Swift 4 for Absolute
Beginners

Stefan Kaczmarek
Brad Lees
Gary Bennett

Apress-

Swift 4 for Absolute Beginners

Stefan Kaczmarek Brad Lees Gary Bennett
Phoenix, Arizona, USA Phoenix, Arizona, USA Scottsdale, Arizona, USA
ISBN-13 (pbk): 978-1-4842-3062-6 ISBN-13 (electronic): 978-1-4842-3063-3

https://doi.org/10.1007/978-1-4842-3063-3
Library of Congress Control Number: 2017963640
Copyright © 2018 by Stefan Kaczmarek, Brad Lees and Gary Bennett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Editor: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3062-6. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3063-3
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/978-1-4842-3062-6
http://www.apress.com/source-code

Contents

About the AUthOrS.........cccssiemmemmmsmmssnss s ———————— Xi
About the Technical REVIEWETcccccussssmmssssnnssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnnsnss xiii
INtroduction........ccciinimmminmsmne s ————————— XV
Chapter 1: Becoming a Great i0S Developerccueurmmssssssnmsssssssnmsssssssssssssssnssssss 1
Thinking Like @ DEVEIOPETcoceeerrerirreerer s e e sne s s sn e s nesne s 1
Completing the Development CYCIEcocoeeececececccece e 5
Introducing Object-Oriented Programmingc.ccoceevnernsesessssesssesessssesssssssessssesssssssens 6
Working with the Playground Interface..........ccocvvrvrirrcncn e 10
SUMMAIY ...ttt e r e s e s r s e e e e s n e sn e en e e e e e e e e e e e nn e e e R e s e nennnnnnnnnns 11
What's NEXL ... s 11
Chapter 2: Programming BaSiCS......cccsuurrrmssssssssssnsssssssssssssssssnnsssssssssssssssnnsssssssssss 13
TOUMING XCOB.......erererertrer ettt sttt se s e e e e sn e n e e sn e sn e nnennenn 13
Exploring the WorksSpace WIiNUOWcccceeeeerrmnsenensnsssesssssssessssssssssessssesssessssssssssssssssssssssssssssssssssaes 14
Navigating YOUr WOIKSDACEccceeerrreenererreesessssssssessssssssessssssssessssssssssesssssssssssssssssssssssssssssssssssssssenes 15
Editing YOUF PrOJECE FIlESccovivecciereccrters et ss s ss s s sennssnsnns 16
Creating Your First Swift Playground Program..........cccceeevrrerenensessesssssssssssssssssessesssssens 17
Installing and LAunChing XCOUE 9.......cuoviiiririierencsere s ss s e e sassae s sassasssssasssssnnns 18

USING XCOUE 9.ttt a e s b e e s e e s e e e e b e e e e e e e e e e e e e se e e e neenaenaenen 20

iv

Contents
Xcode Playground IDE: Editor and Results Areasccccovrrrenssesnnssesessessssssssssssennns 22
R 141 0P S 24
Chapter 3: It’s All About the Data............ccciniimmmnnnems s —————————— 25
Numbering Systems Used in Programmingcccvcrvrvenrennennensessessessessessesssssessessessens 25
5 25
By ...t E e e R e R e RS R e A e R e nR e R e R e RenRenRenEenRenRenRenenn 26
3L 10 T 1 28
000 30
D72 L B] 01T 30
Declaring Constants and Variables............cccvervrrrsnsnsnsin s 31
000 T 32
Using Variables in Playgrounds ..o s sesessssnsnens 34
11T PSR 38
Chapter 4: Making Decisions, Program Flow, and App DesSign........cccusesrmssansnnas 39
B0O0IEAN LOGIC.......ccrererererire st r sttt n s n s n s nn e n e nn e n e n s 39
TRULR TADIES ...t e s n s e s e e e e nnans 41
COMPArISON OPEIATOIS......cceererreeererreeseresre s e e s s e s se e e e s e e e e s se e e e s se s e e nsnnnns 43
DESIGNING APPS. . e iereririerserserser st st se e s e e s e e e e e e e e e e e e e e nn e e e naenenn 43
LT T o N 43
Optionals and FOrced UNWIAPPINGcococeceeeererererereresesesesesesesesssessssssssessssssssssssssssssssssssssssssaeas 46
T = (] T 48
Designing and Flowcharting an EXample APPc.coceceeeererererereseseneseseseseseseseseesesesesssesesssssssssessssssssssens 48
THE APP’S DBSIGN ..o e e ne e e e e e e e e e nenenes 49
Using Loops to Repeat Program Statements...........cococococeceerercnescnesesesesese e 50
Coding the Example App in SWift ... 52
Nested if Statements and else if Statements ..o s 55
Removing EXIra CRAraCtersccueeieriicnencsessse s e e e s sss e ssesesssssssessssessssessssesnssssnsssnnens 55

Improving the Code Through Refactoring........ccccueerceniscresnesssessse s sessesennens 55

Contents v

RUNNING ThE APP e a e s b e e e e e b e e e e e e e e e e e e e e e e e neennenaenen 56
DeSign REQUIEMENTSccveieecerece e s a e s sa e a e b e e sa e e e e e e e e e e e e snennennen 57
B30] 1 60
Chapter 5: Object-Oriented Programming with Swift.........cccccnnemnnnssennnnnsssnnnn 63
The ODJECT......coecee e e n e nnennenen 64
WhAL IS @ ClaSS?......cceeeererresireresssssesssse e s sss s e s sss s s sss s sssssssesss s sssssssssnssssnssssnssnes 65
Planning ClaSSEScccurrerrersersersersersessessessssssssessesssees 65
Planning ProPEILIEScoeverererireie s sa s e e s a e e a e s b s a e sa e e e e e e e e e e e naeneesaennennns 66
Planning MEthOUScc.eoi i a e b a e s e e sa e e e e e e e e e e e seennenen 68
IMPIEMENtING the ClASSESveoveeeeereerererererrererre st rerereressesaesessesessesessesassessesesaesssaesassesassessesessssesasansens 70
INNBIIEANCE ...t ——————————— 77
WHY USE QOP? ...t ss e ss s sn s sn s s sn s s s sn s sns s sse s s nnas 78
OOP IS EVEIYWREIEcveveeeerirreeesesssesessssssesesssssse e s sssss s s ssssssssssssssssssssssssssssssssnssssssssssnssssssnsssssnssnes 78
Eliminate Redundant Code ..o 78
EQSE Of DEDUGGING.cevrrrreererrrreeseresssesessssssssessssssesessssssssessssssssssssssssssssssssesssssssssssssssssssssssesssssssssenes 79
Ease Of REPIACEMENL...........coeeieere ettt re s se s e a s s s e e ae e ae s e s e s ae e ae e saenesanananes 79
AdVANCEU TOPICS...cuererreerierrirreerersse s s e s s s s s s e s s s e e ssn e s s sn e s e s sne s e s sne s e e nnesanennnnns 79
INEEITACE ..o ——————————————————— 79
POIYMOIPRISIN.....ceee e a e s a e e e a e b e e e e e e e e e e e e e e e e e ne e e e neenen 79
Value Orientated Programimingccccccveererererierersersssersssessesessessssessssessssessesessssessessssessssessssessesesssnssaes 80
BT 111 1= SRS 82
Chapter 6: Learning Swift and Xcodeccccuussemmrmsssssnnmmsssssssssssssssnssssssssssssssssnnnns 83
LA Lo T 83
Understanding the Language Symbols...........cccvernierennnennsenesssesssssessssesessssesssssssens 84
Implementing ObJEcts iN SWift........ccvererrrr s 85
Creating the PrOJECT.......ccvvccrerererere st rer s e rae s e res e sae e saesesae e saesa s sa e e ae e saesesaesaesenaesesassesananaens 87

BT 111 12 SRS 105

vi Contents

Chapter 7: Swift Classes, Objects, and Methodsucveemerrnnnnssssssssssssnsnensnnnns 107

Creating @ SWift ClaSScccveeeriereriniers e s 107
o (00 1C] 1TSS 108
MEENOGS.....ccciicc i ———————————————————————— 109

USING YOUr NEW CIASS......ccceereeeerrerrerrersessessessessessesssssssnsssnsnns 111
Creating YOUR PrOJECT ...ttt 111
LT (o T T 0T PO 114
WIItING ThE CIASSeceeeieceriee ettt p et p e e 117
Creating the USEr INTErTACE..........cccoruieieeererrercri et 119
HOOKING UP the COE ...t 124
RUNNING the PrOgram..........cocoeeiccre et 128
Taking Type Methods 10 the NEXt LEVEL ...t 129

Accessing the Xcode Documentation...........ccccvevevrreerensnn s seeses 130

SUMMAIY ...ttt ae s e s s ae e e a e e n e ae e s nn e naens 131

Chapter 8: Programming Basics in Swiftccccnnnnnnnnnnsesnnmnnsssssensseen: 133

USING I8 VS. VI ... s 133
Understanding COECHIONSccceueeeiereceserre e s sn e snesnn e 134
USING AITAYS ...oveeereereersereessessessessessessesssssesssssssssssssssssssasssssassssssssssssssssssssasssssssssssssssssnns 134
Using the DiCtion@ry CIASSccccerererereneresesesesesesesssesessssesesssssessesesessssssssssssssssnss 136
Creating the BookStore AppliCation............ccceeeeeereresese s see e ses s ses e e e s ssenens 137
Creating YOUR ClaSS......cccueeceereruecreresseesesessse e sss e s se s e e e s se s sss s sessssssssesssssssnsnnes 142
INtrOAUCING PrOPEITIEScececeereccere et 143
ACCESSING PrOPEITIES ... et ne s 144
Finishing the BoOKSTOre Program...........cccververvenseniensenses e ses e sessss s sessssssssssenns 144
Creating the VIBWccccereeeee ettt reres e ras e rae e sas e saesasaesas e saesesaesesas s saesassesassesassesassessesansenasnenes 144
AdUING PrOPEITIESveueeeeereerereererereeseraeserseresesassessesesassessessssessssessesessssassessssesassesssssssssssessssesssnesssssaes 147
AT [0 Ty To W03] o] O 149
Creating a Simple Data MOUEl CIASScccerrereerereerererererersersssersesessesessesessesssessssessessssssessessssesseneres 151
Modifying MasterVieWCONIIOIIEKccovvererrereererereresererereres e rse e sesessesessesas e ssesesassesassessesassesssnenes 153
Modifying the DetailVieWCONIIOIIEccveeereerereerere e re e ra e s e ae e s e sa e e e s 156

SUMMEAIY ...ttt e a e e e s ae e e a e e e a e e e ae e e nnnnnens 157

Contents vii

Chapter 9: Comparing Datacccirmnnmmnmmmsssssnmmmssssnmmsssssnmmsssssssssssnsssnnn 159
Revisiting BOOIEAN LOGICcceeerrerrersensessessesssssessssssssessessesssssesssssssssssssssssssssssssssssssnsans 159
Using Relational OPerators..........ccocoeeeeeresesesressessessessessnns 160
ComMPArING NUMDEIS......ceeee et ne e e 161
Creating an EXample XCOUE APP....cccoreerererrriererersseesesssseesesessessesessssssesssssssssessssssssessssssssssssssssssnns 162
Using Boolean EXPreSSIONSccccerereerereessessessesssnns 164
0] 0T T 0 I T 165
Using the switch Statement ... 167
0] T 0 LT D 168
COMDINING COMPATISONS......coveereererrererrertreressersesersesessesessersssessesessesessesesssssssessssessssesssssssssassesassesssneres 169
1111 112 SRS 170
Chapter 10: Creating User INterfacesccccuuemmmmssssnsnmnsssssnnsssssssssssssssssssssssnnnnns 171
Understanding Interface BUIlEr ... e sneens 172
The Model-View-Controller Pattern............cccovveeenesesnsesesesessssessesessessssessessssssssssssens 172
Human Interface GUIdEliNeS..........ccovvereericresne s 174
Creating an Example iPhone App with Interface BUilderccoveeeevrcecrcncercennns 176
USING INTEITACe BUILET ..ottt 181
The DocUMENTt QULINEcoveereeeccc e r e s a e e s a s s enas 181
LT I0 o] L= T] o OO 182
Inspector Pane and SEIECIOr Bar............cco i 186
Creating the VIBW ... 186
USING QULIEES ...ttt e e esn e e 189
USING ACHIONS ...t s s e s e ae e se s s ae e e e s ne e e e nnennnnas 192
TRE ClIASS ...ttt e e bR e A e A e R e e R e e Re A e R e e Re e ns 193
1111 1P 7RSS 196
Chapter 11: Storing Information...........cccunnmemmmmmmnmnmssss s ——————— 199
Storage ConsSiderations..........cccvvevrrerrernnss s 199
Preferences/USErDEfaUltsccovcreenicnesncsssc e ss s sns e 200
WHItING PreferENCESce ettt a s e e b e e e et e e e e e e e e nn e e s 200

REAdING PrEfErBINCESccve e a e e e e e e e b e e e e e e e e e e e e e e e e e s 201

viii Contents

DAtADASEScveeicircrr e ——————————————————— 202
Storing Information in @ Database...........cccevvvrvrrrrr s ———— 202
Getting Started with Core Data............ccccecveeiinnnrserr e 203
THE MOGEL.......ceieerecciser e s r s sn s sn s nnnn s 205
Managed ODJECT CONTEXL ... 212
Setting Up the INTEITACE. ... 212
SUMMANY ...t e 227
Chapter 12: Protocols and Delegatescccusemmmmssssnmnmmsssssnnmsssssnsnssssssssnsssssnnnnns 229
MUItiple INNEITANCEceeeeereerereere e s s sn e e sn e ae s n e s e s nenais 229
Understanding ProtoCOIS..........cccceeeeeereresesesse e sse e sse e ssessesssssssnssnsssssssssssnssssnsnns 231
ProtoCOl SYNTAXcccceiiririirirserser st sn e s sn e nn e sn e nnenn 232
DL 1= 0 T 110 | S 232
Protocol and Delegation EXampleccccvererincrsesssses s ses e sennns 233
Getting StArtedcceeeiierrrrerre e —————————— 234
HOW [EWOIKS ...t 246
BT 111 1T SRS 246
Chapter 13: Introducing the Xcode Debuggerccceussummnmmssssnnnssssssnssssssssnnns 247
Getting Started with DebUGQINgccoeeeeeeercce e n e 248
Setting Bre@KPOINTSccveuieeeeeererernissrsssss s s s st ss s s s s s ssssnesasnsnnanas 249
Using the Breakpoint Navigator ..o s sssssssessssessssesns 250
DEbUGING BASICS......ccvierereriririeirre e s re e s p e b e p e e e e sn e r e e 252
Working with the Debugger CONTIOIS..........overererereresssssesesenes 254
Using the STep CONTIOIS........ccvverieererec s s sn e sn e sn e s snesrneeneens 255
Looking at the Thread Window and Call STaCKcccvrererererenenesesreesesesssssesesesssssesessssssesesssssseens 257
Debugging Vari@hles...........ccorureiererineeririrese s sn s s nnns 257
Dealing with Code Errors and Warnings..........ccvververversensessessessessesssssesssssessssssssssssssenns 259
(0] £ 259
L1 T 1 T 3O 260

SUMMEAIY ...t a e s e e e e R e e a e e s e n e e R e e e nernaens 261

Contents ix

Chapter 14: A Swift iPhone App 263
IS S €T] 72 L T TS 263

RS =TT 276

AIRIE CONTIOIIEIS.......cccecccerereresesese e se e se e e e e e e neenes 277
ADD SUMMAIY ... ssesse e s s e s s s e s e s e s s e nesa e s e s e sresnesnesnennesrsnnennnnnnnnnnns 284
Chapter 15: Apple Watch and WatchKit...........ccccnnemmnmnnnsssnnnmmsssnnmnmssssnsssssnnn 285
Considerations When Creating @ watChOS Appc.coveeeererere e snesennns 285
Creating an Apple WatCh AP ..o ses e s s s s s s sasssesassassnssssnnns 286
Adding More FUNCLIONAIILYcceeeeeererererressesss e e sse e ssessessesnesns s snssnssnssnssnssnssnssnnnes 302
1111 112 SRS 309

About the Authors

Stefan Kaczmarek has more than 15 years of software
development experience specializing in mobile applications,
large-scale software systems, project management, network
protocols, encryption algorithms, and audio/video codecs.

As chief software architect and cofounder of SKJM, LLC,
Stefan developed a number of successful mobile applications
including iCam (which has been featured on CNN, Good
Morning America, and The Today Show, and which was
chosen by Apple to be featured in the “Dog Lover” iPhone 3GS
television commercial) and iSpy Cameras (which held the #1
Paid iPhone App ranking in a number of countries around the
world including the United Kingdom, Ireland, Italy, Sweden, and
South Korea). Stefan resides in Phoenix, Arizona, with his wife,
Veronica, and their two children.

Brad Lees has more than a decade of experience in
application development and server management. He has
specialized in creating and initiating software programs in
real-estate development systems and financial institutions.

His career has been highlighted by his positions as information
systems manager at The Lyle Anderson Company; product
development manager for Smarsh; vice president of application
development for iNation; and IT manager at The Orcutt/
Winslow Partnership, the largest architectural firm in Arizona.
A graduate of Arizona State University, Brad and his wife,
Natalie, reside in Phoenix with their five children.

Xi

xii

About the Authors

Gary Bennett teaches iPhone/iPad programming courses
online. He has taught hundreds of students how to develop
iPhone/iPad apps, and has several very popular apps on the
iTunes App Store. Gary’s students have some of the best-
selling apps on the iTunes App Store. Gary also worked for

25 years in the technology and defense industries. He served
10 years in the U.S. Navy as a nuclear engineer aboard two
nuclear submarines. After leaving the Navy, Gary worked for
several companies as a software developer, chief information
officer, and resident. As CIO, he helped take VistaCare public in
2002. He also coauthored iPhone Cool Projects (Apress, 2009).
Gary lives in Scottsdale, Arizona, with his wife, Stefanie, and
their four children.

About the Technical
Reviewer

Massimo Nardone has more than 22 years of experiences in
Security, Web/Mobile development, Cloud, and IT Architecture.
His true IT passions are Security and Android.

He has been programming and teaching how to program with
Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for
more than 20 years.

He holds a Master of Science degree in Computing Science
from the University of Salerno, Italy.

Massimo has worked as a Project Manager, Software Engineer,
Research Engineer, Chief Security Architect, Information
Security Manager, PCI/SCADA Auditor, and Senior Lead IT
Security/Cloud/SCADA Architect for many years.

Technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol, Perl, Web
and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro
Rails, Django CMS, Jekyll, Scratch, etc.

Currently he works as Chief Information Security Office (CISO) for Cargotec Oyj;j.

He worked as visiting lecturer and supervisor for exercises at the Networking Laboratory of
the Helsinki University of Technology (Aalto University). He holds four international patents
(PKIl, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing companies, and he is
the coauthor of Pro Android Games (Apress, 2015).

This book is dedicated to Antti Jalonen and his family who are always there when | need them.

Xiii

Introduction

Over the last eight years, we’ve heard the following countless times:

“I've never programmed before, but | have a great idea for an
iPhone/iPad/Apple TV app.”

“Can | really learn to program the iPhone or iPad?”

To the latter we answer, “Yes, but you have to believe you can.” Only you are going to tell
yourself you can’t do it.

For the Newbie

This book assumes you may have never programmed before. The book is also written for
someone who may have never programmed before using object-oriented programming
(OOP) languages. There are many Swift books out there, but all of these books assume you
have programmed before and know OOP and computer logic. We wanted to write a book
that takes readers from knowing little or nothing about computer programming and logic

to being able to program in Swift. After all, Swift is a native programming language for the
iPhone, iPad, and Mac.

Over the last eight years, we have taught thousands of students at xcelMe.com to be

iOS (iPhone/iPad) developers. Many of our students have developed some of the most
successful iOS apps in their category in the App Store. We have incorporated what we have
learned in our first two courses, Introduction to Object-Oriented Programming and Logic and
Swift for iPhone/iPad Developers, into this book.

For the More Experienced

Many developers who programmed years ago or programmed in a non-OOP language need
a background in OOP and Logic before they dive into Swift. This book is for you. We gently
walk you through OOP and how it is used in iOS development to help make you a successful
iOS developer.

XV

xvi Introduction

How This Book Is Organized

You'll notice that we are all about successes in this book. We introduce the OOP and Logic
concepts in Swift Playgounds and then move those concepts to Xcode. Many students

are visual or learn by doing. We use both techniques. We’ll walk you through topics and
concepts with visual examples and then take you through step-by-step examples reinforcing
the concepts.

We often repeat topics in different chapters to reinforce what you have learned and apply
these skills in new ways. This enables new programmers to reapply development skills
and feel a sense of accomplishment as they progress. Don’t worry if you feel you haven’t
mastered a topic. Keep moving forward!

The Formula for Success

Learning to program is an interactive process between your program and you. Just like
learning to play an instrument, you have to practice. You must work through the examples
and exercises in this book. Understanding a concept doesn’t mean you know how to apply it
and use it.

You will learn a lot from this book. You will learn a lot from working through the exercises

in this book. However, you will really learn when you debug your programs. Spending time
walking through your code and trying to find out why it is not working the way you want is

an unparalleled learning process. The downside of debugging is a new developer can find it
especially frustrating. If you have never wanted to throw your computer out the window, you
will. You will question why you are doing this, and whether you are smart enough to solve the
problem. Programming is very humbling, even for the most experienced developer.

Like a musician, the more you practice the better you get. By practicing, we mean
programming! You can do some amazing things as a programmer. The world is your oyster.
Seeing your app in the App Store is one of the most satisfying accomplishments. However,
there is a price, and that price is time spent coding and learning.

Having taught many students to become iOS developers, we have put together a formula for
what makes students successful. Here is our formula for success:

Believe you can do it. You'll be the only one who says you can’t do this.
So don't tell yourself that.

Work through all the examples and exercises in this book.
Code, code, and keeping coding. The more you code, the better you'll get.

Be patient with yourself. If you were fortunate enough to have been a
4.0 student who can memorize material just by reading it, this will not
happen with Swift coding. You are going to have to spend time coding.

You learn by reading this book. You really learn by debugging your code.

Use the free xcelMe.com webinars and YouTube videos explained at the
end of this Introduction

Don’t give up!

Introduction xvii

The Development Technology Stack

We will walk you through the process of understanding the development process for your
iOS apps and what technology you need. However, briefly looking at all the technology
pieces together is helpful. These are the key iOS development technologies you will need to
know in order to build a successful app and get it on the App Store.

Apple’s Developer Website

App Analytics

iOS SDK

Swift

Object Oriented Programming and Logic
Xcode Integrated Developers Environment (IDE)
Debugging

Performance Tuning

We know this is a lot of technology. Don’t worry, we will go through it and will be comfortable
using it.

Required Software, Materials, and Equipment

One of the great things about developing iOS apps is just about everything is free to get
develop your app.

Xcode

Swift

macQOS 10.12.6 or higher
iOS SDK

iOS Simulator

All you need to get started is a Mac and knowledge of where to download everything. We
will cover this.

XV Introduction

Operating System and IDE

Developing iOS apps you have to use Xcode on a Mac. You can download Xcode for free
from the Mac App Store. (See Figure 1)

'<' *x E ® 9% O

5 Q Search
Featured TopCharts Categories Purchased Updates -

Xcode

Create C

v A A D~ N :
for Mac, iPhone, and iPad. — :
: ARONAREIrOSRORAT mE

Xcode (&)
X¥code includes everything developers need to create great applications for Mac, iPhone, iPad, Apple TV, and Apple Watch. Xcode Arple Web Site
provides developers a unified workilow for user interface design, coding, testing, and debugging. The Xcode IDE combined with Xeode Support
the Swift programming language make developing apps easier and more fun than ever before.
App License Agreement
More
What's New in Version 9.2 Privacy Pokicy
Xcode 9.2 includes Swift 4 and SDKs for i05 11.2, watchOS 4.2, tv0S 11.2, and macOS High Sierra 10.13.2
Information
...More

Category: Developer Tools
Updated: Dec 04, 2017
Version: 9.2

Price: Free

Size: 5.50 GB

Family Sharing: Yes
§ Siesisier Fis B0 Heewe Dutug Widow Heo 7 Twua G Q=

¥ Language: English
BT e
= % _ 2 Seller: Apple Inc.
o Tr— ' ©1999-2017 Apple Inc.
e

Rated 4+

2 Compatibility:
- achs 1012.6 o ater

Figure 1. Downloading Xcode from the Mac App Store

Introduction

Software Development Kits

You will need to register as a developer. You can do this for free at https://developer.
apple.com/ios (see Figure 2)

[Developer Discover Design Cevelop Distribute Support Account (m)

|OS Crverview iPhone X iPad Maching Learning Augmented Reality Submissions m

What's New in iOS 11

i0S 11 sets a new standard for the world's most advanced mobile operating system.
Your apps can now become more intelligent using the power of machine learning with
Core ML. You can create incredible augmented reality experiences with ARKit. And you
can deliver a more unified and immersive user experience with new multitasking
features, including drag and drop for iPad, the new Files app, new camera APls, new
Sirikit domains, Apple Music integration, and more.

D41 AM

Camera

™

A

Figure 2. Apple’s Developer Website (editor, caption not sure why | can’t apply that style)

When you are ready to upload your app to the App Store, you will need to pay $99/year in

order to publish it.

Xix

https://developer.apple.com/ios
https://developer.apple.com/ios

XX Introduction

Dual Monitors (editor not sure why this “Strong” format is
doing this)

We recommend developers have a second monitor connected to their computer. It is great
to step through your code and watch your output window and iOS simulator at the same
time on dual independent monitors.

Apple hardware makes this easy. Just plug your second monitor into the the port of any
Mac, with the correct adapter of course, and you have two monitors working independently
of one another. See Figure 3. Note that dual monitors are not required. You will just have to
organize your open windows to fit on your screen if you don’t.

[] 4 4 Built-in Retina Display Q_ Search

Display Adellul-aiad Color

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

Mirror Displays

AirPlay Display: Off @

Show mirroring options in the menu bar when available Gather Windows 7

Figure 3. Arranging Dual Monitors on a Mac

Introduction Xxi

Free Live Webinars, Q&A, and YouTube Videos

Nearly every week, we have live webinars and discuss a topic from the book or a timely item
of interest. These webinars are free, and you can register for them at http://www.xcelme.
com/latest-videos/. See Figure 4.

in¥ f X
HOME COURSES SCHEDULE CONSULTING ABOUT CONTACTUS FAQ FREE VIDEOS

Me

XCEL DIFFERENT

Home Latest Videos

Free Swift i0S & tvOS Webinars

Ewvery Friday at 10:30am Pacific time xcelMe.com is providing FREE webinars.

Gary Bennett discusses Swift 2.0, tvOS, xCode, Interface Bullder, i0S, Maker topics, and answers your programming questions.
Webinars are recorded and available on his YouTube channel.
Make sure you subscribe to his channel to be notified when new videos are uploaded.

To register for the FREE webinar, click HERE.

Onca registered you will receive an email confirming registration with information you need to join the Webinar,

Recorded Chapter Tutorials

Using Swift 2 Playgrounds — Recorded 11/16/2015 (Click Here)
More on Swift 2 Playgrounds — Recorded 11/16/2015 (Click Here)
One Hour of Code — IBM's New Swift Playground Recorded 12/9/2015 (Click Here)
Basic Swift 2 Data Types Recorded 12/14/2015 (click here)

It's all About the Data (click here)

Making Decisions, Program Flow, and App Design (click here)
Optionals and Forced Unwrapping (click here)

Swift Classes, Objects, and Methods (click here)

Programming Basics in Swift (click here)

Comparing Data (click here)

Creating User Interfaces (click here)

Storing Information (click here)

Introducing the Xeode Debugger (click here)

More Delegates and Protocols (click here)

Figure 4. Swift Webinars

At the end of the webinars, we do a Q&A. You can ask a question on the topic discussed or
any topic in the book.

Additionally, all these webinars are recorded and available on YouTube. Make sure you
subscribe to the YouTube channel so you are notified when new recordings are uploaded.

http://www.xcelme.com/latest-videos/
http://www.xcelme.com/latest-videos/

XX Introduction

Free Book Forum

We have developed an online forum for this book at http://forum.xcelme.com, where you
can ask questions while you are learning Swift and get answers from the authors. You will
also find answers to the exercises and additional exercises to help you learn. See Figure 5.

xcelMe.com

xceiMe Training Center And Interactive Developer Forum.

> Board index A
GYFAQ (iMembers o Register (D Login

It is currently Sat Dec 16, 2017 12:25 pm

FORUM ToPICS POSTS LAST POST
How To Access Your Course Webinars And How To Use The Forum by zenithadse [
New students need to download the attached pdf and follow instructions to register for your webinars < = Thu Mar 13, 2014 10:24 am

e after you purchase the class. Additionally, there are directions and updates on how to access your
course and forum, post questions, navigate the message board, watch training videos, etc.
Mederatar: gary.bennett

Book -> Swift 3.0 for Absolute Beginners: iPhone and Mac Programming Made Easy 3rd Edition 17 21 by roman_plains G

This forum contains answers readers may have for each chapter as well as any corrections to the book. Sun Jun 18, 2017 5:28 pm
The forum also contains the Source Code for the book.

Mecderator: gary.bennett

Book -> Swift 2.0 for Absolute Beginners: iPhone and Mac Programming Made Easy 2nd Edition 17 96 by zany76 [

This forum contains answers readers may have for cach chapter as well as any corrections to the book. Thu Aug 31, 2017 3:11 pm

The forum also contains the Source Code for the book.

Moderator: gary. bennett

Book -> Developing for Apple TV using tvDS and Swift by mdstebel [
=} This forum contains answers readers may have for cach chapter as well as any corrections to the book. L iz Mon Jun 13, 2016 11:26 am
£/ The forum also containg the Source Code for the book.

Moderator: gary.bennett

Book -> Objective-C for Absolute Beginners: (2nd Edition) iPhone and Mac Programming Made 20 224 by Brago [
@ Easy Mon Jun 16, 2014 9:27 pm

This forum contains all the assignments and questions readers may have for each chagter.

Moderstor: gary.bennett

Free Live Webinars for iPhone Developers g by Miptigninguaw [

This forum lists the schedule for upeoming live webinars for iPhone developers. Webinars are live and 1 Tue Nov 23, 2011 3:48 am
@ hawe limited seats. Current and former students get first notifications. Seats for all others is first-come-

first serve.

The sessions are recorded and will be made available to current and former students on this forum.
Meoderator: gary.bennett

Figure 5. Reader forum for accessing answers to exercises and posting questions for authors

http://forum.xcelme.com/

Chapter

Becoming a Great i0S
Developer

Now that you’re ready to become a software developer and have read the introduction of
this book, you need to become familiar with several key concepts. Your computer program
will do exactly what you tell it to do — no more and no less. It will follow the programming
rules that were defined by the operating system and the Swift programming language. Your
program doesn’t care if you are having a bad day or how many times you ask it to perform
something. Often, what you think you’ve told your program to do and what it actually does
are two different things.

Key to Success If you haven’t already, take a few minutes to read the introduction of this book.
The introduction shows you where to go to access the free webinars, forums, and YouTube videos
that go with each chapter. Also, you'll better understand why this book uses the Swift playground
programming environment and how to be successful in developing your i0S apps.

Depending on your background, working with something absolutely black and white may be
frustrating. Many times, programming students have lamented, “That’s not what | wanted it
to do!” As you begin to gain experience and confidence in programming, you’ll begin to think
like a programmer. You will understand software design and logic, experience having your
programs perform exactly as you want, and the satisfaction associated with this.

Thinking Like a Developer

Software development involves writing a computer program and then having a computer
execute that program. A computer program is the set of instructions that you want the
computer to perform. Before beginning to write a computer program, it is helpful to list the

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 1
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_1

https://doi.org/10.1007/978-1-4842-3063-3_1

2 CHAPTER 1: Becoming a Great i0S Developer

steps that you want your program to perform in the order you want them accomplished. This
step-by-step process is called an algorithm.

If you want to write a computer program to toast a piece of bread, you would first write an
algorithm. The algorithm might look something like this:

1. Take the bread out of the bag.
Place a slice of bread in the toaster.
Press the “toast” button.

Wait for the toast to pop up.

o~ w0

Remove the toast from the toaster.

At first glance, this algorithm seems to solve the problem. However, the algorithm leaves out
many details and makes many assumptions. Here are some examples:

What kind of toast does the user want? Does the user want white bread,
wheat bread, or some other kind of bread?

How does the user want the bread toasted? Light or dark?

What does the user want on the bread after it is toasted: butter,
margarine, honey, or strawberry jam?

Does this algorithm work for all users in their cultures and languages?
Some cultures may have another word for toast or not know what
toast is.

Now, you might be thinking this is getting too detailed for making a simple toast program.
Over the years, software development has gained a reputation of taking too long, costing
too much, and not being what the user wants. This reputation came to be because computer
programmers often start writing their programs before they have actually thought through
their algorithms.

The key ingredients to making successful applications are design requirements. Design
requirements can be formal and detailed or simple like a list on a piece of paper. Design
requirements are important because they help the developer flesh out what the application
should and should not do when complete. Design requirements should not be completed
in a programmer’s vacuum, but should be produced as the result of collaboration between
developers, users, and customers.

Another key ingredient to your successful app is the user interface (Ul) design. Apple
recommends you spend more than 50 percent of the entire development process focusing
on the Ul design. The design can be done using simple pencil and paper or using Xcode’s
storyboard feature to lay out your screen elements. Many software developers start with the
Ul design, and after laying out all the screen elements and having many users look at paper
mock-ups, they write the design requirements from their screen layouts.

CHAPTER 1: Becoming a Great i0S Developer

Note If you take anything away from this chapter, let it be the importance of considering design
requirements and user interface design before starting software development. This is the most
effective (and least expensive) use of time in the software development cycle. Using a pencil and
eraser is a lot easier and faster than making changes to code because you didn’t have others look
at the designs before starting to program.

After you have done your best to flesh out all the design requirements, laid out all the
user interface screens, and had the clients or potential customers look at your design

and give you feedback, you can begin coding. Once coding begins, design requirements
and user interface screens can change, but the changes are typically minor and are easily
accommodated by the development process. See Figures 1-1 and 1-2.

Figure 1-1 shows a mock-up of a rental report app screen prior to development. Developing
mock-up screens along with design requirements forces developers to think through many
of the application’s usability issues before coding begins. This enables the application
development time to be shortened and makes for a better user experience and better
reviews on the App Store. Figure 1-2 shows how the view for the rental report app appears
when completed. Notice how mock-up tools enable you to model the app to the real thing.

LOG IN

SIGN UP

FRIVACY POLICY TERMS OF USE

Figure 1-1. This is a Ul mock-up of the Log In screen for an iPhone mobile rental report app before development
begins. This Ul design mock-up was completed using InVision.

4 CHAPTER 1: Becoming a Great i0S Developer

the rental report app

BY SIGNING UP YOU ARE AGREEING TO

OUR :: ¢ AND 1

Figure 1-2. This is the completed iPhone rental report app. This app is called WalkAround.

CHAPTER 1: Becoming a Great i0S Developer 5

Completing the Development Cycle

Now that you have the design requirements and user interface designs and have written
your program, what’s next? After programming, you need to make sure your program
matches the design requirements and user interface design and ensure that there are no
errors. In programming vernacular, errors are called bugs. Bugs are undesired results of your
programming and must be fixed before the app is released to the App Store. The process of
finding bugs in programs and making sure the program meets the design requirements is
called testing. Typically, someone who is experienced in software testing methodology and
who didn’t write the app performs this testing. Software testing is commonly referred to as
quality assurance (QA).

Note When an application is ready to be submitted to the App Store, Xcode gives the file an .app
or .1ipa extension, for example, appName . app. That is why iPhone, iPad, and Mac applications are
called apps. This book uses program, application, and app to mean the same thing.

During the testing phase, the developer will need to work with the QA staff to determine
why the application is not working as designed. The process is called debugging. It requires
the developer to step through the program to find out why the application is not working as
designed. Figure 1-3 shows the complete software development cycle.

Figure 1-3. The typical software development cycle

Frequently during testing and debugging, changes to the requirements (design) must occur
to make the application more usable for the customers. After the design requirements and
user interface changes are made, the process starts again.

6 CHAPTER 1: Becoming a Great i0S Developer

At some point, the application that everyone has been working so hard on must be shipped
to the App Store. Many considerations are taken into account as to when in the cycle this
happens:

Cost of development
Budget

Stability of the application
Return on investment

There is always the give-and-take between developers and management. Developers want the
app to be perfect, and management wants to start realizing revenue from the investment as
soon as possible. If the release date were left up to the developers, the app would likely never
ship to the App Store. Developers would continue to tweak the app forever, making it faster,
more efficient, and more usable. At some point, however, the code needs to be pried from the
developers’ hands and uploaded to the App Store so it can do what it was meant to do.

Introducing Object-Oriented Programming

As discussed in detail in the introduction, playgrounds enable you to focus on object-
oriented programming (OOP) without having to cover all the Swift programming syntax
and complex Xcode development environment in one big step. Instead, you can focus on
learning the basic principles of OOP and using those principles quickly to write your first
programs.

For decades, developers have been trying to figure out a better way to develop code

that is reusable, manageable, and easily maintained over the life of a project. OOP was
designed to help achieve code reuse and maintainability while reducing the cost of software
development.

OOP can be viewed as a collection of objects in a program. Actions are performed on these
objects to accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or screen/view
on the iPad can all be objects. You may want to act on the plane by making the plane bank.
You may want the person to walk or to change the color of the screen of an app on the iPad.

CHAPTER 1: Becoming a Great i0S Developer 7

Playgrounds execute your code as you complete each line, such as the one shown in

Figure 1-4. When you run your playground applications, the user can apply actions to the
objects in your application. Xcode is an integrated development environment (IDE) that
enables you to run your application from within your programming environment. You can test
your applications on your computer first before running them on your iOS devices by running
the apps in Xcode’s simulator, as shown in Figure 1-5.

< Looping Allthe Sides

In this purzie, Byte must collect four gems that are
lecated in the same relative locations sround 3 square.
You'll create 3 oo that repeats the code below for each
of the sides 1o s0dve Uhe entine puttie.

(O el /"_'\ o Bbeary, then deop
el ¥

@ mer | | retihetoce

~ Tp \ | wce, then arag it

) gowr \\ / 34 into the koop,

for 4 in 1 ... [¢
moveForward()
collectGen()
moveFormard()
moveFormard()
moveForward()
turaRight ()

l sc
__— L ————

Figure 1-4. There are multiple objects in this playground view

8 CHAPTER 1: Becoming a Great i0S Developer

Carrier ¥

Oranges

Bananas

Milk

Bread

Delete List

Figure 1-5. This sample iPhone app contains a table object to organize a list of groceries. Actions such as “rotate left”
or “user did select row 3” can be applied to this object.

Actions that are performed on objects are called methods. Methods manipulate objects to
accomplish what you want your app to do. For example, for a jet object, you might have the
following methods:

goup
goDown

CHAPTER 1: Becoming a Great i0S Developer 9

bankLeft
turnOnAfterburners
lowerLandingGear

The table object in Figure 1-5 is actually called UITableView when you use it in a program,
and it could have the following methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

Most objects have data that describes those objects. This data is defined as properties.
Each property describes the associated object in a specific way. For example, the jet
object’s properties might be as follows:

altitude = 10,000 feet
heading = North

speed = 500 knots

pitch = 10 degrees

yaw = 20 degrees
latitude = 33.575776
longitude = -111.875766

For the UITableView object in Figure 1-5, the following might be the properties:

backgroundColor = White
selectedRow = 3
animateView = No

An object’s properties can be changed at any time when your program is running, when the
user interacts with the app, or when the programmer designs the app to accomplish the
design requirements. The values stored in the properties of an object at a specific time are
collectively called the state of an object.

State is an important concept in computer programming. When teaching students about
state, we ask them to go over to a window and find an airplane in the sky. We then ask them
to snap their fingers and make up some of the values that the plane’s properties might have
at that specific time. Those values might be as follows:

altitude = 10,000 feet
latitude = 33.575776
longitude = -111.875766

Those values represent the state of the object at the specific time that they snapped their
fingers.

After waiting a couple of minutes, we ask the students to find that same plane, snap their
fingers again, and record the plane’s possible state at that specific point in time.

10 CHAPTER 1: Becoming a Great i0S Developer

The values of the properties might then be something like the following:

altitude = 10,500 feet
latitude = 33.575665
longitude = -111.875777

Notice how the state of the object changes over time.

Working with the Playground Interface

Playgrounds offer a great approach to using the concepts just discussed without all the
complexity of learning Xcode and the Swift language at the same time. It takes only a few
minutes to familiarize yourself with the playground interface and begin writing a program.

Technically speaking, the playground interface is not a true IDE like you will be using to write
your iOS apps, but it is pretty close and much easier to learn in. A true IDE combines code
development, user interface layout, debugging tools, documentation, and simulator/console
launching for a single application; see Figure 1-6. However, playgrounds offer a similar look,
feel, and features to the Xcode IDE you develop apps with.

B T
(Y P

b 1] S b Dt (it Beane
Srsguinss Comtrbe e

L et Ve (il e

b 1 Sanpatnns Comtrsber binee

e) b Rearaes Comnesbe biaes

vow fae s

[Viesss PPora 8 (- 0

Figure 1-6. The Xcode IDE with the iPhone simulator

In the next chapter, you will go through the playground interface and write your first program.

CHAPTER 1: Becoming a Great i0S Developer 1

Summary

Congratulations, you have finished the first chapter of this book. It is important that you
have an understanding of the following terms because they will be reinforced throughout
this book:

Computer program
Algorithm

Design requirements
User interface

Bug

Quiality assurance (QA)
Debugging
Object-oriented programming (OOP)
Object

Property

Method

State of an object

Integrated development environment (IDE)

What’s Next

The remaining chapters provide the information you need to learn Swift and write iOS
applications. Terms and concepts are introduced and reinforced over and over so you will
begin to get more comfortable with them. Keep going and be patient with yourself.

EXERCISES

Answer the following questions:
Why is it so important to spend time on your user requirements?
What is the difference between design requirements and an algorithm?
What is the difference between a method and a property?
What is a bug?
What is state?

Write an algorithm for how a soda machine works from the time a coin is inserted until a
soda is dispensed. Assume the price of a soda is 80 cents.

Write the design requirements for an app that will run the soda machine.

Chapter

Programming Basics

This chapter focuses on the building blocks that are necessary to become a great Swift
programmer. This chapter covers how to use the playground user interface, how to write your
first Swift program, and how to use the Xcode Integrated Development Environment (IDE).

Note We will introduce you to using playgrounds, which will enable you to program right away
without worrying about all of the complexities of Xcode projects. We use this approach to help
you learn the concepts quickly, without discouragement, and to give you a great foundation to
build upon.

Touring Xcode

Playgrounds in Xcode make writing Swift code incredibly simple and fun. Type a line of
code, and the result appears immediately. If your code runs over a period of time, perhaps
in a loop or branch, you can watch its progress in the timeline area. When you’ve completed
your code in the playground, it is easy to move your code to a Swift iOS project. With Xcode
playgrounds, you can do the following:

Design or modify an algorithm, observing the results every step of the
way

Create new tests, verifying that they work before promoting them into
your test suite

First, you’ll need to learn a little more about the Xcode user interface. When you open an
Xcode iOS project, you are presented with a screen that looks like Figure 2-1.

The Xcode user interface is set up to help you efficiently write your Swift applications. The
user interface helps new programmers learn the user interface for an iOS application. You
will now explore the major sections of Xcode’s IDE workspace and playgrounds.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 13
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_2

https://doi.org/10.1007/978-1-4842-3063-3_2

14 CHAPTER 2: Programming Basics

[

Figure 2-1. Xcode Integrated Developer Environment with a Swift project

Exploring the Workspace Window

The workspace window, shown in Figure 2-2, enables you to open and close files, set
your application preferences, develop and edit an app, and view the text output and error
console.

The workspace window is your primary interface for creating and managing projects. The
workspace window automatically adapts itself to the task at hand, and you can further
configure the window to fit your work style. You can open as many workspace windows as
you need.

CHAPTER 2: Programming Basics

15

Magator selecton bar 1 Tookar Jumgp bary
[A V } e == T -
v] |
!I -
Navigator Editor ! utility ——

Area . Area Area

Litwary
i1

Debug |
Area

Fitter b Datug bar

Figure 2-2. Xcode’s workspace window

The workspace window has four main areas: Editor, Navigator, Debug, and Utility.

When you select a project file, its contents appear in the Editor area, where Xcode opens
the file in the appropriate editor.

You hide or show the other three areas by using buttons in the view selector in the toolbar.
These buttons are in the top-right corner of the window.

D Clicking this button shows or hides the Navigator area. This is where you view and
maneuver through files and other facets of your project.

I;] Clicking this button shows or hides the Debug area. This is where you control
program execution and debug code.

Clicking this button shows or hides the Utility area. You use the Utility area for
several purposes, most commonly to view and modify attributes of a file and to add
ready-made resources to your project.

Navigating Your Workspace

You can access files, symbols, unit tests, diagnostics, and other features of your project
from the Navigator area. In the navigator selector bar, you choose the navigator suited to
your task. The content area of each navigator gives you access to relevant portions of your
project, and each navigator’s filter bar allows you to restrict the content that is displayed.

16 CHAPTER 2: Programming Basics

Choose from these options in the navigator selector bar:

: Project navigator. Add, delete, group, and otherwise manage files
in your project; or choose a file to view or edit its contents in the editor
area.

Source Control navigator. View the detailed history of changes you
have made to your project files when using a Version Control System (VCS)
like Git or Subversion (SVN).

E Symbol navigator. Browse the class hierarchy in your project.

L Find navigator. Use search options and filters to quickly find text
within your project.

& Issue navigator. View issues such as diagnostics, warnings, and
errors found when opening, analyzing, and building your project.

&

———

Test navigator. Create, manage, run, and review unit tests.

Debug navigator. Examine the running threads and associated
stack information at a specified point of time during program execution.

Breakpoint navigator. Fine-tune breakpoints by specifying
characteristics such as triggering conditions and see all your project’s
breakpoints in one place

: Report navigator. View the history of your builds.

Editing Your Project Files

Most development work in Xcode occurs in the Editor area, which is the main area that is
always visible within the workspace window. The editors you will use most often are as follows:

Source editor: Write and edit Swift source code.

Interface Builder: Graphically create and edit user interface files
(see Figure 2-3).

Project editor: View and edit how your apps should be built, such by
specifying build options, target architectures, and app entitlements.

CHAPTER 2: Programming Basics 17

When you select a file, Xcode opens the file in an appropriate editor. In Figure 2-3, the file
Main.storyboard is selected in the Project navigator, and the file is open in Interface Builder.

¥ at £:00 PM 1 3 I

oae » Q) Uister | g Prone 8 Lister | Clean Lister: Succeaded | T
B 2 Q G B L) Now List Document Controller Scong Mew List Documont Contraller € L y @ m ¢ 0
¥ [Uister » [List View Controlier Scene
README. ma a Sire Inferred

Lister 105 App o iiieabaiiiad Top Bas Irferred

(o] o] &

M| w [New List Document Controlier S = Sottom Dar Irferred

w () Neow List Document Controllar 1

» [Spiit View Contralier Scene

» [Navigation Controller Scens

Navigation Contreller Scene

ork Code » View Controller Scene

Ky Cammands

@

Wiew Controller - &

Storyboard Reterence - frovide
s pla dor far & view cant
i

< Navigation Contralier - A

O View as: iPhone 8 («C ~R)

Figure 2-3. Xcode’s Interface Builder showing a storyboard file

The editor offers three controls:

I

Clicking this button opens the Standard editor. You will see a single
editor pane with the contents of the selected file.

A,
LLF]
o Clicking this button opens the Assistant editor. You will see a
separate editor pane with content logically related to that in the Standard
editor pane.

. =
Clicking this button opens the Version editor. You will see the

differences between the selected file in one pane and another version of
that same file in a second pane. Used when working with source control.

Creating Your First Swift Playground Program

Now that you have learned a little about Xcode, it’s time to write your first Swift playground
program and begin to understand the Swift language, Xcode, and some syntax. First, you
have to install Xcode.

18 CHAPTER 2: Programming Basics

Installing and Launching Xcode 9

Xcode 9 is available for download from the Mac App Store for free, as shown in Figure 2-4.

Xcode

'wl
+f

NNERARErOrOSReSAr MY

Open ~

Xcode
[Essentials]

What's New in Version 9.0

Figure 2-4. Xcode 9 is available for download from the Mac App Store for free

http://developer.apple.com/

CHAPTER 2: Programming Basics 19

Note This package has everything you need to write i0S, watch0S, tvOS, and macOS apps.

To publish apps on the i0S or macOS App Stores, you will need to apply for the Apple Developer
Program and pay $99 when you're ready to submit. Figure 2-5 shows the Apple Developer Program
website at https://developer.apple.com/.

‘ Developer Discover Design Develop Distribute Support Account Q

Apple Platforms

macOS» i05» watchOS>» tvO53»

Figure 2-5. The Apple Developer Program

Now that you have installed Xcode, let’s begin writing a Swift playground.

Launch Xcode and click “Get started with a playground,” as shown in Figure 2-6.

http://developer.apple.com/

20 CHAPTER 2: Programming Basics

Get started with a playground
Explore new ideas quickly and easily.

Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.

l)ﬂ Clone an existing project
Start working on something from an SCM repository.

Figure 2-6. Creating your first Swift playground

Using Xcode 9
After a new Xcode window opens, follow these steps:
1. Select a Blank iOS template and click Next, as shown in Figure 2-7.

2. Name the playground HelloWorld and create it in a folder of your
choice, like Documents or the Desktop.

CHAPTER 2: Programming Basics 21

Choose a template for your new playground:

B3 wos macos
Playground
3 3 3 3
Game Map Single View
Cancel o

Figure 2-7. Choosing a Blank i0S playground template

Xcode does a lot of work for you and creates a playground file with code ready for you to
use. It also opens your playground file in your Xcode editor so you can start, as shown in
Figure 2-8.

"N Ready | Today at 6:28 PM = @ L
« HelloWorld
ff: Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground" Hallo, playground
= »

Figure 2-8. The playground window
You now need to become familiar with the Xcode playground IDE. Let’s look at two of the
most often used features:

The Editor area

The Results area

22 CHAPTER 2: Programming Basics

Xcode Playground IDE: Editor and Results Areas

The Editor area is the business end of the Xcode playground IDE — where your dreams are
turned into reality. It is where you write your code. As you write your code, you will notice it
changes color. Sometimes, Xcode will even try to autocomplete words for you. The colors
have meanings that will become apparent as you use the IDE. The Editor area is also where
you debug your code.

Note Even if we’ve mentioned it already, it is worth saying again: You will learn Swift
programming by reading this book, but you will really learn Swift by writing and debugging your
code. Debugging is where developers learn and become great developers.

Let’s add a line of code to see the power of Swift playgrounds. Add the following code at the
end of the file, on line 6:

print(str)
As soon as you enter the line of code, Xcode automatically executes the line and shows the
result, “Hello, playground\n”.

When you write Swift code, everything is important — commas, capitalization, and
parentheses. The collection of rules that enable the compiler to compile your code to an
executable app is called syntax.

Line 5 creates a string variable called str and assigns “Hello, playground” to the variable.
Line 6 prints the str string variable to the Results Area.

Let’s create a syntax error by changing line 6 to print(stz) as shown in Figure 2-9 below.

CHAPTER 2: Programming Basics 23

[Mol] Ready | Today at 6:41 PM 0 e M=

» HelloWorld <0>
ff: Playground - noun: a place where people can play

import UIKit

ar str = "Hello, playground"

print(gtz) O Use of unresolved identifier stz
T

Error Location
Error Description

Editor Area Results
Area

= p

Figure 2-9. The playground with a syntax error caught by the Swift compiler

In Swift, print is a function that will print the contents of its parameters in the Results area.
As you enter code, the Results area automatically updates with the results for each line of
code that you entered.

Now, let’s fix the app by spelling the str variable correctly, as shown in Figure 2-10.

24 CHAPTER 2: Programming Basics

®
®

Ready | Today at 6:48 PM = @ < 03 0O

» HelloWorld

ound noun: a place where people caon play
import UIKit

r str = "Hello, playground" Hello, playground
printistr) Hello, playgroundin

Error Fixed

= »
Figure 2-10. Syntax error fixed

Feel free to play around and change the text that is printed. You may want to add multiple
variables or add two strings together. Have fun!

Summary

In this chapter, you built your first basic Swift playground. We also covered new Xcode terms
that are key to your understanding of Swift.

Key to Success As mentioned in the introduction of the book, you can visit http://www.
xcelme.com/ and click the Free Videos tab to view videos related to this chapter. The videos
will help you understand more about Xcode, IDEs, and playgrounds. Also visit http://forum.
xcelme.com/ to ask questions about these concepts.

The concepts that you should understand are as follows:
Playground
Editor area

Results area

EXERCISE

Extend your playground by adding a line of code that prints any text of your choosing.

http://www.xcelme.com/
http://www.xcelme.com/
http://forum.xcelme.com/
http://forum.xcelme.com/

Chapter

It’s All About the Data

As you probably know, data is stored as zeros and ones in your computer’s memory.
However, zeros and ones are not very useful to developers or app users, so you need to
know how your program uses data and how to work with the data that is stored.

In this chapter, you look at how data is stored on computers and how you can manipulate
that data. You then use playgrounds to learn more about data storage.

Numbering Systems Used in Programming

Computers work with information differently than humans do. This section covers the various
ways information is stored, tallied, and manipulated by devices such as your iPhone and iPad.

Bits

A bit is defined as the basic unit of information used by computers to store and manipulate
data. A bit has a value of either 0 or 1. When computers were first introduced, transistors
and microprocessors didn’t exist. Data was manipulated and stored by vacuum tubes being
turned on or off. If the vacuum tube was on, the value of the bit was 1; and if the vacuum
tube was off, the value was 0. The amount of data a computer was able to store and
manipulate was directly related to how many vacuum tubes the computer had.

The first recognized computer was called the Electronic Numerical Integrator and Computer
(ENIAC). It took up more than 136 square meters and had 18,000 vacuum tubes. It was
about as powerful as your handheld calculator.

Today, computers use transistors to store and manipulate data. The power of a computer
processor depends on how many transistors are placed on its chip or CPU. Like the
vacuum tube, transistors have an off or on state. When the transistor is off, its value is 0. If
the transistor is on, its value is 1. At the time of this writing, Apple’s A11 Bionic processor
that powers the iPhone 8, iPhone 8 Plus, and iPhone X, is a 6-core ARM processor with
approximately 4.3 billion transistors, up from 149 million transistors within the A4 from the
first iPad. Figure 3-1 shows Apple’s latest iPhone processor, the A11 Bionic.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 25
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_3

https://doi.org/10.1007/978-1-4842-3063-3_3

26 CHAPTER 3: It’s All About the Data

Figure 3-1. Apple’s proprietary A11 Bionic processor

Moore’s Law

The number of transistors within your iPhone’s or iPad’s processor is directly related to
your device’s processing speed, graphics performance, memory capacity, and the sensors
(accelerometer, gyroscope) available in the device. The more transistors there are, the more
powerful your device is.

In 1965, the cofounder of Intel, Gordon E. Moore, described the trend of transistors in a
processor. He observed that the number of transistors in a processor doubled every 18
months from 1958 to 1965 and would likely continue “for at least 18 months.” The observation
became famously known as Moore’s Law and has proven accurate for more than 55 years.

Note There is a downside to Moore’s Law, and you have probably felt it in your wallet. The
problem with rapidly increasing processing capability is that it renders technology obsolete quickly.
So, when your iPhone’s two-year cell phone contract is up, the new iPhones on the market will be
twice as powerful as the iPhone you had when you signed up. How convenient for everyone!

Bytes

A byte is another unit used to describe information storage on computers. A byte is
composed of eight bits. Whereas a bit can represent up to two different values, a byte can
represent up to 28, or 256, different values. A byte can contain values from 0 to 255.

CHAPTER 3: It’s All About the Data 27

The binary number system represents the numerical symbols 0 and 1. To illustrate how the
number 71 would be represented in binary, you can use a simple table of eight bits (1 byte),
with each bit represented as a power of two. To convert the byte value 01000111 to decimal,

simply add up the on bits, as shown in Table 3-1.

Table 3-1. The Number 71 Represented as a Byte (64 +4 +2 + 1)

Power of 2 2 26 25 2 2 2? 2! 2
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 1 0 0 0 1 1 1

To represent the number 22 in binary, turn on the bits that add up to 22, or 00010110, as
shown in Table 3-2.

Table 3-2. The Number 22 Represented as a Byte (16 + 4 + 2)
Power of 2 2 28 25 2 28 22 2 20

Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 1 0 1 1 0

To represent the number 255 in binary, turn on the bits that add up to 255, or 11111111, as
shown in Table 3-3.

Table 3-3. The Number 255 Represented as a Byte (128 + 64 + 32 + 16 +8+4+2+ 1)

Power of 2 2 28 2 24 2 22 2 20

Value for “on” bit 128 64 32 16 8 4 2 1

Actual bit 1 1 1 1 1 1 1 1

To represent the number 0 in binary, turn on the bits that add up to 0, or 00000000, as
shown in Table 3-4.

Table 3-4. The Number 0 Represented as a Byte
Power of 2 2 26 25 2 2 22 2! 20

Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 0 0 0 0 0

28 CHAPTER 3: It’s All About the Data

Hexadecimal

Often, it will be necessary to represent characters in another format that is recognized by
computers, namely, the hexadecimal format. The hex format is simply a “compressed”
version of binary, where instead of eight characters used to represent a byte (eight bits),
you can use two characters, for example, 00 or 2A or FF. You will encounter hexadecimal
numbers when you are debugging your apps. The hexadecimal system is a base-16
number system. It uses 16 distinct symbols: 0 to 9 to represent the values 0 to 9 and A to

F to represent the values 10 to 15. For example, the hexadecimal number 2AF3 is equal in
decimal to (2 x 16%) + (10 x 162) + (15 x 16") + (3 x 169), or 10,995. You may want to play
with the Mac Calculator application in Programmer mode to see how hex relates to decimal
and binary.

Figure 3-2 shows the ASCII table of characters. Because one byte can represent 256
characters, this works well for Western characters. For example, hexadecimal 20
represents a space. Hexadecimal 7D represents a right curly brace (}). You can also
see this by playing with the Mac Calculator app in Programmer mode as it can convert
numerical values to ASCII.

CHAPTER 3: It’s All About the Data

29

Dec HxOct Char Dec Hx Oct Himl Chr |Dec Hx Oct Himl Chr| Dec Hx Oct Html Chr
0 0 000 NUL {rmll) 32 20 040 «#32; Space| 64 40 100 «#64; [| 96 60 140 `
1 1 001 50H (start of heading) 33 21 041 ! ! 65 41 101 «#65; A | 97 61 141 &«#97: a
2 2 002 5TX (start of text) 34 22 042 «#34:; " 66 42 102 «#66; E | 98 62 142 «#98; Db
3 3 003 ETX (end of text) 35 23 043 «#35; # 67 43 103 «#67; C | 99 63 143 «#99; ¢
4 4 004 EOT (end of transmission) 36 24 044 «#36; 5 68 44 104 «#68; D |100 64 144 «#l00; d
5 5 005 ENQ {enquiry) 37 25 045 «#37; = 69 45 105 «#69; E (101 65 145 e e
6 6 006 ACE (acknowledge) 38 26 046 «#38: ¢ 70 46 106 «#70; F |102 66 146 &«#102; T
7 7 007 EEL (bell) 39 27 047 «#39;° 71 47 107 «#71; G |103 67 147 g ¢
8 & 010 BES (backspace) 40 28 050 &«#40; | 72 48 110 &«#72; H |104 68 150 h h
9 9 011 TAE {(horizontal tab) 41 29 051 «#4l1:) 73 49 111 «#73; I |105 69 151 i 1
10 A 0l2 LF (NL line feed, new line)| 42 2A 052 «#42; * 74 4h 112 «#74; 7 |106 6A 152 &«#106; 3
11 B 013 VT (vertical tab) 43 2B 053 &«#43; + 75 4B 113 &«#75; K |107 6B 153 &«#107; k
12 C 014 FF (NP form feed, new page)| 44 2C 054 «#44: , 76 4C 114 6#76; L 108 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 «#45; - 77 4D 115 «#77; 11 |109 6D 155 m u
14 E 016 = i{shift out) 46 2E 056 «#46; . 78 4E 116 «#78; N [110 6E 156 n: n
15 F 017 5I (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 |111 6F 157 &#lll; ©
16 10 020 DLE (data link escape) 48 30 060 &«#48; 0 80 50 120 «#80; P |112 70 160 «#l12; p
17 11 021 DC1 {(dewice control 1) 49 31 061 &«#49; 1 81 51 121 «#81; 0 (113 71 161 q 4
18 12 022 DCZ (device control 2) 50 32 062 «#50; 2 62 52 122 «#82; R |l114 72 162 &«#114; ¢
19 13 023 DC3 (device control 3) 51 33 063 3 3 83 53 123 «#83; 5 [115 73 163 ll5; =
20 14 024 DC4 (device control 4) 52 34 064 «#52; 4 84 54 124 «#84; T (116 74 164 &«#ll6; ©
21 15 025 NAK (negative acknowledge) 53 35 065 «#53; 5 65 55 125 «#85; U (117 75 165 &«#117; u
22 16 026 S5YN (synchronous idle) 54 36 066 &«#54; 6 86 56 126 «#86; V |118 76 166 &#ll8; Vv
23 17 027 ETE (end of trans. block) 55 37 067 «#55. 7 87 57 127 «#87: U |119 77 167 «#1ll9; v
24 18 030 CAN (cancel) 56 356 070 «#56; 8 88 56 130 «#88; X |120 76 170 «#l20; x
25 19 031 EM (end of medium) 57 39 071 «#57; 9 89 59 131 «#89; ¥ |121 79 171 &#l2l; Vv
26 1A 032 SUB (substitute) 58 3A 072 «#58; : 90 SA 132 «#90; Z |122 7A 172 «#l2z; =
27 1B 033 ESC (escape) 59 3B 073 «#59; ; 91 SB 133 «#91; [|123 7B 173 «#123; |
28 1C 034 F5 (file separator) 60 3C 074 «#60; < 92 SC 134 \: \ (124 7C 174 | |
29 1D 035 G5 (group separator) 61 3D 075 &«#6l; = 93 5D 135]] 125 7D 175 })
30 1E 036 RS (record separator) 62 3E 076 &«#62; > 94 SE 136 «#94; * |126 7E 176 «#l26; ~
31 IF 037 US ({unit separator) 63 3F 077 &«#63; 2 95 SF 137 «#95; _ |127 7F 177 DEL
Source: www.LookupTables.com
122 ¢ 144 E 161 i 177 193 L 209 s 225 B 241 =
120 o 145 = 162 6 178 194 + 210 226 T 242 >
130 ¢ 146 & 163 u 179 195} 211 L 227 = 243 <
131 & 147 & 164 # 180 196 - 212 & 228 n 244 [
132 & 148 &5 165 N 181 197 + 213 F 229 & 245)
133 & 149 & 166 ° 182 198k 214 230 p 246 =
134 & 150 © 167 ° 183 4 199 |} 25 4§ 231 ¢ 247 =
135 ¢ 151 u 168 184 4 200 L 216+ 232 & 248 °
136 & 152 _ 169 185 4 201 [217 233 ® 249
137 ¢ 153 0O 170 — 186 | 202 & 218 234 0 250
138 ¢ 154 U 171 % 187 5 203 & 209 @B 235 5 251 o
139 i 156 £ 172 % 188 4 204 | 220 g 236 o 252
140 i 157 % 173 139 4 205 = 221 | 237 ¢4 253 *
141 i 158 174 « 190 A 206 3 222 | 238 = 254 m
142 A 159§ 175 » 191 4 207 & 223 = 239~ 255
143 A 160 & 176 192 L 208 L 224 5 240 =

Figure 3-2. ASCII characters

Source: www.LookupTables.com

30 CHAPTER 3: It’s All About the Data

Unicode

Representing characters with a byte worked well for computers until about the 1990s, when
the personal computer became widely adopted in non-Western countries where languages
have more than 256 characters. Instead of a one-byte character set, Unicode can have up to
a four-byte character set.

To facilitate faster adoption, the first 256 code points are identical to the ASCII character
table. Unicode can have different character encodings. The most common encoding used
for Western text is called UTF-8. The “8” is how many bits are used per character, so it’s one
byte per character, like ASCII.

As an iPhone developer, you will probably use this character encoding the most.

Data Types

Now that we’ve discussed how computers store data, we will cover an important concept
called data types. Humans can generally just look at data and the context in which it is
being used to determine what type of data it is and how it will be used. Computers need to
be told how to do this. So, the programmer needs to tell the computer the type of data it is
being given. Here’s an example: 2 + 2 = 4.

The computer needs to know you want to add two numbers together. In this example, they

are integers. You might first believe that adding these numbers is obvious to even the most

casual observer, let alone a sophisticated computer. However, it is common for users of iOS
apps to store data as a series of characters, not a calculation. For example, a text message
might read “Everyone knows that 2 + 2 = 4.”

In this case, the example is a series of characters called a string. A data type is simply the
declaration to your program that defines the data you want to store. A variable is used to
store your data and is declared with an associated data type. All data is stored in a variable,
and the variable has to have a variable type. For example, in Swift, the following are variable
declarations with their associated data types:

var x: Int = 10

var y: Int = 2

var z: Int =0

var submarineName: String = "USS Nevada SSBN-733"

Data types cannot be mixed with one another. You cannot do the following:

Z = X + submarineName

Mixing data types will cause either compiler warnings or compiler errors, and your app will
not run.

CHAPTER 3: It’s All About the Data 31

Table 3-5 gives examples of the basic data types in Swift.

Table 3-5. Swift Data Types

Type Examples

Int 1, 5,10, 100

Float or Double 1.0, 2.222, 3.14159

Bool true, false

String "Star Wars," "Star Trek"
ClassName UIView, UILabel, and so on

Declaring Constants and Variables

Swift constants and variables must be declared before they are used. You declare constants
with the let keyword and variables with the vax keyword. Constants never change after they
have been initialized, but variables can be changed as many times as needed.

There are two ways to declare constant and variable types: explicitly and implicitly.

Here is the syntax for declaring a variable’s type explicitly:

var name: type = value
var firstNumber: Int = 5

However, declaring the type is often unnecessary. Declaring the type implicitly shortens the
code and makes it easier to type and ultimately maintain.

Here is the syntax for declaring a variable’s type implicitly:

var name = value
var firstNumber = 5

You can use implicit most of the time because Swift is smart enough to figure out what the
variable is by what you assign to it.

If a variable isn’t going to change, you should declare it as a constant. Constants never
change. Constants start with the keyword let, as shown here:

let secondNumber = 10
To best understand how variables and constants are declared, here are two examples:

let maximumNumberOfStudents
var currentNumberOfStudents

30
5

This code can be read as follows: “Declare a new constant called maximumNumberOfStudents,
and give it a value of 30. Then, declare a new variable called currentNumber0OfStudents, and
give it an initial value of 5.”

32 CHAPTER 3: It’s All About the Data

In this example, the maximum number of students is declared as a constant because the
maximum value never changes. The current number of students is declared as a variable
because this value must be incremented or decremented after the student enrollment
changes.

Most data you will use in your programs can be classified into four different kinds —
Booleans, numbers, strings, and objects. We will discuss how to work with numbers and
object data types in the remainder of this chapter. In Chapter 4, we will talk more about
Boolean data types when you learn how to write apps with decision making.

Note Localizing your app is the process of writing your app so users can buy and use it in their
native language. This process is too advanced for this book, but it is a simple one to complete when
you plan from the beginning. Localizing your app greatly expands the total number of potential
customers and revenue for your app without your having to rewrite it for each language. Be sure

1o localize your app. It is not hard to do and can easily double or triple the number of people who
buy it. For more information on localizing your app, visit Apple’s “Build Apps for the World” site:
https://developer.apple.com/internationalization/.

Optionals

Swift introduces an important concept called optionals that developers need to understand.
Even for experienced Objective-C iOS developers, this concept is new. Optionals are not a
hard topic to understand, but they take some time to get used to.

Use optionals when a value may be absent. An optional says the following:
A variable may or may not have a value assigned to it.

There are times when a constant or variable might not have a value. Listing 3-1 shows an
example of the integer initializer called Int(), which converts a String value to an Int.

Listing 3-1. Converting a string to an integer

1 let myString = "42"
2 let someInteger = Int(myString)
3 // somelnteger is inferred to be of type "Int?", or "optional Int"

The constant somelInteger is assigned the integer value 42. somelInteger is also assigned
the type of Int?. The question mark indicates that it is an optional type, meaning that the
variable or constant’s value may be absent. See Listing 3-2.

http://dx.doi.org/10.1007/978-1-4842-3063-3_4
https://developer.apple.com/internationalization/

CHAPTER 3: It’s All About the Data 33

Listing 3-2. Unable to convert a string to an integer

1 let myString = "Hello World"
2 let someInteger = Int(myString)
3 // somelnteger's value is now absent

Line 2 in Listing 3-2 has a problem. It is not possible to convert “Hello World” from a String
to an Int. So, the value of someInteger is said to be absent or nil because on line 2,
somelInteger is inferred to be an optional Int.

Note Objective-C programmers may have used nil to return an object from a method, with

nil meaning “the absence of a valid object.” This works for objects but not well for structures,
basic C types, or enumeration values. Objective-C methods typically return a special value, like
NSNotFound, indicating the absence of a valid object. This assumes that the method’s caller
knows the special value to test against. Optionals indicate the absence of a value for any type at all,
without using special constants.

The Integer Int() initializer might fail to return a value, so the method returns an optional
Int, rather than an Int. Again, the question mark indicates that the value it contains is
optional, meaning that it might contain some Int value, or it may contain no value at all.
The value is either some Int or is nothing at all.

Swift’s nil is not the same as nil in Objective-C. With Objective-C, nil is a pointer to a
nonexistent object. In Swift, nil is not a pointer; it is the absence of a value. Optionals of
any type can be set to nil, not just object types.

In Chapter 4, you will learn how to “unwrap” optionals and check for the presence of a valid
object.

http://dx.doi.org/10.1007/978-1-4842-3063-3_4

34 CHAPTER 3: It’s All About the Data

Using Variables in Playgrounds

Now that you have learned about data types, let’s write your code in a playground that adds
two numbers and displays the sum.

1. Open Xcode and select “Get started with a playground,” as shown in
Figure 3-3.

Get started with a playground
| Explore new ideas quickly and easily.

Y Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.

] Clone an existing project
Start working on something from an SCM repository.

Figure 3-3. Creating a playground

2. Select a Blank iOS template and click Next, as shown in Figure 3-4.
Finally, name your playground DataTypes and click Create.

CHAPTER 3: It’s All About the Data

Choose a template for your new playground:

m tvOS macOS

Playground

3 3
(o] care

Cancel

Figure 3-4. Selecting a Blank iOS playground template

Map

S

Single View

3. When your playground is created, two lines of code are already
placed in your code for you, as shown in Figure 3-5.

@ @ Ready | Today at 11:48 AM

-7 « DataTypes

f/: Playground - noun: a place where people con play
import UIKit

var str = "Hello, playground®
&

E »

Figure 3-5. Two lines of code

Hello, playground

35

36 CHAPTER 3: It’s All About the Data

4. Add the code to this playground, as shown in Listing 3-3.

Listing 3-3. Playground adding

1 //: Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground"

var firstNumber = 2
var secondNumber = 3

W oo~NOUVI B~ WN

var totalSum = firstNumber + secondNumber

R
[N

12 firstNumber = firstNumber + 1

13 secondNumber = secondNumber + 1

14

15 totalSum = firstNumber + secondNumber
16

17

18 print("totalSum = \(totalSum)")

Your playground should look like Figure 3-6.

[® Ready | Today at 11:52 AM E D« NI | E Y |

« DataTypes

f/: Playground - noun: a place where pecple con play

var str = “"Hello, playground Hello, playground

var firstNumber = 2
var secondMumber = 3 3

var totalSum = firstN r + N I 5

int{"totalSum \totalSum)") totalSum = 7in

Figure 3-6. Playground displaying the results of your Swift code

One of the neat features of playgrounds is that as you type in your code, Swift executes the
line of code as you enter it so you can immediately view the results.

The // used in Swift programming enables programmers to make comments about their
code. Comments are not compiled by your applications and are used as notes for the
programmer or, more importantly, for programmers who follow the original developer.

CHAPTER 3: It’s All About the Data 37

Comments help both the original developer and later developers understand how the app
was developed.

Sometimes, it is necessary for comments to span several lines or just part of a line. This can
be accomplished with /* and */. All the text between /* and */ is treated as comments and
is not compiled.

print is a function that can take one parameter and print its contents.

Note If your editor doesn’t have the same menus or gutter (the left column that contains the line
numbers of the program) that you saw in the previous screenshots, you can turn these settings in
Xcode preferences. You can open Xcode preferences by clicking the Xcode menu in the menu bar
and then selecting Preferences. See Figure 3-7.

ey ”
Ll GlO2
s W

Editing Indentation

Show: § Line numbers

E—olumn:
Highlight instances of selected symbol

Delay: 0.25 . seconds

Code completion: 2 Suggest completions while typing
Use Escape key to show completion suggestions
Automatically insert closing braces (“}")
Enable type-over completions
Automatically balance brackets in Objective-C method calls
Enclose selection in matching delimiters

While editing: Automatically trim trailing whitespace
Including whitespace-only lines

Default text encoding: = Unicode (UTF-8) i

Default line endings: macOS / Unix (LF) H

Convert existing files on save

Code coverage: 4 Show iteration counts

Figure 3-7. Adding line numbers to the gutter

38 CHAPTER 3: It’s All About the Data

Summary

In this chapter, you learned how data is used by your apps. You saw how to initialize
variables and how to assign data to them. We explained that when variables are declared,
they have a data type associated with them and that only data of the same type can

be assigned to variables. The differences between variables and constants were also
discussed, and we also introduced optionals.

In the next chapter, we will be exploring how to use Boolean logic to control the flow of data
within your apps.

EXERCISES

Write code within a Swift playground that multiplies two integers and displays the result.
Write code within a Swift playground that squares a float. Display the resulting float.

Write code within a Swift playground that subtracts two floats, with the result being stored
as an integer. Note that rounding does not occur.

Chapter

Making Decisions, Program
Flow, and App Design

One of the great things about being an iOS developer is you get to tell your devices exactly
what you want them to do and they do it — your devices will do tasks over and over

again without getting tired. That’s because iOS devices don’t care how hard they worked
yesterday, and they don’t let feelings get in the way. These devices don’t need hugs.

There is a downside to being a developer: you have to think of all the possible outcomes
when it comes to your apps. Many developers love having this kind of control. They

enjoy focusing on the many details of their apps; however, it can be frustrating having to
handle so many details. As mentioned in the introduction to this book, there is a price to
pay for developing apps, and that price is time. The more time you spend developing and
debugging, the better you will get with all the details, and the better your apps will perform.
You have to pay this price to become a successful developer.

Computers are black and white; there are no shades of gray. Your devices produce results,
many of which are based on true and false conditions.

In this chapter, you learn about computer logic and controlling the flow of your apps.
Processing information and arriving at results are at the heart of all apps. Your apps need

to process data based on values and conditions. To do this, you need to understand how
computers perform logical operations and execute code based on the information your apps
have acquired.

Boolean Logic

Boolean logic is a system for logical operations. Boolean logic uses binary operators such
as AND and OR and the unary operator NOT to determine whether your conditions have been
met. Binary operators take two operands. Unary operators take one operand.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 39
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_4

https://doi.org/10.1007/978-1-4842-3063-3_4

40 CHAPTER 4: Making Decisions, Program Flow, and App Design

We just introduced a couple of new terms that can sound confusing; however, you probably
use Boolean logic every day. Let’s look at a couple of examples of Boolean logic with the
binary operators AND and OR in a conversation parents sometimes have with their teenage
children:

“You can go to the movies tonight if your room is clean AND the dishes are put away.”
“You can go to the movies tonight if your room is clean OR the dishes are put away.”

Boolean operators’ results are either TRUE or FALSE. In Chapter 3, we briefly introduced the
Boolean data type. A variable that is defined as Boolean can contain only the values TRUE
and FALSE.

var seeMovies: Bool = false

In the preceding example, the AND operator takes two operands: one to the left and one to
the right of the AND. Each operand can be evaluated independently with a TRUE or FALSE.

For an AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In the first
example, the teenager has to clean his or her room AND have the dishes done. If either one of
the conditions is FALSE, the result is FALSE — no movies for the teenager.

For an OR operation to yield a TRUE result, only one operand has to be TRUE, or both
conditions can be TRUE to yield a TRUE result. In the second example, just a clean bedroom
would result in the ability to go to the movies.

Note In Objective-C and other programming languages, Boolean variables can hold integer
variables; 0 represents FALSE, and any nonzero value represents TRUE. Swift’s strong type
checking doesn’t allow this. Boolean variables in Swift can be assigned only true or false.

A NOT statement is a unary operator. It takes just one operand to yield a Boolean result.
Here’s an example:

“You can NOT go to the movies.”

This example takes one operand. The NOT operator turns a TRUE operand to a FALSE and a
FALSE operand to a TRUE. Here, the result is a FALSE.

AND, OR, and NOT are three common Boolean operators. Occasionally, you need to use more
complex operators. XOR, NAND, and NOR are other common operations for iOS developers.

The Boolean operator XOR means exclusive-or. An easy way to remember how the XOR
operator works is the XOR operator will return a TRUE result if only one argument is TRUE,
not both.

Swift does not have the NAND and NOR operators built in, but just know that they simply
mean NOT AND and NOT OR, respectively. After evaluating the AND or OR arguments, simply
negate the result.

http://dx.doi.org/10.1007/978-1-4842-3063-3_3

CHAPTER 4: Making Decisions, Program Flow, and App Design a1

Truth Tables

You can use a tool to help you evaluate all the Boolean operators called a truth table, and it
is a mathematical table used in logic to evaluate Boolean operators. They are helpful when
trying to determine all the possibilities of a Boolean operator. Let’s look at some common
truth tables for AND, OR, NOT, XOR, NAND, and NOR.

In an AND truth table, there are four possible combinations of TRUE and FALSE.
& TRUE AND TRUE = TRUE
M TRUE AND FALSE = FALSE
M FALSE AND TRUE = FALSE
M FALSE AND FALSE = FALSE

Placing these combinations in a truth table results in Table 4-1.

Table 4-1. An AND Truth Table

A B AANDB
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

An AND truth table produces a TRUE result only if both of its operands are TRUE.

Table 4-2 illustrates an OR truth table and all possible operands.

Table 4-2. An OR Truth Table

A B AORB
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE

FALSE FALSE FALSE

42

CHAPTER 4: Making Decisions, Program Flow, and App Design

An OR truth table produces a TRUE result if one or both of its operands are TRUE.

Table 4-3 illustrates a NOT truth table and all possible operands.

Table 4-3. A NOT Truth Table

A NOTA
TRUE FALSE
FALSE TRUE

A NOT flips the bit or negates the original operand’s Boolean value.

Table 4-4 illustrates an XOR (or exclusive-or) truth table and all possible operands.

Table 4-4. An XOR Truth Table

A B AXORB
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

The operator XOR yields a TRUE result if only one of the operands is TRUE.

Table 4-5 illustrates a NAND truth table and all possible operands.

Table 4-5. A NAND Truth Table

A B ANAND B
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE TRUE

Table 4-6 illustrates a NOR truth table and all possible operands.

Table 4-6. A NOR Truth Table

A B ANORB
TRUE TRUE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE

CHAPTER 4: Making Decisions, Program Flow, and App Design 43

The easiest way to look at the NAND and NOR operators is to simply negate the results from
the AND and OR truth tables, respectively.

Comparison Operators

In software development, you can compare different data items using comparison
operators. These operators produce a logical TRUE or FALSE result. Table 4-7 shows the list
of comparison operators.

Table 4-7. Comparison Operators

Operator Definition

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Exactly equal to

= Not equal to

Note If you’re constantly forgetting which way the greater than and less than signs go, use a
crutch we learned in grade school: if the greater than and less than signs represent the mouth of an
alligator, the alligator always eats the bigger value. It may sound silly, but it works.

Designing Apps

Now that we’ve introduced Boolean logic and comparison operators, you can start
designing your apps. Sometimes it's important to express all or parts of your apps to others
without having to write the actual code.

Writing pseudocode helps a developer think out loud and brainstorm with other developers
regarding sections of code that are of concern. This helps to analyze problems and possible
solutions before coding begins.

Pseudocode

Pseudocode refers to writing code that is a high-level description of an algorithm you are
trying to solve. Pseudocode does not contain the necessary programming syntax for coding;
however, it does express the algorithm that is necessary to solve the problem at hand.

Pseudocode can be written by hand on paper (or a whiteboard) or typed on a computer.

44 CHAPTER 4: Making Decisions, Program Flow, and App Design

Using pseudocode, you can apply what you know about Boolean data types, truth tables,
and comparison operators. Refer to Listing 4-1 for some pseudocode examples.

Note Pseudocode is for expressing and teaching coding ideas. Pseudocode will not execute!

Listing 4-1. Pseudocode Examples Using Conditional Operators in if-then-else Code

X =75
y==6
isComplete = TRUE
if x <y
{
// in this example, x is less than 6
do stuff
}
else
{
do other stuff
}
if isComplete == TRUE
{
// in this example, isComplete is equal to TRUE
do stuff
}
else
{
do other stuff
}

// another way to check isComplete == TRUE
if isComplete

{
// in this example, isComplete is TRUE

do stuff
}

// two ways to check if a value is false
if isComplete == FALSE
{

}

else

{

do stuff

// in this example, isComplete is TRUE so the else block will be executed
do other stuff

CHAPTER 4: Making Decisions, Program Flow, and App Design 45

// another way to check isComplete == FALSE
if lisComplete

{
do stuff
}
else
{
// in this example, 1isComplete is TRUE so the else block will be executed
do other stuff
}

Note that ! switches the value of the Boolean it’s applied to, so using ! makes a TRUE value
into a FALSE and makes a FALSE value into a TRUE. This is the logical NOT operator in Swift.

Often, it is necessary to combine your comparison tests. A compound relationship test is
one or more simple relationship tests joined by either && or | | (two pipe characters).

&& and || are the logical AND and logical OR, respectively in Swift. The pseudocode in
Listing 4-2 illustrates logical AND and logical OR operators.

Listing 4-2. Using && and Il Logical Operators Pseudocode

X =75
y=©6
isComplete = TRUE

// using the logical AND

if x <y &% isComplete == TRUE

{
// in this example, x is less than 6 and isComplete == TRUE
do stuff

}

if x <y || isComplete == FALSE

// in this example, x is less than 6.

// Only one operand has to be TRUE for an OR to result in a TRUE.
// See Table 4-2 A OR Truth Table

do stuff

}

// another way to test for TRUE
if x <y &% isComplete

{

// in this example, x is less than 6 and isComplete == TRUE
do stuff

}

// another way to test for FALSE
if x <y && lisComplete

do stuff

46 CHAPTER 4: Making Decisions, Program Flow, and App Design

else

{
// isComplete == TRUE

do other stuff

Optionals and Forced Unwrapping

Chapter 3 introduced optionals. Optionals are variables that might not contain a value. Since
optionals may not contain a value, you need to check for that before you access them.

You start by using an if statement to determine whether the optional contains a value
by comparing the optional against nil. If the optional has a value, it is considered to be
“not equal to” nil, as shown in Listing 4-3.

Line 4 in Listing 4-3 checks to see whether the optional variable is not equal to nil. In this
example, the someInteger value is absent, and it is equal to nil, so line 8 code is executed.

Listing 4-3. Checking Whether an Optional Has a Value

var myString = "Hello world"

let someInteger = Int(myString)

// somelnteger's value is now absent

if someInteger != nil {

print("someInteger contains an integer value.")

else {
print("someInteger doesn't contain an integer value.")
}

W oo~NOUVT &~ WN -
-

Now that you have added a check to make sure your optional does or doesn’t contain

a value, you can access its value by adding an exclamation mark (!) to the end of the
optional’s name. The ! means you have checked to ensure the optional variable has a value
and use it. This is called forced unwrapping of the optional’s value. See Listing 4-4.

Listing 4-4. Forced Unwrapping

1 var myString = "42"

2 let someInteger = Int(myString)

3 // someInteger contains a value

4 if someInteger != nil {

5 print("someInteger contains a value. Here it is: \(someInteger!)")
6

7

8

9

else {
print("someInteger doesn't contain an integer value.")

}

Note Displaying the contents of a variable in a print function is done with \ ().

http://dx.doi.org/10.1007/978-1-4842-3063-3_3

CHAPTER 4: Making Decisions, Program Flow, and App Design 47

Optional Binding

You can find out whether an optional contains a value and, if so, assign a temporary
constant or variable to that value in a single action. (See Listing 4-5.) This is called optional
binding. Optional binding can be used with if and while statements to determine whether
an optional has a value and, if so, extract the value to a constant or variable.

Listing 4-5. Optional Binding Syntax to a Constant

1 let someOptional: String? = "hello world"

2 if let constantName = someOptional {

3 print("constantName contains a value, Here it is: \(constantName)")
4}

If you want to assign the optional to a variable so you can manipulate that variable, you can
assign the optional to a var, as shown in Listing 4-6.

Listing 4-6. Optional Binding Syntax to a Variable

1 let someOptional: String? = "hello world"

2 if var variableName = someOptional {

3 variableName += "!" // appends a "!" to the end of the String
4 print("variableName contains a value, Here it is: \(variableName)")

5

}

Notice in Listings 4-5 and 4-6 that you didn’t need to force unwrap anything using the !.
If the conversion was successful, the variable or constant was initialized with the value
contained within the optional, so the | was not necessary.

It may be confusing that the logical NOT and forced unwrapping operators both use the
! character. Just remember that the logical NOT operator is located before a variable or
constant, and the forced unwrapping operator is located after an optional constant or variable.

Implicitly Unwrapped Optionals

There are instances in your code when you know that an optional will always have a value. In
these instances, it can be useful to remove the need to check and unwrap an optional every time
it needs to be accessed. These kinds of optionals are called implicitly unwrapped optionals.

Because of the program’s structure, you know that the optional has a value, so you can
give permission for the optional to be safely unwrapped whenever it needs to be accessed.
The ! is not needed every time you use it; instead, you place an ! after the optional’s type
when you declare it. Listing 4-7 shows the comparison between an optional String and an
implicitly unwrapped optional String.

Listing 4-7. Comparison of an Optional String and an Implicitly Unwrapped Optional String

1 var optionalString: String? = "My optional string."

2 var forcedUnWrappedString: String = optionalString! // requires an !

3

4 var nextOptionalString: String! = "An implicitly unwrapped optional.”

5 var implicitUnwrappedString: String = nextOptionalString // no need for an !

438 CHAPTER 4: Making Decisions, Program Flow, and App Design

Flowcharting

After the design requirements discussed in previous chapters are finalized, you can create
pseudocode sections of your app to solve complex development issues. Flowcharting is

a common method of diagramming an algorithm. An algorithm is represented as different
types of boxes connected by lines and arrows. Developers often use flowcharting to express
code visually, as shown in Figure 4-1.

Process ﬁ Ir:)tli T:t ﬁ M

Process :> Disk :>

LA
~NJ

Process

Figure 4-1. Sample flowchart showing common figures and their associated names

Flowcharts should always have a start and a stop. Branches should never come to an
end without a stop. This helps developers make sure all of the branches in their code are
accounted for and that they cleanly stop execution.

Designing and Flowcharting an Example App

We have covered a lot of information about decision making and program flow. It’s time to
do what programmers do best: write apps!

CHAPTER 4: Making Decisions, Program Flow, and App Design 49

The app you have been assigned to write generates a random number between 0 and 100
and asks the user to guess the number. Users have to do this until the number is guessed.
When users guess the correct answer, they will be asked if they want to play again.

The App’s Design

Using your design requirements, you can make a flowchart for your app. See Figure 4-2.

>

getRandomNumber
roundRangomNumber
printRandomNumber

;i

AsK user o guess
number between
0-100

<<

b

Guess correct?

{L Yes

Display correct guess.
Ask user if they want
1o continue playing

Display guess
too high

Display guess
too low

Figure 4-2. Flowchart for guessing a random number app

ol
W.

50 CHAPTER 4: Making Decisions, Program Flow, and App Design

Reviewing Figure 4-2, you’ll notice that as you approach the end of a block of logic in
your flowchart, there are arrows that go back to a previous section and repeat that section
until some condition is met. This is called looping. It enables you to repeat sections of
programming logic — without having to rewrite those sections of code over — until a
condition is met.

Using Loops to Repeat Program Statements

A loop is a sequence of program statements that is specified once but can be repeated
several times in succession. A loop can repeat a specified number of times (count-controlled)
or until some condition (condition-controlled) occurs.

In this section, you’ll learn about count-controlled loops and condition-controlled loops.
You will also learn how to control your loops with Boolean logic.

Count-Controlled Loops

A count-controlled loop repeats a specified number of times. In Swift, this is a for-in loop.
A for-in loop iterates over sequences or collections of items, such as ranges of numbers,
items in an array, or characters in a string. See Listing 4-8.

Listing 4-8. A Count-Controlled Loop
for i in 0..<10 {

print("The index is: \(i)")
}

//....continue

The loop in Listing 4-8 will loop 10 times. The “half-open range operator” ..< returns a
sequence of values from the “lower bound” value 0 up to, but not including, the “upper
bound” value 10, resulting in values of i between 0 and 9.

Alternatively, Listing 4-9 prints the first 10 entries in the 10 times table by using the “closed
range operator” ... that returns a sequence of values from the lower bound value 1 up to and
including the upper bound value 10, resulting in values of i between 1 and 10.

Listing 4-9. A Count-Controller Loop Using the Closed-Range Operator

for i in 1...120 {
print("\(i) times 10 is \(i * 10)")

//....continue

Condition-Controlled Loops

Swift has the ability to repeat a loop until some condition changes. You may want to repeat
a section of your code until a false condition is reached with one of your variables. This type
of loop is called a while loop. A while loop is a control flow statement that repeats based
on a given Boolean condition. You can think of a while loop as a repeating if statement.
See Listing 4-10.

CHAPTER 4: Making Decisions, Program Flow, and App Design 51

Listing 4-10. A Swift while Loop Repeating

var isTrue = true
while isTrue {
// do something
isTrue = false // a condition occurs that sometimes sets isTrue to FALSE

}

//....continue

The while loop in Listing 4-10 first checks whether the variable isTrue is true — which it

is — so the {loop body} is entered where the code is executed. Eventually, some condition
is reached that causes isTrue to become false. After completing all the code in the loop
body, the condition (isTrue) is checked once more, and the loop is repeated. This process is
repeated until the variable isTrue is set to false.

Infinite Loops

An infinite loop repeats endlessly, either because of the loop not having a condition that
causes termination or because of the loop having a terminating condition that can never
be met.

Generally, infinite loops can cause apps to become unresponsive. They are the result of a
side effect of a bug in either the code or the logic.

Listing 4-11 is an example of an infinite loop caused by a terminating condition that can
never be met. The variable x will be checked with each iteration through the while loop
but will never be equal to 5. The variable x will always be an even number because it was
initialized to zero and incremented by two in the loop. This will cause the loop to repeat
endlessly. See Listing 4-12.

Listing 4-11. An Example of an Infinite Loop

var x = 0

while x =5 {
// do something
X =X+ 2

}

//....continue

Listing 4-12. An Example of an Infinite Loop Caused by a Terminating Condition That Can Never Be Met

while true {
// do something forever
}

//....continue

52 CHAPTER 4: Making Decisions, Program Flow, and App Design

Coding the Example App in Swift

Using your requirements and what you learned, try writing your random number generator in
Swift.

To program this app, you have to leave the playground and do this as a Mac Console app.
Unfortunately, at this time, a playground doesn’t enable you to interact with a running app,
so you can’t capture keyboard input.

Note You can download the complete random number generator app at
http://forum.xcelme.com. The code is the topic of Chapter 4.

Your Swift app will run from the command line because it asks the user to guess a random
number.

1. Open Xcode and select Create a new Xcode project. Choose the
Command Line Tool macOS project as seen in Figure 4-3 and
click Next.

Choose a template for your new project:

i0s watchOS tvOS m Cross-platform)

Application
: . . :-__ ‘
Cocoa App Game Command Line
Tool

Framework & Library

= i LN X @

Cocoa Framework Library Metal Library XPC Service Bundle
Other
= =
¢ = [@ ® @

AnnlaCariot Ao Asstmmnntar Ankine Foantanta Ankinn Fanaria Varanl Loanma Lok Oloes

Goncel hex]

Figure 4-3. Starting a new Command-Line Tool macOS project

http://forum.xcelme.com/
http://dx.doi.org/10.1007/978-1-4842-3063-3_4

CHAPTER 4: Making Decisions, Program Flow, and App Design

2. Call your project RandomNumber (see Figure 4-4). Ensure that
the Language drop-down is Swift and click Next. Save the project
anywhere you prefer on your hard drive and click Create.

Choose options for your new project:

Product Name: | RandomNumber
Team: The Zonie, LLC
Organization Name: The Zonie, LLC
Organization Identifier: com.thezonie
Bundle identifier: com.thezonie.RandomNumber

Language: Swift a

Cancel Previous ﬁ

Figure 4-4. Project options for RandomNumber

3. Open the main.swift file. Write the code in Listing 4-13.

Listing 4-13. Source Code for Your Random Number Generator App

W ooNOUVIL B~ WN K

[
[N

12
13
14
15
16
17

//

// main.swift
// RandomNumber
//

import Foundation

var randomNumber = 1

var continueGuessing = true
var keepPlaying = true

var input = ""

while keepPlaying {
randomNumber = Int(arc4random uniform(101)) //get a random number between 0-100
print("The random number to guess is: \(randomNumber)")
while continueGuessing {
print("Pick a number between 0 and 100.")

53

54 CHAPTER 4: Making Decisions, Program Flow, and App Design

18 input = NSString(data: FileHandle.standardInput.availableData, encoding:String.
Encoding.utf8.rawValue)! as String // get keyboard input

19 input = input.replacingOccurrences(of: "\n", with: "", options: NSString.
CompareOptions.literal, range: nil) // strip off the \n

20 if let userGuess = Int(input) {

21 if userGuess == randomNumber {

22 continueGuessing = false

23 print("Correct number!")

24 }

25 //nested if statement

26 else if userGuess > randomNumber {

27 // user guessed too high

28 print("Your guess is too high!")

29 }

30 else{

31 // no reason to check if userGuess < randomNumber. It has to be.

32 print("Your guess is too low!")

33 }

34 } else {

35 print("Invalid guess, please try again.")

36 }

37 }

38 print ("Play Again? Y or N")

39 input = NSString(data: FileHandle.standardInput.availableData, encoding:String.
Encoding.utf8.rawValue)! as String

40 input = input.replacingOccurrences(of: "\n", with:
CompareOptions.literal, range: nil)

, options: NSString.

41
42 if input == "N" || input == "n" {
43 keepPlaying = false

44 }

45 continueGuessing = true

46 }

In Listing 4-13, there is new code that we haven’t discussed before. The first new line of
code (line 14) is as follows:

randomNumber = Int(arc4random_uniform(101))

This line will produce a random number between 0 and 100. arc4random_uniform()is a
function that returns a random number.

The next line of new code is on line 18:

18 input = NSString(data: FileHandle.standardInput.availableData, encoding:String.
Encoding.utf8.rawValue)! as String // get keyboard input

This enables you to get keyboard input for the user. We will talk about this syntax in later
chapters.

CHAPTER 4: Making Decisions, Program Flow, and App Design 55

The next new line of code is on line 20:
if let userGuess = Int(input)

Int takes a string initializer and converts it to an integer.

Nested if Statements and else if Statements

Sometimes, it is necessary to nest if statements. This means that you need to have if
statements nested inside an existing if statement. Additionally, it is sometimes necessary to
have a comparison as the first step in the else section of the if statement. This is called an
else if statement (recall line 26 in Listing 4-13).

else if userGuess > randomNumber

Removing Extra Characters
Line 19 in Listing 4-13 is as follows:

input = input.replacingOccurrences(of: "\n", with:
literal, range: nil) // strip off the \n

, options: NSString.CompareOptions.

Reading keyboard input can be difficult. In this case, it leaves a remnant at the end of your
string, \n, and you need to remove it. This is a newline character that is generated when the
users press the Return key on their keyboards.

Improving the Code Through Refactoring

Often, after you get your code to work, you examine the code and find more efficient ways
to write it. The process of rewriting your code to make it more efficient, maintainable, and
readable is called code refactoring.

As you review your code in Swift, you will often notice that you can eliminate some
unnecessary code.

Note As developers, we have found that the best line of code is the line that you don’t have to
write—Iless code means less to debug and maintain.

56 CHAPTER 4: Making Decisions, Program Flow, and App Design

Running the App

To run your app, click the Play button at the top left of your screen in your Swift project.
See Figure 4-5.

£’

/f main.swift
/! RandomMumber
1

import Foundation

var randosMNusber = 1

var continueGuessing = true
var keepPlaying = true

var input = **

1 while keepPlaying {

r rber = Int(arc4random_uniform(1€1)) //get a random number between 8-108
"The random number to guess is: \([randomNumbex)")
inueGuessing {
"Pick a number between @ and 108.")
ing(data: FileHandle.standardInput.availableData, encoding:Strin
rences(of: *\n®", with: ", options: NSString.Comp

Encoding.utf8.rawValue)! as String // get keyboard input
ns,literal, renge: nil) // strip off the \n

= input.replaci
if let userGuess = In
if userBuess == 1
continueGuessing = false
print{"Correct number!")
}
//nested if statement
else if userGuess > randombumber {
/7 user guessed too high
print{*Your guess is too high!®)

}
else{
/7 no reason to check if userBuess < randorMumber. It has to be.
print{"Your guess is too low!®)
¥
} else {

print(*"Invalid guess, please try again.”)

print {"Play Again? Y or N"]
input = N3String(deta: FileHandle.standardInput.availableData, encoding:
input = input.replacingOccurrences(of: *\n", with: "*, options: NSStr

ring.Encoding.utfB.rawValue)! as String

ompareOptions.literal, range: nil)

if input we *N" || input w= "n® {

keepPlaying = false
}
continueBuessing = true
E w» [o L 1|0 3o < | M -RandomNumber

The randos number to guess is: 12
Pick @ nusber between @ and 10@.
ie

Your guess is too low!

Pick @ nusber between @ and 1088.
20

Your guess is too high!

Pick @ nusber between @ and 108.
12

Correct number!

Play Again? ¥ or N

Figure 4-5. The console output of the Swift random number generator app

Note If you're not seeing the output console when you run your app, make sure you have selected
the same options at the top-right and bottom-right corners of the editor (choose View » Debug Area
» Activate Console).

CHAPTER 4: Making Decisions, Program Flow, and App Design 57

Design Requirements

As discussed in Chapter 1, the most expensive process in the software development life
cycle is writing code. The least expensive process in the software development life cycle
is gathering the requirements for your application; yet, this latter process is the most
overlooked and least used in software development.

Design requirements usually begin by asking clients, customers, and/or stakeholders how
the application should work and what problems it should solve.

With respect to apps, requirements can include long or short narrative descriptions, screen
mock-ups, and formulas. It is far easier to open your word processor and change the
requirements and screen mock-ups before coding begins than it is to modify an iOS app.
The following is the design requirement for one view of an iPhone mobile banking app:

View: Accounts view.

Description: Displays the list of accounts the user has. The list of
accounts will be in the following sections: Business Accounts, Personal
Accounts and Car Loans, IRA, and Home Equity Loans.

Cells: Each cell will contain the account name, the last four digits of the
account, the available balance, and the present balance.

A picture is worth a thousand words. Screen mock-ups are helpful to developers and users
because they can show how the views will look when they are completed. There are many
tools that can quickly design mock-ups; one of these tools is OmniGraffle. See Figure 4-6 for
an example of a screen mock-up used for design requirements generated by OmniGraffle.

http://dx.doi.org/10.1007/978-1-4842-3063-3_1

58 CHAPTER 4: Making Decisions, Program Flow, and App Design

55 canvases Il = ! . ; 2 N I (&
H I T To T 2 3 T Ts Te 17 Te
=
> b pa
Account Pa,
Canvas 14 .
E TH
Z» page 14 3
i cowtents |i=|'Z i
v 5
& Layer 1 *5a ngs (xx1772)
[Adjustable Arrow vailable Balance s123421)
(= resent Balance §2123.22
ol Group o Business Checking (xx4327)
=10 Group Available Balance s20022)
= Present Balance $4201.35 IRA (xx177)
of Group Available Balance s123421)
aﬂ Group : Business Savings (xx1234) Prosant Balence e
= Available Balance $123421)
ol Group = Presant Balance 5212322 et SO EEN)
. Outstanding Principla $12341
A Text: Personal Accounts - Next Payment Amount s2123.22
=0 Grou Personal Accounts Due Date 08/17/2009 }
2 f+] Last Pay Amount 545299
50 Group b Checking (xx3423) / Last Pay Date 07772009
> Available Balance s2100.22/
B Rectangle Presant Balance $4201.36
A Text: Modified by: Gary B -
A Text: Wed Jul 14 2010 Home Locations Comtact Us FAQ Log Out
g jome Locations Contact Us og Ou Home Equity Loan (xx7672)
A Text: Page 14 of 23 ~ Outstanding Principie $12,34.21
“ I [Next Payment Amaount 52123 22
‘f Text: Business Accounts : Due Dato Pl)
6D Group Last Pay Amount £452.99
Last Pay Date 07TN7rR009
B Rectangle

A Text: Native

A Text: Account Page
Rectangle

g’ﬂ Group

=y

Madified by: Gary Bennett

Native

Page 14 of 23

Wed Jul 14 2010

Figure 4-6. Screen mock-up for a mobile banking app using OmniGraffle and the Ultimate iPhone Stencil plug-in. This
mock-up was done for the original Woodforest Banking app in 2010.

Many developers believe that design requirements take too long and are unnecessary. This is
not the case. There is a lot of information presented on the Accounts screen in Figure 4-6. Many
business rules can determine how information is displayed to the users, along with all of the
error handling when things go bad. When designing your app, working with all the business

stakeholders at the beginning of the development process is critical to getting it right the

first time.

Figure 4-7 is an example of all stakeholders being involved in your app’s development.
Having all stakeholders involved in every view from the beginning will eliminate multiple

rewrites and application bugs.

CHAPTER 4: Making Decisions, Program Flow, and App Design

App Store » Finance » Woodiorest Financial Group

Woodforest Mobile Banking (-

Weodforest Financial Group »

Details | Ratings and Reviews Related

iPhone Screenshots

WOODFOREST

Checking (..1175) Froem: Chacking (. 1175) « Make a Doposit
€ Accounts | Cursnt Baance: $0,10320
Rating: 4+ Auwaidasie Balance: $9,103.29 ™ Chacking L 3859) & Deposit History
5 T Checking {...3859)
v % by o Tranetor Amaunt: £200.00
¥4 Pay Bilis Batance: $2187
Privacy Polkcy Mame: Weokly Bavings
Developer Wabsite i Mabilo Deposit | Checking (..4982)
Current Baance 3174 Transter By: Febnaary 13, 2014
'y ations. Avadabie Balance: $11T4
© Woodlorest National Bank 2013 = Oeeurs: Woekyy
hecking (..5884)
= GfCards Cursuni Baiance 7870078 Mumber Of Timas:
Auakable Balance: STRSEATY
(L Contact Us
Joings (A11Y - “
Froquently Askad Questions Current Dafance: 5108
L7 Y | Awaiaclo Baonce: 5108
£ 2014 Woodiorest National Bask I 1
Member FOIC
.1 $ 5 [= L] $ s B = 1] 3 s [= 1] 3 s a

m cogon [l < Tansters Log ot Mobio Deposit
4{ Checking & Savings Scheduls Account Transter Chaoose an Option

Figure 4-7. Woodforest Mobile Banking app as it appeared on the App Store in 2015; compare this with the app
requirements Accounts screen in Figure 4-6

Additionally, Apple recommends that developers spend at least 50 percent of their
development time on the user interface’s design and development.

Balsamiq also has great tools for laying out your iOS app’s look. See Figure 4-8.

60 CHAPTER 4: Making Decisions, Program Flow, and App Design

Unleash Your Creativity!

Balsamig Mockups is a rapid wireframing tool that
helps you Work Faster & Smarter. It reproduces
the experience of sketching on a whiteboard, but
using a computer.

Making mockups is fast. You'll generate more
ideas, so you can throw out the bad ones and
discover the best solutions.

Quick Add User Interface Library
Build a user interface at the Tons of Ul elements. Just
speed of thought. drag and drop!

Get Honest Feedback

Improve your designs by getting immediate and
meaningful feedback. Sketch-style wireframes
help focus the conversation on content and
interaction, not minute details (those can come
later).

Sketch-Style Controls Clean Wireframes Option
They look like sketches on Need to present your
purpose! It encourages work? Switch to the clean
brainstorming. wireframe skin!

Figure 4-8. Balsamiq.com web site for creating wireframe mock-ups

Summary

This chapter covered a lot of important information on how to control your applications;
program flow and decision-making are essential to every iOS app. Make sure you have
completed the Swift example in this chapter. You might review these examples and think you
understand everything without having to write this app. This will be a fatal mistake that will
prevent you from becoming a successful iOS developer. You must spend time coding this
example. Developers learn by doing, not by reading.

The terms in this chapter are important. You should be able to describe the following:

AND
OR
XOR
NAND

CHAPTER 4: Making Decisions, Program Flow, and App Design

NOR

NOT

Truth tables

Negation

All comparison operators
Application requirement
Logical AND (88)

Logical OR (| |)

Optionals and forced unwrapping
Optional binding

Implicitly unwrapped optionals
Flowchart

Loop

Count-controlled loops

For loop

Condition-controlled loops
Infinite loops

While loops

Nested if statements

Code refactoring

61

EXERCISES

Extend the random number generator app to print to the console how many times the user
guessed before guessing the correct random number.

Extend the random number generator app to print to the console how many times the user
played the app. Print this value to the console when the user quits the app.

Chapter

Object-Oriented Programming
with Swift

Over the past 16 years, the programming world focused on the development paradigm
of object-oriented programming (OOP). Most modern development environments and
languages implement OOP. Put simply, OOP forms the basis of everything you develop
today.

You may be asking yourself why we waited until Chapter 5 to present OOP using Swift if it is
the primary development style of today. The simple answer is that it is not an easy concept
for new developers. This chapter will go into detail about the different aspects of OOP and
how they affect your development.

Implementing OOP into your applications correctly will take some front-end planning, but
you will save yourself a lot of time throughout the life of your projects. OOP has changed
the way development is done. In this chapter, you will learn what OOP is. OOP was initially
discussed in the first chapter of this book, but this chapter will go into more detail about

it. You will revisit what objects are and how they relate to physical objects you find in the
world. You will look into what classes are and how they relate to objects. You will also learn
the steps you need to take when planning your classes and some visual tools you can use
to accomplish these steps. When you have read this chapter and have worked through the
exercises, you will have a better understanding of what OOP is and why it is necessary for
you as a developer.

At first, objects and object-oriented programming may seem difficult to understand, but the
hope is that as you progress through this chapter, they will begin to make sense.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 63
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_5

https://doi.org/10.1007/978-1-4842-3063-3_5
http://dx.doi.org/10.1007/978-1-4842-3063-3_5

64 CHAPTER 5: Object-Oriented Programming with Swift

The Object

As discussed in Chapter 1, OOP is based on objects. Some of the discussion about objects
will be a review, but it will also go into more depth. An object is anything that can be acted
upon. To better understand what a programming object is, you will first look at some items
in the physical world around you. A physical object can be anything around you that you
can touch or feel. Take, for example, a television. Some characteristics of a television
include type (plasma, LCD, or CRT), size (40 inches), brand (Sony or Vizio), weight, and cost.
Televisions also have functions. They can be turned on or off. You can change the channel,
adjust the volume, and change the brightness.

Some of these characteristics and functions are unique to televisions, and some are not.

For example, a couch in your house would probably not have the same characteristics as

a television. You would want different information about a couch, such as material type,
seating capability, and color. A couch might have only a few functions, such as converting to
a bed or reclining.

Now let’s talk specifically about objects as they relate to programming. An object is a
specific item. It can describe something physical like a book, or it could be something such
as a window for your application. Objects have properties and methods. Properties describe
certain things about an object such as location, color, or name. Conversely, methods
describe actions the object can perform such as close or recalculate. In this example, a

TV object would have type, size, and brand properties, while a Couch object would have
properties such as color, material, and comfort level. In programming terms, a property
is a variable that is part of an object. For example, a TV would use a string variable to store
the brand and an integer to store the height.

Objects also have commands the programmer can use to control them. The commands are
called methods. Methods are the way that other objects interact with a certain object. For
example, with the television, a method would be any of the buttons on the remote control.
Each of those buttons represents a way you can interact with your television. Methods can
and often are used to change the values of properties, but methods do not store any values
themselves.

As described in Chapter 1, objects have a state, which is basically a snapshot of an object at
any given point in time. A state would be the values of all the properties at a specific time.

In Chapter 8, you will create a bookstore app. A bookstore contains many different objects.
It contains book objects that have properties such as title, author, page count, and
publisher. It also contains magazines with properties such as title, issue, genre, and
publisher. A bookstore also has some nontangible objects such as a sale. A sale object
would contain information about the books purchased, the customer, the amount paid, and
the payment type. A sale object might also have some methods that calculate tax, print the
receipt, or void the sale. A sale object does not represent a tangible object, but it is still an
object and is necessary for creating an effective bookstore.

Because the object is the basis of OOP, it is important to understand objects and how to
interact with them. You will spend the rest of the chapter learning about objects and some of
their characteristics.

http://dx.doi.org/10.1007/978-1-4842-3063-3_1
http://dx.doi.org/10.1007/978-1-4842-3063-3_1
http://dx.doi.org/10.1007/978-1-4842-3063-3_8

CHAPTER 5: Object-Oriented Programming with Swift 65

What Is a Class?

We cannot discuss OOP without discussing what a class is. A class defines which properties
and methods an object will have. A class is basically a cookie cutter that can be used to
create objects that have similar characteristics. All objects of a certain class will have the
same properties (notice, the values of the properties many times will be different) and the
same methods. The values of those properties will change from object to object.

A class is similar to a species in the animal world. A species is not an individual animal, but
it does describe many similar characteristics of the animal. To understand classes more,
let’s look at an example of classes in nature. The Dog class has many properties that all dogs
have in common. For example, a dog may have a name, an age, an owner, a weight and a
favorite activity. An object that is of a certain class is called an instance of that class. If you
look at Figure 5-1, you can see the difference between the class and the actual objects that
are instances of the class. For example, Lassie is an instance of the Dog class. In Figure 5-1,
you can see a Dog class that has four properties (Breed, Age, Owner, and Favorite Activity).
In real life, a dog will have many more properties, but these four are for this demonstration.

Objects

Lassie

Class

Breed: Collie
Age:5

Dog

Breed
Age

Owner: Jeff
Favorite Activity: Helping People

Spot

Breed: Dalmation
Age: 2

Owner em - > Owner: Fire Department
Favorite Activity N Favorite Activity: Riding in a truck

N Scooby Doo
~ Breed: Great Dane
2 Age: 10
Owner: Shaggy
Favorite Activity: Eating Scooby Snack

Figure 5-1. An example of a class and its individual objects

Planning Classes

Planning your classes is one of the most important steps in your development process.
While it is possible to go back and add properties and methods after the fact (and you will
definitely need to do this), it is important that you know which classes are going to be used
in your application and which basic properties and methods they will have. Spending time
planning your different classes is important at the beginning of the process.

66 CHAPTER 5: Object-Oriented Programming with Swift

Planning Properties

Let’s look at the bookstore example and some of the classes you need to create. First, it

is important to create a Bookstore class. A Bookstore class contains the blueprint of the
information each Bookstore object stores, such as the bookstore’s name, address, phone
number, and logo (see Figure 5-2). Placing this information in a class rather than hard-
coding it in your application will allow you to easily make changes to this information in the
future. You will learn the reasons for using OOP methodologies later in this chapter. Also, if
your bookstore becomes a huge success and you decide to open another one, you will be
prepared because you can create another object of class Bookstore.

Bookstore
Name
Address1
Address2
City
State
Zip
Phone Number
Logo

Figure 5-2. The Bookstore class

Let’s also plan a Customer class (see Figure 5-3). Notice how the name has been broken into
First Name and Last Name. There will be times in your project when you may want to use
only the first name of a customer, and it would be hard to separate the first name from the
last if you didn’t plan ahead. Let’s say you want to send a letter to a customer letting them
know about an upcoming sale. You do not want your greeting to say, “Dear John Doe.” It
would look much more personal to say, “Dear John.”

| Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre

Figure 5-3. The Customer class

CHAPTER 5: Object-Oriented Programming with Swift 67

You will also notice how the address is broken into its different parts instead of grouping it
all together. The Address Line 1, Address Line 2, City, State, and Zip are separate. This is
important and will be used in your application. Let’s go back to the letter you want to send
to customers about an upcoming sale.

You might not want to send it to all of the customers who live in different states. By
separating the addresses, you can easily filter out those customers you do not want to
include in your mailings.

We have also added the attribute of Favorite Book Genre to the Customer class. We added
this to show you how you can keep many different types of information in each class. This
field may come in handy if you have a new mystery title coming out and you want to send an
e-mail alerting customers who are especially interested in mysteries. By storing this type of
information, you will be able to specifically target different portions of your customer base.

A Book class is also necessary to create the bookstore (see Figure 5-4). You will store
information about the book such as author, publisher, genre, page count, and edition humber
(in case there are multiple editions). The Book class will also have the price for the book.

Book

Author

Publisher

Genre

Year Published
Number of Pages
Edition

Price

Figure 5-4. The Book class

You can add another class called Sale (see Figure 5-5). This class is more abstract than
the other classes discussed because it does not describe a tangible object. You will notice
how we have added a reference to a customer and a book to the Sale class. Because the
Sale class will track sales of books, you need to know which book was sold and to which
customer.

Sale
Customer
Book
Date
Time
Amount
Payment Type

Figure 5-5. The Sale class

68 CHAPTER 5: Object-Oriented Programming with Swift

Now that you know the properties of the classes, you need to look at some methods that
each of the classes will have.

Planning Methods

You will not add all of the methods now, but the more planning you can do at the beginning,
the easier it will be for you later. Not all of your classes will have many methods. Some may
not have any methods at all.

Note When planning your methods, remember to have them focus on a specific task. The more
specific the method, the more likely it is that it can be reused.

For the time being, you will not add any methods to the Book class or the Bookstore class.
You will focus on your other two classes.

For the Customer class, you will add methods to list the purchase history of that client. There
may be other methods that you will need to add in the future, but you will add just that one
for now. Your completed Customer class diagram should look like Figure 5-6. The line near
the bottom separates the properties from the methods.

| Customer
First Name

Last Name

Address Line 1
Address Line 2

City

State

Zip

Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-6. The completed Customer class

For the Sale class, we have added three methods. We added Charge Credit Card, Print
Invoice, and Checkout (see Figure 5-7). For the time being, you do not need to know how to
implement these methods, but you need to know that you are planning on adding them to
your class.

CHAPTER 5: Object-Oriented Programming with Swift 69

Sale
Customer
Book
Date
Time
Amount
Payment Type
Charge Credit Card
Print Invoice
Checkout

Figure 5-7. The completed Sale class

Now that you have finished mapping out the classes and the methods you are going to add
to them, you have the beginnings of a Unified Modeling Language (UML) diagram. Basically,
this is a diagram used by developers to plan their classes, properties, and methods. Starting
your development process by creating such a diagram will help you significantly in the

long run. An in-depth discussion of UML diagrams is beyond the scope of this book. If you
would like more information about this subject, smartdraw.com has a great in-depth overview
of them; see http://www.smartdraw.com/uml-diagram/. Omnigroup (www.omnigroup.com)
provides a great UML diagram program for macOS called Omnigraffle.

Figure 5-8 shows the complete diagram.

Bookstore Sale
Name Customer
Address1 Book
Address2 Date
City Time
State Amount
Zip Payment Type
Phone Number Charge Credit Card
Logo Print Invoice

Checkout
Book Customer
Author First Name
Publisher Last Name
Genre Address Line 1
Year Published Address Line 2
Number of Pages City
Edition State
Price Zip
e —" Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-8. The completed UML diagram for the bookstore

http://www.smartdraw.com/uml-diagram/
http://www.omnigroup.com/

70 CHAPTER 5: Object-Oriented Programming with Swift

Implementing the Classes

Now that you understand the objects you are going to be creating, you need to create your

first object. To do so, you will start with a new project.
1. Launch Xcode. Select File » New » Project.

2. Select iOS on the top menu. On the right side, select Master-Detall
Application. For what you are doing in this chapter, you could have
selected any of the application types (see Figure 5-9). Click Next.

Choose a template for your new project:
m watchOS tvOS macOS Cross-platform ®
Application

1 ¥ (=

| &b

Single View App Game Augmented Document Based Master-Detail App

Reality App App
' 0o (N |
e00 Sk ee og _ . ,_.)
Page-Based App Tabbed App Sticker Pack App iMessage App
Framework & Library
= 1 N\
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel

Figure 5-9. Creating a new project

3. Enter a product name for your project. We will use the name
of BookStore. You will also have to enter a company name
and a company identifier. The company identifier is usually
com.companyname (i.e., com.inno). Leave the check boxes on this
screen as they appear by default. You will not be worrying about
Core Data right now; it’s discussed in Chapter 11. Also, leave
the current language selection set to Swift. Click Next to select a
location to save your project and then save your project.

http://dx.doi.org/10.1007/978-1-4842-3063-3_11

CHAPTER 5: Object-Oriented Programming with Swift Al

4. Select the BookStore folder from the Project navigator on the left side
of the screen (see Figure 5-10). This is where the majority of your
code will reside.

[] e » ¥ BosiSton |) IPhore 7 Plus BookStore: Ready | Today at 3118 PM NE 4 | =]
DER QA Ec @ F < B Becksion BockSione Assetsxcassets | No Selection s
v B BooiSicre Appicon tdentity and Tyss
Hame | BosikSters
+ AppDelegate swift

Location | Relating to Grou
2 Mot > 8
e = BeckSicre -
tailViewControlor swil Ful Path [UsersBeadiensDropbos
Main.storysomd Apress Swilt &/Coce|
P p— Chapter 6/BookStor/
[
LaunchScreen storyboard
Info gt Tast Battings
> [Produets Insent Using | Spaces B
Wit alz 4z
T Inzent
18 Wrap lives
Dioeo

Wiew Controlier - & contrate: that

Figure 5-10. Selecting the BookStore project

5. Select File » New » File.

6. From the pop-up window, make sure iOS is selected at the top and
then click the Cocoa Touch Class on the bottom (see Figure 5-11).
Then click Next.

72 CHAPTER 5: Object-Oriented Programming with Swift

Choose a template for your new file:

watchOS tvOS macOS

Source

Cocoa Touch Ul Test Case
Class Class

Unit Test Case

S

Swift File

Objective-C File

Class
h C Cre N
Header File C File C++ File Metal File
User Interface
Storyboard View Empty Launch Screen
Cancel Next]

Figure 5-11. Creating a new Swift class file

CHAPTER 5: Object-Oriented Programming with Swift

Choose options for your new file:

Class: Customer

Subclass of: NSObject ﬁ
Language: Swift H
Cancel Previous W

Figure 5-12. Creating the file

7. You will now be given the opportunity to name your class
(see Figure 5-12). For this exercise, you will create the Customer
class. Again, make sure the Language is set to Swift. Click Next
and save the file in the default location.

Note For ease of use and for understanding your code, remember that class names should
always be capitalized in Swift. Object names should always start lowercase. For example, Book
would be an appropriate name for a class, and book would be a great name for an object based on
the Book class. For a two-word object, such as the book’s author, an appropriate name would be
bookAuthor. This type of capitalization is called lower camel case.

8. Now look in your main project folder; you should have a new file. It is
called Customer.swift.

Note If you had created a class in Objective-C, Customer.h and Customer.m files would have
been created. The . h file is the header file that contains information about your class. The header
file lists all of the properties and methods in your class, but it does actually contain the code related
to them. The . m file is the implementation file, which is where you write the code for your methods.
In Swift, the entire class is contained in a single file.

73

74 CHAPTER 5: Object-Oriented Programming with Swift

9. The Customer.swift file should now be selected, and you will see
the window shown in Figure 5-13. Notice it does not contain a
lot of information currently. The first part, with the double slashes
(/7), consists of comments and is not considered part of the code.
Comments allow you to tell those who might read your code what
each portion of code is meant to accomplish. The second part of
the file is your new Customer class. The new class declaration is as
follows:

class Customer: NSObject {

Note In Swift, a class does not need to be in its own file. Many classes can be defined in a single
Swift file, but this can be difficult to maintain when your project contains a lot of classes. It is
usually cleaner and more organized to have a separate file for each class.

B 2 Q AN © = o 88 < & Bookstore | BookStore)) Customer.swift) [&] Customer

v 5 BookStore 1/

¥ | | BookStore // Customer.swift

// BookStore

S AppDelegate.swift L
MasterViewController.swift 5 // Created by Thorn on 7/15/17.
s DetailViewController.swift 6 f/ Copyright @ 2017 Innovativeware. All rights reserved.

Main.storyboard "

9 Assets.xcassets import UIKit
LaunchScreen.storyboard
Info.plist 11 class Customer: NSObject {
8 customer.swift 1

> Products

}

Figure 5-13. Your empty Customer class

Now let’s transfer the properties from the UML diagram to the actual class.

Tip Properties should always start with a lowercase letter. There can be no spaces in a
property name.

CHAPTER 5: Object-Oriented Programming with Swift 75

For the first property, First Name, add this line to your file:

var firstName =

This creates an object in your class called firstName. Notice you did not tell Swift what type
of property firstName is. In Swift, you can declare a property and not specify the type, and a
property can be assigned a type based on the value we initially assign it. By giving the
property an initial value of "", you tell the Swift compiler to make firstName a String. In
Swift, all non-optional properties require a default value either when they are declared or in
the class initializer. We will discuss optionals later in this book.

Note In Objective-C, all properties are required to declare a type. For example, to create the same
firstName property, you would use the following code:

NSString *firstName;

This declares an NSString with the name firstName. In Swift, you can declare only a variable
and allow the system to determine the type.

Since all of the properties will be vars, you just need to repeat the same procedure for the
other ones. When that is complete, your Swift file should look like Figure 5-14.

76 CHAPTER 5: Object-Oriented Programming with Swift

//
2 // Customer.swift
3 // BookStore
4o /]
5 // Created by Thorn on 7/15/17.
6 // Copyright @ 2017 Innovativeware. All rights reserved.
7 /1

9 import UIKit

11 class Customer: NSObject {
2 var firstName = ""

13 var lastName = ""
14 var addressLinel

15 var addressLine2 = ""
16 var city = ""

17 var state = ""

18 var zip = ""

19 var phoneNumber = ""
20 var emailAddress = ""
21 var favoriteGenre = ""
25}

2 |

Figure 5-14. The Customer class interface with properties

Now that the class declaration is complete, you will need to add your method. Methods
should be contained in the same class file and location as the properties. You will add a new
method that returns an array. This code will look as follows:

func listPurchaseHistory() -> [String] {

return ["Purchase 1", "Purchase 2"]

}

This code might seem a little confusing. The empty parentheses tell the compiler that no
parameters are passed to the method. The -> tells the system what you return from your
method. [String] tells you that you are returning an array of strings. In the final version, you
will actually want to return purchase (or whatever you chose to you’re your purchase class)
objects, but you are using String for now. This code will not yet compile because you do not

CHAPTER 5: Object-Oriented Programming with Swift 77

return an array, so you added a return of a simple array. That is all that needs to be done in
the Swift file to create the class. Figure 5-15 shows the final Swift file.

BE R AaMO & o B B8 < & BookStore BookStore) B © .swift) No Selecti
¥ & BookStore i
¥ | BookStore /{ Customer,swift

// BookStore

«

AppDelegate_swift

MasterViewController.swift // Created by Thorn on 7/15/17.
DetailViewController.swift 5 // Copyright ® 2017 Innovativeware. All rights reserved.

™

i

Main.storyboard

9 Assets.xcassets import UIKit

LaunchScreen.storyboard

Info.plist 1 class Customer: NSObject {
var firstName = "

var lastMName = ""
var addressLinel
var addressLine2
var city = **

var state = ""
var zip = "

var phoneNumber = "
var emailAddress = "
var favoriteGenre = ""

B customer.swift
» [Products

L]

func listPurchaseHistory() -> [Stringl {

return [“Purchase 1", “Purchase 2"]

W

Figure 5-15. The finished Customer class Swift file

Inheritance

Another major quality of OOP is inheritance. Inheritance in programming is similar to genetic
inheritance. You might have inherited your eye color from your mother or hair color from your
father, or vice versa. Classes can, in a similar way, inherit properties and methods from their

parent classes, but unlike genetics, you do not inherit the values of those properties. In OOP,
a parent class is called a superclass, and a child class is called a subclass.

Note In Swift, there is no superclass unless specifically stated. In the example in this chapter, we
used NSObject as the superclass.

You could, for example, create a class of printed materials and use subclasses for books,
magazines, and newspapers. Printed materials can have many things in common, so you
could define properties in the superclass of printed materials and not have to redundantly
define them in each individual class. By doing this, you further reduce the amount of
redundant code that is necessary for you to write and debug.

78 CHAPTER 5: Object-Oriented Programming with Swift

In Figure 5-16, you will see a layout for the properties of a Printed Material superclass and
how that will affect the subclasses of Book, Magazine, and Newspaper. The properties of the
Printed Material class will be inherited by the subclasses, so there is no need to define
them explicitly in the class. You will notice that the Book class now has significantly fewer
properties. By using a superclass, you will significantly reduce the amount of redundant
code in your programs.

Book
Author
Genre
Edition
[Printed Material |

Title

Publish Date 5 SUM:Q“'“

Page Count Genre

Price

Publisher

Newspaper

Date

Figure 5-16. Properties of the super- and subclasses

Why Use 00P?

Throughout this chapter, we have discussed what OOP is and have even discussed how
to create classes and objects. However, it’s also important to discuss why you want to use
OORP principles in your development.

If you take a look at the popular programming languages of the day, all of them use the
OORP principles to a certain extent. Swift, Objective-C, C++, Visual Basic, C#, and Java all
require the programmer to understand classes and objects to successfully develop in those
languages. In order to become a developer in today’s world, you need to understand OOP.
But why use it?

OOP Is Everywhere

Just about any development you choose to do today will require you to understand object-
oriented principles. On macOS and in iOS, everything you interact with will be an object. For
example, simple windows, buttons, and text boxes are all objects and have properties and
methods. If you want to be a successful programmer, you need to understand OOP.

Eliminate Redundant Code

By using objects, you can reduce the amount of code you have to retype. If you write code
to print a receipt when a customer checks out, you will want that same code available
when you need to reprint a receipt. If you placed your code to print the receipt in the Sale
class, you will not have to rewrite this code again. This not only saves you time but often
helps you eliminate mistakes. If you do not use OOP and there is a change to the invoice

CHAPTER 5: Object-Oriented Programming with Swift 79

(even something as simple as a graphic change), you have to make sure you make the
change in your desktop and mobile applications. If you miss one of them, you run the risk
of having the two interfaces behave differently.

Ease of Debugging

By having all of the code relating to a book in one class, you know where to look when there
is a problem with the book. This may not sound like such a big deal for a little application,
but when your application gets to hundreds of thousands or even millions of lines of code, it
will save you a lot of time.

Ease of Replacement

If you place all of your code in a class, then as things change in your application, you can
change out classes and give your new class completely different functionality. However,

the modified class can still interact with the rest of the application in the same way as your
current class. This is similar to car parts. If you want to replace a muffler on a car, you do not
need to get a new car. If you have code related to your invoice scattered all over the place, it
makes it much more difficult to change items about a class.

Advanced Topics

We have discussed the basics of OOP throughout this chapter, but there are some other
topics that are important to your understanding.

Interface

As discussed in this chapter, the way the other objects interact with a class is with methods.
In Swift, you can set access levels on your methods. Declaring a method private will make
it accessible only to objects derived from it. By default, Swift methods are internal and can
be accessed by any object or method in the current module. This is often called the interface
because it tells other objects how they can interact with your objects. Implementing a
standard interface throughout your application will allow your code to interact with different
objects in similar ways. This will significantly reduce the amount of object-specific code you
need to write.

Polymorphism

Polymorphism is the ability of an object of one class to appear and be used as an object of
another class. This is usually done by creating methods and properties that are similar to
those of another class. A great example of polymorphism that you have been using is the
bookstore. In the bookstore, you have three similar classes: Book, Magazine, and Newspaper.
If you wanted to have a big sale for your entire inventory, you could go through all of the

80 CHAPTER 5: Object-Oriented Programming with Swift

books and mark them down. Then you could go through all of the magazines and mark
them down and then go through all of the newspapers and mark them down. That would
be more work than you would need to do. It would be better to make sure all of the classes
have a markdown method. Then you could call that on all of the objects without needing to
know which class they were as long as they were subclasses of a class that contained the
methods needed. This would save a bunch of time and coding.

As you are planning your classes, look for similarities and for methods that might apply to
more than one type of class. This will save you time and speed up your application in the
long run.

Value Orientated Programming

Apple has recently introduced a new paradigm for iOS developers. Apple calls it Value
Orientated Programming. Apple is now recommending developers use Structs instead of
classes for some simple pieces of data. A Struct is similar to a class except that a Struct is
passed by value to a method and a Struct cannot inherit from any superclass. This means
there is less overhead involved with creating a Struct than there is with a class. A Struct is
instantiated and used the same way as a class. Figure 5-17 shows the customer class from
this chapter as a Struct.

CHAPTER 5: Object-Oriented Programming with Swift

30

/1
//
//
/1
//
//
/1

Customer.swift
BookStore

Created by Thorn on 7/15/17.
Copyright ® 2017 Innovativeware. All rights reserved.

import UIKit

struct Customer {

var firstName = ""

var lastName = ""

var addressLinel = ""
var addressLine2 = ""
var city = ""

var state = ""

var zip = ""

var phoneNumber = ""
var emailAddress = ""
var favoriteGenre = ""

func listPurchaseHistory() -> [String] {

return ["Purchase 1", "Purchase 2"]

Figure 5-17. The Customer Struct

The decision to use a Struct versus a class is fairly subjective right now. A Struct should
generally only be used instead of a class when the Struct is pretty simple without many

properties and methods.

81

82 CHAPTER 5: Object-Oriented Programming with Swift

Summary

You’ve finally reached the end of the chapter! Here is a summary of the things that were
covered:

Object-oriented programming (OOP): You learned about the importance
of OOP and the reasons why all modern code should use this
methodology.

Objects: You learned about OOP objects and how they correspond to
real-world objects. You also learned about abstract objects that do not
correspond to real-world objects.

Classes: You learned that a class determines the types of data
(properties) and the methods that each object will have. Every object
needs to have a class. It is the blueprint for the object.

Creating a class: You learned how to map out the properties and
methods of your classes.

Creating a class file: You used Xcode to create a class file.

Editing a file: You edited the Swift file to add your properties and
methods.

EXERCISES

Try creating the class files for the rest of the classes you mapped out.

Map out an Author class. Choose the kind of information you would need to store about
an author.

For the daring and advanced:

Try creating a superclass called PrintedMaterial Map out the properties that a class
might have.

Create classes for the other types of printed materials a store might carry.

Chapter

Learning Swift and Xcode

For the most part, all programming languages perform the typical tasks any computer needs
to do — store information, compare information, make decisions about that information,

and perform some action based on those decisions. The Swift language makes these tasks
easier to understand and accomplish. The real trick with Swift (actually, the trick with most
programming languages) is to understand the symbols and keywords used to accomplish
those tasks. This chapter continues the examination of Swift and Xcode so you can become
even more familiar with them.

A Newcomer

As you may know, Swift has not been around for long. Development of the Swift language
began about four years ago by Chris Lattner, and on September 9, 2014, Swift 1.0 was
officially released. Swift borrows many ideas from Objective-C, but it also incorporates many
features used by modern programming languages. Swift was designed from the ground up
to be accessible to the average programmer.

Currently, there are two main types of programming languages. Compiled languages such
as Objective-C and C++ are known for being rigid and requiring certain syntax. Compiled
languages are also significantly faster in execution. Interpreted languages, such as Ruby,
PHP, and Python are known for being easier to learn and code but slower in their execution.
Swift is a language that bridges the gap between the two. Swift incorporates the flexibility
that makes interpreted languages so popular with the performance required for demanding
applications and games. In fact, Apple claims that Swift applications will perform faster than
those written in Objective-C. In some of Apple’s tests, Swift performed almost four times
faster than Python and 40 percent faster than Objective-C.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 83
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_6

https://doi.org/10.1007/978-1-4842-3063-3_6

84 CHAPTER 6: Learning Swift and Xcode

Understanding the Language Symbols

Understanding symbols is a basic part of any programming language. Symbols are
punctuation used to portray specific meanings in source code. Understanding the symbols
of a language is required to be able to use the language. Here are some of the symbols and
language constructs used in Swift, most of which you’ve already encountered in one way or
another:

{: This is the begin brace. It’s used to start what’s commonly referred to
as a block of code. Blocks are used to define and surround a section of
code and define its scope.

}: This is the end brace. It’s used to end a block of code. Wherever there
is a begin brace ({), there must always be an accompanying end brace

(-

[]: These are the open and close brackets. They are used in the
declaration and consumption of arrays.

func methodName() -> String: This is how a Swift function is defined.
The word methodName, of course, can represent any name. The word
String can also change. It represents what type of information the method
returns. In this example, String indicates the method will return a string,
or a group of characters (data types were introduced in Chapter 3 and will
be covered in more depth in later chapters). This will be discussed in more
detail later in the chapter.

Figure 6-1 shows an example of Swift code.

func logMessage() {
let helloWorld = "Hello World"
print(hellowWorld)

}

Figure 6-1. Example of Swift code

Line 1 represents a Swift function. The empty parentheses, (), indicate that this function
does not receive any variables. The fact that the parentheses are not followed by -> signifies
that this function does not return any type of data and, if invoked, would not return a value
to the caller.

The end of line 1 and line 4 are the braces that define a block of code. This block is what
defines the method. Every method has at least one block.

Line 2 creates a constant named hello. As you learned in previous chapters, a constant is a
value that cannot change or is constant. The value of the constant hello is assigned “Hello
World!” Because you assign hello to a String value, hello becomes a String and can use
any method related to Strings (recall that you first saw strings in Chapter 3). Line 3 could be
rewritten as follows:

let hello: String = "Hello World!"

http://dx.doi.org/10.1007/978-1-4842-3063-3_3
http://dx.doi.org/10.1007/978-1-4842-3063-3_3

CHAPTER 6: Learning Swift and Xcode

Line 3 is a call to the print function. You pass the method the object in order to print the
hello String object.

Although it does look a little cryptic to someone who is just learning Swift, the simple and
terse syntax doesn’t take too much time to learn.

Implementing Objects in Swift

Swift was built from the ground up to be object oriented. It incorporates the best parts of
Objective-C without the constraints of being compatible with C. It also takes some of the
best features of a scripted language. The following are some of the concepts that make
Swift object oriented. Don’t worry if some of these terms seem unfamiliar; they will be
discussed in later chapters (Chapters 7 and 8 cover the basics).

Pretty much everything is an object.
Objects contain instance variables.
Objects and instance variables have a defined scope.

Classes hide an object’s implementation.

Note As you saw in Chapter 5, the term class is used to represent, generically, the definition or
type of an object. An object is created from the class. For example, an SUV is a class of vehicle. A
class is a blueprint of sorts. A factory builds SUVs. The results are SUV objects that people drive. You
can’t drive a class, but you can drive an object built from a class.

So, how do these concepts translate to Swift? Swift is flexible in the implementation of
classes.

Note Even though in Swift a single file may contain many different classes, a programmer will
want to separate the code into different files to make access easier.

Let’s look at a complete definition of a Swift class called HelloWorld (Figure 6-2).

http://dx.doi.org/10.1007/978-1-4842-3063-3_7
http://dx.doi.org/10.1007/978-1-4842-3063-3_8
http://dx.doi.org/10.1007/978-1-4842-3063-3_5

86 CHAPTER 6: Learning Swift and Xcode

import UIKit

class HellowWorld {
func logMessage() {
let helloWorld = "Hello World"
print(helloWorld)

16}
17 |
Figure 6-2. HelloWorld class

In the preceding example, a class called HelloWorld is being defined. This class has only
one method defined: logMessage. What do all these strange symbols mean? Using the line
numbers as a reference, you can review this code line by line.

Line 1 contains a compiler directive, import Foundation. For this little program to know
about certain other objects, you need to have the compiler read other interface files. In this
case, the Foundation file defines the objects and interfaces to the Foundation framework.
This framework contains the definition of most non-user-interface base classes of the iOS
and macOS systems. You will not be using any Foundation framework-specific objects in
this example, but it is a default part of any new Swift file.

The actual start of the object is on line 4, as follows:
class HelloWorld {

HelloWorld is the class. If you wanted HelloWorld to be a subclass of a logging class you
had created, such as LogFile, you would change the declaration as follows:

class HelloWorld: LogFile {
Line 6 contains a method definition for this object, as follows:
func logMessage() {

When you’re defining a method, you must decide whether you want the method to be a
type or an instance method. In the case of the HelloWor1ld object, you are using the default
method type, which is an instance. This method can only be used after an object is created.
If the word class is added before the func, the method can be used before an object is
created, but you will not have access to properties in the object. If you changed logMessage
to a type method, it would be as follows:

class func logMessage() {

Lines 7 and 8 contain the body of the method. You learned about the details of the
statements earlier in the chapter.

CHAPTER 6: Learning Swift and Xcode 87

That’s the complete description of class HelloWorld; there’s not a whole lot here. More
complicated objects simply have more methods and more properties.

But wait, there is more. Now that you have a new Swift class defined, how is it used?
Figure 6-3 shows another piece of code that uses the newly created class.

let myHelloWorld = HellowWorld()
myHelloWorld.logMessage()

Figure 6-3. Calling a Swift method

The first line defines a constant called myHelloWorld. It then assigns the constant to an
instance of the HellolWorld class. The second line simply calls the logMessage method of the
myHelloWorld object. Those who have spent time in Objective-C will quickly see how much
shorter and efficient both the class declaration and the object creation are in Swift.

Note Instantiation makes a class a real object in the computer’s memory. A class by itself is not
really usable until there is an instance of it. Using the SUV example, an SUV means nothing until a
factory builds one (instantiates the class). Only then can the SUV be used.

Method calls can also accept multiple arguments. Consider, for example, myCarObject.
switchRadioBandTo(FM, 104.7).The method here would be switchRadioBandTo. The two
arguments are contained in the parentheses. Being consistent in naming methods is critical.

Writing Another Program in Xcode

When you first open Xcode, you’ll will be presented with a Welcome to Xcode screen. This
screen provides some nice shortcuts to access recently used Xcode projects. Until you are
more comfortable with Xcode, keep the “Show this window when Xcode launches” check
box selected.

Creating the Project

You are going to start a new project, so click the “Create a new Xcode project” icon.
Whenever you want to start a new iOS or macOS application, library, or anything else, use
this icon. Once a project has been started and saved, the project will appear in the Recent
list on the right of the display.

For this Xcode project, you will choose something simple. Make sure the iOS Application is
selected. Then select Single View Application, as shown in Figure 6-4. Then simply click
the Next button.

88 CHAPTER 6: Learning Swift and Xcode

Choose a template for your new project:

watchOS tvOS macOS Cross-platform ®
‘ Application

1)

& (] - -

Single View App Game Augmented Document Based Master-Detail App
Reality App App
) . p p— | .
eco ‘*..._ yuiny Q
Page-Based App Tabbed App Sticker Pack App iMessage App

‘ Framework & Library

(= g N
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel Next

Figure 6-4. Choosing a new project from a list of templates

There are several types of templates. These templates make it easier to start a project from
scratch in that they provide a starting point by automatically creating simple source files.

Once you’ve chosen the template and clicked the Next button, Xcode presents you with a
dialog box asking for the project’s name and some other information, as shown in Figure 6-5.
Type a product name of Chapter6. The organization identifier needs to have some value, so we
used com. inno. If you are planning on running this app on an actual iOS device or submitting it
to the App store, you will need to select your team from the drop-down. If you do not select it
now, it can be added to the project later.

CHAPTER 6: Learning Swift and Xcode 89

Choose options for your new project:

Product Name:
Team:
Organization Name:

Organization Identifier:

Bundle Identifier:

Language:

Chapter6|
Innovativeware LLC
Innovativeware
com.inno
com.inno.Chapter6
Swift
Use Core Data

Include Unit Tests
Include Ul Tests

Cancel

Figure 6-5. Setting up the product name, company, and type

previous (T

Once you’ve supplied all the information, click the Next button. Xcode will ask you where to
save the project. You can save it anywhere, but the desktop is a good choice because it’s

always visible.

90 CHAPTER 6: Learning Swift and Xcode

ane A, Chapeer | [i§ #Phona 7 Piss Chapoers: Ready | Today at 3567 PM E H i< 0O 2 0O
BERQ-” o= B chapes 0D ®
¥ & Craptors 1] Gane Capabiies Ressares Tags ™ Bule Settings Bt Prssss Buid Aules Mgty anc Yypa
¥ [10 Chapters -
oo T Mams | Chapters
+ AppiDelegate swih v Montiny
& ch Locaian AL
s ViewComtroller swift W Chaptert = z
. storyboan TARGETS Awphn L mocheperd s
Main stceyboard Display Mame Full Puth [Users/bradiees/Dropben/
o Assats sasate | wccrapes | Apeuss Switt 4/Codel
Bundie identifier cominng.Chapters
Launcherenn. storybosrd "-""'"-‘::'C"‘W': -
. Chagtert xcodey
info.plist Wb (L0 25
Products Bule 1 Project Documant
Project Forman Xeode R0-compattie |
v Sigaing Omganization Inncvativemsre

Civss Prefin
Autematically manage sigring

Toxt Battings
Team Innavathewane LLE B indan Uaing Spaces B8
Wi ajz 4z

Proviskoning Profie. Xcoce Managed Profle e dari

Signing Certificate iPhane Developer: Brad Lees [CHOBUTYE4) 8 wrap fres
¥ Deployment info

Degioymant Target

Devices Universal

Main imerface Main

Device Orientation [Portrat
Upside Down 3 0@
Lancacape Left Q u
Landscape Right

Status Bar S Defauht B

Hisie stasus bar
Requires full screen

* App icons and Launch images
Applcons Soures Appicon Be
Laarch Images Source Use Asset Catalog.

+ = Launch Scraen Flle LaunchScreen -]

Figure 6-6. The Xcode 9 main screen

Once you’ve picked where to save the project, the main Xcode screen will appear

(see Figure 6-6). In the leftmost pane is the list of source files. The right two-thirds of the
screen is dedicated to the context-sensitive editor. Click a source file, and the editor will
show the source code. Clicking a .storyboard file will show the Screen Interface editor.

The first app is going to be simple. This iPhone app will contain a button. When the button
is clicked, your name will appear on the screen. So, let’s start by first looking more closely
at some of the stub source code that Xcode built for you. The nice thing about Xcode is that
it will create a stub application that will execute without any modification. Before you start
adding code, let’s look at the main toolbar of Xcode, as shown in Figure 6-7.

aoe p A Chageert | [l Phone 7 Plus Finishod running Chaptars on Fhona 7 Fus. =k

Figure 6-7. The Xcode 8 toolbar

At first glance, there are three distinct areas of the toolbar. The left area is used to run and
debug the application. The middle area displays status as a summary of compiler errors and
warnings. The far-right area contains a series of buttons that customize the editing view.

As shown in Figure 6-8, the left portion of the toolbar contains a Play button that will compile
and run the application. If the application is running, the Stop button will not be grayed out.
Since it’s grayed out, you know the application is not running. The scheme selection can be
left alone for now. Schemes will be discussed in more detail in Chapter 13.

http://dx.doi.org/10.1007/978-1-4842-3063-3_13

CHAPTER 6: Learning Swift and Xcode 91

@ ®) /\ Chapter6) {i§ iPhone 7 Plus
Figure 6-8. Close-up of the left portion of the Xcode toolbar

The right side of the Xcode toolbar contains buttons that change the editor. The three
buttons represent the Standard editor (selected), the Assistant editor, and the Version editor.
For now, just click the Standard editor button, as shown in Figure 6-9.

@ &

Figure 6-9. Close-up of the right portion of the Xcode toolbar

(i

Next to the editor choices are a set of View buttons. These buttons can be toggled on and off.
For example, the one chosen in Figure 6-10 represents the current view shown in Figure 6-7,
a list of the program files on the left third of the screen, the main editor in the middle third, and
the Ultilities in the right portion of the screen. Any combination, or none, can be chosen to help
customize the main workspace window. The last button opens the Ultilities area. Chapter 13
discusses this button. For now, let’s get back to your first iPhone app.

Click the ViewController.swift file, as shown in Figure 6-10. The editor shows some Swift
code that defines a ViewController class.

v & chapters T
v Chapterg 2 f/ ViewController.swift
. /! Chapteré
= AppDelegate.swift 71
8 viewController.swift /f Created by Thornukc on 7/15/17.
Main.storyboard // Copyright ® 20817 Innovativeware. All rights reserved.

f
1 Assets.xcassets 1

LaunchScreen.storyboard import UIKit

Info.plist 10 |
» || Products class ViewController: UlViewController {

override func viewDidLead() {

super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.
}

override func didReceiveMemoryWarning() {
super.didReceiveMemcryWarning()
// Dispose of any resources that can be recreated.

}

Figure 6-10. Looking at the source code in the Xcode editor

http://dx.doi.org/10.1007/978-1-4842-3063-3_13

92 CHAPTER 6: Learning Swift and Xcode

You will notice two functions in the code. viewDidlLoad is called immediately after a view is
loaded and can be used for setting up the view. This is a good place to put code that sets
up labels, buttons, colors, and so on. didReceiveMemoryWarning is called when your
application is getting low on memory. You can use this function to decrease the amount of
memory required by your application.

Note For now, you’re simply going to add a few lines of code and see what they do. It’s not
expected that you understand what this code means right now. What’s important is simply going
through the motions to become more familiar with Xcode. Chapter 7 goes into more depth about
what makes up a Swift program, and Chapter 10 goes into more depth about building an iPhone
interface.

Next, you’ll add a few lines of code into this file, as shown in Figure 6-11. Line 13 defines a
label on the screen where you can put some text. Line 15 defines the method showName.
You'll be calling this method in order to populate the iPhone label. A label is nothing more
than an area on the screen where you can put some text information.

Caution Type the code exactly as shown in the example, including case. For instance, UILabel
can’t be uilabel or UILABEL. Swift is a case-sensitive language, so UILabel is completely
different from uilabel.

http://dx.doi.org/10.1007/978-1-4842-3063-3_7
http://dx.doi.org/10.1007/978-1-4842-3063-3_10

CHAPTER 6: Learning Swift and Xcode 93

import UIKit

class ViewController: UIViewController {

- a3
2 O O

(%]

O (@IBOutlet weak var namelabel: UIlLabel!

14

O (@IBAction func showName(sender: AnyObject) {

16 namelLabel.text = "My Name is Brad!"

17 }

18 override func viewDidLoad() {

19 super.viewDidLoad()

20 // Do any additional setup after loading the view,
typically from a nib.

21

2 override func didReceiveMemoryWarning() {

super.didReceiveMemoryWarning()

25 // Dispose of any resources that can be recreated.

26 }

29 ¥

Figure 6-11. Code added to the ViewController.swift file

You will notice that the code you added has @IBOutlet and @IBAction in front of them. These
attributes are necessary when connecting objects with the interface designer.

IBOutlet allows you to control an interface object with code. IBAction allows you to
execute code when something happens in the interface such as tapping a button.

Note IBOutlet and IBAction both start with IB, which is an acronym from Interface Builder.
Interface Builder is the tool used by NeXT and then Apple for building user interfaces.

You now have the necessary code in place, but you don’t yet have an interface on the
device. Next, you’re going to edit the interface and add two interface objects to your app.

To edit the iPhone’s interface, you need to click the Main.storyboard file once. The
.storyboard file contains all the information about a single window or view. Xcode 9 also
supports .xib (pronounced zib) files.

Note Each .xib file represents one screen on an iPhone or iPad. Apps that have multiple views
will have multiple . xib files, but many different views can be stored in each storyboard file.

94 CHAPTER 6: Learning Swift and Xcode

You will use Xcode’s interface editor to connect a Ul object, such as a Label object, to the
code you just created. Connecting is as easy as clicking and dragging.

Click the last view button in the upper-right part of the screen, as shown in Figure 6-12. This
opens the Utilities view for the interface. Among other things, this Utilities view shows you
the various interface objects you can use in your app. You’re going to be concerned with
only the rightmost objects: Button and Label. Figure 6-13 shows the Object Library. There
are other libraries available, but for now you will be using only the third one from the left.

ene » A Chapteré) i iPhone 7 Pius Finished rurning Chagter§ an iPhone 7 Plus = o ol0 a8
BER2QAAGS D B @< £ Chapter6) [Chapters) - Main storyboard) |+ Maln.storyboard (Base)) No Selection De@m9I e
v B Chapteré » || View Controller Scane
View Controller
¥ [Chaptess

= AppOolegate swift
B viewController.switt

Assels.xcassels
LaunchScreen. storyboard
Info.plist

» [Products

" 0 @ O

View Controller - A& controlier that
enanagea & view

Storyboard Reference - Frovides
& placshalder Tee & view contrallsr in

+ (@ o) | [t [0 Viewas:iPhone7 {«C \R) — 100% - B iof bl

Figure 6-12. The Interface you’re going to modify

CHAPTER 6: Learning Swift and Xcode 95

L

View Controller - A controller that
manages a view.

Storyboard Reference - Provides
I a placeholder for a view controller in
an external storyboard.

Navigation Controller - A
(controller that manages navigation
through a hierarchy of views.

Figure 6-13. The Object Library

The first step is to click the Button object in the Utilities window. Next, drag the object to the
iPhone view, as shown in Figure 6-14. Don’t worry; dragging the object doesn’t remove it
from the list of objects in the Utilities view. Dragging it creates a new copy of that object on
the iPhone interface.

96 CHAPTER 6: Learning Swift and Xcode

® =

Button

Type

State Config

Title

+ Font
Text Color
Shadow Color
Image

Background

System

Default

Plain

Button

System 15.0
B Default
[—1 Default

ol ol o

(T Lok

Butto E - -
Accessibility Adjusts Image Size

Shadow Offset 02 0cZ
Width Height

Reverses On Highlight
Drawing | | Shows Touch On Highlight
Highlighted Adjusts Image
Disabled Adjusts Image
Line Break Truncate Middle
Drag and Drop Spring Loaded

Control

Alignment D mu =] E'

Horizontal

7T =M N m
0D {8

\ Button - Intercepts touch events and
Button sends an action message to a target

object when it's tapped.

Bar Button Item - Represents an
Item | item on a UlToolbar or
UlNavigationitem object.

Fixed Space Bar Button Item -
| CECETLITL | Represents a fixed space item on a
UlToolbar object.

Elassibala Cumann Do Db e

] Viewas:iPhone7 («C nR) — 100% - EA |2 o] taf | B (3 button (]

Figure 6-14. Moving a Button object onto the iPhone view

Next, double-click the Button object that was just added to the iPhone interface. This
allows you to change the title of the button, such as to Name, as shown in Figure 6-15. Many
different interface objects work just like this. Simply double-click, and the title of the object
can be changed. This can also be done in the actual code, but it’s much simpler to do in
Interface Builder.

CHAPTER 6: Learning Swift and Xcode 97

Figure 6-15. Modifying the Button object’s title

Once the title has been changed, drag a Label object to right below the button, as shown in
Figure 6-16.

98 CHAPTER 6: Learning Swift and Xcode

Button
l?]’i] E Type System
State Config Default L
Title Plain v
Name
2 Font System 15.0 m i
Text Color HEEE Default
Shadow Color [=—1 Default
Image
: Background [~]
iName
i Accessibility Adjusts Image Size
i Shadow Offset (1] 0fl
Label Width Height

Reverses On Highlight
Drawing Shows Touch On Highlight
Highlighted Adjusts Image
| Disabled Adjusts Image
Line Break Truncate Middle
| Drag and Drop Spring Loaded

Control
Alignment Dml:l =)
Horizontal
T =M N m
0o e

\ Label - A variably sized amount of
Labe

static text.

 View
Figure 6-16. Adding a Label object to the iPhone interface

For now, you can leave the label’s text as “Label” since this makes it easy to find on the
interface. If you clear the label’s text, the object will still be there, but there is nothing visible
to click in order to select it. Expand the size of the label by dragging the center white square
to the right, as shown in Figure 6-17.

CHAPTER 6: Learning Swift and Xcode 99

Figure 6-17. Expanding the label’s size

Now that you have a button and the label, you can connect these visual objects to your
program. Start by right-clicking (or Control-clicking) the Button control. This brings up a
connection menu, as shown in Figure 6-18.

Shadow Color [— Default

v Triggered Segues ge Size
action

Outlet Collections
gestureRecognizers
Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Primary Action Triggered
Touch Cancel

He
Highlit
h On Hi

Touch Down

Touch Down Repeat

Touch Drag Enter

Touch Drag Exit

Touch Drag Inside

Touch Drag Outside

Touch Up Inside

Touch Up Outside

Value Changed

Referencing Outlets

MNew Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

© O 000000000000 © O

Figure 6-18. Connection menu for the Button object

100 CHAPTER 6: Learning Swift and Xcode

Next, click and drag from the Touch Up Inside connection circle to the View Controller icon,
as shown in Figure 6-19. Touch Up Inside means the user clicked inside the Button object.
Dragging the connection to the View Controller connects the Touch Up Inside event to the
ViewController object. This causes the object to be notified whenever the Button object is
clicked.

v View Controller Scene | s ©] Button
w =
(v *- View Controller Type System
¥ e\{ig\:“ State Conflg Default
Shia Area
- Title Plain
& MName S
L Label ‘“n‘\ Name
{0 First Responder Font System 16.0
[= Exit -

Text Color NN Default
Storyboard Entry Poi...
Shadow Color [C—1 Default

Sent Events

Did End On Exit

Editing Changed

Editing Did Bagin
Editing Did End

Primary Action Triggered
Touch Cancel

Lo

Touch Down

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit

Touch Drag Inside
Touch Drag Outside
Touch Up Inside

Touch Up Outside
Value Changed
Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections

Q0000000

Mew Referencing Outlet Collection

@] View as: iPhone 7 (wC nR) { = 10§ tal| BB @®abel

Figure 6-19. Connecting the Touch Up Inside event to the object

Once the connection is dropped, a list of methods that can be used in your connection is
displayed, as shown in Figure 6-20. In this example, there is only one method, showName:.
Selecting the showName: method connects the Touch Up Inside event to the object.

CHAPTER 6: Learning Swift and Xcode 101

v View Controller Scene

v showNameWithSender:

v View
[Safe Area
B Name
L Label
E .
g First Responder
[=)] Exit

> Storyboard Entry Poi...

Figure 6-20. Selecting the method to handle the Touch Up Inside event

Once the connection has been made, the details are shown on the button’s connection
menu, as shown in Figure 6-21.

action

Outlet Collections

gestureRecognizers

Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Primary Action Triggered

Touch Cancel

Touch Down

Touch Down Repeat

Touch Drag Enter

Touch Drag Exit

Touch Drag Inside

Touch Drag Qutside

Touch Up Inside * View Controller
showNameWithSender:

Touch Up Outside

Value Changed

Referencing Outlets

New Referencing Outlet

Referencing Outlet Collections

New Referencing Outlet Collection

@)
@)
O
@)
@)
@)
@)
@)
@)
O
@)
@)
O
@)
O]
@)
@)
@)
O

Figure 6-21. The connection is now complete

102 CHAPTER 6: Learning Swift and Xcode

Next, you create a connection for the Label object. In this case, you don’t care about the
Label events; instead, you want to connect the ViewController’s namelLabel outlet to the
object on the iPhone interface. This connection basically tells the object that the label you
want to set text on is on the iPhone interface.

Start by right-clicking the Label object on the iPhone interface. This brings up the
connection menu for the Label object, as shown in Figure 6-22. There are not as many
options for a Label object as there were for the Button object.

LIS wican HdJineawve 1an

¥ Outlet Collections
gestureRecognizers
¥ Referencing Outlets

New Referencing Outlet
¥ Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-22. Connection menu for the Label object

As mentioned, you are not here to connect an event. Instead, you connect what'’s referred to
as a referencing outlet. This connects a screen object to a variable in your ViewController
object. Just like with the button, you should drag the connection to the View Controller icon,
as shown in Figure 6-23.

CHAPTER 6: Learning Swift and Xcode 103

v View Controller Scene

| L Vigsu Controller)

v View ——_ :
Safe Area

B Name
L Label
:"r First Responder

[&4 Exit
Storyboard Entry Pai...

¥ Outlet Collections
gestureRecognizers
¥ Raferencing Outlets

New Referencing Outlet
¥ Referencing Outlet Collections
New Referencing Outiet Collection

Figure 6-23. Connecting the referencing outlet to the object

Label
Text Plain “
Label
Color EEEEE Detault <
Font System 17.0 m:
Dynamic Type Automatically Adjusts Font
Alignment &= = = = -
Lines 1j.
Behavicr ' Enabled
Highlighted
Baseline Align Baselines <
B Line Break Truncate Tail <
Label s
pacing
-
<
. 1)1
¥ Height
View
Content Mode Left <
Semantic Unspecified <
Tam Nt
6B O 3

Label - A variably sized amount of
Label .aicen

Once the connection is dropped on the View Controller icon, a list of outlets in your
ViewController object will be displayed, as shown in Figure 6-24. Of the two choices, you
want to choose namelLabel. This is the name of the variable in the ViewController object you

are using.

104 CHAPTER 6: Learning Swift and Xcode

v View Controller Scene - B Label
W = -
v & nameLabel Text Plain
v LI Label
e Color EEEE Default
B MName
Fi |
L Label ont | System 17.0
f? irst Responder Dynamic Type Automatically Adjus
= Exit Alignment = = = =
Storyboard Entry Poi... Lines
Behavior v Enabled
Highlighted
Name Baseline Align Baselines
Line Break Truncate Tail

¥ Outlet Collections
gestureRecognizers ®) pac
¥ Referencing OQutlets

New Refarencing Outlet
¥ Referencing Outlet Collections
New Refereneing Outlet Collaction

Heh

Figure 6-24. Selecting the object’s variable to complete the connection

Once you’ve chosen namelabel, you're ready to run your program. Click the Run button
(which looks like a Play button) at the top-left corner of the Xcode window (see Figure 6-8).
This will automatically save your files and start the application in the iPhone Simulator, as
shown in Figure 6-25.

CHAPTER 6: Learning Swift and Xcode 105

My Name is Brad!

Figure 6-25. The app running, before and after the button is clicked

By clicking the Name button, the label’s text will change from its default value of “Label” to
“My Name is Brad!” or whatever value you entered. If you want to, go back into the interface
and clear the default label text.

Summary

The examples in this chapter were simple, but ideally they’ve whetted your appetite for more
complex applications using Swift and Xcode. In later chapters, you can expect to learn more
about object-oriented programming and more about what Swift can do. Pat yourself on the
back because you’ve learned a lot already. Here is a summary of the topics discussed in this
chapter:

The origins and brief history of the Swift language
Some common language symbols used in Swift

A Swift class example

106 CHAPTER 6: Learning Swift and Xcode

Using Xcode a bit more, including discussing the HelloWorld. swift
source file

Connecting visual interface objects with methods and variables in your
application object

EXERCISES

Clear the default text of “Label” in the program and rerun the example.

Change the size of the Label object on the interface to be smaller in width. How does that
affect your text message?

Delete the referencing outlet connection of the label and rerun the project. What happens?

If you think you have the hang of this, add a new button and label to the
ViewController object and to the interface. Change the label from displaying your
name to displaying something else.

Chapter

Swift Classes, Objects, and
Methods

If you haven’t already read Chapter 6, please do so before reading this one because it
provides a great introduction to some of the basics of Swift. This chapter builds on that
foundation, especially with creating Swift classes. By the end of this chapter, you can expect
to have a greater understanding of the Swift language and how to use the basics to write
simple programs. The best way to learn is to take small programs and write (or rewrite) them
in Swift just to see how the language works.

This chapter covers what composes a Swift class and how to interact with Swift objects via
methods. It uses a simple radio station class as an example of how a Swift class is written.
This will impart an understanding of how to use a Swift class. This chapter also teaches

you how to formulate a design for objects that are needed to solve a problem. The chapter
touches on how to create custom objects, as well as how to use existing objects provided in
the foundation classes.

This chapter expands on Chapter 6’s topics and introduces some of the concepts described
in detail in Chapter 8.

Creating a Swift Class

Classes are simple to create in Swift. Generally, a class will be contained in its own file, but a
single file can hold many classes if desired.

Here is a sample of the first line from a class declaration:

class RadioStation

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 107
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_7

https://doi.org/10.1007/978-1-4842-3063-3_7
http://dx.doi.org/10.1007/978-1-4842-3063-3_6
http://dx.doi.org/10.1007/978-1-4842-3063-3_6
http://dx.doi.org/10.1007/978-1-4842-3063-3_8

108 CHAPTER 7: Swift Classes, Objects, and Methods

Here, the class name is RadioStation. Swift classes, by default, do not inherit from a
superclass. If you want to make your Swift class inherit from another class, you can do this
like so:

class RadioStation: Station

In this example, RadioStation is now a subclass of Station and will inherit all of the
properties and methods of Station. Listing 7-1 shows the full definition of a class.

Listing 7-1. A Swift class

import UIKit
class RadioStation: NSObject {

1

2

3

4

5 var name: String
6 var frequency: Double
7

8

9

0

override init() {
name = "Default"

1 frequency = 100

11

12

13 static var minAMFrequency: Double = 520.0

14

15 static var maxAMFrequency: Double = 1610.0

16

17 static var minFMFrequency: Double = 88.3

18

19 static var maxFMFrequency: Double = 107.9

20

21 func isBandFM() -> Int {

22 if frequency >= RadioStation.minFMFrequency && frequency <= RadioStation.
maxFMFrequency {

23 return 1 //FM

24 } else {

25 return 0 //AM

26

27 }

28

29 }

30 }

Properties

Listing 7-1 shows a sample class with two different properties: name and frequency. Line 1
imports the UIKit class definitions (more on that in a bit) since this is the default import added
by Xcode when a new class is created. Line 3 starts the definition of the class by defining

its name (sometimes called the type). Lines 5 to 6 define a couple of properties for the
RadioStation class.

CHAPTER 7: Swift Classes, Objects, and Methods 109

Whenever the RadioStation class is instantiated, the resulting RadioStation object

has access to these properties, which are only for specific instances. If there are ten
RadioStation objects, each object has its own variables independent of the other objects.
This is also referred to as scope, in that the object’s variables are within the scope of each
object.

Lines 13-19 also contain properties. These properties are preceeded by the word static.
This means this value belongs to a class and every object will maintain the same exact value
of these properties.

Methods

Almost every object has methods. In Swift, the most common way to interact with an object
is by calling a method, like so:

myStation.isBandFM()

The preceding line will call a method named isBandFM on an instance of the RadioStation
class object.

Methods can also have parameters passed along with them. Why pass parameters?
Parameters are passed for several reasons. First (and most common), the range of
possibilities is too large to write as separate methods. Second, the data you need to store
in your object is variable — like a radio station’s name. In the following example, you will
see that it isn’t practical to write a method for every possible radio frequency; instead, the
frequency is passed as a parameter. The same applies to the station name.

myStation.setFrequency(104.7)

The method name is setFrequency. Method calls can have several parameters, as the
following example illustrates:

myStation = RadioStation.init(name: "KZZP", frequency: 104.7)

In the preceding example, the method call consists of two parameters: the station name and
its frequency. What'’s interesting about Swift relative to other languages is that the methods
contain named parameters. If this were a C++ or Java program, the call would be as follows:

myObject = new RadioStation("KzZzP", 104.7)

While a RadioStation object’s parameters might seem obvious, having named parameters
can be a bonus because they more or less state what the parameters are.

Using Type Methods

A class doesn’t always have to be instantiated to be used. In some cases, classes have
methods that can actually perform some simple operations and return values before a class
is instantiated. These methods are called type methods. In Listing 7-1, the method names
that start with static are type methods.

110 CHAPTER 7: Swift Classes, Objects, and Methods

Type methods have limitations. One of their biggest limitations is that none of the instance
variables can be used. Being unable to use instance variables makes sense since you
haven’t instantiated anything. A type method can have its own local variables within the
method itself but can’t use any of the variables defined as instance variables.

A call to a type method would look like this:

RadioStation.minAMFrequency()

Notice that the call is similar to how a method is called on an instantiated object. The big
difference is that instead of an instance variable, the class name is used. Type methods
are used quite extensively in the macOS and iOS frameworks. They are used mostly for
returning some fixed or well-known type of value or to return a new instance of an object.
These types of type methods are referred to as initializers. Here are some initializer method
examples:

1. Date. addingTimeInterval() // Returns a Date
2. String(format:"http://%@", "www.apple.com") // Returns a new String object
3. Dictionary<String, String>() // Returns a new Dictionary object.

All of the preceding messages are Type Methods being called.

Line 1 simply returns a value that represents the number of seconds since January 1, 2001,
which is the reference date.

Line 2 returns a new String object that has been formatted and has a value of http://1000.

Line 3 is a form that is commonly used because it actually allocates a new object. Typically,
the line is not used by itself, but in a line like this:

var myDict = Dictionary<String, String>()

So, when would you use a type method? As a general rule, if the method returns information
that is not specific to any particular instance of the class, make the method a type method.
For example, the minAMFrequency in the preceding example would be the same for all
instances of any RadioStation.

Object — this is a great candidate for a type method. However, the station’s name or its
assigned frequency would be different for each instance of the class. These should not (and
indeed could not) be type methods. The reason for this is that type methods cannot use any
of the instance variables defined by the class.

Using Instance Methods

Instance methods (lines 29 to 35 in Listing 7-1) are available only once a class has been
instantiated. Here’s an example:

1 var myStation: RadioStation // This declares a variable to hold the RadioStation
object.
2 myStation = RadioStation() // This creates a new RadioStation object.

3 var band = myStation.band() // This method returns the Band of the RadioStation.

CHAPTER 7: Swift Classes, Objects, and Methods 111

Line 3 calls a method on the RadioStation object. The method band returns a 1 for FM and
a 0 for AM. An instance method is any method that does not contain the class declaration
before it.

Using Your New Class

You've created a simple RadioStation class, but by itself it doesn’t accomplish a whole lot.
In this section, you will create the Radio class and have it maintain a list of RadioStation
classes.

Creating Your Project
Let’s start Xcode and create a new project named RadioStations.
1. Launch Xcode and select “Create a new Xcode project.”

2. Make sure you choose an iOS application and select the Single View
App template, as shown in Figure 7-1.

3. Once you’ve selected the template, click the Next button.

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform o)
Application
ot ‘
1) # AR - -
Single View App Game Augmented Document Based Master-Detail App
Reality App App
oo)
‘\ooo Kk ses ‘\—U _\,—/
Page-Based App Tabbed App Sticker Pack App iMessage App
Framework & Library
= g N
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel Next

Figure 7-1. Selecting a template in the new project window

112 CHAPTER 7: Swift Classes, Objects, and Methods

4. Set the product name (application name) to RadioStations.

5. Set the company identifier (a pretend company will do) and set the
device family to iPhone (as shown in Figure 7-2). Make sure Swift is
selected in the Language drop-down list.

Choose options for your new project:

Product Name: RadioStations

Team: Innovativeware LLC B
Organization Name: Innovativeware
Organization Identifier: com.inno
Bundle Identifier: com.inno.RadioStations
Language: Swift

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 7-2. Naming the new i0S application

6. Click the Next button, and Xcode will ask you where you want to
save your new project. You can save the project on your desktop
or anywhere in your home folder. Once you’ve made your choice,
simply click the Create button.

7. Once you’ve clicked the Create button, the Xcode workspace
window should be visible, as shown in Figure 7-3.

Next

CHAPTER 7: Swift Classes, Objects, and Methods

113

ere » iy RadioStations | i Fhone 7 Pl RadioStations: Ready | Today at B:03 Pl SN ol = |
BERQASECc @B & RadioStations O ®
¥ 5 RadicStarces. 0 Ganaral Capabiitios Apsource Tags Info Build Settings. Buld Phases Bubd Aules Sy il Typen
¥ [RucioSixtions Hame | RagicStations
PROJECT
= AppDelagate.switt ¥ identisy =
irEERee B ragcstations Locatien Al
5 TARGETS " Racio Siations sodepro) -
Main.slorybomd Display Hame Ful Path [UsersBeadiensDropbos
1 Assats xcassels = = Aprass Switt A1Cods!
Dundle Igarei i i
LaunchScsoan.ssorybeerd Meaitur: jcomiing PeckoBiations Chapter adoSasions!
o piast Version 10 RaciaSrations sodepro)
» [Products Bald 1 e
reject Feemat | ¥rode B.0-compatiie [
 Signing Ongesizstion Inngvativeware
Clsss Profin
B Automatically manage signing
e il i e cre e —
Team Innevativeware LLC B Insant sing | Spoces B
n Wigins all 4z
Provisioning Profie. Xeode Managed Profde () - _—
Signing Cestificate iPhone Deveicper: Brad Lees [DBEEUTY7B4] {8 Wrop lines
 Deployment Info
Desioyment Target B
Devicet Unhvareal B
Main iterface Lain B
Dovics Oriernation [Portraiy
Usside Down nO0@o
8 Landscape Left =
B Landscape Right
Status Bar Style Default =]
Hice status bar
FRequires full screen No Matches
¥ App lcons and Launch images
Aop leons Source Appleon Be
Launch Images Source Uise Assat Cataiog.
+ t - @ Launch Screen File LaunchScreen B e

Figure 7-3. The workspace window in Xcode

114 CHAPTER 7: Swift Classes, Objects, and Methods

Adding Objects
Now you can add your new objects.

1. First, create your RadioStation object. Right-click the RadioStations
folder and select New File (as shown in Figure 7-4).

BERQAOCEo & 8
g L RadioStations i
@ Show in Finder PR
Open with External Editor
Open As > =

Show File Inspector

Add Files to “RadioStations”..
> Delete

New Group
New Group without Folder
New Group from Selection

Sort by Name
Sort by Type

Find in Selected Groups...

Source Control »

Project Navigator Help

Figure 7-4. Adding a new file

2. The next screen, shown in Figure 7-5, asks for the new file type.
Simply choose Cocoa Touch Class from the Source group, and then
click Next.

CHAPTER 7: Swift Classes, Objects, and Methods

Choose a template for your new file:

B wetchos wos macos

Source
Cocoa Touch Ul Test Case
Class Class

Header File C File

User Interface

Storyboard View

Cancel

Figure 7-5. Selecting the new file type

3. The following screen will ask you the name of the class. Enter
RadioStation. Keep Subclass set to NSObject and make sure

Unit Test Case
Class

Cr

C++ File

Empty

Language is set to Swift. See Figure 7-6.

Swift File

AN

Metal File

Launch Screen

Objective-C File

Next

115

116 CHAPTER 7: Swift Classes, Objects, and Methods

Choose options for your new file:

Class: RadioStatiod

Subclass of: NSObject
Language: Swift
Cancel Previous Next

Figure 7-6. Naming the New Class

4. Xcode will not prompt you to save the file. The default location is
inside your project’s folder. Click on the Create button to save the file
in the default location.

5. Your project window should now look like Figure 7-7. Click
the RadioStation.swift file. Notice that the stub of your new
RadioStation class is already present. Now, fill in the empty class so
it looks like Listing 7-1, your RadioStation Swift file.

B H 2 Q A & = o E 2 < > & radioStations)| | RadioStations) [B) RadioStation.swift) No Selection

v & RadioStations ol
¥ | | RadioStations // RadioStation.swift

// RadioStati
= AppDelegate.swift adrostations

I
* ViewController.swift 5 // Created by Thorn| on 7/24/17.
Main.storyboard & f/ Copyright ® 2017 Innovativeware. All rights reserved.
70

4 Assels.xcassets
LaunchScreen.storyboard import UIKit
Info.plist

.RadioStatlon.swih class RadioStation: NSObject {

> Products . y

Figure 7-7. Your newly created file in the workspace window

CHAPTER 7: Swift Classes, Objects, and Methods 117

Writing the Class

Now that you have created your file and your class, you are ready to begin customizing it.

35

1.

The class file you’ll use here is the same one you used at the
beginning of this chapter and it will work perfectly for the radio
station application. Click the RadioStation.swift file, and enter the
code in your class, as shown in Figure 7-8.

RadioStation.swift
RadioStations

Created by Thorn on 7/24/17.
Copyright @ 2017 Innovativeware. All rights reserved.

import UIKit

class RadioStation: NSObject {

var name: String
var frequency: Double

override init{) {
name = "Default"
frequency = 1080
}

static var minAMFreguency: Double = 520.8
static var maxAMFregquency: Double = 1618.9
static var minFMFrequency: Double = 88.3
static var maxFMFreguency: Double = 167.9
func isBandFM{) -> Int {
if frequency »= RadioStation.minFMFrequency &% frequency <= RadioStation.maxFMFrequency {
return 1 //FM

} else {
return @ //AM

Figure 7-8. The RadioStation class file

We will come back to a few items in Figure 7-8 and explain them further in a moment;
however, with the RadioStation class defined, you can now write the code that will actually
use it.

2.

Click the ViewController.swift file. You’ll need to define a few
variables for this class to use, as shown in Figure 7-9.

118 CHAPTER 7: Swift Classes, Objects, and Methods

1M
2 1/
i/
Iy
5 I/
L] l’ /
I/

ViewController.swift
RadioStations

Created by Thorn on 7/24/17.
Copyright © 2017 Innovativeware. All rights reserved.

9 import UIKit

class ViewController: UIViewController {

OO0

40 3}

(EIBOutlet weak var stationName: UIlabel!)
@IBOutlet weak var stationFrequency: UIlLabel!
@IBOutlet weak var stationBand: UILabel!

var myStation: RadioStation

required init?(coder aDecoder: NSCoder) {
myStation = RadioStation()
myStation.frequency = 104.7

myStation.name = "KZZP"
super.init(coder: aDecoder)

\J. J

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

3

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

Figure 7-9. Adding a RadioStation object to the View Controller

Lines 13 to 15 are going to be used by your iOS interface to show some values on the
screen (more on these later). Line 17 defines the variable myStation of type RadioStation.
Lines 19 to 24 contain the required init method. In Swift, classes do not require an initializer
method, but it is a good place to set the default values of your object. This method sets up
the variables used in that class. Also, don’t forget to include the curly braces ({ ... }).

CHAPTER 7: Swift Classes, Objects, and Methods 119

Creating the User Interface

Next, the main window has to be set up in order to display your station information.

1. Click the Main.storyboard file. This file produces the main iPhone
screen. Click the Object Library icon, as shown in Figure 7-10.

B E Q A ©=Eo B(R<¢ [RadioStations | [RadioStations) [l Main.s._board | [l Main__iBase) View_r Scene) () View Controlter | || View Demo$d1e
v [& Ragiosutions ¥ [View Contrelior Seann

w [RadioStations ¥ () view Controller

+ AppDolegate swift * Iview 2 B
B viewControlier.switt Sate Ared
9 As301s xcassats B Bt

LaunchScreen. storyboard Storyboard Entry Point

nlo plist

B RadioStation.switt
[Broducts

[} —

Wiaw Controller - & contrallar thi
manages o view

Storyboard Reference - Provides
a plazeh. a view controBer in

an euteemal steryon

Tablo View Contraller - &
cantralier that maniges & bl vew

Figure 7-10. Adding a Label object to your iPhone screen

2. Drag and drop three Label objects onto the screen, as shown in

Figure 7-11. The labels can be aligned in any manner, or as shown in
Figure 7-11.

120 CHAPTER 7: Swift Classes, Objects, and Methods

Station Name:
Frequency:

Band:

Figure 7-11. All three Label objects on the iPhone screen

Content Mode | SCale 10 Fill
Semantic Unspecified
Tag 02

Interaction User Interaction Enabled
Multiple Touch

e -

Alpha

Tint S Default

Drawing @ Opaque
Hidden
Clears Graphics Context
Clip to Bounds
Autoresize Subviews

Stretching o2 (1]
X Y
1~ 13
Width Height
OO

\ La bel Label - A variably sized amount of

static text.

3. You’re going to need space, however. Once the Label objects are on
the iPhone screen, double-click each Label object in order to change
its text so that the iPhone screen looks something like Figure 7-11.

4. Next, add a Button object to the screen, as shown in Figure 7-12.
This button, when clicked, will cause the screen to be updated with

your radio station information.

CHAPTER 7: Swift Classes, Objects, and Methods 121

Type System
-
B State Config Default "
Title Plain 2]
Button
Station Name: Font System 15.0 @m:
Text Color HEEEI Default %]
FrequencY' Shadow Color 3 Default
Band: image =
Background
Accessibility Adjusts Image Size
o—o—0a Shadow Offset o2 02
Buttory Width Height
o—o—0 ey
= Reverses On Highlight
Drawing Shows Touch On Highlight
Highlighted Adjusts Image
Disabled Adjusts Image
Line Break Truncate Middle
Drag and Drop Spring Loaded
Control
Alignment D m Ij = E]
Horizontal
00O
Button - Intercepls touch events and
Button sends an action message to a target
object when it's tapped.
Bar Button Item - Represents an
Item | item on a UlToclbar or
UlNavigationitem object.
Fixed Space Bar Button Item -
fersnisnes | Represents a fixed space item on a
UlToolbar object.
Flexible Space Bar Button Item -
A rnain % Represents a flexible space item ona
UlToolbar object.
3s:iPhone 7 («C hR) — 100% -+ E3 1= o taf| 32 @ button o

Figure 7-12. Adding a Button object to the screen

5. Just like with the Label object, simply double-click the Button
object in order to change its Title to My Station. The button should
automatically resize to fit the new title.

6. Next, you need to add the Label fields that will hold the radio station
information. These fields are situated just after the existing Label
objects. Figure 7-13 shows the placement of the first label. Once
the Label object is placed, it needs to be resized so that it can show
more text, as shown in Figure 7-14.

CHAPTER 7: Swift Classes, Objects, and Methods

Content Mode Scale To Fill
Semantic Unspecified

@ =
Frequency:
Band:
My Station
ras:iPhone 7 (wC nR) — 100% -+

(=1

Tag

User Int ion Enabled
Multiple Touch

| >l o JeRS

Alpha

Tint NN Default

Drawing) Opague
Hidden
Clears Graphics Context
Clip to Bounds
Autoresize Subviews

Stretching 0. o

Width Height

OO0 e @

Label - A variably sized amount of
Labe static text.

Lo
=

2 (o tai | B2 (@ iabel

Figure 7-13. Adding another Label object

()“()

CHAPTER 7: Swift Classes, Objects, and Methods 123

®
W: 118.0
H: 21.0
StationName:-----—-4-abel------o--- 0
Frequency:
Band:
My Station

Figure 7-14. Stretching the Label object

Note Stretching the Label object allows the Label’s text to contain a reasonably long string. If you
didn’t resize the Label object, the text would be cut off (since it wouldn’t fit), or the font size would
get smaller.’

7. Repeat adding and sizing a Label object next to the existing
Frequency and Band Labels, as shown in Figure 7-15. It’s okay to
leave the default text of the label set to “Label” for now.

"By using either code or Interface Builder, you can customize how the Label object reacts to text
that is too large to fit. The behavior described is based on typical defaults for the Label object.

124 CHAPTER 7: Swift Classes, Objects, and Methods

7]
Station Name: Label
Frequency: Label
Band: Label
My Station

Figure 7-15. Adding another Label object

Hooking Up the Code

Now that all the user interface objects are in place, you can begin to hook up these
interface elements to the variables in your program. As you saw in Chapter 6, you do this by
connecting the user interface objects with the objects in your program.

1. Start by connecting the Label object to the right of Station Name to
your variable, as shown in Figure 7-16. Right-click (or Control-click)
the View Controller object and drag it to the Label object next to the
Station Name text to bring up the list of outlets.

v View Controller Scene

¥ (_s-Miaw Controller

v Vies;_‘__"_'“"--—-_.___‘___h » B
Safe Area R
Station Name: T
Frequency: T
Band: Station Name: 1abei *
B My Station i =

Frequency: Label

L Label

L | Label .
- Band: Label
&) First Responder

[= Exit

» Storyboard Entry Point

Lol | |l (=

My Station

Figure 7-16. Creating a connection

http://dx.doi.org/10.1007/978-1-4842-3063-3_6

CHAPTER 7: Swift Classes, Objects, and Methods 125

2. When the connection is dropped from the View Controller icon,
another small menu will be shown. Click the property name that
you want to display in this Label object—in this case, you want the
stationName property, as shown in Figure 7-17.

Outlets
stationBand
stationFrequency

stationName
view

Figure 7-17. Connecting the Label to your stationName property

3. Now, the interface Label object is connected to the stationName
property. Whenever you set the property’s value, the screen will also
be updated. Repeat the previous connection steps for Frequency
and Band.

To hook up your button, you need a method in the ViewController class to handle this. You
could go to the ViewController.swift file and add it there. There is also a shortcut to adding
@IBOutlet properties and @IBAction methods. On the right side of the Xcode toolbar, click
the Assistant Editor icon shown in Figure 7-18 (it looks like two circles).

@< OO0

Figure 7-18. The Assistant Editor icon

After clicking the Assistant Editor icon, a second window will pop open showing the
ViewController source. Right-click (or Control-click) and drag the button to the code
window, as shown in Figure 7-19.

126 CHAPTER 7: Swift Classes, Objects, and Methods

2 J/ ViewController.switt
3 // RadioStations
® B i
5 [/ Created by Thorn on 7/24/17.
6 [/ Copyright ® 2017 Innovativeware. All rights

reserved.
. 7 1
Station Name: Label .
9 import UIKit
Frequency: Label 10
11 class ViewController: UIViewController {
Band: Label 12
@ @IBOutlet weak var stationMame: UILabell
® @IBOutlet weak var stationFrequency: UILabel!
® @IBOutlet weak var stationBand: UILabel!
) 16
My Station var myStation: RadioStation
0 8
19 required init?(coder aDecoder: NSCoder) {
20
21 myStation = RadioStation()
22 myStation.frequency = 104.7
23 myStation.name = "KZZP"
24 super.init(coder: aDecoder)
26 }
27
28
29 override func viewDidLoad() {
30 super.viewDidLoad()
31 // Do any additional setup after loading the

view, typically from a nib.

}

override func didReceiveMemoryWarning() {

35 super.didReceiveMemoryWarning()
36 // Dispose of any resources that can be
recreated.
o— | A N
39 Insert Outlet, Action, or Outlet Collectio
40}

Figure 7-19. Using the Assistant editor to create your method

4. When you release the mouse, a little window will pop up, as shown in
Figure 7-20.

CHAPTER 7: Swift Classes, Objects, and Methods 127

override func didReceiveMemoryWarning() {

e : P — 5 super.didReceiveMemoryWarning()
1 w .

onnection \Acton _ v/ | /! Dispose of any resources that can be

Object | [View Controller < | recreated.

Name buttonClick] ¢ ¥

Type Any ﬁ

Event | Touch Up Inside ¢ b 1
Arguments | Sender)P

12

Cancel | (Connect |
T

Figure 7-20. Creating the action

Select Action and set the name to buttonClick. Xcode will now create your method for you.

Finish your method by adding the code shown in Figure 7-21.

O] @IBAction func buttonClick(_ sender: Any) {

40 stationName.text = self.myStation.name
¥l stationFrequency.text = "\(myStation.frequency)"
42 if myStation.isBandFM() == 1 {
43 stationBand.text = "FM"
} else {

45 stationBand.text = "AM"

48 }

Figure 7-21. Finished buttonClick method

Let’s walk through the code you just added. First, on line 39, you’ll notice the IBAction
attribute. This lets Xcode know that this method can be called as a result of an action. So,
when you go to connect an action to your application, you will see this method.

Lines 40 and 41 both set the text fields to the values found in your RadioStation class.
Line 40 is as follows:

stationName.text = myStation.name

The stationName variable is what you just connected to the user interface Label object, and
myStation.name is used to return the name of the station.

Line 41 effectively does the same thing as line 40, but you have to first convert the double
value (the station’s frequency) to a String. The \(myStation.frequency) substitutes the value
of the frequency property into the string.

128 CHAPTER 7: Swift Classes, Objects, and Methods

Lines 42 to 46 make use of both the instance variables and the Type Methods of the
RadioStation class. Here, you simply call the method isBandFM() on the myStation object. If
so, the station is an FM station and isBandFM() will return a 1; otherwise, assume it’s the AM
band. Lines 43 and 45 show the band value on the screen.

Tip The Button sends the Touch Up Inside event whenever a user touches the inside of the button
and then releases—not until the user lifts their finger is the event actually sent.

Running the Program

Once the connection has been made, you’re ready to run and test your program! To do this,
simply click the Run button at the top left of the Xcode window, as shown in Figure 7-22.

' XK) ® /% RadioStations)

Figure 7-22. Click the Play button to run your program

If there are no compile errors, the iPhone Simulator should come up, and you should see
your application. Simply click the My Station button, and the radio station information will be
displayed, as shown in Figure 7-23.

CHAPTER 7: Swift Classes, Objects, and Methods 129

Carrier =

Station Name: KZZP

Frequency: 104.7

Band: FM

My Station

Figure 7-23. Showing your radio station information

If things don’t quite look or work right, retrace your steps and make sure all the code and
connections described in this chapter are in place.

Taking Type Methods to the Next Level

In your program, you haven’t taken advantage of all the type methods for RadioStation, but
this chapter does describe what a type method is and how it is used. Use that knowledge
to try a few of the exercises mentioned at the end of this chapter. Just play around with this
simple working program by adding or changing type or instance methods to get an idea of
how they work.

130 CHAPTER 7: Swift Classes, Objects, and Methods

Accessing the Xcode Documentation

There is a wealth of information provided in the Xcode developer documentation. When
Xcode is opened, select Help » Documentation and API Reference (see Figure 7-24) to
open the Documentation window.

Source Control

Window

Search

Documentation and API Reference

Xcode Help
What's New in Xcode
Release Notes

Quick Help for Selected Item
Search Documentation for Selected Text ~\3/

Figure 7-24. The Xcode Help menu

~38?

Once it’s opened, the search window can be used to look up any of the Swift classes you’ve
used in this chapter, including the String class documentation, as shown in Figure 7-25.

¥ Swift

2/ Appiit

21 Foundation

% Objective-C

23 Swett Stancard Lisrory
23 Umot

i Watchiit

22/ Accounts

22| AddressBook

&2 AddrossBooil

22| AdSupport

1 ApplicaticnServices
22| Camit

1 Clogikit

22| Cloudiit

i Contacts

22| Contactstn
21 Core Data

22| Core Foundation
i Core Location
22| Core Mation
2/ Core Spotight
22| Core Text

i/ EventKit

22/ Eventiaul

2/ Mealtnii

22| HealtnKitUl
5| HomeKit

>
.
.
.
.
.
.
.
.
.
.
>
.
.
.
(3

Swift Standard Library String
Structure

String

A Unicode string value.

Qverview

A string is a series of characters, such as “Swift”. Strings in Swift are Unicode correct,
locale insensitive, and designed to be efficient. The String type bridges with the
Objective-C class NSString and offers interoperability with C functions that works with
strings.

ou can create new strings using string literals or string interpolations. A string literalis a
series of characters enclosed in quotes.

let greeting = “Welcome!"

String Interpolations are string literals that evaluate any included expressions and convert

the results to string form. String interpolations are an easy way to build a string from

multiple pieces. Wrap each ion in a string | ien in , prefixed by a

hackslash

Figure 7-25. Xcode documentation

Language
Swift

On This Page
Overview
Nested Types
Symbols

Relationships
See Also

CHAPTER 7: Swift Classes, Objects, and Methods

There are several different things to discover about the String class shown in Figure 7-25.

131

Go through the documentation and the various companion guides that Apple provides. This
will give you a more thorough understanding of the various classes and the various methods

supported by them.

Summary

Once again, congratulate yourself for being able to single-handedly stuff your brain with a lot

of information! Here is a summary of what was covered in this chapter:

Swift classes review
Type methods
Instance methods
Creating a class
Limitations of using type methods versus instance methods
Initializing the class and making use of the instance variables
Making use of your new RadioStation object
Building an iPhone app that uses your new object
Connecting interface classes to properties

Connecting user interface events to methods in your class

EXERCISES

Change the code that creates your RadioStation class and make the station’s name
much longer than what can appear on the screen. What happens?

Change the current button and add a new button. Label the buttons FM and AM. If

the user clicks the FM button, show an FM station. If the user clicks the AM button,
display an AM station. (Hint: you’ll need to add a second RadioStation object to the
ViewController.swift file.)

Clean up the interface a little by making sure that the user doesn’t see the text “Label”
when the iPhone application first starts.

Fix the issue by using the interface tool.

How could you fix this by adding code to the application instead?

Add more validation to the @IBAction func buttonClick(_ sender: AnyObject)
method. Right now, it validates FM ranges but not AM ranges. Fix the code so that it also

validates an AM range.

If the radio station frequency is out of bounds, use the existing labels to display some

type of error message.

Chapter

Programming Basics in Swift

Swift is an elegant language. It mixes the efficiency of a compiled language with the
flexibility and modern features of many scripting languages.

This chapter introduces some of the more common concepts in Swift, such as properties
and collection classes. It also shows how properties are used from within Xcode when
dealing with user interface elements. This sounds like a lot to accomplish, but Swift, the
Foundation framework, and the Xcode tool provide a wealth of objects and methods and a
way to build applications with ease.

Using let vs. var

If you have spent much time with Swift, you have seen the word var appear before variable
declarations. You may also have seen let before other declarations. The word var is used

to define a variable, while the word let is used to define a constant. This means that if you
declare a value with let, you will not be able to change the value. The following code defines
a constant:

let myName = "Brad"

Once you define a constant, you cannot change the value.

Caution Xcode will now warn you if you declare a variable and never change its value. It will
recommend using let instead of var.

myName = "John"

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 133
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_8

https://doi.org/10.1007/978-1-4842-3063-3_8

134 CHAPTER 8: Programming Basics in Swift

This will give you an error. It you want to create a mutable or changeable variable, you need
to use var. For example, you can do the following:

var myName = "Brad"
myName = "John"

This will not give you any errors because myName is now a variable. This does not relate to
only Strings and Ints, but it can also be used with collections and other objects.

Variables give you more flexibility, so why would anyone ever want to use a constant? The
quick answer is performance. If you know that you have a value that will not change, the
compiler can optimize that value as a constant.

Understanding Collections

Understanding collections is a fundamental part of learning Swift. In fact, collection objects
are fundamental constructs of nearly every modern object-oriented language library
(sometimes they are referred to as containers). Simply put, a collection is a type of class that
can hold and manage other objects. The whole purpose of a collection is that it provides a
common way to store and retrieve objects efficiently.

There are several types of collections. While they all fulfill the same purpose of being able
to hold other objects, they differ mostly in the way objects are retrieved. The most common
collections used in Swift are the Array and the Dictionary.

Both of these collections can be created as constants or regular variables. If you create a
collection as a constant, you must fill it with the objects at the time of creation. It cannot be
modified after that point.

Using Arrays

The Array class is like any other collection, in that it allows the programmer to manage a
group of objects. An array is an ordered collection, which means that objects are entered in
an array in a certain order and retrieved in the same order.

Note There are some methods for working with arrays that allow you to change the order of the
objects or to add an object at a specific location in the array.

The Array class allows an object to be retrieved by its index in the array. An index is the
numeric position that an object would occupy in the array. For example, if there are three
elements in the array, the objects can be referenced with indices from 0 to 2. Like with most
things in Swift and other programming languages, indices start at 0, not 1. See Listing 8-1.

CHAPTER 8: Programming Basics in Swift 135

Listing 8-1. Accessing objects in an array

1 var myArray: [String] = ["One", "Two", "Three"]
2 print(myArray[o0])
3 print(myArray[1])
4 print(myArray[2])

As you can see, objects in the array can be retrieved via their index. The indices start at O
and can’t exceed the size of the array minus 1. You can easily calculate the size of the array
by accessing the count property of the Array object, as shown here:

var entries = myArray.count

In fact, every collection type, including, Array and Dictionary, contains a count property.

Adding items to the end of an array is simple. You can just call the append method on the
array. See Listing 8-2.

Listing 8-2. Adding objects to an array

var myArray: [String] = ["One", "Two", "Three"]
myArray.append("Four")
myArray.append("Five")
myArray.append("Six")

B S N

Swift provides you with many different methods for adding items to an array. If you want
to add multiple objects to an array, you can use the standard += (often called plus equals)
operator. Listing 8-3 creates an array and then adds three more String objects to the array
on line 2. Notice the new values are in brackets instead of parentheses.

Listing 8-3. Adding multiple objects to an array

1 var myArray: [String] = ["One", "Two", "Three"]
2 myArray += ["Four", "Five", "Six"]

As discussed earlier, an array is actually ordered. The order of the objects in your array is
important. There may be times where you need to add an item at a certain position in the
array. You can accomplish this with the insert(at:) method, as shown in Listing 8-4.

Listing 8-4. Adding a string to the beginning of an array

1 var myArray: [String] = ["Two", "Three"]
2 myArray.insert("One", at: 0)

The array now contains One, Two, Three.

Accessing items in an array is simple. You can use standard square brackets to access an
object at a certain position. For example, myArray[0] would give you the first object in the
array. If you want to loop through each of the items in the array, you can use something
called fast enumeration or For-In Loops. Listing 8-5 is an example of fast enumeration.

136 CHAPTER 8: Programming Basics in Swift

Listing 8-5. Fast enumeration

1 var myArray: [String] = ["One", "Two", "Three"]
2 for myString in myArray {

3 print(myString)

4}

The magic happens in line 2 of Listing 8-5. You tell Swift to assign each value of myArray to
a new constant called myString. You can then do whatever you want to do with myString. In
this case, you just print it. It will go through all of the objects in the array without you having
to know the total number of objects. This is a fast and effective way to pull items out of an
array.

Removing objects from an array is simple too. You can use the remove(at:) method, as
shown in Listing 8-6.

Listing 8-6. Removing an object

var myArray: [String] = ["One", "Two", "Three"]
myArray.remove(at: 1)
for myString in myArray {

print(myString)

Ui b W N

The output from Listing 8-6 will be One, Three. This is because you removed the object
with the index of 1. Remember, this is the second object in the array because array indices
always begin at 0.

You have seen how flexible Swift is in letting you interact with arrays. They are powerful
collections that you will use on a regular basis as a programmer. This section covered the
basics of arrays, but there are many more things arrays can do.

Using the Dictionary Class

The Swift Dictionary class is also a useful type of collection class. It allows the storage
of objects, just like the Array class, but Dictionary is different in that it allows a key to be
associated with the entry. For example, you could create a dictionary that stores a list of
attributes about someone such as a firstName, lastName, and so on. Instead of accessing
the attributes with an index like with an array, the dictionary could use a String like
"firstName". However, all keys must be unique — that is, "firstName" cannot exist more
than once. Depending on your program, finding unique names is normally not a problem.

Here’s an example of how you create a dictionary:
var person: [String: String] = ["firstName": "John", "lastName": "Doe"]

This creates a simple dictionary called person. The next part of the declaration tells the
dictionary what kinds of objects the keys and the values will be. In this case, the keys are
Strings, and the values are Strings. You then add two keys to the dictionary. The first key
is firstName, and that key has a value of John. The second key is lastName, and that has

CHAPTER 8: Programming Basics in Swift 137

a value of Doe. You can access the values in the dictionary by using a similar notation to
arrays.

print(person["firstName"])

This code will print the name Optional("John") since that is the value for the key firstName.
The Optional appears in the previous example because the value of a key in a dictionary is
an optional value. You can use the same style of code to change the values in a dictionary.
Let’s say, for this example, that John now likes to go by Joe instead. You can change the
value in the dictionary with a simple line of code.

person["firstName"] = "Joe"
You can add a new key to a dictionary with the same notation.
person["gender"] = "Male"

If you decide you want to remove a key from a dictionary, such as the gender key you just
added, you can do so by setting the value of that key to nil.

person["gender"] = nil

Now the dictionary will contain only firstName and lastName. Remember that dictionaries are
not ordered. You cannot rely on the order, but there will be times when you need to iterate
over a dictionary. This is done in a manner similar to arrays. The main difference is that in

an array, you assign one variable, while in a dictionary, you need to assign the key and the
value. See Listing 8-7.

Listing 8-7. Iterating over a dictionary

1 var person: [String: String] = ["firstName": "John", "lastName": "Doe"]
2 for (myKey, myValue) in person {

3 print(myKey + ": " + myValue)

4}

This example will print the following:

firstName: John
lastName: Doe

Dictionaries are a great way to organize data that does not need to be ordered. It is also a
great way to look up data based on a certain key. They are very flexible in Swift and should
be used to organize and optimize your code.

Creating the BookStore Application

You are going to create an app that will demonstrate how to use arrays. You will create a
UITableView and use an array to populate the UITableView with data. Let’s start by creating
the base application project. Open Xcode and select a new Master-Detail Application

138 CHAPTER 8: Programming Basics in Swift

project, as shown in Figure 8-1. In this project, you will create a few simple objects for what
is to become your bookstore application: a Book object and the BookStore object. You’ll
visit properties again and see how to get and set the value of one during this project. Lastly,
you’ll put the bookstore objects to use, and you’ll learn how to make use of objects once
you’ve created them.

Choose a template for your new project:

watchOS tvOS macOS Cross-platform S)
‘ Application
. — . PR
1 # AR -
/ . ok - . / v
Single View App Game Augmented Document Based Master-Detail App
Reality App App
.) - . C\ .
®00) L& v _ :D._)
Page-Based App Tabbed App Sticker Pack App iMessage App
‘ Framework & Library
S fi) LN
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel "~ Next

Figure 8-1. Creating the initial project based on the Master-Detail Application template

1. Click the Next button and name the project BookStore, as shown in
Figure 8-2. The company name is required—you can use any company
name, real or otherwise. The example uses com.innovativeware, which
is perfectly fine. Make sure the device family is iPhone and that the
Language is set to Swift. Do not check the Use Core Data checkbox.

Note This type of app would be a good candidate for using Core Data, but Core Data is not
introduced until Chapter 11. You will use an array for data storage in this app.

http://dx.doi.org/10.1007/978-1-4842-3063-3_11

CHAPTER 8: Programming Basics in Swift

Choose options for your new project:

139

Product Name:

Team:

Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

BookStcre|
Innovativeware LLC
Innovativeware
com.inno

com.inno.BookStore
Swift

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel

Figure 8-2. Selecting the product (application) name and options

Previous

2. Once everything is filled out, click the Next button. Xcode will

prompt you to specify a place to save the project. Anywhere you can

remember is fine—the desktop is a good place.

3. Once you decide on a location, click the Create button to create the

new project. This will create the boilerplate BookStore project, as

shown in Figure 8-3.

Next

140 CHAPTER 8: Programming Basics in Swift

ese » A, BockStore | i IPhone 7 Plus BookStare: Ready | Today at 10:04 AM = o <030
BHRQAAGCDT O I HW & BookStore 0D ®
[
¥ . Bookstore O cenera Capabilities Resource Tags Infe. Build Sattings Build Phases Build Ry 'demiity and Type
¥ [0 BookStore e Name BookStore
=+ AppDelegate.swift 2 ¥ Identhty
=’ Location Absolute
= MasterViewContraller.swift W BockSumoa ~
= DetallViewControlierswift TARGETS i Marne BookStore xcodepro)
aplay Full Path {Users/bradless/Dropbox/
Mein sterysosrd | oBooksion | ; i
S Bundie Identifier com.inno. BookStore “u"'“"“s;“w“'f
5 Assets.xcassats m:!sﬂ BoakStora/
- Ore. XCOSeDro]
LaunchScraan. storyboard Version 1.0 |
Into.plist Build 1 Project Document
¥ (B Products Project Format Xcode B.0-compatible
¥ Signing Organization Innovativeware
: Class Prefix
Autematically manage signing
Xcode will craste and uodate rctiies, Ao 105, and
Text Settings
Team Innovativeware LLC a Indent Using _ Spaces
P " Widths dfe
Provisioning Profile Xcode Managed Profile Tab Tndent
Signing Certificate iPhone Developer: Brad Lees (CBBBUTYTEA) Virap lines
¥ Deplayment info DO e o
Deployment Target [~]
Covices Universal B
Main Interface Main B
Mo Matches
Device Orientation [Fortrait
Upside Down
Landseape Left
B Landscape Right
Status Bar Style Default B
@ o+ - |® B @

Hide status bar

Figure 8-3. The source listing of the boilerplate project

4. Click the plus (+) sign at the lower left of the screen in the Navigator
area to add a new object to the project. Choose New File. Then
choose the iOS section on the top and choose Swift File on the right,
as shown in Figure 8-4. It’s also possible to right-click (or Control-click)
the Navigation area and then select the New File menu option. There
is no difference between this approach and clicking the plus sign—do
whatever feels more natural.

o <

CHAPTER 8: Programming Basics in Swift 141

Choose a template for your new file:

watchOS tvOS macQOS f:)

Source

) m
Cocoa Touch Ul Test Case Unit Test Case m Objective-C File
Class Class Class
h g Cr N
Header File C File C++ File Metal File
User Interface
Storyboard View Empty Launch Screen

Cancel

Figure 8-4. Creating a new Swift file

5. You’re choosing a plain Swift file, which will create a new empty Swift
file that you’re going to use for the Book class. After selecting this,
click the Next button.

6. Xcode will ask you what to name your file. Use the name Book. Xcode
will also ask to which folder it should save the new file. To keep
things simple, choose the BookStore folder in your project. This is
where all the other class files for the project are stored.

7. Double-click the BookStore folder and then click the Create button.
You’ll see the main edit window for Xcode and the new file, Book. swift,
in the Navigator area, as shown in Figure 8-5.

8. Repeat the previous steps and create a second object called
BookStore. This will create a BookStore. swift file. You'll be using this
class later in this chapter. For now, you’ll concentrate on the Book class.

142 CHAPTER 8: Programming Basics in Swift

BEE QA = B K< & Bookstore BookStore » [B) Book.swift) No Selection
v g BookStore 10
¥ | | BockStore 2 f/ Book.swift
. 3 [/ BookStore
4 AppDelegate.swift "
) LS L Bl 5 [/ Created by Thorn on 7/27/17.
» DetallViewController.swift & [/ Copyright ® 2817 Innovativeware. All rights reserved.

Main.steryboard "

B ? impert Foundation

LaunchScreen.storyboard
Info.plist

Book.swift

+ BookStore swilt
> Products

Figure 8-5. The empty Swift file

9. Click the Book.swift file and let’s start defining your new class!

Creating Your Class

By adding a Swift rather than a Cocoa Touch class, Xcode creates an empty Swift file. You
can add multiple classes to this file. Swift is more flexible, and it is not necessary to have
only one class per file. Xcode allows you to add the classes as you want.

Note Itis still a good idea to keep your Swift classes in separate files. This makes organizing and
finding classes easier, especially when you're dealing with large projects, but there will be cases where
a smaller class is only used with another class and it makes sense to keep them in the same file.

Let’s create the Book class. Type the following code into the Book. swift file:
class Book {
}

Now you have your class, as shown in Figure 8-6. That is all you need to do to create
a class.

CHAPTER 8: Programming Basics in Swift 143

//

// Book.swift

// BookStore

//

// Created by Thorn on 7/27/17.

// Copyright @ 2017 Innovativeware. All rights reserved.
//

import Foundation
class Book {
12
5}

Figure 8-6. The empty Book class

Introducing Properties

The class is simply called Book. True, you have a class, but it doesn’t store anything at this
point. For this class to be useful, it needs to be able to hold some information, which is
done with properties. When an object is used, it has to be instantiated. Once the object is
instantiated, it has access to its properties. These variables are available to the object as
long as the object stays in scope. As you know from Chapter 7, scope defines the context
in which an object exists. In some cases, an object’s scope may be the life of the program.
In other cases, the scope might be just a function or method. It all depends on where the
object is declared and how it’s used. Scope will be discussed in more detail later. For now,
let’s add some properties to the Book class to make it more useful.

Listing 8-8. Adding instance variables to the Book.swift file

W ooNOUVIL B~ WN R

B
[N

12
13
14
15

/7

// Book.swift

// BookStore

/7

// Created by Thorn on 7/27/17.

// Copyright © 2017 Innovativeware. All rights reserved.
//

import Foundation

class Book {
var title: String =
var author: String =
var description: String =

}

Listing 8-8 shows the same Book object from before, but now there are three new properties
placed inside the braces, on lines 12 to 14. These are all String objects, which means they
can hold text information for the Book object. So, the Book object now has a place to store

http://dx.doi.org/10.1007/978-1-4842-3063-3_7

144 CHAPTER 8: Programming Basics in Swift

title, author, and description information. Notice, the code assigns an initial value to the
property. If an initial value is not assigned, the class would need an init method to assign
initial values.

Accessing Properties

Now that you have some properties, how can you use them? How are they accessed?
Unfortunately, simply declaring a property doesn’t necessarily give you access to it. There
are two ways to access these variables.

One way, of course, is within the Book object.

The second way is from outside the object—that is, another part of the
program that uses the Book object.

If you are writing the code for a method within the Book object, accessing its property is
quite simple. For example, you could simply write the following:

title = "Test Title"

From outside the object, you can still access the title variable. This is done through the use
of dot notation.

myBookObject.title = "Test Title"

Finishing the BookStore Program

With the understanding of properties, you are going to now venture forth to create the actual
bookstore program. The idea is simple enough — create a class called BookStore that will be
stocked with a few Book objects.

Creating the View

Let’s start by first getting the view ready. If you need a refresher on how to build an interface
in Xcode, refer to Chapter 6.

1. Click the Main.storyboard file in the Navigator area. This will display
Xcode’s Interface Builder, as shown in Figure 8-7. You will see five
scenes in the Main.storyboard file. Navigate to the right to find the
Detail Scene.

http://dx.doi.org/10.1007/978-1-4842-3063-3_6

CHAPTER 8: Programming Basics in Swift 145

B < 2 BookStore BookStore Main.storyboard Main.storyboard (Base) ' No Selection
> Master Scene
Detail
> Detail Scene
> Split View Controller Scene
< Master Detail

> Master Scene

» Navigation Controller Scene

Detail view content goes here

Figure 8-7. Preparing the Bookstore’s Detail View

2. By default, when you create a blank Master-Detail application, Xcode
adds a label with the text “Detail View content goes here.” Select
and delete this Label object because you are going to add your own.
You’re going to add some new fields to display some details about
a selected book. Since you deleted this control, you also need to
remove the code that references it.

a. Inthe DetailViewController.swift file, remove the following line:

@IBOutlet weak var detailDescriptionLabel: UILabel!

b. Inthevar detailItem: AnyObject? property declaration, remove the following
line:

configureView()

c. Inthe method named configureView, remove the following lines:
// Update the user interface for the detail item.
if let detail = detailltem {

if let label = detailDescriptionLabel {
label.text = detail.description
}

146 CHAPTER 8: Programming Basics in Swift

Your DetailViewController.swift file should now look like Figure 8-8.

1/
2 // DetailViewController.swift
3 // BookStore
4/
5 // Created by Thorn on 7/27/17.
6 [/ Copyright @ 2817 Innovativeware. All rights reserved.
71/

9 import UIKit

class DetailViewController: UIViewController {

W N

16 func configureView() {
17 // Update the user interface for the detail item.

}
20 override func viewDidLoad() {
21 super.viewDidLoad()
22 // Do any additional setup after loading the view, typically from a nib.
24 }‘
26 override func didReceiveMemoryWarning() {
27 super.didReceiveMemoryWarning()
28 // Dispose of any resources that can be recreated.

3 var detailltem: NSDate? {
32 didSet {
33 // Update the view.
34 configureView()

Figure 8-8. Modified DetailViewController

3. Drag some Label objects from the Object Library onto the Detail
View, as shown in Figure 8-9. Make sure that the lower Label controls
are wider than the default. This is so that they can hold a fairly large
amount of text. The two Label objects with the text “Label” in them
are the ones you’re going to hook up to hold two of the values from
the Book object: Title and Author.

CHAPTER 8: Programming Basics in Swift 147

W
< Master Detail
Title:
Label
Author:
Label

Figure 8-9. Adding some Label objects

Adding Properties

Next, you’ll add some properties to the DetailViewController class. These properties will
correspond to the Detail View’s Label objects.

1. Click the Assistant Editor icon (it looks like two circles) in the
top-right corner of Xcode to open the Assistant editor. Make sure
the DetailViewController.swift file is showing in the editor.

2. Hold the Control key and drag the first blank Label control to the
code on the right side, as shown in Figure 8-10. Name the first one
titlelabel (see Figure 8-11) and click Connect, and then repeat the
process with the second one, naming it authorLabel. This will add two
variables to your DetailViewController class, as seen in Listing 8-9,
and hook them to the Label controls in the interface.

148 CHAPTER 8: Programming Basics in Swift

< Master Detail

Title:

abel

Author:
Label

Figure 8-10. Creating variables

Connection
Object
Name

Type

Storage

~ Cancel |

Figure 8-11. Naming the new property

// DetailviewController.swift
// BookStore

// Created by Thorn on 7/27/17.
// Copyright & 20817 Innovativeware. All rights reserved.
impert UIKit

class DetailViewController: UIViewController {

° | Insert Outlet or Outlet Collection

func configureView() {
/f Update the user interface for the detail item.

}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the
view, typically frem a nib.

}
override func didReceiveMemoryWarning() {

super.didReceiveMemoryWarning()
// Dispose of any resources that can be

recreated.
29 }
3 var detailltem: NSDate? {
didSet {
// Update the view.
configureView()
}
}
3; }
i
e’
[Outlet g) o
o : 11
_ Detail
y |2
titleLabel s
UlLabel 4
7= !5
| Weak) |
7
f A8
I 19

CHAPTER 8: Programming Basics in Swift 149

Listing 8-9. Modifying the DetailViewController.swift file to include the new labels

1 @IBOutlet weak var titleLabel: UILabel!
2 @IBOutlet weak var authorlLabel: UILabel!

Adding a Description

Now you need to add the description to the view. The description is a little different in that it
can span multiple lines. For this, you’re going to use the Text View object.

1. Start by adding the “Description:” label to the view, as shown in Figure 8-12.

o]

» B

< Master Detail

Title:
Label

Author:
Label

Description:

Figure 8-12. Adding a new Label object for the description

2. Next, add the Text View object to the Detail Scene, as shown in
Figure 8-13. The advantage the Text View object has is that it’s easy
to display multiple lines of text. While the Label object can display
multiple lines, it’s not as clean as the Text View object.

Note By default, the Text View control is filled with all kinds of seemingly random text. This text

is called Lorem Ipsum text. If you ever need to fill up a page with text, you can find any number of
Lorem Ipsum generators on the Web. As for the Text View control, the text can stay as it is since
you’ll remove it during runtime. Plus, if it’s cleared, it becomes a little more difficult spotting exactly
where the Text View control is on the screen—it’s white on white!

150 CHAPTER 8: Programming Basics in Swift

view

® B Content Mode = Scale To Fill a
Semantic Unspecified
Tag 02

< Master Detall Interaction User Interaction Enabled

Multiple Touch

Title: e e
Background [1 B
Label) -
= Tint EEEE Default

Drawing Opaque
Author: : Hidden
Clears Graphics Context

Label Clip to Bounds
Autoresize Subviews
Description: Stretching 0: 02
X Y

Lorem ipsum dolor sit er elit lamet, consectetaur
cillium adipisicing pecu, sed do eiusmod tempor Width Height
incididunt ut labore et dolore magna aligua. Ut
enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla

OO0 e B8

. - Text Field - Displays editable text
Text | and sends an action message to a
- < target object when Return is tapped.

Text View - Displays multiple lines
of editable text and sends an action
message to a target object when Ret...

Figure 8-13. Adding a Text View to the Detail View

3. For the program to take advantage of the Text View, you’ll need to
create an outlet for it, just like you did for the title and description.
Simply Control-drag the Text View to your DetailViewController
file, as you did earlier. Name this variable descriptionTextView.
The finished variable portion of DetailViewController will look like
Listing 8-10.

CHAPTER 8: Programming Basics in Swift 151

Listing 8-10. Adding an outlet for the text view to hold a description
import UIKit

class DetailViewController: UIViewController {

1

2

3

4

5 @IBOutlet weak var titlelabel: UILabel!
6 @IBOutlet weak var authorlLabel: UILabel!
7

8

@IBOutlet weak var descriptionTextView: UITextView!

4. Notice that the type is UITextView instead of UILabel —this is
important.

Caution As mentioned, it's important to make the descriptionTextView property a
UITextView type. If, for example, it was accidentally made a UILabel object, when trying
to connect the Text View from the screen to the outlet, Xcode wouldn’t be able to find the
descriptionTextView outlet. Why? Xcode knows that the control is a UITextView and is
looking for an outlet that is of type UITextView.

Creating a Simple Data Model Class

For the application to work, it needs to have some data to display. To do this, you’re going
to use the BookStore object you created earlier as the data model class. There’s nothing
different about a data model class except that its whole purpose is to allow an application to
access data via an object.

Modify the BookStore.swift file to look like Listing 8-11.

Listing 8-11. Modifying the BookStore.swift class to include an array

/7

// BookStore.swift

// BookStore

/1

// Created by Brad Lees on 8/20/16.

// Copyright © 2016 Innovativeware. All rights reserved.
/7

import Foundation

PO oo~NOUVL D WN R

0

11 class BookStore {

12 var bookList: [Book] = []
13}

On line 12, you add a variable that will hold the list of books; the property is simply named
bookList. Note that bookList is an array, which will allow you to add a series of objects, in
this case, a set of Book objects.

152 CHAPTER 8: Programming Basics in Swift

Next, let’s continue adding the code to the Swift file, BookStore.swift, as shown in
Listing 8-12.

Listing 8-12. Implementing the BookStore data object

1//

2 // BookStore.swift

3 // BookStore

4 //

5 // Created by Thorn on 7/27/17.

6 // Copyright © 2017 Innovativeware. All rights reserved.
7//

8

9 import Foundation

10

11 class BookStore {
12 var bookList: [Book] = []

13

14 init() {

15 var newBook = Book()

16 newBook.title = "Swift for Absolute Beginners"

17 newBook.author = "Bennett and Lees"

18 newBook.description = "iOS Programming made easy."

19 bookList.append(newBook)

20

21 newBook = Book()

22 newBook.title = "A Farewell to Arms"

23 newBook.author = "Ernest Hemingway"

24 newBook.description = "The story of an affair between an English nurse and an
American soldier on the Italian front during World War I."

25 bookList.append(newBook)

26 }

27 }

In Listing 8-12, lines 14 to 26 define the init method of the object, which is called whenever
the object is first initialized. In this method, you initialize the two books you plan to add to
your bookstore. Line 15 is where the first Book object is allocated and initialized. Lines 16

to 18 add a title, author, and description to your first book. Finally, line 19 adds the new

Book object to the bookList array. The important thing to note here is that once the object is
added to the array, the code can forget about it; the array now owns that object. Because of
this, line 21 is not a problem.

Line 21 allocates a new Book object overwriting the old value. This tells the compiler that
you’re no longer interested in using the old value.

Lines 22 to 25 simply initialize and add the second book to the array.

That’s it! That’s all you need to define a simple data model class. Next, you need to modify
MasterViewController to access this class so that it can start displaying some data.

CHAPTER 8: Programming Basics in Swift 153

Modifying MasterViewController

The simple application has two view controllers: the main view controller, which is called
MasterViewController, and a secondary one called DetailViewController. View controllers
are objects that simply control the behavior of a view. For the application to start displaying
data from the data model, you need to first modify MasterViewController — this is where
the navigation of the application begins. The following code is already in place in the
template that Xcode has provided. You’re just going to modify it to add your data model.

First you'll need to modify the MasterViewController.swift file. You need to add a variable
to hold the Bookstore object. Listing 8-13 shows that the instance variable is added as a
property on line 15.

Listing 8-13. Adding the BookStore object

//

// MasterViewController.swift

// BookStore

//

// Created by Thorn on 7/27/17.

// Copyright © 2017 Innovativeware. All rights reserved.
//

import UIKit

OwWwoKo~NOUT B WN R

B
[N

class MasterViewController: UITableViewController {

[y
N

13 var detailViewController: DetailViewController? = nil
14 var objects = [Any]()
15 var myBookStore = BookStore()

Now that the BookStore object is initialized, you need to tell MasterViewController

how to display the list of books — not the detail, just the book titles. To do this, you’ll
need to modify a few methods. Fortunately, Xcode has provided a nice template, so the
modifications are small.

MasterViewController is a subclass of what’s called a UITableViewController class, which
displays rows of data to the screen. In this case, these are rows of book titles (well, just two
for this simple program but a list nonetheless).

There are three main methods that control what and how data is displayed in a
UITableViewController.

The first is numberOfSections(in;): Since the application has only one
list, or section, this method returns 1.

The second is tableView(_:numberOfRowslInSection:): In this program,
you return the number of books in the bookstore array. Since this is the
only section, the code is straightforward.

The third method is tableView(_:cellForRowAt:): This method is called for
each row that is to be displayed on the screen, and it’s called one row at
a time.

154 CHAPTER 8: Programming Basics in Swift

Listing 8-14 details the changes you need to make to get the list of books displaying on the
view. The changes start on line 63 in the source file.

Listing 8-14. Setting up the view to display the books

64 override func numberOfSections(in tableView: UITableView) -> Int {

65 return 1

66 }

67

68 override func tableView(_tableView: UITableView, numberOfRowsInSection section: Int)
-> Int {

69 return myBookStore.booklList.count

70 }

71

72 override func tableView(_tableView: UITableView, cellForRowAt indexPath: IndexPath)
-> UITableViewCell {

73 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)
74 cell.textlLabel!.text = myBookStore.bookList[indexPath.row].title

75 cell.accessoryType = .disclosureIndicator

76 return cell

77 }

Out of all of this code, you need to modify only a few lines. Everything else can stay the way
it is. This is one of the advantages of using the Xcode templates. Line 68 simply returned 1;
you needed to change it so that it now returns the count of items in the BookStore class.

Line 74 looks a little more complicated. Basically, each line of the UITableView is what is
called a cell (a UITableViewCell to be specific). Line 74 sets the text of the cell to the title of
a book. Let’s look at that code a little more specifically:

cell.textlLabel!.text = myBookStore.bookList[indexPath.row].title

First, myBookStore is the BookStore object, which is pretty clear. You’re referencing the array
in the BookStore object called bookList. Since bookList is an array, you can access the book
you want in brackets in the indexPath.row. The value indexPath.row specifies which row
you’re interested in — indexPath.row will always be less than the total count minus 1. So,
calling myBookStore.bookList[indexPath.row] returns a Book object. The last part, .title,
accesses the title property from the returned Book object. The following code is equivalent
to what you just did in one line:

1 var book: Book
2 book = myBookStore.bookList[indexPath.row]
3 cell.textlLabel!.text = book.title

Now, you should be able to build and run the application and see the two books you created
in the data model, as shown in Figure 8-14.

CHAPTER 8: Programming Basics in Swift 155

Carrier 12:28 PM = 5 4

Edit Master -+
Swift for Absolute Beginn...

A Farewell To Arms

Figure 8-14. Running the application for the first time

But, you’re not done yet. You need to make the application display the book when you
click one of them. To make this happen, you need to make one last modification to
MasterViewController.

The method prepare(for:sender:) is called whenever a row is touched on the screen.
This method is called each time your app transitions to a different view in the Storyboard.
Listing 8-15 shows the small changes you need to make in order to hook the Detail View to
the book data.

Listing 8-15. Selecting the book when touched

50
51
52
53
54

55
56

57
58
59
60

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

}

if segue.identifier == "showDetail" {
if let indexPath = tableView.indexPathForSelectedRow {

let selectedBook: Book = myBookStore.bookList[indexPath.row]
let controller = (segue.destination as! UINavigationController).
topViewController as! DetailViewController
controller.detailItem = selectedBook
controller.navigationItem.leftBarButtonItem = splitViewController?.
displayModeButtonItem
controller.navigationItem.leftItemsSupplementBackButton = true

If line 53 looks similar to line 74 in Listing 8-14, that’s because it’s basically the same thing.
Based on indexPath.row, you select the specific book from the BookStore object and save it
in a constant called selectedBook.

On line 55, you take selectedBook and store it in a property called detailItem that is
already part of the existing DetailViewController class. That’s all you need to do in
MasterViewController. You’ve basically passed off the book to DetailViewController.
You’re almost done. Now you need to make a few small modifications to the
DetailViewController so that it displays the Book object properly.

156 CHAPTER 8: Programming Basics in Swift

Modifying the DetailViewController

Earlier in this chapter, you modified the DetailViewController so that it would display
some detail information about a book. In the code you just finished, you modified the
MasterViewController so that it passes the selected book to the DetailViewController.
Now all that remains is to simply move the information from the Book object in the
DetailViewController to the appropriate fields on the screen. All of this is done in one
method — configureView — as seen in Listing 8-16.

Listing 8-16. Moving the Book object data to the Detail View

19 func configureView() {

20 if let myBook = detailltem {

21 titlelabel.text = myBook.title

22 authorLabel.text = myBook.author

23 descriptionTextView.text = myBook.description
24 }

25 }

The configureView method is one of many convenience methods included in the Xcode
template and is called whenever the DetailViewController is being initialized. This is where
you will move your selected Book object’s information to the fields in the view.

Lines 20 to 24 in the DetailViewController.swift file is where you move the information
from the Book object to the view. If you recall, line 55 in Listing 8-15 set the selected book
into a property on the DetailViewController called detailItem. Lines 20 pulls that item out
into a Book object called myBook.

Lines 21 to 23 simply move each of the Book object’s properties to the view controls you
built earlier in the chapter.

There is one more line of code that needs to be changed. Line 40 declared detailltem as
an NSDate. We need to change it to be a Book object. We also need to remove the call to
configureView on line 43. The final declaration should look like Listing 8-17.

Listing 8-17. Changing the detailltem

40 var detailltem: Book? {

41 didSet {

42 // Update the view.
43 }

44 }

Now we need to tell your view to call the configureView method when it is loaded. Add the
following line to the end of the viewDidLoad function:

configureView()

That’s all you need to do in this class. If you build and run the project and click one of the
books, you should see something like Figure 8-15.

CHAPTER 8: Programming Basics in Swift 157

Carrier = 9:39 AM () #
{ Master Detail
Title:

A Farewell to Arms

Author:
Ernest Hemingway

Description:

The story of an affair between an English nurse and
an American soldier on the Italian front during
World War |.

Figure 8-15. Viewing the book details for the first time

Summary

You’ve reached the end of this chapter! Here is a summary of the topics covered:

Understanding collection classes: Collection classes are a powerful set
of classes that come with Foundation and allow you to store and retrieve
information efficiently.

Using properties: Properties are variables that are accessible once the
class has been instantiated.

Looping with for...in: This feature offers a new way to iterate through
an enumerated list of items.

Building a Master-Detail application: You used Xcode and the Master-
Detail Application template to build a simple bookstore program to
display books and the details of an individual book.

Creating a simple data model: Using the collection classes you learned
about, you used an array to construct a BookStore object and used it as
a data source in the BookStore app.

Connecting data to the view: You connected the Book object’s data to
the interface fields using Xcode.

158

CHAPTER 8: Programming Basics in Swift

EXERCISES

Add more books to the bookstore using the original program as a guide.
On the Master Scene, remove the Edit button as we will not be using it in this app.
Enhance the Book class so it can store another attribute—a price or genre, for example.

Modify the DetailViewController so that the new fields are displayed. Remember to
connect an interface control to a property.

Change the BookStore object so that a separate method is called to initialize the list of
Book objects (instead of putting it all in the init method).

There is another attribute to a UITableViewCell called the detailTextLabel. Try to
make use of it by setting its text property to something.

Using Xcode to modify the interface, play with changing the background color of the
DetailViewController in the storyboard file.

For a tougher challenge:

Sort the books in the BookStore object so they appear in ascending order on the
MasterDetailView.

Chapter

Comparing Data

In this chapter, we will discuss one of the most basic and frequent operations you will
perform as you program: comparing data. In the bookstore example, you may need to
compare book titles if your clients are looking for a specific book. You may also need to
compare authors if your clients are interested in purchasing books by a specific author.
Comparing data is a common task performed by developers. Many of the loops you learned
about in Chapter 8 will require you to compare data so that you know when your code
should stop looping.

Comparing data in programming is like using a scale. You have one value on one side
and another value on the other side. In the middle, you have an operator. The operator
determines what kind of comparison is being done. Examples of operators are “greater
than,” “less than,” or “equal to.”

The values on either side of the scale are usually variables. You learned about the different
types of variables in Chapter 3. In general, the comparison functions for different variables
will be slightly different. It is imperative that you become familiar with the functions and
syntax to compare data because this will form the basis of your development.

For the purposes of this chapter, we will use an example of a bookstore application. This
application will allow users to log in to the application, search for books, and purchase them.
We will cover the different ways of comparing data to show how they would be used in this
type of application.

Revisiting Boolean Logic

In Chapter 4, we introduced Boolean logic. Because of its prevalence in programming, we
will revisit this subject in this chapter and go into more detail.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 159
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_9

https://doi.org/10.1007/978-1-4842-3063-3_9
http://dx.doi.org/10.1007/978-1-4842-3063-3_8
http://dx.doi.org/10.1007/978-1-4842-3063-3_3
http://dx.doi.org/10.1007/978-1-4842-3063-3_4

160 CHAPTER 9: Comparing Data

The most common comparisons that you will program your application to perform are
comparisons using Boolean logic. Boolean logic usually comes in the form of if/then
statements. Boolean logic can have only one of two answers: yes or no. The following are
some good examples of Boolean questions that you will use in your applications:

Is 5 larger than 37
Does now have more than five letters?
Is 6/1/2010 later than today?

Notice that there are only two possible answers to these questions: yes and no. If you are
asking a question that could have more than these two answers, that question will need to
be worded differently for programming.

Each of these questions will be represented by an if/then statement. (For example, “If 5 is
greater than 3, then print a message to the user.”) Each if statement is required to have some
sort of relational operator. A relational operator can be something like “is greater than” or “is
equal to.”

To start using these types of questions in your programs, you will first need to become
familiar with the different relational operators available to you in the Swift language. We
will cover them first. After that, you will learn how different variables can behave with these
operators.

Using Relational Operators

Swift uses six standard comparison operators. These are the standard algebraic operators
with only one real change: In the Swift language, as in most other programming languages,
the “equal to” operator is made by two equals signs (==). Table 9-1 describes the operators
available to you as a developer.

Table 9-1. Comparison Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
== Equal to

1= Not Equal to

Note A single equals sign (=) is used to assign a value to a variable. Two equals signs (==) are
needed to compare two values. For example, if(x=9) will try to assign the value of 9 to the
variable x, but now Xcode throws an error in this case. if(x==9) will do a comparison to see
whether x equals 9.

http://dx.doi.org/10.1007/978-1-4842-3063-3_4

CHAPTER 9: Comparing Data 161

Comparing Numbers

One of the difficulties developers have is dealing with different data types in comparisons.
Earlier in this book, we discussed the different types of variables. You may remember that 1
is an integer. If you wanted to compare an integer with a float such as 1.2, this will cause
some issues. This is where type casting becomes handy.

Note Type casting is the conversion of an object or variable from one type to another.

In the bookstore application, you will need to compare numbers in many ways. For example,
let’s say the bookstore offers a discount for people who spend more than $30 in a single
transaction. You will need to add the total amount the person is spending and then compare
this to $30. If the amount spent is larger than $30, you will need to calculate the discount.
See the following example:

var discountThreshold = 30
var discountPercent = 0
var totalSpent = calculateTotalSpent()

if totalSpent > discountThreshold {
discountPercent = 10
}

Let’s walk through the code. First, you declare the variables (discountThreshhold,
discountPercent, and totalSpent) and assign a value to them. Notice you do not need to
specify the type of number for the variables. The type will be assigned when you assign it a
value. You know that discountThreshold and discountPercent will not contain decimals, so
the compiler will type them as Ints. In this example, you can assume you have a function
called calculateTotalSpent, which will calculate the total spent in this current order and
return the value as an Int. You then simply check to see whether the total spent is larger than
the discount threshold; if it is, you set the discount percent. If we wanted a customer who
spent exactly $30 to get the same discount, we could use a >= instead of a >.

Another action that requires the comparison of numbers is looping. As discussed in Chapter 4,
looping is a core action in development, and many loop types require some sort of comparison
to determine when to stop. Let’s take a look at a for loop:

var numberOfBooks: Int = 50

for y in 0..<numberOfBooks {
doSomething()

In this example, you iterate, or loop, through the total number of books in the bookstore. The
for statement is where the interesting stuff starts to happen. Let’s break it down.

The for loop declares a variable with an initial value of 0 and will increment it while it is less
than numberOfBooks. This is a much quicker way of doing for loops than was required in
Objective-C.

http://dx.doi.org/10.1007/978-1-4842-3063-3_4

162 CHAPTER 9: Comparing Data

Creating an Example Xcode App

Now let’s create an Xcode application so you can start comparing numeric data.

1. Launch Xcode and select File » New » Playground to create a new
playground. This chapter will use a playground to make it easier to
play around with comparisons.

2. Select Blank as shown in Figure 9-1. Click Next.

Choose a template for your new playground:

m tvOS macOS 3|

Playground

N N N S

Game Map Single View

Cancel Next

Figure 9-1. Creating a new playground

3. On the next page, enter the name of your playground. Here we used
Comparison as the name, but you can choose any name you like.

Note Xcode Playgrounds, by default, are saved in the Documents folder in your user home.

4. Once the new playground is created, you will see the standard Xcode
window.

5. Add the following line after the default code in the playground:

print("Hello World")
This line creates a new String with the contents Hello World and passes it to the print
function that is used for debugging.

Xcode will automatically run the new line you added and show the result on the right-hand
side as seen in Figure 9-2.

CHAPTER 9: Comparing Data

/f: Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground® “Hello. playground”

print("Hello World") "Hella Worldin'
B

Figure 9-2. Playground output

1. Go to the beginning of the line that begins with print. This is the line
that is responsible for printing the Hello World string. You are going
to comment out this line by placing two forward slashes (//) in front
of the line of code. Commenting out code tells Xcode to ignore it
when it executes the code. In other words, code that is commented
out will not run.

2. Once you comment out the line of code, the code will no longer be
run so Hello World will no longer show in the playground as seen in
Figure 9-3.

Comparison

iE:

f/: Playground - noun: a place where pecple can play
import UIKit
var str = "Hello, playground" “Hellg, playground

ffprint("Hello World")

Figure 9-3. Playground output with commented out code

3. We want to use the log to output the results of comparisons. Add
one line, as shown here:

print("The result is \(6 > 5 ? "True" : "False")")

Note The previous code, (655 ? "True" : "False"),is called a ternary operation. It is
essentially just a simplified way of writing an if/else statement.

4. Place this line in your code. This line is telling your application to
print The result is. Then it will print True if 6 is greater than 5, or it
will print False if 5 is greater than 6. See Figure 9-4.

Because 6 is greater than 5, it will print “The result is True.”

163

164 CHAPTER 9: Comparing Data

f£/: Playground - noun: a place where people can play

import UIKit

wvar str = "Hello, playground” Hello, playground”
f/print{"Helle World")

9 print("The result is \(é > 6 ? *True" : "False")") The result is True\n’

Figure 9-4. Ternary output

You can change this line to test any comparisons we have already discussed in this chapter
or any of the examples you will do later.

Let’s try another example.

var i = 5

var y = 6

print("The result is \(y > i ? "True" : "False")")
In this example, you create a variable and assign its value to 5. You then create another
variable and assign the value to 6. You then change the print example to compare the
variables I and y instead of using actual numbers.

Note You may get compiler warnings when using this code in an actual Xcode project. The
compiler will tell you that the false portion of the ternary operator will never be executed. The
compiler can look at the values while you are typing the code and know that the comparison will
always be true.

You will now explore other kinds of comparisons, and then you will come back to the
application and test some of them.

Using Boolean Expressions

A Boolean expression is the easiest of all comparisons. Boolean expressions are used to
determine whether a value is true or false. Here’s an example:

var j =5

if >0/
someCode()

}

The if statement will always evaluate to true because the variable j is greater than zero.
Because of that, the program will run the someCode () method.

Note In Swift, if a variable is optional and therefore not guaranteed to be assigned a value, you should
use a question mark after the variable declaration. For example, var j becomesvar j: Int?.

CHAPTER 9: Comparing Data 165

If you change the value of j to 0, the statement will evaluate to false because j is now 0.

var j =0

if j»>0{
someCode()

}

Placing an exclamation point in front of a Boolean expression will change it to the opposite
value (a false becomes a true, and a true becomes a false).

var j =0

if 1(j > 0) {
someCode()

}

The second line now asks “If not j>0,” which, in this case, is true because j is equal to 0.
This is an example of using an integer to act as a Boolean variable. As discussed earlier,
Swift also has variables called Bool that have only two possible values: true or false.

Note Swift, like many other programming languages, uses true or false when assigning a
value to a Boolean variable.

Let’s look at an example related to the bookstore. Say you have a frequent buyers’ club that
entitles all members to a 15 percent discount on all books they purchase. This is easy to
check. You simply set the variable clubMember to true if the person is a member and false if
he or she is not. The following code will apply the discount only to club members:

var discountPercent = 0
var clubMember= false

if clubMember {
discountPercent = 15
}

Comparing Strings

Strings are a difficult data type for most C languages. In ANSI C (or standard C), a string is
just an array of characters. Objective-C took the development of the string even further and
made it an object called NSString. Swift has taken the String class even further and made it
easier to work with. Many more properties and methods are available to you when working
with an object. Fortunately for you, String has many methods for comparing data, which
makes your job much easier.

166 CHAPTER 9: Comparing Data

Let’s look at an example. Here, you are comparing passwords to see whether you should
allow a user to log in:

var enteredPassword = "Duck"
var myPassword = "duck"

var continuelogin = false

if enteredPassword == myPassword {
continuelogin = true
}

The first line just declares a String and sets it value to Duck. The next line declares
another String and sets its value to duck. In your actual code, you will need to get the
enteredPassword string from the user.

The next line is the part of the code that actually does the work. You simply ask the strings if
they are equal to each other. The example code will always be false because of the capital
"D" in the enteredPassword versus the lowercase "d" in the myPassword.

There are many other different comparisons you might have to perform on strings. For
example, you may want to check the length of a certain string. This is easy to do.

var enteredPassword = "Duck"

var myPassword = "duck"

var continuelogin = false

if enteredPassword.count > 5 {
continuelogin = true

}

Note count is a property that can be used to count strings, arrays, and dictionaries.

This code checks to see whether the entered password is longer than five characters.

There will be other times when you will have to search within a string for some data.
Fortunately, Swift makes this easy to do. String provides a function called contains, which
allows you to search within a string for another string. The function contains takes only one
argument, which is the string for which you are searching.

var searchTitle: String

var bookTitle: String

searchTitle = "Sea"

bookTitle = "2000 Leagues Under the Sea"

if bookTitle.contains(searchTitle) {
addToResults()
}

This code starts off similarly to other examples you have examined. We create two variables.
This example then takes a search term and checks to see whether the book title has that
same search term in it. If it does, it adds the book to the results. This can be adapted to
allow users to search for specific terms in book titles, authors, or even descriptions.

CHAPTER 9: Comparing Data 167

For a complete listing of the methods supported by String, see the Apple documentation at
https://swift.org/documentation/#the-swift-programming-language.

Using the switch Statement

Up to this point, you’ve seen several examples of comparing data by simply using the if
statement.

if someValue == SOME_CONSTANT {

} el;é.if someValue == SOME_OTHER_CONSTANT {

} eléé.if someValue == YET SOME_OTHER CONSTANT {
} .

If you need to compare a variable to several constant values, you can use a different method
that can simplify the comparison code: the switch statement.

Note In Objective-C, you could only use values to compare in a switch statement. Swift allows
developers more freedom in using the switch statement. With Swift, developers can now compare
most objects including custom objects.

The switch statement allows you to compare one or more values against another variable.
var customerType = "Repeat"

switch customerType { // The switch statement followed by a begin brace

case "Repeat": // Equivalent to if (customerType == "Repeat")

// Call functions and put any other statements here after the case.

case "New":

case "Seasonal":
default: // Default is required in Swift
} // End of the switch statement.

The switch statement is powerful, and it simplifies and streamlines comparisons to several
different values.

In Swift, the switch statement is a powerful statement that can be used to simplify repeated
if/lelse statements.

https://swift.org/documentation/#the-swift-programming-language

168 CHAPTER 9: Comparing Data

Comparing Dates

Dates are a fairly complicated variable type in any language, and unfortunately, depending
on the type of application you are writing, they are common. Swift 4 has its own native Date
type. The Swift Date class has a lot of nice methods that make comparing dates easy. We
will focus on the compare function. The compare function returns a ComparisonResult, which
has three possible values: orderedSame, orderedDescending, and orderedAscending.

// Today's Date
let today: Date = Date()

// Sale Date = Tomorrow
let timeToAdd: TimeInterval = 60*60%*24
let saleDate: Date = today.addingTimeInterval(timeToAdd)

var saleStarted = false
let result: ComparisonResult = today.compare(saleDate)

switch result {
case ComparisonResult.orderedAscending:
// Sale Date is in the future
saleStarted = false
case ComparisonResult.orderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true
default:
// Sale Start Date is now
saleStarted = true

}

This may seem like a lot of work just to compare some dates. Let’s walk through the code
and see whether you can make sense of it.

let today: Date = Date()
let timeToAdd: TimeInterval = 60*60%*24
let saleDate: Date = today.addingTimeInterval(timeToAdd)

Here, you declare two different Date objects. The first one, named today, is initialized with
the system date or your device date. Before creating the second date, you need to add
some time to the first date. You do this by creating a TimeInterval. This is a number in
seconds. To add a day, you add 60*60*24. The second date, named saleDate, is initialized
with a date some time in the future. You will use this date to see whether this sale has
begun. We will not go into detail about the initialization of Date objects.

The result of using the compare function of a Date object is a ComparisonResult. You have to
declare a ComparisonResult to capture the output from the compare function.

let result = today.compare(saleDate)

This simple compares the two dates. It places the resulting ComparisonResult into the
constant called result.

CHAPTER 9: Comparing Data 169

switch result {

case ComparisonResult.orderedAscending:
// Sale Date is in the future
saleStarted = false

case ComparisonResult.orderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true

default:
// Sale Start Date is now
saleStarted = true

}

Now you need to find out what value is in the variable result. To accomplish this, you
perform a switch statement that compares the result to the three different options for
ComparisonResult. The first line finds out whether the sale date is greater than today’s date.
This means that the sale date is in the future, and thus the sale has not started. You then set
the variable saleStarted to false. The next line finds out whether the sale date is less than
today. If it is, the sale has started, and you set the saleStarted variable to true. The next
line just says default. This captures all other options. You know, though, that the only other
option is orderedSame. This means the two dates and times are the same, and thus the sale
is just beginning.

There are other methods that you can use to compare Date objects. Each of these methods
will be more efficient at certain tasks. We have chosen the compare method because it will
handle most of your basic date comparison needs.

Note Remember that a Date holds both a date and a time. This can affect your comparisons with
dates because it compares not only the date but also the time.

Combining Comparisons

As discussed in Chapter 4, you’ll sometimes need something more complex than a single
comparison. This is where logical operators come in. Logical operators enable you to check
for more than one requirement. For example, if you have a special discount for people who
are members of your book club and who spend more than $30, you can write one statement
to check this.

var totalSpent = 31

var discountThreshhold = 30
var discountPercent = 0
var clubMember = true

if totalSpent > discountThreshhold 8& clubMember {
discountPercent = 15
}

http://dx.doi.org/10.1007/978-1-4842-3063-3_4

170 CHAPTER 9: Comparing Data

We have combined two of the examples shown earlier. The new comparison line reads as
follows: “If totalSpent is greater than discountThreshold AND clubMember is true, then set
the discountPercent to 15.” For this to return true, both items need to be true. You can use
| | instead of 88 to signify “or.” You can change the previous line to this:

if totalSpent > discountThreshhold || clubMember {
discountPercent = 15
}

Now this reads as follows: “If totalSpent is greater than discountThreshold OR clubMember is
true, then set the discount percent to 15.” This will return true if either of the options is true.

You can continue to use the logical operations to combine as many comparisons together as
you need. In some cases, you may need to group comparisons using parentheses.

Summary

You've reached the end of the chapter! Here is a summary of the topics that were covered:
Comparisons: Comparing data is an integral part of any application.

Relational operators: You learned about the six standard relational
operators and how each is used.

Numbers: Numbers are the easiest pieces of information to compare.
You learned how to compare numbers in your programs.

Examples: You created a sample playground where you could test your
comparisons and make sure that you are correct in your logic. Then
you learned how to change the playground to add different types of
comparisons.

Boolean: You learned how to check Boolean values.

Strings: You learned how strings behave differently from other pieces of
information you have tested.

Dates: You learned how difficult it can be to compare dates and that you
must be careful to make sure you are getting the response you desire.

EXERCISES

Modify the example playground to compare some string information.

Write a Swift application that determines whether the following years are leap years:
1800, 1801, 1899, 1900, 2000, 2001, 2003, and 2010. Output should be written to the
console in the following format: The year 2000 is a leap year or The year
2001 is not a leap year.See http://en.wikipedia.org/wiki/Leap year
for information on determining whether a year is a leap year.

http://en.wikipedia.org/wiki/Leap_year

Chapter

Creating User Interfaces

Interface Builder enables iOS developers to easily create their user interfaces using a
powerful graphical user interface. It provides the ability to build user interfaces by simply
dragging objects from Interface Builder’s library to the editor.

Interface Builder stores your user interface design in one or more resource files, called
storyboards. These resource files contain the interface objects, their properties, and their
relationships.

To build a user interface, simply drag objects from Interface Builder’s Object Library pane

onto your view or scene. Actions and outlets are two key components of Interface Builder
that help you streamline the development process.

Your objects trigger actions in your views, and the actions are connected to your methods in
the app’s code. Outlets are declared in your .swift file and are connected to specific
controls as properties. See Figure 10-1.

Note Interface Builder was once a stand-alone application that developers used to design their
user interfaces. Starting with Xcode 4.0, Interface Builder has been integrated into Xcode.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 m
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_10

https://doi.org/10.1007/978-1-4842-3063-3_10

172 CHAPTER 10: Creating User Interfaces

Ranmber | [veme | [malposrs) [manstryoosms (Based | We Setecton | Astomanic | . ViewComter sat | No Selecten + =

Label

D Viewss:iPhone B (-C R B o bl
00000000 | 0 =
1 LU O | L e L v

Figure 10-1. Interface Builder

Understanding Interface Builder

Interface Builder saves the user interface file as a bundle that contains the interface objects
and relationships used in the application. These bundles previously had the file extension
.nib. Version 3.0 of Interface Builder used a new XML file format, and the file extension
changed to .xib. However, developers still call these files nib files. Later Apple introduced
storyboards. Storyboards enable you to have all of your views in one file with a .storyboard
extension.

Unlike most other graphical user interface applications, XIBs and storyboards are often
referred to as freeze-dried because they contain the archived objects themselves and are
ready to run.

The XML file format is used to facilitate storage with source control systems such as
Subversion and Git.

In the next section, we’ll discuss an app design pattern called Model-View-Controller. This
design pattern enables developers to more easily maintain code and reuse objects over the
life of an app.

The Model-View-GController Pattern

Model-View-Controller (MVC) is the most prevalent design pattern used in iOS development,
and learning about it will make your life as a developer much easier. MVC is used in software
development and is considered an architectural pattern.

CHAPTER 10: Creating User Interfaces 173

Architectural patterns describe solutions to software design problems that developers can
use in their code. The MVC pattern is not unique to iOS developers; it is being adopted by
many makers of integrated development environments (IDEs), including those running on
Windows and Linux platforms.

Software development is considered an expensive and risky venture for businesses.
Frequently, apps take longer than expected to write, come in over budget, and don’t work
as promised. Object-oriented programming (OOP) produced a lot of hype and gave the
impression that companies would realize savings if they adopted its methodology, primarily
because of the reusability of objects and easier maintainability of the code. Initially, this
didn’t happen.

When engineers looked at why OOP wasn’t living up to these expectations, they discovered
a key shortcoming with how developers were designing their objects: Developers were
frequently mixing objects in such a way that the code became difficult to maintain as the
application matured, the code moved to different platforms, or hardware displays changed.

Objects were often designed so that if any of the following changed, it was difficult to isolate
the objects that were impacted:

Business rules
User interfaces
Client-server or Internet-based communication

Objects can be broken down into three task-related categories. It is the responsibility of the
developer to ensure that each of these categories keeps their objects from drifting across
other categories.

As objects are categorized in these groups, apps can be developed and maintained more
easily over time. The following are examples of objects and their associated MVC category
for an iPhone banking application:

Model
Account balances
User encryption
Account transfers
Account login
View
Account balances table cell
Account login spinner control
Controller
Account balance view controller
Account transfer view controller

Logon view controller

174 CHAPTER 10: Creating User Interfaces

The easiest way to remember and classify your objects in the MVC design pattern is the
following:

Model: Unique business or application rules or code that represent the
real world. This is where the data resides.

View: Unique user interface code

Controller: Anything that controls or communicates with the model or
view objects

Figure 10-2 represents the MVC paradigm.

Model o> o

Neither Xcode nor Interface Builder forces developers to use the MVC design pattern. It is
up to the developers to organize their objects in such a way to use this design pattern.

Figure 10-2. MVC paradigm

It is worth mentioning that Apple strongly embraces the MVC design pattern, and all of the
frameworks are designed to work in an MVC world. This means that if you also embrace the
MVC design pattern, working with Apple’s classes will be much easier. If you don’t, you’ll be
swimming upstream.

Human Interface Guidelines

Before you get too excited and begin designing dynamic user interfaces for your app, you
need to learn some of the ground rules. Apple has developed one of the most advanced
operating systems in the world with iOS 11. Additionally, Apple’s products are known for
being intuitive and user friendly. Apple wants users to have the same experience from one
app to the next.

To ensure a consistent user experience, Apple provides developers with guidelines on how their
apps should look and feel. These guidelines, called the Human Interface Guidelines (HIG), are
available for iOS, macOS, watchOS, tvOS, and CarPlay. You can download these documents at
https://developer.apple.com/design/, as shown in Figure 10-3.

https://developer.apple.com/design/

CHAPTER 10: Creating User Interfaces 175

@& Developer Discover Design Develop Distribute Support Account Q

Human Interface Guidelines

Get in-depth information and Ul resources for designing great apps
that integrate seamlessly with Apple platforms.

i0S » watchOS » tvOS » CarPlay >

Figure 10-3. Apple’s Human Interface Guidelines

Note Apple’s HIG is more than recommendations or suggestions. Apple takes it very seriously.
While the HIG doesn’t describe how to implement your user interface designs in code, it is great for
understanding the proper way to implement your views and controls.

The following are some of the top reasons apps are rejected in Apple’s iTunes App Store:
B The app crashes.
B The app violates the HIG.
B The app uses Apple’s private APls.
[

The app doesn’t function as advertised on the iTunes App Store.

Note You can read, learn, and follow the HIG before you develop your app, or you can read, learn,
and follow the HIG after your app gets rejected by Apple and you have to rewrite part or all of it.
Either way, all iOS developers will end up becoming familiar with the HIG.

176 CHAPTER 10: Creating User Interfaces

Many new iOS developers find this out the hard way, but if you follow the HIG from day one,
your iOS development will be a far more pleasurable experience.

Creating an Example iPhone App with Interface Builder

Let’s get started by building an iPhone app that generates and displays a random number,
as shown in Figure 10-4. This app will be similar to the app you created in Chapter 4, but
you’ll see how much more interesting the app becomes with an iOS user interface (Ul).

Seed Random Number Generator

Generate Random Number

Figure 10-4. Completed iOS random number generator app

1. Open Xcode and select Create a new Xcode project. Make sure you
select Single View Application for iOS and then click Next, as shown

in Figure 10-5.

http://dx.doi.org/10.1007/978-1-4842-3063-3_4

CHAPTER 10: Creating User Interfaces 177

Choose a template for your new project:

m watchOS tvOS macOS Cross-platform S)
Application
(1] . AR P G
Single View App Game Augmented Document Based Master-Detail App
Reality App App
| 0o oy
00] ao N o
Page-Based App Tabbed App Sticker Pack App iMessage App
Framework & Library
= [LN
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library

Concel o]

Figure 10-5. Creating an iPhone app based on the Single View Application template

2. Name your project RandomNumber, select Swift for the language, and
click Next before creating your project, as shown in Figure 10-6.

178 CHAPTER 10: Creating User Interfaces

Choose options for your new project:

Product Name: RandomNumber b—

Team: The Zonie, LLC
Organization Name: The Zonie, LLC
Organization Identifier: com.thezonie
Bundle Identifier: com.thezonie.RandomNumber

Language: Swift * B

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous m

Figure 10-6. Naming your new Swift project

3. Your project files and settings are created and displayed, as shown in
Figure 10-7.

CHAPTER 10: Creating User Interfaces 179

e0e » # RandomNumber | g Prone X Randsmbumber: Ready | Today at 619 AM =9 <ol 20
BER QA @ o B |8 [Randomnumber
v [2 RandomNumber] Genera Capabilitios Resource Togs Into Bud Settings Build Phases Build Rules
¥ [RandomNumber
PROJECT

« AppDelegate switt ¥ identity
& roncombumber

Main. storyboard TARGETS Cisplay Name

5 Assets xcassets #- . RandomNumber : i —
Bundie Identifier | com.thezonie. RandemNumber

LaunchScreen storyboard
Info, plist Varsion |10

» ViewController.swilt

» L7 Products Build 1

¥ Signing

Automatically manage signing

Team | The Zorle, LLC B

Provisioning Profile Xcode Managed Profile

Signing f iPhone Stefan

¥ Deployment Info

Deployment Target

Devices | Universal

Main Interface Main

Device Drientation Portrait
Upsige Down
@ Landscape Left
18 Landscape Right

Status Bar Style | Detaut B

Hide status bar

Requires full screen

T App lcons and Launch Images
App lcons Source | Agplcon B o
Launch Images Source Use Asset Catalog..

Launch Screen File | LaunchScreen B

¥ Embedded Binaries

Figure 10-7. Source files

Although you have only one controller in this project, it’s good programming practice to
make your MVC groups at the beginning of your development. This helps remind you to
keep the MVC paradigm and not put all of your code unnecessarily in your controller.

4. Right-click the RandomNumber folder and then select New Group, as
shown in Figure 10-8.

180 CHAPTER 10: Creating User Interfaces

[] e » + Randomiumber | I Phone X RandomNumber: Ready | Today at 8:21 AM
BERQAOS T o BB & RangomNumber
¥ (& RandomNumber] Genera Capabiiities Resource Tags Infe Build Settings
. AppDole Show in Finder : ¥ identity
- Open with External Editor WnNumber
= Open As >
Main.s1o : Display N
Ba A ;m i Show File Inspector B Pl Hame
ey : I Bundle ldertifier com.thezonie RardomNurmber
LaunchS New File...
infopiist Add Files to "RandomNumber”... Version 1.0
» L7 Products
2 Delete Buld (1
New Group
¥ Signing

New Group without Folder

B Avtomatically manage sighing

Sort by Name ertificates
Sort by Type Team | The Zonie, LLC

Find in Selected Groups... Previsioning Profile Xeode Managed Profie

Source Control > Signing Certificate iPhone Developer: Stefan Kaczmarek

Project Navigator Help
" Deployment Info

Figure 10-8. Creating new groups

Build Phases Build Rules

5. Create a Models group, a Views group, and a Controllers group.

6. Drag the ViewController.swift file to the Controllers group. Drag
the Main.storyboard and LaunchScreen.storyboard files to the Views
group. Having these groups reminds you to follow the MVC design
pattern as you develop your code and prevents you from placing all

of your code in the controllers, as shown in Figure 10-9.

e0e) i RandomNumber | i iPhone X RandomNumber: Ready | Today at B:29 AM = @ &
B ERQ MOSE o B R < B ber Views Main storyboard Main.storyboard [Base] | No Selection
v [&) RandomNumber v [View Contraller Scene
¥ [RandomNumber v () view Controlier
> £ Models v [View View Controller
¥ 1] Views | £ Sate Area
B Main storyboard 70 First Responder
LaunchScreen.storyboard Eea

v [Contraliers - Storyboard Entry Point
| ViewControler.swift
« AppDelegate switt
5 Assets xcassets
Info.plist
» 3 Products

N
7

Figure 10-9. MVC groups with controller and storyboard files organized

7. Click the Main.storyboard file to open Interface Builder.

| o |

CHAPTER 10: Creating User Interfaces 181

Using Interface Builder

The most common way to launch Interface Builder and begin working on your views is to
click on the associated storyboard file, as shown in Figure 10-10.

w) il Phone X RandomMumber | Build g Today at 8:32 AM = QS0 00
B o< B RandomNumber RandomNumber Views Main storyboard Main storyboard (Base) View Controller Scena View Controller View ODeE 03 @
v [view Controller Scona
v) View Controlies Content Mode Scale To F B
v [l view [» B | Samaemic Ursoecifed B
3| Safe Aroa -
Tag [IH
B First Respancer Inspector
- D m Intersetion [User interaction Enabied
nt ;
Storyboard Entry Point GCU e Selector Multip'e Touch
Outline Bar Noha 1
Background C———— |
Tint | EEEN Default B
Dawing @ Cpaque
Higden
3 Clears Graphics Context
Clip to Bounds.
B Autoresize Subviews
Strotching 0 0}
x ¥
s e
Width Helght

Object

§ ——# ® O
Library
View Contreller - A controlier that

Storyboard Reference - Provides
a placehoider for a view conbolar in
an antarnal storybasd

< Navigation Controller - 4
e 5 Pavigation

Table View Contraller - &
controlier that manages & table view

Collection View Controller - A
Canvas eontzoler that manages & catieetion

iew.

Tab Bar Controller
- _—

D View as: iPhone 8 («C R} — 100% = tof ksl - s
D D D -— D = ~] Split View Controllor - &
| n D - Vary for Traits compoaite view contralier that

Figure 10-10. Interface Builder in the workspace window

When Interface Builder opens, you can see your scenes displayed on the canvas. You are
now able to design your user interface. First, you need to understand some of the sub-
windows within Interface Builder.

The Document Outline

The storyboard shows all the objects that your views contain. The following are some
examples of these objects:

m Buttons
m Labels

m Text fields

182 CHAPTER 10: Creating User Interfaces

Web views
Map views
Picker views

Table views

Note You can expand the width of the Document Outline to see a detailed list of all your objects,

as shown in Figure 10-10. To get more real estate for the canvas, you can shrink or hide your file
navigator.

The Object Library

The Object Library is where you can exploit your creativity. It's a smorgasbord of objects that
you can drag and drop into the View.

The Library pane can grow and shrink by moving the window splitter in
the middle of the view, as shown in Figure 10-11.

CHAPTER 10: Creating User Interfaces 183

D O

View Controller - A controller that
manages a view.

-, Storyboard Reference - Provides
| a placeholder for a view controller in
an external storyboard.

Navigation Controller - A
controller that manages navigation
through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

Collection View Controller - A
controller that manages a colleclion
view.

Tab Bar Controller - A controller
that manages a set of view
controllers that represent tab bar ite...

Split View Controller - A
composite view controller that
manages left and right view controlle...

Page View Controller - Presents a
sequence of view controllers as
pages.

GLKit View Controller - A
controller that manages a GLKit view.

AVKit Player View Controller - A
view controller that manages a
AVPlayer object.

0000000G

0 Object - Provides a template for

objects and controllers not directly
available in Interface Builder.

V. /

Lab I Label - A variably sized amount of
e static text.

Figure 10-11. Expand the Library pane to see more controls and slide the splitter to resize the window with the mouse

184 CHAPTER 10: Creating User Interfaces

Clicking the Icon View button in Figure 10-12 gives you a more compact view of the object
library contents, as shown in Figure 10-13.

D @ &

[| View Controller - A controller that
| ___J/ manages a view.

Storyboard Reference - Provides
a placeholder for a view controller in
an external storyboard.

. | controller that manages navigation
. "’ through a hierarchy of views.

y < Navigation Controller - A
|
y

_ .| Table View Controller - A
| | / controller that manages a table view.

ew Controller - A
that manages a collection

(n]n]
Figure 10-12. Object Library Icon View button

For Cocoa Touch objects, the Library contains the following:

m Controls

B Data views

B Gesture recognizers

m Obijects and controllers
B Window and bars

CHAPTER 10: Creating User Interfaces 185

D O @ B

-——
" N
S r=——y
y ! i
SRy
U
Y baaad
'S ’
LT L

b2 (o) < -

<>
\g

000

(1]

[+]
12
ne

2 (@ rier |

Figure 10-13. Various Cocoa Touch objects in the Object Library

186 CHAPTER 10: Creating User Interfaces

Inspector Pane and Selector Bar

The Inspector pane enables you to change the properties of the controls to make your objects
follow your command. The Inspector pane has six tabs across the top, as shown in Figure 10-14.

B File inspector

Quick Help inspector
Identity inspector
Attributes inspector

Size inspector

Connections inspector

GEREEEED)

View
Content Mode Scale To Fill B
Semantic Unspecified a
Tag 0°

Figure 10-14. The Attributes inspector and Selector Bar

Creating the View

The random number generator will have three objects in the view: one label and two buttons.
One button will generate the seed, another button will generate the random number, and the
label shows the random number generated by the app.

1. Scroll through the Object Library and drag two Buttons and one
Label to the View Controller scene, as shown in Figure 10-15.

CHAPTER 10: Creating User Interfaces 187

Button

Button

Label

| view

Content Mode | Scale To Fill

Semantic | Unspecified

o5l 1o

Tag 0

Interaction User Interaction Enabled
] Multiple Touch

Alpha 1

- Background []
+ Tint EEEE Default

o] o IR

Drawing @ Opaque
+ | Hidden
Clears Graphics Context
| Clip to Bounds
Autoresize Subviews

Stretching 02 ol

width Height

| A0 @ M
= -

La b el Label - A variably sized amount of

static text.

Button - Intercepts touch events and
Button sends an action message to a target
object when it's tapped.

Figure 10-15. Placing objects in the view

\ >

Segmented Control - Displays
multiple segments, each of which

functions as a discrete button.

Text Field - Displays editable text
Text | and sends an action message to a
A “ target cbject when Return is tapped.

Slider - Displays a continuous range
- == of values and allows the selection of
a single value.

188 CHAPTER 10: Creating User Interfaces

2. Double-click the first button, and change its title to “Seed Random
Number Generator,” then double-click the second button, and
change its title to “Generate Random Number” as shown in
Figure 10-16.

Seed Random Number Generator

Generate Random Number

Label

Figure 10-16. Renaming the button titles

CHAPTER 10: Creating User Interfaces

Now you get to use a great feature of Xcode. You can quickly and easily
connect your outlets and actions to your code. Xcode actually goes one
step further; it will create some of the code for you. All you have to do is
drag and drop.

3. Click the Assistant Editor icon at the top right of the screen. This will
display the associated .swift file for the view selected in the
storyboard, as shown in Figure 10-17.

Note If the correct associated . swift file doesn’t appear when you click the Assistant Editor
icon, make sure you selected and highlighted the view. Automatic also has to be selected in the
Assistant Editor’s jump bar.

Firiihad rusning Rardombumber on $hoes X

Label

O View s iPhone B (€ «Ri B ol 1al
I:I-jD.. 1000 | 0 gy Lo

Figure 10-17. Using the Assistant Editor to display the .swift file

Using Outlets
Now you can connect your label to your code by creating an outlet.

1. Control-drag from the label in the view to the top of your class file, as
shown in Figure 10-18. This is holding down the Control key on the
keyboard while clicking and dragging with the mouse. You can also
right-click and drag.

189

190 CHAPTER 10: Creating User Interfaces

2. A pop-up window will appear. This enables you to name and specify
the type of outlet.

N
. 2 f/ ViewController.swift
e B /! RandosMumber
£

fi Crested by Stefon Koczmarek on 9/24/17.
f/ Copyright @ 2017 The Zonie, LLC. All rights reserved.
i

import UIKit

{

closs ViewController: UIVies z
’ t or Outlet Collection

_~“override func viewdidload
super.viewDidLoad()
ff Do any additional setup after loading the view, typically from a nib.

}
Seed Random NMumber Generator ',’. 8 override func didReceiveMemoryWarning() {
i super.didReceiveMesoryWarning()
// Dispose of any resources that con be recreated.
}

Generate Random Numbef

e

A %)

Figure 10-18. Control-dragging to create an outlet

3. Name the outlet randomNumberLabel as shown in Figure 10-19 and
click the Connect button.

CHAPTER 10: Creating User Interfaces

Connection

Object

Name
Type
Sterage

Cancel

Seed Random Number Generator

Generate Random Number

dabef

£
@ Mf ViewController.swift
| /! RandosMumber
~ f
1 £/ Crested by Stefan Koczemarek on 9/24/17.
| f/ Copyright @ 2017 The Zonie, LLC. All rights reserved.
i
Outiet zl B
View Controlier § import UIKit
randemiumierLatel class ViewController: UIViewController {
UiLabel v &
a everride fune viewDidLoad() {
Weak super.viewDidLoad()
f! Do any additional setup after loading the view,

Connect
: }

override func didReceiveMemoryWarning() {
super.didReceived ingl)
// Dispose of

+

emoryWarn

Figure 10-19. Pop-up for randomNumberLabel outlet

s that can be recreated.

typically from a nib.

The code is created for the outlet, and the outlet is now connected to the Label object in
your Main.storyboard file. The shaded circle next to line 12 indicates the outlet is connected
to an object in the Main.storyboard file, as shown in Figure 10-20.

191

192 CHAPTER 10: Creating User Interfaces

~ fI ViewController.swift
» BE /] RandomNumber

il
/ Created by Stefan Ksczmarek on 9/24/17.

/I Copyright & 2817 The Zonie, LLC. All rights reserved.
7

import UIKit

class ViewController: UIViewController {
2IB0utlet weak vor rondomNumberLabel: UlLabel!

override func viewDidLoad() {
super.viewDidioad()
/f Do any sdditional setup ofter loading the view, typically from a nib.
}

Seed Random Number Generator
override func didReceiveMemorywarning() {

super. didReceiveMen o
// Dispose of any ¢

Generate Random Number

dabel

Figure 10-20. Outlet property code generated and connected to the Label object

There is a declaration that may be new to you called IBOutlet, commonly referred to simply
as an outlet. Outlets signal to your controller that this property is connected to an object in
Interface Builder. IBOutlet will enable Interface Builder to see the outlet and enable you to
connect the property to the object in Interface Builder.

Using the analogy of an electrical wall outlet, these property outlets are connected to
objects. Using Interface Builder, you can connect these properties to the appropriate object.
When you change the properties of a connected outlet, the object that it is connected to will
automatically change.

Using Actions
User interface object events, also known as actions, trigger methods.
Now you need to connect the object actions to the buttons.

1. Control-drag from the Seed Random Number Generator button
to the bottom of your class. Complete the pop-up as indicated in
Figure 10-21 and click the Connect button. Make sure you change
the connection to an Action and not an Outlet.

CHAPTER 10: Creating User Interfaces 193

£
\ 2 ff ViewController.swift
i E’ {.’_ RandosNumber
'

// Crested by Stefan Kaczearek on 9/24/17.
// Copyright & 2017 The Zonie, LLC. All rights reserved.
import UIKit

class ViewController: UIViewController {
- @IB0utlet weak var randomMumberLabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
o o] ¥
tGeed RandgrAt—bon Bunamatnd
s}

ide 1 ; = : 5
PR e o override func djdﬁucwol’n?ﬂorvﬂifnxngf) {

= super.didRoceiveMemoryW al)
Object View Controller . // Dispose of any resources that can be recreated.
Name seedAction ; ¥
Type | Any ﬂ X
Event | Touch Up Inside 5)
Arguments | Sender

Generat¢

Cancel Connect

Figure 10-21. Completing the pop-up for the Seed method

2. Repeat the previous steps for the Generate Random Number button
to create a generateAction method in your ViewController class.

The Class

All that is left is to complete the code for your outlet and actions in the .swift file for the
controller.

Open the ViewController.swift file and complete the seedAction and generateAction
methods, as shown in Figure 10-22.

194 CHAPTER 10: Creating User Interfaces

import UIKit

class ViewController: UIViewController {
O @IBOutlet weak var randomNumberLabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

° @IBAction func seedAction(_ sender: Any) {
srandom(CUnsignedInt(time(nil)))
randomNumberLabel.text = "Generator Seeded"

}

B @IBAction func generateAction(_ sender: Any) {
let generated = (arc4random() % 100) + 1
randomNumberLabel.text = "\(generated)"

}

Figure 10-22. The seedAction and generateAction methods completed

There is some code you should examine a bit further. The following line seeds the random
generator so that you get a random number each time you run the app. There are easier
ways of to do this, but for the purposes of this section, you just want to see how actions and
outlets work.

srandom(CUnsignedInt(time(nil)))

In the following code, the property text sets the UILabel value in your view. The connection
you established in Interface Builder from your outlet to the Label object does all the work
for you.

randomNumberLabel . text

There is just one more thing you need to do now. Select the Main.storyboard file and
then select your View Controller scene. Then, click the Resolve Auto Layout Issues button
followed by Add Missing Constraints. This will enable your controls to center correctly in
your view, as shown in Figure 10-23.

CHAPTER 10: Creating User Interfaces 195

B8 < » [B randomNumber) [0 R..ber) [0 Views) [M..rd) B M._e) | [5] View Controller Scene) (U} View Controller B < > (@) Automatic ! . ViewContr

¥ [View Controller Scene 1/

] 2 // ViewController.swift
Vg\c'rew(.‘.nntmller [n @ = 1 // RandomMumber

v (L] view & I
5":5-’"-‘“03 5 // Created by Stefan Kaczmar
| B | Seed Random Nu... & // Copyright e 2017 The Zoni:

[B] Generate Random...
| L] Random Number...
{7 First Responder

) - 11 class ViewController: UIViewCs
R B P ® @IBOutlet weak var randoml

import UIKit

override func viewDidLoad
super.viewDidLoad()
// Do any additional :

}

Seed Random Number Generator

override func didReceiveM
super.didReceiveMemor:
// Dispose of any res:

Generate Random Number 2 }
. @IBaction func seedAction
| } 25 srandom{CUnsignedInt(-
Label 26 randomNumberLabel. tex

)

® @IBAction func generatedc”
3 Any) {

3 let generated = (arcé
2 randomNumberlabel.tex

| O Viewas:iPhone8 (.CoR) — 100% -+ }m

000g000a

Vary for Trai " ._ salh
—q Add Missing Constraints

Reset to Suggested Constraints
Clear Constraints

Lm

I

Figure 10-23. Adding Missing Constraints

That’s it!

To run your iPhone app in the iPhone simulator, click the Play button. Your app should
launch in the simulator, as shown in Figure 10-24.

196 CHAPTER 10: Creating User Interfaces

Seed Random Number Generator

Generate Random Number

Figure 10-24. The completed random number generator app running in the iOS simulator

To generate the random number, tap the Generate Random Number button.

Summary

Great job! Interface Builder saves you a lot of time when creating user interfaces. You have a
powerful set of objects to use in your application and are responsible for a minimal amount
of coding.

Interface Builder handles many of the details you would normally have to deal with.
You should be familiar with the following terms:

Storyboard and XIB files

Model-View-Controller

Architectural patterns

Human Interface Guidelines (HIG)

Outlets

Actions

CHAPTER 10: Creating User Interfaces 197

EXERCISES

Extend the random number generator app to show a date and time in a Label object
when the app starts.

After showing a date and time label, add a button to update the data and time label with
the new time.

Chapter

Storing Information

As a developer, there will be many different situations when you will need to store data.
Users will expect your app to remember preferences and other information each time they
launch it. Previous chapters discussed the BookStore app. With this app, users will expect
your application to remember all of the books in the bookstore. Your application will need a
way to store this information, retrieve it, and possibly search and sort this data. Working with
data can sometimes be difficult. Fortunately, Apple has provided methods and frameworks
to make this process easier.

This chapter discusses two different formats in which data will need to be stored. It
discusses how to save a preference file for an iOS device and then how to use a SQLite
database in your application to store and retrieve data.

Storage Considerations

There are some major storage differences between the Mac and the iPhone, and these
differences will affect how you work with data. Let’s start by discussing the Mac and how
you will need to develop for it.

On the Mac, by default, applications are stored in the Applications folder. Each user has
their own home folder where preferences and information related to that user are stored.
Not all of the users will have access to write to the Applications folder or to the application
bundle itself.

On the iPhone and iPad, developers do not need to deal with different users. Every person
who uses the iPhone has the same permissions and the same folders. There are some other
factors to consider with the iPhone, though. Every application on an iOS device is in its

own sandbox. This means that files written by an app can be seen and used only by that
individual app. This makes for a more secure environment for the iPhone, iPad, Apple TV,
and Apple Watch, but it also presents some changes in the way you work with data storage.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 199
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_11

https://doi.org/10.1007/978-1-4842-3063-3_11

200 CHAPTER 11: Storing Information

Preferences/UserDefaults

There are some things to consider when deciding where to store certain kinds of information.
The easiest way to store information is within the preferences file, but this method has some
downsides.

All of the data is both read and written at the same time. If you are going
to be writing often or writing and reading large amounts of data, this
could take time and slow down your application. As a general rule, your
preferences file should never be larger than 100KB. If your preferences
file starts to become larger than 100KB, consider using Core Data as a
way to store your information.

The preferences file does not provide many options when it comes to
searching and ordering information.

The preferences file is really nothing more than a standardized XML file with accompanying
classes and methods to store application-specific information. A preference would be, for
example, the sorting column and direction (ascending/descending) of a list. Anything that is
generally customizable within an app should be stored in a preferences file.

Caution Sensitive data should not be stored in the preferences file or in a database without
additional encryption. Luckily, Apple provides a way to store sensitive information. It is called the
keychain. Securing data in the keychain is beyond the scope of this book.

Writing Preferences

Apple has provided developers with the UserDefaults class; this class makes it easy to read
and write preferences for iOS, macOS, tvOS, and watchOS. The great thing is that, in this
case, you can use the same code for iOS, macOS, and tvOS. The only difference between
the several implementations is the location of the preferences file.

Note For macOS, the preferences file is named com.yourcompany.applicationname.plist
and is located in the /Users/username/Library/Preferences folder. On i0S, the preferences
file is located in your application’s container in the /Library/Preferences folder.

All you need to do to write preferences is to create a UserDefaults object. This is done with
the following line:

var prefs: UserDefaults = UserDefaults.standard

This instantiates the prefs object so you can use it to set preference values. Next, you need
to set the preference keys for the values that you want to save. The BookStore app example
will be used to demonstrate specific instructions throughout this chapter. When running

a bookstore, you might want to save a username in the preferences. You also might want

CHAPTER 11: Storing Information 201

to save things such as a default book category or recent searches. The preferences file is
a great place to store this type of information because this is the kind of information that
needs to be read only when the application is launched.

Also, on iOS, it is often necessary to save your current state. If a person is using your
application and then gets a phone call, you want to be able to bring them back to the exact
place they were in your application when they are done with their phone call. This is less
necessary now with the implementation of multitasking, but your users will still appreciate it
if your application remembers what they were doing the next time they launch.

Once you have instantiated the object, you can just call set(_:forKey:) to set an object. If
you wanted to save the username of sherlock.holmes, you would call the following line of
code:

prefs.set("sherlock.holmes", forKey: "username"

After a certain period of time, your app will automatically write changes to the preferences
file. You can force your app to save the preferences by calling the synchronize function, but
this should only be used if you cannot wait for the next synchronization interval such as if
your app is immediately going to exit. To call the synchronize function, you would write the
following line:

prefs.synchronize()

With just three lines of code, you are able to create a preference object, set a preference
value, and write the preferences file. It is an easy and clean process. Here is all of the code:

var prefs: UserDefaults = UserDefaults.standard
prefs.set("sherlock.holmes", forKey: "username"
prefs.set(10, forKey: "booksInList")
prefs.synchronize()

Reading Preferences

Reading preferences is similar to writing preferences. Just like with writing, the first step is
to obtain the UserDefaults object. This is done in the same way as it was done in the writing
process:

var prefs: UserDefaults = UserDefaults.standard

Now that you have the object, you are able to access the preference values that are set.
For writing, you use the set syntax; for reading, you use the string(forKey:) method.
You use the string(forKey:) method because the value you put in the preference was a
String. In the writing example, you set preferences for the username and for the number
of books in the list to display. You can read those preferences by using the following
simple lines of code:

var username = prefs.string(forKey: "username"
var booksInlList = prefs.integer(forKey: "booksInList")

202 CHAPTER 11: Storing Information

Pay close attention to what is happening in each of these lines. You start by declaring the
variable username, which is a String. This variable will be used to store the preference
value of the username you stored in the preferences. Then, you just assign it to the value
of the preference username. You will notice that in the read example you do not use the
synchronize method. This is because you have not changed the values of the preferences;
therefore, you do not need to make sure they are written to a disk.

Databases

You have learned how to store some small pieces of information and retrieve them at a
later point. What if you have more information that needs to be stored? What if you need
to conduct a search within this information or put it in some sort of order? These kinds of
situations call for a database.

A database is a tool for storing a significant amount of information in a way that it can

be easily searched or retrieved. When reading data from a database, pieces of data are
returned rather than the entire file. Many applications you use in your daily life are based
on databases of some sort. Your online banking application retrieves your account activity
from a database. Your supermarket uses a database to retrieve prices for different items.
A simple example of a database is a spreadsheet. You may have many columns and many
rows in your spreadsheet. The columns in your spreadsheet represent different types of
information you want to store. In a database, these are considered attributes. The rows in
your spreadsheet would be considered different records in your database.

Storing Information in a Database

Databases are usually an intimidating subject for a developer; most developers associate
databases with enterprise database servers such as Microsoft SQL Server or Oracle.

These applications can take time to set up and require constant management. For most
developers, a database system like Oracle would be too much to handle. Luckily, Apple has
included a small and efficient database engine called SQLite in iOS, macOS, and tvOS. This
allows you to gain many of the features of complex database servers without the overhead.

SQLite will provide you with a lot of flexibility in storing information for your application. It
stores the entire database in a single file. It is fast, reliable, and easy to implement in your
application. The best thing about the SQLite database is that there is no need to install any
software; Apple has taken care of that for you.

However, SQLite does have some limitations that, as a developer, you should be aware of.

SQLite was designed as a single-user database. You will not want to use
SQLite in an environment where more than one person will be accessing
the same database. This could lead to data loss or corruption.

In the business world, databases can grow to become very large. It is
not surprising for a database manager to handle databases as large

as half a terabyte, and in some cases databases can become much
larger than that. SQLite should be able to handle smaller databases
without any issues, but you will begin to see performance issues if your
database starts to get too large.

CHAPTER 11: Storing Information 203

SQLite lacks some of the backup and data restore features of the
enterprise database solutions.

For the purposes of this chapter, you will focus on using SQLite as your database engine. If
any of the mentioned limitations are present in the application you are developing, you may
need to look into an enterprise database solution, which is beyond the scope of this book.

Note SQLite (pronounced “sequel-lite”) gets its name from Structured Query Language (SQL,
pronounced “sequel”). SQL is the language used to enter, search, and retrieve data from a
database.

Apple has worked hard to iron out a lot of the challenges of database development. As a
developer, you will not need to become familiar with SQL because Apple has taken care of
the direct database interaction for you through a framework called Core Data, which makes
interacting with the database much easier. Core Data has been adapted by Apple from a
NeXT product called Enterprise Object Framework, and working with Core Data is a lot
easier than interfacing directly with the SQLite database. Directly accessing a database via
SQL is beyond the scope of this book.

Getting Started with Core Data

Let’s start by creating a new Core Data project.

1. Open Xcode and select File » New » Project. To create an iOS Core
Data project, select iOS from the menu on the top. Then select Single
View App, as shown in Figure 11-1.

204 CHAPTER 11: Storing Information

Choose a template for your new project:

m watchOS tvO5 macOS

Application

(1] ¥

Single View App Game

\coc-‘ | & wes |

Page-Based App Tabbed App
Framework & Library
=) (|

Cocoa Touch
Static Library

Cocoa Touch
Framework

Cross-platform

| AR
Augmented
Reality App

(oo)

Sticker Pack App

Metal Library

=) -

Document Based Master-Detail App

App

©

iMessage App

Cancel

Figure 11-1. Creating a new project

2. Click the Next button when you’re done. The next screen will allow
you to enter the name you want to use. For the purposes of this
chapter, you will use the name BookStore.

3. Near the bottom, you will see the check box called Use Core Data.
Make sure this is checked and then click Next, as shown in

Figure 11-2.

Note Core Data can be added to any project at any point. Checking that box when creating a
project will add the Core Data frameworks and a default data model to your application. If you know
you are going to use Core Data, checking this box will save you time.

CHAPTER 11: Storing Information 205

Choose options for your new project:

Product Name: BookStcre|
Team: Innovativeware LLC
Organization Name: Innovativeware
Organization Identifier: com.inno
Bundle Identifier: com.inno.BookStore
Language: Swift

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous Next

Figure 11-2. Adding Core Data to your project

4. Select a location to save the project and click Create.

Once you are done with that, your new project will open. It will look similar to a standard
application, except now you will have a BookStore.xcdatamodeld file. This file is called a data
model and will contain the information about the data that you will be storing in Core Data.

The Model

Click the model file (BookStore.xcdatamodeld) to open it. You will see a window similar to
the one shown in Figure 11-3.

206 CHAPTER 11: Storing Information

BEZAQAMS=Eo BRCC [+ i & : |) @ Detautt
v £ BookStore —
=y ENTINES ¥ Entities
v BookStore
FETCH REQUESTS
= AppDelegate.swift Entity ~ Abstract Class
CONFIGURATIONS

= ViewController.swift
Main.storyboard @ Defeuh
i Assets xcassets
LaunchScreen.storyboard

Info.plist

B BookStore xcdatamodeld
> Products

Figure 11-3. The blank model

The window is divided into four sections. On the left, you have your entities. In more
common terms, these are the objects or items that you want to store in the database.

The top-right section contains the entity’s attributes. Attributes are pieces of information
about the entities. For example, a book would be an entity, and the title of the book would
be an attribute of that entity.

Note In database terms, entities are your fables, and the attributes of the entities are called
columns. The objects created from those entities are referred to as rows.

The middle portion of the panel on the right will show you all the relationships of an entity.
A relationship connects one entity to another. For example, you will create a Book entity

and an Author entity. You will then relate them so that every book can have an author. The
bottom-right portion of the screen will deal with fetched properties. Fetched properties are
beyond the scope of this book, but they allow you to create filters or queries for your data.

Let's create an entity.

1. Click the plus sign in the bottom-left corner of the window, or select
Editor » Add Entity from the menu, as shown in Figure 11-4.

CHAPTER 11: Storing Information

e

CITITIED

5 BookStore) | BookStore) |~ BookStore.xcdatamodeld) g BookStore.xcdatamodel) [Entity
Related Items

¥ Attributes

E Entity

FETCH REQUESTS

Attribute Type

CONFIGURATIONS

(® Default

1.

¥ Relationships

Relationship . Destination Inverse

+

¥ Fetched Properties

Fetched Property . Predicate

Figure 11-4. Adding a new entity

2.

Note

On the left side, double-click the Entity name and change the name
to Book.

You must capitalize your entities’ names.

Now let’s add some attributes. Attributes would be considered the
details of a book, so you will store the title, author, price, and year
the book was published. Obviously, in your own applications, you
may want to store more information, such as the publisher, page
count, and genre, but you want to start simple. Click the plus sign at
the bottom right of the window, or select Editor » Add Attribute, as
shown in Figure 11-5. If you do not see the option to add an attribute,
make sure you have selected the Book entity on the left side.

207

208 CHAPTER 11: Storing Information

ENTITIES

I3 Book
FETCH REQUESTS

CONFIGURATIONS

@ Default

¥ Attributes

Attribute .,

attribute

+

¥ Relationships

Relationship ,, Des

Figure 11-5. Adding a new attribute

4,

You will be given only two options for your attribute: the name and
the data type. Let’s call this attribute title. Unlike entities, attribute
names must be lowercase.

Now, you will need to select a data type. Selecting the correct data
type is important. It will affect how your data is stored and retrieved
from the database. The list has 13 items in it and can be daunting.
We will discuss the most common options and, as you become more
familiar with Core Data, you can experiment with the other options.
The most common options are String, Integer 32, Decimal, and Date.
For the title of the book, select String.

String: This is the type of attribute used to store text. This should be used
to store any kind of information that is not a number or a date. In this
example, the book title and author will be strings.

Integer 32: There are three different integer values possible for an attribute.
Each of the integer types differs only in the minimum and maximum values
possible. Integer 32 should cover most of your needs when storing an
integer. An integer is a number without a decimal. If you try to save a
decimal in an integer attribute, the decimal portion will be truncated. In this
example, the year published will be an integer.

Decimal: A decimal is a type of attribute that can store numbers with
decimals. A decimal is similar to a double attribute, but they differ in their
minimum and maximum values and precision. A decimal should be able to
handle any currency values. In this example, you will use a decimal to store
the price of the book.

Date: A date attribute is exactly what it sounds like. It allows you to store
a date and time and then performs searches and lookups based on these
values. You will not use this type in this example.

CHAPTER 11: Storing Information 209

6. Let’s create the rest of the attributes for the book. Now, add price. It
should be a Decimal. Add the year the book was published. For two-
word attributes, it is standard to make the first word lowercase and
the second word start with a capital letter. For example, an ideal
name for the attribute for the year the book was published would be
yearPublished. Select Integer 32 as the attribute type. Once you
have added all of your attributes, your screen should look like
Figure 11-6.

Note Attribute names cannot contain spaces.

ENTITIES ¥ Attributes
I3 Book
Attribute ,, Type
FETCH REQUESTS
N yearPublished Integer 32
CONFIGURATIONS 3 price Decimal ¢
@ Default B title String ¢
+ —

¥ Relationships

Relationship ., Destination Inverse

.+_

¥ Fetched Properties

Fetched Property Predicate

Figure 11-6. The finished Book entity

Note If you are used to working with databases, you will notice that you did not add a primary
key. A primary key is a field (usually a number) that is used to uniquely identify each record in a
database. In Core Data databases, there is no need to create primary keys. The Framework will
manage all of that for you.

210 CHAPTER 11: Storing Information

Now that you have finished the Book entity, let’'s add an Author entity.
1. Add a new entity and call it Author.

2. To this entity, add lastName and firstName, both of which are strings.

Once this is done, you should have two entities in your entity list. Now you need to add the
relationships.

1. Click the Book entity, and then click and hold on the plus sign that is
located on the bottom right of the screen. Select Add Relationship,
as shown in Figure 11-7. (You can also click the plus under the
Relationships section of the Core Data model.)

ENTITIES v Attributes
3 Author
Attribu Type
B R Attribute ype
earPublished Int 32 <
FETCH REQUESTS g :"(I et
itle String b+
CONFIGURATIONS m price Decimal]
@ Default &

¥ Relationships

Relationship ., Destination nverse

m relationship No Value No Inverse

Figure 11-7. Adding a new relationship

2. You will be given the opportunity to name your relationship. You
usually give a relationship the same name as the entity that you are
referencing. Type in author as the name and select Author from the
Destination drop-down menu.

3. You have created one-half of your relationship. To create the other
half, click the Author entity. Click the plus sign located at the
bottom right of the screen and select Add Relationship. You will
use the entity name that you are connecting to as the name of this
relationship, so you will call it books. (You are adding an s to the
relationship name because an author can have many books.) Under
Destination, select Book, and under Inverse, select the author
relationship you made in the previous step. In the Utilities window on
the right side of the screen, select the Data Model Inspector. Select
To Many for the type of the relationship. Your model should now look
like Figure 11-8.

CHAPTER 11: Storing Information 211

Note Sometimes in Xcode, when working with models, it is necessary to press the Tab key for the
names of entities, attributes, and relationships to update. This little quirk can be traced all the way

back to WebObjects tools.
ENTIT Relationship
ENTITES ¥ Attributes
& Author Namo books
& Book sl i Properties Transient Optional
last {1 ¥ =
FETCH REQUESTS B aalam Swing Destination Book B
firstName String &
COMFIGURATIONS joverssl author
(® Default i Delete Rule Nullify i
Type To Many %)
¥ Relationships Arrangement Ordered
Relationship . Destinatior Inverse Count v Minimum
M bocks Book authar - LTt
Advanced Index in Spotlight
Deprecated
+ _-—

Spotlight Store in External Record File

Figure 11-8. The final relationship

By default, Xcode will now know and be able to use your new entities. If you need to
customize your Core Data objects such as adding validation or custom calculated
properties, you will need to tell Xcode to generate NSManagedObject subclasses for you.
For this chapter, we will use Xcode’s default implementation. You can check to make sure
that Xcode will generate these files at runtime, by clicking on the Entity and then viewing the
Data Model Inspector on the right as show in Figure 11-9. Make sure that Codegen is set to
Class Definition.

ENTITIES [Entity

¥ Attributes
I3 Auther Name Book
| Attribute Type i
I3 ook | i h Abstract Entity
FETCH REQUESTS yearPublished Integer 32 < Parent Entity No Parent Entity 2
title String ¢
CONFIGURATICNS ? | - Class
o sehpal price Decimal %
@ Detault Neme Book
Madule >
¥ Relationships Codegen Class Definition o]
Relationshin Dastinatia nverse Constraints
author Author * books %
Spotlight
Display Name
¥ Fetched Properties user Infe
Bty . 1 Key ~ Value

Figure 11-9. Checking an Entity’s Codegen Status

212 CHAPTER 11: Storing Information

When Xcode generates the Class Definitions for your entities, it will then make subclasses of
NSManagedObject. NSManagedObject is an object that handles all of the Core Data database
interaction. It provides the methods and properties you will be using in this example.

Managed Object Context

Xcode will create a managed object class called Book. In Core Data, every managed object
should exist within a managed object context. The context is responsible for tracking
changes to objects, carrying out undo operations, and writing the data to the database. This
is helpful because you can now save a bunch of changes at once rather than saving each
individual change. This speeds up the process of saving the records. As a developer, you
do not need to track when an object has been changed. The managed object context will
handle all of that for you.

Setting Up the Interface
The following steps will assist you in setting up your interface:

1. In the BookStore folder in your project, you should have a Main.
storyboard file. Click this file and Xcode will open it in the editing
window, as shown in Figure 11-10.

CHAPTER 11: Storing Information 213

> View Controller Scene Quick Help
No Quick Help

Search Documentation

D0 e O

View Controller - A contraller that
manages a view,

Storyboard Reference - Provides
a placeholder for a view controller in
an external storyboard.

Havigation Controller - A
< controlier that manages navigation

through a hierarchy of views
View Controller

Figure 11-10. Creating the interface

2. There should be a blank window. To add some functionality to your
window, you need to add some objects from the Object Library.
Type table into the search field on the bottom right of the screen.
This should narrow the objects, and you should see Table View
Controller and Table View. Drag the Table View to the view, as shown
in Figure 11-11.

214 CHAPTER 11: Storing Information

Declaration @interface UIView :
UIResponder <NSCoding,
UIAppearance,
UIAppearanceContainer,
UIDynamicItem,
UITraitEnvironment,
UICoordinateSpace,
UIFocusItem,
CALayerDelegate>

Description An object that manages the
content for a rectangular area
on the screen.

Views are the fundamental
building blocks of your app's
user interface, and the UlView
class defines the behaviors
that are common to all views. A
view object renders content
within its bounds rectangle and
handles any interactions with
that content.The UlView class
is a concrete class that you
can instantiate and use to
display a fixed background
color. You can also subclass it

tedrswe mara eanhicticatad

O @ a8

[m]

0

| Table View Controller - A
/ controller that manages a table view.

Table View - Displays data in a list
of plain, sectioned, or grouped rows.

| Table View Cell - Defines the
L1 attributes and behavior of cells (rows)
w in a table view.

[® B
Figure 11-11. Adding the Table View
3. You now have a Table View. You will need to stretch the Table View to

fill your view. Drag all four corners of the Table View so that it covers
your entire view as show in Figure 11-12.

CHAPTER 11: Storing Information 215

o O 0

0 u]

O o a
® B

Figure 11-12. Stretching the Table View

4. To create cells in your Table View, you need to add a
UITableViewCell. Your current search of table should show a Table
View Cell beneath the Table View object. Drag a Table View Cell to
your table. You now have a table and a cell on your view, as shown in
Figure 11-13.

216

Figure 11-13. Adding the Table View Cell

CHAPTER 11: Storing Information

Prototype Cells

e

W

Table View Cell

(o]

Style Custom

Identifier

Selection Default
Accessory None
Editing Ace. None

Focus Style Default

ol ol ol oo

<>

Indentation 0 10

Level Width
Indent While Editing
Shows Re-order Controls

©

Separator Inset Automatic

View
Content Mode Scale To Fill

Semantic Unspecified

5l o o)

Tag 0
Interaction User Interaction Enabled

DO &

|\ Table View Controller - A
/ controller that manages a table view.

Table View - Displays data in a list
of plain, sectioned, or grouped rows.

C | | Table View Cell - Defines the
| attributes and behavior of cells (rows)
in a table view.

5. Select the cell, and in the Attributes Inspector in the utilities section
set Style to Basic. Also, set the Identifier to Cell. The identifier is used
for when your Table View contains multiple styles of cells. You will
need to differentiate them with unique identifiers. For most of your
projects, you can set this to Cell and not worry about it, as shown in

Figure 11-14.

CHAPTER 11: Storing Information 217

Table View Cell

Style Basic

Image | a
Identifier Cell

Selection Default
Accessory None
Editing Acc. None
Focus Style Default

Indentation ol 10
Level Width

Indent While Editing
Shows Re-order Controls

Separator Inset Automatic vy

View
Content Mode Scale To Fill

Semantic Unspecified

<> <>‘|@

Tag 0

Figure 11-14. Changing the style and identifier of the cell

6. When using a Table View, it is usually a good idea to putitin a
Navigation Controller. You will be using the Navigation Controller
to give you space to put an Add button on your Table View. To add
a Navigation Controller, select your View Controller in the Scene
list, which is the window to the left of your storyboard that shows
your View Controllers (your View Controller will have a yellow icon
next to it). From the Application menu, select Editor » Embed In »
Navigation Controller, as shown in Figure 11-15.

218

g
L=

B EZ QA
¥ & BookStore
¥ || BookStore
= AppDelegate.swift
= ViewController.swift
~ Main.storyboard
[Assets.acassels
LeunchScreen.storyboard
Info.plist
. BookStore xedatamodeld
» | Products

CHAPTER 11: Storing Information

4 | : aller Scene View Contralier G €
! Hide Document Outline 2 bComoide
view Gt Reveal in Document Outline Biencisec Metrion
View Size Infarred B
vIv G - Status Bar Inferred B
Arrange >
Top Bar Inferred B
v
e Botiom Bar Inferred -]
i View Controller
@ st s Sn::.\p to Guides
B et Guides > Title

o sSisichtdinnase
Y Layout B Adjust Scroll View Insets
» _ v Hide Bottom Bar on Push
| Fesize View From NIB

Mavigation Controller

Tab Bar Controller

Localization Locking

Use Full Screen (Deprecated)
Extend Edges [Under Top Bars
Under Bottom Bars

+ Automatically Refresh Views

Under Opague Bars
Resolve Auto Layout Issues >
Rk A Transition Style Cover Vertical B
Refactor to Storyboard... g Presertation Full Screen B
T TPt Delines Context

Derwirne Conteyt

b OGO

Table View Controller - &

controlles that manages a table view.

Table View - Disglays data in a list
ol plain, sectioned, or grouped rows

Table View Cell - Defines the
attributes and behavior of cells rows)
in & table view.

Figure 11-15. Embedding in a Navigation Controller

7. You will now have a navigation bar at the top of your view. You
will now add a button to the bar. This type of button is called a
UIBarButtonItem. Search for bar button in your Object Library and
drag a Bar Button item to the top right of your view on the navigation
bar, as shown in Figure 11-16.

CHAPTER 11: Storing Information 219

Item

Prototype Cells

Title

No Selection

OO0 @ B

Bar Button Item - Represents an
Iltem | item on a UlToolbar or
UlNavigationitem object.

Fixed Space Bar Button Item -
2 B Jsesnsens] Represents a fixed space item on a
b UlToolbar object.

; .t = Flexible Space Bar Button Item -
EI View as: iPhone 7 (WC hR) = HH kA 4usp Represents a flexible space item on a

UlToolbar object.
D D D D D I:'\fary for Traits
oo

Device Orientation oo @ bar button o

Figure 11-16. Adding a Bar Button Item to the navigation bar

8. Select the Bar Button ltem and change the System Item from
Custom to Add as shown in Figure 11-17. This will change the look
of your Bar Button Item from the word /tem to a plus icon.

220 CHAPTER 11: Storing Information

Bar Button Item
Style Bordered

System Item Add
Tint Default

o] o of

Drag and Drop | | Spring Loaded

Bar Item
Title
Image n
Landscape
Accessibility
Tag (o]
Enabled

Figure 11-17. Changing the Bar Button Item

9. Now you have created the interface, you need to hook it up to your
code. Hold down the Control key and drag your Table view to the
View Controller in the Document Outline, as shown in Figure 11-18.

CHAPTER 11: Storing Information 221

¥ View Controller Scene

(v < View Controller)
v View
] Safe Area
v Table View
v Cell
> Content...
¥ < Navigation Item
Left Bar Butto...
¥ ° Right Bar Butt...
| Add
{3 First Responder

Exit

Figure 11-18. Connecting the Table View

10. A pop-up will appear allowing you to select either the dataSource
or the delegate, as shown in Figure 11-19. You will need to assign
both to the View Controller. The order in which you select the
items does not matter, but you will have to Control-drag the Table
View twice.

v View Controller Scene

M Outlets
dataSource
delegate
prefetchDataSource

v = cell
3 Content...

Figure 11-19. Hooking up the Table View

222 CHAPTER 11: Storing Information

11. Now your Table View should be ready to go. You need to hook up
your button to make it do something. In the top right of your Xcode
window, click the Assistant Editor button (it looks like two circles).
This will open your code on the right side and your storyboard
on the left side. Now Control-drag your Add button to the View
Controller code on the right, as shown in Figure 11-20.

1T/
2 // ViewController.swift
// BookStore
4t
§ // Created by Thorn on 8/21/17.
6 // Copyright @ 2817 Innovativeware. All rights
reserved.

Cells
7

import UIKit
class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the
view, typically from a nib.

}

override func didReceiveMemoryWarning() {

super.didReceiveMemoryWarning()

// Dispose of any resources that can be
recreated.

23 o Insert Outlet, Action, or Outlet Collection

Figure 11-20. Adding an action for your Button object

12. It does not matter where you place the Add button in your code as
long as it is in your class and outside of any methods. It should be
after your class properties just for organization. When you let go,
you will be prompted for the type of connection you are creating.
Set Connection to Action. Then add a name for your new method,
such as addNew, as shown in Figure 11-21. Click Connect to finish
the connection.

CHAPTER 11: Storing Information

L‘.'_..-.j

Connection | Action T

~

Object [(View Controller <) 2

Name addNew
(
Type Any n 15

[cCancel | [Connect |

I
| 28
Figure 11-21. Changing the type and name of the connection

13. You also need to create an outlet for your Table View. Drag your
Table View from the View Controller scene to the top of the code
(just under the class definition, as seen in Figure 11-22). Make
sure the connection is set to Outlet and name the Table View
myTableView. You will need this outlet later to tell your Table View to
refresh. Click Connect to finish the connection.

¥ | View Controller Scene /"
2 /! ViewController.swift
v View Controller 3 // BookStore
v View 7
Safe Area ar 6 // Created by Thorn on 8/21/17.
v -—Ja_plg_ﬂew cells 6 /! Copyright e 2017 Innovativeware. All rights
v cell '“'*-—-q_q___ﬁ_ reserved.
> |content.. T T
¥ | < Mavigation Item xa""‘“*——-__ ° :
Left Bar Butto... Ex“""-—-q_,_h import UIKit
v Right Bar Butt... %H'"'c:‘:-;s_sh_viemontroller: UIViewController {
- Add New 12 T

[

() First Responder

223

override func viewDiclUELIgdelTHEIEIgeIFEI Tl 0]

[Exit super.viewDichad!!

// Do any additional setup after loading the

¥ | Navigation Controller... view, typically from a nib.

¥ (£ Navigation Controller }
Navigation Bar
) First Responder 18 override func didReceiveMemoryWarning() {
[= Exit super.didReceiveMemorywarning()
}) 20 // Dispose of any resources that can be
— Steryboard Entry Poi...
v y el recreated.

Relationship "root vi... . }

@IBOutlet weak var addNew: UlBarButtonItem!

Figure 11-22. Creating an outlet for the Table View

224 CHAPTER 11: Storing Information

The interface is complete now, but you still need to add the code to make the interface do
something. Go back to the Standard editor (click the list icon to the left of the two circles
icon in the top right of the Xcode toolbar) and select the ViewController.swift file from the
file list on the left side. Because you now have a Table View that you have to worry about,
you need to tell your class that it can handle a Table View. Change your class declaration at
the top of your file to the following:

class ViewController: UIViewController, UITableViewDelegate, UITableViewDataSource {

You added UITableViewDelegate and UITableViewDataSource to your declaration. This tells
your controller that it can act as a table view delegate and data source. These are called
protocols. Protocols tell an object that they must implement certain methods to interact with
other objects. For example, to conform to the UITableViewDataSource protocol, you need to
implement the following method:

func tableView(_tableView: UITableView, numberOfRowsInSection section: Int) -> Int

Without this method, the Table View will not know how many rows to draw.

Before continuing, you need to tell your ViewController.swift file about Core Data. To do
this, you add the following line to the top of the file just under import UIKit:

import CoreData

You also need to add a managed object context to your ViewController class. Add the
following line right after the class ViewController line:

var managedObjectContext: NSManagedObjectContext!

Now that you have a variable to hold your NSManagedObjectContext, you need to instantiate it
so you can add objects to it. To do this, you need to add the following lines to your override
func viewDidLoad() method:

let appDelegate: AppDelegate = UIApplication.shared.delegate as! AppDelegate
managedObjectContext = appDelegate.persistentContainer.viewContext as NSManagedObjectContext

The first line creates a constant that points to your application delegate. The

second line points your managedObjectContext variable to the application delegate’s
managedObjectContext. It is usually a good idea to use the same managed object context
throughout your app.

The first new method you are going to add is one to query your database records. Call this
method loadBooks.

1 func loadBooks() -> [Book] {

2 let fetchRequest: NSFetchRequest<Book> = Book.fetchRequest()
3 var result: [Book] = []

4 do {

5 result = try managedObjectContext.fetch(fetchRequest)

CHAPTER 11: Storing Information 225

6 } catch {

7 NSLog("My Error: %@", error as NSError)
8 }

9 return result

10 }

This code is a little more complex than what you have seen before, so let’s walk through it.
Line 1 declares a new function called 1loadBooks, which returns an array of Books. You then
return the array once you have it loaded.

You will now need to add the data source methods for your Table View. These methods tell
your Table View how many sections there are, how many rows are in each section, and what
each cell should look like. Add the following code to your ViewController.swift file:

1 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {

2 return loadBooks().count

3}

4

5 func tableView(tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

6 guard let cell = tableView.dequeueReusableCell(withIdentifier: "Cell") else { return

UITableViewCell() }

7 let book: Book = loadBooks()[indexPath.row]
8 cell.textLabel?.text = book.title

9 return cell

10 }

In line 2, you call a count on your array of Book for the number of rows in your Table view.

In lines 5 to 9, you create your cell and return it. Line 6 creates a cell for you to use. This

is standard code for creating a cell. The identifier allows you to have more than one type

of cell in a Table View, but that is more complex. Line 7 grabs your Book object from your
loadBooks () array. Line 8 assigns the book title to your textLabel in the cell. The textLabel
is the default label in the cell. This is all you need to do to display the results of your
loadBooks method in the Table view. You still have one problem. You do not have any books
in your database yet.

To fix this issue, you will add code to the addNew method that you created earlier. Add the
following code inside the addNew method you created:

1 @IBAction func addNew(_ sender: Any) {
2 let book: Book = NSEntityDescription.insertNewObject(forEntityName: "Book", into:
managedObjectContext) as! Book
3 book.title = "My Book" + String(loadBooks().count)
4 do {
5 try managedObjectContext.save()
6 } catch let error as NSError {
7 NSLog("My Error: %@", error)
8
9 myTableView.reloadData()
10 }

226 CHAPTER 11: Storing Information

Line 2 creates a new Book object for your book in the database from the Entity name and
inserts that object into the managedObjectContext you created before. Remember that once
the object is inserted into the managed object context, its changes are tracked, and it can
be saved. Line 3 sets the book title to My Book and adds the number of items in the array.
Obviously, in real life, you would want to set this to a name either given by the user or from
some other list. Lines 4-8 save the managed object context.

In Swift 3.0, Apple changed error handling has been changed. Swift 4.0 has almost the
same error handling as Swift 3.0. Now you try and then throw an error when you perform an
operation that might cause an error. Line 9 tells the UITableView to reload itself to display the
newly added Book. Now build and run the application. Click the + button several times. You
will add new Book objects to your object store, as shown in Figure 11-23. If you quit the app
and relaunch it, you will notice that the data is still there.

10:16 AM

My Book1
My Book2
My Book3

My Bookd

iPhone 7 Plus - i0OS 11.0

Figure 11-23. The final app

CHAPTER 11: Storing Information 227

This was a cursory introduction to Core Data for iOS. Core Data is a powerful API, but it can
also take a lot of time to master.

Summary

Here is a summary of the topics this chapter covered:

Preferences: You learned to use UserDefaults to save and read
preferences from a file, on iOS, macOS, tvOS, and watchOS.

Databases: You learned what a database is and why using one can be
preferable to saving information in a preferences file.

Database engine: You learned about the SQLite database engine that
Apple has integrated into macQOS, tvOS, and iOS and its advantages
and limitations.

Core Data: Apple provides a framework for interfacing with the SQLite
database. This framework makes the interface much easier to use.

Bookstore application: You created a simple Core Data application and
used Xcode to create a data model for your bookstore. You also learned
how to create a relationship between two entities. Finally, you used
Xcode to create a simple interface for your Core Data model.

EXERCISES

Add a new view to the app for allowing the user to enter the name of a book.
Provide a way to remove a book from the list.

Create an Author object and add it to a Book object.

Chapter

Protocols and Delegates

Congratulations! You are acquiring the skills to become an iOS developer! However, iOS
developers need to understand two additional topics in order to be successful: protocols
and delegates. It is not uncommon for new developers to get overwhelmed by these topics,
which is why we introduced the foundational topics of the Swift language first. After reading
this chapter, you will see that protocols and delegates are really useful and not hard to
understand and implement.

Multiple Inheritance

We discussed object inheritance in Chapter 5. In a nutshell, object inheritance means that a
child can inherit all the characteristics of its parent, as shown in Figure 12-1.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 229
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_12

https://doi.org/10.1007/978-1-4842-3063-3_12
http://dx.doi.org/10.1007/978-1-4842-3063-3_5

230 CHAPTER 12: Protocols and Delegates

Object A

Object B

.

Figure 12-1. Typical Swift inheritance

C++, Perl, and Python all have a feature called multiple inheritance, which enables a class to
inherit behaviors and features from more than one parent, as shown in Figure 12-2.

CHAPTER 12: Protocols and Delegates 231

Object D

Figure 12-2. Multiple inheritance

Problems can arise with multiple inheritance because it allows for ambiguities to occur.
Therefore, Swift does not implement multiple inheritances. Instead, it implements something
called a protocol.

Understanding Protocols

Apple defines a protocol as a list of function declarations, unattached to a class definition.

A protocol is similar to a class with the exception that a protocol doesn’t provide an
implementation for any of the requirements; it describes only what an implementation should
look like.

The protocol can be adopted by a class to provide an actual implementation of those
requirements. Any type that satisfies the requirements of a protocol is said to conform to
that protocol.

232 CHAPTER 12: Protocols and Delegates

Protocol Syntax

Protocols are defined like classes are, as shown in Listing 12-1.

Listing 12-1. Protocol Definition

protocol RandomNumberGenerator {

var mustBeSettable: Int { get set }
var doesNotNeedToBeSettable: Int { get }

func random() -> Double

}

If a class has a superclass, you list the superclass name before any protocols it adopts,
followed by a comma, as shown in Listing 12-2.

Listing 12-2. Protocol Listed after Superclass

class MyClass: MySuperclass, RandomNumberGenerator, AnotherProtocol {
// class definition goes here
}

The protocol also specifies whether each property must have a gettable or gettable and
settable implementation. A gettable property is read-only, whereas a gettable and settable
property is not (shown earlier in Listing 12-1).

Properties are always declared as variable properties, prefixed with var. Gettable and
settable properties are indicated by { get set } after their type declaration, and gettable
properties are indicated by { get }.

Delegation

Delegation is a design pattern that enables a class or structure to hand off (or delegate)
some of its responsibilities to an instance of another type. This design pattern is
implemented by defining a protocol that encapsulates the delegated responsibilities.
Delegation can be used to respond to a particular action or to retrieve data from an external
source without needing to know the underlying type of that source.

Listing 12-3 defines two protocols for use with a random number guessing game.

Listing 12-3. Protocol Definitions

protocol RandomNumberGame {
var machine: Machine { get }
func play()

protocol RandomNumberGameDelegate {
func gameDidStart(game: RandomNumberGame)
func game(game: RandomNumberGame, didStartNewTurnWithGuess randomGuess: Int)
func gameDidEnd(game: RandomNumberGame)

CHAPTER 12: Protocols and Delegates 233

The RandomNumberGame protocol can be adopted by any game that involves random number
generating and guessing. The RandomNumberGameDelegate protocol can be adopted by any
type of class to track the progress of a RandomNumberGame protocol.

Protocol and Delegation Example

This section shows you how to create a more sophisticated random number guessing app
to illustrate how to use protocols and delegation. The app’s home view displays the user’s
guess and whether the guess was high, low, or correct, as shown in Figure 12-3.

The guess was 50

Guess too high

Guess Random Number

Figure 12-3. Guessing game app home view

When the users tap the Guess Random Number button, they are taken to an input screen to
enter their guess, as shown in Figure 12-4.

234 CHAPTER 12: Protocols and Delegates

Your previous guess was 50

Save Guess

Figure 12-4. Guessing game app user input view

When the users enter their guess, the delegate method passes the guess back to the home
view, and the home view displays the result.

Getting Started

Follow these steps to create the app:

1. Create a new Swift project based on the Single View Application
template, name it RandomNumberDelegate, and save it, as shown in
Figure 12-5.

CHAPTER 12: Protocols and Delegates 235

Choose options for your new project:

Product Name: RandomNumberDelegate
Team: The Zonie, LLC

Organization Name: The Zonie, LLC
Organization Identifier: com.thezonie
Bundle Identifier: com.thezonie.RandomNumberDelegate
Language: Swift a

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous m

Figure 12-5. Creating the project

2. From the Document Outline, select the View Controller. Then select
Editor » Embed In » Navigation Controller. This embeds your
View Controller in a Navigation Controller and enables you to easily
transition back and forth between other View Controllers, as shown

in Figure 12-6.

236 CHAPTER 12: Protocols and Delegates

@ Xcode File Edit View Find Navigate JEXITg Product Debug Source Control Window Help

ene » #\ RandomN..iDologate) @ iPhg CaNVas P gayat11:59 AM
= Zoom > E
in BR E .. I Bw |
BERQAGSGE o B B] s Dot Limant QUtiing ol._board Mai..Base) | [View Controller Scene
¥ [} RandomNumberDelegate v 0] view Con Reveal in Document Outline
¥ RandomNumberDelegate
. AppDelogote.swift @rmR g0 2
. ViewControlier.swift [exit Mangg > 3
o O Coe : I
|5 Assets.xcassels : st
LaunchScreen. storyboard v Snap to Guides
| Info.plist Guides >
» . Products
Localization Locking >

Tab Bar Controller

+ Automatically Refresh Views Navigation Controller

Resolve Auto Layout Issues >

Refactor to Storyboard...
T l

_>,

Figure 12-6. Embedding the View Controller in a Navigation Controller

3. Inthe View Controller, add two Label objects and two Button objects
along with their four respective outlets to control the view, as shown

in Figure 12-7.

(.} View Controller

CHAPTER 12: Protocols and Delegates 237

N2

Figure 12-7. Outlets necessary to control the view

Listing 12-4. IBAction Function

27
28
29
30

31
32
33
34

Guess Random Number

~

/! ViewController.swift
/! RandomNumberDelegate

/! Created by Stefan Kaczmarek on 9/24/17.
// Copyright e 2017 The Zonie, LLC. All rights reserved.

import UIKit

CRCEORCT

@IBOutlet weak var wserGuessLabel: UlLabel!
@IB0utlet weak var resultlaobel: UlLabell
@IBOutlet weak var guessButton: UlButton!
@IB0utlet weak var playAgainButten: UIButtonl

guessButton.isHidden
resultlabel.text = ""
userGuesslLabel.text = "New Game"
previousGuess = "" 35

override func viewDidLoad() {

super.viewDidLoad()

/{ Do any additional setup after loading the view, typically from a nib.
}

override func didReceiveMemorywarning() {
super.didReceiveMemoryWarning()
// Dispose of ony resources that can be recreated.
}

4. Next, connect the Action in Listing 12-4 to the playAgainButton.

// event triggered by playAgainButton
@IBAction func playAgain(_ sender: Any) {
createRandomNumber ()

playAgainButton.isHidden = true // only show the button when the user guessed the

false // show the button

238 CHAPTER 12: Protocols and Delegates

5. Add the code in Listing 12-5 for the functions to handle when the
user guesses a number and to handle creating a random number.

Listing 12-5. User Guess Delegate Function and createRandomNumber Function

40 // function called from the GuessInputViewController when the user taps on the Save
Button button
41 func userDidFinish(_ controller: GuessInputViewController, guess: String) {

42 userGuessLabel.text = "The guess was " + guess

43 previousGuess = guess

a4 let numberGuess = Int(guess)

45 if (numberGuess! > randomNumber){

46 resultlabel.text = "Guess too high"

47 }

48 else if (numberGuess! < randomNumber) {

49 resultlabel.text = "Guess too low"

50 }

51 else {

52 resultlabel.text = "Guess is correct”

53 playAgainButton.isHidden = false //show the play again button
54 guessButton.isHidden = true //hide the guess again number
55 }

56 // pops the GuessInputViewController off the stack

57 if let navController = self.navigationController {

58 navController.popViewController(animated: true)

59 }

60 }

61

62 // creates the random number
63 func createRandomNumber () {

64 randomNumber = Int(arc4random uniform(100)) //get a random number between 0-100
65 print("The random number is: \(randomNumber)") //lets us cheat

66 return

67 }

6. Declare and initialize the two variables on lines 12 and 13 in
Listing 12-6.

Listing 12-6. Variable Declarations and Initializations

11 class ViewController: UIViewController {

12 var previousGuess = ""
13 var randomNumber = 0
14

15 @IBOutlet weak var userGuesslLabel: UILabel!
16 @IBOutlet weak var resultlabel: UILabel!

17 @IBOutlet weak var guessButton: UIButton!

18 @IBOutlet weak var playAgainButton: UIButton!

CHAPTER 12: Protocols and Delegates 239

7. Modify the function viewDidLoad() to handle how the view should
look when it first appears and create the random number to guess,
as shown in Listing 12-7.

Listing 12-7. viewDidLoad Function

20
21
22
23
24
25
26
27

gate

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

createRandomNumber ()
playAgainButton.isHidden = true
resultlabel.text = ""

8. Now you need to create a view to enable the users to enter their
guesses. In the Main.storyboard file, drag a new View Controller
next to the home View Controller and add a Label, a Text Field, and
a Button. For the Text Field object, in the Placeholder property, type
“Number between 0-100", as shown in Figure 12-8.

RandomMumberDelegate | Budd Failed | Today at 1:03 PM 1@ = @< Q0O
Rando...clogate | [l Mains..yboard) [l Main st..(Base) View C..S5cene | () View Controller View) [F| Number between 0-100 < @ > 0D e o1 e
Text Fleld
View Controller 5 ® B] Text| Plain B
Color EEEE Defoult B
Font | System 14.0 M

Dynamic Type || Automatically Adjusts Font
Algnment| BE I = n
Numnber between 0-100

&chqmunﬂ n

Disabled

(-~ Border Style | 1 a (=] -

Clear Button | Never appears B

Mo guesses yet Make a guess e
Min Font Size 1712
& Adjust to Fit
Label ? b Text Input Traits

Content Type | Unspecities B
Capitalization | None B
Guess Random Number Comection | Defeult B
Save Guess Smart Dashes | Default B
A >, = =
Play Again? b (@D

Labig] 128! - varisbiy sized semount of
Statie tent

Segmented Control - Dislays
2 | muitipie segments, each of which
functions as a discrete buttcn

Text Field - Dis,

Text | snd sonds an act
tatget object when Return i3 Lapced.

| 0 View as:iPhone 8 (~C ~R) — 100% + ERIn B ®

Figure 12-8. Create the Guess View Controller and objects

240 CHAPTER 12: Protocols and Delegates

9. You next need to create a class for the Guess Input View Controller.
Create a Swift file and save it as GuessInputViewController.swift
by selecting File » New » File. Then choose iOS and Cocoa Touch
Class and name the class GuessInputViewController as a subclass
of UIViewController, as shown in Figure 12-9.

Choose options for your new file:

Class: GuesslinputViewController
Subclass of: UlViewController B
Also create XIB file

Language: Swift E

Cancel Previous © Next

Figure 12-9. Create the GuessinputViewController.swift file

10. Let’s associate the GuessInputViewController class with the Guess
View Controller created in Step 8. From the Main.storyboard file,
select the Guess Input View Controller, select the Identity Inspector,
and select or type GuessInputViewController in the Class field, as
shown in Figure 12-10.

CHAPTER 12: Protocols and Delegates 241

e0e » iy Rando.elegate | Wl Pnone 8 Pius | Build Today a1 1:23 PM 1 = D o« (=
BEH R QM © & o B8 ¢ & RandomM_rDelegate B View Controlier Scene | () Guess Input View Controlier z B T3
v [RandomblumberDelegate » [view Controlier Scana Custom Class
¥] RandomNumberDelegate 0 T B —-ﬁ Class | GuessinputViewContr.. ©
5 2 ¥ [Guess input View Controlier Scene ® B n
s AppDelegate swift Mocube n
Sl ¥ @ Guess Input View Contro =
B inherit Module From Target
v
@ o A
Safe Aroa Identity
L Maxe 3 guess
LaunchScreen. storyboard Tl Number batween 0-100 Storyboasd 1D
Info.plist g ,,
GuessinputviewControlier. switt s Pieeecn
+ GuessinputViewController swi 5 Fust Ry
@ Fust Ruspandor Use Storyboard 1D
» B0 Products [E Exit
» [Navigation Controller Scona User Defined Runtime Attributes
Kay Path Type Value
Make a guess
Document
Labed
x
Object 10 X16-PD-yHs.
Lok Inberited - (Nothing) B
Save Guess Nowes EEEmE-—--DE
m:
(1 @ O
Label - A vasiably sized amount of
Label ;v
Buttor
Button sends
sbisct
| Segmented Control - Disclays
2 | miticle segments, each of which
— functions as & discrete button
Toxt Fleld - Dusplays editable test
Text | snd sends an action messsge b
targat obiect whan Return
t Fol= I L] View as: iPhone 8 («C »R) (= TR A

Figure 12-10. Setting the Guess Input View Controller class

Now let’s create and connect the actions and outlets in the GuessInputViewController class,
as shown in Listing 12-8.

Listing 12-8. Class Listing

9 import UIKit

10

11 // protocol used to send data back to the home view controller's userDidFinish
12 protocol GuessDelegate {

13 func userDidFinish(_ controller:GuessInputViewController, guess: String)
14}

15

16 class GuessInputViewController: UIViewController, UITextFieldDelegate {
17 var delegate: GuessDelegate? = nil

18 var previousGuess: String = ""

19

20 @IBOutlet weak var guesslLabel: UILabel!

21 @IBOutlet weak var guessTextField: UITextField!

22

23 override func viewDidLoad() {

24 super.viewDidLoad()

25

242 CHAPTER 12: Protocols and Delegates

26 // Do any additional setup after loading the view.

27 if(!previousGuess.isEmpty) {

28 guessLabel.text = "Your previous guess was \(previousGuess)"
29 }

30 guessTextField.becomeFirstResponder()

31 }

32

33 override func didReceiveMemoryWarning() {

34 super.didReceiveMemoryWarning()

35 // Dispose of any resources that can be recreated.

36 }

37

38 @IBAction func saveGuess(_ sender: AnyObject) {

39 if let delegate = delegate, let guessText = guessTextField.text {
40 delegate.userDidFinish(self, guess: guessText)

41 }

42 }

43}

11. You are almost done. You need to connect the scene with a segue.
A segue enables you to transition from one scene to another.
Control-drag from the Guess Random Number button to the Guess
Input View Controller and select Show as the type of Action Segue,
as shown in Figure 12-11.

CHAPTER 12: Protocols and Delegates 243

o] E} J Guess Input View Controller
No guesses yet Make a guess
Label

o o a
tGuess Randem Numben
kY Lo o Save Guess

Play Again?

{ Guess Input View Controller

Figure 12-11. Creating the segue that transitions scenes when the Guess Random Number button is tapped

12.

Now you need to give the segue an identifier. Click the segue arrow,
select the Attributes Inspector, and name the segue MyGuessSegue,
as shown in Figure 12-12.

244 CHAPTER 12: Protocols and Delegates

RandomMN...erDotegate [l Main storyooars Main.story..ard (Base) View Controlier Scone Show seguo “MyGuessSogue” 1o “Guess Ingut View CGmro:lu'-—% LV]
Storyboard Segue

View Controller » E _-* identitier MyGuessSegue
Class B
Module
< Back
Kind | Show (e.g. Pueh) a
Animates
Peck & Pop | Preview & Commit Segues
No guesses yet Make a guess
Label
=9
_"\\F‘l,%

Guess Random Number
Save Guess

Play Again?

Figure 12-12. Creating the segue identifier

Note Make sure you press Return when you type the segue identifier. Xcode may not pick up the
property change if you don’t press Return.

Now you need to write the code to handle the segue. In the ViewController class, add the
code in Listing 12-9.

Listing 12-9. prepareForSegue Method

73 override func prepare(for segue: UIStoryboardSegue, sender: Any!) {

74 if segue.identifier == "MyGuessSegue" {

75 let vc = segue.destination as! GuessInputViewController

76 vc.previousGuess = previousGuess // passes the previousGuess property to the
GuessInputViewController

77 vc.delegate = self

78 }

79}

When the user taps the Guess Random Number button, the segue gets called, and the
method prepareForSegue gets called. You first check to see whether it was the MyGuessSegue
segue. You then populate the vc variable with the GuessInputViewController.

Lines 76 and 77 pass the previousGuess number and delegate to the
GuessInputViewController.

13. If you haven’t added the GuessDelegate delegate to the
ViewController class, do it now, as shown in Listing 12-10.

CHAPTER 12: Protocols and Delegates 245

Listing 12-10. ViewController Class with GuessDelegate Listed

11 class ViewController: UIViewController, GuessDelegate {
12 var previousGuess = ""
13 var randomNumber = 0

14. Lastly, we need to add our constraints to our two views. Select
each view and click the Resolve Auto Layout Issues button to Add
Missing Constraints for each one as shown in Figure 12-13.

D] E Guess Input View Controller
{ Back
No guesses yet Make a guess
Label

Guess Random Number
Save Guess

Play Again?

| O View as: iPhone 8 («C "R) — 100% -+ = o] bad

Figure 12-13. Add missing constraints to both views

246 CHAPTER 12: Protocols and Delegates

How It Works

Here is how the code works:

When the user taps the Guess Random Number link, prepareForSegue is
called. See line 73 in Listing 12-9.

Because the ViewController conforms to the GuessDelegate (see
line 11 in Listing 12-10), you can pass self to the delegate in
GuessInputViewController.

The GuessInputViewController scene is displayed.

When the user guesses a number and taps Save Guess, the saveGuess
method is called (see line 38 in Listing 12-8).

Since you passed ViewController as the delegate, it can pass the guess
back to the ViewController.swift file via the userDidFinish method
(see line 45 in Listing 12-8).

Now you can determine whether the user guessed the correct answer
and pop the GuessInputViewController view from the stack (see line 62
in Listing 12-5).

Summary

This chapter covered why multiple inheritance is not used in Swift and how protocols and
delegates work. When you think of delegates, think of helper classes. When your class
conforms to a protocol, the delegate’s functions help your class.

You should be familiar with the following terms:
Multiple inheritance
Protocols

Delegates

EXERCISES

Change the random number the computer guesses from 0-100 to 0-50.

In the main scene, display how many guesses the user has made trying to guess the
random number.

In the main scene, display how many games the user has played.

Chapter

Introducing the Xcode
Debugger

Not only is Xcode provided free of charge on Apple’s developer site and the Mac App Store,
but it is also a great tool. Aside from being able to use it to create the next great Mac, iPhone,
iPad, AppleTV, and Apple Watch apps, Xcode has a debugger built right into the tool.

What exactly is a debugger? Well, let’s get something straight — programs do exactly what they
are written to do, but sometimes what is written isn’t exactly what the program is really meant
to do. This can mean the program crashes or just doesn’t do something that is expected.
Whatever the case, when a program doesn’t work as planned, the program is said to have
bugs. The process of going through the code and fixing these problems is called debugging.

There is still some debate as to the real origin of the term bug, but one well-documented
case from 1947 involved the late Rear Admiral Grace Hopper, a Naval reservist and
programmer at the time. Hopper and her team were trying to solve a problem with the
Harvard Mark Il computer. One team member found a moth in the circuitry that was causing
the problem with one of the relays. Hopper was later quoted as saying, “From then on, when
anything went wrong with a computer, we said it had bugs in it.”

Regardless of the origin, the term stuck and programmers all over the world use debuggers,
such as the one built into Xcode, to help find bugs in programs. But people are the real
debuggers; debugging tools merely help programmers locate problems. No debugger,
whatever the name might imply, fixes problems on its own.

This chapter highlights some of the more important features of the Xcode debugger and
explains how to use them. Once you are finished with this chapter, you should have a good
enough understanding of the Xcode debugger and of the debugging process in general to
allow you to search for and fix the majority of programming issues.

"Michael Moritz, Alexander L. Taylor lll, and Peter Stoler, “The Wizard Inside the Machine,” Time,
Vol. 123, no. 16, pp. 56-63.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 247
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_13

https://doi.org/10.1007/978-1-4842-3063-3_13

248 CHAPTER 13: Introducing the Xcode Debugger

Getting Started with Debugging

If you’ve ever watched a movie in slow motion just so you can catch a detail you can’t

see when the movie is played at full speed, you’ve used a tool to do something a little like
debugging. The idea that playing the movie frame by frame will reveal the detail you are
looking for is the same sort of idea you apply when debugging a program. With a program,
sometimes it becomes necessary to slow things down a bit to see what’s happening. The
debugger allows you to do this using two main features: setting a breakpoint and stepping
through the program line by line — more on these two features in a bit. Let’s first look at how
to get to the debugger and what it looks like.

First, you need to load an application. The examples in this chapter use the BookStore
project from Chapter 8, so open Xcode and load the BookStore project.

Second, make sure the Debug build configuration is chosen for the Run scheme, as shown
in Figure 13-1. To edit the current scheme, choose Product » Scheme » Edit Scheme from
the main menu. Debug is the default selection, so you probably won’t have to change this.
This step is important because if the configuration is set to Release, debugging will not work
at all.

< BookStore) [ll MineSs

> } l.a‘.:im " Info Arguments Options Diagnostics
Run
> P povuo Build Configuration Debug)
> F L Executable s DOOKGIore.app d
il Debug executable
> Pl?hle
g Debug Process As +
> a Anlal?rze
? Archive Launch @ Automatically
> iy
20l Wait for executable to be launched
Duplicate Scheme Manage Schemes... Shared Close

Figure 13-1. Selecting the Debug configuration

While this book won’t discuss Xcode schemes, just know that by default Xcode provides
both a Release configuration and a Debug configuration for any macOS, iOS, watchOS, or
tvOS project you create. The main difference as it pertains to this chapter is that a Release
configuration doesn’t add any program information that is necessary for debugging an
application, whereas the Debug configuration does.

http://dx.doi.org/10.1007/978-1-4842-3063-3_8

CHAPTER 13: Introducing the Xcode Debugger 249

Setting Breakpoints

To see what’s going on in a program, you need to make the program pause at certain points
that you as a programmer are interested in. A breakpoint allows you to do this. In Figure 13-2,
there is a breakpoint on line 24 of the program. To set this, simply place the mouse cursor over
the line number (not the program text, but the number 24 to the left of the program text) and
click once. You will see a small blue arrow behind the line number. This lets you know that a
breakpoint is set.

If line numbers are not being displayed, simply choose Xcode » Preferences from the main
menu, click the Text Editing tab, and select the Line Numbers check box.

s AppUSIBgaTs.sWITt

class MasterViewController: UlTableviewController {
B MasterViewController.swift
»| DetailViewController. swift var detailViewController: DetailViewController? = nil

var objects = [Anyl()
var myBookStore = B

Main.storyboard
|55 Assets.xcassets
LaunchScreen.storyboard

Info.plist override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

navigationItem.leftBarButtonItem = editButtonItem

BookStore()

» Book.swift
« BookStore.swift
> Products
let addButton = UIBarButtonIltem(barButtonSystemItem: .add, target: self,
action: #selector(insertNewObject(_:)))
B navigationItem.rightBarButtonltem = addButton
if let split = splitViewC oller {
let controllers = split.viewControllers
Controller = (contrellers[controllers.cou

UINavigationController).topViewController as? Det

detailvie

1viewController

}

override func viewwillAppear(_ animated:
clearsSelectionOnViewwillAppear = sp
lAppear(animated)

.isCollapsed

Figure 13-2. Your first breakpoint

The breakpoint can be removed by dragging the breakpoint to the left or right of the

line number column and then dropping it. You can also right-click (or Control-click) the
breakpoint, and you will be given the option to delete or disable a breakpoint. Figure 13-3
shows the right-click menu for a breakpoint. Disabling a breakpoint is convenient if you think
you might need it again in the future.

250 CHAPTER 13: Introducing the Xcode Debugger

action: #selector(insertNewObject(_

r = : = *+~—ayttonltem = add
: Edit Breakpoint... Controller {

i Disable Breakpoint 1it.viewControl

| ; = (controllers

Delete Breakpoint roller).topView

Reveal in Breakpoint Navigator

i
30

Figure 13-3. Right-clicking a breakpoint

Setting and deleting breakpoints are pretty straightforward tasks.

Using the Breakpoint Navigator

With small projects, knowing the locations of all the breakpoints isn’t necessarily difficult.
However, once a project gets larger than, say, your small BookStore application, managing all
the breakpoints could be a little more difficult. Fortunately, Xcode provides a simple method
to list all the breakpoints in an application; it’s called the Breakpoint Navigator. Just click the
Breakpoint Navigator icon in the navigation selector bar, as shown in Figure 13-4.

O O B3 -}_BookStore B MineSs BookStore |

B2 Q&N O %@@ B8 < [Bookstore

v g BookStore 1 Breakpoint
\

» MasterViewController.swift import UIKit

() viewDidLoad(line 24 = class MasterViewCont

var detailViewCc
var objects = [/
var myBookStore

override func vi
super.viewDi
// Do any ac
navigationIt

let addButtc
action:

E navigationIt
2 if let split
let cont

Figure 13-4. Accessing the Breakpoint Navigator in Xcode

CHAPTER 13: Introducing the Xcode Debugger 251

Once you’ve clicked the icon, the navigator will list all the breakpoints currently defined
in the application grouped by source file. You can use the disclosure arrows to show or
hide breakpoints. From here, clicking a breakpoint will take you to the source file with the
breakpoint. You can also easily delete and disable breakpoints from here.

To disable/enable a breakpoint in the Breakpoint Navigator, click the blue breakpoint icon in
the list (or wherever it appears). Don’t click the line; it has to be the little blue icon, as shown
in Figure 13-5.

B H 2 Q &N © =2 b B |8 < % BookStore

v & BookStore 7 Breakpoints //

// DetailViewContr
// BookStore

!/

// Created by Thor
// Copyright e 201
//

¥ . MasterViewController.swift
[X) viewDidLoad() line 24
= MasterViewController line 35
(I didReceiveMemoryWa... line
[0 insertNewObject(_:) line 45
¥ . DetailViewController.swift

import UIKit
[configureView() line 21

= DetailViewController line 27 class DetailViewCon

X viewDidLoad() line 31

@IBOutlet weak
@IBOutlet weak

@ @IBOutlet weak

Figure 13-5. Using the Breakpoint Navigator to enable/disable a breakpoint

It is sometimes handy to disable a breakpoint instead of deleting it, especially if you plan to
put the breakpoint back in the same place again. The debugger will not stop on these faded
breakpoints, but they remain in place so they can be conveniently enabled and act as a
marker to an important area in the code.

It’s also possible to delete breakpoints from the Breakpoint Navigator. Simply select one or
more breakpoints and press the Delete key. Make sure you select the correct breakpoints to
delete since there is no undo feature.

It’s also possible to select the file associated with the breakpoints. In this case, if you delete
the file listed in the Breakpoint Navigator and press Delete, all breakpoints in that file will be
deleted.

Note that breakpoints are categorized by the file that they appear in. In Figure 13-5, the files
are DetailViewController.swift and MasterViewController.swift, with the breakpoints
listed below those file names. Figure 13-6 shows an example of what a file looks like with
more than a single breakpoint.

252 CHAPTER 13: Introducing the Xcode Debugger

B H 8 Q&N © =2 D B |8 < &) BookStore) || Bool

//

// DetailViewController.
// BookStore

//

// Created by Thorn on i
// Copyright © 2817 Innc
//

v & BookStore 7 Breakpoints
¥ . MasterViewController.swift
[viewDidLoad() line 24 —
=| MasterViewController line 35 [
) didreceiveMemoryWa... line 39 [l
) insertNewObject(_:) line 45 [
¥ . DetailViewController.swift

import VUIKit

[configureView() line 21 [)
= DetailViewController line 27 [11 class DetailViewControlle
) viewDidLoad() line 31)

O] @IBOutlet weak var ti

O] @IBOutlet weak var at

Figure 13-6. A file with several breakpoints

Debugging Basics

Set a breakpoint on the statement shown in Figure 13-2. Next, as shown in Figure 13-7, click
the “Run” button to compile the project and start running it in the Xcode debugger.

00) /A BookStore) [l MineSs

Figure 13-7. The Build and Run and Stop buttons in the Xcode toolbar

Once the project builds, the debugger will start. The screen will show the debugging
windows, and the program will stop execution at the line with the breakpoint, as shown in
Figure 13-8.

CHAPTER 13: Introducing the Xcode Debugger 253

let addButton = UIBarButtonItem(barButtonSystemItem: .add, target: self, action:
#selector(insertNewObject(_:)))
navigationItem.rightBarButtonItem = addButton = Thread 1: breakpoint 1.1
5 if let split = splitViewController {
26 let controllers = split.viewControllers
7 detailviewController = (controllers[controllers.count-1] as!
UINavigationController).topViewController as? DetailViewController

}

override func viewwillAppear(_ animated: Eool) {
clearsSelectionOnViewWillAppear = splitViewController!.isCollapsed
3: super.viewWillAppear(animated)
B
36 override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

E » > o L M0 g‘o) BookStore) () Thread 1) ['1] 0 MasterViewController.viewDidLoad()

> self = ([EookStore MasterViewController) 0x00007fb1cee05f20 (1ldb)
» L] addButton = (UIBarButtonitem) 0x00007fb1cec090a0

Auto 0 o) All Qutput & ©) [| |

Figure 13-8. The Debugger view with execution stopped on line 24

The Debugger view adds some additional windows. The following are the different parts of
the Debugger view shown in Figure 13-8:

m Debugger controls (circled in Figure 13-8): The debugging controls can
pause, continue, step over, step into, and step out of statements in the
program. The stepping controls are used most often. The first button on
the left is used to show or hide the debugger view. In Figure 13-8, the
debugger view is shown. Figure 13-9 labels the different pieces of the
debugger view.

254 CHAPTER 13: Introducing the Xcode Debugger

@00 p B A BookStore ; N Phone Running BookStore on iPhone SE = <Ol
Debugger Breakpoints +
B H BQAQMQEoo B B £ & BookStore BookStore © » MasterViewCentroller.switt | Mo Selection
¥ (52| BookS1ore PID 31025 @® import UIKit
i -
: et 7% class MasterviewContreller: UITablevViewController {
£ Memory 42 MB . s .
ol var detailViewContreller: DetailviewController? = nil
) pisk Zero KBfs var objects = [Anyl{)
var myBookStore = BookStored)
& Metwork Zaro KBJs
override func viewDidLoad() {
super.viesDidLoad()
/f Do any additional setup after loading the view, typically from a nib.
navigationItem.leftBarButtenltem = ed tonltem
let addButton = UlBarButtonltem{barButtonSystemItem: .add, target: self, action:
#selector(insertNenObject(_:)})
24 3 navigationItem.rightBar en = addButton Threac 1: breakpeint 1.1
if let split = itvi ler {
let control ewControllers
ot i 10T ol r = (rontrallareleantrallare count-11 ael
» 0> o o %o BookStore | () Thread 1) 7] 0 MasterViewControllerviewDidLoad ()
> setf= 2 oller] 0x00007Ib1cee06120 {11db)
» [addButton = (s rem) 00007t 1cec080a0
® FERAE | a0z ® All Cutput 2 @ R]

Figure 13-9. The debugger locations

B Variables: The Variables view displays the variables currently in scope.
Clicking the little triangle just to the left of a variable name will expand it.

B Console: The output window will show useful information in the event of
a crash or exception. Also, any NSLog or print output goes here.

m Debug navigator: The stack trace shows the call stack as well as all the
threads currently active in the program. The stack is a hierarchical view
of what methods are being called. For example, UIApplicationMain calls
the UIViewController class. These method calls “stack” up until they
finally return.

Working with the Debugger Controls

As mentioned previously, once the debugger starts, the view changes. What appears are the
debugging controls (circled in Figure 13-8). The controls are fairly straightforward and are

explained in Table 13-1.

CHAPTER 13: Introducing the Xcode Debugger 255

Table 13-1. Xcode Debugging Controls

Control Description

Clicking the Stop button will stop the execution of the program. If the iPhone or
> = iPad emulator is running the application, it will also stop as if the user force quit

the app. Clicking the Run button (looks like a Play button) starts debugging. If
the application is currently in debug mode, clicking the Run button again will
restart debugging the application from the beginning; it’s like stopping and then
starting again.
Clicking this button causes the program to continue execution. The program

l] D will continue running until it ends, the Stop button is clicked, or the program
runs into another breakpoint.

When the debugger stops on a breakpoint, clicking the Step Over button will
/=\-| cause the debugger to execute the current line of code and stop at the next line
of code.

Clicking the Step In button will cause the debugger to go into the specified

li' function or method. This is important if there is a need to follow code into
specific methods or functions. Only methods for which the project has source
code can be stepped into.

The Step Out button will cause the current method to finish executing, and the
debugger will go back to the method that originally called it.

-

Using the Step Controls

To practice using the step controls, let’s step into a method. As the name implies, the Step
In button follows program execution into the method or function that is highlighted. Select
the DetailViewController.swift file from the Project Manager. Then set a breakpoint on
line 31, which is the call to self.configureView(). Click the Run button and select a book
from the list. Your screen should look similar to Figure 13-10.

256 CHAPTER 13: Introducing the Xcode Debugger

class DetailViewController: UIViewController {

[@IBOutlet weak var titleLabel: UlILabel

® @IBOutlet weak var authorLabel: UlILabell
® @IBQutlet weak var descriptionTextView: UITextView!

func configureview() {
if let detail:AnyObject = self.detailltem {
let myBook = detail as! Book
titleLabel.text = myBook.title
authorLabel.text = myBook.author
descriptionTextView.text = myBook.description

}

override func viewDidLoad() {
super.viewbidLoad()

/{ Do any additional setup after loading the view, typically from a nib.

E self.configureView()

Figure 13-10. The debugger stopped on line 31

y

Thread 1: breakpoint 5.1

Click the Step Into button, = , which will cause the debugger to go into the
configureView() method of the DetailViewController object. The screen should look like

Figure 13-11.
class DetailViewController: UIViewController {
® @IBOutlet weak var titlelLabel: UILabell
® PIBOutlet weak var authorLabel: UllLabell
16
@
(+]

PIBOutlet weak var descriptionTextView: UlTextView!

func configureView() {
20 if let detail:AnyObject = self.detailltem {

21 let myBook = detail as! Book

22 titlelLabel.text = myBook.title

23 authorLabel.text = myBook.author

24 descriptionTextView.text = myBook.description

Fas }

26 H

28 override func viewDidLoad() {

29 super.viewDidLoad()

30 // Do any additional setup after loading the view, typically from a nib.
m self.configureView()

32 }

Figure 13-11. Stepping into the configureView method of the DetailViewController object

Thread 1: step in

CHAPTER 13: Introducing the Xcode Debugger 257

/N
=
The control Step Over, , continues execution of the program but doesn’t go into a
. | . LB
method. It simply executes the method and continues to the next line. Step Out, , is

a little like the opposite of Step In. If the Step Out button is clicked, the current method
continues execution until it finishes. The debugger then returns to the line after Step In was
clicked. For example, if the Step In button is clicked on the line shown in Figure 13-9 and
then the Step Out button is clicked, the debugger will return to the viewDidLoad() method of
the DetailViewController.swift file after the statement shown in Figure 13-9 (line 31 in the
example), which was the line where Step In was clicked.

Looking at the Thread Window and Call Stack

As mentioned earlier, the Debug navigator displays the current thread. However, it also
displays the call stack. If you look at the difference between Figures 13-9 and 13-10 as far
as the thread window goes, you can see that Figure 13-10 has the configureView method
listed because DetailViewController calls the configureView method.

Now, the call stack is not simply a list of functions that have been called; rather, it’s a

list of functions that are currently being called. That’s an important distinction. Once the
configureView method is finished and returns (line 26), configureView will no longer appear
in the call stack. You can think of a call stack almost like a breadcrumb trail. The trail shows
you how to get back to where you started.

Debugging Variables

When an app is debugging and paused, it is possible to view some information about a
variable (other than its memory address) by hovering your mouse cursor over the variable

in the code. When you get to where the value of a variable has been assigned in the local
scope, you will most likely see the variable in the bottom Variables view. In Figure 13-12, you
can see the newBook variable, and it has a title of Swift for Absolute Beginners. You can also
see that there is no author or description assigned. In debugging, when you are stopped on
a line, it is before the line is executed. This means that even though you are paused on the
line to assign the author property, it has not been assigned yet.

258 CHAPTER 13: Introducing the Xcode Debugger

class BookStore {
var bookList: [Book] = []

13
14 init() {
15 var newBook = Book()
16 newBook.title = "Swift for Absolute Beginners"
newBook.author = "Bennett and Lees" = Thread 1: breakpoint 6.1
18 newBook.description = "i0S Programming made easy"
19 bookList.append(newBook)
21 newBook = Book()
22 newBook.title = "A Farewell to Arms"
23 newBook.author = "Ernest Hemingway"
24 newBook.description = "The story of an affair between an English nurse and an American soldier
on the Italian front during World War I."
25 bookList.append(newBook)
26 }
E ®» > & & 2 0 S <« BookStore) () Thread 1) [[] 0 BookStore.init()
> self = (BookStore BookStore) 0x000060400002d000 (11db)

newBook = (BcokStere Book) 0x000060c0000a6bal
> title = (String) "Swift for Absolute Beginners"
» author = (String) "

»> descriElion = (String) **

Auto & ® All Output & @ Rl O | I

Figure 13-12. Viewing a variable value

Position the mouse cursor over any place the newBook variable appears in the code and
click the disclosure triangle to display the Book object. You should see what is displayed in
Figure 13-13.

19 vdlL TIEWBUUK = DUUKL)
16 newBook.title = "Swift for Absolute Beginners"
newBook:. author = "Bennett and Lees"
|18 nev “ok.description = "i0S Programming made easy"
¥ 0x000060c0000a6ba0 ©010)

> title = (String) "Swift for Absolute Beginners"

» author = (String) ""

"
» description = (String) "* to Arms

—[—:v—rmwvnwmvx———mm-a—m—ncmi ngway"

Al mawuBanls damawasmdsmnn = UHTha adkavis afF a;m affFacsw hadtivnnm an =

Figure 13-13. Hovering over the newBook variable reveals some information

Hovering over the newBook variable reveals its information. In Figure 13-13, you can see the
newBook variable expanded.

CHAPTER 13: Introducing the Xcode Debugger 259

Dealing with Code Errors and Warnings

While coding errors and warnings aren’t really part of the Xcode debugger, fixing them is
part of the entire debugging process. Before a program can be run (with or without the
debugger), all errors must be fixed. Warnings won’t stop a program from building, but they
could cause issues during program execution. It’s best not to have warnings at all.

Errors

Let’s take a look at a couple of types of errors. To start, let’s add an error to the code. On line 15
of the MasterViewController.swift file, change the following:

var myBookStore: BookStore = BookStore()

to the following:

var myBookStore: BookStore = BookStore[]

Save the changes and then build the project by pressing 38+B. There will be an error, as
shown in Figure 13-14, that may show up immediately or after the build.

¥ L BookStore i B
- class MasterViewController: UlTableViewController {
¥ | BookStore

= AppDelegate.swift var detailviewController: DetailViewController? = nil

B VT,,__ !Mft VaE olifects % TAne14)

'+ DetailViewController.swift var myBookStore = fookStorel] O Type Type' has no b
Main.storyboard 17 |

W Assets.xcassels override func viewDidLoad() {

super.viewDidLoad(}

LaunchScreen.storyboard
/f Do any additional setup after loading the view, typically from a nib.

Info.plist
= Book.swilt 2
= BookStore.swift 2 let addButton = UIBarButtonItem(barButtonSystemItem: .add, target: self, action:

navigationltem.leftBarButtonitem = editButtonltem

Figure 13-14. Viewing the error in Xcode

Next, move over to the Issue Navigator window, as shown in Figure 13-15, by clicking the
triangle with the exclamation point. This view shows all the errors and warnings currently in
the program — not just the current file, MainViewController.swift, but all the files. Errors
are displayed as a white exclamation point inside a red octagon. In this case, you have one
error. If the error doesn’t fit on the screen or is hard to read, simply hover over the error on
the Issue Navigator, and the full error will be displayed.

260 CHAPTER 13: Introducing the Xcode Debugger

B EH 8 Q@(—) = o B g < & Bookstore BookStore | > MasterView ler.swift | [& Mastervi <0 >
Runtime 11 class MasterViewController: UITableViewContreller {
¥ 4\ BookStore 1 issue [

v © swit lor B var detailviewContreoller: DetailViewController? = nil
L pller, Ermor var objects = [Any1()

© Type '‘BookStore Type' has no 1 var myBookStore = BookStorel] O Type Type' has no
subscript members
MasterViewController. swift

override func viewDidLoad() {
super.viewDidLoad()
/7 Do any additional setup after loading the view, typicelly from a nib.
navigationItem.leftBarButtonItem = editButtonItem

let addButton = UlBarButtonltem(barButtonSystemItem: .add, target: self, action:
#selector (insertNewdbject(_:)))
n navigationIter.rightBarButtonItem = addButton
5 if let split = splitViewController {
let controllers = split.viewControllers

Figure 13-15. Viewing the Issue Navigator
Generally, the error points to the problem. In the previous case, the BookStore object was
initialized as an array rather than as an object.

Go ahead and fix the error by changing [] to ().

Warnings

Warnings indicate potential problems with the program. As mentioned, warnings won’t stop
a program from building but may cause issues during program execution. It’s outside the
scope of this book to cover those warnings that may or may not cause problems during
program execution; however, it’s good practice to eliminate all warnings from a program.

Add the following code to the MasterViewController.swift viewDidLoad method:

if false {
print("False")
}

The print command will never be executed because false will never be equal to true. Build
the project by pressing 36+B. A warning will be displayed, as shown in Figure 13-16.

D &

BRZAQNO

EUNGHIGERGMN Runtime

¥ /A BookStore 1 issue
v Swift Compiler Warning

v Will never be executed
MasterViewController.swift

© condition always evaluates
to false

Figure 13-16. Viewing the warnings in the Issue Navigator

CHAPTER 13: Introducing the Xcode Debugger 261

Clicking the first warning in the Issue Navigator will show you the code that is causing the
first problem, as shown in Figure 13-17.

BEHRAACECDBD |8 <€ & BookStore BookStore | B MasterViewController.swift) [} viewDidLoad() <A

ULl Runtime class MasterViewController: UITableviewController {

¥ ;A BookStore 1 issue — R 5 -
var detailViewController: DetailViewController? = nil
¥ /i Swift Compiler Warning var objects = [Any]()

¥ A Will never be executed & var myBookStore = BookStoref)
MasterViewContraoller. swift 6

@ condition always evaluates
to false

override func viewDidLoad() {
super.viewDidLoad()

if false {
print("False") Will never be executed
}

ki

Figure 13-17. Viewing your first warning

In the main window, you can see the warning. In fact, this warning gives you a clue as to the
problem with the code. The warning states the following:

“Will never be executed”

This is a simple example of a warning. You can receive warnings for many things such as
unused variables, incomplete delegate implementations, and unexecutable code. It is good
practice to clean up the warnings in your code to avoid issues down the road.

Summary

This chapter covered the high-level features of the free Apple Xcode debugger. Regardless
of price, Xcode is an excellent debugger. Specifically, in this chapter, you learned about the
following:

B The origins of the term bug and what a debugger is

B The high-level features of the Xcode debugger, including breakpoints
and stepping through a program

B Using the debugging controls called Continue, Step Over, Step In, and
Step Out

m Working with the various debugger views, including threads (call stack),
Variables view, Text editor, and Console Output

B Looking at program variables

B Dealing with errors and warnings

Chapter

A Swift iPhone App

In Chapter 8, you created a basic bookstore iPhone app with Swift. In this chapter, you
will add some features to the app to make it a bit more functional and use many of the
technologies you have learned in this book, such as creating a class, using delegates and
protocols, and using actions and outlets. You will also learn about some new techniques
such as switches, UIAlertController, and landmarks.

Let’s Get Started

The bookstore example in Chapter 8 enabled you to view books in your bookstore in a
table view and then tap the book to see its details. In this chapter, you will add the following
capabilities to the Chapter 8 bookstore app:

Adding a book
Deleting a book
Modifying a book

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 263
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_14

https://doi.org/10.1007/978-1-4842-3063-3_14
http://dx.doi.org/10.1007/978-1-4842-3063-3_8
http://dx.doi.org/10.1007/978-1-4842-3063-3_8
http://dx.doi.org/10.1007/978-1-4842-3063-3_8

264 CHAPTER 14: A Swift iPhone App

See Figures 14-1 and 14-2.

9:41 AM 100% (.

Master 4

Swift for Absolute Beginne...

A Farewell to Arms

Figure 14-1. Add book functionality

CHAPTER 14: A Swift iPhone App 265

all 100% (.

{ Master Delete

Title:

Swift for Absolute Beginners

Author:
Bennett and Lees

Pages: 0

Read:

Description:

iOS Programming made easy

Figure 14-2. Adding edit and delete functionality along with using a UISwitch

Users will be able to add books to their BookStore using a new AddBookViewController.
First, add the code below to the prepareForSegue method in the MasterViewController.
swift file, as shown in Listing 14-1.

266

CHAPTER 14: A Swift iPhone App

Listing 14-1. The prepareForSegue Method

45
46
47
48
49
50
51

52
53
54

55
56
57
58
59
60
61
62

// MARK: - Segues

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
if segue.identifier == "showDetail" {
if let indexPath = tableView.indexPathForSelectedRow {
let selectedBook: Book = myBookStore.bookList[indexPath.row]
let controller = (segue.destination as! UINavigationController).
topViewController as! DetailViewController
controller.detailltem = selectedBook

controller.navigationItem.leftBarButtonItem = splitViewController?.
displayModeButtonItem
controller.navigationItem.leftItemsSupplementBackButton = true
controller.delegate = self

} else if segue.identifier == "addBookSegue" {
let vc = segue.destination as! AddBookViewController
vc.delegate = self

Note Something that can help organize your code can be found on line 47: *// MARK:

- Segues". // MARK: is called a landmark. It is replacement of the #pragma mark, which is
used in Objective-C. Landmarks help break up the code in the jump bar and enable you to quickly
get to sections of code indicated by the landmark. When you type something following // MARK:,
Xcode places the landmark in the jump bar’s drop-down, as shown in Figure 14-3. If you just type
// MARK: -, Xcode adds a line separator in the jump bar’s drop-down. Swift also supports

// TODO: and // FIXME: landmarks to annotate your code and list them in the jump bar.

CHAPTER 14: A Swift iPhone App 267
e0e® » 7 BookStore) [IPhone X
B E S QAN © mE b 8|8 < [BookStore BookStore) . MasterViewControlierswi [[§ MasterViewController
v @ BookStore | = Iet controllers = split.viewContirollers [detailviewController
. ; . detailViewController = (controllers(contri [obijects - toph
.| Book.swift) [@ myBookStore
w | BookStore [viewDidLoad()

override func viewwillAppeor(_ animated: Bool) {
clearsSelectionOnViewWillAppear = splitViewCof
super.viewwillappear(animated)

[viewwillAppear(_:)
[didRreceiveMemoryWamning()
[inseriNewObjecti_:)

. DetailViewControfler. switt ¥
Main.storyboard

B Assets.xcassets everride func didReceiveMemorywWarning() { (] segues

=~ super,didReceiveMemoryWarning() [prepareifor:sender:)
LaunchScreen. :

— storyboard f/ Dispose of any rescurces that can be §

_ Info.plist } [Z] Table view

» . | Products [numberOtSections(in:)
Gabje @1 numb

func insertNewObject(_ sender: An
objects.insert(NSDate(), a
let indexPath = IndexPa
tableView.insertRows

ow: @, section: @)
: [indexPath], with: .4
}

// MARK: - Segues

[tableview(_:cellForRowAt:)

[E] tableview(_:canEditRowAt:)

[tableview(_:commit:forRowAt:)
[3 AddBookViewController

m delegate

override func preperel{for segue: UIStoryboardSegue, sender: Any?) {
if segue.identifier == "showDetail® {
if let indexPath = tableView.indexPathForSelectedRow {
let selectedBook: Book = myBookStore.booklList[indexPath.row)
let controller = (segue.destination as! UlNavigationController).topViewController as
controller.detaillter = selectedBook

controller.navigationItem.leftBarButtonItem = splitViewController?.displayModeButton
controller.navigationItem.leftItemsSupplementBackButton = true
} else if segue.identifier mm "addBookSegue” {
let ve = segue.destination as! AddBookViewController
ve.delegate = self

Figure 14-3. Swift’s landmarks

Now add the new view controller AddBookViewController mentioned on line 59 in Listing 14-1.
Add a View Controller object to the storyboard by dragging a View Controller to the Main.
storyboard file. Then add the objects in Figure 14-4 to enable the user to add a new book.
Feel free to move the scene around to make it clear how they relate to each other, as shown in
Figure 14-4.

268 CHAPTER 14: A Swift iPhone App

0
o o

/

~
B utton —————ﬂ

Save Book

Master - ﬁ:l m
Switch
Master
Prototype Cells
Title Text Fields
Read?
Labels Description ; T
Text View T

Figure 14-4. Adding the AddBookViewController and objects

Drag a Bar Button Item from the Object Library to the top-right corner of the
MasterViewController’s Navigation Bar, as shown in Figure 14-5.

CHAPTER 14: A Swift iPhone App 269

ab

Master

Prototype Cells
Title

ltem

No Selection

D OO

Toolbar - Provides a mechanism for
displaying a tooclbar at the bottom of
the screen

Bar Button Item - Represents an
Item | item on a UlToolbar or
UlNavigationitem object

Tab Bar - Provides a mechanism for
displaying a tab bar at the bottom of
% =++| the screen

Figure 14-5. Adding a Bar Button Item to the MasterViewController

Next, select the newly added Bar Button Item, select the Attributes Inspector, and change
the System Item from Custom to Add, as shown in Figure 14-6.

270 CHAPTER 14: A Swift iPhone App

1.e)) i M.e)M er) < M.er Right Bar Button Items) |=|Add < A > 0D ® @ B ®
Bar Button Item
% B Style = Bordered
(Syslam Item Add
Tint Default
Drag and Drop || Spring Loaded
Master P
Bar Item
Prototype Cells Title
'ritle Image n
Landscape n
Accessibility n
Tag 02
Enabled

Figure 14-6. Changing the Bar Button Item from Custom to Add

Add a Show Segue object from the Add Button Bar Item to the new View Controller by
Control-dragging or right-clicking and dragging from the Add Button Bar ltem to the new
View Controller, as shown in Figure 14-7.

® = J View Controller
Master 4
Prototype Cells "
Title
Read?
Description
» Save Book

Figure 14-7. Add a Show Segue object to the new View Controller

CHAPTER 14: A Swift iPhone App

Modify the insertNewObject function in the MasterViewController.swift, as shown in
Listing 14-2.
Listing 14-2. insertNewObject Function

41 func insertNewObject(_ sender: Any) {
42 performSegue(withIdentifier: "addBookSegue", sender: nil)

43 }

Identify the Segue object by clicking the segue arrow and setting the identifier to
addBookSegue, as shown in Figure 14-8.

Storyboard Segue
identifier addBookSegue
View Controller

Class

Module

—i— < Back Kind | Show (e.g. Push)

Animates

Read?

Description

Save Book

Figure 14-8. Naming the Segue object addBookSegue

27

°3

Now you need to create a Swift class to go with the new View Controller. Create a new iOS
Cocoa Touch class file and name it AddBookViewController, as shown in Figure 14-9. Make

sure you select a subclass of UIViewController.

272 CHAPTER 14: A Swift iPhone App

Choose options for your new file:

Class: AddBookViewController

Subclass of: UlViewController B

Also create XIB file

Language: Swift

Cancel Previous m

Figure 14-9. Adding the AddBookViewController class

Now you have to associate the new AddBookViewController class to the new View
Controller. Select the View Controller in the Main.storyboard, and in the Identity Inspector,
type AddBookViewController for the class, as shown in Figure 14-10.

CHAPTER 14: A Swift iPhone App 273

<a>| D@‘U-E@

Custom Class

" a G B | (Class AddBookViewController Og

Module

Inherit Module From Target
(Back . Identity
Storyboard ID

Restoration ID
| Use Storyboard ID

User Defined Runtime Attributes

Read? | Key Path Type Value
Description
+
Document
Label
X 8
N Object ID S1X-qt-J1Z
V Lock |_Inherited - (Nothing)
Save Book

Notes E === ¥
m:

Figure 14-10. Associating the AddBookViewController class to the new View Controller

Next, select the Attributes Inspector and change the Title of the View Controller to Add
Book, as shown in Figure 14-11.

274 CHAPTER 14: A Swift iPhone App

< Back Add Book <fmmmm—.

Read?

Description

Save Book

Figure 14-11. Changing the Title of the View Controller to Add Book

nea@®o:0o o

Simulated Metrics
Size Inferred

Top Bar Inferred

(o] ol o

Bottom Bar | Inferred

View Controller

re—— (itle | Add Book

Is Initial View Controller

Layout B3 Adjust Scroll View Insets
Hide Bottom Bar on Push
Resize View From NIB
| Use Full Screen {(Deprecated)
Extend Edges [Under Top Bars
Under Bottom Bars
"~ | Under Opaque Bars

Transition Style Cover Vertical

(o] o

Presentation Full Screen
| Defines Context
Provides Context
Content Size | | Use Preferred Explicit Size

- -

Width Height
Key Commands
+
Key
Selector

Open the AddBookViewController.swift file and add the code shown in Listing 14-3.

Listing 14-3. The AddBookViewController.swift File

9
10
11
12
13
14
15
16
17
18
19

import UIKit

protocol BookStoreDelegate {

func newBook(_ controller: AnyObject, newBook: Book)
func editBook(controller: AnyObject, editBook: Book)

func deleteBook(controller: AnyObject)
}

class AddBookViewController: UIViewController {
var book = Book()
var delegate: BookStoreDelegate?

CHAPTER 14: A Swift iPhone App

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

var read = false
var editBook = false

@IBOutlet weak var titleText: UITextField!
@IBOutlet weak var authorText: UITextField!
@IBOutlet weak var pagesText: UITextField!
@IBOutlet weak var switchOutlet: UISwitch!

@IBOutlet weak var descriptionText: UITextView!

override func viewDidLoad() {

super.viewDidLoad()

if editBook == true {
self.title = "Edit Book"
titleText.text = book.title
authorText.text = book.author
pagesText.text = String(book.pages)
descriptionText.text = book.description
if book.readThisBook {

switchOutlet.isOn = true

}

else {
switchOutlet.isOn = false
}

}

// Do any additional setup after loading the view.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

@IBAction func saveBookAction(_ sender: UIButton) {
book.title = titleText.text!
book.author = authorText.text!
book.description = descriptionText.text
if let text = pagesText.text, let pages = Int(text) {
book.pages = pages
}

if switchOutlet.isOn {
book.readThisBook

} else {
book.readThisBook = false

true

}
if (editBook) {
delegate?.editBook(self, editBook:book)
} else {
delegate?.newBook(self, newBook:book)
}

275

276 CHAPTER 14: A Swift iPhone App

To the Book class, add two properties: pages and readThisBook. These are shown in lines 15
and 16 in Listing 14-4.

Listing 14-4. Book Class Changes

11 class Book {

12 var title: String = ""

13 var author: String = ""

14 var description: String = ""
15 var pages: Int = 0

16 var readThisBook: Bool = false
17 }

Switches

Connect the outlets in the AddBookViewController class by dragging them from their open
circles to the controls, as shown in Figure 14-12.

class AddBookViewController: UIViewController {
— 1 var book = Book()
D w E var delegate: BookStoreDelegate?
var read = false
var editBook = false

< Back Add Book

L—

@IBOutlet weok var titleText: UITextField!
@IB0utlet weak var authorText: UlTextField!
EIBOutlet weak var pagesText: UlTextField!
@IB0utlet weak var switchOutlet: UISwitch!

RN TR

L @IBOutlet weak var descriptionText: UITextView!

/ override func viewDidLoad() {
super.viewDidLoad()
if editBook == true {
o 3 self.title = "Edit Book"
Description) titleText.text = book.title

authorText.text = book.author

AN

Read?

pagesText.text = String(book.pages)

descriptionText.text = book.description

if book.readThisBook {
switchOutlet.isOn = true

\ }
_.> else {
/ 2 switchOutlet.isOn = false
Save Book ¥ }

}

// Do any additional setup after loading the view.

Figure 14-12. Connecting the outlets

Connect the saveBookAction action by dragging the outlet circle to the Save Book button, as
shown in Figure 14-13.

CHAPTER 14: A Swift iPhone App 277

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}

Save Book h——u—— * @IBAction func saveBookAction(_ sender: UIButton) {

book.title = titleText.text!
book.author = authorText.text!
tionText.text
book.pages = Int{pagesText.text!)!

if

book.description = descri

switchOutlet.isOn {
book.readThisBook = true
} else {
book.readThisBook = false
}
if (editBook) {
delegate!.editBook(self, editBook:book)
} else {
delegate!.newBook(self, newBook:book)
}

Figure 14-13. Connecting the saveBookAction

In the DetailViewController class, add the code shown in Listing 14-5 above the
configureView method.

Listing 14-5. New Properties

16
17
18
19
20
21

@IBOutlet weak var pageslLabel: UILabel!
@IBOutlet weak var readSwitch: UISwitch!

var delegate: BookStoreDelegate? = nil

var myBook = Book()

Alert Controllers

Add the controls for Pages, Read, and Edit for the DetailViewController. Connect the
outlets by dragging the open circles to their controls, as shown in Figure 14-14.

278 CHAPTER 14: A Swift iPhone App

£
f/ DetailViewController.swift
f/ BookStore
« M
f/ Created by Stefan Kaczmarek on 8/9/17.
/{ Copyright ® 2017 SKJM, LLC. All rights reserved.

Detail i

7 import UIKit

&
61}

Title: class DetailViewController: UIViewController {
Label t weak var titleLabel: UlLabell
t weak var autherlLabel: UlLabel!
Author: ot weak var descriptionTextView: UlTextView!
weak var pagesLabel: UlLabel!

weak var readSwitch: UISwitchl

Label 180Ut et
Pages: Label ; var delegate: BookStoreDelegate? = nil

var myBook = Book()

CRCRCRCN

Read:

func configureview() {
if let myBook = detailltes {
titleLabel.text = myBook.title

Description:

pxt = myBook.author
TextView.text = myBook.description

override func viewDidLoad{) {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
configureview()

}
Edit override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
/! Dispose of any resources that can be recreated.
}

var detailltem: Book? {
didset {
/7 Update the view.

Figure 14-14. Adding the Pages and Read outlets
The Read switch is disabled in this view by unchecking the Enabled property in the Attributes
Inspector.

Add the code for displaying a UlAlertController when the Delete button is tapped on the
DetailViewController, as shown in Listing 14-6.

Listing 14-6. Displaying a UlAlertController

65 @IBAction func deleteBookAction(_ sender: UIBarButtonItem) {

66 let alertController = UIAlertController(title: "Warning", message: "Delete this
book?", preferredStyle: .alert)

67 let noAction = UIAlertAction(title: "No", style: .cancel) { (action) in

68 print("Cancel™)

69

70 alertController.addAction(noAction)

71

72 let yesAction = UIAlertAction(title: "Yes", style: .destructive) { (action) in

73 self.delegate?.deleteBook(self)

74 }

CHAPTER 14: A Swift iPhone App 279

75 alertController.addAction(yesAction)

76

77 present(alertController, animated: false, completion: nil)
78 }

Add the Delete Bar Button Item to the right navigation location and connect it to the action,
as shown in Figure 14-15.

D.e Duil) (<] 0.0 Right Bae Button ltemas | |~/ Delote ¢ A > B < @ Automatiz | . DetaTViewCorteolier swi®t | No Selection + (o - v |)
PIBJutlet waak var xc;dhi{gll: UISwiteh! Bas Butten ltem
Style Bordered
'_1| E T war delegate: BookStareDelegate? = nil

Systesn meem | Custom
ar myBook = Book() Tint G0 Defauit
Dvag and Drop (| Saring Loaded

func configurevien() {
if let myBook = detsilltes {

Detail Delete

=S
Title: yBook, description Image n
Label Landsceot B
Recessibiny B
Author: do tunc viewdidioad() { Ty L1
2 L. viewDidLoad()
Label scditfonal setup after losdimg the view, typically fres a nib. B Enubled
ot
n o
Pages: Label * boen
everride func didRece: Tywarningl) { @. Custom Gesture Recognizer
Read: i i ningl) Recogrises cussom gestures. Set @
/{ Dispose of any rescurdWgthat can be recrested. FURHHR c N I (R Fieph
—_ }
Descripticn: ¢t Mawigatien Bar - Provides &

machanism for dplaying o
avigation bar jual Belew the status.

or dotoilltem: Book? {
didSet {
/1 Upcate the view,

(Havigation ftem - Reseesents o
#iste ofthe naw rehiding

#the navgatien Eu

' 2 atite

#18Action func deleteBookAction(_ sender: UTBarButtonltem) { Toolbar - Provides a mechanivm bor
iot alerzController = UlAlertControllorititle: "Warning", mestaqp: "Delee | | -~ | Seelind lecbaratiha bonom ol

this book?®, preferredStyle: .alert)
Lot noaction = UlAlertAction(title: “Ne®, style: .cancel) { (sctien,
Edit printi Carcel™)
E }

alertController.acdict ioninodetion)

Bar Button Item - Seprasents an
nam o 3 Uileals,

UiNavigasicn

et yesAction = UlAlertaction{title: “¥es®, style: .destructive) Tab Bar - Puovides &
{ lection) in & o ::;p‘:::jjllbbi -
self.celegate! . celeteBook(self)
}
alerzController.scdiction(yesAction) Tab Bar Mem - Receesents an dem
on a UiTakBar object.

present(ler, false, Leti nfl)

Figure 14-15. Adding the Delete Right Bar Button Item and action

The UIAlertController will warn the user that the book currently displayed in the
DetailViewController is about to be deleted and will enable the user to decide whether to
delete it. The UIAlertController has two buttons: Yes and No. When the user taps the right
Bar Button Item (Delete), the UIAlertController will be as shown in Figure 14-16 when you
are finished.

280 CHAPTER 14: A Swift iPhone App

Warning
Delete this book?

No Yes

Figure 14-16. UlAlertController being displayed

When the user taps Yes to delete the book, you want to call the deleteBook delegate method
as described in the MasterViewController class. Add the BookStoreDelegate as shown in
Listing 14-7.

Listing 14-7. Adding the BookStoreDelegate

11 class MasterViewController: UITableViewController, BookStoreDelegate {

CHAPTER 14: A Swift iPhone App 281

Let’s now talk about the three delegate methods: newBook, deleteBook, and editBook, as
defined in the AddBookViewController class in Listing 14-3 (lines 11 to 15). Add these three
methods at the end of the MasterViewController class, as shown in Listing 14-8.

Listing 14-8. Conforming to the Protocol

97 // MARK: - BookStoreDelegate Methods

98

99 func newBook(_ controller:AnyObject,newBook:Book) {

100 myBookStore.bookList.append(newBook)

101 tableView.reloadData()

102 navigationController?.popToRootViewController(animated: true)
103 }

104

105 func deleteBook(_ controller:AnyObject){

106 if let row = tableView.indexPathForSelectedRow?.row {

107 myBookStore.bookList.remove(at: row)

108 }

109 tableView.reloadData()

110 navigationController?.popToRootViewController(animated: true)
111 }

112

113 func editBook(_ controller:AnyObject, editBook:Book){

114 if let row = tableView.indexPathForSelectedRow?.row {

115 myBookStore.bookList[row] = editBook

116 }

117 tableView.reloadData()

118 navigationController?.popToRootViewController(animated: true)
119 }

The function newBook adds a new book to the bookstore; appending the array with the
newBook does this, as shown in line 99. Line 100 then reloads the Table View by calling all
the Table View delegate methods:

numberOfSectionsInTableView
numberOfRowsInSection
cellForRowAtIndexPath

Finally, you pop the DetailViewController from the navigation stack by calling
popToRootViewController. Popping the view from the navigation stack means the view is
removed, similar to tapping the Back button.

The function deleteBook removes the book from the bookStore array. First, you determine
which row was selected in the tableView and use that index to delete the book in the array
by calling remove(at:), as shown on line 106.

The function editBook enables the user to edit an existing book in the bookStore array. To
do this, the function replaces the edited book in the array at the row that was selected, as
shown on line 114.

Now add a Show Segue from the Edit button to the AddBookViewController, as shown in
Figure 14-17.

282 CHAPTER 14: A Swift iPhone App

.\.. . »

o
=

Add Book
Detail Delete < Back Add Book
Title:
Label
Author: Read?
Label
Description
Pages: Label D
Read:
.| Description:
’ Save Book
o-0-0
cEgier
o-o-o0

o=

Figure 14-17. Adding the Edit Show Segue

Select the Segue you just created, select the Attributes Inspector, and name the identifier
editDetail. See Figure 14-18.

CHAPTER 14: A Swift iPhone App 283

Dea i e
Detail Add Book igentifior editDetail
Class o
Mecule
Detail Delete £ Detail Add Book
Kind Show (e.g, Push] B
€ Animates
Title: Peek & Pop (| Preview & Commit Segues
Label
Author: Read?
Label
Description
Pages: Label "
Read:
Description: e
—-@>
Save Book

Edit

Figure 14-18. Naming the Segue’s identifier

In the DetailViewController, add the prepareForSegue method before the configureView
method, as shown in Listing 14-9.

Listing 14-9. Add the prepareForSegue Method

23 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

24 if segue.identifier == "editDetail" {

25 if let vc = segue.destination as? AddBookViewController {
26 vc.delegate = delegate

27 vc.editBook = true

28 vc.book = myBook

29 }

30 }

31 }

Finally, modify the configureView function in the DetailViewController to properly populate
the Pages and Read switch outlets, as shown in Listing 14-10.

Listing 14-10. Modify the configureView

33 func configureView() {

34 if let detail = self.detailltem {
35 myBook = detail
36 titleLabel.text = myBook.title

37 authorLabel.text = myBook.author

284 CHAPTER 14: A Swift iPhone App

38 descriptionTextView.text = myBook.description
39 pagesLabel.text = String(myBook.pages)

40 if myBook.readThisBook {

41 readSwitch.isOn = true

42 }

43 else {

44 readSwitch.isOn = false

45 }

46 }

47 }

App Summary

Compile and run the app. You should set breakpoints at the delegate functions to watch the
program flow. It is a great app to see how delegates can be used to pass information from
one view to another.

Additionally, you can add functionality to the app to make the information persistent by using
Core Data or UserDefaults.

EXERCISES

Add more books to the bookstore using the original program as a guide.
Enhance the Book class so it can store another attribute—a price or ISBN, for example.

Add persistence to the app by using Core Data or UserDefaults.

Chapter 1 5

Apple Watch and WatchKit

In September 2014, Apple announced the Apple Watch, which it considers to be the next
chapter in Apple’s history. This watch not only handles phone calls and text messages, but
it also assesses the wearer’s health by tracking heart rate and exercise. At the same time,
Apple announced WatchKit, a framework designed for developing apps for the Apple Watch.
WatchKit will be very familiar to developers already familiar with UIKit.

Initially, the Apple Watch had some serious limitations with development. The watch acted as
an additional screen for an iPhone app. This required the watch to be close to the phone to
function and also caused apps to run slowly. In June 2015, Apple announced watchOS 2.0.
This new update included many new features, but the biggest one for developers was the ability
to create apps that had code that ran on the Apple Watch instead of on the phone. Developers
were able to create stand-alone apps that performed much better and were more responsive.
Now, Apple has released watchOS 4.0 with even more developer improvements.

Considerations When Creating a watchOS App

One of the great things about developing for watchOS is that all of the development is done
in Swift or Objective-C, just like with other iOS devices. The Apple Watch does have some
different things that you need to consider before you jump into development.

The Apple Watch screen is very small. You are limited to 38mm or
42mm, depending on the size of the watch. This means you will not
have a lot of space for unnecessary Ul elements. Your interface will need
to be compact and well organized. Also, due to the two sizes being
close in size, you have to create one interface and have it look good on
either size.

Sharing data between the phone and the watch requires some planning.
With watchOS 3.0 and now 4.0, Apple has made it even easier to share
data. Primarily, Apple has enhanced the WCSession class. The use of this
class is beyond the scope of this book.

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018 285
S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3_15

https://doi.org/10.1007/978-1-4842-3063-3_15

286 CHAPTER 15: Apple Watch and WatchKit

B WatchKit for watchOS 4.0 provides many different ways to interact
with users not only through apps, but also through glances, actionable
notifications, and complications. Well-written apps can take advantage
of multiple interactions where it makes sense. These interactions are
beyond the scope of this book.

Creating an Apple Watch App

The first step is to create a new project in Xcode. At the top, select Application under the
watchOS header as the project type. Then select iOS App with WatchKit App, as shown in
Figure 15-1.

Choose a template for your new project:

i0s tvOS macOS Cross-platform ®
Application

9

N J
i0S App with
WatchKit App

Framework & Library

Watch Framework Watch Static
Library

Cancel Next

Figure 15-1. Creating the watchOS app

CHAPTER 15: Apple Watch and WatchKit 287

Next, you will be given the option of naming your project. We will call the one in this chapter
BookStore. You will also notice that a watchOS app has different options from a standard
iOS app. We will not be adding a notification or complication scene to this app, so make
sure they are all unchecked, as shown in Figure 15-2.

Note WatchKit provides additional interaction types that not available in i0S apps. Glances are
quick looks into your app. For example, a bookstore app might have a glance that shows the best
sellers. Glances use a special interface on the watch. Complications allow your app to provide
simple information on the watch face itself.

Choose options for your new project:

Product Name: BookStore

<>

Team: Innovativeware LLC
Organization Name: Innovativeware

Organization Identifier: com.inno

Bundle Identifier: com.inno.BookStore

<>

Language: Swift

Include Notification Scene
Include Complication
Include Unit Tests

Include Ul Tests

Cancel Previous Next

Figure 15-2. watch0S App options

Xcode will then prompt you to save your project. Once you’ve saved it, you will be presented
with your new project. On the left side, you will notice two additional targets in your project.
One is the BookStore WatchKit App, which contains the interface (storyboard and assets) for
your app. The second new target is the BookStore WatchKit Extension. This will contain all
of the code for your app to run on watchOS. See Figure 15-3.

288 CHAPTER 15: Apple Watch and WatchKit

M 28 Q AN © 2 o B

v @ BookStore
v BookStore
+ AppDelegate.swift
= ViewController.swift
Main.storyboard
) Assets.xcassets
. LaunchScreen.storyboard
Info.plist
ﬁ BookStore WatchKit App \

Interface.storyboard

1 Assets.xcassets
Info.plist
¥ BookStore WatchKit Extension
3 InterfaceController.swift
» ExtensionDelegate.swift
1 Assets.xcassets

_ Info.plist Yy,

» Products

Figure 15-3. New WatchOS targets

Click the Interface.storyboard in the BookStore WatchKit App target, and you should see
a screen similar to Figure 15-4. This is your empty watchOS app storyboard. You will notice
the size is significantly smaller than a standard iOS storyboard.

CHAPTER 15: Apple Watch and WatchKit

289

e

70 Mo O
Show the Scurce Control navigator

¥ & BookStore
v BookStore
s AppDelegate swift
4 ViewController.swift
Main.storyboard
Assets xcassels
LaunchScreen.storyboard
Info_plist
v BookStore WatchKit App

= BB < 2 BookStore Boo..t App Inter...card

v Interface Controller Scene

Interface Controller
Main Entry Paoint

. Interface.storyboard

Assels.xcassets

Info.plist

v BookStore WatchKit Extension

| InterfaceController.swift
+ | ExtensionDelegate.swift
Assets xcassets
Info_plist
P Products

Figure 15-4. Interface storyboard

Interface Contraller

Interface Controller Scene

Inter..ase)

Since you are going to create a list of books for the watchOS app, you need to add a table
to the storyboard. On the bottom right, search for table and drag the table into the Interface
Controller Scene, as shown in Figure 15-5.

290 CHAPTER 15: Apple Watch and WatchKit

O e o

Table - Displays one or more rows of
data.

Figure 15-5. Adding a table

Xcode will now give you a Table Row as part of the table. This is similar to the prototype
rows you used for creating table views in your iOS apps. You need to create a class to
control it, but for now, you will add a label to it. Search for a label in the Object Library and
drag one onto the row. See Figure 15-6.

CHAPTER 15: Apple Watch and WatchKit

Figure 15-6. Adding a label to the table row

Label Label Displays a static text string.

Date - Displays the current date and
9!9;1 4 time

. Timer - Displays a string that counts
59:59 up or down to a specified time.

By default, the label will be located in the top-left corner of the Table Row. Check the
Attribute Inspector to make sure the height and width can grow in size to fit the content (see

Figure 15-7). This will help ensure that your app runs well on both sizes of Apple Watches.

291

292 CHAPTER 15: Apple Watch and WatchKit

O & @ ¥

Label

+ Text Label

+ Text Color Default
+ Font Body <
+ Min Scale 1|1°

nr Baseline Align Baselines

[
I
[l
]
lo

n Alignment
+ Lines 1S
| View Hide
o+ Alpha 1|1S
= Hidden
Installed

(o)

+ Semantic Unspecified

Alignment

+ Horizontal Left

i Vertical Top

Size
Width Size To Fit Content

Height Size To Fit Content

Figure 15-7. Allowing the label to grow

Now the label will expand to fit the entire row. By default, however, the label will only show
one line of text. Since you are adding book titles, you may need multiple lines to fit all of the
text you want to add. With the label selected, look in the Attributes Inspector on the right
side. Find the Lines attribute and set it to 0, as shown in Figure 15-8. Setting the number of
lines to 0 tells Xcode that it can use as many lines as needed.

Figure 15-8. Setting the Lines attribute

CHAPTER 15: Apple Watch and WatchKit 293
Min Scale 1w
Baseline Align Baselines c
Alignment = = = = .
(Lines 0 9
View
Alpha 1w
Hidden
v Installed
Semantic Unspecified <
Alignment
Horizontal Left <
Vertical Top 4
Size
Width Qiwva Ta Cit MAantant]

Now you need to add some code to get the user interface working. On the left side, expand
the BookStore WatchKit Extension folder and select the InterfaceController.swift file, as
shown in Figure 15-9. The InterfaceController is the default controller for the initial scene

in a WatchKit storyboard.

¥ . BookStore
v BookStore
4 AppDelegate. swift
s ViewController.swift
Main.storyboard
Assels.xcassetls
LaunchScreen.storyboard
info.plist
¥ | BookStore WatchKit App
interface.storyboard
Assets xcassets
Info.plist
v EcckStore WatchKit Extension
2 InterfaceController.swilt
= ExtensionDelegate.swift
Assets.xcassets
Info.plist
» Products

/

// InterfaceContrell

// BookStore WatchKit E

"

f/ Created by Thorn on B/18/17.
2017 Innovativeware. All rights reserved.

// Copyright @
i

import WatchKit
import Foundation

class InterfaceController:

override func awake{withContext context: Any?) {

WKInter

faceController {

super.awake({withContext: context)

// Configure interface

}

override func willActivate() {
method is called when watch view cor

/! This

super.willActiv

}

atel)

ohjects here.

override func didDeactivate() {

/I This

super.didDeactivat

Figure 15-9. Opening the InterfaceController.swift file

:]

method is called when wa

9]

troller is about to be visible

tch view controller is no longer visible

to user

294 CHAPTER 15: Apple Watch and WatchKit

You will notice the default methods in the new controller file are different than they were for a
standard UIViewController. willActivate() is equivalent to viewWillAppear().

The first thing you need to do is add a class definition for a row. To do this, add the following
code to the bottom of the file outside of the close brace (}) for the InterFaceController
class.

1 class BookRow: NSObject {

2 @IBOutlet weak var booklLabel: WKInterfacelabel!
3

4 '}

Line 1 declares a new class called BookRow. It is a subclass of NSObject. Line 2 creates a
property called bookLabel. bookLabel’s class is WKInterfacelabel. This is similar to a
UILabel that you have used before, but it works with WatchKit.

Note Swift allows for multiple classes to be declared in the same Swift file. This works well when
you are only using that class with the other classes in the file. In this case, we are only going to use
the row class with the InterfaceController class.

The InterfaceController.swift file will now look like Figure 15-10.

CHAPTER 15: Apple Watch and WatchKit 295

1
2 /! InterfaceController.swift
2 // BookStore WatchKit Extension
4 A
5 // Created by Thorn on 8/18/17.
6 [/ Copyright @ 2017 Innovativeware. All rights reserved.
1

9 import WatchKit
10 import Foundation
2 class InterfaceController: WKInterfaceController {

15 override func awake(withContext context: Any?) {
6 super.awake(withContext: context)

// Configure interface objects here.

9 }
20
21 override func willActivate() {
22 // This method is called when watch view controller is about to be visible to user
23 super.willActivate()
}

override func didDeactivate() {
7 // This method is called when watch view controller is no longer visible
28 super.didDeactivate()

79 }

30

3}

32

23 class BookRow: NSObject {

O @IBOutlet weak var bookLabel: WKInterfacelLabel!
35}

36

Figure 15-10. Modified InterfaceController.swift file

You can now connect the outlets to the interface. Select Interface.storyboard. Now select
the Assistant Editor by selecting the icon with two circles in the top right of the Xcode
window, as shown in Figure 15-11.

Figure 15-11. Opening the Assistant Editor

With the Assistant Editor, Xcode provides a quick way for developers to create objects and
associate them with outlets in the interface. You will first need to create a table property
representing the Table. Control-drag from the table in the Interface Controller Scene into the
InterfaceController class on the right, as shown in Figure 15-12.

296 CHAPTER 15: Apple Watch and WatchKit

v Interface Controller Sc...
InterfaceController.swift

M Interface Controller /{ BookStore WatchKit Extension
¥ | & Table 1
v) TabieRaw Co.. // Created by Thorn on 8/18/17.
v Group o I ff Copyright @ 2817 Innovativeware. All rights reserved.

[E] Label R 1
Main Entry Point —
_— import watchkit
import Foundation

“ciass InterfaceController: WKInter eController {
O Gverride Tunc awake(withConte|iasidenadAny?) {
super.awake(withContext: context)

f/ Configure interface objects here.

}

override func willActivate() {
f{ This method is called when watch view controller is

about to be visible to user
super.willActivate()

¥
Figure 15-12. Control-drag to create an outlet

Once you release the Table object on the InterfaceController class, Xcode will prompt
you to enter the type of outlet you are creating. Leave the defaults as is, except change the
Name to mainTable, as shown in Figure 15-13.

Ly
impo
Connection | Outlet
Object Interface Controller
clas

Name mainTable
Type WKInterfaceTable o
. Storage | Weak
Cancel Connect
Figure 15-13. Naming your outlet
Select the “lines of text” icon in the top right of the Xcode window to return to the Standard

Editor. Under the Interface Controller Scene, select the Table Row Controller, as shown in
Figure 15-14.

CHAPTER 15: Apple Watch and WatchKit 297

v Interface Controller Scene

v Interface Controller
v Main Table
v Group
Lbl Label
Main Entry Point

Figure 15-14. Selecting the Table Row Controller

Set the class of the Table Row Controller by selecting the Identity Inspector on the right side
and selecting BookRow in the Class drop-down menu, as shown in Figure 15-15.

Figure 15-15. Changing the table row class to BookRow

Custom Class

Class ¢ ﬁ

Module AVPlayerViewController
AppDelegate

| ExtensionDelegate |
GLKView

Label |\ o TooeT

Document

X
Object ID jFP-Ct-c8u
Lock Inherited - (Nothing) [~ |
- @ .

)| o~

L

Notes =

298 CHAPTER 15: Apple Watch and WatchKit

Now that your app knows the type of table row you are using in your code, you need to

add an identifier for the row. This helps in the case where you have multiple row types for a
single table. Select the Attributes Inspector and enter MyBookRow as the identifier, as shown

in Figure 15-16.

O @ B8 ¢ ©

Row Controller

Identifier . myBookRow|
Selectable

Figure 15-16. Changing the table row identifier

You can now hook up the WKInterfacelabel you created earlier. Under the Interface
Controller Scene, control-drag from the book row to the label, as shown in Figure 15-17.

v Interface Controller Scene

v [Interface Controller
v Main Table

v myBookRow
Y\Group
(Lo Label)

Main Entry Point

Figure 15-17. Control-dragging from the row to the label

You will be prompted to select an outlet from the available outlets, as shown in Figure 15-18.

There is currently only one available outlet, so select bookLabel.

¥ . Interface Controller
v Main Table

v O myBookRow

ABIBI Outlets
bookLabel
—> Main Entry Point

Figure 15-18. Connecting the bookLabel outlet

CHAPTER 15: Apple Watch and WatchKit 299

Your table and label are now all hooked up. Now you need some data to display. You are
going to reuse some data you created in Chapter 8. Using the Finder on your Mac, drag the
Book.swift and BookStore.swift files from the Chapter 8 folder into the BookStore WatchKit
Extension folder in Xcode. Check the "Copy items if needed" check box to copy the files to
the new project. Once you are done, you will have the Book.swift and BookStore.swift files
in your target, as shown in Figure 15-19.

v BookStore WatchKit App
Interface.storyboard
=1 Assets.xcassets
Info.plist
v BookStore WatchKit Extension
~ Book.swift
= BookStore.swift
+ InterfaceController.swift
=+ ExtensionDelegate.swift
| Assets.xcassets
Info.plist
> Products

Figure 15-19. Adding in the data files

You have the data and interface complete. You now need to hook them up so the interface
knows about the data. You need to declare a new property that will hold the BookStore
object. Under your declaration of the mainTable object in the InterfaceController.swift
file, you need to add the following line:

var myBookStore: BookStore = BookStore()

This creates a property of type BookStore called myBookStore and initializes it to an instance
of BookStore.

We will use the configureTable() method to set up the table. Add the following code to the
class, outside of any of the other methods:

func configureTable() {
mainTable.setNumberOfRows (myBookStore.bookList.count, withRowType: "myBookRow™)
for index in 0..<myBookStore.bookList.count {
if let myRow = mainTable.rowController(at: index) as? BookRow {
myRow.bookLabel.setText(myBookStore.bookList[index].title)
}

oO~NGOVIAWNER

http://dx.doi.org/10.1007/978-1-4842-3063-3_8
http://dx.doi.org/10.1007/978-1-4842-3063-3_8

300 CHAPTER 15: Apple Watch and WatchKit

Line 1 declares the new method. Line 2 sets the number of rows in the table to the number
of books in the bookstore. You’ll use myBookStore.bookList.count to get that number. We
also tell the table which row identifier to use with the table. Line 3 is a loop that assigns

the index to 0 and goes until it gets assigned to the number of books: 1. The reason you
subtract 1 from the number of books is because Swift (and most modern programming
languages) starts its arrays with 0. This means if you have an array with two items, the items
will be in positions 0 and 1. If you try to look at position 2, you will receive an error.

Line 4 tries to create a new row for the table using the index variable you created in the
previous line. Line 5 takes the row and assigns the Book title to bookLabel. Now we need
to call configureTable when the view is being activated. Add the following line to the
willActivate function:

configureTable()

After entering those lines, the InterfaceController.swift file will look like Figure 15-20.

CHAPTER 15: Apple Watch and WatchKit

1
2/
3/
L/t
5 /f
6 1/
T

InterfaceController.swift
BookStore WatchKit Extension

Created by Thorn on 8/18/17.
Copyright @ 2817 Innovativeware. All rights reserved.

9 import WatchKit

import Foundation

13 class InterfaceController: WKInterfaceController {

}

48}

PIBOutlet var mainTable: WKInterfaceTable!
var myBookStore: BookStore = BookStore()

override func awake(withContext context: Any?) {
super.awake(withContext: context)

// Configure interface objects here.
}

override func willActivate() {
// This method is called when watch view controller is about to be visible to user
super.willActivate()
configureTable()

}

override func didDeactivate() {
// This method is called when watch view controller is no longer visible
super.didDeactivate()

}

func configureTable() {
mainTable.setNumberOfRows (myBookStore.bookList.count, withRowType: "myBookRow")
for index in @...{myBookStore.bookList.count-1) {
if let myRow = mainTable.rowController(at: index) as? BookRow {
myRow.bookLabel.setText(myBookStore.bookList[index].title)
}

class BookRow: NSObject {

@IBOutlet weak var bookLabel: WKInterfacelabel!

Figure 15-20. InterfaceController.swift file

You now have enough in place to run the app. From the target menu, select BookStore
WatchKitApp and then select the size of the Apple Watch you would like the simulator to

301

use, as shown in Figure 15-21. If this is your first time launching the Watch Simulator, it may

take some time and ask for permissions on the Phone Simulator before the app will run

successfully.

302 CHAPTER 15: Apple Watch and WatchKit

v 4 BookStore > BookStore: Ready | Today at 4:40 PM

&% BookStore WatchKit App >
A . eTable

™

b B iPhone (no paired Apple Watch)
Edit Scheme...
New Scheme...
Manage Schemes...

! Mine5s + Brad's Apple Watch (OS version lower than deployment target)

EWE 7 7" Generic i0S Device + watchOS Device
er.swift // Createt
ard // Copyrig

fl #8 iPhone 6s + Apple Watch - 38mm

ets
iPhone 6s Plus + Apple Watch - 42mm

=

n.storyboard

import Watg

impert Fou - o —
shKit App v {8 iPhone 7 Plus + Apple Watch Series 2 - 42mm
ryboard i ;
class Intei Add Additional Simulators...
ets Download Simulators...
O @IBOutlet var mainTable: WKInterfaceTable!

Figure 15-21. Selecting the WatchKit target

Once the app is launched, you will see a watch screen with the two books in the
myBookStore object. You can go back to the BookStore.swift file and add more books if you
want to play around with scrolling. The app should look like Figure 15-22.

4:57
Swift for Absolute
Beginners

A Farewell to Arms

Apple Watch Series 2 - 42mm - watchOS 4.0

Figure 15-22. First WatchKit app launch

Adding More Functionality

In the last section, you created a WatchKit app, but it’s very limited in functionality. In this
section, you will add a new scene to the app to show book detail when a book is selected.
Because you will be adding a scene, you will use an additional controller file. Right-click the
BookStore WatchKit Extension folder and select New File, as shown in Figure 15-23.

CHAPTER 15: Apple Watch and WatchKit

‘ 1 Info.plist
Show in Finder

Open with External Editor
Open As
Show File Inspector

Add Files to “BookStore”...
Delete

New Group

Sort by Name
Sort by Type

Find in Selected Groups...

Source Control

Project Navigator Help

| 2

New Group without Folder

>

Figure 15-23. Adding new controller file

Make sure the new file is a Swift file and name it DetailController.swift. It should now
appear in your file list. Add the following code after the import Foundation line:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import WatchKit

class DetailController: WKInterfaceController {
@IBOutlet var labelTitle: WKInterfacelLabel!
@IBOutlet var labelAuthor: WKInterfacelabel!
@IBOutlet var labelDescription: WKInterfacelabel!

var book: Book!

override func awake(withContext context: Any?) {
super.awake(withContext: context)
if let book = context as? Book {
labelTitle.setText(book.title)
labelAuthor.setText(book.author)

303

304 CHAPTER 15: Apple Watch and WatchKit

25 labelDescription.setText(book.description)
26 }

27 }

28 }

Line 10 imports the WatchKit framework. This is necessary when dealing with any WatchKit
class such as WKInterfaceController or WKInterfacelabel. Line 13 declares a new
WKInterfaceController subclass called DetailController. Lines 14-16 create the label
outlets you will be using to display the book information. Line 18 declares the Book property
called book. Line 20 is the awakeWithContext method. It is passed an object called context,
which is of type Any. This is where the Book object will be passed. Line 22 takes the context
and assigns it to a book object. Lines 23-25 take the pieces of information from the book and
assign them to the labels.

You now need to add the following method to the InterfaceController class:

override func contextForSegue(withIdentifier segueldentifier: String,
in table: WKInterfaceTable,
rowIndex: Int) -> Any? {
return myBookStore.bookList[rowIndex]

}

This method passes the book to the DetailController when it receives the rowIndex of the
selected row. Now you need to create the interface. Select Interface.storyboard on the
left side. Drag an Interface Controller from the Object Library to the storyboard as shown in
Figure 15-24.

CHAPTER 15: Apple Watch and WatchKit 305

Interface Controller

D O O

Interface Controller - Manages a
screen's interface objects

Notification Interface Controller -
Manages an interface for a notification

Figure 15-24. Adding new controller file

Select the second Interface Controller Scene and set the class to DetailController, as shown
in Figure 15-25.

306 CHAPTER 15: Apple Watch and WatchKit

O ® 8 ¥ &

Custom Class

Class InterfaceController [5)
YELmee DetailController

InterfaceController
WKUserNotificationinterfaceCo...

Document
Label
X
Object ID 66w-Rg-yZb
Lock Inherited - (Nothing)
Notes = = = = -— o
2

Figure 15-25. Setting the new controller class

Now drag three label objects onto the interface. These labels will be for the book title,
author, and description. See Figure 15-26. watchOS does not provide all of the layout
options that iOS, tvOS, or macOS do. As a developer, you will need to spend time designing
simple watchOS interfaces.

CHAPTER 15: Apple Watch and WatchKit 307

x
Object ID oTQ-hD-3k|
Lock Inherited - (Nothing) | <)

=-0@ .-

Notes =

Accessibility
Accessibility Enabled | <]
Label
Hint
Identifier

Value

Traits Button
‘oller Link
h Image
Selected
Static Text
Search Field
Plays Sound
Keyboard Key
Summary Element
Updates Frequently
User Interaction Enabled

D {6 s

Label Label - Displays a static text string.

9}9‘” a Date - Displays the current date and
time.

Figure 15-26. New labels

Now you need to connect the outlets of the new labels. Control-drag from the Detail
Controller Scene to each of the labels and assign them to their respective property.
See Figure 15-27.

308 CHAPTER 15: Apple Watch and WatchKit

v Detail Controller Scene

v (L%.Detail Controller
(Lbis.abel)
Lbl Label
[Label

ntroller

Figure 15-27. Connecting the outlets

The data should all be displaying now. You need to create the segue and test the app once
again. Control-drag from the MyBookRow under the Interface Controller Scene to the Detail
Controller. You will be prompted to select the type of segue. Select Push. See Figure 15-28.

v Interface Controller Scene

v Interface Controller
v Main Table
v (I} myBookRow
/

/> Group
M.-’iain Entry Point
/

v | Defhail Controller Scene

(v __¢Detail Controller)
Lbl Label Title
Lbl Label Author
Lbl Label Description

Figure 15-28. Creating the segue

CHAPTER 15: Apple Watch and WatchKit 309

Now run the app and select a row. You should see the detail controller you just created, as
shown in Figure 15-29.

< 5:11
Swift for Absolute...
Bennett and Lees
i0S Programming...

Apple Watch Series 2 - 42mm - watchOS 4.0

Figure 15-29. Detail view scene

Summary

This chapter covered an introduction to developing for the Apple Watch. Specifically, in this
chapter, you learned the following:

How to create a new WatchKit app

How to use the WatchKit controls WKInterfaceController,
WKInterfaceTable, and WKInterfacelLabel

How to create multiple scenes and add segues between them

How to handle passing data from one scene to the next

EXERCISES

Set up the labels on the detail scene to display all of the data instead of cutting some
of it off.

Add more books to your BookStore so you can play with the scrolling in the app.

Index

A

Apple Developer Program, 19
Apple’s A11 Bionic processor, 25
Apple Watch and WatchKit
adding label, 290-291
adding table, 290
Assistant Editor, 295
bookLabel outlet, 298
BookRow, 297
Control-dragging, 298
data files, 299
DetailController.swift, 303-304
detail view scene, 309
expanding label, 291-292
InterfaceController class, 293-296, 300,
301
Interface storyboard, 288, 289
lines attribute, 292-293
myBookStore, 299
new controller class, 303, 305, 306
new labels, 307
new targets, 288
outlets connecting, 307-308
segue, 308
Table Row Controller, 296-297
table row identifier, 298
WatchKit target, 301-302
watchOS app, 285-287
Xcode, 286
App’s design
condition-controlled loop, 50
count-controlled loop, 50
flowchart, 48, 49
forced unwrapping, 46
infinite loop, 51
optionals
binding, 47

© Stefan Kaczmarek, Brad Lees and Gary Bennett 2018

forced unwrapping, 46
implicitly unwrapped, 47
pseudocode
conditional operators, 44
definition, 43
logical operators, 45-46
Array class
access objects, 135
add multiple objects, 135
add objects, 135
add string, 135
fast enumeration, 135
remove(at:) method, 136
ASCII characters, 28-29

Balsamiq tool, 59-60
Binary number system, 27
Bits
Apple’s A8 processor, 26
definition, 25
Bookstore application
Apple Watch and WatchKit
(see Apple Watch and WatchKit)
compare numbers, 161
OOP
add purchase history, 68
add three methods, 68
Book class, 67
create object, 66, 70-74
Customer class, 66, 74-77
Sale class, 67
UML diagram, 69
Swift language programming
access variables, 144
add properties, 147-149
boilerplate project, 139-140

S. Kaczmarek et al., Swift 4 for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3063-3

311

https://doi.org/10.1007/978-1-4842-3063-3

312 Index

Bookstore application (cont.)
Book class, 142-143
configureView method, 156
data model class, 151
DetailViewController, 156
instance variables, 143-144
master-detail application, 138
MasterViewController, 153
product application, 139
Swift file creation, 141-142
UlTableViewController, 153
view creation, 144

Xcode debugger (see Xcode debugger)

BookStore.xcdatamodeld file
attributes, 206, 208
Author entity, 210-211
blank model, 206
date, 208
decimal, 208
fetched properties, 206
Integer 32, 208
interface creation
addNew method, 225
Assistant Editor button, 222
Attributes Inspector, 216
Bar Button ltem, 219-220
connection setup, 222
Document Outline, 220-221
final view, 226-227
hook up, 221
identifier, 216
loadBooks method, 225
Navigation Controller, 217
protocols, 224
Table View, 213-215
UlBarButtonltem, 218
viewDidLoad() method, 224
managed object class, 212
relationships, 206
strings, 208
Boolean expression
comparing strings, 165-167
someCode() method, 164-165
Boolean logic, 159-160
AND operator, 40
comparison operators, 43
NOT operator, 40
OR operator, 40

truth table
AND, 41
NAND, 42
NOR, 42
NOT, 42
OR, 41
XOR, 42
XOR operator, 40
Bug, 5, 247
Bytes, 26

C

Code refactoring, 55
Comparing data
Boolean expression
comparing strings, 165
some_code() method, 164-165
Boolean logic, 159-160
comparison operators, 161
switch statement
combining comparisons, 169
ComparisonResult, 168
if statement, 167
variable, 167
Comparison operators, 43
Computer program, 1-2
Conditional operators, 44
configureView method, 156, 256
Core Data
BookStore.xcdatamodeld file
attributes, 206
Author entity, 210-211
blank model, 206
entity creation, 206-207, 209-210
fetched properties, 206
interface creation, 212-222,
224-225, 227
managed object class, 212
relationships, 206
create, 203-205

Data
adds two numbers, 34
bit, 25-26
byte, 26-27
constants, 31-32

Index 313

explicitly variables, 31
hexadecimal, 28-29
implicitly variables, 31
Moore’s Law, 26
optionals, 32
types
string, 30
variable, 30
Unicode, 30
Database
Core Data (see Core Data)
definition, 202
SQLite, 202
Data storage
iPhone, 199
Mac, 199
preferences file (see Preferences file)
Debugging, 5
Delegation
guessing game app (see Random
number guessing app)
definition, 232
Dictionary class, 136-137

Electronic Numerical Integrator and
Computer (ENIAC), 25
Explicit variables, 31

F

Fast enumeration, 135
Freeze-dried, 172

G

Glances, 287

Hexadecimal system, 28
Human Interface Guidelines (HIG), 174

I, J
Implicit variables, 31
Inheritance, 77-78
Initializer method, 110
Instance methods, 110

Integrated development environment (IDE), 7
Interface, 79
Interface Builder
actions and outlets, 171-172
bundles, 172
nib files, 172
storyboards, 171
XML file format, 172
iOS developer
computer program, 1-2
design requirements, 2-3
OOP (see Object-oriented programming
(OOP))
playground interface, 10
software development cycle
App Store, 6
bugs, 5
debugging, 5
QA, 5
testing, 5
Value Orientated Programming, 80-81

K

Keychain, 200

L

Localizing your app, 32
Logical operators, 45-46
Looping
count-controlled, 50
for-in, 50, 135
infinite, 51
while, 50-51
Lorem Ipsum text, 149

M,N
Mac, data storage, 199
Mobile banking app, 57
Model-View-Controller (MVC)
architectural patterns, 173
banking application, 173-174
objects, 173-174
OOPR, 173
schematic representation, 174
software development, 173
Moore’s Law, 26
Multiple inheritance, 229-231

314 Index

0

Objective-C, 33, 40, 83
Object-oriented programming (OOP)
class, 65
debugging, 79
eliminate redundant code, 78
inheritance, 77
instance, 65
interface, 79
methods, 8
MVC, 173
objects
Bookstore objects, 64
definition, 6, 64
methods, 64
physical, 64
properties, 64
state, 64
playground applications, 7
polymorphism, 79
principles, 6, 78
properties, 9
replacement, 79
state, 9
UlTableView object, 9
OmniGraffle tool, 58
Optional binding, 47

P

Polymorphism, 79
Preferences file

drawbacks, 200

i0S, 200-201

macQOS, 200

string(forKey:) method, 201

synchronize function, 201

UserDefaults class, 200
Protocols

definition, 231

guessing game app (see Random

number guessing app)
syntax, 232

Q

Quality assurance (QA), 5

RadioStations class
action creation, 127
adding objects, 114
Assistant Editor icon, 125
buttonClick method, 127
company identifier, 112
connections, 124-125
execution, 128
iPhone application, 112
Label object, 122-124
single view application, 111
stationName instance variable, 125
type methods, 129
Ul creation, 119
workspace window, 113
writing class, 117
Random number generator app
Document Outline, 181-182
enable controls, 194-195
inspector pane, 186
iPhone simulator, 195-196
naming Swift project, 177-178
new group creation, 179-180
Object Library, 182
seedAction and generateAction
methods, 193-194
selector bar, 186
single view application, 176
source files, 178-179
storyboard files, 180-181
using actions, 192-193
using outlets, 189-192
view creation, 186-188
workspace window, 181
Random number guessing app
home view, 233
project creation
Action Segue, 242-243
add missing constraints, 245

createRandomNumber function, 238

GuessDelegate, 244, 246

Guess Input View Controller
class, 240-242

IBAction function, 237

Navigation Controller, 235-236

Index 315

outlets to control, 236-237
prepareForSegue method, 244, 246
RandomNumberDelegate, 234
segue identifier, 243-244
Text Field object, 239
userDidFinish method, 246
User Guess Delegate function, 238
variable declarations and
initializations, 238
View Controller, 235-236, 239
viewDidLoad () function, 239
user input view, 233-234
Redundant code, 78
Relational operators
comparing numbers, 161
comparison operators, 160
Xcode app
debugger window, 163
NSLog function, 162, 164
Single View Application, 162
Rental report app, 4

S

Sandbox, 199
SQLite, 202
Storyboards, 171-172
String, 30
string(forKey:) method, 201
Swift
class
definition, 108
initializers method, 110
instance methods, 110
properties, 108
type methods, 109-110
implementation of classes, 85-87
programming
Array class, 134
bookstore application (see Bookstore
application)
collection, 134
Dictionary class, 136
let vs. var, 133
RadioStation class (see RadioStation
class)
symbols, 84-85

Swift iPhone app
add book functionality, 263-264
addBookSegue, 271
AddBookViewController
class, 267-268, 271-275
adding edit and delete
functionality, 263, 265
Attributes Inspector, 269, 273
Bar Button Item, 268-270
Book class, properties, 276
Button Bar Item, 270
code refactoring, 55
design requirements, 57
else if statement, 55
insertNewObject function, 271
landmarks, 266-267
MasterViewController, 268-269
nest if statements, 55
newline character, 55
output, 56
prepareForSegue method, 265
random number generator, 52
switches, 276-277
Title of the View Controller to Add
Book, 273-274
UlAlertController
AddBookViewController class, 281
adding pages and read outlets, 278
Attributes Inspector, 282
BookStoreDelegate, 280
configureView, 283
delegate methods, 281
Delete Right Bar Button Item and
action, 279
DetailViewController, 277-279
display, 278-280
Edit button, segue, 281-282
function deleteBook, 281
function editBook, 281
function newBook, 281
identifier editDetail, 282
prepareForSegue method, 283
segue’s identifier, 283
Switches, 276277
Switch statement
combining comparisons, 169
ComparisonResult, 168

316 Index

Switch statement (cont.)
Date class, 168
if statement, 167
variable, 167
synchronize function, 201

T

Type methods, 109-110

Unicode, 30
Unified Modeling Language (UML), 69
User interface (Ul)
design mock-up, 3
Interface Builder (see Interface Builder)
Xcode, 13
UTF-8, 30

'}

Value Orientated Programming, 80-81
Variable, 30

W

WalkAround (rental report app), 4
Woodforest Banking app, 58-59
Workspace window, 14-16

X,V Z
Xcode

Assistant Editor, 17

documentation
help menu, 130
string class, 131

IDE, 13

Interface Builder, 16-17

navigator selector bar
Breakpoint Navigator, 16
Debug navigator, 16
Find navigator, 16
Issue Navigator, 16
Project navigator, 16
Report navigator, 16
Symbol navigator, 16
Test navigator, 16

opening screen, 87

playground IDE, 22-24

playgrounds, 13

project creation
app running, 105
Button object, 96, 99
button’s connection menu, 101
context-sensitive editor, 90
didReceiveMemoryWarning, 92
@IBOutlet and @IBAction, 93
iOS Application, 87
iPhone interface objects, 94
Label object, 97-98, 102
label’s size expanding, 98-99
main screen, 90
Main.storyboard file, 93
Object Library, 95
object’s variable selection, 104
referencing outlet, 102
setting up, 89
showName method, 92, 100
storyboard file, 90
templates list, 88
toolbars, 90
Touch Up Inside, 100-101
View buttons, 91
ViewController.swift file, 91, 93
viewDidlLoad, 92

project editor, 16

relational operators
debugger window, 163
Single View Application, 162

source editor, 16

Standard editor, 17

user interface, 13

Version editor, 17

workspace window, 15

Xcode 9

Apple Developer Program, 19

installation, 18

playground window, 21

steps, 20

Swift playground, 19-20

Xcode debugger

Breakpoint Navigator, 250

code errors, 259, 260

console, 254

Index

controls, 253-254

Debug build configuration, 248

definition, 247

features, 248

interrupted program execution, 252-253

Issue Navigator, 260

MasterViewController.swift viewDidLoad
method, 260

Run buttons, 252

setting breakpoints, 249

stack trace, 254

step control
configureView() method, 256
debugging variables, 257
self.configureView(), 255-256
thread window and call stack, 257
viewDidLoad() method, 257

Variables view, 254

317

	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	1
	Chapter 1: Becoming a Great iOS Developer
	Thinking Like a Developer
	Completing the Development Cycle
	Introducing Object-Oriented Programming
	Working with the Playground Interface
	Summary
	What’s Next

	2
	Chapter 2: Programming Basics
	Touring Xcode
	Exploring the Workspace Window
	Navigating Your Workspace
	Editing Your Project Files

	Creating Your First Swift Playground Program
	Installing and Launching Xcode 9
	Using Xcode 9

	Xcode Playground IDE: Editor and Results Areas
	Summary

	3
	Chapter 3: It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Moore’s Law

	Bytes
	Hexadecimal
	Unicode

	Data Types
	Declaring Constants and Variables
	Optionals
	Using Variables in Playgrounds
	Summary

	4
	Chapter 4: Making Decisions, Program Flow, and App Design
	Boolean Logic
	Truth Tables
	Comparison Operators

	Designing Apps
	Pseudocode
	Optionals and Forced Unwrapping
	Optional Binding
	Implicitly Unwrapped Optionals

	Flowcharting
	Designing and Flowcharting an Example App
	The App’s Design
	Using Loops to Repeat Program Statements
	Count-Controlled Loops
	Condition-Controlled Loops
	Infinite Loops

	Coding the Example App in Swift
	Nested if Statements and else if Statements
	Removing Extra Characters
	Improving the Code Through Refactoring
	Running the App
	Design Requirements

	Summary

	5
	Chapter 5: Object-Oriented Programming with Swift
	The Object
	What Is a Class?
	Planning Classes
	Planning Properties
	Planning Methods
	Implementing the Classes

	Inheritance
	Why Use OOP?
	OOP Is Everywhere
	Eliminate Redundant Code
	Ease of Debugging
	Ease of Replacement

	Advanced Topics
	Interface
	Polymorphism
	Value Orientated Programming

	Summary

	6
	Chapter 6: Learning Swift and Xcode
	A Newcomer
	Understanding the Language Symbols
	Implementing Objects in Swift
	Writing Another Program in Xcode
	Creating the Project

	Summary

	7
	Chapter 7: Swift Classes, Objects, and Methods
	Creating a Swift Class
	Properties
	Methods
	Using Type Methods
	Using Instance Methods

	Using Your New Class
	Creating Your Project
	Adding Objects
	Writing the Class
	Creating the User Interface
	Hooking Up the Code
	Running the Program
	Taking Type Methods to the Next Level

	Accessing the Xcode Documentation
	Summary

	8
	Chapter 8: Programming Basics in Swift
	Using let vs. var
	Understanding Collections
	Using Arrays
	Using the Dictionary Class
	Creating the BookStore Application
	Creating Your Class
	Introducing Properties
	Accessing Properties

	Finishing the BookStore Program
	Creating the View
	Adding Properties
	Adding a Description
	Creating a Simple Data Model Class
	Modifying MasterViewController
	Modifying the DetailViewController

	Summary

	9
	Chapter 9: Comparing Data
	Revisiting Boolean Logic
	Using Relational Operators
	Comparing Numbers
	Creating an Example Xcode App

	Using Boolean Expressions
	Comparing Strings

	Using the switch Statement
	Comparing Dates
	Combining Comparisons

	Summary

	10
	Chapter 10: Creating User Interfaces
	Understanding Interface Builder
	The Model-View-Controller Pattern
	Human Interface Guidelines
	Creating an Example iPhone App with Interface Builder
	Using Interface Builder
	The Document Outline
	The Object Library
	Inspector Pane and Selector Bar
	Creating the View
	Using Outlets
	Using Actions
	The Class

	Summary

	11
	Chapter 11: Storing Information
	Storage Considerations
	Preferences/UserDefaults
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context
	Setting Up the Interface

	Summary

	12
	Chapter 12: Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	Protocol Syntax
	Delegation
	Protocol and Delegation Example
	Getting Started
	How It Works
	Summary

	13
	Chapter 13: Introducing the Xcode Debugger
	Getting Started with Debugging
	Setting Breakpoints
	Using the Breakpoint Navigator
	Debugging Basics
	Working with the Debugger Controls

	Using the Step Controls
	Looking at the Thread Window and Call Stack
	Debugging Variables

	Dealing with Code Errors and Warnings
	Errors
	Warnings

	Summary

	14
	Chapter 14: A Swift iPhone App
	Let’s Get Started
	Switches
	Alert Controllers

	App Summary

	15
	Chapter 15: Apple Watch and WatchKit
	Considerations When Creating a watchOS App
	Creating an Apple Watch App
	Adding More Functionality
	Summary

	Index
	Index

