, cx

2.	 or cx, cx

3.	 xor cx, cx

4.	 and cx, (not cx)

5.	 or cx, (not cx)

6.	 xor cx, (not cx)

14.5	 SHIFTING INSTRUCTIONS
There are two types of shifting instructions: the shift instructions and the rotation
instructions.

The Shift Instructions
The shift instructions move the bits in a register to the left or to the right by a designated
number. The following are the shift instructions:

shl register, n; will shift the bits in the register to the left by n places. The extreme left bits will
fall out of the register. Added bits will be the bit 0. The added bit(s) will be in bold.

shr register, n; will shift the bits in the register to the right by n places. The extreme right bits
will fall out of the register, but the left added bits will be the bit 0. The added bit(s) will be in
bold.

Examples

For the following examples, assume the register AX contains 1011 0100 1110 1011.

shl ax, 1 ; 1011 0100 1110 1011

				 ⇐

		 0110 1001 1101 0110

::::::::::::::

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 275

shl ax, 4 1011 0100 1110 1011

				 ⇐

		 0100 1110 1011 0000

:::::::::::::

shr ax, 1 ; 1011 0100 1110 1011

				 ⇒

		 0101 1010 0111 0101

::::::::::::

shr ax, 4 1011 0100 1110 1011

				 ⇒

		 0000 1011 0100 1110

Multiplication and Division Applications
One important application of the left shift results in multiplying the original number by a
power of 2.

Examples:

1.	 Assume AX contains 0000 0000 0000 0011, which is equal to the
number 3d.

	 shl ax, 1 will result in AX changed to 000 0000 0000 00110, which is
equal to the number 6d.

2.	 Assume AX contains 0000 0000 0000 0011, which is equal to the
number 3d.

	 shl ax, 2 will result in AX changed to 0000 0000 0000 1100, which is
equal to the number 12d.

One important application of the right shift results in dividing the original
number by a power of 2.

3.	 Assume AX contains 0000 0000 0000 0110, which is equal to the
number 6d.

	 shr ax, 1 will result in AX changed to 0000 0000 0000 0011, which is
equal to the number 3d.

276 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The Rotation Instructions
There are two types of rotation instructions:

rol destination, n; rotate the bits to the left n places. The bits that are shifted off the left-hand
side replace the bits that are added on the right-hand side.

ror destination, n; rotate the bits to the right n places. The bits that are shifted off the right-
hand side replace the bits that are added on the left-hand side.

Examples
1.	 Assume AX contains 1100 0000 0000 0101.

	 rol ax, 2 will result in AX changed to 0000 0000 0001 0111.

2.	 Assume AX contains 1100 0000 0000 0101.

	 ror ax, 3 will result in AX changed to 1011 1000 0000 0000.

;This is the above program.
.386

.model flat

.stack 4096

.data
n dword ?
s dword ?
m dword ?
r dword ?
b dword ?
t dword ?

.code

_start:

;start assembly language code

mov x, 5

mov y, 60

mov eax, 0

LOGICAL EXPRESSIONS, MASKS, AND SHIFTING • 277

mov ebx, 0

cmp x, 10

jng L1

mov eax, 1

L1: cmp y, 10

jng L2

mov ebx, 1

L2: and eax, ebx

mov log, eax

cmp log, 1

begin1: jne end1

mov eax, x

add eax, y

mov z, eax

end1:

je end2

begin2:

mov eax, x

mul y

mov z, eax
end2:

;end of assembly language code

public _start

End

278 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECTS
1.	 There are important equations in logical expression:

	 Morgan’s law I: .NOT. (A .OR. B) = (.NOT. A) .AND. (.NOT. B)

	 Morgan’s law II: .NOT. (A .AND. B) = (.NOT. A) .OR. (.NOT. B)

	 For each law, write an AL program that ‘proves’ the two laws are true
for all possible values of A and B.

2.	 A .AND. (B .OR. C) = (A .AND. B) .OR. (A .AND. C)

	 is referred to as the distributive law. Write an AL program that proves
the law is true for all possible values of A, B, and C.

3.	 Two different positive integer numbers are said to be relatively prime
if both numbers have no common divisors other than the number 1.

Examples
The numbers 51 and 32 are relatively prime, since they have no common divisors.

The numbers 22 and 40 are not relatively prime, since 2 divides both numbers.

Write an assembly language algorithm that will determine if 1,048,576 and 387,420,489 are
relatively prime.

CHAPTER FIFTEEN
INTEGER ARRAYS

280 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
So far, we have seen that we can save integer numeric values in variables such as x, y, z, and so
on. Restricting ourselves to only variables of this type does not allow us to effectively store
large amount of data. To accomplish this, we need to define arrays (tables). We first introduce
one-dimensional arrays in pseudocode.

15.1 �REPRESENTING ONE-DIMENSIONAL ARRAYS
IN PSEUDOCODE

Definition of a one-dimensional array:

A one-dimensional array is a collection of cells that all have the same name but are distin-
guished from one another by the use of subscripts. A subscript is a positive integer number in
parentheses that follows the array’s name.

Examples

1.	 a(1), a(2), a(3), …, a(99), a(100)

2.	 num(1), num(2), …, num(999), num(1000)

In the first example, the array named a can store 100 pieces of data, and the in the second
example, the array named num can store 1,000 pieces of data.

Rules for arrays
1.	 The array name is a valid identifier.

2.	 Each subscript must be a positive integer.

3.	 Integer numeric values can be stored in these array cells.

Examples

a(10) := 3

num(100) := –7

sum := a(10) + num(100)

INTEGER ARRAYS • 281

Programming examples
The following program in pseudocode will perform the following tasks:

Task 1: Store the numbers 2, 4, 6, …, 1000 in array cells.

Task 2: Add the numbers in the cells.

Task 3: Compute the average.

Task 4: Store all the numbers that are greater than the average.

Task 1:

k:= 1
j:= 0
WHILE j ≤ 1000
BEGIN
j:= 2*K
num(k) := j
k:= k + 1
END

Task 2:

total:= 0
k := 0
WHILE k ≤ 500
k := k + 1
total := total + num(k)
END

Task 3:

average : = total/500

Task 4:

k := 0
WHILE k ≤ 500
k := k + 1
IF num(k) > average THEN
Store(k) := num(k)
END

282 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

1.	 Write a pseudocode algorithm that will perform the following tasks:

	 Task 1: Store the numbers 2, 22, 23, …, 2n in array cells.

	 Task 2: Add the numbers in the cells.

	 Task 3: �Compute the integer average (the average without the
remainder).

2.	 Finding the largest value: Write a pseudocode algorithm that will per-
form the following tasks:

	 Task 1: Store n nonnegative integers in an array.

	 Task 2: Find the largest value.

3.	 Converting positive decimal integers into binary: Write a pseudocode
algorithm that will perform the following task:

	 Task 1: �Convert a nonnegative integer number into binary and store the
binary digits in an array.

4.	 Writing numbers backward: Write a pseudocode algorithm that per-
forms the following tasks:

	 Task 1: Store a positive integer number.

	 Task 2: Store the digits in an array backward.

5.	 A proper divisor of a positive integer N is an integer that is not equal
to 1 or N and divides N without a remainder. For example, the proper
divisors of 21 are 3, and 7.

	 Write a pseudocode algorithm that performs the following tasks:

	 Task 1: Store a positive integer number N.

	 Task 2: Find and store in an array all the proper divisors of N.

6.	 The Fibonacci number sequence: The Fibonacci numbers are the
following:

		 0, 1, 1, 2, 3, 5, 8, 13, …,

			 where 0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, and so on.

INTEGER ARRAYS • 283

The general rule is to add the previous two numbers in the sequence to
get the next number. Write a pseudocode algorithm that will perform the
following tasks:

	 Task 1: Store a positive integer N.

	 Task 2: �Compute and store in an array all Fibonacci numbers less than
or equal to N.

15. 2 	�CREATING ONE-DIMENSIONAL INTEGER ARRAYS
IN ASSEMBLY LANGUAGE

There are several ways to create a one-dimensional integer array. We begin by starting an
array at the location of a given variable. We define an array using the directive instruction in
the data portion of the program. We will use the directive

		 variable name data type ?

to establish the location in memory of the cell a(1).

Since the assembler will determine the beginning location of the first cell of the array, we
can capture the location with the lea instruction. The following is the definition of the lea
instruction in the instruction portion of the program:

The lea 32-bit register, variable name of the
array instruction
Definition of the lea instruction:

The lea instruction will store into any 32-bit register, the first byte location of a variable.

Example

x byte ?

lea ebx, x

In this example the lea instruction will store in ebx, the first byte location of the variable x.
Before we discuss arrays in assembly language, we need to better understand how data is
stored in main memory. All integer data are represented as bytes, words, or dwords. All of
these are made up of bytes: the double word (DWORD) is made up of 4 bytes (32 bits); the
word (WORD) is made up of 2 bytes, and the byte (BYTE) is made up of 1 byte. We can think
of the main memory as a large memory table made up of columns and rows; each cell of the
table is a byte, each identified with a numeric location.

284 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

::::::::::::: ::::::::::::: ::::::::::::: ::::::::::::: ::::::::::::: ::::::::::::: ::::::::::::: :::::::::::::

For example, assume the identifiers x and y are defined as double words and assigned the
values 3h and 5875h, respectively:

x dword 3h

y dword 5875h

Assume the assembler selects in memory cell locations 1 to 4 for x and 13 to 16 for y. Our
memory table would look something like the following.

1

0 0

2

0 0

3

0 0

4

0 3

:::: :::: :::: :::: :::: :::: :::: ::::

13 14 15 16

0 0 0 0 5 8 7 5

:::: :::: :::: :::: :::: :::: :::: ::::

Creating a one-dimensional array of a given data type
When we create an array, we can store the array elements as three types of data: byte, word,
and dword.

The following steps will define and set up the array.

Step 1: Define the variable name and its data type byte.

Step 2: �Using the lea instruction, store the first byte location in a 32-bit
register.

INTEGER ARRAYS • 285

Examples

1.	

x byte ?

lea ebx, x

2.	

y word ?

lea eax, y

3.	

z dword ?

lea edx, z

Storing data in the array using a variable’s location
The following definition is the assignment statement that will allow us to perform data assign-
ments to and from memory cells:

mov [register], source instruction.

where the register must be a 32-bit register, and the source can be a register of the same
data type as the variable.

Definition: mov [register], source

The mov [register], source instruction will store the number in the source register directly
in the memory location indicated by the contents of the register, where the following rules
apply:

Rule 1: The lea instruction will establish the first byte location.

Rule 2: The register must be EAX, EBX, ECX, or EDX.

Rule 3: The source can be a register of the same data type as the variable.

Rule 4: �The [register] indicates the cell location where the bytes are to be
located.

The [register] is called the indirect register.

For all examples in this chapter, we assume all numbers are represented as hexadecimals.

286 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

The following examples show how arrays of different data types are created and data is
stored.

1.	

AL CODE AL X

x byte 68h 68

lea ebx, x 68

mov al, 9Ah 9A 68

mov [ebx], al 9A 9A

2.	

AL CODE AX X

x word ?

lea ebx, x

mov ax, 237Ah 23 7A

mov [ebx], ax 23 7A 23 7A

3.	

AL CODE EAX X

x dword 17223FDh 01 72 23 FD

lea ebx, x 01 72 23 FD

mov eax, 0A637Ah 00 0A 63 7A 01 72 23 FD

mov [ebx], eax 00 0A 63 7A 00 0A 63 7A

INTEGER ARRAYS • 287

4.	 The following program will store numbers 13h, 29h,25h into the array
X of type BYTE.

PSEUDOCODE AL CODE AL X

Array X x byte ?
lea ebx,x

byte
1

byte
2

byte
3

X(1) := 13h mov al, 13h 13

mov [ebx], al 13 13

add ebx, 1 13 13

X(2):= 29h mov al, 29h 29 13

mov [ebx], al 29 13 29

add ebx, 1 29 13 29

X(3):= 25h mov al, 25h 25 13 29

mov [ebx], al 25 13 29 25

Important: Since we are storing in individual bytes, we increment by 1.

5.	 The following program will store numbers 13h, 29h, and 25h in the
array of type WORD.

PSEUDOCODE AL CODE AX X

Array X x word ?
lea ebx,x word 1 word 2 word 3

X(1) := 13h mov ax, 13h 00 13

mov [ebx], ax 00 13 00  13

add ebx, 2 00 13 00  13

288 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

X(2):= 29h mov ax, 29h 00 29 00  13

mov [ebx], ax 00 29 00  13 00  29

add ebx, 2 00 29 00  13 00  29

X(3):= 25h mov ax, 25h 00 25 00  13 00  29

mov [ebx], ax 00 25 00  13 00  29 00  25

Important: Since we are storing in individual bytes for each word, we
increment by 2.

6.	 The following program will store numbers 13h, 29h, and 25h in the
array of type DWORD.

PSEUDOCODE AL CODE EAX X

Array X x dword ?
lea ebx, x dword 1 dword 2 dword 3

X(1) := 13h

mov eax, 13h 00 00 00 13

mov [ebx], eax 00 00 00 13 00 00 00 13

add ebx, 4 00 00 00 13 00 00 00 13

X(2):= 29h

mov eax, 29h 00 00 00 29 00 00 00 13

mov [ebx], eax 00 00 00 29 00 00 00 13 00 00 00 29

add ebx, 4 00 00 00 29 00 00 00 13 00 00 00 29

X(3):= 25h
mov eax, 25h 00 00 00 25 00 00 00 13 00 00 00 29

mov [ebx], eax 00 00 00 25 00 00 00 13 00 00 00 29 00 00 00 25

Important: Since we are storing in individual bytes for each dword, we
increment by 4.

INTEGER ARRAYS • 289

Exercise

1.	 Write an assembly language program that will store the first 50 positive
odd numbers.

Storing data in the array without a variable’s location

Arrays can also be created without using a variable location by simply using the

	 mov [register], source instruction

where the source is a register, contain the location where the first byte of the array is to be
stored. For this instruction the following rules apply:

	 Rule 1: The register must be EAX, EBX, ECX, or EDX.

	 Rule 2: The source can be a register of any data type.

	 Rule 3: �The [register] indicates the cell location where the bytes are to
be located.

	 The [register] is called the indirect register.

Examples

1.	

AL CODE EBX AL [EBX]

mov ebx, 403030h 00 40 30 30

mov al, 9Ah 00 40 30 30 00 9A

mov [ebx], al 00 40 30 30 00 9A 00 00 00 9A

2.	

AL CODE EBX AX [EBX]

mov ebx, 403030h 00 40 30 30

mov ax, 569Ah 00 40 30 30 56 9A

mov [ebx], ax 00 40 30 30 56 9A 00 00 56 9A

290 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.	

AL CODE EBX EAX [EBX]

mov ebx, 403030h 00 40 30 30

mov eax, 2AC6756Ah 00 40 30 30 2A C6 75 6A

mov [ebx], eax 00 40 30 30 2A C6 75 6A 2A C6 75 6A

4.	

EAX EBX BYTES

AL CODE 1 2 3 4 5 6 7 8

mov eax, lh 1

mov ebx, 7D712Eh 1 007D712E

mov [eax], ebx 1 007D712E 0 0 7 D 7 1 2 E

mov eax, 5h 5 007D712E 0 0 7 D 7 1 2 E

mov ebx. 5 00568923 0 0 7 D 7 1 2 E

mov [eax], ebx 5 00568923 0 0 7 D 7 1 2 E 0 0 5 6 8 9 2 3

mov ebx, 3h 5 00000003 0 0 7 D 7 1 2 E 0 0 5 6 8 9 2 3

mov [eax], ebx 5 00000003 0 0 7 D 7 1 2 E 0 0 0 0 0 0 0 3

Exercise:
1.	 Write an assembly language program that will perform the following

tasks:

	 Task 1: Store the first 50 positive odd numbers.

	 Task 2: Retrieve the first 50 positive odd numbers stored in task 1.

INTEGER ARRAYS • 291

Retrieving data from an array
The elements of an array can be retrieved using the following instruction:

mov source, [register]

The mov source, [register] instruction will retrieve the number in the array at its beginning
location and store it in the source, where the following rules apply:

Rule 1: The register must be EAX, EBX, ECX, or EDX.

Rule 2: �The source must be a register of the same data type as the original
array.

Rule 3: �The [register] indicates the cell location where the bytes are to be
located.

The [register] is called the indirect register.

Examples:

1.	

AL CODE EBX AL [EBX] CL

mov ebx, 403030h 00403030

mov al, 9Ah 00403030 9A

mov [ebx], al 00403030 9A 9A

mov cl, [ebx] 00403030 9a 9A 9A

2.	

AL CODE EBX AX [EBX] CX

mov ebx, 403030h 00403030

mov ax, 569Ah 00403030 569A

mov [ebx], ax 00403030 569A 569A

mov cx, [ebx] 00403030 569A 569A 569A

292 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.	

AL CODE EBX EAX [EBX] ECX

mov ebx, 403030h 00403030

mov eax, 2AC6756Ah 00403030 2AC6756A

mov [ebx], eax 00403030 2AC6756A 2AC6756A

mov ecx, [ebx] 00403030 2AC6756A 2AC6756A 2AC6756A

The following example is an extension of the above example and shows
how the data from the array can be retrieved.

4.	

AL CODE AL X
x byte ?
lea ebx,x byte 1 byte 2 byte 3

mov al, 13h 13

mov [ebx], al 13 13

add ebx, 1 13 13

mov al, 29h 29 13

mov [ebx], al 29 13 29

add ebx, 1 29 13 29

mov al, 25h 25 13 29

mov [ebx],a l 25 13 29 25

sub ebx, 2; Retrieving data 25 13 29 25

mov al, [ebx] 13 13 29 25

add ebx, 1 13 13 29 25

mov al, [ebx] 29 13 29 25

add ebx, 1 29 13 29 25

mov al, [ebx] 25 13 29 25

INTEGER ARRAYS • 293

Exercise:

1.	 Extend the following program so that the array data stored can be
retrieved to the register ax.

AL CODE EAX X

x dword ?
lea ebx, x dword 1 dword 2 dword 3

mov eax, 13h 00 00 00 13

mov [ebx], eax 00 00 00 13 00 00 00 13

add ebx, 4 00 00 00 13 00 00 00 13

mov eax, 29h 00 00 00 29 00 00 00 13

mov [ebx], eax 00 00 00 29 00 00 00 13 00 00 00 29

add ebx, 4 00 00 00 29 00 00 00 13 00 00 00 29

mov eax, 25h 00 00 00 25 00 00 00 13 00 00 00 29

mov [ebx], eax 00 00 00 25 00 00 00 13 00 00 00 29 00 00 00 25

Array lists

An alternative way to create one-dimensional arrays is to list the array elements in the
following directive:

variable name data type n1, n2, …, nm, where the list is of the same data type.

There are three directives of this type:

variable name byte type n1, n2, … , nm

variable name word type n1, n2, … , nm

variable name dword type n1, n2, … , nm

294 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

The following examples show how to retrieve listed arrays.

1.	

AL CODE AL X

byte 1 byte 2 byte 3

x byte 3h, 7dh, 99h 03 7d 99

lea ebx, x 03 7d 99

mov al, [ebx] 03 03 7d 99

add ebx, 1 03 03 7d 99

mov al, [ebx] 07 03 7d 99

add ebx, 1 07 03 7d 99

mov al, [ebx] 99 03 7d 99

2.	

AL CODE AX X

word 1 word 2 word 3

x word 37f2h,723dh, defah 37 f2 72 3d de fa

lea ebx, x 37 f2 72 3d de fa

mov ax, [ebx] 37 f2 37 f2 72 3d de fa

add ebx, 2 37 f2 37 f2 72 3d de fa

mov ax, [ebx] 72 3d 37 f2 72 3d de fa

add ebx, 2 72 3d 37 f2 72 3d de fa

mov ax, [ebx] de fa 37 f2 72 3d de fa

INTEGER ARRAYS • 295

3.	

AL CODE EAX X

dword dword dword 3

x dword 4437f2h, 21723dh, d276efah 4437f2 21723d d276efa

lea ebx, x 4437f2 21723d d276efa

mov eax, [ebx] 00 44 37 f2 4437f2 21723d d276efa

add ebx, 4 00 44 37 f2 4437f2 21723d d276efa

mov eax, [ebx] 00 2 1 72 3d 4437f2 21723d d276efa

add ebx, 4 00 21 72 3d 4437f2 21723d d276efa

mov eax, [ebx] 0d 27 6e fa 4437f2 21723d d276efa

15.3	� RESERVING STORAGE FOR AN ARRAY USING
THE DUP DIRECTIVE

There are times when it is important to set aside a block of memory that array values will
be stored in. The reason is that without reserving a block of memory, data or code can
be destroyed when cells are filled by an array. In fact, it is recommended that, where pos-
sible, the DUP directive be used when creating arrays. To accomplish this, we define an array
A(dimension) using the following directive instruction in the data portion of the program:

variable name type dimension DUP (?)

Examples:

1.	 x byte 100	 dup (?)

	 will create an array with a dimension of 100 byte cells.

2.	 x word 100	 dup (?)

	 will create an array with a dimension of 100 WORD cells, consisting of
200 bytes.

296 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.	 x dword 100 dup (?)

	 will create an array with a dimension of 100 DWORD cells, consisting
of 400 bytes.

Note: The lea instruction will still be used to determine the first byte posi-
tion of the array.

Exercise:

1.	 Write an assembly language program that will perform the following
task: store in a dimensioned array the first 100 positive numbers.

15.4	 WORKING WITH DATA
The following instruction will allow data to be directly stored in an array cell:

	 mov DATA TYPE PTR.

In order to avoid ambiguity about the data type, this instruction informs the assembler that
the numeric value to be stored is to be identified as a given data type.

This instruction is defined as

mov data type PTR [register], numeric value.

For this move instruction, the following are the three different forms of the instruction:

•	 mov byte PTR [register], numeric value;

	 will define the size of the numeric value to be stored as a byte.

•	 mov word PTR [register], numeric value;

	 will define the size of the numeric value to be stored as a word.

•	 mov dword PTR [register], numeric value;

	 will define the size of the numeric value to be stored a dword.

Note: mov [register], source does not modify the contents of the register in question.

INTEGER ARRAYS • 297

Examples:

1.	

AL CODE EBX [EBX]

mov ebx, 403030h 00 40 30 30

mov byte ptr [ebx], 9ah 00 40 30 30 00 00 00 9a

2.	

AL CODE EBX [EBX]

mov ebx, 403030h 00 40 30 30

mov word ptr [ebx], 679ah 00 40 30 30 679a

3.	

AL CODE EBX [EBX]

mov ebx, 403030h 403030

mov dword ptr [ebx], 231abc9ah 403030 23 1a bc 9a

Arithmetic operators using [register]
For the following two integer arithmetic operators—addition and subtraction—the indirect
register [register] can be a source for the following arithmetic instructions:

•	 add register [register]

•	 add [register], register

•	 sub register, [register]

•	 sub [register], register

298 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples:

1.	

AL CODE EAX X

x byte 6h 06

lea ebx, x 06

mov eax, 2h 00 00 00 02 06

add eax, [ebx] 00 00 00 08 06

2.	

AL CODE EAX X

x byte 2h 02

lea ebx, x 02

mov eax, 8h 00 00 00 08 02

sub eax, [ebx] 00 00 00 06 02

Exercises:

1.	 Complete the following table.

BYTES

AL INSTRUCTIONS Eax ebx 10 11 12 13 14 15 16 17 18
mov eax, 2ACD16 h

mov ebx, 10h

add ebx, 1h

mov [ebx], eax

add [ebx], ebx

add eax, ebx

INTEGER ARRAYS • 299

2.	 Assume we have two arrays, x and y, containing the elements:

	 x: 2, 7, 9, 10

	 y: 123, 56, 11, 9.

Write an assembly language program that will multiply the corresponding array elements and
store the resulting product in an array z.

The cmp using [register]
The cmp instruction can be used to compare array elements. The instruction is of the follow-
ing forms:

	 cmp [register], register

	 cmp register, [register]

Example:

AL CODE EAX X

x byte 6h 06

lea ebx, x 06

mov eax, 7h 00 00 00 07 06

cmp eax, [ebx] 00 00 00 07 06

ja bigger 00 00 00 07 06

jp not_bigger 00 00 00 07 06

bigger: mov eax, 0h 00 00 00 00 06

jmp finished 00 00 00 00 06

not_bigger: mov eax, 1h 00 00 00 00 06

finished: 00 00 00 00 06

300 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

15.5	� REPRESENTING TWO-DIMENSIONAL ARRAYS
IN PSEUDOCODE

Definition of a two-dimensional arrays name(r,c):
A two-dimensional array is a collection of cells that all have the same name but are distin-
guished from one another by the use of two subscripts. A subscript is a positive integer number
in parentheses that follows the array’s name. The two-dimensional array can be indicated by
name(r,c) where r is the number of rows and c the number of columns.

The following are the way the values of the two-dimensional array are written:

a(1,1), a(1,2), a(1,3), …, a(1,c),

a(2,1), a(2,2), a(2,3), …, a(2,c),

:::

a(r,1), a(r,2), a(r,3), …, aa (r,c)

Such an array is said to have r rows and c columns.

The following table shows the structure of the two-dimensional array.

row/c ol 1 2 3 4 5 6 7 --k-- c

1 a(1,1) a(1,2) a(1,3) a(1,4) a(1,5) a(1,6) a(1,7) a(1,8) a(1,k) a(1,c)

2 a(2,1) a(2,2) a(2,3) a(2,4) a(2,5) a(2,6) a(2,7) a(2,8) a(2,k) a(2,c)

3 a(3,1) a(3,2) a(3,3) a(3,4) a(3,5) a(3,6) a(3,7) a(3,8) a(3,k) a(3,c)

4 a(4,1) a(4,2) a(4,3) a(4,4) a(4,5) a(4,6) a(4,7) a(4,8) a(4,k) a(4,c)

5 a(5,1) a(5,2) a(5,3) a(5,4) a(5,5) a(5,6) a(5,7) a(5,8) a(5,k) a(5,c)

::::::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

j a(j,1) a(j,2) a(j,3) a(j,4) a(j,5) a(j,6) a(j,7) a(j,8) a(j,k) a(j,c)

::::::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

r a(r,1) a(r,2) a(r,3) a(r,4) a(r,5) a(r,6) a(r,7) a(r,8) a(j,k) a(r,c)

INTEGER ARRAYS • 301

where a(j,k) are the numerical values of the array.

However, we have one small problem: The assembly language really only provides storing of data
for one-dimensional arrays. Therefore, to program two-dimensional arrays, we need to change
the two-dimensional array into a one-dimensional array. To do this, first we note that the two-
dimensional array is made up of rows that are stacked one on top of each other. To convert the
two-dimensional array into a one-dimensional array, take each row and connectively arrange
them one by one to make the new one-dimensional array. To demonstrate how this is done, we
use as an example a two-dimensional array consisting of 3 rows and 10 columns:

r/c 1 2 3 4 5 6 7 8 9 10

1 a(1,1) a(1,2) a(1,3) a(1,4) a(1,5) a(1,6) a(1,7) a(1,8) a(1,9) a(1,10)

2 a(2,1) a(2,2) a(2,3) a(2,4) a(2,5) a(2,6) a(2,7) a(2,8) a(2,k) a(2, 10)

3 a(3,1) a(3,2) a(3,3) a(3,4) a(3,5) a(3,6) a(3,7) a(3,8) a(3,k) a(3,10)

Row 1 Row 2 Row 3

a(1,1) a(1,2) a(1,3) …

… a(1,10)

a(2,1) a(2,2) a(2,3) …

… a(2,10)

a(3,1) a(3,2) a(3,3) …

… a(3,10)

Now we need to change a(i,j) into an array element of one subscript for the above one-
dimensional array. We define a(t) as the following:

a(10r–10 + c) = a(r,c) for

1 ≤ r ≤ 3

1 ≤ c ≤ 10

Using the above formula, we have:

r = 1: a(1) = a(1,1); a(2) = a(1,2); a(3) = a(1,3); a(4) = a(1,4); a(5) = a(1,5); a(6) = a(1,6)

a(7) = a(1,7); a(8) = a(1,8); a(9) = a(1,9); a(10) = a(1,10)

r = 2: a(11) = a(2,1); a(12) = a(2,2); a(13) = a(2,3); a(14) = a(2,4); a(15) = a(2,5);

a(16) = a(2,6) a(17) = a(2,7); a(18) = a(2,8); a(19) = a(2,9); a(20) = a(2,10);

r = 3: a(21) = a(3,1); a(22) = a(3,2); a(23) = a(3,3); a(24) = a(3,4); a(25) = a(3,5);

a(26) = a(3,6) a(27) = a(3,7); a(28) = a(3,8); a(29) = a(3,9); a(30) = a(3,10);

302 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Which gives our one-dimensional array:

Row 1 Row 2 Row 3

a(1) a(2) a(3) … a(10) a(11) a(12) a(13) … a(20) a(21) a(22) a(23) … a(30)

Example

The following program in pseudocode will perform the following task:

Task: Assign array values a(r, c) = r + 2c, for 1 ≤ r ≤100; 1 ≤ c ≤ 10

Program

r : = 1

r ≤ 100

BEGIN

c := 1

WHILE c ≤ 10

BEGIN

a(r, c) := r + 2*c

c := c + 1

END

r := r + 1

END

Exercise:

1.	 Write an assembly language program that will generate the above array.

INTEGER ARRAYS • 303

Model program

; The following program is a partial program that will store numbers 2,4,6,..., 10,000 into
an array a.

.386

.MODEL FLAT

.STACK 4096

.DATA

a dword 5000 dup (?) ; Array a(dim 5000)

.CODE

_start:

lea ebx, a

mov k, 1

while1: cmp k, 5000

begin: jg end

; begin

mov eax, k

mul 2

mov [ebx], eax

mov eax, k

add eax, 1

mov k, eax

add ebx, 4

jmp while1

end:

;end of assembly language code

PUBLIC_start

end

304 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECTS
1.	 Write a assembly language algorithm to convert a number N in the

base a to its corresponding number M in the base 10 by performing the
following tasks:

	 Task 1: Store each digit of N in a separate cell of an array.

	 Task 2: From these digits, convert N to M.

	 Task 3: Store each digit of M in a separate cell of another array.

	 Task 4: Store the number M in a dword variable.

Hint: Use the method in chapter 2 that shows how to convert N10 => Nb.

2.	

(a)	 Write an assembly language algorithm that will find and store the
first N prime numbers in an array.

(b)	 Write an assembly language program that will find and store the
first 100 prime numbers in an array.

Assume an array was already created with N elements located at a
declared data type. Write an assembly language algorithm that will do
the following:

3.	 Find and retrieve a single value of the array.

4.	 Find the largest value of the array.

CHAPTER SIXTEEN
PROCEDURES

306 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

16.1	 INTODUCTION: PSEUDOCODE PROCEDURES
As in higher programming languages, we will need to use procedures (subroutines) repeatedly
in many of our assembly language programs. These procedures in a sense can be thought of
as algorithms, in that they can stand alone and be used repeatedly in different programs. For
pseudocode, the following will be the definition of the main body of the procedure:

DEFINITION OF PSEUDCODE PROCEDURES
PROCEDURE name of procedure

BEGIN

(instructions)

END

We will assume the following rules apply to procedures:

Rule 1: All procedures will be local to the main program.

Rule 2: All procedures will be located at the end of the main program.

Rule 3: All variables are global.

Rule 4: �The procedure will be ignored by the assembler, unless it is called
by the call instruction.

Definition of the call instruction
CALL name of procedure

We will assume the following rules apply to the call instruction:

Rule 1: �All call instructions can be inserted anywhere inside the main
program.

Rule 2: �When the call instruction is activated, transfer is made to the first
instruction of the procedure.

Rule 3: �The END at the end of the procedure will transfer back to the
instruction immediately following the call instruction.

PROCEDURES • 307

Examples:

1.  The exponential operator p = aN. Although we define an exponential operator in pseudocode,
the exponential operator does not exist in the assembly language. Therefore, we need to cre-
ate a procedure that will perform the exponential operator that we have in our pseudocode.
For the following procedure, we will compute p = an, where

a> 0

n ≥ 0

PROCEDURE exponential

BEGIN

P := 1

K:= 1

WHILE K≤ N

BEGIN

P:= A*P

K:= K + 1

END

IF N:= 0 THEN

BEGIN

P:= A

END

1.	 The following program will use the above procedure and will perform
the following task:

	 Task: Compute and store 57, 210.

PSEUDOCODE

A:= 5

N:= 7

CALL EXPONENTIAL

EXP1:= P

A:= 2

N:= 10

308 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

CALL EXPONENTIAL

EXP2:= P

PROCEDURE EXPONENTIAL

BEGIN

P := 1

K:= 1

WHILE K ≤ N

BEGIN

P:= A*P

K:= K + 1

END

IF N:= 0 THEN

BEGIN

P:= 1

END

2.	 The following procedure will perform the following tasks:

	 Task 1: �Compare the relative size of two different integer numbers x and y.

	 Task 2: Return the larger of the two numbers.

PROCEDURE compare

BEGIN

IF x > y THEN

BEGIN

larger := x

ELSE

BEGIN

larger := y

END

Write a program using the above procedure that will perform the following task:

	 Task 1: �Compare two pairs of different integer numbers and store the
larger in different variables.

PROCEDURES • 309

PSEUDOCODE X Y LARGER LARGER1 LARGER2
X := 5 5

Y := 10 5 10

CALL COMPARE 5 10

LARGER1:= LARGER 5 10 10 10

X : = 12 12 10 10 10

Y : = 7 12 7 10 10

CALL COMPARE 12 7 10 10

LARGER2 := LARGER 12 7 12 10 12

PROCEDURE COMPARE

BEGIN

IF X > Y THEN

BEGIN

LARGER := X

END

ELSE

BEGIN

LARGER := Y

END

3.	 The following procedure will perform the following task:

	 Task: �For any positive integer N, compute the value sum = 1 + 2 + 3 + … + N.

PROCEDURE sum

BEGIN

total := 0

k : = 1

WHILE k ≤ N

BEGIN

total := total + k

k := k + 1

END

END

310 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Write a program using the above the procedure that will perform the
following tasks:

	 Task 1: Store the sum of the numbers 1, 2, 3, …, 100.

	 Task 2: Store the sum of the numbers 1, 2, 3, …, 150.

	 Task 3: Store the sum of the numbers 1, 2, 3, …, 250.

PSEUDOCODE N TOTAL TOTAL1 TOTAL2 TOTAL3

N:= 100 100

CALL SUM 100

TOTAL1 := TOTAL 100 5050 5050

N:= 150 150 5050 5050

CALL SUM 150 11325 5050

TOTAL2:= TOTAL 150 11325 5050 11325

N := 250 250 11325 5050 11325

CALL SUM 250 11325 5050 11325

TOTAL3:= TOTAL 250 125500 5050 11325 125500

PROCEDURE SUM

BEGIN

TOTAL := 0

K : = 1

WHILE K ≤ N

BEGIN

TOTAL := TOTAL + K

K := K + 1

END

END

PROCEDURES • 311

4.	 The following procedure will perform the following tasks:

	 Task 1: Compare four array integer values.

	 Task 2: Find and return the smallest integer value.

PROCEDURE array

BEGIN

smallest := a(1)

IF a(2) < smallest THEN

BEGIN

smallest := a(2)

END

IF a(3) < smallest THEN

BEGIN

smallest := a(3)

END

IF a(4) < smallest THEN

BEGIN

smallest := a(4)

END

END

Write a program using the above procedure that will perform the following tasks:

	 Task 1: Find and store the smallest of the numbers 5, 7, 2, and 10.

	 Task 2: Find and store the smallest of the numbers 57, 1001, 2222, and 43.

312 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE A(1) A(2) A(3) A(4) SMALLEST S1 S2
A(1) := 5 5

A(2) := 7 5 7

A(3) := 2 5 7 2

A(4) := 10 5 7 2 10

CALL ARRAY 5 7 2 10

S1:= SMALLEST 5 7 2 10 2

A(1) := 57 57 7 2 10 2

A(2) := 1001 57 1001 2 10 2

A(3) := 2222 57 1001 2222 10 2

A(4) := 43 57 1001 2222 43 2

CALL ARRAY 57 1001 2222 43 2

S2:= SMALLEST 57 1001 2222 43 43

PROCEDURE ARRAY
 BEGIN
SMALLEST := A(1)

IF A(2) < SMALLEST THEN
 BEGIN
 SMALLEST := A(2)
 END

IF A(3) < SMALLEST THEN
BEGIN
SMALLEST := A(3)
 END

IF A(4) < SMALLEST THEN
BEGIN
SMALLEST := A(4)
 END
 END

PROCEDURES • 313

Exercises

1.	 Write an algorithm and procedure in pseudocode that will perform the
following tasks:

	 Task 1: Store the following positive integer numbers in an array:

			 n, n + 1, n + 2, n + 3, …, n + m, m > 0.

	 Task 2: Add the numbers stored in the array.

2.	 Rewrite exercise 1 in assembly language.

16.2	 WRITING PROCEDURES IN ASSEMBLY LANGUAGE
The assembly language syntax is very similar to pseudocode:

Body of the procedure
identifier	 PROC	 NEAR 32;	 identifier: the procedure’s name

  (instructions)

ret	 ; will jump to the code following the call instruction.

identifier ENDP; Terminates the body of the procedure.

The call instruction is simply:

		 call identifier

Examples:

1.	 From example 1 above, complete the table below.

PSEUDOCODE AL PSEUDOCODE
ASSEMBLY LANGUAGE

CODE
A:= 5 A:= 5 mov a, 5

N:= 7 N:= 7 mov n, 7

CALLEXPONENTIAL CALL EXPONENTIAL call exponential

EXP1:= P EAX:= P mov eax, p

EXP1:= EAX mov exp1, eax

314 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

A:= 2 A:= 2 mov a, 2

N:= 10 N:= 10 mov n, 10

CALL EXPONENTIAL CALL EXPONENTIAL call exponential

EXP2:= P EAX:= P mov eax, p

EXP2:= EAX mov exp2, eax

PROCEDURE
EXPONENTIAL

PROCEDURE
EXPONENTIAL

exponential PROC  NEAR 32

BEGIN BEGIN begin:

P := 1 P:= 1 mov p, 1

K:= 1 K:= 1 mov k, 1

WHILE K ≤ N WHILE K≤ N while1: cmp k, n

jg end1

BEGIN BEGIN begin1:

P:= A*P EAX:= P mov eax, p

MUL A mul a

P:= EAX mov p, eax

K:= K + 1 EAX:= K mov eax, k

EAX:= EAX + 1 add eax, 1

K:= EAX mov k, eax

END END jmp while1

end1:

IF N:= 0 THEN IF N:= 0 THEN cmp ebx, 0

jg end2

BEGIN BEGIN begin2:

P:= 1 P:= 1 mov p, 1

END END end2:

ret
expontential ENDP

PROCEDURES • 315

2.	 From example 3 above, complete the table below.

PSEUDOCODE AL PSEUDOCODE
ASSEMBLY LANGUAGE

CODE

N := 100 N:= 100 mov n, 100

CALL SUM CALL SUM call sum

TOTAL1:= TOTAL TOTAL1 := TOTAL mov eax, total mov total1, eax

N:= 150 N:= 150 mov n, 150

CALL SUM CALL SUM call sum

TOTAL2:= TOTAL TOTAL2:= TOTAL mov eax, total mov total2, eax

N := 250 N:= 250 mov n, 250

CALL SUM CALL SUM call sum

TOTAL3:= TOTAL TOTAL3:= EBX mov eax, total mov total2, eax

PROCEDURE SUM
BEGIN

TOTAL := 0
K : = 1

WHILE K ≤ N
BEGIN

TOTAL := TOTAL + K
K := K + 1

END
END

PROCEDURE SUM

BEGIN

TOTAL := 0

K:= 1
WHILE TOTAL ≤ N

BEGIN
EAX:= TOTAL

EAX:= EAX + 1
TOTAL:= EAX

END
END

sum  PROC  NEAR 32

mov total, 0

mov k, 1
cmp total, n

begin:

mov eax, total
add eax, 1

mov total, eax
jle begin

ret
sum ENDP

316 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercise:

1.	 Write an assembly language algorithm that computes

		 1 + a + a2 + … + aN

		 where a > 0 and N > 0.

PROJECT
Write an algorithm that will compute and add all prime numbers from N to M by using a
procedure. Have the main algorithm set the values of N and M, and let the procedure compute
the prime numbers and their sum.

From the algorithm, write a program that sums all prime numbers from 10 to 200.

II. WORKING WITH DECIMAL NUMBERS

CHAPTER SEVENTEEN
DECIMAL NUMBERS

320 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
So far we have only worked with integers in assembly language. For many assembly language
compilers, decimal numbers are also available. In order be become a proficient assembly language
programmer, one needs to have a good understanding of how decimal numbers are represented
in the assembler. To accomplish this, we start with the basic ideas of decimal numbers in the
base 10. In later chapters, we will expand these numbers to the various forms that are needed.

17.1	� DEFINITION OF DECIMAL NUMBERS
AND FRACTIONS

Definition of decimal numbers in the base 10:

Decimal numbers are numbers of the following forms:

m.a1a2a3 … an

or

m.a1a2a3 … ana1a2a3 … an … a1a2a3 … an …

where m is an integer and a1, a2,a3 … are nonnegative integers.

There are three types of decimal numbers: positive, negative, and zero.

Examples:

0.123,   –0.06143,   4.54,   33.248248…,   –72.77777777777

Definition of fractions:

Fractions are defined as ± N/M, where N and M represent arbitrary integers, with the
restriction that M ≠ 0.

2/3,   –4/7,   1/3,   124/456,   –7/7,   0/4,   400/200

There are two types of fractions: proper and improper.

Definition: A proper positive fraction N/M is a fraction where 0 < N < M.

Examples:

2/3,   –4/7,   1/3,   124/456

Definition: An improper positive fraction N/M is a fraction where N ≥ M > 0.

5/2,   –7/6,   10/ 5

Note: In this chapter, we are primarily interested in positive proper fractions.

DECIMAL NUMBERS • 321

Exercises:

1.	 Which of the following fractions can be reduced to integer numbers?

(a)	 1446/558	 (b)  12356/2333	 (c)  458/3206	 (d)  1138/569

2.	 Rewrite the following numbers as fractions:

(a)	 (1/2)/(5/7)	 (b)  (212/124)/(5)	 (c)  (1/3)/(2/3)

3.	 Which of the following fractions are proper?

(a)	 3/2	 (b)  234/567	 (c)  ½

Note: For the following presentation, we will only consider decimal numbers that are gener-
ated from positive fractions.

17.2	� REPRESENTING POSITIVE DECIMAL NUMBERS
CORRESPONDING TO PROPER FRACTIONS IN
EXPANDED FORM

Any fraction can be represented by a decimal number. Since we are mainly interested in
fractions that are proper, this means that all corresponding decimal numbers we study will
be less than 1.

There are two types of decimal numbers: finite and infinite.

Definition of finite decimal numbers:

Finite decimal numbers are written in the form:

0.a1a2a3 … an

where

0.a1a2a3 … an = a1/10 + a2/102 +a3/103 + … + an/10n

and

ak (k = 1, 2, …, n) are nonnegative integers.

Note: Finite decimal numbers can also be negative numbers.

322 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

0.579 = 5/10 + 7/100 + 9/1000

0.3579 = 0.3579 = 3/10 + 5/100 + 7/1000 + 9/10000

0.49607 = 4/10 + 9/100 + 6/1000 + 0/10000 + 7/100000

0.005411 = 0/10 + 0/100 + 5/1000 + 4/10000 + 1/100000 + 1/1000000 =

5/1000 + 4/10000 + 1/100000 + 1/1000000

Definition of infinite decimal numbers:

Infinite decimal numbers are written in the form:

0.a1a2a3 … ana1a2a3 … an … a1a2a3 … an …

where

0.a1a2a3 … ana1a2a3 … an … a1a2a3 … an … =

a1/10 + a2/102 + a3/103 …+ an/10n + a1/10n+1 + a2/10n+2 + a3/10n+3 + … + an/102n + …

and

ak (k = 1, 2, …,) are nonnegative integers.

To avoid the complications of working with infinite expansions, we will use the following
notation:

0.a1a2a3 … an a1a2a3 … an … a1a2a3 … an … = 0. a1a2 … an

Also, we will assume that all the laws of arithmetic work when applied to infinite decimal
numbers.

Examples:

0.798798… = 0.798

0.015981598… = 0.01598

0.66…=0.6,

0.13241324… = 0.01324

0.25897897897… = 0.25897

DECIMAL NUMBERS • 323

Examples:

1/2 = 0.5, 2/3 = 0.666… = 0.6 	 1/4 = 0.25, 	 1/3 = 0.333…0.3

213/999 = 0.213213213… = 0.213, 16/3 = 5.333… = 5.3

Exercises

1.	 Expand the following in the form: 0. a1a2 … an = 0.a1a2a3 ... ana1a2a3 ... an ...

(a)	 0.2357	 (b)  0.0097

2.	 Expand the following in the form
0.a1a2a3 … an a1a2a3 … an … a1a2a3 … an … =

(a)	 0.0768907689…	 (b)  0.00235559055590…

3.	 Write the following fractions as decimal numbers using the upper bar
notation where necessary:

(a)	 5/12   (b)  –7/8   (c)  5/6   (d)  1/7   (e)  –3/7

17.3	� CONVERTING DECIMAL NUMBERS
TO FRACTIONS

Finite decimal numbers can easily be converted to fractions by writing them first in the form:

0.a1a2a3 … an = a1/10 + a2/102 + a3/103 + … + an/10n =

(a1 *10n-1 + a2 *10n-2 + … + ak *10n-k + … + a)/10n

and then summing the terms with a common denominator.

Examples
0.5 = 5/10

0.579 = 5/10 + 7/100 + 9/1000 = (5*100 + 7*10 + 9)/1000 = 579/1,000

0.3579 = 3/10 + 5/100 + 7/1000 + 9/10000 = (3*1000 + 5*100 + 7*10 + 9)/10000

		 = 3,579/10,000

0.49607 = (4/10 + 9/100 + 6/1000 + 0/10000 + 7/100,000) = 49607/100,000

0.005411 = 0/10 + 0/100 + 5/1000 + 4/10000 + 1/100000 + 1/1000000 =

(5*1000 + 4*100 + 1/10 + 1)/1000000 = 5411/1,000,000

324 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises

1.	 Write the decimal numbers as fractions:

(a)	 0.0235   (b)  0.1111215   (c)  0.999999

Infinite decimal numbers of type  0. a1a2 … an can also be converted into a fraction. The follow-
ing algorithm will demonstrate how this is done:

Step 1: x = 0. a1a2 … an

Step 2: 10n *x = a1a2a3. ... an a1a2a3. ... an

By subtracting x from 10n *x we can incorporate the above algorithm into a single basic
formula:

=
a1a2 … an0.a1a2 … an 10n - 1

Example:

Convert 0.21657 to a fraction:

0.21657 =
21657

=
21657

=
21657

105 – 1 100000 – 1 99999

Exercises

1.	 Write the following decimal numbers as fractions:

(a)	 0.23

(b)	 0.73

(c)	 0.8

(d)	 0.101

(e)	 0.3

(g)	 23.468

(h)	 2.0078

(i)	 0.24679852

2.	 Write the following decimal numbers as a single fraction p/q where p
and q are integers:

(a)	 0.7323 + 0.83

DECIMAL NUMBERS • 325

(b)	 0.7323 – 0.83

(c)	 0.7323 * 0.83

(d)	 0.7323 / 0.83

3.	 Write the following decimal numbers as a decimal number 0. a1a2a3. … an

(a)	 0.7323 + 0.0083

(b)	 0.7323 – 0.0083

17.4 	�CONVERTING FRACTIONS TO
DECIMAL NUMBERS

Assume that N/M is a positive proper fraction. We define the decimal representation of N/M as:

M/N = a1 /10 + a2 /102 + a3/103 + ….

where ak are nonnegative integers.

The following example will demonstrate the conversion from a fraction to a decimal number.

Example

Convert 3/7 to its decimal representation.

3/7 = a1 /10 + a2 /102 + a3
 /103 + a4

 /104 + a5
 /105 + a6

 /106 + a7
 /107 + …

Step 1:

10(3/7) = 30/7 = (28 + 2)/7 = 4 + 2/7 =

a1 /10 + a2 /10 + a3 /102 + a4
 /103 + a5

 /104 + a6
 /105 + a7

 /106+ …

a1 = 4

2/7 = a1
 /10 + a2

 /10 + a3
 /102 + a4

 /103 + a5
 /104 + a6

 /105 + a7
 /106+ …

Step 2:

10(2/7) = 20/7 = (14 + 6)/ 7 = 2 + 6/7 =

a2 + a3 /102 + a4
 /103 + a5

 /104 + a6
 /105 + a7

 /106 + …

a2 = 2

6/7 = a3 /10 + a4 /102 + a5 /103 + a6 /104 + a7 /105 + …

326 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 3:

10(6/7) = 60/7 = (56 + 4)/7 = 8 + 4/7 = a3 + a4 /10 + a5 /102 + a6
 /103 + a7

 /104 + …

a3 = 8

4/7 = a4
 /10 + a5

 /102 + a6
 /103 + …

Step 4:

10(4/7) = 40/7 = (35 + 5)/ 7 = 5 + 5/7 = a4 + a5 /10 + a6 /102 + …

a4 = 5

5/7 = a5
 /10 + a6

 /102 + …

Step 5:

10(5/7) = 50/7 = (49 + 1)/7 = 7 + 1/7 = a5 + a6 /10 + a7 /102 + …

a5 = 7

1/7 = a6
 /10 + a7

 /102 + …

Step 6:

10(1/7) = 10/7 + (7 + 3)/7 = 1 + 3/7 = a6 +a7 /10 + …

a6 = 1

3/7 = a7 /10 + …

Since we cycled back to 3/7, we can write:

3/7 = 0.42857142857142857142857142857143… = 0.428571

Exercise

Convert the following fractions to decimals:

1.	 4/9

2.	 3/8

3.	 67/5

DECIMAL NUMBERS • 327

17.5 	REPRESENTATION OF DECIMAL NUMBERS
Every finite decimal number has two representations.

Examples
(a)	 0.9

Step 1: x = 0.9 = 0.99…

Step 2: 10x = 9.99…

Step 3: �Subtract the equation in step 1 from the equation in step 2:
9x = 9

Step 4: x = 0.9 = 1

(b)	 0.009

Step 1: 0.009 = 9/100 = 1/100 = 0.01

(c)	 24. 9

24. 9 = 24 + 0.9 = 24 + 1 = 25

(d)	 0.23549

0.23549 = 0.2354 + 0.00009 = 0.2354 + 0.0001 = 0.2355

Exercises

1.	 Convert the following into integer form:

(a)	 281.9   (b)  41256.9

2.	 Write the following in fraction form:

(a)	 0.238   (b)  0.00791   (c)  0.1110000

3.	 Explain why we cannot convert, using the above algorithm, the follow-
ing number into a fraction:

	 0.272772777277772777772…

From your analysis, does such a number exist?

328 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

DIFFERENT NUMBER BASES FOR FRACTIONS

INTRODUCTION
In chapters 1 and 2, we restricted our studies to integer numbers of different bases. We now
move on to the study of decimal numbers of different bases. It is important to understand that
to become a successful assembly programmer, one has to have a complete understanding of
how both integer and decimal numbers work within the assembler system.

17.6 	DEFINITION OF DECIMAL AND FRACTIONS
In the first part of this chapter, we defined finite and infinite decimal numbers in expanded
form in the base 10 as:

a10 = 0.a1a2a3…an = a1/10 + a2/102 + … + an/10n

a10 = (0.a1a2a3…an a1a2a3…an …)10 = (0. a1a2 … an)10 =

a1/10 + a2/102 + … + an/10n + a1/10n+1 + a2/10n+2 + … + an/102n +…

Examples

0.25 = 2/10 + 5/102

0.0625 = 6/102 + 2/103 + 5/104

0.3333… = 3/10 + 3/102 + 3/103 + …

0.285714 = 2/10 + 8/102 + 5/103 + 7/104 + 1/105 + 4/106 + 2/107 + 8/108 + 5/109 + 7/1010 + 1/1011
+ 4/1012 + … +

In a similar manner, we can define finite and infinite decimal numbers less than 1 for any base
b in expanded form:

Definition: A finite nonnegative decimal number less than 1 can be written in the base b as:

ab = (0.a1a2a3…an)b = a1/10b + a2/10b
2 + … + an/10b

n

where

0 ≤ ak < b (k = 1, 2, …,n),

ab = a1/10b + a2/10b
2 + … + an/10b

n = 0.a1 + 0.0a2 + … + 0.00…0an

Definition: An infinite decimal number less than 1 can be written in the base b as:

DECIMAL NUMBERS • 329

ab = (0.a1a2a3…an a1a2a3…an…)b = (0. a1a2 … an)b = a1/10b + a2/10b
2 + … +

	 an/10b
n + a1/10b

n+1 + a2/10b
n+2 + … + an/10b

2n + … …

where

0 ≤ ak < b (k=1, 2, …)

ab = a1/10b + a2/10b
2 + … + an/10b

n + … = 0.a1 + 0.0a2 + … + 0.00…0an+…

Note: We are only using these decimal expansions to indicate the various positions of the
decimal point, not for computational values.

Examples
0.111012 = 1/102 + 1/102

2 + 1/102
3 + 0/102

4 + 1/102
5

0.027568 = 0/108 + 2/108
2
 + 7/108

3 + 5/108
4 + 6/108

5

0.98C7DF16 = 9/1016 + 8/1016
2 + C/1016

3 + 7/1016
4 + D/1016

5 + F/1016
6 + …

Exercises

1.	 Write the following numbers in expanded form:

(a)	 0.2311204   (b)  0.111111012   (c)  0.2323238   (d)  0.ABC216

An alternative way of representing infinite expansion of numbers of the base b is:

=
(a1a2 … an)b0.(a1a2 … an)b 10b

n - 1

where 10n
b – 1 = b1b2 … bn; bk = b – 1; k = 1, 2, …, n

Examples

(a)	 0.9786510 = 9786510 /9999910; where b = 10; 105 –1 = 9999910

(b)	 0.6328 = 6328 / 7778; where b = 8; 108
3 –1 = 7778

(c)	 0.12EA2916 = 12EA2916 / FFFFFF16; where b = 16; 1016
6-1 = FFFFFF16

(d)	 0.1012 = 1012/1112; where b = 2; 102
3 –1 = 1112

330 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

17.7	� CONVERTING DECIMAL NUMBERS BETWEEN
THE BASE 10 AND AN ARBITRARY BASE

As we stated in chapter 2, it is important to be able to convert integer numbers from a given
number base to corresponding integer numbers in any other base. Similarly, we wish to do
the same for fractions. First we will define the corresponding decimal number (nb < 1) that
corresponds to a unique decimal number in the base 10.

Converting a finite decimal number in any base b to its cor-
responding decimal number in the base 10
From chapter 2, when converting from a number in base b to a number in base 10, we have
10b → b10 and therefore 10b

n →b10
n.

It follows that the following formula gives a one-to-one correspondence from a finite decimal
number in the base b to a unique finite decimal number in the base 10:

nb=(0.a1a2…an)b= a1/10b + a2/10b
2
 + … + an/10b

n
 ⇒ a1/b10 + a2/b10

2
 + … + an/b10

n = n10

Note: All computation is done in decimals.

Examples:

(a)	

		 0.3214 ⇒3/4+2/42+1/43 =3/4+2/16+1/64=0.75+0.125+0.015625=0.89062510

(b)	

		 0.110112⇒1/2+1/22+1/24+1/25=0.5+0.25+0.0625=0.03125=0.8437510

(c)	

		 0.9AF16⇒9/16+10/162+15/163=0.5625+0.0390625+0.003662109375

			    =0.60522460937510

Exercises:

1.	 Convert the following numbers to the base 10:

(a)	 0.2311204   (b)  0.111111012   (c)  0.2323238   (d)  ABC216

DECIMAL NUMBERS • 331

Converting an infinite decimal number in any base b to its
corresponding decimal number in the base 10
The following formula will convert any infinite decimal number in the base b to its cor-
responding decimal number in the base 10:

ab = 0. a1a2a3 … an = �(0.a1a2a3 … an a1a2a3 … an …)b = a1/10b + a2/10b
2 + … + an/10b

n +

a1/10b
n+1 + a2/10b

n+2 + … + an/10b
2n + …

ab= 0. a1a2 … an => a1/b + a2/b
2 + … + an/b

n + a1/b
n+1 + a2/b

n+2 + … + anb
2n + …

Here we use the formula:

ab= =
(a1a2a3 … an)b => N10/(b10

n – 1)0.a1a2 … an 10b
n - 1

Examples

(a)	 Find 0.34 => N10

		 Step 1: b = 4

		 Step 2: n = 1

		 Step 3: 0.34 = 34/(104 – 1) => 310/(4 – 1)10 = 110

(b)	 Find 0.1012 ⇒ N10

		 Step 1: b = 2

		 Step 2: n = 3

		 Step 3: 0.101 = 1012/(103
2 – 1) ⇒ 510/(2

3
10 – 1)=(5/7)10

Exercises:

1.	 Convert the following numbers to the base 10:

(a)	 0.68   (b)  0.010012   (c)  0.A5C16   (d)  0.003658

Converting a finite decimal number in the base 10 to its corresponding decimal
number in any base b

n10 = (a1/10 + a2/102 + … + an/10n) → (0.a1a2… an …)b

In converting from base b to base 10, we have the equation

a1/b10 + a2/b10
2
 + … + an/b10

n = n10.

332 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following examples will demonstrate how to solve the values ak:

Examples:

Convert the following decimal numbers to the indicated base.

(a)	 Convert 0.210 to the base 4.

		 Step 1: 0.210 = a1/4 + a2/4
2 + a3/4

3 + …

		 Step 2: 4*(0.2) = 0.8 = a1 + a2/4 + a3/4
2 + …

		 Step 3: Since a1 is an integer, a1 = 0.

		 Step 4: 0.8 = a2/4 + a3/4
2 + …

		 Step 5: 4*(0.8) = 3.2 = a2 + a3/4 + …

		 Step 6: a2 = 3

		 Step 7: 0.2= a3/4 + a4/4
2 + …

Since we are back to step 1, the decimal number in the base 4 can be written as:

		 0.210 ⇒ n4 = 0.0303… 0. (a1a2)4 = 0.034

(b)	 Convert 0.910 to the base 16.

		 Step 1: 0.9 = a1/16 + a2/162 + a3/163 + …

		 Step 2: 16*(0.9) = 14.4 = a1 + a2/16 + a3/163 + …

		 Step 3: Since a1 is an integer, 14 → a1 = E

		 Step 4: 0.4 = a2/16 + a3/162 + …

		 Step 5: 16*(0.4) = 6.4 = a2 + a3/16 + …

		 Step 6: a2 = 6

		 Step 7: 0.4= a3/16 + a4/162 + …

		 Step 8: �Since we are back to step 4, the decimal number can be
written as:

		 0.910 ↔ N16 = 0.E666… = 0.E6

(c)	 Convert 0.810 to the base 2.

		 Step 1: 0.8 = a1/2 + a2/2
2 + a3/2

3 + …

		 Step 2: 2*(0.8) = 1.6 = a1 + a2/2 + a3/2
2 + …

DECIMAL NUMBERS • 333

		 Step 3: a1 = 1

		 Step 4: 0.6 = a2/2 + a3/2
2 + …

		 Step 5: 2*(0.6) = 1.2 = a2 + a3/2 + …

		 Step 6: a2 = 1

		 Step 7: 0.2= a3/2 + a4/2
2 + …

		 Step 8: 2*(0.2) = 0.4 = a3 + a4/2 + …

		 Step 9: a3 = 0

		 Step 10: 0.4= a4/2 + a5/2
2 + …

		 Step 11: 2*(0.4) = 0.8 = a4 + a5/2 + …

		 Step 12: a4 = 0

		 Step 13: 0.8 = a5/2 + a6/2
2 + …

		 At this point, we are back to step 1:

		 Step 14: Therefore,

		 0.8 ⇒ 0. a1a2a3a4 = 0.11002

Checking out computation

By applying the above formula:

ab ⇒
(a1a2 … an)10

10n – 1

we can check to see if we correctly converted the finite decimal number.

Example

Let us check to see that we correctly converted 0.810 to binary 0.11002.

Step 1: a2 = 0.1100

Step 2: b = 2

Step 3: n = 4

Step 4: Substituting in the above formula gives

0.11002 = 11002/(102
4 – 1) = 11002/11112 → 1210/1510=0.8.

334 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercises:

1.	 Convert 0.610 to the following:

(a)	 base 2   (b)  base 4   (c)  base 8   (d)  base 16

2.	 Show 0.0214 ↔ 0.1510

Converting an infinite decimal number in the base 10 to its
corresponding decimal number in any base b
We will use the same method of converting a finite decimal number in the base 10 to any
number in the base b by replacing the finite decimal number by an infinite decimal number.

Example

1.	 Convert and check your results.

Convert: 0.210 to base 2

	 0.210 = 2/9 = a1/2 + a2/2
2+ a3/2

3 + …

			 2(2/9) = 4/9 = a1+ a2/2 + a3/2
2 + a4/2

3 + …

			 a1= 0

			 4/9 = a2/2 + a3/2
2 + a4/2

3 + …

			 2(4/9) = 8/9 = a2 + a3/2 + a4/2
2 + a5/

323 + …

			 a2 = 0

			 (8/9) = a3/2 + a4/2
2 + a5/2

3 + …

			 2(8/9) = 16/9 = (9 + 7)/9 = a3 + a4/2 + a5/2
2 + …

			 a3 = 1

			 7/9 = a4/2 + a5/2
2 + a5/2

3 + …

			 2(7/9) = 14/9 =(9 + 5)/9 = a4 + a5/2 + a6/2
2 + …

			 a4 = 1

			 5/9 = a5/2 + a6/2
2 + ….

			 2(5/9) = 10/9 = (9 + 1)/9 = a5 + a6/2
2 + …

			 a5 = 1

			 2(1/9) = 2/9 = + a6/2
2 + a7/2

3 + …

DECIMAL NUMBERS • 335

			 a6 = 0

			 0.210 => 0.0011102

Check: 0011102 =
11102

1111112

 => 1410/6310 = 0.210

Exercise:

1.	 Convert 0.110 to base 5

17.8 	�CONVERTING DECIMAL NUMBERS IN A GIVEN
BASE TO FRACTIONS IN THE SAME BASE

Finite decimal numbers in the base b can easily be converted to fractions by writing them
first in the form:

(0.a1a2a3 … an)b = a1b/10b + a2b/10b
2+ a3b/10b

3 + … + anb/10b
n

= [(a1b *10b
n–1 + a2b *10b

n–2 + … + akb *10b
n–k2 +… + a1b)]/10n]b.

Examples:

0.58 = (5/10)8

0.10112 = 1/102 + 0/1002 + 1/10002 + 1/100002

= (1*10002 + 1*102 + 1)/100002

= (1011/10000)2

0.3DF216 = 3/1016 + D/10016 + F/100016 + 2/1000016 = (3*100016 + D*10016

+ F*1016 + 2)/10000 = (3DF2/10000)16

Exercise:

1.	 Write the following decimal numbers as fractions:

(a)	 0.02358   (b)  0.1101112   (c)  0.99999916

Infinite decimal numbers of type 0. a1a2 … an b can also be converted into a fraction by using
the basic formula developed in this chapter:

	
=

(a1a2 … an)b0.(a1a2 … an)b 10b
n - 1

where 10n – 1 = d1d2 … dn

and dk = b – 1 (k = 1, 2, …, n), the largest digit in the base b.

336 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Examples

0.7238 = 7238/(10008 – 1) =7238 /7778

0.102= 102/(1002 – 1) = 102 /112

0.3FA916 = 3FA916/(1000016 – 1) = 3FA916/FFFF16

Exercise

1.	 Write the following decimal numbers as fractions in the same base:

(a)	 0.01012   (b)  0.0007238   c.  0235.72378   d.  02C5.723916

17.9 	�CONVERTING NUMBERS BETWEEN
DIFFERENT BASES

There exists a one-to-one correspondence between different bases. This can be shown by
converting a number in one base to the base 10 and then convert this number to the other
base.

Examples

(a)	 0.24 =>N6

		 0.24 =>N10 = 2/4 = 0.5

		 0.510 = a1/6 + a2/6
2 + a3/6

3 + …

		 6*0.5 = a1 + a2/6 + a3/6
2 + … = 3.0

		 a1 = 3, a2 = 0, a3 = 0, …

		 0.5 =>0.36

		 0.24 =>0.36

(b)	 0.68 → N2

		 0.6 → N10 = 6/8 =.75

		 0.75 = a1/2 + a2/2
2 + a3/2

3 + …

		 2*(0.75) = a1 + a2/2 + a3/2
2 + … = 1.5

		 a1 = 1

		 0.5 = a2/2 + a3/2
2 + …

DECIMAL NUMBERS • 337

		 2*0.5 = a2 + a3/2 + … = 1

		 a2 = 1, a3 = 0, a4 = 0, …

		 0.5 → 0.112

		 0.68 → 0.112

(c)	 0.A16 → N2

		 0.A → N10 = 10/16 = 0.62510

		 0.625 = a1/2 + a2/2
2 + a3/2

3 + …

		 2*(0.625) = a1 + a2/2 + a3/2
2 + … = 1.25

		 a1 = 1

		 2*(0.25) = a2 + a3/2 + … = 0.5

		 a2 = 0

		 2*(0.5) = a3 + a4/2 + … = 1

		 a3 = 1

		 0.62510 → 0.1012

		 0.A16 → 0.1012

Quick conversions between the base 2 and base 16

With no computation, we can convert a number in the base 2 to its corresponding number
in the base 16.

To convert from the base 2 to the base 16 or conversely, we need to construct the following
table.

BASE 2 DIGITS

Binary

BASE 16 DIGITS

Hexadecimal

0000 0

0001 1

0010 2

0011 3

338 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Converting a finite decimal number less than 1

The following two rules show how to convert a finite binary number to a hexadecimal
number:

1.	 From left to right, group the digits of the binary number in groups of
four; adding zeros at the end if necessary.

2.	 Match each group of these four digits with the corresponding hexadeci-
mal digits from the above table.

Example:

Convert 0.11011110112 to its corresponding hexadecimal digit.

We first write: 0.11011110112 = 0.1101  1110  11002.

Next we match from the above table the corresponding hexadecimal digit:

0.11011110112 = 0.1101  1110  1100 => 0.DEC16

		 0.   D   E   C16

To convert a finite hexadecimal number to a binary number, just match each hexadecimal digit
with the corresponding binary digits in the above table.

DECIMAL NUMBERS • 339

Example

Convert 0.F3DB16 to its corresponding binary number.

0.F3DB16 =	 0.	 F	 3	 D	 B →	 0.1111 0011 1101 10112

		 0.   1111   0011   1101   1011

Exercises:

1.	 Using this quick conversion, convert the following binary numbers to
hexadecimal:

(a)	 0.0110101012	 (b)  0.00011111012

2.	 Using this quick conversion, convert the following hexadecimal num-
bers to binary:

(a)	 0.562316 	(b)  0.ACF230A2

3.	 In the example above, we converted 0.11011110112 → 0. DEC16

	 Use another conversion method. Is the result the same?

4.	 Set up a quick conversion system between the base 2 and the base 8.

5.	 Convert    (a)  0.1101110112 to the base 8.

				 (b)   Convert 0.234618 to the base 2.

6.	 Use quick conversion to convert 0.761238 to the base 16.

Converting an infinite decimal number less than 1

When converting an infinite binary number to hexadecimal, we to use the following rules:

1.	 From left to right, group the digits of the binary number in groups of
four; adding zeros at the end if necessary. If we cannot group the digits
in groups of four, expand the binary number to a minimal number of
digits that will allow the grouping.

2.	 Match each group of these four digits with the corresponding hexadeci-
mal digits from the above table.

340 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example

Convert 0.10012 to hexadecimal.

0.10012 = 0.1001  1001  1001 … ⇒ 0.916

			   0. 9   9    9 …

Example

Convert 0.110110112	 to hexadecimal.

0.11011011 = 0.1101  1011  1101  1011  1101  1011 … ⇒ 0.DB16

			    0. D   B    D   B    D   B  …

Example

Convert 0.102 to hexadecimal.

Since we don’t have a multiple of four digits, we expand:

0.10102 = 0.1010101010101010… => 0.A16

			  0.  A   A   A   A ….

Example

Convert 0.1012 to hexadecimal.

Since we don’t have a multiple of four digits, we expand:

0.101 = 0.101101101101…   0.1011  0110  1101 … ⇒ 0.B6D16

						 0. B	 6	 D

Example

Convert 0.9A3DD16 to binary.

0.9A3DD16

⇔ 0.1001  1010  0011  1101  1101 = 0.1001  1010  0011  1101  11012

DECIMAL NUMBERS • 341

Exercises:

1.	 Convert 0.10112 to a hexadecimal number.

2.	 Convert the following binary numbers to hexadecimal:

(a)	 0.12

(b)	 0.101112

(c)	 0.1011011012

3.	 Convert 0.110112 to a hexadecimal number.

4.	 Show that the largest positive 32-bit number 0.1111…12 corresponds
to the decimal number

	 1 – 1/232.

5.	 Explain why we cannot convert, using our above algorithm, the follow-
ing number into a fraction:

		 0.272772777277772777772…

PROJECT
Find each expression and ak and ck for k = 1, 2, 3, 4, 5.

0.ABCDE16 =
N16 =>

N10 = (
a1 +

a2 +
a3 + …)10 →

0.65432116 M16 M10 10 102 103

(
c1 +

c2 +
c3 + …)1610 102 103

CHAPTER EIGHTEEN
WORKING WITH DECIMAL NUMBERS
IN ASSEMBLY

344 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

18.1	� INTRODUCTION: REPRESENTATION OF
DECIMAL NUMBERS

So far in assembly language, we have only worked with integer numbers. We will now study
how we can represent and work with fractions represented as numbers with a decimal point.
These numbers will be called decimal numbers. When such numbers are used in assembly
language programming, they are frequently represented as ordinary decimal numbers or
scientific notation.

Definition of ordinary decimal numbers
An ordinary decimal number is of the form ± a0.a1a2 … an, where ak are nonnegative integers.

Examples:

23.4,   -55.0101,   0.00154,   9.0

Definition of scientific representation of decimal numbers
The representation of a decimal number in a scientific format is of the form ± n*10k where n
is an integer, * represents the multiplication operation, and k is always a non-positive integer.
The value k is called the exponent, and the factional part is called the mantissa.

Definition of floating-point representation of decimal numbers
In assembly language, decimal numbers represented in the form

± a0.a1a2 … an × E ± n

and are called floating-point numbers, where a0 is a positive digit.

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 345

Examples:

ORDINARY
DECIMAL NUMBER
REPRESENTATION

SCIENTIFIC
REPRESENTATION

FLOATING-POINT
REPRESENTATION

23.4 234*10–1 2.34 E1

–55.0101 –550101*10–4 –5.50101E 1

0.00154 154*10-5 1.54 E –3

–79.0 –79 *100 –7.9 E 1

9.0 9 *100 9 E 0

Exercise:

1.	 Write the following in scientific and floating-point representation:

0.00234	 45.356	 	 –32

18.2	� ARITHMETIC OPERATIONS USING SCIENTIFIC
REPRESENTATION

Multiplication
To multiply two numbers in scientific notation, we simply multiply the integer numbers and
add the exponents:

(N*10n)(M*10m) = (N*M)*10n + m

Examples:

(0.234)(0.05667) = (234*10-3)(5667*10-5) = (234)(5667)*10-8 = 1326078*10-8 =

1326078 E -8

346 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following partial assembly language code will compute (0.234)(0.05667):

mov eax, 234

mov ebx, -3

mul 5667

add ebx, -5

Exercises:

1.	 Write the following using scientific representation.

- 575.345*0.00234	 678*0.03*2.135	  0.0034*0.221

2.	 Write assembly language codes that will compute the above.

Addition and subtraction
To add or subtract two numbers using scientific representation, the exponents must be
equal:

N*10n ± M*10m = (N ± M) *10n

Example:

0.234 + 0.05667 = 234*10–3 + 5667*10–5 = 23400*10–5 + 5667*10–5 =

(23400+ 5667)*10–5 = 29067*10–5

The following assembly language code will compute 0.234 + 0.05667:

mov eax, 23400

mov ebx, –5

add eax, 5667

Exercises:

Write the following using scientific representation:

1.	 –575.345 + 0.00234    678 + 0.03 + 2.135    0.0034 – 0.221

2.	 Write assembly language codes that will compute the above.

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 347

Long division
To divide two decimal numbers using scientific representation, we have the following form:

(N *10n)/(M * 10m) = (N/M)* 10n – m.

Example:

1. 0.00258/23.456 = (258*10-5) / (23456*10-3) = (258/23456)10-5 + 3 = (258/23456)10-2

18.3	 80X86 FLOATING-POINT ARCHITECTURE
The MASM compiler has the ability to handle ordinary and floating-point decimal numbers.
The following are definitions of the representation given by MASM for decimal numbers.

Definition of float:

An ordinary decimal representation. The number is represented as a 32-bit number.

Definition of double decimal:

An ordinary decimal representation. The number is represented as a 64-bit number.

Definition of long double:

A floating-point representation. The number is represented as an 80-bit number.

The following are data type registers that are available: TBYTE, REAL4, REAL8, REAL10. The
table below gives the specifications for each of these data types.

DIRECTIVE # OF BYTES NUMBER TYPE

REAL4 4 float decimal

REAL8 8 double decimal

REAL10 10 long double, floating point

QWORD 8 integer

TBYTE 10 long double, floating point

Along with these data types, we still can use the integer data types: BYTE, WORD, DWORD.

348 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Important: Except the QWORD data type, all the above data types are only represented in
the base 10. The QWORD follows the data type representation for integer numbers.

Examples:

.DATA

w	 TBYTE	 0.236;	 will assign the number 2.36 to the identifier w as 2.36E-1.

x	 real4	 2.34;	 will assign the number 2.34 to the identifier x as 2.34.

y	 real8	 0.00678;	 will assign 0.00678 to the identifier y as 0.00678.

z	 real10	 23554.5678	 will assign 23554.5678 to the identifier z as 2.35545678E4.

q	 qword	 10	 will assign 10 to the identifier q as an integer.

Rules for assigning floating-point numbers
The following are rules for assigning floating-point numbers:

•	 All identifiers are initially assigned floating-point numbers, where they are
defined in the data part of the program.

•	 All other assignments are done by passing the contents of the variables to
the various floating-point registers.

Floating-point registers
The registers EAX, EBX, ECX, and EDX cannot be used directly when working with floating-
point numbers. Instead, we have eight data registers, each 80 bits long. Their names are ST or
ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7). These eight registers are shown stacked
vertically top down and should be visualized as follows.

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 349

Exercise:

1.	 What is the largest value (base 10) that can be stored in ST(k)?

The operands of all floating-point instructions begin with the letter f. The following will give
the most important floating-point instructions according to their general functions. Additional
floating-point instructions will be discussed in a later chapter of this book.

Storing data from memory to the registers
For demonstration purposes, we will assume the registers have the following numbers.

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will store data from memory to a given
register.

•	 fld

MNEMONIC OPERAND ACTION

Fld memory variable (real) The real number from memory is
stored in ST.

Example

.DATA

x	 REAL4	 30.0

fld x ; stores the content of x in register ST and pushes the other values
down.

350 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 30.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

•	 fild

MNEMONIC OPERAND ACTION

fild variable memory
(integer)

The integer number from memory
is stored in ST, converted to floating

point, and data is pushed down.

Example:

.DATA

x	 DWORD 50

fild x ; stores the content of x (integer value) in register ST and pushes the
other values down.

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 351

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 50.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

•	 fld

MNEMONIC OPERAND ACTION

fld st(k) The number in st(k) is stored in ST, and
data is pushed down.

Example:

fld st(2) ; stores the contents of register st(2) in register ST and pushes
the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 20.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

352 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST(4) 25.0

ST(5)

ST(6)

ST(7)

Important: Once the stack is full, additional stored data will cause the bottom values to be
lost. Also the finit instruction will clear all the values in the register.

Copying data from the stack

We will assume the registers have the following numbers.

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will copy data from stack.

•	 fst

MNEMONIC OPERAND ACTION

Fst st(k) Makes a copy of ST and stores the value in ST(k)

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 353

Example:

fst ST(2) ; stores the content of ST in ST(2).

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 10.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fst

MNEMONIC OPERAND ACTION

fst memory variable (real) Makes a copy of ST and stores the
value in a real memory location

Example:

.DATA

x	 real4	?

fst x ; stores the content of ST in x. The stack is not affected.

354 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fist

MNEMONIC OPERAND ACTION

fist memory variable
(integer)

Converts to integer a copy of ST and stores the
rounded value in an integer memory location

Example:

.DATA

x	 DWORD?

fist x ; stores the content of ST as an integer number in x.

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 355

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Exchanging the contents of the two floating-point registers
We will assume the registers have the following numbers.

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

356 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following are the floating-point instructions that will exchange the contents of two float-
ing- point registers.

•	 fxch

MNEMONIC OPERAND ACTION

fxch None Exchanges the content of ST and ST(1)

Example:

fxch ; exchanges the content of ST and ST(1).

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 10.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fxch

MNEMONIC OPERAND ACTION

fxch st(k) Exchanges the content of ST and ST(k)

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 357

Example:

fxch st(3) ; exchanges the content of ST and ST(3).

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 25.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 10.0

ST(4)

ST(5)

ST(6)

ST(7)

Adding contents of the two floating-point registers
We will assume the registers have the following numbers.

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

358 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following are the floating-point instructions that will add the contents of two floating-
point registers.

•	 fadd

MNEMONIC OPERAND ACTION

fadd st(k), st Adds ST(k) and ST;
then ST(k) is replaced by the sum

Example

fadd st(3), st ; adds ST(3) and ST; then ST(3) is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 35.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fadd

MNEMONIC OPERAND ACTION

fadd st, st(k) Adds ST and ST(k);
then ST is replaced by the sum

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 359

Example:

fadd st, st(3) ; adds the content of ST and ST(3); then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 35.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fadd

MNEMONIC OPERAND ACTION

fadd memory variable (real) Adds ST and the contents of a real
variable; then ST is replaced by the sum

Example:

x REAL4 12.0

fadd x ; adds the content of ST and x; then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 22.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

360 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fiadd

MNEMONIC OPERAND ACTION

fiadd memory variable
(integer)

Adds ST and the contents of an integer
variable; then ST is replaced by the sum.

Example

x DWORD	 70

fadd x ; adds the content of ST and x; then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 80.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 361

Subtracting the contents of the two floating-point registers
The following are the floating-point instructions that will subtract the contents of two float-
ing- point registers.

•	 fsub

•	 fsbur

MNEMONIC OPERAND ACTION

fsub st(k), st Computes ST(k)–ST;
then ST(k) is replaced by the difference.

fsbur st(k), st Computes ST–ST(k);
then ST(k) is replaced by the difference.

Example

fsub st(3), st ; computes ST(3)–ST; then ST(3) is replaced by the difference.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 15.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fsub

•	 fsubr

362 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MNEMONIC OPERAND ACTION

Fsub st, st(k) Computes ST–ST(k);
then ST is replaced by the difference

Fsubr st, st(k) Computes ST(k)–ST;
then ST is replaced by the difference

Example:

fsub st, st(1) ; computes st–st(1); then st is replaced by the difference.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 5.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fsub

•	 fsubr

MNEMONIC OPERAND ACTION

fsub memory (real) Calculates ST–real number;
then ST is replaced by the difference

fsubr memory (real) Calculates real number–ST;
then ST is replaced by the difference

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 363

Example:

x REAL412.0

fsub x ; calculates st–x; then st is replaced by the difference.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 2.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fisub

•	 fisubr

MNEMONIC OPERAND ACTION

fisub memory (integer) Calculates ST–integer number; then ST is
replaced by the difference

fisubr memory (integer) Calculates integer number–ST; then ST is
replaced by the difference

Example:

x DWORD 70

fisub x ; calculates st–x; then st is replaced by the difference.

364 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 60.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Multiplying the contents of the two floating-point registers
The following are the floating-point instructions that will multiply the contents of two float-
ing- point registers.

•	 fmul

MNEMONIC OPERAND ACTION

Fmul st(k), st Multiplies ST(k) and ST;
then ST(k) is replaced by the product

Example:

fmul st(3), st ; multiplies st(3) and st; then st(3) is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 365

ST(3) 25.0 250.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fmul

MNEMONIC OPERAND ACTION

fmul st, st(k) Multiplies ST(k) and ST;
then ST is replaced by the product

Example:

fmul st, st(3) ; multiplies st(3) and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 250.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

366 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

•	 fmul

MNEMONIC OPERAND ACTION

fmul memory variable (real)
Multiplies ST and real variable;

then ST is replaced by the
product

Example:

x REAL4	 35.0

fmul x ; multiplies x and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 350.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fmul

MNEMONIC OPERAND ACTION

fmul memory variable (integer) Multiplies integer variable and ST;
then ST is replaced by the product

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 367

Example

x DWORD 45

fmul x ; multiplies x and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 450.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Dividing the contents of floating-point registers
The following are the floating-point instructions that will divide the contents of floating-point
registers.

•	 fdiv

•	 fdivr

MNEMONIC OPERAND ACTION

fdiv st(k), st Computes ST(k)/ ST;
then ST(k) is replaced by the quotient

fdivr st(k), st Computes ST/ ST(k);
then ST(k) is replaced by the quotient

368 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

fdiv st(1), st ; computes st(1)/st; then st(1) is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 5.0

ST(1) 15.0 3.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fdiv

•	 fdivr

MNEMONIC OPERAND ACTION

fdiv st, st(k) Computes ST/ ST(k);
then ST is replaced by the quotient

fdivr st, st(k) Computes ST(k)/ ST;
then ST is replaced by the quotient

Example

fdiv st, st(2) ; computes st/ st(2); then st is replaced by the quotient.

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 369

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 0.25

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

•	 fdiv

•	 fdivr

MNEMONIC OPERAND ACTION

fdiv memory variable (real) Computes ST/ real variable;
then ST is replaced by the quotient

 fdivr memory variable (real) Computes real variable/ST;
then ST is replaced by the quotient

Example:

x real4	 10.0

fdiv x ; computes st/ x; then st is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 0.5

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

370 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST(4)

ST(5)

ST(6)

ST(7)

•	 fidv

•	 fidvr

MNEMONIC OPERAND ACTION

fidiv memory (integer) Computes ST/ integer variable; then ST is
replaced by the quotient

fidivr memory (integer) Computes integer variable /ST; then ST is
replaced by the quotient

Example

x DWORD	 5

fdiv x ; computes st/ x; then st is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 1.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 371

Summary tables of floating-point arithmetic operations

Store data from memory to a given register

MNEMONIC OPERAND ACTION

fld variable memory (real) The real number from memory is stored
in ST, and data is pushed down

fild variable memory (integer)
The integer number from memory is

stored in ST, converted to floating-point,
and data is pushed down

fld st(k) The number in st(k) is stored in ST, and
data is pushed down

Copy data from the stack

MNEMONIC OPERAND ACTION

Fst st(k) Makes a copy of ST and stores the
value in ST(k)

Fst memory variable (real) Makes a copy of ST and stores the
value in a real memory location

fist memory (integer)
Converts to integer a copy of ST and
stores the rounded value in an integer

memory location

Exchange the contents of the two floating-point registers

MNEMONIC OPERAND ACTION

Fxch (none) Exchanges the content of ST and ST(1)

Fxch st(k) Exchanges the content of ST and ST(k)

372 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Add contents of the two floating-point registers

MNEMONIC OPERAND ACTION

Fadd st(k), st Adds ST(k) and ST; then ST(k) is
replaced by the sum

Fadd st, st(k) Adds ST and ST(k); then ST is replaced
by the sum

Fadd memory variable (real) Adds ST and the contents of a real
variable; then ST is replaced by the sum

Fiadd memory variable (integer) Adds ST and the contents of an integer
variable; then ST is replaced by the sum

Subtract the contents of the two floating-point registers

MNEMONIC OPERAND ACTION

Fisub memory (integer) Calculates ST–integer number; then ST is
replaced by the difference

Fisubr memory (integer) Calculates integer number–ST; then ST is
replaced by the difference

Fsbur st(k), st Computes ST–ST(k);
then ST(k) is replaced by the difference

Fsub memory (real) Calculates ST–real number;
then ST is replaced by the difference

Fsub st, st(k) Computes ST–ST(k);
then ST is replaced by the difference

Fsub st(k), st Computes ST(k)–ST;
then ST(k) is replaced by the difference

Fsubr st, st(k) Computes ST(k)–ST;
then ST is replaced by the difference

fsubr memory (real) Calculates real number–ST;
then ST is replaced by the difference

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 373

Multiply the contents of the two floating-point registers

MNEMONIC OPERAND ACTION

fmul st, st(k) Multiplies ST(k) and ST; then ST is
replaced by the product

fmul st(k), st Multiplies ST(k) and ST; then ST(k) is
replaced by the product

fmul memory variable (real) Multiplies ST and real variable; then ST
is replaced by the product

fmul memory variable (integer) Multiplies integer variable and ST; then
ST is replaced by the product

Divide the contents of floating-point registers

MNEMONIC OPERAND ACTION

fdiv st(k), st Computes ST(k) / ST;
then ST(k) is replaced by the quotient

fdiv st, st(k) Computes ST / ST(k);
then ST is replaced by the quotient

fdiv memory variable (real) Computes ST / real variable;
then ST is replaced by the quotient

fdivr st(k), st Computes ST / ST(k);
then ST(k) is replaced by the quotient

fdivr st, st(k) Computes ST(k) / ST;
then ST is replaced by the quotient

fdivr memory variable (real) Computes real variable / ST;
then ST is replaced by the quotient

fidiv memory variable (integer) Computes ST / integer variable; then ST
is replaced by the quotient

fidivr memory variable (integer) Computes integer variable / ST; then ST
is replaced by the quotient

374 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Miscellaneous floating-point instructions
1.	

MNEMONIC OPERAND ACTION

fabs (none) Replaces the contents of ST with it absolute value

Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST - 10.0 10.0

2.	

MNEMONIC OPERAND ACTION

fchs (none) Replaces the contents of ST with–ST

Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 10.0

3.	

MNEMONIC OPERAND ACTION

frndint (none) Rounds ST to an integer value

Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 12.424 12.0

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 375

Example:

A harmonic sum is defined by the sum 1 + 1/2 + 1/3 + … + … + 1/n.

The following pseudocode programs will compute 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6.

PSEUDOCODE CYCLE OF
INSTRUCTIONS SUM N ONE

SUM := 0.0 SUM:= 0.0 0.0 1

N := 1 N := 1 0.0 1

ONE:= 1 ONE:= 1 0.0 1 1

WHILE N <= 6 WHILE N <= 6 0.0 1 1

BEGIN BEGIN 0.0 1 1

SUM := SUM + 1/N SUM:= SUM+1/ N 1 1 1

N := N + 1 N := N + 1 1 2 1

SUM:= SUM+1/ N 1.5 2 1

N := N + 1 1.5 3 1

SUM:= SUM+ 1/N 1.8333…33333 3 1

N := N + 1 1.833…33333 4 1

SUM:= SUM+ 1/N 2.0833….33333 4 1

N := N + 1 2.0833….33333 5 1

SUM:= SUM+ 1/N 2.2833…33333 5 1

N := N + 1 2.2833…33333 6 1

SUM:= SUM+ 1/N 2.45 6 1

N := N + 1 2.45 7 1

END END 2.45 7 1

376 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDOCODE AL PSEUDO CODE ASSEMBLY CODE

SUM := 0.0 SUM := 0.0 sum real4 0.0

N := 1 N := 1 n byte 1

ONE:= 1 0NE:= 1 one byte 1

WHILE N <= 6 WHILE N ≤ 6 While1: cmp n, 6 jg end1

SUM := SUM + 1/N
N:= N + 1

ST := ONE fld one

ST:= ST/N fidiv n

ST:= SUM + ST fadd sum

SUM:= ST fst sum

EAX := N mov eax, n

EAX := EAX + 1 add eax, 1

N:= EAX mov n, eax

END jmp while1

end1:

Exercises

1.	 Write an assembly program to compute the sum:

		 12 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62.

2.	 It can be shown that 2 = 1 + 1/2 + 1/22 + 1/23 + …

(a)	 Write an AL algorithm to compute Sn = 1 + 1/2 + 1/22 + 1/23 + … + 1/2n.

(b)	 Write an AL algorithm to find for a given n The error = 2 – Sn.

3.	 It can be shown that 1/4 = 1/3 – 1/32 + 1/33 – 1/34 + ….

	 Write an AL algorithm to find for a given n the sum = 1/3 – 1/32 + 1/33 – 1/34 + …. ± 1/3n.

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 377

4.	 The determinate of a square table plays a major rule in mathematics.
The following is a definition of a 2-by-2 determinate:

	
∆ =

a11 a12
 = a11a22– a21a12a21 a22

Write an algorithm that will compute an arbitrary 2-by-2 determinate.

Interchanging integer and floating-point numbers

The following table demonstrates how integer numbers and floating-point numbers are inter-
changed (all numbers are decimal).

AS CODE N X Y Z ST(0)

n dword ?

x real4 2.0 2.0

y real4 23.7 2.0 23.7

z real4 55.4 2.0 23.7 55.4

fld x 2.0 23.7 55.4 2.0

fist n 2 2.0 23.7 55.4 2.0

fld y 2 2.0 23.7 55.4 23.7

fist n 24 2.0 23.7 55.4 23.7

fld z 24 20 23.7 55.4 55.4

fist n 55 20 23.7 55.4 55.4

378 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Model program

; This program will compute the harmonic sum

;1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6

.386

.model flat

.stack 4096

.data

sum real4 0.0

n byte 1

one byte 1

.code

_start:

;start assembly language code

while1 cmp n, 6

jg end1

fild one

fidiv n

fadd sum

fst sum

mov eax, n

add eax, 1

mov n, eax

jmp while1

end:

;end of assembly language code

public _start

end

WORKING WITH DECIMAL NUMBERS IN ASSEMBLY • 379

PROJECTS
1.	 It can be shown that

π ≈ 4 –
4

+
4

–
4

+
4

–
4

+… ±
4

3 5 7 9 11 2n + 1

(a)	 Write an assembly language algorithm to approximate π.

(b)	 Write an assembly language program to approximate π for n = 10.

2.	 The solution of a 2-by-2 system of equations:

The determinate of a square table plays a major rule in mathematics. The following is a
definition of a 2-by-2 determinate:

∆ =
a11 a12

 = a11a22– a21a12a21 a22

Write an algorithm that will compute an arbitrary 2-by-2 determinate.

Cramer’s rules

Assume we wish to solve the following 2-by-2 system of equations:

a11x + a12y = b1

a21x + a22y = b2

The following Cramer’s rules give us a solution of the above system of equations, where

x =

b1 a12

b2 a22

∆

y =

a11 b1

a21 b2

∆

Write an algorithm that solves any 3 a 2-by-2 system of equations. Make sure that ∆ does
not equal zero.

CHAPTER NINETEEN
COMPARING AND ROUNDING
FLOATING-POINT NUMBERS

382 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION

19.1	 �INSTRUCTIONS THAT COMPARE
FLOATING-POINT NUMBERS

When we are comparing floating-point numbers, we cannot directly use the instruction cmp.
Instead, we have the following instructions that allow us to compare the register ST to a
second operand.

MNEMONIC OPERAND ACTION

fcom (none) Compares ST and ST(1)

fcom st(k) Compares ST and ST(k)

fcom variable memory (real) Compares ST and a real number in
memory

ficom variable memory (integer) Compares ST and an integer
number in memory

ftst (none) Compares ST and 0.0

The status word register
When one of the comparison instructions is made, the contents of a special 16-bit register,
called the status word register, is modified. The comparison instruction will assign bits (0 or 1)
to the bits 9, 11, and 15 of the status word.

The status word register cannot be directly accessed. In order to evaluate the bits in the
status word, we can, with the following two instructions, copy the contents of the status word
to a memory variable or the AX register:

MNEMONIC OPERAND ACTION

fstsw variable (word) memory (integer) Copies the status register
into memory

fstsw AX Copies the status register
into AX

COMPARING AND ROUNDING FLOATING-POINT NUMBERS • 383

Examples:

x dword ?

fcom

fstsw x

fstsw ax

Interpretation of the contents of the status word
When a comparison is made, the table below gives the bit values that are assigned to the
status word by the comparison instructions.

COMPARISON STATUS WORD

BIT POSITION 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ST > second operand x 0 x x x 0 x 0 x x x x x x x x

ST < second operand x 0 x x x 0 x 1 x x x x x x x x

ST = second operand x 1 x x x 0 x 0 x x x x x x x x

Where the values x are 0 or 1.

Since we are not sure what the other bits are in the status word, we need to create a mask
that will convert the bits represented above by x’s to the bit 0. By doing this, we can make
correct comparisons. The following mask will be used.

BIT POSITION 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MASK (binary) 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

The following codes show the effect of the mask on the possible contents of the status word
resulting from a comparison instruction.

384 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ST > second operand

AL CODE AX MASK

mov mask,0100010100000000b 0100010100000000b

fstsw ax; stores the contents
of the status word in ax x0xxx0x0xxxxxxxxb 0100010100000000b

and ax, mask 0000000000000000b 0100010100000000b

ST < second operand

AL CODE AX MASK

mov mask, 010001010000000b 0100010100000000b

fstsw ax; stores the contents
of the status word in ax x0xxx0x1xxxxxxxxb 0100010100000000b

and ax, mask 0000000100000000b 0100010100000000b

ST = second operand

AL CODE AX MASK

mov mask, 0100010100000000b 0100010100000000b

fstsw ax; stores the contents of
the status word in ax x1xxx0x0xxxxxxxxb 0100010100000000b

and ax, mask 0100000000000000b 0100010100000000b

Performing jumps
From above, we see that comparison instructions only set the status word. Therefore, to
make our jump instructions from chapter 12 work, we need to check the contents of the
status word. In order to make the comparison, we must first store the status word in a vari-
able (word) or the ax register and then use the above mask, as shown above. The following
examples should give us a clear idea of how this is done.

COMPARING AND ROUNDING FLOATING-POINT NUMBERS • 385

Examples:

1.	 Assume each of the registers in the stack have been previously assigned
values. The following pseudocode and AL pseudocode will perform the
following tasks:

	 Task 1: �If y is larger than x, then assign the contents of y to the memory
location z.

	 Task 2: �If y is smaller than x, then assign contents of x to the memory
location z.

	 Task 3: If y is equal to x, then assign zero to the memory location z.

PSEUDOCODE AL PSEUDOCODE
mov mask, 010001010000000b mov MASK, 010001010000000b

IF Y > X THEN

ST:= Y

; COMPARE ST, X

AX:= STATUS- WORD

AX:= AX .AND. MASK

IF AX = 0000000000000000b THEN

BEGIN BEGIN

Z:= Y
EAX:= Y

Z:= EAX

END END

IF Y < X THEN IF AX = 0000000100000000b THEN

BEGIN BEGIN

Z:= X
EAX:= X

Z:= EAX

END END

IF Y = X THEN IF AX:= 01000000000000000b THEN

BEGIN BEGIN

Z:= 0 Z:= 0

END END

386 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Using the above pseudocode and AL pseudocode, the below partial assembly language pro-
gram will find the larger of two positive x and y where x = 7 and y = 2.

AL PSEUDOCODE AL CODE Z ST AX

m= 010001010000000 b mov m,
010001010000000 b

X:= 7 mov x, 7

Y:= 2 mov y, 2

ST:= Y fild y 2

COMPARE ST, X fcom x 2

AX:= STATUS- WORD fstsw ax 2 x0xxx0x1xxxxxxxxb

AX:= AX .AND. M and ax,m 2 0000000100000000b

IF X = ST THEN

cmp ax,
0100000000000000b 2 0000000100000000b

jne L1 2 0000000100000000b

BEGIN begin: 2 0000000100000000b

Z := 0 mov z, 0 2 0000000100000000b

END end: jmp end2 2 0000000100000000b

IF X < ST THEN

L1: cmp ax,
0000000000000000b 2 0000000100000000b

jne begin2 2 0000000100000000b

BEGIN begin: 2 0000000100000000b

EAX:= X mov eax, x 2 0000000100000000b

Z:= EAX mov z, eax 2 0000000100000000b

END end: jmp end2 2 0000000100000000b

IF X > ST THEN 2 0000000100000000b

BEGIN begin2: 2 0000000100000000b

EAX := X mov eax, x 2 0000000100000000b

Z:= EAX mov z, eax 7 2 0000000100000000b

END end2: 7 2 0000000100000000b

COMPARING AND ROUNDING FLOATING-POINT NUMBERS • 387

2.	 The following program will compute the harmonic sum

	 1 + 1/2 + 1/3 + … + 1/n	 until 1/n < e, where 0 < e < 1.

	 Assume e = 0.00001.

Note: See model program below.

PSEUDOCODE AL PSEUDO CODE ASSEMBLY CODE
E:= 0.00001 E:= 0.00001 e real4 0.00001

F:= 1.0 F:= 1.0 f real4 1.0

SUM := 0.0 SUM:= 0.0 sum real4 0.0

N := 1 N:= 1.0 n real4 1.0

ONE:= 1 ONE:= 1.0 one real4, 1.0

MASK:=
0010001010000000b MASK:= 010001010000000b mov mask,

010001010000000b

WHILE F ≥ E

WHILE: ST ≥ F while1: fld f

FCOM E fcom e

AX:= STATUS WORD fstsw ax

AX:= AX .AND. MASK and ax, mask

IF AX = 100h THEN comp ax,
0000000100000000b

JUMP END je end1

BEGIN BEGIN BEGIN

SUM:= SUM + F

ST:= SUM fld sum

ST:= ST + F fadd f

SUM:= ST fst sum

N:= N + ONE

ST:= N fld n

ST:= ST + ONE fadd one

N:= S fst n

F:= ONE/N

ST:= ONE fld one

ST:= ST/N fdiv n

F:= ST fst f

JUMP WHILE jmp while1

END END end:

388 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

19.2 	ROUNDING FLOATING-POINT NUMBERS
In order to write such programs, we need to be able to truncate decimal values. The contents
of the control register (see below) determine how data is to be rounded when data in the ST
register is transferred to an integer variable. There are four types of rounding:

•	 Normal rounding of the number to an integer

•	 Rounding the number up to the nearest integer

•	 Rounding the number down to the nearest integer

•	 Truncating the number to its integer value

The following table gives the hexadecimal representation of the contents of the control
register that is needed to perform rounding in ST.

BYTE POSITION 2 1

Round the number to the nearest integer. 00 00

Round the number up to the nearest integer. 08 00

Round the number down to the nearest integer. 04 00

Truncate the number to its integer value. 06 00

Examples:

1.	 23.678 => 24, normal rounding to an integer

2.	 23.678 => 24, rounded up to the nearest integer

3.	 23.678 => 23, rounded down to the nearest integer

4.	 23.678 => 23, truncated to its integer value

The control register
The control register is a 16-bit register that determines the kind of rounding that is to take
place. When copying a value from the ST register to an integer variable, the 11th and 12th
bits of the control register have to be modified to determine what type of rounding is to take
place. This can be accomplished by transferring to the control register one of the bytes in the
table above.

COMPARING AND ROUNDING FLOATING-POINT NUMBERS • 389

The table below contains the instructions that will copy the contents of an integer variable
from and to the control register.

MNEMONIC OPERAND ACTION

fstcw memory variable (integer) Copies the contents of the control
register to a memory variable

fldcw memory variable (integer) Copies the contents of the memory
variable to the control register

To round a number to the desired type, the following order has to be followed:

1.	 Copy the desired byte, from the table above, to the control register.

2.	 Copy the contents of ST to a given integer variable.

Examples:

1.	 Normal rounding

; 2.9 => 3
.data
n word ?
x real4 2.9
round word 0h
.code

_start :

fld x ;	 2.9 => st(0)
fldcw round;	 0h => control register

fist n;	 3 => n
public _start

end

390 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	 Rounding down

; 2.9 => 2
.data
n word ?
x real4 2.9
round word 0400h
.code

_start :

fld x ;	 2.9 => st(0)
fldcw round;	 0400h => control register
fist n;	 2 => n
public _start

end

3.	 Rounding up

; 2.1 => 3
.data
n word ?
x real4 2.1
round word 0800h
.code

_start :

fld x ;	 2.1 => st(0)
fldcw round;	 0800h => control register
fist n;	 3 => n
public _start

end

COMPARING AND ROUNDING FLOATING-POINT NUMBERS • 391

4.	 Truncating

; 2.9 => 2
.data
n word ?
x real4 2.9
round word 0600h
.code

_start :

fld x ;	 2.9 => st(0)
fldcw round;	 0600h => control register
fist n;	 2 => n
public _start

end

Exercises:

1.	 Write an AL program that will perform the following:

(a)	 Store in a variable the decimal representation of the number 1/7.

(b)	 Round the number to 10 places of accuracy.

2.	 It can be shown that 2 = 1 + 1/2 + 1/22 + 1/23 + ...

	 Write an AL program to compute the Sn = 1 + 1/2 +1/22 + … + 1/2n
where the error = 2 – Sn < 10–n is for a given value of n.

3.	 It can be shown that 1 + 2 + … + N = N (N + 1)/2

	 Write an AL algorithm that will compute and store the number:
1.0 + 2.0 + … + N.0 and compute, if any, the error
│(1.0 + 2.0 + … + N.0) – N.0(N.0 + 1.0)/2.0│.

4.	 The determinate of a square table plays a major role in mathematics.
The following is a definition of a 2-by-2 determinate:

	
∆ =

a11 a12
 = a11a22– a21a12a21 a22

	 Write an algorithm that will compute an arbitrary 2-by-2 determinate
and check that │∆│> E > 0, for a given E.

392 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Model program

; This program will compute the harmonic sum

;1 + 1/2 + 1/3 + … + 1/n

;until

;1/n < e,

;where 0 < e < 1

;Assume e = 0.00001

.386

.MODEL FLAT

.STACK 4096

.DATA

.CODE

e real4 0.00001

f real4 1.0

sum real4 0.0

n real4 1.0

one real4, 1.0

_start:

;start assembly language code

COMPARING AND ROUNDING FLOATING-POINT NUMBERS • 393

mov mask ,010001010000000 b

whil1: fld f

fcom e

fstsw ax

and ax, mask

comp ax, 0000000010000000b

je end

begin:

fld sum

fadd f

fst sum

fld n

fadd one

fst n

fld one

fdiv n

fst f

jmpwhil1

end:

;end of assembly language code

PUBLIC_start

END

394 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECT

1.	 It can be shown that 4 ≈ 3 +
3

+
3

+
3

+
3

+
3

+… +
3

4 42 43 44 45 4n

	 To approximate 4, we compute the above sum untill
3

< 10-M

4M

	 for a positive value of M

(a)	 Write an assembly language algorithm to approximate 4.

(a)	 Write an assembly language program to approximate 4 for M = 10.

2.	 It can be shown that π ≈ 4 –
4

+
4

–
4

+
4

–
4

+… ±
4

± …
3 5 7 9 11 2n + 1

	 Let π ≈ 4 –
4

+
4

–
4

+
4

–
4

+… ±
4

+ Rn3 5 7 9 11 2n + 1

	 where

	 Rn = ±
4

±
4

±
4

+… ±
4

2n + 1 2n + 3 2n + 5 4n – 1

	 Write an AL program that will for a value of n0, will make │Rn│ < 1/10M, for M > 0

	 and will approximate π = 4 –
4

+
4

–
4

+
4

–
4

+… ±
4

3 5 7 9 11 4n0 – 1
.

CHAPTER TWENTY
DYNAMIC STORAGE FOR DECIMAL
NUMBERS: STACKS

396 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
Chapter 15 demonstrated how arrays in assembly language allow the programmer to store
a large amount of integer numeric data sequentially in memory locations. This chapter will
show two other types of instructions in assembly language that perform dynamic storage for
decimal numbers: the push and pop instructions.

Definition of push instructions:

Push instructions will insert data into registers or memory locations.

Definition of pop instructions:

Pop instructions may remove data from registers or memory locations and insert data into
registers or memory locations.

20.1 	�FLOATING-POINT PUSH AND POP
INSTRUCTIONS

The following instructions will bring about pushes and pops that are used in floating-point
programming. They are part of the instruction sets that were first introduced in chapter 18.

As you will recall, the operands of all floating-point instructions begin with the letter f. When
storing or changing data in the registers, the following floating-point instructions will cause
the data that is replaced in the register to be pushed down to the registers below or up to
the registers above.

Storing data from memory to the registers
We will assume the registers have the following numbers.

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 397

The following are the floating-point instructions that will store data from memory to a given
register.

MNEMONIC OPERAND ACTION

fld memory (real) The real number from memory is stored in ST,
and data is pushed down.

Example:

.DATA

x  REAL4  30.0

fld x; stores the content of x (real) into register ST and pushes the other
values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 30.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fild memory
(integer)

The integer number from memory is stored
in ST, converted to floating-point, and data is

pushed down.

398 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

.DATA

x  DWORD  50

fild x; stores the content of x (integer) in register ST and pushes the other
values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 50.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

 ST(7)

MNEMONIC OPERAND ACTION

fld st(k) The number in st(k) is stored in ST, and data is
pushed down.

Example:

fld st(2); stores the number 20.0 into register ST and pushes the other
values down.

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 399

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 20.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

Important: Once the stack is full, additional stored data will cause the bottom values to be
lost. Also, the finit instruction will clear all the values in the register.

Copying data from the stack
We will assume the registers have the following numbers.

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

400 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MNEMONIC OPERAND ACTION

fstp st(k)
Makes a copy of ST and stores the value in

ST(k). ST is popped off the stack by moving the
data up.

Example:

fstp ST(2); stores the content of ST in ST(2) and then pops ST off the stack
by moving the data up.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 10.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fstp memory (real) Makes a copy of ST and stores the value in a
real memory location. ST is popped off the stack.

Example:

.DATA

x  real 4  ?

fstp x; stores the content of ST in x. ST is popped off the stack.

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 401

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 15.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fstp memory (integer)
Converts to integer a copy of ST and
stores the value in an integer memory

location. ST is popped off the stack.

Example

.DATA

x	 DWORD	 ?

fstp x; stores the content of ST as an integer number in x.

REGISTER BEFORE EXECUTION AFTER EXECUTION
ST 10.0 15.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

402 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Adding contents of the two floating-point registers
We will assume the registers have the following numbers.

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will add the contents of two floating-
point registers.

MNEMONIC OPERAND ACTION

fadd none
First it pops both ST and ST(1); next it adds ST
and ST(1); finally the sum is pushed onto the

stack.

Example:

fadd; first it pops both st and st(1); next it adds st and st(1); finally the sum
is pushed onto the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 45.0

ST(1) 15.0 20.0

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 403

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

faddp st(k), st Adds ST(k) and ST; ST(k) is replaced by the sum
and ST is popped from the stack.

Example:

faddp st(2), st; adds ST(2) and ST; ST(2) is replaced by the sum, and ST is
popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 30.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

404 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Subtracting the contents of the two floating-point registers
The following are the floating-point instructions that will subtract the contents of two
floating-point registers.

MNEMONIC OPERAND ACTION

fsub none First it pops ST and ST(1); next it calculates
ST(1)–ST; next it pushes the difference into ST.

fsubr none First it pops ST and ST(1); next it calculates
ST–ST(1); next it pushes the difference into ST.

Example:

fsub;	first it pops st and st(1); next it calculates st(1)–st; next it pushes the
difference into st.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 2.0

ST(1) 15.0 27.0

ST(2) 27.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 405

MNEMONIC OPERAND ACTION

fsubp st(k), st Computes ST(k)–ST; replaces ST(k) by the
difference; finally pops ST from the stack

fsubpr st(k), st Computes ST–ST(k); replaces ST(k) by the
difference; finally pops ST from the stack

Example:

fsubp st(1), st; computes st(1)–st; replaces st(1) by the difference; finally
pops ST from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 5.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Multiplying the contents of the two floating-point registers
The following are the floating-point instructions that will multiply the contents of two
floating-point registers.

MNEMONIC OPERAND ACTION

fmul none First it pops both ST and ST(1); next it multiplies ST
and ST(1); finally the product is pushed onto the stack.

406 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

fmul; first it pops both st and st(1); next it multiplies st and st(1); finally the
product is pushed onto the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 500.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fmulp st(k), st Multiplies ST(k) and ST; ST(k) is replaced by
the product, and ST is popped from the stack.

Example:

fmulp st(3), st; multiplies st(3) and st; then st(k) is replaced by the product
and st is popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 20.0

ST(2) 20.0 250.0

ST(3) 25.0

ST(4)

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 407

ST(5)

ST(6)

ST(7)

Dividing the contents of floating-point registers
The following are the floating-point instructions that will divide the contents of floating-point
registers.

MNEMONIC OPERAND ACTION

fdiv none First it pops both ST and ST(1); next it computes
ST(1)/ ST; finally the quotient is pushed onto the stack.

fdivr none First it pops both ST and ST(1); next it computes ST/
ST(1); finally the quotient is pushed onto the stack.

Example:

fdiv; first it pops both st and st(1); next it computes ST(1)/ ST; finally the
quotient is pushed onto the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 1.25

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

408 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

MNEMONIC OPERAND ACTION

fdivp st(k), st Computes ST(k) /ST; then ST(k) is replaced by
the quotient. Next ST is popped from the stack.

fdivpr st(k), st Computes ST /ST(k); then ST(k) is replaced by
the quotient. Next ST is popped from the stack.

Example:

fidivp st(2); computes st(2) /st; then st(2) is replaced by the quotient, and
ST is popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 15.0

ST(1) 15.0 4.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 409

Instructions that compare floating-point numbers

MNEMONIC OPERAND ACTION

fcomp (none) Compares ST and ST(1); then pops the stack

fcomp st(k) Compares ST and ST(k); then pops the stack

fcomp memory (real) Compares ST and a real number in memory;
then pops the stack

fcomp memory (integer) Compares ST and an integer number in memory;
then pops the stack

fcompp (none) Compares ST and ST(1); then pops the stack twice

20.2	 THE 80X86 STACK
The directive

.STACK 4096

in the assembly language has the assembler reserve of 4096 bytes of storage. This will allow
the programmer to temporarily store integer data in this location. The instruction to store
data sequentially is the push instruction.

The push instruction
The syntax of the push instruction is push source where the source can be any of the following:

•	 16-bit register (AX, BX, CX, DX)

•	 32-bit register (EAX, EBX, EDX, EDX)

•	 A declared word or double word variable

•	 A numeric byte, word or double word

The push instruction will sequentially store data in the stack starting at the initial location.

Note: For simplicity, we will only push 32-bit registers or numeric values.

410 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Example:

AL CODE EAX STACK
mov eax, 52B6h 52B6

push eax 52B6 00 00 52 B6

mov eax, 23A7h 23A7 00 00 52 B6

push eax 23A7 00 00 23 A7 00 00 52 B6

mov eax,
72346711h 72346711 00 00 23 A7 00 00 52 B6

push eax 72346711 72 34 67 11 00 00 23 A7 0 0 52 B6

Exercises

1.	 Complete the table. Use only hexadecimal numbers.

AL CODE AX STACK
mov ax, 23deh

push ax

mov ax, 3425

push ax

mov ax, 7f7ah

push eax

2.	 Complete the table. Use only hexadecimal numbers.

AL CODE EAX STACK
mov eax, 0

push eax

mov eax, 243544h

push eax

mov eax, 1001111b

push eax

DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS • 411

Other push instructions

pushw

When a numeric integer is to be pushed into the stack, to prevent confusion, the assembler
needs to be informed as to its data type. The following push instructions perform this task:

•	 pushw source where source is a numeric value.

	 This push instruction will identify the numeric value to be stored as a word.

•	 pushd source where source is a numeric value.

	 This push instruction will identify the numeric value to be stored as a
doubleword.

The pop instruction
The pop instruction will copy data from the stack, using the rule “last in first copied,” and
store the data at the designated destination. The data copied will be popped from the stack,
and the remaining data will be pushed up the stack.

The syntax of the pop instruction is pop destination where the destination can be any of the
following:

•	 16-bit register (AX, BX, CX, DX)

•	 32-bit register (EAX, EBX, EDX, EDX)

•	 A declared word or double word variable

Examples:

1.	

AL CODE EAX EBX STACK

mov eax, 52B6h 52B6

push eax 52B6 00 00 52 B6

mov eax, 23A7h 23A7 00 00 52 B6

push eax 23A7 00 00 23 A7 00 00 52 B6

pop ebx 23A7 000023A7 00 00 52 B6

pop ebx 23A7 000052B6

412 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	

AL CODE EAX EBX STACK

mov eax, 52B6h 52B6

push eax 52B6 00 00 52 B6

pushw 3AB4h 52B6 3A B4 00 00 52 B6

pushd 636AD9h 52B6 00 63 6A D9 3A B4 00 00

pop ebx 52B6 00636AD9 3A B4 00 00

pop ebx 52B6 3AB40000

Note: Perhaps the best use of the push and pop instructions is to give the programmer
additional temporary storage.

Exercises:

1.	 Store in a stack the sequence 1, 2, …, 100.

2.	 In exercise 1 take the numbers from the stack and compute the number
12 + 22 + 32 + … + 1002.

PROJECT

Write an assembly language program that will find and store in the stack all positive integer
numbers between 1 and N that are prime.

III. WORKING WITH STRINGS

CHAPTER TWENTY-ONE
DYNAMIC STORAGE: STRINGS

416 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
So far in this book, we have only been working with numeric data. In this chapter, we will
define and work with string data. Strings are very important in that they can be used to
communicate with the programmer and user.

We start with the definition of a string and its numeric representation: the ASCII code.

21.1	 THE ASCII CODE
Definition of a string:

A string is a sequence of printable characters such as numbers, letters, spaces, and special
symbols : $, *, and so on enclosed in single quotation marks: ′ ′.

Examples:

ˈHello!ˈ ,   ˈSam lives hereˈ ,   ˈTo be or not to beˈ ,   ˈx = 2y + 3z.ˈ

All data entered must be represented as numeric values. In assembly language, as well as many
computer languages, the numeric representation of the ASCII code is used.

ASCII (American Standard Code for Information Interchange) is a character encoding based
on the English alphabet. ASCII codes represent text in computers, communications equip-
ment, and other devices that work with text. Most modern character encoding systems have
a historical basis in ASCII.

ASCII was first published as a standard in 1967 and was last updated in 1986. It currently
defines codes for 33 nonprinting, mostly obsolete control characters that affect how text is
processed, plus 95 printable characters (starting with the space character).

ASCII is strictly a 7-bit code; meaning that it uses the bit patterns representable with seven
binary digits (a range of 0 to 127 decimal) to represent character information. For example,
three important codes are the null code (00), carriage return (0D), and line feed (0A).

The following is a table of the ASCII code along with each string’s symbol associated with its
hexadecimal number value.

DYNAMIC STORAGE: STRINGS • 417

ASCII table

ASCII
SYMBOL HEX DEC NAME

ASCII
SYMBOL HEX DEC NAME

00 0 Null @ 40 64 At

SOH 01 1 Start of header A 41 65

STX 02 2 Start of text B 42 66

ETX 03 3 End of text C 43 67

EOT 04 4 End of
transmission D 44 68

ENG 05 5 Enquire E 45 69

ACK 06 6 Acknowledge F 46 70

BEL 07 7 Bell G 47 71

BS 08 8 Backspace H 48 72

HT 09 9 Horizontal tab I 49 73

LF 0A 10 Line feed J 4A 74

VT 0B 11 Vertical tab K 4B 75

FF 0C 12 Form feed L 4C 76

CR 0D 13 Carriage return M 4D 77

SO 0E 14 Shift out N 4E 78

SI 0F 15 Shift in O 4F 79

DLE 10 16 Data link escape P 50 80

DC1 11 17 Device control 1 Q 51 81

DC2 12 18 Device control 2 R 52 82

DC3 13 19 Device Control 3 S 53 83

DC4 14 20 Device control 4 T 54 84

418 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

NAK 15 21 Negative
acknowledge U 55 85

SYN 16 22 Synchronous idle V 56 86

ETB 17 23 End of transmis-
sion block W 57 87

CAN 18 24 Cancel X 58 88

EM 19 25 End of medium Y 59 89

SUB 1A 26 Substitute Z 5A 90

ESC 1B 27 Escape [5B 91 Open square
bracket

FS 1C 28 File separator \ 5C 92 Backslash

GS 1D 29 Group separator] 5D 93 Close square
bracket

RS 1E 30 Record separator ^ 5E 94 Circumflex

US 1F 31 Unit separator _ 5F 95 Underscore

SP 20 32 Space or blank ‘ 60 96 Single quote

! 21 33 Exclamation
point a 61 97

“ 22 34 Quotation mark b 62 98

23 35 Number sign
(pound sign) c 63 99

$ 24 36 Dollar sign d 64 100

% 25 37 Percent sign e 65 101

& 26 38 Ampersand f 66 102

‘ 27 39 Apostrophe
(single quote) g 67 103

(28 40 Opening
parenthesis h 68 104

) 29 41 Close parenthesis i 69 105

DYNAMIC STORAGE: STRINGS • 419

* 2A 42 Asterisk (star
sign) j 6A 106

+ 2B 43 Plus sign k 6B 107

, 2C 44 Comma l 6C 108

- 2D 45 Hyphen (minus) m 6D 109

. 2E 46 Dot (period) n 6E 110

/ 2F 47 Forward slash o 6F 111

0 30 48 Zero p 70 112

1 31 49 q 71 113

2 32 50 r 72 114

3 33 51 s 73 115

4 34 52 t 74 116

5 35 53 u 75 117

6 36 54 v 76 118

7 37 55 w 77 119

8 38 56 x 78 120

9 39 57 y 79 121

: 3A 58 Colon z 7A 122

; 3B 59 Semicolon { 7B 123 Open curly
bracket

< 3C 60 Less than | 7C 124 OR (pipe)

= 3D 61 Equality } 7D 125 Close curly
bracket

> 3E 62 Greater than ~ 7E 126 Equivalence
(tilde)

? 3F 63 Question mark DEL 7F 127 Delete

Note: The associated ASCII codes are always in hexadecimal.

420 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

21.2	 STORING STRINGS
In this chapter, we will find that there are several instructions to store strings in registers as
well as defined variables.

•	 mov register, string

•	 mov variable, string

The register and the variable can be of any data type.

When a string is stored, each character of the string is converted to its hexadecimal ASCII
code. For example, the string ˈ- x3ˈ is made up of four characters (counting the space but
not the single quotation marks). The assembler will convert the four characters into the
corresponding ASII code:

Examples:

ASSEMBLY CODE EAX

mov eax, '- x3' 2D 20 78 33

ASSEMBLY CODE X

x byte ?

mov x , '/ ' 2F

Exercise:

Convert the following strings to ASCII code.

ASSEMBLY CODE EAX

mov eax, ‘+ YZ ‘

mov eax, ‘/’

mov eax, ‘* %’

DYNAMIC STORAGE: STRINGS • 421

The string variables
Since all strings are converted by the assembler into integer bytes, we use the normal direc-
tives to define the variables as bytes, words, or double words.

Examples

1.	

x BYTE 20 DUP (?); This directive will assign 20 blank bytes to the variable x.

2.	 Hamlet BYTE ‘To be or not to be’; The assembler will set aside 18 bytes
containing the ASCII codes.

54 6F 60 62 65 60 65 72 60 6E 65 54 60 54 65 60 62 65

3.	

array_x	 DWORD 4 DUP ‘- 23’; The assembler will set aside dwords containing the ASCII
code ‘- 23’ .

2D 60 32 33 2D 60 32 33 2D 60 32 33 2D 60 32 33

Exercise:

1.	 Complete the following tables.

Hamlet BYTE ‘Brevity is the soul of wit’

A natural question should be raised: How does the programmer assign strings to registers
and variables without using directly the above type of directives? For example, the above x
variable has 20 blank bytes assigned to it for storage. Therefore, we should be able to assign
any string of 20 characters’ length or less to the variable x.

422 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Since string data are changed to ASCII code by the assembler, we can use, as shown above,
the mov instruction to assign a string to a register or a variable. However, there are times
when we want to copy strings stored in one variable to another variable. We should note that
transferring some strings through a register may not be possible, due to the size of the string.
The following sections will give the necessary instructions to perform such tasks.

The movs instructions
To move strings from one variable to another variable, we define the following three movs
instructions:

Definition of movsb:

The movsb will move the bytes of a variable, byte by byte, to another variable. The movsb
instruction has no operands.

Definition of movsw:

The movsw will move the words of a variable, word by word, to another variable. The movsw
instruction has no operands.

Definition of movsd:

The movsd will move the dwords of a variable, dword by dword, to another variable. The
movsd instruction has no operands.

Since the three movs instructions have no operands, the assembler has to know which vari-
able is the source of the string and which variable is the destination. The location of these
variables is to be stored in the ESI and the EDI registers.

The ESI and EDI registers
Definition ESI:

The ESI register must contain the location of the source variable.

Definition EDI:

The EDI register must contain the location of the destination variable.

The lea instruction

In order to store the locations in these two registers, we use the lea instruction:

Definition of lea:

The form of the lea instruction is lea register, variable name

where, for this application, the registers are esi or edi.

DYNAMIC STORAGE: STRINGS • 423

Once the esi and edi are initialized, the movs instructions will increment these registers under
the following rules:

1.	 The movsb will cause the esi and edi to be incremented to the next byte.

2.	 The movsw will cause the esi and edi to be incremented to the next word.

3.	 The movsd will cause the esi and edi to be incremented to the next dword.

Example:

ASSEMBLY CODE X Y

x dword ‘- x3’ 2D 20 78 33

y dword ? 2D 20 78 33

lea esi, x 2D 20 78 33

lea edi, y 2D 20 78 33

Movsb 2D 20 78 33 33

Movsb 2D 20 78 33 78 33

Movsb 2D 20 78 33 20 78 33

Movsb 2D 20 78 33 2D 20 78 33

Exercises:

1.	 Hamlet DWORD ‘To be or not to be’

Write an AL program that will move the string in variable Hamlet to the variable Shakespeare
DWORD ?

21.3 	MORE STRING INSTRUCTIONS
The following are additional string instructions that can be very useful when working with
strings.

424 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The stos instruction
There are three stos instructions:

Definition: stosb copies a byte stored in the AL register to the destination variable.

Example:

AL CODE AL (Byte is in ASCII
symbols)

X (Byte is in ASCII
symbols)

x byte ?

mov al, ‘&’ &

lea edi, x &

stosb & &

Definition: stosw copies a word stored in the AX register to the destination variable.

Example:

AL CODE AX (Word is in ASCII
symbols)

X (Word is in ASCII
symbols)

x word ?

mov ax, ‘-9’ -9

lea edi, x -9

stosw -9 -9

Definition: stosd copies a word stored in the EAX register to the destination variable.

DYNAMIC STORAGE: STRINGS • 425

Example:

AL CODE EAX (DWord is in ASCII
symbols)

X (DWord is in ASCII
symbols)

x dword ?

mov eax, ‘home’ home

lea edi, x home

Stosd home Home

The lods instruction
There are three lods instruction:

Definition: lodsb copies a source stored in the byte variable to the AL register.

Example:

AL CODE AL (Byte is in ASCII
symbols)

X (Byte is in ASCII
symbols)

x byte ‘#’ #

lea esi, x #

Lodsb # #

Definition: lodsw copies a source stored in the word variable to the AX register.

Example:

AL CODE AX (Word is in ASCII
symbols)

X (Word is in ASCII
symbols)

x word ‘$7 ‘ $7

lea esi, x $7

Lodsw $7

426 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Definition: lodsd copies a source stored in the word variable to the EAX register.

Example:

AL CODE EAX (Word is in ASCII
symbols)

X (DWord is in ASCII
symbols)

xdword ‘Bach ‘ Bach

lea esi, x Bach

Lodsd Bach

The rep instruction
Definition: The rep instruction is a prefix to several other instructions to perform a given
repetitive task. The number of repetitions is a given number stored in the ECX register. When
completed, the ECX register will contain zero (0).

Examples:

1.	

AL CODE ECX AL (Byte is in
ASCII symbols)

X (Dword is in ASCII
symbols)

x dword ?

mov al, ‘^’ ^

lea edi, x ^

mov ecx, 4 4 ^

rep stosb 0 ^ ^ ^ ^ ^

DYNAMIC STORAGE: STRINGS • 427

2.	

AL CODE ECX
AX (Words in

ASCII symbols) X (Words in ASCII symbols)

x word 5 dup (?)

mov ax, ‘WA’ WA

lea edi, x WA

mov ecx, 5 5 WA

rep stosw 0 WA WA WA WA WA WA

3.	

AL CODE ECX EAX (Words in
ASCII symbols)

X (DWords in ASCII sym-
bols)

x dword 4 dup (?)

mov eax, ‘1234’ 1234

lea edi, x 1234

mov ecx, 4 4 1234

rep stosd 0 1234 1234 123 123 123

Exercise:

1.	 Complete the table below:

AL CODE ECX

Y
(DWords in

ASCIIsymbols) X

x dword 4 dup (?)

Y dword ‘1234’

mov ecx, 4

428 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

lea esi, y

lea edi, x

rep movsd

Other repeat instructions
Depending on the suffix, the following are additional versions of the rep instruction:

•	 Definition: the repe prefix is to repeat while ECX > 0 and the suffix opera-
tion compute a value equal to 0.

•	 Definition: the repz prefix is to repeat while ECX > 0 and the suffix opera-
tion compute a value equal to 0.

•	 Definition: the repne prefix is to repeat while ECX > 0 and the suffix
operation compute a value not equal to 0.

•	 Definition: the repnz prefix is to repeat while ECX > 0 and the suffix
operation compute a value not equal to 0.

Note: repz/repe and repnz/repne pairs are equivalent instructions. Also, all repeat instruc-
tions can be used in conjunction with procedures. In this way multiple instructions can be
repeated.

The cmps instruction
There are three cmps instructions:

•	 Definition: cmpsb compares the binary source and binary designation
strings. It does not have operands.

•	 Definition: cmpsw compares the word source and word designation strings.
It does not have operands.

•	 Definition: cmpsd compares the double word and double word designation
strings. It does not have operands.

Note: The cmps instructions should be used in conjunction with the jump instructions of
chapter 11.

The following is a table of the conditional jumps for the signed order of rings in assembly
language.

DYNAMIC STORAGE: STRINGS • 429

Mnemonic Description

Je
jump to the label if source = destination;

jump if equal to

Jne
jump to the label if source ≠ destination;

jump if not equal to

Jnge
jump to the label if source < destination;

jump if not greater or equal to

Jnle
jump to the label if source > destination;

jump if not less than or equal

Jge
jump to the label if source ≥ destination;

jump if greater than or equal

Jle
jump to the label if source ≤ destination;

jump if less than or equal

Jl
jump to the label if source < destination;

jump if less than

Jnl
jump to the label if source ≥ destination;

jump if not less than

Jg
jump to the label if source > destination;

jump if greater than

Jng
jump to the label if source ≤ destination;

jump if not greater than

Note: Remember that the string comparisons are actually the comparisons of the numeric
values associated with the strings.

430 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The scas instruction
The scan string instruction, scas, is used to scan a string for the presence of a given string
element. The scan string is the designation string, and the element that is being searched for
is in a given register.

There are three scas instructions:

•	 Definition: The scasb requires that the element being searched for is in the
AL register.

•	 Definition: The scasw requires that the element being searched for is in the
AX register.

•	 Definition: The scasd requires that the element being search for is in the
EAX register.

Note: To scan the entire string for the given elements, the repne prefix is used with the scas
instruction.

Algorithm: Checks to see if a string has a given element of a byte size.

ASSEMBLY LANGUAGE
CODE COMMENTS

string location byte ‘string’

mov al, ‘byte element’

lea edi,stringlocation ‘string’ is the string to check if it contains the byte
element.

mov ecx, n The number of bytes containing string

mov eax, ecx Will contain the location of the element

repne scasb Checks byte by byte. Will stop checking if the byte
is found.

sub eax, ecx Location of the element if it exists in the string.

DYNAMIC STORAGE: STRINGS • 431

Example:

x dword	 ‘Bach’

mov al, ‘c’

lea edi, x

mov ecx, 4

mov eax, ecx

repne scasb

sub eax, ecx

Exercise:

1.	 Write a program that will find the position location of “f” in the string
‘I live in California’.

PROJECT
1.	 Write an assembly language program that will convert an arbitrary

string “a1a2a3 … an” to it number value a1a2a3 … an.

2.	 Write an assembly language program that will convert an arbitrary
integer number a1a2a3 … an to the string “a1a2a3 … an”.

CHAPTER TWENTY-TWO
STRING ARRAYS

434 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
In chapter 15, we created one-dimensional integer arrays. In this chapter, we will create arrays
that contain strings. We will see that the string arrays and integer arrays share many of the
same rules.

The following are the ways string(s) can be stored using the directive in the data portion of
the program. We can use the following directives:

•	 variable name data type ?

•	 variable name data type string

•	 variable name data type string_1, string_2, …, string_n

•	 variable name data type dimension dup(?)

Examples:

variable name data type ?

1.	 x byte ?

	 will allow a one-character string to be stored in x.

2.	 x word ?

	 will allow a two-character string to be stored in x.

3.	 x dword ?

	 will allow a four-character string to be stored in x.

variable name data type string

1.	 x byte a string of any length

	 will allow any size string to be stored in an array starting in location x.
	 x byte ˈabcdeˈ.

2.	 x word string

	 will allow a string of two characters to be stored in x.
	 x word ˈabˈ

3.	 x dword string

	 will allow a string of four characters to be stored in x.
	 x dword ˈabcdˈ

STRING ARRAYS • 435

variable name data type string_1, string_2, …, string_n

1.	 x byte string_1, string_2, …, string_n

	 will allow a list of strings of any length starting in location x. x byte ˈaˈ,
ˈbˈ, ˈcˈ, ˈdˈ.

2.	 x word string_1, string_2, …, string_n

	 will allow a list of strings of two characters each starting in location x.
x word ˈabˈ, ˈcdˈ, ˈefˈ, ˈghˈ.

3.	 x dword string_1, string_2, …, string_n

	 will allow a list of strings of four characters each starting in location x.
x dword ˈabcdˈ, ˈefghˈ, ˈijklˈ, ˈmnopˈ.

variable name data type dimension dup(?)

will create a string array with a given dimension and data type.

Note: As in chapter 14, the lea instruction will still be used to determine the first byte
position of the array.

22.1 	RETRIEVING STRINGS STORED IN THE VARIABLE
The following examples will demonstrate how strings are retrieved from the variables.

Examples:

1.	

AL CODE AL BYTE 1 BYTE 2 BYTE 3

x byte ˈabcˈ a b c

lea ebx, x a b c

mov al, [ebx] a a b c

add ebx, 1 a a b c

mov al, [ebx] b a b c

add ebx, 1 b a b c

mov al, [ebx] c a b c

436 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.	

AL CODE AL BYTE 1 BYTE 2 BYTE 3

x byte ˈaˈ, ˈbˈ, ˈcˈ a b c

lea ebx, x a b c

mov al, [ebx] a a b c

add ebx, 1 a a b c

mov al, [ebx] b a b c

add ebx, 1 b a b c

mov al, [ebx] c a b c

3.	

AL CODE AX WORD 1 WORD 2 WORD 3

x word ˈabˈ, ˈcdˈ,ˈefˈ ab cd ef

lea ebx, x ab cd ef

mov ax, [ebx] ab ab cd ef

add ebx, 2 ab ab cd ef

mov ax, [ebx] cd ab cd ef

add ebx, 2 cd ab cd ef

mov ax, [ebx] ef ab cd ef

STRING ARRAYS • 437

4.	

AL CODE EAX DWORD 1 DWORD 2 DWORD 3

x dword ˈabcdˈ, ˈefˈ,ˈghiˈ abcd ef ghi

lea ebx, x abcd ef ghi

mov eax, [ebx] abcd abcd ef ghi

add ebx, 4 abcd abcd ef ghi

mov eax, [ebx] ef abcd ef ghi

add ebx, 4 ef abcd ef ghi

mov eax, [ebx] ghi Abcd ef Ghi

Exercises:

1.	 Write an AL program that will retrieve the string: “Brevity is the soul
of wit” from the variable SHAKESPEARE word “Brevity is the soul of
wit”.

2.	 Rewrite the above exercise so that the repetitive instructions are car-
ried out in a loop.

22.2 	�CREATING AND STORING A ONE-DIMENSIONAL
STRING ARRAY IN THE DUP(?) DIRECTIVE

The following steps will define and set up the array.

Step 1: Define the directive variable name data type dimension dup(?)

Step 2: �Using the lea instruction, store the first byte location in a 32-bit
register.

Example

x byte 10 (?)

lea ebx, x

438 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Storing data in a string array
In the assembler, we can use any of the registers EAX, EBX, ECX, and EDX. The following
definition is the assignment statement that will allow us to perform data assignments to and
from memory cells:

mov [register], source instruction

Definition: mov [register], source where the following rules apply:

Rule 1: The registers must be EAX, EBX, ECX, or EDX.

Rule 2: The source can be any register or variable.

Rule 3: �The [register] indicates the cell locations where the bytes are to
be located.

The [register] is called the indirect register.

Rule 4: The lea instruction will establish the first byte location.

The mov [register], source instruction will store the string in the source register or variable in
the memory location indicated by the contents of the register.

Examples:

The following examples show how string arrays are created and stored.

1.	 The following program will store the strings a, b, and c in the array of
type BYTE.

PSEUDOCODE AL CODE AL X

Array X x byte 100 dup(?)
lea ebx, x Byte 1 Byte 2 Byte 3

X(1) := ˈaˈ mov al, ˈaˈ a

mov [ebx], al a a

add ebx, 1 a a

X(2):= ˈbˈ mov al, ˈbˈ b a

mov [ebx], al b a a

add ebx, 1 b a b

STRING ARRAYS • 439

X(3):= ˈcˈ mov al, ˈcˈ c a b

mov [ebx], al c 	
a b c

Important: Since we are storing into individual bytes, we increment by 1.

2.	 The following program will store numbers ab, cd, and ef in the array of
type WORD.

PSEUDOCODE AL CODE AX X

Array X x word ?
lea ebx,x

Word 1 Word 2 Word 3

X(1) := ˈabˈ

mov ax, ˈabˈ ab

mov [ebx], ax ab ab

add ebx,2 ab ab

X(2):= ˈcdˈ

mov ax, ˈcdˈ cd ab

mov [ebx], ax cd ab cd

add ebx,2 cd ab cd

X(3):= ˈefˈ
mov ax, ˈefˈˈ ef ab cd

mov [ebx],ax ef ab cd ef

Important: Since we are storing in individual bytes for each word, we increment by 2.

3.	 The following program will store numbers ‘abcd’, ‘efgh’, and ‘ijk’ in the
array of type DWORD.

440 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PSEUDO AL CODE EAX X

Array X x dword ?
lea ebx,x Dword 1 Dword 2 Dword 3

X(1) := abcdˈ

mov eax, ˈabcdˈ abcd

mov [ebx], eax abcd abcd

add ebx, 4 abcd abcd

X(2):= ˈefghˈ

mov eax, ˈefghˈ efgh abcd

mov [ebx], eax efgh abcd efgh

add ebx, 4 efgh abcd efgh

X(3):= ˈijkˈ
mov eax, ˈijkˈ ijk abcd efgh

mov [ebx], eax ijk abcd efgh Ijk

Important: Since we are storing in individual bytes for each dword, we increment by 4.

Exercises

1.	 Write an AL program that will retrieve the string “Brevity is the soul of
wit” from the variable

2.	 SHAKESPEARE byte “Brevity is the soul of wit”

and copy it into the variable:

HAMLET byte 100 dup(?)

3.	 Rewrite the above exercise so that the repetitive instructions are car-
ried out in a loop.

PROJECT
Assume we have two string variables:

Shakespeare byte ‘Brevity is the soul of wit’ and

Poet byte ‘The problem is not in the stars but within ourselves’

Write an AL program that will interchange the contents of the two variables.

CHAPTER TWENTY-THREE
INPUT/OUTPUT

442 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
The 80x86 MASM assembler provides the Kernel32 library of program utilities, which includes
input/out instructions. In this chapter, we will examine programs that will perform the follow-
ing functions:

•	 Output strings to the monitor

•	 Input strings from the keyboard

23.1	 OUTPUTTING STRINGS TO THE MONITOR
The following is a complete program that will output to the screen the message: “Good
morning America!”

The following directives are used to input and output string data:

•	 ExitProcess PROTO NEAR32 stdcall, dwExitCode:WORD where

	 PROTO is a directive that prototypes the function ExitProcess and

	 ExitProcess is a directive that is used to terminate a program.

•	 GetStdHandle

	 The GetStdHandle returns in EAX a handle for the I/O device.

Examples:

Program

; A complete program that will output to the screen the message: “Good morning
America!”

.386

.MODEL FLAT

INPUT/OUTPUT • 443

;Setup for Writing to the Monitor

GetStdHandle PROTO NEAR32 stdcall, nStdHandle:DWORD
  WriteFile PROTO NEAR32 stdcall,

   hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,
lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_OUTPUT EQU -11

cr	 EQU 0dh	 ; carriage return character

lf	 EQU 0ah	 ; line feed

.STACK 4096

.DATA

message BYTE	 ‘Good morning America!’; This is the message that will be displayed on
the monitor

size DWORD 21;		 Number of characters in message
written DWORD ?

message_out	 DWORD ?

.CODE
; The following instructions will print the message “Good morning America!”
_start:

INVOKE GetStdHandle,		 ;	 Prepare output

  STD_OUTPUT		 ;	  — to screen

   mov message_out, eax;

  INVOKE WriteFile,		 ;	  Initial output

    message_out,		 ;	   screen hardware location

    NEAR32 PTR message, size,  ;	  size of message

    NEAR32 PTR written,	 ;	 bytes written

    0	 ;			 overlapped mode

INVOKE ExitProcess, o		 ;   exit with return code o

PUBLIC _start

END

444 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

23.2 	INPUTTING STRINGS FROM THE KEYBOARD
The following complete program will perform the following tasks.

Task 1: A message to the monitor will prompt the user to enter a message.

Task 2: Allow the user to enter a message.

Example:

; A complete program that will allow the user to enter a message and enter data from
the keyboard.

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

GetStdHandle PROTO NEAR32 stdcall,
  nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,

  hFile:DWORD, lpBuffer:NEAR32, nNumberOFCharsToRead:DWORD,
lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,

  hFile:DWORD, lpBuffer:NEAR32, nNumberOFCharsToWrite:DWORD,
lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_INPUT EQU -10

STD_OUTPUT EQU -11

.STACK 4096

.DATA

request BYTE “Please enter a message ?”
CrLf	 BYTE 0ah, 0dh

Enter_message BYTE 80 DUP (?)
read_in	DWORD ?

written_out DWORD ?
handle_Out DWORD ?
handle_In DWORD ?

INPUT/OUTPUT • 445

.code

; The following instructions will print the message “Please enter a message”

_start:

; WRITE REQUEST

INVOKE GetStdHandle,   ; get handle for console output

STD_OUTPUT

mov handle_In, eax

  INVOKE WriteFile,

  handle_In,

  NEAR32 PTR request, 80,

  NEAR32 PTR written_out,

  0

; The following instructions will allow a message to be entered from the keyboard.

; INPUT DATA

INVOKE GetStdHandle,  ; get handle for console output

STD_INPUT

mov handle_In, eax

INVOKE ReadFile,

handle_In,

NEAR32 PTR Enter_message,

80,

NEAR32 PTR read_in ,

0

INVOKE ExitProcess, 0

INVOKE ExitProcess, o   ;	 exit with return code o

PUBLIC_start

END

446 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECT
Write a program that will perform the following two tasks:

•	 An arbitrary number of hexadecimal numbers can be entered from the
keyboard and stored in an array.

•	 The numbers	can be retrieved from the array, converted to decimal, and
displayed on the monitor.

CHAPTER TWENTY-
FOUR
NUMERIC APPROXIMATIONS (OPTIONAL)

448 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
Numeric approximations play an important role in assembly language programming. The
assembler that you use will provide some numeric algorithms, but in most cases the program-
mer will have to program several necessary numeric algorithms. For example, at this point
we cannot even approximate the square root of a number. Unless the assembler provides a
square root approximation algorithm, the programmer will have to write such an algorithm
usually in the form of a procedure. At this point, in passing, we should note the following
additional floating-point instructions that are provided by the 80x86 Assembly Language.

24.1	 �ASSEMBLER FLOATING-POINT NUMERIC
APPROXIMATIONS

The following floating-point instructions are provided by the assembler to compute approxi-
mations for specific functions.

1.	

MNEMONIC OPERAND ACTION

fsin (none) Replaces the contents of ST by sin(ST)

2.	

MNEMONIC OPERAND ACTION

fcos (none) Replaces the contents of ST by cos(ST)

3.	

MNEMONIC OPERAND ACTION

fsincos (none)
Replaces the contents of ST by sin(ST),

pushes the stack down, and then replaces the
contents of ST by cos(ST)

NUMERIC APPROXIMATIONS (OPTIONAL) • 449

4.	

MNEMONIC OPERAND ACTION

fptan (none) Replaces the contents of ST by tan(ST)

5.	

MNEMONIC OPERAND ACTION

fldpi (none) Replaces the contents of ST by π

6.	

MNEMONIC OPERAND ACTION

fld12e (none) Replaces the contents of ST by log2 (e).

7.	

MNEMONIC OPERAND ACTION

fld12t (none) Replaces the contents of ST by log2 (10).

8.	

MNEMONIC OPERAND ACTION

fldlog2 (none) Replaces the contents of ST by log10 (2).

9.	

MNEMONIC OPERAND ACTION

fldln2 (none) Replaces the contents of ST by loge (2).

450 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

10.	

MNEMONIC OPERAND ACTION

fsqrt (none) Replaces the contents of ST by its square root

24.2 	SPECIAL APPROXIMATIONS
Although the above are useful, we will need more powerful algorithms that we can call as
procedures in our assembly language. We begin with the Newton interpolation method.

Newton interpolation method
The Newton interpolation method is a powerful method for approximation-solving solutions
of equations. First we will show how it can be used to write an algorithm f or compute an
approximation of the square root of any nonnegative number. Then we will apply Newton’s
method to approximate the nth root of any appropriate number.

Roots of an equation
Assume you have an equation y = f(x), represented by the graph below. The root(s) of the
equation is (are) the value(s) of x where the graph crosses the x-axis (f(x) = 0) . First, we start
with an initial value x0. Next, we compute the tangent line of the curve at x0. We next find the
point x1 where the tangent line crosses the x-axis. Continuing, we compute the tangent line of
the curve at x1, and we find the point x2 where the tangent line crosses the x-axis. From the
graph we see that this will lead to a sequence of numbers x0, x1, x2, …, xn, …. that will converge
at one of the roots of the equation.

The Newton interpolation method gives us the following sequential formulas:

x1 = x0 –
f(x0)

f′(x0)

xk+1 = xk –
f(xk)

f′(xk)

where f ′(xk) are the slopes of the tangent lines.

NUMERIC APPROXIMATIONS (OPTIONAL) • 451

Using the Newton interpolation method to approximate n√a
of a number where a > 0
Assume we wish to approximate the nth root of a number a, n√a, using Newton’s interpolation
method. We start by defining f(x) as

f(x) = xn – a

which has a root n√a

It can be shown that f′(x) = n xn–1, which gives use a formula for the slopes of the tangent
lines. We therefore have:

f(xk) = xk
n – a

f ′(xk) = nxk
n-1

xk + 1 = xk –
xk

n – a

nxk
n – 1

Example:

Assume we wish to approximate √5 using Newton’s approximation method.

Step 1: f(x) x2 – 5

Step 2: f ′(xk) = 2x

Step 3: xk + 1 = xk –
xk

2 – 5

2xk

; k = 0, 1, 2, …

Step 4: First we set x0 = 3

x1 = x0 –
x0

2 – 5
 = 3 –

32 – 5
 = 3 – 2/3 = 7/3 = 2.333 …

2x0 2(3)

x2 = x1 –
x1

2 – 5
 = 2.3 –

2.32 – 5
 = 2.236067978 …

2x1 2(2.3)

Since √5 ≈ 2.236067978 is accurate to 8 places we see that if we let x2 = 2.236067978…

will give us at least 8 places of accuracy.

452 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

A pseudo-code algorithm for approximating the square root √a , where a ≥ 0.

INSTRUCTIONS EXPLANATION

X := A + 1 X IS LARGER THAN ROOT OF A.

WHILE N > 0 N IS THE POSITIVE INTEGER

BEGIN

X := X –
X2 – A

2*X
xk + 1 = xk –

xk
2 – a

2xk

N := N – 1

END

PROJECTS
1.	 Using the above pseudo-code algorithm for approximating the square

root √a . where a ≥ 0, write an assembly language program that will
approximate the square root.

2.	 Modify the above pseudo-code algorithm by replacing the number a by
its absolute value.

3.	 We say that two numbers x, y are at least equal to the nth place if
| x – y | < 1/100

	 For example, the 2 numbers 7.12567890435656 and 7.12567890438905
are at least equal to the 10th place since

	 | 7.12567890435656 – 7.12567890438905 | = 0.00000000003249 < 1/1010

4.	 Modify the above pseudo-code algorithm that will terminate the com-
putation xn+1 when |xn+1 –xn| < l/10n.

	 Explain why this would be the better way of estimating the square root √a.

5.	 For problem 4, write an assembly language program.

6.	 Write a pseudo-code algorithm that will approximate the nth root n√a.

NUMERIC APPROXIMATIONS (OPTIONAL) • 453

7.	 From problem 6, write an assembly language program.

8.	 Write an assembly language program that will approximate am/n, where
m, n are positive integers.

Using polynomials to approximate transcendental functions
and numbers
As you may recall, real polynomials are of the form anx

n + an-1 x
n-1 … + a1x + a0, where ak are

real numbers (k = 0, 1, …, n).

The following transcendental functions and numbers can often play an important part in any
assembly language program:

Transcendental functions: ex, ln(x), sin(x), cos(x), tan-1(x).

Transcendental numbers: e, π.

The following are polynomial approximations of transcendental functions:

ex ≈ 1 +
x

+
x2

+ … +
xn

, –∞ < x < ∞; n = 0, 1, 2, …
1! 2! n!

sin(x) ≈ x –
x3

+
x5

–
x7

+ … + (–1)n
x2n + 1

, –∞ < x < ∞; n = 0, 1, 2, …
3! 5! 7! (2n + 1)!

cos(x) ≈ 1 –
x2

+
x4

–
x6

+ … + (–1)n
x2n

, –∞ < x < ∞; n = 0, 1, 2, …
2! 4! 6! (2n)!

tan–1(x) ≈ x –
x3

+
x5

–
x7

+ … + (–1)n
x2n + 1

, –1 ≤ x ≤ 1; n = 0, 1, 2, …
3 5 7 2n + 1

ln(x) ≈ – {1 – x +
(1 – x)2

+
(1 – x)3

+ … +
(1 – x)n

}; 0 < x < 1; n = 1, 2, …
2 3 n

ln(x) ≈ (1 –
1

 ) +
1

(1 –
1

 )2 +
1

(1 –
1

 )3 + … +
1

(1 –
1

 )n 1 ≤ x; n=1, 2, …
x 2 x 3 x n x

Using the above approximations, the following transcendental numbers e and π can be
approximated:

e = e1 ≈ 1 +
1

+
1

+ … +
1

; n = 0, 1, 2, …
1! 2! n!

454 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

π
 = tan(1) ≈ 1 –

1
+

1
–

1
+ … + (–1)n

1
; n = 0, 1, 2, …

4 3 5 7 2n + 1

Therefore,

π ≈ 4{1 –
1

+
1

–
1

+ … + (–1)n
1

}
3 5 7 2n + 1

Pseudocode algorithms for approximating transcendental
functions and numbers
The following pseudocode algorithm will estimate:

ex ≈ 1 +
x

+
x2

+ … +
xn

:
1! 2! n!

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_EX := 0 WILL SUM POLYNOMIAL

WHILE K ≤ N WILL COMPUTE N TIMES

BEGIN

SUM_EX := SUM_EX + XK/K! XK WRITTEN AS A PROCEDURE
K! WRITTEN AS A PROCEDURE

K := K + 1

END

The following pseudocode algorithm will estimate:

sin(x) ≈ x –
x3

+
x5

–
x7

+ … + (–1)n
x2n + 1

3! 5! 7! (2n + 1)!

NUMERIC APPROXIMATIONS (OPTIONAL) • 455

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_SIN := 0 WILL SUM POLYNOMIAL

WHILE K ≤ N WILL COMPUTE N TIMES

BEGIN

SUM_SIN := SUM_SIN +
(–1)K*X2K + 1/(2K + 1)!

XK WRITTEN AS A PROCEDURE K!
WRITTEN AS A PROCEDURE

K := K + 1

END

The following pseudocode algorithm will estimate:

cos(x) ≈ 1 –
x2

+
x4

–
x6

+ … + (–1)n
x2n

2! 4! 6! (2n)!

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_COS := 0 WILL SUM POLYNOMIAL

WHILE K ≤ N WILL COMPUTE N TIMES

BEGIN

SUM_COS := SUM_COS +
(-1)K*X2K /(2K)!

XK WRITTEN AS A PROCEDURE K!
WRITTEN AS A PROCEDURE

K := K + 1

END

456 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The following pseudocode algorithm will estimate:

tan–1(x) ≈ x –
x3

+
x5

–
x7

+ … + (–1)n
x2n + 1

3 5 7 2n + 1

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_INTAN := 0 WILL SUM POLYNOMIAL

WHILE K ≤ N WILL COMPUTE N TIMES

BEGIN

SUM_INTAN := SUM_INTAN +
(-1)K*X2K + 1 /(2K+1)! XK WRITTEN AS A PROCEDURE

K := K + 1

END

The following pseudocode algorithm will estimate:

ln(x) ≈ – {(1 – x) +
(1 – x)2

+
(1 – x)3

+ … +
(1 – x)n

}; 0 < x < 1; n = 1, 2, …
2 3 n

ln(x) ≈ (1 –
1

 ) +
1

(1 –
1

 )2 +
1

(1 –
1

 )3 + … +
1

(1 –
1

 )n 1 ≤ x; n=1, 2, …
x 2 x 3 x n x

INSTRUCTIONS EXPLANATION

IF 0 < X < 1 THEN

BEGIN

K := 1 COUNTER

SUM_LN := 0 WILL SUM POLYNOMIAL

WHILE K ≤ N WILL COMPUTE N TIMES

NUMERIC APPROXIMATIONS (OPTIONAL) • 457

BEGIN

SUM_LN := SUM_LN–(1–X)K /K XK WRITTEN AS A PROCEDURE

K := K + 1

END

ELSE

BEGIN

SUM_LN := 0 WILL SUM POLYNOMIAL

WHILE K ≤ N WILL COMPUTE N TIMES

BEGIN

SUM_LN := SUM_LN + (1–1/X)K /K XK WRITTEN AS A PROCEDURE

K := K + 1

END

END

PROJECTS
1.	 Using the above algorithm, write a pseudocode to estimate the number e.

2.	 Using the above algorithm, write a pseudocode to estimate the number π.

3.	 For each of the above algorithms, write an assembly language program.

4.	 The error created by using the above polynomial approximation is
written as E(x) = transcendental function–polynomial for the sin(x),
cos(x), tan-1(x) functions,

	
|E(x)| ≤

|X|n + 1

n!

5.	 Modify the above algorithms so that the program terminates when
|E(x)| ≤ 1/10n. Also, write an assembly language program for each of
these algorithms.

458 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Monte Carlo simulations
Monte Carlo simulations solve certain types of problems through the use of random numbers.
These problems can be broken down into sampling models, which will give us an approxima-
tion of the solution of the given problem. In order apply these simulation techniques, we need
to develop algorithms that will generate random numbers. In most cases these generated
random numbers will have a uniform distribution.

Definition: A uniform distribution of random numbers is a sequence of numbers in which each
has equal probability of occurring and the numbers are generated independently of each other.

Example

If we toss a die 100 times, we will generate a sequence of 100 numbers, and each number
(1, 2, 3, 4, 5, 6) has a 1/6 probability of appearing.

Since we have to generate the random sequence internally in the assembler, we cannot inde-
pendently generate the numbers. The best we can do is generate sequences that correlate
very closely to independent uniform distributions. These types of generated sequences are
called pseudo-random number generators (PRNG).

For our Monte Carlo simulation problems, we will use two types of PRNGs:

•	 John von Neumann’s middle square method
•	 D.H. Lehmer’s linear congruence method

John von Neumann’s middle square method
Description: This method is very simple. Take any given number, square it, and remove the
middle digits of the resulting number as your “random” number, then use it as the seed for
the next iteration. For example, assume we start with the “seed” number 1111. Squaring
the number 1111 would result in 1234321, which we can write as 01234321, an eight-digit
number. From this number, we extract the middle four digits, 2343, as the “random” number.
Repeating this process again would give 23432 = 05489649. Again, extract the middle four
digits, which will yield 4896. Repeating this process will give a sequence of PRNGs.

To write an assembly language program, use the following steps:

Step 1: Store a four-digit decimal number into EAX.

Step 2: Square this number.

Step 3: Integer divide the number in EAX by 1000.

Step 4: Integer divide the number in EAX by 100000.

Step 5: Move the remainder in EDX to EAX.

Step 6: Repeat steps 2–5.

NUMERIC APPROXIMATIONS (OPTIONAL) • 459

The following partial assembly language program will perform these steps an undetermined
number of times.

ASSEMBLY LANGUAGE EAX EDX

mov eax, 6511 6511

mul eax 42393121

div 100 423931 21

div 10000 42 3931

mov eax, edx 3931 3931

(Repeat above instructions.)

Example:

The following pseudocode will simulate the tossing of a die 100 times.

INSTRUCTIONS EXPLANATION

N:= 100 NUMBER OF TOSSES

EAX := 6511 SEED

LABEL: EAX := EAX* EAX SQUARE SEED

EAX := EAX/100

EDX := EAX/10000 SEED

SEED := EDX

DIE := EDX / 6 + 1

N := N – 1 COUNT

EAX := SEED

IF N <> 0 THEN

BEGIN

JUMP LABEL

END

460 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

PROJECTS
1.	 Write a partial assembly language program from the die pseudocode

program.

2.	 Write a partial assembly language program that will perform the fol-
lowing tasks:

	 Task 1: Toss a die 100 times.

	 Task 2: Compute the number of times the number 6 occurs.

3.	 Write a partial assembly language program that will perform the fol-
lowing tasks:

	 Task 1: Toss a pair of dice 100 times.

	 Task 2: Sum the resulting numbers for each toss.

	 Task 3: Compute the number of times the number 7 occurs.

4.	 Write a partial assembly language program that will perform the fol-
lowing tasks:

	 Task 1: Toss a coin 100 times.

	 Task 2: Count the number of times “heads” appears.

5.	 Write a partial assembly language program that will compute 100
random numbers x where 0 ≤ x ≤ 1.

1. D.H. Lehmer’s linear congruence method
The linear congruence method for generating PRNGs uses the linear recurrence relation:

xn + 1 = axn + b (mod m) where n = 0, 1, 2, …

Lehmer proposed the following values:

m = 108 + 1

a = 23

b = 0

x0 = 47594118

These values will result a repetition period of 5,882,352.

NUMERIC APPROXIMATIONS (OPTIONAL) • 461

Using these values, the following partial program will compute an undermined number of
random numbers x where 0 ≤ x ≤ 108 + 1.

ASSEMBLY LANGUAGE CODE

mov m, 100000001; number m = 108 + 1

mov x, 47594118

mov a, 23

mov eax, x

mul a

div m; remainder stored in edx

mov eax, edx

mul a

div m

:::::::::::::::

(Repeat the above in bold.)

2. Monte Carlo approximations
Random sampling from a population can be applied in solving simple and complex mathematics
and scientific problems. This type of application is known as a Monte Carlo approximation. To
best illustrate this method, assume we wish to approximate by random sampling the number π.
One method is to use a unit square that contains a circle of radius 1.

We know that the area of a circle of radius 1 is π. However, for simplicity, we will only examine
one quadrant, as shown in the figure below, where r = 1 and the area is π/4.

The following steps will approximate π.

Step 1: �Generate a pair of random numbers (x, y) where 0 ≤ x, y ≤ 1. To
generate these numbers, we will use linear congruence method in
the following form:

462 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

		 xn + 1 = a1xn + b1 (mod m1) where n = 0, 1, 2, …

		 yn + 1 = a2yn + b2 (mod m2) where n = 0, 1, 2, …

		 x = xn + 1 /m1

		 y = yn + 1 /m2

Step 2: �If x2 + y2 ≤ 1 then (x, y) lies in the circle of the first quadrant, and
we will assume success.

Step 3: �Generating N pairs (x, y), the law of large number states that
#successes/N → π/4, for large values of N.

The following pseudocode algorithm will perform this sampling and approximate π.

INSTRUCTIONS

K := 1

SUCCESS := 0

WHILE K ≤ N

BEGIN

X := (A1*X + B1) MOD M1

Y := (A2*Y + B2) MOD M2

IF (X2 + Y2) ≤ 1 THEN

BEGIN

SUCCESS := SUCCESS + 1

END

K := K + 1

END

PIE := 4*(SUCCESS/ N)

NUMERIC APPROXIMATIONS (OPTIONAL) • 463

PROJECTS
1.	 From the above pseudocode algorithm, write a assembly language

algorithm.

2.	 To test the above assembly language algorithm, write an assembly lan-
guage program for different values of m, a, and b.

3. The Gambler’s Ruin
Assume a gambler with initial capital of n dollars plays a game against a casino. Assume the
following rules of the game:

•	 For each bet, he bets one dollar.

•	 The gambler will play until he wins m dollars, where m > n or goes broke.

•	 For each bet, the gambler’s chance of winning is p, where 0 < p < 1.

For different values of p, write an assembly language program that will compute the number
of times he bets.

PROJECTS

Bose-Einstein Statistics
In physics, the Bose-Einstein statistics deal with the number of ways to place m indistinguish-
able particles into n distinguishable cells. This is analogous to placing m indistinguishable balls
into n distinguishable urns.

The number of distinguishable arrangement is

n + m – 1
m , where each distinguishable arrangement has equal probability.

Assume that m < n. Write an assembly language program, using Monte Carlo approximations,
that will approximate the probability that each cell has at most one particle.

Note:
n

=
n!

k k!(n – k)!
 ,

APPENDIX A
SIGNED NUMBERS AND THE EFLAG SIGNALS

466 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

INTRODUCTION
It is important to keep in mind that when working with integer numbers, the numbers are
contained in a ring of a given data type. When we preform arithmetic operations, it is possible
that the resulting computations do not always return the expected values as they would appear
in the ordinary integer number system. For example, we would expect the simple expression
2–3 to return a value of -1. But if our number system is an 8-bit ring, we will obtain the result
255, which is the additive inverse of -1. Let us assume for further discussion that the register we
will work with in this chapter is the register AL, which is an 8-bit ring. Further, we will assume
the following table is a signed order representation of this ring in decimal (see chapter 8):

128 129 … 253 254 255 0 1 2 3 … 126 127

128 127 … 3 2 1 0 255 254 253 … 130 129

where the bottom row represents the additive inverse of the above values.

If we wish to write a program that will print out the true value -1, how is this done when the
instructions

move al, 2

sub al, 3

will return the value 255 in the register AL?

To print the correct -1, we need to write AL instructions that will perform the following
tasks:

Task 1: Test what value resulted in the subtraction: 255.

Task 2: Convert 255 into its additive inverse: 1.

Task 3: Store in a variable the ASCII code for -1: 2D31 (see chapter 23).

Task 4: Print this ASCII code (see chapter 25).

Performing operations such as task 1 is the main emphasis of this chapter.

SIGNED NUMBERS AND THE EFLAG SIGNALS • 467

THE EFLAGS
The EFLAG is a 32-bit register where some of its 32 bits indicate three important types of
flag signals resulting from arithmetic or logical operations:

•	 The sign flag

•	 The carry flag

•	 The overflow flag

The EFLAG is of the form:

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

x x

Before defining these important flags, we make the following observation: When performing
arithmetic or logical operations, we first assign a numeric integer to a byte register that has
a 0 or 1 bit at its left-most bit position. If, after the operation, the resulting binary value will
have a 0 or 1 in its left-most bit position. If this bit is the same or different than the left-most
bit of the original value, a change may occur in the various flags listed above.

Definition of the sign flag:

After an arithmetic or logical operation on an integer value in a byte register, if the resulting
binary number has at its left-most position a 1, then the sign flag will be assigned a value 1 to
its 8th bit; otherwise a value 0.

Depending on the result of the operation, the Eflag is of the form:

32 ::: 8 7 6 5 4 3 2 1

x 1 x x x x x x x

or

32 ::: 8 7 6 5 4 3 2 1

x 0 x x x x x x x

468 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Definition of the overflow flag:

The overflow flag (OF) tells whether a carry flipped the sign of the most significant bit in the
result so that it is different from the most significant bits of the arguments. If numbers are
interpreted as unsigned, the overflow flag is irrelevant, but if they are interpreted as signed,
OF means the result was negative.

Depending on the result of the overflow flag, the Eflag is of the form:

32 ::: 12 11 10 9 8 7 6 5 4 3 2  1

x 1 x x x x x x x x x x x

or

32 ::: 12 11 10 9 8 7 6 5 4 3 2  1

x 0 x x x x x x x x x x x

Definition of the carry flag:

The carry flag becomes 1 if an addition, multiplication, AND, OR, and so on results in a value
larger than the register meant for the result.

Depending on the result of the carry flag, the Eflag is of the form:

32 :::1

x 1

or

32 :::1

x 0

SIGNED NUMBERS AND THE EFLAG SIGNALS • 469

EFLAG JUMP INSTRUCTIONS

The eflag bits cannot be directly accessed. However, the following jump instructions can be
used to jump to a designated instruction:

JUMP INSTRUCTION RESULT

js Jump if sign bit is turned on.

jns Jump if sign bit is turned off.

jc Jump if carry bit is turned on.

jnc Jump if carry bit is turned off.

jo Jump if overflow bit is turned on.

jno Jump if overflow bit is turned off.

Multiplication

There are two types of multiplication operations: mul and imul (see chapter 10). The mul
instruction is when the numbers are considered as unsigned (natural order), and the imul
instruction is when the numbers are considered as signed. The mul instruction will set the
carry and overflow flags depending on the value of the left-most bit.

The imul instruction will set the carry if the resulting number is too large. This will result in
the edx register not equal to zero.

REFERENCES

Intel 80x86 Assembly Language OpCodes:

www.mathemainzel.info/files/x86asmref.html

 Visual Studio Express 2015 (free) :

https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

Kernal32 Library

ANSWERS TO SELECTED
EXERCISES

474 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

1.1	 Definition of Integers

Exercises

1.	 Write the following integers in expanded form:

(a)	 56	 (b)   26,578	 (c)   23,556,891,010

Solution:

(a)	 5*10 +6	 (b)   2*104 + 6*103 + 5*102 + 7*10 +8

(c)   2*1010 + 3*109 + 5*108 + 5*107 + 6*106 + 8*105 + 9*104 + 1*103

+1*10

1.2	 Numbers in Other Bases

Exercises

1.	 Write the octal number 23701238 in expanded form.

Solution:

2,370,1238 = 2*106 + 3*105 + 7*104 + 0*103 + 1102 + 2*10 + 3*100

3.	 In the octal number system, simplify the following expressions:

(a)	 23618 + 48	 (b)   338 –28	 (c)   7778 + 38

Solutions:

(a)	 23658	 (b)   318	 (c)   10028

DECIMAL NUMBERS OCTAL NUMBERS (Base 8)

0 08

1 18

2 28

3 38

4 48

CHAPTER 1 ANSWERS TO SELECTED EXERCISES • 475

5 58

6 68

7 78

8 108

9 118

10 128

11 138

12 148

13 158

14 168

15 178

16 208

17 218

18 228

19 238

20 248

::::::::::::::::::::: ::::::::::::::::::::::::

476 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

DECIMAL NUMBERS OCTAL NUMBERS (Base 8)

0 08

1 18

2 28

3 38

4 48

5 58

6 68

7 78

8 108

9 118

10 128

11 138

12 148

13 158

14 168

15 178

16 208

17 218

18 228

19 238

20 248

::::::::::::::::::::: ::::::::::::::::::::::::

CHAPTER 1 ANSWERS TO SELECTED EXERCISES • 477

5.	 Add on 10 more rows to the above table

Solution:

DECIMAL NUMBERS OCTAL NUMBERS (Base 8)

0 08

1 18

2 28

3 38

4 48

5 58

6 68

7 78

8 108

9 118

10 128

11 138

12 148

13 158

14 168

15 178

16 208

17 218

478 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

18 228

19 238

20 248

21 258

22 268

23 278

24 308

25 318

26 328

27 338

28 348

29 358

30 368

7.	 Add on 10 more rows to the above table the second column will
consists of the corresponding numbers in the base 5, starting with the
digit 0.

Solution:

DECIMAL NUMBERS NUMBERS (Base 5)

0 05

1 15

2 25

3 35

CHAPTER 1 ANSWERS TO SELECTED EXERCISES • 479

4 45

5 105

6 115

7 125

8 135

9 145

10 205

11 215

12 225

13 235

14 245

15 305

16 315

17 325

18 335

19 345

20 405

9.	 In the base 5 number system simplify the following expressions:

(a)	 222125 + 35	 (b)   233335 + 25	 (c)   120115 -25

Solution:

(a)	 222205	 (b)   233405	 (c)   120045

11.	 Extend the above table for the integer numbers 21–30.

480 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution

DECIMAL NUMBERS BINARY NUMBERS

21 101012

22 101102

23 101112

24 110002

25 110012

26 110102

27 110112

28 111002

29 111012

30 111102

13.	 Complete the following table:

OCTAL NUMBERS BINARY NUMBERS

08

18

28

38

::::::::: ::::::::::::::

168

CHAPTER 1 ANSWERS TO SELECTED EXERCISES • 481

Solution:

OCTAL NUMBERS BINARY NUMBERS

08 02

18 12

28 102

38 112

48 1002

58 1012

68 1102

78 1112

108 10002

118 10012

128 10102

138 10112

148 11002

158 11012

168 11102

15.	 Write the hexadecimal number 4E0AC116 in expanded form.

482 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

4E0AC116 = 4*105 + E*104 + 0*103 + A*102 + C*101 + 1*100

17.	 Simplify n16 = (a)   A16 +616	 (b)   FFFF16 +116	 (c)   10016 +E16

Solutions:

(a)	 1016	 (b)   1000016	 (c)   10E16

19.	 Complete the followingtable:

Solution:

HEXADECIMAL NUMBERS BINARY NUMBERS

016 02

116 12

216 102

316 112

416 1002

516 1012

616 1102

716 1112

816 10002

916 10012

A16 10102

B16 10112

C16 11002

D16 11012

CHAPTER 1 ANSWERS TO SELECTED EXERCISES • 483

E16 11102

F16 1111 2

1016 1 00002

1116 1 00012

1216 1 00102

1316 1 00112

1416 1 01002

1516 1 0101 2

1616 1 01102

1716 1 01112

1816 1 10002

1916 1 10012

1A16 1 10102

1B16 1 10112

1C16 1 11002

1D16 1 11012

1E16 1 11102

1F16 111112

2016 10 00002

2116 10 00012

2216 10 00102

484 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2316 10 00112

2416 10 01002

2516 10 0101 2

2616 10 01102

2716 10 01112

2816 10 10002

2916 10 10012

2A16 10 10102

2B16 10 10112

2C16 10 11002

2D16 10 11012

2E16 10 11102

2F16 10 11112

CHAPTER 2 ANSWERS TO SELECTED EXERCISES • 485

2.1	 Sets

Exercises:

1.	 For the following bases, write out the first 10 numbers as a set in
natural order:

(a)	 N3	 (b)   N4	 (c)   N5	 (d)   N6	 (e)   N7

Solution:

(a)	 N3 ={0,1,2,10,11,12,20,21,22,30}

(b)	 N4 ={0,1,2,3,10,11,12,13,20,21,22}

(c)	 N5 ={0,1,2,3,4,10,11,12,13,14}

(d)	 N6 ={0,1,2,3,4,5,10,11,12,13}

(e)	 N7 ={0,1,2,3,4,5,6,10,11,12}

2.2	 One to One Correspondence Between Sets

Exercises:

1.	 If D = {2,4,6,8,10, ...} and R = {1,3,5,7,9,...}, show that D⇔R.

Solution

2k ⇒ 2k - 1

for k = 1,2,3,4,...

2.3	 Expanding Numbers in the Base b (Nb).
1.	 Find the expansions for the following numbers in their give bases:

(a)	 43123225	 (b)   ABCDEF16	 (c)   123224	 (d)   1111011012

Solutions:

(a)	 4 ★ 105
6 + 3 ★ 105

5 + 1 ★ 105
4 + 2 ★ 105

3 + 3 ★ 105
2 + 2 ★ 105 + 2

(b)	 A ★ 1016
5 + B★1016

4 + C★1016
3 + D ★1016

2 + E ★ 1016 + F

(c)	 1 ★ 104
4 + 2 ★ 104

3 + 3 ★ 104
2 + 2 ★ 104 + 2

(d)	 1 ★ 102
8 + 1 ★ 102

7 + 1★102
6 + 1 ★ 102

5 + 0 ★ 102
4 + 1 ★102

3 + 1 ★102
2 + 0 ★102 + 1

486 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

2.4	� Converting numbers in any base b to its corresponding
number in the base 10

Exercises:

1.	 Convert the following numbers to the base 10.

(a)	 20223016   (b)  660619   (c)  111011012   (d)  7564028   (e)  A0CD816

Solutions:

(a)	 9644510   (b)  4379510   (c)  23710   (d)  25318610   (e)  65864810

2.5	� Converting numbers in the base 10 to its
corresponding number in any base b

Exercises:

1.	 Convert the following:

(a)	 254560110 ⇔ base 2

(b)	 1652382310 ⇔ base 16

(c)	 532110 ⇔ base 3

(d)	 8140110 ⇔ base 8.

Solutions:

(a)	 10011011010111110000012   (b)  FC222F16   (c)  210220023

(d)	 2367718

2.6	� A Quick Method of Converting Between Binary and
Hexadecimal numbers

Exercises:

1.	 Complete the table below that matching the digits of the octal number
system with its corresponding binary numbers:

CHAPTER 2 ANSWERS TO SELECTED EXERCISES • 487

OCTAL DIGITS CORRESPONDING BINARY NUMBERS
0 000

1 001

Solution:

1.	

OCTAL DIGITS CORRESPONDING BINARY NUMBERS
0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

2.	

BASE 4 BASE 2
0 00

1 01

2 10

3 11

488 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Create a similar table to convert numbers of the base 4 to the base 2.

Solution:

BASE 4 BASE 2
0 00

1 01

2 10

3 11

2.7	 Performing Arithmetic For Different Number Bases

Exercise:

1.	 Perform the following:

(a)	 (2123 + 22223)*1013     (b)  (1011012 – 11012)*111012

(c)	 AB2F16*23D16 + 2F516   (d)  216
A

16

Solution:

1.	

(a)	 112010102213   (b)  11101000002   (c)  D53E2416   (d)  400

(e)	 EF15616 ⇒ 2223141215   (f )  47D6

CHAPTER 3 ANSWERS TO SELECTED EXERCISES • 489

3.1	 The Assignment Statement

Exercises:

1.	 Complete the following table:

ASSIGNMENT
STATEMENTS

T YZ2 TABLE FORM TAB

YZ2 :=3

TABLE:=YZ2

YZ2 :=1123

FORM:=TABLE

YZ2 :=FORM

Solution:

ASSIGNMENT
STATEMENTS T YZ2 TABLE FORM TAB

YZ2 :=3 3

TABLE:=YZ2 3 3

YZ2 :=1123 1123 3

FORM:=TABLE 1123 3 3

YZ2 :=FORM 1123 3 1123

Exercises:

3.	 Assume we have the following assignments:

A B C D

10 20 30 40

490 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Write a series of assignment statements which will rotate the values of A, B, C, D as show in
the table below:

A B C D

40 10 20 30

Solution:

ASSIGNMENT
STATEMENTS A B C D TEMP

TEMP :=A 10 20 30 40 10

A:=D 40 20 30 40 10

D :=TEMP 40 20 30 10 10

TEMP:=B 40 20 30 10 20

B:=D 40 10 30 10 20

D:=TEMP 40 10 30 20 20

TEMP :=C 40 10 30 20 30

C:=D 40 10 20 20 30

D:=TEMP 40 10 20 30 30

5.	 The following instructions

	 A :=2
	 B :=3
	 Z :=A
	 A :=B
	 B :=Z

will exchange the contents of the variables A and B. (a). True   (b).False

Solution:

true

CHAPTER 3 ANSWERS TO SELECTED EXERCISES • 491

3.2	 Mathematical Expressions

Exercises:

1.	 Complete the table:

ASSIGNMENT STATEMENTS X

X :=2

X :=X*X

X := X + X

X :=X*X

Solution:

ASSIGNMENT STATEMENTS X

X :=2 2

X :=X*X 4

X := X + X 8

X :=X*X 64

3.	 Complete the table below.

ASSIGNMENT STATEMENTS X T1 Z

X:=3

Z :=15

T1:=10

X:=Z+X*X

Z:=X+Z+1

T1:=T1 + Z÷T1 +T1

492 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

ASSIGNMENT STATEMENTS X T1 Z

X:=3 3

Z :=15 3 15

T1:=10 3 10 15

X:=Z+X*X 24 10 15

Z:=X+Z+1 24 10 40

T1:=T1 + Z÷T1 +T1 40 24 40

5.	 Set up a table for evaluating the following sequence of instructions.

	 NUM1 :=0

	 NUM2 :=20

	 NUM3 :=30

	 SUM1 := NUM1 +NUM2

	 SUM2 := NUM2 +NUM3

	 TOTAL := NUM1 + NUM2 +NUM3

	 AVG1 := SUM1 ÷2

	 AVG2 := SUM2 ÷2

	 AVG := TOTAL÷3

Solution:

NUM1 NUM2 NUM3 SUM1 SUM2 TOTAL AVG1 AVG2 AVG

0

0 20

0 20 30

0 20 30 20

0 20 30 20 50

CHAPTER 3 ANSWERS TO SELECTED EXERCISES • 493

0 20 30 20 50 70

0 20 30 20 50 70 10

0 20 30 20 50 70 10 25

0 20 30 20 50 70 10 25 11

3.3	 Algorithms and Programs

Exercises:

1.	 Write a program that computes 10!

Solution:

	 N :=10

	 NFACTORIAL :=10

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

	 N:=N-1

	 NFACTORIAL:=NFACTORIAL*N

494 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.1	� An Algorithm to Convert any Positive Integer Number
In any Base b < 10 To Its Corresponding Number in the
Base 10.

Exercises:

PSEUDO-CODE INSTRUCTIONS N8 P A N10 BASE

N10:=0 0

N8 :=267 267 0

BASE :=8 267 0 8

P :=1 267 1 0 8

A := N8 MOD 10 267 1 7 0 8

N10 := N10+A*P 267 1 7 7 8

N8 := N8 ÷10 26 1 7 7 8

P :=P*BASE 26 8 7 7 8

A := N8 MOD 10 26 8 6 7 8

N10 := N10 +A*P 26 8 6 55 8

N8 := N8 ÷10 2 8 6 55 8

P :=P*BASE 2 64 6 55 8

A := N8 MOD 10 2 8 2 55 8

N10 := N10+A*P 2 8 2 183 8

N8 := N8 ÷10 0 8 2 183 8

Modify the above program to convert the number 56328 to the corresponding number in the
base 10.

CHAPTER 4 ANSWERS TO SELECTED EXERCISES • 495

Solution:

PSEUDO-CODE INSTRUCTIONS

N10:=0

N8 :=5632

BASE :=8

P :=1

A := N8 MOD 10

N10 := N10+A*P

N8 := N8 ÷10

P :=P*BASE

A := N8 MOD 10

N10 := N10 +A*P

N8 := N8 ÷10

P :=P(BASE

A := N8 MOD 10

N10 := N10+A*P

N8 := N8 ÷10

P:=P*BASE

A := N8 MOD 10

N10 := N10 +A*P

496 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

4.2	� An Algorithm to Convert any Integer Number in the
Base 10 to a Corresponding Number in the Base b <10.

Program

Task: Convert the integer number 1625 to the base 8.

PSEUDO-CODE N10 Q N8 R BA P TEN

N10 :=1625 1625

BASE :=8 1625 8

TEN :=10 1625 8 10

P :=10 1625 8 10 10

N8 :=0 1625 0 8 10 10

R := N10 MOD BASE 1625 0 1 8 10 10

Q:= (N10 - R) ÷BASE 1625 203 0 1 8 10 10

N8:= N8 +R 1625 203 1 1 8 10 10

N10 :=Q 203 203 1 1 8 10 10

R := N10 MOD BASE 203 203 1 3 8 10 10

N8 := N8 +R*P 203 25 31 3 8 10 10

P :=P*TEN 203 25 31 3 8 100 10

N10 :=Q 25 25 31 3 8 100 10

R := N10 MOD BASE 25 25 31 1 8 100 10

Q:= (N10 - R)÷BASE 25 3 31 1 8 100 10

N8 := N8 +R(P 25 3 131 1 8 100 10

P :=P(TEN 25 3 131 1 8 1000 10

N10 :=Q 3 3 131 1 8 1000 10

R := N10 MOD BASE 3 3 131 3 8 1000 10

Q:= (N10 -R)÷BASE 3 0 131 3 8 1000 10

N8:= N8 +R(P 3 0 3131 3 8 1000 10

N10 :=Q 0 0 3131 3 8 1000 10

CHAPTER 4 ANSWERS TO SELECTED EXERCISES • 497

1.	 Use the above algorithm to write a program to convert the decimal
number 254310 to octal.

Solution:

PSEUDO-CODE INSTRUCTIONS
N10 :=2543

BASE :=8

TEN :=10

P :=10

N8 :=0

R := N10 MOD BASE

Q:= (N10 - R) ÷ BASE

N8:= N8 +R

N10 :=Q

R := N10 MOD BASE

N8 := N8 +R*P

P :=P*TEN

N10 :=Q

R := N10 MOD BASE

Q:= (N10 - R)÷BASE

N8 := N8 +R*P

P :=P*TEN

N10 :=Q

R := N10 MOD BASE

Q:= (N10 -R)÷BASE

N8:= N8 +R*P

N10 :=Q

498 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

5.1	 Conditional Expressions

Exercises:

1.	 Evaluate the following conditional expressions:

(a)	 3 + 3 =6     (b)  8 >=10     (c)  7 <>7

Solutions:

(a)	 TRUE     (b)  FALSE     (c)  FALSE

5.2	 The If-Then Statement

Exercises:

1.	 Modify the above program so that it performs the following tasks:

	 Task 1: Assign 4 numbers.

	 Task 2: Counts the number of positive numbers entered.

	 Task 3: Add the positive numbers.

Solution:

PSEUDO-CODE INSTRUCTIONS

X1 :=6

X2 :=-5

X3 :=-25

X4:=100

COUNT :=0

IF X1 > 0 THEN
BEGIN

COUNT := COUNT +1
END

CHAPTER 5 ANSWERS TO SELECTED EXERCISES • 499

IF X2 > 0 THEN
BEGIN

COUNT := COUNT +1
END

IF X3 > 0 THEN
BEGIN

COUNT := COUNT +1
END

IF X4 > 0 THEN
BEGIN

COUNT := COUNT +1
END

SUM:=0

IF X1 > 0 THEN
BEGIN

SUM := SUM +X1
END

IF X2 > 0 THEN
BEGIN

SUM:= SUM +X2
END

IF X3 > 0 THEN
BEGIN

SUM := SUM +X3
END

IF X4> 0 THEN
BEGIN

SUM := SUM +X4
END

500 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.	 Complete the table below

PSEUDO-CODE INSTRUCTIONS X Y Z

X :=2 2

Y :=5 2 5

Z :=-4 2 5 -4

IF (X + Y + Z) <> X*Y THEN 2 5 -4

BEGIN 2 5 -4

X : = (X -Y)÷X -1 5 -4

Y := X +2(Y -1 9 -4

Z : = X -2

END

-1

-1

9

9

-3

-3

IF (X - Y + Z) <> X +Y THEN -1 9 -3

BEGIN -1 9 -3

X : = 2*(X -Y)÷X 20 9 -3

Y := X -3*Z 20 29 -3

Z : = X +2 20 29 22

END 20 29 22

CHAPTER 5 ANSWERS TO SELECTED EXERCISES • 501

Solution

PSEUDO-CODE INSTRUCTIONS X Y Z

X :=2 2

Y :=5 2 5

Z :=-4 2 5 -4

IF (X + Y + Z) <> X*Y THEN 2 5 -4

BEGIN 2 5 -4

X : = (X -Y)÷X -1 5 -4

Y := X +2(Y -1 9 -4

Z : = X -2

END

-1

-1

9

9

-3

-3

IF (X - Y + Z) <> X +Y THEN -1 9 -3

BEGIN -1 9 -3

X : = 2*(X -Y)÷X 20 9 -3

Y := X -3*Z 20 29 -3

Z : = X +2 20 29 22

END 20 29 22

5.	 Write an algorithm to find the second largest number amongst 4 numbers.
Assume all the numbers are positive and different.

502 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution

PSEUDO-CODE INSTRUCTIONS

LARGEST :=X1
IF X2 > LARGEST  THEN
BEGIN
LARGEST :=X2
END
IF X3 > LARGEST  THEN
BEGIN
LARGEST :=X3
END
IF X4 > LARGEST  THEN
BEGIN
LARGEST :=X4
IF LARGEST = X1  THEN
BEGIN
X1 :=0
END
IF LARGEST = X2  THEN
BEGIN
X2 :=0
END
IF LARGEST = X3  THEN
BEGIN
X3 :=0
END
IF LARGEST = X4  THEN
BEGIN
X4 :=0
END
SECOND_LARGEST :=X1
IF X2 > SECOND_LARGEST  THEN
BEGIN
SECOND_LARGEST :=X2
END
IF X3 > SECOND_LARGEST  THEN
BEGIN
SECOND_LARGEST :=X3
END
IF X4 > LARGEST  THEN
BEGIN
SECOND_ LARGEST :=X4
END

CHAPTER 6 ANSWERS TO SELECTED EXERCISES • 503

6.1	 The While Statement

Exercises:

1.	 Write an algorithm that performs the following tasks:

	 Task 1: Finds the proper divisors of a positive integer N >2,

	 Task 2: Sum the proper divisors.

Solution:

PSEUDO-CODE INSTRUCTIONS

SUM_DIVISORS :=0

DIVIDE :=2

WHILE N <>DIVIDE

BEGIN

R := N MODDIVIDE

IF R = 0 THEN

BEGIN

SUM_DIVISORS := SUM_DIVISORS +DIVIDE

END

DIVIDE := DIVIDE +1

END

3.	 A factorial number, written as N!, is defined as

	 N! = N(N - 1)(N–2)...(2)(1)

	 where N is a positive integer >1.

	 Write an algorithm that will compute N!

504 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution

FACTORIAL :=1

K :=1

WHILE K < N

BEGIN

K := K +1

FACTORIAL :=K*FACTORIAL

END

5.	

PSEUDO-CODE INSTRUCTIONS

X :=0

DIVIDE :=2

WHILE N <>DIVIDE

BEGIN

R := N MOD DIVIDE

IF R = 0 THEN

BEGIN

DIVIDE := N - 1

END

DIVIDE := DIVIDE +1

END

CHAPTER 6 ANSWERS TO SELECTED EXERCISES • 505

7.	 For the following program below, what is the final value X:

	 K :=1
	 X : =2
	 WHILE K <=6
	 BEGIN
	 X := X +3
	 K : = K +1
	 END

Solution:

24

506 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

7.1	� Writing a Program and Algorithm to Convert numbers
in the Base b < 10 to the Base 10:

Exercise:

1.	 Write a program and complete the table that will convert the number
2314 to the base 10 and complete a table as above.

Solution:

	 INSTRUCTIONS

	 N4:=231

	 P :=1

	 N10 :=0

	 WHILE N4 <>0

	 BEGIN

	 R := N4 MOD10

	 N4 := N4 -R

	 N4:=N4÷10

	 N10 := N10+R*P

	 P :=4*P

	 END

7.2	� Writing an Algorithm to Convert Numbers in the base
10 to its Corresponding Number in the Base b<10.

Exercises:

1.	 Write a program and complete the table that converts the decimal
number 25 to base 2.

CHAPTER 7 ANSWERS TO SELECTED EXERCISES • 507

Solution:

INSTRUCTIONS

N10 :=25

K : =1

N2 :=0

WHILE N10 <>0

BEGIN

A := N10 MOD 2

N2 := N2 +A*K

N10 :=N10÷2

K :=10*K

END

508 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8.1	 Rings

Exercises:

1.	 Assume R is clock time. Simplify the following:

(a)	 7 ⊕ 8 ⊕ ~7 ⊕ 11 ⊕ ~ 4

(b)	 2⊗(6 ⊕ ~10)

(c)	 ~ 11⊗[(2⊗~11) ⊗ (11⊕ ~9)]

Solutions:

(a)	 3

(b)	 4

(c)	 4

3.	 Show that the set R = {0, 1,-1, 2, -2, 4, -4, 6, -6, ...± 2n, ...} is not ring.

Solution

R has no odd numbers greater than 1 . Since 1 + 2 = 3 and 3 is not in R, the set R is not
a ring.

5.	 Assume R = {0, 1,-1, 2, -2, 3, -3, 4, -4, ...}. Define ⊕ and ⊗ are defined
under the following rules:

	 R1.: n ⊕ m = n + (m + 2).

	 R2: n ⊗ m = n

(a)	 Find Θ.

(b)	 For n in R, find ~n, the additive inverse of n.

(c)	 Show R is a ring.

CHAPTER 8 ANSWERS TO SELECTED EXERCISES • 509

Solution:

(a)	

	 n ⊕ Θ = n + Θ + 2n ⊕ Θ = n + Θ + 2

	 Therefore Θ = -2

(b)	

	 n r ~n = n + -n + 2 = Θ = -2 Therefore ~n = - n - 4

	 n r ~n = n + -n + 2 = n +(-n + - 4) +2 = - 2 = Θ

(c)	

	 Since the five rules hold is a ring.

8.2	 The Finite Ring R

Exercises:

1.	 For R = {0,1, 2, 3, 4}, simplify:

(a)	 4⊗4

Solution

4⊗4 = (4*4)mod(5) = 1

(b)	 [(4⊕2)⊗4⊕4]⊗3

Solution

(4⊕2) = 6 mod (5) = 1

(4⊕2)⊗4 = 24 mod (5) = 4

(4⊕2)⊗4⊕4 = 4⊕4 = mod(5)= 3

[(4⊕2)⊗4⊕4]⊗3 = [3]⊗3 = 9 mod 5 = 4

(c)	 3⊗(3⊕4)

Solution

3⊗(3⊕4) = 3⊗((3 + 4) mod 5)) = 3⊗(2) = 1

510 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

3.	 For the following finite rings, find the additive inverse of each number
in the ring:

Solutions

(a)	 R10

n 0 1 2 3 4 5 6 7 8 9

∼n 0 9 8 7 6 5 4 3 2 1

(b)	 R2

n 0 1

∼n 0 1

(c)	 R8

N 0 1 2 3 4 5 6 7

∼n 0 7 6 5 4 3 2 1

(d)	 R16

d. n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

∼n 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(e)	 RHex

n 0 1 2 3 4 5 6 7 8 9 A B C D E F

∼n 0 F E D C B A 9 8 7 6 5 4 3 2 1

CHAPTER 8 ANSWERS TO SELECTED EXERCISES • 511

8.3	 Subtraction for R

Exercises:

1.	 Assume a byte ring. If n < 256, and ~n = n, find all solutions.

Solution:

(n + ~n)mod 256 = (n + n)mod(256) = (2n)mod(256) = 0. Therefore, 2n = 256 or 0.

Hence n = 128, or 0.

8.4	 Rings in Different Bases

Exercises:

1.	 For the finite ring R16 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} find:

(a)	 9⊕8

(b)	 5⊗B

Solution:

(a)	 916⊕816 = (916+ 816)mod(1016) => (910 + 810)mod 1610 = 17 mod 1610 = 110 => 116

(b)	 5⊗B = (516 *1116)mod(1016) => (510 *1710)mod(1610) = 8510 mod(1610) = 510 => 516

Modular arithmetic in the base b.

Exercises:

1.	 If Assume a byte ring. If a⊕b = 0 does b = ~a and a = ~b?

Solution:

Yes. a⊕b =(a + b)mod 256 = 0

512 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

8.5	� The Additive Inverse of Numbers for the Rings
Rb = {0...0, 0...1, 0...2, ..., β1β2 ..., βn}

Exercises:

1.	 Assume a word ring. For each of the following binary numbers, find
their additive inverses:

(a)	 10011100110   (b)  11011011   (c)  10101010

Solutions:

(a)	 ~10011100110 = ~000001001100110 = 1111101100011010

(b)	 ~11011011 = ~0000000011011011 = 1111111100100100

(c)	 ~10101010 = ~0000000010101010 = 1111111101010110

3.	 Assume we have the hexadecimal ring:

	 R16 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,...,FF}. Find the following:

(a)	 ∼ AC   (b)  A9⊖∼55   (c)  ∼10⊖5E   (d)  ∼10⊖∼5E

Solutions:

(a)	 ∼ AC ⇒ ∼ 101011002 = 010101002 ⇒ 5416

(b)	 A9⊖∼55 = .A9 + 55 ⇒ 111111102 ⇒ FE

(c)	 ∼10⊖5E = ∼(10 + FE) = ∼ E ⇒ ∼ 11102 = 00102 ⇒ 216

(d)	 ∼10⊖∼5E = ∼10 + 5E ⇒(∼ 000100002) + 010111102 = 111100002
+ 010111102 = 110011102 ⇒ CE

(a)	 ∼ AC ⇒ ∼ 101011002 = 01010100 2 ⇒ 5416

(b)	 A9⊖∼55 = .A9 + 55 ⇒ 111111102 ⇒ FE

(c)	 ∼10⊖5E = ∼(10 + FE) = ∼ E ⇒ ∼ 11102 = 00102 ⇒ 216

(d)	 ∼10⊖∼5E = ∼10 + 5E ⇒(∼ 000100002) + 010111102 = 111100002
+ 010111102 = 110011102 ⇒ CE

CHAPTER 8 ANSWERS TO SELECTED EXERCISES • 513

8.6	 Special Binary Rings For Assembly Language

THE BYTE RING
(8 bits)

THE WORD RING
(16 bits)

THE DWORD
(32 bits)

00000000 0000000000000000 00000000000000000000000000000000

00000001 0000000000000001 00000000000000000000000000000001

00000010 0000000000000010 00000000000000000000000000000010

00000011 0000000000000011 00000000000000000000000000000011

00000100 0000000000000100 00000000000000000000000000000100

00000101 0000000000000101 00000000000000000000000000000101

00000110 0000000000000110 00000000000000000000000000000110

00000111 0000000000000111 00000000000000000000000000000111

00001000 0000000000001000 00000000000000000000000000001000

:::::::::::::::: :::::::::::::::::::::::::::: ::

11111111 1111111111111111 11111111111111111111111111111111

Exercises:

1.	 Convert the above binary tables to hexadecimal.

Solution:

THE BYTE RING
(8 bits)

THE WORD RING
(16 bits)

THE DWORD
(32 bits)

00 00 00 00 00 00

01 00 01 00 00 00 01

514 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

02 00 02 00 00 00 02

03 .00 03 .00 00 00 03

. .0004 00 00 00 04

. 00 05 00 00 00 05

. . .

. .

09 00 09. 00 00 00 09

0A 00 0A 00 00 00 0A

0B 00 0B 00 00 00 0B

0C 00 0C 00 00 00 0C

0D 00 0D 00 00 00 0D

0E 00 0E 00 00 00 0E

0F 00 0F 00 00 00 0F

10 00 10 00 00 00 10

11 00 11 00 00 00 11

. . .

. .

. .

. .

. .

FF FF FF FF FF FF FF

CHAPTER 8 ANSWERS TO SELECTED EXERCISES • 515

3.	 Using exercise 2 , show that

(a)	 the largest decimal number in the byte ring is 255.

(b)	 the largest decimal number in the word ring is 65,535.

(c)	 the largest decimal number in the dword ring is 4,294,967,295.

Solution:

(a)	 28 - 1 = 256 - 1 = 255

(b)	 216 - 1 = 65536 -1 = 65,535

(c)	 232 - 1 = 4294967296 - 1= 4,294,967,295

Modular arithmetic for the byte ring (in decimal)

Exercises:

1.	 Compute:

(a)	 122⊕122   (b)  162⊗31   (c)  175⊗222⊗13   (d)  (175⊕222)⊗13

Solution:

(a)	 122⊕122 = 244

(b)	 162⊗31 = (162*31) mod 256 = (5022) mod 256 = 158

(c)	 175⊗222⊗13 = (175*222*13 mod 256 = 505050 mod 256 = 218

(d)	 (175⊕222)⊗13 = [(175 + 222)*13] mod 256 = 5161 mod 256 = 41

Modular arithmetic for the word ring (in decimal)

Exercises:

1.	 Find the additive inverse for the following:

(a)	 214    (b)  0    (c)  60000

Solutions:

(a)	 [214 + (65536 - 214)]mod 65536 = (214 + 65322)mod 65536 = 0.
Therefore, ~214 = 65322

516 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

(b)	 [0 + (65536 - 0)]mod 65536 = (0 + 65536)mod 65536 = 0.
Therefore, ~0 = 65536

(c)	 [60000 + (65536 - 60000)]mod 65536 = (60000 + 5536)mod 65536 = 0.
Therefore, ~60000 = 5536

Modular arithmetic for the dword ring (in decimal).

Exercises:

1.	 Find the additive inverse for the following:

(a)	 214    (b)  0    (c)  60000

Solution:

(a)	 [214 + (4294967296 - 214)]mod 4294967296 = (214 + 4294967082)
mod 4294967296 = 0. Therefore, ~214 = 4294967082

(b)	 [0 + (4294967296 - 0)]mod 4294967296 = (0 + 4294967296)mod
4294967296 = 0. Therefore, ~0 = 4294967296

(c)	 [60000 + (4294967296 - 60000)]mod 4294967296 = (60000
+ 4294907296)mod 4294967296 = 0. Therefore, ~60000 =
4294907296

3.	 Convert the decimal number - 20210 to a binary number in a

(a)	 byte ring    (b)  word ring    (c)  dword ring.

Solution:

(a)	 (202 + 256 - 202)mod 256 = (202 + 54)mod 256 = 0, Therefore,
-202 = ~54 => 11 01 102

(b)	 (202 + 65536 - 202)mod 65536 = (202 +65334)mod 65536 = 0,
Therefore, -202 = ~65334 => 11111111001101102

(c)	 (202 + 4294967296 - 202)mod 4294967296 = (202 + 4294967094)
mod 4294967296 = 0, Therefore,

	 -202 = ~4294967094 => 111111111111111111111111001101102

CHAPTER 8 ANSWERS TO SELECTED EXERCISES • 517

8.7	 Ordered Relations of Rings 2

Exercises:

1.	 For the ring R = {0,1,2,3,4}, using the special symbols, write out the
relations of the ordered pair:

	 {(0,0), (1,1), (1,0), (2,2), (2,1), (2,0), (3,3), (3,2), (3,1), (3,0), (4,4), (4,3),(4,2), (4,1),(4,0)}

Solution:

	 0 = 0, 1=1,1< 0, 2=2, 2<1, 2<0, 3=3, 3<2, 3<1, 3 < 0, 4=4,4 < 3, 4 < 2, 4 < 1, 4<0

8.8	� Special Ordering of Rings For Assembly Language

Exercises:

1.	 Construct a natural order table for the values the word ring.

Solution:

0 1 2 3 4 5 6 ---- 65531 65532 65533 6553 65535

3.	 Construct a natural order table for the values the dword ring.

Solution:

0 1 2 3 4 .. 4294967293 4294967294 4294967295

518 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

9.1	 Data Types of Integer Binary Numbers

Exercises:

For the examples above of bytes,

1.	 find the binary complements.

Solutions:

(a)	 10010001

(b)	 11111010

3.	 find the equivalent numbers in the hexadecimal base.

Solution:

(a)	 9AE7AB73

(b)	 B6

9.2	 Other Integers

Examples:

(a)	 e239ch	 (b)  101101b	 (c)  23771o	 (d)  3499h

Exercises:

1.	 For the examples above, convert each to decimal.

Solution:

(a)	 926620	 (b)    45	 (c)  10233	 (d)  13465

9.3	 Variables

Exercises:

Which of the following are legal variable names:

1.	

(a)	 _apple_of_my_eye	 (b)   S_23x	 (c)   $money2&
(�d)   hdachslager@ivc.edu	 (e)   1XorX2

CHAPTER 9 ANSWERS TO SELECTED EXERCISES • 519

Solution:

All but e.

9.5	 Registers

Exercises:

1.	 Explain why the follow instructions will cause an error:

(a)	 mov eax, D2h

(b)	 x byte ?

mov eax, x

(c)	 mov eax, 3ABDD12E1h

Solutions:

(a)	 Hexadecimal must begin with a number value 0,...,9

(b)	 eax and x are of different data types.

(c)	 The number is too large.

3.	 Complete the following table, using only binary numbers in EAX:

ASSEMBLY CODE EAX

mov eax, 2D3Fh 0000 0000 0000 0000 0010 1101 0011 1111

mov eax, 3h 0000 0000 0000 0000 0000 0000 0000 0011

mov eax, 1010101b 0000 0000 0000 0000 0000 0000 0101 0101

mov eax, 434789 0000 0000 0000 0110 1010 0010 0110 0101

mov eax, 4DFA1101h 0100 1101 1111 1010 0001 0001 0000 0001

mov eax 2675411o 0000 0000 0000 10 11 0 111 101 1 00 00 1 001

Exercises:

1.	 Complete the following:

(a)	 mov eax , 278901

520 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solutions:

	 EAX

BASE 2: 00 00 00 00 00 00 01 00 01 00 00 01 01 11 01 01

BASE 16: 0 0 0 4 4 1 7 5

BASE 10: 2789 01

(b)	 mov eax , 3ABCD10Fh

	 EAX

BASE 2: 011 1010 1011 1100 1101 0001 0000 1111

BASE 16: 3 A B C D 1 0 F

BASE 10: 985452 815

(c)	 mov edx , 2772101o

	 EDX

BASE 2: 0000 0000 1011 1111 0100 0100 0100 0001

BASE 16: 0 0 0 B F 4 4 1

BASE 10: 783425
 	 	 		 	 	

(d)	 mov eax , 278901

	 EAX

BASE 2: 0000 000 0000 0100 0100 0001 0111 0101

0

BASE 8: 0 1 0 4 F0 5 6 5

BASE 16: 0 0 0 4 4 1 7 5

CHAPTER 9 ANSWERS TO SELECTED EXERCISES • 521

(e)	 mov ecx , 3ABCD10Fh

	 EAX

BASE 2: 0011 1010 1011 1100 1101 0001 0000 1111

BASE 8: 0 0 07 25 71 15 04 17

BASE 10: 985452815

(f)	 mov edx , 2772101o

	 EDX

BASE 2: 0000 0000 0000 1011 1111 0100 0100 0001

BASE 16: 0 0 0 B F 4 4 1

BASE 10: 783425

Mixing Registers

Exercise:

1.	 Complete the following tables using hexadecimal numbers only :

32 25 24 17 16 9 8 1

INSTRUCTIONS
mov eax, 293567h

mov ax, 9BCh

mov ax, 3D32h

mov ax, 5h

mov ax, 3h

mov eax, 1267

mov ax, 3AF4h

mov ah, 27h

mov al, 25

522 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

1.	 Complete the following tables using hexadecimal numbers only :

32 25 24 17 16 9 8 1

INSTRUCTIONS

mov eax, 293567h 0 0 2 9 3 5 6 7

mov ax, 9BCh 0 0 2 9 0 9 B C

mov ax, 3D32h 0 0 2 9 3 D 3 2

mov ah, 5Ch 0 0 2 9 5 C 3 2

mov ax, 3h 0 0 2 9 0 0 0 3

mov eax, 1267 0 0 0 0 0 4 F 3

mov ax, 3AF4h 0 0 0 0 3 A F 4

mov ah, 27h 0 0 0 0 2 7 F 4

mov al, 25 0 0 0 0 2 7 1 9

9.6	 Transferring data between registers and variables

Exercises:

1.	 Modify the above program by initializing the values in x, y without using
the mov instruction.

Solution:

AL PSEUDO CODE ASSEMBLY LANGUAGE CODE

X := 23 X BYE 23

Y := 59 Y BYTE 59

EAX := X mov eax, x

Y := EAX mov y,eax

CHAPTER 9 ANSWERS TO SELECTED EXERCISES • 523

3.	 In exercise 1, what does the code accomplish ?

Solution:

Replace Y with the contents of X.

9.7	 Assembly Language Statements

Exercises:

1.	 What is the largest integer number base 10 that can be store in a
variable of type BYTE.

Solution:

255

3.	 What is the largest integer number base 10 that can be store in a
variable of type DWORD.

Solution:

4294967295

5.	 What is the largest integer number base 16 that can be store in a
variable of type WORD.

Solution:

FF FF

7.	 What is the largest integer number base 8 that can be store in a variable
of type BYTE.

Solution:

9.	 What is the largest integer number base 8 that can be store in a variable
of type DWORD.

Solution:

37777777777

524 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercise:

1.	 Assume the above program is run. For the table below, fill as hexadeci-
mal numbers, the final values stored.

EAX EBX A B C D E F

Solution:

EAX EBX A B C D E F

00000E0F 00000015 28 1E 0000000A 32 0014

CHAPTER 10 ANSWERS TO SELECTED EXERCISES • 525

Introduction

10.1	 Ring Registers

Additive Inverses

The 8 bit ring as unsigned binary and integer numbers.

Exercises:

1.	 Find the additive inverse of the following numbers in binary as well as
the number system given:

(a)	 100101b	 (b)   2E h	 (c)   222 d

Solution:

(a)	 11011011b	 (b)   D2 h	 (c)   34 d

The 16 bit rings

Exercises:

1.	 Assuming the following numbers are words. Find their additive inverse.

(a)	 100101b	 (b)   2E h	 (c)   222 d

Solutions:

(a)	 1111111111011011b	 (b)   FFD2h	 (c)   65314d

The 32 bit rings

Note: in the above table, the hexadecimal numbers in each of the columns are additive inverses
of each other.

Exercises:

1.	 Find the additive inverse of the following numbers in binary as well as
the number system given:

(a)	 100101b	 (b)   2E h	 (c)   222 d

Solutions:

(a)	 11111111111111111111111111011011b	 (b)   FFFFFFD2 h
(c)   4,294,967,296 - 222

526 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

10.2	� Working with Modular Arithmetic for Addition
and Subtraction

Exercises:
1.	 Find N2 for byte rings, word rings, and dword rings.

Solution:

1000000002, 100000000000000002, 1000000000000000000000000000000002

Addition on finite rings
Addition on byte rings:

Exercises:

1.	 Add over a byte ring: N = 110111012 + 010011112

Solution:

(110111012 + 010011112) mod 1000000002 => (221 + 79)mod 256 =
300 mod 256 = 4 => 1002

Addition on word rings:

Exercises:

3.	 Add over a word ring: N = 1100 1111 1101 11012+1010 1110 1001 11112

Solution:

1100 1111 1101 11012+1010 1110 1001 11112 => (53213 + 44703) mod 65536 =
97916mod 65536 = 32380 => 1111110011111002

Addition on dword rings:

Exercises:

5.	 Add over a dword ring: N = 1100 1111 1101 11012+111 1110 1001 11112

Solution:

1100 1111 1101 11012+111 1110 1001 11112 => (53213 + 32415)mod 4294967296 =
85628 => 101001110011111002

CHAPTER 10 ANSWERS TO SELECTED EXERCISES • 527

Subtraction on finite rings
Subtraction on byte rings:

Exercises:

Assume a byte ring:

Find:

7.	 ~ 20110

Solution:

256 – 201 = 55 = ~ 20110

9.	 ~2778

Solution:

~2778 => ~19110 = 256 – 191 = 65 => 1018

11. (~25010)⊖25210

Solution

(~25010)⊖25210 = (6)⊖(25210) = (6 + ~252)mod 256 = (6 + 4)mod 256 = 10

13.	  7728 ⊖ ~14278

Solution:

7728 ⊖ ~14278 = (7728 + ~~14278) mod 4008 = (7728 + 14278) mod 4008 =

(24218)mod 4008

=>1297mod 256 = 17 => 218

Assume a word ring:

Find:

15.  ~6780

Solution:

~6780 = 65536 - 6780 = 58756

17. 	 ~1756738

Solution:

~1756738 => ~64443 = 65536 – 64443 = 1093 => 21058

528 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

19.  (~655010)⊖2222110

Solution:

(~655010)⊖2222110 = {(65536 – 6550) + ~22221]mod (65536) =

[58986 + (65536 – 22221)]mod 65536 = [58986 + 43315]mod 65536 = 102301

mod65536 = = 102301

21.  1107728 ⊖ ~126428

Solution:

1107728 ⊖ ~126428 => 37370⊖ ~5538 = > 37370⊖(65535 - 5538) = 37370 ⊖59997

= (37370 + ~59997)mod 65536 = (37370 + 65536 – 59997)mod 65536 =

(37370 + 5539)mod 65536 = 42909 mod65536 = 42909 =>1236358

Assume a dword ring

Find:

23.  ~9945678010

Solution:

~99456780 = 4294967296 – 99456780 = 4195510516

25.  ~111247675658

Solution:

~ 11124767565 = 400000000008 – 111247675658 = 111247675658

27.  ~[4346575610)⊖(~4575410)]

Solution:

~[43465756)⊖(~45754)] = ~[43465756)⊖(4294967296 - 45754)] =

~[43465756)⊖(4294921542)] =

~{(43465756 + (4294967296 – 4294921542)mod 4294967296 } =

= ~{[43465756)+ 45754]}mod 4294967296 = ~43511510mod 4294967296 =

(4294967296 –43511510) mod 4294967296 = 4251455786

CHAPTER 10 ANSWERS TO SELECTED EXERCISES • 529

29.  7007728 ⊖ (~545338 )

Solution:

7007728 ⊖ (~545338) => 22988210 ⊖ (~2287510) =

22988210 ⊖ (4294967296 – 2287510)

= 22988210 ⊖ 429494442110 = [22988210 + (4294967296 – 429494442110)]mod

4294967296 = [22988210 + 22875)]mod 4294967296 = [252757]mod

4294967296 = 252757

10.3	� Assembly Language Arithmetic Operations
For Integers

Addition (+):

Exercises:

1.	 Complete the following tables:

Complete the table with hexadecimal numbers.

Solutions:

ASSEMBLY CODE EAX AX AH AL X

x dword 2 2h

mov eax, 12345 00 00 30 39h 30 39h 30h 39h 2h

add eax, x 00 00 30 3Bh 30 3Bh 30h 3Bh 2h

ASSEMBLY
CODE EAX AX AH AL X

x dword100 64h

mov eax, 54321 00 00 D4 31h D4 31h D4h 31h 64h

add eax, x 00 00 D495h D495h D4h 95h 64h

530 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

ASSEMBLY CODE EAX AX AH AL

mov eax,9fffffffh 9f ff ff ffh ff ffh ffh ffh

add ah, 1 9f ff 00 ffh 00 ffh 00h ffh

Subtraction (-):

Exercises:

1.	 Complete the following table in hexadecimal :

PSEUDO-
CODE

AL PSEUDO-
CODE AL CODE EAX X Y

x dword ?
y dword ? z

dword ?

X := 0CD2h
- 2h

EAX := 0CD2h mov eax,
0CD2h 0CD2

EAX := EAX - 2h sub eax, 2h 0CD0

X := EAX mov x, eax 0CD0 0CD0

X := 421h X := 421h mov x, 421h 0CD0 421

Y := 4E75h Y := 4E75h mov y, 421h 0CD0 421 4E75

Z:= X - Y

EAX := X mov eax, x 421 421 4E75

EAX := EAX - Y sub eax, y FFFFB5AC
421

4E75

Z := EAX mov z,eax FFFFB5AC 421 4E75

Z

FFFFB5AC

CHAPTER 10 ANSWERS TO SELECTED EXERCISES • 531

3.

ASSEMBLY CODE EAX AX AH AL X

x word 0ab9h 0AB9

mov eax, 0cca18h 000CCA18 CA18 CA 18 0AB9

sub ax, x 000C BF5F BF5F BF 5F 0AB9

Multiplication

(*): Exercises:

1.	 Complete the following tables:

ASSEMBLY CODE EAX AX AH AL EDX X

x byte 0EDh ED

mov al, 9Fh 00 00 00 9F 00 9F 00 9F ED

mul x 00 00 93 33 93 33 93 33 ED

ASSEMBLY CODE EAX AX AL EDX X

x word 2EF2h 2EF2

mov ax, 26DCh 00 00 26 DC 26 DC DC 2EF2

mul x EF F8 EF F8 F8 08 39 2EF2

ASSEMBLY CODE EAX EDX X

x dword 46A577DEh 46 A5 77 DE

mov eax, 7EA769Fh 7 EA76 9F 46 A5 77 DE

mul x C8 F1 C6 E2 02 2F 3A
42 46 A5 77 DE

532 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Division (÷):
Exercises:

1.	 For the following integer division, find the division form: n = q + m + r:
(a)	 143÷3	 (b)  3,457÷55	 (c)  579÷2	 (d)  23÷ 40

Solutions:

(a)	 143 = 47*3 + 2	 (b)  3457 = 62*55 + 47	 (c)  579 =289*2+1
(d)  23 =0*40 + 23

Exercises:

Complete the following table:
1.	 complete the following tables in hexadecimal :

ASSEMBLY CODE EAX EDX X

x dword E722Ch E722C

mov edx, 0 0 E722C

mov eax, 5670F3AAh 56 70 F3 AA 0 E722C

div x 00 00 05 FB 00 0C 26 86 E722C

ASSEMBLY CODE EAX AX EDX X

x word 2567h = m 2567

mov edx,0 0 0 2567

mov ax, 9D37h= n 00 00 9D 57 9D57 0 2567

div x 00 00 00 04 00 04 00 00 07 9B 2567

CHAPTER 10 ANSWERS TO SELECTED EXERCISES • 533

ASSEMBLY CODE EAX AX AH AL

x byte 0FDh

mov ax, 0ABB6h 00 00 AB B6 AB B6

div x 00 00 AB B6 AB B6 BD AD

X

FD

FD

FD

534 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

11.1	� An Assembly Language Program to Convert a
Positive Integer Number In any Base b < 10 to its
Corresponding Number in the Base 10.

Exercise

1.	 Use the manual method to linearize the number 2304516 that will
convert it to its corresponding number in the base 10.

Solution:

2304516 => N10 = (((((2*8 + 3)*6 + 0)*6) + 4)*6 + 5)*6 + 1 = 19615

11.2	 An Algorithm to Convert any Integer Number in the
Base 10 to a Corresponding Number in the Base b < 10.

Exercise:

1.	 Use the above algorithm to write a program to convert the
decimal number 254310 to octal.

Solution:

PSEUDO-CODE AL PSEUDO-CODE AL CODE

B := 8 B := 8 mov b, 8

N := 2543 N := 2543 mov n, 2543

S:= 0 S:= 0 mov s, 0

M:= 1 M:= 1 mov m, 1

T:= 10 T:= 10 mov t, 10

R := N MOD B

EAX:= N mov eax, n

EAX:= EAX÷B EDX:=
EAX MOD B mov edx,0 div b

R:= EDX mov r, edx

CHAPTER 11 ANSWERS TO SELECTED EXERCISES • 535

N:= N÷B N:= EAX mov n, eax

R := R* M
EAX:= R mov eax, r

EAX:= EAX(M mul m

R:= EAX mov r, eax

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M*T

EAX:= M mov eax, m

EAX:= EAX*T mul t

M:= EAX mov m eax

R := N MOD B

EAX:= N mov eax, n

EAX:= EAX÷B EDX:=
EAX MOD B mov edx,0 div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M*T

EAX:= M mov eax, m

EAX:= EAX*T mul t

M:= EAX mov m eax

536 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

R := N MOD B

EAX:= N mov eax, n

EAX:= EAX÷B EDX:=
EAX MOD B mov edx,0 div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

S:= S + R EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M*T

EAX:= M mov eax, m

EAX:= EAX*T mul t

M:= EAX mov m eax

R := N MOD B

EAX:= N mov eax, n

EAX:=EAX÷B EDX:= EAX
MOD B mov edx,0 div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R*M

EAX:= R mov eax, r

EAX:= EAX*M mul m

R:= EAX mov r, eax

S:= S + R

EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

CHAPTER 12 ANSWERS TO SELECTED EXERCISES • 537

12.1	 Conditional Jump Instructions for Signed Order

Exercises:

1.	 Which of the following are valid. If not indicate why.

a. b. c. d. e.
x dword 456h cmp eax, x cmp x, eax cmp x, 235 cmp 235, x
y dword 44444h
cmp x,y

Solution:

a.	 Is not correct. Cannot use cmp x, y

e.	Is not correct. Operand 1 cannot be a numerical value.

The conditional jump instructions for signed order numbers.

Exercises:

Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump:

1.
cmp al,n
je xyz
xyz:

2.
cmp al,n
jne xyz
xyz:

3.
cmp al,n
jnge xyz
xyz:

4.
cmp al,n
jge xyz.
xyz:

5.
cmp al,n
jle xyz.
xyz

6.
cmp al,n
jnle al
xyz

7.
cmp al,n
jl xyz
xyz

8.
cmp al,n
jnl xyz
xyz:

9.
cmp al,n
jg xyz
xyz:

10.
cmp al,n;
jnl xyz:

Solutions:

1. Yes	 3.  No	 5. Yes	 7.  No	 9.  No

538 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The unconditional jump instruction

Exercises:

Assume al contains the number 5 and n also contains 5. Which of the following
incomplete programs will cause a jump:

1.
cmp al,n
jbe xyz
xyz:

2.
cmp al,n
jnb xyz
xyz:

3.
cmp al,n
ja xyz
xyz:

4.
cmp al,n
jnae xyz.
xyz:

5.
cmp al,n
jae xyz.
xyz

6.
cmp al,n
je xyz
xyz

7.
cmp al,n
jb xyz
xyz

8.
cmp al,n
jnb xyz
xyz:

9.
cmp al,n
jnbe xyz
xyz:

Solution:

1. True . A jump occurs	 3.  No. A jump does not occur.

5. True A jump occurs	 7.  No. A jump does not occur.

9.  No. A jump does not occur.

12.2	� Converting the While-Conditional Statements to
Assembly Language

Exercises:

1.	 Rewrite the above program in a AL pseudo-code where only registers
(not variables) are used.

Solution:

AL PSEUDO CODE

BX := 1

CX := 0

CHAPTER 12 ANSWERS TO SELECTED EXERCISES • 539

WHILE BX <= 6

BEGIN

EAX := CX

EAX:= EAX + BX

CX :=EAX

EAX := BX

EAX := EAX + 1

BX:= EAX

END

3 .	Modify the above program by writing an assembly language algorithm
that would allow the user to sum arbitrary numbers 1 + 2 + 3 + ...+ m.

Solution:

ASSEMBLY CODE
mov n, 1

mov total, 0

while: cmp n, m

ja end

mov eax, total

add eax, n

mov total, eax

mov eax, n

add eax, 1

mov n, eax

jmp while end:

5.	 Write an assembly language pseudo code algorithm to compute
12 + 22 + 32 + ... + M2

540 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

AL PSEUDO CODE
N := 1

EAX:= 0

WHILE N <=M

BEGIN
EBX :=N

SQN:= EBX*N

EAX:= EAX + SQN

N:= N + 1

END
SUM := EAX

12.3	 If-Then Statements

Exercises:

1.	 From Chapter 5, we have the following algorithm.

PSEUDO -
INSTRUCTIONS EXPLANATION

LARGEST := X1 We start by assuming X1 is the largest

IF X2 > LARGEST THEN

BEGIN

LARGEST := X2

END

If the contents of X2 is larger than the contents of

LARGEST replace LARGEST with the contents of X2

IF X3 > LARGEST THEN

BEGIN

LARGEST := X3

END

If the contents of X3 is larger than the contents of

LARGEST replace LARGEST with the contents of X3

CHAPTER 12 ANSWERS TO SELECTED EXERCISES • 541

Write the assembly language code to replicate the pseudo-code:

Solution:

PSEUDO - INSTRUCTIONS ASSEMBLY LANGUAGE

LARGEST := X1 mov eax, x1
mov largest, eax

IF X2 > LARGEST THEN

BEGIN

LARGEST := X2

END

cmp x2, largest

begin: jbe end

mov largest, x2

end

IF X3 > LARGEST THEN

BEGIN

LARGEST := X3

END

cmp x3, largest

begin: jbe end

mov largest, x3

end

3.	 Write the assembly language algorithm to replicate the pseudo-code:

IF x = a or x = b THEN

BEGIN

:::::::::::::::::

END

Solution:

PSEUDO - INSTRUCTIONS ASSEMBLY LANGUAGE

IF X = A THEN

BEGIN

:::::::::::::::::::::

END

mov eax, x

cmp x, a

begin: jne end

::::::::::::::::::

end

IF X = B THEN

BEGIN

::::::::::::::::::

END

cmp x,b

begin: jne end

:::::::::::::::::

end

542 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

12.4	 If-Then - Else Statements

Exercise:

1.	 Assume n is a non-negative integer. We define n factorial as: n! = n(n -1)
(n -2)... (2)(1) for

n > 0 and 0! = 1. Write an assembly language psuedo code program that will compute
the value 10!.

Solution:

AS PSEUDO CODE

N:= 10

EAX := 1

WHILE N > 1 THEN

BEGIN

EAX := EAX*N

EBX:= N

EBX : = EBX – 1

N:= EBX

END

FACTORIAL := EAX

END:

Application: Assume we have N distinct objects and r of these objects are randomly
selected.

3.	 The number of ways that this can be done, where order is important is

	 NPr = N!/(N – r)!.

CHAPTER 12 ANSWERS TO SELECTED EXERCISES • 543

Write an assembly language algorithm that will perform the following tasks:

Task1: Assign the integer N and r.

Task2: compute NPr = N!/(N – r)!.

Solution:

AS PSEUDO CODE

EAX := 1

WHILE N > 1 THEN

BEGIN

EAX := EAX*N

EBX:= N

EBX : = EBX – 1

N:= EBX

END

NFACTORIAL := EAX

Q:= N – R

IF Q = 0 THEN

BEGIN

Q:= 1

END

EAX:= 1

WHILE Q > 1 THEN

BEGIN

544 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

EAX := EAX*Q

EBX:= Q

EBX : = EBX – 1

Q:= EBX

END

QFACTORIAL := EAX

PNR : = NFACTORIAL÷QFACTORIAL

END:

5.	 Write an assembly language psuedo code algorithm that will compute
the absolute value of

	 |x - y|.

Solution:

PSEUDO - INSTRUCTIONS

IF X - Y >= THEN
BEGIN

ABSOLUTE:= X - Y
END

IF X - Y <0 THEN
BEGIN

ABSOLUTE:= Y - X
END

CHAPTER 13 ANSWERS TO SELECTED EXERCISES • 545

13.1	� An Assembly Language Program to Convert a Positive
Integer Number In any Base b < 10 to its Corresponding
Number in the Base 10.

Exercise:

1.	 Let N10 = a0a1a2 ... am. Write an assembly language algorithm that will
sum the digits of N.

Solution:

PSEUDO-CODE AL PSEUDOCODE ALCODE
EBX:=0 EBX:=0 movebs,0

NUM:=N NUM:=N mov num,n

T:=10 T:=10 mov t,10

D:=10^M D:= 10^M mov d, 10^m

WHILE NUM <>0 WHILE NUM <>0
while: cmp num,0

jeend

BEGIN BEGIN ;begin

A:=NUM÷D

EAX :=NUM mov eax,nun

EAX := EAX÷DEDX :=
EAX MOD D

A :=EAX

mov edx,0

divd

mov a,eax

EBX:= EBX +A EBX:= EBX +A add ebx,a

NUM:= N MODD NUM:=EDX mov num,edx

D:=D÷T

EAX :=D mov eax,t

EAX := EAX÷TEDX :=
EAX MOD T

mov edx,0

divt

D :=EAX
mov d,eax

jmp while

END END end:

546 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.1	 Logical Expressions

Logical Statements

Exercise:

1.	 Complete the following:

PSEUDO - CODE X Y L Z

X := 2

Y := 5

L:= (X + 2*Y > 2)

Z := .NOT. (L .OR. (.NOT. (X - Y <> 0)))

Z := (.NOT.(L .AND. (Z .OR. L)) .XOR. Z

Solution:

PSEUDO - CODE X Y L Z

X := 2 2

Y := 5 2 5

L:= (X + 2*Y > 2) 2 5 true

Z := .NOT. (L .OR. (.NOT. (X - Y <> 0))) 2 5 true false

Z := (.NOT.(L .AND. (Z .OR. L)) .XOR. Z 2 5 true false

CHAPTER 14 ANSWERS TO SELECTED EXERCISES • 547

Exercises:

1.	 In the following program, indicate if the following statements are cor-
rect or incorrect.

	 X: = 2

	 Z := true

	 V := .NOT. (true .OR. false)

	 V:= (.NOT.(V .OR. V)) .AND. V

Solution:

all correct

3.	 Evaluate the following expressions:

Solutions:

(a)	 true

(b)	 true

(c)	 true

(d)	 false

(e)	 false

(f)	 true

548 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

14.3	� Assigning to Logical Expressions a Logical Value in
Assembly Language

Exercises:

1.	

	 Complete the table :

PSEUDO-
CODE

AL PSEUDO-
CODE

ASSEMBLY
LANGUAGE X Y Z AL

X:= true

Y:= false

Z:= X .AND. Y

Solution:

PSEUDO-
CODE

AL PSEUDO-
CODE

ASSEMBLY
LANGUAGE X Y Z AL

X:= true X:= 1 mov x,1 1

Y:= false Y:= 0 mov y,0 1 0

Z:= X .AND. Y

AL:= X mov al, x 1 0 1

AND AL,Y and al, y 1 0 0

Z:= AL mov z, al 1 0 0 0

CHAPTER 14 ANSWERS TO SELECTED EXERCISES • 549

PSEUDOCODE AL X Y Z LOG EAX EBX
X:= 5 mov x, 5 5

Y:= 60 mov y, 60 5 60

LOG := (X > 10) .AND. (Y > 10) mov eax, 0 5 60 0

mov ebx, 0 5 60 0 0

cmp x, 10 5 60 0 0

jng L1 5 60 0 0

mov eax, 1 5 60 0 0

L1: cmp y, 10 5 60 0 0

jng L2 5 60 0 0

mov ebx, 1 5 60 0 1

L2: and eax, ebx 5 60 0 1

mov log, eax 5 60 0 0 1

IF LOG = true THEN cmp log, 1 5 60 0 0 1

BEGIN begin1: jne end1 5 60 0 0 1

Z:= X + Y mov eax, x 5 60 0 0 1

add eax, y 5 60 0 0 1

mov z, eax 5 60 0 0 1

END end1: 5 60 0 0 1

ELSE je end2 5 60 0 0 1

BEGIN begin2: 5 60 0 0 1

Z:= X*Y mov eax, x 5 60 5 0 1

mul y 5 60 5 300 1

mov z, eax 5 60 300 5 300 1

END end2: 5 60 300 0 300 1

550 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Exercise:

1.	 For the above program, assume x = 20 and y = 30. With these values,
change the above program.

Solution:

PSEUDO-CODE AL X Y Z EAX EBX

X:= 20 mov x, 20 20

Y:= 30 mov y, 30 20 30

LOG := (X > 10) .AND. (Y > 10)

mov eax, 0 20 30 0

mov ebx, 0 20 30 0 0

cmp x, 10 20 30 0 0

jng L1 20 30 0 0

mov eax, 1 20 30 1 0

L1: cmp y,10 20 30 1 0

jng L2 20 30 1 0

mov ebx, 1 20 30 1 1

L2: and eax,ebx 20 30 0 1

mov log, eax 20 30 0 1

IF LOG = true THEN cmp log, 1 20 30 0 1

BEGIN begin1: jne
end1 20 30 0 1

Z:= X + Y

mov eax, x 20 30 0 1

add eax, y 20 30 0 1

mov z, eax 20 30 0 1

END end1: 20 30 0 1

CHAPTER 14 ANSWERS TO SELECTED EXERCISES • 551

ELSE je end2 20 30 0 1

BEGIN begin2: 20 30 0 1

Z:= X*Y

mov eax, x 20 30 20 1

mul y 20 30 600 1

mov z, eax 20 30 600 600 1

END end2: 20 30 600 600 1

14.4	 Masks

Exercises:

Assume CX contains an arbitrary number. For the following assembly instructions, explain
what changes to CX, if any, result from the following masks:

1.	 and cx, cx

Solution:

Since both are the same register, cx will not change.

3.	 xor cx, cx

Solution:

Since both are the same register, cx all bits will change to 0.

5.	 or cx, (not cx)

Solution:

1 or 0 = 1. Therfore all the bits will be changed to 1.

552 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

15.1	� Representing One-Dimensional Arrays in Pseudo-Code

Exercises:

1.	 Write a pseudo- code algorithm that will perform the following tasks:

	 Task1: Stores the numbers 2, 22, 23, ..., 2n in array cells.

	 Task2: Add the numbers in the cells.

	 Task3: Compute the integer average. (The average without the remainder.)

Solution:

TASK 1:

j = 1

WHILE J≤ n

BEGIN

a(j) := aj

j := j + 1

END

TASK 2:

sum:= 0

j:= 1

sum:= sum + a(j)

j:= j + 1

END

TASK 3:

integer_average:= sum ÷ n

3.	 Converting positive decimal integers into binary.

	 Write a pseudo- code algorithm that will perform the following tasks:

	 Task1: Convert a positive number into binary

	 Task 2: Store the binary digits into an array.

CHAPTER 15 ANSWERS TO SELECTED EXERCISES • 553

Solution:

PSEUDO-CODE
TAKE 1: B= 2

N := BINARY

S:= 0

M:= 1

k:= 1

T:= 10

WHILE N <> 0

BEGIN

R := N MOD B

TEMP(k):= R

N:= N÷B

R := R*M

S:= S + R

M:= M*T

k:= k + 1

END

TASK 2:

d:= k – 1

k:= 1

While 1 ≤ d

A(k):= TEMP(d)

d:=d – 1

k:= k + 1

END

554 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

5.	 A proper divisor of a positive integer N is an integer that is not equal
to 1 or N and divides N without a remainder.

	 For example the proper divisors of 21 are 2, 3, 7 .

	 Write a pseudo- code algorithm that perform the following tasks:

	 Task1: Store a positive integer number N.

	 Task2: Find and store in array all the proper divisors of N.

Solution:

Task 1:

N:= n

Task 2:

k := 2

J := 1

WHILE k ≤ N - 1

BEGIN

R := N MOD k

IF R = 0

  BEGIN

A(J) := k

j := j + 1

  END

k :=k + 1

END

15.2	� Creating One Dimensional Integer Arrays In Assembly
Language

Exercise:

1.	 Write a assembly language program that will store the first 50 positive
odd numbers.

CHAPTER 15 ANSWERS TO SELECTED EXERCISES • 555

Solution:

x byte ?
mov two,2
mov k, 0
lea ebx, x ; location of array in ebx
while: cmp k,51; k counter
je exit
mov eax ,k;
mul two
add eax, 1; odd number in eax
mov [ebx], al ; store odd number in [ebx]
add ebx,1; moves to next byte
mov ecx, k
add ecx, 1
mov k, ecx; adds one to k and stores it into ecx
jmp while
exit:

Storing data in the array without a variable’s location

Exercise:

1.	 Complete the table below.

BYTES

AL
INSTRUCTIONS

EAX EBX 1 2 3 4 5 6 7 8

mov eax, 2

mov ebx, 7D12Eh

mov [eax], ebx

mov eax, 4

mov ebx, 568923h

mov [eax], ebx

mov ebx, 3

mov [eax], ebx

556 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solution:

BYTES

AL
INSTRUCTIONS

EAX EBX 1 2 3 4 5 6 7 8

mov eax, 2h 2

mov ebx, 7D12Eh 2 0007D12

mov [eax], ebx 2 0007D12 0 0 0 7 D 1 2 E

mov eax, 4h 4 0007D12 0 0 0 7 D 1 2 E

mov ebx, 568923h 4 0056892 0 0 0 7 D 1 2 E

mov [eax], ebx 4 0056892 0 0 0 7 0 0 5 6 8 9 2 3

mov ebx, 3h 4 0000000 0 0 0 7 0 0 5 6 8 9 2 3

mov [eax], ebx 4 0000000 0 0 0 7 0 0 0 0 0 0 0 3

Retrieving data from an array

Exercise:

1.	 Extend the following program so that the array data stored can be
retrieved to the register ax.

AL CODE EAX X

x dword ?
lea ebx,x

dword 1 dword 2 dword 3

mov eax, 13h 00 00 00 13

mov [ebx], eax 00 00 00 13 00 00 00 13

add ebx,4 00 00 00 13 00 00 00 13

mov eax,29h 00 00 00 29 00 00 00 13

CHAPTER 15 ANSWERS TO SELECTED EXERCISES • 557

mov [ebx],eax 00 00 00 29 00 00 00 13 00 00 00 29

add ebx,4 00 00 00 29 00 00 00 13 00 00 00 29

mov eax,25h 00 00 00 25 00 00 00 13 00 00 00 29

mov [ebx],eax 00 00 00 25 00 00 00 13 00 00 00 29 00 00 00 25

Solution:

AL CODE EAX X

x dword ?
lea ebx,x dword 1 dword 2 dword 3

mov eax, 13h 00 00 00 13

mov [ebx], eax 00 00 00 13 00 00 00 13

add ebx,4 00 00 00 13 00 00 00 13

mov eax,29h 00 00 00 29 00 00 00 13

mov [ebx],eax 00 00 00 29 00 00 00 13 00 00 00 29

add ebx,4 00 00 00 29 00 00 00 13 00 00 00 29

mov eax,25h 00 00 00 25 00 00 00 13 00 00 00 29

mov [ebx],eax 00 00 00 25 00 00 00 13 00 00 00 29 00 00 00 25

sub ebx, 8 00 00 00 25 00 00 00 13 00 00 00 29 00 00 00 25

mov al, [ebx] 00 00 00 13 00 00 00 13 00 00 00 29 00 00 00 25

add ebx, 4 00 00 00 13 00 00 00 13 00 00 00 29 00 00 00 25

mov al, [ebx] 00 00 00 29 00 00 00 13 00 00 00 29 00 00 00 25

add ebx, 4 00 00 00 29 00 00 00 13 00 00 00 29 00 00 00 25

mov al, [ebx] 00 00 00 25 00 00 00 13 00 00 00 29 00 00 00 25

558 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

15.3	� Reserving Storage for an Array Using the DUP
Directive.

Exercise:

Write a program that will perform the following task: store in a dimensioned array the first
100 positive numbers.
Solution:

x byte 100	 dup (?)
Lea ebx, x
mov al, 1
while: cmp al, 101
je exit
mov [ebx], al
add ebx , 1
add al,1
jmp while
exit:

15.4	 Working with Data

Exercise:

1.	 Complete the following table:

AL
INSTRUCTIONS eax ebx 9 10 11 12 13 14 15 16 17

mov eax, 2ACD16 h

mov ebx, 10h

add ebx, 1h

mov [ebx], eax

add [ebx], ebx

add eax, ebx

CHAPTER 15 ANSWERS TO SELECTED EXERCISES • 559

Solution:

BYTES

AL CODE eax ebx 10 11 12 13 14 15 16 17 18

mov eax,
2ACD16h 002ACD16

mov ebx, 10h 002ACD16 10

add ebx, 1h 002ACD16 11

mov [ebx], eax 002ACD16 11 0 0 2 A C D 1 6

add [ebx], ebx 002ACD16 11 0 0 2 A C D 2 7

add eax, ebx 002ACD27 11 0 0 2 A C D 2 7

560 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

16.1	 Pseudo-code Procedures

Exercises:

1.	 Write in pseudo-code an algorithm and procedure that will perform
the following tasks:

	 Task1: Store the following positive integer numbers in an array:

	 n, n + 1, n + 2, n + 3, ..., n + m, m > 0.

	 Task2: Add the numbers stored in the array.

Solution:

PSEUDO-CODE

N:= n

M:= m

CALL ARRAY

PROCEDURE ARRAY

BEGIN

TASK1: k:= 0	

WHILE k ≤ M

BEGIN

X(k) := n + k

k:=k + 1

END

TASK2: SUM:= 0	

k:= 0

WHILE k # M

SUM:= SUM + X(k)	

k:= k + 1

END

END

CHAPTER 16 ANSWERS TO SELECTED EXERCISES • 561

16.2	 Writing procedures in Assembly Language

Exercises:

1.	 Write an assembly language algorithm that computes

	 1 + a + a2 + ... + + ar + ... + aN

	 where a > 0 and N > 0.

Solution:

SUM:= 0

J:= 0

R:= 0

WHILE R ≤ N

BEGIN

CALL EXPONENTIAL

SUM:= SUM + P

R:= R + 1

END

PROCEDURE exponential

P := 1

K:= 0

WHILE K ≤ R

BEGIN

P:= A*P

K:= K + 1

END

ret

expontential ENDP

562 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

17.1	 Definition of Decimal Numbers and Fractions.
1.	 Which of the following fractions can be reduced to integer numbers:

(a)	 1446/558   (b)  12356/2333   (c)  458/3206   (d)  1138/569

Solution:

d

3.	 Which of the following fractions are proper:

(a)	 3/2   (b)  234/567   (c)  1/2

Solution:

b, c

17.2	� Representing positive decimal numbers corresponding
to proper fractions in expanded form.
1.	 Expand the following in the form: 0. a1a2 … an = 0.a1a2a3 ... ana1a2a3 ... an

... a1a2a3 ... an

(a)	 0.2357	 (b)  0.0097

Solution:

(a)	 0.2357 = 0.235723572357...    (b)  0.0097 = 0.009700970097...

3.	 Write the following fractions as decimal numbers using the upper bar
notation where necessary:

(a)	 5/12   (b)  –7/8   (c)  5/6   (d)  1/7   (e)  –3/7

Solution:

(a)	 5/12 = 0.416   (b)  –7/8 = –0.875   (c)  5/6 = 0.83   (d)  1/7 = 0.142857

(e)	 –3/7 = –0.428571

17.3	 Converting Decimal Numbers to Fractions:
1.	 Write the decimal numbers as fractions:

(a)	 0.0235   (b)  0.1111215   (c)  0.999999

CHAPTER 17 ANSWERS TO SELECTED EXERCISES • 563

Solution:

(a)	 0.0235 = 235/10000

(b)	 0.1111215 = 1111215/10000000

(c)	 0.999999 = 999999/1000000

1.	 Write the following decimal numbers as fractions:

(a)	 0.23   (b)  0.73   (c)  0.8   (c)  0.101   (e)  0.3

(g)  23.468   (h)  2.0078   (i)  0.24679852

Solution:

(a)	 0.23 = 23/99   (b)  0.73 = 73/99   (c)  0.8 = 8/9   (d)  0.101 = 101/999

(e)  0.3 = 3/9   (g)  23.468 = 23468/1000   (h)  2.0078 = 20078/10000

1.	 0.24679852 = 0.246 + 0.0007985279852... = 246/1000 + 0.7985279852... 246/1000

+ 79852/99999 =

[(246)99999]/[(1000)(99999)] + [(79852)(1000)]/[(1000)(99999)] =

[(246)(99999) + (79852)(1000)]/[(1000)(99999)] = [24599754 + 79852000]/99999000 =

104,451,754/99,999,000

3.	 Write the following decimal numbers as a decimal number 0. a1a2 … an:

(a)	 0.7323 + 0.0083   (b)  0.7323 – 0.0083
Solution:

(a)	 0.7323 + 0.0083 = 0.7406

(b)	 0.7323 – 0.0083 = 0.7240

17.4	 Converting Fractions to Decimal Numbers:
1.	 Convert the following fractions to decimal: 4/9

Solution:

Step 1:
	 4/9 = a1 /10 + a2 /102 + a3

 /103 + a4
 /104 + a5

 /105 + a6
 /106 + a7

 /107 + …

	� 10(4/9) = 40/9 = (36 + 4)/9 = 4 + 4/9 = a1 + a2 /101 + a3 /102 + a4 /103 + a5 /104 +

	 a6 /105 + a7 /106 + …

	 a1 = 4

564 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Step 2:

	 4/9 = a2 /101 + a3 /102 + a4
 /103 + a5

 /104 + a6
 /105 + a7

 /106 + …

	 10(4/9) = 40/9 = 4 + 4/9 = a2 + a3 /101 + a4 /102 + a5 /103 + a6 /104 + a7 /105 + …

	 a2 = 4

	 4/9 = a3 /101 + a4 /102 + a5
 /103 + a6

 /104 + a7
 /105 + …

	 End of cycle: 4/9 = 0.44444444... = 0.4

3.	 67/5

Solution:

	 67/5 = (65 + 2)/5 = 13 + 2/5 = 13.4

17.5	 Representation of Decimal Numbers
1.	 Convert the following into integer form:

(a)	 281.9   (b)  41256.9

Solutions:

(a)	 282   (b)  41257

3.	 Explain why we cannot convert, using our above algorithm, the follow-
ing number into a fraction:

	 0.272772777277772777772...

	 From your analysis, does such a number exist ?

Solutions:

All rational numbers N/M when dividing integer M into N at most can have a finite number of
distinct numbers which will repeat over and over again.

0.272772777277772777772...

This number exists but it is not a rational number.

CHAPTER 17 ANSWERS TO SELECTED EXERCISES • 565

17.6	 Definition of Decimal and Fractions
1.	 Write the following numbers in expanded form:

(a)	 0.2311204   (b)  0.111111012   (c)  0.2323238   (d)  0.ABC216

Solutions

(a)	 0.2311204 = 2/104 + 3/104
2 + 1/104

3 + 1/104
4 + 2/104

5 + 0/106

(b)	 0.111111012 = 1/102 + 1/102
2 + 1/102

3 + 1/102
4 + 1/102

5 + 1/102
6 + 0/102

7 + 1/102
8

(c)	 0.2323238 = 2/108 + 3/108
2 + 2/108

3 + 3/108
4 + 2/108

5 + 3/108
6

(d)	 0.ABC216 = A/1016 + B/1016
2 + C/1016

3 + 2/1016
4

17.7	� Converting Decimal Numbers Between The base 10
and an Arbitrary Base
1.	 Convert the following numbers to the base 10:

Solutions:

(a)	 0.2311204 | 2/4 + 3/42 + 1/43 + 1/44 + 2/45

(b)	 0.111111012 | 1/2 + 1/22 + 1/23 + 1/24 + 1/25 + 1/26 + 1/28

(c)	 0.2323238 | 2/8 + 3/82 + 2/83 + 3/84 + 2/85 + 3/86

(d)	 0.ABC216 | 10/16 + 11/162 + 12/163 + 2/164

Converting infinite decimal numbers in any base b to its
corresponding decimal numbers in the base 10:

1.	 Convert the following numbers to the base 10:

Solutions:

(a)	 0.68 = 68/(108 – 1)8 ⇒ 610/(8 – 1)10 = 610/710

(b)	 0.010012 = 10012/(105
2 – 1)2 ⇒ 910/(2

5
10 – 1)10 = 910/3110

(c)	 0.A5C16 = A5C2/(103
16 – 1)16 ⇒ 265210/(409610 – 1)10 = 265210/409510

(d)	 0.003658 = 3658/(105
8 – 1)8 ⇒ 24510/(8

5 – 1)10 = 24510/(32767)10

566 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Converting finite decimal numbers in the base 10 to its cor-
responding decimal numbers in any base b:

Checking out computation.
1.	 Convert 0.610 to the

(a)	 base 2   (b)  base 4   (c)  base 8   (d)  base 16

Solutions:

(a)	 base 2

	 0.6 = a1/2 + a2/2
2 + …

	 2(0.6) = 1.2 = a1 + a2/2 + a3/2
2 + …

	 a1 = 1

	 0.2 = a2/2 + a3/2
2 + a4/2

3 + …

	 2(0.2) = 0.4 = a2 + a3/2 + a4/2
2 + …

	 a2 = 0

	 0.4 = a3/2 + a4/2
2 + a5/2

3 + a6/2
4 + ……

	 2(0.4) = 0.8 = a3 + a4/2 + a5/2
2 + a7/2

3 + ……

	 a3 = 0

	 0.8 = a4/2 + a5/2
2 + a6/2

3 + ……

	 2(0.8) = 1.6 = a5 + a6/2 + a7/2
2 + ……

	 a5 = 1

	 0.6 = + a6/2 + a7/2
2 + ……

	 0.6 | 0.11002

(b)	 base 4

	 0.6 = a1/4 + a2/4
2 + …

	 4(0.6) = 2.4 = a1 + a2/4 + a3/4
2 + …

	 2.4 = a1 + a2/4 + a3/4
2 + …

CHAPTER 17 ANSWERS TO SELECTED EXERCISES • 567

	 a1 = 2

	 0.4 = a2/4 + a3/4
2 + .

	 4(0.4) = 1.6 = a2 + a3/4 + …

	 a2 = 1

	 0.6 = a3/4 + …

	 0.6 ⇒ 0.214

(c)	 base 8

	 0.6 = a1/8 + a2/8
2 + …

	 8(0.6) = 4.8 = a1 + a2/8 + a3//8
2 + …

	 a1 = 4

	 0.8 = + a2/8 + a3//8
2 + …

	 8(0.8) = 6.4 = a2 + a3/8 + …

	 a2 = 6

	 8(0.4) = 3.2 = a3 + a4/8 …

	 a3 = 3

	 0.2 = a4/8+ a5/8
2 …

	 8(0.2) = 1.6 = a4 + a5/8 …

	 0.6 | 0.4638

(d)	 base 16

	 0.6 = a1/16 + a2/162 + …

	 16(0.6) = 9.6 = a1 + a2/16 + a3/162 …

	 a1 = 9

	 0.6 = a2/16+ a3/162 …

	 0.6 | 0.916

568 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Converting infinite decimal numbers in the base 10 to its
corresponding decimal numbers in any base b:

1.	 Convert: 0.110 to base 5

Solution:

base 5

	 0.110 = 1/9 = a1/5 + a2/5
2 + a3/5

3+…

	 5(1/9) = 5/9 = a1 + a2/5 + a3/5
2 + a4/5

3 …

	 a1 = 0

	 5/9 = a2/5 + a3/5
2 + a4/5

3 …

	 5(5/9) = 25/9 = (18 + 7)/9 = 2 + 7/9 = a2+ a3/5 + a4/5
2 +a5/5

3 …

	 a2 = 2

	 7/9 = a3/5 + a4/5
2 + a5/5

3 …

	 5(7/9) = 35/9 = (27 + 8)/9 = 3 + 8/9 = a3 + a4/5 + a5/5
2 …

	 a3 = 3

	 8/9 = a4/5 + a5/5
2 + a5/5

3 …

	 5(8/9) = 40/9 = (36+4)/9 = 4+4/9 = a4+a5/5 + a6/5
2 …

	 a4 = 4

	 4/9 = a0/5 + a6/5
2 +…

	 5(4/9) = 20/9 = (18 + 2)/9 = 2 + 2/9 = a5 + a6/5
2 …

	 a5 = 2

	 2/9 = a6/5 + a7/5
2 ..

	 5(2/9) = 10/9 =1 + 1/9 = a6 + a7/5..

	 a6 = 1

	 1/9 = a7/5 + …

	 0.110 => 0234215

CHECK:

	 0.0234215 =
234215

4444445

 =>
173610

1562010

 = 0.110

CHAPTER 17 ANSWERS TO SELECTED EXERCISES • 569

17.8 	�Converting Decimal Numbers In a Given Base To
Fractions In The Same Base
1.	 Write the decimal numbers as fractions:

(a)	 0.02358   (b)  0.1101112   (c)  0.99999916

Solutions:

(a)	 0.02358 = 2358/100008

(b)	 0.1101112 = 1101112/10000002

(c)	 0.99999916 = 99999916/100000016

1.	 Write the decimal numbers as fractions in the same base:

Solutions:

(a)	 0.01012 = 1012/(100002 – 1) = 1012/11112

(b)	 0.0007238 = 7238/(10000008 – 1) = 7238/7777778

(c)	 0235.72378 = 235 + 72378/(100008 – 1) = 235 + 7237/7777778

(d)	 02C5.723916 = 2C516 + 723916/(1000016 – 1) = 2C516 + 723916/FFFF16

17.9 	�Converting Numbers Between Different Bases
Converting a finite decimal number less than one
1.	 Using this quick conversion, convert the following binary numbers to

hexadecimal:

(a)	 0.0110101012   (b)  0.00011111012

Solutions:

(a)	 0.0110 1010 10002 | 0.6A816

(b)	 0.0001 1111 01002 |0.11416

3.	 In the example above, we converted 0.11011110112 | 0.DEC16.

Solution:

	 0.11011110112 ⇒ 0.356410 ⇒ 0.DEC16.

570 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

5.	 Convert  (a)  0.1101110112 to the base 8.   (b)  Convert 0.234618
to the base 2.

Solutions:

(a)	 0.1101110112 to the base 8. ⇒ 6738

(b)	 Convert 0.234618 to the base 2. ⇒ 100111001100018

Converting an infinite decimal number less than one
1.	 Convert 0.10112 to a hexadecimal number. :

Solution:

3.	 Convert 0.110112 to hexadecimal: .

Solution:

	 0.110112 = 0.1101 1110 1111 0111 1011 ⇒ 0.DEFB16

5.	 Explain why we cannot convert, using our above algorithm, the follow-
ing number into a fraction:

	 0.272772777277772777772...

Solution:

It is not a rational number since it is not made up of a finite cycle of digits.

CHAPTER 18 ANSWERS TO SELECTED EXERCISES • 571

18.1	 Representation of Decimal Numbers
1.	 Write the following in scientific and floating point representation:

0.00234	45.356	 - 32

Solutions:

0.00234 = 234*10 -5

0.00234 = 2.34 E - 3

45.356 = 45356 *10 - 3

45.356 = 4.5356E1

- 32 = - 32*10 0

-32 = -32E0

18.2	 Arithmetic Operations Using Scientific Representation

Multiplication
1.	 Write the following using scientific representation.

Solutions:

575.345*0.00234 = (- 575345*10 - 3)*(234*10-5) = (- 575345)*(234) *10-8 =

= 134630730 *10 - 8

678*0.03*2.135 = (678*100)*(3* 10 -2)*(2135*10 - 3) = (678)*(3)*(2135) *10-5 =

= 42590 *10-5

0.0034*0.221 = (34*10-4)*(221*10-3)

Addition and Subtraction
1.	 - 575.345 + 0.00234	 678 + 0.03 + 2.135	 0.0034 - 0.221

572 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Solutions:

- 575.345 + 0.00234 = - 575345 * 10-3 + 234 * 10-5 = - 57534500 * 10-5 + 234 * 10-5 =

= (- 57534500 + 234) *10-5 = -57534266 * 10-5

678 + 0.03 + 2.135 = 678 * 100 + 3 * 10-2 + 2135 * 10-3 =

678000 * 10-3 + 30 * 10-3 + 2135 * 10-3 = (678000 + 30 + 2135) * 10-3 = 680165 *
10-3

0.0034 - 0.221 = 34 * 10-4 - 221 * 10-3 = 34 * 10-4 - 2210 * 10-4 = (34 - 2210) * 10-4

= - 2176 * 10-4

Long Division
1.	 Write the following in a scientific notation form.

a.  5/7		 b.  0.23/0.035

2.	 Using the above algorithm, convert 1/7 to a 7 place decimal
representation.

3.	 Rewrite the above program in pseudo-code using a while statement.
From this program write an assembly language.

18.3	 80X86 Floating-Point Architecture
1.	 What is the largest value (base 10) that can be stored in ST(k)?

Solution:

280 = 1208925819614629174706175

Miscellaneous floating point instructions
1.	 Write an assembly program to compute the sum:

12 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62.

CHAPTER 18 ANSWERS TO SELECTED EXERCISES • 573

Solution:

PSEUDO CODE FP AL

ONE:= 1.0 one real4 1.0

N:= 1.0 n real4 1.0

K:= 1 k byte 1

Q:= 1.0 q real4 1.0

SUM:= 0 sum real4 0

WHILE K ≤ 6 while: cmp k, 6 jg end

BEGIN begin

ST:= 1.0 fld n

ST:= 1.0/N fdiv n

ST:= ST/N fdiv n

Q:= ST fst q

ST:= SUM fld sum

ST:= ST + Q fadd q

SUM:= ST fst sum

N:=N + 1.0

fld n

fadd one

fst n

K:= K + 1

mov eax, k

add eax, 1

mov k, eax

END
jmp while

end:

574 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

Interchanging integer and floating point numbers.
3.	 It can be shown that 1/4 = 1/3 - 1/32 + 1/33 - 1/34 +

Write an AL algorithm to find for a given n the sum = 1/3 - 1/32 + 1/33 - 1/34 +
± 1/3n

Solution:

PSEUDO CODE FP AL

SUM:= 2/3

ONE:= 1.0

TWO:= 2.0

THREE:= 3.0

MINUSONE:= -1

N:= n

K:= 2

M- O- D-T:= 0

CE := 0

sum real4 0

one real4 1.0

two real 2.0

three real 3.0

N byte n

k byte 2

minusone real4 -1.0

minusonedivthree real4 0

CE real4 0

ST:= TWO

ST:= ST /THREE

SUM:= ST

ST:= MINUS-ONE

ST:= ST/THREE

M-O-D-T:=ST

CE:= ST

fld two

fdiv three

fst sum

fld minusone

fdiv three

fst minusonedivthree

fst ce

WHILE K ≤ n while: cmp k , n jg end

ST:= CE fld ce

CHAPTER 18 ANSWERS TO SELECTED EXERCISES • 575

ST:= ST*M-O-D-T fmul minusonedivthree

CE:= ST fst ce

ST:= SUM fld sum

8ST:=ST + CE fadd ce

SUM:= ST EAX:=K fst sum mov eax, k

EAX:= EAX + 1 add eax, 1

K:= EAX mov k, eax

END jmp while end:

576 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

19.1	 The control register

Exercise:

1.	 Write a AL program that will perform the following:

1.	 Store in a variable the decimal representation of the number 1/7

2.	 Round the number to 10 places of accuracy.

Solution:

PSEUDO-CODE FP AL
ZERO:= 0 zero word 0

ONE:= 1.0 one real4 1.0

TEN:= 10 Ten word 10

SEVEN:= 7.0 seven real4 7.0

ST:= ONE fld one

ST:= ST/SEVEN fidiv seven

ST:= ST*10 fmul ten

Control register:= ZERO fldew zero

ST:- ST/TEN fidiv ten

3.	 It can be shown that 1 + 2 + ... + N = N(N + 1)/2.

Write an AL algorithm that will compute and store the number: 1.0 + 2.0 + ... + N.0 and
compute, if any, the error |(1.0 + 2.0 + ... + N.0) - N.0(N.0 + 1.0)/2.0|.

Solution

PSEUDO CODE FP AL
ONE: = 1.0 one real4 1.0

N:= n.0 n real4 n.0

K := 1.0 k real4 1.0

WHILE K ≤ n.0

ST:= ST + K

END

ERROR:= |ST - N*(N+ 1)/2|

CHAPTER 20 ANSWERS TO SELECTED EXERCISES • 577

20.2	 The 80x86 Stack

Exercise:

1.	 Complete the table. Use only hexadecimal numbers.

AL CODE AX STACK

mov ax, 23deh

push ax

mov ax, 3425

push ax

mov ax, 7f7ah

push eax

Solution:

AL CODE AX STACK

mov ax, 23deh 23dc

push ax 23dc 23 dc

mov ax, 3425 0d61 23 dc

push ax 0d61 0d 61 23 dc

mov ax, 7f7ah 717a 0d 61 23 dc

push eax 717a 71 7a 0d 61 23 dc

578 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

The pop instruction

Exercise:

1.	 Store in a stack the sequence 1,2,...,100.

Solution:

Pseudo - Code AL

N:= 100 n byte 100

K:= 1 k byte 1

WHILE K ≤ N while: cmp k,n
ja end

EAX:=K mov eax,k

PUSH EAX push eax

EAX:= EAX + 1 add eax, 1

K:= EAX mov k,eax

END jmp while
end:

CHAPTER 21 ANSWERS TO SELECTED EXERCISES • 579

21.2	 Storing Strings
1.	 Convert the following strings to its ASCII codes:

ASSEMBLY CODE EAX

mov eax, ‘+ YZ’

mov eax, ‘/’

mov eax, ‘* %’

Solution:

ASSEMBLY CODE EAX

mov eax, ‘+ YZ’ 2B 20 59 5A

mov eax, ‘/’ 2F

mov eax, ‘* %’ 2A 20 25

The string variables:
1.	 Complete the following tables:

Hamlet BYTE ‘Brevity is the soul of wit’

Solution:

Hamlet BYTE ‘Brevity is the soul of wit’

42 72 65 76 69 74 79 20 69 73

74 68 65 20 73 6F 75 6C 20 6F

66 20 77 69 74

580 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

21.2

1.	 Hamlet DWORD ‘To be or not to be’

Write a AL program that will move the string in variable Hamlet to the variable Shakespeare
DWORD ?

Solution:

ASSEMBLY LANGUAGE PROGRAM

Hamlet dword 5 dup ‘To be or not to be’

Shakespeare dword 5 dup ?

lea esi, Hamlet

lea edi, Shakespeare

Movsd

Movsd

Movsd

Movsd

Movsd

The rep instruction

Exercises:

1.	 Complete the table below:

AL CODE ECX
Y

(DWords in
ASCIIsymbols)

X
(DWords in ASCI-

Isymbols)

x dword 4 dup (?)

Y dword
‘123456789abcde’

mov ecx, 4

CHAPTER 21 ANSWERS TO SELECTED EXERCISES • 581

lea esi, y

lea edi, x

rep movsd

Solution:

AL CODE ECX

Y
(DWords
in ASCII
symbols)

X

x dword 4 dup (?)

Y dword ‘1234’ 31323334

mov ecx, 4 4 31323334

lea esi, y 4 31323334

lea edi, x 4 31323334

rep movsd 0 31323334 31323334 31323334 31323334 31323334

The scas instruction

Exercise:

1.	 Write a program that will find the position location of “f” in the of the
string ‘I live in California’

Solution:

x dword 20 dup ‘I live in California’

mov al, ‘f ’

lea edi, x

mov ecx, 20

mov eax, ecx

repne scasb

sub eax, ecx

582 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

22.1	 Retrieving strings stored in the variable

Exercises:

1.	 Write a AL program that will retrieve the string: ‘Brevity is the soul of
wit’ from the variable

SHAKESPEARE word ‘Brevity is the soul of wit’

Solution:

Shakespeare word ‘Brevity is the soul of wit’
lea ebx,Shakespeare
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]
add ebx,2
mov ax,[Shakespeare]

CHAPTER 22 ANSWERS TO SELECTED EXERCISES • 583

22.2	� Creating and storing a one dimensional string array
into the dup(?) directive.

Exercises:

1.	 Write a AL program that will retrieve the string ‘Brevity is the soul of
wit’ from the variable

SHAKESPEARE byte ‘Brevity is the soul of wit’ and copy it into the variable

HAMLET byte 100 dup(?)

Solution:

Shakespeare word ‘Brevity is the soul of wit’
Hamlet word?

lea ebx, Shakespeare
lea ecx, Hamlet

mov ax, [Shakespeare]
add ebx, 2
mov [ecx], ax
add ecx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2
add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax

584 • ASSEMBLY LANGUAGE PROGRAMMING MADE CLEAR

add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2
add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2
add ecx, 2
mov [ecx], ax
add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax
add ecx, 2

add ebx, 2
mov ax, [Shakespeare]
mov [ecx], ax

INDEX
A

Adding contents of the two floating-point
registers, 357

Additive identity, 96, 100
Additive inverse, definition, 96, 103, 104
Algorithm, 27, 33
arithmetic expressions, 145
arrays. See integer arrays; string arrays
Assembler Floating Point Numeric

Approximations, 448
Assembly language add instruction,

definition, 160
Assembly language basics, 117

B

Binary finite ring, definition, 101
Binary integers in expanded form, definition,

11
Branching and the if-statements, 207
Byte, 17

C

Call instruction, definition, 306
carry flag, definition, 468
Closure under addition, definition, 96
Closure under multiplication, definition, 96
Cmpsb, definition, 428
Cmpsd, definition, 428
Cmpsw, definition, 428
Comment, 430
Compare(cmp) Instructions, 208
compare instructions, 208
Complement of a number, definition, 104

Computing number basis with algorithms,
87

Conditional Expressions, definition,
62, 63

conditional jump instructions, 208
Conditional Jump Instructions for Signed

Order, 208
Conditional jump instructions for the

natural order (unsigned), 216
conditional values, definition, 62
Constructing programs in assembly

language, 187, 239
Control register, 388
Converting the While-Conditional

Statements to Assembly Language, 221
Copying data from the stack, 352, 399

D

Decimal integers in expanded form,
definition, 7

Decimal Numbers Base , definition, 320
D.H. Lehmer's Linear Congruence Method,

458, 460
Directive, 141
Dividing the contents of floating-point

registers, 367, 407
double-decimal, definition, 347
Dword, definition, 118
dynamic storage for decimal numbers, 396
Dynamic storage: strings, 415

E

EDI, definition, 422
ESI, definition, 422

Exchanging the contents of the two
floating-point registers, 355

F

fabs, 374
fadd, 358
fchs, 374
fcom, 383
fcomp, 409
fcompp, 409
fdiv, 367, 368
fdivp, 408
fdivpr, 408
fdivr, 367, 368
fiadd, 360, 372
ficom, 382
fidv, 370
fidvr, 370
fild, 350
Finite decimal numbers, definition, 321
fist, 354
fisub, 363
fisubr, 363
fld, 349
fldcw, 389
float, definition, 347
Floating Point Representation of Decimal

Numbers, definition, 344
fmul, 364
fmulp, 406
Fractions, definition, 320
frndint, 374
fsbur, 361
fst, 352, 353
fstcw, 389
fstp, 400, 401
fstsw, 382
fsub, 361
Fsub, 362
fsubp, 405
fsubpr, 405
fsubr, 361
ftst, 382
fxch, 356

G

Gambler's Ruin, 463

H

Hexadecimal finite ring, definition, 101
Hexadecimal integers in expanded form,

definition, 14

I

IF-THEN-ELSE Statement, definition, 70
IF-THEN Statement, definition, 64
Improper positive fraction N/M, definition,

320
Imul instruction, definition, 168
Infinite decimal numbers, definition, 322
Inputting Strings from the keyboard, 444
Instructions that Compare Floating-Point

numbers, 382, 409
Integer arrays, 279
Integer division n÷m , definition, 172
Integers, definition, 160
Intel 80x86 Assembly Language OpCodes,

471
Invariant properties, 33

J

John Von Neumann's Middle Square Method,
458

L

Label, 140
Lea, definition, 283
Length of a number, definition, 80
Linearizing a polynomial, definition, 188
Lodsb, definition, 425
Lodsd, definition, 426
Lodsw, definition, 425
Logical expressions, 259

Logical Expressions, definition, 260
Logical identifiers, definition, 260
Logical operators, definition, 260
logical statements, definition, 262
Logical values are of two types: true, false,

definition, 260
long-double, definition, 347

M

Mask, definition, 272
Modular arithmetic , definition, 96
Monte Carlo Simulations, 458
mov [register], source, definition, 285
Movsb, definition, 422
Movsd, definition, 422
mov source, definition, 291
Movsw, definition, 422
Mul instruction, definition, 168
Multiplicative identity, definition, 96
Multiplying the contents of the two floating-

point registers, 364

N

Natural set of ordered pairs, definition, 112
Newton Interpolation Method, 450
NUMBER BASES FOR INTEGERS, 5
Numbers and Fractions, definition, 320
Numeric approximations, 447

O

Octal integers in expanded form, definition,
8

One to one correspondence between sets,
definition, 21

One to one function, definition, 21
Onto function, definition, 21
Ordered relationship of a ring, definition,

111
Ordinary decimal numbers , definition, 344
Outputting Strings to the Monitor, 442
overflow flag, definition, 468

P

Pop instruction, 396
procedures, 305, 306
Program, definition, 46
Proper positive fraction N/M, definition, 320
Pseudo-code and Writing Algorithms, 37
Pseudo-code procedures, definition, 306
Push instructions, definition, 396
pushw, 411

Q

QWORD, 347, 348

R

REAL registers, 349
Relations Between Number Bases, 19
REM statement, definition, 52
Repe prefix, definition, 428
Rep instruction, definition, 426
Repne prefix, definition, 428
Repnz prefix, definition, 428
Repz prefix, definition, 428
Ring addition, definition, 96
Ring multiplication, definition, 96
Rings and modular arithmetic, 95
Rings definition, 96
Ring subtraction, definition, 100
Rotation instructions, definition, 274, 276
Rounding Floating Point Numbers, 388

S

Scasb, definition, 430
Scasd, definition, 430
Scasw, definition, 430
Sets, definition, 20
Shift instructions, definition, 274
Signed binary integer, definition, 147
sign flag, definition, 467
Six Relational Operators, definition, 62
ST, 348

Status word register, 382
Storing data from memory to the registers,

349, 396
Stosb, definition, 424
Stosd, definition, 424
Stosw,definition, 424
String arrays, 433
String, definition, 416
Subtracting the contents of the two

floating-point registers, 361, 404
Subtraction instruction, definition, 165
Summary Tables of Floating Point Arithmetic

Operations, 371

T

TBYTE definition, 347
Three Logical Operators, definition, 63
Top Down Structured Modular

Programming, definition, 237

U

unconditional jump instruction, definition,
216

Unsigned binary integer number, definition,
147

Using Polynomials to Approximate
Transcendental Functions and Numbers,
453

V

Visual Studio Express 2015 (free)
Reference, 471

W

WHILE statement, definition, 76
Word definition, 141

	Table of Contents
	About the Author
	I. Working with Integer Numbers
	1. Number Bases for Integers
	2. Relationships Between Number Bases
	3. Pseudocode and Writing Algorithms
	4. Simple Algorithms for Converting Between a Number Base and the Base 10
	5. The If-Then Conditional Statement
	6. The Whole Conditional Statement
	7. Computing Number Basis with Algorithms
	8. Rings and Modular Arithmetic
	9. Assembly Language Basics
	10. Arithmetic Expressions
	11. Constructing Programs in Assembly Language Part I
	12. Branching and the If-Statements
	13. Constructing Programs in Assembly Language Part II
	14. Logical Expressions, Masks, and Shifting
	15. Integer Arrays
	16. Procedures

	II. Working with Decimal Numbers
	17. Decimal Numbers
	18. Working with Decimal Numbers in Assembly
	19. Comparing and Rounding Floating-Point Numbers
	20. Dynamic Storage for Decimal Numbers: Stacks

	III. Working with Strings
	21. Dynamic Storage: Strings
	22. String Arrays
	23. Input/Output
	24. Numberic Approximations (Optional)

	Appendix A
	References
	Answers to Selected Exercises
	Index

