
iOS Programming Cookbook

Do you want to understand all the facets
of iOS programming and build complex
iOS apps? Then you have come to the right
place. This problem-solution guide will help
you to eliminate expensive learning curves
and focus on specifi c issues to make you
profi cient at the tasks involved.

Beginning with some advanced UI
components such as stack views and
UICollectionView, you will gradually move
on to building an interface effi ciently.

You will work through adding gesture
recognizer and touch elements on table cells
for custom actions. You will work with the
Photos framework to access and manipulate
photos. You will then prepare your app
for multitasking and write responsive
and highly effi cient apps. Next, you will
integrate maps and core location services
while making your app more secure through
various encryption methods. Finally, you will
dive deep into the advanced techniques of
implementing notifi cations while working
with memory management and optimizing
the performance of your apps. By the end
of the book, you will have mastered most of
the latest iOS frameworks.

Things you will learn:

• Build your own custom UIViews
through code or the interface builder

• Implement a dynamic and interactive
interface in an iOS app

• Work on various graphics-related
elements and the process of using
them together to make meaningful
shapes

• Use the side over and split view
to interact with multiple apps
concurrently

• Encrypt JSON calls to make the app
more secure

• Work on the web markup feature to
enhance search optimization

www.packtpub.com

$ 44.99 US
£ 37.99 UK

Prices do not include local sales
Tax or VAT where applicable

iO
S

 P
ro

g
ram

m
in

g
 C

o
o

kb
o

o
k

H
o

ssam
 G

h
areeb

Over 50 exciting and powerful recipes to help you
unearth the promise of iOS programming

Cookbook

iOS
Programing

Hossam Ghareeb

iOS Programming Cookbook

Over 50 exciting and powerful recipes to help you unearth the
promise of iOS programming

Hossam Ghareeb

 BIRMINGHAM - MUMBAI

iOS Programming Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 2310317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-098-1

www.packtpub.com

http://www.packtpub.com

Credits

Author
Hossam Ghareeb

Project Coordinator
Devanshi Doshi

Reviewer
Siddharth Shekar

Proofreader
Safis Editing

Acquisition Editor
Larissa Pinto

Indexer
Mariammal Chettiyar

Content Development Editors
Johann Barretto
Samantha Gonsalves

Graphics
Jason Monteiro

Technical Editor
Pranav Kukreti

Production Coordinator
Deepika Naik

Copy Editors
Dhanya Baburaj
Shaila Kusanale

Cover Work
Deepika Naik

About the Author
Hossam Ghareeb is a software engineer who graduated from Alexandria University in
2012. He found his passion in mobile development, especially iOS development. Currently,
he is a senior iOS developer at Noon e-commerce in Dubai.

Hossam has built his experience by learning tips and tricks from the managers he works
with, open source projects, and online tutorials. He discovered that the best way to pay this
back is to share his experience with others and help people get experience in iOS
development.

First of all, big thanks to my parents whom I owe for everything I have and the good things
that they taught me. I would like to thank my wife for her support and encouragement to
keep writing the book. I want to thank my son Yusuf for inspiring me despite of all the time
this took me away from him. Thanks to all the mentors that I’ve met over the years. Last
but not least, special thanks to Samantha Gonsalves, the content editor of the book, for her
cooperation and support in completing the book and to the reviewers for their comments
and suggestions.

About the Reviewer
Siddharth Shekar is a game developer with over 5 years of industry experience in game
development, 11 years of experience in C++, C#, and other programming languages, and is
adept at graphics libraries and game engines such as Unity and Unreal. He has also
published games on the iOS, Android, Amazon, and Windows Phone App Stores.

Siddharth is also the author of Learning Cocos2d-x Game Development, Learning iOS 8 Game
Development Using Swift, and Cocos2d Cross-Platform Game Development Cookbook, all
published by Packt Publishing.

Currently, he is a lecturer in the Games Department at Media Design School, Auckland,
New Zealand. He teaches graphics programming and PlayStation 4/PS Vita native game
development and mentors final year production students.

More information about Media Design School and Siddharth Shekar can be found at
www.mediadesignschool.com.

I would like to thank my parents for supporting me in everything that I choose to do. I
would also like to thank Media Design School for encouraging me to continue working on
this book. Finally, I would like to thank Packt Publishing for putting this book together and
offering me the opportunity to review the book.

http://www.mediadesignschool.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/178646098X.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178646098X
https://www.amazon.com/dp/178646098X

Table of Contents
Preface 1

Chapter 1: Swift Programming Language 8

Introduction 8
Using closures to create self-contained code 9

Getting ready 9
How to do it... 9
How it works... 10
There's more... 10

Inferring type 10
Omitting the return keyword 11
Shorthand arguments 11

Creating enumerations to write readable code 11
Getting ready 11
How to do it... 12
How it works... 13
There's more... 14

Enum raw values 14
Assigning raw values 15
Using Enums with raw values 16

Enums with associated values 17
Working with protocols and delegates 18

Getting ready 18
How to do it... 19
How it works... 21
There's more... 21

Mutating methods 21
Delegation 22
Class-only protocols 23
Checking protocol conformance 23
Optional requirements 24

Using extensions to extend classes functionality 24
Getting ready 24
How to do it... 25
How it works... 26
There's more... 26

Mutating instance methods 27
Adding new initializer 27

[ii]

Define subscripts 27
Working with memory management and ARC 28

Getting ready 29
How to do it... 29
How it works... 30
There's more... 30

Using error handling 32
Getting ready 32
How to do it... 32
How it works... 34
There's more... 35

Multiple catch statements 35
Disable error propagation 36

Using generics to write generic and reusable code 36
Getting ready 36
How to do it... 36
How it works... 37

Chapter 2: The Essentials 39

Introduction 39
Using UIView via code or interface builder to build your own custom
views 40

Getting ready 40
How to do it... 40
How it works... 45
There's more... 46

Working with navigation controller and navigation bar 50
Getting ready 51
How to do it... 51
How it works... 56
There's more... 57

Push and pop 57
Hiding navigation bar 58
Navigation bar color 59

Working with stack views 59
How to do it 60
How it works... 65

Working with UICollectionView 66
How to do it... 67
How it works... 74
There's more... 76

[iii]

Customizable layouts 76
Working with gestures like swipe, pan, rotation, and tap 77

Getting ready 77
How to do it... 78
How it works... 82
There's more... 83

Using 3D touch 83
How to do it... 83
How it works... 84
There's more... 85

Home screen quick actions 85

Chapter 3: Integrating with Messages App 87

Introduction 87
Integrating iMessage app with sticker pack 88

Getting ready 88
Stickers 88

How to do it... 89
How it works... 95
There's more... 96

Integrating iMessage app with iMessage app 96
Getting ready 96
How to do it... 97
How it works... 107
There's more... 109

Showing progress indicator 110
Request files with pagination 113

Chapter 4: Working with Interface Builder 118

Introduction 118
Using storyboards 119

Getting ready 119
How to do it... 119
How it works... 125
There's more... 126

Segues attributes 126
Preparing for a segue 127
Unwind segues (exit segues) 128
Custom segues 133

Working with Autolayout and constraints 135
Getting ready 136
How to do it... 136

[iv]

How it works... 143
There's more... 143

Updating constraints 144
Designing your interface builder for any size classes in one
storyboard 144

Getting ready 146
How to do it... 146
How it works... 156

Embedding view controllers using container view 157
How to do it... 157
How it works... 160
There's more... 161

Chapter 5: Working with UITableView 162

Introduction 162
Working with scroll view 163

Getting ready 163
How to do it... 164
How it works... 169
There's more... 171

Using TableView sections, headers and footers 171
Getting ready 171
How to do it... 171
How it works... 178
There's more... 178

Custom section header and footer 179
Using custom cells 180

Getting ready 180
How to do it... 181
How it works... 188

Resizing table view cells dynamically 188
How to do it... 188
How it works... 190

Editing table views 191
Getting ready 191
How to do it... 192

Inserting cells with animation 193
Removing cells with animation 196
Dragging and dropping to reorder cells 198

How it works... 199
There's more... 200

[v]

Chapter 6: Animations and Graphics 201

Introduction 201
Drawing text, images, lines, rectangles, and gradients 201

Getting ready 201
How to do it... 202
How it works... 211
There's more... 213

Animating shapes drawn with UIBezierPath 214
Getting ready 214
How to do it... 215
How it works... 219

Animating UIViews 220
How to do it... 220
How it works... 223

Chapter 7: Multimedia 225

Introduction 225
Working with audio capabilities 226

Getting ready 226
How to do it... 226
How it works... 228
There's more... 228

Recognizing speech 229
Playing videos 239

Getting ready 239
How to do it... 239
How it works... 244
There's more... 245

Slide Over 245
Split View 246
Picture-in-Picture 248

Capturing photos and videos 249
How to do it... 250
How it works... 254

Using filters with CoreImage 254
How to do it... 254
How it works... 261

Chapter 8: Concurrency 262

Introduction 262
Using Dispatch queues 263

[vi]

Getting ready 263
How to do it... 264
How it works... 269
There's more... 270

Using Operation queues 270
Getting ready 271
How to do it... 272
How it works... 275

Using Operation subclassing 276
How to do it... 276
How it works... 278

Chapter 9: Location Services 279

Introduction 279
Detecting user location 279

How to do it... 280
How it works... 284

Displaying pins in map view 286
Getting ready 286
How to do it... 287
How it works... 292

Getting directions between locations 293
How to do it... 294
How it works... 297

Working with geofencing 299
How to do it... 299
How it works... 312

Chapter 10: Security and Encryption 314

Introduction 314
Using Touch ID for user authentication 315

Getting ready 315
How to do it... 315
How it works... 321

Working with Keychain 322
Getting ready 322
How to do it... 322
How it works... 328

Encryption 329
Getting ready 329

[vii]

How to do it... 330
How it works... 332

Chapter 11: Networking 333

Introduction 333
Using NSURLSession API for network connections 334

Getting ready 334
How to do it... 335
How it works... 341

Parsing JSON data 342
Getting ready 342
How to do it... 343
How it works... 349

Social sharing 351
Getting ready 352
How to do it... 354
How it works... 359

Chapter 12: Persisting Data with Core Data 360

Introduction 360
Designing data models 360

How to do it... 361
How it works... 370

Reading and inserting records to Core Data 370
How to do it... 370
How it works... 381

Updating and deleting records from Core Data 383
How to do it... 383
How it works... 392

Chapter 13: Notifications 393

Introduction 393
Setting up Push Notifications 393

Getting ready 394
How to do it... 395
How it works... 413

Setting up a local server to send Push Notifications 413
Getting ready 414
How to do it... 414
How it works... 418

Working with interactive Push Notifications 418

[viii]

How to do it... 418
How it works... 425

Working with local notifications 426
How to do it... 426
How it works... 431

Chapter 14: App Search 432

Introduction 432
App indexing using NSUserActivity 433

Getting ready 434
How to do it... 434
How it works... 442
There's more... 443

App indexing using Core Spotlight APIs 443
How to do it... 443
How it works... 450

Chapter 15: Optimizing Performance 451

Introduction 451
Memory management with ARC 452

Getting ready 452
Retain cycles 453
Working with closures 454

How to do it... 455
How it works... 461

Measuring performance 462
How to do it... 462
How it works... 467

Measuring energy impact 468
How to do it... 468
How it works... 474

On-demand resources 475
Getting ready 475
How to do it... 476
How it works... 485

Index 487

Preface
iOS is evolving every year to provide a better experience for its users. Not only the system,
but also the hardware of iPhone and iPad devices, which require a powerful system like the
iOS to utilize the features of hardware is evolving. The latest release of iOS now comes with
great features to give iOS developers the chance to develop mobile apps with new ideas or
enhance the experience of current apps with new features. The book tries to cover the new
features of iOS and let iOS developers get their hands dirty by writing sample demos with
the features to understand how they work. The book is not meant to be a theory book,
which talks about technical things, such as new APIs, or about any specific topic. The book
is a cookbook that takes you within minutes to the point and guides you to build a simple
demo to understand what is going on using examples, which is the best way to make things
stick in your mind.

What this book covers
Chapter 1, Swift Programming Language, is a simple revision of Swift 3 and an explanation of
the most important topics in Swift.

Chapter 2, The Essentials, covers the most commonly used UI components, such as UIView,
gestures, stack views, and so on.

Chapter 3, Integrating with Messages App, talks about one of the hottest features in
iOS—how to integrate with the iOS Messages app to add your own stickers or develop
extensions.

Chapter 4, Working with Interface Builder, provides tips and tricks while dealing with
interface builders, such as storyboards and XIB files. Get your hands dirty with Autolayout
and size classes and know how to work with them.

Chapter 5, Working with UITableView, covers one of the most important components in iOS
that all iOS developers should be aware of.

Chapter 6, Animations and Graphics, gives your apps a better look by teaching you how to
animate views and draw simple shapes.

Chapter 7, Multimedia, helps you to deal with audio and video in iOS. It provides
information about how to use filters thanks to the Core Image framework.

Preface

[2]

Chapter 8, Concurrency, overcomes the fear of using concurrency in iOS by helping you
understand how to use dispatch queues and NSOperationQueues with simple examples.

Chapter 9, Location Services, covers the most commonly used operations in location services,
such as getting a user's location, adding pins, navigation, and geofencing.

Chapter 10, Security and Encryption, discusses how to secure your app and protect your
user’s sensitive information using Touch ID for authentication and saving data in a device's
Keychain.

Chapter 11, Networking, covers how to establish networking in an iOS app to retrieve data
and parse it.

Chapter 12, Persisting Data with Core Data, takes you through the workings of Core Data to
persist data and perform CRUD (creation, reading, updating, and deletion) operations.

Chapter 13, Notifications, helps you overcome the hassle of dealing with push notification
and setup and gets you started with configuring your project and server to send and receive
notifications.

Chapter 14, App Search, looks at making your app content searchable from Spotlight and
Safari suggestions.

Chapter 15, Optimizing Performance, showcases how to measure the performance of your
app and how to enhance it.

What you need for this book
Any Mac hardware-running macOS system, such as MacBook Pro, MacBook Air, Mac Mini,
iMac, or Mac Pro.

Some chapters require testing on an iOS device with iOS 10.0 or later version.

The software requirements are Xcode 8.1 or later, which requires a Mac running macOS
10.11.5 or later, and iOS Simulator 10.0 or later.

Preface

[3]

Who this book is for
If you are an iOS developer on a quest to develop your perfect iOS app, then this book is for
you. It would also prove to be a valuable resource for those who want to get up and
running with iOS development through a clear, practical approach. In order to unleash the
full potential of this book, basic Swift programming knowledge is necessary.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " The
sort function gives us another flexibility by which you can provide a closure that returns
the comparison result between any two items in the list to determine which should come
first in the list."

A block of code is set as follows:

{ (parameters) ->returnType in
 // block of code goes here
}

Any command-line input or output is written as follows:

cd path_to_directory

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Under Relationship Segue,
click on view controllers to make this view controller part of the view controllers list on the
tab bar controller."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

Preface

[5]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /i O S - P r o g r a m m i n g - C o o k b o o k . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n
l o a d s /i O S P r o g r a m m i n g C o o k b o o k _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/iOS-Programming-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
https://www.packtpub.com/sites/default/files/downloads/iOSProgrammingCookbook_ColorImages.pdf.
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Swift Programming Language

 In this chapter, we will cover the following topics:

Using closures to create self-contained code
Creating enumerations to write readable code
Working with protocols and delegates
Using extensions to extend classes functionality
Working with memory management and ARC
Using error handling
Using generics to write generic and reusable code

Introduction
Welcome to our first chapter in iOS Programming Cookbook. We will start our journey in this
book with a revision or emphasize on the most important and commonly used topics in
Swift programming language. Before talking about these topics, ensure that you have a
basic knowledge about Swift programming language and have used it before.

It has been more than 2 years since Apple released the awesome programming language-
Swift. Swift is meant to be easy to code, easy to learn, safe, and intuitive. For each version of
Swift, Apple introduces some awesome features and enhancements in the language. As we
see in Swift 2.0, Swift came with higher performance, and new APIs such as error handling,
and some enhancements. Swift is not meant to be available in iOS development only; you
may find it in other platforms later in the future, thanks to the announcement of Apple that
Swift will become open source.

Swift Programming Language

[9]

Our recipes in this chapter will focus on the most important topics in Swift that will be used
frequently in iOS development. When you focus on these topics and learn them properly,
you will find using them in development will make your life easier and your code will be
more organized. There are many people who can write code, but only few can write
awesome code. Thus, mastering these topics is very important to be a good developer and
to help you and others working on a project.

For the latest features of Swift, ensure that you are using the latest version
of Xcode.

Using closures to create self-contained code
Closures are self-contained lines of code to be executed and passed like any other data
types. You should be familiar with blocks or at least heard about them in Objective-C or C.
This recipe will help you to understand closure syntax and get familiar in using them.

Getting ready
Closures syntax in Swift is pretty easy and is easier than the syntax in C or Objective-C. The
general form of closure is as follows:

{ (parameters) ->returnType in
 // block of code goes here
}

As you see, you first put open curly braces, add list of parameters and the return type, then
the keyword in, followed by lines of code in your closure. Closures are first-class type,
which means it can be nested, passed in parameters, returned from function, and so on.

How to do it...
Go to Xcode and create a new playground file called Closures to test code about1.
closures in it.
To see closures in action, copy and paste this piece of code in the playground file2.
(the output of each statement is printed on the right):

 var names = ["David", "Jones", "Suzan", "Naomi", "Adam"]

Swift Programming Language

[10]

 names.sort() // ["Adam", "David", "Jones", "Naomi", "Suzan"]
 names.sort{ (str1: String, str2: String) ->Bool in
 return str1 > str2
 }

 // ["Suzan", "Naomi", "Jones", "David", "Adam"]

How it works...
Swift provides us with a built-in system function called sort. The function can sort any
collection of data. The function, by default, will sort the collection in an ascending order.
The sort function gives us another flexibility by which you can provide a closure that
returns the comparison result between any two items in the list to determine which should
come first in the list.

As we saw, the default sort function sorts our data in an ascending order; in order to do
any other logic, we can sort with closure that gives you two items as parameters to decide
how to compare them. The sort function sorts the collection in place, and that's why the
names variable is created as var not let. If the names collection is defined as let, you will
not be able to use the sort() function. There is another function called sorted(), which
returns a totally new sorted collection without changing the original one. It's available in
both versions of the collection with var or let.

There's more...
Even though the closure syntax looks simple, but Swift can make it simpler. Let's see how
closure syntax can be optimized.

Inferring type
When closures are passed as argument like what we did in the sort function, Swift can
infer the types of closure parameters and return type. In that case, we can omit the
parameters and return types, as there is no need to write them. In our previous example,
when we infer types, the sort function would be like this:

names.sort{ str1, str2 in
 return str1 > str2
}

As you can see, the String types and the return type have been omitted.

Swift Programming Language

[11]

Omitting the return keyword
Swift can make your life easier than that. When closure body consists of only one
expression, the return keyword can be omitted. So, the new version of sort function will
be like this:

names.sort({ str1, str2 in str1 > str2})

Shorthand arguments
To reach the maximum awesomeness of Swift, you can refer to the argument list with
names $0, $1, and so on. When you decide to use the shorthand arguments, you can omit
the list of parameters. You may ask what about the in keyword, will it be alone? The
answer is no, we won't leave it alone; we can omit it as well completely. Here is the final
version of our sort function:

names.sort({ $0 > $1})

Creating enumerations to write readable
code
Using enumerations is one of the best practices that you should follow while writing any
software project and not only iOS projects. Once you find that you have a group of related
values in your project, create enum to group these values and to define a safe type for these
values. With enumerations, your code becomes more readable and easy to understand, as it
makes you define new types in your project that map to other value. In Swift, enumerations
have been taken care of and have become more flexible than the ones used in other
programming languages.

Getting ready
Now, we will dive into enumerations and get our hands dirty with it. To do so, we will
create a new playground file in Xcode called Enumerations so that we can practice how to
use enumerations and also see how it works.

Swift Programming Language

[12]

Writing enumerations is meant to be easy, readable, and straightforward in syntax writing
in Swift. Let's see how enum syntax goes:

enum EnumName{
}

You see how it's easy to create enums; your enumeration definition goes inside the curly
braces.

How to do it...
Now, let's imagine that we are working on a game, and you have different types of
monsters, and based on the type of monster, you will define power or the difficulty of the
game. In that case, you have to use enum to create a monster type with different cases, as
follows:

Type the following code to create enum with name Monster:1.

 enum Monster{
 case Lion
 case Tiger
 case Bear
 case Crocs
 }

 enum Monster2{
 case Lion, Tiger, Bear, Crocs
 }

Use the '.' operator to create enums variables from the previously created enum:2.

 var monster1 = Monster.Lion
 let monster2 = Monster.Tiger
 monster1 = .Bear

Use the switch statement to check the value of enum to perform a specific3.
action:

 func monsterPowerFromType(monster:Monster) ->Int {
 var power = 0
 switch monster1 {
 case .Lion:
 power = 100
 case .Tiger:
 power = 80

Swift Programming Language

[13]

 case .Bear:
 power = 90
 case .Crocs:
 power = 70
 }
 return power
 }

 let power = monsterPowerFromType(monster1) // 90

 func canMonsterSwim(monster:Monster) ->Bool{
 switch monster {
 case .Crocs:
 return true
 default:
 return false
 }
 }

 let canSwim = canMonsterSwim(monster1) // false

How it works...
Now, you have a new type in your program called Monster, which takes one value of
given four values. The values are defined with the case keyword followed by the value
name. You have two options to list your cases; you can list each one of them in a separate
line preceded by the case keyword, or you can list them in one line with a comma
separation. I prefer using the first method, that is, listing them in separate lines, as we will
see later that we can add raw values for cases that will be more clear while using this
method.

If you come from a C or Objective-C background, you know that the
enums values are mapped to integer values. In Swift, it's totally different,
and they aren't explicitly equal to integer values.

Swift Programming Language

[14]

The first variable monster1 is created using the enum name followed by '.' and then the
type that you want. Once monster1 is initialized, its type is inferred with Monster; so, later
you can see that when we changed its value to Bear, we have just used the '.' operator as
the compiler already knows the type of monster1. However, this is not the only way that
you will use enums. Since enums is a group of related values, so certainly you will use it
with control flow to perform specific logic based on its value. The switch statement is your
best friend in that case as we saw in the monsterPowerFromType() function.

We've created a function that returns the monster power based on its type. The switch
statement checks all values of monster with '.' followed by an enum value. As you already
know, the switch statement is exhaustive in Swift and should cover all possible values; of
course, you can use default in case it's not possible to cover all, as we saw in the
canMonsterSwim() function. The default statement captures all non-addressed cases.

There's more...
Enumerations in Swift have more features, such as using enums with raw values and
associated values.

Enum raw values
We saw how enums are defined and used. Enum cases can come with predefined values,
which we call raw values. To create enums with raw values, the following rules should be
adhered:

All raw values should be in the same type.
Inside the enum declaration, each raw value should be unique.
Only possible values allowed to use are strings, characters, integer, and floating
point numbers.

Swift Programming Language

[15]

Assigning raw values
When you assign raw values to enum, you have to define the type in your enum syntax and
give value for each case:

enum IntEnum: Int{
 case case1 = 50
 case case2 = 60
 case case3 = 100
}

Swift gives you flexibility while dealing with raw values. You don't have to explicitly assign
a raw value for each case in enums if the type of enum is Int or String. For Int type
enums, the default value of enum is equal to the value of previous one + 1. In case of the
first case, by default it's equal to 0. Let's take a look at this example:

enum Gender: Int{
 case Male
 case Female
 case Other
}
var maleValue = Gender.Male.rawValue // 0
var femaleValue = Gender.Female.rawValue // 1

We didn't set any raw value for any case, so the compiler automatically will set the first one
to 0, as it's a no set. For any following case, it's value will be equal to previous case value +
1. Another note is that .rawValue returns the explicit value of the enum case. Let's take a
look at another complex example that will make it crystal clear:

enum HTTPCode: Int{
 case OK = 200
 case Created // 201
 case Accepted // 202
 case BadRequest = 400
 case UnAuthorized
 case PaymentRequired
 case Forbidden
}

Swift Programming Language

[16]

let pageNotFound = HTTPCode.NotFound
let errorCode = pageNotFound.rawValue // 404

We have explicitly set the value of first case to 200; so, the following two cases will be set to
201 and 202, as we didn't set raw values for them. The same will happen for BadRequest
case and the following cases. For example, the NotFound case is equal to 404 after
incrementing cases.

Now, we see how Swift compiler deals with Int type when you don't give explicit raw
values for some cases. In case of String, it's pretty easier. The default value of String
enum cases will be the case name itself. Let's take a look at an example:

enum Season: String{
 case Winter
 case Spring
 case Summer
 case Autumn
}

let winter = Season.Winter

let statement = "My preferred season is " + winter.rawValue // "My
preferred season is Winter"

You can see that we could use the string value of rawValue of seasons to append it to
another string.

Using Enums with raw values
We saw how easy it is to create enums with raw values. Now, let's take a look at how to get
the raw value of enums or create enums back using raw values.

We already saw how to get the raw value from enum by just calling .rawValue to return
the raw value of the enum case.

To initialize an enum with a raw value, the enum should be declared with a type; so in that
case, the enum will have a default initializer to initialize it with a raw value. An example of
an initializer will be like this:

let httpCode = HTTPCode(rawValue: 404) // NotFound
let httpCode2 = HTTPCode(rawValue: 1000) // nil

Swift Programming Language

[17]

The rawValue initializer always returns an optional value because there will not be any
matching enum for all possible values given in rawValue. For example, in case of 404, we
already have an enum whose value is 404. However, for 1000, there is no enum with such
value, and the initializer will return nil in that case. So, before using any enum initialized
by the rawValue initializer, you have to check first whether the value is not equal to nil;
the best way to check for enums after initialization is by this method:

if let httpCode = HTTPCode(rawValue: 404){
 print(httpCode)
}
if let httpCode2 = HTTPCode(rawValue: 1000){
 print(httpCode2)
}

The condition will be true only if the initializer succeeds to find an enum with the given
rawValue.

Enums with associated values
Last but not least, we will talk about another feature in Swift enums, which is creating
enums with associated values. Associated values let you store extra information with enum
case value. Let's take a look at the problem and how we can solve it using associated values
in enums.

Suppose we are working with an app that works with products, and each product has a
code. Some products codes are represented by QR code format, but others by UPC format.
Check out the following image to see the differences between two codes at
http://www.mokemonster.com/websites/erica/wp-

content/uploads/2014/05/upc_qr.png):

http://www.mokemonster.com/websites/erica/wp-content/uploads/2014/05/upc_qr.png
http://www.mokemonster.com/websites/erica/wp-content/uploads/2014/05/upc_qr.png

Swift Programming Language

[18]

The UPC code can be represented by four integers; however, QR code can be represented by
a string value. To create an enum to represent these two cases, we would do something like
this:

enum ProductCode{
 case UPC(Int, Int, Int, Int)
 case QR(String)
}

var productCode = ProductCode.UPC(4, 88581, 1497, 3)
productCode = ProductCode.QR("BlaBlaBla")

First, UPC is a case, which has four integer values, and the second is a QR, which has a
string value. Then, you can create enums the same way we created before in other enums,
but here you just have to pass parameters for the enum. When you need to check the value
of enum with its associated value, we will use a switch statement as usual, but with some
tweaks:

switch productCode{
case .UPC(let numberSystem, let manufacturerCode, let productCode, let
checkDigit):
 print("Product UPC code is \(numberSystem) \(manufacturerCode)
\(productCode) \(checkDigit)")
case .QR(let QRCode):
 print("Product QR code is \(QRCode)")
}

// "Product QR code is BlaBlaBla"

Working with protocols and delegates
Protocol is a set of methods and properties for a particular task to which classes, structure,
or enumeration can be conformed.

Getting ready
The syntax of protocol goes like this:

protocol ProtocolName{
 // List of properties and methods goes here....
}

Swift Programming Language

[19]

The keyword protocol followed by the protocol name and curly braces are the building
blocks of any protocol you need to write. Classes, structures, or enumeration can then
conform to it like this:

class SampleClass: ProtocolName{
}

After class name, you type colon and the super class name that this class extend from if
any, followed by a list of protocols that you want to conform to with a comma separation.

How to do it...
Create a new playground file in Xcode called Protocols as usual.1.
Complete the following example using the following protocol:2.

 protocol VehicleProtocol{
 // properties
 var name: String {set get} // settable and gettable
 var canFly: Bool {get} // gettable only (readonly)
 // instance methods
 func numberOfWheels() ->Int
 func move()
 func stop()
 // class method
 staticfuncpopularBrands() -> [String]
 }

 class Bicycle: VehicleProtocol{
 var name: String
 var canFly: Bool{
 return false
 }
 init(name: String){
 self.name = name
 }
 func numberOfWheels() -> Int {
 return 2
 }
 func move() {
 // move logic goes here
 }
 func stop() {
 // stop logic goes here
 }
 static func popularBrands() -> [String] {

Swift Programming Language

[20]

 return ["Giant", "GT", "Marin", "Trek", "Merida", "Specialized"]
 }
 }

 class Car: VehicleProtocol{
 var name: String
 var canFly: Bool{
 return false
 }
 init(name: String){
 self.name = name
 }
 funcnumberOfWheels() ->Int {
 return 4
 }
 func move() {
 // move logic goes here
 }
 func stop() {
 // stop logic goes here
 }
 static func popularBrands() -> [String] {
 return ["Audi", "BMW", "Honda", "Dodge", "Lamborghini", "Lexus"]
 }
 }

 let bicycle1 = Bicycle(name: "Merida 204")
 bicycle1.numberOfWheels() // 2

 let car1 = Car(name: "Honda Civic")
 car1.canFly // false

 Bicycle.popularBrands() // Class function
 // ["Giant", "GT", "Marin", "Trek", "Merida", "Specialized"]
 Car.popularBrands() // ["Audi", "BMW", "Honda", "Dodge", "Lamborghini",
"Lexus"]

Swift Programming Language

[21]

How it works...
We started by defining VehicleProtocol that has a list of properties and functions that
every vehicle should have. In properties, we have two types of properties: name, which is
marked as {get set}, and canFly, which is marked as {get}. When you mark a property
{get set}, it means it's gettable and settable, whereas {get} means it only gettable, in
other words, it's a read-only property. Then, we added four methods, out of which three
methods-numberOfWheels(), move(), and stop()-are instance methods. The last one-
popularBrands()- marked as static is a type method. Types methods can be called
directly with type name, and there is no need to have instance to call it.

Then, we created two new classes, Bicycle and Car, which conform to VehicleProtocol,
and each one will have different implementations.

There's more...
We have already covered the most important parts of protocols and how to use it, but still
they have more features, and there are many things that can be done with it. We will try
here to mention them one by one to see when and how we can use them.

Mutating methods
Swift allows you mark protocol methods as mutating when it's necessary for these methods
to mutate (modify) the instance value itself. This is applicable only in structures and
enumerations; we call them value types. Consider this example of using mutating:

protocol Togglable{
 mutating func toggle()
}

enum Switch: Togglable{
 case ON
 case OFF
 mutating func toggle() {
 switch self {
 case .ON:
 self = OFF
 default:
 self = ON
 }
 }
}

Swift Programming Language

[22]

The Switch enum implements the method toggle, as it's defined in the protocol
Togglable. Inside toggle(), we could update self-value as function marked as mutating.

Delegation
Delegation is the most commonly used design pattern in iOS. In delegation, you enable
types to delegate some of its responsibilities or functions to another instance of another
type. To create this design pattern, we use protocols that will contain the list of
responsibilities or functions to be delegated. We usually use delegation when you want to
respond to actions or retrieve or get information from other sources without needing to
know the type of that sources, except that they conform to that protocol. Let's take a look at
an example of how to create use delegate:

@objc protocol DownloadManagerDelegate {
 func didDownloadFile(fileURL: String, fileData: NSData)
 func didFailToDownloadFile(fileURL: String, error: NSError)
}
class DownloadManager{
 weak var delegate: DownloadManagerDelegate!
 func downloadFileAtURL(url: String){
 // send request to download file
 // check response and success or failure
 if let delegate = self.delegate {
 delegate.didDownloadFile(url, fileData: NSData())
 }
 }
}

class ViewController: UIViewController, DownloadManagerDelegate{
 func startDownload(){
 letdownloadManager = DownloadManager()
 downloadManager.delegate = self
 }
 func didDownloadFile(fileURL: String, fileData: NSData) {
 // present file here
 }
 func didFailToDownloadFile(fileURL: String, error: NSError) {
 // Show error message
 }
}

Swift Programming Language

[23]

The protocol DownloadManagerDelegate contains methods that would be called once the
specific actions happen to inform the class that conforms to that protocol. The
DownloadManager class performs the download tasks asynchronously and informs the
delegate with success or failure after it's completed. DownloadManager doesn't need to
know which object will use it or any information about it. The only thing it cares about is
that the class should conform to the delegate protocol, and that's it.

Class-only protocols
We mentioned before that classes, structures, and enumerations could adopt protocols. The
difference among them is that classes are reference types, whereas structures and
enumerations are value types. If you find yourself having some specific actions that will be
done only via reference types, mark it as class only. To do so, just mark it as follows:

protocol ClassOnlyProtocol: class{
 // class only properties and methods go here
}

Add a colon : and the class keyword to mark your protocol as class only.

Checking protocol conformance
It would be very useful to check whether an object conforms to a specific protocol or not. It's
very useful when you have a list of objects, and only some of them conform to specific
protocol. To check for protocol conformance, do the following:

class Rocket{
}

var movingObjects = [Bicycle(name: "B1"), Car(name:"C1"), Rocket()]

for item in movingObjects{
 if let vehicle = item as? VehicleProtocol{
 print("Found vehcile with name \(vehicle.name)")
 vehicle.move()
 }
 else{
 print("Not a vehcile")
 }
}

Swift Programming Language

[24]

We created a list of objects, and some of them conform to VehicleProtocol that we
created earlier. Inside the for-loop we casted each item to VehicleProtocol inside if
statement; the cast will succeed only if this item already conforms to that protocol.

Optional requirements
You see that when you list your properties and methods in a protocol, the type that
conforms to that protocol should adopt to all properties and methods. Skipping one of them
will lead to a compiler error. Some protocols may contain methods or properties that are not
necessary to implement, especially with delegates. Some delegate methods are meant to
notify you something that you don't care about. In that case, you can mark these methods as
optional. The keyword optional can be added before properties and methods to mark
them as optional. Another thing, the protocol that has optional stuff should be marked with
@Objc. Take a look at the following example:

@objc protocol DownloadManagerDelegate {
 func didDownloadFile(fileURL: String, fileData: NSData)
 optional func didFailToDownloadFile(fileURL: String, error: NSError)
}

It's the new version of DownloadManagerDelegate, which marks
didFailToDownloadFile method as optional.

Using extensions to extend classes
functionality
For its name, extensions are used to extend an existing functionality. In Swift, you can
extend classes, structures, protocols, and enumerations. Extensions are similar to categories
in Objective-C except that extensions don't have names. It's very useful to add functionality
to any type that you don't have access to its source code, such as native classes String,
NSArray, and so on.

Getting ready
In Swift, syntax is pretty easy, and that's why it is awesome. To extend any type, just type
the following:

extension TypeToBeExtended{
}

Swift Programming Language

[25]

Inside the curly braces, you can add your extensions to the type to be extended. In
extension, you can do the following:

Adding instance- or class-computed properties
Adding instance or class methods
Adding new initializers
Defining subscripts
Adding nested types
Conforming to protocols

Once you create an extension to any type, the new functionality will be available for all
instances in the whole project.

How to do it...
Create a new playground file in Xcode called Extensions.1.
Create extension for double value by adding computing properties, as follows:2.

 extension Double{
 var absoluteValue: Double{
 return abs(self)
 }
 var intValue: Int{
 return Int(self)
 }
 }

 extension String{
 var length: Int{
 return self.characters.count
 }
 }

 let doubleValue: Double = -19.5
 doubleValue.absoluteValue // 19.5
 doubleValue.intValue // 19

 extension Int{
 func isEven() ->Bool{
 return self % 2 == 0
 }
 func isOdd() ->Bool{
 return !isEven()

Swift Programming Language

[26]

 }
 func digits() -> [Int]{
 var digits = [Int]()
 var num = self
 repeat {
 let digit = num % 10
 digits.append(digit)
 num /= 10
 } while num != 0
 return digits
 }
 }

 let num = 12345
 num.digits() // [5, 4, 3, 2, 1]

How it works...
In Double type, we have added two computed properties. The computed properties are
properties that will be calculated every time when it's called. We've added a property called
absoluteValue, which returns the absolute value; same for intValue, which returns the
integer value of double. Then, for any double value in the whole project, these two
properties are accessible and can be used.

In the Int type, we have defined three new instance methods. The isEven() method
should return true if this number is even, false otherwise, and the same logic applies for
isOdd(). The third method that has some more logic is digits(), which returns array of
digits in the number. The algorithm is simple; we get the last digit by getting the remainder
of dividing the number by 10, and then skip the last digit by dividing by 10.

There's more...
Extensions are not meant to add new properties and methods only. You extend types by
adding new initializers, mutating methods, and by defining subscripts.

Swift Programming Language

[27]

Mutating instance methods
When you add instance methods, you can let them mutate (modify) the instance itself. In
methods we've added before, we just do some logic and return a new value, and the
instance value remains the same. With mutating, the value of instance itself will be
changed. To do so, you have to mark your instance method with the mutating keyword.
Let's take a look at an example:

extension Int{
 mutating func square(){
 self = self * self
 }
 mutating func double(){
 self = self * 2
 }
}

var value = 8
value.double() // 16
value.square() // 256

When you mark your method as mutating, it lets you to change self and assign new value
to it.

Adding new initializer
Extensions allow you to add new initializer to the currently available initializer for any
particular type. For example, let's take a look at the CGRect class. CGRect has three
initializers: empty init; init with origin and size; and init with x, y, width, and height.
We will add new initializer with a center point and a rectangular size. Let's take a look at
how to do it:

extension CGRect{
 init(center:CGPoint, size:CGSize){
 let x = center.x - size.width / 2
 let y = center.y - size.height / 2
 self.init(x: x, y: y, width: size.width, height: size.height)
 }
}

let rect = CGRect(center: CGPoint(x: 50, y: 50), size: CGSizeMake(100, 80))
// {x 0 y 10 w 100 h 80}

Swift Programming Language

[28]

Define subscripts
One of features that extensions provide to us is the ability to define subscripts to a
particular type. Subscripting allows you to get value by calling [n] to get information at
index n. Like array, when you access item at that index, you can do the same with any type
you want. In the following example, we will add subscripting support to the String type:

extension String{
 subscript(charIndex: Int) -> Character{
 let index = startIndex.advancedBy(charIndex)
 return self[index]
 }
}
let str = "Hello"
str[0] // "H"

To add subscript to type, just add the keyword subscript followed by index and the
return type. In our preceding example, the subscript will return the character at a given
index. We advanced the startIndex, which is a property in the String type and points to
the first character by the input charIndex. Then, we return the character at that Index.

Working with memory management and ARC
If you are coming from the old school where MRC (Manual Reference Counting) was
being used for memory management, you definitely know how much headache developers
suffer to manage memory in iOS. With iOS 5, Apple introduced ARC (Automatic Reference
Counting), and life became easier in terms of memory management. Though ARC manages
your memory automatically, some mistakes may ruin your memory with no mercy if you
didn't understand the concept of memory management.

Swift Programming Language

[29]

Getting ready
Before checking how to manage memory and avoid some common mistakes, I would like to
highlight some notes:

Assigning a class instance to variable, constant, or properties will create a strong
reference to this instance. The instance will be kept in memory as long as you use
it.
Setting the reference to nil will reduce its reference counting by one (once it
reaches zero, it will be deallocated from memory). When your class deallocated
from memory, all class instance properties will be set to nil as well.

How to do it...
Create two classes, Person and Dog, with a relation between them, as shown in1.
the following code snippet (this code snippet has a memory issue called reference
cycle):

 class Dog{
 var name: String
 var owner: Person!
 init(name: String){
 self.name = name
 }
 }
 class Person{
 var name: String
 var id: Int
 var dogs = [Dog]()
 init(name: String, id: Int){
 self.name = name
 self.id = id
 }
 }
 let john = Person(name: "John", id: 1)
 let rex = Dog(name: "Rex")
 let rocky = Dog(name: "Rocky")
 john.dogs += [rex, rocky] // append dogs
 rex.owner = john
 rocky.owner = john

Swift Programming Language

[30]

Update the reference type of owner property in the Dog class to break this cycle:2.

 class Dog{
 var name: String
 weak var owner: Person!
 init(name: String){
 self.name = name
 }
 }

How it works...
We have started our example by creating two classes, Person and Dog. The Person class
has one-to-many relation to the Dog class via the property array dogs. The Dog class has
one-to-one relation to class Person via the property owner. Everything looks good, and it
works fine if you tested, but unfortunately we did a terrible mistake. We have a retain cycle
problem here, which means we have two objects in memory; each one has a strong
reference to the other. This leads to a cycle that prevents both of them from being
deallocated from memory.

This problem is a common problem in iOS, and not all developers note it while coding. We
call it as parent-child relation. Parent (in our case, it's the Person class) should always have
a strong reference to child (the Dog class); child should always have a weak reference to
the parent. Child doesn't need to have strong reference to parent, as child should never
exit when parent is deallocated from memory.

To solve such a problem, you have to break the cycle by marking one of these references as
weak. In step 2, we see how we solved the problem by marking the property owner as weak.

There's more...
The reference cycle problem can happen in situations other than relations between classes.
When you use closure, there is a case where you may face a retain cycle. It happens when
you assign a closure to a property in class instance and then this closure captures the
instance. Let's consider the following example:

class HTMLElement {

let name: String
let text: String?

lazy var asHTML: () -> String = {

Swift Programming Language

[31]

if let text = self.text {
return "<\(self.name)>\(text)</\(self.name)>"
 } else {
return "<\(self.name) />"
 }
 }

init(name: String, text: String? = nil) {
 self.name = name
self.text = text
 }
}

let heading = HTMLElement(name: "h1", text: "h1 title")
print(heading.asHTML()) // <h1>h1 title</h1>

We have the HTMLElement class, which has closure property asHTML. Then, we created an
instance of that class which is heading, and then we called the closure to return HTML text.
The code works fine, but as we said, it has a reference cycle. The instance set closure to one
of its property, and the closure captures the instance (happens when we call self.name
and self.text inside the closure). The closure in that case will retain self (have a strong
reference to the heading instance), and at the same time, heading already has a strong
reference to its property asHTML. To solve reference cycle made with closure, add the
following line of code as first line in closure:

[unownedself] in

So, the class will look like this:

class HTMLElement {

let name: String
let text: String?

lazy var asHTML: () -> String = {

 [unownedself] in

if let text = self.text {
return "<\(self.name)>\(text)</\(self.name)>"
 } else {
return "<\(self.name) />"
 }
 }

init(name: String, text: String? = nil) {
 self.name = name

Swift Programming Language

[32]

self.text = text
 }
}

The unowned keyword informs the closure to use a weak reference to self instead of the
strong default reference. In that case, we break the cycle and everything goes fine.

Using error handling
In any iOS project, a lot of operations may fail and you have to respond to these errors in
your project. Since Swift 2, a new mechanism has been added to the language for
responding and dealing with errors in your project. You can now throw and catch errors
when you do any operation that may fail for some reason. Suppose, you do some logic to
request some data in a JSON format from a remote server and then you save this data in a
local database. Can you imagine how many errors may happen for these operations?
Connection may fail between your app and the remote server, failing to parse the JSON
response, database connection is closed, database file doesn't exist, or another process is
writing in database and you have to wait. Recovering from these errors allows you take the
appropriate action based on the error type.

Getting ready
Before starting to learn how to handle errors in Swift, you first have to be familiar with how
to represent in errors that are going to happen in your program. Swift provides you with a
protocol called ErrorType that your errors types should adopt. Then, to represent errors,
here comes the role of enumerations to help you. You create a new enum, which lists all
error cases, and this enum should conform to the ErrorType protocol. The syntax of using
enum with ErrorType will be something like this:

enum DBConnectionError: ErrorType{
 case ConnectionClosed
 case DBNotExist
 case DBNotWritable
}

As we see it's pretty straightforward. You create enum representing the error that conforms
to ErrorType protocol, and then list all errors as cases in the enum.

Swift Programming Language

[33]

How to do it...
As usual, let's create a new playground named ErrorHandling.1.
Let's create now a new error type for a function that will sign up a new user in a2.
system:

 enum SignUpUserError: ErrorType{

 case InvalidFirstOrLastName
 case InvalidEmail
 case WeakPassword
 case PasswordsDontMatch
 }

Now, create the sign up function that throws errors we made in the previous3.
step, if any:

 func signUpNewUserWithFirstName(firstName: String, lastName: String,
email: String, password: String, confirmPassword: String) throws{

 guard firstName.characters.count> 0 &&lastName.characters.count> 0
else{

 throw SignUpUserError.InvalidFirstOrLastName
 }

 guard isValidEmail(email) else{
 throw SignUpUserError.InvalidEmail
 }

 guard password.characters.count> 8 else{
 throw SignUpUserError.WeakPassword
 }

 guard password == confirmPassword else{
 throw SignUpUserError.PasswordsDontMatch
 }

 // Saving logic goes here

 print("Successfully signup user")

 }

 func isValidEmail(email:String) ->Bool {

Swift Programming Language

[34]

 let emailRegex = "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-
z]{2,}"
 let predicate = NSPredicate(format:"SELF MATCHES %@", emailRegex)
 return predicate.evaluateWithObject(email)
 }

Now, let's see how to use the function and catch errors:4.

 do{
 trysignUpNewUserWithFirstName("John", lastName: "Smith", email:
"john@gmail.com", password: "123456789", confirmPassword: "123456789")
 }
 catch{
 switch error{
 case SignUpUserError.InvalidFirstOrLastName:
 print("Invalid First name or last name")
 case SignUpUserError.InvalidEmail:
 print("Email is not correct")
 case SignUpUserError.WeakPassword:
 print("Password should be more than 8 characters long")
 case SignUpUserError.PasswordsDontMatch:
 print("Passwords don't match")
 default:
 print(error)
 }
 }

How it works...
We started our code example by creating a new error type called SignUpUserError, which
conforms to ErrorType protocol. As we see, we listed four errors that may happen while
signing up any user in our system, such as invalid first name or last name, invalid e-mail,
weak password, and passwords that don't match. So far, so good!

Then, we create a function signUpNewUserWithFirstName, which takes user input values,
and as we can see, we have marked it with the throws keyword. The keyword throws says
that this function may throw an error anytime during execution, so you be prepared to
catch errors thrown by this method.

Inside the implementation of the function, you will see a list of guard statements that
checks for user input; if any of these guard statements returned false, the code of else
statement will be called. The statement throw is used to stop execution of this method and
throw the appropriate error based on the checking made.

Swift Programming Language

[35]

Catching errors is pretty easy; to call a function that throws error, you have to call it inside
the do-catch block. After the do statement, use the try keyword and call your function. If
any error happens while executing your method, the block of code inside the catch
statement will be called with a given parameter called error that represents the error.
We've created a switch statement that checks the type of error and prints a user-friendly
statement based on the error type.

There's more...
The information that we previously presented is enough for you to deal with error
handling, but still there are a couple of things considered important to be known.

Multiple catch statements
In the preceding example, you will notice that we've created a catch statement, and inside,
we used a switch statement to cover all cases of error. This is a correct way, but for your
reference, we have another way to do this. Consider the following:

catch SignUpUserError.InvalidFirstOrLastName{

}
catch SignUpUserError.InvalidEmail{

}
catch SignUpUserError.WeakPassword{

}
catch SignUpUserError.PasswordsDontMatch{

}

After the do statement, you can list catch statement with the type of error that this
statement will catch. Using this method has a condition that the catch statements should
be exhaustive, which means it should cover all types of errors.

Swift Programming Language

[36]

Disable error propagation
Functions that usually throw an error, in some cases, don't throw an error. In some cases,
you may know that calling a function like these with some kind of parameters will never
throw an error. In that case, Swift gives you an option to disable error propagation via
calling this method with try! instead of try. Calling throwing functions via try! will
disable error propagation, and if an error is thrown in that case, you will get a runtime
error. So, it's better to take care while using try!.

Using generics to write generic and reusable
code
Generic code is used to write reusable and flexible functionalities that can deal with any
type of variables. This helps in writing reusable and clean code regardless of the type of
objects your generic code deals with. An example of using generics is when you use Array
and Dictionary. You can create an array of Int or String or any type you want. That's
because Array is natively created and can deal with any type. Swift gives you the ability to
write generic code very easily as you will see in this section.

Getting ready
Before learning how to write generic code, let's see an example of a problem that generics
solve. I bet you are familiar with stack data structures and have been using it in one of the
computer science courses before. Anyway, it's a kind of collection data structure that
follows LIFO (Last in first out). It has very commonly used APIs for these operations,
which are pop and push. Push inserts new item to the stack; pop returns the last inserted
one. It's just a simple overview, as we will not explain data structures in this book as it's out
of topic.

How to do it...
Here, we will create the stack data structure with/without generics:

Create a new playground named Generics.1.
Let's create the data structure stack with type Int:2.

 class StackInt{

Swift Programming Language

[37]

 var elements = [Int]()

 func push(element:Int)
 {
 self.elements.append(element)
 }
 func pop() ->Int
 {
 return self.elements.removeLast()
 }
 func isEmpty()->Bool
 {
 returnself.elements.isEmpty
 }
 }

 var stack1 = StackInt()
 stack1.push(5) // [5]
 stack1.push(10) //[5,10]
 stack1.push(20) // [5,10,20]
 stack1.pop() // 20

Let's see the same created stack but with a generics fashion:3.

 class Stack <T>{
 var elements = [T]()
 func push(element:T)
 {
 self.elements.append(element)
 }
 func pop()->T{
 return self.elements.removeLast()
 }
 }

 var stackOfStrings = Stack<String>()
 stackOfStrings.push("str1")
 stackOfStrings.push("str2")
 stackOfStrings.pop()

 var stackOfInt = Stack<Int>()
 stackOfInt.push(4)
 stackOfInt.push(7)
 stackOfInt.pop()

Swift Programming Language

[38]

How it works...
The first class we created, StackInt, is a stack that can work only with the Int type. It's
good if you are going to use it with Int type only. However, a famous data structure like it
can be used with different types, such as String or Double. It's not possible to create
different stack class for each type, and here comes the magic of generics; instead we created
another class called Stack marked with <T> to say it's going to deal with the generic type T,
which can be Int, String, Double, and so on. Then, we create two stack instances,
stackOfStrings and stackOfInt, and both share the same code as their class is built
with generics.

2
The Essentials

In this chapter, we will cover the following topics:

Using UIView via code or interface builder to build your own custom views
Working with navigation controller and navigation bar
Working with stack views
Working with UICollectionView
Working with gestures like swipe, pan, rotation, and tap
Using 3D touch

Introduction
Game on, your swift weapons are ready for iOS development. This chapter will be
considered your first station in our journey through this book. We will cover some of the
most commonly used UI components for building your app screens in this chapter. We will
start with the godfather of all UI components--the UIView. Then, we will introduce
navigation controller, stack views, collection views, and the gesture recognizers. These
components are important because you will use them frequently in iOS development and
should be known by any iOS developer. This is not applicable to the last recipe (3D Touch),
since it's a new feature in iOS devices; but, it's still important, as all new upcoming devices
will have this feature, so you should be ready and be aware of how to utilize it in your app.

The Essentials

[40]

Using UIView via code or interface builder to
build your own custom views
UIViews are the base building blocks of any iOS app. Think of LEGO; kids build their own
buildings and blocks using tiny base blocks. The same logic is used in iOS; all UI screens
you see are just a building of UIViews. All native/custom UI components extend from
UIView; in other words, UIView is the base class of all UI components. To master iOS
development and building the layout of any app, you have to be familiar with UIView.

Getting ready
We will see in this recipe how to create/use UIViews programmatically (hardcoded) or via
interface builder. The fast and recommended way is to create your UIViews via interface
builder (XIB files or Storyboards); but of course, in some cases, you will need to build
custom UIViews, and in that case you will build your own custom UIViews
programmatically.

How to do it...
Go to Xcode and create a new iOS project with template Single View1.
Application. Set the name of the project to UIViews.
Now, select the storyboard file and open the single page view controller:2.

The Essentials

[41]

In the Attribute Inspector in the right-hand side bar, set the size of the View3.
Controller to iPhone 4.7-inch size.
Open the View Controller view, and from Object Library in the right-hand side4.
bar, drag two UIViews. In the first UIView and from the Size Inspector tab in the
right side bar, set the frame of the first one to (x = 0, y = 0, width = 375, height =
300), and from the Attribute Inspector tab, set red as the background color. In the
second UIView, set the frame to (x = 0, y = 300, width = 375, height = 300).

The Essentials

[42]

Rename the two views by selecting each one and hit the Enter key. The title will5.
be converted to a text field where you can rename your views. Change the first
view to RedView and the second one to BlueView. You should see something
like this:

The Essentials

[43]

Take an outlet for your views. Click on Assistant Editor at the top bar to open the6.
ViewController.swift file, and drag the view to the source code file to add
outlets by selecting each view and holding the Ctrl key:

The Essentials

[44]

Now, open the ViewController.swift file in the viewDidLoad function and7.
add the following code:

 let yellowView = UIView(frame: CGRectMake(0, 0, 200, 100))
 yellowView.backgroundColor = UIColor.yellowColor()
 self.redView.addSubview(yellowView)
 let brownView = UIView(frame: CGRectMake(100, 50, 200, 100))
 brownView.backgroundColor = UIColor.brownColor()
 self.redView.insertSubview(brownView, belowSubview: yellowView)

Now, build and run the project; you should see something like this:8.

The Essentials

[45]

How it works...
First, we created the project with the Single View template; there are multiple templates
that you can use or start with for your empty project. Then, we set the layout size of the
view controller to a 4-inch size iPhone, as the project is intended to be for iPhone only, not
iPad. This doesn't mean that your app will work on a 4-inch (iPhone 6 and iPhone 6s)
iPhone only; it indicates what the layout will look like. We will see in later chapters how to
design your app's UI, regardless of the screen size via size classes and auto layout.

Then, we saw how simple it is to add UIViews via interface builder. We added the red and
blue views without wiring any line of code, and you can see how to change the view's
properties in Attribute Inspector.

We add outlets to your views in the ViewController.swift file, which act as a reference
to your components created in interface builder. So, you can access them any time in your
code and do any specific action on them, such as hiding, resizing, translation, or adding
subviews.

We then moved to source code to add two views, but programmatically. You first need to
initialize the UIView and we used one of its initializers, which takes a frame to initialize
with. The frame specifies the size and location (on superview) of the view. Then, we change
the background color using one of its properties: .backgroundColor. I recommend
opening the documentation of UIView, where you will see a list of properties and functions
to be used.

Creating UIViews is nothing without presenting them onscreen, and to present it, you have
to add a subview to any other view. The most common method used is addSubview(),
which adds the view as a subview to the superview and on top of the view hierarchy. In
some cases, adding on the top is not what you want, and you need some flexibility to
choose where to add your view in the view hierarchy; that's why, UIView provides you
with another three methods to insert a subview:

Function insertSubview(brownView, belowSubview: yellowView): This
adds a subview below any other subview that you have in your view hierarchy.
This method requires having a reference to the view you want to add below a
subview.
Function insertSubview(view, atIndex: 2): This is a very flexible function
to add any subview to your view hierarchy at any index. The index is 0 indexed,
and 0 means the first subview.
Function insertSubview(view, aboveSubview: superview): This adds a
subview above any other subview you have in your view hierarchy. This method
requires having a reference to the view you want to add above a subview.

The Essentials

[46]

Using these methods, you have a full customization, where you can place your UIViews
programmatically.

There's more...
We saw how to add UIViews using interface builder or programmatically. These are the
most commonly used ways in UIViews while working on an iOS app. In some cases, native
components don't fit your needs, and you have to build your own custom UIView. Let's see
in action how to build a custom UIView. In the following example, we will see how to build
a circular progress bar programmatically and how to use or customize it using interface
builder.

Go to Xcode and create a new Swift class CircularProgressBar, which extends UIView.
Then, add the following code:

@IBDesignable
class CircularProgressBar: UIView {

 /// The background fixed color of progress bar
 @IBInspectable var progressFixedColor : UIColor = UIColor.whiteColor()
 /// The progressive color
 @IBInspectable var progressColor : UIColor = UIColor.redColor()
 /// The line width of the progress circle
 @IBInspectable var lineWidth:CGFloat = 5.0
 /// The layer where we draw the progressive animation.
 private var progressiveLayer : CAShapeLayer?

 func updateProgess(progress:CGFloat, animated:Bool,
 duration:CFTimeInterval){
 if self.progressiveLayer == nil{
 self.setNeedsDisplay()
 }
 if progress <= 1.0{
 self.progressiveLayer?.strokeEnd = progress
 if animated {
 CATransaction.begin()
 let animation = CABasicAnimation(keyPath: "strokeEnd");
 animation.duration = duration
 animation.fromValue = NSNumber(float: 0.0)
 animation.toValue = NSNumber(float: Float(progress));
 animation.timingFunction = CAMediaTimingFunction(name:
 kCAMediaTimingFunctionEaseInEaseOut)
 self.progressiveLayer?.addAnimation(animation, forKey:
 "animateStrokeEnd")
 CATransaction.commit()

The Essentials

[47]

 }
 }
 }
 override func drawRect(rect: CGRect) {
 // Drawing code
 let fixedLayer = getShapeLayerForRect(rect, strokeColor:
 progressFixedColor)
 fixedLayer.strokeEnd = 1.0
 self.layer.addSublayer(fixedLayer)
 let progressiveLayer = getShapeLayerForRect(rect, strokeColor:
 progressColor)
 progressiveLayer.strokeEnd = 0.0
 self.progressiveLayer = progressiveLayer
 self.layer.addSublayer(progressiveLayer)
 }
 private func getShapeLayerForRect(rect:CGRect, strokeColor
 sColor:UIColor) -> CAShapeLayer{
 let radius = CGRectGetWidth(rect) / 2 - lineWidth / 2
 let newRect = CGRectMake(lineWidth / 2, lineWidth / 2, radius * 2,
 radius * 2)
 let path = UIBezierPath(roundedRect: newRect, cornerRadius:
 radius).CGPath
 let shape = CAShapeLayer()
 shape.path = path
 shape.strokeColor = sColor.CGColor
 shape.lineWidth = self.lineWidth
 shape.fillColor = nil
 return shape
 }

}

Let's explain the code step by step:

We marked our class with @IBDesignable, which tells the compiler that this1.
class is a custom UIView that can be rendered in interface builder. This helps you
to see what the view looks like without running the on simulator or device.
We listed three parameters to set the colors and line width of the progress view.2.
Each parameter is marked as @IBInspectable, which tells the compiler to
display these parameters in Attribute Inspector, so you customize these values as
well from interface builder.

The Essentials

[48]

Go to interface builder and add a UIView as a subview to the view that is blue.3.
Change its class from UIView to CircularProgressBar from the Identity
Inspector tab. Change its background color to clear color and see how the view
will be rendered:

Also, if you open the Attribute Inspector, you will see that three additional4.
attributes have been added:

The Essentials

[49]

Then, we override the drawRect method. This function should be overridden to5.
make a custom drawing in your view. In drawRect, we created two circular
shapes. One shape is the fixed circle shape, which acts as a background. It's
strokeEnd value is 1, as it's fixed and a complete circle. The second shape is the
progressive circle, which will be animated via strokeEnd to show its progress.
We used the getShapeLayerForRect function to create a circle via the
CAShapeLayer class in the CoreAnimation framework.

More information about drawing with Bezier Path and Core Animation
can be found in Chapter 5, Animations and Graphics.

Then, we add the updateProgess function that updates the progress by6.
animating the progressive layer strokeEnd property.
Now, take a look at an outlet of the progressive view in7.
ViewController.swift:

 @IBOutlet weak var circularProgressView: CircularProgressBar!

Then override viewDidAppear method to update the progress value to 75% like8.
this:

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.circularProgressView.updateProgess(0.75, animated: true,
 duration: 2)
 }

The Essentials

[50]

Now, build and run; you should see the progress updates with animation:9.

Working with navigation controller and
navigation bar
In iOS, we have multiple native view controllers that manage list of other view controllers,
such as UINavigationController, UITabBarViewController, or
UIPageViewController. Navigation controller is one of the most common controllers
used to manage list of view controllers, and all iOS developers or users are familiar with
this component. This component is one of the essential components that every iOS
developer should know how to master and use.

The Essentials

[51]

Getting ready
In this recipe, we will see how to build an iOS app which uses a navigation controller. We
will see how to push and pop between the view controllers of the navigation controller. We
will discuss the navigation bar, which you can see at the top of the navigation controller,
and how to customize it.

There is some information that you should know about UINavigationController:

The view controllers that it manages are put in a stack; when you push a view
controller, you put it at the top of the stack. Also, when you pop a view
controller, you remove the top one from the stack and display the preceding one.
UINavigationController has three main items--the left item, middle item, and
right item.

Left Item: By default, you will see a back button (except for the
root), and its title is set to the title property of the preceding
view controller. You can add a custom button in the by setting
leftBarButtonItem or leftBarButtonItems properties in the
navigation item of the displayed view controller.
Middle Item: By default, a label with the current view controller
title property is displayed. You can add custom middle view by
setting the titleView property in the navigation item of the
displayed view controller.
Right Item: This is the same as left item; but by default, there is
nothing to display. You can use the rightBarButtonItem or
rightBarButtonItems properties in the navigation item.

How to do it...
Create a new Xcode project with a Single View template named1.
NavigationController.
From Object library, drag a navigation controller to the storyboard, and set the2.
entry point of the storyboard to the navigation controller.

The Essentials

[52]

By default, the navigation controller in interface builder comes with a root view3.
controller, which is a UITableViewController. We will use this table to display
a list of dates, and when you click on one of them, it will push another view
controller.
Create a new view controller called MasterViewController to be the root view4.
controller and make it extend from UITableViewController. The source code
of MasterViewController should look like this:

 class MasterViewController: UITableViewController {
 var objects = [AnyObject]()
 override func viewDidLoad() {
 super.viewDidLoad()
 let addButton = UIBarButtonItem(barButtonSystemItem: .Add,
 target: self, action: "insertNewObject:")
 self.navigationItem.rightBarButtonItem = addButton
 }
 func insertNewObject(sender: AnyObject) {
 objects.insert(NSDate(), atIndex: 0)
 let indexPath = NSIndexPath(forRow: 0, inSection: 0)
 self.tableView.insertRowsAtIndexPaths([indexPath],
 withRowAnimation: .Automatic)
 }
 // MARK: - Segues
 override func prepareForSegue(segue: UIStoryboardSegue, sender:
 AnyObject?) {
 if segue.identifier == "showDetail" {
 if let indexPath = self.tableView.indexPathForSelectedRow {
 let object = objects[indexPath.row] as! NSDate
 let controller = segue.destinationViewController as!
 DetailViewController
 controller.detailItem = object
 }
 }
 }
 // MARK: - Table View
 override func tableView(tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 return objects.count
 }
 override func tableView(tableView: UITableView, cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
 forIndexPath: indexPath)
 let object = objects[indexPath.row] as! NSDate
 cell.textLabel!.text = object.description
 return cell

The Essentials

[53]

 }
 }

Then, set the class of the root view controller in the storyboard to be5.
MasterViewController from Identity Inspector.
Add a new view controller in Xcode called DetailViewController to display6.
the details when you select an item from MasterViewController:

 class DetailViewController: UIViewController {

 @IBOutlet weak var detailDescriptionLabel: UILabel!

 var detailItem: AnyObject? {
 didSet {
 // Update the view.
 self.configureView()
 }
 }

 func configureView() {
 // Update the user interface for the detail item.
 if let detail = self.detailItem {
 if let label = self.detailDescriptionLabel {
 label.text = detail.description
 }
 }
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically
from
 a nib.
 self.configureView()
 }
 }

Add a new view controller in the storyboard, and set its class to7.
DetailViewController.
From the prototype cell of the table view in MasterViewController, hold the8.
Ctrl key, create a segue to the DetailViewController, and select show as a
type of the segue.

The Essentials

[54]

Click on the segue, and set the identifier in the Attribute Inspector to showDetail:9.

Add a UILabel as a subview to display the details of the selected item and10.
connect the outlet to source code of DetailViewController.swift:

The Essentials

[55]

Lastly, in the MasterViewController in the storyboard, you will see a table11.
view that has a prototype cell. Update the identifier of the cell to Cell to match
the identifier in the source code.

If you are not familiar with table views, don't worry, we will explain them
in detail in later chapters.

Now, build and run. You will see an empty list in MasterViewController; click12.
on the add button multiple times; you will see something like this:

The Essentials

[56]

Also, when you click on any item, it should navigate you to13.
DetailViewController:

How it works...
First, we created the MasterViewController, which is the root view controller. We made
it a subclass of UITableViewController to display a table view with list of cells, and
when you select any cell, navigation controller will push a new DetailViewController as
a details view.

In MasterViewController, we added a right bar button in the right item that we have
explained earlier. First, we create a new UIBarButtonItem and set in the
navigationItem.rightBarButtonItem. This adds a right button at the right and will be
visible only to MasterViewController and not to all controllers in the navigation stack.
The action of the right button will insert a new cell in the table view.

The Essentials

[57]

Since we added a segue from the cell to DetailViewController, once you select any cell
from the table, a new DetailViewController will be pushed. In most cases, you will need
to pass some information for the newly opened view controller, and in our case, we need to
pass the selected item to DetailViewController. The prepareForSegue method is the
best place to do so, and you can differentiate between segues (if you have multiple segues)
using their identifiers. When you open DetailViewController, you will see a back
button automatically added in the navigation bar to go back to the preceding view
controller.

There's more...
We saw how to use navigation controller in interface builder and how to set bar button
items in the navigation item of view controllers. We will see some other useful APIs to be
used in the navigation controller in this section.

Push and pop
We saw in the preceding example how to navigate to another view controller using segues.
Additionally, we can do this programmatically by calling the following:

self.navigationController?.pushViewController(viewController, animated:
true)

This pushes a new view controller with or without animation.

Also, to pop view controllers, we have three functions that we can use:

The popViewControllerAnimated function: This will pop the top view
controller and update the UI to the preceding one
The popToRootViewControllerAnimated function: This will pop all view
controllers in the stack, but the root view controller
The popToViewController:animated function: This will pop all view
controllers in the stack not upto the root but upto a given reference to the view
controller to pop to it

The Essentials

[58]

Hiding navigation bar
You can at any time hide or show the navigation bar based on any logic you have
in your app by calling:

 self.navigationController?.setNavigationBarHidden(true, animated:
true)

Passing true to the preceding function hides the bar, and passing false will
show the bar. Also, you can specify whether you want to do it with
animation or not.

UINavigationController has another awesome property called
hidesBarsOnSwipe when you set it to true. The navigation bar will be hidden
automatically when you swipe up a table view or a scroll view. Also, when you
swipe down, it will be shown again. This feature is very nice, as it saves a lot
of space for the user while scrolling a list of data to see as much data as possible
on screen. Let's give it a shot; from our preceding example, open
MasterViewController and add this line of code in the viewDidLoad function:

 self.navigationController?.hidesBarsOnSwipe = true

Then, build and run; you will note the bar hides or shows while scrolling:

The Essentials

[59]

Navigation bar color
Last but not least is changing the color of the navigation bar. It's very rare to find an app
that has a different color for the navigation bar in different screens. Most of the apps have
one navigation color that is unique for all screens. We will now see how to set the
navigation bar coloring globally in your app. Open the AppDelegate.swift file, and add
these lines of code:

UINavigationBar.appearance().tintColor = UIColor.blackColor()
UINavigationBar.appearance().barTintColor = UIColor.cyanColor()

We changed the default blue tint color to black color and bar tint color (background color)
to cyan color. When you build and run, you should see something like this:

The Essentials

[60]

Working with stack views
UIStackView is one of the coolest features introduced in iOS 9.0 for developers. It was a
hassle to arrange groups of views horizontally or vertically. You had to get your hands
dirty with a lot of Auto Layout constraints to arrange these views properly. UIStackView
makes arranging subviews horizontally or vertically easier without you worrying about
Auto Layout. Although you don't need to use Auto Layout to arrange your views, as its
UIStackview's job, you still need to use Auto Layout to define position and size of the stack
view itself. If you're still not convinced about the magic that UIStackView does, you have
to give it a shot.

How to do it
As usual, let's create a new Xcode project with Single View template and name it1.
StackViews.
Open the storyboard file and select the view controller and change its size to2.
iPhone 4-inch.
From Object Library, drag a Vertical stack view and add it as a subview.3.
Change its frame to (X = 20, Y = 20, Width = 280).4.

The Essentials

[61]

We need to add constraints to make the stack view's left, right, and top margins5.
to be equal to 20 and to make its height = 75% of the device screen. To do so,
first select the stack view, and click on the Pin button and set the top, left, and
right constraint values to 20:

The Essentials

[62]

For the height constraint, drag the stack view (while holding the Ctrl key) to the6.
superview and click on Equal Heights:

Now, the stack view height will be equal to the superview height, but we need it7.
to be 75%. So, open, selecting the stack view. Open the Size Inspector tab and
double-click on the height constraint. In the multiplier value, change it to 0.75:

The Essentials

[63]

You will note that there is a warning in Xcode because your stack view's frame8.
doesn't match the constraints. To solve it, just click on the warning indicator
arrow, and then click on the warning indicator triangle that will show a popup
asking how you want to fix the warning. Select Update frames from the options,
and click on Fix Misplacement:

Now, your stack view is ready. Let's add some content to it. From the Object9.
Library, drag an image view and place it inside the stack view. You will note that
the image view size automatically matches the stack view size.
Repeat the previous process for two more image views. You will note that stack10.
view automatically lays out the three image views to match the content.
Now, select the stack view, click on Attribute Inspector, and change its setting to11.
match the following screenshot:

The Essentials

[64]

Now, set the images for image views to any images you have or use the ones we12.
have in the resources folder for this chapter. You should have something like this:

The Essentials

[65]

Now, build and run in simulator.13.

The Essentials

[66]

How it works...
As we saw in the preceding section, it's easy to manage and work with stack views. Let's
take a look at how the preceding example works:

We started by placing a vertical UIStackView from Object library in our view1.
hierarchy and set its Auto Layout to define its position and size. As we said, you
don't have to set any Auto Layout for the subviews of the stack view, but you
have to set Auto Layout for the stack view itself.
We selected three image views from the Object Library, and noted how awesome2.
the stack view is while it automatically lay out the image views to fill the content.
From Attribute Inspector, we set some settings to the stack view, which will3.
highlight the most important ones, such as the following:

Axis: You choose whether you want the stack to layout your subview
vertically or horizontally. For example, in horizontal layout, you will
note that the first item leading edge will be pinned to the stack's
leading edge, and the last item trailing edge will be pinned to the
stack's trailing edge. In vertical layout, the layout will be arranged
based on top and bottom edges.
Alignment: This option indicates how the stack view will align your
subview relative to the stack view. For example, when you set it to
Center when the Axis is vertical, stack view will calculate the size of
each item and center it horizontally. However, when you set it to
Leading, all items will be aligned along with the stack view's leading.
In our example, we set it to Fill, which means the stack view will
stretch the arranged views to match the stack view.
Distribution: The option defines the size of the arranged views. For
example, when you set it to Fill Equally, the stack view will lay
them out, so all arranged views share the same size.
Spacing: This defines the spacing between the arranged views.

When you run the app in different screen size, you will see the magic in how4.
stack views lays out your images equally so that it fits the screen size of the
simulator or device.

Working with UICollectionView
UICollectionView is a very handy and awesome view when it comes to dealing with grid
layout. Collection view helps you create a grid layout (2D cells) easily without hassle.

The Essentials

[67]

Collection view is just a scrollable view that lays out multiple cells in a grid layout. So, to
create a collection view, you have to specify a data source and delegate exactly like
UITableView. Besides that, you need to specify how the layout of your cells will appear.
iOS provides you with an abstract class-UICollectionViewLayout-which should be
subclassed to customize how the content will be managed. You can create your own custom
layouts and describe how you want to lay out your cells. However, thanks to Apple, it
provides us with a premade layout called UICollectionViewFlowLayout, which flow the
layout by placing the cells one after the other based on their sizes and the spacing between
them.

How to do it...
Create a new Xcode project with our lovely template Single View template and1.
name it Collection View.
Open the storyboard file and select our lonely view controller and change its size2.
to iPhone 4-inch.
Select the View Controller, go to Editor | Embed In | UINavigationController to3.
automatically make your view controller a root view controller of a navigation
controller:

The Essentials

[68]

From Object Library, drag the UICollectionView and add it as a subview.4.
Change its frame to (X = 0, Y = 0, Width = 375, Height = 603).
Add constraints to make your collection view always at the location (0, 0) and5.
with the size same as that of the screen. Open the pin icon, as shown in the
following diagram, and set the leading and top constraints to 0. Then, click on the
add button:

Now, we need the constraints for width and height. Holding the Ctrl key, drag6.
the collection view, and an arrow will be displayed for you to choose the view
you need to select to add constraints with. Drag it to the superview view, and
once the list of constraints appears, hold the shift key to allow you to select
multiple constraints, select equal width, and equal height, and then press Enter.

The Essentials

[69]

Now, regardless of the size of your device's screen, the size of the collection view7.
will be equal to it. Now, open size inspector tab, and in Min Spacing section
(which identifies the spacing between cells and lines), set them to zeros because
we will customize the spacing programmatically:

The Essentials

[70]

From Attribute Inspector, change the background color to white. The default one8.
is black color, which, in my opinion, looks quite unimpressive.
To let collection view work properly, it needs to know the delegate and data9.
source. Our ViewController.swift will be the delegate and data source. So, to
set them in interface builder, hold the Ctrl key and drag the collection view to
View Controller; a list of options for data source and delegate will open. Then,
click on each one to set it:

Select the prototype cell in the collection view and increase its size a little bit (we10.
will control its size dynamically later via code). Drag a UIImageView from Object
library, and add it as a subview to the cell. Let its size be identical to the cell size
and be at the location (0, 0).

The Essentials

[71]

Since the cell size will be changed dynamically, we want its image view to be11.
resized automatically as well. For that reason, let's add constraints to the image
view by setting its leading, top, trailing, and bottom be the same as those of
the cell:

The Essentials

[72]

Since the collection view cell is customized, it's highly recommended to create a12.
custom UICollectionViewCell class to encapsulate the logic/outlets/managing
of the custom cell. Create a new file in Xcode, select Cocoa touch class, and set the
name to CustomCollectionViewCell and the subclass to
UICollectionViewCell:

Return to storyboard. Let's now select our prototype cell. Also, from Attribute13.
Inspector, change its identifier to cell, and from Identity Inspector, change its
class to the newly created CustomCollectionViewCell class.

The Essentials

[73]

Since we changed the class to a custom one, you can now open Assistant Editor to14.
link IBOutlet to the image view in CustomCollectionViewCell, as follows:

Now, everything should be ready in terms of layout. Let's now jump to15.
ViewController.swift to write some code. Change the code in
ViewController.swift to look like this:

 class ViewController: UIViewController, UICollectionViewDelegate,
UICollectionViewDataSource, UICollectionViewDelegateFlowLayout{

 // MARK: - UICollectionViewDelegateFlowLayout -
 func collectionView(collectionView: UICollectionView, layout

The Essentials

[74]

 collectionViewLayout: UICollectionViewLayout,
sizeForItemAtIndexPath indexPath: NSIndexPath) -> CGSize {
 let width = CGRectGetWidth(collectionView.frame)
 let cellWidth = width / 3
 return CGSizeMake(cellWidth, cellWidth)
 }
 // MARK: - UICollectionViewDatasource -
 func collectionView(collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return 20
 }

 func collectionView(collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {
 let cell = collectionView.dequeueReusableCellWithReuseIdentifier
 ("cell", forIndexPath: indexPath) as! CustomCollectionViewCell
 cell.previewImageView.image = UIImage(named: "Dubai.png")
 return cell
 }
 }

Build and run our app now in the simulator or device; you will see something16.
like this:

The Essentials

[75]

How it works...
Although we performed many steps in order to have this result of grid view of images, they
are pretty straightforward. The steps are self-explanatory, but we will mention the
important points in detail for your reference:

We started by setting constraints to the collection view to place it always at the1.
location (0, 0) and with size relative to the super view. For more practice on
constraints, check our later chapters. These constraints will automatically resize
your collection view to be always equal to the superview, so when you run the
app in any device--even iPads--you will see that the collection view size is equal
to the screen size.
From Size Inspector, we changed the Min Spacing for cells and lines to zero.2.
Cells spacing indicates the spacing between any successive items in a row or
column. Line spacing indicates the spacing between any successive rows or
columns.
Then, we added a custom collection view cell, which encapsulates all logic/layout3.
for the prototype cell. You can customize the cell by placing subviews and
constraints between them and the superview of the cell. Then, we created a new
custom cell class in source files to line your outlets and actions.
In source code, where magic happens, we implemented the data source and4.
delegate methods to set the number of cells you need in your layout and which
cell to be placed.
To customize the flow layout, you can conform to5.
UICollectionViewDelegateFlowLayout and implement any optional
functions from the flow layout delegate. In the preceding example, we
implemented the following:

 collectionView(collectionView: UICollectionView, layout
 collectionViewLayout: UICollectionViewLayout,
 sizeForItemAtIndexPath indexPath: NSIndexPath) -> CGSize

This tells the layout the size of the cell at a given index. In our example, we set the width to
be one-third of the screen width (we always display three cells per row), and to make our
cells squares, we set the height to be equal to width.

The Essentials

[76]

There's more...
Of course, there is much more in UICollectionView, especially when it comes to
customization. In our example, we saw how we implemented one function from
UICollectionViewDelegateFlowLayout to set the item size. Other methods that can be
implemented are as follows:

func collectionView(collectionView: UICollectionView, layout
 collectionViewLayout: UICollectionViewLayout,
 minimumLineSpacingForSectionAtIndex section: Int) -> CGFloat {
 }
 func collectionView(collectionView: UICollectionView, layout
 collectionViewLayout: UICollectionViewLayout,
 minimumInteritemSpacingForSectionAtIndex section: Int) -> CGFloat {
 }

The first function lets you specify the spacing between any successive rows and columns.
The function gives you the section index if you want to specify a different value for each
section in case you have multiple sections.

The second function lets you specify the spacing between any successive cells in a row or
column.

Customizable layouts
We explained how to use the UICollectionViewFlowLayout subclass that Apple
provides us to support flow-based layouts easily. In most cases, this layout gets the job
done by customizing the spacing, as we mentioned earlier. However, if you want a fancy
customization, such as circular layouts, you have to get your hands dirty and subclass
UICollectionViewLayout and write your custom code to describe how to manage your
content. It's a little bit challenging, but it is worth trying.

The Essentials

[77]

Working with gestures like swipe, pan,
rotation, and tap
When users use your app, clicking is not only the possible way that user can interact with
the app. iOS provides you with gesture recognizers such as the most commonly used
gestures by users, such as swipe or tap gestures. Although it is very nice to support gestures
in you app, misusing them may lead to a very bad user experience and cause conflicts to
your users. Another problem is that most users don't know that you have to swipe in a
specific area to get an action done, so it's recommended that you show a tutorial or notes on
screen, telling users about what gestures you support so that they become aware of them.

Getting ready
In this recipe, we will show you a simple UIView that can interact with multiple gesture
recognizers; but before getting started, let's explain briefly the difference between the
various gesture recognizers:

UITapGestureRecognizer: This is a gesture recognizer that detects taps on
UIViews with any number of taps, for example, detecting double taps on UIView
UIPinchGestureRecognizer: This is a gesture recognizer that detects pinching
(zooming) a view with two fingers, similar to zooming pictures in Photos app
UIPanGestureRecognizer: This is a gesture recognizer that detects dragging
UIViews
UISwipeGestureRecognizer: This is a gesture recognizer that detects swiping
up, down, left, or right
UIRotationGestureRecognizer: This is a gesture recognizer that detects
rotating a view with two fingers
UILongPressGestureRecognizer: This is a gesture recognizer that detects long
press on UIView to do a specific action

All these gestures are attached to UIViews. A gesture can be attached only to one view but a
view can recognize multiple gestures at the same time.

The Essentials

[78]

How to do it...
Create a new Xcode project called Gestures with Single View template.1.
Open the storyboard, and in the single view controller, change its size to iPhone2.
4-inch size.
Drag a UIView to the center of the screen and set its frame to (X = 127, Y = 259,3.
Width = 120, Height = 80).
Change its color to any color you want instead of white.4.
Link it to ViewController.swift via IBOutlet and call it sampleView:5.

Now, open the ViewController.swift file, and let's add the following code to6.
set up the UITapGestureRecognizer:

 // MARK: - Tap Gesture -
 func setupTapGesture(){
 let tapGesture = UITapGestureRecognizer(target: self, action:
 #selector(handleTapGesture(_:)))
 tapGesture.numberOfTapsRequired = 2

The Essentials

[79]

 self.sampleView.addGestureRecognizer(tapGesture)
 }
 func handleTapGesture(gesture: UITapGestureRecognizer){
 var newHeight : CGFloat = 80.0
 if CGRectGetHeight(self.sampleView.frame) == 80 {
 newHeight = 200.0
 }
 var frame = self.sampleView.frame
 frame.size.height = newHeight
 self.sampleView.frame = frame
 }

Change the code in viewDidLoad to call the setup of7.
UITapGestureRecognizer:

 override func viewDidLoad() {
 super.viewDidLoad()
 setupTapGesture()
 }

Now, when you build and run, you will see that when you double-tap on the8.
view, its height will be updated.
Let's now add the pan gesture; add the following two methods to set up the pan9.
gesture:

 // MARK: - Pan Gesture -
 func setupPanGesture(){
 let panGesture = UIPanGestureRecognizer(target: self, action:
 #selector(handlePanGesture(_:)))
 self.sampleView.addGestureRecognizer(panGesture)
 }
 func handlePanGesture(gesture: UIPanGestureRecognizer){
 let point = gesture.locationInView(self.view)
 self.sampleView.center = point
 }

The Essentials

[80]

Update the viewDidLoad method to call the setup of10.
UIPanGestureRecognizer:

 override func viewDidLoad() {
 super.viewDidLoad()
 setupTapGesture()
 setupPanGesture()
 }

Let's now set up the rotation gesture; add the following two methods to set up11.
UIRotationGestureRecognizer:

 // MARK: - Rotation Gesture -
 func setupRotationGesture(){
 let rotationGesture = UIRotationGestureRecognizer(target: self,
 action: #selector(handleRotationGesture(_:)))
 self.sampleView.addGestureRecognizer(rotationGesture)
 }
 func handleRotationGesture(gesture: UIRotationGestureRecognizer){
 self.sampleView.transform = CGAffineTransformRotate
 (self.sampleView.transform, gesture.rotation)
 gesture.rotation = 0
 }

Update the viewDidLoad method to call the rotation gesture:12.

 override func viewDidLoad() {
 super.viewDidLoad()
 setupTapGesture()
 setupPanGesture()
 setupRotationGesture()
 }

The Essentials

[81]

Now, build and run; try to rotate the view with two fingers, and you will see that13.
the view is rotating with it:

The last gesture to add is the swipe gesture. Let's first add a subview to our14.
sampleView with a different color, for example, red. When you swipe right, we
will move it to the right with animation; when you swipe left, we will move it to
the left with animation.
Go to storyboard, drag a UIView with the same size, and add it as a subview to15.
the sample view; set its background color to red.

The Essentials

[82]

Connect an outlet to the redView, like this:16.

 @IBOutlet weak var redView: UIView!

Add the following two functions to set up the swipe gestures:17.

 func setupSwipeGestures(){
 let rightSwipeGesture = UISwipeGestureRecognizer(target: self,
 action: #selector(handleSwipeGesture(_:)))
 rightSwipeGesture.direction = .Right
 let leftSwipeGesture = UISwipeGestureRecognizer(target: self,
 action: #selector(handleSwipeGesture(_:)))
 leftSwipeGesture.direction = .Left
 self.sampleView.addGestureRecognizer(rightSwipeGesture)
 self.sampleView.addGestureRecognizer(leftSwipeGesture)
 }
 func handleSwipeGesture(swipeGesture: UISwipeGestureRecognizer){
 var newXPosition : CGFloat = 0.0
 if swipeGesture.direction == .Right {
 newXPosition = CGRectGetWidth(self.sampleView.frame)
 }
 var frame = self.redView.frame
 frame.origin.x = newXPosition
 UIView.animateWithDuration(0.5) {
 self.redView.frame = frame
 }
 }

Now, update the viewDidLoad function to be like this:18.

 override func viewDidLoad() {
 super.viewDidLoad()
 setupTapGesture()
// setupPanGesture()
 setupRotationGesture()
 setupSwipeGestures()
 }

Now, build and run. When you swipe right on the sampleView, you will note19.
that the redView will be translated to the right with animation. Swiping left will
move it back to the original location.

The Essentials

[83]

How it works...
As we saw in our previous examples, setting up a gesture recognizer is very easy and
simple. The setup can be summarized in three steps:

Initialize the gesture with target and action. Target is the object that should be1.
notified when a gesture recognized. The action is the function to be called, and a
reference to the gesture will be passed.
Configure the gesture. We saw that in the tap gesture when we set the taps2.
required to 2 and in swipe gesture to configure the direction.
Adding the gesture to the desired view.3.

In the action function, it's the best place to handle the gesture and do specific action to your
view like moving, rotating, and so on.

The most helpful function in the gesture recognizer is locationInView(), which returns a
CGPoint of the gesture location relative to a given view. We used it in the pan gesture to
move the view while dragging. You can use it with the tap gesture also to do specific action
at the tapped location.

There's more...
Now, you should be familiar with using gestures, and that is the most commonly used logic
in working with gestures. In some cases, while dealing with multiple gestures, you want to
control conflicts between them or you have a specific scenario that requires the gesture to
not start recognizing, you need to set up a delegate to the gesture recognizer. In these cases,
set the UIGestureRecognizerDelegate delegate to be notified with a function to solve
these problems.

Using 3D touch
Since the launch of iPhone 6s and 6s plus, Apple has introduced a new way of user
interaction with mobile apps. A new dimension of touch event has been added by
introducing 3D touch. By detecting how hard or deeply the user presses on the screen, you
can do a specific action in your app. In the example below, we will see how to get the force
of touch and log display on screen.

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIGestureRecognizerDelegate_Protocol/index.html

The Essentials

[84]

How to do it...
As usual, open Xcode and create a new project with Single View template named1.
3D Touch.
Open storyboard, and add a UILabel and place it at the center of the screen.2.
Link the label with an IBOutlet to ViewController.swift.3.
Go to ViewController.swift and override the following method:4.

 override func touchesMoved(touches: Set<UITouch>, withEvent event:
UIEvent?) {
 if let touch = touches.first {
 if #available(iOS 9.0, *) {
 if traitCollection.forceTouchCapability ==.Available {
 // 3D Touch is avaialble in this device
 let force = touch.force / touch.maximumPossibleForce
 self.forceTouchLabel.text = "\(force)%"
 }
 }
 }
 }

How it works...
We started our example by overriding the touchesMoved function. In iOS, once you
interact with the screen, touchesBegan, touchesMoved, and touchesCancelled methods
will be called based on the situation. touchesMoved is the method that we need, which
detects your finger moving on screen.

This method gives you a parameter a touch set. We will only care about the first touch in
this set, and we use the if condition to make sure that we have at least one touch object in
the set before using it. The #available(iOS 9.0, *) checks whether this app works in a
device that has iOS 9.0 or later versions, as the API to get force value is available only in iOS
9.0 or later. You will only need that confirmation if you're supporting iOS version before
iOS 9.0. If your minimum iOS version is 9, there is no need for that check.

The Essentials

[85]

The traitCollection.forceTouchCapability ==.Available checks whether your
device has a force touch capability. As we know, only specific devices have this hardware
feature, such as iPhone 6s and iPhone 6s plus. So, it is the best practice to check the
availability of any hardware feature before using it.

There's more...
You may seem disappointed when you think this is the only thing you can do with 3D
touch. Actually, there are two other things that you can do with 3D touch, which may seem
very interesting to you.

Home screen quick actions
When we see an app icon in iOS, we used to have only two options:

Tap the app icon to launch the app.1.
Long press the app icon to drag it somewhere else to organize the app's2.
appearance or click on the delete button to uninstall the app.

You can now force touch the app icon via 3D touch, and you will get a popup with quick
actions to select from. In your app, you can define set of static or dynamic actions. Static
actions are actions that will appear regardless of your app state. For example, in a chatting
app, you may find static actions, such as Create new chat or Go offline. Dynamic actions are
actions that will be updated based on the app state. For example, in the same chat app, you
may find Reply to John in the quick actions. So, the app may get the last contacted people
and display actions to you. It's something like expectation from the app to make your life
easier.

The Essentials

[86]

To learn more about this feature and other stuff you can do with it, it's highly
recommended to visit Apple developer center.

[footnote]

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/Adopting3DTouchOniPhone/

3
Integrating with Messages App

In this chapter, we will cover the following topics:

Integrating the iMessage app with sticker pack
Integrating the iMessage app with iMessage app extension

Introduction
In this chapter, we will talk about one of the hot new features of iOS 10, which is integrating
the Messages app with stickers and extensions. Competing with the current messaging apps
is almost an impossible mission and that's why Apple has opened the door for developers
to put their touches to Messages app to make it more interesting and fancy. In iOS 10, you
can create app extensions that interact with Messages app to send text, stickers, media files,
and much more. We have the following two types of extensions:

Stickers: You can add fancy stickers that users can get/buy from the App Store to
integrate with their iMessage app and send them to their friends.
iMessages apps: This is where users can integrate with your app without having
to lease the iMessage app. Users can use your app to send content such
as documents, payment, and photos.

Integrating with Messages App

[88]

Integrating iMessage app with sticker pack
Here comes the easy part--the iMessage app with sticker pack. I call it the easy part because,
believe it or not, you can create a sticker pack app extension without even writing a single
line of code. Just prepare your fancy stickers, create the app extension in Xcode, drag and
drop your stickers in Xcode, and there you go. I hear you saying wow, and I bet you are
eager to give it a shot.

Getting ready
To create an iMessage app extension, you need to have the Xcode 8.0 or later version. Right
now, while I'm writing this chapter, it's available in the beta version. Maybe, while you are
reading this chapter, it's available as an official release.

Apple engineers have provided the ability to test these extensions in iOS simulator; so, you
don't have to worry about that. In case you want to test these extensions on your device,
you need the iOS 10 or later version to be installed on your device. If you are like me now
and the official release is not yet available, you can download the iOS 10 Beta version from
the Apple developer center and follow the steps to install it on your device.

Stickers
Prepare the stickers that you want to use in the app extension. Your images should follow
these rules:

The images must be in the PNG, APNG, GIF or JPEG format.
The file must be smaller than 500 KB in size.
The image cannot be smaller than 100 x 100 points, and cannot be larger than 206
x 206 points.
Always provide @3x images (300 x 300 pixels to 618 x 618 pixels). The system
generates the @2x and @1x versions by downscaling the @3x images at runtime.

In our recipe, we will use some sample stickers that Facebook uses in
its messages app. Copyright is reserved for Facebook, it's used here just
for illustration.

Integrating with Messages App

[89]

How to do it...
Ensure that you have the Xcode 8.0 beta version (or the official version, if it's1.
already released).
Create a new project and choose the Sticker Pack Application template, as2.
shown:

Click on Next and, in product name, type FancyEmoji or any other name you3.
like.

Integrating with Messages App

[90]

The Xcode project will be created, and as you see, without any source code files.4.
I'm not sure whether you feel happy or sad for that, but for me, I felt happy to see
a working Xcode project for the first time with no source code file.
Open Stickers.xcstickers, as shown:5.

Select the Sticker Pack folder, where you can drag and drop your stickers.6.
Drag and drop your stickers; now, it should be like this:7.

Integrating with Messages App

[91]

Believe it or not, we are done. Choose iPhone 6s Simulator, for example, and run8.
the app.
Xcode will ask you to select an app to run your extension. Select Messages and9.
click on Run, as illustrated in the following screenshot:

Integrating with Messages App

[92]

You will see something like this, where you can chat with someone called Kate:10.

Integrating with Messages App

[93]

Click on the App Store icon beside the text area, as follows, and then click on11.
apps like this:

Integrating with Messages App

[94]

Now, choose the sticker pack that we recently created. Wait for a few seconds12.
and you will find that your stickers appear, as shown:

Integrating with Messages App

[95]

Now, choose any sticker to send in your chat and here you go:13.

Integrating with Messages App

[96]

How it works...
We first created a new sticker pack template app which, as we see, was very
straightforward. Now, prepare your stickers with the criteria illustrated in the Getting ready
section. Import these stickers by dragging and dropping them in the Sticker Pack folder,
where all sticker assets should appear. By following these steps, your app extension should
be ready to be integrated in the iMessage app.

Running the extension is very easy because it's available to be used in Simulator. Just run
the app extension and Xcode will open Messages app with a ready-to-use conversion to test
your stickers.

There's more...
To create stickers, Apple provides an amazing tool, which is the Motion app. The Motion
app can help you create stunning and animated stickers for iMessages. To get started with
the Motion app, you can refer to know how to get it and how to use it. They also provide
free project templates to get started in Motion:
https://developer.apple.com/support/stickers/motion

Integrating iMessage app with iMessage app
Using iMessage apps will let users use your apps seamlessly from iMessage without having
to leave the iMessage. Your app can share content in the conversation, make payment, or do
any specific job that seems important or is appropriate to do within a Messages app.

Getting ready
Similar to the Stickers app we created earlier, you need Xcode 8.0 or later version to create
an iMessage app extension and you can test it easily in the iOS simulator. The app that we
are going to build is a Google Drive picker app. It will be used from an iMessage extension
to send a file to your friends just from Google Drive.

https://developer.apple.com/support/stickers/motion/

Integrating with Messages App

[97]

Before starting, ensure that you follow the instructions in Google Drive API for iOS from
https://developers.google.com/drive/ios/quickstart to get a client key to be used in
our app.

Installing the SDK in Xcode will be done via CocoaPods. To get more information about
CocoaPods and how to use it to manage dependencies, visit h t t p s ://c o c o a p o d s . o r g /.

How to do it...
We Open Xcode and create a new iMessage app as shown, and name it Files1.
Picker:

Now, let's install Google Drive SDK in iOS using CocoaPods. Open terminal and2.
navigate to the directory that contains your Xcode project by running this
command:

 cd path_to_directory

https://developers.google.com/drive/ios/quickstart
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/

Integrating with Messages App

[98]

Run the following command to create a Pod file to write your dependencies:3.

 Pod init

It will create a Pod file for you. Open it via TextEdit and edit it to be like this:4.

 use_frameworks!
 target 'PDFPicker' do
 end

 target 'MessagesExtension' do
 pod 'GoogleAPIClient/Drive', '~> 1.0.2'
 pod 'GTMOAuth2', '~> 1.1.0'
 end

Then, close the Xcode app completely and run the pod install command to5.
install the SDK for you.
A new workspace will be created. Open it instead of the Xcode project itself:6.

Integrating with Messages App

[99]

Prepare the client key from the Google Drive app you created as we mentioned in7.
the Getting ready section, because we are going to use it in the Xcode project.

Open MessagesViewController.swift and add the following import8.
statements:

 import GoogleAPIClient
 import GTMOAuth2

Add the following private variables just below the class declaration and embed9.
your client key in the kClientID constant, as shown:

 private let kKeychainItemName = "Drive API"
 private let kClientID = "Client_Key_Goes_HERE"
 private let scopes = [kGTLAuthScopeDrive]
 private let service = GTLServiceDrive()

Add the following code in your class to request authentication to Google Drive if10.
it's not authenticated and load file info:

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view.
 if let auth = GTMOAuth2ViewControllerTouch.
 authForGoogleFromKeychain(forName: kKeychainItemName,
 clientID: kClientID,
 clientSecret: nil)
 {
 service.authorizer = auth
 }
 }
 // When the view appears, ensure that the Drive API service is
 authorized
 // and perform API calls
 override func viewDidAppear(_ animated: Bool) {
 if let authorizer = service.authorizer,
 canAuth = authorizer.canAuthorize where canAuth {
 fetchFiles()
 } else {
 present(createAuthController(), animated: true, completion:
 nil)
 }
 }
 // Construct a query to get names and IDs of 10 files using the
 Google Drive API
 func fetchFiles() {
 print("Getting files...")

Integrating with Messages App

[100]

 if let query = GTLQueryDrive.queryForFilesList(){
 query.fields = "nextPageToken, files(id, name, webViewLink,
 webContentLink, fileExtension)"
 service.executeQuery(query, delegate: self, didFinish:
 #selector(MessagesViewController.displayResultWithTicket
 (ticket:finishedWithObject:error:)))
 }
 }
 // Parse results and display
 func displayResultWithTicket(ticket : GTLServiceTicket,
 finishedWithObject response :
GTLDriveFileList,
 error : NSError?) {
 if let error = error {
 showAlert(title: "Error", message: error.localizedDescription)
 return
 }
 var filesString = ""
 let files = response.files as! [GTLDriveFile]
 if !files.isEmpty{
 filesString += "Files:n"
 for file in files{
 filesString += "(file.name) ((file.identifier)
 ((file.webViewLink) ((file.webContentLink))n"
 }
 } else {
 filesString = "No files found."
 }
 print(filesString)
 }
 // Creates the auth controller for authorizing access to Drive API
 private func createAuthController() -> GTMOAuth2ViewControllerTouch {
 let scopeString = scopes.joined(separator: " ")
 return GTMOAuth2ViewControllerTouch(
 scope: scopeString,
 clientID: kClientID,
 clientSecret: nil,
 keychainItemName: kKeychainItemName,
 delegate: self,
 finishedSelector:
 #selector(MessagesViewController.viewController
 (vc:finishedWithAuth:error:))
)
 }
 // Handle completion of the authorization process, and update the
 Drive API
 // with the new credentials.
 func viewController(vc : UIViewController,

Integrating with Messages App

[101]

 finishedWithAuth authResult :
GTMOAuth2Authentication, error : NSError?) {
 if let error = error {
 service.authorizer = nil
 showAlert(title: "Authentication Error", message:
 error.localizedDescription)
 return
 }
 service.authorizer = authResult
 dismiss(animated: true, completion: nil)
 fetchFiles()
 }
 // Helper for showing an alert
 func showAlert(title : String, message: String) {
 let alert = UIAlertController(
 title: title,
 message: message,
 preferredStyle: UIAlertControllerStyle.alert
)
 let ok = UIAlertAction(
 title: "OK",
 style: UIAlertActionStyle.default,
 handler: nil
)
 alert.addAction(ok)
 self.present(alert, animated: true, completion: nil)
 }

Integrating with Messages App

[102]

The code now requests authentication, loads files, and then prints them in the11.
debug area. Now, try to build and run, you will see the following:

Click on the arrow button in the bottom right corner to maximize the screen and12.
try to log in with any Google account you have.

Integrating with Messages App

[103]

Once the authentication is done, you will see the files' information printed in the13.
debug area.
Now, let's add a table view that will display the files' information and once a user14.
selects a file, we will download this file to send it as an attachment to the
conversation. Now, open the MainInterface.storyboard, drag a table view
from Object Library, and add the following constraints:

Integrating with Messages App

[104]

Set the delegate and data source of the table view from interface builder by15.
dragging while holding down the Ctrl key to the MessagesViewController.
Then, add an outlet to the table view, as follows, to be used to refresh the table
with the files:

Integrating with Messages App

[105]

Drag a UITabeView cell from Object Library and drop it in the table view. For16.
Attribute Inspector, set the cell style to Basic and the identifier to cell.
Now, return to MessagesViewController.swift. Add the following property17.
to hold the current display files:

 private var currentFiles = [GTLDriveFile]()

Edit the displayResultWithTicket function to be like this:18.

 // Parse results and display
 func displayResultWithTicket(ticket : GTLServiceTicket,
 finishedWithObject response :
GTLDriveFileList,
 error : NSError?) {
 if let error = error {
 showAlert(title: "Error", message: error.localizedDescription)
 return
 }
 var filesString = ""
 let files = response.files as! [GTLDriveFile]
 self.currentFiles = files
 if !files.isEmpty{
 filesString += "Files:n"
 for file in files{
 filesString += "(file.name) ((file.identifier)
 ((file.webViewLink) ((file.webContentLink))n"
 }
 } else {
 filesString = "No files found."
 }
 print(filesString)
 self.filesTableView.reloadData()
 }

Now, add the following method for the table view delegate and data source:19.

 // MARK: - Table View methods -
 func tableView(_ tableView: UITableView, numberOfRowsInSection section:
 Int) -> Int {
 return self.currentFiles.count
 }
 func tableView(_ tableView: UITableView, cellForRowAt indexPath:
 IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "cell")
 let file = self.currentFiles[indexPath.row]
 cell?.textLabel?.text = file.name
 return cell!

Integrating with Messages App

[106]

 }

 func tableView(_ tableView: UITableView, didSelectRowAt
 indexPath: IndexPath) {
 let file = self.currentFiles[indexPath.row]
 // Download File here to send as attachment.
 if let downloadURLString = file.webContentLink{
 let url = NSURL(string: downloadURLString)
 if let name = file.name{
 let downloadedPath = (documentsPath() as
 NSString).appendingPathComponent("(name)")
 let fetcher = service.fetcherService.fetcher(with: url as!
 URL)
 let destinationURL = NSURL(fileURLWithPath: downloadedPath)
 as URL
 fetcher.destinationFileURL = destinationURL
 fetcher.beginFetch(completionHandler: { (data, error) in
 if error == nil{
self.activeConversation?.insertAttachment(destinationURL,
 withAlternateFilename: name, completionHandler: nil)
 }
 })
 }
 }
 }
 private func documentsPath() -> String{
 let paths = NSSearchPathForDirectoriesInDomains(.documentDirectory,
 .userDomainMask, true)
 return paths.first ?? ""
 }

Now, build and run the app, and you will see the magic: select any file and the20.
app will download and save it to the local disk and send it as an attachment to
the conversation, as illustrated:

Integrating with Messages App

[107]

How it works...
We started by installing the Google Drive SDK to the Xcode project. This SDK has all the
APIs that we need to manage drive files and user authentication. When you visit the Google
developers' website, you will see two options to install the SDK: manually or using
CocoaPods. I totally recommend using CocoaPods to manage your dependencies as it is
simple and efficient.

Integrating with Messages App

[108]

Once the SDK had been installed via CocoaPods, we added some variables to be used for
the Google Drive API and the most important one is the client key. You can access this
value from the project you have created in the Google Developers Console.

In the viewDidLoad function, first we check if we have an authentication saved in
KeyChain, and then, we use it. We can do that by calling
GTMOAuth2ViewControllerTouch.authForGoogleFromKeychain, which takes the
Keychain name and client key as parameters to search for authentication. It's useful as it
helps you remember the last authentication and there is no need to ask for user
authentication again if a user has already been authenticated before.

In viewDidAppear, we check if a user is already authenticated; so in that case, we start
fetching files from the drive and, if not, we display the authentication controller, which asks
a user to enter his Google account credentials.

To display the authentication controller, we present the authentication view controller
created in the createAuthController() function. In this function, the Google Drive API
provides us with the GTMOAuth2ViewControllerTouch class, which encapsulates all the
logic for Google account authentication for your app. You need to pass the client key for
your project keychain name to save the authentication details there, and the finished
 viewController(vc : UIViewController, finishedWithAuth authResult :
GTMOAuth2Authentication, error : NSError?) selector that will be called after the
authentication is complete. In that function, we check for errors and if something wrong
happens, we display an alert message to the user. If no error occurs, we start fetching files
using the fetchFiles() function.

In the fetchFiles() function, we first create a query by calling
GTLQueryDrive.queryForFilesList(). The GTLQueryDrive class has all the
information you need about your query, such as which fields to read, for example, name,
fileExtension, and a lot of other fields that you can fetch from the Google drive. You can
specify the page size if you are going to call with pagination, for example, 10 by 10 files.
Once you are happy with your query, execute it by calling service.executeQuery, which
takes the query and the finished selector to be called when finished. In our example, it will
call the displayResultWithTicket function, which prepares the files to be displayed in
the table view. Then, we call self.filesTableView.reloadData() to refresh the table
view to display the list of files.

Integrating with Messages App

[109]

In the delegate function of table view didSelectRowAt indexPath:, we first read the
webContentLink property from the GTLDriveFile instance, which is a download link for
the selected file. To fetch a file from the Google drive, the API provides us with
GTMSessionFetcher that can fetch a file and write it directly to a device's disk locally
when you pass a local path to it. To create GTMSessionFetcher, use the
service.fetcherService factory class, which gives you an instance to a fetcher via the
file URL. Then, we create a local path to the downloaded file by appending the filename to
the documents path of your app and then, pass it to a fetcher via the following command:

fetcher.destinationFileURL = destinationURL

Once you have set up everything, call fetcher.beginFetch and pass a completion
handler to be executed after finishing the fetching. Once the fetching is completed
successfully, you can get a reference to the current conversation so that you can insert the
file to it as an attachment. To do this, just call the following function:

self.activeConversation?.insertAttachment(destinationURL,
withAlternateFilename: name, completionHandler: nil)

There's more...
Yes, there's more that you can do in the preceding example to make it fancier and more
appealing to users. Check the following options to make it better:

Show a loading indicator or progress bar while a file is downloading.1.
Check if the file is already downloaded, and if so, there is no need to download it2.
again.
Add pagination to request only 10 files at a time.3.
Include options to filter documents by type, such as PDF, images, or even by4.
date.
Search for a file in your drive.5.

Integrating with Messages App

[110]

Showing progress indicator
As we said, one of the features that we can add in the preceding example is the ability to
show a progress bar indicating the downloading progress of a file. Before starting with how
to show a progress bar, let's install a library that is very helpful in managing/showing HUD
indicators, which is MBProgressHUD. This library is available in GitHub at h t t p s ://g i t h u b

. c o m /j d g /M B P r o g r e s s H U D .

As we agreed before, all packages are managed via CocoaPods, so now, let's install the
library via CocoaPods, as shown:

Open the Podfile and update it to be as follows:1.

 use_frameworks!

 target 'PDFPicker' do

 end

 target 'MessagesExtension' do
 pod 'GoogleAPIClient/Drive', '~> 1.0.2'
 pod 'GTMOAuth2', '~> 1.1.0'
 pod 'MBProgressHUD', '~> 1.0.0'
 end

Run the following command to install the dependencies:2.

 pod install

Now, at the top of the MessagesViewController.swift file, add the following3.
import statement to import the library:

 import MBProgressHUD

Now, let's edit the didSelectRowAtIndexPath function to be like this:4.

 func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
 IndexPath) {
 let file = self.currentFiles[indexPath.row]
 // Download File here to send as attachment.
 if let downloadURLString = file.webContentLink{
 let url = NSURL(string: downloadURLString)
 if let name = file.name{
 let downloadedPath = (documentsPath() as
 NSString).appendingPathComponent("(name)")
 let fetcher = service.fetcherService.fetcher(with: url as!

https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD
https://github.com/jdg/MBProgressHUD

Integrating with Messages App

[111]

 URL)
 let destinationURL = NSURL(fileURLWithPath: downloadedPath)
 as URL
 fetcher.destinationFileURL = destinationURL
 var progress = Progress()
 let hud = MBProgressHUD.showAdded(to: self.view, animated:
 true)
 hud.mode = .annularDeterminate;
 hud.progressObject = progress
 fetcher.beginFetch(completionHandler: { (data, error) in
 if error == nil{
 hud.hide(animated: true)
 self.activeConversation?.insertAttachment
 (destinationURL, withAlternateFilename: name,
 completionHandler: nil)
 }
 })
 fetcher.downloadProgressBlock = { (bytes, written,
 expected) in
 let p = Double(written) * 100.0 / Double(expected)
 print(p)
 progress.totalUnitCount = expected
 progress.completedUnitCount = written
 }
 }
 }
 }

First, we create an instance of MBProgressHUD and set its type to5.
annularDeterminate, which means to display a circular progress bar. HUD will
update its progress by taking a reference to the NSProgress object. Progress
has two important variables to determine the progress value, which are
totalUnitCount and completedUnitCount. These two values will be set
inside the progress completion block, downloadProgressBlock, in the fetcher
instance. HUD will be hidden in the completion block that will be called once the
download is complete.

Integrating with Messages App

[112]

Now build and run; after authentication, when you click on a file, you will see6.
something like this:

As you can see, the progressive view is updated with the percentage of download to give
the user an overview of what is going on.

Integrating with Messages App

[113]

Request files with pagination
Loading all files at once is easy from the development side, but it's incorrect from the user
experience side. It will take too much time at the beginning when you get the list of all the
files and it would be great if we could request only 10 files at a time with pagination. In this
section, we will see how to add the pagination concept to our example and request only 10
files at a time. When a user scrolls to the end of the list, we will display a loading indicator,
call the next page, and append the results to our current results. Implementation of
pagination is pretty easy and requires only a few changes in our code. Let's see how to do it:

We will start by adding the progress cell design in1.
MainInterface.storyboard. Open the design of MessagesViewController
and drag a new cell along with our default cell.
Drag a UIActivityIndicatorView from Object Library and place it as a2.
subview to the new cell.
Add center constraints to center it horizontally and vertically, as shown:3.

Integrating with Messages App

[114]

Now, select the new cell and go to attribute inspector to add an identifier to the4.
cell and disable the selection, as illustrated:

Now, from the design side, we are ready. Open5.
MessagesViewController.swift to add some tweaks to it. Add the following
two variables to the list of our current variables:

 private var doneFetchingFiles = false
 private var nextPageToken: String!

The doneFetchingFiles flag will be used to hide the progress cell when we try6.
to load the next page from Google Drive and it returns an empty list. In that case,
we know that we are done with the fetching files and there is no need to display
the progress cell any more.
The nextPageToken contains the token to be passed to the GTLQueryDrive7.
query to ask it to load the next page.
Now, go to the fetchFiles() function and update it to be as shown:8.

 func fetchFiles() {
 print("Getting files...")
 if let query = GTLQueryDrive.queryForFilesList(){
 query.fields = "nextPageToken, files(id, name, webViewLink,
 webContentLink, fileExtension)"
 query.mimeType = "application/pdf"

Integrating with Messages App

[115]

 query.pageSize = 10
 query.pageToken = nextPageToken
 service.executeQuery(query, delegate: self, didFinish:
 #selector(MessagesViewController.displayResultWithTicket
 (ticket:finishedWithObject:error:)))
 }
 }

The only difference you can note between the preceding code and the one before9.
that is setting the pageSize and pageToken. For pageSize, we set how many
files we require for each call and for pageToken, we pass the token to get the next
page. We receive this token as a response from the previous page call. This means
that, at the first call, we don't have a token and it will be passed as nil.
Now, open the displayResultWithTicket function and update it like this:10.

 // Parse results and display
 func displayResultWithTicket(ticket : GTLServiceTicket,
 finishedWithObject response :
GTLDriveFileList,
 error : NSError?) {
 if let error = error {
 showAlert(title: "Error", message: error.localizedDescription)
 return
 }
 var filesString = ""
 nextPageToken = response.nextPageToken
 let files = response.files as! [GTLDriveFile]
 doneFetchingFiles = files.isEmpty
 self.currentFiles += files
 if !files.isEmpty{
 filesString += "Files:n"
 for file in files{
 filesString += "(file.name) ((file.identifier)
 ((file.webViewLink) ((file.webContentLink))n"
 }
 } else {
 filesString = "No files found."
 }
 print(filesString)
 self.filesTableView.reloadData()
 }

Integrating with Messages App

[116]

As you can see, we first get the token that is to be used to load the next page. We11.
get it by calling response.nextPageToken and setting it to our new
 nextPageToken property so that we can use it while loading the next page. The
doneFetchingFiles will be true only if the current page we are loading has no
files, which means that we are done. Then, we append the new files we get to the
current files we have.
We don't know when to fire the calling of the next page. We will do this once the12.
user scrolls down to the refresh cell that we have. To do so, we will implement
one of the UITableViewDelegate methods, which is willDisplayCell, as
illustrated:

 func tableView(_ tableView: UITableView, willDisplay cell:
 UITableViewCell, forRowAt indexPath: IndexPath) {
 if !doneFetchingFiles && indexPath.row == self.currentFiles.count {
 // Refresh cell
 fetchFiles()
 return
 }
 }

For any cell that is going to be displayed, this function will be triggered with13.
the indexPath of the cell. First, we check if we are not done with fetching files
and the row is equal to the last row, then, we fire fetchFiles() again to load
the next page.
As we added a new refresh cell at the bottom, we should update our14.
UITableViewDataSource functions, such as numbersOfRowsInSection and
cellForRow. Check our updated functions, shown as follows:

 func tableView(_ tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 return doneFetchingFiles ? self.currentFiles.count :
 self.currentFiles.count + 1
 }
 func tableView(_ tableView: UITableView, cellForRowAt indexPath:
 IndexPath) -> UITableViewCell {
 if !doneFetchingFiles && indexPath.row == self.currentFiles.count{
 return tableView.dequeueReusableCell(withIdentifier:
"progressCell")!
 }
 let cell = tableView.dequeueReusableCell(withIdentifier: "cell")
 let file = self.currentFiles[indexPath.row]
 cell?.textLabel?.text = file.name
 return cell!
 }

Integrating with Messages App

[117]

As you can see, the number of rows will be equal to the current files' count plus15.
one for the refresh cell. If we are done with fetching files, we will return only the
number of files.

Now, everything seems perfect. When you build and run, you will see only 10 files listed, as
shown:

And when you scroll down, you would see the progress cell and that 10 more files will be
called.

4
Working with Interface Builder

In this chapter, we will cover the following topics:

Using storyboards
Working with Autolayout and constraints
Designing your interface builder for any size classes in one storyboard
Embedding view controllers using container view

Introduction
In this chapter, we will talk about a very interesting topic in iOS development, which is
working with interface builder. Being an iOS developer requires being professional in
dealing with interface builder to build your UI and application flow. Even today, I meet iOS
developers who don't know anything about interface builder and still build all screens and
components programmatically. Using this method wastes your time and makes your Xcode
project huge with hundreds of lines of code just to draw the screens. Within time, Apple
introduces new devices every year and sometimes with totally new screen sizes. Without
using interface builder and Autolayout, your app will not work properly with these screen
sizes, and you will have to write new code to handle these new screens. If you're still not
convinced about interface builder magic, stay tuned with us in this chapter to see the magic
that we can do in UI without writing a single line of code.

Working with Interface Builder

[119]

Using storyboards
Storyboards were first introduced in iOS 5, and I still remember my first impression when I
started using storyboards. I was impressed and didn't believe it myself. We were struggling
with tens of XIB interface files for each screen and for custom table view cells or custom
components. In addition to that, when you work on a project that someone else developed,
you waste a lot of time trying to figure out which screen is the root screen and how the
interactions are between the screens. Storyboards solve all these kinds of problems; when
you open it, you will see the whole app flow and see what is going on between screens.

Getting ready
Before getting our example started, make sure that you have the latest version of Xcode 8.0,
which is in the beta version now at the time of writing this book. You can still use Xcode 7.x
if you want, but you may find little differences between them, especially in the size classes
section that we will talk about later.

How to do it...
Create a new project and choose the Tabbed Application template:1.

Working with Interface Builder

[120]

Click on Next, and in product name, type PlayWithStoryboard or any other2.
name you like.
Open Main.storyboard:3.

Working with Interface Builder

[121]

You will see a tab bar controller with two view controllers, referenced by segues.4.
Let's now add a third view controller to the tab bar controller. Drag View5.
Controller from Object Library, and add a UILabel in the center of the screen
with the text Third View.
To add the view controller to the tab bar controller, click on the Tab Bar6.
Controller in the storyboard and, while clicking on the Ctrl key, drag the pointer
to the third view controller till you see this popup:

Working with Interface Builder

[122]

Under Relationship Segue, click on view controllers to make this view controller7.
part of the view controllers list on the tab bar controller.

A TabBarItem will be added to the third view controller where you can set the8.
title or image the tab bar item represents the view controller. Click on the new
item and change its name from item to Third View:

Now, build and run; you will see three tabs with three different view controllers.9.

Working with Interface Builder

[123]

What if we want to embed our first view controller in a navigation controller? In10.
a storyboard, it's pretty easy. Just select the first controller, and in Xcode, go to
Editor | Embed In | UINavigationController:

Now, storyboard will automatically create a navigation controller with a root11.
view controller, which is the first view controller.
Let's now create two new view controllers by dragging two view controllers from12.
Object Library.
Change the background color of the first one to red and the second one to blue.13.
In the first view controller, add a new UIButton with the title Go to Red. Then,14.
pressing the Ctrl key, drag the button to add a segue to the red view controller; a
list of types of segues will be shown. Click on Show:

Working with Interface Builder

[124]

Then, select the red view controller and click on Attribute Inspector in the right15.
side menu and change its title to Red View Controller. Do the same for the blue
view controller and change its title to Blue View Controller.
Go to the red view controller, and add a UIButton with title Go To Blue. In the16.
same way we added the previous segue, add a Show segue to the Blue View
Controller.

Working with Interface Builder

[125]

The final view for your view controller should look like this:17.

Now, build and run, and you will see how to navigate from the first view18.
controller to the red and blue view controllers.

How it works...
We started this demo by giving an introduction in storyboard and by showing how to build
your screens and add the connections between them. Connections between screens in
storyboard are called segues. Segues have types, as we saw in the menu, and we will learn
more about them in the There's more... section.

We saw how easy it is to embed any view controller inside the UINavigationController
without writing any code to do this. The whole flow of your app will be easy to understand.

Working with Interface Builder

[126]

There's more...
There are a lot of things that you still can do in segues and UIStoryboard; we will talk
about them in the following sections.

Segues attributes
Segues are very useful, and you will not feel that before knowing everything about them.
Go to open our storyboard; click on any segue we have, and check its attributes in Attribute
Inspector:

We will focus on Identifier, Kind, and Animates attributes. The Identifier attribute is
very useful to identify your segue if you have multiple segues coming out from your view
controller. You will need to use this identifier when you want to perform a specific segue
programmatically based on any logic in your app. Suppose that the red view controller
wants to navigate to the blue view controller without clicking on the Go To Blue button.
In that case, you will give the segue an identifier-for example, "goToBlue"-and in the code,
you can do the following:

self.performSegue(withIdentifier: "goToBlue", sender: self)

This will perform the segue that matches the given identifier.

Working with Interface Builder

[127]

The second attribute that you will see in storyboard is the segue kind, which has multiple
kinds, such as Show, Present Modally, or Present as popover. All these kinds affect the
animation type presenting in the view controller.

Last but not least is the Animates flag. This flag determines whether you want to perform
the segue with animation or not. Unfortunately, this property can't be changed in runtime,
and it should be configured only from storyboard. What about if you want to perform a
segue with/without animation based on some logic in your code? In that case, there is a
trick that you can do, that is, duplicate the segue and switch off its Animates toggle and
give it a different identifier. In the code, you can perform the segue that matches your logic
with/without animation.

Preparing for a segue
Now, we know how to perform a segue, but we don't know how to get prepared for a
segue. Preparing for a segue means that you can get references to the source and destination
view controllers and do some logic to them before performing the segue. You would need
this when you want to pass some information from the source view controller to the
destination view controller. You can pass objects, change parameters, or do any logic you
want to get everything prepared for the segue. To do that, in your view controller that will
perform segues, you can override the following method:

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
 if segue.identifier == "goToBlue"{
 let destinationViewController = segue.destinationViewController
 // do whatever if you want with the destination view controller
 here.
 }
 }

It's very important to check the identifier first before preparing for any segue. It's common
to have multiple segues to be prepared, and comparing the identifiers is very important in
that case, as each segue will have a different behavior. The
segue.sourceViewController and segue.destinationViewController will get you
references to the source and destination view controllers and update or prepare them so
that they will be ready for performing the segue.

Working with Interface Builder

[128]

Unwind segues (exit segues)
A segue will not only help you to go to other screens via push or show (present modally or
popover), it can help you to return to your source view controller. The unwind segue will
be used to go back to your source view controller not only from the pushed view controller
or presented view controller, you can also go back multiple steps in the navigation
hierarchy. For example, in the previous demo we built, we have the first view controller,
which can be pushed to RedViewController. The RedViewController can be pushed to
BlueViewController. We can create the unwind segue, which will help RVC, BVC to go
back directly to FVC. I know it's still not clear, and so now, we will do it together to stick
this in your mind:

In Xcode, create two new Swift classes with a subclass UIViewController-the1.
first one as RedViewController and the second one as BlueViewController.
Go to storyboard, and select the red view controller; from Identify Inspector,2.
change the class to RedViewController, which you have already created; do the
same for the BlueViewController.
Let's now create the unwind segue function in the source view controller, which3.
is the FirstViewController. Open the source file, and add the following
function:

 @IBAction func unwindToFirstViewController(segue: UIStoryboardSegue)
 {
 }

You will link to this function when you want to go back from red or blue
view controllers.

Any unwind function should be prefixed with "unwind" so that the
compiler will understand that this function is the unwind segue function.

Go to RedViewController and add a new UIButton with the title Go To Root,4.
and do the same in the BlueViewController.

Working with Interface Builder

[129]

We now want to link these buttons to the unwind function that we have created5.
recently in FirstViewController. To do this, select the button, and pressing
the Ctrl key button, drag the Exit icon that you will see in the left-hand side of
your storyboard in the FirstViewController section:

When you release the drag on the Exit icon, a popup will be shown to select6.
which unwind function you want it to be linked with. In our demo, we have only
one unwind function, that is, unwindToFirstViewControllerWithSegue, so
select it:

Working with Interface Builder

[130]

Follow the same steps to link the Go To Root button in BlueViewController to7.
the same unwind segue in the FirstViewController.
Now, everything is fine, except one thing. The unwind function in8.
FirstViewController will be called when you go back from Red or Blue
Controllers. But, how can you differentiate between them? We can do this by
three methods:

Method #1: Check the type of source view controllers from the passed segue
reference in the unwindToFirstViewControllerWithSegue function.
Check the following code to know how to do it:

 @IBAction func unwindToFirstViewController(segue:
 UIStoryboardSegue) {
 if let redViewController = segue.sourceViewController as?
 RedViewController{
 print("Coming From Red!")
 }
 if let blueViewController = segue.sourceViewController as?
 BlueViewController{
 print("Coming From Blue!")
 }
 }

Working with Interface Builder

[131]

The segue.sourceViewController will tell you which view
controller you're coming back from and that's what we have used in our
comparison. The segue.destinationViewController will be always
a FristViewController instance.

Method #2: Provide each unwind segue you created a different
identifier and, inside the unwindToFirstViewControllerWithSegue
function, you can compare this to know from where you are coming.
Let's try this. Select the unwind segue in RedViewController and give
it an identifier comingFromRed:

Do the same for the unwind segue in BlueViewController, and give it
an identifier comingFromBlue. Now, let's go to the unwind function
unwindToFirstViewControllerWithSegue and update it like this:

 @IBAction func unwindToFirstViewController(segue:
 UIStoryboardSegue) {
 if segue.identifier == "comingFromRed"{
 print("Coming From Red!")
 }
 if segue.identifier == "comingFromBlue" {
 print("Coming From Blue!")
 }
 }

Working with Interface Builder

[132]

Now, try to build and run; open the red controller and click on the
button to go to root folder, then open the blue controller and click on the
button to go to root. Now, check the log; you will see the printed
messages, as follows:

Method #3: The other thing you can do is to create different unwind
functions in the FirstViewController and link each unwind segue to
a different function. For example, you may create two functions like this:

 @IBAction func unwindToFirstViewControllerFromRed(segue:
 UIStoryboardSegue) {
 }
 @IBAction func unwindToFirstViewControllerFromBlue(segue:
 UIStoryboardSegue) {
 }

Also, in storyboard, you can link each button to its own unwind function.

Working with Interface Builder

[133]

Custom segues
Custom segues help you to create your own custom transitions between the source and
destination view controllers. Suppose that you have a view controller, and you're going to
present another view controller with custom animation, such as the scale animation.
Custom segue can help you in this by creating a new segue, which extends UI, and you can
add your own customization. Creating custom segues is very straightforward; check out the
following steps to see how to create and use a custom segue:

Create a new Swift class, which extends UIStoryboardSegue.1.
Inside the class, override the perform() function to add your custom code to2.
perform the segue like this:

 class ScaleSegue: UIStoryboardSegue {

 override func perform() {
 if let fromView = self.sourceViewController.view, let toView =
 self.destinationViewController.view{
 var frame = toView.frame
 let screenHeight = UIScreen.main().bounds.size.height
 let screenWidth = UIScreen.main().bounds.size.width
 frame.size = CGSize(width: 2 * screenWidth / 3, height:
 screenHeight / 2)
 toView.frame = frame
 if let window = UIApplication.shared().keyWindow{
 toView.center = window.center
 window.insertSubview(toView, aboveSubview: fromView)
 toView.transform = CGAffineTransform(scaleX: 0, y: 0)
 UIView.animate(withDuration: 0.5, animations: {
 toView.transform = CGAffineTransform(scaleX: 1, y: 1)
 })
 }
 }
 }
 }

Working with Interface Builder

[134]

We first got the fromView, which is the view of the sourceViewController,3.
and then toView, which is the view of the destinationViewController. We
updated the frame of the toView to be centered on the screen and takes half the
height and two-thirds of the width of the screen size. To animate the view with a
scale animation, we first set the scale to 0 by setting view transform to
CGAffineTransform(scaleX: 0, y: 0), and then we set it back to 1 with an
animation duration equal to 0.5 second.
Now, go to storyboard and add a new view controller with yellow background.4.
In any view controller you want to display the yellow view controller with the
custom segue that we have recently created, add a UIButton and create a segue
to the yellow view controller. Select the segue to change its attributes, and type
ScaleSegue in the Class attribute:

Working with Interface Builder

[135]

Now, when you build and run, you will see something like this:5.

Working with Autolayout and constraints
Autolayout is one of the best things that happened in iOS. I still remember the old days
when I had to write too much code just for positioning views on screen and change their
their sizes to be relative to the screen size. With Autolayout now, you can do a lot of things
and add constraints to your views without writing a single line of code. Mastering
Autolayout will help you to avoid the hassle of different screen sizes and even orientation
changes.

Working with Interface Builder

[136]

Getting ready
In the demo project that we are going to do in this section, we will use the same project used
in the preceding section to add some Autolayout constraints to see what they can do. You
can use Xcode 8.0 as recommended, but you still can use earlier versions; however, you will
notice some differences in screenshots.

How to do it...
If you run the demo app we created in the previous section, you will see that1.
views are not aligned properly, as we didn't add any constraints. For example,
check how the label appears when you open the third view controller when you
click on the third tab:

As you see, the label is not centered in the iPhone SE simulator.2.

Working with Interface Builder

[137]

Using constraints, you can center any view horizontally or/and vertically in its3.
container view. To do this, click on the label that you want to be in the center,
press the Ctrl key and drag the label to the super view. A pop-up list of
constraints will appear, as follows:

To select multiple constraints at the same time, press the Shift key and select4.
Center Horizontally and Center Vertically and then click on Enter. Now, the
label will be centered, regardless of the size of screen or the frame size of the view
controller view.
Now, try to open one of the constraints that you have created to see its properties:5.

Working with Interface Builder

[138]

Keep the constant value at zero, but set Multiplier to 1.5 and see what happens:6.

Working with Interface Builder

[139]

The title Y center will be 1.5 times the center of its super view.7.
Let's now go to the yellow view controller that was showing with the custom8.
segue in the preceding section. Let's add two buttons whose sizes are relative to
the view controller's frame size.
Select the view controller, and from Object Library, drag two UIButton. Place9.
both of them at the bottom and besides each other like this:

What we want to do is add margins of 6 px at the left, right, and bottom of each10.
edge for both buttons. The height will be relative to the view size, which is 1/10.
The width of each button will be 0.5 * view width - 9 px. The 9 is the sum of 6 px
at edges and 3 px in between the buttons. To do this, select the first button, and
then click on the Pin button:

Working with Interface Builder

[140]

The Pin view helps you to add constraints around the button. We selected only11.
the left and bottom constraints and added 6 px margins to it.
As we did before, drag the button while pressing the Ctrl key to add constraints12.
relative to the super view. As shown in the preceding popup, select equal width
and equal height to add the width and height constraints.

Working with Interface Builder

[141]

Click on the width constraint and change it like this:13.

Do the same for the height constraint and change the multiplier to 0.1.14.
Apply the same constraints for the second button.15.
Now, you will notice a yellow icon at the top of your view controller, which16.
indicates that the constraints don't match the view's frames. To fix this, click on
the icon and a list of mismatched constraints will be listed. Click on one of them,
and a popup will appear, check Apply to all views in container and click on Fix
Misplacement:

Working with Interface Builder

[142]

Automatically, the frames will be updated like this:17.

Let's build and run the app now. Open the yellow view controller with the18.
custom segue we made in the previous section. You will see something like this:

Working with Interface Builder

[143]

How it works...
To understand Autolayout, you have to think about it as a mathematical equation. For
example, when we set the width of the buttons to be half of the width of the super view -
9px, just think of it as follows:

Each view needs to have sufficient constraints that identify its frame. For example, you can't
set the left, width, and height constraints without setting a constraint specifying the y
position. The y position can be set using Top, Bottom, or centering vertically; you have
many options, but most important is that all constraints need to specify the x and y
positions and the width and height should be there.

You will not master Autolayout just by building a demo app; you have to start using it right
now for all the projects you will build. The more you use it the more you will become
professional in using it and know its tricks.

There's more...
Don't think that Autolayout can be built only via interface builder. I know there are still
some people who build everything programmatically (hardcoded) without using any
interface builder files. I haven't been able to figure out why they prefer to do this even
today. No offence if you're one them; but it's really weird for me. Anyway, you can still
build Autolayout programmatically and specify your constraints so easily. To add a
constraint, you need to have an instance of NSLayoutConstraint, which encapsulates the
relation between the two views and the attributes to be used. The equation that
NSLayoutConstraint looks like this:

firstItem.firstAttribute {==,<=,>=} secondItem.secondAttribute * multiplier
+ constant

firstItem and secondItem are the two views, for which you will add a constraint.
firstAttribute is the attribute of the firstItem, which is a value of enum values for
NSLayoutAttribute. The enum has values, such as bottom, edge, width, and so many
attributes worth checking.

Working with Interface Builder

[144]

Updating constraints
Once constraints are created via interface builder or programmatically, you can update
them in runtime if you have a reference to them. Constraints created via interface builder
can be referenced via IBOutlets. To update a constraint, you can change only the constant
value, unlike multiplier that can't be changed once it's created. So, if you have a view that
its y position is changed in runtime, you can have a reference to the constraint that specifies
its y position and can update the constant value in runtime.

You can animate the changing in constraint constant like how you did with animating the
changing in frame. To animate the updated value, perform the following:

self.view.layoutIfNeeded()
constraint.constant = newValue
UIView.animate(withDuration: 0.5) {
 self.view.layoutIfNeeded()
}

Designing your interface builder for any size
classes in one storyboard
Autolayout doesn't solve all your problems in building the UI screen. The big change
nowadays in all screen sizes in iOS leads to different behaviors based on screen size. To
build a universal app (iPhone and iPad) at the same time, most probably you need to build
to two storyboards, which means you have to put in double efforts. However, what if you
have a different UI in a landscape mode, 99% percent you would write code to handle this
stuff, which is painful. More painful is the iPhone 6 plus screen size, which is huge enough
to hold more details than the other iPhones, where some apps have a different UI only
specific for iPhone 6 plus. Check out the following two screenshots for the Calendar app in
landscape mode.

Working with Interface Builder

[145]

Here is the screenshot in any normal iPhone:

Here is the screenshot for iPhone 6 plus:

Working with Interface Builder

[146]

As we see in landscape mode, it can hold too much information, such as the concept of split
screen. These kinds of differences can't be solved only via Autolayout, and that's where the
magic of size classes comes in. We will not go deep into its theory; let's build a simple demo
together.

Getting ready
Size classes require Autolayout to be enabled in your app, so if you decide to opt out of
Autolayout, you can't use size classes. When you work in size classes, you will note that
there are three kinds of size classes:

Regular: Think of it as BIG, such as the width and height in iPad or the width of
iPhone 6 Plus in landscape mode.
Compact: Think of it as LITTLE like the iPhone height in landscape orientation or
the iPhone width in portrait.
Any: This is used when your layout doesn't change in any screen size.

If you still feel a little bit confused, don't worry, everything will get clear in the demo.

How to do it...
Let's create a new Xcode project with the Single View Application template1.
named PlayWithSizeClasses.

Working with Interface Builder

[147]

Open Main.Storyboard; at the bottom, you will find a button saying View as:2.
iPhone 6s (wC, hR). Click on it; a view like the following screenshot will open:

wC, hR means compact width and regular height. In all iPhones, the width is
compact and height is regular. Clicking on any device will update the view
sizes in the storyboard to simulate the device size.

Now, let's add a UIView with a red background and with the width equal to and3.
the height half of the super view (main view). The constraints of the red view
should be like this:

 RedView.leading = superview.leading
 RedView.top = superview.top
 RedView.width = superview.width
 RedView.height = 0.5 * superview.height

Add another green UIView below the red one with same dimensions. The4.
constraints of the green view will look like this:

 GreenView.leading = superview.leading
 GreenView.top = RedView.bottom
 GreenView.width = superview.width
 GreenView.height = 0.5 * superview.height

Working with Interface Builder

[148]

Now, let's see how it looks but without running it in a simulator or device. We5.
can use Preview for that. Click on Assistant Editor and then click on the top left
of the assistant editor window, a popup will appear. Then, select Preview:

Working with Interface Builder

[149]

A screen representing iPhone 6s in portrait mode is displayed. If you tried to
hover over iPhone 6s text, a button with an arrow icon will appear to switch
to landscape mode. At the bottom-left corner, you will find a + icon button,
where you can add multiple devices to preview your design:

iPad also can be previewed, as we see in the menu. It can be previewed in full6.
screen or in split view mode. The split view mode simulates the multitasking
feature in iPad when two apps can be opened together when the screen splits.
Now, try to switch to landscape mode in the preview screen. Your app will look7.
like this:

Working with Interface Builder

[150]

It seems good, but it would be better if we could let both views share the
same height and align horizontally, not vertically. It means we would
keep the red view on the left and the green view at the right. To achieve
this, we need to change the constraints of the red view. The leading
and top constraints will be the same; we will only change the width
and height constraints, like this:

 RedView.width = 0.5 * superview.width
 RedView.height = superview.height

The same will happen to the green view, but all constraints will be changed, like8.
this:

 GreenView.leading = RedView.trailing
 GreenView.top = superview.top
 GreenView.width = 0.5 * superview.width
 GreenView.height = superview.height

Working with Interface Builder

[151]

Here comes the magic of size classes; they will enable us to specify different9.
constraints based on the size class.
Let's do this. Select the red view and open the width constraint. At the bottom,10.
you will find a + button to add new customization. Click on it, and choose
compact width and compact height, which means the landscape size class for all
iPhones. A new item will be added for wC hW, and then uncheck it to uninstall
this constraint in the landscape mode to add a new one:

Now, in storyboard, change the current size class to landscape:11.

Working with Interface Builder

[152]

Now, in the landscape mode, we don't have a width constraint. Let's add a new12.
width constraint as we did before with this rule:

 RedView.width = 0.5 * superview.width

Working with Interface Builder

[153]

After adding it, make the constraint installed for wC, hC only, as shown in the13.
following screenshot:

Now, in the preview window, you can see the red view with correct width14.
dimension:

Working with Interface Builder

[154]

Follow the same steps to update the rest of constraints for the red and green15.
views with same steps; the final result will be like this:

Size classes help us in customizing the font based on size class. Let's see it in16.
action; add a UILabel as a subview of the red view, and center it horizontally
and vertically. Change its title to "I'm Red View". Do the same for the green
view and change its title to "I'm Green View". Change the text color for both to
white color.

Working with Interface Builder

[155]

The labels will look great in all screen sizes if you try to test them in iPhones and17.
iPads. However, the font size seems small when you test them in iPad, doesn't it?
The size class for iPad is wR, hR (regular width and regular height); click on the
label that we created, and open the Attribute Inspector tab. In the font attribute,
you will find a + button at the left, click on it and choose wR, hR. Now, you will be
able to add a customized font only for this specific size class. Add a new font
with bold style and size 35:

Now, try to test your screen in iPad; you will see it like this:18.

Working with Interface Builder

[156]

How it works...
The size classes feature is incredibly awesome when it comes to designing your screen,
which has different customization based on the size class of your screen. When you work in
your app, design it first to work in all screen sizes: iPhones, iPads, and with all different
orientations. Then, think about the customization you need and start to add it just like what
we did with the red and green views. To summarize what size classes can do, take a look at
this list:

Add or remove view: Yes, you can tell the layout to add or remove a specific
view based on its size classes. For example, what if we wanted to remove the
label I'm Green View in iPads? Before size classes, there was no way to do this
without hardcoding it. With size classes, it's so simple. Let's check it out; select
the label and open the Attribute Inspector tab. You will find a check mark that
says Installed with a + icon button; click on it and add a rule for wR, hR and
uncheck it. You will see that the label will disappear in the iPad mode:

Working with Interface Builder

[157]

Add, remove, and edit constraints: We removed and added constrains when we
updated the layout of the red and green views for portrait and landscape modes.
However, what about editing constraints? You can customize the constant value
of your constraint based on its size class. If you try to open any constraint now,
you will see at the left of the Constant parameter a + button to add any
customizations.
Updating fonts: We saw that already when we changed the font size of labels for
iPad screens.

Embedding view controllers using container
view
We will talk about something very simple in this section, but it has a high impact when
working with storyboard and interface builder. In storyboard, you can create a container
view, which acts as a holder or container for another view controller in your storyboard.
You may ask why we need to do this when we can add the layout of this view controller
just directly as a subview. The most benefit you can get out of this is when you have a view,
which is reusable, in different locations in your app; you can create it in a different view
controller and have it embedded whenever and wherever you want, without needing to
duplicate any screen or any layout.

Working with Interface Builder

[158]

How to do it...
Let's create a new Xcode project to see this in action. Create a new project with1.
template Page-Based Application.
Try to run the project; you will see something like this:2.

You will see a page view controller that displays a white subview and a month3.
title. You can navigate between the pages using swipe and curl animation.
What will you do if this view controller is the subview of other view controllers4.
in your app, or it's a reusable component? We will reuse it using container view.
Let's create a new view controller with a green background. Drag the arrow from5.
the RootViewController to the new view controller to make it the initial view
controller.

Working with Interface Builder

[159]

Drag a container view from Object Library, and add constraints, as follows:6.

 Container.leading = superview.leading
 Container.top = superview.top
 Container.width = superview.width
 Container.height = 0.5 * superview.height

Now, pressing the Ctrl key, drag the container view to the RootViewController7.
and choose Embed from the list:

Working with Interface Builder

[160]

Now, build and run; you will see that the view is embedded like this:8.

How it works...
Using container view is very simple, as we saw in the preceding demo; however, it's very
important and can solve a lot of problems and save a lot of time. The previous component is
reusable in many screens; you will just embed it with a container view. Another advantage
of using container view is that you separate the logic of the embedded view away from the
parent view. The green view controller doesn't know anything about the
RootViewController nor its subviews or its logic. This will help in building simple view
controllers without huge logic and its component is encapsulated with its own logic.

Working with Interface Builder

[161]

There's more...
What if you want to do some setup for the embedded view controller or pass some data to it
before being embedded? Segues are here to solve this problem with the prepareForSegue
function. Container views use a special type of segue called Embed segue. Let's take a look
at how we will use it to configure the root view controller:

In our previous demo, you will see a segue coming out from the container view1.
to the RootViewController. Try to select it and give it the identifier
embedRoot.
Create a custom view controller class to the green view controller, and name it2.
StartViewController.
Go to storyboard file, and change the class of the green view controller to3.
StartViewController from Identity Inspector.
Now, go to the StartViewController.swift file and override the4.
prepareForSegue function:

 override func prepare(for segue: UIStoryboardSegue, sender:
 AnyObject?) {
 if segue.identifier == "embedRoot"{
 let rootViewController = segue.destinationViewController
 as! RootViewController
 // do any setup here for rootViewController
 print(rootViewController)
 }
 }

Now, build and run; an instance of RootViewController will be printed, and5.
you can configure or pass any data to it.

5
Working with UITableView

In this chapter, we will cover the following topics:

Working with scroll view
Using TableView sections, headers, and footers
Using custom cells
Resizing table view cells dynamically
Editing table view

Introduction
In iOS, it's very rare to find an app that is not using UIScrollView or UITableView. These
two components are very important and are considered a must to know and master
components. In the first section, we will give some information about UIScrollView and
how to use it. Then, in the rest of the sections, we will talk about UITableView. We will talk
about managing sections and how to add a header and footer to table sections or to the table
itself. We will see how to create custom cells and resize them dynamically based on cell
contents. UITableView provides us with APIs as well to edit it by adding or removing cells
with/without animations and by dragging or dropping cells. This chapter is important to
read and apply the demos yourself, as these components are heavily used in most apps.

Working with UITableView

[163]

Working with scroll view
Scroll view is a subclass of UIView that helps you add multiple views so that the sum of
their height is larger than the height of super view. It lets you scroll between subview
horizontally, vertically, or both at the same time; user can scroll with swipe and pan
gestures. Scroll view provides the functionality to zoom its content by allowing a user to
pinch zoom the content. This native component has an impressive set of APIs that provides
you with flexibility and features to manage scrolling, zooming, and content size. Before
getting into the UITableView, UICollectionView, or UITextView native components,
you have to be experienced with UIScrollView because it is the superclass for all these
views.

Getting ready
Before getting started with our example, I want to point out some properties in
UIScrollView that are used heavily while dealing with it. The following is a list of the
most important properties that you should be aware of:

contentSize: It's the size of the content view. For example, your scroll view1.
bounds can be (0, 0, 200, 400), which means that the width is 200 and
height is 400. The content size can be, for example, (500, 1000), which means
the scroll view can scroll horizontally to 500 and vertically to 1000. Only 200 *
400 view is visible all the time, but it can be moved/shifted based on scrolling.
contentOffset: Content offset is how far the view has been moved horizontally or2.
vertically. The following image helps you get an idea about it:

Working with UITableView

[164]

contentInset: It acts as adding inset (padding) to the content view. The inset can3.
be added to the top, bottom, left, or right using:

 UIEdgeInsetsMake(top, left, bottom, right)

To be experienced in using UIScrollView is not something you can get
by just reading the book or the documentation; you have to experience it
manually by writing sample apps to get your hands dirty with it.

How to do it...
Create a new Xcode project withSingle View Application template and with the1.
ScrollViewDemo name.
Open Main.storyboard to build a login screen where the user will be able to2.
enter his credentials and we will later come across a situation where we will need
the scroll view.
Open ViewController screen in storyboard to add a scroll view. From Object3.
Library, drag a scroll view that fills the whole screen with the following
constraints:

 ScrollView.trailing = superview.trailing
 ScrollView.top = superview.top
 ScrollView.leading = superview.leading
 ScrollView.bottom = superview.bottom

Working with UITableView

[165]

Add an empty view that identifies the boundary of the scroll view that has the4.
same frame of scroll view. Add all these constraints to the view:

Drag a UILabel from Object library and add it as a subview to the scroll view.5.
Center it horizontally and at y position = 30. Add Autolayout constraints to
it like this:

 LoginTitle.CenterX = ScrollView.CenterX
 LoginTitle.top = ScrollView.top + 30

Working with UITableView

[166]

Now, let's add a UIView that acts as a container to the credentials fields. Drag a6.
UIView from Object library, change its background color to gray, and add it at
the bottom of the screen with the following constraints:

 LoginContainer.trailing = ScrollView.trailing - 16
 LoginContainer.bottom = ScrollView.bottom - 20
 LoginContainer.leading = ScrollView.leading + 16
 LoginContainer.height = ScrollView.height * 0.5

Now, add a username UITextField with placeholder text Username with,7.
inside the container view, the following constraints:

 Username.trailing = LoginContainer.trailing - 8
 Username.top = LoginContainer.top + 23
 Username.leading = LoginContainer.leading + 8
 Username.height = 30

Add another password UITextField with placeholder text Password with the8.
following constraints:

 Password.trailing = LoginContainer.trailing - 8
 Password.top = Username.bottom + 21
 Password.leading = LoginContainer.leading + 8
 Password.height = 30

At the bottom, add another UIButton to act as a login button with the following9.
constraints:

 Login.centerX = LoginContainer.centerX
 Login.width = 113
 Login.bottom = LoginContainer.bottom - 8
 Login.height = 30

Working with UITableView

[167]

Now we have a login screen ready to work. Build and run the screen will look10.
like this:

However, when you try to edit any text field, the keyboard will open the cover11.
part of the screen, as follows:

Working with UITableView

[168]

Now we have multiple problems. We can't see what's behind the keyboard, like12.
the login or the password text field. To solve this problem, we will ask for help
from UIScrollView.
To listen for the keyboard showing, we will use NotificationCenter to listen13.
for keyboard notifications. Add the following code to your
ViewController.swift:

 override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 listenToKeyboardNotifications()
 }
 override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(animated)
 unlistenToKeyboardNotifications()
 }
 // MARK: - Keyboard Notifications & Animations -
 private func listenToKeyboardNotifications(){
 //receive notification for keyboard
 NotificationCenter.default().addObserver(self, selector:
 #selector(ViewController.keyboardWasShown(notification:))
 , name: NSNotification.Name.UIKeyboardWillShow, object: nil)
 }
 private func unlistenToKeyboardNotifications(){
 //unregister receive notification for keyboard
 NotificationCenter.default().removeObserver(self, name:
 NSNotification.Name.UIKeyboardWillShow, object: nil)
 }

When the keyboard shows, the keyboardWasShown function will be called,14.
before implementing it. Let's add an IBOutlet to the UIScrollView with the
name currentScrollView:

 @IBOutlet weak var currentScrollView: UIScrollView!
 Now let's implement keyboardWasShown function like this:
 @objc private func keyboardWasShown(notification:NSNotification){
 var info : Dictionary = notification.userInfo!
 let kbSize = info[UIKeyboardFrameBeginUserInfoKey]
 ?.cgRectValue().size
 let contentInsets = UIEdgeInsetsMake(0.0, 0.0, (kbSize?.height)!,
 0.0)
 self.currentScrollView.contentInset = contentInsets
 self.currentScrollView.scrollIndicatorInsets = contentInsets
 self.perform(#selector(ViewController.scrollToBottom), with: nil,
 afterDelay: 0)
 }
 @objc private func scrollToBottom(){

Working with UITableView

[169]

 let offset = CGPoint(x: 0, y:
 self.currentScrollView.contentSize.height -
 self.currentScrollView.bounds.height +
 self.currentScrollView.contentInset.bottom)
 self.currentScrollView.setContentOffset(offset, animated: true)
 }

The function will get the keyboard height and add inset to the bottom with the15.
same height of keyboard. Then, we scroll the scroll view to the bottom with
animation by changing the content offset, as we mentioned in the previous
section.
Now, try to build and run and you will see the magic. The scroll view will be16.
animated and view will be displayed, as follows:

You can also scroll the screen to see the top title and the whole component while17.
the keyboard is open.

Working with UITableView

[170]

How it works...
We started our demo by creating a login screen with text fields and a login button using
techniques we learnt before in Chapter 4, Working with Interface Builder. Everything is
straightforward but as we saw, when we run, the keyboard covers part of the screen and
some components are not reachable/accessible. Scroll view will help greatly in situations
like these and that's why all our subviews have been added inside a UIScrollView in
storyboard.

To be notified when the keyboard starts showing, there are two ways. We can set a delegate
of the UITextField to ViewController and override the beginEditing function; if you
have multiple text fields, it will be painful. The second way is to register for the
UIKeyboardWillShow notification that will be fired by the system when the keyboard is to
be shown. As you may note, we register for the notification in viewWillAppear and
unregister it in viewWillDisappear. We did that to avoid any conflicts or unexpected
behavior when the keyboard shows in another screen and ViewController still resides in
memory; in that case, it will be notified with this notification and may cause issues. So now,
the notification will be shown only when this screen is visible to the user.

The keyboardWasShown function will be called once the keyboard starts to show with a
NSNotification parameter, which has a property called userInfo that is a dictionary
containing useful information about the notification. In userInfo, we retrieved the
keyboard height and used it to add inset to the scroll view, so now the scroll view content
size has been increased by the keyboard height.

ScrollView is now ready and it's contentSize has been increased. Still, the user has to
scroll to see the hidden fields, which is kind of painful for him. We will scroll the view
automatically using the contentOffset property that we mentioned before. The offset is
calculated with the following formula:

let offset = CGPoint(x: 0, y: self.currentScrollView.contentSize.height -
self.currentScrollView.bounds.height +
self.currentScrollView.contentInset.bottom)

We don't have an offset horizontally and that's why it's zero. In y, the offset will be
calculated by getting the content size height of the scroll and deducting from it the actual
height of the scroll view and any inset (padding) we have added to the scroll view.

Working with UITableView

[171]

There's more...
In some situations, you may need to get notified with scrolling actions, current offset, or
zooming information in your logic. In that case, you can use UIScrollViewDelegate. The
delegate has many useful functions, such as scrollViewDidScroll, which is the ideal
location to get the current offset to do any logic that depends on the offset. For the zooming
functionality, the scrollViewDidZoom function will be called when user pinch zooms so
that you get the correct scale value.

Using TableView sections, headers and
footers
Starting from this section, we will talk about UITableView. One of the kings' UI controllers
in iOS which is used heavily in most of iOS apps. It manages a list of cells with scrolling
capability because its superclass is UIScrollView. UITableView helps you to display,
organize, categorize, add, delete, and update cells with easy-to-use APIs. In this section, we
will see how to organize your cells in sections. We will see how to add headers and footers
to your section using the header titles or custom views.

Getting ready
Before getting started in a sample demo to see how to organize your sections and deal with
headers and footers, ensure that you have used UITableView before even if in a simple
demo, to see how to use its delegate and data source. We will now build a demo app
showing how to manage cells in sections and add headers and footers.

How to do it...
Let's start, as usual, by creating a new project with the Single View Application1.
template with the name TableViewDemo.
Click on the View Controller in the storyboard file and go to Editor | Embed In |2.
Navigation Controller to add the current view controller as a root view
controller to a UINavigationController.
Now, drag UITableView from the Object Library and place it as a subview.3.

Working with UITableView

[172]

Place the table at origin (0, 0) with the same size as the ViewController view.4.
Change its constraints to the following:5.

 TableView.leading = superview.leading
 TableView.top = superview.top
 TableView.width = superview.width
 TableView.height = superview.height

To let the table view know the information about the data to be displayed and6.
trigger the actions of selection or any other actions, you will need to set the
delegate and data source.
In storyboard, select the table view and, while holding the Ctrl key, drag it to7.
View Controller:

Working with UITableView

[173]

A popup will appear to set the delegate and data source:

Now, click on delegate and data source to link both of them.

From the Object Library, drag UITableViewCell to add the cell that we will8.
reuse. This cell will act as a template cell for the table view.
Select the cell that you have recently added. From Attribute Inspector, change9.
the style of the cell to Basic and type cell in Identifier:

Now, a title label will appear to add any styling to it.

Working with UITableView

[174]

Now, we are almost ready in storyboard. All the configuration that we need is10.
done in storyboard.
Now, open ViewController.swift to add the implementation of table view11.
delegate and data source.
To implement UITableViewDelegate and UITableViewDataSource, we will12.
use extensions.
Add the following extensions to ViewController.swift:13.

 extension ViewController: UITableViewDelegate{
 }

 extension ViewController: UITableViewDataSource{
 }

The UITableViewDelegate has no required method to implement and we will14.
leave this extension empty.
For UITableViewDataSource, there are two required methods to implement.15.
The following are their implementations:

 extension ViewController: UITableViewDataSource {
 func tableView(_ tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 return 5
 }
 func tableView(_ tableView: UITableView, cellForRowAt indexPath:
 IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "cell")
 cell?.textLabel?.text = "Cell #\(indexPath.row)"
 return cell!
 }
 }

Now, we implemented the numberOfRowsInSection method to always return16.
five cells. And in cellForRow, we ask the table view to dequeue a cell so that we
can reuse it. Cell design is simple, as we will display the text Cell followed by
the cell number.

Working with UITableView

[175]

Now, try to build and run; you will see something like this:17.

The table view is displayed with five cells, as we configured in the data source.18.
Now, let's see how sections can be added. Go to data source extension and19.
implement the following method:

 func numberOfSections(in tableView: UITableView) -> Int {
 return 3
 }

Now, let's change the numberOfRowsInSection function to this:20.

 func tableView(_ tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 switch section {
 case 0:
 return 3
 case 1:
 return 4
 case 2:
 return 5

Working with UITableView

[176]

 default:
 return 0
 }
 }

Now, let's change the cellForRow method to display the section number beside21.
the cell number:

 func tableView(_ tableView: UITableView, cellForRowAt indexPath:
 IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "cell")
 cell?.textLabel?.text = "Cell #\(indexPath.row), section
 #\(indexPath.section)"
 return cell!
 }

Now, let's build and run. You will see sections like this:22.

As you can see, we have three sections but, unfortunately, the sections are
not organized.

Working with UITableView

[177]

Every section can have a header and footer. We will now add headers to the23.
sections.
To separate the sections, we will use the titleForHeaderInSection function in24.
UITableViewDelegate. Let's implement this function in the delegate extension:

 extension ViewController: UITableViewDelegate{
 func tableView(_ tableView: UITableView, titleForHeaderInSection
 section: Int) -> String? {
 return "Section \(section)"
 }
 }

Now build and run; sections are now separated by a header title:25.

Working with UITableView

[178]

How it works...
As we saw in the previous demo, with just some simple implementations to the
UITableViewDelegate or UITableViewDataSource function, we can add cells, sections,
and headers to the added sections. Any UITableView requires you to tell it which object is
the delegate and which object is the data source. The table view will know literally nothing
about these objects, except that they are conforming to the UITableViewDelegate and
UITableViewDataSource protocols. In the data source, you must implement the
numberOfRows and cellForRow functions so that table view can display something on the
screen. By default, there is only one section in the table view and you can change it as we
saw in the demo by implementing the numberOfSections function. Every section in the
table view has a header and footer. The header is displayed above the section and its title
can be managed by overriding the titleForHeaderInSection function. It's the same for
footer--it's displayed below the section and its title can be managed by overriding the
titleForFooterInSection function.

There's more...
The table view can have a header and footer; they belong to the table itself and are totally
different from the headers and footers of sections. The table header is very useful to add a
custom view that will be displayed before the cells and, at the same time, it can be scrolled
within the cells. In this header, you can add a view to filter the cells or sort them with a
specific category.

If you want to add a view to act as table view header in storyboard, just drag and place it
before your prototype cells. Programmatically, you can do this by setting the
tableHeaderView or tableFooterView properties.

Working with UITableView

[179]

Custom section header and footer
In the demo, we saw how to add a header or footer to the section. The method we used is
not customizable and all you can do is set the title. To customize the look and feel of the
section header or footer, you need to provide a custom view. Let's do this in our previous
demo to add a header, but with red background color and a centered label.

In the extension that conforms to UITableViewDelegate, let's override the following
functions:

extension ViewController: UITableViewDelegate{
 func tableView(_ tableView: UITableView, viewForHeaderInSection
 section: Int) -> UIView? {
 var frame = tableView.bounds
 frame.size.height = 30.0
 let view = UIView(frame: frame)
 view.backgroundColor = UIColor.red()
 let label = UILabel(frame: view.bounds)
 label.text = "Section \(section)"
 label.textColor = UIColor.white()
 label.textAlignment = .center
 view.addSubview(label)
 return view
 }
 func tableView(_ tableView: UITableView, heightForHeaderInSection
 section: Int) -> CGFloat {
 return 30.0
 }
}

The heightForHeaderInSection function tells the table view the expected height of the
header. The viewForHeaderInSection function asks the delegate about the view that will
be displayed in the header. We create a custom view with red background and a center-
aligned label inside. Now let's build and run; you will see the new headers like this:

Working with UITableView

[180]

Using custom cells
UITableView provides us with native styles for the UITableViewCell, like the basic one
that we saw in the previous demo. Another style you can use is the Detailed style, which
displays a details label at the left or right of the cell. Another one, that is the Subtitle style,
displays a subtitle label below the main label. You can still add your customization to table
view cells, as the native ones are rarely used, especially in apps published in the App Store.

Getting ready
We will use the demo we created in the previous section as a starting point to build the
demo of this section. We will add custom cells and use them instead of the basic ones.

Working with UITableView

[181]

In the demo, we will use some Assets that you can find in the Xcode project of this section
in the code files. In the previous section, we displayed some sample cells with sample
sections. We will use these to build a screen that displays food categories and sample foods
inside each category.

How to do it...
Open the storyboard file, go to the table view, and select the prototype cell.1.
Change its Style from Attribute Inspector tab to Custom.2.
Change the cell height to 70 pixels.3.
From the Object Library, drag a UIImageView to add it as a subview to the4.
custom cell. Add it at location (0, 0) with the same size as the custom cell.
Add Autolayout constraints to the image view as follows:5.

 FoodImage.leading = Superview.leading
 FoodImage.top = Superview.top
 FoodImage.trailing = Superview.trailing
 FoodImage.bottom = Superview.bottom

Open the Attribute Inspector tab and change the image name to Sushi. Change6.
the mode to Aspect Fill to make the image fill the size, but keeping the aspect
ratio:

Working with UITableView

[182]

Now, drag a UILabel from Object Library and place it at the center of the7.
custom cell.
Change the text color to white and add Autolayout constraints, as shown:8.

 Label.centerY = Superview.centerY
 Label.centerX = Superview.centerX

Now, the custom cell is almost ready. As it's a custom cell, we will create a new9.
custom class for it.

Working with UITableView

[183]

Add a new Swift file called FoodsTableViewCell and make the class a subclass10.
of UITableViewCell:

Now, return to your storyboard and select the custom cell. Open its Identity11.
Inspector and change the class to FoodTableViewCell:

As we learnt before, link two IBOutlets to the image view and label the newly12.
created custom class:

 @IBOutlet weak var foodNameLabel: UILabel!

Working with UITableView

[184]

 @IBOutlet weak var foodImageView: UIImageView!

Now, our custom cell is totally ready; let's edit our delegate and data source13.
methods.
In the delegate methods extension, remove the custom section header and return14.
to the native one, like this:

 extension ViewController: UITableViewDelegate{
 func tableView(_ tableView: UITableView, titleForHeaderInSection
 section: Int) -> String? {
 switch section {
 case 0:
 return "Sweets"
 case 1:
 return "Lebanese Food"
 case 2:
 return "Sea Food"
 default:
 return ""
 }
 }
 }

Now we have three sections: Sweets, Lebanese Food, and Sea Food.15.
Now, let's edit the data source method like this:16.

 extension ViewController: UITableViewDataSource{
 func tableView(_ tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 return 3
 }
 func numberOfSections(in tableView: UITableView) -> Int {
 return 3
 }
 func tableView(_ tableView: UITableView, cellForRowAt indexPath:
 IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "cell")
 as! FoodTableViewCell
 switch indexPath.section {
 case 0: // Sweets
 switch indexPath.row {
 case 0:
 cell.foodNameLabel.text = "Cheese Cake"
 cell.foodImageView?.image = UIImage(named: "CheeseCake")
 case 1:
 cell.foodNameLabel.text = "Donuts"
 cell.foodImageView?.image = UIImage(named: "Donuts")

Working with UITableView

[185]

 case 2:
 cell.foodNameLabel.text = "Arabic Sweets"
 cell.foodImageView?.image = UIImage(named: "ArSweets")
 default:
 print("No more cells in this section")
 }
 case 1: // Lebanese food
 switch indexPath.row {
 case 0:
 cell.foodNameLabel.text = "Shawerma"
 cell.foodImageView?.image = UIImage(named: "Shawerma")
 case 1:
 cell.foodNameLabel.text = "Homos"
 cell.foodImageView?.image = UIImage(named: "Homos")
 case 2:
 cell.foodNameLabel.text = "Mix Grill"
 cell.foodImageView?.image = UIImage(named: "MixGrill")
 default:
 print("No more cells in this section")
 }
 case 2:
 switch indexPath.row {
 case 0:
 cell.foodNameLabel.text = "Shrimps"
 cell.foodImageView?.image = UIImage(named: "Shrimps")
 case 1:
 cell.foodNameLabel.text = "Sushi"
 cell.foodImageView?.image = UIImage(named: "Sushi")
 case 2:
 cell.foodNameLabel.text = "Smoked Salmon"
 cell.foodImageView?.image = UIImage(named: "Salmon")
 default:
 print("No more cells in this section")
 }
 default:
 print("No more sections")
 }
 return cell
 }
 }

We added three sections and each section has three cells. In cell for row, we cast17.
the cell to the custom cell class that we have created to access the outlets.
Now build and run, you will see that the table view becomes more awesome, as18.
follows:

Working with UITableView

[186]

The table view looks perfect now but, as we see, the label is not easy to read as19.
the white color conflicts with the image colors. In real apps, these images come
from the backend so you don't have control over their colors.
To solve this problem and to make the label works fine with all images, we will20.
add a dim background behind the label.
Drag a UIView from Object Library and place it before the UILabel. Change its21.
size to be the same as that of the custom cells and those used in the image view.

Working with UITableView

[187]

From the Attribute Inspector tab, change the background color of the view to22.
black color and alpha value to 0.35:

Now build and run; it will look perfect now:23.

Working with UITableView

[188]

How it works...
Building custom cell is pretty easy and so, it is important to design an awesome table that
looks unique and stunning. Using storyboard, everything becomes easier as you can build
custom cell and prepare the prototype to be used in the data source methods.

Building custom UITableViewCell classes is a very important thing to do to encapsulate
your IBOutlets or any actions you need so that you can customize their values easily in the
cellForRow method.

Resizing table view cells dynamically
In the previous demos, we saw that all the cells have the static cell height that can be
configured from the storyboard. In this section, we will learn to resize table view cells
dynamically, that is, based on the content height you have in your cell. Use this feature only
if you want your cell to be resized based on the content height. Autolayout will help us
greatly in this section and I recommend revising/reading the Autolayout chapter before
starting this section.

How to do it...
Create a new Xcode project with the name Dynamic Cells and a Single View1.
template.
Add a UITableView with the delegate and data source set. Add a prototype cell2.
with a basic style, as we did in section one. Implement the delegate and data
source and display only four cells.
In ViewController.swift, add the following titles to be displayed:3.

 let titles = ["This is very simple title",
 "Long text goes here\nLong text goes here\nLong text goes
here\nLong text goes here\nLong text goes here\nLong text goes here",
 "Some text goes here, Some text goes here, Some text goes
here, Some text goes here, Some text goes here",
 "Long text goes here\nLong text goes here\nLong text goes
here\nLong text goes here\nLong text goes here\nLong text goes hereLong
text goes here\nLong text goes here\nLong text goes here\nLong text goes
here\nLong text goes here\nLong text goes hereLong text goes here\nLong
text goes here\nLong text goes here\nLong text goes here\nLong text goes
here\nLong text goes here"]

Working with UITableView

[189]

Now, in the cellForRow method, change it to read the title from the titles array4.
we added earlier:

 func tableView(_ tableView: UITableView, cellForRowAt indexPath:
 IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "cell")
 cell?.textLabel?.text = titles[indexPath.row]
 return cell!
 }

When you build and run, you will see that the titles have been displayed like this:5.

Not all the text has been displayed in cells and that's what we will do now.

Go to storyboard and select the cell label. Go to Attribute Inspector and change6.
the number of lines to Zero and the line break mode to Word Wrap.
Link an IBOutlet to the table view in ViewController.swift:7.

Working with UITableView

[190]

 @IBOutlet weak var demoTableView: UITableView!

Add the following code in the viewDidLoad function:8.

 demoTableView.estimatedRowHeight = 43
 demoTableView.rowHeight = UITableViewAutomaticDimension

Now build and run, you will see the following:9.

Working with UITableView

[191]

How it works...
Dynamic resizing table view cells is very important, especially when you work with
dynamic height content in your table view. Autolayout makes life easier while dealing with
dynamic height cell. You can build your UI in your custom cell and use Autolayout to
identify the cell dimensions or boundaries so that, when your content changes and affects
the subviews frames, the cell height will be changed automatically. All will work fine, but
you have to do the following programmatically:

tableView.estimatedRowHeight = 43
tableView.rowHeight = UITableViewAutomaticDimension

Setting the rowHeight property to the UITableViewAutomaticDimension constant
allows the self-sizing concept to work in table view. The estimatedRowHeight provides
the estimated row height or the default height for your rows to improve the performance of
loading the table view and correct the table view cells height after calculating the cell size
based on constraints.

Editing table views
Table views are not meant only for displaying data (read-only); users can be engaged in
managing the table views to insert, update, delete, and reorder the table view cells. Thanks
to UITableView, these kinds of operations are not difficult to implement and with just
simple lines of code, you can bring all these awesome features to your app. In this section,
we will see how to trigger the editing mode in table view to delete or reorder cells. We will
see how to insert new rows at runtime to the table view with animations as well.

Getting ready
In the demo project that we will implement, we are building a simple Todo app. We will
have a screen where the user can see a list of open tasks and options to add new tasks,
delete specific tasks, and reorder tasks based on priority. This demo will be very interesting.

Working with UITableView

[192]

How to do it...
First, let's create a new Xcode project with Single View Application template.1.
Add a table view and configure its delegate and data source, as we learnt in the2.
previous sections.
Add a prototype table view cell in the storyboard with a basic style and set its3.
identifier to toDoCell.
Let's create the data structure of the Task. This data structure will encapsulate4.
the task information that we will use in the app. Create a new class in a new Swift
file as a subclass to NSObject with the name Task. The class will look like this:

 class Task: NSObject {
 var name: String
 init(taskName: String) {
 self.name = taskName
 }
 }

We have only added the name property till now; you can add more properties5.
such as details and createdAt date later.
Now, open the ViewController.swift file and add the following property:6.

 var tasks = [Task]()

This property is a collection of Task data structure that we created earlier.
It will hold the current displayed tasks.

Now, let's update the data source functions to let them read the data from the7.
tasks array:

 extension ViewController: UITableViewDataSource{
 func tableView(_ tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 return tasks.count
 }
 func tableView(_ tableView: UITableView, cellForRowAt indexPath:
 IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier:
 "toDoCell")
 let task = tasks[indexPath.row]
 cell?.textLabel?.text = task.name

Working with UITableView

[193]

 return cell!
 }
 }

The numberOfRows function will return the number of tasks we have in the8.
tasks list.
In cellForRow, we get the specific task from the list and bind its name.9.

If you tried to build and run now, you would see an empty table view:10.

The list is empty as we don't have any tasks yet.

Inserting cells with animation
Now, let's add a button to add a new task to the list.

Drag a Bar Button Item from Object Library and place it to the right of the top1.
navigation bar. Also, change the item type from the Attribute Inspector tab to
Add:

Working with UITableView

[194]

Now, open the Assistant Editor to link an action method to the bar button item:2.

 @IBAction func didClickOnAddButton(_ sender: AnyObject) {
 }

Now, add an IBOutlet to the table view in ViewController.swift, as follows:3.

 @IBOutlet weak var tasksTableView: UITableView!

Now, let's add a function that will display a pop-up alert with a text field to ask4.
the user to enter the task name:

 func displayAlertToAddTask(){
 let title = "New Task"
 let doneTitle = "Create"
 let alertController = UIAlertController(title: title, message:
 "Write the name of your task.", preferredStyle: .alert)
 let createAction = UIAlertAction(title: doneTitle, style: .default)
 { (action) -> Void in
 let taskName = alertController.textFields?.first?.text
 let newTask = Task(taskName: taskName!)
 self.tasks.append(newTask)
 self.tasksTableView.insertRows(at: [IndexPath(row:
 self.tasks.count - 1, section: 0)], with: .top)

Working with UITableView

[195]

 }
 alertController.addAction(createAction)
 createAction.isEnabled = false
 self.currentCreateAction = createAction
 alertController.addAction(UIAlertAction(title: "Cancel", style:
 .cancel, handler: nil))
 alertController.addTextField { (textField) in
 textField.placeholder = "Task Name"
 textField.addTarget(self, action: #selector(ViewController
 .taskNameFieldDidChange(textField:)) ,
 for: .editingChanged)
 }
 self.present(alertController, animated: true, completion: nil)
 }

The function will display a popup with a text field. Before proceeding, let's add5.
the following property at the top of your file:

 var currentCreateAction:UIAlertAction?

Now, let's build and run the app; click on the add button:6.

Working with UITableView

[196]

Once you type something in the text field, the Create button will be enabled to7.
add the task. Once the task is created, it will be inserted into the table view with
an animation:

Now, the functionality to add new rows (tasks) is ready.

Removing cells with animation
Now, let's see how to edit the table view to delete cells:

In the same way that we added the Add button, let's add another Bar Button1.
Item beside the Add button. Change the item type to Edit:

Working with UITableView

[197]

Link the Edit button action method to the ViewController.swift:2.

 @IBAction func didClickOnEditButton(_ sender: AnyObject) {
 isEditingMode = !isEditingMode
 self.tasksTableView.setEditing(isEditingMode, animated: true)
 }

At top of the file, add the following property:3.

 var isEditingMode = false

Now, when you click on the Edit button, the table view will enter the edit mode.4.
Now, we need to define the actions that will be displayed in the edit mode. In this5.
demo, we need an action to delete the task. Let's override the following function
in UITableViewDelegate:

 extension ViewController: UITableViewDelegate{
 func tableView(_ tableView: UITableView, editActionsForRowAt
 indexPath: IndexPath) -> [UITableViewRowAction]? {
 let deleteAction = UITableViewRowAction(style: .destructive,
 title: "Delete") { (deleteAction, indexPath) -> Void in
 //Deletion will go here
 self.tasks.remove(at: indexPath.row)
 tableView.deleteRows(at: [indexPath], with: .fade)
 }
 return [deleteAction]
 }
 }

Working with UITableView

[198]

Now build and run, you will see the edit button and when you click on it, edit6.
mode will be enabled. Clicking on the Delete button will remove the cell from the
list:

Once the task is deleted, it will be removed from the table with fade animation.

Dragging and dropping to reorder cells
Now, let's implement the reordering of cells:

To enable the reordering of cells, you need exactly three steps. The first step is to1.
enable the showing of the reordering control in cells. To do this, just do the
following in the cellForRow method:

 cell?.showsReorderControl = true

The second step is to override the canMoveRowAt function in the data source:2.

 func tableView(_ tableView: UITableView, canMoveRowAt indexPath:

Working with UITableView

[199]

 IndexPath) -> Bool {
 return true
 }

This will ask you if the row at the given indexPath can be moved or not. As all3.
the rows in our app can be moved, just return true for all.
The third step is to override the moveRowAt function, which is the function that4.
performs the moving in your data model. The data model in our app is the tasks
array, so we need to swap the values in the array:

 func tableView(_ tableView: UITableView, moveRowAt sourceIndexPath:
IndexPath, to destinationIndexPath: IndexPath) {
 let taskToMove = self.tasks[sourceIndexPath.row]
 self.tasks.remove(at: sourceIndexPath.row)
 self.tasks.insert(taskToMove, at: destinationIndexPath.row)
 }

Now, let's run the app. In the edit mode, you will see that you can reorder the5.
cells like a charm:

Working with UITableView

[200]

How it works...
In the previous demo, we built a very simple Todo app that allows users to create new tasks
(insert rows in table view), delete tasks (delete rows from table view), and change the order
of tasks (reorder table view cells).

We started with inserting rows to table view, displayed UIAlertViewController with a
text field to get the task name first, and added a target method, that is
taskNameFieldDidChange, to track the changes in the text field. This will give us an
opportunity to disable the Create button when the field is empty. Once the user clicks on
Create, we update our data model before triggering the table view to add a new row. So,
we inserted the new task object to the tasks array, then we called the insertRows function
to insert new rows to the table view.

To enable the editing mode in table view, just call setEditing and pass true. Then, the
editActionsForRowAt function in UITableViewDelegate will be called to ask you about
the edit actions that will be displayed when a user swipes the cell or edits it. In this
function, we created an instance of UITableViewRowAction for the delete action. The
instance takes a completion handler as a parameter to be called once the user clicks on this
action. In that case, we remove the task from the data model first and then, call deleteRows
to delete the rows from the table view.

Lastly, we worked in reordering the rows of table view. Reordering is very simple and
straightforward and to accomplish this, you need exactly three steps:

Enable showing the reordering control in the cellForRow function by calling1.
cell?.showsReorderControl = true.
Override the canMoveRowAt function to tell the table view which row can be2.
moved.
Override the moveRowAt function to perform the moving in your data model.3.

There's more...
There's more that we can do in Todo app, such as adding a feature to complete a task. You
can add two sections in the screen, one section for open tasks and one for completed ones.
In the editing mode, you can add more action in the editing actions with the name
Complete, which actually marks the task as completed and moves it to a completed section.
The user can use the reordering feature to drag the cell from open to the completed section
and vice versa. You already know how to do this and have all the information to
accomplish that.

6
Animations and Graphics

In this chapter, we will cover the following topics:

Drawing text, images, lines, rectangles, and gradients
Animating shapes drawn with UIBezierPath
Animating UIViews

Introduction
You will not see apps (successful ones) in the App Store using native components without
customization. You need your app to look great, unique, appealing, attractive, and eye-
catching. This can't be achieved without getting your hands dirty with drawing, animation,
and getting the skills of how to build custom components. In this chapter, we will see how
to draw simple shapes and animate them. We will draw lines, shapes, and text and animate
them. We will see how to add gradients or shadows to shapes. Lastly, we will discuss the
various ways of animating views or layers.

Drawing text, images, lines, rectangles, and
gradients
In this section, we will learn to draw simple shapes, gradients, or even images. You will
need to draw shapes, lines, and images to create custom components or to use in drawing
apps where the user can draw shapes and generate an image of their drawing.

Animations and Graphics

[202]

Getting ready
When you need to do any custom drawing in iOS, you will need the help of the Core
Graphics framework. This framework is full of cool APIs that you can use to build awesome
things. In this section, we will see how to use it to sketch custom drawings in custom
UIView. In the following demo, we will draw a custom face with eyes, a nose, and a mouth.

How to do it...
Create a new Xcode project with the Single View Application template with1.
name the Drawing.
Now, let's create a new custom view. Create a new class named CustomView,2.
which is a subclass of UIView.
Add the following function, where custom drawing will be done. Xcode might3.
create it for you, but it will be commented, so uncomment it if it's already there:

 override func draw(_ rect: CGRect) {
 // Drawing code
 }

All your custom drawings will be done inside this function. Let's start drawing.4.
We will prepare a background color for our drawing. Add the following code to
change the fill color to yellow:

 override func draw(_ rect: CGRect) {
 // Drawing code
 if let context = UIGraphicsGetCurrentContext(){
 let yellow = UIColor.yellow
 context.setFillColor(yellow.cgColor)
 context.fill(self.bounds)
 }
 }

Now, go to storyboard and drag a UIView to the center of the first view5.
controller. Add constraints to center it vertically and horizontally. Change its size
to any size you want, for example 300 pixels width and 100 pixels height. The
most important step is to change its class from Identity Inspector to
CustomView. Changing the class type will help us write custom code for the
custom view. Now, build and run; you will see a screen like this:

Animations and Graphics

[203]

Now we want to draw a face, we will first draw a black circle at the center of the6.
view. So, update the drawRect method as follows:

 override func draw(_ rect: CGRect) {
 // Drawing code
 if let context = UIGraphicsGetCurrentContext(){
 let yellow = UIColor.yellow
 context.setFillColor(yellow.cgColor)
 context.fill(self.bounds)
 // Drawing the face.
 context.setStrokeColor(UIColor.black.cgColor)
 context.setLineWidth(3.0)
 let radius = min(rect.width, rect.height) * 0.75 / 2
 context.addArc(center: CGPoint(x: rect.midX, y:
 rect.midY), radius: radius, startAngle: 0,
 endAngle: CGFloat(2 * M_PI), clockwise: false)
 }
 }

Animations and Graphics

[204]

Now build and run; you will see the face ready:7.

Now we want to add eyes; to do this, we will draw two small circles filled with8.
red color. Add the following code after the drawing code for the face:

 /// Drawing Eyes
 // Left eye
 context.addArc(center: CGPoint(x: rect.midX - radius /
 2, y: rect.midY - radius / 2), radius: 4.0,
 startAngle: 0, endAngle: CGFloat(2 * M_PI),
 clockwise: false)
 // Right eye
 context.addArc(center: CGPoint(x: rect.midX + radius /
 2, y: rect.midY - radius / 2), radius: 4.0,
 startAngle: 0, endAngle: CGFloat(2 * M_PI),
 clockwise: false)
 // Filling
 context.setFillColor(UIColor.red().cgColor)
 context.fillPath()

Animations and Graphics

[205]

Now the eyes are ready; build and run and you will see the face like this:9.

Now, let's draw the nose; the nose will be drawn by drawing a rectangle at the10.
center of the circle. To draw the nose, just add the following code after the eye
drawing:

 let noseSize = CGSize(width: 4, height: 16)
 context.addRect(CGRect(x: rect.midX - noseSize.width /
 2, y: rect.midY - noseSize.height / 2, width:
 noseSize.width, height: noseSize.height))

The face will be like this now:11.

Now, let's draw the mouth; the mouth will be controlled later with a slider. Add12.
the following code to draw the mouth:

 let startPoint = CGPoint(x: rect.midX - radius / 2, y:
 rect.midY + radius / 2)
 let endPoint = CGPoint(x: rect.midX + radius / 2, y:
 startPoint.y)
 context.move(to: startPoint)
 let cp = CGPoint(x: rect.midX, y: (startPoint.y) *
 (satisfaction + 0.5))
 context.addQuadCurve(to: endPoint, control: cp)
 // Filling
 context.strokePath()

Animations and Graphics

[206]

Add the following variable at the top of your file:13.

 var satisfaction: CGFloat = 0.5

Now, if you try to build and run, you will see the following:14.

Now we need to control the smile on the face. Go to the storyboard and add a15.
new UISlider by dragging it from Object Library. Place it below the custom
view.

By default, the minimum value will be 0 and the maximum will be 1. The
current one will be 0.5.

Link an IBoutlet method to the custom view in ViewController.swift, like16.
this:

 @IBOutlet weak var customView: CustomView!

Link an IBAction method to the slider to ViewController.swift to get the17.
changed value of the slider:

 @IBAction func didChangeSliderValue(_ sender: UISlider) {
 customView.satisfaction = CGFloat(sender.value)
 }

Animations and Graphics

[207]

Now we need to update the smile on the face based on the slider value. We have18.
already updated the satisfaction value and need to redraw the face with the new
value. Update the property to fire redrawing once the property is changed:

 var satisfaction: CGFloat = 0.5{
 didSet{
 self.setNeedsDisplay()
 }
 }

The setNeedsDisplay notifies the system that the view needs to be
redrawn.

If you build and run now, you will see the face with a neutral smile, which19.
corresponds to value 0.5:

Animations and Graphics

[208]

If you tried to change the slider value to 0.8 for example, it would be like this:

However, if you tried to change it to a value below 0.5, it would be like this:

Animations and Graphics

[209]

Now, let's draw some text that tells us the status of the face (Happy, Sad,20.
Neutral). To do this, let's add the following code at the end of our drawing
method:

 var status: NSString
 switch satisfaction {
 case let val where val == 0.5:
 status = "Neutral"
 case let val where val < 0.5:
 status = "Sad"
 default:
 status = "Happy"
 }
 status.draw(at: CGPoint(x: 5, y: 5), withAttributes: nil)

The text will be drawn at position (5, 5)

Animations and Graphics

[210]

Now try to build and run; you will see the text drawn at the top left of your21.
custom view:

In the sad mode, it will be like this:

Now, let's draw a gradient as a background color for the view. Add the following22.
code after drawing the face:

 // Gradient color
 let colorSpace = CGColorSpaceCreateDeviceRGB()
 let componentCount : Int = 2
 let components : [CGFloat] = [
 0.0, 1.0, 0.0, 1.0,
 0.0, 0.0, 1.0, 1.0
]
 let locations : [CGFloat] = [0, 1.0]
 let gradient = CGGradient(colorSpace: colorSpace,

Animations and Graphics

[211]

 colorComponents: components, locations: locations,
 count: componentCount)
 context.drawLinearGradient(gradient!, start:
 CGPoint.zero, end: CGPoint(x: rect.maxX, y:
 rect.maxY), options: .drawsBeforeStartLocation)

The code will draw a gradient with green and blue colors:

How it works...
We started our demo app by creating a custom UIView and overriding the drawRect
method. This step is the first step that you should start with when you decide to create
custom component or a a custom drawing. Before starting drawing with CoreGraphics,
you have to get a graphics context to draw in; we call the
UIGraphicsGetCurrentContext() function to get the current one.

Animations and Graphics

[212]

Then, we fill the custom view with a yellow background color. The fill function takes the area that you want to
fill, but you have to set the fill color before by calling setFillColor.
In drawing the face, we first set the stroke color to black to draw a black-bordered circle by
calling setStrokeColor. You can customize the thickness of the line you draw by calling
the setLineWidth function. To draw a circle in CoreGraphics, you have to draw an arc.
The arc has a center point, starting/ending angles, and a radius. All of them will define how
the system will draw the arc. Here is an image illustrating the factors we just explained:

In the same way, wecreated the eyes of the face. We created two circles, but we filled them
with red color. For the nose, we have a similar method to addArc, which is called addRect,
to draw a rectangle.

Animations and Graphics

[213]

To draw a smile, we used something called a Quad curve, which is defined by 3 points: the current point, end
point, and a control point. Refer to the following image to get a better understanding of the curve:

Drawing text is pretty easy. You just need to get your text, call the draw(at:,
withAttributes:) function and pass the location of the text and attributes. In attributes,
you can define customizations such as text color, font, and so on.

To draw a gradient in CoreGraphics, you have to create a CGGradient instance before
drawing. To define a CGGradient, you need to provide the following information:

The color space: It's always been used as RGB color space and you can get that by1.
calling CGColorSpaceCreateDeviceRGB().
Color components: You can prepare them as an array of color or an array of2.
CGFloat values to define the color. Each color needs 4 float values to define the
RGBA (Red, Green, Blue, Alpha) of the color.
Components count: This refers to the number of colors that your gradient3.
consists of.

Once you've prepared your gradient, you can notify the context to draw your gradient by
calling drawLinearGradient and passing the gradient and start/end positions of your
gradient.

Animations and Graphics

[214]

There's more...
Drawing is such fun, especially if you let your users draw themselves in the app using
touches and swipes on the screen. As drawing is something unique, or something you may
want to share with your friends or save as a picture, we will see how to construct an image
from your drawings and save it in your camera roll:

Go to the storyboard and add a new UIButton with the text Save. Link an1.
IBAction to ViewController.swift, as follows:

 @IBAction func didClickOnSaveButton(_ sender: AnyObject) {
 let image = self.customView.screenshot
 UIImageWriteToSavedPhotosAlbum(image, nil, nil, nil)
 }

Now add the following extension at the top of your file:2.

 extension UIView{
 var screenshot: UIImage{
 UIGraphicsBeginImageContext(self.bounds.size);
 let context = UIGraphicsGetCurrentContext();
 self.layer.render(in: context!)
 let screenShot =
 UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 return screenShot!
 }
 }

Before running your app, we need to define why we need to save photos in3.
camera roll in the Info.plist file. Add the
NSPhotoLibraryUsageDescription key to the Info.plist file and type any
description.
Now build and run; you will see the image saved in your Photos app.4.

Animating shapes drawn with UIBezierPath
In iOS, you can use UIBezierPath to draw vector-based paths and use these paths to
create shapes. With UIBezierPath, you can draw lines, curves, ovals, ellipses, and any
complex shapes by combining them with subpaths. In this section, we will see how to create
paths with UIBezierPath and build shape layers to animate them.

Animations and Graphics

[215]

Getting ready
In the upcoming demo, we will draw a custom circular progress bar that can be animated
with a percentage given like 50%, 80%, and so on.

How to do it...
Let's create a new Xcode project with the Single View Application template with1.
the name BezierPath.
The circular progress bar will consist of two layers: a fixed layer that will be2.
added as a background for the progress bar and a progressive layer that will be
animated.
Now let's create a function that creates a circular layer so that we can reuse it for3.
both layers. Add the following function in ViewController.swift:

 private func getShapeLayerForRect(rect:CGRect, strokeColor
 sColor:UIColor) -> CAShapeLayer{
 let radius = rect.width / 2 - progressLineWidth / 2
 let newRect = CGRect(x: progressLineWidth / 2, y:
 progressLineWidth / 2, width: radius * 2, height:
 radius * 2) let path = UIBezierPath(roundedRect: newRect,
 cornerRadius: radius).cgPath
 let shape = CAShapeLayer()
 shape.path = path
 shape.strokeColor = sColor.cgColor
 shape.lineCap = kCALineCapRound
 shape.lineWidth = progressLineWidth
 shape.fillColor = nil
 return shape
 }

We created a circular Bezier path and then we created a shape layer, its path
coming from the Bezier path we have just created.

Now, let's add the fixed and progressive layer in the viewDidLoad function:4.

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a
nib.
 self.view.backgroundColor = UIColor.yellow
 let radius = 100
 let rect = CGRect(x: 0, y: 0, width: radius * 2,

Animations and Graphics

[216]

 height: radius * 2)
 let fixedLayer = getShapeLayerForRect(rect: rect,
 strokeColor: UIColor.black.withAlphaComponent(0.5))
 fixedLayer.bounds = fixedLayer.bounds.offsetBy(dx: -
 50, dy: -100)
 let progressiveLayer = getShapeLayerForRect(rect:
 rect, strokeColor: UIColor.black)
 progressiveLayer.bounds = fixedLayer.bounds
 progressiveLayer.strokeEnd = 0
 self.progressiveLayer = progressiveLayer
 self.view.layer.addSublayer(fixedLayer)
 self.view.layer.addSublayer(progressiveLayer)
 }

Build and run; you will only see the fixed layer. The progressive layer is hidden5.
because it's strokeEnd is set to 0:

Animations and Graphics

[217]

Now, let's add a button at the bottom of the screen and, when you click on it, we6.
will animate the progress bar. The action method of the button will be like this:

 @IBAction func didClickOnDownloadButton(_ sender:
 AnyObject) {
 self.progressiveLayer?.strokeEnd = 0.75
 let animation = CABasicAnimation(keyPath:
 "strokeEnd")
 animation.fromValue = 0
 animation.toValue = 0.75
 animation.duration = 4
 animation.timingFunction =
 CAMediaTimingFunction(name:
 kCAMediaTimingFunctionEaseInEaseOut)
 self.progressiveLayer?.add(animation, forKey:
 "progress")
 }

Now build and run; you will see a view like this:7.

Animations and Graphics

[218]

Clicking on the button will animate the progress bar to 75%:8.

The last thing we need to add is the shadow. Adding shadow to shape layers is9.
pretty easy and straightforward. Just add the following lines once you have
created your progressive layer:

 progressiveLayer.shadowColor = UIColor.black.cgColor
 progressiveLayer.shadowRadius = 9.0
 progressiveLayer.shadowOpacity = 0.9
 progressiveLayer.shadowOffset = CGSize(width: 0,
 height: 0)

Now build and run; you will see a progressive layer with an awesome shadow:10.

Animations and Graphics

[219]

How it works...
In our demo, we started by creating two layers. A fixed layer with the gray as background
color and a progressive layer with black as the background color. We first created a circular
Bezier path and used this path to define the bath of CAShapeLayer, which is a special type
of layer for shapes. This CAShapeLayer has many useful properties; we used the
strokeColor property to define the color of stroke path and the lineCap property to
define the style of the ending line of the shape, which we set as round corners.

As the progressive layer is hidden at first, we set it's strokeEnd to 0, which means no path
is drawn as yet. Later, we will animate the progressive layer by updating its strokeEnd
value in animation.

Animations and Graphics

[220]

To animate layers in iOS, you need the help of the awesome CoreAnimation animation
framework. It provides you with an incredible set of APIs to animate layer properties and
control the animation style. We will not go deeply into CoreAnimation because, if we did;
we would need a separate book for it. To create an animation, we created an instance of
CABasicAnimation using the keyPath of the property that you want to animate, which is
strokeEnd. Then, you set the fromValue and toValue to animate to; you can animate
from any value to any value. Then we set the animation duration and timing function. The
timing function EaseInEaseOut means that the animation will accelerate at the beginning
and then decelerate slowly.

Before we animate, we set the strokeEnd of the layer to 0.75 because the animation only
animates the presentation layer and the value of strokeEnd will fall back to its original
value after the animation.

Animating UIViews
In the previous section, we saw how animation works with CoreAnimation. iOS provides
us with another mechanism for animation, which is the animation with UIKit framework.
Animating UIViews can be done by animating their layers with CoreAnimation or
animating the view itself using the animation APIs provided in the UIKit framework,
especially in the UIView class.

How to do it...
To animate UIViews, perform the following steps:

Create a new Xcode project with the Master-Details template and name it1.
UIViewAnimation.
The project will be created with the navigation controller template, where you2.
will find a master screen where you can add new cells representing the current
time and you will see a details screen when you click on it.
We will change the native animation of the navigation controller that you see3.
when you push and pop between view controllers.
Now, let's create a new Swift file. Name the file NavigationFlipAnimator to4.
create a class with the name NavigationFlipAnimator and extend it from
NSObject.
The class will act as an animator for the navigation controller classes. That's why5.
we will let the class conform to the

Animations and Graphics

[221]

UIViewControllerAnimatedTransitioning protocol.
Now, add the following code to NavigationFlipAnimator:6.

 var navigationOperation:
 UINavigationControllerOperation = .push
 func transitionDuration(using transitionContext:
 UIViewControllerContextTransitioning?) ->
 TimeInterval {
 return 0.5
 }

 func animateTransition(using transitionContext:
 UIViewControllerContextTransitioning) {
 if let fromView =
 transitionContext.viewController(forKey:
 UITransitionContextViewControllerKey.from)?.view,
 let toView =
 transitionContext.viewController(forKey:
 UITransitionContextViewControllerKey.to)?.view{
 let direction: UIViewAnimationOptions =
 self.navigationOperation == .push ?
 .transitionFlipFromLeft :
 .transitionFlipFromRight
 UIView.transition(from: fromView, to: toView,
 duration: 1.0, options: direction, completion: {
 (finished) in
 transitionContext.completeTransition(true)
 })
 }

Now the animator is ready to animate the views. Let's tell the navigation7.
controller to user this animator instead of the native one.
Now, open MasterViewController to add an extension to it to conform to the8.
UINavigationControllerDelegate protocol.
Add the following extension at the bottom of the MasterViewController file:9.

extension MasterViewController:
 UINavigationControllerDelegate{
 func navigationController(_ navigationController:
 UINavigationController, animationControllerFor
 operation: UINavigationControllerOperation, from
 fromVC: UIViewController, to toVC:
 UIViewController) ->
 UIViewControllerAnimatedTransitioning? {
 let animator = NavigationFlipAnimator()
 animator.navigationOperation = operation

Animations and Graphics

[222]

 return animator
 }
}

Now go to the viewDidLoad function and add the following line of code:10.

self.navigationController?.delegate = self

Everything is ready; let's run the app now. When you click on a time record, the11.
view will be flipped to display the details like this:

Also, once you click on back on the details screen, the view will be flipped to the12.
other way to go back to the master screen:

Animations and Graphics

[223]

How it works...
UIKit provides us with awesome APIs to animate UIViews that are very easy to use and
simpler than CoreAnimation. In the previous demo, we saw how we provided totally new
animation instead of the native animation for UINavigationController. To provide
custom transitioning animation for view controllers, you have to create a new animator
controller. The animator controller can be any class in your app, but the most important
thing about this class is that it conforms to the
UIViewControllerAnimatedTransitioning protocol. This protocol requires you to
override two important methods. The first method is transitionDuration(using
transitionContext: UIViewControllerContextTransitioning?), which asks you
to provide the animation transition time between FromViewController and
ToViewController. In our example, we returned half a second for that animation.

Animations and Graphics

[224]

The second function is animateTransition(using transitionContext:
UIViewControllerContextTransitioning), where you have to do your action
transition animation. The transitionContext gives you all the information you need to
animate the views. We first got the view of source view controller using the key
UITransitionContextViewControllerKey.from and then got the view of destination
view controller using the key UITransitionContextViewControllerKey.to.

Once we got the two views, we wanted to animate them using flip animation. The UIView
class provides us with a UIView.transition class function to perform a transition
between two views with specific animation, such as flip animation. Once we finished the
animation, we called transitionContext.completeTransition(true) to let UIKit
know that we had completed the animation.

7
Multimedia

In this chapter, we will cover the following topics:

Working with audio capabilities
Playing videos
Capturing photos and videos
Using filters with CoreImage

Introduction
Multimedia is one of the important categories that people are interested in with mobile
apps. On a daily basis, there is a 100% chance that you might have played music or videos,
captured photos or videos, or opened your Photos app to share one of your images on social
media or applied some filters to them. When you check the App Store, you can see a huge
bunch of apps to edit photos and videos. These apps offer an awesome experience and let
you play with your pictures by letting you apply filters or processing images to output
incredible, or funny photos. Some of these apps, such as Snapchat, apply filters not only
to photos, but also to videos. These kind of apps have had a great impact on multimedia
and many apps are competing to provide the most appealing and attractive experience for
users.

Multimedia

[226]

Working with audio capabilities
In this section, we will talk about audio capabilities in iOS. Now, we have a lot of
remarkable APIs to provide the best experience when dealing with audio files. You can play
back audio files, record audio, or even recognize speech. In this section, we will see how to
play back audio files, record voices, and use the new Speech framework in iOS 10 to
recognize speech in many different languages. We will build a demo to see how to work
with all of these awesome features.

Getting ready
The only thing that you should be ready with is an audio file to play. In our demo, we are
using a sample audio file to play in the app.

How to do it...
Create a new Xcode project with the Single View Application template and1.
the name PlayingWithAudio.
Add a UIButton method at the top of screen with the title Play Audio.2.
Link the action of this button to the ViewController.swift file, like this:3.

 @IBAction func didClickOnPlayAudio(_ sender: AnyObject) {
 }

Add the following import statement at the top of the file:4.

 import AVFoundation

Add the following property to the ViewController class for the video player:5.

 var player: AVAudioPlayer?

Now let's implement the logic of playing an audio file. Edit the6.
didClickOnPlayAudio function to be like this to play an audio file:

 @IBAction func didClickOnPlayAudio(_ sender: AnyObject) {
 let filePath = Bundle.main.path(forResource: "Song",
 ofType: "mp3")
 let fileURL = URL(fileURLWithPath: filePath!)
 do{
 self.player = try AVAudioPlayer(contentsOf: fileURL)

Multimedia

[227]

 self.player?.play()
 }catch{
 print("Error in playing audio file: \(error)")
 }
 }

The code simply creates a variable that holds the path to the audio file that
we want to play. As the file resides in the app bundle, we have used the
NSBundle.main.path to get a path to a specific resource. Then, we used
AVAudioPlayer to play the file located there.

Now build and run the app. After you click on the play button, you should hear7.
the audio file playing in the background.
You will note that, once you play the audio, you will not be able to pause it. We8.
will update the function now, check whether the audio is playing to pause it and,
if not, it will play it again.
First, let's link an IBOutlet to the play button:9.

 @IBOutlet weak var playButton: UIButton!

Now change the didClickOnPlayAudio function as follows:10.

 @IBAction func didClickOnPlayAudio(_ sender: AnyObject) {
 if player == nil{
 let filePath = Bundle.main.path(forResource:
 "Song", ofType: "mp3")
 let fileURL = URL(fileURLWithPath: filePath!)
 do{
 self.player = try AVAudioPlayer(contentsOf:
 fileURL)
 self.player?.play()
 }catch{
 print("Error in playing audio file: \(error)")
 }
 }
 else if let player = self.player{
 if player.isPlaying {
 player.pause()
 self.playButton.setTitle("Play Audio", for:
 .normal)
 }
 else{
 player.play()
 self.playButton.setTitle("Pause", for: .normal)
 }
 }

Multimedia

[228]

 }

We have edited the function to keep tracking the player's status; it doesn't make sense to
keep creating an audio player each time and that's why we added a condition to check
whether we have a player or not. Then, we check whether the player is playing and, in that
case, we pause the audio; otherwise, we play the audio.

Now build and run; you will be able to play and pause the audio.

How it works...
In the previous demo app, we created a very basic audio player to play and pause audio
files. Before starting to play any media file, you need to have a file path to the media file. As
our file is located in the application's main bundle, we get the file path by calling
Bundle.main.path(forResource: "Song", ofType: "mp3"). This function returns
the file path for any resource file you have in the main bundle; you need to path the file
name and file extension. Once you get the file path, iOS provides you with a helper class to
play the audio file, which is AVAudioPlayer that plays audio files using the file path URL.

You will note in the example, that we created a strong reference to the audio player by
setting it to the player parameter. We did that because the AVAudioPlayer will be
deallocated from memory if we don't have a strong reference to it, which causes unexpected
results, such as not hearing any playing media files. AVAudioPlayer has a great bunch of
helpful APIs to play, pause, or stop the audio. To play, we called the play() function,
which starts playing the audio from the current position. Then, we checked whether the
player was playing any audio to pause it instead of calling play again; the isPlaying
property indicates whether the audio file is playing or not.

There's more...
In iOS, you can do more and more when dealing with audio capabilities. In this section, we
will talk about a new framework introduced in iOS 10, which is the Speech framework.

Multimedia

[229]

Recognizing speech
The framework communicates with Apple's servers or tries to use an on-device recognizer if
available. We will build a demo to see how to use the framework to recognize speech.

We will use the same project to add the feature of recognizing speech:

Open the storyboard and, at the bottom, let's add a button with the title Start1.
Recording with the following constraints:

 Record.height = 49
 Record.leading = Superview.leading + 16
 Record.trailing = Superview.trailing - 16
 Record.bottom = Superview.bottom - 8

Link IBOutlet and IBAction to the button in the ViewController.Swift file:2.

 @IBOutlet weak var recordButton: UIButton!

 @IBAction func didClickOnRecordButton(_ sender: AnyObject) {
 }

Now, let's add a UITextView above the record button with the following3.
constraints:

 TextView.height = 230
 TextView.leading = Superview.leading + 16
 TextView.trailing = Superview.trailing - 16
 TextView.bottom = Record.top - 8

Multimedia

[230]

Now, the UI will look like this:4.

Link an IBOutlet in ViewController.swift for the text view:5.

 @IBOutlet weak var speechTextView: UITextView!

Let's get back to ViewController.swift; add the following import statement at6.
the top of the file:

 import Speech

Multimedia

[231]

Now the Speech framework is read. Add the following properties:7.

 private var speechRecognizer: SFSpeechRecognizer!
 private var recognitionRequest:
 SFSpeechAudioBufferRecognitionRequest!
 private var recognitionTask: SFSpeechRecognitionTask!
 private let audioEngine = AVAudioEngine()
 private let defaultLocale = Locale(identifier: "en-US")

Add the following extension to make ViewController conform to8.
SFSpeechRecognizerDelegate protocol:

 extension ViewController: SFSpeechRecognizerDelegate{
 public func speechRecognizer(_ speechRecognizer:
 SFSpeechRecognizer, availabilityDidChange available:
 Bool) {
 if available {
 self.recordButton.isEnabled = true
 self.recordButton.setTitle("Start Recording", for:
 [])
 } else {
 self.recordButton.isEnabled = false
 self.recordButton.setTitle("Recognition is not
 available", for: .disabled)
 }
 }
 }

Now add the following function to prepare the recognizer:9.

 private func prepareRecognizer(locale: Locale) {
 speechRecognizer = SFSpeechRecognizer(locale: locale)!
 speechRecognizer.delegate = self
 }

The function creates a recognizer instance with a given locale (language).

Update the viewDidLoad function to call prepareRecognizer:10.

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 typically from a nib.
 self.recordButton.isEnabled = false
 prepareRecognizer(locale: defaultLocale)
 }

Multimedia

[232]

Now override the viewDidAppear function to ask for authorization from the11.
user to access speech recognition:

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 SFSpeechRecognizer.requestAuthorization { authStatus
 in
 /*
 The callback may not be called on the main thread.
 Add an operation to the main queue to update the
 record button's state.
 */
 OperationQueue.main.addOperation {
 switch authStatus {
 case .authorized:
 self.recordButton.isEnabled = true
 case .denied:
 self.recordButton.isEnabled = false
 self.recordButton.setTitle("User denied
 access to speech recognition", for:
 .disabled)
 case .restricted:
 self.recordButton.isEnabled = false
 self.recordButton.setTitle("Speech
 recognition restricted on this device",
 for: .disabled)
 case .notDetermined:
 self.recordButton.isEnabled = false
 self.recordButton.setTitle("Speech
 recognition not yet authorized", for:
 .disabled)
 }
 }
 }
 }

Now update the didClickOnRecordButton function to check, first, whether12.
audioEngine is running or not and, based on that, we can stop it or start
recording:

 @IBAction func didClickOnRecordButton(_ sender:
 AnyObject) {
 if audioEngine.isRunning {
 audioEngine.stop()
 recognitionRequest?.endAudio()
 self.recordButton.isEnabled = false
 self.recordButton.setTitle("Stopping", for:

Multimedia

[233]

 .disabled)
 } else {
 try! startRecording()
 self.recordButton.setTitle("Stop recording", for:
 [])
 }
 }

Now let's implement the recording function:13.

 private func startRecording() throws {
 // Cancel the previous task if it's running.
 if let recognitionTask = recognitionTask {
 recognitionTask.cancel()
 self.recognitionTask = nil
 }
 let audioSession = AVAudioSession.sharedInstance()
 try
 audioSession.setCategory(AVAudioSessionCategoryRecord)
 try
 audioSession.setMode(AVAudioSessionModeMeasurement)
 try audioSession.setActive(true, with:
 .notifyOthersOnDeactivation)
 recognitionRequest =
 SFSpeechAudioBufferRecognitionRequest()
 guard let inputNode = audioEngine.inputNode else {
 fatalError("Audio engine has no input") }
 guard let recognitionRequest = recognitionRequest
 else { fatalError("Unable to create a
 SFSpeechAudioBufferRecognitionRequest object")
 }
 // Configure request so that results are returned before audio
 recording is finished
 recognitionRequest.shouldReportPartialResults =
 true
 // A recognition task represents a speech recognition session.
 // We keep a reference to the task so that it can be cancelled.
 recognitionTask =
 speechRecognizer.recognitionTask(with:
 recognitionRequest) { result, error in
 var isFinal = false
 if let result = result {
 self.speechTextView.text =
 result.bestTranscription.formattedString
 isFinal = result.isFinal
 }
 if error != nil || isFinal {
 self.audioEngine.stop()

Multimedia

[234]

 inputNode.removeTap(onBus: 0)
 self.recognitionRequest = nil
 self.recognitionTask = nil
 self.recordButton.isEnabled = true
 self.recordButton.setTitle("Start Recording",
 for: [])
 }
 }
 let recordingFormat =
 inputNode.outputFormat(forBus: 0)
 inputNode.installTap(onBus: 0, bufferSize: 1024,
 format: recordingFormat) { (buffer:
 AVAudioPCMBuffer, when: AVAudioTime) in
 self.recognitionRequest?.append(buffer)
 }
 audioEngine.prepare()
 try audioEngine.start()
 self.speechTextView.text = "(listening...)"
 }

Before we start running, let's add the following keys to the Info.plist file so14.
that users will get a usage description in an alert before using speech and
recognition:

 NSSpeechRecognitionUsageDescription
 NSMicrophoneUsageDescription

Multimedia

[235]

Now build and run the app; the app will first ask for permission to access speech15.
recognition:

Multimedia

[236]

Once you click on the Start Recording button, it will ask you for permission to16.
access the Microphone:

You will note that the messages we set in the Info.plist file are being17.
displayed on the alerts.

Multimedia

[237]

Now the view will be ready for recording:18.

Multimedia

[238]

Now, try to speak and you will note that the speech recognizer is working and19.
that what you're saying is displayed on the text view:

As you see, the power of the new framework is that it lets you use the feature to recognize
what the user is saying to convert it to text so that you can use it in the app.

We first create an instance of SFSpeechRecognizer using the locale (language) that you
want to use. The default locale that we have used in the app is en-US, which is the default
device locale. You can use a different locale from the currently supported locales, and you
can access them by calling SFSpeechRecognizer.supportedLocales().

Then, we asked the user for authorization to access Speech Recognition by calling
SFSpeechRecognizer.requestAuthorization, which will tell you the current
authorization status.

Multimedia

[239]

In the startRecording() function, we set a reference to share the audio session by calling
AVAudioSession.sharedInstance() and then we set the category mode to
AVAudioSessionCategoryRecord to record and silence any playback audio. Then, we
asked for a recognition request by calling SFSpeechAudioBufferRecognitionRequest.
The request will be used to create a recognition task by calling
speechRecognizer.recognitionTask. In the completion handler, we will get a reference
to SFSpeechRecognitionTask, from which you can get the transcript by calling
result.bestTranscription.formattedString.

Playing videos
In this section, we will deal with videos instead of audio files. Playing videos is one of the
most common tasks in iOS apps to play movies, shows, ads, or even tutorials for your app.
We will look at the various ways of playing videos and how can you play a video in the
picture in picture mode for iPad multitasking.

Getting ready
We will use some sample video files from http://www.sample-videos.com/, which has a
huge list of different sizes, resolutions, and formats of videos that you can use in testing,
and all of them are free.

How to do it...
Perform the following steps to add a video:

Let's, as usual, create a new Xcode project with the Single View Application1.
template called PlayingWithVideos.
For the demo app, we have downloaded the 1280 * 720 (5 MB) file to use in2.
testing.

Ensure that you have copied the video file in the Xcode project, as we will
read the file from the main bundle.

http://www.sample-videos.com/

Multimedia

[240]

We will use AVPlayerViewController to display the video file. To embed a3.
view controller in the ViewController screen that we have, we will use the
Container view that we talked about earlier.
Go to Object Library and drag a Container view with the following constraints:4.

 Container.leading = Superview.leading
 Container.trailing = Superview.trailing
 Container.height = 250
 Container.top = Superview.top

When you add the Container, you will note that it's embedding another sample5.
view controller. Remove this as we will embed an AVPlayerViewController.
Now, from Object Library, drag an AVPlayerViewController to the6.
storyboard. Then, click on the container and, while holding the ctrl key, drag the
Container view to the AVPlayerViewController. A list like the following will
be shown; select Embed:

The storyboard should look like this when you embed the7.
AVPlayerViewController:

Multimedia

[241]

Now, select the embed segue and change its identifier to showPlayerController.8.
Now let's write some code. Open ViewController.swift and add the9.
following import statement:

 import AVKit

Then, add the following property to have a reference to the player view10.
controller:

 var playerViewController: AVPlayerViewController?

To get a reference to the view controller once it's been created from the11.
storyboard, we will override the prepareForSegue function:

 override func prepare(for segue: UIStoryboardSegue,
 sender: Any?) {
 if segue.identifier == "showPlayerController"{
 self.playerViewController = segue.destination as?
 AVPlayerViewController
 preparePlayerViewController()
 }
 }

Multimedia

[242]

After getting a reference to the player view controller, we will prepare it to play12.
the sample video file by calling preparePlayerViewContoller():

 private func preparePlayerViewController(){
 if let playerVC = self.playerViewController{
 let itemURL = Bundle.main.url(forResource:
 "SampleVideo", withExtension: "mp4")
 playerVC.player = AVPlayer(url: itemURL!)
 }
 }

Now build and run the app; you will see something like this:13.

Multimedia

[243]

Now the video player has been added and you can use the native controls to
pause, resume, seek, navigate to fullscreen, and see the timer. What if we
want to display custom controls or embed the video view as a subview?

To do this, we will now display the video but in a totally different way --using14.
layers.
Add the following property to ViewController.swift:15.

 var playerLayer: AVPlayerLayer?

Now let's add a button at the bottom of the screen with the title Play and link an16.
IBAction to it, like this:

 @IBAction func didClickPlay(_ sender: AnyObject) {
 if let layer = self.playerLayer{
 layer.player?.play()
 }
 }

Now, add the following function and call it from the viewDidLoad function:17.

 private func addVideoLayer(){
 let itemURL = Bundle.main.url(forResource:
 "SampleVideo", withExtension: "mp4")
 let player = AVPlayer(url: itemURL!)
 let playerLayer = AVPlayerLayer(player: player)
 playerLayer.position = CGPoint(x: 0, y: 300)
 playerLayer.frame = CGRect(x: 0, y: 300, width:
 self.view.bounds.width, height: 200)
 self.playerLayer = playerLayer
 self.view.layer.addSublayer(playerLayer)
 }

Multimedia

[244]

Now build and run; you will see another player layer like this:18.

How it works...
In the previous demo, we saw the various ways of showing video content in an iOS app.
The first way was very easy and provides everything that a user could need to play video,
such as pausing, resuming, seeking, or navigating to fullscreen. In this way, we use
AVPlayerViewController that we have embedded inside a container view. The only
thing that the AVPlayerViewController instance needs is setting the player property to
an AVPlayer instance, which we have created with the file URL.

The second way provides more customization and handling for everything. We create a
player layer and add it as a sublayer. The AVPlayerLayer class is a special type of
CALayer that you can instantiate and add as a sublayer to play video content. The most
important thing is to set the frame of the layer before adding it as a sublayer.

Multimedia

[245]

There's more...
A new feature has been added in iPad, which is multitasking. With multitasking, you can
work with two apps at the same time and both of them will be in the foreground state. We
have three types of multitasking in iPad, which will be covered further on.

Slide Over
You can interact with a secondary app without leaving the current app. By swiping left
from the right edge of your iPad, you can pick the secondary app to overlay your primary
app (in RTL language, the secondary app appears on the left side by swiping from the left
edge). Thanks to Size classes in the interface builder, you see how the Calendar app in the
following screenshot has adapted itself to the new width:

Multimedia

[246]

In earlier chapters, we talked about Size classes and Xcode 8 gives you the ability to
configure your view while being in the size classes mode. In the following screenshot, you
will see the different size classes in iPad mode:

Split View
After you select your secondary app to slide over your primary app in the Slide Over
mode, you will see a button at the center, outside the Slide Over area. When you tap on this
button, you tell the system to enter the Split View mode. In the Split View mode, the two
apps will be displayed and adapted to the new width and the user can interact with two
apps at the same time:

Multimedia

[247]

As you see, a divider will be displayed between the two apps and users can drag this
divider to resize the two apps, as follows:

Users can drag the divider all the way to the left to dismiss the secondary app. In the same
way, users can drag the divider all the way to the right and, in that case, the primary app
will go into the background and the secondary app will become the primary app.

Multimedia

[248]

Picture-in-Picture
In the Picture-in-Picture (PiP) mode, you can add a floating window of a playing video
while the two apps are in the foreground. This video comes from a third app and this app is
in the background. If you tried to open our demo app on an iPad, you would see a new
button in the video controls that allows you to enter the PiP mode:

When you click on it, the floating window will appear and can be accessed while opening
any other app:

Multimedia

[249]

Capturing photos and videos
Most of the apps that we develop require a way to pick or capture a photo or video to use in
the app. All social networking apps have the feature of sharing images and they ask you to
upload images or videos from Camera or Photos. Similarly for other types of apps such as,
chatting, and image editing apps. This kind of feature is very simple to implement in iOS
and, in this section, we will see how to provide options for users to pick images.

Multimedia

[250]

How to do it...
To provide options for users to pick an image, perform the following steps:

Create a new Xcode project with the Single View Application template and1.
name it ImageVideoPicker.
Add a button at the center of the screen to pick a photo or video. Change the title2.
of the button to Pick photo / video.
Add IBAction to the button in ViewController.swift, like this:3.

 @IBAction func didClickOnPickButton(_ sender:
 AnyObject) {
 }

We will ask the user to choose whether to pick a photo/video from the saved4.
photos or by capturing from camera before picking.
First, let's add the code that will display an action sheet to the user to select an5.
action from:

 @IBAction func didClickOnPickButton(_ sender:
 AnyObject) {
 let actionSheetController = UIAlertController(title:
 "Pick media", message: "From where to you want to
 pick your photo or video", preferredStyle:
 .actionSheet)
 let photosAction = UIAlertAction(title: "Photos",
 style: .default) { (action) in
 self.openPickerWithSourceType(type:
 .photoLibrary)
 }
 let cameraAction = UIAlertAction(title: "Camera",
 style: .default) { (action) in
 self.openPickerWithSourceType(type: .camera)
 }
 let cancelAction = UIAlertAction(title: "Cancel",
 style: .cancel, handler: nil)
 actionSheetController.addAction(photosAction)
 actionSheetController.addAction(cameraAction)
 actionSheetController.addAction(cancelAction)
 self.present(actionSheetController, animated: true,
 completion: nil)
 }

Multimedia

[251]

The preceding code will display an action sheet to ask the user to pick an action.6.
The openPickerWithSourceType function will be called when a user selects an
option. The function will look like this:

 func openPickerWithSourceType(type:
 UIImagePickerControllerSourceType){
 let imagePickerViewController =
 UIImagePickerController()
 imagePickerViewController.mediaTypes = [kUTTypeImage
 as String, kUTTypeMovie as String]
 imagePickerViewController.sourceType = type
 self.present(imagePickerViewController, animated:
 true, completion: nil)
 }

Now we are almost ready; but if you tried to run the app, it would crash, as some7.
descriptions are yet to be added to the Info.plist file.
Open the Info.plist file and add the following keys with any description you8.
want:

 <key>NSCameraUsageDescription</key>
 <string>Capturing images</string>
 <key>NSMicrophoneUsageDescription</key>
 <string>Capturing Videos</string>
 <key>NSPhotoLibraryUsageDescription</key>
 <string>Picking images or videos</string>

Multimedia

[252]

Now try to build and run and then click on the pick button:9.

If you tried to select Camera for example, a screen like this would be presented to10.
capture a photo or video:

Multimedia

[253]

To handle the canceling or choosing of media, you have to conform to11.
UIImagePickerControllerDelegate protocol. Add the following line to the
openPickerWithSourceType function:

 imagePickerViewController.delegate = self

Now add the following extension to conform to the protocol:12.

 extension ViewController: UIImagePickerControllerDelegate,
 UINavigationControllerDelegate{
 func imagePickerController(_ picker:
 UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : Any])
 {
 print(info)
 let type = info[UIImagePickerControllerMediaType] as!
 String
 if type == kUTTypeImage as String{
 print("Done picking image")
 let image =
 info[UIImagePickerControllerOriginalImage] as!
 UIImage
 }
 else{
 print("Done picking video")

Multimedia

[254]

 if let videoURL =
 info[UIImagePickerControllerMediaURL]{
 print(videoURL)
 }
 }
 picker.dismiss(animated: true, completion: nil)
 }
 func imagePickerControllerDidCancel(_ picker:
 UIImagePickerController) {
 picker.dismiss(animated: true, completion: nil)
 }
 }

How it works...
Picking images or videos is pretty easy in iOS thanks to the UIImagePickerController
class; it offers plenty of APIs to customize the source type or media type of the
chosen media. In the sample demo that we just created, we first created an instance of
UIImagePickerController and then we set the media types. The mediaTypes property
is an array of all media types that you want to deal with; in our demo, we set it to
[kUTTypeImage as String, kUTTypeMovie as String], which means images and videos.

After we identified the media types, we set the source type. We have the camera source
type, which means we will get photos or videos from the camera. The photoLibrary
source type allows you to pick an image or a video from the photos library of the device. To
get callbacks after capturing or selecting media, we conformed to
UIImagePickerControllerDelegate protocol. The delegate has two methods:
didFinishPickingMediaWithInfo and imagePickerControllerDidCancel. The first
method will be called when the user picks their chosen media and then a dictionary that has
all the media information will be passed. The second method will be called when a user
clicks on cancel and, in this case, we should dismiss the image picker controller.

Using filters with CoreImage
You may have the Instagram app in your device or will at least have come across a few
photo editing apps and edited some photos by applying filters to enhance or change the
look of your photo. Nowadays, photo editing apps are invading the App Store with unique
and funny filters that you can use. In this section, we will see how to deal with the
CoreImage framework to apply built-in filters to photos.

Multimedia

[255]

How to do it...
To apply built-in filters to photos, perform the following steps:

Create a new Xcode project with the Single View Application template and1.
name it ImageFilters.
Add UIImageView with the following constraints and set any image of your2.
choice:

 ImageView.leading = Superview.leading
 ImageView.trailing = Superview.trailing
 ImageView.top = Superview.top
 ImageView.height = Superview.height * 0.5

Then, add UIPickerView with the following constraints:3.

 PickerView.leading = Superview.leading
 PickerView.trailing = Superview.trailing
 PickerView.bottom = Superview.bottom
 PickerView.height = Superview.height * 0.5

The design should be something similar to this:4.

Multimedia

[256]

Now set the delegate and data source of UIPickerView to the ViewController,5.
like this:

Now add the following IBOutlets for the image view and picker view:6.

 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var filtersPickerView: UIPickerView!

Let's add the following properties to have reference to the original image and the7.
list of filters:

 private var filters: [String]!
 private var originalImage: UIImage!

Now let's prepare the filters that we will use in the demo project. Edit the8.
viewDidLoad function like this:

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 typically from a nib.
 self.originalImage = imageView.image
 self.filters = prepareFilters()
 self.filters.insert("Original", at: 0)
 }

Here is the prepareFilters() function that will be called to prepare filters:9.

Multimedia

[257]

 func prepareFilters() -> [String]{
 let names = CIFilter.filterNames(inCategory:
 kCICategoryBuiltIn).filter { (name) -> Bool in
 if ["CINinePartStretched", "CINinePartTiled",
 "CIDroste"].contains(name){
 return false
 }
 guard let filter = CIFilter(name: name) else
 {fatalError()}
 guard let categories =
 filter.attributes[kCIAttributeFilterCategories]
 as? [String] else {fatalError()}
 if categories.contains(kCICategoryGradient) {
 return false
 }
 let versionStr =
 filter.attributes[kCIAttributeFilterAvailable_iOS] as?
 String ?? "0"
 let versionInt = Int(versionStr)
 if versionInt == 10 {
 return true
 } else {
 return false
 }
 }
 return names
 }

Here, we prepared a list of filters that are available in iOS. We filter them to
pick only the ones that can be directly applied to the image and don't require
additional settings that are out of our scope.

Filters are now ready; let's implement the picker delegate and data source:10.

 extension ViewController: UIPickerViewDelegate{
 func pickerView(_ pickerView: UIPickerView, titleForRow
 row: Int, forComponent component: Int) -> String? {
 return filters[row]
 }
 func pickerView(_ pickerView: UIPickerView,
 didSelectRow row: Int, inComponent component: Int) {
 if row == 0 {
 imageView.image = self.originalImage
 return
 }
 DispatchQueue.global(qos: .default).async {
 self.applyFilter(name: self.filters[row], handler:
 { (image) in

Multimedia

[258]

 DispatchQueue.main.async(execute: {
 self.imageView.image = image
 })
 })
 }
 }
 }
 extension ViewController: UIPickerViewDataSource{
 func numberOfComponents(in pickerView: UIPickerView) ->
 Int {
 return 1
 }
 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return self.filters.count
 }
 }

Now add the following function that will apply the filter:11.

 func applyFilter(name: String, handler: ((UIImage?) ->
 Void)) {
 let inputImage = CIImage(image: self.originalImage)!
 guard let filter = CIFilter(name: name) else
 {fatalError()}
 let attributes = filter.attributes
 if attributes[kCIInputImageKey] == nil {
 print("\(name) has no inputImage property.")
 handler(nil)
 return
 }
 filter.setValue(inputImage, forKey: kCIInputImageKey)
 filter.setDefaults()
 // Apply filter
 let context = CIContext(options: nil)
 guard let outputImage = filter.outputImage else {
 handler(nil)
 return
 }
 let size = self.imageView.frame.size
 var extent = outputImage.extent
 let scale: CGFloat!
 // some outputImage has infinite extents
 if extent.isInfinite {
 scale = UIScreen.main.scale
 extent = CGRect(x: 0, y: 0, width: size.width,
 height: size.height)
 } else {

Multimedia

[259]

 scale = extent.size.width /
 self.originalImage.size.width
 }
 guard let cgImage =
 context.createCGImage(outputImage, from: extent)
 else {fatalError()}
 let image = UIImage(cgImage: cgImage, scale: scale,
 orientation: .up)
 handler(image)
 }

This function applies a filter with a given name to the original image that we
have. We first get an instance of CIFilter using the given name. We add the
original image as attribute input to the filter and then we will get the output,
which is the filtered image.

Now, everything should be ready; try to play around with the filters. Here is the12.
filtered image when you filter it with the X-Ray filter:

Multimedia

[260]

Here's the image when you filter it with the Thermal filter:

Multimedia

[261]

How it works...
We started building our demo by creating the UI of the demo by adding UIImageView and
UIPickerView to pick the filter that you want to apply. Building UI will become very
straightforward when you master using the storyboard and Autolayout. After creating the
UI, we will start loading the filters.

In loading filters, we called the CIFilter.filterNames(inCategory:
kCICategoryBuiltIn) function, which loads all the filters available in the CoreImage
framework and are built-in, not plugged-in. We filtered this list by calling the
filter(name) function. We first excluded these filters ["CINinePartStretched",
"CINinePartTiled", "CIDroste"] because they are complex and need more
configuration; you may have a look at them later. Then, we excluded the filters whose
categories have the kCICategoryGradient category, as it also needs more configuration
with color. Then, we excluded the filters that are not compatible with iOS 10 so that we can
display only the new filters that come in iOS 10, and also for simplicity.

Then, we implemented the delegate and data source of UIPickerView to display the list of
filters and handle the selection of the filter. When a user selects a filter, we get the selected
filter and apply it to the image.

To apply a filter, you have to create an instance of the filter using its name, for example,
CIFilter(name: name) and then set its properties. The most important property is the
input image, which is the source image that will be filtered:

filter.setValue(inputImage, forKey: kCIInputImageKey)
filter.setDefaults()

After setting all the properties and settings, just call let outputImage =
filter.outputImage to get the output image and update the UI.You will note that the
messages

8
Concurrency

In this chapter, we will cover the following topics:

Using Dispatch queues
Using Operation queues
Using Operation subclassing

Introduction
Concurrency is always considered a nightmare for many developers. I partially agree with
these developers and think that concurrency is a big headache if you don't understand it
well and don't know how to use it. In this chapter, we will try to get your hands dirty
working with concurrency. We will understand what's going on and see how simple it is
with the APIs that iOS provides, to work with it and harness its capabilities. Concurrency is
a two-sided weapon; it can be helpful and harmful at the same time. It helps you to write
efficient, fast executing, and responsive apps, but at the same time, misusing it will ruin
your app memory. That's why, before starting to write any concurrency code, think why
you need concurrency and which API you need to use to solve this problem? In iOS, we
have different APIs that can be used. In this chapter, we will talk about two of the most
commonly used APIs: Operation and Dispatch queues.

Concurrency

[263]

Using Dispatch queues
In this section, we will talk about the most commonly used API in concurrency, which is
the General Central Dispatch (GCD) queues. GCD manages concurrent code and executes
operations asynchronously at the Unix level of the system. GCD manages tasks in
something called queues. A queue, as we know, is a data structure that manages items in
the order of First In First Out (FIFO). Queues in programming mimic the actual queues that
we see in real life, which follow the first come first served concept. In Dispatch queues, the
tasks in your iOS app will be submitted to queues in the form of blocks of code.

Getting ready
Before getting started with a demo, there is something that needs to be highlighted.
Dispatch queues have two types of queues. Let's look at the difference between them in
brief:

Serial Queues: In serial queues, you can execute only one task at a time. All the
submitted tasks will respect each other and will be executed serially. You can, of
course, keep executing tasks concurrently using multiple serial queues. Serial
queues can be used when you have a shared resource and you want to guarantee
a serialized access to the resource to avoid any race conditions.
Concurrent Queues: In concurrent queues, you can execute multiple tasks in
parallel. The tasks (blocks of codes) start in the order in which they are added in
the queue. However, their executions occur concurrently and they don't have to
wait for each other to start. Concurrent queues guarantee that tasks start in the
same order, but you will not know the order of execution, execution time, or the
number of tasks being executed at a given point.

When you decide to work with GCD, you have to know which type of queue you will use.
You can create any number of serial queues and the system already provides you with a
ready-to-use serial queue that is the main Dispatch queue. The main Dispatch queue
executes tasks in the application's main thread. All tasks related to updating the app UI and
updating the UIViews will be submitted there. Also, because it's a serial queue, only one
task will be executed at a time and that's why performing any heavy job in the main queue
will block your UI.

On the other hand, in concurrent queues, the system provides us with four concurrent
queues, called General Dispatch Queues. The queues are global and can be differentiated
only by their priority levels. We have High, Default, Low, and Background queues, and
they are ordered based on their priorities. The High queue has the highest priority. Let's see
how to use the GCD in action.

Concurrency

[264]

How to do it...
To see GCD in action, perform the following steps:

Create a new Xcode project with the Single View Application template and with1.
the name GCDDemo.
Open Main.storyboard and add an image view with the following constraints in2.
the view controller:

 ImageView.leading = Superview.leading
 ImageView.top = Superview.top
 ImageView.width = Superview.width * 0.5
 ImageView.height = Imageview.width

In the same way, add 3 more image views to be like a grid:3.

Now let's add a slider that will just be used to check whether we did any4.
operation that blocked the UI or not.

Concurrency

[265]

The final UI of the screen will look like this:5.

Now, let's take IBOutlets to the image views:6.

 @IBOutlet weak var imageView1: UIImageView!
 @IBOutlet weak var imageView2: UIImageView!
 @IBOutlet weak var imageView3: UIImageView!
 @IBOutlet weak var imageView4: UIImageView!

Concurrency

[266]

Add the following URLs for the image that we will present:7.

 let url1 =
 "http://www.blirk.net/wallpapers/1280x720/kitten-wallpaper-17.jpg"
 let url2 =
 "http://www.blirk.net/wallpapers/1280x720/kitten-wallpaper-16.jpg"
 let url3 =
 "http://www.blirk.net/wallpapers/1280x720/kitten-wallpaper-15.jpg"
 let url4 =
 "http://www.blirk.net/wallpapers/1280x720/kitten-wallpaper-14.jpg"

Add the loadImages() function and call it from viewDidAppear to start8.
loading images from the remote server:

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 loadImages()
 }
 func loadImages(){
 do{
 let data1 = try Data(contentsOf: URL(string: url1)!)
 self.imageView1.image = UIImage(data: data1)
 let data2 = try Data(contentsOf: URL(string: url2)!)
 self.imageView2.image = UIImage(data: data2)
 let data3 = try Data(contentsOf: URL(string: url3)!)
 self.imageView3.image = UIImage(data: data3)
 let data4 = try Data(contentsOf: URL(string: url4)!)
 self.imageView4.image = UIImage(data: data4)
 }
 catch{
 print(error)
 }
 }

Concurrency

[267]

If you try to run the app now, you will see that the slider is blocked till the four9.
images finish loading:

Here, we are waiting for the images to load and, when you try to move the slider,10.
it will not respond, as the UI is blocked:

Concurrency

[268]

To fix issues like these and stop blocking the UI, we will use GCD. Update the11.
loadImages() function as follows:

 func loadImages(){
 let queue = DispatchQueue.global(qos: .default)
 queue.async {
 let data = try! Data(contentsOf: URL(string: self.url1)!)
 DispatchQueue.main.async {
 self.imageView1.image = UIImage(data: data)
 }
 }
 queue.async {
 let data = try! Data(contentsOf: URL(string: self.url2)!)
 DispatchQueue.main.async {
 self.imageView2.image = UIImage(data: data)
 }
 }
 queue.async {
 let data = try! Data(contentsOf: URL(string: self.url3)!)
 DispatchQueue.main.async {
 self.imageView3.image = UIImage(data: data)
 }
 }

 queue.async {
 let data = try! Data(contentsOf: URL(string: self.url4)!)
 DispatchQueue.main.async {
 self.imageView4.image = UIImage(data: data)
 }
 }
 }

Simply, we created a new queue to perform all heavy tasks inside it without
doing it in the main queue. For each queue.async call, we submit a task to
the queue.

Concurrency

[269]

Now build and run; you will see that the images are loaded asynchronously and12.
there is no blocking of the UI:

You will be able to play with the slider while loading the images, as all heavy operations
have now been moved to separate threads.

How it works...
We started our app by adding four image views so that their images were allocated
remotely and needed to be fetched. We first started by loading them in the main thread. As
we saw in this approach, the response was terrible, as the UI became unresponsive and got
blocked completely. To solve this issue, we used Dispatch queues.

Concurrency

[270]

The first thing that you need to get before working with Dispatch queues is a reference to
the queue itself. We called DispatchQueue.global(qos: .default) to get a reference
to one of the global queues, which is the default queue. This queue is a concurrent queue
where all tasks will be run concurrently, but in the same order. After you get the reference
to the queue, you can submit any task easily by calling queue.async {}. Inside the curly
braces, you put your block of code that represents the task.

We added four tasks to fetch the four images from the server. Once we get the image from
the server in the background, we need to update the UI. We can't update the UI in the
default queue because all the UI related tasks should be executed in the main queue. To
return to the main queue, you can simply call DispatchQueue.main.async, which
submits a task to the main thread.

There's more...
In the preceding example, you can use a serial queue instead of a concurrent one. If you
want to do that, you have to create a new queue with a type serial queue. You can't use the
global serial queue because it's the main queue. To do this, you can do the same thing we
did before, but change only the queue reference to be something like this:

let serialQueue = DispatchQueue(label: "serialQueue")

In this line, you created a new serial queue with name serialQueue. In the same way, you
can create a new concurrent queue instead of using the global queue, as shown:

let concurrentQueue = DispatchQueue(label:"concurrentQueue", attributes:
.concurrent)

Using Operation queues
In OperationQueue, we will see another way to perform concurrency in iOS.
OperationQueue is a higher-level abstraction of the queue model; on the other hand, GCD
is a lower-level C API. OperationQueue is built on top of GCD but in a more object-
oriented fashion. In this section, we will perform the same demo but with
OperationQueue, and we will see how simple it is, as with GCD.

Concurrency

[271]

Getting ready
Before getting started with OperationQueue, let's talk about how it is different from GCD:

It doesn't follow FIFO and doesn't conform to First-In-First-Out like GCD. There1.
are two reasons why it doesn't stick to FIFO. The first one is that you can set an
execution priority to the operations so that the operation with the highest priority
will be executed first, regardless of its order in the queue. The second thing is that
you can add dependency between operations. Dependency means that some
operations will not be executed unless some other operation is executed first, as
some operation(s) depend on others.
All operations are executed concurrently. There are no serial queues in Operation2.
queues and, by default, they run concurrently. Using the feature of dependency
in Operation queues, you can do a workaround to support serial queues by
adding dependency between each operation so that they wait for each other to be
executed.
Tasks submitted to the Operation queue should be in the form of an Operation3.
class. Operation class is an abstract class and you can't use it directly, but you
have to use Operation subclasses. In iOS, we are provided with two concrete
subclasses to Operation, which are BlockOperation and
InvocationOperation. You can still create your own operation which extends
the Operation class and add your custom work as well.

Operation class has some advantages that make it a great choice to use instead of GCD. I
will list these advantages in brief:

Supports dependency: We have already mentioned this in the preceeding
paragraph.
Changing the execution priority: The ability to change the priority of execution
by setting the queuePriority property to one of these values:

 public enum QueuePriority : Int {
 case veryLow
 case low
 case normal

 case high

 case veryHigh
 }

Concurrency

[272]

Cancellation: You can cancel any particular operation or ask the queue to cancel
all operations inside. When you cancel an operation, the effect will depend on the
state of the operation. If the operation has already been executed, the cancellation
has no effect. If the operation is being executed, the system will not be able to
cancel it, but it will mark the cancelled property to true in the operation. The last
state is when the operation is yet to be executed; in that case, the operation will
not be executed and will be removed from the queue.
Each operation has three useful properties that you can use:

ready
finished
cancelled
The ready property will be set to true when the operation is about
to be executed, the finished property is set to true once the
operation execution is done, and the cancelled property will be
set to true if the operation is cancelled.

Completion block: A completion block is to be called once the finished property
is set to true.

Now you have all the information you need to get started with Operation queues.

How to do it...
To get started with Operation queues, perform the following steps:

Let's use the same demo, but Operation queues instead of GCD.1.
Add the following function to call it instead of the loadImages() function:2.

 func loadImagesWithOperationQueues(){
 let queue = OperationQueue()
 queue.name = "Loaidng Images Queue"
 let operation1 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url1)!)
 OperationQueue.main.addOperation {
 self.imageView1.image = UIImage(data: data)
 }
 }
 queue.addOperation(operation1)
 let operation2 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url2)!)

Concurrency

[273]

 OperationQueue.main.addOperation {
 self.imageView2.image = UIImage(data: data)
 }
 }
 queue.addOperation(operation2)
 let operation3 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url3)!)
 OperationQueue.main.addOperation {
 self.imageView3.image = UIImage(data: data)
 }
 queue.addOperation(operation3)
 let operation4 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url4)!)
 OperationQueue.main.addOperation {
 self.imageView4.image = UIImage(data: data)
 }
 }
 queue.addOperation(operation4)
 }

Now build and run; similar behavior is observed:3.

Now, let's see how to use the completion handler. Edit the function to set the4.
completionBlock property with a block to be called once the operation is done:

Concurrency

[274]

 func loadImagesWithOperationQueues(){
 let queue = OperationQueue()
 queue.name = "Loaidng Images Queue"
 let operation1 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url1)!)
 OperationQueue.main.addOperation {
 self.imageView1.image = UIImage(data: data)
 }
 }
 operation1.completionBlock = {
 print("Image 1 completed")
 }
 queue.addOperation(operation1)
 let operation2 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url2)!)
 OperationQueue.main.addOperation {
 self.imageView2.image = UIImage(data: data)
 }
 }
 operation2.completionBlock = {
 print("Image 2 completed")
 }
 queue.addOperation(operation2)
 let operation3 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url3)!)
 OperationQueue.main.addOperation {
 self.imageView3.image = UIImage(data: data)
 }
 }
 operation3.completionBlock = {
 print("Image 3 completed")
 }
 queue.addOperation(operation3)
 let operation4 = BlockOperation {
 let data = try! Data(contentsOf: URL(string:
 self.url4)!)
 OperationQueue.main.addOperation {
 self.imageView4.image = UIImage(data: data)
 }
 }
 operation4.completionBlock = {
 print("Image 4 completed")
 }
 queue.addOperation(operation4)
 }

Concurrency

[275]

The code creates a new instance of OperationQueue to submit the heavy
tasks to it. Each operation is created as an instance of BlockOperation and
is responsible for downloading the image and updating the UI to render the
image. To add an operation in the main queue, we call
OperationQueue.main.addOperation.

Now run the demo. You will see something like this in the console:5.

 Image 2 completed
 Image 3 completed
 Image 1 completed
 Image 4 completed

How it works...
First, we started to create a new queue to perform our concurrent tasks. The queue can be
named by setting the name property. The name works as an identifier to the queue, and it is
useful only in debugging or in error handling and helps us to know which queue has the
issue. Then, we created four operations using the built-in BlockOperation operation class.
Each operation is responsible for downloading an image in the background and updating
the UI. Once your operation is ready, you just call the addOperation function, which
submits the operation to the block immediately.

The completionBlock property is very useful to track the completion of
any operation you have in the queue.

Next, we have the image from the server and need to update the UI. You can't update the
UI inside the created queue as updating the UI needs to be done only in the main queue. To
get the main queue, just call OperationQueue.main, which returns reference to the main
queue. Once you get the reference, you can submit a new operation with a block to update
the image view.

Concurrency

[276]

Using Operation subclassing
Most often, operations that you need to perform are better encapsulated in a custom
subclass of the Operation class. We have already worked with BlockOperation in the
previous demo, but we saw a lot of redundancy in writing code and it's not customized. In
this section, we will implement the same demo and see how we build a custom Operation
class to perform the task that will be done concurrently.

How to do it...
To build a custom Operation class, perform the following steps:

In our Xcode project, add a new Swift file with a class, named1.
ImageDownloader, which extends the Operation class:

Concurrency

[277]

In the ImageDownloader.swift file, add the following code:2.

 class ImageDownloader: Operation {
 let imgURL: URL
 var downloadedImage: UIImage?
 init(imageURL: URL) {
 self.imgURL = imageURL
 }
 override func main() {
 if self.isCancelled {
 return
 }
 do{
 let data = try Data(contentsOf: self.imgURL)
 if self.isCancelled {
 return
 }
 self.downloadedImage = UIImage(data: data)
 }
 catch{
 print(error)
 }
 }
 }

Now, go back to ViewController.swift and add the following functions:3.

 func loadImagesWithCustomOperations(){
 let queue = OperationQueue()
 queue.name = "LoadingQueue"
 self.addImageOperationToQueue(queue: queue, imgURL:
 URL(string: self.url1)!, imageView:
 self.imageView1)
 self.addImageOperationToQueue(queue: queue, imgURL:
 URL(string: self.url2)!, imageView:
 self.imageView2)
 self.addImageOperationToQueue(queue: queue, imgURL:
 URL(string: self.url3)!, imageView:
 self.imageView3)
 self.addImageOperationToQueue(queue: queue, imgURL:
 URL(string: self.url4)!, imageView:
 self.imageView4)
 }
 func addImageOperationToQueue(queue: OperationQueue,
 imgURL: URL, imageView: UIImageView){
 let imageDownloader = ImageDownloader(imageURL:
 imgURL)
 imageDownloader.completionBlock = {

Concurrency

[278]

 OperationQueue.main.addOperation {
 if let img = imageDownloader.downloadedImage{
 imageView.image = img
 }
 }
 }
 queue.addOperation(imageDownloader)
 }

Change the call of loading images in viewDidAppear like this:4.

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 loadImagesWithCustomOperations()
 }

Now build and run; the loading of the images is completed perfectly and5.
concurrently now.

How it works...
In the preceding demo, we saw how we can use the Operation subclasses to create custom
operations. Using custom operations instead of the native Operation classes, such as
BlockOperation, is highly recommended to encapsulate the logic of the execution. To
create a custom Operation class, just create a new class that extends the Operation class.
The code that performs the execution of the operation is added inside the overridden main
function. Feel free to add any properties to the custom operation, as we did by adding
imgURL and downloadedImage. You will note that we checked the isCancelled property
multiple times in the main function. This check is very important to stop any execution or to
ignore the execution result if the operation is cancelled.

9
Location Services

In this chapter, we will cover the following topics:

Detecting user location
Displaying pins in map view
Getting directions between locations
Working with geofencing

Introduction
Every one of us, at some point in time, has used maps on a smartphone to search for
locations or get directions. GPS and location services have become a guide in our life that
facilitate us to reach any place we want or to search for locations. Now it's not a problem to
travel to an unknown place and easily get to your destination without getting lost, thanks to
GPS and location services apps. These services are not restricted to mobile phones; they're
integrated in most car models that have navigation to help you reach the place you want
safely instead of using your smartphone. In this chapter, we will give an introduction and
the necessary information you need to use in any map or navigation related app.

Detecting user location
The first thing that a user needs to know when he opens the map is where he is on the map.
Getting the user's current location helps him to get an idea of his location, nearby places,
and points of interest. To respect the user's privacy, apps can't get the user's current location
without the user granting them access to it. In this section, we will see how to ask for
permission to access location services and display the current location to the user.

Location Services

[280]

How to do it...
To help display the current location, perform the following steps:

Create a new Xcode project with the Single View Application template and with1.
name the LocationServicesDemo.
In the view controller in storyboard, embed the view controller in Navigation2.
Controller. Then, drag a navigation item from Object Library.
Add a UIBarButtonItem at the top right of the navigation item with the title3.
Locate Me.
Now, add a map view that will be responsible for displaying maps. Drag a4.
MKMapView from Object Library and place it to fill the screen, like this:

Location Services

[281]

Now we need to ask for permission to access the user's location (if we don't have5.
it) when the user clicks on the Locate Me button. Once we get permission, we
will track the user's location to display a mark on the map.
Now link an IBOutlet to the map view, like this:6.

 @IBOutlet weak var mapView: MKMapView!

Line an IBAction to the button to get the user's location:7.

 @IBAction func didClickOnLocateMe(_ sender: AnyObject) {
 }

First, let's add a function that will display an alert message to the user. We will8.
use this function to display messages to enable location services, or a warning if
the app is not authorized to get the user's location:

 func showAlertWithMessage(message: String){
 let alertController = UIAlertController(title:
 "Alert", message: message, preferredStyle: .alert)
 let action = UIAlertAction(title: "Ok", style:
 .cancel, handler: nil)
 alertController.addAction(action)
 self.present(alertController, animated: true,
 completion: nil)
 }

Now update the didClickOnLocateMe function to check whether location9.
services are already enabled in the device or not. If not, we will display a warning
alert:

 @IBAction func didClickOnLocateMe(_ sender: AnyObject) {
 if CLLocationManager.locationServicesEnabled(){
 let status =
 CLLocationManager.authorizationStatus()
 switch status {
 case .denied, .restricted:
 self.showAlertWithMessage(message: "Your app is
 not authorized to use access user's location.
 Please check device Settings")
 case .notDetermined:
 self.showLocationPermissionAlert()
 default:
 /// App is authorized to get user location.
 self.startUpdatingLocation()
 }
 }

Location Services

[282]

 else{
 showAlertWithMessage(message: "Location services is
 disabled. Please enable it from Settings.")
 }
 }

Now go to the top and add the following properties:10.

 let locationManager = CLLocationManager()
 var myLocationAnnotation: MKAnnotation!

If location services are already enabled, we will check the authorization status11.
and, based on the status, we will show the permission to start updating. Add the
following functions that are responsible for asking for permission or detecting a
user's location:

 func showLocationPermissionAlert(){
 self.locationManager.requestWhenInUseAuthorization()
 self.startUpdatingLocation()
 }

 func startUpdatingLocation(){
 self.locationManager.delegate = self
 self.locationManager.startUpdatingLocation()
 }

Now add the following extension to make the ViewController class conform to12.
the CLLocationManagerDelegate protocol:

 extension ViewController: CLLocationManagerDelegate{
 func locationManager(_ manager: CLLocationManager,
didUpdateLocations locations: [CLLocation]){
 if let location = locations.first{
 if let annotation = self.myLocationAnnotation {
 self.mapView.removeAnnotation(annotation)
 }
 let annotation = MKPointAnnotation()
 annotation.coordinate = location.coordinate
 annotation.title = "You're here!"
 self.myLocationAnnotation = annotation
 self.mapView.addAnnotation(annotation)
 }
 }
 }

Location Services

[283]

Finally, open the Info.plist file and add the following key/value:13.

 <key>NSLocationWhenInUseUsageDescription</key>
 <string>Displaying your current location on map</string>

Now build and run; the following alert will be shown when you click on the14.
Locate Me button and location services are not enabled:

Location Services

[284]

Try to enable Location Services from the Privacy options in the Settings app of15.
the device. Now try to click on the Locate Me button:

Once you click on Allow, an annotation will be displayed on the app. When you16.
click on it, it will display a label saying You're here:

Location Services

[285]

How it works...
To get access to a user's location, the location services should be enabled in the device so
that GPS can keep detecting the current location and update apps. Thus, the first thing we
did is check whether location services was enabled or not. The CLLocationManager class
has a class method, locationServicesEnabled(), which returns true if its enabled, or
false otherwise. If it's not enabled, we prompt the user to enable it from device Settings.
Before asking for permission to access location, we need to read the current authorization
status for our app. The CLLocationManager has another helper class function,
authorizationStatus(), which returns one of the following values: notDetermined,
restricted, denied, authorizedAlways, or authorizedWhenInUse.

If the status is denied or restricted, we will prompt the user, as the app is not
authorized to access location services and he has to check permissions in the device settings.
If the status is notDetermined, we will try to ask for permission to access location services.
If it's something else, it means that the app is authorized and we can check for updates.

To let the locationManager show the permission alert, we call the following code:

self.locationManager.requestWhenInUseAuthorization()

It asks the system to request authorization to access the user's location while the app is in
use. The usage description should be listed in Info.plist so that the system combines this
description in the system alert. Once everything is ready, just call the following code to stay
updated with location changes:

 self.locationManager.delegate = self
 self.locationManager.startUpdatingLocation()

To stay updated with location changes, the ViewController class should conform to
the CLLocationManagerDelegate protocol to be the delegate of the locationManager.
The didUpdateLocations function will be called and it will pass the list of locations for
the current location. You can choose any location from the array; in the demo, we've used
the first one. The location has information, such as coordinates, and this info will be used to
display an annotation on the map. Using the coordinates, we will create a new instance of
MKPointAnnotation and add it to the map. If we already have an annotation, we will
remove it before adding a new one.

Location Services

[286]

Displaying pins in map view
Pins (or annotations) are used to display markers on the map for specific locations, nearby
places, or points of interest to the user. Each annotation represents a single point
(coordinate) on the map which the user can select to get more information about the
location. Annotations have another advantage, which is that they remain fixed on the map
while the user scrolls or zooms the map; in that case, the annotation will move
appropriately.

Getting ready
Before displaying annotations on the map, we need to highlight some points related to
annotations and how they work. To display an annotation on the map, you need two
separate things:

Annotation object: An annotation object is any object that conforms to
MKAnnotation protocol. This object manages the annotation data, such as
coordinate, title, and subtitle.
Annotation view: This is any object derived from MKAnnotationView, which
manages the drawing of the visual representation of the annotation object on the
map.

The annotation object, as we discussed, is a protocol and any object can conform to this
protocol and be used as an annotation. Annotation objects are meant to be lightweight in
memory to allow smooth scrolling and zooming to the map, especially if your app deals
with a large number of annotations.

In the previous demo, we already displayed a pin to the current location. This pin is one of
the standard annotation views that the MapKit framework provides us with. Although
MapKit provides some standard views, we can still add our custom annotation views to the
map. We will see, in demos, that we don't get involved in adding the annotation view on
the map itself; instead, we use the map delegate that passes the view to the map when the
map asks for a view to the annotation, then the map will take care of dealing with view
hierarchy.

Location Services

[287]

How to do it...
To customize, let's use the demo we built in the previous section. We will see how to
customize the annotation object and the annotation view:

Add a new Swift source file for a new class, called CustomAnnotation.1.
Change the CustomAnnotation class to conform to the MKAnnotation protocol.2.
The protocol requires you to define the coordinate property so that the map view
can understand the location of the annotation:

 import UIKit
 import MapKit
 class CustomAnnotation: NSObject, MKAnnotation{
 var coordinate: CLLocationCoordinate2D
 var title: String? = ""
 var color: UIColor
 override init() {
 coordinate = CLLocationCoordinate2D()
 color = UIColor.black
 }
 init(location: CLLocationCoordinate2D) {
 self.coordinate = location
 color = UIColor.black
 }
 init(location:CLLocationCoordinate2D, color: UIColor) {
 self.coordinate = location
 self.color = color
 }
 }

The CustomAnnotation helps you to add any additional information or
logic for your annotation.

Now, update the current location annotation creation in3.
ViewController.swift to use the new custom annotation class:

 let annotation = CustomAnnotation(location:
 location.coordinate)
 annotation.title = "You're here!"
 self.myLocationAnnotation = annotation
 self.mapView.addAnnotation(annotation)

When you build and run, you will get the same behavior we got in the previous4.
demo, but the difference is that you're using your custom annotation that can
contain additional logic and information.

Location Services

[288]

Now, let's customize the annotation view. To customize the annotation view, you5.
need to override the viewForAnnotation delegate method of
MKMapViewDelegate.
Add the following extension to override delegate methods:6.

 extension ViewController: MKMapViewDelegate{
 func mapView(_ mapView: MKMapView, viewFor annotation:
 MKAnnotation) -> MKAnnotationView? {
 let annotationView = MKAnnotationView(annotation:
 annotation, reuseIdentifier: "CustomView")
 annotationView.image = UIImage(named: "car.png")
 return annotationView
 }
 }

Set the delegate to mapView in the viewDidLoad function:7.

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 typically from a nib.
 self.mapView.delegate = self
 }

Now, when you build and run, the annotation view will be customized like this:8.

Location Services

[289]

Now let's add more annotations to a different country, for example Finland, and9.
animate the map to this region. The annotations will be shown using pin
annotation.
Add the following function to add three annotations and call it from10.
viewDidAppear:

 func addTestAnnotations(){
 let annotation1 = MKPointAnnotation()
 annotation1.coordinate =
 CLLocationCoordinate2D(latitude: 60.1690368,
 longitude: 24.9370282)
 annotation1.title = "Stockmann"
 let annotation2 = MKPointAnnotation()
 annotation2.coordinate =
 CLLocationCoordinate2D(latitude: 60.1716389,

 longitude: 24.9405934)
 annotation2.title = "Aleksis Kiven"
 let annotation3 = MKPointAnnotation()
 annotation3.coordinate =
 CLLocationCoordinate2D(latitude: 60.17152,
 longitude: 24.9366044)
 annotation3.title = "Helsinki Music Centre"
 self.mapView.addAnnotations([annotation1,
 annotation2, annotation3])
 self.mapView.showAnnotations([annotation1,
 annotation2, annotation3], animated: true)
 }

Now, update the viewForAnnotation to display the pin views for the three11.
previous annotations:

 extension ViewController: MKMapViewDelegate{
 func mapView(_ mapView: MKMapView, viewFor annotation:
 MKAnnotation) -> MKAnnotationView? {
 if annotation.isKind(of: MKUserLocation.self){
 return nil
 }
 if annotation.isKind(of: CustomAnnotation.self){
 let annotationView = MKAnnotationView(annotation:
 annotation, reuseIdentifier: "CustomView")
 annotationView.image = UIImage(named: "car.png")
 return annotationView
 }else{
 var pinView: MKPinAnnotationView
 if let pv =
 mapView.dequeueReusableAnnotationView

Location Services

[290]

 (withIdentifier:
 "PinView") as? MKPinAnnotationView{
 pinView = pv
 pinView.annotation = annotation
 }
 else{
 pinView = MKPinAnnotationView(annotation:
 annotation, reuseIdentifier: "PinView")
 pinView.pinTintColor = UIColor.red
 pinView.animatesDrop = true
 pinView.canShowCallout = true
 }
 return pinView
 }
 }
 }

Now build and run; you will see annotations like this:12.

As you can see, a view is displayed when you tap on the pin; it's the callout. We13.
will see how to customize it.

Location Services

[291]

Update the viewForAnnotation function to add the disclosure button and icon13.
to the callout view:

 func mapView(_ mapView: MKMapView, viewFor annotation:
 MKAnnotation) -> MKAnnotationView? {
 if annotation.isKind(of: MKUserLocation.self){
 return nil
 }
 if annotation.isKind(of: CustomAnnotation.self){
 let annotationView = MKAnnotationView(annotation:
 annotation, reuseIdentifier: "CustomView")
 annotationView.image = UIImage(named: "car.png")
 return annotationView
 }else{
 var pinView: MKPinAnnotationView
 if let pv =
 mapView.dequeueReusableAnnotationView(withIdentifier:
 "PinView") as? MKPinAnnotationView{
 pinView = pv
 pinView.annotation = annotation
 }
 else{
 pinView = MKPinAnnotationView(annotation:
 annotation, reuseIdentifier: "PinView")
 pinView.pinTintColor = UIColor.red
 pinView.animatesDrop = true
 pinView.canShowCallout = true
 let rightButton = UIButton(type:
 .detailDisclosure)
 pinView.rightCalloutAccessoryView = rightButton
 let imageView = UIImageView(image: UIImage(named:
 "icon.png"))
 pinView.leftCalloutAccessoryView = imageView
 }
 return pinView
 }
 }

Override the following function to be notified when a user clicks on the15.
disclosure button on the callout:

 func mapView(_ mapView: MKMapView, annotationView view:
 MKAnnotationView, calloutAccessoryControlTapped
 control: UIControl) {
 print(view.annotation?.title)
 }

Location Services

[292]

Now build and run; you will see a callout view like this:16.

How it works...
In the previous demo, we saw how to customize the annotation object and annotation view.
We started by customizing the annotation object that acts as a model object for the visual
annotation view. Any custom annotation class should conform to the MKAnnotation
protocol. The protocol has some properties to override; the mandatory and most important
one is the coordinate property, which tells the map where exactly on the map the should
annotation be placed. In the custom annotation, you include all additional information
about the annotation of any specific logic. You can customize the annotation view by
overriding the viewForAnnotation in the MKMapViewDelegate protocol. We changed the
current location annotation view to an image view of a black car icon. MapKit provides the
MKAnnotationView class to customize the look of the annotation by setting the image to
customize annotation image.

Location Services

[293]

Then, we added three different annotations to the map in different countries by passing the
coordinates and titles of the three locations. To add any number of annotations to the map
at once, you can call the addAnnotations function, and to update the visible region on the
map to the region that combine these annotations, just call showAnnotations. These
annotations have been added with the built-in MKPointAnnotation annotation class. We
used this class to show you how to differentiate between annotations in
viewForAnnotation so that we can give them different looks.

So, in that function, if the annotation class is of type MKUserLocation class, it means this
pin is indicating the current user location and we passed nil, which means we don't want it
to provide any custom look. If the class is of type CustomAnnotation class, we created a
new instance of MKAnnotationView and we changed the image to the car image. If the
annotation class is not one of those, we will display the normal MKAnnotationView.
Because the annotation views are reusable, we ask the system first to dequeuer a reusable
one so we can reuse and we do this by calling
dequeueReusableAnnotationView(withIdentifier: "PinView"). If there is no
available one, we create new one by initializing it like this
MKPinAnnotationView(annotation: annotation, reuseIdentifier: "PinView")

and pass the same identifier.

By default, a standard callout view will be displayed when you click on the annotation that
is a view with a label to display the annotation title. The callout can be further customized
by adding a subtitle, an image, and a control button. The title and subtitle can be set via the
MKAnnotation protocol and by implementing these parameters. To set an image and a
control button, you can use the leftCalloutAccessoryView and
rightCalloutAccessoryView properties to customize the callout. Once the user taps on
the accessory control, the calloutAccessoryControlTapped function will be called and
the annotation view will be passed to retrieve the annotation and do any specific logic.

Getting directions between locations
Getting directions between source and destination locations is one of the common
operations when dealing with maps and navigation apps. You can get directions from the
current location or any other source location to the destination location and those directions
will differ depending on the mode of transit, such as walking, driving, cycling, or public
transport. In this section, we will learn how to get the direction between any two source and
destination points and display them on the map.

Location Services

[294]

How to do it...
To get directions between a source and destination, perform the following steps:

Let's continue using our demo to add a way to display directions between two1.
locations.
Go to storyboard and open our view controller to add a UIButton at the bottom2.
with the title Directions. Add constraints to the button to stick it to the bottom,
like this:

Add an IBAction function, didClickOnDirections, to the button in3.
ViewController.swift like this:

 @IBAction func didClickOnDirections(_ sender:
 AnyObject) {
 }

Update the didClickOnDirections function like this:4.

 @IBAction func didClickOnDirections(_ sender:

Location Services

[295]

 AnyObject) {
 let mapItem1 = MKMapItem(placemark:
 MKPlacemark(coordinate:
 CLLocationCoordinate2D(latitude: 60.1690368,
 longitude: 24.9370282)))
 let mapItem2 = MKMapItem(placemark:
 MKPlacemark(coordinate:
 CLLocationCoordinate2D(latitude: 60.1716389,
 longitude: 24.9405934)))
 let directionRequest = MKDirectionsRequest()
 directionRequest.source = mapItem1
 directionRequest.destination = mapItem2
 directionRequest.transportType = .walking
 let directions = MKDirections(request:
 directionRequest)
 directions.calculate { (response, error) in
 if let routingError = error{
 print(routingError)
 }
 else{
 if let directionsResponse = response{
 for route in directionsResponse.routes{
 self.mapView.add(route.polyline, level:
 .aboveRoads)
 }
 }
 }
 }
 }

The function will create a request to get directions between the two provided
locations and then we will display the routes on the map.

Finally, we need to override the delegate MKMapViewDelegate function5.
renderedForOverlay, which tells the delegate which renderer to use to style
the polyline that will be drawn for the directions:

 func mapView(_ mapView: MKMapView, rendererFor overlay:
 MKOverlay) -> MKOverlayRenderer {
 if overlay.isKind(of: MKPolyline.self){
 let renderer = MKPolylineRenderer(overlay: overlay)
 renderer.strokeColor = UIColor.blue
 renderer.lineWidth = 5.0
 return renderer
 }
 return MKOverlayRenderer()
 }

Location Services

[296]

Everything is done; let's run the app now. You will see that directions are drawn6.
like this:

Location Services

[297]

Try to change the transport type to automobile instead of walking; new directions7.
will be drawn like this:

How it works...
Getting directions in MapKit is pretty easy. MapKit provides us with ready-to-use classes to
fetch directions between source and destination easily. We started our demo by adding a
button to fire the actions of getting the directions between two given locations. Each
location should be encapsulated as an instance of MKMapItem.

Location Services

[298]

Once you create the two instances of MKMapItem for the source and destination, you have to
create a directions request that is an instance of MKDirectionsRequest. The request acts as
a decoder for all the information needed to calculate the directions/routes between two
locations. The most important information is the source and destination, then we set the
transportType. We have four types supported as yet in iOS:

The automobile type that is suitable for driving
The walking type that is suitable for pedestrians
The transit type that is suitable for public transportation
The any type that is suitable for any transportation

After the request was ready to be calculated, we created a new instance of the
MKDirections class using the request that we had already built. Then, we called the
calculate function and passed a completion handler, because this function performs
asynchronously and not on the main thread. The request is sent to Apple servers to be
processed and, when we get the response, the handler is called by passing two parameters;
an instance of MKDirectionsResponse and an error, if one exists.

The response encapsulates all information related to the routes we got from the Apple
servers. In the response object, we have the routes property that contains all the routes
found between the source and destination. Each object in that array is an instance of the
MKRoute class that has all the information about a specific route between source and
destination, such as distance, estimated time, transport type, names, and polyline. The
polyline is used to draw the route on the map and we did that by calling the addRoute
function in the map view. That function will try to draw the route on the map, but it will
ask for a renderer class that is responsible for styling or determining the look and feel of the
drawn route.

To provide this renderer, we overode the rendererForOverlay function in the
MKMapViewDelegate delegate. In the function, we created a new instance of
MKPolylineRenderer that is responsible for rendering the polyline. We customized the
stroke color of the line to be blue and the line width.

Location Services

[299]

Working with geofencing
Geofencing is the concept of being notified when a user enters or exits a specific region. This
region can be, for example, a shopping mall to remind the user to buy some stuff or to
perform any specific action. Many apps can be built on the concept of geofencing to remind
or notify users when they enter or exit specific regions. In the following demo, we will build
a sample screen that allows the user to register a new geofencing to the map. The user will
be able to select a location on the map, a diameter of the region, when to be notified (upon
entry or upon exit), and some notes to be displayed on the notification that will be fired
when the user passes this region.

How to do it...
To add geofencing, perform the following steps:

Open storyboard, drag a UIBarButtonItem and add it to the right of the Locate1.
Me button. Change its type to the Add type:

Add a new View Controller for adding geofencing to the map. Link a Show2.
segue from the new plus button to the new view controller.
Add a MKMapView so that the user can use it to pick a location and make it at3.
the bottom with half of the screen.
Add a UISegmentedControl at the top of the view with two segments. The first4.
segment will be called Upon Entry and the second one Upon Exit. This will help
the user to choose the type of geofencing.
Below the segmented control, drag a label and text field so that users can enter5.
the distance radius of the region.
Lastly, add a UITextView so that users can write some notes that will be6.
displayed on the notification.

Location Services

[300]

The final look of the View Controller will be like this:7.

Create a new Swift file for a new view controller class, called8.
GeofencingViewController, and then update the class of the newly added
view controller from Identity Inspector.
Now add IBOutlets to the views that we created to read the information when9.
a user clicks on Save:

 @IBOutlet weak var segmentedControl:
 UISegmentedControl!
 @IBOutlet weak var distanceTextField: UITextField!
 @IBOutlet weak var notesTextView: UITextView!
 @IBOutlet weak var mapView: MKMapView!

Location Services

[301]

Add an IBAction to the Save button to save geofencing:10.

 @IBAction func didClickOnSaveButton(_ sender:
 AnyObject) {
 }}

The first thing we need to do is detect tapping on the map to draw an annotation11.
on the selected location so that a user knows at which location they want to add
geofencing.
In the viewDidLoad function, add the following code to add a12.
UITapGestureRecognizer to the map view:

 override func viewDidLoad() {
 super.viewDidLoad()
 // Tap gesture
 let tapGesture = UITapGestureRecognizer(target: self,
 action:
 #selector(GeofencingViewController.didTapOnMapView
 (gesture:)))
 tapGesture.numberOfTapsRequired = 1
 self.mapView.addGestureRecognizer(tapGesture)
 }

Then, add the following action function that will be called when a user taps on13.
the map to show a pin:

 func didTapOnMapView(gesture: UITapGestureRecognizer){
 let point = gesture.location(in: self.mapView)
 let coordinate = self.mapView.convert(point,
 toCoordinateFrom: self.mapView)
 if let currentAnnotation = self.currentAnnotation{
 self.mapView.removeAnnotation(currentAnnotation)
 }
 self.currentAnnotation = MKPointAnnotation()
 self.currentAnnotation?.coordinate = coordinate
 self.mapView.addAnnotation(self.currentAnnotation!)
 }

Add the following property to have a reference to the current annotation:14.

 var currentAnnotation: MKPointAnnotation?

Location Services

[302]

Now build and run; you will see that a pin will be dropped at each location you15.
tap on:

Now let's add the code that will draw a circle with the given distance around the16.
pin added. Add the following line of code in viewDidLoad to be notified when a
user changes the distance:

 self.distanceTextField.addTarget(self, action:
 #selector(GeofencingViewController.didChangeDistanceValue
 (sender:)), for: .editingChanged)

Add the following functions to get the change of distance value and draw a circle:17.

 func didChangeDistanceValue(sender: UITextField){
 if let text = sender.text{
 let distance = (text as NSString).doubleValue
 showCircleWithRadius(radius: distance)
 }
 }
 func showCircleWithRadius(radius: Double){

Location Services

[303]

 if let annotation = self.currentAnnotation{
 if let circle = self.currentCircle{
 self.mapView.remove(circle)
 }
 if radius > 0{
 let circle = MKCircle(center:
 annotation.coordinate, radius: radius)
 self.mapView.addOverlays([circle])
 self.currentCircle = circle
 }
 }
 }

Add the following property to keep a reference to the current drawn circle:18.

 var currentCircle: MKCircle?

As we learned in the previous section, we need to have a renderer before drawing19.
on the map. So, let's set the delegate in the viewDidLoad function and override
the following functions:

 extension GeofencingViewController: MKMapViewDelegate{
 func mapView(_ mapView: MKMapView, rendererFor overlay:
 MKOverlay) -> MKOverlayRenderer {
 let renderer = MKCircleRenderer(overlay: overlay)
 renderer.strokeColor = UIColor.red
 renderer.fillColor =
 UIColor.red.withAlphaComponent(0.6)
 return renderer
 }
 func mapView(_ mapView: MKMapView,
 regionWillChangeAnimated animated: Bool) {
 self.view.endEditing(true)
 }
 }

Location Services

[304]

When you build and run, you will be able to see that the area has been drawn20.
with a red circle, like the following screenshot:

Before adding the logic of saving the geofence, let's create a model class to21.
encapsulate all geofence information together. Create a new Swift class with the
name GeoFenceData:

 class GeoFenceData: NSObject {

 var notes:String
 var radius:Double
 var latitude:Double
 var longitude:Double
 var notifyOnEntry:Bool
 var identifier: Int
 init(notes: String, radius: Double, latitude lat:
 Double, longitude lot: Double, notifyOnEntry: Bool,
 identifier: Int) {
 self.notes = notes
 self.radius = radius
 self.latitude = lat
 self.longitude = lot
 self.notifyOnEntry = notifyOnEntry

Location Services

[305]

 self.identifier = identifier
 }
 }

Now add the following function to register the geofencing to the location services22.
system:

 @IBAction func didClickOnSaveButton(_ sender:
 AnyObject) {
 if let annotation = self.currentAnnotation, let
 circle = self.currentCircle, let text =
 self.notesTextView.text{
 // All data are available.
 let maxId = UserDefaults.standard.integer(forKey:
 "GeoFenceId")
 UserDefaults.standard.set(maxId + 1, forKey:
 "GeoFenceId")
 let geoFence = GeoFenceData(notes: text, radius:
 circle.radius, latitude:
 annotation.coordinate.latitude, longitude:
 annotation.coordinate.longitude,
 notifyOnEntry:
 self.segmentedControl.
 selectedSegmentIndex == 0,
 identifier: maxId)
 startMonitoringGeoFence(fence: geoFence)
 }
 }
 func regionFromGeoFence(fence: GeoFenceData) ->
 CLCircularRegion{
 let region = CLCircularRegion(center:
 CLLocationCoordinate2DMake(fence.latitude,
 fence.longitude), radius: fence.radius, identifier:
 "Fence\(fence.identifier)")
 region.notifyOnEntry = fence.notifyOnEntry
 region.notifyOnExit = !fence.notifyOnEntry
 return region
 }
 func startMonitoringGeoFence(fence:GeoFenceData){
 if !CLLocationManager.isMonitoringAvailable(for:
 CLCircularRegion.self) {
 print("Geofencing is not supported on this
 device!")
 return
 }
 if CLLocationManager.authorizationStatus() !=
 .authorizedAlways {
 print("Your geotification is saved but will only be

Location Services

[306]

 activated once you grant Geotify permission to
 access the device location.")
 }
 else{
 let region = regionFromGeoFence(fence: fence)
 let locationManager = CLLocationManager()
 locationManager.startMonitoring(for: region)
 }
 }

Geofencing needs your app to always have permission to have access to the23.
current location. In ViewController, change the calling of the
requestWhenInUseAuthorization() function to
requestAlwaysAuthorization(). Thus, we can keep the current location
updated and trigger a user upon entry into or exit from a specific region.
Now, go to the Info.plist file to add a new description for location usage:24.

 <key>NSLocationAlwaysUsageDescription</key>
 <string>Geofencing</string>

Now build and run the app. Click on the Locate Me button to authorize access to25.
user location, but as always access:

Location Services

[307]

Now, if you tried to add any geofence regions, they would be added normally.26.
Open AppDelegate.swift to add some code to detect the entry into or exit from27.
a region. Once we are notified of entry/exit of a specific region, we will trigger a
local notification to the user with the notes written when registering for
geofencing.
Add the following import statement to import the UserNotification28.
framework:

 import UserNotifications

Add the following property to have a reference to CLLocationManager to detect29.
the geofencing:

 let locationManager = CLLocationManager()

Then, add the following code in the didFinishLaunchingWithOptions30.
function:

 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options: [.alert, .sound])
 { (granted, error) in
 // Check authorization here....
 }
 self.locationManager.delegate = self

Location Services

[308]

The preceding code will ask the user to grant us permission to send notifications31.
when we detect any entry or exit for registered regions. If you tried to run, an
alert like the following will be presented:

In the AppDelegate file, implement the CLLocationManagerDelegate32.
delegate to be notified when a user enters or exits a registered region:

 extension AppDelegate: CLLocationManagerDelegate{
 func locationManager(_ manager: CLLocationManager,
 didEnterRegion region: CLRegion) {
 didEnterOrExitRegion(region: region)

 }
 func locationManager(_ manager: CLLocationManager,
 didExitRegion region: CLRegion) {
 didEnterOrExitRegion(region: region)
 }
 func didEnterOrExitRegion(region: CLRegion){
 if let region = region as? CLCircularRegion{
 let id = (region.identifier as
 NSString).integerValue
 let notes = UserDefaults.standard.string(forKey:
 "Fence\(id)")
 if UIApplication.shared.applicationState == .active

Location Services

[309]

 {
 print("Did Enter/Exit region. Notes: \(notes)")
 }
 else {
 // Otherwise present a local notification
 let content = UNMutableNotificationContent()
 content.body = notes!
 content.sound = UNNotificationSound.default()
 content.title = "Geo fence detection"
 let request = UNNotificationRequest(identifier:
 "Fence\(id)", content: content, trigger: nil)
 UNUserNotificationCenter.current().add(request,
 withCompletionHandler: { (error) in
 print("Did finish sending notification with
 error \(error)")
 })
 }
 }
 }
 }

To test the geofencing, it requires simulating changing the location, which is quite33.
painful and not logical to do manually. That's why in iOS, you can simulate the
changing of locations between points by adding GPX file.
Create a new file and, from resources, choose GPX file:34.

Location Services

[310]

Add the locations to the file in the following format. Feel free to add different35.
locations based on your country and the registered geofencing regions:

 <?xml version="1.0"?>
 <gpx version="1.1" creator="Xcode">
 <!-- Provide one or more waypoints containing a
 latitude/longitude pair. If you provide one waypoint,
 Xcode will simulate that specific location. If you
 provide multiple waypoints, Xcode will simulate
 a route visiting each waypoint.
 -->
 <wpt lat = "25.197197" lon = "55.2721824">
 <name> Burj Khalifa </name>
 <time>2016-11-12T13:18:00Z</time>
 </wpt>
 <wpt lat="25.118107" lon="55.198414">
 <name>Mall Of The Emirates</name>
 <time>2016-11-12T13:18:10Z</time>
 </wpt>
 <wpt lat="25.120555" lon="55.129897">
 <name>Palm Jumeriah</name>
 <time>2016-11-12T13:18:15Z</time>
 </wpt>
 </gpx>

Now, open the app and add a geofence to a region that will be passed during the36.
route you defined in the GPX file, for example, the following, in the beautiful city
of Dubai:

Location Services

[311]

After saving the geofencing, put the app in the background and lock the phone or37.
simulator; now click on the simulate button in Xcode, as follows:

Location Services

[312]

You will see a notification like the following:38.

How it works...
In the previous demo, we started our demo by creating a simple UI to add a geofence for a
specific region. To mark a specific region, we first let the user add a pin for a location and
then type the radius of the region to detect. We used the UITapGestureRecognizer to
detect taps on the map view. The didTapOnMapView function will be called once the user
taps on the map view. To get the coordinate of the tapped location, you need to do two
things. First, get the point of tap on the map view by calling gesture.location(in:
self.mapView) and then convert this point to coordinates by calling
self.mapView.convert(point, toCoordinateFrom: self.mapView). Then, we can
simply add an annotation to that location and remove the old one (if we have one). Then,
when the user types the radius, we draw a circle with the given radius and the center is the
previously added pin. The MKCircle class is a custom overlay class provided by the
MapKit framework for drawing circles. As we saw in the previous section, to customize the
look and feel of the overlay, you have to override the rendererForOverlay function. In
that function, we created a circle renderer that is an instance of MKCircleRenderer. We
changed only the stroke and fill color of the circle.

Location Services

[313]

From a UI perspective, we have done everything. Now we need to do the logic behind the
geofencing. First, we create a new class to encapsulate all the information about the
GeoFence data; then, we get a unique identifier for our region in the
didClickOnSaveButton function. We start the identifiers by value 0 and then we auto-
increment the value. The last used value is used in the UserDefaults storage. Also, the
notes entered by the user will be saved in UserDefaults so that we can use them in the
notification body that we will display to the user. Before starting to monitor the region, we
create a region that is an instance of CLCircularRegion and then we ask the location
manager to start monitoring this area by calling startMonitoring(for: region).

Geofencing needs your app to have permission to always have access to the current
location, even if your app is in background; we need to change the permission to always. In
the ViewController class, we already have the code that requests access to the current
location. If you checked the code, you will see that we call the
requestWhenInUseAuthorization() function that authorizes getting the current
location while the app is in use. We changed it to requestAlwaysAuthorization() to
keep the current location updated and trigger the user upon entry into or exit from a
specific region.

Now, we registered geofencing regions, but we need to be notified once the user enters or
exits a region. First, we want to ask the user to grant the app access to send him local
notifications. We conformed to the CLLocationManagerDelegate protocol to implement
the didEnterRegion and didExitRegion functions. In both cases, we get the notes from
UserDefaults using the identifier of the region; if the app is not in the active state, we
display a local notification with notes that the user typed when creating the geofencing
region.

10
Security and Encryption

VIn this chapter, we will cover the following topics:

Using Touch ID for user authentication
Working with Keychain
Encryption

Introduction
When you deal with user information, there is nothing more important than respecting the
user's privacy, and ensuring that all information shared by the user is in a secure location
and no one except your system can access it. Right now, we deal with many apps that know
a lot or almost everything about life, such as photos, videos, notes, payments, messages, call
history, and so on. Dealing with sensitive data recklessly leads to serious problems to your
users, and you will be in trouble. Making everything secure is not an easy solution or a final
solution. You can say that yes, my app is now secure or no one can hack my system at any
rate. All giant companies always do research and tests for their system and are up to date
on all new ways to block attacks or to protect users' information. In iOS, users feel more
secure than with other systems, thanks to Apple's restrictions for users and developers. It
does its best to protect users from any kind of attacks. I can't say it's the best, but it does its
best to minimize all kinds of hacking of a user's privacy.

In this chapter, we will learn to utilize the features of iOS, such as using Touch ID to
authenticate users or using system keychain to save sensitive information.

Security and Encryption

[315]

Using Touch ID for user authentication
The fingerprint, also known as Touch ID from a developer's perspective, is one of the
greatest features in new Apple devices, starting from iPhone 5s, and now in modern
android devices as well. Most people think that Touch ID is used for authenticating the user
to unlock their devices only but, actually in iOS, you can use it to unlock the device, make
payments, authenticate a user for apps that support Touch ID, and download apps from the
App Store. In this recipe, we will see how to integrate Touch ID in an iOS app to
authenticate the user instead of having them retype their credentials.

Getting ready
Apple provides developers with a framework, called Location Authentication. It handles
all heavy tasks for you and takes care of the access sensor and authenticating the user, and
gets back to you with a result and error, if any. It's very important to know that the
framework doesn't share or expose any information or data, that represents or has a relation
to, a user's fingerprint; this is something that helps developers and users to have no
concerns about their sensitive information.

How to do it...
Create a new Xcode project with the Single View Application template and with1.
name the TouchIDDemo.
The demo app will be very simple; we will have a screen with only one button2.
that will notify the authenticating user.

Security and Encryption

[316]

Open Main.storyboard and change the layout of the screen to be as follows:3.

Link an IBAction to the button in ViewController.swift to perform the logic4.
of Touch ID authentication:

@IBAction func didClickOnAuthenticate(_ sender: Any) {
}

Add the following import statement at the top of the source file:5.

import LocalAuthentication

Security and Encryption

[317]

In the action function, first add the following code to check whether Touch ID is6.
available on the device:

@IBAction func didClickOnAuthenticate(_ sender: Any) {
let context = LAContext()
var error: NSError? = nil
if context.canEvaluatePolicy

(LAPolicy.deviceOwnerAuthenticationWithBiometrics,
error: &error){

}
else{

self.showAlertWithMessage(msg: "Touch ID is not
available in your device!")

}
}
func showAlertWithMessage(msg: String){

let alertController = UIAlertController(title:
"Authentication Error", message: msg,

preferredStyle: .alert)
let action = UIAlertAction(title: "OK", style:
.cancel, handler: nil)

alertController.addAction(action)
self.present(alertController,

animated: true, completion: nil)
}

Now, we need to update the code to authenticate the user, and display the result7.
based on the response we get from the system:

@IBAction func didClickOnAuthenticate(_ sender: Any) {
let context = LAContext()
var error: NSError? = nil
if context.canEvaluatePolicy
(LAPolicy.deviceOwnerAuthenticationWithBiometrics,

error: &error){
context.evaluatePolicy

(LAPolicy.deviceOwnerAuthenticationWithBiometrics,
localizedReason: "Please authenticate to proceed

using the app.", reply: { (success, error) in
if let error = error{

print(error)
self.showAlertWithMessage

(msg: "A problem has occured
while verification.")

}
else{

if success{

Security and Encryption

[318]

self.showAlertWithMessage(msg:
"Thanks!\nYou're the device owner

and we can proceed now.")
}
else{

self.showAlertWithMessage(msg:
"Authentication has been failed

as you're not the device owner.")
}

}
})

}
else{

self.showAlertWithMessage(msg: "Touch ID is not available in
your device!")

}
}

Now, let's run this on the simulator where there is no Touch ID available:8.

Security and Encryption

[319]

Now, run the app on a device that supports Touch ID:9.

Security and Encryption

[320]

Now, try to the run the app on a device where you're not the owner (try another10.
finger):

Security and Encryption

[321]

Now, let's try with the authenticated user; the alert will look like this:11.

How it works...
The demo app is very simple and it didn't require too much code/logic to be added to your
project. However, we have integrated a great feature to the app, which is the capability to
authenticate your app users with their fingerprint, thanks to Touch ID in Apple devices.
This helps you to add a great layer of security to your app and build higher trust between
you and the users.

First, we started importing the LocalAuthentication framework, which is responsible
for all the magic that has happened to authenticate users. The first step is getting a reference
to an instance of LAContext, which has all the APIs we need to communicate with Touch
ID. Before doing any logic, we have to ensure that the device the app operates on has Touch
ID. The canEvaluatePolicy function does this and returns false if the device doesn't
support this kind of policy. If Touch ID is supported, we ask the system to authenticate our
user by calling evaluatePolicy, and we pass the reason as a string to the function to be
displayed in the Touch ID authentication alert. The function takes a block as a parameter
that will be called once authentication first occurs.

Security and Encryption

[322]

The block has two parameters, an error reference if an error occurs, and a flag that indicates
the success or failure of user authentication. Based on these parameters, we display the
correct message to the user.

Working with Keychain
When you work in mobile apps, you will come across situations when you need to store
sensitive information, such as passwords, keys, tokens, user sessions, and so on. Saving this
information in plain format or in a place where other apps or the user himself can access it
is a disaster and can compromise the security of your device.

From my point of view, I don't recommend saving any sensitive information on the device.
However, if you really want to go ahead with it then, before saving anything, you have to
ask yourself, do I really need to do this? It's very important to save all important
information on the server side and, if it is absolutely necessary to save anything locally, it
has to be encrypted and saved in a secure place, such as Keychain.

Getting ready
Keychain is a secure place however nothing is 100% secure and you can assume that anyone
can hack it and you have to be ready to save sensitive information inside (if needed to).
Keychain assures that all data saved in it has to be encrypted first, which is something to
relieve you from worrying about encryption/decryption algorithms. Keychain is well-
managed to control all the secure data inside, and only privileged apps can access its data.

In this chapter, we will see how simple it is to save/retrieve data in/from Keychain, thanks
to the open source Keychain wrappers that are available in GitHub, so that you don't have
to get your hands dirty with more logic.

How to do it...
Install Carthage in your system; you can download the latest version,1.
Carthage.pkg, from the following URL:
https://github.com/Carthage/Carthage/releases

If you are already familiar with Carthage and it's already installed in your2.
system, you can skip to step 5.

https://github.com/Carthage/Carthage/releases

Security and Encryption

[323]

To install a third-party library, we will use a dependency manager tool to3.
organize these dependencies. In the previous chapters, we talked about an
awesome tool, which is Cocoapods. To learn something new in this chapter, we
will install a third-party library using another tool, which is Carthage.
Create a new Xcode project with the Single View Application template and with4.
name the KeychainDemo.
Once Carthage is installed, you can start adding frameworks to your project.5.
Create a new file called the Cart file, which lists the frameworks that you will use
in your project. With any text editor, create a new file with the name Cartfile
and save it in the same directory as you have the Xcode project.
We will install the following framework in our project:6.
https://github.com/kishikawakatsumi/KeychainAccess

In most of the good frameworks provided by third parties, the authors usually7.
mention an installation guide that has information about how to install the
library with Cocoapods or Carthage. In the library that we mentioned before, you
will see that you need to add the following line to Cartfile to install the library
with Carthage:

github "kishikawakatsumi/KeychainAccess

Open the terminal and navigate to the folder that has the Xcode project and8.
Cartfile. Then, run the following command:

carthage update

The terminal should have something like this:9.

Now, open the Xcode project and choose the Build Phases tab:10.

https://github.com/kishikawakatsumi/KeychainAccess

Security and Encryption

[324]

Under the Link Binary With Libraries section, click on the + button and click on11.
Add Other from the list. Then, navigate to the Carthage folder to select the
frameworks that you want to add:

Security and Encryption

[325]

The last thing is to add a Run Script in the Build Phases tab. At the top, you will12.
see a + button; click on it and choose New Run Script Phase:

Under Shell, add the following script:13.

 /usr/local/bin/carthage copy-frameworks

Then, add the following URL under Input Files:14.

 $(SRCROOT)/Carthage/Build/iOS/KeychainAccess.framework

Security and Encryption

[326]

The final look for the Build Phases tab should be like this:15.

Now, clean and build the project and ensure that there are no build errors. If you16.
get any errors, review the preceding steps.

Security and Encryption

[327]

In Xcode, select the project from the left panel and click on the Capabilities tab.17.
At the Keychain Sharing capability, switch it ON:

Now, open the ViewController.swift file and edit it to be like this:18.

 import UIKit
 import KeychainAccess
 class ViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after
 loading the view, typically from a nib.
 let keyChain = Keychain(service:
 "hossamghareeb.keychainDemo")
 keyChain["session"] =
 "13u989843-3232023-323234-fdij8nk-jlk48a-hknut"
 if let session = keyChain["session"]{
 print(session)
 }
 }
 }

When you build and run, you will see that the session value we saved is retrieved19.
and logged in the debug area:

Security and Encryption

[328]

How it works...
In the previous simple demo, we learnt how to deal with Keychain and the most important
part is how to install a third-party library with Carthage. Cartfile is where all the magic
happens; you can list all the third-party libraries that you want to add to your project and
the libraries will be ready for you to add via Xcode with a simple command. After we
installed the library, we saw how simple it is to add information, such as user session, to the
Keychain and to retrieve it easily with the same key.

Security and Encryption

[329]

Encryption
In the preceding section, we saw how to save data securely in Keychain. However, when
saving information in Keychain or wherever you want, there is a chance that someone can
get this information and that it will be exposed. The best practice when saving any sensitive
information in your app or in the server side is for it to be encrypted and, when someone
sees the encrypted message, they should not be able to decrypt it again. In this section, we
will talk about the cryptographic hash functions.

Getting ready
The cryptographic hash function is a special type of hash function that can be used in
cryptography. Using this hash function, you can convert any data (message) to another
form of data (digest). These hash functions are meant to be one way and infeasible to be
inverted. Let's see the properties of cryptographic hash functions:

The same messages always return the same digest (hash value)
Infeasible to revert the digest and get the message
Infeasible to find two messages with the same digest

We will not go deeper in to how this works and how to generate the digest from a message.
In this section, we will see how to generate hashed values from messages so that we can
save them instead of plain text.

We will use the CommonCrypto library from Apple, which is a library specialized in
encryption and cryptographic hash functions. The library is a low-level library and it will be
challenging working with it directly in Swift. Thanks to third-party libraries, there is an
awesome Swift wrapper library for CommonCrypto that we can use in our demo project:

https://github.com/soffes/Crypto

https://github.com/soffes/Crypto

Security and Encryption

[330]

How to do it...
Let's continue using our previous demo to add a way to hash the session before1.
saving it to Keychain.
As we learnt in the preceding section, let's install the library using Carthage. Add2.
the following to the Cartfile we have:

github "soffes/Crypto"

Now, run the carthage update command.3.
After the library is installed, open the Build Phases tab and add4.
CommonCrypto.framework and Crypto.framework from the build directory
under Link Binary With Libraries:

Security and Encryption

[331]

Then, add the following links for Input Files under the Run Script we have:5.

$(SRCROOT)/Carthage/Build/iOS/CommonCrypto.framework
$(SRCROOT)/Carthage/Build/iOS/Crypto.framework

Now, the final look of the Build Phases tab will be like this:6.

In ViewController.swift, simply change the code to the following:7.

import UIKit
import KeychainAccess
import Crypto

class ViewController: UIViewController {

Security and Encryption

[332]

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup

after loading the view, typically from a nib.
let session =

"13u989843-3232023-323234-fdij8nk-jlk48a-hknut"
let digest =

HMAC.sign(message: session, algorithm:
.sha512, key: "secretKey")

let keyChain = Keychain(service:
"hossamghareeb.keychainDemo")

keyChain["session"] = digest
if let session = keyChain["session"]{

print(session)
}

}
}

How it works...
There is not much to be mentioned here. As you see, the encryption is done like a charm
using the CommonCrypto framework and thanks to the awesome Swift wrapper Crypto
library. We simply converted the session to digest with the hash function SHA512 by calling
the HMAC.sign function and passing the type of algorithm. The library supports different
kinds of algorithms that you can play with. I suggest having a good read about all
algorithms to understand the differences between them.

11
Networking

In this chapter, we will cover the following topics:

Using NSURLSession API for network connections
Parsing JSON data
Social sharing

Introduction
We don't live offline nowadays. It's become very rare nowadays to find an app that has no
backend to pull data from, or to be updated by users' actions or by any data that seems
important. A lot of apps have a user system where users can log in and register themselves
to use the app. Each user has different information or data that needs to be saved. This data
needs a server to be saved in and, pulled from any client side (a mobile app or website).
Even if you don't have a server, you need a place to fetch data from and keep your app up
to date. You don't need an app update in Appstore if you want to update anything in the
data you deal with. Some heavy tasks need a server to take care of them, thanks to its power
and its accessibility to all information that the tasks need. Networking is one of the core
skills that every iOS developer should know, as it's used heavily in most of the apps these
days. In this chapter, we will give you a good introduction to networking in iOS and how to
establish connections between your app and the server side. You will also learn how to
parse the JSON response received from the server, and how to convert it to model objects
that can be used in your app.

Networking

[334]

Using NSURLSession API for network
connections
The NSURLSession is one of the greatest APIs that has been added to the iOS framework
and is to be used in setting up connections between the app and the backend, and fetching
contents from your server. In this section, we will talk in details (but not boring detail)
about NSURLSession: how to deal with it, and what kind of tasks it can do. We will build a
demo project for this chapter and, in each section, we will add a feature related to the topic
in the project.

Getting ready
With Apple, by default, NSURLSession supports the following URL schemes:

File Transfer Protocol: (ftp://)
Hypertext Transfer Protocol: (http://)
Encrypted Hypertext Transfer Protocol: (https://)
File URLs: (file://)
Data URLs: (data://)

In the app, you can have multiple sessions, and each session can deal with a group of
related data connections. Any kind of operation done via NSURLSession is called a task,
which is a subclass of an abstract class, called NSURLSessionTask. We have three concrete
session task classes, as follows:

Data tasks: These are implemented via the NSURLSessionDataTask class. This
kind of task is used to fetch data from a server in the form of NSData. Think of it
as a HTTP GET request.
Upload tasks: These are implemented via the NSURLSessionUploadTask class.
This kind of task is used to upload data (in the form of files) to a server. It
supports background uploads while the app is not running. Think of it as a HTTP
PUT or POST request.
Download tasks: These are implemented via the NSURLSessionDownloadTask
class. This kind of task is used to download data (in the form of files) from a
server. It supports background downloading while our app is not running.

Networking

[335]

All tasks within a URL session follow or share a common session configuration. Each
session has a configuration, which defines the connection behavior, timeout, caching,
number of simultaneous connections, whether it uses the cellular network or not, and so on.
The session configuration is of the type NSURLSessionConfiguration class, and we have
three types of configurations:

Singleton shared session: It's a special kind of session, which has no
configuration object. It's not a customizable session and can be used only for basic
requests. To use this session, you can simply call the sharedSession class
method in the NSURLSession class.
Default session: This uses the disk global cache, cookie storage, and credentials.
To use this configuration, you can simply call defaultSessionConfiguration
in the NSURLSessionConfiguration class.
Ephemeral session: This is like a default session, but it doesn't write caches,
cookies, or credentials to disk. You can use this configuration by calling
ephemeralSessionConfiguration in the NSURLSessionConfiguration
class.
Background session: It lets you upload or download content in the background
while your app is not running. You can use this configuration by calling
backgroundSessionConfiguration in the NSURLSessionConfiguration
class.

Now, you almost have the whole information to let you start working with networking
with no hassle. Of course, we can't cover everything, as we don't talk about theory here.
You can visit Apple URL Session Programming Guide, where they talk in detail about
URL session:

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLL

oadingSystem/URLLoadingSystem.html For testing purposes, we will use the following
website, which has open source APIs for sample contacts or users we can fetch and display
in the app:

https://randomuser.me/

How to do it...
Create a new Xcode project with the Single View Application template and1.
name it NetworkingDemo.

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://randomuser.me/

Networking

[336]

Let's add a button at the center of the screen so that when a user clicks on it, we2.
will trigger a server connection to fetch some data.
Open Main.storyboard and add a button at the center, with the title Connect:3.

Link an IBOutlet and IBAction to the button, as follows:4.

 @IBOutlet weak var connectButton: UIButton!
 @IBAction func didClickOnConnectButton(_ sender: Any) {
 }

Networking

[337]

Now, create a new Swift file for a new class called ContactsManager. This class5.
will be responsible for fetching contacts information from a server.
In the ContactsManager.swift file, add the following code:6.

 import UIKit

 typealias CompletionHandler = (_ success: Bool) -> ()

 class ContactsManager: NSObject {
 func fetchContacts(handler: @escaping CompletionHandler){
 let session = URLSession.shared
 let url = URL(string: "https://randomuser.me/api/")
 let dataTask = session.dataTask(with: url!,
 completionHandler: { (data, response, error) in
 if let error = error {
 print(error.localizedDescription)
 handler(false)
 } else if let httpResponse = response as?
 HTTPURLResponse {
 if httpResponse.statusCode == 200 {
 let responseString = NSString(data:
 data!, encoding:
 String.Encoding.utf8.rawValue)
 print(responseString)
 handler(true)
 }
 else{
 handler(false)
 }
 }
 })
 dataTask.resume()
 }
 }

The preceding code will be responsible for fetching data from the server. Return7.
to the ViewController.swift file and update the action function, as follows:

 @IBAction func didClickOnConnectButton(_ sender: Any) {
 UIApplication.shared.
 isNetworkActivityIndicatorVisible = true
 let contactsManager = ContactsManager()
 self.connectButton.setTitle
 ("Connecting....", for: .normal)
 self.connectButton.isEnabled = false
 contactsManager.fetchContacts { (success) in
 DispatchQueue.main.async {

Networking

[338]

 UIApplication.share
 d.isNetworkActivityIndicatorVisible = false
 print(success)
 self.connectButton.setTitle
 ("Finishing connection", for: .normal)
 }
 }
 }

Now, build and run the project; the app will look like this:8.

Networking

[339]

Once you click on the Connect button, the network indicator will be visible at the9.
top and the title of the button will be changed to Connecting...:

Networking

[340]

After your request gets executed, the screen will look like this:10.

Networking

[341]

In the console, you will see that the JSON response is printed out:11.

How it works...
We started our simple demo by adding a UIButton so that we have something to trigger
the connection to the server. To make our app more organized, we created a model class
called ContactsManager. This manager acts as a model class that is responsible for all
interactions with backend and that deals with responses. The model will convert this
response to a friendly form of data structure to be used directly in a view controller. At the
top of the file, we declared a closure called CompletionHandler so that we can use it as a
callback when the function finishes the request asynchronously. In the fetchContacts
function, we first created a URL to the server that we wanted to connect to. We get a
reference to the default URLSession by calling URLSession.shared. Once we have a
reference to the session that we are going to use, we can simply create a task by calling
session.dataTask(with: url, compltionHandler:), which returns a task to be
used. The handler will be called given the data returned, the URL response, and an error if
anything wrong happened. Calling dataTask.resume() will start executing the task.

Networking

[342]

In the response, we check first whether we have an error, then we log the error and call the
handler with a success value equal to false. If we have no error and the response status code
is equal to 200, we convert the response data to NSString to log it in a readable way.

In the action function, we started by displaying the network activity to the user so that the
user will know that the app performs a connection to the server to fetch data. Then, we
changed the title of the button and disabled it so that the user will not be able to click on the
button while it performs the API request to the server. An instance of ContactsManager
has been created, and the fetchContacts function was called to fetch the contacts. Since
the URLSession works asynchronously and not in the main thread, we used
DispatchQueue to perform any UI tasks when the function finishes calling the request. We
hid the network activity and changed the button title.

Parsing JSON data
In the previous demo, we saw how we can use URLSession to fetch data from an API in the
form of a JSON response. In the demo, we printed the JSON response in the console.
However, it doesn't work like that in real apps. In normal scenarios, we parse this JSON
response and convert it to model objects, which are friendly enough and encapsulated so
that they can be used directly in view controllers to update the UI or to do any logic. In this
section, we will continue working on the same demo, but instead of printing out the JSON
response in the console as we did earlier, we will parse and convert it to model objects and
display them on the screen.

Getting ready
The API that we will use is from the randomuser website. Its supports pagination, and you
can check it from the following URL:

https://randomuser.me/documentation#pagination

In the API, you will see that we can pass the page parameter to indicate the page index and
the results parameter for page size; these two parameters will be used while building our
demo to support pagination.

https://randomuser.me/documentation#pagination

Networking

[343]

How to do it...
Open our previous demo, and get ready to build a UI screen to display a list of1.
contacts that we will fetch from a server.
Open Main.storyboard and remove the connect button from the screen. While2.
selecting the first view controller, go to Edit | Embed In | Navigation Controller.
Change the title of the navigation bar on the first screen to Contacts.3.
From Object Library in the left-hand side panel, drag a UITableView and place4.
it on screen, with full width and height. Add constraints to the table view, as
follows:

 TableView.Trailing = Superview.Trailing
 TableView.Leading = Superview.Leading
 TableView.Top = Superview.Top
 TableView.Bottom = Superview.Bottom

Drag a UITableViewCell and place it on the table view. Change its style to5.
Basic and change its identifier to contact.
The final look of your UI will be something like this:6.

Networking

[344]

Link the delegate and datasource of the table view to the view controller.7.
Link an IBOutlet to ViewController.swift, as follows:

 @IBOutlet weak var contactsTableView: UITableView!

From ViewController.swift, remove the code of the IBOutlet of the connect8.
button and the action function as well.
Create a new model struct called Contact. Open the Contact.swift file, and9.
paste the following code:

 import UIKit

 enum Gender{
 case Male
 case Female
 case Other
 }

 extension Gender{
 init(gender: String) {
 switch gender.lowercased() {
 case "male":
 self = .Male
 case "female":
 self = .Female
 default:
 self = .Other
 }
 }
 }

 struct Contact{
 let gender: Gender
 let title: String
 let firstName: String
 let lastName: String
 let email: String
 let cellPhone: String
 let pictureURLString: String
 init(json: Dictionary<String, Any>) {
 let genderString = json["gender"]
 as? String ?? "other"
 self.gender = Gender(gender: genderString)
 if let name = json["name"]
 as? Dictionary<String, String>{
 self.title = name["title"] ?? ""
 self.firstName = name["first"] ?? ""

Networking

[345]

 self.lastName = name["last"] ?? ""
 }
 else{
 self.title = ""
 self.firstName = ""
 self.lastName = ""
 }
 self.email = json["email"] as? String ?? ""
 self.cellPhone = json["cell"] as? String ?? ""
 if let picture = json["picture"]
 as? Dictionary<String, String>{
 self.pictureURLString = picture["large"] ?? ""
 }
 else{
 self.pictureURLString = ""
 }
 }
 }

Open the ContactsManager class; we need to change the fetchContacts10.
function to support pagination. We need to pass the page index and the page size
to the function to be fetched. The function will perform parsing to convert the
JSON to a list of Contact model objects. Now, update the code of
ContactsManager.swift to the following:

 typealias CompletionHandler = (_ success: Bool, _ contacts:
[Contact]) -> ()

 class ContactsManager: NSObject {
 func fetchContacts(page:
 Int, pageSize: Int, handler:
 @escaping CompletionHandler){
 let session = URLSession.shared
 let url = URL(string:
 "https://randomuser.me/api/
 ?page=\(page)&results=\(pageSize)")
 let dataTask = session.dataTask(with: url!,
 completionHandler: { (data, response, error) in
 if let error = error {
 print(error.localizedDescription)
 handler(false, [])
 } else if let httpResponse =
 response as? HTTPURLResponse {
 var success = false
 var allContacts = [Contact]()
 if httpResponse.statusCode == 200 {
 if let responseData = data{

Networking

[346]

 do{
 let json = try
 JSONSerialization.jsonObject
 (with: responseData, options:
 .allowFragments)
 as! Dictionary<String, Any>
 let contacts =
 self.parseContactsJSON(json: json)
 allContacts.append(contentsOf:
 contacts)
 success = true

 }
 catch{
 print(error)
 }
 }
 }
 handler(success, allContacts)
 }
 })
 dataTask.resume()
 }
 func parseContactsJSON(json: Dictionary<String, Any>) ->
[Contact]{
 var contacts = [Contact]()
 if let contactsJson = json["results"] as?
 [Dictionary<String, Any>]{
 for contactObj in contactsJson {
 let contact = Contact(json: contactObj)
 contacts.append(contact)
 }
 }
 return contacts
 }
 }

Now, the model classes are ready. Let's go back to the view controller. Add the11.
following properties to the ViewController class:

 var contacts = [Contact]()
 var currentPageIndex = 0
 let pageSize = 10
 var noMorePages = false
 var loadingPage = false

Networking

[347]

Update the viewDidLoad function to request the first page of contacts directly at12.
the beginning:

 override func viewDidLoad() {
 super.viewDidLoad()
 loadNextPage()
 }

Add the following loadNextPage function to be called when you want to load a13.
page of contacts:

 func loadNextPage(){
 if noMorePages || loadingPage{
 return
 }
 loadingPage = true
 UIApplication.shared.isNetworkActivityIndicatorVisible =
 true
 let contactsManager = ContactsManager()
 contactsManager.fetchContacts(page: currentPageIndex,
 pageSize: pageSize) { (success, newContacts) in
 DispatchQueue.main.async {
 UIApplication.shared
 .isNetworkActivityIndicatorVisible = false
 self.loadingPage = false
 if success{
 if newContacts.isEmpty{
 self.noMorePages = true
 }
 else{
 self.contacts
 .append(contentsOf: newContacts)
 self.contactsTableView.reloadData()
 self.currentPageIndex += 1
 }
 }
 }
 }
 }

Finally, add the following extensions to implement the UITableViewDelegate14.
and UITableViewDataSource:

 extension ViewController: UITableViewDataSource{
 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.contacts.count

Networking

[348]

 }
 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell
 (withIdentifier: "contact")
 let contact = self.contacts[indexPath.row]
 cell?.textLabel?.text = "\(contact.title) \
 (contact.firstName) \(contact.lastName)"
 return cell!
 }
 }

 extension ViewController: UITableViewDelegate{
 func tableView(_ tableView: UITableView, willDisplay
 cell: UITableViewCell, forRowAt indexPath: IndexPath) {
 if indexPath.row == self.contacts.count - 1{
 loadNextPage()
 }
 }
 }

Now, build and run; you will see something like this:15.

Networking

[349]

Try to scroll down; once you reach the end of the list, a new page will be16.
requested and new contacts will be added.

How it works...
In the previous demo, we requested data from a server in the form of a JSON response, and
we parsed this response to model objects. The model objects were displayed on the screen.

We started by updating the UI so that we can have a suitable component to display the list
of contacts. UITableView is the perfect component to manage the list of items due to its
simplicity and efficiency in managing memory. Since we are going to parse the contacts
response to model objects, we started by creating a new model struct called Contact. The
JSON representation of the contact object is as follows:

 {
 "gender": "female",
 "name": {
 "title": "ms",
 "first": "anni",
 "last": "nikula"
 },
 "location": {
 "street": "8026 suvantokatu",
 "city": "pello",
 "state": "north karelia",
 "postcode": 48774
 },
 "email": "anni.nikula@example.com",
 "login": {
 "username": "greenkoala301",
 "password": "band",
 "salt": "u4PVgsmP",
 "md5": "d8ae579ffce37950527e6807ead32ebf",
 "sha1": "ef537ade37a9a8636568ba0f83e173622539637f",
 "sha256":
"2dedbd9f0f5e57685d3854ab3b3cae9a37647449290161a055987649f3fae7fe"
 },
 "dob": "1950-08-23 04:42:36",
 "registered": "2005-04-22 14:29:41",
 "phone": "02-346-115",
 "cell": "045-984-67-74",
 "id": {
 "name": "HETU",
 "value": "1050-680W"
 },

Networking

[350]

 "picture": {
 "large": "https://randomuser.me/api/portraits/women/80.jpg",
 "medium": "https://randomuser.me/api/portraits/med/women/80.jpg",
 "thumbnail":
"https://randomuser.me/api/portraits/thumb/women/80.jpg"
 },
 "nat": "FI"
 }

For the sake of simplicity, in our demo we care only about simple information (title, first
name, last name, e-mail, gender, cell phone, and picture image URL). That's why, in the
Contact struct, we added only these properties, which we will parse. Gender has been
represented by Enum, as its values are fixed as Male, Female, and other. Other is used for
those who do not consider themselves as a male or female or who don't want to expose
their gender. Thanks to Swift, we can add an extension to enum and define a new initializer
based on a string representation of the gender. We can do that because we receive the
gender as text from a JSON response. In Contactstruct, we add an initializer function to
init, a new contact with a JSON dictionary. The implementation of the init function is
straightforward, but I want to highlight something. We used the ?? operator heavily, which
will set the value of the property to the value that comes after the ?? operator, in case the
required value of JSON does not exist or the casting has failed. This will ensure that we
always have a valid data-like empty string for string values, or zeros for numeric values.

In the ContactManager class, we changed the completion handler definition by adding a
new parameter called contacts, which is the list that contains the Contact instances after
getting a response from backend. The fetchContacts function now accepts two additional
parameters: the page index and page size. We agreed to load contacts by pagination and not
all at once. The function will use new parameters and append them on the URL request so
that the server will know which list to return. iOS supports natively the JSON parsing using
the JSONSerialization class. It has a class function called jsonObject(with: ,
options:), which returns a dictionary representation for the JSON data. Once we get the
dictionary representation of the response, we call a parseContactsJSON()function. This
function gets the array of dictionaries (each dictionary represents a contact), and for each
item, we initialize a new Contact model object using the dictionary.

Networking

[351]

Let's get back to the view controller now. We added some new properties to help us in
managing the logic. The contacts array holds the current displayed contacts, and each
time we get a new page of contacts, we append them to the current list. The
currentPageIndex integer knows which page we should request when the user reaches
the end of the current displayed list. The pageSize is a constant (defined by let), which
tells us how many contacts we should get from a server per page. The noMorePages flag is
false, which means we still have more pages in the server to be requested. However, the
question is, how can we know whether there are more pages in the server or not? In our
logic, if we receive an empty list from the server when we ask for a page, this means there
are no more contacts to be loaded, and the flag will be set to true, so we will not load any
pages anymore. The loadingPage flag indicates that there is a request running to load a
page, so we disable requesting any pages until the current one finishes.

In the loadNextPage() function, we check first whether we can load more pages and that
there is no active pagination. Once we pass this condition, we set the loadingPage flag to
true till we finish the request, then we display the network activity indicator to the user.
Once we get the response, we check the page size to see whether we can request more pages
or not. Then, we append the incoming contacts list to the current list we have, and refresh
the table view.

To trigger loading the next page, we override the willDisplayCell function in the
UITableViewDelegate protocol. If the cell that is going to be displayed is the last cell, we
call the loadNextPage() function.

Social sharing
Sharing content in social media is a common thing in our lives nowadays. We share our
moods, ideas, thoughts, photos, videos, and so on every day in social networks. Social
networks now are another world where people live and that drives us away from our real
life and real communication. Anyway, as an iOS developer and regardless of whether you
agree or disagree with the social networks life, you have to know how to share content from
your app to social network or to other apps you have in your device. In this section, we will
see how to share content from an iOS app by continuing the demo project we built before.
During this time, we will share a contact information when a user clicks on the contact from
the list.

Networking

[352]

Getting ready
The class that is responsible for the sharing of content for all available services is the
UIActivityViewController class. This class does all the magic behind the scenes, and
the user will just select the service they want to share using a dialog screen:

The UIActivityViewController will take content from your device. By default, it will
display all services that can share this content type. However,
UIActivityViewController gives you the option to exclude some services if you want.

Networking

[353]

The services (activities) the activity view controller displays can be categorized into two
main categories: share activities and action activities. The share activities are as follows:

postToFacebook
postToTwitter
postToWeibo
message
mail
postToFlickr
postToVimeo
postToTencentWeibo
airDrop

The action activities are as follows:

print
copyToPasteboard
assignToContact
saveToCameraRoll
addToReadingList
openInIBooks

Let's get started now and take a look at how to present UIActivityViewController to
share contact information.

Networking

[354]

How to do it...
Let's continue using our previous demo to add a way to share the contact1.
information when a user clicks on it.
Let's start by handling the selection of cells in a table view. Override the2.
following function in UITableViewDelegate:

 func tableView(_ tableView: UITableView, didSelectRowAt
 indexPath: IndexPath) {
 let contact = self.contacts[indexPath.row]
 self.shareContact(contact: contact)
 }

Add the following function to share the content:3.

 func shareContact(contact: Contact){
 let contactInfo = "Name: \(contact.firstName) \
 (contact.lastName) \nEmail: \(contact.email)\n
 Cell phone: \(contact.cellPhone)"
 let photoImageURL = URL(string: contact.pictureURLString)
 let activityViewController =
 UIActivityViewController(activityItems:
 [contactInfo, photoImageURL],
 applicationActivities: nil)
 self.present(activityViewController,
 animated: true, completion: {
 print("Sharing has been done")
 })
 }

Networking

[355]

Now, build and run the app on a simulator; try to click on a contact. A dialog like4.
the following will be presented:

Networking

[356]

As the simulator has no apps installed or services enabled, let's try to test it on a5.
device. Check the following screenshot from a device:

Networking

[357]

In the preceding screenshot, we can see a list of apps where we can share
content, such as Twitter, Facebook, Slack, and so on.

Swiping through the list of apps allows you to see all apps installed to your
device that accept sharing.

Networking

[358]

After I select WhatsApp to share with one of my contacts, the shared message6.
looks like this:

Networking

[359]

How it works...
Working with UIActivityViewController is straightforward, and we saw how with a
couple of lines of code, we integrated sharing options to our app. The first thing to prepare
is the items to share. You can share text (strings), URLs, images, data, or assets. Based on
what services can handle these types, the activity view controller will display these services.
We initialized the UIActivityViewController with the items that we wanted to share,
such as the text and image URL. Then, we called present function to display the view
controller.

You can exclude activities from the controller by simply doing something like the following:

 activityViewController.excludedActivityTypes =
 [.addToReadingList, .print];

It will exclude the actions you don't want (addToReadingList and print).

12
Persisting Data with Core Data

In this chapter, we will cover the following topics:

Designing data models
Reading and insertions in Core Data
Updating and deleting records from Core Data

Introduction
In mobile apps, you may need to save data locally in device disk-like files or database files.
In a database, you can save a set of records (objects) and create relations between them. You
can perform many types of operations with high performance, such as insertions, deletions,
updates, fetching, filtering, and so on. Initially, we used to use SQLite to manage
persistence in an iOS app, until Apple launched the Core Data framework.

Core Data is a great framework that manages the data layer of your application and model
objects, persistence in device disk. Core Data is built over SQL, but it provides more
features and a higher level of abstraction. In this chapter, we will build a simple Todo app.
This app will teach you how to design data models with Xcode editor, add new records to
Core Data, fetch and display the inserted records from Core Data, delete records from Core
Data, and so on.

Designing data models
Before getting started with Core Data, you should take a look at how we will organize or
design the data models and determine the relations between these models. The data model
in Core Data is called Entity.

Persisting Data with Core Data

[361]

Xcode provides an editor to add entities and to specify the relations between them. The
design of your data models should be simple and organized, so anyone looking at it should
understand what is going on between your data models and what the relations are between
them. Check the following example of a design of data models:

The example shows four entities and the relations between them. The first entity is a Chef
entity, which has a list of attributes, such as firstName and lastName. It has a one-to-
many relation to the Recipe entity, as each Chef can have many recipes but each recipe has
only one chef. The same idea applies to other entities and, through attributes and relations,
you will understand the relations between entities.

How to do it...
Create a new Xcode project with the Single View Application template and with1.
the name TodoApp.
Ensure that the checkbox Use Core Data is checked so that Xcode can help you by2.
generating boilerplate code in AppDelegate.swift:

Persisting Data with Core Data

[362]

Once you create the project, check the left-hand side panel and click on3.
TodoApp.xcdatamodeld, which will open an awesome data models editor, as
follows:

Persisting Data with Core Data

[363]

Let's add our first entity. Click on the Add Entity button at the bottom-left corner4.
of the editor screen. Then, double-click on the entity to rename it as TaskList:

Persisting Data with Core Data

[364]

Add some attributes to the TaskList entity. Add the name attribute with type5.
String and the createdAt attribute with type Date:

Persisting Data with Core Data

[365]

Now, let's add another entity. Repeat the previous steps, but rename the entity as6.
Task. Add attributes to the entity, such as name with the String, createdAt
with type Date, isCompleted with type Boolean, and notes with type String:

Persisting Data with Core Data

[366]

Let's add a relation between the TaskList and Task models. Select the7.
TaskList entity, and under the Relationships section, click on the + button.
Rename the Relationship as tasks and the Destination as Task model:

Persisting Data with Core Data

[367]

Now, select the Task entity and add a new relation. Rename the Relationship as8.
list, and select TaskList under Destination. Under Inverse, select the tasks
relation:

Persisting Data with Core Data

[368]

Now, go back to the TaskList entity. Select the tasks relationship and, from the9.
right-hand side panel, select the Inspector tab. From the Inspector tab, change
the relation type to To Many:

Persisting Data with Core Data

[369]

Change the editor style from the bottom-right corner of the editor screen; you10.
should see something like this:

Xcode 8.0 autogenerates the class files of Task and TaskList so that you
can use them directly in code.

Persisting Data with Core Data

[370]

How it works...
In this section, we started our journey with Core Data by creating our data models. Xcode
offers a great editor to manage your entities and the relationships between them. Since we
will build a Todo app, we created two entities: the TaskList entity, which will be a
container of specific kinds of tasks, and the Task entity, which encapsulates everything you
need about a specific task. If we want to define a relationship between these two entities, we
will see that each task list will have many tasks inside of it, but each task will be linked only
to one task list. That's why we defined a one-to-many relation between these two entities.
TaskList has a toMany relation to the Task entity, and Task has a toOne relation to
the TaskList entity.

Reading and inserting records to Core Data
We have set up our data models, and now we are ready to do some operations in Core
Data. In this section, we will see how to insert new records and fetch them back so that we
can display them to our user. In our demo, we will design a screen so that the user can add
new task lists and see the already added lists. The user will then be able to select a task list
to open another screen, which has a list of tasks inside this list. We will add a functionality
to add new tasks to this list.

How to do it...
Let's continue working in our demo to build our Todo app.1.
Create a new Group in Xcode called Model to add the model classes inside.2.
Create a new class called AbstractManager to work as a parent manager for the3.
TasksListsManager and the TasksManager classes that we will create.
Add the following code in the AbstractManager class:4.

 import UIKit
 import CoreData

 class AbstractManager: NSObject {

 /// The managedObjectContext for core data.
 lazy var managedObjectContext: NSManagedObjectContext = {
 let app =
 UIApplication.shared.delegate as! AppDelegate
 return app.persistentContainer.viewContext

Persisting Data with Core Data

[371]

 }()
 }

Add a new class called TasksListManager with a subclass of5.
AbstractManager. Add the following code in TasksListManager.swift:

 import UIKit
 import CoreData

 extension TaskList{
 public class func newEntityWithName
 (name: String, context: NSManagedObjectContext) ->
 TaskList{
 let list = NSEntityDescription.insertNewObject
 (forEntityName: "TaskList",
 into: context) as! TaskList
 list.name = name
 return list
 }
 }

 class TasksListManager: AbstractManager {

 func addNewList(name s: String){
 let list = TaskList.newEntityWithName
 (name: s, context: self.managedObjectContext)
 list.createdAt = NSDate()
 do{
 try self.managedObjectContext.save()
 }
 catch{
 print(error)
 }
 }
 func fetchAllLists() -> [TaskList]{
 return self.fetchLists(predicate: nil)
 }
 private func fetchLists
 (predicate: NSPredicate? = nil) -> [TaskList]{
 let fetchRequest =
 TaskList.fetchRequest() as NSFetchRequest
 fetchRequest.predicate = predicate
 do{
 let lists = try
 self.managedObjectContext.fetch(fetchRequest)
 return lists
 }catch{
 print(error)

Persisting Data with Core Data

[372]

 }
 return []
 }
 }

In the preceding code, we added an extension to the TaskList entity; this
adds a new function that creates an instance of NSEntityDescription that
Core Data will use to insert a new record. The TasksListManager class will
take care of inserting a new record of TaskList to Core Data and will fetch it
again.

Now, the TasksListManager is ready to add new records to the database and to6.
fetch all lists.
In ViewController.swift, rename it as TasksListsViewController so that7.
it will map the controller of the screen that will manage task lists.
Open Main.storyboard, and select the initial view controller to embed it in8.
Navigation Controller:

Drag a UITableView and place it as a subview to fill the screen.9.

Persisting Data with Core Data

[373]

Then, we need to make the TasksListsViewController the table view's10.
dataSource and delegate. Ctrl + drag the table view to the view controller, and
select dataSource and delegate:

From Object Library, drag a UITableViewCell to the table view. Select the cell,11.
and from Attribute Inspector, change the Style to Right Detail. In the Identifier,
type cell in the text field.
From Object Library, drag a Bar Button Item and place it to the right of the12.
navigation bar. From Attribute Inspector, change the System Item to Add.
The final look of the storyboard so far should be something like this:13.

Persisting Data with Core Data

[374]

Now, link an IBOutlet to the table view the with name tasksListsTableView,14.
and link an IBAction to the Add button with the name didClickOnAddButton:

 @IBOutlet weak var tasksListsTableView: UITableView!
 @IBAction func didClickOnAddButton(_ sender: Any) {
 }
 Add the following functions that will display an
 UIAlertController with a text field to type
 the task list name:
 func displayAlertToAddTaskList(){
 let title = "New Tasks List"
 let doneTitle = "Create"

 let alertController = UIAlertController(title: title,
 message: "Write the name of your tasks list.",

Persisting Data with Core Data

[375]

 preferredStyle: .alert)
 let createAction =
 UIAlertAction(title: doneTitle,
 style: .default) { (action) -> Void in
 let listName =
 alertController.textFields?.first?.text ?? ""
 let tasksListsManager = TasksListManager()
 tasksListsManager.addNewList(name: listName)
 print(listName)
 }
 alertController.addAction(createAction)
 createAction.isEnabled = false
 self.currentCreateAction = createAction
 alertController.addAction(UIAlertAction
 (title: "Cancel", style: .cancel, handler: nil))
 alertController.addTextField { (textField) in
 textField.placeholder = "Task List Name"
 textField.addTarget(self, action: #selector
 (TasksListsViewController.listNameFieldDidChange
 (textField:)),
 for: .editingChanged)
 }

 self.present(alertController,
 animated: true, completion: nil)
 }
 //Enable the create action of the alert
 only if textfield text is not empty
 func listNameFieldDidChange(textField:UITextField){
 self.currentCreateAction.isEnabled = (textField.text ??
 "").characters.count > 0
 }

The previous code is straightforward; we first created an instance of the
UIAlertController class to display an alert to their user. The alert will
have an action button to save the task list and another action button to
dismiss the alert. We added a text field to the alert where the user can type
the name of the task list.

Persisting Data with Core Data

[376]

Now, define the following property to have a reference to the submit action15.
button of the alert:

 var currentCreateAction:UIAlertAction!

Now, update the didClickOnAddButton function to call the function that we've16.
just created:

 @IBAction func didClickOnAddButton(_ sender: Any) {
 displayAlertToAddTaskList()
 }

Add the following extension to implement the UITableViewDataSource17.
protocol:

 extension TasksListsViewController: UITableViewDataSource{
 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int)
 -> Int {
 return 0
 }
 func tableView(_ tableView: UITableView, cellForRowAt
 indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell
 (withIdentifier: "cell")
 return cell!
 }
 }

Persisting Data with Core Data

[377]

Now, build and run; you will see an empty list, as follows:18.

Persisting Data with Core Data

[378]

When you click on the add button an alert controller will be displayed, as shown19.
in the following screenshot and, as you can see, the Create button is disabled:

Persisting Data with Core Data

[379]

Once you type a name, the Create button of the alert will be enabled:20.

After clicking on the Create button, the list will be saved in Core Data, but21.
unfortunately right now, we don't see anything yet on screen. Let's take a look at
how to read the inserted lists and display them on screen.
Add the following property to hold the current displayed lists:22.

 var tasksLists: [TaskList] = [TaskList]()

Persisting Data with Core Data

[380]

Add the following function to read tasks from Core Data and refresh the table23.
view:

 func loadTasks(){
 let tasksListsManager = TasksListManager()
 self.tasksLists = tasksListsManager.fetchAllLists()
 self.tasksListsTableView.reloadData()
 }

Update the viewDidLoad function to call loadTasks to display the current list24.
once the screen is displayed:

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup
 after loading the view, typically from a nib.
 self.loadTasks()
 }

Update the displayAlertToAddTaskList function to call loadTasks after25.
inserting any new list:

 let listName = alertController.textFields?.first?.text ?? ""
 let tasksListsManager = TasksListManager()
 tasksListsManager.addNewList(name: listName)
 self.loadTasks()

Lastly, update the data source functions to display the data we read from a26.
database:

 extension TasksListsViewController: UITableViewDataSource{
 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.tasksLists.count
 }
 func tableView(_ tableView:
 UITableView, cellForRowAt indexPath: IndexPath) ->
 UITableViewCell {
 let cell = tableView.dequeueReusableCell
 (withIdentifier: "cell")
 let list = self.tasksLists[indexPath.row]
 cell?.textLabel?.text = list.name
 cell?.detailTextLabel?.text =
 "\(list.tasks?.count ?? 0) Tasks"
 return cell!
 }
 }

Persisting Data with Core Data

[381]

Now, build and run; our data will be loaded like this:27.

How it works...
In this section, we implemented the reading and insertions of objects in Core Data. First, we
created the model classes that will be responsible for dealing with Core Data and executing
requests. The AbstractManager is an abstract class that will have all common
functionalities and properties that will be needed in any concrete manager. In the
AbstractManager, we added a lazy property called managedObjectContext, which is a
reference to the NSManagedObjectContext. The context is a place where all data objects
live. The context will take care of persisting the changes made in model objects.

Persisting Data with Core Data

[382]

The first concrete manager that extends AbstractManager is TasksListManager. This
manager will take care of all CRUD operations in the TaskList object. The first thing we
did was to add an extension for our TaskList class to add the newEntityWithName
function, which will create a new instance of TaskList by a given context. The
NSEntityDescription has a class function called insertNewObject, which takes the
entity name which is TaskList and the context which will have the new added object.

In the TasksListManager class, we added a function called addNewList; the function
takes the list name as a parameter and creates a new instance using the class function we
created in the extension. After we create the instance, we called
self.managedObjectContext.save() to write our changes to disk. The second function
is fetchAllLists(), which returns a list of objects of the TaskList class. The function
internally calls a private function, which performs a fetch request with an option to provide
a predicate. The NSPredicate gives you the option to filter, sort, or limit the fetched
results. To fetch all results, we pass it as a nil for now. The TaskList.fetchRequest()
returns an instance of NSFetchRequest to be executed by calling
self.managedObjectContext.fetch(fetchRequest), which informs the context to
start fetching the given fetch request.

Going back to TasksListsViewController, we added the
displayAlertToAddTaskList() function that will display an alert dialog with a text field
so that the user can type the list name. The alert controller is an instance of
UIAlertController. We added the first action which, just like the create action, will be
disabled at the beginning till the user types a valid list name. That's why we have a
reference to the create action to enable it later. We added a text field to the alert controller so
that the user can type the list in it. The function passed a closure to add your configuration
for the text field in it. We added a target-action to the event of editingChanged, so it will
call the listNameFieldDidChange(textField:) function, where we validate the list
name to enable or disable the create action.

Inserting new objects to Core Data is nothing without knowing how to read them back to
display them to the user. In the loadTasks() function, we created an instance of
TasksListManager() and called the fetchAllLists function. Then, we reloaded the
table view. In the cellForRow function of dataSource, we changed the cell label text to
the list name and the cell details label text to the number of tasks inside this list.

Persisting Data with Core Data

[383]

Updating and deleting records from Core
Data
While dealing with objects in databases, you will need to know how to update or delete
objects. In Core Data, these kinds of operations are made easy and, with just simple APIs,
you can perform these operations. In this section, we will see how a user can edit the name
of task list or delete it.

How to do it...
Let's start with deleting lists. Open the TasksListManager.swift file, and add1.
the following function:

 func deleteList(list: TaskList){

 self.managedObjectContext.delete(list)
 do{
 try self.managedObjectContext.save()
 }
 catch{
 print(error)
 }
 }

Add the following extension to implement the UITableViewDelegate protocol2.
and override the editActionsForRow function:

 extension TasksListsViewController: UITableViewDelegate{
 func tableView(_ tableView: UITableView,
 editActionsForRowAt indexPath: IndexPath) ->
 [UITableViewRowAction]? {
 let deleteAction = UITableViewRowAction(style:
 .destructive, title: "Delete", handler:
 { (deleteAction, indexPath) in
 let tasksListsManager = TasksListManager()
 let listToBeDeleted =
 self.tasksLists[indexPath.row]
 tasksListsManager.deleteList(list:
 listToBeDeleted)
 self.tasksLists.remove(at: indexPath.row)
 self.tasksListsTableView.deleteRows(at:
 [indexPath], with: .fade)

Persisting Data with Core Data

[384]

 })
 return [deleteAction]
 }
 }

Now, build and run the app. Once the list of movies appears, swipe left from any3.
list, and you will see the option to delete:

Persisting Data with Core Data

[385]

Once you click on Delete, the list will be deleted with fade animation:4.

Double-check that everything is working fine, kill the app, and reopen it. You5.
should see that the list is completely deleted when you fetch all lists.
Let's add another option now to edit a task list name. Update the6.
editActionsForRow function to add another action for edit:

 func tableView(_ tableView: UITableView,
 editActionsForRowAt indexPath: IndexPath) ->
 [UITableViewRowAction]? {

Persisting Data with Core Data

[386]

 let deleteAction = UITableViewRowAction(style:
 .destructive, title: "Delete", handler:
 { (deleteAction, indexPath) in
 let tasksListsManager = TasksListManager()
 let listToBeDeleted =
 self.tasksLists[indexPath.row]
 tasksListsManager.deleteList(list:
 listToBeDeleted)
 self.tasksLists.remove(at: indexPath.row)
 self.tasksListsTableView.deleteRows(at:
 [indexPath], with: .fade)
 })
 let editAction = UITableViewRowAction(style:'
 .normal, title: "Edit", handler:
 { (editAction, indexPath) in
 let listToBeUpdated =
 self.tasksLists[indexPath.row]
 self.displayAlertToAddOrUpdateTaskList
 (toUpdateList: listToBeUpdated)
 })
 return [deleteAction, editAction]
 }

Note that there is a call for a displayAlertToAddOrUpdateTaskList()7.
function, which is the updated version of displayAlertToAddTaskList().
Consider the following updated function:

 func displayAlertToAddOrUpdateTaskList
 (toUpdateList: TaskList?){
 var title = "New Tasks List"
 var doneTitle = "Create"
 if toUpdateList != nil {
 title = "Update Tasks List"
 doneTitle = "Update"
 }

 let alertController = UIAlertController(title: title,
 message: "Write the name of your tasks list.",
 preferredStyle: .alert)
 let createAction = UIAlertAction
 (title: doneTitle, style: .default)
 { (action) -> Void in
 let listName =
 alertController.textFields?.first?.text ?? ""
 let tasksListsManager = TasksListManager()
 if let updatedList = toUpdateList{
 updatedList.name = listName
 tasksListsManager.saveContextForUpdates()

Persisting Data with Core Data

[387]

 }
 else{
 tasksListsManager.addNewList(name: listName)
 }
 self.loadTasks()
 print(listName)
 }
 alertController.addAction(createAction)
 createAction.isEnabled = false
 self.currentCreateAction = createAction
 alertController.addAction(UIAlertAction(title:
 "Cancel", style: .cancel, handler: nil))
 alertController.addTextField { (textField) in
 textField.placeholder = "Task List Name"
 textField.addTarget(self, action:
 #selector(TasksListsViewController
 .listNameFieldDidChange(textField:)),
 for: .editingChanged)
 if let updatedList = toUpdateList{
 textField.text = updatedList.name
 }
 }

 self.present(alertController,
 animated: true, completion: nil)
 }

Now, update the TasksListManager class to add the following function:8.

 func saveContextForUpdates(){
 do{
 try self.managedObjectContext.save()
 }
 catch{
 print(error)
 }
 }

Persisting Data with Core Data

[388]

Now, build and run. Assume that the current list we have is like the following:9.

Persisting Data with Core Data

[389]

When you swipe left to the first item in the task list, you will see two options:10.
Edit or Delete:

Persisting Data with Core Data

[390]

When you click on Edit, a pop-up dialog will appear, as follows:11.

Persisting Data with Core Data

[391]

Once you click on Update, the table view will be reloaded and the lists will be12.
updated:

Persisting Data with Core Data

[392]

How it works...
In this section, we have implemented two important functionalities, which are updating
and deleting objects. Although these functionalities are very important, they are easy to
perform, thanks to Core Data, which provides easy and simple APIs to get these jobs done.
We started implementing deletion and created the deleteList() function in
the TasksListManager. As we said before, all data model objects live in a
managedObjectContext. That's why we asked the context to delete the object by calling
self.managedObjectContext.delete(list); then, we saved the context.

In TasksListsViewController, we overode the editActionsForRow()function, which
is one of the delegate functions of UITableViewDelegate. The function returns a list of
actions that needs to appear when the user swipes any cell in the table. We added two
actions, one for the delete action and one for the edit action. In the delete action, when the
user clicks on the delete button, we create a new instance of TasksListManager to call the
deleteList function. Once the list is deleted from Core Data, we directly remove it from
our array and reload the table view.

In editing mode, we reused the displayAlertToAddTaskList()function to support
displaying the alert dialog while inserting or updating a task list. We renamed the function
as displayAlertToAddOrUpdateTaskList, and we added an optional parameter called
toUpdateList. This parameter will be nil in the case of inserting a new task list and will be
a reference to the updated list in the case of updating an existing task list. When the user
clicks on the submit button, we update the name directly to the updated list and ask the
context to save the change directly.

13
Notifications

In this chapter, we will cover the following topics:

Setting up Push Notifications
Setting up a local server to send Push Notification
Working with Interactive Push Notifications
Working with local notifications

Introduction
Most of our apps nowadays highly depend on notifications when they implement most of
its features. Notifying users with specific actions is the best practice rather than letting them
keep checking the app for any updates. All of us now are aware of Push Notifications while
receiving messages or notifications from your friends in social networks, new e-mails,
reminders from apps to do specific actions, and so on. Push Notifications now are being
enhanced in each new version of iOS to deliver the user the best benefit of push
notifications and support newer features.

In this chapter, we will give you a great coverage of the most important topics in
notifications. We will start by working with push notification, which are the most important
part of notifications in iOS. This type of notifications is sent via server side to mobile
phones, which requires Internet connection on the iOS device. Then, we will see how to
create interactive notifications and present images. Presenting images is one of the great
features in iOS 10. Notifications may not only be Push Notifications; however, you can keep
sending notifications to your user locally, which requires no Internet connection at all.

Notifications

[394]

Setting up Push Notifications
The first step in working with Push Notifications is to know how to set up Push
Notification in your app. This step causes a headache for most iOS developers, as it requires
a lot of setup instructions, which may lead to a Push Notification that doesn't work in the
end, unfortunately. In this section, based on my experience, I will try to list the steps that
you should follow to set up Push Notifications. After setting it up, we will build a simple
demo app that asks the user permission to send push notifications. Then, we will try to
build a simple local server to send notifications from.

Getting ready
When you think of Push Notifications, you have to know that there are a lot of things
involved in this setup:

Apple developer account: You must have a paid developer account to
work with Push Notifications. In this account, you can create the app
identifiers, provisions, and certificates to be used in the setup. In this
account, we need the following:

Provision profile: This is a provision profile that has
Push Notification service enabled. The development
provision profile needs a list of devices, UDID's that are
involved in testing. This provision will be added in the
Xcode project.
Push Notification certificate: This certificate is a special
type of certificate which is specific only for Push
Notifications. This certificate will be used only by the
server that will send the Push Notifications.

Xcode project: In Xcode project settings, we will need only to add the
provision profile, which has Push Notification service enabled.
Source code: This is the code that will be required to set up Push
Notifications. This code will do the following:

Register for push notifications by asking the user
permission to send these notifications
Receive the device token after the user accepts to receive
Push Notifications and it connects to the server that will
send the notifications

Notifications

[395]

Server: This is the server that will fire the notifications to the Apple servers, and
they will be sent directly again to your device. To do this, the server will need to
talk to Apple servers and it will need the following:

The device token so that Apple servers can know which device to
talk to
The push notification certificate which has been created from
Apple developer account

This is the summary of what is required to set up push notifications. When you finish the
setup, make sure that you come back to this list to review what you did.

How to do it...
Create a new Xcode project with a Single View Application template and with1.
the name PushApp.
Change the app identifier of the project to ae.example.pushapp.2.
Log in to your Apple developer account and click on the Account tab at the top:3.

On the left-hand side, you will find a menu. Click on Certificates, IDs & Profiles.4.

Notifications

[396]

The Apple developer account will be opened with details, as follows:5.

In the menu on the left-hand side, click on App IDs and then click on the + button6.
at the top-right corner.

Notifications

[397]

Under App ID Description, enter PushApp in the Name section, and under App7.
ID Suffix, choose Explicit App ID and type ae.example.pushapp in Bundle
ID:

Notifications

[398]

In the same page and underApp Service, make sure that Push Notification is8.
selected and then click on Continue:

Notifications

[399]

A confirmation page will be displayed; ensure that Push Notifications is set as9.
Configurable and then click on Register:

Now, let's create the Push Notification certificate.

Notifications

[400]

In the left menu, click on Development under Certificates. Then, click on the top10.
plus button and select Apple Push Notification service SSL (Sandbox):

Notifications

[401]

Then, select the app identifier ae.example.pushapp from the list:11.

Notifications

[402]

Then the page will ask you to create a certificate signing request (CSR). Open12.
the Keychain Access app in your Mac, and select Keychain Access | Certificate |
Assisstant | Request a Certificate From a Certificate Authority...:

A window will open asking you to enter some information. Just enter your e-mail13.
address, name, and select Saved to disk to save in your desktop, for example:

Notifications

[403]

Now, return to the website, and click on Continue to upload the signing request14.
that you have saved in Desktop:

Notifications

[404]

Then the certificate will be ready; click on Download:15.

Notifications

[405]

Now, the last thing is the app provision profile. Select Development from under16.
Provisioning Profiles, and select iOS App Development and click on Continue:

Notifications

[406]

Then, select the App ID from the list:17.

Notifications

[407]

Write a name to the provision, and select the device that you want to test it on.18.
Then the provision will be ready to be downloaded:

Notifications

[408]

Now, return to Xcode and update the project development certificate and19.
provision:

Notifications

[409]

Lastly, open the Capabilities tab and enable Push Notifications:20.

Open the AppDelegate.swift file to add the code that will register for push21.
notifications. At the top of file, add the following import statement:

 import UserNotifications

Then, add the following function:22.

 func registerForPushNotifications(){
 let application = UIApplication.shared
 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options:
 [.alert, .sound]) { (granted, error) in
 // actions based on whether
 notifications were authorized or not
 print(granted)
 print(error ?? "No error")

Notifications

[410]

 }
 application.registerForRemoteNotifications()
 }

Then, update the didFinishLaunchWithOptions function to call the previously23.
added function:

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization
 after application launch.
 registerForPushNotifications()
 return true
 }

Now, let's implement the following two functions from among which one will be24.
called based on success or failure:

 func application(_ application: UIApplication,
 didRegisterForRemoteNotificationsWithDeviceToken
 deviceToken: Data) {
 let deviceTokenString = deviceToken.reduce("", {$0 +
 String(format: "%02X", $1)})
 print(deviceTokenString)
 }
 func application(_ application: UIApplication,
 didFailToRegisterForRemoteNotificationsWithError
 error: Error) {
 print(error)
 }

Notifications

[411]

Now, let's build and run the app. Once you open the app on the device, you will25.
see the following alert:

Notifications

[412]

Now, check your debug area; you should see the device token printed:26.

Now, the push notifications service has been set up correctly once you receive the27.
device token from the system.

Notifications

[413]

How it works...
In this section, we have gone through the setup process of the push notification service.
Doing anything wrong or missing one of the steps that we have introduced will lead to
unexpected behavior while working with push notifications. The most important steps have
been done through the Apple developer account to create the app certificate, APNS
certificate, and the app provision profile. After you create all these files, you can easily
embed them in the Xcode project.

Starting from iOS 10, push notification APIs have been moved to a grand new framework
called UserNotifications. This framework has everything needed to set up push
notifications in your app. The registration for push notifications has been done in the
registerForPushNotifications() function. In this function, we get a reference to the
user notification center by calling UNUserNotificationCenter.current(), and then we
called the requestAuthorization function, which takes a block to be called once the
authorization finishes. This block has two parameters: granted--which has two values: true,
if the user grants access to send notifications, and false, otherwise--and the error if the
authorization fails.

In AppDelegate, there are two callback functions related to push notifications, the
didRegisterForRemoteNotificationsWithDeviceToken and
didFailToRegisterForRemoteNotificationsWithError. The first function will be
called in successful registration and the device token will be passed. The second one will be
called if the app fails the registration and the error will be passed.

Setting up a local server to send Push
Notifications
In the previous section, we saw how to set up push notifications from the Apple developer
account and in the Xcode project. Then, we wrote the code in AppDelegate to register for
push notifications. Everything is good, but it will be nothing if we don't know how to send
push notifications to the device. In this section, we will set up a local server that will send
push notifications to the device using the APNS certificate and the device token.

Notifications

[414]

Getting ready
To send push notification easily, we will introduce a good and easy tool that you can set up
in your local machine. Check the following tool in GitHub, which is called Houston:
https://github.com/nomad/houston

Houston is a ruby gem that can be installed in your Mac, and here you go; you can send
push notifications with very few steps.

How to do it...
Run the previous app on a device and keep a record of the device token, as we1.
will use it to send notifications.
Open the Houston project in GitHub and follow the instructions there to install2.
Houston.
The Push Notification certificate that you have downloaded should be with the3.
.cer extension. Double-click on certificate, and it will open Keychain Access:

https://github.com/nomad/houston

Notifications

[415]

Right-click on the certificate and click on Export " ":4.

Ensure that the .p12 extension is selected:5.

Notifications

[416]

Click on the Save button to save the file in your disk. After saving it, we need to6.
convert the certificate file from .p12 to .pem. The .pem will be used by Houston
to send notifications.
Open the terminal and navigate to the folder that has the certificate.7.
Now, run the following command to generate a new .pem certificate:8.

 $ openssl pkcs12 -in cert.p12 -out
 apple_push_notification.pem -nodes -clcerts

Create a new text file, and write the following code:9.

 require 'houston'

 # Environment variables are automatically read, or can be
 overridden by any specified options. You can also
 # conveniently use `Houston::Client.development` or `
 Houston::Client.production`.
 APN = Houston::Client.development
 APN.certificate =
 File.read("/Users/hossamghareeb/Documents/
 apple_push_notification.pem")

 # An example of the token sent back when a device registers
 for notifications
 token =
 "699C8C3E87A7412E356365F80
 CEE08C737D541EB135EC5470334C85A5F4E2FCC"

 # Create a notification that alerts a
 message to the user, plays a
 sound, and sets the badge on the app
 notification = Houston::Notification.new(device: token)
 notification.alert = "Hello, World!"

 # Notifications can also change the badge count, have a
 custom sound, have a category identifier, indicate available
 Newsstand content, or pass along arbitrary data.
 notification.badge = 57
 notification.sound = "sosumi.aiff"
 notification.category = "INVITE_CATEGORY"
 notification.content_available = true
 notification.mutable_content = true
 notification.custom_data = { foo: "bar" }

 # And... sent! That's all it takes.
 APN.push(notification)

Notifications

[417]

Replace the device token in the file with a device token of the device that you're10.
using. You can get it from the Debug area when you run the app. Then, save the
file as a push.rb file.
In the terminal now, run the following command:11.

 ruby push.rb

Check the device; you will see the Push Notification, as follows:12.

Notifications

[418]

How it works...
In this section, we saw how simple it is to send Push Notifications when you have a server.
For simplicity, we've used the local machine as a server to send push notifications thanks to
Houston. It manages to wrap the message and the certificate and send them to the Apple
Push Notification server with the device token. The Apple server understands which device
it should communicate with and which app should take care of the notification. The
certificate that you export from Keychain is in the .p12 format, but the server needs the
.pem format, and that's why we converted our certificate to that extension. In Houston
ruby code, the alert property takes the push notification message that you want the user
to read when they receive the notification. The custom_data property takes a custom JSON
object that can contain useful information that you may need in your app when you handle
the Push Notification when the user clicks on it.

Working with interactive Push Notifications
Users need to interact with Push Notifications by performing actions, such as tapping on it
to see what are you telling them or swiping the notification to see multiple actions
customized only for your app. If the app is in the foreground and the app received the Push
Notification, the push notification will not be shown. However, in iOS 10, the
UserNotifications framework has provided a way to make it presentable. If the app is in
the background and the user received the push notification for your app, the push
notification message will be presented. Clicking on the Push Notification will automatically
open your app. Swiping on the notification will show two actions, by default. The View
action is to open the app and the Clear action is to clear the notification from the
notification center.

In this section, we will see how to handle tapping on the notification and how to customize
the default actions of the notification.

How to do it...
Open the same demo project and click on the AppDelegate.swift file.1.
The first thing that we will do is enable the presentable of Push Notification if the2.
app is in foreground and handle the tapping of the Push Notifications.
Update the function of registerForPushNotifications to be like the3.
following:

Notifications

[419]

 func registerForPushNotifications(){
 let application = UIApplication.shared
 let center = UNUserNotificationCenter.current()
 center.delegate = self
 center.requestAuthorization(options:
 [.alert, .sound]) { (granted, error) in
 // actions based on whether
 notifications were authorized or not
 print(granted)
 print(error ?? "No error")
 }
 application.registerForRemoteNotifications()
 }

At the end of the file, add the following extension to conform to the4.
UNUserNotificationCenterDelegate protocol:

 extension AppDelegate: UNUserNotificationCenterDelegate{
 public func userNotificationCenter(_ center:
 UNUserNotificationCenter, willPresent notification:
 UNNotification,
 withCompletionHandler completionHandler:
 @escaping (UNNotificationPresentationOptions) ->
 Swift.Void){
 completionHandler(.alert)
 }
 // The method will be called on the delegate when the user
 responded to the notification by opening the application,
 dismissing the notification or choosing a
 UNNotificationAction. The
 delegate must be set before the application returns from
 applicationDidFinishLaunching:.
 public func userNotificationCenter(_ center:
 UNUserNotificationCenter, didReceive response:
 UNNotificationResponse, withCompletionHandler
 completionHandler: @escaping () -> Swift.Void){
 let userInfo =
 response.notification.request.content.userInfo
 if let aps = userInfo["aps"]{
 print(aps)
 }
 if let customData = userInfo["foo"]{
 print(customData)
 }
 completionHandler()
 }
 }

Notifications

[420]

Now, run the app, and while the app is in the foreground, send a notification5.
from the terminal. You will see as the following screenshot; the notification is
presentable:

Now, try to send a notification while the app is in the background. Then, try to6.
tap on the notification and then check the Debug area; you will see a log, as
follows:

Notifications

[421]

You will note that the same information you set in the Houston push notification7.
file is received in the app.

Let's see now how we can create custom functions for the push notification:

At the top of the AppDelegate.swift file, add the following constants:1.

 let ChatMessageCategory = "ChatMessageCategory"
 let ReplyActionIdentifier = "ReplyActionIdentifier"
 let CoolActionIdentifier = "CoolActionIdentifier"

Update the registerForPushNotification function to register the actions if2.
permission granted:

 func registerForPushNotifications(){
 let application = UIApplication.shared
 let center = UNUserNotificationCenter.current()
 center.delegate = self
 center.requestAuthorization(options:
 [.alert, .sound]) { (granted, error) in
 // actions based on whether
 notifications were authorized or not
 if granted{
 self.customizePushNotificationActions()

Notifications

[422]

 }
 }
 application.registerForRemoteNotifications()
 }

Now, add the following function to register the actions for the Push Notification3.
of a specific category:

 func customizePushNotificationActions(){
 let center = UNUserNotificationCenter.current()
 let replyAction = UNNotificationAction(identifier:
 ReplyActionIdentifier, title:
 "Reply", options: .foreground)
 let coolAction =
 UNNotificationAction(identifier:

 CoolActionIdentifier, title: " ",
 options: .destructive)
 let notificationCategory =
 UNNotificationCategory(identifier:
 ChatMessageCategory, actions:
 [replyAction, coolAction],
 intentIdentifiers:
 [], options:
 .customDismissAction)
 var categories = Set<UNNotificationCategory>()
 categories.insert(notificationCategory)
 center.setNotificationCategories(categories)
 }

Finally, update the delegate method to add a condition to check the actions:4.

 public func userNotificationCenter(_ center:
 UNUserNotificationCenter, didReceive response:
 UNNotificationResponse, withCompletionHandler
 completionHandler: @escaping () -> Swift.Void){
 let userInfo =
 response.notification.request.content.userInfo
 if let aps = userInfo["aps"]{
 print(aps)
 }
 if let customData = userInfo["foo"]{
 print(customData)
 }
 switch response.actionIdentifier {
 case ReplyActionIdentifier:
 print("User did click on reply. Display the chat log

Notifications

[423]

 and text box to reply.")
 case CoolActionIdentifier:

 print("Send cool emojo to the user")
 default:
 print(response.actionIdentifier)
 }
 completionHandler()
 }

Now, run the app and put it in the background.5.
Update the push.rb file to add the new action identifier, as follows:6.

 require 'houston'

 # Environment variables are automatically read, or can be
 overridden by any specified options. You can also
 # conveniently use `Houston::Client.development` or `
 Houston::Client.production`.
 APN = Houston::Client.development
 APN.certificate =
 File.read("/Users/hossamghareeb/
 Documents/apple_push_notification.pem")

 # An example of the token sent back l
 when a device registers for notifications
 token = "699C8C3E87A7412E356365F80CEE08C73
 7D541EB135EC5470334C85A5F4E2FCC"

 # Create a notification that alerts
 a message to the user, plays a sound, and sets the badge on
 the app
 notification = Houston::Notification.new(device: token)
 notification.alert = "Hey man, we are
 going to cinema tomorrow. Are you in?"

 # Notifications can also change the badge count, have a
 custom sound, have a category identifier, indicate
 available Newsstand content, or pass along arbitrary data.
 notification.badge = 57
 notification.sound = "sosumi.aiff"
 notification.category = "ChatMessageCategory"
 notification.content_available = true
 notification.custom_data = { foo: "bar" }

 APN.push(notification)

Notifications

[424]

Now, send the message as we did before. Once you get the message, drag down7.
to see the custom action, as shown in the following screenshot:

Notifications

[425]

How it works...
We saw how easy it is to handle the interactions of push notifications and add your own
custom actions. To get notified when the user taps or does any specific action to the push
notification, you have to set the delegate for UNUserNotificationCenter and implement
the function of the UNUserNotificationCenterDelegate protocol. In the
userNotificationCenter(_ center: UNUserNotificationCenter, willPresent

notification) function, it will be called when the user receives a push notification while
the app is in the foreground state. By default, the notification will not be shown, but if you
override this function, you have the chance to add your own logic to decide whether to
present the notification or not. Calling completionHandler(.alert) inside the function
will present the notification.

The userNotificationCenter(_ center: UNUserNotificationCenter,
didReceive response) function will be called when the user interacts with the push
notification while the app is in the background state. The function passes an instance of
UNNotificationResponse, which gives you a way to access the user information
dictionary.

In the customizePushNotificationActions() function, we define the custom actions
that the user will see in the push notification. Each push notification can have a unique
category, and each category will have its own actions. Facebook, for example, can have a
category for a friend request notification, and the actions can be accept and reject. A new
comment for your post can have another category with Reply and Like actions. In the
example demo, we created the first two actions. Each action should be initialized with a
unique identity, title, and options that identifies whether the notification will open the app
in the foreground state or not. The foreground option will cause the app to open when you
click on it. The destructive option will just destroy the notifications. Once you have a list of
actions, you can create the categories. Each category should have a unique key and the list
of actions that will appear in this category. Once you are ready with your categories, call
center.setNotificationCategories(categories) to subscribe them. In the delegate
method, you can later detect the custom action that has been clicked by getting its identifier
by calling response.actionIdentifier.

Notifications

[426]

Working with local notifications
We talked a lot in the previous sections about Push Notification, which is a notification that
can be sent from a server side to the app and requires the Internet connection. There is
another type of notification, which is the local notification. Local notification is a
notification that you can build and register within the app itself with no need for a server to
send the notifications. This type of notification can be used for reminders, alarms, and so
on. In this section, we will build a screen where a user can create a reminder and the app
will notify the user locally.

How to do it...
Open the storyboard file in the demo project. Select the initial view controller and1.
click on Editor | Embed In | Navigation Controller.
Change the title of the navigation bar to Add Reminder.2.
Add a text field at the top of the screen to act as a title for the reminder.3.
Then, add a text view below the text field so that the user can enter a body for the4.
reminder.
Below the text view, add a date picker so that the user can choose the date and5.
time of the reminder.
Add a navigation bar button at the right to add the reminder when the user clicks6.
on it.
Add IBOutlets and IBActions to the UI components, as follows:7.

 @IBOutlet weak var titleTextField: UITextField!
 @IBOutlet weak var reminderDatePicker: UIDatePicker!
 @IBOutlet weak var bodyTextView: UITextView!
 @IBAction func didClickOnAddButton(_ sender: Any) {
 }

Notifications

[427]

The final look of the screen UI should be something like this:8.

Update the viewDidLoad function to be like the following:9.

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after
 loading the view, typically from a nib.
 self.reminderDatePicker.minimumDate = Date()
 self.titleTextField.delegate = self
 }

Notifications

[428]

Now, update the didClickOnAddButton to fetch the information from the UI10.
and schedule the notification:

 @IBAction func didClickOnAddButton(_ sender: Any) {
 guard let title = titleTextField.text, let body =
 bodyTextView.text else {
 print("Please enter all information")
 return
 }
 let content = UNMutableNotificationContent()
 content.title = title
 content.body = body
 content.sound = UNNotificationSound.default()
 let triggerDate = Calendar.current.dateComponents
 ([.year,.month,.day,.hour,.minute,.second],
 from: self.reminderDatePicker.date)

 let trigger = UNCalendarNotificationTrigger
 (dateMatching: triggerDate, repeats: false)
 let center = UNUserNotificationCenter.current()
 let identifier = "ReminderNotification"
 let request = UNNotificationRequest(identifier:
 identifier, content: content, trigger: trigger)
 center.add(request, withCompletionHandler: { error in
 if let error = error {
 print("Error in scheduling the
 notification \(error)")
 }
 else{
 DispatchQueue.main.async {
 print("Scheduling done successfully")
 self.titleTextField.text = ""
 self.bodyTextView.text = ""
 }
 }
 })
 }

Notifications

[429]

Finally, add the following extension to allow ViewController to be the delegate11.
of the text field:

 extension ViewController: UITextFieldDelegate{
 func textFieldShouldReturn(_ textField: UITextField) ->
 Bool {
 textField.resignFirstResponder()
 return true
 }
 }

Now, run the app on device, and enter some information like the following:12.

Notifications

[430]

If you lock the phone and wait till the time you have set, you will see a local13.
notification, as follows:

Notifications

[431]

How it works...
Working with a local notification is straightforward, and as we saw, the code is very simple.
We added a UIDatePicker in the screen to let the user pick the date and time for the
reminder. Date picker has a useful property called minimumDate, which prevents the user
from selecting a date before the current date. Before we process for scheduling the
notification, we first check that the user has entered all information in the fields. Once the
data is ready, we create an instance of UNMutableNotificationContent to set the title,
body, and the sound of the notification. Once the notification content is ready, we need
something to tell the notification center the time that we should fire the notification. The
UNCalendarNotificationTrigger gets information about the date of the notification,
and you can set up the trigger to repeat the notification if you want. After preparing the
content and the trigger, you can create a new instance of UNNotificationRequest that
will be added later to the notification center. The completion block is called once the request
is added to the center, and a reference of the error (if occurred) will be passed to the block.
After the successful scheduling of the notification, we reset the fields again, and because
these updates are UI updates, we executed that in the main thread.

14
App Search

In this chapter, we will cover the following topics:

App indexing using NSUserActivity
App indexing using Core Spotlight APIs

Introduction
With the marvelous amount of information we have today in web and mobile apps,
searching becomes the best way to get to what you need accurately and in no time. Think of
Google search you get all the information you need by typing simple words into the search
field. Now, in iOS, users can get information about your app in search results, even if the
app is not installed. When you make your app content searchable, users can access this
content through Spotlight and Safari search results and Siri suggestions. Implementing app
search for your app is very easy and straightforward; iOS provides different techniques and
index types to do this. In this chapter, we will try to give you a good introduction about app
search adoption.

App Search

[433]

App indexing using NSUserActivity
The first technology of indexing for app indexing is working with NSUserActivity. This
class helps you to index items when users perform activities in your app, such as opening
specific screens or interacting with app content. Using this activity class will help a user to
find the information that they need in search results and will improve your app's ranking.
NSUserActivity is not intended to index an app's arbitrary data; it only indexes the user's
activities. If you want to index app-specific data, you will need to use Core Spotlight APIs
and that's what we will do in the next section:

In the following demo, we will build a simple wallet app where a user can track their
expenses by entering the item name and price. Once the user enters a new item in the
wallet, we will create a user activity so that the system can index it in the private index.

App Search

[434]

Getting ready
There are two types of indexing in iOS and they're related to user privacy. Both indexes
store searchable items related to app content. The following are the differences between the
two indexes:

Private On-Device Index: Each iOS device has a private index and its content is
never shared publicly or synced with other devices. Once the search item is
marked as an on-device index, only the device's user can see that item in search
results.
Apple's Server-side Index: The data will be stored on server side and will be
publicly available.

By default, search items represented by NSUserActivity will be private, which means that
they will be added to the on-device index. However, you can still mark them as eligible for
public indexing if they contain activities that all users can view.

How to do it...
Create a new Xcode project with the Single View Application template with the1.
name AppSearch.
Click on the initial view controller and embed it in Navigation Controller by2.
clicking on Editor | Embed In | Navigation Controller.
Change the title of the navigation bar to My Wallet.3.

Drag a UITableView, and add it as a subview, and make it cover the screen. The4.
constraints of the table view will look like this:

 tableview.trailing = superview.trailing
 tableview.leading = superview.leading
 tableview.top = superview.top
 tableview.trailing = superview.trailing

Then, drag a UITableViewCell to the table view. Open the Attributes Inspector5.
tab and change the Style to Right Detail and the Identifier to cell.
Right-click on the table view and connect the delegate and datasource to the6.
ViewController.
Drag a Bar Button Item and place it to the right of the navigation bar. From the7.
Attributes Inspector tab, change the System Item to Add.

App Search

[435]

Connect an IBAction method to the bar button item, as follows:8.

 @IBAction func didClickOnAdd(_ sender: Any) {
 }

Open ViewController.swift and add the following import statement:9.

 import CoreSpotlight

Add the following struct to define the wallet item:10.

 struct Item{
 let name: String
 let price: Float
 }

Add the following attributes to the ViewController class:11.

 @IBOutlet weak var itemsTableView: UITableView!
 var createAction: UIAlertAction?
 var alertController: UIAlertController?
 var currentActivity: NSUserActivity?
 var items = [Item]()

Update the didClickOnAdd function to display a pop-up alert with text fields to12.
add a new item:

 @IBAction func didClickOnAdd(_ sender: Any) {
 let alertController = UIAlertController(title: "New Item",
 message: "Enter the name and price of the new item.",
 preferredStyle: .alert)
 self.alertController = alertController
 alertController.addTextField { (textField) in
 textField.placeholder = "Item Name"
 textField.addTarget(self, action:
 #selector(ViewController.textFieldDidChange
 (textField:)), for: .editingChanged)
 }
 alertController.addTextField { (textField) in
 textField.placeholder = "Item Price"
 textField.keyboardType = .numberPad
 textField.addTarget(self, action:
 #selector(ViewController.textFieldDidChange
 (textField:)), for: .editingChanged)
 }
 let createAction = UIAlertAction
 (title: "Submit", style: .default) { (action) in

App Search

[436]

 print("Submit")
 if let fields = alertController.textFields{
 let item = Item(name: fields[0].text!, price:
 (fields[1].text! as NSString).floatValue)
 self.items.append(item)
 self.itemsTableView.insertRows
 (at: [IndexPath(row: self.items.count - 1,
 section: 0)], with: .fade)
 self.createSearchableActivityForItem(item)
 }
 }
 createAction.isEnabled = false
 self.createAction = createAction
 let cancelAction = UIAlertAction
 (title: "Cancel", style: .cancel, handler: nil)
 alertController.addAction(createAction)
 alertController.addAction(cancelAction)
 self.present(alertController,
 animated: true, completion: nil)
 }

Then, add the following function to track the editing of text fields:13.

 func textFieldDidChange(textField: UITextField){
 if let _ = self.alertController, let action =
 self.createAction, let fields =
 self.alertController?.textFields{
 var isValid = true
 for textField in fields{
 if let text = textField.text{
 isValid = isValid &&
 text.characters.count > 0
 }
 }
 action.isEnabled = isValid
 }
 }

Add the following function to create a searchable activity when the user inserts a14.
new item:

 func createSearchableActivityForItem(_ item: Item){
 let activity: NSUserActivity =
 NSUserActivity(activityType:
 "com.hossamghareeb.ItemType")
 // Set properties that describe
 the activity and that can be used in search.
 activity.title = "\(item.name)"

App Search

[437]

 activity.userInfo = ["name":
 "\(item.name)", "price": "\(item.price)"]
 let attributeSet = CSSearchableItemAttributeSet()
 attributeSet.contentDescription =
 "Price: $\(item.price) \n Adde on: \(NSDate())"
 attributeSet.title = "\(item.name)"
 activity.contentAttributeSet = attributeSet
 // Add the item to the private on-device index.
 activity.isEligibleForSearch = true
 self.currentActivity = activity
 activity.becomeCurrent()
 }

Finally, add the following extension to conform to the UITableViewDataSource15.
protocol:

 extension ViewController: UITableViewDataSource{
 func tableView(_ tableView:
 UITableView, numberOfRowsInSection section:
 Int) -> Int {
 return self.items.count
 }
 func tableView(_ tableView: UITableView, cellForRowAt
 indexPath: IndexPath) -> UITableViewCell {
 let cell =
 tableView.dequeueReusableCell
 (withIdentifier: "cell")
 let item = self.items[indexPath.row]
 cell?.textLabel?.text = item.name
 cell?.detailTextLabel?.text = "$\(item.price)"
 return cell!
 }
 }

App Search

[438]

Now build and run the app; you will see an empty list with a plus button. Click16.
on the add button; you should see a pop-up alert like the following:

App Search

[439]

The Submit button will be disabled if one of the fields is empty. Try to fill the17.
fields with data, as follows, and the state will be changed:

App Search

[440]

Add more items; the list should be similar to the following screenshot:18.

App Search

[441]

After each new insertion, an activity is indexed to the on-device private index. To19.
ensure that the indexing is done correctly, press the home button and go to the
Spotlight search screen. Type Tomato in the search bar; our app should appear at
the top:

App Search

[442]

How it works...
In the previous demo, we gave you a good introduction to Search APIs and how to index
users' activities and navigation points in an on-device private index. We started with the
easy part, which is building the UI of the screen in the storyboard, and then we added our
logic in the ViewController.swift file. We added the import statement for the
CoreSpotlight framework, as the contentAttributeSet property takes a
CSSearchableItemAttributeSet object, which is part of the CoreSpotlight
framework. After the import statement, we added the Itemstruct, which is a simple
structure for item properties, such as name and price. The items displayed on the screen
will be saved in the items property array. Let's jump to the didClickOnAdd function. We
created an instance of UIAlertController to display two text fields to the user for the
item name and price. The addTextField function adds a new text field to the alert
controller and you can pass a configuration block to configure the text field, such as
changing the placeholder or the keyboard type. For both text fields that we add, we add a
target to track the editingChanged event, which will call the textFieldDidChange
function once any change happens in a text field. Tracking the editing of text fields will help
us check the text entered by a user and then we can enable or disable the submit action
button of the alert; you will note that the submit action is disabled by default at the
beginning. We kept a reference to the submit action of the alert so that we can enable or
disable it at any time. It will be enabled as long as the two text fields are not empty. We kept
a reference to the alert controller so that we can retrieve the text fields' information.

Once a user clicks on the submit button, we create a new instance of the Item structure and
add it to the items array. Then, we insert this item as a new row to the table view and call
the createSearchableActivityForItem function. This function creates a new instance
of NSUserActivity with a unique key of the activity type. This key is important and
should be unique to your app organization, as we can use it later, when a user clicks on the
activity from search results. Activity has properties such as title, which is the title of the
activity, and userInfo, which will be passed when the user clicks on it later. The
contentAttributeSet property lets you define many attributes to describe the activity
item. This description will be displayed below the title in the search results. The
isEligibleForSearch property allows the system to place it in the private on-device
index. The call of activity.becomeCurrent() will make the current activity current and
the user continue this activity from the search index.

App Search

[443]

There's more...
What will happen when the user clicks on an activity from the search results list? When the
user clicks on an activity, the app will open and you should restore the app state based on
the selected activity. To handle this, the app delegate should implement the following
function in AppDeleage.swift:

 func application(_ application: UIApplication, continue
 userActivity: NSUserActivity, restorationHandler: @escaping
 ([Any]?) -> Void) -> Bool {
 if userActivity.activityType ==
 "com.hossamghareeb.ItemType" {
 /// Restoring app state should be done here.
 }
 return true
 }

App indexing using Core Spotlight APIs
In the previous recipe, we saw how you can index a user's activities so that the user can find
them in Spotlight search and, when the user clicks on it, he will be able to continue his
activity by restoring the app state. In this recipe, we will see how to index app content using
the Core Spotlight framework. This framework is meant to work best with user or app-
specific data. This kind of indexing will help users to find their content in Spotlight
searching and they can click on it to find more information about this content. The Core
Spotlight framework supports indexing items anytime, even when the app loads directly. In
the following demo, we will build a simple demo on how to present some data in an app
and index that data in Spotlight.

How to do it...
Create a new Xcode project with the Single View Application template with the1.
name FoodIndex.
Click on the initial view controller and embed it in Navigation Controller by2.
clicking on Editor | Embed In | Navigation Controller.
Change the title of the navigation bar to Nutritions.3.

App Search

[444]

Drag a UITableView, and add it as a subview, and make it cover the screen. The4.
constraints of the table view will look like this:

 tableview.trailing = superview.trailing
 tableview.leading = superview.leading
 tableview.top = superview.top
 tableview.trailing = superview.trailing

Then, drag a UITableViewCell to the table view. Open the Attributes Inspector5.
tab and change the Style to Subtitle and the Identifier to cell.
Right-click on the table view and connect the delegate and datasource to the6.
ViewController.
The final look of the view controller in the storyboard should be like this:7.

App Search

[445]

Create a new property list file from Resource with the name Food:8.

Double-click on the file and click on Open As Source Code. Update the text to be9.
as illustrated:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
 <plist version="1.0">
 <array>
 <dict>
 <key>title</key>
 <string>Almond</string>
 <key>calories</key>
 <integer>165</integer>
 <key>protein</key>
 <integer>6</integer>
 <key>fat</key>
 <integer>15</integer>
 <key>carbs</key>
 <integer>6</integer>

App Search

[446]

 </dict>
 <dict>
 <key>title</key>
 <string>DATES</string>
 <key>calories</key>
 <integer>230</integer>
 <key>protein</key>
 <integer>2</integer>
 <key>fat</key>
 <integer>0</integer>
 <key>carbs</key>
 <integer>61</integer>
 </dict>
 <dict>
 <key>title</key>
 <string>CHEESECAKE</string>
 <key>calories</key>
 <integer>3350</integer>
 <key>protein</key>
 <integer>60</integer>
 <key>fat</key>
 <integer>213</integer>
 <key>carbs</key>
 <integer>317</integer>
 </dict>
 <dict>
 <key>title</key>
 <string>BROCCOLI</string>
 <key>calories</key>
 <integer>40</integer>
 <key>protein</key>
 <integer>4</integer>
 <key>fat</key>
 <integer>1</integer>
 <key>carbs</key>
 <integer>8</integer>
 </dict>
 </array>
 </plist>

App Search

[447]

Now open ViewController.swift and add the following import statement:10.

 import CoreSpotlight

Add the following structure at the top of the file:11.

 struct Item{
 let title: String
 let calories: Int
 let protein: Int
 let fat: Int
 let carbs: Int
 func description() -> String {
 return "Calories \(self.calories) kcal, Protein: \
 (self.protein) g, Fat: \(self.fat) g, Carbs: \
 (self.carbs) g"
 }
 }

Add the following attribute to keep a reference to the list of items:12.

 var items = [Item]()

Update the viewDidLoad method, as follows:13.

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 typically from a nib.
 if let path = Bundle.main.path(forResource: "Food",
 ofType: "plist") {
 if let array = NSArray(contentsOfFile: path) as?
 [[String: Any]] {
 for itemDic in array{
 let itemTitle = itemDic["title"] as! String
 let calories = (itemDic["calories"] as!
 NSNumber).intValue
 let protein = (itemDic["protein"] as!
 NSNumber).intValue
 let fat = (itemDic["fat"] as!
 NSNumber).intValue
 let carbs = (itemDic["carbs"] as!
 NSNumber).intValue
 let item = Item(title: itemTitle,
 calories: calories,
 protein: protein,
 fat: fat,
 carbs: carbs)

App Search

[448]

 self.items.append(item)
 createSearchableItemFrom(item)
 }
 }
 }
 }

Add the following function to create a searchable record in Spotlight:14.

 func createSearchableItemFrom(_ item: Item){
 // Create an attribute set to describe an item.
 let attributeSet =
 CSSearchableItemAttributeSet(itemContentType:
 "com.hossamghareeb.foodItem")
 // Add metadata that supplies details about the item.
 attributeSet.title = item.title
 attributeSet.contentDescription = item.description()
 // Create an item with a unique identifier, a domain i
 identifier, and the attribute set you created earlier.
 let item = CSSearchableItem(uniqueIdentifier: item.title,
 domainIdentifier: "com.hossamghareeb.foodItem",
 attributeSet: attributeSet)
 // Add the item to the on-device index.
 CSSearchableIndex.default().indexSearchableItems([item])
 { error in
 if error != nil {
 print(error?.localizedDescription ?? "")
 }
 else {
 print("Item indexed.")
 }
 }
 }

Add the following extension to conform to the UITableViewDataSource15.
protocol:

 extension ViewController: UITableViewDataSource{
 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.items.count
 }
 func tableView(_ tableView: UITableView, cellForRowAt
 indexPath: IndexPath) -> UITableViewCell {
 let cell =
 tableView.dequeueReusableCell(withIdentifier:
 "cell")
 let item = self.items[indexPath.row]

App Search

[449]

 cell?.textLabel?.text = item.title
 cell?.detailTextLabel?.text = item.description()
 return cell!
 }
 }

Now run the app; you should see a list of food items like the following:16.

After all the items have been indexed, open the Spotlight search and search for17.
cheesecake. The search results should look like this:

App Search

[450]

How it works...
In the demo, we saw how to use the Core Spotlight search framework to index app-specific
data. The UI part was pretty easy and it's very similar to the one we built in the previous
recipe. In the ViewController.swift file, we added the import statement for the
CoreSpotlight framework, as the APIs that we will use are part of this framework. We
created a new structure for the food item to work as encapsulation for the food item details.
In the viewDidLoad function, we got a path for the plist file using
Bundle.main.path(forResource: "Food", ofType: "plist"). The path can be used
to get an array of dictionary objects. Each dictionary has all the information about the food
item that will be used to create an instance of the Item structure. After we create an
instance of the item, we call the createSearchableItemFrom() function. This function
will take care of all the logic required to list the item in the index. It first creates an instance
of CSSearchableItemAttributeSet with the title and item description. The attribute set
will be used to create a new instance of CSSearchableItem, along with a unique identifier
and domain identifier. This searchable item can be passed directly to
SSearchableIndex.default().indexSearchableItems([item]) so that the index
will add the item and be ready to appear in search results.

15
Optimizing Performance

In this chapter, we will cover the following topics:

Memory management with ARC
Measuring performance
Measuring energy impact
On-demand resources

Introduction
Taking care of the app performance is one of the most important topics in iOS. All of us
have faced apps that run smoothly without lagging or heating up your device. On the other
hand, we have faced apps that lag a lot and cause memory pressure and overhead on the
system. To build a successful app, you should take care of its performance and memory
usage. Ensure that there isn't any memory pressure or memory leaks. The iOS system is
smart enough to monitor the memory of all apps and kill any app that tries to cause
memory pressure on the device. The system sends warning notifications to the app, before
killing it to free some memory. In this chapter, we will cover some concepts of memory
management and how to measure and optimize the performance of the app.

Optimizing Performance

[452]

Memory management with ARC
In this recipe, we will talk about memory management in iOS using ARC (Automatic
Reference Counting). ARC was first introduced in iOS 5 to help developers to manage the
app memory. However, while ARC takes care of releasing objects, you still have to set up
your reference types correctly to avoid any leaks and retain cycles. In the following recipe,
we will try to build a simple app that has a lot of memory issues, and we will see how to
catch these issues and what the correct ways to solve them are.

Getting ready
There are some definitions and concepts about memory management that you need to
know before starting our demo. In iOS, each object has a reference count in memory, and
once this count reaches ZERO, the object will be deallocated from memory. The reference
count of any object refers to how many objects have a strong reference to that object. This
reference sends a retain message to that object to increase its reference count by ONE. Once
any object is done from any object, a release message should be sent to that object to
decrement its reference count by ONE till it reaches ZERO, and then it will be deallocated.

Before ARC, we had MRC (Manual Reference Counting), in which it was the developer's
responsibility to release or retain objects. In ARC, all releases and retains are done
automatically by an Xcode compiler. The compiler inserts all calls for releases or retains in
the appropriate places at runtime.

We have two types of references; strong and weak. Let's see the difference between them:

Strong: The strong reference increments the reference count by ONE, and the
referenced object will remain in memory as long as the referencing object is still
in memory and doesn't refer to another object.
Weak: It doesn't increment the reference count, but it just keeps a reference to the
object. If the referenced object has been deallocated from memory, the reference
will be set to nil and not to a garbage memory.
Unowned: It's the same as a weak reference; but the only difference is that it will
not nullify the reference and it will keep pointing to a garbage memory if the
referenced object has been deallocated, which would cause your app to crash if
you tried to access it.

Optimizing Performance

[453]

In ARC, all that you need to do is to decide when to use strong, weak, or unowned
references. In Swift, the default is strong for the references you create; if you want to use a
weak or unowned reference, you have to mark it like this:

 weak var scrollView: UIScrollView!
 unowned var parent: AnyObject

Retain cycles
Retain cycles are one of the most common problems in memory management, which cause
leaks in memory. The following figure will illustrate how a retain cycle occurs:

We have two objects: parent and child. The parent object has a strong reference to the child
object, as the child needs to exist as long as the parent object exists. The child object also
needs to speak to the parent object, and that's why, we have a strong reference to the parent.
In that case, we have created a retain cycle. The retain cycle is the case when you have two
objects having a strong reference to each other. The problem of the retain cycle is that each
one will wait for the other to break the strong reference so that they can be deallocated. This
leads to a leakage in memory, as these two objects will never get deallocated from memory.

Optimizing Performance

[454]

The solution of the problem is to break the cycle by using a weak or unowned reference
instead of a strong reference in one of the references, as follows:

As we see, the child-to-parent reference is changed to a weak reference. When you think of
it, you will note that it makes sense to choose the child-to-parent relation to be weak
because the child object would never exist if the parent object didn't exist.

Working with closures
Closures are heavily used in Swift and that's why we need to understand how they work.
Closures capture all references used inside to make sure that these objects will not be
deallocated till the closures finish their job. Owing to this, there is a case that a retain cycle
can occur while using closures. This case happens when you assign a closure to a property
of a class instance, and then, inside the body of that closure, the instance is captured. In that
case, the instance has a strong reference to the closure, and the closure has a strong
reference to the instance. To break this, we use something called weakself to use a weak
reference of self inside the closure.

Optimizing Performance

[455]

How to do it...
Create a new Xcode project with the Master-Detail Application template and1.
with name MemoryManagement. Check out the following screenshot:

The new project will be created with sample code for a master-detail template2.
app. Open the source file DetailViewController.swift.
Add the following class at the top of the file:3.

 class Child{
 var parent: UIViewController?
 }

Then, in the DetailViewController class, add the following property:4.

 let child = Child()

Optimizing Performance

[456]

Update the viewDidLoad function like this:5.

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a
nib.
 self.configureView()
 self.child.parent = self
 }

Now, run the app and keep clicking on the right navigation bar button to add6.
more timestamps:

Keep clicking on the timestamp to open details and then go back. In this case,7.
we're creating retain cycles and leaks in memory.To detect if we have any leakage
in memory or not, we have to use the Leaks Instrument too.

Optimizing Performance

[457]

Let's detect this cycle. Long press on the Run button in Xcode to open a small8.
menu:

Choose Profile from the pop-up menu and then the Instruments app will open.9.
A list of instruments will be opened, so you can select from one of them; choose10.
the Leaks instrument:

Optimizing Performance

[458]

Click on the Choose button; then, a window will be opened to record:11.

Optimizing Performance

[459]

At the top-left corner, click on the red record button to start recording. Use the12.
app and add some timestamps. The recording will look like this:

You will note that everything seems perfect in the Leak Checks row.13.

Optimizing Performance

[460]

Now, try to open the details screen multiple times. Leaks will show in the Leaks14.
Checks section:

As you can see, there are marks indicating the leaks in memory that we have in15.
the app.
Now try to update the Child class to be like the following:16.

 class Child{
 weak var parent: UIViewController?
 }

Optimizing Performance

[461]

Close the current recorder, and start a new one. Add some timestamps and open17.
details screens multiple times. The memory will be fine and no leaks will be
found:

How it works...
In our previous demo, we saw how to accidentally create a retain cycle in between objects,
which can later lead to a memory leak. We created a new class called Child, which had a
strong reference to a parent object. The parent object, DetailViewController, had a
strong reference to its child. Doing this will lead to a memory leak, and that's the same as
what we detected in the Instruments application. To break this cycle, we had to change
one of the references to be a weak reference. In the Child class, we changed the var
parent: UIViewController? to weak var parent: UIViewController?. Marking it
as weak helped us to break the retain cycle and fix the memory leak issue.

Optimizing Performance

[462]

Measuring performance
Performance is one of the most important things that you should take care of in your app.
Your users need to use your app smoothly with no interruption or hanging. They have
something to do, and they have to do it fast. When you develop your application, you
develop it for a platform, not for a specific device. For example, you develop an iOS
application, which will run on different types of devices with different CPU capabilities.
That's why, measuring your app performance is very important, so you can find the areas
that need optimization.

How to do it...
In these measurements, we will not write any code. So, you can pick any Xcode1.
project you have to run these experiments on.
First, we will try to measure the CPU usage of an app to see how our app uses the2.
multiple cores/threads that we have.
Open the Xcode project, and click on Profile as we did in the preceding recipe.3.
Choose Time Profiler from the list of instruments:4.

Optimizing Performance

[463]

Choose the device/simulator and the app from the target device and process list.5.
Click on the Record button at the top-left corner.6.
Use the app that you want to record normally, and then click on the Stop button.7.
After clicking on the stop button, the analysis of CPU usage will be like this:8.

Optimizing Performance

[464]

When you zoom in, you can see the details of the CPU usage, like this:9.

Optimizing Performance

[465]

Open the threads data view to see the app's use of threads to perform work:10.

You will note that the main thread is taking care of all the work in the app.11.
Let's check another tool together to check the CPU usage. Run the app on your12.
device or simulator.

Optimizing Performance

[466]

In Xcode, open the Debug Navigator area and click on CPU:13.

The view gauges the CPU usage for the app and also compares it to other apps.14.

Optimizing Performance

[467]

In the same screen--and from the left panel--if you tried to click on Memory, you15.
will get as well the same comparison and usage, but only for memory:

You can use this view to do an experiment to see the memory usage before and16.
after fixing the retain cycle issue.

How it works...
Instruments help a lot in measuring the app performance and the CPU usage. The steps we
explained previously in the preceding section are self-explanatory and very easy to use.
When you find any issue in the CPU usage or higher usage at a specific level while using
the app. You have to check this part of code at that point and revise it, so you can find any
optimization to do. Also, we saw how to get information about threads usage and how the
app distributes the work among threads and utilizes the multicore in the system to perform
tasks quickly and without interrupting the main thread.

Optimizing Performance

[468]

Measuring energy impact
All users suffer from the draining of the life of their mobile phone's battery during usage.
What a frustrating moment when you see your phone is about to die and you don't have
access to any power supply. Developers, your device, and the operating system are all
involved in taking care of the battery life. Any inefficient way of performing a task in the
app may cause an impact on the battery life and needs your intervention to do it in a better
way. In this recipe, we will see how to measure the app energy usage from Instruments.

How to do it...
Pick any Xcode project you have, and click on Profile.1.
Choose Energy Log from the following list of instruments:2.

Optimizing Performance

[469]

Choose the device/simulator and the app from the target device and process list.3.
Click on the Record button at the top-left corner.4.
Use the app that you want to record normally, and then click on the Stop button.5.
You should see a detailed analysis of the energy used:6.

Optimizing Performance

[470]

There is another way to log the energy usage while you're away from7.
Instruments.
Go to your iOS device and then go to Settings | Developer | Logging:8.

Optimizing Performance

[471]

When you click on the Developer option, another screen will open; select9.
Logging:

Optimizing Performance

[472]

Enable Energy logging, and then click on Start Recording:10.

Optimizing Performance

[473]

Use the device normally.11.
After using the device, go to Settings | Developer | Logging and click on Stop12.
Recording:

Optimizing Performance

[474]

Open the Instruments app and choose Energy Log. Then, go to File | Import13.
Logged Data from Device:

The collected data will be displayed as live logging.14.

How it works...
When you go through the collected data in the Energy Log instrument, you should search
for any spikes or areas that have unexpected activity. These areas should be reviewed in
your source code to optimize them.

Optimizing Performance

[475]

The way of logging energy usage when the device is not connected to the Instruments app
helps a lot to take your time to measure the app anytime while normal usage. In that case,
you will get realistic measurements. The way we explained how to enable or disable
logging in the iOS device is efficient enough to log the usage for the whole day if you want
and even when the device goes into sleep mode. The only disadvantage of this method is
that if the battery dies or you switch off the phone, all log data is lost.

On-demand resources
The on-demand resources are contents that are hosted in Apple Store servers and not in the
app bundle of the app. When you download the app from App Store, the content will not
be available until the app requests them. The app later will request the on-demand
resources, and the operating system will take care of downloading and storing the content.
The resources types can be of any type, except for executable source code. In this recipe, we
will see how to manage the on-demand resources and download them.

Getting ready
Before getting started with on-demand resources, let's get more information about it to help
you get a better understanding. Let's take a look at the benefits of using on-demand
resources in your app:

Small App Size: The small app size helps the user to download the app fast and
gives the limited storage devices the opportunity to download more apps.
Lazy download contents: Some of your app's content is only needed in certain
states. Keeping these resources in an app bundle is useless if the user hasn't reach
this state. With on-demand resources, we can download this content only when
the user is about to reach the state.
Rarely used resources: Some resources are rarely used and can be used only
once, such as app tutorials. These resources are likely to be requested only once,
or when the user asks for them.
In-App Purchase: You can add more content to in-app purchases, and your user
can purchase and download the content.

Optimizing Performance

[476]

In the on-demand resource, we use tags to identify the resource. Each resource can have
multiple tags. The tag is just a string that describes the content. For example, you're
working on a game and have weapons resources related to the final level of each milestone.
You can give each weapon resource tags like these: final-level and weapon.

Now you know we have two types of resources: the on-demand and app bundle resources.
As we said, each resource has one or more tags. Once the tags are ready in Xcode, you can
assign each tag one of three categories. Let's check them out:

Initial Install Tags: The resources are downloaded at the same time as the app,
and the size of the app in the App Store includes the size of these resources.
Prefetch Tag Order: The resources will be downloaded after the app is installed.
These resources will be downloaded in the same order they are added in the
prefetch tag order group in Xcode.
Download Only On Demand: The resources will be downloaded only when they
are requested by the app. This category is the default category for all resources.

How to do it...
Create a new Xcode project with a Single View Application template and with1.
name OnDemandDemo.
Open Main.storyboard, and add two buttons on the initial view controller.2.
Change the title of the first button to Dubai and the second button to Abu Dhabi.3.
When a user clicks on either of these, a screen with images for that city should be
displayed.
Click on the initial view controller, and go to Edit | Embed In | Navigation4.
Controller to embed it in your navigation controller.
Drag a UIViewController from Object Library and place it beside the initial5.
view controller. The name of this controller will be ImagesViewController.

Optimizing Performance

[477]

Create a segue from the initial view controller to ImagesViewController with6.
the identifier showImages:

Create a new ImagesViewController swift class and change the class type of7.
the second view controller in the storyboard.

Optimizing Performance

[478]

Open ImagesViewController in the storyboard file and place four image8.
views, as follows:

Link the four image views with IBOutlets to ImagesViewController.swift9.
like this:

 @IBOutlet weak var imageView1: UIImageView!
 @IBOutlet weak var imageView2: UIImageView!
 @IBOutlet weak var imageView3: UIImageView!
 @IBOutlet weak var imageView4: UIImageView!

Optimizing Performance

[479]

In initial view controller ViewController.swift, link IBActions to the two10.
buttons, like this:

 @IBAction func didClickOnDubaiButton(_ sender: Any) {
 }
 @IBAction func didClickonADButton(_ sender: Any) {
 }

Open ViewController.swift and add the following property:11.

 var currentCity = ""

Update the action functions of the cities buttons:12.

 @IBAction func didClickOnDubaiButton(_ sender: Any) {
 currentCity = "dubai"
 self.performSegue(withIdentifier: "showImages", sender: nil)
 }
 @IBAction func didClickonADButton(_ sender: Any) {
 currentCity = "abu-dhabi"
 self.performSegue(withIdentifier: "showImages", sender: nil)
 }

Override the prepareForSegue function to pass the city name to13.
ImageViewController:

 override func prepare(for segue: UIStoryboardSegue, sender: Any?)
 {
 if segue.identifier == "showImages" {
 if let destinationViewController = segue.destination as?
 ImagesViewController{
 destinationViewController.selectedCity = currentCity
 }
 }
 }

Open ImagesViewController and add the following property:14.

 var selectedCity: String?

Optimizing Performance

[480]

In Xcode, click on the project and then select the target. Under the Build Settings15.
tab, search for Assets. Double-check that the On Demand Resource is enabled:

Open the Assets.xcassets file and you will find four images for Abu Dhabi16.
and Dubai. Select the first four images for Abu Dhabi, and from the Attribute
Inspector, under On Demand Resource Tags, type abu-dhabi.

Optimizing Performance

[481]

Do the same for Dubai images, change their tags to dubai:17.

Click on the target again and then go to the Resource Tags tab; you will see all18.
the tags that we have created listed there:

Optimizing Performance

[482]

Click on the Prefetched filter instead of All; it will show you the four categories19.
of assets tags. Users can drag and drop assets to the appropriate category:

Open the ImagesViewController.swift file to start requesting the resources20.
based on the city name.
Add the following property in the ImagesViewController class:21.

 var resourceRequest: NSBundleResourceRequest?

Update the viewDidLoad function to be like the following:22.

 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 if let city = self.selectedCity{
 let tags = NSSet(object: city)
 resourceRequest = NSBundleResourceRequest(tags: tags as!
 Set<String>)
 // Request access to tags that may already be on the device
 resourceRequest?.conditionallyBeginAccessingResources
 (completionHandler: { (resourcesAvailable) in
 if resourcesAvailable{
 // the associated resources are loaded, start using

Optimizing Performance

[483]

 them
 OperationQueue.main.addOperation {
 self.displayImages()
 }
 }
 else{
 // The resources are not on the device and need to be
 loaded
 self.resourceRequest?.beginAccessingResources
 (completionHandler: { (error) in
 if (error != nil){
 return
 }
 OperationQueue.main.addOperation {
 self.displayImages()
 }
 })
 }
 })
 }
 }

Then, add the following function:23.

 func displayImages(){
 if let city = self.selectedCity{
 let imgName = city == "dubai" ? "D" : "AD"
 self.imageView1.image = UIImage(named: "\(imgName)1")
 self.imageView2.image = UIImage(named: "\(imgName)2")
 self.imageView3.image = UIImage(named: "\(imgName)3")
 self.imageView4.image = UIImage(named: "\(imgName)4")
 }
 }

Optimizing Performance

[484]

Now, build and run the app. Click on Dubai to download the resources for24.
Dubai city:

The images will appear once the downloading finishes.25.
Go to Xcode, and in the left panel click on the Debug Navigator tab.26.

Optimizing Performance

[485]

Select the Disk, and check the On Demand Resources section:27.

How it works...
We started first by building the UI of the demo app, and as we saw, it was very simple. We
created an initial screen with two buttons. Each button maps to a city, and when you click
on it, it opens a resources screen to display images for that city. In the ViewController
class, we added the currentCity property to change it according to the button selected,
and this value later will be passed to the ImagesViewController property selecteCity
in the prepareForSegue function. To add tags to resources, you go to Assets.xcassets and
select the assets that will have the same tag and add it in the On Demand Resource Tags
section in the Attribute Inspector tab. Each asset can have multiple tags if you want. When
you go to the app target, and open the Resource Tags tab, you can categorize the tags based
on the categories that we have illustrated in the Getting ready section.

Optimizing Performance

[486]

To download the on-demand resources, you need an instance of
NSBundleResourceRequest, which can be initialized with Set of tags of the resources.
Before downloading any resource, it's a good practice to first check whether they're
available on the device, so there is no need to request them. The
conditionallyBeginAccessingResources function tells you whether the requests tags
are available or not, but it doesn't download the content. However, calling the
beginAccessingResources function downloads the content. In both functions, the
completion handler callbacks are not called on the main thread. That's why, before calling
the function displayImages(), we execute this call in the main thread by calling
OperationQueue.main.addOperation.

Index

3
3D touch
 using 83

A
annotation object 286
annotation view 286
app indexing
 with Core Spotlight APIs 443, 445, 447, 448,

450

 with NSUserActivity 433, 434, 436, 439, 441,
442

audio capabilities
 audio file, playing 226, 228
 dealing with 226
 Speech framework, using 228, 231, 233, 235,

238

Autolayout
 adding 135, 136, 137, 139, 141, 142
Automatic Reference Counting (ARC)
 about 28
 used, for memory management 28, 30, 452,

453, 456, 457, 460, 461

B
Background queue 263

C
Carthage
 URL 322
certificate signing request (CSR) 402
CGGradient
 color components 213
 color space 213
 components count 213
class-only protocols 23

closures
 about 454
 return keyword, omitting 11
 shorthand arguments, using 11
 type, inferring 10
 used, for creating self-contained code 9, 10
CocoaPods
 URL 97
code format
 reference link 17
CommonCrypto
 URL 329
concurrent queues 263
constraints
 adding 135, 136, 137, 139, 141, 142
 adding, with NSLayoutConstraint 143
 updating 144
container view
 view controllers, embedding 157, 158, 160
Core Data
 about 360
 records, deleting 383, 385, 388, 392
 records, inserting 370, 372, 375, 379, 381
 records, reading 370, 372, 375, 379, 381
 records, updating 383, 385, 388, 392
Core Spotlight APIs
 used, for app indexing 443, 445, 447, 448, 450
CoreImage
 filters, using 254, 256, 257, 259, 261
cryptographic hash function
 about 329
 properties 329
custom cells
 building 188
 using 180, 182, 184, 186
custom segues
 creating 133, 134, 135

[488]

custom views
 creating, with UIView 40, 42, 43, 44, 45

D
data models
 designing 360, 362, 366, 369, 370
Default queue 263
delegates 18
delegation 22, 23
directions
 obtaining, between locations 293, 295, 298
Dispatch queues
 concurrent queue, using 270
 concurrent queues 263
 serial queue, using 270
 serial queues 263
 using 263, 264, 265, 267, 269, 270

E
Embed segue 161
encryption
 about 329
 implementing 330, 331
energy impact
 measuring 468, 470, 472, 474
Entity 361
enumerations
 creating, with associated values 17, 18
 creating, with raw values 14
 raw values, assigning 15
 used, for writing readable code 11, 13, 14
 using, with raw values 16, 17
error handling
 error propagation, disabling 36
 multiple catch statements, using 35
 using 32, 35
extensions
 iMessage app 87
 initializer, adding 27
 instance methods, mutating 27
 stickers 87
 subscripts, defining 28
 used, for extending classes functionality 24

F
filters
 using, with CoreImage 254, 256, 257, 259, 261
First In First Out (FIFO) 263
footers
 adding 171, 173, 175, 177, 178
 customizing 179

G
General Central Dispatch (GCD) 263
generics
 used, for writing generic code 36
 used, for writing reusable code 36
geo-fencing
 about 299
 adding 299, 300, 302, 303, 305, 307, 309, 311,

313

gesture recognizer
 UILongPressGestureRecognizer 77
 UIPanGestureRecognizer 77
 UIPinchGestureRecognizer 77
 UIRotationGestureRecognizer 77
 UISwipeGestureRecognizer 77
 UITapGestureRecognizer 77
gestures
 adding 77, 78, 80, 81
 delegating 83
 home screen quick actions, implementing 85
 using 84
Google Drive API
 URL 97
gradients
 drawing 201, 203, 205, 207, 209, 211, 213

H
headers
 adding 171, 173, 175, 177, 178
 customizing 179
High queue 263
Houston
 URL 414

[489]

I
images
 constructing, from drawings 214
 drawing 201, 203, 205, 207, 209, 211, 213
iMessage app
 files with pagination, requesting 113, 114, 116
 integrating, with iMessage app 96, 97, 99, 102,

103, 104, 105, 108, 109
 integrating, with sticker pack 88, 89, 90, 91, 92,

93, 94, 95
 Progress indicator, displaying 110, 112
indexes
 Apple's Server-side Index 434
 Private On-Device Index 434
instance methods
 mutating 27
interactive Push Notifications
 handling 418, 419, 421, 423, 425
interface builder
 designing, for any size classes in storyboard

144, 145, 146, 147, 149, 151, 153, 154, 156,
157

 used, for customizing UIView 46, 48, 49, 50

J
JSON data
 parsing 342, 343, 345, 347, 349, 351

K
Keychain
 about 322
 using 322, 324, 326, 328

L
LIFO (Last in first out) 36
lines
 drawing 201, 203, 205, 207, 209, 211, 213
local notification
 about 426
 creating 426, 428, 429, 431
local server
 setting up, to send Push Notifications 413, 415,

417, 418
Location Authentication 315

Low queue 263

M
Manual Reference Counting (MRC) 28, 452
map view
 pins, displaying 286, 287, 288, 290, 291, 293
memory management
 closures 454
 reference cycle problem 30
 retain cycles 453
 with ARC 28, 30, 452, 455, 456, 457, 460, 461
Motion app
 about 96
 URL 96
multimedia 225
multitasking
 about 245
 Picture-in-Picture (PiP) 248
 Slide Over 245
 Split View 246
mutating methods 21

N
navigation bar
 color, modifying 59
 creating 50, 53, 54, 56, 57
 hiding 58
navigation controller
 push and pop 57
 using 50, 53, 54, 56, 57
NSURLSession API
 used, for network connections 334, 335, 337,

340, 342
NSUserActivity
 AppDeleage.swift function, implementing 443
 used, for app indexing 433, 434, 436, 439, 441,

442

O
on-demand resources
 about 475
 benefits 475
 downloading 476, 486
 managing 475, 477, 478, 480, 481, 482, 484,

485

[490]

Operation queues
 advantages 271
 using 270, 272, 273, 275
Operation subclassing
 using 276, 277, 278

P
pagination
 reference link 342
performance
 measuring 462, 463, 465, 467
 optimizing 451
photos
 capturing 249, 251, 253, 254
pins
 displaying, in map view 286, 287, 288, 290,

291, 293
protocols
 about 18
 class-only protocols 23
 conformance, checking 23, 24
 defining 19
 delegation 22, 23
 mutating methods 21
 optional requirements 24
 syntax 18
 using 21
Push Notifications
 interactive Push Notifications, handling 418,

419, 421, 423, 425
 sending, with local server 413, 415, 417, 418
 setting up 394, 395, 398, 401, 404, 407, 409,

412, 413

Q
Quad curve 213
queues 263

R
readable code
 writing, with enumerations 11, 13, 14
records
 deleting, from Core Data 383, 385, 389, 392
 inserting, to Core Data 370, 372, 375, 379, 382
 reading, to Core Data 370, 372, 375, 379, 382

 updating, from Core Data 383, 385, 389, 392
rectangles
 drawing 201, 203, 205, 207, 209, 211, 213
references, types
 strong 452
 unowned 452
 weak 452
retain cycles 453
RGBA (Red, Green, Blue, Alpha) 213

S
scroll view
 about 163
 contentInset property 164
 contentOffset property 163
 contentSize property 163
 scrollViewDidZoom function 171
 UIScrollViewDelegate function 171
 using 164, 166, 167, 169, 170
segues
 attributes 126, 127
 custom segues, creating 133, 134, 135
 preparing 127
 unwinding 128, 129, 131, 132
self-contained code
 creating, with closures 9, 10
serial queues 263
session tasks
 data tasks 334
 download tasks 334
 upload tasks 334
shapes
 animating, drawn with UIBezierPath 214, 217,

218, 220
size classes
 Any 146
 Compact 146
 constrains, adding 157
 constrains, editing 157
 constrains, removing 157
 fonts, updating 157
 Regular 146
 view, adding 156
 view, removing 156
social sharing

 about 351
 implementing 351, 353, 355, 357, 359
Speech framework
 using 229, 231, 233, 235, 238
stack views
 alignment, setting 66
 axis, setting 66
 distribution, setting 66
 managing 60, 61, 62, 63, 64, 65
 spacing 66
sticker pack
 iMessage app, integrating 88, 89, 90, 91, 92,

93, 94, 95
stickers
 preparing 88
storyboard
 interface builder, designing for any size classes

144, 145, 146, 147, 149, 151, 153, 154, 156
 segues, attributes 126, 127
 using 119, 120, 121, 122, 125
Swift 8

T
table views
 cells, inserting with animation 193, 195
 cells, removing with animation 196, 197, 198
 cells, reordering 198
 cells, resizing dynamically 188, 189, 191
 editing 191, 193, 200
TableView
 using 171, 173, 175, 177, 178
text
 drawing 201, 203, 205, 207, 209, 211, 213
Todo app
 creating 200
 enhancing 200
Touch ID
 about 315
 using, for user authentication 315, 317, 318,

319, 320, 321

U
UIBezierPath
 used, for animating drawn shapes 214, 217,

218, 220
UICollectionView
 about 66
 layouts, customizing 76
 using 67, 68, 71, 72, 73, 76
UINavigationController
 about 51
 left item 51
 middle item 51
 right item 51
UIView
 animating 220, 221, 222, 224
 customizing, via interface builder 46, 48, 49
 used, via code or interface builder for building

custom views 40, 42, 43, 44, 45, 50
URL session
 background session 335
 default session 335
 ephemeral session 335
 reference link 335
 singleton shared session 335
user authentication
 with Touch ID 315, 317, 318, 319, 320, 321
user location
 detecting 279, 281, 282, 284, 285

V
video files
 URL 239
videos
 capturing 249, 251, 253, 254
 playing 239, 240, 242, 244
view controllers
 configuring, with Embed segue 161
 embedding, with container view 157, 158, 160

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Swift Programming Language
	Introduction
	Using closures to create self-contained code
	Getting ready
	How to do it...
	How it works...
	There's more...
	Inferring type
	Omitting the return keyword
	Shorthand arguments

	Creating enumerations to write readable code
	Getting ready
	How to do it...
	How it works...
	There's more...
	Enum raw values
	Assigning raw values
	Using Enums with raw values

	Enums with associated values

	Working with protocols and delegates
	Getting ready
	How to do it...
	How it works...
	There's more...
	Mutating methods
	Delegation
	Class-only protocols
	Checking protocol conformance
	Optional requirements

	Using extensions to extend classes functionality
	Getting ready
	How to do it...
	How it works...
	There's more...
	Mutating instance methods
	Adding new initializer
	Define subscripts

	Working with memory management and ARC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using error handling
	Getting ready
	How to do it...
	How it works...
	There's more...
	Multiple catch statements
	Disable error propagation

	Using generics to write generic and reusable code
	Getting ready
	How to do it...
	How it works...

	Chapter 2: The Essentials
	Introduction
	Using UIView via code or interface builder to build your own custom views
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with navigation controller and navigation bar
	Getting ready
	How to do it...
	How it works...
	There's more...
	Push and pop
	Hiding navigation bar
	Navigation bar color

	Working with stack views
	How to do it
	How it works...

	Working with UICollectionView
	How to do it...
	How it works...
	There's more...
	Customizable layouts

	Working with gestures like swipe, pan, rotation, and tap
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using 3D touch
	How to do it...
	How it works...
	There's more...
	Home screen quick actions

	Chapter 3: Integrating with Messages App
	Introduction
	Integrating iMessage app with sticker pack
	Getting ready
	Stickers

	How to do it...
	How it works...
	There's more...

	Integrating iMessage app with iMessage app
	Getting ready
	How to do it...
	How it works...
	There's more...
	Showing progress indicator
	Request files with pagination

	Chapter 4: Working with Interface Builder
	Introduction
	Using storyboards
	Getting ready
	How to do it...
	How it works...
	There's more...
	Segues attributes
	Preparing for a segue
	Unwind segues (exit segues)
	Custom segues

	Working with Autolayout and constraints
	Getting ready
	How to do it...
	How it works...
	There's more...
	Updating constraints

	Designing your interface builder for any size classes in one storyboard
	Getting ready
	How to do it...
	How it works...

	Embedding view controllers using container view
	How to do it...
	How it works...
	There's more...

	Chapter 5: Working with UITableView
	Introduction
	Working with scroll view
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using TableView sections, headers and footers
	Getting ready
	How to do it...
	How it works...
	There's more...
	Custom section header and footer

	Using custom cells
	Getting ready
	How to do it...
	How it works...

	Resizing table view cells dynamically
	How to do it...
	How it works...

	Editing table views
	Getting ready
	How to do it...
	Inserting cells with animation
	Removing cells with animation
	Dragging and dropping to reorder cells

	How it works...
	There's more...

	Chapter 6: Animations and Graphics
	Introduction
	Drawing text, images, lines, rectangles, and gradients
	Getting ready
	How to do it...
	How it works...
	There's more...

	Animating shapes drawn with UIBezierPath
	Getting ready
	How to do it...
	How it works...

	Animating UIViews
	How to do it...
	How it works...

	Chapter 7: Multimedia
	Introduction
	Working with audio capabilities
	Getting ready
	How to do it...
	How it works...
	There's more...
	Recognizing speech

	Playing videos
	Getting ready
	How to do it...
	How it works...
	There's more...
	Slide Over
	Split View
	Picture-in-Picture

	Capturing photos and videos
	How to do it...
	How it works...

	Using filters with CoreImage
	How to do it...
	How it works...

	Chapter 8: Concurrency
	Introduction
	Using Dispatch queues
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Operation queues
	Getting ready
	How to do it...
	How it works...

	Using Operation subclassing
	How to do it...
	How it works...

	Chapter 9: Location Services
	Introduction
	Detecting user location
	How to do it...
	How it works...

	Displaying pins in map view
	Getting ready
	How to do it...
	How it works...

	Getting directions between locations
	How to do it...
	How it works...

	Working with geofencing
	How to do it...
	How it works...

	Chapter 10: Security and Encryption
	Introduction
	Using Touch ID for user authentication
	Getting ready
	How to do it...
	How it works...

	Working with Keychain
	Getting ready
	How to do it...
	How it works...

	Encryption
	Getting ready
	How to do it...
	How it works...

	Chapter 11: Networking
	Introduction
	Using NSURLSession API for network connections
	Getting ready
	How to do it...
	How it works...

	Parsing JSON data
	Getting ready
	How to do it...
	How it works...

	Social sharing
	Getting ready
	How to do it...
	How it works...

	Chapter 12: Persisting Data with Core Data
	Introduction
	Designing data models
	How to do it...
	How it works...

	Reading and inserting records to Core Data
	How to do it...
	How it works...

	Updating and deleting records from Core Data
	How to do it...
	How it works...

	Chapter 13: Notifications
	Introduction
	Setting up Push Notifications
	Getting ready
	How to do it...
	How it works...

	Setting up a local server to send Push Notifications
	Getting ready
	How to do it...
	How it works...

	Working with interactive Push Notifications
	How to do it...
	How it works...

	Working with local notifications
	How to do it...
	How it works...

	Chapter 14: App Search
	Introduction
	App indexing using NSUserActivity
	Getting ready
	How to do it...
	How it works...
	There's more...

	App indexing using Core Spotlight APIs
	How to do it...
	How it works...

	Chapter 15: Optimizing Performance
	Introduction
	Memory management with ARC
	Getting ready
	Retain cycles
	Working with closures

	How to do it...
	How it works...

	Measuring performance
	How to do it...
	How it works...

	Measuring energy impact
	How to do it...
	How it works...

	On-demand resources
	Getting ready
	How to do it...
	How it works...

	Index

