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Preface

Computer Programming is something that has become part of our
daily lives in such a way that it results natural to us, it is present
in our smart phones, computers, TV, automobiles, etc. Some years
ago the only ones that needed to know how to program were soft-
ware engineers, but today, a vast of professions are linked to com-
puter programming, and in years to come that link will become
stronger, and those who know how to program will have more op-
portunities to develop their talent.

Nowadays more and more companies, and not only in the soft-
ware industry, need to develop mobile applications, or create ways
to improve their communications channels, or analyze great amount
of data in order to offer their customers a better service or a new
product. Well, in order to do that, computer programming plays
an indispensable role, and we are not talking about knowing just
the commands of a programming language, but being able to think
and analyze what is the best way to solve a problem, and in this
way transmit those ideas into a computer in order to create some-
thing that can help people.

The objective of this book is to show both sides of the coin, on
one side give a simple explanation of some of the most popular al-

gorithms in different topics, and on the other side show a computer
program containing the basic structure of each algorithm.

Who Should Read this Book?

The origin of this book started some years ago, when we used to
save files with algorithms used in programming competitions for

3



4 LISTINGS

problems that we considered interesting. After that, these same
algorithms that we learnt were useful to get jobs in the software
industry. Thus, based on our experience, this book is intended for
anyone looking to learn some of the algorithms used in program-
ming contests, coding interviews, and in the industry.

Competitive Programming is another tool for software engi-
neers, there are developers that excel in their jobs, but find diffi-
cult to answer algorithms questions. If you feel identified with this,
then this book can help you improve your problem solving skills.

Prerequisites

This book assumes previous knowledge on any programming lan-
guage. For each algorithm it is given a brief description of how it
works and a source code, this with the intention to put on practice
the theory behind the algorithms, it doesn’t contain any explana-
tion of the programming language used, with the exception of some
built-in functions.

Some sections contain college-level math (algebra, geometry
and combinatorics), a reasonable knowledge of math concepts can
help the reader to understand some of the algorithms in those sec-
tions.

Structure of the book

The book consists on 10 chapters, and with the exception of the
first chapter, the rest contains a section with exercises, and the so-
lutions for those exercises are located at the end of the book. Also
at the end of each chapter there is a section called "Chapter Notes”,
where we mention some references and bibliography related to the
content of the corresponding chapter.

The first chapter is just a small description of some of the dif-
ferent programming contests and online judges that are available.
Some of those contests are directed to a specific audience and all
of them have different rules. On the other hand, online judges
are a place to improve your programming skills, some of them are
oriented to some specific area, there are some that focus more in
mathematics, others in logical thinking, etc. We encourage the
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reader to take a look to all of the online judges listed in the chap-
ter and try to solve at least one problem in each one of them.

Chapter 2 is an introduction of fundamental topics, such as
Computer Complexity, Recursion, and Bitwise operations, which
are frequently used in the rest of the book. If the reader is already
familiar with these topics, then this chapter can be skipped.

Chapter 3 covers different data structures, explaining their prop-
erties, advantages and how to implement them. Depending on the
problem definition some data structures fit better than others. The
content in this chapter is of great importance for the rest of the
chapters and we recommend to read this chapter first before mov-
ing to others.

Chapter 4 is about Sorting Algorithms, containing some of the
most popular algorithms, like Bubble Sort, Selection Sort, and oth-
ers that run faster, such as Heap Sort, and Merge Sort. We also
mention other methods like Counting Sort, which is an algorithm
to sort integer numbers in linear time.

Chapter 5 talks about an important technique called Divide
and Conquer, which allow us to divide a problem in easier sub-
problems. An useful tool when dealing with large amount of data.

In chapter 6 we review some of the most popular problems in
Dynamic Programming, which more than a tool, is an ability that
is developed by practice, and is closely related to recursion.

Chapter 7 is all about Graph Theory, which is one of the areas
with more applications, from social networks to robotics. Many
of the problems we face daily can be transformed to graphs. For
example, to identify the best route to go from home to the office.
We can apply the algorithms in this chapter to solve these kind of
problems and more.

Chapter 8 focuses on mathematical algorithms, specially on geo-
metric algorithms. Here we explain algorithms to solve some of the
most frequent problems, like finding the intersection of two lines, or
identifying if a point is inside a polygon, but also we describe more
complex algorithms like finding the convex hull of a cloud of points.
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The 9t chapter is about Number Theory and Combinatorics,
two of the most fascinating topics in mathematics and also in al-
gorithms. Number theory deals with properties of numbers, like
divisibility, prime numbers, sequences, etc. On the other hand,
combinatorics is more about counting in how many ways we can
obtain a result for a specific problem. Some applications of these
topics are password security and analysis of computational com-
plexity.

The last chapter is dedicated to String Processing, or String
Manipulation. Which consists on given a string or a set of strings,
manipulating the characters of those strings in order to solve a
problem. Some examples are: find a word in a text, check whether
a word is a palindrome or not, find the palindrome of maximum
length inside a string, etc.

Online Content

The source code of the exercises and appendices can be found in
the GitHub page:

https://github.com/Cheetos/afcp

The content of the repository will be updated periodically with
new algorithms and solutions to problems, but feel free to contact
us if you think that a specific algorithm should be added, or if you
have an interesting problem that you want to share.


https://github.com/Cheetos/afcp
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Introduction

1.1 Programming Contests

Programming contests are great places to get involved in algorithms
and programming, and there is a contest for everyone. For people
from 12 to 18 years old, perhaps the most important contest is
the Olympiad of Informatics, which consists in solving different
problems using logic and computers. Each country organizes pre-
liminaries and a national contest, then they select four students to
participate in the International Olympiad of Informatics that takes
place every year. The following link contains the results, problems,
and solutions of all contests that have taken place since 1989.

http://www.ioinformatics.org/history.shtml

For college students there is the ACM-ICPC (ACM - Interna-
tional Collegiate Programming Contest). Here, each team consists
of three students and one coach. There is only one computer for
each team, and they have five hours to solve a set of problems. The
team that solves more problems is the winner, and in case of a tie,
the amount of time they needed to solve the problems is used to
break the tie. There is a penalty for each incorrect submission, so
be careful to check every detail before sending a solution.

As in the Olympiad of Informatics, in the ACM-ICPC there
are regional contests, and the best teams of each region participate
in the international contest. Results from previous contests and
problems sets can be consulted in the official website of the contest.

7
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https://icpc.baylor.edu/

For graduate students or professionals, there are other options
to continue participating in programming contests. Nowadays some
of the biggest companies in the software industry and other orga-
nizations do their own contests, each one with their own rules and
prizes. Some of these contests are the Facebook Hacker Cup,
and the Google Code Jam. Also Topcoder organizes some con-
tests that include monetary prizes.

1.2 Coding Interviews

Is well known that the most important companies in the software
industry have a well structured and high-selective hiring process,
which involves testing the candidate’s knowledge of algorithms.
This has caused an increase in the amount of material intended to
help future candidates to succeed in technical interviews. This book
differentiates in the aspect that its content is written by software
engineers with teaching experience that have been trough multiple
recruiting processes, not only as candidates, but also as interview-
ers.

Some advice that we can give to anyone planning to enter in an
interview process are:

e Prepare for your interview, each company has its own culture,
its own hiring processes, so try to learn about this before the
interview.

e If you are going to study for an interview, be confident on
your strengths and focus on your weaknesses.

e Moments before the interview try to relax. At the end you
should be able to enjoy the interview no matter the outcome.

e Independently from the verdict, the result from an interview
is always positive.

1.3 Online Judges

Online judges are websites where you can find problems from differ-
ent categories, and where you can submit your solution for any of
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those problems, which then is evaluated by comparing it with test
inputs and outputs, and finally a result is given back to you. Some
of these judges contain previous problems from ACM competitions,
from Olympiads of Informatics, and from other contests. Without
any doubt, online judges are one of the best places to practice and
improve your coding skills. Some of the most popular online judges
are:

e Leetcode. One of the most popular sites to train for job
interviews in top tech companies. Contains problems from
different categories.

e Project Euler.| Focused on mathematics, there is no need
to send a source code, only the answer to the problem.

e |Codeforces.| One of the best online judges to practice, con-
tains problems from different categories, and they frequently
schedule competitions. There are also great tutorials and
discussions about solutions.

e [UVA Online Judge. Here you can find problems of any
kind, and there are more than 4000 problems to choose from.

e HackerRank. A popular online judge to start coding, they
have a path so you can start with easy problems and then
move to more complicated ones.

e 'Timus. This page does not have as many problems as other
online judges, but the quality and complexity of the prob-
lems make it an excellent option to improve your math and
programming skills.

e |CodeChef. This platform is useful to prepare students for
programming competitions, and for professionals to improve
their coding skills. It has a large community of developers
and supports more than 50 programming languages.

e Topcoder. Contains tutorials explaining with great detail
different algorithms. When solving a problem the points
gained from solving it decrease as the time goes by, so if you
want to improve your coding speed, this is the right place.

e |OmegaUP.|Excellent tool to teach computer programming.
It is very easy to create your own problems and there is also
a large data base of problems to solve.


https://leetcode.com//
https://projecteuler.net/
http://codeforces.com/
https://uva.onlinejudge.org/index.php
https://www.hackerrank.com
http://www.acm.timus.ru
https://www.codechef.com/
https://www.topcoder.com/
https://omegaup.com/
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1.4 C and C++

The programming language chosen to write the source code of the
algorithms in this book is C++, along with some functions of C. Even
when there are other popular languages like Java and Python, we
chose C++ because it is still one of the more robust languages in
the market, and with the use of the Standard Template Library
(STL), we can implement more complex data structures, manipu-
late strings, use predefined algorithms, etc.

Another reason we chose C++ is because it runs faster than other
languages, for example, in some cases Java can be 10 times slower,
and Python is even more slow than that. In programming contests,
speed is something that matters. Nevertheless, the optimal solu-
tion should run inside the time limits of any problem independently
of the language used.

Something that the reader will notice is that in some occasions
we use C functions to read the input data and write the output
data. C++ has cin and cout to handle the input and output re-
spectively, but they are slow in comparison with C functions scanf,
and printf. Even so, C++ functions can be optimized by adding
the following lines at the beginning of the main function

cin.tie(0);
ios_base::sync_with_stdio(0);

Unfortunately we already have the "bad” habit of using C func-
tions for read and write, but it is not only that, scanf and printf
provides great flexibility to handle the input and output of your
program.

1.5 Chapter Notes

Every programming language has its own advantages and disad-
vantages, and it is good to know or at least have a notion of those.
For this book we chose C/C++ as our main language, because of
its simplicity and all the libraries and capabilities it contains. One
of the things that makes C/C++ special is the way it handles the
input and output. It is just amazing how easy we can read and
write data using scanf and printf for C, and cin and cout for
C++. We personally find reading and writing in other programming
languages not as intuitive, at least at first.
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C++ also gives us all the advantages of Object Oriented Pro-
gramming (OOP), and the STL library, which contains algorithms,
data structures, string manipulation capability, etc.

Other programming languages have powerful tools for problem
solving. For example in the case of Java we have found very useful
the BigInteger class, which allows us to do operations with large
numbers. Another example is Python, with its simple syntax, it
allows to write solutions using few lines of code.
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Fundamentals

“First, solve the problem. Then, write the code.”

— John Johnson

In this chapter we will review important concepts and tech-
niques that are indispensable to understand and implement most
of the algorithms contained in next chapters. We make emphasis
in three concepts. Recursion, Algorithm analysis, and bitwise op-
erations.

Recursion is a vastly used technique that at first is not that easy
to understand. In fact, it can look like some kind of magic, but the
truth is that it is not that complex, and it is a very powerful tool,
as some problems are impossible to solve without recursion.

Algorithm Analysis helps us to identify how good, or bad is an
algorithm for a certain problem, because depending on the data
some algorithms will fit better than others.

Finally, the section about bitwise operations will help us to un-
derstand how operations are made at bit level. Remember that all
calculations in your computer are binary, so everything is trans-
lated to 0’s and 1’s, and there are operators that allow us to do
operations directly on the bits, and as we will see, that can save us
not only running time, but also coding time.

13
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2.1 Recursion

Recursion is a very powerful tool, and many of the algorithms con-
tained in this book use it. That is why we decided to add a brief
description of it. If you are already familiar with the concept of
recursion, then you can skip this section.

When a function is called inside the same function, we said that
this function is a recursive function. Suppose there is a function
f(n), which returns the factorial of a given number n. We know
that:

f(0) =1

fa)y=1

F(2)=1x2
fB3)=1x2x3=f(2)x3
fB3)=1x2x3x4=f(3) x4

fn)=1x2x...xn=f(n—1)xn

We see that the factorial of n can be obtained by multiplying n
and the factorial of n —1, and the factorial of n —1 can be obtained
using the factorial of n — 2, and so on, until we reach 0!. So we
say that 0! is the base case, since it is generating the rest of the
factorials. If we see this as a recursive function, it would look like

21

Listing 2.1: Factorial by Recursion

int f(unsigned int n) {
if (n ==0) {
return 1;

}

return n * f(n - 1);

}

The validation to check if n is zero is critical, because without
it the recursion would never stop, and the memory of our computer
will eventually crash.

Every time that a function is recursively called, all the memory
it uses is stored on a heap, and that memory is released until the
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function ends. For that reason it is indispensable to add a stop
condition, and avoid ending in an infinite process. Not really infi-
nite, because our computer will crash before that.

To resume, there are two fundamental parts that every recursive
function must have:

1. The function must call itself inside the function.

2. A stop condition or base case should be given in order to
avoid an infinite process.

2.1.1 Memoization

Memoization is a way to improve recursion. It is a technique that
consists in storing in memory values that we have already computed
in order to avoid calculating them again, improving that way the
running time of the algorithm.

Let’s do an example in order to see the importance of using
memoization. Consider the recursion function in [2.2] which com-
putes the n*” Fibonacci number. The first two Fibonacci numbers
are 1, and the n** Fibonacci number is the sum of the two previous
Fibonacci numbers, for n > 2.

Listing 2.2: Fibonacci with Recursion

int f(int n) {
if (m==0 |l n==1){
return 1;

}

return f(n - 1) + f(n - 2);
}

Now, suppose we want to obtain the 5'* Fibonacci number.
The procedure of the recursion is shown in figure 2.I] and as we
can see, some Fibonacci numbers are computed multiple times, for
example, the 37¢ Fibonacci number is calculated twice, and the 2%
Fibonacci number is calculated three times. In other words, we are
doing the same calculations over and over. But if we use an array
to store the values of all the Fibonacci numbers already computed
and use those values instead of going deeper in the recursion tree,
then we will avoid executing the same operations all over again and
that will improve the running time of our code.
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Figure 2.1: Fibonacci Recursion Tree

Consider the array Fibo which initially contains only 0’s, and
will be used to store the Fibonacci numbers. The recursion function
using memoization would look as follows:

Listing 2.3: Fibonacci with Memoization

int f(int n) {
if m==0 |l n==1){
return 1;

}

if (Fibo[n] == 0) {
Fibo[n] = f(n - 1) + f(n - 2);
}

return Fibo[n];

}

In the code showed in [2.3| we notice that we only call the recur-
sive function if the value of Fibo[n] is zero, which means that we
have not yet calculated the n” Fibonacci number. Otherwise we
return the already calculated value stored in Fibo [n].

2.2 Algorithm Analysis

The complexity of an algorithm can be defined as how the perfor-
mance of the algorithm changes as we change the size of the input
data, this is reflected in the running time and in the memory space
of the algorithm. We can expect then that as we increase the size
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of the input our algorithm will take more time to run and will need
more memory to store the input data, which is certainly the case
most of the time. It is extremely important to know the perfor-
mance of an algorithm before implementing it, mainly to save time
for the programmer. For example, an algorithm which is efficient to
sort ten elements can perform poorly sorting one million elements
and if we know that in advance we could search for other alterna-
tives when the size of the input is large instead of going straight
to the computer and realize that in fact this algorithm will take
forever after spending valuable time in the implementation.

2.2.1 Asymptotic Notations

We use the so-called "big O notation" to measure the running time
of an algorithm, we say that our algorithm runs in O(f(n)), if the
algorithm executes at most ¢ - f(n) operations to process an input
of size n, where c¢ is a positive constant and f is a function of
n. We can assume that each operation takes one unit of time to
execute in the computer, 10~%s (one nanosecond) for example, and
use number of operations and units of time interchangeably. For
instance, we say that an algorithm runs in O(n) time if it has linear
complexity, i.e. the relation between the size of the input and the
number of operations that the algorithm performs is linear, in other
words, the algorithm executes at most ¢ - n operations to finish,
given an input of size n. Another typical example is O(logn),
which means that the algorithm has logarithmic complexity, i.e.
the algorithm takes at most c-log(n) operations to terminate when
the input size is n. The O-notation is an asymptotic bound for
the running time of an algorithm, but it is not the only way of
describing asymptotic behaviors. Below we list three different types
of notations used to describe running times of algorithms.

e O-notation. Used to define an asymptotic upper bound for
the running time. It is employed to describe the worst case
scenario.

e (-notation. Define an asymptotic lower bound for the run-
ning time of an algorithm. In other words, it is used to de-
scribe the best case scenario. We can get further intuition for
the Q2-notation by replacing the words "at most" by "at least"
in the previous paragraph.

e O-notation. Specifies both, an asymptotic lower bound, and
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an asymptotic upper bound for the running time of an algo-
rithm.

Most of the time we care more about the O-notation than about
the other two because it tells us what will happen in the worst case
scenario and if it covers the worst case it covers all the other cases.
In practice we usually omit the words "at most" and simply say
that our algorithm runs in f(n).

Trough the rest of the book we will mostly use the O-notation
when describing the time complexity of an algorithm. It is im-
portant to mention that even when asymptotic notations are com-
monly associated to the running time, they can also be used to
describe other characteristics of the algorithm, such as, memory.

There are different kinds of algorithms depending on their com-
plexity. Some of the most common belong to the following cate-
gories:

e Constant Complexity. Their performance does not change
with the increase of the input size. We say these algorithms
run in O(1) time.

e Linear Complexity. The performance of these algorithms
behaves linearly as we increase the size of the input data. For
example, for 1 element, the algorithm executes ¢ operations,
for 10 elements, it makes 10c operations, for 100, it executes
100c¢ operations, and so on. We say that these algorithms run
in O(n) time.

e Logarithmic Complexity. The performance increases in a
logarithmic way as we increase the input data size. Meaning
that the if we have 10 elements, the algorithm will execute
log 10 operations, which is around 2.3. For 1000 elements, it
makes around of 7 operations, depending on the base of the
logarithm. In most of the cases we deal with base-2 loga-
rithms, where:

Since 1/ log 2 is a multiplicative factor, then we say that these
algorithms run in O(logn) time.
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e Polynomial Complexity. For this kind of algorithms their
performance grows in a polynomial rate according to the in-
put data. Some of the most famous sorting algorithms, the
Bubble Sort, runs in quadratic time, O(n?). A well known
algorithm that runs in cubic time, O(n?) is the matrix multi-
plication. More complex problems have polynomial solutions
with greater degree. In programming contests it is common
that a problem with an input of 100 elements still can be
solved with a cubic approach, but at the end all depends on
the time limits specified by the problem.

e Exponential Complexity. These are the worst cases and
must be avoided if possible, since for a small increment in the
input data, their performance grows considerably. Problems
that require exponential solutions, can be considered as the
hardest ones. We say that these algorithms run in (a™) time,
for some value of a > 1.

2.2.2 Master Theorem

As we have seen trough this chapter, recursion is a powerful tool
that allows us to solve problems that would be impossible to solve
with an iterative approach. But one inconvenient of using recursion
is that sometimes it is not clear to see at first glance what would
be the time complexity of an algorithm. For this case, the master
theorem specifies three cases that can help us to identify the time
complexity of a recursive algorithm.

Let a > 1 and b > 1 be constants, and let f(n) be a function.
If the time complexity, T'(n), of a recursive algorithm has the form

T(n) = aT(n/b) + f(n),

where a refers to the number of branches that will come out of
the current node in the recursion tree and b refers to the data size
on each of these branches. Then, it has the following asymptotic
bounds:

1. If f(n) = O(n!°8»*~¢€) for some constant € > 0, then T'(n) =
O(n's ).

2. If f(n) = ©(n'°2 %), then T(n) = O(n'°% % logn).
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3. If f(n) = Q(n'°® 2+€) for some constant € > 0, and if af(n/b) <
cf(n) for some constant ¢ < 1, then for all sufficiently large
n we have that T'(n) = ©(f(n)).

When we apply the master theorem, what we do is to compare
the function f(n) with the function n'°8 @, and select the larger of
the two. If n'°8 @ is larger, then we are in the first case, and then
T(n) = ©(n'°& ). If f(n) is larger, then we are in case 3, and
T(n) = ©(f(n)). If both functions have the same size, then we
are in case 2, and we multiply the function by a logarithmic factor,
and get T'(n) = ©(n'°% %logn) = O(f(n)logn).

When we say that f(n) must be smaller or larger than n'°8 ¢,
we mean that f(n) must be polynomially smaller or larger than
nl°8 @ by a factor of n¢, for some € > 0.

For a better understanding of the master theorem let’s see some
examples.

e T'(n)=T(n/2)+ 1.

This example represents a Binary Search, which is explained
in chapter 5. Here a = 1,b =2, and f(n) = 1. Then n'°&* =
nlog2t = % = 1. Since f(n) = n'°2® = 1, then we are in the
second case of the master theorem, and T'(n) = ©(logn).

e T'(n)=2T(n/2) + n.

This case represents the behavior of the Merge Sort, which
is explained in chapter 3. Here we have a = 2,0 = 2, and
f(n) = n. Then nl°&® = plog22 = pl = . Since f(n) =
nl°8 @ again we are in case 2 of the master theorem, and
T(n) = B(nlogn).

e T'(n)=4T(n/2) + n.

For this case we have a = 4,b = 2, and f(n) = n. Then
nlogr @ = plog24 = Q(n?). Since f(n) = O(n?~¢), with € = 1,
then we can apply case 1 of the master theorem and say that

T(n) = O(n?).
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2.2.3 P and NP

We call P the set of problems that can be solved in polynomial
time, and N P the set of problems whose solution can be verified in
polynomial time. To illustrate a bit more the concept of verification
of a solution, imagine that someone gives us a string s and tells
us that the string s is a palindrome, i.e. it can be read in the
same way from left to right as from right to left, for example the
word "radar" is a palindrome, but we do not trust our source and
we want to verify if in fact s is a palindrome. We can do it in
O(n), which is polynomial, and therefore this problem would be in
NP. Now, it is clear that P is inside NP, since a problem which
solution can be obtained in polynomial time, can be verified in
polynomial time, see figure 2.2l However, it is not that clear for
the other way around, meaning that a problem whose solution can
be verified in polynomial time, it is uncertain that it can be solved
in polynomial time. For example, consider the problem of selecting
a sub-set of numbers from a given set, in such a way that the sum
of the elements in the sub-set is equal to some given number K. If
a solution is given to us, we can verify in linear time if that solution
is correct, just sum all the numbers and check if the result is equal
to K, but finding that solution is not that easy.

NP

Figure 2.2: P and NP problems

The proof that a problem whose solution can be easily verified
(in polynomial time) can or cannot be solved easily (in polynomial
time) has not yet found, and it is one of the seven millennium
problems.
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2.3 Bitwise Operations

Bitwise operations are performed by the processor all the time, be-
cause they are the fundamental operations of the computer. Here,
we will discuss these operations from the programmer perspective,
in other words, to make our programs more efficient.

These types of operations are executed faster than the arith-
metic operations, namely: the sum, the multiplication, the division
or the modulo, the reason is basically because the arithmetic opera-
tions are a set of bitwise operations internally. Therefore whenever
we can substitute an arithmetic operation by an bitwise operation
we make our program faster in terms of execution time.

There are a variety of bitwise operators, but in this chapter we
will tackle the most important ones.

2.3.1 AND (&) operator

AND operator, denoted commonly as as & or and in most pro-
gramming languages, is defined as follows in a bitwise level: 0 &
0=0,0&1=0,1&0=0,1&1=1.

The AND operator forces in some sense the two bits to be 1 to
get 1 as a result. When we have two numbers formed by several
bits each of them, the AND operation is executed in each pair of
respective bits. For example, let’s take two numbers based on 8
bits: 173 = 10101101 and 85 = 01010101, if we do 173 & 85 the
result is 5 = 00000101, as we can see in figure 2.3.

2 10101101
01010101

00000101

Figure 2.3: Example AND operator

An interesting application of this is when we want to know the
modulo 7 of a number n modulo 2™, because the modulo r can be
obtained by doing n & (2™ — 1). For instance, n = 27 and m = 2,
27 & 3 = 3 and 27 mod 22 = 3. The idea behind this is that
2™ —1 is a number formed by only 0’s at the left and m 1’s at the
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right, so when we make an AND operation the last m bits at the
right of n remain as they are, and the other ones become 0, and
that is exactly what the modulo operation does when it is applied
with a power of 2. Remember that the modulo operation, along
with the division, is the most computationally expensive operation
among the basic arithmetic operations, therefore this trick saves
computational time whenever the module operation is executed in
a loop and involves a power of 2.

2.3.2 OR (|) operator

OR operator, normally indicated as | or or in the majority of the
programming languages, is defined in a bitwise level in this fashion:
0/]0=0,0]1=1,1]0=1,1]1=1. The OR operator returns
1 if least one bit is 1. For the case of numbers composed by several
bits the OR operation is performed in the same way as the AND
operation. For instance, let’s take two numbers based on 8 bits:
51 = 00110011 and 149 = 10010101, if we perform 51 | 149 the
result is 183 = 10110111, as we can see in figure 2.4.

| 00110011
10010101

10110111

Figure 2.4: Example OR operator

Imagine that we want to sum integers such that all of them are
powers of 2 and they are different from each other. Instead of using
the sum operation we can perform an OR operation and the out-
come will be the same. The summands are powers of 2, therefore
they have one bit on (1) and the rest are off (0), since the bit that
is activated is different in all the numbers by assumption, the OR
operator just turn on the respective bit in the result and this is
equivalent to the sum operation.

For instance, let’s take the numbers 2 = 00000010, 8 = 00001000
and 32 = 01000000, based on 8 bits. The sum is 42 = 01010010,
which is exactly the same as 00000010 | 00001000 | 01000000 =
01010010 = 42.
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A common use of the OR operator is to keep track of how many
elements have been selected from a total of N possible elements.
For instance, assume there are N = 10 different basketball teams
numbered from 0 to N — 1, and each team plays only one game
against each other team, we can keep track of which teams have
already played against a specific team by using a number B, that
initially has a value of zero, if the team plays against team ¢, then
we set the i'" bit to 1. This means that if B = 3, then the team
has played against teams 0 and 1, since the 1%* and 2"¢ bit are 1.
This technique is called bit masking.

In C/C++ to set the it" bit to 1 we can do

B |= (1 << 1),

and to know if we have played against team ¢

if (B & (1 << 1)) {
cout << "We have played against team " << i << "\n";

}

2.3.3 XOR operator

XOR operator, usually written as A or xor in most programming
languages, is defined in the following manner in a bitwise level:
0N0=0,0AN1=1,1A0=1,1A1=0.

The XOR operator indicates if the two bits are different no
matter the order. When having numbers shaped by several bits,
the operation is executed in the same fashion as the AND or OR
operators. Figure [2.5] shows an example of doing 150 A 76, the
result is 218, which in its binary representation has 1’s where the
bits were different, and 0’s where the bits were equal.

A 10010110
01001100

11011010

Figure 2.5: Example XOR operator

A common trick where the XOR operator comes handy is when
we want to swap the value of two variables, usually we would use a
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temporary or auxiliary variable to do this, but with XOR we don’t
need any extra variable. Suppose we want to swap the values of
variables x and y, the trick is the following:

r=x Ny
y=yANx
T=xTNYy

2.3.4 Two’s complement

Two’s complement is commonly used to represent signed integers.
Suppose we have a number of N bits and we add both, the number
and its two’s complement, then, we get 2V, which is a N + 1 bit
number, but if we consider only the first NV bits we have the value
of zero, which is what we expect when we add a number with its
negative.

One way to obtain the two’s complement of a number is to
switch all its bits (one’s complement) and add 1, as illustrated in
2.0l

00101110
11010001
+ 00000001

11010010

Figure 2.6: Two’s complement of 46. The first line is the binary repre-
sentation of 46, the second line is what we obtain after flipping all the
bits. The third line is the binary representation of 1, and after adding
line 2 and line 3, we get the two’s complement of 46, which is 210.

Another way is to go trough all the bits starting from the less
significant bit, and after passing the first 1 start flipping the rest of
the bits. For the example in figure [2.6] we would keep unchanged
the first two bits, and after that the remaining bits are flipped.

Even though it is uncommon to face a situation where you are
asked to write a program that obtains the two’s complement of a
number, for either a contest or interview, it is still a tool which is
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useful in some cases, like coding a Binary Indexed Tree (BIT), that
we will cover later in the book.

2.4 Chapter Notes

There are "famous” recursion problems, like the Eight Queens Prob-
lem , Sudoku Puzzle, among others. Some of them would be
difficult to solve without recursion, or without using other kind
of approaches like genetic algorithms, etc. But even when recur-
sion is a powerful technique, we have to be careful when to use it.
For the Fibonacci problem mentioned before for example, perhaps
recursion here is not the best way to go, unless we use memoiza-
tion. Even so, a simple array storing all the Fibonacci numbers
and a loop cycle would be more than sufficient, and in that way
we avoid the problems with memory occasioned by calculating the
same Fibonacci number more than once. In few words, we have to
choose wisely when to use recursion, as sometimes we do not have a
choice, but if we do, then we have to analyze the cost-benefit factor.

In the case of algorithm analysis it is very important to know
the basics of it, to have an idea of when an approach will be good
or not depending on the input data. Always keep in mind the worst
case scenario when you write a code. The book of Introduction to
Algorithms [I] contains a detailed explanation about this subject.

Bitwise operations are always faster, since they are executed
at bit level directly, and there a lot of applications that use them,
like communications protocols, and security algorithms. Whenever
it is possible, it is usually a good idea to use bitwise operations.
Sometimes, they can make the code a little fuzzier because of the
symbolic notations, but it is worth to try it.

In appendix [A] you can find the solutions to problems that ex-
emplify the use of recursion and bitwise operations.
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2.5 Exercises
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Data Structures

"Experience is the name everyone gives to their mistakes."
— Oscar Wilde

Data structures is a fundamental part of computer program-
ming, since they are used to store our data. An array, a matrix, or
any multi-dimensional array are examples of a data structure.

In this chapter we will review some of the most used data struc-
tures, we will analyze their properties and use cases, because de-
pending on the circumstances some are more apt than others.

Let’s analyze a simple array and possible use cases. Imagine
that we have an array X of n elements, Xg, X1,...,X,_1. Now,
what if we want to extract the 10" element of the array? Well,
that is easy, we just go and retrieve the element Xi19. That simple
operation of retrieving certain element runs in O(1) time. Now,
suppose we want to find certain element in X, well, in that case we
must go trough the whole array and check element by element until
we find the one we are looking for. That task runs in O(n) time.
Finally, consider the case of removing one element from X. That
is not a simple task, since we must remove the desired element and
shift all the elements at its right. That task has a O(n) running
time.

The time complexity for insertion, extraction, searching, and

deletion operations varies depending on the data structure that is
being utilized. Some are fast to extract information like vector or

29
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arrays, other are faster to insert or remove data like lists, other like
trees are more suitable to find elements. This will be the purpose
of this chapter, to analyze the pros and cons of each data structure
and how they work.

3.1 Linear Data Structures

In this section we will review the basic data structures. Let’s begin
by defining what is a data structure. A data structure is basically
a tool to storage data in memory with a specific purpose when you
are coding. Inherently associated with the data structure are the
operations that allows to perform. These operations are normally
insert, delete and find one element or a set of elements inside the
data structure.

For the code in this section, we will separate the overall Memory
Complexity and the Time Complexity for each of the operations
over the data structure.

3.1.1 Stack

This data structure is used under the principle last in first out
(LIFO), that means the last element inserted will be the first el-
ement to be removed. A daily life case to exemplify how a stack
works is how to dry a stack of washed dishes. We stack the dishes
as we wash them, so the last plate washed will be the first to be
dried, and so on until we have no plates anymore.

Stacks are plenty used in Computer Science, they are the basis
of recursion, and they are heavily utilized in Graph Theory, as we
will see in chapter [7] In programming contests, it is common to use
stacks when you are solving problems related to the evaluation of
mathematical expressions and parenthesis balance. Code[3.I]shows
a custom implementation of a stack with capacity of 100 elements.

Memory Complexity: O(n)
Insert Time Complexity: O(1)
Delete Time Complexity: O(1)
Find Time Complexity: O(n)

Input:
List of numbers(it can be any abstract data type) that will be
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stored in the stack.
Output:

It depends on the operation and the current state of the stack.
The operations performed will be insert, known as push, and delete,
known as pop.

Listing 3.1: Custom Implementation of a Stack

// Stack simulated with array
// Stack simulated with array
#include <iostream>

#include <stdio.h>

using namespace std;

int s[100];
int 1; // index 1 (last) to manage the stack

void push(int x) {
s[l++] = x;

}

int pop() {
int x = s[1--];
return x;

}

bool isEmpty() {
return 1 == 0;

}

void print() {
for (int i = 0; i < 1; i++) {
printf("%d ", s[il);

printf("\n");

int main() {
// Insert numbers from 1 to 5
printf("First stack state after insert[1-5]:\n");
for (int i = 1; i <= 5; i++) {
push(i);
}

print(); // See the state of the stack
// Delete the last 2 elements

popQ);

pop(Q);

printf("Stack state after 2 deletes:\n");
print(); // See the state of the stack

push(4); // Insert one element
printf("Stack state after 1 insert (number 4):\n");

print(); // See the state of the stack

// Clear the stack
while (!'isEmpty()) {
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pop(Q);

printf ("Stack empty\n");
return O;

}

A stack also can be simulated with a linked list, but the concept
is the same. In section we are going to see how to use a stack
from the Standard Template Library (STL).

3.1.2 Queue

This data structure is used under the principle of first in first out
(FIFO), that means that the first element inserted will be the first
element to be removed. A daily life case to illustrate how a queue
works is the line formed in a supermarket checkout, the first person
who arrives is the first person to be served. Queues are perhaps as
common as stacks in Computer Science. In a contest, it is common
to implement a queue to do a Breadth First Search (BFS) over a
graph, as we will see in chapter[7] and it is useful to solve problems
where it is asked the state of certain list that is modified over
time. Program implements a queue using a static array of 100
elements to exemplify its functionality.

Memory Complexity: O(n)

Insert Time Complexity: O(1)
Delete Time Complexity: O(1)
Search Time Complexity: O(n)

Input:

List of numbers(it can be any abstract data type) that will be
stored in the queue.
Output:

It depends on the operation and the current state of the queue.
The operations performed will be insert, known as push, and delete,
known as pop.

Listing 3.2: Custom Implementation of a Queue

// Queue simulated with array
#include <iostream>
#include <stdio.h>

using namespace std;
int q[100];
int £, b; // index f(front) and b(back) to manage the queue
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void push(int x) { q[f++] = x; }

int pop() {
int x = q[b++];
return x;

}
bool isEmpty() { return (b == £f); }

void print() {
for (int i = b; i < f; i++) {
printf("%d ", qlil);
}
printf("\n");
}

int main() {
// Insert numbers from 1 to 5
printf("First queue state after insert [1-5]:\n");
for (int i = 1; i <= 5; i++) {
push(i);

print(); // See the state of the queue

// Delete the first 2 elements

popQ);

popQ);

printf("Queue state after 2 deletes:\n");
print(); // See the state of the queue

push(4); // Insert one element
printf("Queue state after 1 insert (number 4):\n");
print(); // See the state of the stack

// Clear the stack
while (!'isEmpty()) {
pop(Q);

printf ("Queue empty\n");
return 0;

As a stack, a queue can also be simulated with a linked list and
there would not be any change conceptually speaking. The STL
library has a queue implemented too, and we will see it in section
). Ol

3.1.3 Linked List

A linked list can be thought of as an array, but the difference is
that it allows us to insert and delete in constant time O(1). There
are various types of linked lists, some of them are: simple linked
list, double linked list, circular linked list, double circular linked
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list, among others.

A linked list is composed of nodes, these nodes store data, just
like arrays, but they also store the memory address of nodes related
to this node. The relationship between nodes can be the next node,
previous node, child node, parent node, sibling node, etc.

In a linked list, it is necessary to know where is the beginning
and the end of the list, known as head and tail of the list. Typi-
cally, the last node points to NULL.

In a simple linked list, doubly linked list, circular linked list and
doubly circular linked list, the operations has the same time and
memory complexity.

Memory Complexity: O(n)

Insert Time Complexity: O(1)
Delete Time Complexity: O(1)
Search Time Complexity: O(n)

Simple Linked List

A simple linked list is a linked list where a node stores only the
information about the next node address, and the main information
of the node. Figure [3.I] shows a conceptualization of a linked list.

-O-OC

Figure 3.1: Visualization of a linked list

The source code in define the class Node, which contains
an integer value to store the information associated to that node,
and a pointer to the next node in the list, except for the last node,
which points to NULL. There are two more pointers that we need
to store, head, which points to the first node of the list, and tail
which points to the last node of the list. The main function add
elements to the list and then remove them from the list.

Input:
List of numbers (it can be any data abstract type) that will be
stored in the simple linked list.
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Output:

It depends on the operation and the current state of the simple
linked list. The operations performed will be insert, delete and
search.

Listing 3.3: Simple Linked List

#include <cstdio>
using namespace std;

class Node {
public:
int val;
Node *next;

Node(int val, Node *nextNode) {
this->val = val;
this->next = nextNode;
}
};

Node *head NULL;
Node *tail = NULL;

void pushBack(int);
void popFront();
void printList();

int main() {
// Insert three elements in the list
pushBack(2) ;
pushBack(3);
pushBack(5) ;
printList();

// Remove the first element
popFront () ;
printList();

// Remove the other two elements
popFront () ;
popFront () ;
printList();

return O;

The pushBack function add a node at the end of the list. The
new node becomes the tail, and the next pointer of the node that
was previously the tail is modified and points to the new node.

void pushBack(int val) {
Node *newNode = new Node(val, NULL);

if (tail == NULL) {
head = newNode;

} else {
tail->next = newNode;
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}

tail = newNode;

}

The popFront function removes the first element of the list, if
there is any. The node associated to the next pointer of the head
becomes the head, and the node that was previously the head is
removed.

void popFront() {
if (head != NULL) {
Node *nextNode = head->next;

delete (head);

head = nextNode;
if (head == NULL) {
tail = NULL;
}
¥
}

The function printList as its name says print the whole list
by iterating trough all its elements printing them one by one. If
the list is empty prints the message "— empty list —”.

void printList() {
Node *curNode = head;

if (curNode == NULL) {
printf("-- empty list --\n");
return;

}

while (curNode != NULL) {
printf("%d", curNode->val);
curNode = curNode->next;

if (curNode != NULL) {
printf(" -> ");
¥
¥

printf("\n");

Doubly Linked List

A doubly linked list is a linked list where a node stores the memory
address about the next node and the previous one. The link to the
next node of the last node points to NULL, and the link to the
previous node of the first node points to NULL as well. See figure
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Figure 3.2: Visualization of a doubly linked list

0.2l

The program in [3.4) defines a class Node similar to the one used
in the Simple Linked List, but it adds a pointer to the previous
node. The functions pushBack and popFront are similar to the
ones in the Simple Linked List implementation, but include some
changes that modify the next and prev links of the nodes involved
in the insertion or deletion process.

Input:

List of numbers(it can be anything) that will be stored in the
doubly linked list.
Output:

It depends on the operation, the current state of the doubly
linked list. The operations performed will be insert, delete and
search.

Listing 3.4: Doubly Linked List

#include <cstdio>
using namespace std;

class Node {
public:
int val;
Node *next;
Node *prev;

Node(int val, Node *nextNode, Node *prevNode) {
this->val = val;
this->next = nextNode;

this->prev = prevNode;
}
};
Node *head = NULL;
Node *tail = NULL;

void pushBack(int);
void pushFront(int);
void popFront();
void popBack();

void printList();

int main() {
// Add two elements at the end of the list
pushBack(5) ;
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pushBack(7) ;
printList();

// Removes the last element
popBack() ;
printList();

// Removes the last element and the list is empty
popBack() ;
printList();

// Add five elements at the top of the list
pushFront (6) ;

pushFront (8) ;

pushFront (3);

pushFront (1) ;

pushFront (4) ;

printList();

/ Removes the last element and the two first elements popBack();
popFront () ;
popFront () ;
printList();

return O;

Let t be the current tail. When we add an element to the back of
the list, the new node becomes the tail with its prev link pointing
to t, and the next link of ¢ pointing to the new tail.

void pushBack(int val) {
Node *newNode = new Node(val, NULL, NULL);

if (tail == NULL) {
head = newNode;

} else {
newNode->prev = tail;
tail->next = newNode;

}

tail = newNode;

}

The pushFront function inserts an element at the beginning
of the list. The new node becomes the head with its next link
pointing to the node that was previously the head.

void pushFront(int val) {
Node *newNode = new Node(val, NULL, NULL);

if (head == NULL) {
tail = newNode;

} else {
newNode->next = head;
head->prev = newNode;

}
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head = newNode;

}

The popFront function removes the first element of the list.
The node associated to the next link of the head becomes the new
head, and the previous head is removed from the list.

void popFront() {
if (head != NULL) {
Node *nextNode = head->next;
if (nextNode != NULL) {
nextNode->prev = NULL;
}

delete (head);

head = nextNode;
if (head == NULL) {
tail = NULL;
}
}

Similar to the popFront function, the popBack function removes
the last element of the list. The tail is removed and node associated
to its prev link becomes the new tail.

void popBack() {
if (tail != NULL) {
Node *prevNode = tail->prev;
if (prevNode !'= NULL) {
prevNode->next = NULL;
}

delete (tail);

tail = prevNode;
if (tail == NULL) {
head = NULL;
}
}
}

Circular Linked List

A circular linked list is almost exactly the same as a simple linked
list, but there is a slight difference, and is that instead of having the
last node pointing to NULL, it points to the first node, and hence
the name. See figure [3.3]



40 3. DATA STRUCTURES

Figure 3.3: Visualization of a circular linked list

The code for the Circular Linked List is almost the same that
the one in [3.3] with just one difference, every time that the list is
modified, because of an insertion or a deletion, we have to make
sure that the tail is linked to the head. Basically we must add the
following statement.
if (tail != NULL) {

tail->next = head;

}

Doubly circular Linked List
A doubly circular linked list is practically the same as a doubly
linked list, but with a tiny difference, the last node has a link to

the first node, and conversely the first node has a link that points
to the last one. See figure [3.4]

Figure 3.4: Visualization of a circular linked list

The implementation is very similar to the program [3.4] but
again, we must be careful when the list is modified by an insertion
or a deletion by ensuring that the first and last element of the list
are linked to each other. We can do that by adding the following
sentences:
if (head !'= NULL) {

head->prev = tail;

tail->next = head;

}
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3.2 Trees

So far, we have reviewed linear data structures, but there is more,
in this section we will discuss tree-shaped data structures. Let’s
start by defining a tree from the graph theory perspective. A tree
is a simple graph (graph without multiple edges) with no cycles.
This definition might be not too useful to picture a tree as a data
structure, perhaps it is better to think of it as a multilevel structure
to store information. One of the main applications of Trees is in
file systems, when we create a file or a folder, somewhere internally
we are creating a child from a specific node, which represents the
folder. Other applications are related to keeping elements ordered
and apply queries over it, one example of this is an index in some
SQL package.

Before continuing, it is necessary to understand the following
terminology:

Root: Top node of the tree.

Child: Node pointed by other node in a previous level.

Parent: Node that points to a node at the next level.

Siblings: Nodes that comes from same parent.

Leaf: Node with no children.

Internal Node: Any node that is neither the leaf nor the root.
Ancestor: Node that is before another node coming from root.
Descendant: Node that is after another node coming from root.
Path: Sequence of nodes connected.

Height: The height of a node is the maximum length of a path
from that node to a leaf node. The height of a tree is the height of
the root node.

3.2.1 Tree Traversal

The most common type of tree is the binary tree, on which each
node has at most two children, and every node except for the root
has exactly one parent. Figure shows an example of a binary
tree.
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Figure 3.5: Example of a full binary tree

A common way to represent a node in a program is by using a
class or structure that stores the value of the node, as well as the
left and right pointers to the node’s children. See code in 3.5

Listing 3.5: A simple Node class

class Node {
public:
Node x*left;
Node *right;
int value;

};

As its name indicates, tree traversal is a way of going trough
all the nodes of a tree, there can be multiple ways of doing that,
as long as all the nodes are visited once. Here, we will cover the
three most common ways to traverse trees: pre-order, in-order and
post-order.

Pre-order Traversal
1. Visit the current node

2. Traverse left sub-tree

3. Traverse right sub-tree

For the tree in figure the order in which the nodes
are visited using pre-order traversal starting from the root is:
1,2,4,8,9,5,10,11,3,6,12,13,7,14, 15.

Listing 3.6: Pre-order Traversal

void preOrder(Node *node) {
if (node == NULL) {
return;

}
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printf("%d, ", node->value);
preOrder (node->left) ;
preOrder (node->right) ;

}

In-order Traversal

1. Traverse left sub-tree

2. Visit the current node

3. Traverse right sub-tree

Using in-order traversal to traverse the tree in the nodes
are visited as follows: 8,4,9,2,10,5,11,1,12,6,13,3,14,7,15.

Listing 3.7: In-order Traversal

void inOrder (Node *node) {
if (node == NULL) {
return;

}

inOrder (node->left);
printf("%d, ", node->value);
inOrder (node->right) ;

Post-order Traversal
1. Traverse left sub-tree
2. Traverse right sub-tree
3. Visit the current node
For tree in [3.5] using post-order traversal the nodes are visited

in the following order: 8,9,4,10,11,5,2,12,13,6,14,15,7,3, 1.

Listing 3.8: Post-order Traversal

void postOrder(Node *node) {
if (node == NULL) {
return;

}

postOrder (node->left) ;
postOrder (node->right) ;
printf("%d, ", node->value);

o
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3.2.2 Heap

A heap is binary tree where the value associated to node k is
larger or equal than the value associated to its children. Figure
[3:6] represents a valid heap with integer values. As we can notice,
the greatest element is always at the root.

Figure 3.6: Example of a heap

One common situation is to transform an array of numbers
into a heap. For that, we can use another array to represent a
heap, for element in position k, its left child will be located in
position 2k, and its right child in position 2k + 1, being the root
the element at index 1. The array representation of the heap in
figure [3.6] would be the following.

X[ X[2] X[3 XM X[5] X[6] X[7] X8| X[9] X[10] X[11] X[12] X[13] X[14] X][15]
12 6 10 p 5 7 9 1 0 3 4 6 4 6 8

The method downHeap in [3.9) has the purpose of placing in the
correct position the k' element. The idea is to continue moving the
given element down trough the heap until its children are smaller or
equal or until we reach a leaf node. In any other case the element is
swapped with the largest of its two children. The method receives
the array representation of the heap, the number of elements in
the heap, and the index of the element to be placed in the correct
position.

Listing 3.9: Place element in a heap

void downHeap(int *H, int n, int k) {
int maxChild, temp;
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int leftChild = 2 * k;
int rightChild = 2 * k + 1;

while (leftChild <= n) {
maxChild = leftChild;

if (rightChild <= n && H[rightChild] > H[maxChild]l) {
maxChild = rightChild;
¥

if (H[k] < H[maxChild]) {
temp = H[k];
H[k] = H[maxChild];
H[maxChild] = temp;

} else {
break;

}

k = maxChild;
leftChild = 2 * k;
rightChild = 2 * k + 1;

To create a valid heap we just need to call the downHeap
method for every node, starting from node n (the last leaf node)
down to node 1 (the root). This bottom-up strategy is necessary,
because in order to place node k, all its descendants must be
already in the right position.

Heaps are particularly useful when there are multiple queries
asking for the largest or smallest value (min heaps) on a dataset.
Since the largest element is always at the root we can answer
those queries in O(1), meanwhile update queries, insertions and
deletions take O(logn). So if you are asked to write a program
that finds the maximum or minimum value of some given data,
specially if that operation is repeated multiple times, then a heap
is perhaps the right data structure for you. It is not uncommon
to face these kind of questions on an interview or contest. Keep
that in mind and practice, so whenever you hear the phrase "find
the maximum value in ...", your brain automatically switches to
heaps.

Later, in this chapter we will see how to implement a heap eas-
ily using the STL library so you don’t have to write the downHeap
function every time you need to use a heap, but it is still important
to understand its internal functionality, so we recommend, for edu-
cational purposes, to implement both, your own heap from scratch
and then using the STL library, but in real-life situations try to
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use libraries if possible, there is no need to re-invent the wheel.

3.2.3 Binary Search Tree (BST)

Binary Search Trees, or BSTs have existed for many years, their
main goal is to be able to process search queries fast, and in the
average case they can perform well, but still in the worst scenario
they behave in the same way as a linked lists.

Each node in a BST has at most two children nodes, the
left node stores a smaller value than the parent node, and the
right node stores a larger value than the parent node. In this
way we know, for a certain node, that all elements at its left are
smaller, and all elements at its right are larger. In the case for
elements with the same value, they can be placed either in the left
sub-tree or in the right sub-tree, but not in both, at the moment
of implementation it must be decided to which side they will go
and maintain that behavior all the time.

Let’s put into practice what we just said, suppose we want to
store the following numbers in a BST: 5, 2,9, 1, 3,7, 8, 4, 6 (in
this order). The root of tree will be 5, then, number 2 will be the
left child of 5, since it is smaller than 5. Number 9 becomes the
right child of 5, since is larger than 5, next comes number 1, which
will become the left child of 2, due to is smaller than 5 and smaller
than 2. If we continue doing the same process we end up with the

tree in figure 3.7

Figure 3.7: Example of a BST

By looking at figure [3.7] we can understand the benefits of a
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tree structure to store our data. For example, if we want to search
for number 6, we only need three comparisons. On the contrary,
in a linked list, 6 would be the last element and we would need to
go trough all elements before finding it.

The main problem with BST is that its performance depends
on how elements are being inserted, for example, if we store
numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, we would have 1 as the root, 2
as its right child, then, 3 would be the right child of 2, and so
on, ending up with a linked list. Then, why should we store our
data in a tree? Well, as we seen in figure [3.7] using trees have its
advantages, but we need the tree to be balanced. We say that a
tree is balanced when for any node the absolute difference between
the height of the left sub-tree and the height of the right sub-tree
is not greater than 1. An AVL tree is an example of a balanced
tree and we will go deeper into this in but first let’s take a
look into an implementation of the BST.

First, we need a class to store the information of a Node, and
for this example, a Node is composed of a link to its left child,
a link to its right child, a link to its parent node, and a numeric
value. When we create a new node it is important to set the links
to its children to NULL, since we will use that to identify when to
stop when going through the tree.

Listing 3.10: BST

class Node {
public:
Node x*left;
Node *right;
Node *parent;
int value;

Node(Node *left = NULL,
Node *right = NULL,
Node *parent = NULL,
int value = 0) {

this->left = left;
this->right = right;
this->parent = parent;
this->value = value;

The insertNode function in takes in an integer value,
which will be the value of a new node in the BST, it also receives a
pointer to the parent of the current node, and a pointer to the cur-
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rent node. Then, starting from the root, it continues moving down
recursively in the BST depending on the value to be inserted, if it
is less or equal we move left, otherwise we move right, this keeps
going until we reach a NULL, finally, we append the new node to
the last element traversed in the tree.

Listing 3.11: BST: Insertion

void insertNode(int val, Node *parent, Node *curNode) {
if (curNode == NULL) {
curNode = new Node(NULL, NULL, parent, val);
connectNode (curNode) ;
return;

}

if (val <= curNode->value) {
insertNode(val, curNode, curNode->left);
} else {
insertNode(val, curNode, curNode->right);
¥
}

The connectNode function receives a node and connects its
parent to the node given based on the node’s value. If the parent
is NULL it means that the node is the root. The implementation of
this function is shown in

Listing 3.12: BST: Node Connection

void connectNode(Node *curNode) {
Node *parent = curNode->parent;
if (parent == NULL) {
root = curNode;
} else if (parent->value >= curNode->value) {
parent->left = curNode;
} else {
parent->right = curNode;
¥
}

So far, we have seen how to insert elements into a BST, but what
happens if we need to delete an element? Here is when things turn
a little bit more interesting, since we need to do some tricks with
our pointers. When an element is removed from the tree, the rule
is to replace it either with the largest value of its left sub-tree, or
with the smallest value of its right sub-tree. Let’s see an example
for the tree in figure 3.7 suppose we want to remove the node with
value 5, which is the root, well, according to the rule we have to
replace it with the largest value of the left sub-tree (4) or with the
smallest value of the right sub-tree (6). After replacing it with the
node with value 4 we end up with the tree in figure 3.8
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Figure 3.8: BST after removal

For this example that would be enough, but what happens if
the node with value 4 has a left sub-tree, in this case, the left sub-
tree becomes the right sub-tree of the parent node (2), this will
ensure that the properties of the BST are maintained. See figure

B3
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(a) (b)

Figure 3.9: a) A BST with 9 nodes. b) The same BST after removing
node 5 and replacing it with the node 4, notice that the left child of node
4 becomes the right child of node 2.

Another case we need to consider is to delete a node and replace
it with one if its direct children. See figure[3.10] node a is removed
and node b takes its place maintaining its left child and acquiring
node c as its right child.
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(b)

Figure 3.10: a) BST with four nodes. b) BST after node a is removed
and replaced by node b.

To make things easier for the implementation of the deletion
process, we will use three auxiliary functions that will also be use-
ful when we deal with balanced binary trees. The first of those
functions is replace, which receives two nodes A and B, and copy
all edges from node A into node B.

Listing 3.13: BST: Replace nodes

void replaceNode(Node *oldNode, Node *newNode) {
newNode->left = oldNode->left;
newNode->right = oldNode->right;
newNode->parent = oldNode->parent;

if (newNode->left != NULL) {
newNode->left->parent = newNode;
}
if (newNode->right != NULL) {
newNode->right->parent = newNode;
}
}

The other two auxiliary functions are getLargest and getS-
mallest, the first finds the node with the largest value of the left
sub-tree of a node, which we call pivot, and the second finds the
node with the smallest value of the right sub-tree of node pivot.
Both functions receives a pointer to some node in the BST and the
node pivot. getLargest will continue moving right and it returns
a pointer to the last node, while getSmallest moves left until the
last node is reached and it returns a pointer to that node. Once

a node is found in any of the two functions, we disconnect it from
the tree as explained in figures [3.9) and [3.10]

Listing 3.14: BST: Largest element from a node

Node *getLargest(Node *curNode, Node *pivot) {
if (curNode->right != NULL) {
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Node *largest = getLargest(curNode->right, pivot);
return largest;

} else if (curNode->parent != pivot) {
curNode->parent->right = curNode->left;
} else {
curNode->parent->left = curNode->left;
¥

if (curNode->left != NULL) {
curNode->left->parent = curNode->parent;

}

return curNode;

Listing 3.15: BST: Smallest element from a node

Node *getSmallest(Node *curNode, Node *pivot) {

if (curNode->left != NULL) {
Node *smallest = getSmallest(curNode->left, pivot);
return smallest;

} else if (curNode->parent != pivot) {
curNode->parent->left = curNode->right;

} else {
curNode->parent->right = curNode->right;

}
if (curNode->right != NULL) {
curNode->right->parent = curNode->parent;

}

return curNode;

The recursive implementation will become handy when we deal
with balanced trees, as we will see later in this chapter. Now
we have everything we need to remove a node from a BST. The
function removeNode in[3.10|receives an integer specifying the value
to be removed from the tree, and a pointer to a node in the BST,
the function will move recursively until it finds the value we are
looking for, or until it reaches a NULL node. Here is a summary of
what the functions does.

1. Check if we have reached a NULL node, if it does, stop the
search and print a message indicating that the value is not in
the tree, otherwise move to step 2.

2. If the current node has a value equal to the value we are
looking for, then, proceed with the removal of the node in
step 3, otherwise move to step 7.

3. If the current node has a left child, get the node with the
largest value in its left sub-tree using the getLargest func-
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tion and replace the current node with the node found and
go to step 6. If the current node does not have a left child
then move to step 4.

4. Check if the current node has a right child, and if it does, get
the node with the smallest value in its right sub-tree with the
getSmallest function, and replace the current node with it,
then move to step 6. If there is no right child, go to step 5.

5. If the current node does not have any children, we will pro-
ceed to remove that node, but first, we will make its parent to
point to NULL, which means we are disconnecting the current
node from the tree. Go to step 6.

6. Delete the current node from memory.

7. Continue looking up in the tree, if the value we are looking
for is less or equal than the value of the current node, move
to the left sub-tree, otherwise move to the right sub-tree.

Some extra considerations have to be made, like what happens
if the root is removed, in that case, we need to set a new node as
the root, or avoid the case when the parameter received is a NULL
pointer.

Listing 3.16: BST: Node removal

void removeNode(int val, Node *curNode) {
if (curNode == NULL) {
printf("Value %d not found\n", val);
return;
} else if (curNode->value == val) {
Node *endNode = NULL;
if (curNode->left !'= NULL) {
endNode = getLargest(curNode->left, curNode);
} else if (curNode->right != NULL) {
endNode = getSmallest(curNode->right, curNode);
} else {
disconnectNode (curNode) ;

}

if (endNode != NULL) {
// Replace the node to be removed
replaceNode (curNode, endNode);
connectNode (endNode) ;

}

// Delete the node and return
delete curNode;
return;

} else if (curNode->value >= val) {
removeNode (val, curNode->left);

} else {
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removeNode (val, curNode->right);
}
}

The disconnectNode function is similar to the code in [3.12
and its purpose is to disconnect a node from the tree by making
its parent to point to NULL. See code

Listing 3.17: BST: Node disconnection

void disconnectNode(Node *curNode) {
Node *parent = curNode->parent;
if (parent == NULL) {
root = NULL;
} else if (parent->value >= curNode->value) {
parent->left = NULL;
} else {
parent->right = NULL;
}
}

All these functions will be useful for the implementation of
balanced binary trees, since the process is almost the same, but
an extra step is made, the balancing step, that ensures that our
search queries run in O(logn) time.

To make sure everything works fine try to run the following
code:

Listing 3.18: BST Testing

int main() {
int x[] = {3, 8, 9, 2, 1, 5, 6, 4, 7};
int z[] {3, 0, 4, 8,6, 7,9, 2, 2,5, 1};

// Insert elements into the tree
printf("Inserting elements into the tree..... \n");
for (int i = 0; i < 9; i++) {

insertNode(x[i], NULL, root);

printBST(root) ;

printf("\n");
}

// Remove elements from the tree
printf ("\nRemoving elements from the tree..... \n");
for (int i = 0; i < 11; i++) {
removeNode(z[i], root);
printBST(root);
printf("\n");
¥

return O;

}

The function printBST prints the value of all nodes in pre-order
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traversal. This means that we will print the value of a node, then,
move to the left child, and then, move to the right child.

Listing 3.19: BST Print

void printBST(Node *node) {
if (node == NULL) {
return;

}

printf("%d ", node->value);
printBST(node->left) ;
printBST(node->right) ;

The output of the program should be:

Inserting elements into the tree.....
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Removing elements from the tree.....
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Value 0 not found
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In real-life situations, it is possible that you will not need to
implement a BST, even in programming contests, since there are
libraries for data structures that internally store data in a tree, but
it is not uncommon to see interview questions about binary search
trees or balanced trees, since in most cases, the interviewer wants
to know what is your thinking process, and asking about all the
details involved in tree operations like insertions and deletions is a
good way to measure your problem solving skills. As with the rest
of the algorithms in this book, you do not need to memorize any
code, you just need to understand how trees work, what is the time
complexity for different operations, and what are their advantages
and disadvantages, if you know that, you will be able to implement
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a tree if the situation requires it.

3.2.4 AVL Tree

The main problem with BSTs without balancing is that in the
worst case scenario they behave exactly as a linked list, and finding
an element is a O(n) operation. On the other hand, balanced trees
maintain a running time of O(logn).

A tree is balanced if for any node the absolute difference of
the height of its left sub-tree and its right sub-tree is less or equal
than 1. So every time that a node is inserted or removed from the
tree, a balancing process needs to take place to ensure that this
property is maintained.

The AVL tree is a type of balanced tree, it gets its name from
its inventors, Georgy Adelson-Velsky and Evgenii Landis [2]. It is
also a binary search tree, with every node being greater or equal
than all nodes in its left sub-tree, and smaller than any other node
in its right sub-tree. For this kind of tree, every node needs to store
its height, since the way to identify if a node is unbalanced is by
checking the heights of its left and right sub-trees. For that reason,
we add height and balanceFactor as attributes of the Node class.
See code

Listing 3.20: AVL: Node class

class Node {
public:

Node *left;

Node *right;

Node *parent;

int value;

int height;

int balanceFactor;

Node(Node *left = NULL, Node *right = NULL, Node *parent = NULL,

int value = 0) {

this->left = left;

this->right = right;

this->parent = parent;

this->value = value;

this->height = 0;

this->balanceFactor = 0;

The balanceFactor attribute will store the difference between
the height of the left sub-tree and the height of the right sub-tree.
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Since initially when we insert a node it has no children, both
height and balanceFactor are set to 0.

The insertion process is almost the same as in the BST, but
with the difference that we need to update the height of every
node affected by the insertion, because of that, we will modify our
insertNode function from our BST implementation as shown in

code B.211

Listing 3.21: AVL: Insertion

void insertNode(int val, Node *parent, Node *curNode) {
if (curNode == NULL) {
curNode = new Node(NULL, NULL, parent, val);
connectNode (curNode) ;
return;

}

if (val <= curNode->value) {
insertNode(val, curNode, curNode->left);
} else {
insertNode(val, curNode, curNode->right);

}

updateHeight (curNode); // update height and balanceFactor
balanceNode (curNode) ;

The function updateHeight is an auxiliary function that com-
putes the height and balanceFactor of the given node. See code
9.22

Listing 3.22: AVL: Update Height

void updateHeight (Node *curNode) {
int leftHeight = curNode->left == NULL ? O : curNode->left->height + 1;
int rightHeight curNode->right == NULL ? O : curNode->right->height + 1;
curNode->height = max(leftHeight, rightHeight);
curNode->balanceFactor = leftHeight - rightHeight;

}

By taking advantage from recursion, after calling the insertN-
ode function, we can update the height and balanceFactor of
the current Node, assuming that all nodes bellow are already
balanced. This allows us to do the balancing process as we insert
new nodes into the tree, instead of doing both things separately.
Before jumping into the code of how a node is balanced, let’s
explain how it works.

Let X be a node with X; and X, as its left and right sub-trees
respectively. We say that node X is unbalanced if its balanceFac-
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tor is greater or equal than 2, or less or equal than -2. In order
to re-balance a node we need to do something called rotations.
There are four possible scenarios, which are described bellow.

1. X.balanceFactor > 2 and X;.balanceFactor > 0, also called
the right-right rotation. According to figure 311} to re-
balance the tree we do the following:

(a) X becomes the right child of Xj.
(b) Z3 becomes the left child of X.

V2 5.

® ®
& ® ® @ ®

(a) (b)

~
N

Figure 3.11: a) Node X is unbalanced with a balanceFactor > 2, and
X; with a balanceFactor > 0. b) Result after rotation. Node X is
balanced and yellow nodes remain unchanged during the process.

2. X.balanceFactor < —2 and X,.balanceFactor < 0, also
called the left-left rotation. See figure The balancing
process consists of two steps:

(a) X becomes the left child of X,.
(b) Z; becomes the right child of node X.

v S

Figure 3.12: a) Node X is unbalanced with a balanceFactor < —2, and
X, with a balanceFactor < 0. b) After the rotation node X is balanced
and yellow nodes remain unchanged.
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3. Left - Right Rotation. X.balanceFactor > 2 and
X;.balanceFactor < 0. In this case, we need to do
two rotations. The first is a left rotation over node X,
which will cause that we end up in scenario 1 (right - right
rotation). The second rotation is a right rotation over node
X to re-balance the tree. Figure [3.13| shows how nodes are
affected by the two rotations and how the tree gets balanced
at the end of the process.

For the first rotation we do:

(a) Zs becomes the left child of X.
(b) X, becomes the left child of Z,.
(¢) hi becomes the right child of X;.

and for the second rotation:

a) X becomes the right child of Zs.
b) hg becomes the left child of X.

(
(

(b)

Figure 3.13: a) Node X is unbalanced with a balanceFactor > 2, and
X, has a balanceFactor < 0. b) After a left rotation over node X; we
end up with a right - right rotation. c) The entire tree is balanced after
a right rotation over node X. Yellow nodes remain unchanged.
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4. Right - Left Rotation. X.balanceFactor < —2 and
X;.balanceFactor > 0. As in the previous case, we need to
do two rotations, first a right rotation over node X,., which
will cause that the tree takes the form of scenario 2 (left - left
rotation), which involves a left rotation over node X, ending
up with a balanced tree. The steps for the rotations are listed
below and also are displayed in figure

For first rotation the steps are the following;:

(a) Z; becomes the right child of X.
(b) X, becomes the right child of Z;.
(¢) hse becomes the left child of X,.

and for the rotation over node X we have:

(a) X becomes the left child of Z;.
(b) hy becomes the right child of X.

®» 0@ ®» @ @ ©

(b) (c)
Figure 3.14: a) Node X is unbalanced with a balanceFactor < —2, and
X, has a balanceFactor > 0. b) After the first rotation the tree is in a

left - left rotation scenario ¢) The tree gets balanced after a left rotation
over node X. Yellow nodes remain unchanged.
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Now that we have a better picture of the possible scenarios that
we can face in the balancing process, let’s analyze the code. The
balanceNode function is implemented in code [3:23] and what it
does is basically handle each one of the four scenarios that we just
described.

Listing 3.23: AVL: Balance Node

void balanceNode(Node *curNode) {
if (curNode->balanceFactor >= 2) {
if (curNode->left->balanceFactor > 0) {
// right - right rotation
rightRotation(curNode) ;
} else {
// left - right rotation
leftRotation(curNode->left);
rightRotation(curNode) ;
}
} else if (curNode->balanceFactor <= -2) {
if (curNode->right->balanceFactor > 0) {
// right - left rotation
rightRotation(curNode->right);
leftRotation(curNode) ;
} else {
// left - left rotation
leftRotation(curNode) ;
}
}
}

Depending on which scenario we are in, we do one or two rota-
tions, to simplify the code we created two functions: leftRotation
and rightRotation, both of them set the rules for re-balancing a
node. See the codes in 3.24] and [3.25

Listing 3.24: AVL: Left Rotation

void leftRotation(Node #*node) {
Node *rightNode = node->right;
Node *temp = rightNode->left;

rightNode->left = node;
rightNode->parent = node->parent;
node->right = temp;

node->parent = rightNode;

if (temp != NULL) {
temp->parent = node;

linkParent (rightNode) ;
updateHeight (node) ;
updateHeight (rightNode) ;

Notice that updateHeight (node) should be called before up-
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dateHeight (rightNode), since node is now a child of rightNode,
and to update the height of a node, the heights of its children must
be already updated.

Listing 3.25: AVL: Right Rotation

void rightRotation(Node *node) {
Node *leftNode = node->left;
Node *temp = leftNode->right;

leftNode->right = node;
leftNode->parent = node->parent;
node->left = temp;

node->parent = leftNode;

if (temp != NULL) {
temp->parent = node;

linkParent (leftNode) ;
updateHeight (node) ;
updateHeight (1eftNode) ;

If these two functions are confusing, use the figures that
illustrates each one of the four scenarios as guidance. Sometimes
we find easier to understand rotations by looking at examples.

Up to this point, we have covered the balancing process when
elements are inserted in the tree, the only thing missing is balanc-
ing the tree when an element is removed. For this, we will take
advantage of the recursive strategy implemented for the BST, but
this time we need to verify for each node in the recursive path if
it is unbalanced, and if it is, then proceed to call balanceNode.
The function removeNode in [3.26] is similar to the one used in the
BST, the only difference is that we need to call updateHeight and
balanceNode for every node visited in the path. Here, we can see
the benefits of having a recursive implementation, since that allows
us to balance the tree at the same time a node is removed.

Listing 3.26: AVL: Node Removal

void removeNode(int val, Node *curNode) {
if (curNode == NULL) {
printf("Value %d not found\n", val);
return;
} else if (curNode->value == val) {
Node *endNode = NULL;
if (curNode->left !'= NULL) {
endNode = getLargest(curNode->left, curNode);
} else if (curNode->right != NULL) {
endNode = getSmallest(curNode->right, curNode);
} else {
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disconnectNode (curNode) ;

}

if (endNode '= NULL) {
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// Replace the noDe to be removed, update balanceFactor and re-balance

replaceNode (curNode, endNode) ;
connectNode (endNode) ;
updateHeight (endNode) ;
balanceNode (endNode) ;

}

// Delete the node and return
delete curNode;
return;

} else if (curNode->value >= val) {
removeNode (val, curNode->left);

} else {
removeNode(val, curNode->right);

}

updateHeight (curNode) ;
balanceNode (curNode) ;

Another change in our BST implementation is that we also
need to call the functions updateHeight and balanceNode for each
node visited in the functions getSmallest and getlLargest. In
few words, each node involved in the removal process needs to be
balanced, starting from the last element up to the root. Codes
and [3.28 show the code for functions getSmallest and getLargest

respectively.

Listing 3.27: AVL: Get Smallest Node

Node *getSmallest(Node *curNode, Node *pivot) {

if (curNode->left != NULL) {

Node *smallest = getSmallest(curNode—>left, pivot);

updateHeight (curNode) ;
balanceNode (curNode) ;
return smallest;
} else if (curNode->parent != pivot) {

curNode->parent->left = curNode->right;

} else {

curNode->parent->right = curNode->right;

}

if (curNode->right != NULL) {

curNode->right->parent = curNode->parent;

}

return curNode;

Listing 3.28: AVL: Get Largest Node

Node *getLargest(Node *curNode, Node *pivot) {
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if (curNode->right != NULL) {
Node *largest = getLargest(curNode->right, pivot);
updateHeight (curNode) ;
balanceNode (curNode) ;
return largest;

} else if (curNode->parent != pivot) {
curNode->parent->right = curNode->left;

} else {
curNode->parent->left = curNode->left;

}
if (curNode->left != NULL) {
curNode->left->parent = curNode->parent;

}

return curNode;

If we modify the function printBST in [3.19]and instead of just
printing the node value, we print the node value and the balance
factor closed by parentheses. The output of code is:

Inserting elements into the tree.....

()]

(-1) 8 (0

(0) 3 (0) 9 (0)

1) 3 (1) 2 9 (0

(1) 2 (0) 1 (0) 3 (0) 9 (0)

(0) 2 (1) 1 (0) 8 (0) 5 (0) 9 (0)

(-1) 2 (1) 1 (0) 8 (1) 5 (-1) 6 (0) 9 (0)

(-1) 2 (1) 1 (0) 8 (1) 5 (0) 4 (0) 6 (0) 9 (0)

(-1) 2 (1) 1 (0) 6 (0) 5 (1) 4 (0) 8 (0) 7 (0) 9 (0)

W W wwo oo ww

Removing elements from the tree.....
6 (1) 2 (-1) 1 (0) 5 (1) 4 (0) 8 (0) 7 (0) 9 (0)

Value O not found

6 (1) 2 (-1) 1 (0) 5 (1) 4 (0) 8 (0) 7 (0) 9 (0)
6 (0) 2 (0) 1 (0) 5 (0) 8 (0) 7 (0) 9 (0)
6 (0) 2 (0) 1 (0) 5 (0) 7 (-1) 9 (0)

5 (0) 2 (1) 1 (0) 7 (-1) 9 (0)

5 (1) 2 (1)1 9 (0

2 (0) 1 (0) 5 (O

1 (-1) 5 (0

Value 2 not found

1 (-1) 5 (0)

1 (0)

At first sight, we notice that in some cases the root changes
after inserting or removing a node, that tells us that rotations are
doing something, which is good, but by looking at the balance
factors of each node we see that none of them is greater than 2,
or less than -2, which means that the tree remains balanced while
nodes are being inserted or removed.

There are different kinds of balanced trees, all of them with the
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propose of providing a fast way for searching elements. Their im-
plementation, as you have seen, is not trivial and there are multiple
cases that need to be considered. The goal of describing the func-
tionality and code of AVL trees is not only to show the advantages
of having a balanced tree structure, but also to give the reader a
glimpse of the challenges that can appear at the moment of design
and implementation, most of them related to pointers handling.

3.2.5 Segment Tree

Segment trees are a powerful tool that allow us to do fast searches
over an interval. For example, Given an array X, find the
minimum value over interval X[a...b], or find the sum of all
elements on Xla...b|.

A segment tree is a binary tree where leaf nodes store the
original data, and internal nodes store information about segments
of that data. The construction of the tree takes O(nlogn),
while searching takes O(logn). An update of an element runs in
O(logn) without the need of re-building the whole tree, since only
the segments where the updated element interacts will be modified.

For the implementation proposed here, we will use a full
binary tree as the segment tree, a full binary tree is a binary
tree with all its internal nodes having exactly two children. For
this, first, we need to compute the number of levels necessary to
store the data, then assign the original data into the leaf nodes,
adding any necessary nodes to the tree to make it a full binary tree.

We will use a vector to represent the segment tree, with the root
being at index 0. A node at index k will have its left child at index
2k + 1, and its right child at index 2k + 2. In this way, if the tree
has [ levels, the original data will be stored in the vector starting
at index 2= —1, and the total number of nodes in the tree is 2! —1.

Let’s see an example to describe the functionality of a segment
tree. First, we define x as a vector containing the original data.
For this example, we will use z = [5,3,8,1,5,7,4,0,9,2,6]. We
will write a program that receives multiple queries asking for the
maximum value in some interval, no update queries will be given.
That said, the first thing to do is create the segment tree starting
from the leaf nodes as explained before, and then moving up,
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calculating the maximum value from the left and right sub-trees
for all internal nodes, and keeping track of the segment that each
node covers. Figure shows the created segment tree for this
example, there you can see the original data stored at leaf nodes
and how the value of internal nodes is the maximum between the
left child and right child. The yellow nodes represent the nodes
that are added to fill the binary tree, here is important to mention
that the value of those nodes should not affect the result in this
case, since we are interested in finding the maximum value of an
interval, we chose a value of zero, so they do not influence on the
result. In the case that we were looking for the minimum value on
an interval we would have to set a "large” value to those nodes, so
they are never chosen over a node with the original data.

Based on the segment tree in [3.15} suppose we want to know
what is the maximum value in X[0...9]. Starting from the root,
we obtain at index 1 that the maximum value in X[0...7] is 8, we
do not need to move below that node. Meanwhile the maximum in
X[8...9] is 9, which is stored at index 11 of the segment tree. At
the end we visited a total of five nodes to know the answer, which
is better than doing a linear search over the original vector. We
hope that this clarifies the advantages of using a segment tree.

/ 03] \ / o 71 / 8,11] \ /1, 151 \
® ® @ Q 9

/3\ 9 \ ,'12\
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Figure 3.15: Example of a segment tree, the number inside the node
represents the maximum value in the segment, in red we can see the
index in the vector representation and the interval which that segment
covers.

Now that we have a better picture of how segment trees work,
let’s write a small program. First, we need a class to store the
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node’s information, following the example above, we will store the
maximum value over a segment, and the start and end point of the

segment. See [3.29]

Listing 3.29: Segment Tree: Class Node

class Node {
public:
int maxValue;
int a;
int b;

Node(int a = 0, int b = 0, int maxValue = 0) {
this->a = a;
this->b = b;
this->maxValue = maxValue;
¥
};

The function buildSegmentTree in [3.30] receives a vector of
integers larger or equal than zero that represents the original data,
and creates a segment tree following the method described before
and store it in the global variable segmentTree.

Listing 3.30: Creation of a Segment Tree

void buildSegmentTree(vector<int> x) {
// Find the size of the tree
int n = 1;
while (n < x.size()) {
n k= 2;

}

// Allocate memory for the segment tree
segmentTree.resize(2 * n - 1);

// Initialize leaf nodes
for (int i = 0, j=mn-1; j <2 *n - 1; i++, j++) {
if (i < x.size()) {
segmentTree[j] = Node(i, i, x[il);
} else {
segmentTree[j] = Node(i, i, 0);
}
¥

// Compute internal nodes

for (int i = 2 *n - 2; i > 0; i -=2) {
int a = segmentTreel[i - 1].a;
int b = segmentTreel[il].b;
int maxValue = max(segmentTree[i - 1].maxValue, segmentTree[i].maxValue);
segmentTree[i / 2 - 1] = Node(a, b, maxValue);

}

}

The creation of the segment tree can be summarized in three
steps:
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1. Find the number of levels in the tree.

2. Assign the original data to leaf nodes and add the necessary
nodes to make it a full binary tree, without affecting the
result.

3. Compute internal nodes starting from leaf nodes up to the
root.

Now that the segment tree is created, we can start with the
queries asking for the maximum value of an interval. The function
findMaxValue in [3.31| receives the start index a, and end index b
of an interval, as well as the index k of a node in the segment tree,
and it returns the maximum value in z[a...b] starting from node
k. The algorithm is the following:

1. Check if the query interval intersects with the node’s interval,
if it does not, then return 0 to avoid affecting the result.

2. Update the query interval, e.a. If query interval is [3,9] and
node’s interval is [0,7], update the query interval to [3,7].

3. If the query interval is equal to the node’s interval, then re-
turn the maximum value of that segment, otherwise return
the greatest value between the maximum of the left sub-tree
and the maximum of the right sub-tree.

Listing 3.31: Search in a Segment Tree

int findMaxValue(int a, int b, int k) {
// If given interval is outside node’s interval then return
if(a > segmentTree[k].b || b < segmentTreel[k].a) {
return O;

}

// Compute new interval
a = max(a, segmentTreelk].a);
b = min(b, segmentTreel[k].b);
// If the node’s interval covers the given interval, return node’s maxValue
if (a == segmentTreel[k].a && b == segmentTree[k].b) {

return segmentTree[k].maxValue;

}

// Otherwise return the maximum between the left sub-tree and the right
sub-tree

int maxLeft = findMaxValue(a, b, 2 * k + 1);

int maxRight = findMaxValue(a, b, 2 * k + 2);

return max(maxLeft, maxRight);
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We will use the function getMaxValue to answer the queries,
this function receives an interval and pass on the same interval to
the findMaxValue function, setting k = 0 to start searching from
the root. See code in

Listing 3.32: Queries for a Segment Tree

int getMaxValue(int a, int b) {
return findMaxValue(a, b, 0);

}

The following code tests the functions we wrote using the same
example from figure 315} First, we create the segment tree by
passing a vector z with our data to the buildSegmentTree func-
tion, then, we print the maximum value of some query intervals by
calling the getMaxValue function.

typedef pair<int, int> query;

int main() {
vector<int> x = {5, 3, 8, 1, 5, 7, 4, 0, 9, 2, 6};
vector<query> queries = {query(3, 9),
query(2, 3),
query (4, 7),
query(9, 10)};

buildSegmentTree(x) ;

for(int i = 0; i < queries.size(); i++) {
printf("max value in [%d, %d] = %d\n",
queries[i].first,
queries[i].second,
getMaxValue(queries[i] .first, queries[i].second));

}

return 0;

}

The output for the program is the following;:

max value in [3, 9] = 9
max value in [2, 3] = 8
max value in [4, 7] =7

max value in [9, 10] = 6

3.2.6 Binary Indexed Tree (BIT)

Suppose we have an array composed of numbers ag, as, ..., dp_1
and we want to know what is the sum from the index ¢ to index j,
0 <i < j < n. The naive approach is go through the interval and
sum element by element. If this query is performed once, then
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the time cost is O(n), but if we have m queries, the complexity
time is O(mn). This complexity can be reduced by using another
array that stores the cumulative sum from the index 0 to the
index ¢, this might be done in linear time, then, to resolve the
query sum{a;, @;t1,...,a;-1,a;}, with ¢ < j, we can just simply
calculate the difference between the cumulative sum of index j
and the cumulative sum of index 7 — 1. The last operation can be
computed in constant time O(1). So far, everything seems good
enough, but the last algorithm is considering a static array, in
other words, the array is never modified, what happens if we want
to update the array and make queries at the same time? Here is
when BIT shows up, BIT allows us to solve the problem of the
sum of an interval when this is not static.

The idea behind BIT consists in storing the accumulates from
index 0 to index i using a binary representation of the indexes. A
BIT is also known as Fenwick tree, since it was proposed by Peter
Fenwick in 1994 [3].

Before to proceed with the explanation, let’s see a bitwise trick
which consists in isolating the last non-zero bit of a number (keep
the last non-zero bit and put 0’s in the other bits) by using the fact
that computer represent a negative number as two’s complement.
See image [3.16

x=10101000 X represented as eight-based bit
-x=01011000 Negative x represented as Two’s-Complement
X&(-x)= 10101000
&01011000
00001000

Figure 3.16: Bitwise operation to get the least significant bit

Let C; be the accumulate sum from index 0 to some index 4,
and let T" be the array that represents the BIT. It is important to
mention that indexes of T starts from 1 and not from 0, meaning
that T is an array with indexes from 1 to n. For example, suppose
we want to obtain the value of Cjg,,(1019 means the number 10
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written in base 10), by using the array T this is accomplished with
the following sum:

C10, = T1011, + 11010, + 1000,

The first thing to do is add 1 to the given index, since the
indexes in T starts from 1. Then, we do a binary representation
of that number, in this case 117y, which is 10115, an then, using
the bitwise trick explained before, we convert the last 1 from that
number into a 0 to obtain the new index. We continue doing this
until the index is zero.

10115 — 10102 — 10002 — 00004

The procedure explained before was to compute a query. But
if we want to make an update, we just need to do the process
backwards from the given index i (not starting from 0) until we
update the complete array T'.

Figure shows the tree structure of a BIT for 3-bit indexes.
There we can see how for a node with index 4, the index of its
parent node is obtained by replacing with 0 the last 1 of the binary
representation of 4.

Figure 3.17: BIT for 3-bit indexes

The code in [3:33] shows a basic implementation of a BIT. It
contains three functions. The function updateBIT add a value of
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v to node i + 1 and to all its ancestors. The function queryBIT
receives an integer i and returns the cumulative sum of all
numbers in the original array from index 0 to index i. And the
function createBIT, which creates the BIT from the original array.

The time complexity of the queryBIT and the updateBIT
functions is O(logn). On the other hand, the time complexity of
the createBIT is O(nlogn), since we have to update the BIT for
each element in the array.

Time Complexity:
creation: O(nlogn)
query: O(logn)
update: O(logn)
Input:
N: Number of elements in the array.
X: Array with integer numbers.
Output:
Queries using a BIT to obtain the sum X[0] + --- 4+ X[i], for
some 1.

Listing 3.33: BIT

#include <cstdio>
#define N 10
using namespace std;

int X[N] = {1, 4, 2, 4, 3, 0, 7, 5, 1, 6};
int TIN + 1];

void updateBIT(int, int);
int queryBIT(int);
void createBIT();

int main() {
createBIT();

// Print the cumulative sum from X[0] to X[6]
printf("%d\n", queryBIT(6));

// Print the cumulative sum from X[0] to X[9]
printf("%d\n", queryBIT(9));

// Add 2 to X[5] and print the sum from X[0] to X[9]
updateBIT(5, 2);

printf("%d\n", queryBIT(9));

return 0;

}

void updateBIT(int i, int v) {
it++;
while (i <= N) {
T[i] += v;
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i+= (i & -1);
}
¥

int queryBIT(int i) {
int res = 0;
it++;
while (i > 0) {
res += T[i];
i-= (i & -i);
}
return res;

}

void createBIT() {
for (int i = 0; i < N; i++) {
updateBIT(i, X[il);
}
}

Below is the output for the previous program. We can see how
the cumulative sum incremented by 2 once we added 2 to the 5"
element of the array.

21
33
35

The main advantages of using a BIT are:

1. We can update without the need of expensive re-calculations.
Updates run in O(logn).

2. Its memory complexity is O(n).

3. Is easy to implement, it does not require a great amount of
lines of code.

3.2.7 Trie

First described in 1959 by René de la Briandais [4]. A Trie, also
called Prefix Tree, is a search tree commonly used to find a word
in a dictionary. In a Trie every node represents a word or a prefix,
and all its descendant nodes share the same prefix. The root node
represents an empty string, its children represent words or prefixes
of length 1, the children of these represent words or prefixes of
length 2, and so on. e.g. Consider the following dictionary: {
work, worker, worship, fire, fired, fly }. The corresponding Trie is

showed in figure
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For figure[3.18] in case we are looking for the word ”"worker”, we
start the search from the root, and then move to the node with the
'w’, that will leave out all those words that do not start with that
letter. This will speed up the search. Then, we continue moving
to lower levels in the tree until we get to the letter 'r’, then we
move to the letter 'k’, discarding the word ”worship”. The search
continues until we get to the last 'r’ in the word worker”.

Figure 3.18: Example of a Trie

The time complexity to find a word in a Trie is O(m), where
m is the length of the word. Is important to notice that there is
no need to store the entire word or prefix in each node, since it
can be obtained as the Trie is traversed.

The main advantage of using a Trie is that as the search
continues moving from one level to another, other words are being

discarded, narrowing this way the search.

When coding a Trie we can store in each node any informa-
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tion that we consider useful, for example, we can place a boolean
variable that indicates if that node represents a word from the dic-
tionary or a prefix, we can also store a counter that indicates the
number of words found. The properties can be as many as we want,
but one thing that it must contain is a reference to the rest of the
letters. The class showed in is an example of a node structure.
Notice that the array ref is initialized with —1, indicating that
there is no connection to another letter, or that initially the node
has no children. As we continue adding words to the dictionary
the array will contain references to other nodes.

Listing 3.34: Trie Class

class TrieNode {
public:
bool isWord;
vector<int> ref;

TrieNode(bool isWord = false) {
this->isWord = isWord;
ref = vector<int>(26, -1);
¥
};

Suppose we store every node in a vector called Trie, and the
array ref indicates the positions in that vector of the children
nodes. The code in inserts a word into the Trie. The function
addWord receives the index of the current node, the word we are
adding, and the position of the current letter. Then, it checks if
the prefix word[0...pos| already exists (line 7), if it does not, we
create a reference by adding a new node in Trie (lines 8-10). After
that, we must check if pos is the last letter, if that is the case, then
that node is a word. Finally, we move to the next letter and repeat
the process.

Listing 3.35: Insert Word in Trie

void addWord(int nodeld, string word, int pos) {
if (pos == word.length()) {
return;

}

int k = Trie[nodeld].ref[word[pos] - ’A’];
if (k == -1) {
k = Trie.size();
Trie[nodeld].ref [word[pos] - ’A’] = k;
Trie.push_back(TrieNode());
}

Trie[k].isWord = (pos == word.length() - 1) ? true : false;
addWord (k, word, pos + 1);
}
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To add the string word to the Trie, we only need to call ad-
dWord (0, word, 0). It is important to mention that we need to
add an initial TrieNode object in vector Trie, that way Trie[0]
will represent the root.

3.3 Standard Template Library (STL)
C++

STL is one of the most powerful tools that the C++ language has.
Inside this library are implemented multiple algorithms and data
structures that are very handy for competitive programming. Let’s
take a look at some of the most common data structures and their
respective examples.

3.3.1 Unordered Set

This structure allows us to create an unordered set of unique
elements, that means no matter the order just the uniqueness of
the elements. Internally this structure is implemented as a hash
table, which is a table that associates keys with values in constant
time O(1). It’s important to say that this structure is available
from the standard C++11. Suppose we want to count the numbers
of different words in some text. We are going to use an unordered
set in order to solve that problem. As the set doesn’t let us store
repeated elements, it will be sufficient to read the word and store
it into the the set and at the end the set will keep only distinct
elements, so we can get the size of the set and this will be the
answer. Let’s look at the code.

Time Complexity: O(nl)

l: The length of the longest word.
Input:

n: Number of words in the text.

str: A string representing each word of the text.
Output:

Number of different words in the text.

Listing 3.36: Number of different words

#include <iostream>
#include <string.h>
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#include <unordered_set>
using namespace std;
unordered_set<string> u_set;

int main() {
int n;
string str;

// We read the number of words and the words
cin >> n;
for (int i = 0; i < n; i++) {
cin >> str;
// We insert all the words we read because the repeated
// words won’t be taken into account
u_set.insert(str);

¥

cout << "The number of different words is: " << endl;
cout << u_set.size() << endl;

cout << "The words different are: " << endl;

/* auto is part of C++ 11 and makes or life easier,
auto substitutes this expression: set<string>::iterator it,
(*it) means we want the value from iterator it, in our case
the string.

*/

for (auto it = u_set.begin(); it != u_set.end(); ++it) {
cout << (*it) << endl;

}

return O;

}

3.3.2 Ordered Set

This structure is almost the same as the unordered set, the only
difference is that here the order matters, and actually that can
be an advantage in some cases. Internally an ordered set is
implemented as a binary search tree, so that guarantees O(log) for
the searches, insertions and eliminations.

Let’s think in the following problem, suppose we have a list
of discrete 2D-points and over the list we make operations like
deletes, insertions and queries, the insertions will be simple, they
give us a 2D point and we have to add it to our list, if the point
is already there we ignore it otherwise we add it, then for the
eliminations they give us a point and we need to remove it if exists
otherwise do nothing. The queries will give us two points that
defines a rectangle, these points represent the bottom-left corner
and the top-right corner respectively, and the goal is to print the
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number of points contained on that rectangle.

This problem is not trivial and could be an easy-intermediate
problem in a ICPC Latin America Regional Contest, so let’s
start thinking what do we need to solve it. First of all we
need a structure to keep the 2D-points list updated and also
the structure should allow us perform the queries easy and
fast. Thereby an ordered set fits perfectly to solve the problem.
To do the insertions and eliminations we only need to use the
methods already implemented in a set structure. Then to perform
the queries we are going to use the fact that the set stores
the elements in a ordered way and also we can use two handy
methods that are already implemented in the STL, lower_bound
and upper_bound. Both methods returns an iterator, lower_-
bound returns an iterator where the value is equal or greater
than the element sent in the argument, while upper_bound
returns an iterator where the value is strictly greater than the
element sent in the argument. These methods will help us to
narrow the search, since we only need to go trough over the points
between the two pointers and check if they are inside the rectangle.

Time Complexity: O(nlogn)
Input:

n: Number of operations to be performed.

operation: Insert, delete or query operation.
Insertion case

x1, y1: Integer coordinates of the point that will be inserted.
Elimination case

x1 yl: Integer coordinates of the point that will be removed.
Query case

x1, y1, x2, y2: Integer coordinates of the points that defines
the rectangle according to the problem.
Output:

In query case, print the number of points into the defined
rectangle.

Listing 3.37: Number of 2D-points into a given rectangle

#include <iostream>

#include <set>

#include <algorithm>
#include <cmath>

using namespace std;

typedef pair<int, int> point;
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set<point> s;

int main() {
int x1, y1, x2, y2, ans, n, operation;
set<point>::iterator pl, p2;

// We read the number of operations we are going to perform
cin >> n;
for (int i = 0; i < n; i++) {
cin >> operation;
switch (operation) {
case 1: // Insertion case

cin >> x1 >> yi;

// make_pair method create a pair based on two parameters

s.insert (make_pair(x1l, y1));

break;

case 2: // Elimination case

cin >> x1 >> yi;

// We have to make sure that the point exists,

if (s.find(make_pair(xl, y1)) != s.end()) {

s.erase(make_pair(x1, y1));
}
break;
case 3: // Query case

cin >> x1 >> y1 >> x2 >> y2;

ans = 0;

// We get the iterator where the value is greater or equal than the

// point sent

pl = s.lower_bound(make_pair(x1l, y1));

// We get the iterator where the value is greater than the point sent

p2 = s.upper_bound(make_pair(x2, y2));

/* All the points between these iterators can be inside the rectangle,
but we have to make sure, because we took the x coordinate as first
parameter to sort, and even when the current point x-coordinate is
inside the bounds of the rectangle, it can occur that its
y-coordinate is out of the range

*/

for (set<point>::iterator it = pl; it != p2; ++it) {
if ((xit).first >= x1 && (*it).first <= x2

&& (*it).second >= yl &&(*it).second <= y2)
ans++;

}

// Print out the numbers of points inside the rectangle

cout << ans << endl;

break;

}
¥
return 0;

}

3.3.3 Unordered Map

An unordered map is a handy structure implemented inside the
STL library and is basically a hash table, that means we can as-
sociate a key with a value, where the key and value can be any
abstract data type, and of course the uniqueness of the key is guar-
anteed. There are many problems that can be solved using this
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structure, for instance, to find which is the most used word in some
text, we can simply make a map with a string as key representing
a word in the text, and a int as value representing the number of
occurrences of the corresponding word. A more complex problem,
suppose we want to know the number of 2D-points repeated in a
input, for this problem we can use a map with a 2D-point object
as key and a int as value. The code in contains the class
Point to be used as a key, as you can see we need to override the
== operator, since the unordered map needs a way to distinguish
one point from another, in this case both coordinates must be the
same to consider two points as equal.

Listing 3.38: Class Point for Unordered Map

class Point {
public:
int x;
int y;

Point(int x = 0, int y = 0) {

this->x = x;
this->y = y;
¥
bool operator == (const Point &otherPoint) const {

return this->x == otherPoint.x && this->y == otherPoint.y;
}
I

We need one more thing in order to use Point objects as keys,
and that is a hash function. Hash functions assign an element to
a bucket in memory, is understandable that the desired behavior
is to assign each element in a different bucket to guarantee O(1)
all the time, but that is not always possible and collisions happen,
and there are methods that are outside the scope of this book that
handle those collisions. Back to our problem, to define our hash
function, let’s assume that all point’s coordinates will be on the
range [0, 99]. Then the hash function in returns values 0 - --99
for all the points with y = 0, 100 - - - 199 for points with y = 1, and
so on. This way we will assign a different value to each possible
point.

Listing 3.39: Hash Function for Unordered Map

struct PointHasher {
// Hash function for points with x in [0, 99] and y in [0, 99]
size_t operator () (const Point &key) const {
size_t hash = key.y * 100 + key.x;
return hash;

}
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The program in [3.40| creates a unordered map that will store
Point objects as keys, and the number of occurrences of a point as
value. the code prints each point along with the number of times
it appeared.

Listing 3.40: Unordered Map Example

int main() {

unordered_map<Point, int, PointHasher> pointMap;
unordered_map<Point, int, PointHasher>::iterator it;
vector<Point> points = {

Point (0, 0),

Point (1, 2),

Point (2, 1),

Point(1, 1),

Point(1, 2),

Point(1, 1)};

for (int i = 0; i < points.size(); i++) {
pointMap [points[i]]++;

for (it = pointMap.begin(); it != pointMap.end(); it++) {
printf (" (%d %d): %d\n", (xit).first.x, (*it).first.y, (*it).second);

return 0;

The output can vary, since the elements are not stored in any
particular order, here is the output we obtained by running the
previous code.

(2 1):
0 0):
(1 1):
(12):

NN ==

The time complexity of a map depends on its hash function,
already built-in hash functions works well, but in case you need to
implement your own function, keep in mind that the goal of using
maps and sets is to have a running time as close as possible to O(1).
That is their main advantage that separates them from other data
structures.

3.3.4 Ordered Map

It’s an upgrade of a ordered set, because is implemented internally
as a binary search tree, what ensures a time complexity of O(log)
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for insertions and eliminations, and we can link keys with values,
the order is based on the keys.

If we use a primitive data type as key, for example an integer,
the smallest key will be the first one on the map. Similarly if we
use strings as keys, these will be sorted in increasing order accord-
ingly to the ASCII values of their characters, but what happens
if we want to define our own custom keys? Let’s use the previous
example of having a map with 2D-point as key and their occur-
rences as value. For an unordered-map we needed to override the
== operator and also define a hash function, but for the case of
ordered maps or just maps, we need a way to say if an object is
greater or not than other object of the same class, otherwise they
can’t be sorted. This can be done by overriding the < operator.

See code in 3411

Listing 3.41: Class Point for Ordered Map

class Point {
public:
int x;
int y;

Point(int x = 0, int y = 0) {
this->x = x;
this->y = y;

}

bool operator < (const Point &otherPoint) const {
if (this->x == otherPoint.x) {
return this->y < otherPoint.y;
} else {
return this->x < otherPoint.x;
}
}
};

When we override the < operator we set the rules for comparing
two objects of the same class in order to determine which one is
greater. For this example, when comparing two 2D-points, they
will be sorted first by their x-coordinate, and if there is a tie, then
they will be sorted by their y-coordinate.

From [B.41] we can notice that there is no need to override the
== operator as we did for unordered maps, and that is not all, also
we don’t need to define a hash function, we just need a way to
tell our program the rules to sort elements. If we run the code in
[3:40] but replacing unordered_map<Point, int, PointHasher>
with map<Point, int> we get the following result:
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0 0):
(1 1):
1 2):
2 1:

= NN -

The output confirms the rules set, points are sorted by their
x-coordinate, and in case of a tie, by their y-coordinate.

Operations on a map take O(logn), while on unordered maps
take O(1) on average, so at least that keeping the data sorted is
important for the problem that you are trying to solve, perhaps is
better to go with unsorted maps for your implementation, just keep
in mind to be careful if you need to define your own hash function.

3.3.5 Stack

STL library has implemented a stack with its respective methods
push, pop and empty. Other methods important are top and size.
As we can see in section the implementation of a stack from
scratch perhaps is not that difficult, but it can take some time,
specially if we deal with dynamic memory, and since it is a data
structure frequently used, is better to use the built-in implementa-
tion from the STL library. Code [3:42) show a simple use case of a
stack, that inserts, retrieve and removes elements.

Listing 3.42: STL: Stack Example

#include <iostream>
#include <stack>
using namespace std;

int main() {
stack<int> S;
S.push(2);
S.push(4);
S.push(1);
S.push(7);
S.push(5) ;

while (!S.empty()) {
cout << S.top() << "\n";
S.pop(Q);

}

return O;

The push method inserts an element into the stack, remember
that the last element inserted will be the one at the top. The
empty method returns true if the stack has no elements, otherwise
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returns false. top returs the last element inserted into the stack,
and finally pop deletes the element at the top. Those methods
are the most commonly used, as long with size that returns the
number elements contained in the stack. In you want to know more
about the stack template from the STL library you can review the
reference page http://www.cplusplus.com /reference/stack/stack/.

Below is the output of the program [3.:42] as you can see the
order on which the elements are taken out from the stack is the
reverse of how they were inserted, that is expected, since the last
element inserted is placed at the top.

NS RN O

3.3.6 Queue

STL library also has its own queue implemented with its respective
methods push and pop as well. As queue template also has useful
methods like front, back, size and empty. Code in [3.43] shows an
example of using the queue library. To insert elements into the
queue we use the push method, just like we did with the stack
example on but internally the last inserted element goes to
the back of the queue. empty returns true if the queue has no
elements, false otherwise. pop removes the first element of the
queue, which corresponds to the first element inserted. The main
difference with the stack template is in the methods for retrieval,
here we use front instead of top to retrieve the first element of
the queue, and as you can image there is also a back method that
returns the last element on the queue, but there is no function to
remove the last element.

Listing 3.43: STL: Queue Example

#include <iostream>
#include <queue>
using namespace std;

int main() {
queue<int> Q;
Q.push(2);
Q.push(4);
Q.push(1);
Q.push(7);


http://www.cplusplus.com/reference/stack/stack/
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Q.push(5);

while (!Q.empty()) {
cout << Q.front() << "\n";
Q.popQ);

return 0;

}

Below is the output for this example, and there are no surprises
here, the first element inserted is the first element printed, and the
last inserted element was the last to be printed.

S IEN =N

Even when this example seems simple, queues are particularly
handy when we deal with graph traversals, as we will see on
chapter[7] since they can be used to compute the path of minimum
length to get from one node to another.

The previous code uses some of the most common methods
for the queue library, but if you want to know more, check the
reference in |http: //www.cplusplus.com/reference/queue/queue/, it
describes with more detail each one of the methods available.

3.3.7 Priority queue

A priority queue is basically the same as a heap, internally is
implemented like that. As we explained before, a heap is a
binary tree where the parents nodes has a comparison relationship
between themselves and his children. Therefore we can insert and
delete in a time complexity of O(log), as well as consult for the
largest or smallest element in O(1).

The program shows an example of how use a priority_-
queue. As you can see, we need to import the same queue library
used before, then we create a heap of integers by using prior-
ity_queue<int>. After that we insert the same elements that are
showed in figure [3.6] The top method returns the root, which is
the largest element, in this case 12. The pop method removes the
root from the heap, that causes that the 2"¢ largest element to
become the root.


http://www.cplusplus.com/reference/queue/queue/
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Listing 3.44: STL: Priority Queue Example

#include <iostream>
#include <queue>
using namespace std;

int main() {

priority_queue<int> heap;
heap.push(1);
heap.push(2);
heap.push(0);
heap.push(6);
heap.push(5);
heap.push(3);
heap.push(4);
heap.push(12);
heap.push(10);
heap.push(7);
heap.push(6);
heap.push(4);
heap.push(9);
heap.push(6);
heap.push(8);

while ('heap.empty()) {

cout << heap.top() << "\n";
heap.pop() ;

return 0;

The output for this program is showed below, and since we are
printing the root then removing it, we will see the inserted numbers
printed from the largest (12) to the smallest (0).

12109876665443210

Heaps are not useful for searching arbitrary elements, instead
they are useful for fast access to the maximum or minimum value
of the data, that is why top and pop interacts with the root, but
there are no method find like in vectors or lists.

3.4 Chapter Notes

Data structures are a fundamental part of computer science, and
for competitive programming it is not the exception. In most cases
the solution of a problem lies on finding the right data structure.
If you find yourself writing a very confusing code, and you feel
that is taking more time of what it should, is possible that you
chose the wrong data structure.
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Is a good practice to use libraries instead of writing your own
data structures, the implementations in libraries, specially in the
STL library are well tested and are reliable.

There a lot of information about data structures, too much,
that sometimes that can be overwhelming. It can happen that
after trying to solve a problem you find out that there is a data
structure that does exactly what you were looking for. In this
book we wanted to show the most common data structures, such as
stack, queue, list, etc, but also some that are not that common, or
that don’t appear regularly in books, such as segment trees, BIT,
and Tries. Some good references are “Introduction to Algorithms”
[1], 7Algorithms” [5], and Topcoder [6].

The problems in the exercises section and in appendix |B| are
based on real problems that we have faced. The solutions are
not complicated if you choose the right data structure from the
beginning, but they can turn complicated if you don’t.

if you think you need to more practice, the following links con-
tains problems that focus on data structures.

e https://www.hackerrank.com/domains/data-structures

e https://acm.timus.ru/problemset.aspx?space=1&tag=
structure

e https://codeforces.com/problemset?tags=data+
structures


https://www.hackerrank.com/domains/data-structures
https://acm.timus.ru/problemset.aspx?space=1&tag=structure
https://acm.timus.ru/problemset.aspx?space=1&tag=structure
https://codeforces.com/problemset?tags=data+structures
https://codeforces.com/problemset?tags=data+structures
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3.5 Exercises




88 3. DATA STRUCTURES




4

Sorting Algorithms

“Code s like humor. When you have to explain it, it’s
bad.”
— Cory House

In practice is common to face with the necessity of sorting
the data which we are working with to solve a specific problem.
Sometimes is necessary due the memory and time constraints, or
maybe because we want to improve the execution time of our code,
in any case we are talking about a fundamental tool in computer
science.

It is true that in real-life situations perhaps we ended up using
a library containing some sorting methods, but understanding
how algorithms work internally is fundamental, since at the end
we need to justify why we choose a certain algorithm among others.

Sometimes happens that we are not familiar with some of
the libraries at the time of a contest or interview, and we find
ourselves in the position of implementing a solution from scratch.
That’s why simple algorithms like Bubble Sort and Selection Sort
don’t need to be discarded, they can be implemented fast, and if
the number of elements to sort is small, they will work just fine.

In the case of technical interviews, is unlikely that an inter-
viewer will ask you "write a code that sort n amount of numbers",
but it is likely to be in a situation where we need to sort some
data to solve the given problem, and in that case is better knowing

89
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the different kinds of sorting algorithms, how they work, and their
time complexity, since at the end you will need to justify and
defend your solution.

In this chapter we will cover some of the most popular sorting
algorithms. Depending on the circumstances there are algorithms
that fit better, some of them are faster in execution time but are
more difficult to implement, or sometimes they need more amount
of memory. On the other hand, there are algorithms that perform
poorly in execution time, but are very easy to implement. That’s
why is important to identify which algorithm is the best for the
problem that needs to be solved.

4.1 Bubble Sort

Bubble sort is one of the most popular sorting algorithms, is easy
to understand and easy to implement. Unfortunately is hard to
use it in real-life applications.

The algorithm consists in the following. Having an array X
with n elements, xg,z1,...,Z,_1. Iterate fromi=0toi=n—2
comparing element x; with element x;q, if case x; > x;y1 swap
both values.

Consider the following array of numbers.

[(5[3[1[ofo]4[7[2][8]6]

The iterations of the bubble sort method are shown in table

Z1
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Swap 5 and 3
Swap 5 and 1
Nothing happens
Swap 9 and 0
Swap 9 and 4
Swap 9 and 7
Swap 9 and 2
Swap 9 and 8
Swap 9 and 6

Iteration 1:
Iteration 2:
Iteration 3:
Iteration 4:
Iteration 5:
Iteration 6:
Iteration 7:
Iteration 8:
Iteration 9:
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Table 4.1: Tterations of the Bubble Sort.

Resulting the following array:

(3[1[5]0f4]7[2]8]6]9]

In table .T] can be seen that greater values move to the end of
the array, meanwhile the smaller ones move to the start of the array.

In order to sort the array, the process described above must be
repeated a maximum of n times. This to ensure that all elements
end in the correct position. The worst case scenario is when the
array is initially in decreasing order, because in each iteration the
smallest element moves only one position.

Program read a number n (1 < n < 100), indicating
the number of elements in the array X. The next n numbers
represents the elements of X. The program print the array X
with its elements sorted in increasing order.

Time Complexity: O(n?)

Input:
n: Number of elements in the array.
X: Array to be sorted.

Output:
The array X in non-decreasing order.

Listing 4.1: Bubble Sort

#include <algorithm>
#include <cstdio>
#define N 101

using namespace std;

int X[N];
int n;
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void bubbleSort();

int main() {
scanf ("/d", &n);
for (int i = 0; i < mn; i++) {
scanf ("%d", &X[il);
}

bubbleSort () ;

for (int i = 0; i < n; i++) {
printf("%d ", X[il);
}

printf("\n");
return 0;

}

void bubbleSort() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n - 1; j++) {
if (X[31 > X[ + 1) {
swap(X[jl, X[j + 11);

4.2 Selection Sort

Given an array of m elements, this algorithm find the smallest
element in an array and place it in the first position, then finds
the smallest number from the remaining elements and place it in
the second position, and so on, until all elements are sorted.

In iteration ¢, the cost of finding the smallest element is n — i,
because at this point we are sure that the first ¢ — 1 elements are
already sorted. Let’s see an example. Consider the following array.

[5[3[1][9f0f4[7[2[8]6]

The iterations of the algorithm are described in table 1.2}
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Tteration1: | 5|3 11904 |7 |2|8|6|SwapOand5b
Tteration2: | 0 |3 1|9 |54 |7|2|8|6|Swap3andl
Tteration3: | 0 | 1 |39 |5 |4 |72 |8]| 6| Swap 3 and 2
Tteration4: | 0| 112|954 |7 |3|8|6|Swap9and3
Tteration 5: | 0 | 1 |2 | 3|54 |7 |9|8|6 | Swapband4
Iteration6: | 0 | 1 |2 |3 |45 |7 |9|8]| 6 | Keep 5 in the same place
Tteration 7: | 0 | 1 |2 | 3|4 |5 |7|19|8|6 | Swap7and®6
Tteration8: | 0 | 1 |2 | 3|4 [5|6|9|8|7]|Swap9and?7
Tteration 9: | 0 | 1 |2 |3 |4 |56 | 7|89 | Array sorted

Table 4.2: Tterations of the Selection Sort.

In table [£.2] the numbers in red are numbers that are already
in correct positions, and the numbers in bold are the ones that

need to be swapped.

In the first element we need to iterate trough all n ele-
ments, for the second one we need to iterate trough n — 1
elements, and so on. So the number of iterations is given by

n+n—-1)+n—-2)+-+1=F(n+1).

The code in reads an integer n (1 < n < 100). n numbers
follow, representing the elements of the array to be sorted. The
program prints the array sorted in ascending order using the

Selection Sort algorithm.

Time Complexity: O(n?)

Input:
n: Number of elements in the array.
X: Array to be sorted.

Output:

The array X in non-decreasing order.

Listing 4.2: Selection Sort

#include <algorithm>
#include <cstdio>
#define N 101

using namespace std;

int X[N];
int n;

void selectionSort();

int main() {
scanf ("%d", &n);
for (int i = 0; i < n; i++) {
scanf ("%d", &X[il);
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}
selectionSort();

for (int i = 0; i < n; i++) {
printf("%d ", X[il);

printf("\n");

return O;

}

void selectionSort() {
for (int i = 0; i < n - 1; i++) {
int pos = 1ij;
for (int j = i + 1; j < n; j++) {
if (X[j] < X[pos]) {
pos = j;

}

swap(X[i], X[posl);

4.3 Insertion Sort

To explain this method imagine we have an array with its elements
sorted and we want to add a new element. To keep the array
sorted we need to place the new element in the correct position.
To achieve that, all the elements greater than the new element
must be shifted to the right in order to make space to the new
element. Consider the following array:

[L[3]6][7][10]

To add a new element with a value of 5, we must shift to the
right the elements greater than 5, and place the new element in
the correct position.

[1]3[5[6]7]10]

In the worst case the elements are given in descending order,
making in each iteration to shift all the elements in the array. The
program in reads an integer n (1 < n < 100), indicating the
number of elements in the array. Next n numbers represent the
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elements in the array. The program uses Insertion Sort to print
the given array in ascending order.

Time Complexity: O(n?)
Input:
n: Number of elements in the array.
X: Array to be sorted.
Output:
The array X with its elements in non-decreasing order.

Listing 4.3: Insertion Sort

#include <cstdio>
#define N 101
using namespace std;

int X[N];
int n;

int main() {
int j, num;

scanf ("7%d", &n);
for (int i = 0; i < nj; i++) {
scanf ("%d", &num);
=i
while (j > 0 && num < X[j - 11) {
X[31 = X[j - 11;
==
¥
X[3] = num;

for (int i = 0; i < n; i++) {
printf("%d ", X[il);
printf("\n");

return 0;

4.4 Quick Sort

This algorithm was discovered by Antony Richard Hoare [7] at the
end of the 50’s and begin of the 60’s. The main idea behind this
algorithm is to place an element called pivot in a position where
the elements at its left are smaller and the elements at its right
are bigger or equal.

Consider an array zg, 1, T2, ... , Tn—1. If we take the last
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Algorithm 1 quicksort(a,b)

X;m'vot = Xb
14 a
j<b—-1

while ¢ > j do
if X; < Xpivot then
14+—1+1
else if X; > Xyt then
JJ-1
else if X; > X0 and X; < Xpivor then
swap(X;, X;)

14+—1+1
J<J—1
end if
end while

Swap(Xi; Xpi'uot)
quicksort(a,i — 1)
quicksort(i + 1,b)

element, x,_1, as the pivot, and place an iterator ¢ at position
0, and another iterator j at position n — 2. If x; is smaller
than the pivot, increase ¢ in one. Also if x; is greater or equal
than the pivot, decrease j in one. In the case that x; is greater
or equal than the pivot and that z; is smaller than the pivot,
swap both elements and continue. The process stops when i
is greater than j. Finally just swap x; and the pivot. This
will ensure that the pivot is in the correct position. Repeat
the process with the sub-array in the left side of the pivot
and with the sub-array in the right side of the pivot. At the
end, the whole array will be sorted. Algorithm [I] shows the logic
behind Quick Sort to sort an array X from position a to position b.

The worst case scenario is when all elements are sorted in
non-ascending order, because all the elements will be located in
the right side of the pivot in each iteration, for the first pivot there
will be n — 1 elements at its right, for the next pivot there will be
n — 2, and so on, in order to avoid this, many algorithms run a
random sort algorithm before execute quicksort reaching O(nlogn)
most of the times.
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The code in [4.4] implements Quick Sort to sort an array X of
n elements (1 < n < 20). The input consists of number n, and the
n numbers that form X. The output is X with its elements sorted
in ascending order.

Time Complexity: O(n?),
It’s important to say the the average time complexity of this algo-
rithm is O(nlogn), and that’s why is widely used.
Input:
n: The number of elements in the array.
X: Array to be sorted.
Output:
The array sorted.

Listing 4.4: Quick Sort

#include <algorithm>
#include <cstdio>
using namespace std;

int X[20];
int n;

void quicksort(int, int);
int getPivot(int, int);

int main() {
scanf ("7%d", &n);
for (int i = 0; i < n; i++) {
scanf ("%d", &X[i]);
}
quicksort(0, n - 1);

for (int i = 0; i < n; i++) {
printf("%d ", X[il);

printf("\n");

return 0;

The function quicksort defined bellow, receives two integers
that corresponds to the interval to be sorted. Using the pivot it
call itself to sort the sub-interval at the left of the pivot and the
sub-interval at the right od the pivot.

void quicksort(int a, int b) {
if (a < b) {
int p = getPivot(a, b);
quicksort(a, p - 1);
quicksort(p + 1, b);
}
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The key part in the Quick Sort algorithm consists on placing
in the right position the pivot. The function getPivot place the
pivot in the correct position in the interval [a,b] according to the
algorithm described before.

int getPivot(int a, int b) {
int i = a;
int j =b - 1;
int p = b;
while (i <= j) {
if (X[i] < X[pD) {
i++;
} else if (X[3j1 >= X[pl) {
J==s
} else if (X[i] >= X[p] && X[j] < X[pl) {
swap(X[i++], X[j--1);
}
}

swap(X[i]l, X[pl);
return i;

}

4.5 Counting Sort

This algorithm is useful when we are handling a big amount of
data, but is recommended to use it only when the data can be
expressed as non-negative integer numbers in a small interval. The
main idea is to count occurrences in terms of the numerical value,
for example, consider the following integers in the interval [0, 9]:

0,0,1,3,5,3,2,1,0,1,3,7,8,2,1,3,5,6,5,3

For this case we have three 0’s, four 1’s, two 2’s, five 3’s, zero
4’s, three 5’s, one 6, one 7, one 8 and zero 9’s. Then, we only
need to store the occurrences in a vector C of size equal to the
biggest element in the data, where C} represents the number of
occurrences of element k. The vector C for this example looks as
follows:

C=131412]|5]0

The program in [4.5]receives a number n, indicating the amount
of elements to be sorted. n numbers follow, each one in the
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interval [0,9]. The output is the numbers from the input sorted in
ascending order.

Time Complexity: O(n)
Input:
n: Number of elements in the array.
num: Elements to be sorted.
Output:
The array sorted.

Listing 4.5: Counting Sort

#include <cstdio>
#define N 10
using namespace std;

int C[NI;
int n;

int main() {
int num;

scanf ("%d", &n);

for (int i = 0; i < n; i++) {
scanf ("%d", &num);
C[num] ++;

}

for (int i = 0; i < N; i++) {
for (int j = 0; j < C[il; j++) {
printf("%d ", i);

}
printf("\n");

return O;

}

4.6 Merge Sort

Suppose we want to sort the elements of a vector X in non-
decreasing order from positions a to b. This algorithm consists
of four steps:

1. Divide the vector in two parts by finding the middle value
X, where m = (a + b)/2.

2. Sort the elements in the left side.

3. Sort the elements in the right side.
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4. Combine the elements in the left side with the elements in the
right side in such a way that the resulting vector is sorted.

Step 4 is the most important. Figure shows the merge pro-
cess of array A and array B into an array C, where A and B are
sorted in non-decreasing order. Basically the idea of the merging
process consists on placing an iterator ¢ (red) at the beginning of
array A, and an iterator j (blue) at the beginning of array B. If
A; < Bj the element A; is inserted at the end of array C and i
is moved to the next position. Otherwise if A; > Bj, element B;
is inserted at the end of C' and j is moved to the next position.
The process continues until all the elements of either A or B are
inserted into C.

A=10,2,5,9,10] A=10,2,5,9,10]
B=]1,6,7,12,16] B=]1,6,7,12,16]
C =10] C=10,1]
(a) Iteration 1 (b) Iteration 2
A=10,2,59,10] A=][0,2,5,9,10]
B=][1,6,7,12,16] B =[1,6,7,12,16]
C=10,1,2] C=10,1,2,5]

(c) Tteration 3 (d) Iteration 4
A=10,2,5,9,10 A=10,2,5,9,10
B=11,6,7,12,16] B=11,6,7,12,16]
C=100,1,2,5,6] C=100,1,2,5,6,7]

(e) Iteration 5 (f) Iteration 6
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A=10,2,5,9,10 A=10,2,5,9,10]

B =1,6,7,12,16] B =[1,6,7,12,16]

Cc=10,1,2,56,7,9] Cc=10,1,2,5,6,7,9,10]
(g) Iteration 7 (h) Iteration 8

Figure 4.1: Tterations of the merge process of two arrays previously
sorted

Once one of the iterators reach the end of the array, we just add
to C the remaining elements of the other array. Now C' contains
all the elements of A and C' in non-decreasing order.

C=1[0,1,2,5,6,7,9,10,12, 16]

At the beginning there are n elements in the array, then it is
split in two halves of n/2 elements each, and each half is divided
again in two halves of n/4 elements, and so on. Then the execution
time depends on how many times we divide the array. We know
that we cannot divide the array if there is only one element, this
is when n/2F = 1. Solving for k, we have that k = log, n, and
each time we need to perform the merge process, so the time
complexity of the Merge Sort is O(nlogn).

The program receives and integer n (1 < n < 100)
representing the number of elements in the array X. The next n
numbers are the elements of X. The output is the array X sorted
using the Merge Sort algorithm.

Time Complexity: O(nlogn)

Input:
n: The number of elements in the array.
X: Array to be sorted.

Output:
The array sorted.

Listing 4.6: Merge Sort

#include <cstdio>
#define N 101
using namespace std;

int X[N1, CIN];
int n;
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void mergeSort(int, int);
void merge(int, int, int);

int main() {
scanf ("/d", &n);

// Read the numbers to be sorted

for (int i = 0; i < n; i++) {
scanf ("%d", &X[il);

}

// Apply Merge Sort
mergeSort(0, n - 1);

// Print the sorted array
for (int i = 0; i < mn; i++) {

printf("%d ", X[il);
printf("\n");

return 0;

The function mergeSort receives an interval of the elements to
sort, calculates the middle element, and recursively call itself again
to sort both halves of the interval. Finally both halves are merged
sorting all the elements in the interval.

void mergeSort(int i, int j) {
if (4 1=j) {
intm= (1 +j) /2;
mergeSort (i, m);
mergeSort(m + 1, j);
merge(i, m, j);
}
}

The merge process explained before takes place in the merge
function, which receives the indexes i and j of the interval to sort,
and the middle point m, and sort both halves of the array.

void merge(int i, int m, int j) {
// p and q are the indexes that will move across
// each half respectively.

int p = i3
int g =m + 1;
int r = i;

// Keep comparing the values of X[p] and X[q]
// until we reach the end of one of the halves
while (p <= m && q <= j) {
if (X[p] <= X[qD) {
Clr++] = X[p++];
} else {
Clr++] = X[q++];
}
}
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// Add the remaining elements of the first half
while (p <= m) {

Clr++] = X[p++];
}

// Add the remaining elements of the second half
while (q <= j) {

Clr++] = X[q++];
¥

// Update the original array
for (r = i; r <= j; r++) {
X[r] = C[rl;
}
}

4.7 Heap Sort

The Heap Sort algorithm was invented by Joseph Williams in
1964. [§]. The main idea of this algorithm is to store the elements
of a vector in a heap. A heap is a binary tree where the value of a
node is greater or equal than the value of its children. If the value
of a node is smaller than the value of one of its children, then the
node is swapped with the child with largest value.

= /)

Figure 4.2: Swapping process in heap sort

Let’s explain how to implement a binary tree in an array.
Suppose we have a parent node in the position i then the left
child would be in the position 2¢ + 1 and the right child in the
position 2i + 2. For instance the root would be at index 0,
its left child at index 1 and its right child at index 2, now the
left child of the node located at index 1 would be at index 3
and the right child at index 4, for the node placed at index 2
the left child would be at index 5 and the right child at index
6, and so on. By doing this process we obtain the entire binary tree.

Consider the following sequence of numbers:
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X[0] X[} X[l X[3] X[4] X[5] Xf6] X[7] X[8 X[9)]
X=|2 1 4 6 3 0 7 9 8 5

The heap can be constructed in different ways. One option is
to store all elements in a tree like in and then starting from
the last element to the first, swap each element the times it is
necessary until it reaches a valid position, the result of doing this

is showed in .30

Another option to build a heap consists on placing the ele-
ments in the correct position at the same time we are reading the
numbers. That could led us to a different heap, but still a valid one.

We can use any method to build the heap, as long as we don’t
break the rule that a node must be greater or equal that its children.
The maximum value will always be the root, no matter the method
chosen to construct the heap.

(a) Vector X in a tree structure be- (b) Vector X in a heap structure af-
fore swaps (not heap) ter swaps

Figure 4.3: Building a heap sort with the input data. A node is greater
or equal than its children.

The array representation for the heap in [£.3b]is the following:

X[0] X[ X[l X[3] X[4] X[5] X[6] X[7] X8 X[9)]
X=|9 8 7 6 5 0 4 2 1 3

Table 4.3: Heap represented with an array

The next step is to swap the first element of X (root node)
with the last element. Then remove the last element from the heap
because it is already in the right position of the array, and move
the new root to the correct position using swap operations. This
will convert the tree into a heap again. Continue doing this until
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all elements in the heap have been removed. Figure [£.4] shows the
different iterations of the Heap Sort.

ONNONN
(a) Swap nodes 3 and 9, and rearrange
the heap with the remaining nodes.
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(c) Swap nodes 2 and 7, and rearrange
the heap with the remaining nodes.
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(e) Swap nodes 0 and 5, and rearrange
the heap with the remaining nodes.
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(g) Swap nodes 1 and 3, and rearrange
the heap with the remaining nodes.
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(b) Swap nodes 1 and 8, and rearrange
the heap with the remaining nodes
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(d) Swap nodes 1 and 6, and rearrange
the heap with the remaining nodes
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(f) Swap nodes 2 and 4, and rearrange
the heap with the remaining nodes.

\
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® © 0
(h) Swap nodes 0 and 2, and rearrange
the heap with the remaining nodes.
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\ /

‘ /
J \ B
/ \ /
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(i) Swap nodes 0 and 1, and rearrange
the heap with the remaining nodes.

Figure 4.4: Iterations of heap sort

Because we are using a binary tree, the time complexity of
moving an element to the correct position in the heap is O(logn),
and because we need to do it for all n elements in the array, the
time complexity of the Heap Sort is O(nlogn). The code in
receives an array X of n elements, where (1 < n < 100) and print
the same array X, but with its elements sorted in ascending order.

Time Complexity: O(nlogn)

Input:
n: The number of elements in the array.
X: Array to be sorted.

Output:
The array sorted.

Listing 4.7: Heap Sort

#include <algorithm>
#include <cstdio>
#define N 101

using namespace std;

int X[N];
int n;

void heapSort();
void makeHeap();
void downHeap(int) ;

int main() {
int m;

// Read the number of elements and the array to be sorted
scanf ("/%d", &n);
for (int i = 0; i < mn; i++) {
scanf ("%d", &X[il);
}

// Apply Heap Sort
m = n;
heapSort();
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// Print the sorted array

for (int i = 0; i < m; i++) {
printf("%d ", X[il);

printf("\n");

return 0;

The heapSort function, first converts the array X into a heap
by calling the function makeHeap, then as explained before, the last
element and the first element are swapped, that will cause that the
last element to be in the correct position. The heap has to built
again, but leaving aside the last element. The process is repeated
until the array is completely sorted.

void heapSort() {
makeHeap(); // Convert the original array into a heap
while (n > 1) {
swap(X[0], X[n - 1]); // Swap the last element and the root
n--; // Ignore the last element from the heap
downHeap(0) ; // Place the current root in the correct position
}
}

Given an array X the makeHeap function converts X into a
heap. See the example in figure

void makeHeap() {
for (int i =n /2 -1; i > 0; i--) {
downHeap (i) ;
¥
}

The function downHeap is essential for the correct operation of
the program, it receives an integer k, and place the element Xj
in the correct position of the heap by doing the necessary swap
operations described in [£.2]

void downHeap(int k) {
int w =2 *x k + 1;
while (w < n) {
if (w+ 1 <n &k X[w+ 11 > X[w]) {
wHt;

}

if (X[k] >= X[wl) {
return;

}

swap(X[k], X[wl);
k w;
W 2 x k + 1;
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4.8 Sorting With the algorithm Library

Now that we know some of the most popular sorting algorithms,
we will see how to make our life easier when we have to sort a set
of comparable elements.

Most programming languages have a library that help us sort.
In C++ there is a library called algorithm that contains the sort
method that guarantees a complexity time of O(nlogn). The
interesting thing here is that this library allows us to customize
our own sorting rules.

In order to use the algorithm library we only have to add it
and use the sort method. Let’s see some code examples and take

a look to the comments inside the code.

Listing 4.8: Simplest sort function

// This example shows the simplest form to use sort function
#include <stdio.h>

#include <algorithm> // necessary to use the sort method
#define N 10

using namespace std;

void print(int *A, int length) {
for (int i = 0; i < length; i++) {
printf("%d ", A[il);
¥
}

int main() {
int arr[N] = {3, 5, 7, 8, 2, 1, 0, 9, 10, 11};

printf ("Unordered array:\n");
print(arr, N);

/* sort function uses two parameters, they are the initial
and final position of the elements that will be sorted */
sort(arr, arr + N);

printf("\n");
printf("Sorted array:\n");

print(arr, N);

return O;
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4.8.1 Overloading operator <

So far we have only ordered numbers in a non-decreasing way
and based on one parameter, but what if we want to sort in a
non-increasing way or taking two parameters into account, to
do that we can modify the behavior of the sort function by
overloading the operator <. Let’s review how to implement it
with the following two examples.

The first example in [£.9] sort an array in non-increasing order
by overloading the < operator.

Listing 4.9: Sorting in a non-increasing way

// This example shows how to sort an array in a non-increasing way
#include <stdio.h>

#include <algorithm>

#define N 10

using namespace std;

/* We need a structure to overload
the operator < */

struct _int {
int x;

};

// Function to print the array elements
void print(_int *A, int length) {
for (int i = 0; i < length; i++) {
printf("%d ", A[i].x);
}
}

/* Here we are overloading < operator.
What we are doing is simply converting
< operator to > operator.
In this way we can sort the elements
in non-increasing form.*/
bool operator<(_int A, _int B) { return (A.x > B.x); }

int main() {
_int arr([N] = {2, 5, 7, 7, 2, 1, 0, 9, 10, 11};
printf ("Unordered array:\n");
print(arr, N);

/* sort function uses two parameters, they are the initial and final
position

* of the elements that will be sorted */

sort(arr, arr + N);

printf("\n");

printf("Sorted array in non-increasing way:\n");
print(arr, N);

return 0;
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In the second example in[4.10] we sort an array of points, first in
increasing order according to their x-coordinate, and if two points
have the same x-coordinate, then they are sorted in increasing order
by their y-coordinate.

Listing 4.10: Sorting pairs in non-increasing form

// This example shows how to sort a list of pairs in non-decreasing way
#include <stdio.h>

#include <algorithm>

#define N 10

using namespace std;

/* We need a structure _pair
to overload the operator < */
struct _pair {
int x;
int y;
};

// Function to print the pairs
void print(_pair *A, int length) {
for (int i = 0; i < length; i++) {
printf("%d %d\n", A[il.x, A[il.y);
}
}

/* As the x parameter is the first criteria to sort,
we check first the ’x’ member, then if A and B have
the same ’x’ we compare ’y’ parameter, making ’y’
second sorting criteria. */

bool operator<(_pair A, _pair B) {

return (A.x < B.x || (A.x == B.x && A.y < B.y));

}

int main() {
// Pair list
_pair arr[N] = {{2, 3}, {5, 7}, {5, 2}, {1, 0}, {1, -1},
{-2, 2}, {-2, 0}, {-2, 0}, {0, 0o}, {0, 1}};
printf ("Unordered array of pairs:\n");
print(arr, N);

/* sort function uses two parameters, they are the initial and final
position

* of the elements that will be sorted */

sort(arr, arr + N);

printf("\n");
printf(
"Pairs sorted in non-decreasing order by x coordinate as first criteria
"
"and y coordinate as second criteria:\n");
print(arr, N);
return O;

}
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4.8.2 Adding a function to sort

Sometimes it is better to add a function instead of overloading an
operator, this is used when you need to sort a complex structure or
in a special way. For example suppose we have to sort characters,
digits [0-9] and letters [a-z][A-Z], in such way that the letters have
greater priority than numbers. To do that we need to implement a
function that allows us to alter the ASCII natural order, in which
the numbers come first than the letters. Let’s look at the code to
see how it works.

Listing 4.11: Sorting the letters first than the digits

// This example shows how to implement a custom function to sort
#include <stdio.h>

#include <algorithm>

#define N 10

using namespace std;

// Function to print the array elements
void print(char *A, int length) {
for (int i = 0; i < length; i++) {
printf("%c ", A[il);
¥
}

bool sortFirstLetters(char A, char B) {
if (A >= 0’ && A <= ’9°) {
if (B >= 0’ && B <= ’9’) {
// A and B are numbers
return (A < B);
} else {
// A is a number and B is a letter
return false;
}
}

if (B >= 0’ && B <= ’9’) {
// A is a letter and B is a number
return true;

}

// A and B are letters
return (A < B);
}

int main() {
// Character array
char arr(] = {°7’, °’5°, ’3’, ’1’, ’a’, ’n’, ’z’, A, °N’, °Z’°};
printf("Array as defined: \n");
print(arr, N);
printf("\n");

// Here we use the normal sort

sort(arr, arr + N);

printf("Sorted array according to ASCII table: \n");
print(arr, N);

printf("\n");
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// Here we use custom function in order to sort by our criteria

sort(arr arr + N, sortFirstLetters);

printf("Sorted array according to letters first than digits criteria: \n");
print(arr, N);

return O;

4.9 Chapter Notes

Fastest sorting algorithms run in O(nlogn) time, but they are
sometimes a little bit harder to implement. On the other hand,
algorithms that run in O(n?) time tend to be easier to implement,
but their performance is poor when dealing with a large amount of
data. For contests, when the number of elements to sort is greater
than 1000, we recommend not to use a O(n?) algorithm. In fact is
a good practice to use the sort function of the algorithm library
whenever is possible.

Is important to keep in mind those methods that are not based
on comparisons, like the Counting Sort. They are faster for some
situations and are easy to implement.

The book of Introduction to Algorithms [I] contains a deeper
explanation and analysis of the Heap Sort and Quick Sort algo-
rithms, and provides a great review of some techniques used to
sort in linear time like the Counting Sort. Sedgewick [5] makes an
analysis of different sorting methods, mentioning their advantages
and disadvantages, and include code for most of them written in
C/C++. Knuth [9] describes with great detail the performance
of different sorting algorithms, always providing a mathematical
perspective.

A brief explanation of sorting algorithms can be found in top-
coder tutorials [I0]. And some problems involving sorting and
searching can be found in the following online judges:

e https://uva.onlinejudge.org/index.php?option=com_
onlinejudge&Itemid=8&category=98

e http://acm.timus.ru/problemset.aspx?space=1&tag=
beginners

e https://leetcode.com/tag/sort/


https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=98
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=98
http://acm.timus.ru/problemset.aspx?space=1&tag=beginners
http://acm.timus.ru/problemset.aspx?space=1&tag=beginners
https://leetcode.com/tag/sort/
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Appendix [C] contains a set of problems with non-trivial solu-
tions that involve sorting.
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4.10 Exercises




5

Divide and Conquer

“It always seems impossible until it’s done.”
— Nelson Mandela

The Divide and Conquer technique is one of the most impor-
tant tools in algorithms, consists on taking a problem and divide
it in smaller sub-problems, and then those sub-problems can be
divided in more sub-problems, and so on. This is useful when
the original problem is hard to solve or solving it involves a high
computational cost, but the sub-problems on which it is divided
can be solved in an easier way or with less computational cost,
and the solution or those sub-problems can be used to solve the
original problem.

There is no rule that tell us when a problem must be solved
using Divide and Congquer, it is more about to be aware on which
cases can be used, because not all problems can be divided in
sub-problems, and always keeping in mind that the sub-problems
must be less-costly than the original problem, because in that case
it would be better to solve the original problem itself instead of
dividing it in more complex sub-problems.

In this section we will see problems that are solved using the
Divide and Conquer technique. Some of them are popular and easy
to implement like Binary Search, but other involves a more complex
solution. In either case, the goal is to give a general perspective of
the cases where it is a good option to use Divide and Conquer.

115
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5.1 Binary Search

Binary search finds an element in a sorted array. The idea of the
algorithm is to look the middle element, and see if it is smaller or
larger than the element we are trying to find, if it is smaller, then
keep the right half of the array and repeat the process, otherwise,
keep the left part of the array and do the same.

The algorithm consists on dividing the array in two halves,
until a single element is left, that means that in the first iteration
there are n elements, in the next one n/2, then n/4, and so on,
until n/2% = 1, where k is the number of times we divide the array.
Solving for k& we have that k = logn. So the time complexity for
the Binary Search is O(logn). The code in implements a bi-
nary search to find a number key in an array X in the interval [a, b].

Time Complexity: O(logn)
Input:
x: Previously sorted array.
a: Left index
b: Right index
key: The number to be found
Output:
The position where the element "key” was found. Otherwise
returns —1

Listing 5.1: Binary Search

int binarySearch(int X[], int a, int b, int key) {
int c;

while (a <= b) {
c=(a+b) /2

if (key == X[c]) {
return c;

} else if (key < X[cl) {
b=c-1;

} else {
a=c+1;

}

¥

return -1;

}
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5.2 Binary Exponentiation

Raising a number A to some power B doesn’t seem like a big prob-
lem, we just need to multiply it B times, but what if B = 10000000,
it would take a while to compute the result. The trick here is to
obtain the binary representation of the power B. For example, if
we want to find the value of 7%, we can do it in the traditional way

TP=7xTxTxTx7=16807

The total number of operations is 5. On the other hand, if
we represent 5 as a binary number, then we have that only two
multiplications are needed.

70 =7 x 7' = 16807
What about 737

T =7 x 7 x T
Only three multiplications are needed. Since the value of AZ
can be quite large, sometimes it is asked to return the result modulo
M, where M can fit in an integer variable. For that case is good

to keep in mind one of the properties of modular arithmetic which
states that

(a x b) mod m = ((a mod m) x (b mod m)) mod m. (5.1)

According to [5.] we only need to store the values of the
products that are being made. The program receives the
values of A, B and C and return the value of AZ mod M in the
way explained before. In variable S we store the result, A, B and
M will be used as mentioned before. Then as long as B is greater
than 0, we check the parity of B, if is odd means that in its binary
representation there is a 1 and we need to multiply by the current
power of A and apply modulo M to the result, the powers of A
will be A, A2, A* A8, and so on, we divide B by 2 because we are
using the binary representation of B.

Time Complexity: O(log B)
Input:

Three values: A, B, M
Output:

The value of ABMODM
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Listing 5.2: Big Mod (A” mod M)
int bigMod(int A, int B, int M) {
int S = 1;
A=AY%NM

while (B > 0) {

if B%2!'=0) {
S =(S *A) %M
}

A= (A% A) %M
B /= 2;
}

return S;

}

5.3 Closest Pair of Points

Algorithm that use a Divide and Conquer strategy to find the dis-
tance between the closest pair of points. The algorithm works in
the following way.

e Sort the points by their x coordinate.

e Divide an imaginary vertical line that divides the domain in
two parts.

e Find the closest pair of points in the left side.
e Find the closest pair of points in the right side.

e Verify if the closest pair of points are in different sides.

To sort the points we used the sort function of the algorithm
library, which is part of the STL, for that, we just need to overload
the operator <, and add the necessary rules, for this case we first
compare the x coordinate, and if there is a tie compare the y
coordinate.

In the source code of this algorithm showed in in each
iteration of the function closestPair we divide the current
domain in two equal parts until a pair of points or a single point
is left. If a single point is left, the function returns a big number,
indicating that the closest pair is not on that side. On the other
hand, if a pair of points is found, the function returns the distance
between them. Then we check pair of points formed by points
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from different parts to find if there is a closer pair of points. The
final result is the distance between the closest pair points.

Dividing the domain by two, as we have seen before has a
O(logn) time complexity, and searching if the closest pair of
points is formed by one point from the left side and another from
the right side has a complexity of O(n), that because the points
are previously sorted, making the algorithm to run in (nlogn) time.

Time Complexity: O(nlogn)
Input:

An integer n indicating the number of (z,y) coordinates. Then
n lines follow, each describing a (x,y) coordinate.
Output:

The distance between the closes pair of points. If that distance
is bigger than M AX, then it will print "INFINITY".

Listing 5.3: Closest Pair of Points

#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 10001
#define MAX 9999.99999
using namespace std;

class Point {
public:
double x;
double y;

Point(double x = 0.0, double y = 0.0) {
this->x = x;
this->y = y;

¥

bool operator<(const Point &b) const {
if (this->x < b.x) {
return true;
} else if (this->x > b.x) {
return false;
} else {
if (this->y < b.y) {
return true;
} else if (this->y > b.y) {
return false;
}
}
return false;
}
};

Point point[N];

double closestPair(long, long);



120 5. DIVIDE AND CONQUER

double distance(Point, Point);

int main() {
long i, n;
double d;

scanf ("%1d", &n);
for (i = 0; i < n; i++) {

scanf ("}1f %1f", &point[i].x, &point[i].y);
}

sort(point, point + n);
d = closestPair(0, n - 1);

if (d > MAX) {
printf ("INFINITY\n");
} else {
printf("%.41f\n", d);
}

return 0;

The function closestPair receives two integers a and b, and re-
turn the distance of the closest pair of points considering the points
with indexes in the interval [a,b]. If there is only one point, the
distance is infinite, if there are two points it returns the Euclidean
distance between them, and if there are more than two points it
separates the points in two halves and repeat the process recur-
sively for each half, finally it searches for a closer pair of points
taking one point from each half.

double closestPair(long a, long b) {
long i, j, k;
double d1, d2, d;
double xp;

if (a ==b) {
return MAX + 1.0;
¥

else if (b - a == 1) {
return distance(point[b]l, point[al);
} else {
d1l = closestPair(a, (a + b) / 2);
d2 = closestPair((a + b) / 2 + 1, b);
d = min(dl, d2);

j=(a+b) /2
xp = point[jl.x;

do {
k=(a+b)/2+1;
while (xp - point[k].x < d && k <= b) {
d1l = Distance(point[k], point[jl);
d = min(d, d1);
kt++;

}
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=
} while (xp - point[jl.x < d & j >= a);

return d;
}
}

The distance function receives two points and returns the Eu-
clidean distance between them.

double distance(Point p1, Point p2) {
double d =
sqrt((pl.x - p2.x) * (pl.x - p2.x) + (pl.y - p2.y) * (pl.y - p2.y));
if (d > MAX) {
d = MAX + 1.0;
}
return d;

}

5.4 Polynomial Multiplication (FFT)

A polynomial of degree bound n has the following form:

1 2
1"+ Ao+ -+ a1z + ag

This can be expressed as an array of coefficients a, where

a = [an—laan—%“-aalaao]

In the same way, a polynomial b of degree bound m, can be
expressed as

b= [bm—1,bm—2,...,b1,b0]

The sum and difference of two polynomials is done in linear
time, but the multiplication is done in O(nm) time, and the
resulting polynomial will have a degree bound of n + m. If both
polynomials have the same degree m, the resulting polynomial
would have a degree bound of 2n. This multiplication can be
expensive if n is large. A Fast Fourier Transform (FFT) will allow
us to do this multiplication in O(nlogn) time.

First we need to generate n points, w?, wl, - w?~1 where
n is a power of 2. Such points have the form e*™**/" for k =
0,1,...,n — 1. To interpret this formula, we use the definition of
the exponential of a complex number:
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e™ = cos(u) + isin(u)

The cancellation lemma tell us that

dk Kk
Wyp = Wy,
Also we know that
w?L =1
w? = -1

The Halving lemma says that

(wh2)" = (wh)”

2 k+n/2
= —1, then wn+"/ = fwﬁ

. n
Since wn/

The DFT

Recall we want to evaluate a polynomial

n—1
A(z) = Z a;x
§=0

of degree bound n at w9, wk, - w

7=1. Let us define the results
yi, for k=0,1,...,n—1 by

yk = A(wy)
n—1
_ capykd
= Z a;w, (5.2)
3=0
The vector y = [yo,yl, - ,yn—1] is the discrete

Fourier transform (DFT) of the coefficient vector
a=[an-1,0n-2,...,0a1,a0]. We also write y = DFT,(a).
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The FFT

By using the fast Fourier transform (FFT), we can compute
the DFT,(a) in time O(nlogn). We assume that n is an exact
power of 2.

The FFT employs a divide-and-conquer strategy, using the
even-indexed and odd-indexed coefficients of A(z) to define two
new polynomials of degree bound n/2

All(2) = ag + agz + aga® + - - - + ap_oa™/? 7!

A[l] (l‘) =a1 +azr + a5m2 4+ o4 an—1$n/2_1

then

Az) = AV(22) + zAM (22) (5.3)

1 ... n—1

n’

so that the problem of evaluating A(x) at w?,w
reduces to

1. Evaluating the degree-bound n/2 polynomials A% (z) and
All(z) at the points points

(wO)Q’(wl)27"' 7(w2_1)2 (5'4)

n

2. combining the results according to equation (5.3)).

By the halving lemma, the list of values (5.4]) consists not of
n distinct values but only n/2 complex roots of unity, which each
root occurring exactly twice.
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Algorithm 2 FFT(a)

n = a.length

if n ==1 then
return a

end if

Wy, = 627ri/n

w=1

alol = (ag, a2, ,an_2)

ol = (a1,a3, - ,apn_1)

yl = FFT(al)
yl = FFT(alY)
for k=0ton/2—1do

v =y +wy)

_ o [1]
Yk4+n/2 = Yy wyY;.
wW = Wwy,
end for
return y

Now that we complete the polynomial multiplication we must
convert from point-value form back to coefficient form. To accom-
plish this we must compute the inverse FFT (FFT~1), where:

n—1
1 Y
a; = E ypw;, ™ (5.5)
k=0

By comparing equations [5.2] and 5.5 we see that by modifying
the FFT algorithm to switch the roles of a and y, replace w, by
w; !, and divide each element of the result by n. Then we define

the multiplication of two polynomials of length n, where n is a
power of 2, as:

axb=FFT Y FFT(a) x FFT(b)) (5.6)

Appendix [D] contains the source code of a polynomial multi-
plication using the FFT.

5.5 Range Minimum Query (RMQ)

Given an array X of n elements and two positions or indices of
the array, the RM@ finds the minimum element in X between
those two positions. The algorithm is commonly used to handle
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multiple queries, since using a linear search for every query
represents a high cost, the RMQ builds a table M in O(nlogn)
time, and using that table each query can be answered in O(1) time.

Each row of M represents a starting position in the array, and
each column represents a power of two, in such a way that M; ;
contains the index of the minimum element between elements
X[, X[+ 1],..., X[i +27 —1].

The first thing to do is initialize the table M by filling its
first column, which is column zero, where M;, = i, for every
i =0,...n — 1. The next step is to fill column one, then column
two, and so on. Each element in the table is obtained by using
which stores in M; ; the index of the minimum element between
two sub-arrays, one formed by elements X[i],..., X[i + 277t —1],
and the other by X[i +2/71,..., X[i +27 —1].

Mi,j = argrnin (X[Mi,jflLX[Mi+2j*1,j—1]> (57)

Table shows the table M for the array X =
[2,4,3,1,6,7,8,9,1,7], that as we can see has dimensions of n x
logn. Another important thing to mention is that as we start fill-
ing the columns, more elements are left with an empty value, since
the intervals they represent are out of range, in fact the k" column
will contain only n — 2* 41 non-empty values. Meaning that filling
the whole table takes O(nlogn) time.

CO 0O O UL i W WO
CO CO = W W W Ww
W W W

© 00O Ui W~ O

Table 5.1: Table built using the RM@Q algorithm

To answer a query we just need to check if the range can be
covered with one single power of two step, if it is, we just need
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to get the value directly from the table, otherwise, if the range
cannot be covered by a power of two step, we can divide it in
two intervals and return the minimum of the two intervals. For
example, for the previous array, if we want to know what is the
minimum value in X between positions 2 and 6, we face with the
problem that we cannot obtain it directly from the table since
that range is not covered in the table, but we can return the
minimum value between M, o (which covers positions 2,3,4,5), and
M3 o (which covers positions 3,4,5,6), those intervals overlap, but
that doesn’t affect the result. The code in [5.4] fills table M given
an array X of n elements. On the other hand, code in prints
the index of the minimum element in X between position i and
position j.

Time Complexity: O(nlogn)
Input:
n. The number of elements in the array.
X. Array of n elements.
Output:
Constructs the table M used to find the minimum value in X
between two positions.

Listing 5.4: RMQ (Fill the Table)

// initialize M for the intervals with length 1
for (i = 0; i < n; i++) {

M[il[0] = i;
}

// compute values from smaller to bigger intervals
for (j = 1; 1 << j <=n; j++) {
for (i = 0; i + (1 << j) - 1 < n; i++) {
if (XMMLI0) - 111 < XMMIL + (L << (5 - 110 - 11D £
M[i1 03] = MOA105 - 135
} else {
MLl 03] = MO + (1 << (5 - NI - 115
}
}
+

Time Complexity: O(1)
Input:
X. Array of n elements
i,j. Two numbers where ¢ < j < n.
Output:
The index of the minimum value in the sub-array X;,..., X;.

Listing 5.5: RMQ (Answer a Query)
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ans = 0;
k = (long)floor(log(double(j - i + 1)) / log(2.0));
if (XMMOET[kIT <= XMM[j - (1 << k) + 11 [kID) {
ans = M[i] [k];
} else {
ans = M[j - (1 << k) + 1]1[k];
}
printf("%d\n", ans);

There is a more detailed explanation and implementation of
the RMQ algorithm in the topcoder forum [11], where they also
mention some applications of the algorithm, specially to solve the
Lowest Common Ancestor problem.

5.6 Chapter Notes

The goal of the Divide and Conguer technique is to divide a
problem in smaller and easier sub-problems, the sub-problems
can’t be harder to solve than the original problem.

Lee, Tseng, Chang, and Tsai [12] explain some problems solved
by the Divide and Conquer technique, among them, it is the
Closest Pair of Points problem, basically they give the steps that
we follow to code the solution presented in this chapter. Cormen,
Leiserson, Rivest, and Stein [I] give a great analysis of the Fast
Fourier Transform applied to polynomial multiplication, and also
includes an introduction to Divide and Conquer, and give some
rules about the time performances in certain cases.

In appendix [D] you can find problems solved using the Divide
and Conquer technique, including the implementation of the poly-
nomial multiplication algorithm using the FFT described in this
chapter.
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5.7 Exercises




6

Dynamic Programming

“It does mot matter how slowly you go as long as you do
not stop.”
— Confucius

Dynamic Programming (DP) is one of the most enjoyable areas
in the field of algorithms, because it involves a lot of thinking and
develops the creativity. Is not rare to face a problem that requires
to think on a solution for hours, days, weeks, o more, and all to
end with an implementation of just twenty lines of code or less.

DP can be defined as a tool that uses previously calculated
values to obtain a new value. In other words, it uses what is already
know in time ¢ to answer a question in time ¢ + 1. Most of the DP
problems have these two following properties:

1. A recursive function. A way to express a new value using
previously obtained values.

2. Memory usage. Is common the use of arrays and multidimen-
sional arrays to store the information needed to compute a
new value.

A simple example of a DP problem is to obtain the n** Fi-
bonacci number . Remember that the Fibonacci sequence F' start
with Fy = 1 and F; = 1, and Fj is the sum of the two previous
elements in the sequence, then we have that

F=1,1,2,3,58,13,21,34,55,. ..

129
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So, given a number n the objective is to obtain the value of
F,,. The greatest challenge when trying to find a DP solution for a
problem is to find the recursive function, sometimes is easy to see
it, but sometimes it isn’t, for this case is quite easy and it is

F,=F, 1+ F,_». (6.1)

The next thing is to use memory to store the values that are
needed to calculate a new value. In this step the programmer has
different options. Omne option is to use two variables and keep
updating them trough all the process until the n'® Fibonacci
number is obtained. Another option is to use an array of size
n 4+ 1, where the value on position k£ in the array corresponds to
the k** Fibonacci number.

There is no easy way to learn how to use DP, it more like a habit
that must be acquired trough practice and solving new problems,
and gradually it becomes easier to identify when is a good idea
to implement a DP solution. The goal for this chapter then is to
develop that habit, and improve the ability of the reader to think
outside the box and be able to identify when a DP solution is
needed.

6.1 Longest Increasing Sub-sequence
(LIS)

Given a sequence X of n integers, the objective is to find the longest
sub-sequence, X, , Xk,,. .., Xk,,, such that k; > k;_1 and Xy, >
Xk,_,. For example, for the following sequence:

3,8,2,7,3,9,12,4, 1,6, 10,

the longest increasing sub-sequence would be:

2,3,4,6,10.

The idea of the algorithm is to keep an array L where L;
represents the length of a LIS with X; as its final element. First
start L; with 1, then for every j from 0 to ¢ — 1, check if X; < Xj
and L; +1 > L, if that happens then make L; = L; +1. What we
are doing here is to check if we can add the element X; to the LIS
that ends in X, if we can, then check if that LIS is longer than
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the one we already have, and keep the longest one. The length of
the LIS of the whole sequence will be the maximum value in L.

For the sequence above, the array L will look like this.

X=|3|8|2 7|39 124 |1]6]10
L=(|1(2|1|2|2|3|4|3|1|4]5

Table 6.1: The value of L; represents the length of the LIS ending with
X;.

Since for every element we have to go trough for all its previous
elements. The number of operations is n(n — 1)/2. So the time
complexity for this algorithm is O(n?).

To keep track which elements are part of the LIS, every time
that X; < X; and L; +1 > L; we say that element j precedes
element ¢. In that way we only need the last element of the LIS
and then move backwards until reach the first element to obtain
the whole sequence. The code in implement the LIS algorithm
for an array of n elements.

Time Complexity: O(n?)
Input:
x: Vector of integers
n: Number of elements in x
Output:
The length of the LIS and the elements in the LIS.

Listing 6.1: Longest Increasing Sub-sequence

void LISO {
int i, j;
int max, pos;

memset (Prev, -1, sizeof(Prev));

L[0] = 1;
max = L[0];
pos = 0;

for (i = 1; i < n; i++) {
L[i] = 1;
for (j = 0; j < i; j++) {
if (X[j] < X[i] && (L[] + 1) > L[iD) {
L[il = LOj] + 1;
Prev[i] = j;
}
¥
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if (L[i] > max) {
max = L[i];
pos = ij;

}
}
printf("LIS length: %d\n", max);
printLIS(pos);
}
void printLIS(int pos) {
if (Prev([pos] != -1) {
printLIS(Prev[posl);
}
printf ("%d\n", X[posl);

}

6.1.1 Longest Increasing Subsequence with Bi-
nary Search

From the previous LIS algorithm, we can notice that the second

cycle makes the things to run quite slow, because to obtain the

value of L; we need to walk trough all the previous elements. This
makes the previous code useless when n is large.

Given that we are dealing with an increasing sub-sequence, we
can use a binary search to speed things up, and make this step
in logarithmic time. The idea is to keep an array of positions P,
where P; represents the position of the last element of a LIS with
length ¢ + 1. If there are more than one element, keep the smallest
element. Consider the following array:

X =[3,8,2,7,3,9]
For each number in the array we do the following:
1. Xo = 3. Insert the first element.
P =10]
Xp =3
2. X7 = 8. Is greater than the last element in Xp, so add it

P=0,1]
Xp = [378}
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3. X5 = 2. Is not greater than the last element, so find the first
element that is greater using binary search. In this case is
the 3, and because X5 is smaller, then replace it.

P =2,1]
Xp = [278}

4. X3 = 7. The first element that is greater is 8, then replace
it.

P =23
Xp=[2,7]

5. Xy = 3. The first element that is greater is 7, then replace
it.

P
Xp =]

6. X5 =9. Is greater than the last element, then add it.

P=1[2,4,5]
Xp = [2,3,9]

The array Xp represents the elements of X in the positions
indicated by P. The array P = [2,4,5] tells us that there is LIS
of length 1 (2) that ends with element X5. There is LIS of length
2 (2,3) that ends with element X4. And there is a LIS of length
3 (2,3,9) with X5 as its last element. The program in im-
plements a LIS with a binary search over an array X of n elements.

Time Complexity: O(nlogn)
Input:
x: Vector of integers
n: Number of elements in x
Output:
The length of the LIS and the elements in the LIS.

Listing 6.2: Longest Increasing Sub-sequence O(nlogn)

void LISO {
int a, b, c;
int tail;
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memset (Prev, -1, sizeof (Prev));
P[0] = 0;
tail = 0;

for (int i = 1; i < n; i++) {
if (X[i] > X[P[tailll) {
Prev[i] = P[taill;
P[++tail] = i;
continue;
}
for (a =0, b = tail; a < b;) {
c=(a+b) /2
if (X[P[cl] < X
a=c+1;
} else {
b =c;
}
}

L <

if (X[i] < X[P[al]) {
if (a > 0) {
Prev[i] = P[a - 1];
}
Plal = 1i;
¥
}

printf("LIS length: %d\n", tail + 1);
printLIS(P[taill);
}

void printLIS(int pos) {
if (Prev[pos] !'= -1) {
printLIS(Prev[posl);

}
printf ("%d\n", X[posl);

6.2 Longest Common Sub-sequence

(LCS)

A classic dynamic programming problem that consists on finding
the length of the longest common sub-sequence of two sequences X
and Y of size n and m respectively. A sub-sequence is a sequence
that can be obtained from another sequence by removing some of
its elements and preserving the order of the remaining elements.
The LCS of two sequences is a sub-sequence that is common to
both the sequences and has a maximal length, e. g. Consider the
following two strings:
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X = mexico

Y = america,
their LCS is meic.

The algorithm to find the LCS of two strings consists on
having a matrix C' of n x m, where C; ; represents the length of
the LCS using the first ¢ letters from X and the first j letters from
Y. So the result will be stored in position Cy, ,,

For the case where X; is equal to Y} that means that adding
letter X; and Y; increments the length of the LCS by one,
Ci’j = Cifl,jfl + 1.

And for the case where X; and Y} are different, we only need
to keep the greatest value in C so far, C; ; = max(Ci_1,;,C; j—1).

The matrix C for the example above would look like this.

a m e r i C a
0 0 0 0 0 0 0 0
0 =0 11 1 —»1 1 -1

0—f»0 | V1 82402402 42 »2
o400 [V |Y2»2 12 »2 2
i 0—=0 ?1 ?2—--2 3 =3 =3
c 040 [V [Y2f»2 [V3 [C4f»4q
0 00 | W |[Y2—>2 [V3 [Y4—1+4

x| |3

Figure 6.1: The value of C;; represents the length of the LCS consider-
ing the first ¢ characters of the word "mexico”and the first j characters
of the word ”america”.

Like in the LIS algorithm, to know the elements of the LCS
we just need to keep track of the location where each value comes
from. For this case it can come from the element in the left, top,
and top-left. The code in [6.3] returns the length of the LCS of two
strings X and Y with n and m characters respectively.
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Time Complexity: O(nm)
Input:

The variables X, Y, n and m are declared as global.
Output:

The length of the LCS

int LCSO {
memset(C, 0, sizeof(C));

Listing 6.3: Longest Common Sub-sequence (LCS)

for (int i = 1; i <= n; i++) {
for (int j = 1; j <=m; j++) {
if (X[i - 1] == Y[j - 1D {
C[il[j] = Ccli - 11[j - 1] + 1;
} else {
C[i1[j] = max(C[i - 11[j], Clil[j - 11)
}
}

return C[n] [m];

}

In case we want to print the LCS and not just its length, we
can use the same matrix C' defined in the code to find such

sub-sequence. The code in [6.4] just print one LCS, but there can
be more than one LCS with the same length.

Listing 6.4: Printing of the LCS
void printLCS(int i, int j) {
if G==011j==0 {
return;

}

if (Clil[j] ==
printLCS(i - 1, j - 1);
printf("%d ", X[i - 11);

} else if (C[il[j] == c[i - 11[j1) {
printLCS(i - 1, j);
} else {

printLCS(i, j - 1);

Cli- 110 - 11 + 1) {

}
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6.3 Levenshtein Distance (Edit Dis-
tance)

Named after Vladimir Levenshtein is a metric for measuring the
difference between two sequences. Given two strings of characters
strl and str2, Levenshtein distance is the minimum number of steps
needed to transform str! into str2 using three operations.

e Insertion. Insert one character in stri.
e Deletion. Remove one character from stri.
e Replace. Change one character of str! with another.

Suppose we want to change the string “LOVE” to “ALONE”.
Two operations would be needed.

1. Insert A in pisition 0.

2. Replace V witn N.

The algorithm is similar to the one used to find the Longest
Common Sub-sequence. 1t is also based on a matrix C, where C; ;
represents the minimum number of steps to transform the first ¢
characters of str! into the first j characters of str2. That means
that the result will be stored in C,, ,,.

The value of Cj ; is given by

Ci,j = min (Ci—l,j—l + k,min (Ci,j—l + 1, Ci—l,j + 1)) ,
where k is 1 if strl; # str2;, otherwise is 0.
Is also important to initialize the matrix C in the following way
Co,o =0

C()’i:i, izl,...m

Ci,ozi, i=1,...n

If strl; = str2; it doesn’t represent a cost and C;; would be
equal to C;_1 ;1. In case that strl; # str2; it means that we may
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need to replace the it" character of strl with str2; which would
we give us a cost of C;_1 ;1 +1. In any case we still need to check
if it is more convenient to remove character str; that will have a
cost of C;_1 j+1, or insert character str2; with a cost of C; j_1 +1.

To print the operations we just need to keep track of where
the value in C;; comes from. Starting from the element C), ,,
we need to move backwards, if C;; = C;—1 ;-1 + 1 then is a
replace operation, if C; ; = C;_; ; + 1 is a remove operation, and
if C;; = Cyj—1 + 1 is an insert operation. The code in @ reads
two strings str; and stro, and prints the minimum number of
operations to turn stry into stro, and the operations in the order
that they must be executed.

Time Complexity: O(nm), where n and m are the length of strl
and str2 respectively
Input:

Strings strl and str2.
Output:

The Levenshtein distance of strings strl and str2 and the steps
to transform strl into str2

Listing 6.5: Edit Distance

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100

using namespace std;

char stri[N], str2[N];
int C[N][N];
int n, m, len;

int editDistance();
void printEditDistance(int, int);

int main() {
scanf ("%s", strl);
scanf ("/s", str2);

len = 0;
n = strlen(strl);
m = strlen(str2);

printf("%d\n", editDistance());
printEditDistance(n, m);
return 0;
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Following the method described above the function editDis-—
tance computes the minimum number of operations to transform
strl into str2. The value of C[i] [j] represents the minimum
number of steps to transform the sub-string formed by the first ¢
characters of stri into the sub-string formed by the fist j charac-
ters of str2.

int editDistance() {
int k;

croifol = o;

for (int i = 1; i <= n; i++) {
crilfol = i;

¥

for (int i = 1; i <= m; i++) {
clol[il = i;

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
k = (stri[i - 1] == str2[j - 11) 72 0 : 1;
Clil[j] = min(min(C[i - 1J[j - 1] + k, C[i - 11[3] + 1), C[il[j - 1] +
1);
}
}

return C[n] [m];

}

The function printEditDistance prints the operations needed
to transform stri into str2 using the values obtained in editDis-
tance. For each location (7,j) in the matrix is possible to know
which operation was made by checking the value of C[i] [j] and
its neighbors.

void printEditDistance(int i, int j) {
int pos;

if (i ==0&& j == 0) {
return;

}

if (j >0 & C[il[j - 11 + 1 == C[i1[j1) {
printEditDistance(i, j - 1);
len--;
pos = i - len;
printf ("Insert %d,%c\n", pos, str2[j - 1]);
} else if (i > 0 & j > 0 & C[i - 1]1[j - 1] + 1 == C[i]1[j]) {
printEditDistance(i - 1, j - 1);
pos = i - len;
printf ("Replace %d,%c\n", pos, str2[j - 1]);
} else if (i > 0 & C[i - 11[3] + 1 == C[i1[j]) {
printEditDistance(i - 1, j);
pos = i - len;
printf("Delete %d\n", pos);



140 6. DYNAMIC PROGRAMMING

lent++;
} else if (i > 0 && j > 0)
printEditDistance(i - 1, j - 1);
}

6.4 Knapsack Problem

Consider the following problem.

Is Christmas Eve in Mexico and everyone is out celebrating
this special day, you are not the exception and you are in you
grandparent’s house eating tamales. Meanwhile a thief gets into
your house with the intention to steal different objects. Each
object has a specific value and weight; the thief’s knapsack only
can carry certain weight. The thief wants to maximize the value
of the objects he steal, in other words the thief prefers one object
with value of 100 than 99 objects with value of 1. What would be
the total maximum value the thief can steal that night? Could
you code and algorithm to solve the thief’s dilemma?

One approach to this problem using DP consists on using a
matrix C, where C;; represents the maximum value the thief
can get considering the first ¢ objects and using a knapsack of
capacity j. In that way the result will be stored in C), ,,,, where n is
the number of objects and m is the weight capacity of the knapsack.

Each element in the matrix is obtained using the following equa-
tion.

C . = Ci—1j W; > 7,
d max (Ci—1,5,Ci1j—w, + Vi) W; <4,

where W; and V; represents the weight and value of object @
respectively.

The algorithm stops until the matrix C' is filled, making the
time complexity of the algorithm equal to the dimensions of C,
which is O(nm). The algorithm in uses a vector V to store
the object values and a vector W to store the object weights and
returns the maximum value that can be carried in a knapsack of
capacity m.
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Time Complexity: O(nm), where n is the number of objects and
m is the weight the knapsack can carry
Input:
W: The weight of the objects
P: The value of objects
n: The number of objects
m: The capacity of the knapsack
Output:
The maximum value the thief can steal

Listing 6.6: Knapsack Problem

int knapsack() {
memset(C, 0, sizeof(C));
for (long i = 1; i <= n; i++) {
for (long j = 1; j <= m; j++) {
if (Wil > ) {
C[il[j] = cli - 11[3];
} else {
C[i][j] = max(C[i - 1]1[3], Cli - 11[j - W[ill + V[il);

}
}

return C[n] [m];

}

6.5 Maximum Sum in a Sequence

Given a sequence of numbers, which can be positive or negative,
find a sub-sequence of consecutive elements, which its sum is max-
imal. For example, consider the following sequence of 10 elements.

~2,3,-2,4,4, -8, —5,8, 7,1

The maximum sum that can be obtained is 9, which corre-
sponds to the sub-sequence: 3,-2,4,4. Any other sub-sequence will
have a smaller sum.

This problem can be solved in linear time by just keeping an
cumulative sum of all elements, and when that sum is smaller
than zero then reset it to zero. Just be careful with the case
where all elements are negatives. In that case the answer is the
greatest value. The program in [6.7] reads n numbers and returns
the maximum sum of consecutive elements.
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Time Complexity: O(n)
Input:

n: The number of elements in the sequence. Then n integers
are given.
Output:

The maximum sum that can be obtained from a sub-sequence
of consecutive elements.

Listing 6.7: Maximum Sum

#include <algorithm>
#include <cstdio>
#include <iostream>
#define oo 1000000
using namespace std;

int main() {
long n, num, s, maxValue;

scanf ("%1d", &n);

maxValue = -o00;
s = 0;
for (long i = 0; i < n; i++) {
scanf ("%1d", &num);
if (s + num > 0) {
if (num > s + num) {
s = num;
} else {
s += num;
}
maxValue = max(maxValue, s);
} else {
maxValue = max(maxValue, s + num);
s = 0;
}
¥

printf ("The maximum sum is %1d.\n", maxValue);
return O;

}

6.6 Rectangle of Maximum Sum

Given a n X n matrix of integers, the goal of this algorithm is to
find the sub-matrix whose sum of its elements is maximum.

The solution proposed here runs in O(n?), but the idea is the
same for the Mazimum Sum problem, to keep an cumulative sum
and reset it when it is smaller than zero. Do it for every column
for every sub-matrix.
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Consider the following matrix.

4 -1 3 -8 2
6 -4 T 3
0 -8 1 1 3
9 -5 -7 -4 0
1 -1 -4 4 3

Figure 6.2: The matrix can contain positive and negative numbers

For the matrix in [6.2] the maximum sum in a sub-matrix is 20
that corresponds to the sub-matrix formed by the first column.
The solution showed in [6.§] receives a square matrix of size n as
input, and prints the maximum sum that can be found inside a
sub-matrix.

Time Complexity: O(n?)
Input:
n: The size of the matrix
x: The matrix of integers
Output:
The sum of the elements inside the rectangle of maximum sum

Listing 6.8: Rectangle of Maximum Sum

#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 101
#define oo 32767
using namespace std;

int x[N][N];
int u[N];

int main() {
int n, maxValue;

scanf ("%d", &n);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
scanf ("%d", &x[il[j1);
x[11[3] += x[1i - 11[j];
}
}

maxValue = -00;
for (int i = 0; i < n; i++) {
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for (int j =i + 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
ulk] = x[j1[k] - x[i][k];
if (ulk - 11 > 0) {
ulk] += ulk - 1];
}
maxValue = max(maxValue, ulk]);
}
}
}

printf("%d\n", maxValue);
return 0;

}

6.7 Optimal Matrix Multiplication

Given a sequence of n matrices, where the number of rows of
matrix ¢ is equal to the number of columns of matrix i — 1. Our
task is to choose the location of open and closed parenthesis in
order to minimize the number of multiplications. For example,
consider the matrices A, B and C with sizes 5 x 10,10 x 20 and
20 x 35 respectively.

If we choose the arrangement A x (B x '), the number of mul-
tiplications is 8750. On the other hand, if we choose (A x B) x C
the number of multiplications is 4500, making this a better solution.

We can write the sizes of the matrices in a single vector A,
where the size of matrix ¢ has size A;_1 X A;, then the number of

operations needed to multiply matrix ¢ with matrix ¢ 4+ 1 is given
by Ai—1 x A;i X Aiq1.

The algorithm goes like this. Suppose there is a n X n matrix X,
where X; ; represents the minimum number of operations needed
to multiply the matrices in the interval [i,j]. The idea is to up-
date matrix X in each iteration of the algorithm according to this
formula.

Xi,j = min (Xi}j, Xi’}g + Xk+1,j + A1 x A % AJ) (62)
The total number of iterations needed is n — 1. In the first iter-
ation, segments of length 2 will be updated, in the second iteration

segments of length 3 will be updated and so on.
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X12,X03,...,Xpn_1n Values updated in the iteration 1
X138, X04,..., Xp_2p Values updated in the iteration 2

Xin Values updated in the iteration n-1

Table 6.2: Iterations of the Optimal Matrix Multiplication problem

The code in reads an array A of n elements, (2 < n < 20),
representing the dimensions of the matrices as explained before,
and prints the minimum number of multiplications needed and a
representation of how the multiplications should be made.

Time Complexity: O(n?)
Input:

n: The number of matrices

A: The size of the matrices
Output:

The minimum number of multiplications needed and the se-
quence of matrices with the parenthesis located in the optimal po-
sition.

Listing 6.9: Optimal Matrix Multiplication

#include <cstdio>
#include <cstring>
#include <iostream>
#define N 20
#define oo 1000000
using namespace std;

int X[N][N], S[N][N];
int A[N];

int matrixMultiplication(int);
void printSequence(int, int);

int main() {
int n;

scanf ("%d", &n);

for (int i = 0; i < mn; i++) {
scanf ("%d %d", &A[i], &A[i + 1]1);

¥

printf("%d\n", matrixMultiplication(n));
printSequence(l, n);

printf("\n");

return O;

}

int matrixMultiplication(int n) {
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int j, val;

memset (X, 0, sizeof(X));
for (int 1 = 2; 1 <= n; 1++) {
for (int i = 1; i <=n - 1 + 1; i++) {
j=i+1-1;
X[i1[3] = oo;
for (int k = i; k <= j; k++) {
val = X[i][k] + X[k + 1J[j] + A[i - 1] * A[k] * A[j];
if (val < X[i1[j1) {
X[41[j] = val;
S[il1[j] = k;
}
}
}
}
return X[1][n];
}

void printSequence(int i, int j) {

if (i ==j) {
printf("AJ4", 1i);

} else {
printf (" (");
printSequence(i, S[il[jl);
printf(" x ");
printSequence(S[il [j] + 1, j);
printf(")");

6.8 Coin Change Problem

Given a bottle with an infinite amount of coins of different
denominations, in how many ways can you pay a certain amount
of money, using just the coins of that bottle?

Suppose there are three kinds of coins of 1, 2, 5 cents and we
have an infinite amount of them, and we want to know in how many
ways we can pay 7 cents. It results that there are 6 ways to pay it.

e Seven 1 cent coins.

Five 1 cent coins and one 2 cents coin.

Three 1 cent coins and two 2 cents coins.

e One 1 cents coin and three 2 cents coins.
e Two 1 cent coins and one 5 cents coin.

e One 2 cents coin and one 5 cents coin.
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Consider the following problem.

Mexico’s currency consists of $100, $50, $20, $10, and $5 bills
and $2, $1, 50c, 20c, 10c and 5¢ coins. Program determines
for any given amount, in how many ways that amount may be
completed. The input consists of a real number no greater than
$300.00. Such amount will be valid, that is, it will be a multiple of
5¢. The Output is a single line consisting of the number of ways
in which that amount may be completed.

The solution for this problem is similar to the one for the Knap-
sack problem, but this time the number of ways in which ¢ Mexican
pesos can be completed by adding coin k to the currency is given
by:

1 1 =0
X; = X, i<k
Xi+Xip 12k

notice that in the beginning X must be initialized with zeros.

Listing 6.10: Coing Change Problem

#include <cstdio>
#include <cstdlib>
#include <iostream>
#define N 30001
#define M 11

using namespace std;

long long C[M] = {10000, 5000, 2000, 1000, 500, 200, 100, 50, 20, 10, 5};
long long X[N];

int main() {
long long k, money;

double num;

// We can pay O dollars in one way

X[ol = 1;
for (long long i = 0; i < M; i++) {
k = C[il;

for (long long j = k; j < N; j++) {
X[31 += X[j - k1;

}

while (scanf("%1lf", &num) == 1) {
money = (long long) (num * 100.00000001) ;
if (money == 0) {
break;
¥
printf("%11d\n", X[moneyl);
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return 0;

6.9 Chapter Notes

The difficult part in dynamic programming problem is first to
realize that it is in fact a dynamic programming problem, and
second, to find the recursive formula, because sometimes there is
this feeling that a problem has a dynamic programming solution,
but is hard to see it. Well the only way to solve this problem is to
practice, practice, and practice.

There is a section dedicated to dynamic programming in the
book ”Introduction to Algorithms” [1], there we can find a analytic
description of some famous problems. Also we recommend to
visit the forums of the different online judges, there we can find
information and tricks that don’t appear in any book.

Some online judges have their problems divided by category,
bellow there are a couple of links containing only dynamic pro-
gramming problems.

e http://acm.timus.ru/problemset.aspx?space=1&tag=
dynprog

e https://uva.onlinejudge.org/index.php?option=com_
onlinejudge&Itemid=8&category=114


http://acm.timus.ru/problemset.aspx?space=1&tag=dynprog
http://acm.timus.ru/problemset.aspx?space=1&tag=dynprog
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=114
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=114
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6.10 Exercises
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Graph Theory

“The secret of getting ahead is getting started.”

— Mark Twain

Graph Theory is one of the areas with more applications, from
image processing to social networks. A graph is no more than
nodes or vertices that can be connected by edges, but what they
represent is what makes them so important. For example, in a
social network every individual can be seen as a node, and if two
individuals are friends, then we can connect the corresponding
nodes with an edge. Another example can be the cities in a
country, each city can be represented as a node, and the roads
connecting two cities represents an edge. Figure shows a graph
representing a map, where the countries are the nodes and edges
indicate that two countries have a border in common.

151
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Figure 7.1: smallGraph representing a map, where countries are
represented as nodes and edges indicate that two countries share a
border.

During this chapter we will see different kind of graphs and
learn different algorithms for specific problems, that is why is
important to define some concepts about graphs first.

1. Bidirected Graph. In this graphs an edge connecting node
a with node b, also connects node b with node a. So we can
go from a to b and from b to a.

2. Directed Graph. Here the edges have a direction, if an edge
connects node a with node b, then we can go from a to b, but
not the other way around. The edges on this kind of graphs
are represented with an arrow indicating the direction.

3. Weighted Graph. For this kind of graphs the edges have a
weight or cost associated to it. For example, traveling from
New York to Boston has some toll cost, well, this can be seen
as two nodes (New York and Boston) connected by and edge
(road) with a certain cost (toll).

In some cases there can be combinations of different graphs,
like a directed and weighted graph, with edges having a direction
and a cost. Along this chapter we will refer to the number
of nodes in a graph with letter n, and the number of edges
with letter m. Following we list other concepts that are important
to know about.
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e Path. It’s a series of edges that take us from an initial node
to a destination node.

e Cycle. It’s a path where the destination node is the same as
the initial node.

e Degree. The degree of a node is the number of edges incident
to that node.

e Eulerian Path. A path that travels across all the edges in
the graph only once.

e Eulerian Cycle. A cycle that go through all the edges in
the graph only once.

e Hamiltonian Path. A path that pass through all the nodes
in the graph only once.

e Hamiltonian Cycle. A cycle that visits all the nodes in the
graph only once.

e Complete Graph. A graph where all nodes are connected
directly. A complete graph contains n(n—1)/2 edges exactly.

e Connected Graph. In this graphs there is always a path
between any pair of nodes. In other words, it is always pos-
sible to reach one node from another node in the graph.

e Disconnected Graph. A graph that is not connected.
Meaning that there is at least one pair of nodes (a,b) such
that there is no path between node a and node b.

e Cut. A cut is a set of edges that if removed, the vertices are
separated in two disjoint sets.

e Minimum Cut. Is the cut whose sum of the edge weights
is minimal.

e Directed Acyclic Graph (DAG). It’s a directed graph
without cycles.

7.1 Graph Representation

There are different methods to represent a graph in a program,
two of the most common are adjacency matriz and adjacency list,
which will be explained in this section using graph in figure
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Figure 7.2: Connected graph with 8 nodes and 8 edges.

7.1.1 Adjacency Matrix

Is a boolean matrix A where each row and each column represent a
node, and the value stored in the cells indicates if there is an edge
between a pair of nodes. If node ¢ and node j are connected by and
edge then A; ; = 1, otherwise A; ; = 0. For bidirectional graphs
the adjacency matrix is symmetric. Below is the adjacency matrix
for the graph in figure

>

o|lo|olrlololol~W
o|lo|lrlolo|lolol 0
o|lr|o|lo|lolo|lol~g
olo|rlolo|lo—olH
—lolo|l~lol~lo ol
olo|lo|lo~lolololf
ololrloloololo X

=ioliolloliwliellesl g

(en) Henl New) Rawl) ol Bl Bl Rl

Table 7.1: Adjacency Matrix for graph in

The main advantage of using an adjacency matrix is that
finding out if two nodes are connected by an edge is a O(1)
operation, because we just need check the value of one specific cell.

When an adjacency matrix contains few non-zero elements we
said that it is a sparse matrix. Sparsity in a matrix is a situation
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that we want to avoid, since we require a high amount of memory
(O(n?)) to represent few edges, since most of the cells are 0’s. For
this case using an adjacency list would be a better choice.

7.1.2 Adjacency List

Another way to represent a graph consists on having a list for each
node in the graph. This list will contain the nodes to which one
specific node is connected with. The adjacency list for graph is
the following:

)

s

TQHEmOQW >
HOQWE > W
EHQTEQ

Table 7.2: Adjacency List for graph in

An adjacency list can be implemented in different ways, it can
be an array of linked lists, or a vector of vectors, as long as it uses
dynamic memory to store the information. In the book you will
commonly see it as a vector of lists.

Adjacency lists are ideal when the number of nodes is greater
compared with the number of edges in the graph, avoiding the
problem of sparsity in the adjacency matrix.

To find out if node ¢ and node k are connected, we must traverse
the whole list of node i to check if node j is contained in it. This
is a O(m) operation, where m is the size of the list of node 1.

7.2 Graph Traversal

Two of the most common methods for traversing a graph are
the Depth First Search (DFS) and the Breadth First Search
(BFS). The first one uses a stack in its implementation, and the
other one uses a queue. Both algorithms need a starting vertex
and on each iteration the element a the front/top is removed
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and the vertices adjacent to it that have not been added before
are inserted into the data structure. The process continues un-
til all the vertices have been explored and the stack/queue is empty.

The difference between these two methods is that DFS explores
one branch of the graph until it cannot advance anymore and then
returns and try to explore another branch. On the other hand,
BF'S explores the graph by levels, first the initial vertex, then the
vertices at a distance of 1 from the initial vertex, then the vertices
at a distance of 2 from the initial vertex, and so on. Let’s define
the stack for the DFS as S and the queue for the BFS as (), and
using the graph in with vertex A as the initial vertex, the
graph traversal using both methods is presented in table [7:3] For
this case the nodes are inserted into the data structure used in
lexicographical order.

DF'S (stack) | BFS (queue)
S=14) Q=11
S=[D,C,B] | Q=[B,C,D]
S=|G,C,B] | Q=I[C,D,E]
S =[C, B Q=[D,E,F]
S =[F,B] Q= [E,F,G
S=[H,E,B] | Q=IF,G]
S:[EvB] Q:[GvH]

S =[B] Q = [H]
S=1 Q=]

Table 7.3: Graph Traversal for DF'S and BF'S

The way in which the traversal is made is different in both
algorithms, the nodes in red are the ones that are been ex-
plored. For the DFS the order on which the vertexes are visited
is A,D,G,C,F,H,E,B. On the other hand, for the BFS the order is
A,B,C,D,E,F,G,H. So depending on the problem it will be more
convenient to use one method then the other, but both of them
has the same time complexity.

7.2.1 DFS

The program in implements a DFS starting from node 0 on a
graph G with nodes numbered from 0 to n—1, and prints the nodes
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as they are visited. The time complexity of the implementation
is O(n?), but if we use an adjacency list instead of an adjacency
matrix it runs in O(n 4+ m) time.

Time Complexity: O(n?)
Input:

Two numbers n (1 < n < 100),and m (1 < m < n(n —1)/2),
indicating the number of vertices and edges respectively. Then
follows m lines, each with two numbers a and b, indicating that
there is an edge that connects vertex a with vertex b, and in the
other way around.

Output:

The nodes that were found by the DFS in the order they were

visited.

Listing 7.1: DFS

#include <algorithm>
#include <cstdio>
#include <stack>
#define N 101

using namespace std;

stack<int> S;

int GIN][N]; // Adjacency matrix

int V[N]; // Visited nodes

int n, m; // Number of nodes and edges

void DFS(int);

int main() {
int a, b;

scanf ("%d %d", &n, &m);

for (int i = 0; i < m; i++) {
scanf ("%d %d", &a, &b);
G[al[b] = G[b][a] = 1;

}

DFS(0); // Start a DFS from node 0
return 0;

}

void DFS(int a) {
int v;

Vial = 13

S.push(a);

while (!S.empty()) {
v = S.top(); // Get the elemet in the top
S.pop(Q); // Remove the top element

printf ("%d\n", v);

for (int i = 0; i < n; i++) {
if (G[vl[i] == 1 && V[i] == 0) {
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V[l = 13
S.push(i); // Add ajacent node to the top
}
}
}
}

7.2.2 BFS

The code in implements a BFS, and as we can notice it
is almost equal to the code in but instead of using the
library stack we use the library queue, and instead of using a
stack S we use a queue ). This will cause that every time we
execute Q.push(a) the node a will be added at the end to the
queue. The input of the program is a graph G = {V,E} and
prints the nodes as they are visited using node 0 as the initial node.

The time complexity is the same as the DFS, using an adja-
cency matrix we obtain more simplicity but also we get a time
complexity of O(n?), which is worst than the O(n + m) we get by
using an adjacency list instead.

Time Complexity: O(n?)
Input:

Two numbers n (1 < n < 100), and m (1 < m < n(n —1)/2),
indicating the number of vertices and edges respectively. Then
follows m lines, each with two numbers a and b, indicating that
there is an edge that connects vertex a with vertex b, and in the
other way around.

Output:

The nodes that were found by the BFS in the order they were

visited.

Listing 7.2: BFS

#include <algorithm>
#include <cstdio>
#include <queue>
#define N 101

using namespace std;

queue<int> Q;

int G[N][N]; // Adjacency matrix

int V[N]; // Visited nodes

int n, m; // Number of nodes and edges

void BFS(int);
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int main() {
int a, b;

scanf ("%d %d", &n, &m);

for (int i = 0; i < m; i++) {
scanf ("%d %d", &a, &b);
Glal[b] = G[bl[al = 1;

BFS(0); // Start a BFS from node 0O
return 0;

}

void BFS(int a) {
int v;

Vlial = 1;

Q.push(a);

while (!Q.empty()) {
v = Q.front(); // Get the elemet in the top
Q.pop(Q); // Remove the top element

printf ("%d\n", v);

for (int i = 0; i < n; i++) {
if (GLv]l[i] == 1 && V[i] == 0) {
V[i] = 1;
Q.push(i); // Add ajacent node to the bottom
}
}
¥
}

7.2.3 Topological Sort

Topological Sort is an application of DFS. Consider a series of tasks
that must be accomplished in certain order, for example Suppose
there are four tasks: A,B,C,D. and A must be accomplished
before tasks C' and D, and task D must be accomplished before
task B. You need to find a proper order to finish all tasks without
breaking any rule. One possible solution is ADBC. Meaning that
first we finish task A, then move to task D, then to task B, and
finally task C. That solution doesn’t break any constraint. Other
solutions are: ACDB, and ADCB.

These rules can be seen as a directed graph, in case that task
A comes before of task B, there is an edge that goes from node
A to node B. With the graph representation it is possible to use
any of the traversal methods seen so far, but for the case of the
Topological Sort a DFS is needed, and the solution is obtained
by adding into a stack the visited nodes until all their respective
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adjacent nodes have been explored.

Figure 7.3: Directed graph indicating the order in which a set of tasks
must be executed. Task A must be executed before task B and task
C. Task D must be executed after tasks B and C, and task F must be
executed after tasks B and D.

In the graph a possible DFS traversal can be ACDEB,
and if each node is added into a stack once all their adjacent nodes
have been explored that stack will look like this: ABCDEFE, which
is a solution for the Topological Sort problem.

The time complexity to find a topological sort in a directed
graph is the same for the DFS. The program in [7.3] shows a
recursive implementation of DFS and stores in stack S a valid
topological sort for a given graph G.

Time Complexity: O(n?)

Input:
n: Amount of nodes in the graph. (1 <n < 100).
G: Adjacency matrix of the graph.

Output:
S: Stack with a valid Topological Sort.

Listing 7.3: Topological Sort

#include <stack>
#define N 101
using namespace std;

stack<int> S; // Topological sort
int V[N]; // Visited nodes
int GIN][N]; // Adjacency matrix
int n; // Number of nodes
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void Topological_sort() {
for (int i = 0; i < n; i++) {
if (V[i] == 0) {
DFS(i);
}
}
}

void DFS(int k) {
Vik] = 1;
for (int i = 0; i < n; i++) {
if (G[k][i] == 1 && V[i] == 0) {
DFS(i);
}
}
S.push(k) ;
}

7.3 Disjoint Sets

For some problems we need to join two sets into a single one and
find if a certain element is part of a certain set. If the number of
instructions is large, an ordinary graph traversal such as DFS or
BFS would be too expensive, so we need something faster. One of
the most popular algorithms is the Union-Find algorithm that will
be described ahead. Union-Find is considered a data structure as
well. Basically the structure itself is the solution for the problem
that poses if two nodes are in the same connected component. It
is a quite simple and elegant structure.

Many of the discoveries in the disjoint-set data structures are
due to Robert E. Tarjan [I3], whom in 1975 found the upper
bound of the time complexity for the operations on any disjoint
set data structure satisfying certain conditions.

7.3.1 Union-Find
As its name indicates, this algorithm consists on two main steps.
1. Union. Join two sets into a single one.

2. Find. Finds the set to which a given element belongs to.

At the beginning every element is in a different set. A set can
be seen as a tree initially with zero height and with just one node,
which is the root. To connect element a with element b, we first
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must find the set of each element, here enters the Find operation.
Finding the set is equal to finding the root of the tree, if the root
is the same for the two elements, then they are already part of the
same set. If the root is different then we do the Union operation,
which consists of merging both trees in a single one. For this we
ask for the height of each root and make the root with smaller
height child of the root with larger height. For the case where
both roots have the same height any of them can be child of the
other, just remember to increase the height of the root selected as
parent.

Consider a graph with 5 nodes and no connections, like the one
showed in figure Each one of these nodes have a reference to
its parent node, which at the beginning is the node itself, and all
of them have zero height.

P:E

P:A P:B P:C P:D
H: 0 H: 0 H: 0 H: 0 H: 0

Figure 7.4: At first the parent of each node is the node itself, and all
nodes have zero height.

If we add a connection between node A and node D, since both
of them have zero height any of them can be the root, for this case
A will be the root and it will have a height of 1. If then we connect
node D and node E, since the root of D is A, and A has a larger
height than node E, then A will be the parent of E. See figure [7.5]
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A
1

P:
H:

Figure 7.5: Graph resulting from connecting nodes A — D and D — E
using the Union-Find algorithm. Node D and E have node A as their
parent, and node A has a height of 1. The directed edge represents a
parent-son relationship between nodes.

One application of the The Union-Find is to find the number
of Eulerian cycles in a graph which is obtained by [7.1]

#FEulerianCycles = 2% — 1, (7.1)

where k is the number of times a connection of two elements of
the same set is created. The algorithm in [7.4] represents a general
implementation of the Union-Find method, which can be adapted
to different applications.

Time Complexity:

Union: O(1)
Find: O(logn)
Input:

For every node x added into the graph call the method
makeSet (x).

For every connection between two nodes a and b call method
unionSet(a,b).
Output:

Depends on the problem, usually the Union-Find algorithm is
used when there are a large amount of queries.

Listing 7.4: Union-Find

#define N 1000
int p[N], rank([N];

void makeSet(int x) {
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plx] = x;
rank[x] = 0;
}

void link(int x, int y) {
if (rank[x] > rank[yl) {

plyl = x;
} else {
plxl =y;

if (rank[x] == rank[yl) {
rank[y] = rank[y] + 1;
}
}
}

int findSet(int x) {
if (x !'= plx]) {
plx] = findSet(p[x1);
}

return p[x];

void unionSet(int x, int y) { link(findSet(x), findSet(y)); }

The function link in[7.4] receives two root nodes, z and y. The
height of node k is stored in rank[k]. If rank[x] is greater than
rank[y] then z becomes the parent of y. On the other hand, if
rank[y] is greater than rank[x] then y becomes the parent of z.
If both root nodes have the same height any of both nodes can be
the parent, so for this case we decided to set y as parent of x, that
causes that the value of rank[y] increases in one.

7.4 Shortest Paths

In this section we will cover some of the most popular algorithms
to find the shortest path in a graph. These algorithms work for
weighted graphs, meaning that edges have a certain weight or cost.
A path is a set of edges leading from vertex A to vertex B, and the
cost of the path is the sum of the weights of all edges that form
that path. Then, the shortest path between two nodes is the path
with minimum cost. Consider the graph in Here the cost of
the shortest path that leads from node 0 to node 5 is 15, and the
pathis 0 —3 —2—5.



7.4. SHORTEST PATHS 165

Figure 7.6: In a weighted graph edges have a cost associated to it. The
cost of a path is the sum of the cost of all edges conforming that path.

7.4.1 Dijkstra’s Algorithm

Published by Edsger W. Dijkstra in 1959 [14]. This algorithm
finds the shortest paths between an initial node to all other nodes.
Because of its greedy behavior, it only works for positive weights.

Given a graph G with n nodes numbered from 0 to n — 1, an
initial node a, and with G;; = oo if there is no connection between
node ¢ and node j. The first step is to initialize the distance vector
D and visited vector V as follows:

0 i=a

W:()’Di:{oo i#£a

for every ¢ from 0 to n — 1.

When V; = 1 we can be sure that the value stored in D, contains
the minimum cost to go from node a to node i. The algorithm finds
the value of k, where Dy, is minimum, and Vi = 0. Once it is found
is marked as visited (V;, = 1) and the value of D is updated using
the following formula:

D; =min (D;, Dy + Gy;), where V; =0 (7.2)

The process is repeated until all nodes are visited or until a
value of k can’t be found (disconnected graph). At the end the
value of D; stores the minimum cost to go from node a to node
i. Figure [7.7] shows every iteration of Dijkstra’s algorithm for the
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graph in [7.6] with node 0 as the initial node.
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Figure 7.7: Tterations of Dijkstra’s algorithm for graphwith node 0
as initial node.

Finding the minimum number in D take O(n) using a Linear
Search, doing that n times makes the algorithm to run in O(n?).
The code in [7.5 implements a generic Dijkstra algorithm for a
weighted graph W with a given initial node.

Time Complexity: O(n?)
Input:
n. The number of nodes in the graph. (1 <n < 100).
W. The matrix of weights.
a. The initial node.
Output:
D. the minimum cost to reach some node i from node a is
stored in D;.

Listing 7.5: Dijkstra

#include <algorithm>
#define N 101

#define oo 10000000
using namespace std;

int D[N]; // Array of distances

int VINI; // Array of visited nodes
int WIN][N]; // Adjacency matrix

int n; // Number of nodes

void dijkstra(int a) {
int pos;

for (int i = 0; i < n; i++) {
D[i] = oo;
VI[il 0;

}

D[a] = 0;
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for (int i = 0; i < mn; i++) {
pos = minVertex();
if (pos == -1) {
break;

}

Vlpos] = 1;

for (int j = 0; j < n; j++) {
if (V[j] == 0) {

D[j] = min(D[j], DIpos] + Wlposl[jl);

}

}

}
}

int minVertex() {
int minVal, pos;

minVal = oo;
pos = -1;
for (int i = 0; i < mn; i++) {
if (V[i] == 0 && D[i] < minVal) {
minVal = D[i];
pos = 1ij;
}
¥
return pos;

}

7.4.2 Bellman-Ford

The Bellman-Ford algorithm was published in separate works by
Richard Bellman [I5], and Lester Ford Jr. [16]. The algorithm
finds the cost of the shortest paths from a source vertex to all other
vertices. At the contrary of Dijkstra’s Algorithm, this algorithm is
capable to handle negative weights and identify if a negative cycle
exists.

Using a vector of distances D where D; represents the minimum
cost to travel from the starting node to node i. The algorithm goes
trough every edge in the graph, if there is an edge that connects
node a with node b and has a cost w, the vector D is updated as
follows:

Dy = min(Db, D, + U}) (73)

The process is repeated n times for each edge to ensure that
the value of D; contains the minimum cost to go from the initial
node to node i. The equation is called edge relaxation.
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To verify if there is a negative cycle in the graph an extra
relaxation of the edges is made, and if a value of D changes then
there is a negative cycle. That happens because in every iteration
the algorithm finds a better path by looping in that negative cycle
causing the vector D to change every time.

Figure 7.8: Directed graph with negative weights.

Using the graph defined in to find the minimum cost to
travel from node 0 to the rest of the nodes. The distance vector D
is initialized as following:

D, = 00 Z%O
0 72=0

The next step is to perform the edge relaxation, which can be
in any order, for example:

1—4 D4y=min(co,00—-9)=00—9=00
0—1 D;=min(oo,0+12) =12

1—3 D3z=min(c0,12—-3)=9

2—>4 Dy=min(co,00+6) =0

0—2 Dy =min(co,0—-1)=-1

4—3 D3=min(9,00+10) =9

1—2 Dy=min(—-1,12+5) = -1

The resulting vector of distances after the edge relaxation is

O[T [9]]

To assure that vector D contains the minimum cost to travel
from node 0 to the rest of the nodes, we need to do the edge
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relaxation at least n times. For this example, with one more edge
relaxation is enough and it the vector will look like this:

(0[12[ 193]

Notice that we must be careful to set the value of oo at the
moment to code the Bellman-Ford algorithm, a small value can
return a wrong answer.

The edge relaxation runs in O(m) time, and it is performed n
times, which makes the time complexity of the algorithm to be
O(nm). The Bellman-Ford algorithm is showed in and it uses
an array F to store the edges in the graph. The program returns
1 if there is a negative cycle, otherwise return 0.

Time Complexity: O(nm)

n. Number of nodes. (1 < n < 100)

m. Number of edges.
Input:

E. Array of edges.

src. The initial node.
Output:

D. the minimum cost to reach some node i from node src is
stored in D;. If there is a negative cycle the function bellmanFord
returns 1.

Listing 7.6: Bellman-Ford

#define N 101
#define oo 10000000

class Edge {
public:

int u;

int v;

int w;

Edge(int u = 0, int v = 0, int w = 0) {
this->u = u;
this->v = v;
this->w = w;
¥
};

Edge E[N * N]; // Array of edges
int D[N]; // Array of distances
int n, m; // Number of nodes and edges
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int bellmanFord(int src) {
int u, v, w;

for (int i = 0; i < n; i++) {
D[i] = oo;
}

D[src] = 0;
for (int 1 = 0; i < n - 1; i++) {
for (int j = 0; j < m; j++) {
u = E[j].u;
v = E[j].v;
w = E[j].w;
D[v] = min(D[v], D[u]l + w);
}
}

for (int j = 0; j < m; j++) {
u E[j].u;
v = E[j].v;
w = E[j].w;
if (DLv] > D[ul + w) {
return 1; // Negative cycle!!
}
}

return 0; // No negative cycles

}

7.4.3 Floyd-Warshall

Described by Robert Floyd [I7], who based it on the work of
Stephen Warshall [18]. The Floyd-Warshall algorithm is used to
find the cost of the shortest paths between all pair of vertices,
which are stored in the same weighted adjacency matrix W. This
algorithm works for positive and negative weights. It is important
to notice that the time complexity of this algorithm makes it very
hard to use it for real applications, and is recommended to use it
in graphs with few vertices.

The idea behind the Floyd-Warshall’s algorithm is to con-
stantly update the minimum cost to go from some node i to
another node j passing trough node k.

One advantage of this algorithm is that is easy to implement, just
three nested loops and the matrix of weights is what it needs. See
the code

Time Complexity: O(n?)
Input:
n. The number of nodes.
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W. Matrix of weights.

Output:
W. The minimum cost to go from some node ¢ to another node

J is stored in Wj;.

Listing 7.7: Floyd-Warshall

void floydWarshall() {
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
Wil 03] = min(WLiT (31, Wil [kl + wixI[31);

Figure [7.9]shows how the matrix of weights W change for every
value of k in Floyd-Warshall’s algorithm using the graph in

12| =1 ] o0 | o0
0 5 | =3 1] -9
00 0 00 6
00 | o0 0 00
oo | oo | 10 0

12 | =1 ] o0 | o©
0 5 | =3 1] -9
00 0 00 6
00 | o0 0 00
oo | oo | 10 0

(a) Original matrix of weights (b) k = 0. There is no edge from
any node to node 0, so the matrix

remains the same.

81288 |8|=
81888 |=

0|12 |-11] 9 3 0|12 -11] 9 3
o | 0 5 | =311 -9 oo | O 5 | =31 -9
oo | oo | O 00 6 oo | oo | O 00 6
00 | 00 | 00 0 00 o0 | 00 | 00 0 o0
co|oco| oo | 10| O oo | oo | oo | 10 0
(¢) k = 1. Nodes 3 and 4 can (d) kK = 2. Crossing trough node
be reached from node 0 passing 2 doesn’t led us to a better solu-
trough node 1. tion, so the matrix remains with-

out change.
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0|12 | -1 9 3 0|12 | -1 9 3
oo | 0 5 -3 -9 o | 0 ) -3 -9
o | oo | 0 o0 6 o oo | 0 16 6
o0 | o0 | 0o 0 o0 o | 0 | 00 0 o0
o | oo | oo | 10 0 oo | oo | oo | 10 0
(e) k = 3. Node 3 cannot be an in- (f) k = 4. Going from node 2 to
termediate node because there is node 3 has a cost of 16 if we pass
no edge coming out from it. The trough node 4.

matrix remains the same.

Figure 7.9: Matrix of weights for different values of k in the Floyd-
Warshall algorithm. The first row is equal to the resulting vector of
distances in the Bellman-Ford algorithm.

7.4.4 A*

First described by Peter Hart, Nils Nilsson, and Bertram Raphael
in 1968 [19]. The A-star is an heuristic algorithm that is used to
find the shortest path to go from some node A to some other node
B. Tt is particular useful when memory or time constraints make
hard to use the other algorithms seen so far.

The idea of the algorithm is to explore in every iteration the
node with less cost associated to it. The cost of a given node k is
define by:

f(k) = g(k) + h(k), (7.4)

where g(k) is the accumulated cost so far until reaching node
k, and h(k) is an optimistic guess of the cost needed to reach
the destination node from node k, meaning that if d(k) is the
minimum cost to travel from node k to the destination node, then
we must assure that h(k) < d(k).

We must be very careful when choosing the heuristic function
h, a wrong function will lead us to an incorrect result. This
function depends on the problem to solve. For example, in the
case of grid with obstacles where the goal is to reach some specific
cell, starting from another cell just moving up, down, left and
right. One possible heuristic function is to return the Manhattan
distance between the current cell and the destination cell.
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The code in reads two numbers n ad m, that represents
the number of nodes and edges in the graph respectively. m lines
follow, each one containing three numbers a,b, and k, indicating
that there is an edge with cost k connecting nodes a and b. Finally
two more numbers are given indicating the initial and destination
nodes respectively. The program prints the minimum cost to
travel from the initial node to the destination node using the A*
algorithm.

The class Node contains three attributes, v that refers to the
node index, g that indicates the cost of reaching node v from the
initial node, which represents the current cost. The value of £ is an
optimistic estimate of what will cost us to reach the destination.
Since we use a priority_queue to get the node with less value of
f we need to overload any of the operators < >.

Listing 7.8: A-star

#include <iostream>
#include <list>
#include <queue>
#include <vector>
#define oo 1000000
using namespace std;

class Node {
public:
int v;
int g;
int f;
Node() {}
Node(int v, int g, int f) {
this->v = v;
this->g = g;
this->f = f;
}

bool operator<(const Node &node) const { return this->f > node.f; }
bool operator>(const Node &node) const { return this->f < node.f; }

};

int nVertex, nEdges;
vector<list<Node> > G;
vector<int> h;
priority_queue<Node> L;

void aStar(int, int);

int main() {
int a, b, k;
int src, dst;

cin >> nVertex >> nEdges;
G.resize(nVertex);
h.resize(nVertex) ;
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for (int i = 0; i < nEdges; i++) {
cin >> a >> b >> k;
if (hlal == 0) {

hlal = k;
} else {
h[al = min(h([al, k);

}

G[al.push_back(Node(b, k, 0));

cin >> src >> dst;
aStar(src, dst);

return 0;

The function aStar implements the A* algorithm given the
source and destination nodes. The nodes are added to a priority
queue, and in each iteration the element at the top is selected,
which represent the node with less cost. The heuristic for some
node k used in this exercise is the minimum cost between all edges
connected to k.

void aStar(int src, int dst) {
int u, v, g, f;
Node nodeA, nodeB;

u = src;
h[dst] = 0;
L.push(Node(src, 0, 0));

nodeA = L.top();
L.popQ);
do {
cout << "Node : " << u << " f = " << nodeA.f << endl;
for (auto it = G[u].begin(); it != G[ul.end(); it++) {
nodeB = *it;
v = nodeB.v;
= nodeA.g + nodeB.g;
=g + hlvl;
.push(Node(v, g, £));

= Qg
|

}

nodeA = L.top();
L.pop();
u = nodeA.v;

} while (u != dst);

cout << nodeA.f << endl;
}
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7.5 Strongly Connected Components

A strongly connected component (SCC) in a graph is a subgraph
where all its nodes are connected directly or indirectly, thus we
can reach any node from any other node. For figure [7.10] there are
four SCC’s, one formed by nodes {0,1,2,3,5}, other formed by
{4,6}, and two more formed by a single node {7}, and {8}.

o ©
A3

e

Figure 7.10: Directed graph with cycles.

If all SCC’s are seen as individual nodes, we can convert a
cyclic graph into a DAG (directed acyclic graph). In this section
we will review two algorithms that find the strongly connected com-
ponents in a graph, Tarjan’s algorithm and Kosaraju’s algorithm,
both based in DFS.

7.5.1 Tarjan’s Algorithm

Invented by Robert Tarjan in 1972 [20] and based on a DFS.
Tarjan’s algorithm finds the strongly connected components and
cycles in a directed graph. The complexity of the algorithm is
the same for the DFS O(n + m). If we use an adjacency matrix
as in the code in the time complexity is O(n?).

As nodes are visited in the DFS, they are added to a stack
L and enumerated, this way each node v will have an index or
identifier S,,. Each node v also needs to keep track of the node
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with the smallest index that is reachable from v, including v
itself, we will call it low,. Once all adjacent nodes of v have been
explored, and if low, is equal to S,,, then we can be sure that there
is a cycle, and all nodes added to L after v are part of the same
SCC. Remove all the elements of the SCC from L and continue
with the search.

The time complexity of the algorithm is the same as the DF'S,
but needs more memory to store the values of .S; and low; for each
i=0,...,n— 1. The algorithm is implemented in [7.9]

Time Complexity: O(n?)
Input:
n. The number of nodes. (1 <n < 100).
G. The adjacency matrix.
Output:
Prints the strongly connected components of G

Listing 7.9: Tarjan Algorithm

#include <algorithm>
#define N 101
using namespace std;

int G[N][N];
int S[N], LOW[N], L[NI, R[NI;
int n, nVertex, nComponents;

void tarjan() {
for (int i = 0; i < n; i++) {
if (S[i] == -1) {
nVertex = 0;
nComponents = 0;
DFS(i);
}
}
}

void DFS(int v) {
int k;

S[v] = nVertex++;
LOW[v] = S[v];
L[nComponents++] = v;
RIv] = 1;

for (int i = 0; i < n; i++) {
if (GIv]l[i] == 1) {
if (S[i] == -1) {
DFS(i);
LOW[v] = min(LOW[v], LOW[il);
} else if (R[i] == 1)
LOW[v] = min(LOW[v], S[il);
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}
}

if (S[v]l == LOW[v]) {
printf("SCC:\n");
do {
k = L[nComponents - 1];
R[k] = 0;
nComponents--;
printf ("%d\n", k);
} while (k !'= v &% nComponents > 0);
}
}

Figure shows how the values of S, and low, change trough
the DFS for the graph in [7.10]

/‘
N O

(a) L = {0}. Start the DFS from node (b) £ = {0, 1}. Visit node 1.
0.

(0,0

33)

(c) L = {0,1,3}. Visit node 3. (d) L = {0, 1,3, 2}. Visit node 2.
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(0,0

@0
(e) L = {0,1,3,2}. lowy = 0 because

node 2 is connected to the node with in-
dex 0.

(5,5)

(3,0)

(g) L ={0,1,8,2,6,4}. Visit node 4.

(5,4)

(3,0

(i) £ = {0,1,3,2,6,4,7}. Visit node 7.
Because node 7 has been full explored and
S7 = lowy then node 7 is a SCC.

179

(0,0

(3,0)

(f) £ = {0,1,3,2,6}. Visit node 6.

(h) £ = {0,1,3,2,6,4}. lowy = 4 be-
cause is connected to a node with a smaller
index.

(3,0

(j) L = {0,1,3,2,6,4}. Node 7 has been
removed from L, and lowg remains equal
because node 7 has a larger index. Sg =
lowg meaining that nodes 6 and 4 are part
of a SCC.
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(3,0)

k) L = {0,1,3,2}. lows = 0, because
s 1y 9y 3 >

it comes from node 2, and lowg is smaller

than lows.

(3,0

(m) L =1{0,1,3,2,5}. lows = 2, because
is connected to node 3, which has Sg = 2.

(3,0)

(0) L =1{0,1,8,2,5}. low; = 0, because

it comes from node 3 and lowg = 0.

7. GRAPH THEORY

(1) L = {0,1,3,2,5}. Visit node 5.

a1 , ®8)
\

(n) L = {0,1,8,2,5,8}. Visit node 8.
Because node 8 doesn’t have any adjacent
nodes and Sg = lowg, it forms another

SCcC.

(p) L ={0,1,3,2,5}. low; remains with-
out change because Sg is larger.
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) ’ . ®8)

L)

20 |

(4.4)

‘,‘fi pet

(q) L ={0,1,3,2,5}. lowg remains with-
out change because Sg is larger. Sg = lowg
then nodes 0,1,3,2,5 are part of a SCC.
then all of them are removed from L, leav-

(3,0

ing the stack empty.

Figure 7.11: Tarjan’s algorithm. The values of S, and low, are chang-
ing in every step of the DFS for graph in [7.10] If node v, after all its
adjacent nodes has been explored, happens that S, = low,, then v an
all nodes inserted to the stack L after v form a SCC.

7.5.2 Kosaraju’s Algorithm

In 1983 Aho, Hopcroft, and Ullman [2I] published the algorithm
and credit it to S. R. Kosaraju. The algorithm first runs a DFS
to get a topological sort. The second step is to compute the
transpose of the adjacency matrix. Finally, following the order
obtained in the first DFS and using the transpose matrix, the
graph is traversed and the number of times a DFS is started is the
number of SCC’s in the graph, and the nodes visited in the same
DFS are part of the the same SCC.

Running a DFS using the order obtained in a topological
sort will cause to traverse the graph from root nodes to leaf
nodes. But using the reversed graph (with the transponse ma-
trix), will cause to traverse the graph from leaf nodes to root nodes.

If node b is reachable from node a in the original graph, then a
will be reachable from node b in the reversed graph.
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Figure 7.12: shows the original graph. |7.12b| shows the reversed

graph with the arrows to point in the opossite direction.

For the graph in the topological sort would be
0,1,3,5,8,2,6,4,7, and if we go through that order and start a
DFS for each node that has not been visited using the reversed
graph represented in We obtain that the first DFS visits
the nodes 0,2,3,1,5, and occurs that they form a SCC in the
original graph. Following the topological order, the next DF'S only
visits node 8, the next one visits nodes 6 and 4, and the last one
visits node 7. All of them SCC’s in the original graph.

Compared to Tarjan’s algorithm, Kosaraju’s algorithm has
worst performance, because it need two DF'S, meanwhile Tarjan
only needs one, but on the other hand, Kosaraju doesn’t need to
store additional information beside the topological sort. Program
[7-10] implements the Kosaraju’s algorithm to identify the number
of SCC’s in a graph G.

Time Complexity: O(n?)
Input:
n. Number of vertices.
G. The adjacency matrix.
Output:
L. Represents the topological sort.
nComponents. Stores the number of SCC’s

Listing 7.10: Kosaraju’s Algorithm

void kosaraju() {
int k;

memset (S, 0, sizeof(S));
nVertex = n - 1;
nComponents = 1;
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for (int i = 0; i < n; i++) { // Apply the first DFS
if (8[i] == 0) {
DFS(i, true); // Obtain the post-order traversal
}
}

// Obtain the transponse of the adjacency matrix
for (int i = 0; i < n; i++) {
for (int j = i; j < nj; j++) {
swap(G[i1[j1, G[j1[i1);
}
¥

memset (S, 0, sizeof(S));
nComponents = 0;
for (int i = 0; i < n; i++) {
k = L[i]l; // Visit the nodes using the order obtained in the first DFS
if (S[k] == 0) {
nComponents++; // Increment the number of SCC
DFS(k, false);
¥
}
}

void DFS(int v, bool flag) {
// Label the vertex with the number
// of the strongly connected component
// it belongs.
S[v] = nComponents;

for (int i = 0; i < n; i++) {
if (GLv][i] == 1 && S[i] == 0) {
DFS(i, flag);

}
¥
if (flag) { // if flag is true
L[nVertex--] = v; // Add v to the stack
}

}

Articulation Points

An articulation point in a graph is a vertex that if removed, the
graph becomes disconnected. See figure [7.13]

A variant of Tarjan’s algorithm can be used to find articulation
points. Basically a node v is an articulation point if:

1. v is the root and has more than one children.

2. if low; > S, where i is the adjacent node of v which the recur-
sive function of the DFS returns from. This means that there
is no connection from node i to previously indexed nodes, so
removing v will disconnect the graph.
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Figure 7.13: Nodes 2 and 3 are articulation points, because if they are
removed the graph becomes disconnected. Node 1 is not an articulation
point, because node 0 is directed connected to node 2.

The code increments the variable nLinks in one every
time an articulation point is found. The vector V is used to avoid
counting duplicated articulation points.

Listing 7.11: Articulation Points

void DFS(int v, int prev) {
S[v] = nVertex++;
low([v] = S[v];

for (int i = 0; i < mn; i++) {
if (graph[v][i] == 1) {
// if is a tree vertex (unvisited)
if (x[i] == -1) {
DFS(i, v);
low[v] = min(low[v], lowl[il);

~

if (Slvl == 0) {
if (S[i] >= 2 && V[v] == 0) {
Vvl = 1;
nLinks++; // is an articulation point
}
} else if (low[i] >= S[v] && V[v] == 0) {
VIvl = 1;
nLinks++; // is an articulation point
}
} else if (i != prev)
low[v] = min(lowlv], S[il);

Bridge Detection

A bridge is an edge that if removed the graph becomes discon-
nected. See figure As with the articulation points, a variant
of Tarjan’s algorithm can be used to find bridges. For this case we
say there is a bridge connecting nodes ¢ and v if low; > S,,, where @
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is the node which the recursive function returns from. That means
that node i cannot reach any of the nodes indexed before him, so
if we remove the edge v — i, node ¢ will not be able to reach any of
the previously indexed nodes.

()

1 2 3

Figure 7.14: The edge connecting nodes 2 and 3, and the edge con-
necting nodes 3 and 4 are bridges. None of the other edges if removed
disconnects the graph.

The program increments by one the variable nBridges
when a bridge is found given a graph G.

Listing 7.12: Bridge Detection

void DFS(int v, int prev) {
S[v] = nVertex++;
low([v] = S[v];

for (int i = 0; i < n; i++) {
if (GLv]l[i] == 1) {
if (s[i] == -1) {
DFS(i, v);
if (low[il > svl) {
nBridges++; // There is a bridge between i and v
}
low[v] = min(low[v], low[il);
} else if (i != prev) { // Is a back edge?
low[v] = min(low[vl, S[il);
}
¥
}
}

7.6 Minimum Spanning Tree

Consider a weighted graph with n nodes and m edges that is con-
nected and is not directed. The minimum spanning tree (MST) of
that graph is a sub-graph with the following characteristics.

1. Contains n — 1 edges
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2. The graph remains connected

3. the cost of the tree is minimum

The points listed above describe a sub-graph with no cycles,
where all the nodes are connected, and which cost is minimal. The
cost of a MST is the sum of the weights of all its edges. Image
shows an example of a MST in a graph. Is important to notice
that a graph can have more than one MST.

(b) MST of the graph

Figure 7.15: Image shows a connected graph. Image|7.15b|shows
in red solid lines the n — 1 edges that are part of the MST with a cost

of 21.

In this section we will analyze two algorithms that allow us to
find the MST. One is the Kruskal’s algorithm and the other is the
Prim algorithm. Each one has its own advantages and for some
problems is better to use one over the other, but at the end the
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problem is the same, to find a set of edges that are part of the
MST.

7.6.1 Kruskal’s Algorithm

Reported by Joseph Kruskal in 1956 [22]. Kruskal’s algorithm first
needs to sort the edges in the graph in ascending order according
to their weights. Then iterate from the beginning of the sorted
array of edges and check if the current edge creates a cycle, if it

does, discard it and move to the next edge, otherwise add that
edge to the MST.

One way to check if an edge creates a cycle is to use the
Union-Find algorithm, just take the nodes connected by the edge
and if those nodes are part of the same set then that edge will
create a cycle. If they are part of different sets, then the edge will
not create a cycle, so add it to the MST and merge both sets.
Figure shows how Kruskal’s algorithm works to find the MST

of the graph in

©
© O 0O
©

(a) The edge with minimum cost (b) The next edge is 2 — 4, it
is the one connecting nodes 2 and doesn’t form a cycle so is added
3, add it to the MST. to the MST.

(c) The next edge is 2 — 5 and is (d) The next edge is the one con-

added to the MST. necting nodes 3 and 4, but if it
is added it will create a cycle, so
we skip this edge.
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(e) Add edge 0 — 1 to the MST. (f) The edge 1—3 is added to the
MST. We have added all 5 edges,
any other edge will generate a cy-
cle, so we can stop looking.

Figure 7.16: Kruskal’s algorithm needs that the edges to be previously
sorted by their cost. Once n—1 edges are added to the MST the process
can be stopped.

The performance of Kruskal’s algorithm will depend on the
algorithm used to sort the edges, and the algorithm used to
identify cycles. For the sorting part an algorithm that runs in
O(mlogm) can be used, like Merge Sort or Heap Sort. To detect
cycles is recommended to use the Union-Find algorithm, which
runs in O(logn) and is easy to implement.

The code showed in [7.13] implements a class Edge to easily
represent an edge and be able to create an array of edges. This
class contains three values u,v and w indicating that there is an
edge connecting nodes v and v with a cost of w. The overloaded
operator is needed to sort the array of edges. The program uses
the Union-Find method described in [Tl

Time Complexity: O(mlogm + mlogn)

O(mlogm) to sort all the edges

O(mlogn) for the union find of the sorted edges
Input:

edge. A vector with all the edges in the graph.
Output:

The cost of the MST.

Listing 7.13: Kruskal’s Algorithm

#include <algorithm>
#include <vector>
using namespace std;

class Edge {
public:



7.6. MINIMUM SPANNING TREE 189

int u;
int v;
int w;

Edge(int u = 0, int v = 0, int w = 0) {
this->u u;
this->v 'S
this->w w;

}

bool operator<(const Edge &b) const { return this->w < b.w; }
s

vector<Edge> edge;
int nVertex;

int kruskal() {
int n, a, b, w;
int d = 0;

sort(edge.begin(), edge.end());

n = nVertex;

for (int i = 0; n > 1; i++) {
edge[il.u;

edgelil.v;

edge[i].w;

o
o

if (findSet(a) != findSet(b)) {
d += w;
unionSet(a, b);
n--;
}
}

return d;

}

7.6.2 Prim’s Algorithm

Discovered by Prim [23], but invented earlier by V. Jarnik in 1930.
Prim’s algorithm is similar to Dijkstra’s algorithm. The adjacency
matrix is filled with co in those locations where there is no edge.
The initial node doesn’t matter in Prim, any node can be used as
the initial node. In every iteration as in Dijkstra’s the minimum
value of vector D must found across all non-visited nodes, and then
proceed to update the vector D. While in Dijkstra’s the vector D is
updated with the cost to move from the initial node to other non-
visited nodes, in Prim the vector is updated using only the weight
of the edges. The value of element D is given by the equation

Dj = min (Dj, Wk]) s (75)

where k represents the position of the minimum value of D
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across the non-visited vertices. Table [T.4] shows the vector D in
every iteration of Prim algorithm for the graph in and node
0 as the initial node.

it. 1 | 0| oo |00 | 00| 00|
it. 21 0] 6 |oo| 10| 00 |
it. 310 6 |10 7 9 | o0
it. 4 | 0] 6 1 7 5 | oo
it. 5 10| 6 1 7 3 4
it. 6 | 0] 6 1 7 3 4

Table 7.4: Vector D for the Prim algorithm. Red numbers represents
the minimum value chosen in an specific iteration. Bold numbers repre-
sent already visited nodes.

The cost of the MST for the graph is the sum of all red
numbers in table[7.4] 04+6+7+1+3+4 = 21. If we want to know
which edges are part of the MST, then we must have a record
of the nodes connected to the ones represented in D, something
similar to how a path is obtained in Dijkstra. The program
consists on a function prim that returns the cost of the MST of
a graph given its weighted matrix W by using Prim’s algorithm
starting from node 0.

Time Complexity: O(n?)
Input:

n. AThe number of nodes.

W. A weighted and connected graph.
Output:

The cost of the MST.

Listing 7.14: Prim Algorithm

int prim() {
int k, minVal;
int d = 03

for (int i = 1; i < n; i++) {
D[il = w[0]l[4i];
V[i]l = 0;

¥

viol = 1;

for (int i = 1; i < n; i++) {
minVal = oo;
k = -1;
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for (int j = 1; j < n; j++) {
if (V[j] == 0 && D[j] < minVal) {
minVal = D[j];
k =3;
}
}

if (k == -1) {
printf ("Error: No connection found");
break;

}

d += Dk];
Vik] = 1;
for (int j = 1; j < n; j++) {
if (V[j] == 0 && WkI[j]l < D[j]) {
D[j]l = WikI[j];

}
}

return d;

}

7.7 Maximum Bipartite Matching

A bipartite graph can be defined as two sets of vertices A, and B,
where all the edges connect a node from set A with a node of set
B. Elements of the same set are not connected directly.

A matching is a set of edges, where no two edges share a
common vertex. Then a maximum matching is a matching that
contains the largest number of edges.

Consider the case of an university that has n professors labeled
as 0,1,---n — 1, and m courses numbered as 0,1--- ,m — 1. By
politics of the university, no professor can teach more than one
course, if a professor cannot be found to teach a course, then that
course cannot be opened that semester. The goal is to maximize
the number of courses that can be imparted in the semester.

This task can be seen as a graph, where courses and professors
are the nodes, and an edge from node i to node j means that
professor ¢ can teach course j. See image [T.17}
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Professors Courses

©
P

Figure 7.17: Bipartite graph with four professors and three courses.

For the bipartite graph in [7.I7 one possible solution is that
professor 0 teaches course 1, professor 1 teaches course 2, and
professor 2 teaches course 0, with that arrangement all the courses
can be opened for the semester. Professor 3 can have a sabatical
year.

One possible solution for this problem is to try to assign a
professor p to some course ¢ that doesn’t has a professor assigned,
or if it already has a professor assigned, then try move the current
professor to another course, in order that professor p teaches course
c. That idea is basically a DFS, which have a time complexity of
O(V + E), for this case V. =n+m, and E < nxm. The search is
repeated m times, meaning that that the time complexity for the
algorithm is O(mn + m? + nm?) = O(nm?). The implementation
for this solution is showed in program [7.15]

Time Complexity: O(nm?)
Input:
n. Number of professors. 1 < n < 100.
m. Number of courses. 1 < m < 100.
graph. The bipartite graph, where graph;; = true if professor i
can teach course j.
Output:
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cnt. The maximum matching.

Listing 7.15: Maximum Bipartite Matching

#include <cstring>
#define M 128
#define N 128

bool graph[M] [N];

bool seen[N];

int matchL[M], matchR[N];
int n, m;

bool bpm(int);

int main() {
// Read input and populate graph[][] // Set m, n
memset (matchL, -1, sizeof (matchL));
memset (matchR, -1, sizeof (matchR));

int cnt = 0;
for (int i = 0; i < m; i++) {
memset (seen, 0, sizeof(seen));
if (bpm(i)) {
cnt++;
}
}

// cnt contains the number of professors assigned to a course
// matchL[i] contains the course of professor i or -1

// matchR[j] contains the professor in course j or -1

return O;

}

bool bpm(int u) {
for (int v = 0; v < nj; v++) {
if (graphl[ul [v]) {
if (seen[v]) {
continue;

}

seen[v] = true;
if (matchR[v] < 0 || bpm(matchR[v])) {
matchL[u] = v;
matchR[v] = u;
return true;
}
¥
¥
return false;

}

7.8 Flow Network

A flow network is a directed graph where each edge has a capacity
and each edge receives a flow. The amount of flow on an edge
cannot exceed the capacity of the edge. A flow must satisfy that
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the amount of flow into a node equals the amount of flow out of it,
unless it is a source, which has only outgoing flow, or sink, which
has only incoming flow.

A network is a graph G = (V, E), together with a non-negative
function ¢ : V x V — R, called the capacity function, and a flow
function f: V x V — R, such that:

e Incoming flow is equal to outgoing flow. f(u,v) = —f(v,u).

e The flow through an edge cannot exceed its capacity.
fu,v) < e(u,v).

Network flow can be used to model fluid in pipes, traffic sys-
tems, image denoising, electrical current, among others applica-
tions.

7.8.1 Ford-Fulkerson Algorithm

Invented in 1956 by L. R. Ford, and D. R. Fulkerson [16]. Ford-
Fulkerson’s algorithm finds the maximum flow in a network. In
order to achieve this, a path, si,ss,---, sk, between source and
sink must be found, where s; is the source, and s;, is the sink. This
path is called the augmenting path. An edge (u,v) can be used in
the augmenting path only if:

c(u,v) — f(u,v) >0 (7.6)

If not augmenting path is found the algorithm ends, otherwise,
the maximum amount of flow (fim4.) that can travel trough this
path must be calculated using equation for each edge of the
augmenting path and add that value to the network flow.

f(sissiva) = f(si, si41) + fimaa (7.7)
f(8i+17 Si) = f(si+1v si) - fma:v (78)

for every i =1,2,--- ,k— 1.

Once this is done, another augmenting path must be found,
and the process is repeated until no augmenting path is found.

The execution time for this algorithm depends in the algorithm
used to find the augmenting path. The code below uses a BFS
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to do that, which has a time complexity of O(V + E), and in the
worst case for every augmented path found, the flow will increase
in 1 unit, meaning that the time complexity of Ford-Fulkerson is
O(F(V + E)), where F' is the maximum flow of the network.

The maxFlow function in [Z.16] receives the source and sink of
the network, and by using matrix w as the capacity function, and
matrix flow as the flow function, it returns the maximum flow by
using the Ford-Fulkerson algorithm.

Time Complexity: O(f(m +n))
f. Maximum flow
Input:
n. Number of nodes. 2 <n <100
w. Capacity function
source. Source node
sink. Sink node
Output:
The maximum flow

Listing 7.16: Ford-Fulkerson Algorithm

#include <algorithm>
#include <cstring>
#include <queue>
#define N 105
#define WHITE O
#define GRAY 1
#define BLACK 2
#define oo 100000000
using namespace std;

long w[N]([N]; // Adjacency matrix
long flow[N][N]; // Flow matrix
long color[N], pred[N];

long n;

queue<long> Q;

long maxFlow(long source, long sink) {
long increment;

// Initialize empty flow.
long max_flow = 0;
memset (flow, 0, sizeof (flow));

// While there exists an augmenting path,

// increment the flow along this path.

while (BFS(source, sink)) {
// Determine the amount by which we can increment the flow.
increment = o0o0;

for (long u = sink; pred[ul >= 0; u = pred[u]) {
// Now increment the flow.
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increment = min(increment, wlpred[ul]l[u] - flow[pred[ul][ul);

}

for (long u = sink; pred[u] >= 0; u = pred[ul) {
flow[pred[ul] [u] += increment;
flow[u] [pred[u]] -= increment;

}

max_flow += increment;

}

// No augmenting path anymore. We are done.
return max_flow;

}

The task of the BFS function is to find the augmenting path
across the network. It receives the indexes of the source and sink
nodes, and stores the augmenting path in the array pred. If the
sink cannot be reached it returns false, otherwise returns true.

long BFS(long start, long target) {
long u;

memset (color, 0, sizeof(color));
Q.push(start);

pred[start] = -1;

color[start] = GRAY;

while (!Q.empty()) {
u = Q.front();
Q.popO);

color[u] = BLACK;

// Search all adjacent white nodes v. If the capacity
// from u to v in the residual network is positive,
// enqueue v.
for (long v = 0; v < n; v++) {
if (color[v] == WHITE && wl[ul [v] - flow[ul[v] > 0) {
Q.push(v);
pred[v] = u;
color[v] = GRAY;
}
}
}

// 1f the color of the target node is black now,
// it means that we reached it.
return color[target] == BLACK;

7.9 Chapter Notes

The applications of graph theory are vast, from image processing
to social network. For example. The Ford-Fulkerson method [16]
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can be used to remove the noise of a binary image, where the
nodes connected to the source are labeled with one color, and
the rest connected to the sink are labeled with another color.
The Kruskal’s algorithm is useful for image segmentation by
creating different minimum spanning trees considering the pixels
as nodes. Tarjan’s algorithm [20] can be used to identify cicles in
the movement of an object obtained from motion capture, where
each sensor correponds to a node. et. al.

A more strict analysis of the algorithms seen in this chapter can
be found in the book “Introduction to Algorithms” [1]. Sedgwick
[5] describe some of state of the art algorithms and includes source
code for the key parts written in C++. Topcoder includes tutorials
[24] with tricks and hints useful to solve programming problems
related to graph theory.

Problems about Graph Theory in programming contests are
almost a fact, for that reason we recommend to try to solve some
of the problems in the links listed bellow.

e http://acm.timus.ru/problemset.aspx?space=1&tag=
graphs

e https://uva.onlinejudge.org/index.php?option=com_
onlinejudge&ltemid=8&category=116

e https://www.urionlinejudge.com.br/judge/en/
problems/index/7

Appendix [E] contains variants of some of the algorithms seen in
this chapter applied to solve specific problems.


http://acm.timus.ru/problemset.aspx?space=1&tag=graphs
http://acm.timus.ru/problemset.aspx?space=1&tag=graphs
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=116
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=116
https://www.urionlinejudge.com.br/judge/en/problems/index/7
https://www.urionlinejudge.com.br/judge/en/problems/index/7
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7.10 Exercises
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Geometry

“If everyone is thinking alike, then somebody isn’t think-

ing.
— George S. Patton

Computational geometry is vastly used in the areas of computer
vision, computer graphics, geographic systems, et.al. For example,
detecting a collision between objects in a video game, identifying
regions in a map, identifying objects or persons in an image, and
so on. Most of the topics that are boarded in this chapter have
to do with polygons, like calculating the area of polygon, identify
if a point is inside or outside a polygon, find the convex hull of a
cloud of points, et.al.

A real-life application is the identification of historical images.
In some cases it is necessary to know how a certain area of the
map has changed trough the years, in order to study phenomenons
like deforestation, forest fire, population growth, et.al. To do that
is necessary to compare an actual image and a previous image
and check if it is the same area, and that involves analyzing the
polygons inside the images. This problem requires to develop an
algorithm that receives two polygons and measure how similar
they are, of course is necessary to be aware of the scale, rotation,
noise, etc.

Another application is to obtain the location of a robot given
its current position and direction. Consider the case showed in

figure where a robot is located in position (z1,y1) with an

199
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angle of # with the x-axis, and rotate an angle of 8 about the
origin. What is the new position (z2,y2) of the robot?

(%1,Y4)
= d

X

Figure 8.1: Rotation of a point by an angle of 3.

According to the figure we have that the current position is
given by

x1 = rcos(f)
y1 = rsin(0), (8.1)

and the new position is obtained with

x9 =71 cos(f+ )
yo = rsin(f + F). (8.2)

Using geometry identities and equations in we have that
equations in [8.2| can be transformed into

x9 = r[cos(6) cos(B) — sin(f) sin(B)] = x1 cos(B) — y1 sin(B)
ya2 = 7 [cos(0) sin(B) + sin(f) cos(B)] = x1 sin(B) + y1 cos(B) (8.3)

Equations in [83] can be vectorized and represented as matrix
multiplications.

zo | | cosB —sinf T
R A |
The 2 x 2 matrix in is called ’“rotation matriz” and

is used to obtain the new position of a point after being ro-
tated an angle of 5 about the origin. Now suppose that we
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want to rotate a polygon not just a point, well, in order to do
that we just need to multiply each one of the vertices by the
rotation matrix and the whole polygon will rotate about the origin.

Is important to mention that this chapter focus on algorithms
that are commonly used in programming competitions. It doesn’t
contain the classic topics covered in a geometry book, so it is ex-
pected that the reader have some basic knowledge about geometry
and arithmetic.

8.1 Point Inside a Polygon

In this section we will review algorithms that can help us to find
out if a point is inside a polygon. It seems like an easy problem,
but depending on the polygon and the problem’s specifications we
must try different approaches.

8.1.1 Point in Convex Polygon

Given a point z and a convex polygon P with its coordinates sorted
counterclockwise

PosP1, " yPn = (500790), (xlayl)v' o 7(xn7yn)

With p, = po. Calculate the signed area of every triangle
formed by points (z, p;, pi+1), for i = 0,...,n — 1. If every signed
area computed is positive, then z is inside the polygon, if at least
one signed area is zero, then it is in the border, in other case it is
outside the polygon.

The signed area of the triangle formed by the points A, B and
C' is obtained using the determinant of the matrix formed by the
three points using 1 as their z-coordinate. See

1] 4 4y
Area(A,B,C):§ B, B, 1
C. ¢, 1
1

= — (AyB, + B,Cy + CpA, — CuB, — A,C, — B, A,)

DN = D

((BX - Am)(Cy - Ay) - (Cr - Am)(By - Ay))
(8.5)
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The function isInsidePolygon in [8.1] receives a point p and
identifies if it is inside of a convex polygon P, which is an array
of n points as described above, while the function area calcu-
lates the signed area of a triangle using equation [B.5] notice that
we don’t multiply by 0.5 because we are only interested in the sign.

Time Complexity: O(n)
Input:

n. Number of vertices. 1 < n < 100.

P. Array of points that conform the polygon.

p. Point that we want to know if is inside the polygon.
Output:

function isInsidePolygon returns 1 if p is inside, otherwise
return 0.

Listing 8.1: Point Inside a Convex Polygon

#define N 101

class Point {
public:
long x;
long y;

Point(long x = 0, long y = 0) {
this->x X;
this->y = y;
¥
};

long n; // Number of vertices
Point P[N]; // Polygon

long area(Point a, Point b, Point c¢) {
return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y);
}

long isInsidePolygon(Point p) {
// Vertices should be sorted and P[n] = P[0]
for (long i = 0; i < mn; i++) {
if (area(p, P[il, P[i + 1]) <= 0) {
return 0O;
}
}
return 1;

}

8.1.2 Point in Polygon

Given a point z and the line segments that conform the polygon
(in any specific order), this algorithm checks if z is inside, in the
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border, or outside the polygon.

The idea of the algorithm is to draw an imaginary vertical line
starting from point z, if the number of crossed lines is odd, then it
is inside the polygon, if it is even, it is outside the polygon. If there
is a line segment that contains z, then the point is in the border.
See image (8.2

Figure 8.2: The imaginary line crosses three line segments. We can
assure that the red point is inside the polygon.

To identify if a point is above or below a line, we can use
equation to obtain the signed area of the triangle formed by
the point and the coordinates of the line segment, if is negative
then the point is below, if is positive is above, and if it is zero,
then the point is on the border.

The program reads one number n, indicating the number
of line segments that conforms the polygon. The following n lines
contain 4 numbers x1, y1, T3, Y2, that represents the coordinates of
the end points of a line segment formed by (z1,y1) and (z2,y2).
The last line contains two numbers z,y that represents the
coordinates of the point p. The output is a message indicating if p
is inside, outside or in the border of the polygon.

Time Complexity: O(n)
Input:
n. Number of line segments. 1 < n < 10000.
line. Array of line segments
p. Point that we want to know if is inside the polygon.



204 8. GEOMETRY

Output:

The message "BORDER” if p is in the border of the polygon,
"OUTSIDE” if it is outside the polygon, and "INSIDE” if it lies
inside the polygon.

Listing 8.2: Point Inside a Polygon

#include <cstdio>
#define N 10001
using namespace std;

enum STATE { OUTSIDE,
BORDER,
INSIDE };

typedef struct stPoint {
long x;
long y;

} Point;

typedef struct stLine {
Point A;
Point B;

} Line;

Line line[N];
long n;

long area(Point, Point, Point);

int main() {
long k, aux, c;
Point temp, p;

scanf ("%1d", &n);
for (long i = 0; i < n; i++) {
scanf ("%1d %1d %1d %1d", &line[i].A.x, &line[i].A.y, &line[i].B.x,
&line[i].B.y);

if (line[il.A.x > line[i]l.B.x) {
temp = line[i].A;
line[i].A = line[i].B;
line[i].B = temp;
}
}

scanf ("}1d %1d", &p.x, &p.y);

c =0;
aux = 0;
for (long i = 0; i < mn; i++) {
if (p.x >= line[i]l.A.x && p.x < line[i].B.x) {
k = area(line[i].A, line[i].B, p);
if (k > 0) {
ct++;
} else if (k == 0) {
aux = 1;
break;
}
¥
¥
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if (aux == 1) {
printf ("BORDER\n") ;

} else if (¢ % 2 == 0) {
printf ("OUTSIDE\n");

} else {
printf ("INSIDE\n");

¥

return O;

}

long area(Point a, Point b, Point c¢) {
return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y);
}

8.1.3 Point Inside a Triangle

Calculate the areas formed by point z and the triangle vertices.
If the sum of the three areas is equal to the area of the triangle,
then z is inside the triangle. See image [8.3] To calculate the area
of a triangle formed by three points we can use equation [8.5

The Function isInsideTriangle in receives a point pO
and an array of points v that conforms the triangle. The function
returns 1 if pO is is inside the triangle, otherwise return 0.

Figure 8.3: The sum of the colored areas is equal to the area of the
triangle, indicating that the red point is inside the triangle.

Time Complexity: O(1)
Input:

pO. Given point.

v. Array of three points representing the vertices of the triangle.
Output:

The function isInsideTriangle returns 1 if pO is inside the
triangle, otherwise returns 0.
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Listing 8.3: Point Inside a Triangle

int isInsideTriangle(Point p0O, Point *v) {
if (fabs(area(v[0], v[1], pO) + area(v[0], v[2], pO0) + area(v[2], vI[1],
p0) - At) < EPS) {
return 1;
}
return 0;

}

double area(Point a, Point b, Point c) {
return fabs(a.x * c.y + b.x * a.y + c.x * b.y - b.x *x c.y - c.x * a.y -
a.x * b.y);

8.2 Area of a Polygon

Given a polygon with n vertices numbered from 0 to n — 1 sorted
counterclockwise, the area of the polygon is given by the following
expression.

S

1
2 4

(2

A= (Tic1¥i — Tili-1) (8.6)

1

With 2, = ¢, and y, = yo.

The function areaPolygon in calculates the area of the
polygon poly of n vertices using equation

Time Complexity: O(n)
Input:
n. Number of vertices of the polygon.
poly. Array of points that represents the vertices of the poly-
gon.
Output:
The function areaPolygon returns the area of the polygon.

Listing 8.4: Area of a Polygon

double areaPolygon(Point *poly, int n) {
double A = 0.0;

for (int i = 1; i <= n; i++) {

A=A+ polyl[i - 1].x * polyl[il.y - poly[il.x * poly[i - 1].y;
¥
return A * 0.5;

}
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8.3 Line Intersection

Line intersection is a common problem in geometry but still there
are some problems that can be present at the moment to implement
a programmatic solution. For example, the program must find out
if the lines are parallel, or calculating the slope of a vertical line.

Algorithm 1

The code in receives four points a,b,c, and d, where ab
represents one line segment, and cd another line segment. It
returns 1 if the line segments intersect each other, otherwise return
0. In case they intersect, the point where they crossed is stored in

pO.

Basically what this algorithm does is try to find a solution for
the system of equations for two lines of the form az 4 by + ¢ = 0.

a1y + b1y1 +c1=0
agTy + boyz +co =0

The line equation given two points on the line is given by:

Yy—y = u(x_xl) (8.7)

T2 —T1

The function intersection in [8.5] receives two line segments
and determines if those line segments intersect each other.

Time Complexity: O(1)
Input:

a,b,c,d. Two line segments, one formed by points ab and other
by cd.
Output:

The function intersection returns 0 if the lines don’t intersect
each other, otherwise returns 1 and stores the crossing point in pO.

Listing 8.5: Line Intersection 1

int intersection(Point a, Point b, Point ¢, Point d, Point &p0) {

double AxO = min(a.x, b.x);
double Bx0O = min(c.x, d.x);
double Ax1 = max(a.x, b.x);
double Bx1l = max(c.x, d.x);
double Ay0 = min(a.y, b.y);
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double ByO = min(c.y, d.y);

double Ayl = max(a.y, b.y);

double Byl = max(c.y, d.y);

double al = b.y - a.y;

double bl = a.x - b.x;

double cl = b.x * a.y - a.x * b.y;
double a2 = d.y - c.y;

double b2 = c.x - d.x;

double c2 = d.x * c.y - c.x * d.y;

double den = al * b2 - a2 * bl;
if (fabs(den) < 0.000001) {
return O;

}

(bl * c2 - b2 * cl1) / den;
(a2 * c1 - al * c2) / den;

p0.x
po.y

if (p0.x >= Ax0 && pO.x <= Axl && pO.x >= BxO && pO.x <= Bx1) {
if (p0.y >= AyO && pO.y <= Ayl && pO.y >= ByO && p0O.y <= Byl) {
return 1;
}
}

return 0;

}

Algorithm 2

The function intersection in receives four points a,b,c,
and d, where ab represents one line segment, and cd another line
segment. The function returns 1 if the line segments intersect each
other, -1 if they don’t intersect, and 0 if they have any collinear
points.

The idea behind this algorithm is to use signed triangle areas
to check if there is a crossing point, for this we take one point
of one line segment and obtain the signed triangle area using the
points of the other segment, we do the same for the other point,
and the signs of both areas must be different if the lines cross each
other. See figure [8.4] We do the same for the points in the other
segment.
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d

Figure 8.4: The signed area of the green triangle (acd) have a different
sign to the one of the blue triangle (bed).

The function intersection implemented in receives two
line segments and using the algorithm described above determines
if those line segments intersect each other.

Time Complexity: O(1)
Input:

a,b,c,d. Two line segments, one formed by points ab and other
by cd.
Output:

The function intersection returns 1 if the lines intersect each
other, 0 if and end point of one segment is over the other line
segment, and —1 if the two line segments don’t intersect each other.

Listing 8.6: Line Intersection 2

int intersection(Point a, Point b, Point c, Point d) {
long Al = area(c, a, b) * area(d, a, b);
long A2 = area(a, c, d) * area(b, c, d);

if (A1 <0 && A2 < 0) {
return 1;

} else if (A1 < 0 && A2 == 0) {
return 0;

} else if (A2 < 0 && A1 == 0) {
return O;

} else if (A1l == 0 && A2 == 0) {
return 0;

}

return -1;

}
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8.4 Horner’s Rule

A polynomial in the variable z over an algebraic field F represents
a function A(z) as a formal sum:

A(z) = Z_: a;x’. (8.8)
=0

We call the values ag,a1,---,a,_1 the coefficients of the
polynomial.

The operation of evaluating the polynomial A(z) at a given
point xg consists of computing the value of A(zg). We can evaluate
a polynomial in O(n) time using Horner’s rule:

A(zo) = ag+zo(ar +xo(az+- - +2o(an_2+z0(an-1))---)) (8.9)

8.5 Centroid of a Convex Polygon

Given a  convex polygon defined by n  vertices
(20, 90)s (X1,91)s s (Tn—1,Yn—1), sorted  counterclockwise.
The coordinates of the centroid C' (center of mass) is given by:

n—1

C, = 6A ;(xl + i) (@iYit1 — Tit1Yi) (8.10)

n—1

1
Cy = GA Z(yz + Yir1) (@iYit1 — Tit1Yi) (8.11)
i=0

where A is the area of the polygon defined in [B:6] and vertex
(Tn,yn) is assumed to be the same as (zg, yo).

8.6 Convex Hull

The convex hull of a set of points X is the convex polygon of
minimum area that encloses X. See image In this section we
will analyze two different algorithms to find the convex hull of a
set of points, both based on triangle areas.
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8.6.1 Andrew’s Monotone Convex Hull Algo-
rithm

Invented by A. M. Andrew in 1979 [25]. Given a cloud of n points,
this algorithm sort the points by their x-coordinate, and in case of a
tie, by y-coordinate, and then constructs the upper and lower hulls.
The upper hull is represented by the red line in figure While
the lower hull is the remaining part of the convex hull displayed as
a blue line.

— Upper Hull
—— Lower Hull

Figure 8.5: Convex hull with the upper hull in red, and the lower hull
in blue.

To build the lower hull we move through the array of points
P adding every new point to the lower hull, this is valid because
the points were previously sorted, then we need to remove all
previously added points that don’t form a convex polygon with the
new point as reference using triangle areas. Line 29 in program [8.7]
removes from the convex hull the point Hy_; if it forms a "right
turn” (negative triangle area) with points Hy_o, Hx—1 and P;.
Figure [8:6] shows the process of how a new point is added to the
convex hull causing that some points to be removed. To construct
the upper hull the process is the same but moving backwards in
the array of points.
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\\
Hk—1 Hk—1 Hk,1
e P N . ® °
Y L O Y
Hy2 o P Heo e P Hy, o P
(a) Point P; is (b) There is a right (c) Point Hy_1 is
added to the con- turn (clockwise removed from the

vex hull.

direction) between

convex hull.

points kag, Hk,1
and P;.

Figure 8.6: Process of adding a point into the convex hull. The green
line represents the convex hull.

Sorting the points takes O(nlogn) and traversing the array
of points to construct the upper and lower hull takes O(n), then
the complexity of the algorithm depends on the sorting algorithm
used. The function convexHull in receives a vector of points
P, and returns a vector of points H with the points of P that are
part of the convex hull. The function cross computes the signed
area of a triangle given its vertices.

Time Complexity: O(nlogn)

O(nlogn). Sort

O(n). Build the upper and lower hull.
Input:

P. Vector of points.
Output:

H. Vector of points that form the convex hull.

Listing 8.7: Andrew’s Convex Hull

class Point {
public:

int x;

int y;

Point(int x = 0, int y = 0) {
this->x = x;
this->y = y;

}

bool operator<(const Point &p) const {
return this->x < p.x || (this->x == p.x && this->y < p.y);
}
};

int cross(const Point &0, const Point &A, const Point &B) {
return (A.x - 0.x) * (B.y - 0.y) - (A.y - 0.y) * (B.x - 0.x);
}
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vector<Point> convexHull(vector<Point> P) {
int n = P.size(), k = 0;
vector<Point> H(2 * n);

// Sort points by x-coordinate first, and by y-coordinate second
sort (P.begin(), P.end());

// Build lower hull
for (int i = 0; i < n; ++i) {
while (k >= 2 && cross(H[k - 2], H[k - 1], P[i]) < 0) {
k——;
}
H[k++] = P[i];
}

// Build upper hull
for (int i =n -2, t =k + 1; i >= 0; i--) {
while (k >= t && cross(H[k - 2], H[k - 1], P[i]) < 0) {
k-—;

}
H[k++] = P[il;
¥

H.resize(k);
return H;

}

8.6.2 Graham’s Scan

Named after Ronald L. Graham, who described it in 1972 [26].
Graham’s Scan is an algorithm that finds the convex hull of a
set of n points, but in order to use it the points must be sorted
counterclockwise. This can be done in O(nlogn) time.

To sort the set of points, first we need to find two pivot points,
P, and P,, that corresponds to the most left point and the most
right point respectively, if there are more than one point, choose
the one with lowest y-coordinate. Then an imaginary straight line
is traced between these two points, resulting in three possible cases.

See image [B.7}
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Figure 8.7: Cases to sort a set of points

In each of the three cases the way in which the points must
be sorted change, that’s why is important to identify on which of
the three cases we are. To sort the points is easier to use one of
the pivot points to calculate triangle areas, we can use any sorting
algorithm, the code in [8:8 use the sort function of the algorithm
library.

Once we know in which case we are and the points have been
sorted according to that, the next step consists on applying the
Graham'’s Scan to obtain the convex hull, this is done in O(n) time.

Graham’s scan starts by adding the first two points to the
convex hull H. The following points are added to the convex hull,
but each time a point is added we need to remove all those points
that form a "left turn” (positive triangle area) with their previous
point and the recently added point. This process is similar to the
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one used in Andrew’s algorithm showed in figure Basically we
need to remove the point H; from the convex hull if the signed
area of the triangle formed by H;, H;_; and P; is positive.

The code in read a number n representing the number of
points, then n pair of numbers follow giving the coordinates of the
points. The program prints the number of points in the convex
hull and the coordinates of those points.

Time Complexity: O(nlogn)
O(nlogn). Sort
O(n). Graham’s Scan
Input:
n. Number of points
point. Array of coordinates
Output:
stack. Array of point index that form the convex hull.

Listing 8.8: Graham’s Scan

#include <algorithm>
#include <cstdio>
#define N 1001

using namespace std;

typedef struct stPoint {
long x;
long y;

} Point;

Point point[N];

Point LH[N], UH[N], ZH[N];
Point pl, pr;

long stack[N];

bool compare(Point, Point);
long area(Point, Point, Point);
void sortPoints(long);

long convexHull(long n);

int main() {
long n, m;

scanf ("%1d", &n);
for (long i = 0; i < mn; i++) {

scanf ("%1d %1d", &point[i].x, &point[i].y);
}

sortPoints(n);
m = convexHull(n);

printf("%1d\n", m);
for (long i = 1; i <= m; i++) {
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printf("%1ld %1ld\n", point[stack[il].x, point[stack[ill.y);
}

return 0;

}

Inside the sortPoints function each point is assigned to its cor-
responding hull, and then those hulls are sorted counterclockwise
using the sort function of the algorithm library. After that all the
points from every hull are merged into a single array according to
the cases described in figure

void sortPoints(long n) {
long posl, pos2;
long nl, n2, n3;
long A;

posl = pos2 = 0;
for (long i = 1; i < n; i++) {
if (point[i].x < point[posi].x) {
posl = i;
} else if (point[il.x == point[posi].x && point[i].y < point[posi].y) {
posl = i;

}

if (point[i].x > point[pos2].x) {
pos2 = i;
} else if (point[i].x == point[pos2].x && point[i]l.y < point[pos2].y) {
pos2 = i;
}
}

nl = n2 = n3 = 0;
pl = point[posi];
pr = point[pos2];

for (long i = 0; i < n; i++) {
A = area(pl, point[i], pr);

if (A > 0) {
LH[n1++] = point[il;
} else if (A < 0) {
UH[n2++] = point[il;
} else {
ZH [n3++]
}
}

point[i];

sort(LH, LH + nl1, compare);
sort(UH, UH + n2, compare);
sort(ZH, ZH + n3, compare);

// Merge LH, ZH and UH
n = 0;
if (n1 == 0) {
for (long i = 0; i < n3; i++) {
point [n++] = ZH[i];
}
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for (long i = 0; i < n2; i++) {
point [n++] = UH[i];
¥
} else if (n2 == 0) {
point[n++] = pl;
for (long i = 0; i < nl; i++) {
point [n++] = LH[i];

for (long i = n3 - 1; i > 0; i--) {
point [n++] = ZH[il;

} else {
point [n++] = pl;
for (long i = 0; i < nl; i++) {
point [n++] = LH[i];
}
for (long i = 1; i < n3; i++) {
point [n++] = ZH[il;

for (long i = 0; i < n2; i++) {
point [n++] = UH[i];
¥
}
}

Finally the function convexHull performs the Graham’s scan
and stores in stack the indexes of the points that are part of the
convex hull.

long convexHull(long n) {

long ps;
stack[1] = 0;
stack[2] = 1;
stack[3] = 2;
ps = 3;

for (long i = 3; i < n; ++i) {
while (area(point[stack[ps]], point[stack[ps - 111, point[i]l) > 0) {
ps—;
if (ps == 1) {
break;
}
}

ps++;
stack[ps] = i;

if (area(point[stack[ps]], point[stack[ps - 1]], point[stack[1]]) > 0) {
ps==;

}

stack[ps + 1] = stack[1];
pstt;
return ps;
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The functions compare and area are auxiliary functions. The
first one specify the rules used when two points are compared,
allowing that the points can be sorted counterclockwise. Meanwhile
the area function receives three points and returns the signed area
of the triangle formed by them.

bool compare(Point spl, Point sp2) {
long k, di, d2, A;

k = area(pl, spl, sp2);
if (k> 0) {

return true;
} else if (k == 0) {
di = (spl.x - pl.x) * (spl.x - pl.x) + (spl.y - pl.y) * (spl.y - pl.y);
d2 = (sp2.x - pl.x) * (sp2.x - pl.x) + (sp2.y - pl.y) * (sp2.y - pl.y);
A = area(pl, spl, pr);

if (A<0) {
if (d1 < d2) {
return false;
} else {
return true;
}
} else {
if (d1 < d2) {
return true;
} else {
return false;
}
}
} else {
return false;
¥
}

long area(Point a, Point b, Point c) {
return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y);
}

8.7 Chapter Notes

Geometric algorithms are sometimes difficult to analyze and
also difficult to implement, since there are things to consider,
like the precision error, divisions by zero, variable overflow
while doing calculations, et. al. For that reason when coding a
solution for a geometry problem, is important to keep operations
as simple as possible. There are a great amount of tips and
tricks in the forums of online judges, we recommend to take a
look to the ideas and solutions shared there for geometric problems.

There are a lot of great books about geometry and geometric



8.7. CHAPTER NOTES 219

algorithms, some of the ones we used as reference while writing this
book were: ”Analytic Geometry” by Lehmann [27], that explains
very clearly the basic concepts about geometry. “Introduction
to Algorithms” by Cormen, Leiserson, Rivest, and Stein [I],
describing the performance and behavior of some of the most
known geometric algorithms. “Introduction to the Design and
Analysis of Algorithms” by Lee, Tseng, Chang, and Tsai [12],
which share interesting ideas and analysis of geometric algorithms.

The following links contain a list of problems about geometry
that are worth to try.

e https://www.urionlinejudge.com.br/judge/es/
problems/index/8

e http://acm.timus.ru/problemset.aspx?space=1&tag=
geometry

e https://uva.onlinejudge.org/index.php?option=com_
onlinejudge&ltemid=8&category=452


https://www.urionlinejudge.com.br/judge/es/problems/index/8
https://www.urionlinejudge.com.br/judge/es/problems/index/8
http://acm.timus.ru/problemset.aspx?space=1&tag=geometry
http://acm.timus.ru/problemset.aspx?space=1&tag=geometry
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=452
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=452
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8.8 Exercises




9

Number Theory and
Combinatorics

“A smart man makes a mistake, learns from it, and never
makes that mistake again. But a wise man finds a smart
man and learns from him how to avoid the mistake alto-
gether.”

— Roy H. Williams

During this chapter we will see some properties that numbers
have and that most of the time remain unknown. We will put
emphasis on prime numbers given their importance and the
application they have for different problems. We will also cover
modular arithmetic that allow us to be able to make calculations
without worrying about memory overflow. Another important
topic is divisibility which includes the Euclidean algorithm, that
finds the greatest common divisor (gcd) of two numbers. There
are a lot of properties and hidden tricks inside numbers and it will
take a whole book, or more, to include all of them, but we will
focus on those we think are the basis in computer programming.

Here is a small example of the tricks that one can find in
number theory. Suppose we have a number n and we want to
write a program that identifies if n is divisible by 3. The first
choice is to obtain the modulus of n/3, if it is zero, then n is
divisible by 3. Easy right? To make it more interesting what
if n contains 100000 digits? Well that makes the things more
interesting but not impossible, we just need to make a division

221
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as we were taught in school, or better, we can use the following
property: A number is divisible by three if the sum of its digits is
divisible by three.” Then if n contains 100000 digits, then the sum
of its digits it a most 900000, which easily fits in an integer variable.

Another example of a clever trick is how to calculate the sum
the first n numbers. Suppose that n = 100, then we can start
calculating the sum 1 +2+3+4+5+6+...+100. I don’t know
you, but I lost track of the count quickly. Well, Gauss, the German
mathematician thought in an easier approach, start adding the first
number and the last one and get 1+100 = 101, then add the second
with the second last and get 2 + 99 = 101 again, the next would
be 3 + 98 = 101 once again, and so on. The sum is always 101,
and there are 50 pairs, then the sum of the first 100 numbers is
50 x 101. Generalizing this approach we have that the sum S of
the first n numbers is given by:

g_ nn+1)
2
These are only some examples of tricks and properties that
numbers have, and like these there are a lot of them, it is incredible
the amount of secrets that numbers hide. The goal of this chapter is
that the reader learn to take advantage of those secrets, properties
and tricks in order to solve complex problems.

(9.1)

9.1 Prime Numbers

A prime number is a number that is only divided by 1 and by
itself. Prime numbers are of great importance, and they can be
used to solve different problems. That’s is why it is useful to have
an efficient way to generate prime numbers.

In this section we will review some algorithms to generate
prime numbers, and study some problems where prime numbers
are needed to implement the solution.

To check if a number n is a prime number we only need to
generate the prime numbers up to the square root of n, if one of
them divide n, then n is not a prime number.

Suppose n can be expressed as the product of two prime num-
bers p and g, then
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n=pq
where p < g, then

p<gq
pp < gqp
P> <n

p<Vn (9.2)

9.1.1 Sieve of Eratosthenes

One of the most used algorithms to generate prime numbers. Builds
a 0/1 array P, where P, = 0 if k is a prime number, and Px = 1
if k£ is not a prime number. The first ten elements looks like this:

0 1 2 3 4 5 6 7 8 9
(tltfofoftfoftfofti]t]
To find all the prime numbers less than or equal to [N, we need
an array P of N + 1 elements, Py, ..., Py. We can start marking
Py and P; with 1, since we know they are not prime numbers.
After that, we go trough all the numbers starting from 2 up to
V/N. If P; is zero then i is a prime number, so we mark with 1 all

its multiples starting from 2. At the end, all prime numbers will
be marked with 0, and the rest with 1.

The code in implements the Sieve of Eratosthenes to find
the prime numbers up to 100 and print the resulting array.

Time Complexity: O(nloglogn)
Input:
n. An integer.
Output:
P. Sieve with the primes numbers up to V.

Listing 9.1: Sieve of Eratosthenes

#include <cstdio>
#include <cmath>
#define n 100

using namespace std;
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int P[n + 1];
void sieve();

int main() {
sieve();
for (int i = 0; i <= n; i++) {
printf ("/d\n", P[il);

return O;

}

void sieve() {
int lim = (int)sqrt(double(n));

for (int i = 2; i <= lim; i++) {
if (P[] == 0) {

for (int j =i * i; j <=n; j += i) {

P[j]l = 1;

P[0]
P[1]

o
[

9.1.2 Prime Number Generator

In some problems we need to store all the prime numbers up
to some given number n in an array, so we can easily get any
prime number. The algorithm starts by adding 2 to the
vector of primes, which is initially empty. Then we go trough
all odd numbers starting from 3 up to n and check for all them
if there is a prime number that divides it, if there is none, then
it is a prime number and it should be added to the vector of primes.

To know if some number k is prime, we should check for all
prime less than or equal to vk if none of them divides it, then k
is a prime number.

We only look up to vk, because according to every
non-prime number m can be expressed as the product of two num-
bers, p and ¢, and one of them will be always less or equal than /m.

The algorithm in [9.2] computes all prime numbers less or equal
to a given number n. The time complexity is not clear, since for
each number num we have to search for any divisor up to v/num,
and that would run in O(y/n), but there is no need no check
all numbers, just the prime numbers which are much less, and
because the amount of primes changes through the process is hard
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to define an upper bound for the running time, so for simplicity
we would define an upper bound of O(y/n), and since we have
to search divisors for all numbers the time complexity would be
O(n+/n). We should keep in mind that the function sqrt is an
estimate of the square root and it implies an internal procedure
that can take some time, so one thing that can be done is to rise
to the power of two both sides of the inequality, so line 8 would
look like this

else if(num < P[i]*P[i]).

This way we will avoid computation of the square root and
speed up the running time of the algorithm, we just need to be
careful that the product p[i]*p[i] doesn’t cause and overflow.

Time Complexity: O(n\/n)
Input:
n. An integer.
Output:
P. Vector with prime numbers smaller or equal to n.

Listing 9.2: Prime Number Generator

void generatePrimes() {
P.push_back(2) ;
P.push_back(3);
for (int num = 5; num <= n; num += 2) {
for (int i = 0; i < P.size(); i++) {
if (num % P[i] == 0) {
break;
} else if (sqrt((double)num) < (double)P[il) {
P.push_back (num) ;
break;
}
}
¥
}

9.1.3 Euler’s Totient Function

Euler’s totient function or Euler’s ¢(n) function, counts the
number of integers in @ = 1,2,---,n such that ged(a,n) = 1.
In other words, counts the number of positive integers equal or
smaller than n that are relatively prime to n.

Be P(n) = pi1, - ,pm the set of all prime factors of n, the
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Euler’s function is defined by:

$(n) = nf[l (1 - ;) (9.3)

The Euler’s function for the first ten numbers are:

8 9 10
4 6 4

n=|

é(n) = |

1 2 3 4 5 6 7
1 1 2 2 4 2 6

The Euler’s function is multiplicative, meaning that if
ged(a,b) = 1, then ¢(ab) = d(a)(b).

Every number n can be expressed as the product of its prime
factors.

n:p'fl ><p’2€2 ><'~><p1]3;”

1

,and because pf’ has exactly pfi_ multiples less than or equal

to pfi (pi, 2pi, - - - ,pf"_lpi), the number of relatively prime numbers
to pf is given by:

ki _ ki ki—1
o(p;*) = p;* — D}
=pi (i — 1)

) 1
- (i-3)
Pi

then

P(n) = G(Pf* x ph? x -+ x pkim)
= o(p}") x o(p5?) x o(pk)

1 1 1
k1 k2 k
A (-2 (-2 (-
1( p) 7 D2 " Pm
1 1 1
oot (1) (1 1) (1 1)
P1 P2 Pm

1(-5)
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9.1.4 Sum of Divisors

Given an integer n, calculate the sum of all divisors of n. For
example, for n = 6 there are four divisors: 1, 2, 3, and 6, the sum
of all of them is 1+2+346=12

A number n can be written by the product of its prime factors
(P17 s Pm)-

m
n= pr’i, (9.4)

i=1
where m is the number of different prime factors, and k; is the
number of times p; divides n. For example, 12 = 22 x 3. Here

p1=2,p2=3,and ky =2, ko = 1.

Be s(n) the sum of all divisors of n and is defined by:

i=1
160
i=1
I (1 pit 2+ o)
=1
mo 1
it
:le-q (9.5)
i P
Some examples:
2 -1 32-1
12) = s(2%3') =
s(12) = s(2%3) = 5 —7 X 33
7 8
—TX§—7X4
=28=1+2+3+4+6+12
2t —1
_ 23 _
() = s(2%) = 5 —

=15=1+2+4+4+38
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22 -1 33-1

X
2-1 3—-1
=91=1+24+3+44+6+9+12+18+36

5(36) = s(223%) =

Listing 9.3: Sum of Divisors

int sumOfDivisors(int n) {
int p =0, k = 0;
int res =1, f = 1;
int prev = n;

if m==0 |l n==1){
return n;

}

while (n >= P[k] * P[k]) {
if (n % P[] == 0) {
prev = P[k];
n /= P[k];
f x= P[k];
} else {
if (£ > 1) {
f *= P[k];
res *= (f - 1) / (P[k] - 1);

if (n == prev) {
f *=n % n;
res *= (f - 1) / (n - 1);
} else {
if (£ > 1) {
f *= prev;
res *= (f - 1) / (prev - 1);
¥

res *= (n *n - 1) / (n - 1);

}

return res;

}

9.1.5 Number of Divisors

As we’ve seen, a number n can be expressed as the product of its
prime factors

m
G
i=1



9.2. MODULAR ARITHMETIC 229

be D(n) the number of divisors of n, then

D(n) =D (ﬁpfi>
D(pfi)

(ks +1) (9.6)

L

@
Il
-

L

s
I
-

9.2 Modular Arithmetic

It’s very common to face problems that involve large integers,
or handling operations that causes an overflow error. Modular
Arithmetic is a technique that allow us to simplify those opera-
tions, keeping the results in integers that can represented by the
computer.

Given a positive integer m, called the modulo, the goal is to
obtain the remainder of a large number, product of some cal-
culations, when divided by m. e.g. Consider n 32-bit integers,
ag, a1, .- .,0,—1. What would be the remainder of the sum of all n
numbers when divided by some ”small” integer m?

(ap+ a1+ -+ ap—1) mod m =?

Now, we know the result will be in the range [0, m — 1], but the
sum of all numbers can be very large, and that can cause an over-
flow error. Here is when we take advantage of one of the properties
of modular arithmetic that states:

(a +b) mod m = (a mod m + b mod m) mod m, (9.7)

which causes that all operations be in the range [0,m — 1],
avoiding that way any possible overflow error. To simplify things
we are going to denote a mod m, as [a], for some integers a and m,
where m > 0. The we can rewrite equation as

[a + b] = [[a] + [b]]. (9.8)
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We also can apply modular arithmetic for subtraction and mul-
tiplication, which are defined as follows:

[a —b] = [[a] — [b]] (9-9)
[a x b] = [[a] x [b] (9.10)

[a”] = [[a]"]- (9.11)

Notice that the modulo is not applied to the exponent, since
[a®] # [[a]’)]. For example, consider the case where a = 2,b = 4,
and m = 3. For one side we have that [2%] = 1, of for the other
side we have that [[2]4] = [21] =2 # 1.

The program in [9.4] reads n numbers and prints their sum
modulo m by using the addition property of modular arithmetic.

Time Complexity: O(n)
Input:
n. The number of integers to read.
m. The modulus.
num. Variable used to read the n numbers.
Output:
sum. The sum of all n numbers in the input modulus m.

Listing 9.4: Modular Arithmetic

#include <cstdio>
using namespace std;

int main() {
int n, m, num, sum;

scanf ("%d %d", &n, &m);

sum = 0;

for (int i = 0; i < n; i++) {
scanf ("%d", &num);
sum = (sum + num % m) % m;

}

printf("%d\n", sum);
return O;

}
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9.3 Euclidean Algorithm

Euclid’s algorithm is an efficient method of calculating the greatest
common divisor (ged) of two numbers. It was published in Book
VII of Euclid’s Elements around 300 BC, and is based in on the
following simple observation.

gcd(a,b) = ged(b,r), (9.12)

where a > b and r is the reminder of dividing a by b. e.g.
Calculate the greatest common divisor of 18 and 14. By we
get

gcd(18,14) = ged(14,4)
ged(14,4) = ged(4, 2)
ged(4,2) = ged(2,0)

Once the smallest value is zero, we stop the search and the
result is the largest value. For our example the greatest common
divisor of 18 and 14, is 2. The function gcd in [9.5| receives two
positive integers a and b, then makes sure a to be larger or
equal than b and executes the Fuclidean Algorithm. The func-
tion returns the greatest common divisor of the two numbers given.

Time Complexity: The worst case scenario to obtain the value
of ged(a,b) is when a and b are consecutive Fibonacci numbers. If
a is the n'" Fibonacci number, the Euclidean algorithm needs n
iterations to get to the result.
Input:

The function gecd receives two positive integers a and b.
Output:

The function gcd returns the ged of a and b.

Listing 9.5: Euclidean Algorithm

int ged(int a, int b) {
if (a <b) {
swap(a, b);
¥

while (b > 0) {
int temp = a;
a = b;
b = temp % b;
}
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return a;

}

9.3.1 Extended Euclidean Algorithm

Given two integers a and b find the values of x and y such that

azx + by = ged(a, b)

(9.13)

To find the values of x and y we can use the Euclidean algo-

rithm. Using we know that

gcd(a,b) = ged(b, a mod b)

Making a1 = a,b; = b,a2 = b and by = a mod b we have that

ged(ay, by) = ged(ag, be)

Using [0.13] we get the following:

ged(ai,by) = ayzy + by =d

ng(CLQ, bg) = a9 + bgyg =d

where d = ged(a,b). We also know that

a2:b1

b2 = ax mod b1
b2 = a; — blk

where k = H—;J Replacing [9.15

in

9.14

d=aiz1 + by
d=biza + (a1 — b1k)y2

Then

we get:

a1z1 + biyr = b122 + (a1 — b1k)ye
= a1y2 + b1($2 — ]{Jyg)

(9.14)

(9.15)

(9.16)
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This is true only if

L1 = Y2
Y1 =x2 — kyz (9.17)

Generalizing [9.17 we have

Ti = Yi+1
Yi = Tit1 — kyiva (9.18)

We only need the initial values to obtain the values of x; and
y1, but in the last iteration of the Euclidean algorithm the values
of a, and b, are already known.

d= anT, + bnyn
=dz, + 0y,

Then, for the initial values we have

Ty, =1

yn:O

The code in reads two positive integers A and B
(A, B < 1000000001) and prints X, Y, and gcd(A, B), if there
is more than one solution prints the solution where |X| + |Y| is
minimal (primarily) and X <Y (secondly).

Time Complexity: The worst case scenario is the same of the
Euclidean algorithm, it happens when A and B are consecutive
Fibonacci numbers.
Input:

A,B. Two positive integers.
Output:

Three numbers X Y D, representing a solution for the equation
AX + BY = D, where D = gcd(A, B).

Listing 9.6: Extended Euclidean Algorithm

#include <cstdio>
using namespace std;
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long x, y, d;
void extendedEuclidean(long, long);

int main() {
long a, b;

scanf ("%1d %1d4", &a, &b);
extendedEuclidean(a, b);

printf("%1ld %1d %1ld\n", x, y, d);

return 0;

}

void extendedEuclidean(long a, long b) {
long x1, yi;

if (b == 0) {

d = a;
x =1;
y=0;
} else {
extendedEuclidean(b, a % b);
x1l = x;
yi =y;
x = yi;
y=x1-(a/ b) *yl;

9.4 Base Conversion

Base conversion is very straight-forward to implement, but given
that is common to face problems that ask to convert a number
from one base to another, we decided that it is a good idea to
incorporate a section about that.

We are used to work with the decimal system, which are num-
bers in base 10 that can contain 10 different digits: 0,1,...,9. So
when we see a number, for example, 483, it can be seen in the
following way:

483 = (4 x 100?) + (8 x 10') + (3 x 10°)
483 = 400 + 80 + 3

The same process is applied for different bases, for example,
for base 2 we can use only two digits, 0, and 1, and if we want to
represent any number, like 43, we do the following:
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43 = (1 x 2°) + (0 x 2%) + (1 x 2%) + (0 x 2%) + (1 x 21) + (1 x 29)
43=324+8+2+1

So the binary representation for 43 is 101011. The program in
reads an integer b representing a base, a string B representing
a number written in base b, and a decimal number num. The
output consists on two lines, the first is the decimal representa-
tion of B, and the second is the number num represented in base b.

Time Complexity: O(k)

k. The number of digits
Input:

numToDec. A string str and an integer b.

decToNum. Two numbers n and b.
Output:

numToDec. A number with the 10-based representation of
b-based number str.

decToNum. A string with the b-based representation of 10-based
number n.

Listing 9.7: Base Conversion

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 255

using namespace std;

long numToDec(char *, long);
char *decToNum(long, long);

int main() {
char B[N];
long num, b;

scanf ("%1d", &b);
scanf ("%s", B);

scanf ("%1d", &num);

printf("%1d\n", numToDec(B, b));
printf("%s\n", decToNum(num, b));

return 0;

The function numToDec receives a string str and a long integer
b, representing a number str written in base b, and returns a long
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integer with the decimal representation of str.

long numToDec(char *str, long b) {

long j, k, p;

long len = strlen(str);
long s = 0;

j=0;

p=1;

for (int i = len - 1; i >= 0; i--) {
if (strli] >= °A’ && strl[i] <= °2’) {
k = str[i] - A’ + 10;
} else {
k = str[i] - °0’;

=s + k * p;
*= b;

- on v

}

return s;

}

The function decToNum receives a long integer n and a long
integer b, where n is a decimal number, the function returns a
string representing n written in base b.

char *decToNum(long n, long b) {
long num, k = 0;
char temp;
char *s = new char[N];

do {
num = n % b;
if (num >= 10) {
s[k++] = (num - 10) + ’A’;
} else {
s[k++] = num + °0’;

}

n /= b;
} while (n > 0);

s[k] = °\0’;

for (int i = 0, j =k - 1; 1 <k / 2; i++, j—-) {
swap(s[il, s[jl);

}

s[k] = ’\0’;
return s;
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9.5 Sum of Number of Divisors

For any integer k consider the function F(k) which returns the
number of divisors of number k. Given an integer n, the goal is to
obtain the value of H(n), where H is a function defined by

H(n) = Z F(i) (9.19)

Code in reads an integer n and prints the value of H(n).
The idea is to count how many numbers have 1 as divisors, that’s
easy, there are n numbers. Now, how many numbers have 2 as
divisor? Well, there are n/2 numbers. What about the numbers
with 3 as divisor? There are n/3 of them, and so on. The result is
the sum of all those values. The algorithm consists on a loop that
continue to execute while

n
—>k—-1.
k
Solving for k we have that k < H/IEin V;‘M‘". Then the time
complexity of the algorithm is O(v/n).

Time Complexity: O(y/n)
Input:

An integer n.
Output:

The value of H(n).

Listing 9.8: Sum of Number of Divisors

#include <cstdio>
using namespace std;

long long H(long long);

int main() {
long long n;

scanf ("%11d", &n);
printf("%11d\n", H(n));

return O;

}

long long H(long long n) {
long long num, k;
long long prev = n;

long long i = 1;
long long j = 0;
long long s = 0O;
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do {
num = n / i;
k = prev - num;

s +=k *x j;
if (num > j) {
s += num;

}

prev = num;
it++;
j++;
} while (num > j);

return s;

}

9.6 Combinations

When we are asked to obtain the number of combinations, we ba-
sically are asked the question ”In how many ways can I select k
elements from a set S of n elements?. Then given a set S of n ele-
ments, a combination is a subset of S of k elements, where k < n.
For example, consider a set of three colors {red, green, blue}. How
many combinations of two colors can be formed? The answer is
three: {red, blue}, {red, green}, and {blue, green}. The number of
ways to select k elements out of n elements is defined by equation
9. 20)

(Z> B k'(nn'k)' (9.20)

For the example mentioned above, we have three colors (n = 3),
and we want to select two colors (k = 2), then the number of ways

to do that is
3 3t 6 5
2) 213-2)!  2(1) 7

In order to write a program that calculates the number of com-
binations by using equation [0.20} is necessary to be careful of an
overflow error, since the value of n! can exceeds an integer capacity,
even when the final result is in the range of an integer. One thing
that can help to handle larger values of n, is to divide the value of
n! as we are doing the multiplications. For example, for n = 7 and
k = 3 we can do the following:
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AP
3) 314!

O IXZIXBXAXEX6XT

S (Ix2x3)(IxZx B xA)

_Tx6x5
C1x2x3

= (((7/1) x 6)/2 x 5)/3
=35
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This will keep the operations smaller instead of calculating
the value of n!, also this method would run faster, since we are
dividing at the same time we are multiplying. The function comb
implemented in receives two integers n and m and returns the

value of (}).

Time Complexity: O(n)
Input:

Two numbers n and k, where k& < n.
Output:

The value of (7).

Listing 9.9: Combinations

int comb(int n, int k) {
int m = max(k, n - k);
int res = 1;
for (int i =n, j = 1; i > m; i--, j++) {
res *= ij;
res /= j;

}

return res;

}

9.6.1 Pascal’s Triangle

The first rows of Pascal’s Triangle can be seen in figure [0.1] The
triangle can be built easily. Notice that the i** row contains exactly
i+ 1 elements with a 1 in the first column, and for j > 0 we have
that the element in the position (i,7) is the sum of elements in
positions (i — 1,5 — 1) and (¢ — 1, 5). Suppose that empty cells are

Zeros.
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152015 6 | 1
2135|3521 7 |1
28 |56 |70 |56 |28 8 1
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Figure 9.1: Pascal’s Triangle

There are some hidden properties inside the Pascal’s Triangle,
for example, the third column contains all triangular numbers. An-
other property is that if we trance a diagonal from (i,0) to (0,1%),
and sum the values crossed we get the i*"* Fibonacci number. Also
notice that the element in position (n, k), where k& < n contains
the value of (Z), which is very convenient, because we can apply
the properties of modular arithmetic, something that we cannot do

using equation [9.20]

9.7 Catalan Numbers

In combinatorial mathematics, the Catalan numbers named after
FEugene Charles Catalan, is a sequence of natural numbers that can
be applied to various problems and have the following form:

Co=1
2(2n+1)
=t (9:21)
The first 10 Catalan numbers are:

1,1,2,5,14,42,132,429, 1430, 4862. Following we list some
applications of Catalan numbers.



9.7. CATALAN NUMBERS 241

Balanced Parentheses

The nt* Catalan number gives us the number of ways we can ar-
range 2n parentheses (n open and n close). See image

n=0:|x* 1 way
n=1|0 1 way
n=2100, (O 2 ways
n=3 000, O, (MO, VO, CON 5 ways
n=4: | 0000, OO0, OO, OO, OWON, 14 ways

OO, (O, (0OMO, «ONO, (0O,
(00N, OIM), (OO, WO

n=>5 1 00000, OO0, 00O, OOWO), OOKON, | 42 ways
OUMOO, O, OO, OUONO, OO,
OO0, OUOION), OO0, O, (MOOO,
O, MO, WO), (OO, (OMOO,
OO, CONOO, WONW), (DOOYO, (OWONO,
OO0, COONO, WM, (0DOOON), (DO,
OO, OO, OO, LOIOO), (OO,
OGO, CCCONO), OO0, O, ION,
(OO0, (COINN

Figure 9.2: In how many ways can arrange n open parentheses and n
close parentheses?

Mountains

How many mountains can we form using n up-strokes and n down-
strokes? This is another way to see the parentheses problem. See

image [9.3]
n=0:|* 1 way
n=1 | A\ 1 way
n=2: /\ 2 ways
AYAYIVARY
n=23: N\ 5 ways
N\ N\ JAYA / \
NN NGNS NN N LN

Figure 9.3: The number of mountains that can be formed using up-
strokes and down-strokes.

Polygon Triangulation

The number of ways to triangulate a regular polygon with n + 2
sides is given by the n'" Catalan number. See image
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Figure 9.4: Triangulate a polygon of n + 2 sides.

Hands Across the Table

There is a circular table with 2n people seated around it. In how
many ways can all of them be simultaneously shaking hands with
another person is such way that none of the arms cross each other?

See image [9.5]

>—
¢ —

>—0

— N/

/// \\\ /._.\

Figure 9.5: 2n persons shake hand without crossing their arms.
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Binary Trees

The Catalan numbers count the number of rooted binary trees with
n internal nodes. A rooted binary tree is a set of nodes and edges
connecting them, where each node has either two children or none.
Internal nodes are the ones that have two children. See image [0.6]

N

A
POERAY TN

Figure 9.6: How many rooted binary trees can we form?

9.8 Josephus

There are n persons seated in a round table numbered from 1 to
n. In the first round, person 1 receives a ball, then he passes the
ball to the person at his left (person 2), and so on, after k steps,
the person that has the ball loses and leaves the table. The second
round begins with the person at the left of the person that has
just lost. the process continues until a single person remains in
the table, that person is considered the winner.

In image [0.7] there is a case with n = 4 and £ = 2. In the
first round, person 2 loses, the second round begins in person 3, so
person 4 loses, finally in the third round there are only two persons
at the table, person 1 and 3, beginning in person 1, person 3 loses,
leaving person 1 as the only person in the table, thus the winner is
person 1.
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o

Figure 9.7: Josephus problem with n = 4 and k = 2. In every round
the persons that lose is colored in red. [0.7D] First round. Person 2 loses.
Second round. Person 4 loses. [0.7d] Third round. Person 3 loses,
and person 1 is the winner.

The code in basically simulates the game in a recursive
way. It reads two integers n and k and prints the winner of the
Josephus problem.

Time Complexity: O(n)
Input:
Two positive integers n and k.
Output:
A number indicating the winner of the Josephus problem.

Listing 9.10: Josephus Problem

#include <cstdio>
using namespace std;

long josephus(long, long);

int main() {
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long n, k;
scanf ("%1d 714", &n, &k);
printf("%1d\n", josephus(n, k) + 1);

return O;

}

long josephus(long n, long k) {
if (n == 0) {
return 0;
} else {
return (josephus(n - 1, k) + k) % n;
}
}

9.9 Pigeon-Hole Principle

The pigeon-hole principle states that if n items are put into m
containers, with n > m, then at least that one item must contain
more than one item. If there are n pigeons and m holes, and n > m,
then at least one hole will contain more than one pigeon. See figure
9.8

Figure 9.8: pigeon-hole principle using 10 yellow balls and 9
squares, since there are more balls than squares, at least one square
will contain more than one ball.

Consider the case of a street where each year on Halloween
each neighbour is only willing to give a certain total number of
sweets on that day, no matter how many children call on him. To
avoid conflicts, the children have decided they will put all sweets
together and then divide them evenly among themselves. The
children know how many sweets they get from each neighbour.
Since they care more about justice than about the number of
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sweets they get, they want to select a subset of the neighbours to
visit, so that in sharing every child receives the same number of
sweets.

The program [9.11] receives as input two integers n and m
(1 < n < m < 100000), representing the number of children and
the number of neighbours, respectively. The next line contains
m space separated integers x1,..., &, (1 < z; < 100000), where
x; represents the number of sweets the children get if they visit
neighbour i. The output is the set of houses the children need
to visit so they can divide equally the number of sweets without
wasting any of them.

The trick here is to notice that that m > n, and apply modular
arithmetic along with the pigeon-hole principle. store the sum of
the candies modulo n, that will return a number in [0,n — 1], let’s
call that value r. If r is zero, we finished and print the numbers
from 1 to k, where k is the index of the last element added to the
sum. If r is not zero, mark cell s, = k if it is not already marked.
in the case it is already marked print the numbers from s, + 1 to
k.

Time Complexity: O(m)
Input:

n. Number of children.

m. Number of neighbors.

x. Array where x; represents the sweets the children can get
from neighbor .
Output:

The sequence of houses that the children must visit in order to
split the sweets equally.

Listing 9.11: Pigeon-Hole Principle

#include <iostream>
#include <cstdio>
#include <cstring>
#define N 100001
using namespace std;

long x[NI1, s[NI;

int main() {
long k, n, m;

scanf ("%1d %1d4", &n, &m);
memset(s, -1, sizeof(s));
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k = 0;

for (int i = 0; i < m; i++) {
scanf ("%1d", &x[il]);

k = (k + x[i]) % n;
if (s[k]l == -1) {
if (k == 0) {
printf("1");
for (int j = 1; j <= i; j++) {
printf(" %1d", j + 1);
}
printf("\n");
goto finish;
}
s[k]l = i;
} else {
printf("%1d", s[k] + 2);
for (int j = s[k] + 2; j <= 1i; j++) {
printf (" %1d", j + 1);

printf("\n");
goto finish;
}
}

finish:
return 0;

}

9.10 Chapter Notes

Number Theory is one of those things that seems magical. Num-
bers have hidden properties, peculiarities, and coincidences that
are hard to believe, but they actually exist, making it one of
the most interesting areas in mathematics. On the other hand.
Combinatorics is an area with a lot of applications in real-world
problems, specially in the field of computer science, since it is a
basic tool to analyze algorithm’s performance.

Jones and Jones [28], describe and analyze properties about
prime numbers, divisibility, modular arithmetic, et. al. Knuth
[29] [30], do a detailed analysis of methods like the Euclid’s
algorithm and modular arithmetic, and dedicate a whole book
to combinatorial algorithms. Lehmann [3I] also mention some
mathematical concepts in the area, like the Newton’s binomial
theorem, which include the calculus of combinations.

The following links contain a series of mathematical problems,
among them some related to number theory and combinatorics,
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other subjects included are game theory, probability, and numerical
methods, just to mention some, that although those topics are not
included in this book, it is worth to take a look to them.

e https://uva.onlinejudge.org/index.php?option=com_
onlinejudge&ltemid=8&category=450

e http://acm.timus.ru/problemset.aspx?space=1&tag=
numbers

e https://www.urionlinejudge.com.br/judge/en/
problems/index/5

e https://projecteuler.net/archives


https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=450
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=450
http://acm.timus.ru/problemset.aspx?space=1&tag=numbers
http://acm.timus.ru/problemset.aspx?space=1&tag=numbers
https://www.urionlinejudge.com.br/judge/en/problems/index/5
https://www.urionlinejudge.com.br/judge/en/problems/index/5
https://projecteuler.net/archives
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10

String Manipulation

“Common sense is not so common.”
— Voltaire

A string is an array of characters, and String Manipulation
refers to problems that involves string handling. e.g. Find a word
inside of another word, reverse its characters, find out if a word is
a palindrome, et.al.

When a string is printed in the screen, what the user see is a
letter or a symbol, but what the computer interprets is its ASCII
code . For example, the ASCII code for letter A’ is 65, for letter
‘B’ is 66, and so on. Consider the problem to count how many
times a letter appears in a word, for simplicity assume that all
letters are upper-case, what would be a good implementation?

A bad implementation would be to check every possible case,
that will consists on 26 cases we need to consider. A better ap-
proach is to use an array X of 26 elements as a counter, in such a
way that X represents how many A’s are contained in the word,
X1, how many B’s, and so on. In this case word; represents the
it" character of the word we are working with, then for every letter
in the word we do the following

X = X + 1,

where k = word; —" A’. In that way if word; =" A’, k would be
0, and the value of Xy will increment in one, in the same way if

251
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word; =" B’, then k is equal to 1 and X; will increment in one.

When we subtract letter A’ we are actually subtracting 65
which is the ASCII value of ’A’ Doing k = word; — 65 would
have the same effect. In conclusion we can say that strings have
properties that other types of variables don’t have, and we can use
those properties to our advantage when solving a problem.

The library string in C+4+ contains different methods and
properties that allows to perform certain taks and even do
operations with strings, for example if we have the string "hello”
and other string ”"world”, is valid to do "hello” + ” 7 + "word”.
The result is a single string "hello world”. In this case the operator
+ functions as a concatenator.

During this chapter we will solve and analyze different problems
involving strings, for that we would use the properties of the strings,
and the string library. Of course those are just tools that makes
things easier, every problem involves a deep thinking in order to
get to the best solution.

10.1 Next Permutation

Given a string of n letters, the goal is to find the next permutation
of that string. Consider string X.

X =ABAACB

The first thing to do is to identify the last element X; that is
smaller than the element at its immediate right. In this case Xs.
If no element is found then there is no next permutation.

The next step is to verify if element X, is smaller or equal
than X, if it is, we verify with X,,_; and so on, until we find an
element X, larger than X;. For the sample case X5 is larger than
X3, then k = 5.

Swap elements X; and Xj,.

X =ABABCA

Now reverse the elements from position j + 1 to n to obtain the
next permutation.
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X = ABABAC

The code in receives a string str and prints its next
permutation if there is one, otherwise prints the message "No
permutation”.

Time Complexity: O(n)

n. Number of characters.
Input:

The string which we want to obtain the next permutation from.
Output:

The next permutation if it exists, otherwise prints No permu-
tation.

Listing 10.1: Next Permutation

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 255

using namespace std;

char *nextPermutation(char *, int);

int main() {
char str[N];
int n;

scanf ("%s", str);

n = strlen(str);

if (nextPermutation(str, n) !'= NULL) {
printf("%s\n", str);

} else {
printf("No permutation\n");

}

return O;

}

char *nextPermutation(char *cad, int n) {
int j =n - 2, k, r, s;
char temp;

while (j >= 0 && cad[j] >= cadl[j + 11) {
Jj==s
}

if (5 <0) {
return NULL;
}

k=n-1;

while (cad[j] >= cadlk]) {
k——;

}
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swap(cad[j], cad[k]);

r=n-1;

s =3j+1;

while (r > s) {
swap(cad[r--], cad[s++]);

}

return cad;

10.2 Knuth-Morris-Pratt Algorithm
(KMP)

Created in 1977 by Donald Knuth and Vaughan Pratt, and inde-
pendently by James H. Morris, but the three published it jointly
[32]. Is an algorithm used to determine if certain string W is con-
tained inside another string S of equal or bigger size. See the
example below.

W = ABC
S=ABAABBABCABD

Notice that W is inside S starting at index 6. The KMP al-
gorithm is faster than a brute force algorithm, because it stores
information of previous characters , for example, consider the case
where

W = abcabd
S = abcabe. ..

Notice that even when S starts very similar to W they differ in
S5. What the KMP algorithm does, is to restart the search from
W3, because we already have the letters abc, so we don’t need
to start from the beginning of W every time a character doesn’t
match, that is the main advantage of the K M P algorithm.

The code uses the KM P algorithm to find the location
of a string W inside string S. The function kmpTable builds an
array 1, where T; represents the index where the search must be
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restarted in W when the character W;; doesn’t match.

The time complexity of the function kmpTable is O(n), where
n is the length of string W. On the other hand the function kmp
runs in O(m) time, where m is the length of string S. Then the
time complexity of the algorithm is the sum of both, which is
O(n+m).

Time Complexity: O(n + m)

n. Length of W.

m. Length of S.
Input:

Two strings W and S, both containing no more than 1000 char-
acters.
Output:

If W is found inside of S prints the position in S where the first
character of W is located, otherwise prints a message indicating
that W wasn’t found.

Listing 10.2: KMP Algorithm

#include <iostream>
#include <cstdio>
#include <cstring>
#define N 1001
using namespace std;

char W[N], S[NI;
int T[N];
int lenW, lenS;

int kmpQ);
void kmpTable();

int main() {
int pos;

scanf ("/s %s", W, S);
pos = kmp(Q);
if (pos == -1) {
printf("string %s not found\n", W);
} else {
printf("string %s found at %d\n", W, pos);
¥

return O;

}
int kmp() {

int i, m;

lenW = strlen(W);
lenS = strlen(S);
kmpTable() ;
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m=1i=0;
while (m + i < lenS) {
if (Wil == S[m + i]) {
if (i == lenW - 1) {
return m;
}
i++;
} else {
m=m+ i - T[i];
i = (T[il > -1) 7 T[i]l : O;
¥
¥

return -1;

}

void kmpTable() {
int pos = 2;
int k = 0;
T[0]
T[1]

H

0;

while (pos < lenW) {
if (Wlpos - 1] == W[k]) {
k++;
T[pos] = k;
pos++;
} else if (k > 0) {
k = T[k];
} else {
T[pos] = 0;
pos++;
}
}
}

10.3 Manacher’s Algorithm

Finding the longest palindrome inside a given string S is a common
problem in computer science. Perhaps the trivial solution is to fix
the initial letter and the length of the word and check if it is a
palindrome. That solution runs in O(n®). A better approach is
to fix the center of a word and expand to both sides increasing a
counter every time two letters match. That approach has a time
complexity of O(n?).

Manacher proposed in 1975 an algorithm to solve this problem
in O(n) time. The first step of this algorithm consist on trans-
forming the string S into a new string T by adding a new char
(’A\’) at the beginning of S, and another char (’$’) at the end of S.
These two characters are needed to identify the boundaries of the
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new string. Then we separate each pair of characters with some
random char ("#’). For example if we have the string:

S=ABABABABA
We would get

T = A#:A# B A4 B# A4t B4 A4 B4 A#S

The function preProcess in code converts a given string
S into a new string 7" following the method described above.

Listing 10.3: Manacher’s Algorithm

// Transform S into T.
// For example, S = "abba", T = "“#a#b#b#ta#$".
// ~ and $ signs are sentinels appended to each end to avoid bounds checking
string preProcess(string S) {
int n = S.size();
string T;

if (n == 0) {
return ""§";

}

T.resize(2 * n + 3);

T[O] = >~

for (int i = 0; i < n; i++) {
T2 * i + 1] = *#7;
T[2 * i + 2] = S[i];

}

T[2 * n + 1] = *#;
T[2 *n + 2] = §;
return T;

}

To find the the longest palindrome inside T' we can use some
properties of palindromes. For that consider a palindrome with its
middle element in position C, and last element in position R.

1. All elements at the left of C' are mirrored in the right side of
C.

2. if a new palindrome is centered in position 7, where C' < ¢ <
R, the elements in positions ¢ and 2C — 7 are equal.

3. Be Py the length of the longest palindrome centered in posi-
tion k. For a new palindrome centered in position ¢, where
C < 1 < R we can be sure that the value of P; will be at least
Pyco_;. So the value of P; is initialized as follows:
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P, = min(R — i, Pyo—;)

We need to compare with the value of R — i in order to stay
inside the boundaries of the palindrome. Once the value of
P; is initialized we can expand to both sides of the string and
increment the value of P; if two letters match.

If the method manacher uses the string 1" created in method
preProcess and implements the Manacher’s algorithm using the
properties described above. The method returns the length of the
longest palindrome.

string manacher(string S, string T) {
int C =0, R = 0;
int maxLen = O;
int centerIndex = O;
int n = T.size();
vector<int> P(n);

for (int i = 1; i < n - 1; i++) {
int j =2 % C - i;
P[i] = (R > i) ? min(R - i, P[j]1) : 0;

// Expand palindrome centered at i

while (T[i + 1 + P[i]] == T[i - 1 - P[HID) {
PLi]++;

}

// If a longer paldindrome is found, update center
if (1 + P[i]l > R) {

C=1ij;

R =i + P[il;
¥

// Store the center and length of longest palindrome
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
¥

return S.substr((centerIndex - 1 - maxLen) / 2, maxLen);

}

The following program reads a string S and prints the longest
palindrome inside S.

Time Complexity: O(n)
n. Length of string S.
Input:
A string S containing only letters.
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Output:
The length of the longest palindrome inside S.

#include <string>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

string preProcess(string);
string manacher(string, string);

int main()

{
string S, T;
cin >> S;
T = preProcess(S);
cout << manacher(S,T) << "\n";
return 0;
}

10.4 Chapter Notes

String processing is something that is found not only in program-
ming contests, but also in the industry. For example, machine
learning algorithms need clean data to make accurate predictions
or classifications, and that data sometimes consists on high volumes
of text that contains typos, or missing values, so we need to do a
pre-processing step before training any model. Another example is
marking as spam emails containing the word ”offer”, for that pur-
pose algorithms like KMP are very handy. Other applications are
file compression, natural language processing, cryptography, et. al.

Working with strings commonly comes hand in hand with data
structures, specially with hash maps, e. g. To count the number
of occurrences of a certain word in a text, a map can be used with
the word as the key and the occurrences as the value. Sedgewick
[5] describe different algorithms about string manipulation and its
applications, along with source code for some of them.

The links bellow contain problems related to the area of string
processing or string manipulation, we recommend the reader to try
to solve some of the problems as it sees fit.

e https://www.urionlinejudge.com.br/judge/en/


https://www.urionlinejudge.com.br/judge/en/problems/index/3
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problems/index/3

e http://acm.timus.ru/problemset.aspx?space=1&tag=
string

e https://uva.onlinejudge.org/index.php?option=com_
onlinejudge&ltemid=8&category=504


https://www.urionlinejudge.com.br/judge/en/problems/index/3
https://www.urionlinejudge.com.br/judge/en/problems/index/3
http://acm.timus.ru/problemset.aspx?space=1&tag=string
http://acm.timus.ru/problemset.aspx?space=1&tag=string
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=504
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=504
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11.1 Fundamentals

1. We can use the solution of the 8-queen problem in as
reference, with the difference that instead of trying to place
queens, we are trying to place digits following a different set
of rules. The implementation consists on trying to place a
valid digit in an empty cell and then move to the next cell,
if a cell is not empty we ignore it an continue with the next
one. This should happen inside of a recursive function, so
in case we end up in an invalid solution, the same program
can go back and try other digits until a valid solution is
found. Basically we are trying all possible combinations of
filling the matrix complying by the rules. This approach of
trying all possible combinations following a set of rules in a
recursive function is called backtracking.

To simplify our solution let’s implement three functions that
will help us to validate if is possible to place a digit in certain
cell. The function isInRow returns true if a digit is present in
a given row, false otherwise. isInColumn does the same but
in a given column. Finally isInSubMatrix receives a digit,
a row and a column and returns true if that figit appears in
the corresponding 3 x 3 sub-matrix.

bool isInRow(int val, int row) {
for (int i = 0; i < 9; i++) {
if (sudokulrow] [i] == val) {
return true;
}
}
return false;

}

bool isInColumn(int val, int col) {
for (int i = 0; i < 9; i++) {
if (sudokul[i][col]l == val) {
return true;
}
}
return false;

}

bool isInSubmatrix(int val, int row, int col) {
row = row / 3;
col = col / 3;

for (int i = 3 * row ; i < 3 * (row + 1); i++) {
for (int j = 3 * col; j < 3 * (col + 1); j++) {
if (sudokuli][j] == val) {
return true;

}
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}
}
return false;

}

We are going to use the global variable sudoku to store the
9 x 9 matrix. The functions explained above will tell us if we
can place a digit in a certain position during our recursive
search.

The function [11.1] receives an id of the current cell, this id
is just an integer representation of the cell (i, j), with id =
1 x 94 4. Then the function first check if we have filled all the
cells in the Sudoku, if that is the case we print the current
solution and stop the search. If we have not completed the
matrix, we must check if we are in an empty cell, if the cell
is not empty we ignore it and move to the next one, but it
the cell is empty then we must try to place valid digits in
that cell, once we place a valid digit we move to the next cell.
Recursively we will try all possible valid digits in a cell.

Listing 11.1: Fundamentals. Exercise 1

void solveSudoku(int pos) {
int row = pos / 9;
int col = pos % 9;
if (row == 9) {
printSudoku() ;
return;

}

if (sudokul[row] [col] != 0) {
solveSudoku(pos + 1);
} else {
// Try all numbers from 1 to 9
for (int i = 1; i <= 9; i++) {
if (!isInRow(i, row) && 'isInColumn(i, col) &&
lisInSubmatrix(i, row, col)) {
sudoku[row] [col]l = i; // Place i in cell (row, col)
solveSudoku(pos + 1); // Move to the next cell
sudoku[row] [col]l = 0; // Set as empty to reuse
}
}
}
¥

The printSudoku function, just prints the variable sudoku
in a readable way.

void printSudoku() {
cout << "===== START =====\n";
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for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
cout << sudoku[i][j] << " ";
}
cout << "\n";
}
cout << "=====

}

The main function below reads the 9 x 9 matrix, with 0’s
representing empty cells, and call solveSudoku(0) to trigger
the recursive search starting from the first cell.

int main() {

int num;
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {

cin >> num;
sudoku[i] . push_back (num) ;
}
}

solveSudoku(0) ;
return O;

}

Below is a sample input with its corresponding output. See
how every digit appear once in each row, column and 3 x 3
sub-matrix, meaning that the rules we specified are working
correctly. In case that there are more solutions the program
will print all of them, for that specific input the solution is

unique.
Sample Input Sample Output

===== START =====
530070000 534678912
600195000 672195348
098000060 198342567
800060003 859761423
400803001 426853791
700020006 713924856
060000280 961537284
000419005 287419635
000080079 3452861709

===== END =====

. This problem is similar to the one in appendix the idea
is to use a number as bitmask, with each bit representing a
friend, in such a way that if the i*" bit is 1 that means that
you have given a gift to friend 7. This way we are using one
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int in memory to store the information of who has received
a gift and who hasn’t.

We will use an integer variable bitmask initially equal to
zero as bitmask, then if friend i receives a gift we just do the
following:

bitmask |= (1 << i);

We use the | operator, because that way we won’t modify
the rest of the bits of bitmask, Since (1 << %) is a number
with 1 in the i*" bit and 0’s in the rest of the bits. If the i*"
bit of bitmask was activated, it will remain activated, and
if it was not activated it will be activated.

To know if friend 7 has received a gift we just do

bitmask & (1 << i);

if the result is positive that means that the i*" bit of bitmask
is 1, otherwise is 0. The solution for this problem is shown
below.

Listing 11.2: Fundamentals. Exercise 2

#include <iostream>
using namespace std;

int main() {
int n, m, q, friendId;
int bitmask = 0;

cin >> n >> m >> q;
for (int i = 0; i < m; i++) {
cin >> friendId;
bitmask |= (1 << friendId);
}

for (int i = 0; i < q; i++) {
cin >> friendId;
if ((bitmask & (1 << friendId)) > 0) {
cout << "YES\n";
} else {
cout << "NO\n";
}
}
return O;

}
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11.2 Data Structures

1. For this problem we need to store at most k elements in
a list. As we read numbers we insert the new element at
front of the list and remove the last element from the back,
that way we always keep the last & numbers in the list. To
calculate the average we just need to store in a variable s the
cumulative sum of all elements in the list, when a element
is inserted we add its value to s, and when an element is
removed we subtract its value from s. The ouput is s divided
by the size of the list.

The insertion and deletion operations in a list takes O(1),
and getting the average is also O(1). Then the running time
of the program is O(n), since we need to read all n numbers.

Listing 11.3: Data Structures. Exercise 1

#include <iostream>
#include <list>
using namespace std;

int main() {
int n, k, num, s;
list<int> 1;

s = 0;
cin >> n >> k;
for (int i = 0; i < n; i++) {
cin >> num;
if (1.size() == k) {
s -= 1l.back(); // Remove the last element from the average
l.pop_back(); // Remove the last element from the list

s += num; // Add the new number to the average
1.push_front(num); // Insert the new number to the list

cout << "mean: " << (double)(s) / l.size() << "\n";

}

return 0O;

}

2. The first thing we need is to create the Book class, which
will store the title of the book, the rank and a list of similar
books.

Listing 11.4: Data Structures. Exercise 2

class Book {
public:
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string title;
double rank;
list<string> similarBooks;

Book(string title = "", double rank = 1.0) {
this->title = title;
this->rank = rank;

}

// Necessary for the unordered_set and unordered_map
bool operator==(const Book &otherBook) const {
return this->title == otherBook.title;

}

// Necessary for the priority_queue

bool operator<(const Book &otherBook) const {
// We are inverting the sign to build a min-heap
return this->rank > otherBook.rank;

}

void addSimilarBook(string title) {
this->similarBooks.push_back(title); }
};

// Needed for unordered_set and unordered_map
struct BookHasher {
hash<string> hasher;
size_t operator() (const Book &key) const { return hasher(key.title);
}
};

According to the overridden operators in the class, two
books are considered equal if they have the same title, and
when comparing two books, the one with higher rank comes
first. The BookHasher structure uses a book title as input
for the hashing function.

The traverseGraph function visits all connected nodes in
a graph, a graph is similar to a tree, but each node can
have multiple parents and children, thus is possible to have
cycles. Traversing a graph is similar to traversing a tree, but
since there can be cycles, we need to store which nodes have
already been visited, in order to avoid visit them again, for
that we use the unordered_set visitedBooks. This will
allow us to know in O(1) if a node has been visited.

At the same time we traverse the graph we can update the
top k ranked books. For that we need a min-heap to store
the top k ranked books, the one at the root will be the worst
ranked of them (the worst ranked from the top ranked). For
each book that we visit we need to compare it with the root,
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if the rank’s book is smaller it will also be smaller than the
rest of the elements in the heap and we won’t add it to the
min-heap. On the other hand, if the rank’s book is larger,
we remove the root, since is the worst ranked element, and
insert the current book, that way we always keep the k top
ranked books inside the min-heap.

The cost of updating the min-heap is O(log k), and since we
do that for every node visited, the time complexity of this
solution is O(nlog k).

void traverseGraph(Book book) {
// Mark book as visited to avoid loops
visitedBooks.insert (book) ;

// Check if the current book should be added into the top-suggestions

if (bookSuggestion.size() < k) {
bookSuggestion.push(book); // add the book

} else if (book.rank > bookSuggestion.top().rank) {
bookSuggestion.pop(); // remove the book with worst ranking
bookSuggestion.push(book); // add the current book

// Move to similar books that has not been visited
for (auto it = book.similarBooks.begin(); it !=
book.similarBooks.end();
it++) {
Book otherBook = inventory[*it];
if (visitedBooks.find(otherBook) == visitedBooks.end()) {
traverseGraph (otherBook) ;
¥
}
}

The main function reads the numbers n and k as specified
in the problem statement, then it reads the information of
all the books in the inventory, and finally reads the title of
certain book A.

The inventory is implemented as an unordered_map with the
title of the book as key and its corresponding Book object as
value. This way we can get the information of a book given
the title in O(1).

The program gets book A from the inventory given its ti-
tle, and starts a graph traversal. Finally it prints the title
and rank of the top k ranked books that are similar to A in
increasing order of their rank.
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int n, k;

unordered_map<string, Book, BookHasher> inventory;
unordered_set<Book, BookHasher> visitedBooks;
priority_queue<Book> bookSuggestion;

void traverseGraph(Book) ;

int main() {
int m;
string title, simTitle;
double rank;

cin >> n >> k;

for (int i = 0; i < n; i++) {
cin >> title >> rank;
Book book = Book(title, rank);

cin >> m;
for (int j = 0; j < m; j++) {
cin >> simTitle;
book.addSimilarBook(simTitle);
}
// Add the book to the inventory with the title as the key
inventory[titlel = book;
¥

// Read the title of currentBook and traverse the graph
// searching for the top k ranked similar books.

cin >> title;

traverseGraph(inventory[titlel);

while (!bookSuggestion.empty()) {
Book book = bookSuggestion.top();
bookSuggestion.pop();
cout << book.title << " " << book.rank << "\n";

}

return 0;

}

3. For this problem we will use a Trie to store the words in the
dictionary. The time complexity to find a word in a trie is
O(n), where n is the length of the word, but also we can
benefit from the fact that a Trie store prefixes, so if we are
looking for a word in the puzzle and the prefix is not in the
Trie, we can stop the search.

From section [3.2.7] we will use without change the class
TrieNode [3.34] and the function addWord B.351

The function findWords receives a position in the puzzle and
a direction, as we move across the puzzle in the given direc-
tion, at the same time we traverse the Trie, counting each
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word that we found, both, the letter in the puzzle and the
letter in the Trie should match, at the moment that the let-
ters don’t match we stop the search.

// This function moves trough the puzzle in a given
// direction and check if words are in the Trie.
// It returns the number of words found
int findWords(int row, int col, int dirY, int dirX) {
int nWords = 0;
int k = 0;

while (row >= 0 && row < nRows && col >= 0 && col < nColumns) {

int p = puzzlelrow] [col]l - ’A’;
if (trie[k].ref[p] '= -1) {
k = triel[k].ref[p];
} else {
break;
}

if (trielk].isWord) {
nWords++;

}

row += dirY;

col += dirX;

}

return nWords;

}

In the main function below, the first thing we do is to insert
the root of the Trie to the vector trie, that way the root will
be always the first element of the vector. After that we read
the number of words in the dictionary and the dimensions
of the puzzle. Next we read the words of the dictionary and
add them into the trie using the function addWord. After we
read each row of the puzzle, we traverse the puzzle starting
a search at every cell in all directions (vertically, horizontally
and diagonally), and if a word is found, we print the current
location in the puzzle, that represents the first letter of the
word(s) found, and how many words were found.

Listing 11.5: Data Structures. Exercise 3

int main() {
string word, puzzleRow;
int wordsFound;

trie.push_back(TrieNode());
// Read dictionary and add words to trie
cin >> n >> nRows >> nColumns;
for (int i = 0; i < n; i++) {
cin >> word;
addWord (0, word, 0);
¥
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// Read word puzzle

for (int i = 0; i < nRows; i++) {
cin >> puzzleRow;
puzzle.push_back (puzzleRow) ;

// For every letter start a search in all 8 directions
for (int i = 0; i < nRows; i++) {
for (int j = 0; j < nColumns; j++) {

wordsFound = findWords(i, j, -1, 0);
wordsFound += findWords(i, j, 0, 1);
wordsFound += findWords(i, j, 1, 0);
wordsFound += findWords(i, j, 0, -1);
wordsFound += findWords(i, j, -1, 1);
wordsFound += findWords(i, j, 1, 1);
wordsFound += findWords(i, j, 1, -1);
wordsFound += findWords(i, j, -1, -1);

// Print the location of the starting letter and how many
// words were found
if (wordsFound > 0) {
cout << "(" << i << "," << j << "): " << wordsFound << "\n";
}
}
}

return 0;

}
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For the input

16 8 12

BELT

BEAR

SHOE

HAND

BALL

MICE

TOYS

BAT

DOG

TOP

HAT

cow

ZAP

GAL

BOY

CAT
JLIBPNZQOAJD
KBFAMZSBEARO
OAKTMICECTQG
YLLSHOEDAOGU
SLHCOWZBTYAH
MHANDSAOISLA
TOPIFYPYAGJT
EZTBELTEATAH

the output is
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0,3): 1
(0,11): 1
1,1): 1
1,7): 1
(2,4): 1
(2,8): 1
(2,9): 1
(3,3): 1
(3,10): 1
(4,3): 1
(4,6): 1
4,7): 2
(4,8): 1
(4,11): 1
(5,1): 1
(6,0): 1
(7,3): 1
(7,11): 1

11.3 Sorting Algorithms

1. Sort the regions in ascending order according to their number
of citizens. The new leader only need to gain control of
the majority of the regions by winning the regions with less
citizens to assure the victory.

For this case there is no need to overload an operator or using
a class. We just need an array to store the citizens of each
region, and call the sort function as showed in line 19 to sort
the array.

Listing 11.6: Sorting Algorithms. Exercise 1

#include <cstdio>
#include <algorithm>
#define N 100001
using namespace std;

int R[N];
int n, m;

int main() {
int nVotes;

scanf ("/%d", &n);

for (int i = 0; i < n; i++) {
scanf ("%d", &R[i]);

¥

sort(R, R + n);

nVotes = 0;
m=n/2;
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for (int i = 0; i <= m; i++) {
nVotes += (R[i] / 2 + 1);
¥

printf("%d\n", nVotes);
return O;

2. We can use Counting Sort for this problem, for every vote
the i*" cardinal get, increment the value of X;, where X is
an array initialized with 0’s. At the end we just need to find
the value of k, such that X > %n

Listing 11.7: Sorting Algorithms. Exercise 2

#include <cstdio>
#define N 1001
using namespace std;

int X[N];
int n, m;

int main() {
int i, k;

scanf ("%d", &n);
m=(2%*mn) %$3==07?(2%*mn)/3: (2%*n)/3+1;

for (i = 0; i < mn; i++) {
scanf ("%d", &k);
X[k]++;

}

for (i = 1; i <= n; i++) {
if (X[i] >=m) {
printf("%d\n", i);
return 0;
}
}

printf ("No pope elected\n");
return O;

}

3. Sorting the points according to their distance to the origin
and print the first & is a O(nlogn) solution. A better ap-
proach that runs in O(nlogk), since k < n, consists on stor-
ing the k closest points inside a heap, being the root the most
distant of them, then, the only thing we must do is compare
each new point to the root, if is is closer to the origin we
remove the root from the heap and insert the new point, oth-
erwise we do nothing.
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Listing 11.8: Sorting Algorithms. Exercise 3

#include <algorithm>
#include <cstdio>
#include <queue>
#include <vector>
using namespace std;

class Point {
public:

int x;

int y;

int d2;

=0, int y = 0) {

X3

Point (int
this->x
this->y H
this->d2 = (x * x) + (y * y);

}

[T

bool operator<(const Point &b) const {
return this->d2 < b.d2;
}
};

priority_queue<Point> heap;
int n, k;

int main() {
int i, x, y;

scanf ("%d %d", &n, &k);
for (i = 0; i < n; i++) {
scanf ("%d %d", &x, &y);
Point p = Point(x, y);
if (heap.size() < k) {
heap.push(p);
} else if (heap.top().d2 > p.d2) {
heap.pop() ;
heap.push(p);

}
while ('heap.empty()) {

printf("%d %d\n", heap.top().x, heap.top().y);
heap.pop();

return 0;

}

11.4 Divide and Conquer

1. There are several approaches to solve this problem, one that
is not a very good one is to walk trough the interval [a,b]
adding all values, that would run in O(ng) which is very
poor. Another solution is based in Dynamic Programming,
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and consists on using an array S to store the cumulative
sum, so the value S; would represent the sum of the first
i elements of X, and for each query the answer would be
given by Sy —S,—1. This last method will need n operations
to generate the array S, and for each query we can get
the answer in constant time. So the running time for this
algorithm would be O(n + ¢).

A solution that makes use of the Divide and Conquer tech-
nique consists on using a Segment Tree, which is a binary
tree where the leaf elements corresponds to the elements in
X, and the rest of the nodes store the sum of the elements
at its left and the elements at its right. The tree structure
makes the thing easier for us, because when a node is inside
the interval [a,b], we just retrieve the value of that node,
otherwise we must verify the children nodes until we get to a
node contained in the interval [a, b].

Figure 11.1: Example of a segment tree, where a parent node stores
the sum of its children nodes.

Consider the case where X = [4,7,12,3,5,1,9], the Segment
Tree for this array is showed in figure [[I.1] The first thing
to notice is that the number of elements in the array is not
a power of two, so one option is to fill the missing elements
with 0’s in order to make it a full binary tree. Now suppose
we want to calculate the sum of elements with index in the
interval [1,5]. The search starts in the root, some elements
are in the left side of the root and others in the right side, so
the search continues in both sides. The node with value 26
covers the range [0, 3], so the right side is inside the interval,
but the left is not, so we will add 15 and 7 from the searches
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in the right and left sub-trees respectively. When the search
returns to the root by the recursion we will have 7 + 15 = 22
for the sum in the left side. On the other hand, when the
search in the right side of the root reaches node with value
6 that value is returned, since the interval is covered, so the
answer is given by 22 + 6 = 28.

For each query the Segment Tree will take O(logn) time to
get the result, then the running time for the problem would
be (glogn), without considering the cost of building the bi-
nary tree. In conclusion, there are different approaches for
the same problem, for this specific case the Dynamic Pro-
grammying solution would be the best of the three, but there
are sometimes where a Segment Tree is a better fit.

. The optimal strategy is to execute a double Binary Search,

one for the rows and another for the columns, that would give
us an upper bound for the number of opportunities needed
to win the prize. Then if logy, n 4 log, m < k, we can assure
that the participant can win the prize, otherwise we cannot
be sure.

For this problem we can use the RMQ algorithm, taking
advantage of the fact that the sequence X is given in non-
decreasing order. For example, suppose we have the following
sequence:

X=[-1]-1]1[1]1]1[3]10][10]10]

We can build another array F' containing the frequency of all
elements in the given sequence, which would look like this.

F=[T[2[1[2[3[4[1[1[2]3]

Then we can run the RMQ algorithm to find the greatest
value in F' inside a given interval. We just need to be careful
when the initial value of the interval is greater than 1, for
example, the most frequent number between X, and X7 is 1
with a total of two occurrences, but the value returned by the
RMQ algorithm will be 3. In order to handle this problem
we can build another array F, with Ej, indicating the index
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of the last appearance of element Xj. For the example above
the array F would be as follows:

E=[1]1]5][5[5[5[6]9]9]9]

Let be k = min(E,,b), The solution for the problem is given
by

mar(RMQ(a, k) — Fo +1, RMQ(k+1,b)) k<b
answer =
RMQ(a,k) — Fa+1 k=b

where RMQ(a,b) returns the maximum value in Fy, ..., Fp.

Listing 11.9: Divide & Conquer. Exercise 3

#include <algorithm>
#include <cmath>
#include <cstdio>
#define N 100001
using namespace std;

long long X[N], Y[N], E[N];
long long M[N][20];
long long n, q;

long long answerQuery(long long, long long);

int main() {
long long a, b, k, x2, vall, val2;

scanf ("%11d %114", &n, &q);
for (long long i = 0; i < nj i++) {
scanf ("%11d", &X[i]l);

if (i > 0 && X[i] == X[i - 1]) {
Y[i] = Y[i - 1] + 1;

} else {

=1;

Eln - 1] =n - 1;
for (long long i =n - 2; i >= 0; i--) {
if (X[i] == X[i + 1) {
E[i] = E[i + 1];
} else {
E[i] = i;
}
}

for (long long i = 0; i < nj i++) {
M[il[0] = i;
¥
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// compute values from smaller to bigger intervals
for (long long j = 1; 1 << j <= n; j++) {
for (long long i = 0; i + (1 << j) - 1 < nj i++) {
if (YIMOAT[5 - 111 > YIMIL + (1 << (5 - 10105 - 11D {
M[i1[5] = ML31 05 - 1];
} else {
MEiT[3] = ML + (L << (§ - 1DI[G - 115

}
}

for (long long i = 0; i < q; i++) {
scanf ("%11d 114", &a, &b);

x2 = E[al;

x2 = max(x2, b);

vall = answerQuery(a, x2);
val2 = answerQuery(x2 + 1, b);

if (val2 < 0) {
k = Y[vali] - (Y[a] - 1);

} else if (Y[valll - (Y[al - 1) > Y[val2]) {
k = Y[vall] - (Y[a] - 1);

} else {
k = Y[val2l;

}

printf ("%11d\n", k);
}

return 0;

}

long long answerQuery(long long i, long long j) {
long long ans, k;

if (1> §) {
return -1;

}

ans = 0;
k = (long long)floor(log(double(j - i + 1)) / log(2.0));
if (Y[M[i][kIT >= Y@M[j - (1 << k) + 1]1[k]1D) {
ans = M[i] [k];
} else {
ans = M[j - (1 << k) + 1]1[k];
}

return ans;

11.5 Dynamic Programming

1. For n = 1 we have that there is only one way to fill the board
of 2 x 1 with 2 x 1 domino tiles, so f(1) = 1. For n = 2 there
are two ways, it can be two tiles vertically aligned, or two
tiles horizontally aligned, then f(2) = 2. Based on these two
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cases we can get the the result for any other n. For example,
for n = 3 we can use the two ways for n = 2 and place a
vertical tile at the end, also we can use the result for n = 1
and place two tiles horizontally at the end, then for n = 3
we have that f(3) = f(2) + f(1) = 2+ 1 = 3. Using the
same principle we get that f(n) = f(n — 1) + f(n — 2), for
any n > 2. See figure So we can say that the result is a
Fibonacci sequence , but with the initial values being f; = 1,
and f2 = 2.

f(n-1)

f(n-2)

Figure 11.2: The number of ways to fill a board of size 2 X n using
domino tiles of 2 x 1 is equal to n" Fibonacci number starting with
fi=1,and fo = 2.

2. If there are k bad-luck numbers with n digits, we can add
any digit to the right of those numbers and they will still be
bad luck numbers. Then the recursive formula should look
something like this:

fn)=10f(n—1)+h(n—1)

The problem resides on finding the value of hA(n — 1), which
represents all numbers of n — 1 digits that aren’t bad luck
numbers and whose right most digit is a 1, and adding a 3
to the right will generate h(n—1) bad luck numbers of n digits.

For n = 1 we have that f(1) = 0, and h(1) = 1. Then
f(2) =10f(1) + h(1) = 041 = 1, so we have one bad luck
number, which is the 13. Now we have to calculate the value
of h(2), for that we just need to add a 1 to the right of every
non bad luck number, then h(2) =9, (11, 21, 31, 41, 51, 61,
71, 81, 91). Then £(3) = 10£(2) + h(2) = 19, (130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 113, 213, 313, 413, 513,
613, 713, 813, 913).
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3. For a cone with only one scoop there are two choices, choco-
late or strawberry. With two scopes we still have two choices,
chocolate-strawberry, or strawberry-chocolate. If we focus
only in the last scoop, we can deduce that is valid to add
chocolate above strawberry, or we can add strawberry above
chocolate, also we can add a vanilla-chocolate pair above a
strawberry scoop, or we can add a vanilla-strawberry pair
above a chocolate scoop. Then for n = 3 we have four choices.
Table [T1.1] shows the number of possible ice cream cones up
to 8 scoops based in the flavor at the top.

n
Flavor 1123|456 718
S 1111235 |8]|13 |21
C 111123581321

Table 11.1: Possible ice cream cones based on the flavor at the top.

The number of ways we can make an ice cream cone with n
scoops is twice the n*" Fibonacci number.

4. There is only one way to reach any cell in the first column or
in the first row. For the rest of the cells, be X; ; the number
of ways to reach cell 4, ;, and is equal to the number of ways
to reach the cell bellow, plus the number of ways to reach the
cell at its left. Then

Xijg = Xio1j + Xij1.

Table shows the number of ways to reach each one of the
cells in a 4 x 4 matrix. There are 20 ways to reach cell Ay 4.

114110 | 20
113] 6 |10
11213

1111 1

Table 11.2: Possible ways to reach a cell only by moving right and
up.

5. This problem is very similar to the Coin Change Problem |,
with the difference that this time we don’t have an infinite
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amount of coins. Let’s assume that Marie have at most
100 coins, and the coin with greatest denomination is of 20
pesos, so the maximum amount of money that Marie can
have is 2000 pesos.

The idea is to compute if it is possible to obtain k pesos
with the coins we have, and return the amount that is closest
to the half of the money. In order to do that we need to
set Xo = 1, since by definition there is one way to obtain 0
pesos, and then we just need to traverse the array backwards
instead of forwards for every coin. See line 25 of the code
in In that way we are only using the available coins,
instead of using an infinite number of coins.

Listing 11.10: Dynamic Programming. Exercise 5

#include <cstdio>
using namespace std;

int C[101], X[1001];
int nCoins;

int main() {
int k, money, halfMoney;

money = 0;

scanf ("%d", &nCoins);

for (int i = 0; i < nCoins; i++) {
scanf ("%d", &C[i]);
money += C[i];

}

halfMoney = money / 2;

X[0] = 1;

for (int i = 0; i < nCoins; i++) {
k = C[il;

for (int j = halfMomey; j >= k; j--) {
X031 1= X[j - kI;

}

for (int i = halfMoney; i >= 0; i--) {
if (X[i] '=0) {
printf("%d %d\n", i, money - i);
break;
}
¥

return O;

}
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11.6 Graph Theory

1. This is a classic problem in Graph Theory, and we can use a
graph traversal method like DFS to solve it. First choose an
initial node and paint it black or white, and start a DFS from
there, when a node is explored, it is painted with the opposite
color of the node where the search comes from, if an adjacent
node results to have the same color then is impossible to color
the graph, otherwise it is possible.

2. Yes. The two nodes with odd degree are the initial node and
the destination node. The rest of the nodes, since all of them
have an even degree, the path ”enters” to a node from one
edge and use another edge to "exit”, and at the end all edges
will be visited only once.

3. Yes. If all nodes have an even degree, then we can "enter”
to every node from one edge and "exit” from another edge,
at the end all edges will be visited and we will finish in the
initial node, forming that way an Eulerian cycle .

4. Dijkstra’s algorithm with node 0 as the initial node doesn’t
work for the following graph. The minimum cost to reach
node 3 is obtained by visiting nodes 0 — 1 — 3, with a cost
of 3, but according to the algorithm the cost is 4. Because
of its greedy behavior, Dijkstra’s algorithm doesn’t work for
negative weights.

Figure 11.3: Example of a graph with negative weights that doesn’t
work for Dijkstra’s algorithm.

5. A bipartite graph consists on two sets of nodes U and V in
such a way that there is no edge connecting nodes of the
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same set. We can convert the Maxzimum Bipartite Matching
problem in a maximum flow problem by adding a source con-
nected to all nodes in U, and a sink connected to all nodes in
V. All the edges in the graph will have a capacity of 1. See
figure [[1.4] the edges in red are the ones that were added to
the graph. Solving the maximum flow problem for the new
graph will tell us the size of the maximum matching of the
original graph.

Figure 11.4: An example of a maximum bipartite matching problem
transformed into a maximum-flow problem.

6. BFS. We can represent the building as a three-dimensional
space where each location can be seen as a node. If the start-
ing point is X, ¢, then we start adding that location to the
queue, and then add those empty locations that are adjacent
to it, and so on. To keep track of the cost we can mark
Xap,e with 0, and the locations adjacent to it with 1, and
then with 2, we continue doing this until we reach the desti-
nation. In other words, if a person is in X}, ; ;, then locations
Xi—1,15> Xit1,6,55 Xhim1,55 Xhyit1,5> Xkyij—1, Xkyij+1, will be
marked with X; ; . +1, just if they are empty spaces. In that
way the destination point will be marked with the cost of
reaching that cell from X, .. It is important to notice that
we initially must mark all the cells with a value representing
that a cell has not been visited, a negative value is a good
choice.

7. The adjacency matrix A contains all the paths of length 1
from any node to the another. A? represents the paths of
length 2, A3 the paths of length 3, and so on.
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8. Given a network, a cut divides the vertices in two groups,

where the source s is in group A, and the sink, ¢, is in group
B. The flow though the cut, F(A, B), is defined by the sum
of the flows of the edges connecting nodes from A to B minus
the flow of edges connecting nodes from B to A.

F(A,B) = Z qu,v - Z Z fv,ua

ucAveB vEBuU€EA

and the capacity of the cut, C'(A4, B) is represented as the
sum of all capacities from all outgoing edges from A to B.

C(A,B) = Z Z Cuw

u€eAveEB

This implies that

F(A, B) < C(A, B)

If there is no augmenting path from s to ¢t we can separate the
nodes in two groups, those that are reachable from s are in
group A, and those that are not reachable from s forms group
B, with s and ¢ located in different groups. All outgoing edges
from A to B are full, no more flow can pass through them,
and all ongoing edges have zero flow. And since there is no
augmenting path, the flow is maximum. Then

[f | = F(A, B) = C(A, B)

where |f * | represents the maximum flow. That give us a
lower bound for the cut capacity, and that implies that the
maximum flow is equal to the minimal cut.

11.7 Geometry

1. Choose two points and imagine a line that crosses both

points, then search trough the rest of the points and see if
they are crossed by that line too, if that happens increments
a counter of collinear points. We can use the triangle area
described before to identify if three points are collinear, just
check if the area is zero. The process is repeated for every
pair of points in the input.
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Listing 11.11: Geometry. Exercise 1

#include <cstdio>
#include <algorithm>
#define N 101

using namespace std;

class Point {
public:
int x;
int y;
Point(int x = 0, int y = 0) {
this->x = x;
this->y = y;
¥
};

Point P[N];
int n;

int area(Point, Point, Point);

int main() {
int nCollinear, maxCollinear;

scanf ("%d", &n);

for (int i = 0; i < n; i++) {
scanf ("%d %d", &P[il.x, &P[i].y);

¥

maxCollinear = 0;
for (int i = 0; i < n; i++) {
for (int j =i + 1; j < n; j++) {
nCollinear 0;
for (int k = 0; k < n; k++) {
int A = area(P[i], P[jl, P[k1);
if (A ==0) {
nCollinear++;

}

([

}

maxCollinear = max(maxCollinear, nCollinear);
}
}

printf("%d\n", maxCollinear);
return O;

}

int area(Point a, Point b, Point c¢c) {
return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y);

}

2. Here we need to obtain the distance for every gopher to
hawk, if that distance is less or equal to the hawk’s radius
attack, then increment a counter indicating the number of
gophers in danger. For the i*" gopher we have to check if
the following inequality holds.
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\/(gopher[i]x — hawk,)? + (gopher[i], — hawk,)? < R,
where R is the hawk’s attack radius.

One thing that can help us to keep all operations with integer
values is to square both sides of the inequality, in that way we
don’t have to worry about floating precision and the program
will run faster, since we avoid the step of calculating the
square root.

(gopher[i], — hawk,)? + (gopherl[i], — hawk,)* < R*.

Listing 11.12: Geometry. Exercise 2

#include <cstdio>
#include <algorithm>
#define N 101

using namespace std;

class Point {
public:
int x;
int y;
Point(int x = 0, int y = 0) {
this->x = x;
this->y = y;
¥
};

Point Gopher [N];
Point hawk;
int nGophers, R;

int euclideanDistance2(Point, Point);

int main() {
int dis, gophersInDanger = 0;

// Read the location of the hawk, the attack radius and
// the number of gophers
scanf ("%d %d %d %d", &hawk.x, &hawk.y, &R, &nGophers);

// Read the location of every gopher and calculate
// the distance to the hawk.
for (int i = 0; i < nGophers; i++) {
scanf ("%d %d", &Gopher[i].x, &Gopher[i].y);
dis = euclideanDistance2(hawk, Gopher[i]);
if (dis <= R * R) {
gophersInDanger++;
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printf("/%d\n", gophersInDanger);
return 0O;

}

int euclideanDistance2(Point a, Point b) {
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);

}

3. The area of a triangle with side lengths a,b, and ¢ can be
obtained by Heron’s formula.

Area = /s(s —a)(s — b)(s — ¢),

where

at+b+ec
2

4. This is known as the Art Gallery Problem . When the poly-
gon is convex we only need one camera, the problem is when
the polygon is non-convex like the one showed in An
algorithm to obtain a solution for this problem is described
bellow.

(a)
(b)

Triangulate the polygon. See figure [11.5b

Construct a graph using the triangles from the last step,
where each triangle represents a node, and if two trian-
gles share a side then there is an edge connecting the

corresponding nodes. See figure

Choose a node and mark the vertices of the correspond-
ing triangle with different colors, in figure we are
using the letters R, G, B to identify the colors. Then
start a DFS from the chosen node, and for every visited
node mark all unmarked vertices of the corresponding
triangle in such a way that two adjacent vertices don’t
have the same color.

Find the color less used (in the example are colors R and
G) and place the cameras in the vertices marked with
that color.
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o

Figure 11.5: Algorithm to find a solution to the Art Gallery Prob-
lem

5. Using the solution explained in 4. Since we are coloring the
n vertices of the polygon with three colors, and we place the
cameras in the vertices marked with the least frequent color,
then we would need at most n/3 cameras to watch over the
city hall.

6. We need to find the minimum distance between each line
segment of the polygon to the point. The minimum distance
from line ax + by + ¢ = 0 to point p is given by:

apsz + bp, +c

V@B

11.8 Number Theory and Combina-
torics

1. Since n! can be a very large number, it would be difficult to
store it in a variable and then factorize it. One option is to
obtain the prime factors of all numbers from 1 to n and then
sort them. For example, 10! can be written as:
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100=1%x2%x3x4x5x6x7x8x9x10
=1x2x3x(2%x2)x5x(2x3)xT7Tx(2%x2x2)
x (3x3)x(2x5)
=1X2X2X2X2X2X2Xx2Xx2x3x3x3x3x5x5

=28 x 3% x 5°

2. This problem is known as “Fermat’s Last Theorem” or
"Fermat’s Conjecture” . Some people called it the most
difficult mathematical problem, and remained unsolved for
centuries. Until in 1995 Professor Andrew Wiles published
the proof, stating that there is no triplet of numbers a, b, ¢,
such that, a™ 4+ b" = ", for n > 2.

One of the mysteries surrounding this problem is that Fermat
wrote in a margin of a book that he had a proof, but that it
was too large and there wasn’t enough space to write it down.
The full Fermat’s statement reads “Cubum autem in duos cu-
bos, aut quadrato-quadratum in duos quadrato-quadratos, et
generaliter nullam in infinitum ultra quadratum potestatem
in duos etusdem mominis fas est dividere cuius rei demon-
strationem mirabilem sane detexi. Hanc marginis eriguitas
non caperet”. Which translated says “It is impossible to rep-
resent a cube as the sum of two cubes, a fourth power as the
sum of two fourth powers, or in general any number that is
power greater than the second as the sum of two like powers.
I have a marvelous proof for this problem that this margin is
too narrow to contain.”

3. For this problem we would use modular arithmetic and the
Divide and Conquer technique. Consider the following ma-

trix F:
0 1
1 1

If we multiply F' by a 2 x 1 vector containing two consecutive
Fibonacci numbers f;_; and fiywe get

L e LA
11 fr fe—1+ fx Jrr1
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This way we can obtain the following Fibonacci number. Now
what happens if we calculate the value of F? and F3?

Notice that F™ has the following form

n __ .fn—2 .fn—l
= { 121471 131 ]

for n > 1, and with fo = 1, fi = 1. Now, to calculate the
n*" Fibonacci number modulus m, we just need to obtain the
value of F, which can be done efficiently by using binary ex-
ponentiation, and because there are only multiplications and
additions, we can use the properties of modular arithmetic.

The least common multiple of two numbers a, and b is equal
to their product divided by the their greatest common divisor.
Then

ab

b)=——

mem(a, b) ged(a.b)

The following code use the Euclidean algorithm to obtain the
least common multiple of two numbers.

Listing 11.13: Number Theory and Combinatorics. Exercise
4
#include <cstdio>

#include <algorithm>
using namespace std;

int gecd(int, int);

int main() {
int a, b, mcm;

scanf ("/d %d", &a, &b);
mem = (a * b) / ged(a, b);
printf ("%d\n", mcm);
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return O;

}

int ged(int a, int b) {
int temp;

if (a < b) {
swap(a, b);
}

while (b > 0) {
temp = a % b;

a = b;

b = temp;
}
return a;

}

5. This is a special case of the Fxtended Euclidean Algorithm

called Diophantine Equation . The fist thing to do is to
check if that equation has an integer solution, if it does then
d must be divisible by the greatest common divisor of a and b.

Be m the greatest common divisor of a and b, then we can
rewrite the equation as follows

() e+t =d ()
(%) (az +by)=m

ax* +by* =m
where

m
¥ = —x

d

m

*
Yy = dy

The problem is now reduced to the Fxtended Fuclidean prob-
lem, and we can get the values of z* and y* that solve the
new equation, multiply them by d/m and we get the values
of x and y that solve the original equation.



294 11. SOLUTION TO EXERCISES

6. The Goldbach’s Conjecture states that every even integer n
greater than 2 can be expressed as the sum of two prime
numbers. The conjecture was written in 1742 in a letter to
Euler, and to this day it has not been proved, making it one
of the most famous problems in mathematics.

To solve this specific problem, where n < 1000, one option is
to identify all prime numbers up to 1000 using the Sieve of
Eratosthenes. This will generate an array P, where P, = 0 if
k is prime, otherwise Py # 0. After that we can assign values
to a variable a such that:

n=a+b

Solving for b we have that

b=n-—a

If P, =0 and P, =0, then n can be expressed as the sum of
prime numbers a and b.

Listing 11.14: Number Theory and Combinatorics. Exercise
6

#include <cstdio>
#include <algorithm>
#define N 1001

using namespace std;

int P[N];
void sieve();

int main() {
int n;

sieve();
scanf ("%d", &n);

for (int i = 2; i < N; i++) {
int j = n - i;
if (P[j] == 0) {
printf("%d + %d = %d\n", i, j, n);
break;
}
}

return 0;

}

void sieve() {
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P[0] = P[1] = 1;
for (int i = 2; i <= 32; i++) {
if (P[i] == 0) {
for (int j =1 *x i; j < N; j += i) {
P[j]1 = 1;

11.9 String Manipulation

1. There are different ways to solve this problem, one option is
to reverse the string and compare if the resulting string is
equal to the original, if that happens then it is a palindrome.
That solution involves to duplicate the memory space since
another variable is needed to store the reversed string. A
better solution is to place an index ¢ at the beginning of the
string, and another index j at the end, then start moving
forward the index ¢ and backwards the index j, if in any
moment S; # S; then S it is not a palindrome, once both
indexes cross each other the search can be stopped and affirm
that .S is a palindrome.

Listing 11.15: String Manipulation. Exercise 1

bool isPalindrome(string S) {
int n = S.length();

for (int i = 0, j=n - 1; i <n / 2; i++, j=—-) {
if (S[i]l !'= S {
return false;
}
}
return true;

}

2. The trivial solution consists on generating all possible words
and check if they are palindromes, and return the longest one.
For example consider the string S = zkaaky. The palindrome
“kaak” is inside S and the words that can be formed are:
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T
xk
zka
rkaa
rkaak
zkaaka
k

ka

kaa
kaak

Generating all those words takes O(n?) time, and check if a
string is a palindrome, as we seen in exercise 1 takes O(n)
time. Then the running time of this approach is O(n?).

A better solution is to start the search from position & sup-
posing that Sy is the middle of the palindrome, this in the
case where the palindrome has odd length. On the other
hand we can start the search from positions k and &+ 1, just
if S, = Sk41. That said, for the previous example, if we look
for a palindrome of even length we must look for two equal
letters placed one after the other, in this case the letters "aa”,
and start the search from there, for that we place an index @
at the left of the first "a”, and an index j at the right of the
second ”a”, and keep moving the indexes, 7 backward, and j
forward, while S; = S; then there is a palindrome in [4, j].
This approach runs in O(n?) time.

Two strings are anagrams if they contain the same letters,
but in different order. There are more than one way to check
if two strings are anagrams, bellow we list two of them.

e Sort both strings lexicographically, if they are anagrams
then the resulting strings must be the equal.

e Use an array C of 26 elements, initially all in zeros. For
every letter in the first string add one to the correspond-
ing position in C, a is zero, b is one, and so on. Then for
every letter in the second string subtract one to the cor-
responding position in C'. If both string were anagrams
then C must contain only zeros.
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4. The C library ctype contains very useful functions to be used
with char variables. For this specific problem we can use the
functon isupper that receives a char and returns true if the
character is upper case, otherwise returns false.

Listing 11.16: String Manipulation. Exercise 4

#include <iostream>
#include <string>
#include <cctype>
using namespace std;

int main() {
string str;
int nMayus, nMinus;

cin >> str;

nMayus = 0;

for (int i = 0; i < str.length(); i++) {
if (isupper(strl[il)) {

nMayus++;
}
}
nMinus = str.length() - nMayus;
cout << nMayus << " " << nMinus << "\n";
return O;

5. For this problem we can make us of the ASCII code. For each
letter subtract the value of letter ’A’, this way A’ would have
a value of zero, 'B’ a value of 1, and so on. After that add &
to that value and obtain the modulus 26 (because there are
26 letters). Finally add the value of A’ in order to display
the correct character.

Listing 11.17: String Manipulation. Exercise 5

string caesar(string S, int k) {
for (int i = 0; i < S.length(); i++) {
int ¢ = ((S[i] - ’A’) + k) % 26;
S[i] = c + ’A’;
¥
return S;

}




298 11. SOLUTION TO EXERCISES



Appendix A

Recursion and Bitwise

In this section we will work on two problems, one about recursion
and the other about bitwise. We will go trough a solution for these
problems and analyze their complexity.

A.1 The 8-Queen problem

Given an empty chess board, place 8 queens in such a way that
none of the queens threatens another queen. We say that a queen
threaten another queen if both are in the same row, or same col-
umn, or same diagonal. Figure[A.Ta]shows a wrong solution follow-
ing a simple strategy, placing the first queen in the top-left corner,
the next queen is placed in the next column and two rows below the
current one, once we reach the bottom of the board, we place the
next queen in the next column and in the first available row (row
with no queen) starting from the top, and repeat the process. As
we can see, the queen in the first column and the queen in the last
column are in the same diagonal, which violates the rules of the
problem. On the other hand figure corresponds to a correct
solution of the problem, since no queen threatens another in the
board.

299



300 APPENDIX A. RECURSION AND BITWISE

i

(a) Invalid solution (b) valid solution

Figure A.1: left. An invalid solution since two queens are in the same
diagonal. right. A valid solution where no queen threaten another.

We will use recursion to find a solution for the 8-queen problem.
The strategy consists on placing only one queen in each column,
and check if there is no other queen in the same row and in the
four possible diagonals.

We define our chess board as a matrix of integers, X, where
each cell can have a value of 0 or 1, indicating an empty cell or a
queen respectively. To assure that only one queen will be placed
in a row we can just add the values of that row, if the sum is zero
means that we can place a queen in that row. The function bellow
identify how many queens are located to the left of position (i, j),
this can be used to determine if cell (4,75) is a valid location to
place a queen.

int checkLeft(int i, int j) {

int k = 0;
for (int ¢ = j - 1; ¢ >= 0; c--) {
k += X[il[c];
}
return k;
}

If the value returned by the function is zero, means that there
is no queen at the left of that cell. We can do a similar thing to
check at the right of the cell by using function checkRight, and if
both values, checkLeft and checkRight are zero, it means that it is
safe to place a queen in cell (i, 7).
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int checkRight(int i, int j) {

int k = 03

for (int ¢ = j + 1; ¢ < 8; c++) {
k += X[il[c];

¥

return k;

}

Now, it looks like we are repeating code, which is a bad prac-
tice. Let’s integrate both functions in one function called getNum-
ber OfQueens.

Listing A.1: 8-Queen Problem Validation

int getNumberOfQueens(int i, int j, int deltaX, int deltaY) {

int r = i + deltaV;
int ¢ = j + deltaX;
int k = 0;

while (r >= 0 && r < 8 && c >= 0 && c < 8) {
k += X[rllcl;
r += deltaV;
c += deltaX;

}

return k;

}

The variables deltaX and deltaY in code specify the
step size between columns and rows respectively. For example,
to check if there is a queen at the left of cell (4,4), we call
getNumberOfQueens(4, 4, -1, 0). Since deltaX is —1, then
we will move to the left cell by cell summing all values. On
the other hand, if we want to know how many queens are at
the right we do getNumberOfQueens(4, 4, 1, 0). But why do
we do this? isn’t this more complicated? The answer is, for
simplicity of the code, since we can use the same function to
also find the number of queens on the diagonals. For example,
if we call getNumberOfQueens(4, 4, 1, 1) we get the number of
queens in the diagonal that goes down and right from (4,4), since
deltaX is 1, and deltaY is 1, this causes to "move" in X one posi-
tion right and one position down on each iteration of the while loop.

Code [A2] find all solutions for the 8-queen problem, it consists
on placing one queen on column column, the algorithm iterates
through each one of the rows and verify if it is a valid position, and
if it is, a queen is placed on that cell and the same process starts
in the next column. When the recursion returns to the current



302 APPENDIX A. RECURSION AND BITWISE

cell, the queen is removed from that cell (because we already put
it there), and continue the search for valid positions across the
remaining rows.

Listing A.2: Solution to 8-Queen Problem

void solve8QueenProblem(int column) {
int nQueens;

if (column == 8) {
// We have placed the 8 queens
printBoard();
return;

}

for (int i = 0; i < 8; i++) {
nQueens = getNumberOfQueens(i, column, -1, 0);
nQueens += getNumberOfQueens(i, column, 1, 0);
nQueens += getNumberOfQueens(i, column, -1, -1);
nQueens += getNumberOfQueens(i, column, 1, -1);
nQueens += getNumberOfQueens(i, column, -1, 1);
nQueens += getNumberOfQueens(i, column, 1, 1);

// 1f there are no queens, then (i, column) is a safe location to place a

// queen

if (nQueens == 0) {
X[i]l [column] = 1; // Place a queen
solve8QueenProblem(column + 1); // Move to the next column
X[i] [column] = 0; // Remove the queen

}

}
}

The function getNumberOfQueens makes the code simpler and
readable. The algorithm calls the function to obtain the number
of queens at the left, right and at each one of the four diagonals
of a specific location. The printBoard function has the purpose to
display the chess board on the screen, it can be done on different
ways, the code bellow is just one way of doing it.

void printBoard() {
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
printf("%d ", X[il1[j1);
}
printf("\n");
}

printf ("===== END OF SOLUTION =====\n");
}

Let’s assume that the time complexity of checking if a queen
is in the same row is O(1), and that diagonals will be ignored.
Given that, be n the size of the chess board, so in the first column
we have n possible rows to place a queen, in the second column
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we have n — 1 possible rows, since we cannot place a queen in
the same row as the previous one. In the third column we have
n — 2 possible rows, then n — 3, n — 4, and so on, until we reach
the last column with only one row available. Our recursion tree
will have n! nodes, and the time complexity would be O(n!).
Now, unfortunately for solution checking if a cell is valid
takes O(n), since it iterates through rows and diagonals. and this
is done on each row on every column. So for each column the
time complexity is O(n?), since there are n rows. The process is
repeated every time solve8QueenProblem is called. This makes
that the time complexity of the solution presented to be O(n?").

This solution can be improved if we optimize the way of check-
ing if a position is valid or not. Some ideas of doing this, avoid
checking at the right, since the algorithm iterates from left to right,
we can be sure that there are no queens in the right side. Also if
we use an array to flag the rows that already have a queen, we can
know if there is a queen in a given row in O(1). Also some solu-
tions are mirrors of another solutions, we can use that property to
reduce our recursive tree.

A.2 Vacations

You are planning your next vacations, and you have narrowed
the possible destinations to N different cities numbered from 0 to
N — 1. You have asked to your friends and family for suggestions,
but their opinion about a city can be different, your best friend
said that she likes city 0, but your brother said that city 0 is awful,
and you should go to city 2 instead, but your dad said that city
2 is too boring, and that in city 1 you can find the best tacos in
the world. You are more confused than ever, so you have decided
to visit a city that none of your friends or family has visited before.

Input

The input of this problem consists of a number N (2 < N < 20),
indicating the number of possible destinations for your vacations,
and a number M (1 < M < 10°%), indicating the number of
suggestions from your friends and family. The next M numbers
are in the range [0, N — 1], representing the suggestions you get.
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No one will suggest a place they haven’t visited before.

Output

Print the cities that you will consider to visit on your vacations,
that is, the cities that none of your friends or family have visited
before. Print them in ascending order.

Solution

Something that immediately should caught our attention is that NV
is a small number, when that happens is good to try to understand
why is that. For this specific case we can receive a high amount
of suggestion for a small number of cities, meaning that some
cities can be suggested more than once. It is not necessary to
store all the suggestion in memory, and we are not interested on
knowing who went to each place, we only care if a city was visited
by someone (no matter who). Suppose that N = 5, and we get
the following suggestions: 0, 1, 1, 0, 3. This means that two
persons suggested city 1, other two suggested city 0 , and another
suggested city 3, leaving city 2 and 4 as our possible destinations.

We can represent our suggestions as a boolean array X, with
X = 1if city k has been suggested by someone, otherwise X = 0.
For the example above we would have

X = 0 1 0 1 1

Here we are using N integers in memory to represent our va-
cation destinations, well, taking advantage that N is small, we
can represent the same information with a single integer. We can
achieve this if we see X as a number, and its bits as the array cells,
this is called bit masking, then for the same example we have
that X = 11 which in binary is 01011, that way if we want to know
if city k has been suggested, then we should look for the k" bit.
Code shows a solution for this problem using bit masking.

Listing A.3: Vacations: Use case of bit masking

#include <iostream>
using namespace std;



A.2. VACATIONS 305

int main() {
int n, m, city;
int bitmask = 0;

cin >> n >> m;
for (int i = 0; i < m; i++) {

cin >> city;

bitmask |= (1 << city); // activate the corresponding bit of city
¥

for (int i = 0; i < n; i++) {
// Check if the i-th bit is activated
if ((bitmask & (1 << i)) == 0) {
cout << i << "\n";
}
}

return O;
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Appendix B

Data Structures
Problems

This appendix contains problems where choosing the right data
structure is indispensable to implement the optimal solution.

B.1 Find two numbers whose sum is k

Given an array X of positive integers, and a number k, write a
program that determine if there are two numbers in the array whose
sum is equal to k.

Input

The first line contains an integer n (2 < n < 10°) indicating the
amount of numbers in the array. The next n numbers represents
the elements of the array, all elements will be positive. Finally the
last line consists of the integer k.

Ouput

If k£ can be represented as the sum of two elements of the array,
print those values, otherwise prints —1.

Solution

Given that the value of n is too large, the O(n?) solution of
checking all possible pairs is discarded.

307
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The O(n) solution consists on going trough all the elements
of the array and subtract the current element to k, if the result
is also inside of X, then we have a solution. In order to verify if
a number is in X we can use a map, that operation would take
O(1). For this approach we would need to do a first pass trough
X to store its elements in the map.

Is important to avoid using the same number twice in our so-
lution, for example, if £ = 10 and X = [2,3,5], 5+ 5 is not a valid
answer, since there is only one 5 in X. In program we handled
that scenario by using the frequency of each number as value of
the map, then to avoid repeating a number we just decrease by 1
its value. Below is a summary of the what we need to implement:

1. Insert every element in X to map M.

2. For each element z; in X check if £ — x; is in M, if it is, a
solution to the problem is the pair z;, k — x;, only if they are
not the same element.

3. If no pair was found print —1.

Listing B.1: Find two numbers that sum k&

#include <iostream>
#include <map>
#include <vector>
using namespace std;

int main() {
int n, num, k;
vector<int> X;
map<int, int> M;

cin >> n;
for (int i = 0; i < n; i++) {

cin >> num;

X.push_back (num) ;

M[num]++; // Increment num frequency in map
}

cin >> k;

for (int i = 0; i < n; i++) {
num = X[i];

M[num]--; // Remove X[i] to avoid using it twice
if (M[k - num] > 0) {

cout << num << " " << k - num << "\n";

return 0;
}

M[num]++; // Re-insert X[i]
}
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cout << "-1\n";
return 0;

}

B.2 Shunting-yard Algorithm

The shunting-yard algorithm is used to convert an infix expression
into a postfix expression. This algorithm was developed by Edsger
Dijkstra and it uses a stack of operators to reorder the expression.
The rules are the following:

1. If the incoming symbol is an operand, print it.

2. If the incoming symbol is a left parenthesis, add it to the
stack.

3. If the incoming symbol is a right parenthesis, print all the
symbols in the stack until a left parenthesis appear. Pop
that left parenthesis.

4. If the incoming symbol is an operator, continue to pop sym-
bols from the stack and print each one of them until a left
parenthesis appears, or until an operator with lower priority
appears. Add the incoming symbol to the stack.

5. Finally, pop and print the rest of the elements in the stack.

Write a program that changes an infix expression to a postfix
expression.

Input

The input expression is given one character per line. For example,
(74 4) x5 would be in the form:

O‘Y%vﬂk_i'_\]/-\
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The program will handle the binary operators +, —,*, /, and
the operands will be one-digit numerals. The operators * and /
have the highest priority. The operators + and — have the lowest
priority. Parentheses have the function of grouping symbols that
override the operator priorities. The input ends with a blank line,
and there will be no more than 50 lines in the input.

Output

The output is the postfix expression all on one line.

Sample Input | Sample Output
32 4 5%

01*\./[\')_;'_@3/\

Solution

For this problem we just need to follow the rules described in the
problem statement. See code [B:2|

Listing B.2: Shunting-yard Algorithm

#include <iostream>
#include <stack>
#include <string>
using namespace std;

int main() {
int i, j, n, m;
char car;
string str;
stack<char> S;

while (getline(cin, str) && str.length() > 0) {
car = str[0];
if (car >= 0’ && car <= ’9’) {
cout << car; // is digit, print it
} else {
if (S.size() == 0) {
S.push(car) ;
} else {
if (car == ’)’) {
// Pop everything until left parenthesis appear
while (S.top() !'= >(’) {
cout << S.top();
S.popQ);
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}

S.pop(); // pop the left parenthesis
} else if (car == ’(’) {

S.push(car); // left parenthesis - add to stack
} else {

while (!S.empty()) {
// Stop pop if left parenthesis appear

if (S.top() == (") {
break;
}
if (car == '+’ || car == ’-’) {
cout << S.top(); // Continue printing the top element
} else if (car == ’x’ || car == ’/’) {
if (S.top() == ’%’ || S.top() == /) {
cout << S.top(); // Print operator if priority is the same
} else {
break; // Stop if priority is lower
}
}
S.popQ);

// Add the operator into the stack
S.push(car);
}
}
}
¥

// Print remaining elements in the stack
while (!S.empty()) {

cout << S.top(Q);

S.pop(Q);

cout << "\n";

return 0;

}

B.3 Find the median

Given an array X of n integers, the median of X is the middle
element after all elements are sorted in increasing order, only if n
is odd, otherwise the median is obtained calculating the average
of the two elements at the middle.

For example, the median of elements 1,3,6,8,10 is 6. On the
other hand, the median of elements 1,3,6,8,9,10 is 7 ((6 + 8)/2).

Write a program that read and array X of n integers and print
the median as elements are inserted into the array.
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Input

The input consists of a number n (1 < n < 10°), indicating the
amount of elements in the array. n lines follow, each one with one
integer, representing the elements in the array, (0 < X; < 10°).

Output

n numbers indicating the median as elements are inserted into the
array. Each number must be in a separate line.

Solution

To solve this problem we can use the fact that the elements at the
left of the median are all smaller or equal than the median, and
the elements at the right of the median are larger or equal then
the median.

If we use a heap to store the elements at the left, the root of
that heap will be the largest of all those elements smaller or equal
than the median. Equally for the right side, but using a min-heap
instead (a node value is smaller or equal than its children values),
so the root represents the smallest of all numbers equal or larger
than the median.

The idea is to maintain both heaps balanced. The amount of
elements between them cannot differ by more than one. If both
heaps have the same size, then the median is the average between
the roots of the two heaps, if the left heap is larger, then the
median is the root of the left heap, otherwise the median would
be the root of the right heap.

To implement the min-heap we can just multiply by —1 its
elements and handle it as regular heap.

Listing B.3: Find the median

#include <cstdio>
#include <queue>
#define N 100001
using namespace std;

int n;
int A[N];
priority_queue<int> LH, UH;

void getMedians();
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int main() {
scanf ("%d", &n);
for (int i = 0; i < n; i++) {
scanf ("%d", &A[il);
}

getMedians();
return O;

}

void getMedians() {
int k;
double median;

// The first median is the first number of the array
printf("%.11f\n", (double)A[0]);

// Add the first number to the lower heap
LH.push(A[0]);

for (int i = 1; i < n; i++) {
if (A[i] <= LH.top()) {
LH.push(A[i]); // Add A[i] to the lower heap
} else {
UH.push(-A[i]); // Add A[i] to the upper heap
¥

// Do we have more elements in the lower heap?

if ((int)LH.size() - (int)UH.size() >= 2) {
k = LH.top(Q);
LH.popQ); // Remove the largest element of the lower heap
UH.push(-k); // Add it to the upper heap

} else if ((int)UH.size() - (int)LH.size() >= 2) {
k = -UH.top();
UH.pop(); // Remove the smallest element of the upper heap
LH.push(k); // Add it to the lower heap

}

// Get the median

if ((int)LH.size() == (int)UH.size()) {
median = (LH.top() - UH.top()) / 2.0;

} else if ((int)LH.size() > (int)UH.size()) {
median = (double)LH.top();

} else {
median = -1.0 * UH.top();

}

printf("%.11f\n", median);
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Appendix C

Sorting Problems

In this section we present special cases of sorting problems that
can be solved using the algorithms covered in in this chapter, but
that don’t have a trivial solution. This with the objective that the
reader be aware that there can be other approaches when facing
problems that involves sorting, solutions that sometimes are easier
to implement and have better performance. Said that, we encour-
age the reader to try to solve the problems first, before reading the
solution.

C.1 Marching in the school

N students are standing in one line, some of them are facing left,
and other facing right. All of them must face to the same direction,
so when a student see the face of another student understands that
he has made a mistake and turns around. The process continues
until all the students don’t see any other student’s face. Write a
program that calculates the number of times when a pair of stu-
dents turned around. If the process is infinite, print "NO".
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Table C.1: Marching in the school

Formation | Comments Number of turns
>><<>< | Initial formation 2
><><<> | One second has passed 2
<><><> | Two seconds has passed 2
<<><>> | Three seconds has passed 1
<<<>>> | Final formation 0

Total: 7

Input

The first line of the input contains the number of students N (1 <
N < 30000). The rest of the input contains only 7 < 7, 7 > 7
characters. There is exactly N 7 < ” and ” > ” characters in the
input file.

Output

Write the number of turns.

Sample Input | Sample Output
6 7
>>I>LK

Solution

The solution for this problem consists on identifying when a <
character appears, and when that happens increase the result by
the number of > characters before it. This way we are just count-
ing the swaps needed without implementing a sorting algorithm.
This is an example of just answering what is asked, avoiding more
complicated implementations.

Listing C.1: Marching in the School

#include <cstdio>
using namespace std;

int main() {
long n, k, r, sum;
int c;

scanf ("%1d", &n);

k = 0;
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r = 0;
sum = O;
while (k < n) {
c = getc(stdin);

if (c == ">’ || ¢ == 7<) {
k++;

¥

if (c == >7) {
T++;

} else if (c == ’<’) {
sum += r;

¥

}

printf("%1d\n", sum);
return 0;

}

C.2 How Many Swaps?

Given an array X of n elements write a program that determines
the number of swaps needed to sort the array X using Bubble Sort.

Input

The first line of the input contains n (1 < n < 100), indicating the
number of elements in the array X. The next n numbers represent
the elements of X, all of them 32-bit integers.

Output
The number of swaps made by the Bubble Sort method.

Solution

This example is similar to the previous one. One option is to im-
plement the Bubble Sort algorithm and count the number of swaps
that occur. Another option is to count the number of misplaced
elements in the array. The later option consists on counting for
each element in the array, the number of elements at its right that
are smaller. Consider the following array

X =[3,7,2,6,1,4,3,5]

If we look at the elements at the right of the first element (3),
we notice that there are two elements that are smaller (1 and 2).
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So we increase our counter by two. We do the same for the second
element (7), this time we have six elements smaller than it, so we
increase our result by six. If we follow the same process for all
elements we obtain that our answer is:

2+6+14+44+0+1+04+0=14

Listing C.2: How Many Swaps

#include <cstdio>
#define N 100
using namespace std;

int main() {
int i, j, n, ans;
int X[N1;

scanf ("%d", &n);

for (i = 0; i < n; i++) {
scanf ("%d", &X[il);

}

ans = 0;
for (i = 0; i < n; i++) {
for (j =i+ 1; j <mnj; j++) {
if (X[l > XD {
ans++;
}
}
}

printf("%d\n", ans);
return O;

}

C.3 Closest K Points to the Origin?

The statement of this problem is simple, given n coordinates of
points, find the & points that are closest to the origin.

Input

Tho numbers n and k, followed by n lines, each one with two
numbers x and y, defining the coordinates of a point.

We are not going to define any constraints in the input for this
problem, to simulate a real interview.
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Output

Print the k points closest to the origin, starting with the nearest
one, and ending with the furthest. Print each point in a separate
line.

Solution

Let’s try to solve this problem as if we were in a real interview.
So, the first think to know is how large the value of n can be. If
you ask this to the interviewer, probably will say "assume a very
large number".

Since this chapter is about sorting algorithms let’s go with the
following solution.

1. Store all numbers in an array.
2. Sort the array according to the distance to the origin.

3. Print the first k£ elements of the array.

The time complexity of this solution in the best scenario is
O(nlogn) if we use an algorithm like Merge Sort or Heap Sort.
We will see later that there is a better solution, but first let’s try
this one. Don’t forget to tell all these steps to the interviewer,
remember that is important that they know what and how are
you thinking.

For step 1 we can use a Point class to store the point’s coor-
dinates and the distance to the origin, then we can just define an
array of Point objects where we can store the points as we read the
input.

class Point {
public:

int x;

int y;

int d2;

bool operator<(const Point &b) const { return this->d2 < b.d2; }
s

To avoid dealing with floating numbers, we can use the square
of the Euclidean distance to the origin and keep everything with
integers. The closest point, which has the smallest Euclidean
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distance, will also have the smallest square Euclidean distance.

For step 2 we can use a sorting algorithm with time complexity
of O(nlogn), for that we can use the sort function, which requires
to overload the < operator of the Point class.

Finally for step 3, we can just iterate through the array and
print the first & elements of the array. The solution will look like
this:

Listing C.3: Closest K Points to the Origin

#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;

class Point {
public:

int x;

int y;

int d2;

bool operator<(const Point &b) const { return this->d2 < b.d2; }
};

int main() {
int n, k;
Point point;
vector<Point> P;

scanf ("%d %d", &n, &k);

for (int i = 0; i < n; i++) {
scanf ("/d %d", &point.x, &point.y);
point.d2 = point.x * point.x + point.y * point.y;
P.push_back(point) ;

}

sort (P.begin(), P.end());

for (int i = 0; i < k; i++) {

printf("%d %d\n", P[i]l.x, P[i]l.y);

return O;

This same problem can be found in the section of this
chapter, we encourage the reader to try to come up with a better
solution. Hint: O(nlogk).



Appendix D

Divide and Conquer
Problems

In this part we are going to use some of the algorithms seen in this
section to solve problems. As we mentioned before, Divide and
Conquer is just a tool that can make our life easier when trying
to solve a specific problem, sometimes is easy to see where can be
applied, but sometimes it is not a plain sight and reacquires more
analysis and scratching your head a little while.

D.1 Polynomial Product

The following program computes the product of two polynomials
and prints the resulting polynomial.

Input
The first line contains two numbers n, and m indicating the

number of coefficients of polynomials A and B respectively. Mean-
ing that A has a degree of n— 1, meanwhile B has a degree of m —1

The next n numbers represents the coefficients of A, and the
next m numbers represents the coefficients of B.

321
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Output

The coefficients of the product of polynomials A and B. The re-
sulting polynomial will have a degree of n +m — 2.

Solution

To solve this problem we need to apply the Fast Fourier Trans-
form for polynomial multiplication as described before. The class
ComplexNumber in code[D.I| represents a complex number with the
operators overloaded to handle operations between complex num-
bers. The method SquareDiff returns the square of its magnitude,
meanwhile the method bar returns its conjugate.

Listing D.1: Polynomial Multiplication (FFT)

#include <cstdio>
#include <cmath>
#include <cstring>
#define MAX (1 << 19)
using namespace std;

class ComplexNumber {
public:

double a;

double b;

ComplexNumber (double a = 0.0, double b = 0.0) {
this->a = a;
this->b = b;

}

double SquareDiff() const { return a * a + b * b; }
ComplexNumber bar() const { return ComplexNumber(this->a, -this->b); }
ComplexNumber operator+(ComplexNumber b) const {
return ComplexNumber(this->a + b.a, this->b + b.b);
}
ComplexNumber operator-(ComplexNumber b) const {
return ComplexNumber(this->a - b.a, this->b - b.b);
}
ComplexNumber operator*(ComplexNumber b) const {
return ComplexNumber (this->a * b.a - this->b * b.b,
this->a * b.b + this->b * b.a);
¥
ComplexNumber operator/(ComplexNumber b) const {
ComplexNumber r = ComplexNumber(this->a, this->b) * b.bar();
return ComplexNumber(r.a / b.SquareDiff(), r.b / b.SquareDiff());
¥
};

const double two_pi = 4 * acos(0);

int n, m;

double C[MAX + 100]; // Cos array

double S[MAX + 100]; // Sin array
ComplexNumber a[MAX + 100], b[MAX + 100];
ComplexNumber A[MAX + 100], B[MAX + 100];
ComplexNumber P[MAX + 100], INV[MAX + 100];
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The function angle returns the complex number w” for a given
k. The value of n for this case is defined in the constant MAX. Mean-
while the FFT function has five parameters, in, which represents
the coeflicients of the polynomial, out refers to the resulting vector
y after applying the F'FT, step is a power of two that is used to
get the correct points, size is the number of points we will use,
remember that in each iteration that quantity is reduced by half.
Finally dir is 1 if we are obtaining the F'F'T, and —1 for the inverse
FFT (FFT7Y).

ComplexNumber angle(int dir, int k) {
return ComplexNumber(C[k], dir * S[k]);
}

void FFT(ComplexNumber *in, ComplexNumber *out, int step, int size, int dir)
{
if (size < 1) {
return;

}

if (size == 1) {
out[0] = in[0];
return;

}

FFT(in, out, step * 2, size / 2, dir);
FFT(in + step, out + size / 2, step * 2, size / 2, dir);

for (int i = 0; i < size / 2; i++) {
ComplexNumber even = out[i];
ComplexNumber odd = out[i + size / 2];
out[i] = even + angle(dir, i * step) * odd;
out[i + size / 2] = even - angle(dir, i * step) * odd;
}
}

The main function reads the coefficients of both polynomials
A and B, then calculates the points w?, ..., w?~!. Once we have
the values of w,, we can apply the FFF'T to both polynomials and
represent them as complex numbers. That will allow us to multiply
them element by element. The result is then used to calculate the
inverse F'F'T and transform it from complex number representation

to coefficients.

int main() {
int temp;

scanf ("%d %d", &n, &m);

temp = 0;

memset(a, 0, sizeof(a));

memset (b, 0, sizeof(b));

for (int i = 0; i < n; i++) {
scanf ("}d", &temp);
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alil = temp;
}

for (int i = 0; i < m; i++) {
scanf ("%d", &temp);
blil = temp;

}

// Generate Complex Numbers

for (int i = 0; i <= MAX; i++) {
C[i] = cos(two_pi * i / MAX);
s[i] sin(two_pi * i / MAX);

}

// Get the FFT of coefficientes a and b
FFT(a, A, 1, MAX, 1);
FFT(b, B, 1, MAX, 1);

// Multiply FFT(a) * FFT(b)

for (int i = 0; i < MAX; i++) {
P[il = A[i] * B[il;

}

// Calculate the FFT inverse of P

FFT(P, INV, 1, MAX, -1);

// Scale the coefficients

for (int i = 0; i < MAX; i++) {
INV[i] = INV[i] / MAX;

¥

for (int i = 0; i <n +m - 1; i++) {
printf("%.21f ", INV[i].a);

printf("\n");

return O;

D.2 Wi-Fi Connection

The residents of the main street of Kusatsu want to install a Wi-Fi
connection on the street, so that every house has Internet access.
Given the number of houses in the street, the number of routers
and the locations of the houses, write a program that finds where
they should place the routers. The signal should be as strong as
possible in each house. They would like to place the routers so that
the maximum distance between any house to the router closest to
it is as small as possible. Keep in mind that the street is a perfectly
straight road.
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Input

The first line contains two positive integers n, the number of
routers, and m, the number of houses on the street. The following
m lines contain distance of each house to the beginning of the street
There will be no more than 100000 houses, and no house numbers
is located more than one million meters from the beginning of the
street.

Output

A line containing the maximum distance between any house and
the router nearest to it. Round the number to the nearest tenth
of a metre, and output it with exactly one digit after the decimal
point.

Sample Input | Sample Output
24 3.0

1

6

7

31

Solution

One possibility is to solve this problem using binary search , place
a coverage range of L which is the distance from the last house
to the first house of the street. If you can cover all the houses
decrease the length by half, otherwise increase the range by half.
Keep doing that until you find the right range. To print it with
the right decimal places just multiply all the distances by 10 at the
beginning.

Listing D.2: Wi-Fi Connection (Binary Search)

#include <cstdio>
#include <algorithm>
#define N 100001
using namespace std;

long x[NI;
long n, m;

bool isAllStreetWithWiFi(long);

int main() {
long a, b, mid;
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scanf ("%1d %1d4", &m, &n);

for (long i = 0; i < mn; i++) {
scanf ("%1d", &x[il]);
x[i] *= 10;

}

sort(x, x + n);

if (m >= n)
print£("0.0\n");
else {
a = 0;
b =x[n - 1] - x[0];

while (a < b - 1) {
mid = (a + b) / 2;
if (isAllStreetWithWiFi(2 * mid)) {
b = mid;
} else {
a = mid;
}
}

printf("%1d.%1ld\n", b / 10, b % 10);
}

return 0;

}

bool isAllStreetWithWiFi(long coverage) {
long nRouters = 1;
long wifiRange = x[0] + coverage;

for (long i = 0; i < n; i++) {
if (x[i] > wifiRange) {
nRouters++;
wifiRange = x[i] + coverage;
}
}

return nRouters <= m;

}




Appendix E

Graph Theory
Problems

Some of the algorithms seen in the chapter Graph Theory can be
modified to solve specific kind of problems. In this section we will
review some of these problems.

E.1 Minmax and Maxmin

The algorithms of minmax and maxmin are variants of shortest
path algorithms. In minmax, the edge with maximum value is
found for each path and returns the minimum of those values. In
a similar way, the maxmin algorithm finds the edge with minimum
value for all paths and returns the largest among those values.
Following there are two examples that illustrates the concepts of
minmax and maxmin algorithms.

E.1.1 Credit Card (minmax)

For the graph in suppose that Johnny wants to travel from
city A to city G using his credit card. That credit card has a limit
of K dollars, and Johnny can use it as many times he wants as
long he doesn’t surpass K dollars in a single purchase.
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Figure E.1: Toll fares of roads across cities.

To get from city A to city G Johnny may follow the following
path: A — C — F — G. In that case the credit card limit must be
at least 140 dollars. For the paths A—B—FE—-G,A—-B—-D -G
and A — C — F — D — G The credit card’s limit must be at least
of 90, 120 and 80 dollars respectively. There are other paths, too.
However, it is clear that A — C' — F' — D — G is the one that needs
a minimum value of K of 80 dollars.

Given the road connections between cities and the toll fare of
each one of the roads, we must find the minimum value of K that
is necessary to Johnny to get from a starting city to a destination
city. The first line contains three numbers C' (2 < C < 100), S
(1 <85<1000) and @ (1 < @ < 10000), indicating the number of
cities, roads, and queries respectively. S lines follow, each one with
three numbers a,b and ¢, meaning that there is a road connecting
city a with city b, with a toll fare of ¢ dollars. Finally there are @
lines, each one with two numbers Cyiprt and Clepg indicating the
starting city and the destination city for Johnny.

For each query we must print the minimum value of K
necessary to reach the destination city. In case there is no path
just print "no path”.

The solution for this problem is showed in [E.I] and consists on
just applying the minmax algorithm. They are asking for the mini-
mum edge weight among the maximum edge weight of all the paths.
To accomplish this one option is to apply the Floyd-Warshall algo-
rithm modified.
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Wij = min(Wij, max(Wig, Wi;))

The only condition is to initialize the weighted matrix W with
00, except for the main diagonal that will remain with 0’s.

Listing E.1: Minmax Algorithm

#include <cstdio>
#include <algorithm>
#define MAX 32767
using namespace std;

int w[101][101];

void initialize(int);
void floydWarshall(int);

int main() {
int C, S, Q, a, b, d, c1, c2;

scanf ("%d %d %d", &C, &S, &Q);
initialize(C);

for (int i = 0; i < S; i++) {
scanf ("%d %d %d", &cl, &c2, &d);
wlc1]l [c2] d;
wlc2] [c1] d;

}

floydWarshall(C);

for (int i = 0; i < Q; i++) {
scanf ("%d %d", &a, &b);
if (wlal [b] == MAX) {
printf("no path\n");
} else {
printf ("%d\n", wlal[bl);

}

return O;

}

void initialize(int n) {
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
wlil[j]l = (@ == j) 7 0 : MAX;

}
}

void floydWarshall(int n) {
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
wlil[j] = min(w[il [j], max(wlil[k], wlk1[j1));
}
¥
¥
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E.1.2 LufeMart (maxmin)

Mr. Lufe is the owner of a big store called LufeMart that can be
found in different locations across the country. Mr. Lufe wants to
send a cargo from one city to another, but the amount of cargo
weight that can be transported changes depending on the road.

Given the start and destination cities, along with the weight
constraints of the roads, our job is to determine the maximum
load that can be transported between the two specified cities. In
other words we must find the edge with minimum cost for each
path that goes from the origin to the destination, and return the
edge with maximum cost among them.

For the graph in if each edge is a road and the cost of each
edge is the weight restriction for that road, the maximum load
that can be transported from city A to city G is 50 tons. Because
even when we can transport 60 tons from A to C, from C to F' we
can only transport 50 tons, so we would have to get rid of 10 tons.
The paths A-B—-D—-G, A-B-D—-F—-G,A-C—-F -G,
and A — C — F — D — @, are solutions for this specific case.

The code in reads two numbers n (2 < n < 200) and r
(1 <r <19900) representing the number of cities and the number
of roads respectively. r lines follow, each one with two strings a, b
and one number ¢, indicating that there is a road connecting city
a with city b and with a weight constraint of ¢ tons. Finally there
are two strings representing the start and destination cities. The
output of the program is the maximum number of tons that can
be transported from the start city to the destination city. The
name of the cities only contains lower-case letters and don’t have
more than 30 characters.

Any algorithm to find the shortest path in a graph can be used
to solve this problem. In [E.2] Dijkstra’s algorithm is used, it just
needs that the weighted matrix W to be initialized with 0’s, and
instead of finding the minimum value across the non-visited nodes,
it looks for the maximum. The vector is then updated using the
following formula:
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D; = max(D;, min(Dy, Wy;)),

where k is the position of the maximum value in D among the
non-visited vertices.

Listing E.2: Maxmin Algorithm

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 201

#define MAX 2147483647
using namespace std;

long w([N][NI;
long s[N], d[N];
char city[N][35];

long getIndex(char *, long);
void addInList(char *, long);
void dijkstra(long, long, long);
long maxValue(long);

int main() {
long i, j, k, n, r, a, b, cont = 1;
char cad[35], cad2[35];

scanf ("%1d %1d", &n, &r);
memset (w, 0, sizeof(w));

j=0;
for (i = 0; i < r; i++) {
scanf ("%s %s %1d", cad, cad2, &k);

a = getIndex(cad, j);
if (a < 0) {
addInList(cad, j);
a=j;
jH+s

}

b = getIndex(cad2, j);
if (b < 0) {
addInList(cad2, j);
b= j;
j++s

}

wlal [b]
w[b] [a]
}

k;
k;

scanf ("%s %s", cad, cad2);

a = getIndex(cad, j);
b = getIndex(cad2, j);

dijkstra(a, b, n);

printf("%1ld tons\n\n", d[bl);
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return O;

The function getIndex receives a string cad and the number of
cities already stored in the array city. If cad is in city, it returns
its position in the array, otherwise returns —1. On the other hand,
the function addInList receives a string cad and an integer pos,
and stores cad in the array city in position pos.

long getIndex(char *cad, long n) {
for (long i = 0; i < mn; i++) {
if (!strcmp(cad, city[i])) {
return ij;
}
}
return -1;

}

void add_in_list(char *cad, long pos) { strcpy(citylpos], cad); }

To perform the mazmin we used a modified Dijkstra’s algo-
rithm. Notice that instead of finding the minimum element in
vector d like in the standard version of Dijkstra, now we find the
maximum value across the non-visited nodes, for that we use the
function maxValue. Also the way the vector of distances is updated
is different, since for this case we store the maximum weight that
can be transported from city to city i.

void dijkstra(long a, long b, long n) {
long pos;

for (long i = 0; i < n; i++) {

dfi] = wlal[il;
s[i] = 0;

¥

sla]l] = 1;

while (s[b]l == 0) {
pos = maxValue(n);
s[pos] = 1;
for (long i = 0; i < n; ++i) {
if (slil == 0) {
d[i] = max(d[i], min(d[pos], wlpos][il));
}
¥
}
}

long maxValue(long n) {
long pos, max;

max = 0;

pos = 0;

for (long i = 0; i < n; ++i) {
if (s[i] == 0 && d[i] > max) {
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max
pos
}
}
return pos;

}

dalil;
i;

E.2 Money Exchange Problem

The money exchange problem consists on changing certain amount
of money between different currencies, change it again to the
initial currency, and check if there is a profit.

Each currency represents a node, and the exchange rate between
two currencies is the cost of the edge connecting those currencies.
See the following example

Example. Forex

Forex is the foreign exchange market, and arbitrage consists of
buying an asset and selling it to profit from a difference in the
price, so in the case of Forex, it can be defined as the profit
obtained from currency exchange rates to transform one unit of a
currency into more than one unit of the same currency.

The program reads an integer n (1 < n < 30) representing
the number of different currencies. n lines follow, each one with
the name of each currency. The next line consists of an integer
m representing the possible exchanges that can be made. Each
of the next m lines contains a string a, a real number r, and
another string b, representing the exchange rate from currency a
to currency b. The program prints "Yes” if a profit is possible,
otherwise prints "No”. The name of the currencies consist of only
letters and their length don’t exceed 200 characters.

To solve this problem we can modify one of the algorithms to
find the shortest path in a graph. For this case we used Floyd-
Warshall with a change in the way the matrix of weights is updated,
which consists on multiplying the values in the matrix instead of
adding them, because to change from one currency to another is
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necessary to multiply by the exchange rate. See

Wij = max (Wij, Wik X Wk]) (El)

Another important modification takes place in the initialization
of the matrix of weights, and that is that the main diagonal must
be filled with 1’s, and the rest with 0’s, because exchanging from
some currency to the same currency should give us the same
amount, and exchanging to a currency that is not possible to
convert, it should return no profit at all.

Listing E.3: Money Exchange Problem

#include <cstdio>
#include <cstring>
#include <algorithm>

// Definitions

#define N 31

#define MAX 100000000.0
using namespace std;

// Global Variables
char coin[N] [255];
double w[N][N];

// Function Prototipes
void initialize(int);

int getCoin(char *, int);
void floydWarshall(int);

int main() {
int i, n, m, a, b, aux, count = 1;
double c;
char cad1[255], cad2[255];

scanf ("%d", &n);

initialize(n);
for (i = 0; i < n; i++) {
scanf ("%s", coin[il);

}

scanf ("%d", &m);

for (int i = 0; i < m; i++) {
scanf ("%s %1f %s", cadl, &c, cad2);
a = getCoin(cadl, n);

wlal[b] = c;
}
floydWarshall(n);
aux = 0;

b = getCoin(cad2, n);
for (i = 0; i < nj i++) {
if (wlillil > 1.0) {
aux = 1;
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break;
}
}

if (aux == 1) {
printf("Yes\n");
} else {
printf ("No\n");
}

return 0;

}

The only objective of the initialize function is to set the
initial values of the matrix w, for this case the main diagonal has
1’s, since there are no profit changing to same currency. The rest
cells contain 0's, to make them unsuitable to convert money to
those currencies.

void initialize(int n) {
for (int i = 0; i < nj; i++) {
for (int j = 0; j < mn; j++) {
wlil[jl] = (A == j) 7 1.0 : 0.0;
}
}
}

The getCoin function look for a given string cad inside the
coin array, and returns its position. In case cad is not found it
returns —1.

int getCoin(char *cad, int n) {
for (int i = 0; i < mn; i++) {
if (!stremp(coinlil, cad)) {
return i;
}
}
return -1;

}

The function floydWarhsall is a modified version of the Floyd-
Warshall’s algorithm, using multiplications instead of sums in order
to obtain the maximum profit to change the from one currency to
another.

void floydWarshall(int n) {
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < nj; j++) {
wlil[3] = max(wlil (3], wlil (k] * wlk][31);
}
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Appendix F

Number Theory
Problems

This section contains problems with non-trivial solutions and in
order to solve them is needed to make use of some properties and
concepts instead of using a brute force approach.

F.1 Sum of Consecutive Numbers

Given an integer n, represent n as the sum of k consecutive integers.
See the following examples:

9=2+3+4
17=8+9
22=4+5+6+7
15=14+24+34+4+5
8=28

The solution consists on finding two numbers a and b, such that

b(b+1) a(atl)

2 2
2n=>b(b+1)—ala+1) (F.1)

337



338 APPENDIX F. NUMBER THEORY PROBLEMS

where b > a, and there is a number k such that b = a + k. So
we can express the equation as follow

2n=(a+k)(a+k+1)—ala+1)
= k> + 2ak + k
= k(k+2a+1) (F.2)

The code in [F.I] read an integer n and prints n as the sum of
consecutive integers. This by using and trying different values
of k and obtaining a until a valid solution is found.

For the case when a = 0, we have that &k = b, which is obtained
by:

b

bt
2

Solving for b we have that

_14++/1+8n
i —

b =k.

That is the upper bound of k, so the time complexity of the
solution would be O(yv/n).

Time Complexity: O(y/n)
Input:
n. An integer.
Output:
n as the sum of consecutive integers.

Listing F.1: Sum of Consecutive Integers

#include <cstdio>
#include <cmath>
using namespace std;

int main() {
long long n, m, a, b, k;

scanf ("}114", &n);
m = 2 % n;
k = (long long) ((sqrt(8.0 * n + 1.0) + 1.0) / 2.0);

for (long long i = k; i >= 1; i--) {
if (m % i ==0) {
a=m/1i-@{H+1);
if (a % 2==0) {
a /= 2;
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} else {
continue;

}

b=a+ij;
if (@a>> 0&& b>0& (a+b+ 1) ==m/i) {
printf("%11d = %11d + ... + %11d\n", n, a + 1, b);
break;
}
}
}

return 0;

}

F.2 Two Queens in Attacking Positions

In how many ways can you place two queens in a chessboard of
n X m, so they attack each other? Two queens attack each other
if they are in the same row, column, or diagonal.

The solution in reads two integers, n and m, indicating the
size of the chessboard, and prints the number of ways two queens
can be places in attacking positions.

The first step is to assure that m > n, that will help us to
avoid some validations in our code. Now let’s consider the case
where both queens are in the same row. There are m(m — 1) ways
to do it, now considering all rows, we have nm(m — 1) different
ways. We do the same for the columns and obtain that there are
mn(n — 1) different ways to place two queens in the same column.

In the board there are 2(m — n + 1) diagonals with n cells.
Then there are 2(m — n + 1)n(n — 1) ways to place two queens in
attacking position in those diagonals.

For the rest of the diagonals, there are four diagonals of size
n — 1, other four with size n — 2, and so on. we will call S to the
number of ways of placing two queens in attacking position in those
diagonals, and is given by:
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S=4((n-1)(n-2)+{n-2)(n-3)+ - (2)(1))
- < k(k+1)>

k=1

n—2 n—2
:4( k2+Zk>

k=1 k=1
(=2 -1 -3)  (n-2)n-1)
_4( 6 + 2 )
_(nn—=1)2n—-1) n(n-—1)
4( 6 2 )

Time Complexity: O(1)
Input:
n. Number of rows in the chess board
m. Number of columns in the chess board
Output:
The number of ways of placing two queens in attacking posi-
tions.

Listing F.2: Two Queens in Attacking Positions

#include <cstdio>
#include <algorithm>
using namespace std;

int main() {
unsigned long long n, m, temp;
unsigned long long a, b, c, d;

scanf ("%11lu %11lu", &n, &m);
if (m < n) {
swap(n, m);

}

a=m* (m - 1) * n; // 2 queens in the same row

b=nx* (n-1) x m // 2 queens in the same column
c=2x*xnx* (n-1) x (m-n+ 1); // 2 queens in a diagonal of size n
d=nx*@-1) x (2*n-1) /6 -

n* (n-1) / 2; // 2 queens in a diagonal of
d =4 % d; // size k (2<=k<n)

printf("%1lu\n", a + b + ¢ + d);

return O;
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F.3 Example. Sum of GCD’s

Given an integer n, find the sum of all greatest common divisors
(GCD’s) of any pair of numbers a and b (where a # b) smaller or
equal to n.

Be D(z) =dy,--- ,d, a set of all the divisors of x less than z.
The function f(x) that returns the sum of all GCD’s of any pair
of numbers smaller than x is given equation

fl@)=flx =1+ dip(x/d:), (F.3)
i=1
where ¢(z) is the Euler’s function defined in

For[F.3]is clear to see that f(z) will be at least f(z—1), because
the pair of numbers that are smaller than z—1 there are also smaller
than x, but the value of .7 | d;¢(x/d;) is not that clear, and is
easier to understand with an example. If x = 6, then D(6) =
{1,2,3,4,6}, and we know that

> ged(6,i) =14+2+3+2+14+6=15

i=1

Then the result of Y7, dip(z/d;) should be 15 as well. Ex-
panding the sum we obtain that

id@(x/di) = 16(6) +26(3) +36(2) +66(1) =2+4+3+6=15
=1

Both results are the same, but in the second way the values of
¢(x) can be precalculated and saved in memory, and then we can
do something similar to the Sieve of Eratosthenes to obtain the
values of f(x).

F.4 Find B if LCM(A,B) = C

This problem is very simple, given A and C' we must write a pro-
gram that finds the value of B such that

LCM(A,B) =C



342 APPENDIX F. NUMBER THEORY PROBLEMS

where LCM (A, B) is the lowest common multiple of A and B.

First we must check if C is divisible by A, if not, there is no so-
lution, otherwise, to solve this problem we need to create two hash
maps M7 and My, the first will contain the prime factors of A as
keys, and the number of occurrences as values. My will contain the
prime factors of C as keys, and the number of occurrences as values.

The next step consists of iterate trough all the elements of My,
if the values are different in both maps for the same key (prime
number p), the result is multiplied by p the number of occurrences
in M. Is important to mention that the variable with the result
must be initialized with 1.

For the case where A = 4 and C = 12 we have that

4=2x2=2°
12=2x2x3=2%x3!

, and the value of B would be

B=3'=3.

Getting that LCM (4, 3) = 12, which is correct. The program
in reads two numbers A and C (A4, C < 32000), and prints the
value of B if there is a solution, otherwise prints "NO SOLUTION?.

Time Complexity: O(,/(n))
Input:
Two positive integers A and C.
Output:
The value of B, such as LCM (A, B) = C'. If there is no solution
prints the message "NO SOLUTION”.

Listing F.3: Find B if LCM(A,B) = C

#include <iostream>
#include <map>
#include <vector>
#define MAX 32000
using namespace std;

map<long long, long long> M1, M2;
vector<long long> P;

void generatePrimes();



F.4. FIND B IF LCM(A,B) = C 343

void factorize(long long, bool);

int main() {
long long A, B, C;

generatePrimes();
cin >> A >> C;

if (C% A 1=0) {
cout << "NO SOLUTION" << endl;
return 0;

}

factorize (A, true);
factorize(C, false);

B =1;
for (auto it = M2.begin(); it != M2.end(); it++) {
if (it->second != Mi[it->first]) {
for (long long i = 0; i < it->second; i++) {
B *= it->first;
}
}
}

cout << B << endl;
return 0;

}

The factorize function finds the prime factors of a given num-
ber num. In case flag is true, then all factors are added to map
M1, otherwise they are added to map M2.

void factorize(long long num, bool flag) {
long long k = 0O;

while (num >= P[k] * P[k]) {
if (num % P[k] == 0) {
num /= P[k];

if (flag) {
M1[P[k]]++;
} else {
M2 [P [k]]++;

} else {
k++;
}
¥

if (flag) {
M1 [num] ++;
} else {
M2 [num] ++;
}
}

The function generatePrimes stores in vector P all prime num-



344 APPENDIX F. NUMBER THEORY PROBLEMS

bers up to MAX. Those prime numbers will be used to find the prime
factors of any number up to MAX*MAX.

void generatePrimes() {
P.push_back(2);
P.push_back(3);

for (long long num 5; num < MAX; num += 2) {
for (long long i 0; i < P.size(); i++) {
if (num % P[i] == 0) {
break;
} else if (num < P[i] * P[i]) {
P.push_back (num) ;
break;
}
¥
¥
}

F.5 Last Non Zero Digit in n!

Given a number n we must find the last non zero digit in n!, and
because of n can be very large is impossible to compute the value
of n!. The trick for this problem is to realize that the numbers that
generates 0’s are the product of the numbers 2 and 5. Thus, we
have to get rid of those products in order to find the last non zero
digit in n!. For example:

20! = 2432902008176640000
=1x2x3x---x20
=218 %38 x5t x 7?2 x11x13x 17 x 19

For this case we have 18 2’s and 4 5’s, so we need to remove
four 2’s and four 5’s, resulting in

2M 5% 3% x 72 x 11 x 13 x 17 x 19 = 243290200817664,

which is 20! without trailing zeros, so we only need to keep
track of this product modulus 10. The program in [F.4] reads a
number n and prints the last non zero digit in n!.

Time Complexity: O(nlogn)
Input:
A number n (n > 0).
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Output:

One number indicating the last non-zero digit in n!.

Listing F.4: Last non zero digit in n!

345

#include <cstdio>
using namespace std;

int main() {
long n, num, f;
long nFives, nTwos;

}

scanf ("%1d", &n);

nFives = 0;
for (long i
nFives +=

}

nTwos = 0;

f=1;

for (long i
num = i;

n

5; i <=mn; i *=5) {
/i

1; i <= n; i++) {

while (num % 5 == 0) {
num /= 5;

}

while (num % 2 == 0 && nTwos < nFives) {
num /= 2;

nTwos++;

}

f = (f * num) % 10;

}

printf("%51d -> %1ld\n", n, f);

return 0;
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Kosaraju’s algorithm, 181
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Kruskal’s algorithm, 187

LCS. longest common
sub-sequence, 134

least common multiple, 292,
341

left turn, 214

Levenshtein distance, 137

line intersection, 207

linked;ist, 33

LIS. longest increasing
sub-sequence, 130,
132

lower hull, 211

matching, 191

maximum bipartite
matching, 191, 285

maximum flow, 285

maximum sum in a
rectangle, 142

maximum sum in sequence,
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maxmin, 327, 330

merge sort, 99

minmax, 327

modular arithmetic, 117, 229

money exchange problem,
333

MST. minimmum spanning
tree, 185

next permutation, 252
node degree, 153
number of divisors, 228
number theory, 221

optimal matrix
multiplication, 144

palindrome, 295
Pascal’s triangle, 239
path, 153
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pigeon-hole principle, 245
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polygon triangulation, 241

post-order traversal, 43

pre-order traversal, 42

Prim’s algorithm, 189

prime factorization, 343

prime number, 222

prime numbers generator,
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queue, 32
quick sort, 95

recursive function, 129

relatively prime, 225

right turn, 211

RMQ. Range Minimum
Query, 124

rooted binary tree, 243

rotation matrix, 200

segment tree, 64, 277
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selection sort, 92

shortest paths, 164

sieve of Eratosthenes, 223

signed area of a triangle, 201

simple linked list, 34

sorting, 89

sparse matrix, 154

stack, 30

string manipulation, 251

strongly connected
components, 176

sum of consecutive numbers,
337

sum of divisors, 227

sum of number of divisors,
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Tarjan’s algorithm, 176
The 8-queen problem, 299
topological sort, 159

tree traversal, 41

Trie, 72

union-find algorithm, 161
upper hull, 211

weighted graph, 152
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