

Practical Mobile Forensics
Second Edition

A hands-on guide to mastering mobile forensics for the iOS,
Android, and the Windows Phone platforms

Heather Mahalik
Rohit Tamma
Satish Bommisetty

BIRMINGHAM - MUMBAI

Practical Mobile Forensics

Second Edition
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Second published: May 2016

Production reference: 1130516

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78646-420-0

Credits

Authors
Heather Mahalik
Rohit Tamma
Satish Bommisetty

Copy Editor
Pranjali Chury

Reviewer
Donnie Tindall

Project Coordinator
Suzanne Coutinho

Commissioning Editor
Priya Singh

Proofreader
Safis Editing

Acquisition Editor
Rahul Nair

Indexer
Rekha Nair

Content Development Editors
Amey Varangaonkar
Merint Mathew

Production Coordinator
Manu Joseph

Technical Editor
Vivek Pala

Cover Work
Manu Joseph

About the Authors
Heather Mahalik is a principal forensic scientist with Oceans Edge, Inc., where she leads
the forensic effort focusing on mobile and digital exploitation. She is a senior instructor and
author for the SANS Institute, and she is also the course leader for the FOR585 Advanced
Smartphone Forensics course. With over 13 years of experience in digital forensics, she
continues to thrive on smartphone investigations, forensic course development and
instruction, and research on application analysis and smartphone forensics.

Prior to joining Oceans Edge, Heather was the Mobile Exploitation Team Lead at Basis
Technology. When starting her career, she worked at Stroz Friedberg and for the U.S.
Department of State Computer Investigations and Forensics Lab as a contractor. Heather
earned her bachelor's degree from West Virginia University. She co-authored Practical
Mobile Forensics (First edition) and was the technical reviewer for Learning Android
Forensics. She has authored white papers and forensic course material and has taught
hundreds of courses worldwide to Law Enforcement, Military, Government, IT, eDiscovery,
and other forensic professionals focusing on mobile device and digital forensics.

My first book was dedicated to the people who afforded me the opportunity to grow into the examiner
I am today. This book is dedicated to those who push me to keep learning and allow me to share my
knowledge – my students. Without you, I would not have had a reason to stay ahead of the curve,
find those odd artifacts, and learn ways to outsmart the tools. You give me motivation to keep
charging ahead. I would also like to thank metr0 for affording me opportunities to do things in my
career that stretch far outside of what the norm is in forensics. I will be forever grateful.

To my husband, thank you for being such a great dad and for picking up the slack so that I can work
as hard as I do. To Jack, always remember that your mama wants to be home with you and misses
you while she's away. Remember that my work is important and teaching others the right way to
conduct digital examinations may make your world a safer and better place. "The students" are
happy you let them borrow your mommy. I would not be where I am today or able to travel and teach
as much as I do without my amazing family and students.

Rohit Tamma is a security analyst currently working with Microsoft. With over 7 years of
experience in the field of security, his background spans consulting/analyst roles in the
areas of application security, mobile security, penetration testing, and security training. His
past experiences include working with Accenture, ADP, and TCS, driving security
programs for various client teams. Rohit has also coauthored Learning Android Forensics,
which explains various techniques to perform forensics on the Android platform. You can
contact him at or on Twitter at .

Writing this book has been a great experience as it has taught me several things, which could not
have been possible otherwise . I would like to dedicate this book to my parents for helping me in every
possible way throughout my life.

Satish Bommisetty is a security analyst working for a Fortune 500 company. His primary
areas of interest include iOS forensics, iOS application security, and web application
security. He has presented at international conferences, such as ClubHACK and C0C0n. He
is also one of the core members of the Hyderabad OWASP chapter. He has identified and
disclosed vulnerabilities within the websites of Google, Facebook, Yandex, PayPal, Yahoo!,
AT&T, and more, and is listed in their hall of fame.

I would like to thank everyone who encouraged me while producing this book.

About the Reviewer
Donnie Tindall is an assistant vice president of cyber security and digital forensics at
Deutsche Bank. He previously spent many years as a US government contractor focusing on
mobile forensics and provided unique solutions to challenging forensic issues. He was also
responsible for the development and teaching of various forensic courses to government
and military users. Donnie has performed thousands of mobile device examinations,
including on Nokia, BlackBerry, Android, and iPhone devices. He is also an IACIS Certified
Forensic Computer Examiner, author of Learning Android Forensics, and instructor for
FOR585 - the SANS Institute’s smartphone forensics course.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
Get notified! Find out when new books are published by following on
Twitter or the Packt Enterprise Facebook page.

Table of Contents
Preface 1

Chapter 1: Introduction to Mobile Forensics 6
Why do we need mobile forensics? 6
Mobile forensics 8

Challenges in mobile forensics 10
The mobile phone evidence extraction process 12

The evidence intake phase 13
The identification phase 13

The legal authority 13
The goals of the examination 13
The make, model, and identifying information for the device 14
Removable and external data storage 14
Other sources of potential evidence 14

The preparation phase 14
The isolation phase 15
The processing phase 15
The verification phase 15

Comparing extracted data to the handset data 16
Using multiple tools and comparing the results 16
Using hash values 16

The document and reporting phase 16
The presentation phase 17
The archiving phase 17

Practical mobile forensic approaches 17
Mobile operating systems overview 18

Android 18
iOS 18
Windows phone 19

Mobile forensic tool leveling system 19
Manual extraction 20
Logical extraction 21
Hex dump 21
Chip-off 21
Micro read 22

Data acquisition methods 22
Physical acquisition 22

[ii]

Logical acquisition 23
Manual acquisition 23

Potential evidence stored on mobile phones 23
Rules of evidence 24
Good forensic practices 25

Securing the evidence 25
Preserving the evidence 25
Documenting the evidence 26
Documenting all changes 26

Summary 26
Chapter 2: Understanding the Internals of iOS Devices 27

iPhone models 28
Identifying the correct hardware model 29

iPhone hardware 36
iPad models 37
Understanding the iPad hardware 40
Apple Watch models 42
Understanding the Apple Watch hardware 43
File system 44
The HFS Plus file system 45

The HFS Plus volume 45
Disk layout 47
iPhone operating system 48

The iOS architecture 48
iOS security 49

Passcodes 51
Code signing 51
Sandboxing 51
Encryption 51
Data protection 51
Address Space Layout Randomization 52
Privilege separation 52
Stack smashing protection 52
Data execution prevention 52
Data wipe 52
Activation Lock 53

The App Store 53
Jailbreaking 53

Summary 54
Chapter 3: iOS Forensic Tools 55

[iii]

Working with Elcomsoft iOS Forensic Toolkit 55
Features of EIFT 56
Usage of EIFT 56

The guided mode 56
The manual mode 62

EIFT-supported devices 62
Compatibility notes 63

Oxygen Forensic Detective 64
Features of Oxygen Forensic Detective 64
Usage of Oxygen Forensic Detective 65

Working with Cellebrite UFED Physical Analyzer 68
Features of Cellebrite UFED Physical Analyzer 69
Usage of Cellebrite UFED Physical Analyzer 69
Supported devices 74

Working with BlackLight 75
Features of BlackLight 75
Usage of BlackLight 75

Open source or free methods 78
Working with Magnet span /ACQUIRE/span 79

Features of Magnet span /ACQUIRE/span 79
Usage of Magnet span /ACQUIRE/span 80

Working with NowSecureCE 83
Features of NowSecureCE 83
Usage of NowSecureCE 84

Summary 85
Chapter 4: Data Acquisition from iOS Devices 87

Operating modes of iOS devices 88
The normal mode 88
The recovery mode 89
DFU mode 92
Setting up the forensic environment 95

Physical acquisition 96
Physical acquisition via a custom ramdisk 97
Imaging the user and system partitions 99

Encrypted file systems 100
File system acquisition 101
Logical acquisition 102
Bypassing the passcode 104
Acquisition of jailbroken devices 112

[iv]

Summary 116
Chapter 5: Data Acquisition from iOS Backups 117

iTunes backup 117
Pairing records 122
Understanding the backup structure 124

info.plist 125
manifest.plist 126
status.plist 126
manifest.mbdb 126

Header 127
Record 127

Unencrypted backup 130
Extracting unencrypted backups 131

iPhone Backup Extractor 131
iExplorer 133
BlackLight 135

Decrypting the keychain 139
Encrypted backup 140

Extracting encrypted backups 142
Decrypting the keychain 142

Elcomsoft Phone Breaker 143
Working with iCloud backupa //as 145

Extracting iCloud backups 147
Summary 149

Chapter 6: Android Data Extraction Techniques 150
Data extraction techniques 150

Manual data extraction 151
Logical data extraction 151

ADB pull data extraction 152
Using SQLite Browser to view the data 155
Extracting device information 155
Extracting call logs 156
Extracting SMS/MMS 158
Extracting browser history 159
Analysis of social networking/IM chats 160

ADB backup extraction 161
ADB dumpsys extraction 163
Using content providers 165

Physical data extraction 168
Imaging an Android Phone 169
Imaging a memory (SD) card 172

[v]

strong /Joint Test Action Group/strong 173
Chip-off 175

Summary 177
Chapter 7: iOS Data Analysis and Recovery 178

Timestamps 178
UNIX timestamps 179
Mac absolute time 179

SQLite databases 179
Connecting to a database 180
SQLite special commands 181
Standard SQL queries 182
Accessing a database using commercial tools 182
Key artifacts – important iOS database files 187

Address book contacts 188
Address book images 190
Call history 192
SMS messages 195
Calendar events 196
Notes 198
Safari bookmarks and cache 199
The photos metadata 200
Consolidated GPS cache 201
Voicemail 202

Property lists 203
Important plist files 204

The HomeDomain plist files 204
The RootDomain plist files 205
The WirelessDomain plist files 206
The SystemPreferencesDomain plist files 206

Other important files 206
Cookies 207
Keyboard cache 207
Photos 208
Wallpaper 208
Snapshots 208
Recordings 209
Downloaded applications 209

The Apple Watch 209
Recovering deleted SQLite records 212
Summary 213

[vi]

Chapter 8: Android Data Analysis and Recovery 215
Analyzing an Android image 215

Autopsy 216
Adding an image to Autopsy 216
Analyzing an image using Autopsy 219

Android data recovery 220
Recovering deleted data from external SD card 222
Recovering data deleted from internal memory 226
Recovering deleted files by parsing SQLite files 227
Recovering files using file carving techniques 229

Recovering contacts using your Google account 233
Summary 235

Chapter 9: Understanding Android 236
The evolution of Android 236
The Android model 237

The Linux kernel layer 239
Libraries 240
Dalvik virtual machine 240
Android Runtime (ART) 241
The Application Framework layer 242
The applications layer 242

The Android security 242
Secure kernel 243
The permission model 244
Application sandbox 245
Secure inter-process communication 245
Application signing 245
Security-Enhanced Linux 245
Full disk encryption 246

The Android file hierarchy 247
The Android file system 250

Viewing file systems on an Android device 251
Common file systems found on Android 255

Summary 256
Chapter 10: Android Forensic Setup and Pre Data Extraction
Techniques 257

Setting up the forensic environment for Android 257
The Android Software Development Kit 258

[vii]

The Android SDK installation 258
An Android Virtual Device 261
Connecting an Android device to a workstation 265

Identifying the device cable 266
Installing the device drivers 266

Accessing the connected device 266
The Android Debug Bridge 268

USB debugging 268
Accessing the device using adb 270

Detecting connected devices 270
Killing the local adb server 270
Accessing the adb shell 271

Handling an Android device 271
Screen lock bypassing techniques 273

Using adb to bypass the screen lock 274
Deleting the gesture.key file 274
Updating the settings.db file 275
Checking for the modified recovery mode and adb connection 275
Flashing a new recovery partition 276
Using automated tools 276
Using Android Device Manager 278
Smudge attack 279
Using the Forgot Password/Forgot Pattern option 280
Bypassing Third-Party Lock Screen by booting into safe mode 281
Secure USB debugging bypass using adb keys 282
Secure USB debugging bypass in Android 4.4.2 282
Crashing the lock screen UI in Android 5.x 283
Other techniques 285

Gaining root access 286
What is rooting? 286
Rooting an Android device 286
Root access – adb shell 289

Summary 290
Chapter 11: Android App Analysis, Malware, and Reverse Engineering 292

Analyzing Android apps 292
Facebook Android app analysis 293
WhatsApp Android app analysis 295
Skype Android app analysis 296
Gmail Android app analysis 297

[viii]

Google Chrome Android app analysis 298
Reverse engineering Android apps 300

Extracting an APK file from an Android device 301
Steps to reverse engineer Android apps 303

Android malware 306
How does malware spread? 309
Identifying Android malware 310

Summary 313
Chapter 12: Windows Phone Forensics 314

Windows Phone OS 314
Security model 317

Windows chambers 317
Encryption 317
Capability-based model 317
App sandboxing 319

The Windows Phone file system 319
Data acquisition 321

Sideloading using ChevronWP7 323
Commercial forensic tool acquisition methods 325
Extracting data without the use of commercial tools 332
SD card data extraction methods 336
Key artifacts for examination 340

Extracting SMS 340
Extracting e-mail 341
Extracting application data 344

Summary 346
Chapter 13: Parsing Third-Party Application Files 348

Third-party application overview 349
Chat applications 350
GPS applications 351
Secure applications 353
Financial applications 354
Social networking applications 354

Encoding versus encryption 358
Application data storage 360

iOS applications 361
Android applications 362
Windows Phone applications 364

Forensic methods used to extract third-party application data 365

[ix]

Commercial tools 365
Oxygen Detective 365
Magnet IEF 367
UFED Physical Analyzer 370

Open source tools 372
Autopsy 372
Other methods to extract application data 376

Summary 377
Index 378

Preface
The exponential growth of mobile devices has revolutionized many aspects of our lives. In
what is called as the post-PC era, smartphones are engulfing desktop computers with their
enhanced functionality and improved storage capacity. This rapid transformation has led to
increased usage of mobile handsets across all the sectors.

Despite their small size, smartphones are capable of performing many tasks: sending
private messages and confidential e-mails, taking photos and videos, making online
purchases, viewing our salary slips, completing banking transactions, accessing social
networking sites, managing business tasks, and more. Hence, a mobile device is now a huge
repository of sensitive data that can provide a wealth of information about its owner. This
has in turn led to the evolution of Mobile Device Forensics, a branch of digital forensics that
deals with retrieving data from a mobile device. Today, there is huge demand for
specialized forensic experts, especially given the fact that the data retrieved from a mobile
device is court admissible.

Mobile forensics is all about utilizing scientific methodologies to recover data stored within
a mobile phone for legal purposes. Unlike traditional computer forensics, mobile forensics
has limitations in obtaining evidence due to rapid changes in the technology and the fast-
paced evolution of mobile software. With different operating systems and with a wide
range of models being released into the market, mobile forensics has expanded over the last
few years. Specialized forensic techniques and skills are required in order to extract data
under different conditions.

This book takes you through the challenges involved in mobile forensics and practically
explains detailed methods of collecting evidence from different mobile devices with iOS,
Android, and Windows mobile operating systems.

This book is organized in a manner that allows you to focus independently on chapters that
are specific to your required platform.

Preface

[2]

What this book covers
, Introduction to Mobile Forensics, introduces you to the concepts of mobile

forensics, its core values, and its limitations. This chapter also provides an overview of
practical approaches and best practices involved in performing mobile forensics.

, Understanding the Internals of iOS Devices, provides an overview of the popular
Apple iOS devices, including an outline of different models and their hardware.
Throughout this book, we explain iOS security features and device security and its impact
on the iOS forensics approaches. This chapter also gives an overview of the iOS file system
and outlines the sensitive files that are useful for forensic examination.

, iOS Forensic Tools, gives an overview of existing open source and commercial
iOS forensics tools. These tools differ in the range of mobile phones they support and the
amount of data that they can recover. This chapter describes the advantages and limitations
of those tools

, Data Acquisition from iOS Devices, covers various types of forensic acquisition
methods that can be performed on iOS devices and guides you through preparing your
desktop machine for forensic work. This chapter also discusses passcode bypass techniques
and physical extraction of the devices and explains different ways in which the device can
be imaged.

, Data Acquisition from iOS Backups, provides detailed explanations of different
types of iOS backup and details what types of file are stored in the backup. This chapter
also covers logical acquisition techniques of recovering data from the backups.

, iOS Data Analysis and Recovery, discusses the types of data that is stored on iOS
devices and the general location of this data storage. Common file types used in iOS devices
such as plist and SQLite are discussed in detail to provide an understanding of how the
data is being stored on the device, which will help the forensic examiners to efficiently
recover data from these files.

, Understanding Android, introduces you to the Android model, file system, and
its security features. It provides an explanation of how data is stored in any Android device,
which will be useful while carrying out forensic investigation.

, Android Forensic Setup and Pre Data Extraction Techniques, guides you through
the Android forensic setup and other techniques to follow before extracting any
information. Screen lock bypass techniques and gaining root access are also discussed in
this chapter.

Preface

[3]

, Android Data Extraction Techniques, provides an explanation of physical, file
system, and logical acquisition techniques for extracting relevant information from an
Android device.

, Android Data Analysis and Recovery, talks about extracting and analyzing data
from Anroid image files. This chapter also covers possibilities and limitations for recovering
deleted data from Android devices.

, Android App Analysis, Malware, and Reverse Engineering, covers the analysis of
some of the widely used Android apps to retrieve valuable data. This chapter also covers
Android malware and techniques to reverse engineer an Android app.

, Windows Phone Forensics, provides a basic overview of forensic approaches
when dealing with Windows Phones.

, Parsing Third-Party Application Files, covers forensic approaches to include
acquisition and analysis techniques when dealing with BlackBerry devices. BlackBerry
encryption and data protection is also addressed.

What you need for this book
This book provides practical forensic approaches and explains the techniques in a simple
manner. The content is organized in a way that allows even a user with basic computer
skills to examine the device and extract the required data. A Macintosh, Windows, or Linux
computer will be helpful to successfully repeat the methods defined in this book. Where
possible, methods for all computer platforms are provided.

Who this book is for
This book is intended for forensic examiners with little or basic experience in mobile
forensics or with open source solutions for mobile forensics. This book will also be useful to
computer security professionals, researchers, and anyone seeking a deeper understanding
of mobile internals. This book will also come in handy for those who are trying to recover
accidentally deleted data (photos, contacts, SMS, and more.).

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Preface

[4]

Code words in text are shown as follows: "The user data partition occupies most of the
NAND memory and is mounted at on the device."

Any command-line input or output is written as follows:

$ git clone https://github.com/benvium/libimobiledevice-macosx.git
~/Desktop/libimobiledevice-macosx/

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Every time an application is
suspended to the background by pressing the Home button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
 and enter the name of the book in the search field. The required information

will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at , and we will do our best to address the problem.

11
Introduction to Mobile Forensics

There is no doubt that mobile devices have become part of our lives and revolutionized the
way we do most of our activities. As a result, a mobile device is now a huge repository that
holds sensitive information about its owner. This has in turn led to the rise of mobile device
forensics, a branch of digital forensics that deals with retrieving data from a mobile device.
This book will help you understand forensic techniques on three main platforms—Android,
iOS, and Windows. We will practically go through various methods that can be followed to
collect evidence from different mobile devices.

In this chapter, we will cover the following topics:

Introduction to mobile forensics
Challenges in mobile forensics
Mobile phone evidence extraction process
Mobile forensic approaches
Good forensic practices

Why do we need mobile forensics?
In 2015, there were more than 7 billion mobile cellular subscriptions worldwide, up from
less than 1 billion in 2000, says International Telecommunication Union (ITU). The world
is witnessing technology and user migration from desktops to mobile phones. The
following graph sourced from shows the actual and estimated growth of
smartphones from the year 2009 to 2018.

Introduction to Mobile Forensics

[7]

Growth of smartphones from 2009 to 2018 in million units

Gartner Inc. reports that global mobile data traffic reached 52 million terabytes (TB) in 2015,
an increase of 59 percent from 2014, and the rapid growth is set to continue through 2018,
when mobile data levels are estimated to reach 173 million TB. Smartphones of today, such
as the Apple iPhone, the Samsung Galaxy series, and BlackBerry phones, are compact forms
of computers with high performance, huge storage, and enhanced functionalities. Mobile
phones are the most personal electronic device that a user accesses. They are used to
perform simple communication tasks, such as calling and texting, while still providing
support for Internet browsing, e-mail, taking photos and videos, creating and storing
documents, identifying locations with GPS services, and managing business tasks. As new
features and applications are incorporated into mobile phones, the amount of information
stored on the devices is continuously growing. Mobiles phones become portable data
carriers, and they keep track of all your movements. With the increasing prevalence of
mobile phones in peoples' daily lives and in crime, data acquired from phones become an
invaluable source of evidence for investigations relating to criminal, civil, and even high-
profile cases. It is rare to conduct a digital forensic investigation that does not include a
phone. Mobile device call logs and GPS data were used to help solve the attempted
bombing in Times Square, New York, in 2010.

Introduction to Mobile Forensics

[8]

The details of the case can be found at

.

The science behind recovering digital evidence from mobile phones is called mobile
forensics. Digital evidence is defined as information and data that is stored on, received, or
transmitted by an electronic device that is used for investigations. Digital evidence
encompasses any and all digital data that can be used as evidence in a case.

Mobile forensics
Digital forensics is a branch of forensic science focusing on the recovery and investigation
of raw data residing in electronic or digital devices. The goal of the process is to extract and
recover any information from a digital device without altering the data present on the
device. Over the years, digital forensics has grown along with the rapid growth of
computers and various other digital devices. There are various branches of digital forensics
based on the type of digital device involved such as computer forensics, network forensics,
mobile forensics, and so on.

Mobile forensics is a branch of digital forensics related to the recovery of digital evidence
from mobile devices. Forensically sound is a term used extensively in the digital forensics
community to qualify and justify the use of particular a forensic technology or
methodology. The main principle for a sound forensic examination of digital evidence is
that the original evidence must not be modified. This is extremely difficult with mobile
devices. Some forensic tools require a communication vector with the mobile device, thus a
standard protection will not work during forensic acquisition. Other forensic
acquisition methods may involve removing a chip or installing a bootloader on the mobile
device prior to extract data for forensic examination. In cases where the examination or data
acquisition is not possible without changing the configuration of the device, the procedure
and the changes must be tested, validated, and documented. Following proper
methodology and guidelines is crucial in examining mobile devices as it yields the most
valuable data. As with any evidence gathering, not following the proper procedure during
the examination can result in loss or damage of evidence or render it inadmissible in court.

The mobile forensics process is broken down into three main categories:
seizure, acquisition, and /examination/analysis. Forensic examiners face some challenges
while seizing the mobile device as a source of evidence. At the crime scene, if the mobile
device is found switched off, the examiner should place the device in a faraday bag to
prevent changes should the device automatically power on. As shown in the following
figure, Faraday bags are specifically designed to isolate the phone from the network.

Introduction to Mobile Forensics

[9]

A Faraday bag (Image courtesy:

)

If the phone is found switched on, switching it off has a lot of concerns attached to it. If the
phone is locked by a PIN or password or encrypted, the examiner will be required to bypass
the lock or determine the PIN to access the device. Mobile phones are networked devices
and can send and receive data through different sources, such as telecommunication
systems, Wi-Fi access points, and Bluetooth. So, if the phone is in a running state, a criminal
can securely erase the data stored on the phone by executing a remote wipe command.
When a phone is switched on, it should be placed in a faraday bag. If possible, prior to
placing the mobile device in the faraday bag, disconnect it from the network to protect the
evidence by enabling the flight mode and disabling all network connections (Wi-Fi, GPS,
Hotspots, and so on). This will also preserve the battery, which will drain while in a faraday
bag and protect against leaks in the faraday bag. Once the mobile device is seized properly,
the examiner may need several forensic tools to acquire and analyze the data stored on the
phone.

Mobile device forensic acquisition can be performed using multiple methods, which are
defined later. Each of these methods affects the amount of analysis required, which will be
discussed in greater detail in the upcoming chapters. Should one method fail, another must
be attempted. Multiple attempts and tools may be necessary in order to acquire the

Introduction to Mobile Forensics

[10]

maximum data from the mobile device.

Mobile phones are dynamic systems that present a lot of challenges to the examiner in
extracting and analyzing digital evidence. The rapid increase in the number of different
kinds of mobile phones from different manufacturers makes it difficult to develop a single
process or tool to examine all types of devices. Mobile phones are continuously evolving as
existing technologies progress and new technologies are introduced. Furthermore, each
mobile is designed with a variety of embedded operating systems. Hence, special
knowledge and skills are required from forensic experts to acquire and analyze the devices.

Challenges in mobile forensics
One of the biggest forensic challenges when it comes to the mobile platform is the fact that
data can be accessed, stored, and synchronized across multiple devices. As the data is
volatile and can be quickly transformed or deleted remotely, more effort is required for the
preservation of this data. Mobile forensics is different from computer forensics and presents
unique challenges to forensic examiners.

Law enforcement and forensic examiners often struggle to obtain digital evidence from
mobile devices. The following are some of the reasons:

Hardware differences: The market is flooded with different models of mobile
phones from different manufacturers. Forensic examiners may come across
different types of mobile models, which differ in size, hardware, features, and
operating system. Also, with a short product development cycle, new models
emerge very frequently. As the mobile landscape is changing each passing day, it
is critical for the examiner to adapt to all the challenges and remain updated on
mobile device forensic techniques across various devices.
Mobile operating systems: Unlike personal computers where Windows has
dominated the market for years, mobile devices widely use more operating
systems, including Apple's iOS, Google's Android, RIM's BlackBerry OS,
Microsoft's Windows Mobile, HP's webOS, Nokia's Symbian OS, and many
others. Even within these operating systems, there are several versions which
make the task of forensic investigator even more difficult.
Mobile platform security features: Modern mobile platforms contain built-in
security features to protect user data and privacy. These features act as a hurdle
during the forensic acquisition and examination. For example, modern mobile
devices come with default encryption mechanisms from the hardware layer to the
software layer. The examiner might need to break through these encryption
mechanisms to extract data from the devices.
Lack of resources: As mentioned earlier, with the growing number of mobile

Introduction to Mobile Forensics

[11]

phones, the tools required by a forensic examiner would also increase. Forensic
acquisition accessories, such as USB cables, batteries, and chargers for different
mobile phones, have to be maintained in order to acquire those devices.
Preventing data modification: One of the fundamental rules in forensics is to
make sure that data on the device is not modified. In other words, any attempt to
extract data from the device should not alter the data present on that device. But
this is practically not possible with mobiles because just switching on a device
can change the data on that device. Even if a device appears to be in an off state,
background processes may still run. For example, in most mobiles, the alarm
clock still works even when the phone is switched off. A sudden transition from
one state to another may result in the loss or modification of data.
Anti-forensic techniques: Anti-forensic techniques, such as data hiding, data
obfuscation, data forgery, and secure wiping, make investigations on digital
media more difficult.
Dynamic nature of evidence: Digital evidence may be easily altered either
intentionally or unintentionally. For example, browsing an application on the
phone might alter the data stored by that application on the device.
Accidental reset: Mobile phones provide features to reset everything. Resetting
the device accidentally while examining may result in the loss of data.
Device alteration: The possible ways to alter devices may range from moving
application data, renaming files, and modifying the manufacturer's operating
system. In this case, the expertise of the suspect should be taken into account.
Passcode recovery: If the device is protected with a passcode, the forensic
examiner needs to gain access to the device without damaging the data on the
device. While there are techniques to bypass the screen lock, they may not always
work on all the versions.
Communication shielding: Mobile devices communicate over cellular networks,
Wi-Fi networks, Bluetooth, and Infrared. As device communication might alter
the device data, the possibility of further communication should be eliminated
after seizing the device.
Lack of availability of tools: There is a wide range of mobile devices. A single
tool may not support all the devices or perform all the necessary functions, so a
combination of tools needs to be used. Choosing the right tool for a particular
phone might be difficult.
Malicious programs: The device might contain malicious software or malware,
such as a virus or a Trojan. Such malicious programs may attempt to spread over
other devices over either a wired interface or a wireless one.
Legal issues: Mobile devices might be involved in crimes, which can cross
geographical boundaries. In order to tackle these multijurisdictional issues, the

Introduction to Mobile Forensics

[12]

forensic examiner should be aware of the nature of the crime and the regional
laws.

The mobile phone evidence extraction
process
Evidence extraction and forensic examination of each mobile device may differ. However,
following a consistent examination process will assist the forensic examiner to ensure that
the evidence extracted from each phone is well documented and that the results are
repeatable and defendable. There is no well-established standard process for mobile
forensics. However, the following figure provides an overview of process considerations for
extraction of evidence from mobile devices. All methods used when extracting data from
mobile devices should be tested, validated, and well documented.

Mobile phone evidence extraction process

A great resource for handling and processing mobile devices can be found
at

.

Introduction to Mobile Forensics

[13]

As shown in the preceding figure, forensics on a mobile device includes several phases
starting from evidence intake phase to Archiving phase. The following sections provide an
overview of various considerations across all the phases.

The evidence intake phase
The evidence intake phase is the starting phase and entails request forms and paperwork to
document ownership information and the type of incident the mobile device was involved
in, and it outlines the type of data or information the requester is seeking. Developing
specific objectives for each examination is the critical part of this phase. It serves to clarify
the examiner's goals. Also, while seizing the device, care should be taken not to modify any
data present on the device. At the same time, any opportunity that might help the
investigation should not be missed. For example, at the time of seizing the device, if the
device is unlocked, then try to disable the passcode.

The identification phase
The forensic examiner should identify the following details for every examination of a
mobile device:

The legal authority
The goals of the examination
The make, model, and identifying information for the device
Removable and external data storage
Other sources of potential evidence

We will discuss each of them in the following sections.

The legal authority
It is important for the forensic examiner to determine and document what legal authority
exists for the acquisition and examination of the device as well as any limitations placed on
the media prior to the examination of the device. For example, if the mobile device is being
searched pursuant to a warrant, the examiner should be mindful of confining the search to
the limitations of the warrant.

Introduction to Mobile Forensics

[14]

The goals of the examination
The examiner will identify how in-depth the examination needs to be based upon the data
requested. The goal of the examination makes a significant difference in selecting the tools
and techniques to examine the phone and increases the efficiency of the examination
process.

The make, model, and identifying information for the
device
As part of the examination, identifying the make and model of the phone assists in
determining what tools would work with the phone. For all phones, the manufacturer,
model number, carrier and the current phone number associated with the cellular phone
should be identified and documented.

Removable and external data storage
Many mobile phones provide an option to extend the memory with removable storage
devices, such as the Trans Flash Micro SD memory expansion card. In cases when such a
card is found in a mobile phone that is submitted for examination, the card should be
removed and processed using traditional digital forensic techniques. It is wise to also
acquire the card while in the mobile device to ensure that data stored on both the handset
memory and card are linked for easier analysis. This will be discussed in detail in upcoming
chapters.

Other sources of potential evidence
Mobile phones act as good sources of fingerprint and other biological evidence. Such
evidence should be collected prior to the examination of the mobile phone to avoid
contamination issues unless the collection method will damage the device. Examiners
should wear gloves when handling the evidence.

The preparation phase
Once the mobile phone model is identified, the preparation phase involves research
regarding the particular mobile phone to be examined and the appropriate methods and
tools to be used for acquisition and examination. This is generally done based on the device
model, underlying operating system, its version, and so on. Also, choosing tools for

Introduction to Mobile Forensics

[15]

examination of a mobile device will be determined by factors such as the goal of the
examination, resources available, the type of cellular phone to be examined and the
presence of any external storage capabilities.

The isolation phase
Mobile phones are, by design intended to communicate via cellular phone networks,
Bluetooth, Infrared, and wireless (Wi-Fi) network capabilities. When the phone is connected
to a network, new data is added to the phone through incoming calls, messages, and
application data, which modifies the evidence on the phone. Complete destruction of data is
also possible through remote access or remote wiping commands. For this reason, isolation
of the device from communication sources is important prior to the acquisition and
examination of the device. Network isolation can be done by placing the phone in radio
frequency shielding cloth and then putting the phone in airplane or flight mode. The
airplane mode disables a device's communication channels such as cellular radio, Wi-Fi,
and Bluetooth. However, if the device is screen locked, then this is not possible. Also, since
Wi-Fi is now available in airplanes, some devices have Wi-Fi access now enabled in airplane
mode. An alternate solution is isolation of the phone through the use of faraday bags, which
block the radio signals to or from the phone. Faraday bags contain materials that block
external static electrical fields (including radio waves). Thus, Faraday bags shield seized
mobile devices from external interference to prevent wiping and tracking. To work more
conveniently with the seized devices, Faraday tents and rooms also exist.

The processing phase
Once the phone has been isolated from communication networks, the actual processing of
the mobile phone begins. The phone should be acquired using a tested method that is
repeatable and is as forensically sound as possible. Physical acquisition is the preferred
method as it extracts the raw memory data and the device is commonly powered off during
the acquisition process. On most devices, the smallest amount of changes occur to the
device during physical acquisition. If physical acquisition is not possible or fails, an attempt
should be made to acquire the file system of the mobile device. A logical acquisition should
always be obtained as it may contain only the parsed data and provide pointers to examine
the raw memory image. These acquisition methods are discussed in detail in the later
chapters.

Introduction to Mobile Forensics

[16]

The verification phase
After processing the phone, the examiner needs to verify the accuracy of the data extracted
from the phone to ensure that data has not been modified. The verification of the extracted
data can be accomplished in several ways.

Comparing extracted data to the handset data
Check if the data extracted from the device matches the data displayed by the device. The
data extracted can be compared to the device itself or a logical report, whichever is
preferred. Remember, handling the original device may make changes to the only
evidence—the device itself.

Using multiple tools and comparing the results
To ensure accuracy, use multiple tools to extract the data and compare results.

Using hash values
All image files should be hashed after acquisition to ensure that data remains unchanged. If
file system extraction is supported, the examiner extracts the file system and then computes
hashes for the extracted files. Later, any individually extracted file hash is calculated and
checked against the original value to verify the integrity of it. Any discrepancy in a hash
value must be explainable (for example, the device was powered on and then acquired
again, thus the hash values are different).

The document and reporting phase
The forensic examiner is required to document throughout the examination process in the
form of contemporaneous notes relating to what was done during the acquisition and
examination. Once the examiner completes the investigation, the results must go through
some form of peer review to ensure that the data is checked and the investigation is
complete. The examiner's notes and documentation may include information such as the
following:

The examination start date and time
The physical condition of the phone
Photos of the phone and individual components

Introduction to Mobile Forensics

[17]

Phone status when received-turned on or off
Phone make and model
Tools used for the acquisition
Tools used for the examination
Data found during the examination
Notes from peer review

The presentation phase
Throughout the investigation, it is important to make sure that the information extracted
and documented from a mobile device can be clearly presented to any other examiner or to
a court. Creating a forensic report of data extracted from the mobile device during
acquisition and analysis is important. This may include data in both paper and electronic
formats. Your findings must be documented and presented in a manner that the evidence
speaks for itself when in court. The findings should be clear, concise, and repeatable.
Timeline and link analysis, features offered by many commercial mobile forensics tools, will
aid in reporting and explaining findings across multiple mobile devices. These tools allow
the examiner to tie together the methods behind the communication of multiple devices.

The archiving phase
Preserving the data extracted from the mobile phone is an important part of the overall
process. It is also important that the data is retained in a usable format for the ongoing court
process, for future reference, should the current evidence file become corrupt, and for
record keeping requirements. Court cases may continue for many years before the final
judgment is arrived at, and most jurisdictions require that data be retained for long periods
of time for the purposes of appeals. As the field and methods advance, new methods for
pulling data out of a raw, physical image may surface, and then the examiner can revisit the
data by pulling a copy from the archives.

Practical mobile forensic approaches
Similar to any forensic investigation, there are several approaches that can be used for the
acquisition and examination/analysis of data from mobile phones. The type of mobile
device, the operating system, and the security setting generally dictate the procedure to be
followed in a forensic process. Every investigation is distinct with its own circumstances, so
it is not possible to design a single definitive procedural approach for all cases. The

Introduction to Mobile Forensics

[18]

following details outline the general approaches followed in extracting data from mobile
devices.

Mobile operating systems overview
One of the major factors in the data acquisition and examination/analysis of a mobile phone
is the operating system. Starting from low-end mobile phones to smartphones, mobile
operating systems have come a long way with a lot of features. Mobile operating systems
directly affect how the examiner can access the mobile device. For example, Android OS
gives terminal-level access whereas iOS does not give such an option. A comprehensive
understanding of the mobile platform helps the forensic examiner make sound forensic
decisions and conduct a conclusive investigation. While there is a large range of smart
mobile devices, three main operating systems dominate the market, namely, Google
Android, Apple iOS and Windows Phone. More information can be found at

. This book covers forensic
analysis of these three mobile platforms. We will cover a brief overview of leading mobile
operating systems.

Android
Android is a Linux-based operating system, and it's a Google open source platform for
mobile phones. Android is the world's most widely used smartphone operating system.
Sources show that Apple's iOS stands second (

). Android has been
developed by Google as an open and free option for hardware manufacturers and phone
carriers. This makes Android the software of choice for companies who require a low-cost,
customizable, lightweight operating system for their smart devices without developing a
new OS from scratch. Android's open nature has further encouraged the developers to
build a large number of applications and upload them onto Google Play later, end users can
download the application from Android Market, which makes Android a powerful
operating system. It is estimated that Google Play Store has more than 2 million apps at the
time of writing this book. More details on Android are covered in

, Understanding Android.

iOS
iOS, formerly known as the iPhone operating system, is a mobile operating system
developed and distributed solely by Apple Inc. iOS is evolving into a universal operating
system for all Apple mobile devices, such as iPad, iPod touch, and iPhone. iOS is derived

Introduction to Mobile Forensics

[19]

from OS X, with which it shares the Darwin foundation, and is therefore a Unix-like
operating system. iOS manages the device hardware and provides the technologies
required to implement native applications. iOS also ships with various system applications,
such as Mail and Safari, which provide standard system services to the user. iOS native
applications are distributed through AppStore, which is closely monitored by Apple. More
details about iOS are covered in , Understanding the Internals of iOS Devices.

Windows phone
Windows phone is a proprietary mobile operating system developed by Microsoft for
smartphones and pocket PCs. It is the successor to Windows mobile and primarily aimed at
the consumer market rather than the enterprise market. The Windows Phone OS is similar
to the Windows desktop OS, but it is optimized for devices with a small amount of storage.
Windows Phone basics and forensic techniques are discussed in , Windows
Phone Forensics.

Mobile forensic tool leveling system
Mobile phone forensic acquisition and analysis involves manual effort and the use of
automated tools. There are a variety of tools that are available for performing mobile
forensics. All the tools have their pros and cons, and it is fundamental that you understand
that no single tool is sufficient for all purposes. So understanding various types of mobile
forensic tools is important for forensic examiners. When identifying the appropriate tools
for the forensic acquisition and analysis of mobile phones, a mobile device forensic tool
classification system (shown in the following figure) developed by Sam Brothers comes in
handy for the examiners:

Introduction to Mobile Forensics

[20]

Cellular phone tool levelling pyramid (Sam Brothers, 2009)

The objective of the mobile device forensic tool classification system is to enable an
examiner to categorize the forensic tools based upon the examination methodology of the
tool. Starting at the bottom of the classification and working upward, the methods and the
tools generally become more technical, complex, and forensically sound, and require longer
analysis times. There are pros and cons of performing an analysis at each layer. The forensic
examiner should be aware of these issues and should only proceed with the level of
extraction that is required. Evidence can be destroyed completely if the given method or
tool is not properly utilized. This risk increases as you move up in the pyramid. Thus,
proper training is required to obtain the highest success rate in data extraction from mobile
devices.

Each existing mobile forensic tool can be classified under one or more of the five levels. The
following sections contain a detailed description of each level.

Manual extraction
The manual extraction method involves simply scrolling through the data on the device and
viewing the data on the phone directly through the use of the device's keypad or
touchscreen. The information discovered is then photographically documented. The
extraction process is fast and easy to use, and it will work on almost every phone. This

Introduction to Mobile Forensics

[21]

method is prone to human error, such as missing certain data due to unfamiliarity with the
interface. At this level, it is not possible to recover deleted information and grab all the data.
There are some tools, such as Project-A-Phone, that have been developed to aid an examiner
to easily document a manual extraction. However, this might also result in modification of
data. For example, viewing an unread SMS can mark it as read.

Logical extraction
Logical extraction involves connecting the mobile device to forensic hardware or to a
forensic workstation via a USB cable, a RJ-45 cable, Infrared, or Bluetooth. Once connected,
the computer initiates a command and sends it to the device, which is then interpreted by
the device processor. Next, the requested data is received from the device's memory and
sent back to the forensic workstation. Later, the examiner can review the data. Most of the
forensic tools currently available work at this level of the classification system. The
extraction process is fast, easy to use, and requires little training for the examiners. On the
flip side, the process may write data to the mobile and might change the integrity of the
evidence. In addition, deleted data is not generally accessible with this procedure.

Hex dump
A hex dump, also referred to as a physical extraction, is achieved by connecting the device
to the forensic workstation and pushing unsigned code or a bootloader into the phone and
instructing the phone to dump memory from the phone to the computer. Since the resulting
raw image is in binary format, technical expertise is required to analyze it. The process is
inexpensive, provides more data to the examiner, and allows the recovering of the deleted
files from the device-unallocated space on most devices.

Chip-off
Chip-off refers to the acquisition of data directly from the device's memory chip. At this
level, the chip is physically removed from the device and a chip reader or a second phone is
used to extract data stored on it. This method is more technically challenging as a wide
variety of chip types are used in mobiles. The process is expensive and requires hardware
level knowledge as it involves the desoldering and heating of the memory chip. Training is
required to successfully perform a chip-off extraction. Improper procedures may damage
the memory chip and render all data unsalvageable. When possible, it is recommended that
the other levels of extraction are attempted prior to chip-off since this method is destructive
in nature. Also, the information that comes out of memory is in a raw format and has to be
parsed, decoded, and interpreted. The chip-off method is preferred in situations where it is

Introduction to Mobile Forensics

[22]

important to preserve the state of memory exactly as it exists on the device. It is also the
only option when a device is damaged but the memory chip is intact.

The chips on the device are often read using the Joint Test Action Group (JTAG) method.
The JTAG method involves connecting to Test Access Ports (TAPs) on a device and
instructing the processor to transfer the raw data stored on memory chips. The JTAG
method is generally used with devices that are operational but inaccessible using standard
tools. Both of these techniques also work even when the device is screen locked.

Micro read
The process involves manually viewing and interpreting data seen on the memory chip.
The examiner uses an electron microscope and analyzes the physical gates on the chip and
then translates the gate status to 0's and 1's to determine the resulting ASCII characters. The
whole process is time-consuming and costly, and it requires extensive knowledge and
training on memory and the file system. Due to the extreme technicalities involved in micro
read, it would be only attempted for high-profile cases equivalent to a national security
crisis after all other level extraction techniques have been exhausted. The process is rarely
performed and is not well documented at this time. Also, there are currently no commercial
tools available to perform a micro read.

Data acquisition methods
Data acquisition is the process of imaging or otherwise extracting information from a digital
device and its peripheral equipment and media. Acquiring data from a mobile phone is not
as simple as a standard hard drive forensic acquisition. The following points break down
the three types of forensic acquisition methods for mobile phones: physical, logical,
and manual. These methods may have some overlap with a couple of levels discussed in
the mobile forensics tool leveling system. The amount and type of data that can be collected
will vary depending on the type of acquisition method being used.

Physical acquisition
Physical acquisition of mobile phones is performed using mobile forensic tools and
methods. Physical extraction acquires information from the device by direct access to the
flash memory. Flash memory is a nonvolatile memory and is primarily used in memory
cards and USB flash drives as solid state storage The process creates a bit-for-bit copy of an
entire file system, similar to the approach taken in computer forensic investigations. A
physical acquisition is able to acquire all of the data present on a device including the

Introduction to Mobile Forensics

[23]

deleted data and access to unallocated space on most devices.

Logical acquisition
Logical acquisition of mobile phones is performed using the device manufacturer
application-programming interface to synchronize the phone's contents with a computer.
Many of the forensic tools perform a logical acquisition. However, the forensic analyst must
understand how the acquisition occurs and whether the mobile is modified in any way
during the process. Depending on the phone and forensic tools used, all or some of the data
is acquired. A logical acquisition is easy to perform and only recovers the files on a mobile
phone and does not recover data contained in unallocated space.

Manual acquisition
With mobile phones, physical acquisition is usually the best option, and logical acquisition
is the second-best option. Manual extraction should be the last option when performing the
forensic acquisition of a mobile phone. Both logical and manual acquisition can be used to
validate findings in the physical data. During manual acquisition, the examiner utilizes the
user interface to investigate the contents of the phone's memory. The device is used
normally through keypad or touchscreen and menu navigation, and the examiner takes
pictures of each screen's contents. Manual extraction introduces a greater degree of risk in
the form of human error, and there is a chance of deleting the evidence. Manual acquisition
is easy to perform and only acquires the data that appears on a mobile phone.

Potential evidence stored on mobile phones
The range of information that can be obtained from mobile phones is detailed in this
section. Data on a mobile phone can be found in a number of locations: SIM card, external
storage card, and phone memory. In addition, the service provider also stores
communication-related information. The book primarily focuses on data acquired from the
phone memory. Mobile device data extraction tools recover data from the phone's memory.
Even though data recovered during a forensic acquisition depends on the mobile model, in
general, the following data is common across all models and useful as evidence. Note that
most of the following artifacts contain date and timestamps:

Address Book: This stores contact names, numbers, e-mail addresses, and so on
Call History: This contains dialed, received, missed calls, and call durations
SMS: This contains sent and received text messages

Introduction to Mobile Forensics

[24]

MMS: This contains media files such as sent and received photos and videos
E-mail: This contains sent, drafted, and received e-mail messages
Web browser history: This contains the history of websites that were visited
Photos: This contains pictures that are captured using the mobile phone camera,
those downloaded from the Internet, and the ones transferred from other devices
Videos: This contains videos that are captured using the mobile camera, those
downloaded from the Internet, and the ones transferred from other devices
Music: This contains music files downloaded from the Internet and those
transferred from other devices
Documents: This contains documents created using the device's applications,
those downloaded from the Internet, and the ones transferred from other devices
Calendar: This contains calendar entries and appointments
Network communication: This contains GPS locations
Maps: This contains looked-up directions, and searched and downloaded maps
Social networking data: This contains data stored by applications, such as
Facebook, Twitter, LinkedIn, Google+, and WhatsApp
Deleted data: This contains information deleted from the phone

Rules of evidence
Courtrooms rely more and more on the information inside a mobile phone as vital
evidence. Prevailing evidence in court requires a good understanding of the rules of
evidence. Mobile forensics is a relatively new discipline and laws dictating the validity of
evidence are not widely known. However, there are five general rules of evidence that
apply to digital forensics and need to be followed in order for evidence to be useful.
Ignoring these rules makes evidence inadmissible, and your case could be thrown out.
These five rules are: admissible, authentic, complete, reliable, and believable:

Admissible: This is the most basic rule and a measure of evidence validity and
importance. The evidence must be preserved and gathered in such a way that it
can be used in court or elsewhere. Many errors can be made that could cause a
judge to rule a piece of evidence as inadmissible. For example, evidence that is
gathered using illegal methods is commonly ruled inadmissible.
Authentic: The evidence must be tied to the incident in a relevant way to prove
something. The forensic examiner must be accountable for the origin of the
evidence.
Complete: When evidence is presented, it must be clear and complete and should
reflect the whole story. It is not enough to collect evidence that just shows one

Introduction to Mobile Forensics

[25]

perspective of the incident. Presenting incomplete evidence is more dangerous
than not providing any evidence at all as it could lead to a different judgment.
Reliable: Evidence collected from the device must be reliable. This depends on
the tools and methodology used. The techniques used and evidence collected
must not cast doubt on the authenticity of the evidence. If the examiner used
some techniques that cannot be reproduced, the evidence is not considered unless
they were directed to do so. This would include possible destructive methods
such as chip-off extraction.
Believable: A forensic examiner must be able to explain, with clarity and
conciseness, what processes they used and the way the integrity of the evidence
was preserved. The evidence presented by the examiner must be clear, easy to
understand, and believable by jury.

Good forensic practices
Good forensic practices apply to the collection and preservation of evidence. Following
good forensic practices ensures that evidence will be accepted in a court as being authentic
and accurate. Modification of evidence, either intentionally or accidentally, can affect the
case. So, understanding the best practices is critical for forensic examiners.

Securing the evidence
With advanced smartphone features such as Find My iPhone and remote wipes, securing a
mobile phone in a way that it cannot be remotely wiped is of great importance. Also, when
the phone is powered on and has service, it constantly receives new data. To secure the
evidence, use the right equipment and techniques to isolate the phone from all networks.
With isolation, the phone is prevented from receiving any new data that would cause active
data to be deleted.

Preserving the evidence
As evidence is collected, it must be preserved in a state that is acceptable in court. Working
directly on the original copies of evidence might alter it. So, as soon as you recover a raw
disk image or files, create a read-only master copy and duplicate it. In order for evidence to
be admissible, there must be a method to verify that the evidence presented is exactly the
same as the original collected. This can be accomplished by creating a hash value of the
image. After duplicating the raw disk image or files, compute and verify the hash values for

Introduction to Mobile Forensics

[26]

the original and the copy to ensure that the integrity of the evidence is maintained. Any
changes in hash values should be documented and explainable. All further processing or
examination should be performed on copies of the evidence. Any use of the device might
alter the information stored on the handset. So, only perform the tasks that are absolutely
necessary.

Documenting the evidence
Ensure that you document all the methods and tools that are used to collect and extract the
evidence. Detail your notes so that another examiner can reproduce them. Your work must
be reproducible; if not, a judge may rule it inadmissible.

Documenting all changes
It's important to document the entire recovery process, including all the changes made
during the acquisition and examination. For example, if the forensic tool used for the data
extraction sliced up the disk image to store it, this must be documented. All changes to the
mobile device, including power cycling and syncing, should be documented in your case
notes.

Summary
Mobile devices store a wide range of information such as SMS, call logs, browser history,
chat messages, location details, and so on. Mobile device forensics includes many
approaches and concepts that fall outside of the boundaries of traditional digital forensics.
Extreme care should be taken while handling the device right from evidence intake phase to
archiving phase. Examiners responsible for mobile devices must understand the different
acquisition methods and the complexities of handling the data during analysis. Extracting
data from a mobile device is half the battle. The operating system, security features, and
type of smartphone will determine the amount of access you have to the data. It is
important to follow sound forensic practices and make sure that the evidence is unaltered
during the investigation.

The next chapter will provide insight to iOS forensics. You will learn about the file system
layout, security features, and the way files are stored on the iOS device.

22
Understanding the Internals of

iOS Devices
As of November 2015, Apple had sold more than 1 billion iOS devices according to released
sales records, and these numbers are expected to grow. While iOS is the leading operating
system for tablets worldwide, Android continues to be the leading operating system for
smartphones worldwide. Regardless of the statistics, if you are a forensic examiner, the
chances are you will need to conduct an examination of an iOS device.

In order to perform a forensic examination of an iOS device, the examiner must understand
the internal components and inner workings of that device. Developing an understanding
of the underlying components of a mobile device will help the forensic examiner
understand the criticalities involved in the forensic process, including what data can be
acquired, where the data is stored, and what methods can be used to access the data from
that device. So, before we delve into the examination of iOS devices, it is necessary to know
the different models that exist and their internal components. Throughout this book, we
will perform forensic acquisition and analysis on iOS devices to include the iPhone, iPad,
and Apple Watch.

The goal of this chapter is to introduce you to the iOS device technology. We will cover
details that may often get overlooked, but will help you during your forensic investigation.
You must understand the different iOS devices and how the data is stored on the devices
before you can successfully extract it.

Understanding the Internals of iOS Devices

[28]

In this chapter, we will cover the following topics in detail:

iPhone models and hardware
iPad models and hardware
Apple Watch models and hardware
iOS overview
HFS Plus overview
Jailbreaking

iPhone models
The iPhone is among the most popular mobile phones on the market. Apple released the
first generation iPhone in June 2007. Ever since the first release, the iPhone has gained a lot
of popularity due to its advanced functionality and usability. The introduction of the iPhone
has redefined the entire world of mobile computing. Consumers started looking for faster
and more efficient phones. Various iPhone models exist now with different features and
storage capabilities to serve the consumer requirements. The following table lists all iPhone
models with their initial iOS versions:

Understanding the Internals of iOS Devices

[29]

iPhone models

The iPhones released since the first edition of Practical Mobile Forensics, the iPhones 6, 6
Plus, 6S, and 6S Plus, remain difficult when dealing with physical forensic acquisition
methods. Just like the devices released since the iPhone 5, there is no method or tool
available to physically recover data from these devices, unless they are jailbroken.
However, the file system and a logical acquisition can be obtained if the iPhone is unlocked.
Acquisition methods for data extraction are available and will be discussed in

, Data Acquisition from iOS Devices, and , Data Acquisition from iOS Backups.

Identifying the correct hardware model
Before examining an iPhone, it is necessary to identify the correct hardware model and the
firmware version installed on the device. Knowing the iPhone details helps you to
understand the criticalities and possibilities of obtaining evidence from the iPhone. For
example, in many cases, the device passcode is required in order to obtain the file system or
logical image. Even if the device is supported physically, the passcode is needed to decrypt
artifacts such as e-mail and passwords. Depending on the iOS version, device model, and
passcode complexity, it may be possible to obtain the device passcode using a brute force
attack.

There are various ways to identify the hardware of a device. The easiest way to identify the
hardware of a device is by observing the Model No. displayed on the back of the device.
The following image shows the model number etched on the back of the casing. Apple's
knowledge base articles can be helpful for this purpose. Details on identifying iPhone
models can be found at .

Understanding the Internals of iOS Devices

[30]

iPhone model number located on the back of the case

The firmware version of an iPhone can be found by accessing the Settings option and then
navigating to General | About | Version, as shown in the following screenshot. The
purpose of the firmware is to enable certain features and assist with the general functioning
of the device.

The iPhone About screen, displaying firmware Version 9.2 (13C75)

Understanding the Internals of iOS Devices

[31]

Alternatively, the ideviceinfo command-line tool available in the
software library () can be used to identify the
iPhone model and its iOS version. The library allows you to communicate with an iPhone
even if the device is locked by a passcode. The software library was developed by Nikias
Bassen (pimskeks), and it was compiled for Mac OS X by Ben Clayton (benvium).

To obtain the iPhone model and its iOS version information on Mac OS X 10.10.4, follow
these steps:

Open the terminal application.1.
From the command line, run the following command to download2.
the library:

$ git clone https://github.com/benvium/libimobiledevice-
macosx.git ~/Desktop/libimobiledevice-macosx/

The command creates the directory on the user's
desktop and places the command-line tools onto it.

Navigate to the directory, as follows:3.

$ cd ~/Desktop/libimobiledevice-macosx/

Create and edit the file using the command, as follows:4.

$ nano ~/.bash_profile

Add the following two lines to the file, as follows:5.

export DYLD_LIBRARY_PATH=~/Desktop/libimobiledevice-
macosx/:$DYLD_LIBRARY_PATH
PATH=${PATH}:~/Desktop/libimobiledevice-macosx/

Press Ctrl + X, type the letter , and hit Enter to save the file.6.
Return to the terminal and run the following command:7.

$ source ~/.bash_profile

Connect the iPhone to the Mac workstation using a USB cable and run8.
the command with the option:

$./ideviceinfo -s

Output of the command displays the iPhone identifier, internal name, and
the iOS version, as shown here:

Understanding the Internals of iOS Devices

[32]

Output from libimobiledevice displaying firmware Version 9.2 (13C75)

Free tools, such as iExplorer and others, will provide access to similar iOS device
information on a Windows PC, as shown in the following screenshot. Both Mac and
Windows methods for recovering iPhone device information will work on the iPad devices
as well. Here, iExplorer is being used to obtain device information from the iPhone:

iExplorer displaying iPhone identifiers

Every release of the iPhone comes with improved or newly added features. As previously

Understanding the Internals of iOS Devices

[33]

stated in this chapter, knowing the iPhone details helps you understand the criticalities and
possibilities of obtaining evidence from the iPhone. The examiner must know the model of
the device to ensure that their tools and methodologies support that iPhone. They must
determine the internal storage size of the iPhone to ensure that the evidence container is
large enough for the entire forensic image. Most tools will not alert the examiner that there
is not enough disk space on the evidence drive until space has run out. This will waste time
and force the examiner to acquire the device a second time. Finally, the network capabilities
of the device must be noted, so the examiner properly isolates the device to prevent remote
access or wiping during examination. This will be discussed further in , Data
Acquisition from iOS Devices.

The following table shows the specifications and features of legacy and current iPhone
models:

Specifications of legacy iPhone models

Understanding the Internals of iOS Devices

[34]

The later iPhone releases and features are shown in the following table:

Specifications of the current iPhone models

One of the major changes in the iPhone 5, iPhone 5C, and iPhone 5S is the lightening
connector, which is used to charge and synchronize the device with the computer. Devices
prior to the iPhone 5 use a 30-pin USB dock connector, whereas the newer iPhones use an
eight-pin lightning connector.

The most recent iPhone releases and features are shown in the following table:

Understanding the Internals of iOS Devices

[35]

Specifications of the most recent iPhone models

Again, some familiarity with iPhone device hardware will aid the examiner in determining
how to handle the device during a forensic investigation. Certain models enforce full disk
encryption, while older models do not. Encrypted devices require additional steps during
acquisition if access is even possible. The examiner must be prepared for all hurdles they
may be required to clear during the acquisition and analytical stages of the investigation. In
addition, knowing the capabilities that iPhone has and the initial and current OS version
makes a difference is the data you will be able to recover from the device. Apple is not
consistent with data storage locations across iOS versions. Thus, the examiner must know
the original version installed when the phone was first in use to ensure that the forensic
tools do not overlook data that could aid in the investigation. Topics such as iOS upgrades
will be discussed in , iOS Data Analysis and Recovery.

Understanding the Internals of iOS Devices

[36]

iPhone hardware
The iPhone is a collection of modules, chips, and electronic components from different
manufacturers. Due to the complexities of the iPhone, the list of hardware components is
extensive and each device should be researched for internal components.

The following images show the internals of iPhone 6. The images were taken after
dismantling the iPhone 6. Internal images for all iPhones can be found in the teardown
section at .

The iPhone 6 teardown image-side 1 (

)

Understanding the Internals of iOS Devices

[37]

The following is the image shows the back of the iPhone 6:

The iPhone 6 teardown image-side 2 (

)

iPad models
The Apple iPhone changed the way cell phones are produced and used. Similarly, the iPad,
a version of the tablet computer introduced in January 2010, squashed the sales of
notebooks. With the iPad, individuals can shoot videos, take photos, play music, read
books, browse the Internet, and do much more. Various iPad models exist now with
different features and storage capabilities. The following table lists all the iPad models and
their initial iOS versions. Details on identifying iPad models can be found at

.

Understanding the Internals of iOS Devices

[38]

iPad identifiers and release dates

Understanding the Internals of iOS Devices

[39]

Similar to iPhone, not all versions of the iPad are supported for physical acquisition. In
addition, Apple has changed data storage locations in iOS versions, which affects the iPad
devices as well. The examiner must be aware of the different models, the released and
currently installed iOS version, storage capability, network access vectors, and more.

Every release of the iPad comes with improved or newly added features. The following
table shows the specifications and features of legacy iPad Wi-Fi models:

Specifications of the legacy iPad models

Understanding the Internals of iOS Devices

[40]

Current iPad models are listed in the following table:

Specifications of the current iPad models

Understanding the iPad hardware
One of the key factors of the success of Apple iOS devices is the proper selection of its
hardware components. Just like the iPhone, the iPad is also a collection of modules, chips,
and electronic components from different manufacturers. Internal images for all iPads can
be found in the teardown section of .

The following images show the internals of the iPad Pro. The images were taken after
dismantling the iPad Pro cellular model and were obtained from

.

Understanding the Internals of iOS Devices

[41]

The iPad Pro teardown image ()

The following image shows side 1 of the iPad Pro:

The iPad Pro teardown image ()

Understanding the Internals of iOS Devices

[42]

The following image shows side 2 of the iPad Pro:

The iPad Pro teardown image ()

Apple Watch models
The Apple Watch was released in spring 2015. This smartwatch enabled users to sync
iPhone data to the watch and leverage the watch as a way to interact with the iPhone and as
a singular device. The Apple Watch enables users to answer calls, send and respond to SMS,
iMessage, and e-mail, access third-party applications, use Apple maps, and more. The
Apple Watch can only be paired with an iPhone capable of running iOS 8.2 or later, not an
iPad. The first release of Watch OS required the watch be within Bluetooth range of the
iPhone for full functionality, but Watch OS 2.X allows the watch to function independently
on Wi-Fi. The Apple Watch 2 is expected to be released in late 2016.

Understanding the Internals of iOS Devices

[43]

Apple released Watch OS2 in September 2015; it offered more features, repaired bugs, and
enabled the watch to function without an iPhone.

The features of the current Apple Watch are listed here:

Understanding the Apple Watch hardware
While there are two sizes of Apple watches, the hardware is similar for each. Apple has not
disclosed the complete watch specifications, which forces us to rely on the little we
currently know.

The following image shows the internals of the Apple Watch. The images were taken after
dismantling the Apple Watch, from

.

Understanding the Internals of iOS Devices

[44]

Apple Watch ()

The following image shows the reverse side of the Apple Watch:

Apple Watch Reverse Side ()

File system
To better understand the forensic process of an iOS device, it is good to know about the file
system that is used. The file system used in the iPhone and other Apple iOS devices is
HFSX, a variation of HFS Plus with one major difference. HFSX is case sensitive whereas
HFS Plus is case insensitive. Other differences will be discussed later in this chapter. OS X

Understanding the Internals of iOS Devices

[45]

uses HFS Plus by default and iOS uses HFSX.

The HFS Plus file system
In 1996, Apple developed a new file system, Hierarchical File System (HFS), to
accommodate the storage of large datasets. In an HFS file system, the storage medium is
represented as volumes. HFS volumes are divided into logical blocks of 512 bytes. The
logical blocks are numbered from first to last on a given volume and will remain static with
the same size as physical blocks, that is, 512 bytes. These logical blocks are grouped together
into allocation blocks, which are used by the HFS file system to track data in a more efficient
way. HFS uses a 16-bit value to address allocation blocks, which limits the number of
allocation blocks to 65,535. To overcome the inefficient allocations of disk space and some of
the limitations of HFS, Apple introduced the HFS Plus file system (

).

The HFS Plus file system was designed to support larger file sizes. HFS volumes are
divided into sectors that are usually 512 bytes in size. These sectors are grouped together
into allocation blocks. The number of allocation blocks depends on the total size of the
volume. HFS Plus uses block addresses of 32 bits to address allocation blocks. HFS Plus
uses journaling by default. Journaling is the process of logging every transaction to the disk,
which helps in preventing file system corruption. The key characteristics of the HFS Plus
file system are: efficient use of disk space, Unicode support for filenames, support for name
forks, file compression, journaling, dynamic resizing, dynamic defragmentation, and an
ability to boot on operating systems other than Mac OS.

The HFS Plus volume
The HFS Plus volume contains a number of internal structures to manage the organization
of data. These structures include a header, an alternate header, and five special files: an
allocation file, an extents overflow file, a catalog file, an attributes file, and a startup file.
Among the five files, three files (the extents overflow file, the catalog file, and the attribute
file) use a B-tree structure, a data structure that allows data to be efficiently searched,
viewed, modified, or removed. The HFS Plus volume structure is shown in the following
figure:

Understanding the Internals of iOS Devices

[46]

The HFS Plus volume structure

The volume structure is described as follows:

1024 bytes: This is reserved for boot load information.
Volume header: This stores volume information, such as the size of allocation
blocks, a timestamp of when the volume was created, and metadata about each of
the five special files.
Allocation file: This file is used to track which allocation blocks are in use by the
system. The file format consists of one bit for every allocation block. If the bit is
set, the block is in use. If it is not set, the block is free.
Extents Overflow file: This file records the allocation blocks that are allocated
when the file size exceeds eight blocks, which helps in locating the actual data
when referred. Bad blocks are also recorded in the file.
Catalog file: This file contains information about the hierarchy of files and
folders, which is used to locate any file and folder within the volume.
Attribute file: This file contains inline data attribute records, fork data attribute
records, and extension attribute records.
Startup file: This file holds the information needed to assist in booting a system
that does not have HFS Plus support.

Understanding the Internals of iOS Devices

[47]

Alternate Volume header: This is a backup of the volume header, and it is
primarily used for disk repair.
512 bytes: This is reserved for use by Apple, and it is used during the
manufacturing process.

Disk layout
By default, the file system is configured as two logical disk partitions: system (root or
firmware) partition and user data partition.

The system partition contains the OS and all of the preloaded applications used with the
iPhone. The system partition is mounted as read-only unless an OS upgrade is in progress
or the device is jailbroken. The partition is updated only when a firmware upgrade is
performed on the device. During this process, the entire partition is formatted by iTunes
without affecting any of the user data. The system partition takes only a small portion of
storage space, normally between 0.9 GB and 2.7 GB, depending on the size of the NAND
drive. As the system partition was designed to remain in factory state for the entire life of
the iPhone, there is typically little useful evidentiary information that can be obtained from
it. If the iOS device is jailbroken, files containing information regarding the jailbreak and
user data may be resident on the system partition. Jailbreaking an iOS device allows the
user root access to the device, but voids the manufacturer warranty. Jailbreaking will be
discussed later in this chapter.

The user data partition contains all user-created data ranging from music and contacts to
third-party application data. The user data partition occupies most of the NAND memory
and is mounted at on the device. Most of the evidentiary information can be
found in this partition. During a physical acquisition, both the user data and system
partitions should be captured and saved as a or file. Most Windows tools and
acquisition methods will create an file, while Mac OSX tools and acquisition methods
will create a file. Both of the output image files are supported by most commercial
forensic analysis tools.

These raw image files can be mounted as read-only for forensic analysis, which is covered
in detail in , Data Acquisition from iOS Devices and , iOS Data Analysis
and Recovery.

Understanding the Internals of iOS Devices

[48]

iPhone operating system
iOS is Apple's most advanced and feature-rich proprietary mobile operating system. It was
released with the first generation of the iPhone. When introduced, it was named iPhone
OS, and it was later renamed iOS to reflect the unified nature of the operating system that
powers all Apple iOS devices, such as the iPhone, iPod Touch, iPad, and Apple TV. iOS is
derived from core OS X technologies and streamlined to be compact and efficient for mobile
devices.

It utilizes a multi-touch interface where simple gestures are used to operate and control the
device, such as swiping your finger across the screen to move to the successive page or
pinching your fingers to zoom. In simple terms, iOS assists with the general functioning of
the device. iOS is really Mac OS X with the following significant differences:

The architecture for which the kernel and binaries are compiled is ARM-based
rather than Intel x86_64
The OS X kernel is open source, whereas the iOS kernel remains closed
Memory management is much tighter
The system is hardened and does not allow access to the underlying APIs

The iOS architecture
iOS acts as an intermediary between the underlying hardware components and the
applications that appear on the screen. The applications do not talk to the underlying
hardware directly. Instead, they communicate through a well-defined system interface that
protects the applications from hardware changes. This abstraction makes it easy to build
applications that work on devices with different hardware capabilities.

The iOS architecture consists of four layers: the cocoa touch layer, media layer, core services
layer, and core OS layer, as shown in the following figure. Each layer consists of several
frameworks that help to build an application.

Understanding the Internals of iOS Devices

[49]

The iOS layers

The Cocoa Touch layer: The Cocoa Touch layer contains the key frameworks
required to develop the visual interface for iOS applications. Frameworks in this
layer provide the basic application infrastructure and support key technologies,
such as multitasking, touch-based input, and many high-level system services.
The Media layer: The Media layer provides the graphics and audio and video
frameworks to create the best multimedia experience available on a mobile
device. The technologies in this layer help developers to build applications that
look and sound great.
The Core Services layer: The Core Services layer provides the fundamental
system services that are required for the applications. All these services are not
used by the developers though many parts of the system are built on top of them.
The layer contains technologies to support features such as location, iCloud, and
social media.
The Core OS layer: The Core OS layer is the base layer and sits directly on top of
the device hardware. This layer deals with low-level functionalities and provides
services such as networking (BSD sockets), memory management, threading
(POSIX threads), file system handling, external accessories access, and inter-
process communication.

Understanding the Internals of iOS Devices

[50]

iOS security
Newer versions of iOS were designed with security at its core. At the highest level, the iOS
security architecture appears as shown in the following figure:

The iOS security architecture

Understanding the Internals of iOS Devices

[51]

Apple iOS devices such as iPhone, iPad, and iPod Touch are designed with layers of
security. Low-level hardware features safeguard from malware attacks, and the high-level
OS features prevent unauthorized use. A brief overview of the iOS security features is
provided in the following sections.

Passcodes
Passcodes restrict unauthorized access to the device. Once a passcode is set, each time you
turn on or wake up the device, it will ask for the passcode to access the device. iOS devices
support simple as well as complex passcodes. iPhone 5S and later also supports touch ID
fingerprints as a passcode, which are backed up with a simple or complex passcode. iOS 9
released the option to use a 6-digit simple passcode instead of the legacy 4-digit option.

Code signing
Code signing prevents users from downloading and installing unauthorized applications
on the device. Apple says “Code Signing is the process by which your compiled iOS application is
sealed and identified as yours. Also, iOS devices won't run an application or load a library unless it
is signed by a trusted party. To ensure that all apps come from a known and approved source and
have not been tampered with, iOS requires that all executable code be signed using an Apple-issued
certificate.“

Sandboxing
Sandboxing mitigates the post-code-execution exploitation by placing the application into a
tightly restricted area. Applications installed on the iOS device are sandboxed, and one
application cannot access the data stored by the other application. Essentially, a sandbox is
a mechanism that enforces fine-grained controls that limit an application's access to files,
network resources, hardware, and more.

Encryption
On iOS devices (starting with the iPhone 4), the entire file system is encrypted with a file
system key, which is computed from the device's unique hardware key. This key is stored
in effaceable storage, which exists between the OS and hardware level of the device. This is
the reason that JTAG and chip-off methods are not useful acquisition methods as the entire
data dump will be encrypted.

Understanding the Internals of iOS Devices

[52]

Data protection
Data protection is designed to protect data at rest and to make offline attacks difficult. It
allows applications to leverage the user's device passcode in concert with the device
hardware encryption to generate a strong encryption key. Later, the strong encryption key
is used to encrypt the data stored on the disk. This key prevents data from being accessed
when the device is locked, ensuring that critical information is secured even if the device is
compromised.

Address Space Layout Randomization
Address Space Layout Randomization (ASLR) is an exploit mitigation technique introduced
with iOS 4.3. ASLR randomizes the application objects' location in the memory, making it
difficult to exploit the memory corruption vulnerabilities.

Privilege separation
iOS runs with the principle of least privileges. It contains two user roles: root and mobile.
The most important processes in the system run with root user privileges. All other
applications that the user has direct access to, such as the browser and third-party
applications, run with mobile user privileges.

Stack smashing protection
Stack smashing protection is an exploit mitigation technique. It protects against buffer
overflow attacks by placing a random and known value (called stack canary) between a
buffer and control data on the stack.

Data execution prevention
Data execution prevention (DEP) is an exploit mitigation technique mechanism in which a
processor can distinguish the portions of memory that are executable code from data. For
example, in code injection attacks, an attacker tries to inject his vector and execute it. But,
DEP prevents this because it recognizes the injected part as data and not code.

Data wipe
iOS provides the Erase All Content and Settings option to wipe the data on the iPhone.
This type of a data wipe erases user settings and information by removing the encryption

Understanding the Internals of iOS Devices

[53]

keys that protects the data. As the encryption keys are erased from the device, it is not
possible to recover the deleted data, not even during forensic investigations. Other wiping
methods are available that overwrite the data in the device memory. More information on
wiping can be found at .

Activation Lock
Activation Lock, introduced with iOS 7, is a theft deterrent that works by leveraging Find
My iPhone. When Find My iPhone is enabled, it enables the Activation Lock, and your
Apple ID and password will be required to turn off Find My iPhone, to erase your device,
and to reactive your device.

The App Store
The App Store is an application distribution platform for iOS, developed and maintained by
Apple. It is a centralized online store where users can browse and download both free and
paid apps. These apps expand the functionality of a mobile device. As of June 2015, there
are more than 1.5 million applications in the App Store.

Apps available in the App Store are generally written by third-party developers.
Developers use XCode and the iPhone SDK to develop iOS applications. Later, they submit
the app to Apple for approval. Apple follows an extensive review process to check the app
against the company's guidelines. If Apple approves the app, it is published to the App
Store where users can download or buy it. The strict review process makes the App Store
less prone to malware, but not 100% secure.

XCodeGhost, the Apple malware that infected 50 applications within the Apple App Store
was detected in September 2015. This malware was built into XCode, which made it harder
to detect and was reported to affect more than 500 million users worldwide. Once detected,
Apple immediately removed the infected applications. Currently, users can access the App
Store via iTunes and also from their iOS devices.

Jailbreaking
Jailbreaking is the process of removing limitations imposed by Apple's mobile operating
system through the use of software and hardware exploits. Jailbreaking permits unsigned
code to run and gain root access on the operating system. The most common reason for
jailbreaking is to expand the limited feature set imposed by Apple's App Store and to install
unapproved apps. Jailbreaking can aid in forensic acquisition, but will void the user's

Understanding the Internals of iOS Devices

[54]

warranty, could “brick” the device and may not support being restored to the factory
settings.

If you jailbreak a device, it's best to assume that it will forever be
jailbroken and the warranty is no longer valid.

Many publicly available jailbreaking tools add an unofficial application installer to the
device, such as Cydia, which allows users to install many third-party applications, tools,
tweaks, and apps from an online file repository. The software downloaded from Cydia
opens up endless possibilities on a device that a non-jailbroken device would never be able
to do. The most popular jailbreaking tools are redsn0w, sn0wbreeze, evasi0n, Absinthe,
seas0npass, Pangu, and TaiG. Not all iOS versions are jailbreakable. The website

 can be helpful to find out
whether a particular iOS version is jailbreakable or not and with which method. In October
2012, The U.S. Copyright Office declared that jailbreaking the iPad is illegal, while
jailbreaking the iPhone is deemed legal. The governing law is reviewed every three years
and has yet to be changed.

Summary
The first step in a forensic examination of an iOS device should be identifying the device
model. The model of an iOS device can be used to help the examiner develop an
understanding of the underlying components and capabilities of the device, which can be
used to drive the methods for acquisition and examination. Legacy iOS devices should not
be disregarded because they may surface as part of an investigation. Examiners must be
aware of all iOS devices as old devices are sometimes still in use and may be tied to a
criminal investigation.

The next chapter will provide tools that will aid in obtaining data from iOS devices to later
forensically examine. Not all tools are created equally, so it's important to understand the
best tools to get the job done properly.

33
iOS Forensic Tools

The examiner must not only know how to use forensic tools, but must understand the
methods and acquisition techniques deployed by the tools they use in their investigations.
Forensic tools not only save time but also make the process a lot easier. However, each tool
has its flaws, and the examiner must catch mistakes and know how to correct them by
leveraging another tool or technique. It's impossible for a tool to support all devices, and the
examiner is responsible for learning and using the best tools to complete the job. As
discussed in the last chapter, the examiner must understand how data is stored on iOS
devices to ensure that the tool is capturing all accessible data. Without an expectation of
what your forensic tool should extract, the examiner is limited and will be forced to rely
solely on a tool.

Currently, there are several commercial tools such as Elcomsoft iOS Forensic Toolkit,
Cellebrite (UFED4PC, Touch, and Physical Analyzer), BlackLight, Oxygen Detective,
AccessData MPE+, EnCase, iXAM, Lantern, MSAB XRY, and many more, which are
available for forensic acquisition and analysis of iOS devices. For familiarity purposes, this
chapter will walk you through the usage of a few commercial and open source tools and
provide details of the steps required to perform acquisitions and analysis of iOS devices.

In this chapter, we will cover the following topics:

Open source tools for forensic imaging of iOS devices
Commercial tools for forensic imaging of iOS devices
Errors that you may face along the way

Working with Elcomsoft iOS Forensic Toolkit
Elcomsoft iOS Forensic Toolkit (EIFT) is a set of tools aimed at making the acquisition of
iOS devices easier. EIFT is a combination of software that is able to perform forensic

iOS Forensic Tools

[56]

acquisition of iOS devices running any version of iOS (note that some iOS versions require
the device to be jailbroken). Currently, EIFT is not capable of physically acquiring data from
64-bit iOS devices (iPhone 6, 6s, and so on.). In order to get any data from a 64-bit iOS
device, it must be jailbroken and the best acquisition will be a file system dump. For most
other devices, EIFT can acquire bit-for-bit images of a device's file system, extract data
including passcodes and passwords and decrypt the file system image. For more
information on EIFT, visit .

The toolkit was initially available only to law enforcement agencies, but now it is available
to everyone. The toolkit supports both Mac OS X and Windows platforms with iTunes 10.6
or later installed.

Features of EIFT
The following are the features of EIFT:

It supports physical and logical acquisition (physical access may require the
device be unlocked or jailbroken)
The quick file system acquisition feature takes 20-40 minutes for 32 GB models
It supports passcode recovery attacks
It extracts device keys required to decrypt a raw disk image as well as keychain
items
Decrypts a raw disk image and keychain items
The zero-footprint operation leaves no traces and alterations to device contents
Every step of investigation here is logged and recorded and is fully accountable

Usage of EIFT
EIFT can be used in two modes: the guided mode and the manual mode. The guided mode
provides step-by-step instructions for those who are new to iOS device acquisitions or those
who want options and instructions provided for each step during the extraction. The
manual mode is for more advanced examiners who do not require step-by-step instructions.
The USB dongle shipped with the toolkit must be connected to the computer while the
toolkit is running.

The guided mode
The guided mode features a menu-based user interface where you can accomplish typical

iOS Forensic Tools

[57]

tasks by selecting the corresponding menu items. You can start the guided mode by double-
clicking on the (Windows) or (Mac OS X) file in the
directory where you have copied the toolkit files. This should open the terminal window
and present a text-based menu, as shown in the following screenshot:

The Elcomsoft iOS Forensic Toolkit welcome screen

When running in the guided mode, the toolkit logs all the activities to a text file. Each time
the toolkit is started, a new log file is created in the user's home directory and the output of
all the invoked commands as well as user choices are written to that file.

To perform the physical acquisition of iPhone 4 and older devices with EIFT, follow these
steps:

Put the device in DFU mode. You can do this by selecting the menu item 1 and1.
following the onscreen instructions.

iOS Forensic Tools

[58]

After the device has been put in the DFU mode, load the ramdisk with the 2.
acquisition tools by selecting menu item 2 or answer to the prompt that follows
the DFU procedure. It automatically detects the type of the device and loads the
compatible ramdisk onto it. When ramdisk is successfully loaded, the device
screen will display the Elcomsoft logo.

The EIFT Ramdisk Instructions

Recover the device passcode by selecting menu item 3. The toolkit can recover a3.
simple 4-digit passcode in less than 20 minutes. It also provides options to
perform dictionary (wordlist) and brute force attacks on complex passwords, as
shown in the following screenshot:

iOS Forensic Tools

[59]

The EIFT passcode recovery options

From the Main menu, extract the encryption keys required to decrypt files and4.
keychain items by selecting menu item 4. You will be prompted to supply the
device passcode, if known, of the escrow file if you have access to the host
computer and a filename to save the keys. If the filename is not supplied, the
toolkit extracts the keys and stores it in the file in the user's home
directory.

iOS Forensic Tools

[60]

The Elcomsoft iOS Forensic Toolkit Main Menu

After extracting the keys, to decrypt the keychain items, select menu item 5. The5.
toolkit uses the keys stored in the file, decrypts the keychain items,
and stores it in the file in the user's home directory.
To acquire the physical image of the device's file system, select the menu item 6.6.
You will be prompted to choose the device partition (system and user data) to
image, as shown in the following screenshot:

iOS Forensic Tools

[61]

EIFT-selecting partition to image option

After selecting the partition, the window prompts you for a filename to
save the image. If the filename is not supplied, it extracts the raw file
system from the device and stores it as a file in the user's home
directory. Best practices include acquiring both the user and system
partitions.

After the acquisition, you can reboot the device to function normally by selecting7.
menu item 9.
To decrypt the acquired image, select menu item 7. You will be prompted to8.
provide filenames of the encrypted image, device keys, and a filename to save the
decrypted image. If the filename is not supplied, it decrypts the image and stores
it as a file in the user's home directory. The toolkit also
computes the SHA1 hash of the decrypted image file. EIFT is also capable of
performing physical acquisition of a jailbroken iPhone 4S and newer devices
running on iOS 5 – 9.
EIFT requires the OpenSSH package to be installed on the device to perform9.
acquisition on newer devices. OpenSSH runs the SSH server on the device and
allows you to copy and run the acquisition tools. Once the SSH server is running
on the device, you can follow steps 3 to 8 to acquire a raw disk image from an
iPhone 4S and newer devices.

iOS Forensic Tools

[62]

Should a device not be supported, an error message will appear during the device
recognition phase of acquisition, as shown in the following screenshot:

The Elcomsoft iOS Forensic Toolkit Acquisition Error Message

Should this error appear, press Enter to return to the main menu and select another
acquisition option.

The manual mode
The manual mode lets you interact with tools directly using the command-line interface.
This mode allows greater flexibility and is recommended if you are comfortable with using
command-line tools. The commands required to accomplish typical tasks in the manual
mode are well documented in the technical guide that comes with the toolkit.

The toolkit is capable of performing physical, file system, and logical acquisitions of the iOS
device. But it does not provide options to analyze the acquired data and recover the deleted
data. However, you can supply the file acquired with EIFT to Oxygen Forensics Suite,
Cellebrite Physical Analyzer, Magnet IEF, and other tools for data analysis and recovery.

EIFT-supported devices
Elcomsoft iOS Forensic Toolkit Version 2.0 supports most iOS devices; however, some must
be jailbroken. The following figure is taken directly from the help document that comes
with the toolkit:

iOS Forensic Tools

[63]

EIFT supported devices

Compatibility notes
The following are the compatibilities of EIFT-supported devices:

Support for iPhone 4S and later versions is currently limited to jailbroken devices.
iOS versions older than 3.x store the device passcode in the keychain. On these
devices, the passcode is recovered instantly during the encryption key and
keychain data recovery.
Devices running iOS versions older than 3.x do not have data protection enabled
and user partition is not encrypted.

iOS Forensic Tools

[64]

Oxygen Forensic Detective
Oxygen Forensic Detective is similar to Oxygen Forensic Suite,

, but it provides more advanced forensic software to extract and analyze
data from cell phones, smartphones, PDAs, and other mobile devices. The software
provides not only acquisition support, but also advanced application parsing and analysis
support. Currently, Oxygen Forensic Detective Version 8.1 supports almost 12,000 different
models of mobile devices. In addition to this, it offers support for 1,608 application versions,
569 of which are parsed from iOS devices.

Oxygen Forensic Detective uses proprietary low-level protocols to extract data from
smartphones. Besides data extraction, Oxygen also gives you the opportunity to import a
backup or image file obtained using other forensic tools, such as Cellebrite, Elcomsoft, XRY,
iTunes, and open source tools for data analysis. It also stores the database of all the
analyzed devices so that you can always view the previously extracted data.

Oxygen Detective is available only for the Windows platform and requires iTunes to be
installed on the computer. The software operates with original and jailbroken devices. It
extracts the following data: phonebook with assigned photos, calendar events and notes,
call logs, messages, camera snapshots, video and music, voice mail, passwords, dictionaries,
geo-positioning data, Wi-Fi points with passwords and coordinates, IP connections,
locations, navigation applications, device data, factory installed third-party applications
data, and so on. It also recovers deleted data from SQLite databases. Oxygen Forensic
Detective also parses Call Detail Records, Cloud data, and Event logs for additional
analysis. For more information, visit

.

Features of Oxygen Forensic Detective
The following are the features of Oxygen Forensic Suite:

It supports logical acquisition and file system and physical acquisition. Logical
acquisition recovers the active files on the device. Deleted data may be obtained if
the SQLite database is recovered. Physical and file system acquisition provide
access to the raw file system data of the iOS device.
It supports password recovery from a keychain.
It enables Cloud data extraction and decryption.
It reads backup or images obtained using other forensic tools.
It provides rooting and jailbreaking assistance for devices.
The timeline provides a single-place access to all the user's activities and

iOS Forensic Tools

[65]

movements arranged by date and time.
It supports aggregated contacts. This automatically combines accounts from
different sources into one metacontact for each person. (Caution: Make sure that
you know where the data is coming from! You should manually examine each
file to ensure that nothing is overlooked and that the data is being reported
correctly.)
It recovers deleted data automatically and provides the examiner with a tool to
carve additional artifacts from SQLite databases.
It provides access to raw files for manual analysis. (Note that these are the raw
database files associated with each application, they are not always the raw file
system partitions.)
It provides an intuitive and user-friendly UI to browse through the extracted
data.
It provides keyword lists and a regular expression library in order to search.
It supports report generation in several popular formats: Microsoft Excel, PDF,
HTML, and so on.

Usage of Oxygen Forensic Detective
The acquisition of an iOS device is simple and straightforward with Oxygen Forensic
Detective. The software helps you to connect a device in several mouse clicks and
downloads all the available device information in just a few minutes for a logical
acquisition.

To perform the acquisition of an iOS device using Oxygen Forensic Extractor (the wizard
that is used in Oxygen Forensic Detective), follow these steps:

Launch Oxygen Forensic Detective and click on the Connect new device button.1.
You will be prompted to choose the connection mode, as shown in the following
screenshot:

iOS Forensic Tools

[66]

Oxygen Forensic Extractor-the Connection Mode screen

Connect the iOS device to the computer using a USB cable and choose the Auto2.
device connection mode. It detects the connected device and displays the device
information, as shown in the following screenshot. You can also manually choose
your device.

iOS Forensic Tools

[67]

Oxygen Forensic Suite-the device information screen

Click on Next. It prompts you to fill in the information about the device and the3.
case. Continuing further, it prompts you to select the data types to be extracted
from the device, as shown in the following screenshot:
Again, click on Next. It extracts the data from the device and the process takes a4.
few minutes depending on the amount of data stored on the device. Once the
process is complete, the software displays a summary of the extracted data, as
shown in the following screenshot:

iOS Forensic Tools

[68]

Oxygen Forensic Suite-the extracted data summary screen

After the download process is complete, you can start your forensic examination.5.

Working with Cellebrite UFED Physical
Analyzer
As per the vendor, Cellebrite UFED (Universal Forensic Extraction Device) empowers law
enforcement, antiterrorism, and security organizations to capture critical forensic evidence
from mobile phones, smartphones, PDAs, and portable handset varieties, including updates
for newly released models. The tool enables forensically sound data extraction, decoding,
and analysis techniques to obtain existing and deleted data from different mobile devices.
As of March 2016, UFED supports data extraction from more than 18,000 mobile devices.

iOS Forensic Tools

[69]

Cellebrite UFED Physical Analyzer can be used to perform physical and advanced logical
acquisitions of iOS devices. Advanced logical acquisitions are the same as file system
acquisitions in which access to the file system data is provided. Physical acquisition on iOS
devices using the A5-A9 chips (iPhone 4s and newer) is not possible using this tool. Thus,
the advanced logical acquisition method is the best support and will pull the most data
from these devices if they are unlocked (even if they are not jailbroken). If the device is
jailbroken, additional data can be extracted. Cellebrite Physical Analyzer is available only
for Windows platforms. Cellebrite also offers a 30-day free trial for the software.

For more information, visit
.

Features of Cellebrite UFED Physical Analyzer
The following are the features of Cellebrite UFED Physical Analyzer:

It supports physical and advanced logical acquisition (file system acquisition)
It extracts device keys required to decrypt raw disk images as well as keychain
items
It decrypts raw disk images and keychain items
It reveals device passwords (not available for all locked devices)
It allows the examiner to open an encrypted raw disk image file with a known
password
It supports passcode recovery attacks
It supports advanced analysis and decoding of extracted applications data
The platform provides access to physical and logical data extracted in the same
user-interface, making analysis easier
It reports generation in several popular formats: Microsoft Excel, PDF, HTML,
and more
Ability to dump the raw file system partition to import and examine it in another
forensic tool
It creates a binary image file in addition to the shortcut file for ease of
importing into other forensic tools for verification

iOS Forensic Tools

[70]

Usage of Cellebrite UFED Physical Analyzer
To perform the physical acquisition of iOS devices with UFED Physical Analyzer, follow the
steps provided here. Note that physical acquisition is not supported for newer, non-
jailbroken or 64 bit iOS devices (iPhone 4S and newer).

Launch UFED Physical Analyzer and navigate to Extract | iOS Device1.
Extraction. You will be prompted with the iOS device data extraction wizard, as
shown in the following screenshot:

UFED Physical Analyzer-the iOS device data extraction wizard screen

Click on Physical mode. The first time you run iOS device extraction, you will be2.
prompted to download and install the iOS support package.

iOS Forensic Tools

[71]

Follow the instructions displayed on the screen to turn off the device and place it3.
in recovery mode. Once the tool detects the device in recovery mode, it displays
the device information, as shown in the following figure:

UFED Physical Analyzer-the device information screen

iOS Forensic Tools

[72]

You may find that your device is unsupported as shown in the following
figure:

UFED Physical Analyzer – Unsupported device-the device information screen

Should the device be unsupported, click on Exit and attempt an Advanced4.
Logical Extraction.
If supported, click on Next and put the device in DFU mode. When the device is5.
detected in DFU mode, the software loads the acquisition tools onto the device.
Once the device is ready for extraction, you will be prompted to choose the6.
desired extraction type (Physical Extraction or File System Extraction). Click
on Physical Extraction and choose the User and System data partitions and the
location where you want to save the extraction.
If prompted, continue further and click on Recover the passcode for me to7.
recover the passcode prior to the extraction. Complex passcode attempts are
possible, but require manual attacks.

iOS Forensic Tools

[73]

If the device is newer than the iPhone 4s or when Physical Extraction is not8.
supported, click on Advanced Logical Extraction. For normal iOS devices, two
methods of extraction are offered. It is recommended to use both methods to
ensure that most data is extracted.

UFED Physical Analyzer – Advanced Logical Extraction Options

For jailbroken iOS devices, an additional extraction method is offered. Best 9.
practices state to capture all data using each method and then merge the data into
one instance of Physical Analyzer to ensure that all data is examined.

iOS Forensic Tools

[74]

UFED Physical Analyzer – Advanced Logical Extraction Options – Jailbroken Devices

With all of the methods above, once the selections are made, select Continue. The10.
tool extracts the file system image and decrypts it when you select to Open in
UFED Physical Analyzer.

Supported devices
The UFED Physical Analyzer version 5.0 supported iOS devices are shown in the following
table (note that these devices may be required to be unlocked):

Model iOS version Physical acquisition Advanced logical
acquisition

iPhone, iPhone 3G, iPod Touch 1, 2 iOS 1/2/3/4 Yes Yes

iOS Forensic Tools

[75]

iPhone 3GS, iPod Touch 3, iPad 1 iOS 3/4/5 Yes Yes

iPhone 4, iPod Touch 4 iOS 4/5/6/7 Yes Yes

iPhone 4S, 5, 5C, 5S, 6, 6 Plus, 6S
and 6S Plus iPad 2, 3, 4, iPad mini
2,3,4, iPad Air 2, iPad Pro

iOS 5/6/7/8/9 No (unless jailbroken
32-bit device)

Yes

UFED Physical Analyzer – supported devices

Working with BlackLight
BlackLight, a tool offered by BlackBag Foreniscs, provides support for mobile devices.
BlackBag is known for their effective support for Apple products, including iOS devices.
Currently, BlackLight offers support for parsing images created using other tools, encrypted
and non-encrypted backup files and by connecting the device to the forensic workstation
via USB. If the device is jailbroken, additional data can be extracted. BlackLight is available
for Macintosh and Windows platforms. BlackLight also offers a 30-day free trial for the
software and, often, free training. For more information, visit

.

Features of BlackLight
The following are the features of BlackLight:

It supports parsing for most acquisitions of iOS devices and backup files
It provides decryption options
It provides advanced filtering options for analysis
It provides insight to recently used applications and accessed files
It provides a method for a triage view of devices connected via USB
It often recovers artifacts from hex that other tools miss

Usage of BlackLight
Blacklight is known for Apple support and can be used to triage attached devices via USB,
load iOS device acquisitions, and the analyse data for attached devices. Simply selecting the
Add button presents the examiner with options for acquiring and analyzing data. These
details are covered in the following steps:

iOS Forensic Tools

[76]

Create a case using the Wizard once BlackLight is launched.1.
Select Add and select the method for which an evidence or a device will be2.
introduced to the tool. Options include connecting a live device via USB for quick
extraction and analysis, adding a backup file or previously acquired image. Other
tool images are supported.

BlackLight – Adding Evidence to a Case File

In this example, we are going to examine an attached iPhone connected via USB.3.
Select Add USB Attached Mobile Device. The following screen will appear4.
allowing the examiner to select the methods for extracting data from the attached
device.

iOS Forensic Tools

[77]

BlackLight – Selecting the processing method

iOS Forensic Tools

[78]

Once BlackLight has extracted the data, a summary will be provided and analysis5.
can ensue.

BlackLight – parsed data for analysis

Open source or free methods
Several methods are available to acquire and analyze iOS devices for free. Most of these
tools have been built by practitioners in mobile forensics who recognize the need for
affordable solutions that work to obtain the same amount of data as commercial kits. Jon
Zdziarski has developed several scripts, tools, and methods to acquire data from iOS
devices. Some of his methods such as physical acquisition scripts are restricted to law
enforcement, and unfortunately, they do not work on newer devices. Zdziarksi released his
instructions to acquire data from iOS devices and this can be read at

.

iOS Forensic Tools

[79]

For those who cannot afford the tools defined earlier in this chapter, there are other tools
that exist so that you can acquire and analyze iOS device images and backup files. Some of
these tools simply provide access to the logical file system or create a backup file and
include iFunBox, iExplorer, iBackupBot, and more. Make sure that you test these tools
before relying on them for a forensic investigation. Again, they are either free or request a
donation for use. They are developed by the community for examiners to use. They often do
not go through rigorous amounts of testing and validation and may miss data that can be
manually extracted by the examiner. It is the examiner's responsibility to learn the tool, test
it, and know its flaws in order to recover all of the available data.

If your hope is to obtain a forensic acquisition, tools such as Magnet Acquire and
NowSecureCE can be used. Depending on the device (model, iOS version), and whether or
not it is locked and/or jailbroken, the methods for extraction may be limited. Our best
advice is to try these tools, because you may be surprised at how much data you can obtain
from an iOS device for free.

Working with Magnet ACQUIRE
Magnet ACQUIRE, or Magnet Community Edition, was designed by Magnet Forensics for
the community of examiners who do not have a large budget to purchase acquisition tools.
This tool will acquire data from both iOS and Android devices. For more information, visit

.

Features of Magnet ACQUIRE
The following are the features of Magnet ACQUIRE:

It supports iOS and Android device acquisition
Fast acquisition providing access to data for a triage examination
It has well-documented acquisition methods that are saved into an activity log

iOS Forensic Tools

[80]

Usage of Magnet ACQUIRE
Magnet ACQUIRE provides a free and easy solution for acquiring mobile devices. The
following points demonstrate how Magnet ACQUIRE is to be used:

Launch Magnet ACQUIRE.1.
If your device is recognized, simply select that device. If not, select The device2.
I'm looking for isn't showing up for additional troubleshooting instructions.

Magnet Acquire – Device recognition

Once the device of interest is detected and selected, click on Next.3.
All acquisition methods available for that device will be listed. Wherever4.
possible, select Full, as this will capture the most data from the device.

iOS Forensic Tools

[81]

Magnet ACQUIRE – Acquisition options

Click on Next.5.
The acquisition will start as shown in the following image:6.

iOS Forensic Tools

[82]

Magnet ACQUIRE – Acquisition in progress

Once complete, the acquisition can be imported into a tool for analysis.7.
Some devices are not supported by Magnet Acquire. An example of a non-8.
jailbroken iPhone 6s, running iOS 9.2 is shown in the following screenshot. Note
that no support is provided.

iOS Forensic Tools

[83]

Magnet ACQUIRE – Unsupported device example

Working with NowSecureCE
NowSecure offers a free acquisition tool for everyone to use. This tool, NowSecureCE,
previously known as ViaExtractCE, provides support for file system, logical, and backup
file acquisitions of iOS and Android devices. The tool currently exists within a provided
virtual machine, but this may change with future releases. For more information, visit

.

Features of NowSecureCE
The following are the features of NowSecureCE:

It supports file system, logical, and backup extractions for iOS and Android
devices
It recovers calls, SMS, contacts, and more

iOS Forensic Tools

[84]

It provides methods for obtaining root access on Android devices
It supports parsing Android and iOS backup files

Usage of NowSecureCE
NowSecure CE supports Android and iOS files and is easy to use, once you get the VM up
and running. The following steps will guide you through the recommended steps for
acquiring iOS devices:

Once the VM is launched, select NowSecure.1.
Next, select New to create a new project.2.

Now Secure – Creating a case file

Select Continue and Close when the case is created.3.
The device must be passed through to the VM from the host machine or the4.
device will not be recognized. Navigate to VM | Removableor USB devices and
select the correct device and elect to connect it.

Depending on your virtual player or machine, you may have different
options for passing a device from the host computer to the NowSecureCE
VM.

Once connected, you may have to select Trust Computer on the iOS device.5.

iOS Forensic Tools

[85]

NowSecure CE will show the device information as well as the acquisition support for that
device. (Note that a full license may be required to acquire newer iOS devices, as shown in
the following screenshot):

Now Secure – Acquiring an iOS device

After the data is extracted, analysis can be completed within the NowSecure VM.

iOS Forensic Tools

[86]

Summary
Forensic tools are helpful for an examiner as they not only save time but also make the
process a lot easier. However, not everyone has a budget large enough to purchase
commercial tools to obtain iOS acquisition. While free tools exist for acquisition, support
may be limited and multiple extractions may be required to obtain the same amount of data
as a commercial tool.

For jailbroken devices, the iOS device could be connected to a Mac for live examination via
SSH, which is how some of the tools acquire the data. However, this is not a method that is
recommended for those new to digital forensics. For such purposes, this chapter introduced
you to several available iOS forensic tools and included the steps to perform acquisition of
an iOS device.

Examiners should take further steps to validate and understand each tool that might be
used as part of an investigation. We recommend acquiring test devices with known data to
ensure nothing is overlooked, evidence is not altered and the methods provide the
examiner with access to the data of interest, where possible.

In the next chapter, we will dive into acquiring data from iOS devices, how to bypass
locked devices, and what to expect with Apple encryption.

44
Data Acquisition from iOS

Devices
An iOS device recovered from a crime scene can be a rich source of evidence. Think about
how personal a smartphone is to a user. Nothing else digital comes close. We rarely leave
our homes or even walk around our homes without our smartphones within arm's reach. It
is literally a glimpse of the most personal aspects of a human, almost like a diary of our
everyday activity. According to several news references, Ocsar Pistorius' iPads were
examined by a mobile expert and presented during the murder trial to show Internet
activity hours before the murder of his girlfriend. When an iOS device can provide access to
the so-called “smoking gun,” the examiner must ensure that they know how to properly
handle, acquire, and analyze the device.

There are different ways to acquire forensic data from an iOS device. Though each method
will have its positives and negatives, the fundamental principle of any acquisition method
is to obtain a bit-by-bit or physical copy of the original data, where possible. With newer
iOS devices, this is almost impossible.

In this chapter, we will cover the different methods of acquisition for iOS devices to include
the following:

iOS device operating modes
Physical acquisition
File system acquisition
Logical acquisition
Acquiring jailbroken devices
Password protection and potential bypasses

Data Acquisition from iOS Devices

[88]

While the ultimate goal in a forensic examination is to obtain the physical image, this is not
possible for all iOS devices, so we need to understand the next best option when our
primary goal is not possible or supported by our tools.

Operating modes of iOS devices
Before we dive into the forensic techniques and acquisition methods, it is important to
know the different operating modes of an iOS device. Many forensic tools and methods
require you to place the device into one of the operating modes. Understanding the iOS
device operating modes is required in order to perform a particular action on the device.
While most commercial tools will demonstrate the proper steps to get the device into a
particular mode, the examiner must understand what that mode represents. iOS devices are
capable of running in different operating modes: the normal mode, recovery mode, and the
DFU mode. Some forensic tools require the examiner to know which mode the device is
currently utilizing. We will define each mode in this section.

Note that when the term “iPhone” is mentioned, it should be understood
that the statement remains true for all iOS devices.

The normal mode
When an iPhone is switched on, it is booted to its operating system; this mode is known as
the normal mode. Most regular activities (calling, texting, and so on) performed on an
iPhone will be run in the normal mode.

When an iPhone is turned on, internally, it goes through a secure boot chain, as shown in
the following figure. This does not occur for jailbroken devices. Each step in the boot-up
process contains software components that are cryptographically signed by Apple to ensure
integrity.

Data Acquisition from iOS Devices

[89]

A secure boot chain of an iPhone in normal mode

The Boot ROM, known as the secure ROM, is read-only memory (ROM) and is the first
significant code that runs on an iPhone (

). An explanation of the boot process for iOS devices are is
defined in the following steps:

The Boot ROM code contains the Apple root CA public key, which is used to1.
verify the signature of the next stage before allowing it to load.
When the iPhone is started, the application processor executes the code from the2.
Boot ROM.
The Boot ROM, in turn, verifies whether the Low Level Bootloader (LLB) is3.
signed by Apple or not, and loads it.
When LLB finishes its tasks, it verifies and loads the second stage boot loader4.
(iBoot). iBoot verifies and loads the iOS kernel.
The iOS kernel, in turn, verifies and runs all the user applications, as shown in5.
the preceding figure.
The secure boot chain ensures that iOS runs only on validated Apple devices.6.
When an iOS device is in this state, it is possible to gain everything that is
accessible to the user through forensic acquisition. Most often, this includes a file
system or logical acquisition, which will be discussed later in this chapter.

The recovery mode
During the boot-up process, if one step is unable to load or verify the next step, then the
boot-up is stopped and the iPhone displays a screen, as shown in the following screenshot.

Data Acquisition from iOS Devices

[90]

This mode is known as the recovery mode. The recovery mode is required to perform
upgrades or to restore the iPhone.

To enter the recovery mode, perform the following steps:

Turn off the device—press and hold down the Sleep/Power button located at the1.
top of the iPhone until the red slider appears. Then, move the slider and wait for
the device to turn off.
Hold down the iPhone Home button and connect the device to a computer via a2.
USB cable. The device should turn on.
Continue holding the Home button until the Connect to iTunes screen appears,3.
as shown in the following screenshot. Then, you can release the Home button.
(On a jailbroken iOS device, this screen may appear with different icons.) Most
forensic tools and extraction methods will alert the examiner about the current
state of the iOS device.

On older iOS devices, the iTunes Icon will be blue and the cable will reflect
the original Apple cable.

iOS device recovery mode

Data Acquisition from iOS Devices

[91]

You can read more about the iOS device recovery mode at
.

To exit the recovery mode, reboot the iPhone. This can be completed by holding4.
the Home and Sleep/Power button until the Apple logo appears.

Normally, the process of rebooting returns the iPhone from recovery mode to normal mode.
This same methodology applies to the Apple Watch. The examiner may experience a
situation where the iPhone constantly reboots into the recovery mode. This is known as a
recovery loop. A recovery loop may occur when the user or examiner attempts to jailbreak
the iOS device and an error occurs. To get the device out of a recovery loop, the device must
be plugged into iTunes and a backup is restored to the device.

This makes changes to the evidence, so ensure that you have validated
your acquisition methods on a test device prior to attempting methods on
real evidence.

For older devices, exiting a recovery loop was a much easier on both Windows and Mac
computers. For older devices, several open source methods exist to repair a recovery loop.

The following steps show the redsn0w tool used on a Mac, which can be used to exit a
recovery loop:

You can download the latest version of redsn0w at 1.
.

Then, navigate to Extras | Recoveryfix, as shown in the following screenshot. An2.
external method or tool may not be required. Sometimes, placing the device in
the DFU mode and connecting the device to iTunes will properly reboot the
iPhone.

Data Acquisition from iOS Devices

[92]

The redsn0w recovery fix

DFU mode
During the boot-up process, if the Boot ROM is not able to load or verify the LLB, then the
iPhone displays a black screen. This mode is known as Device Firmware Upgrade (DFU)
mode. DFU mode is a low-level diagnostic mode and is designed to perform firmware
upgrades for the iPhone. During a firmware upgrade, the iPhone goes through a different
boot sequence, as shown in the following figure. Most forensic tools use DFU mode to
perform a physical acquisition.

Data Acquisition from iOS Devices

[93]

A secure boot chain of an iPhone in DFU mode

In DFU mode, the Boot ROM boots first, which, in turn, verifies and runs the second stage
boot loaders, iBSS, and iBEC. iBSS is a modified version of iBoot which kicks off the iBEC
loader, verifies, and loads the kernel ().
The kernel verifies and loads the ramdisk into memory. Again, most forensic acquisition
methods require the iOS device to successfully enter DFU mode. As mentioned in

, Introduction to Mobile Forensics, all steps must be well documented by the examiner. The
handling of the iOS device is no exception. DFU mode is a method recognized in mobile
device forensics and is deemed to be a forensically sound action to prepare the device for
forensic acquisition.

To enter DFU mode, perform the following steps:

Download and install iTunes on your forensic workstation from 1.
. Make sure that you have the latest version and

that it is forensically sterile to prevent cross-contamination across evidence
plugged into the workstation. Connect your device to the forensic workstation
via a USB cable.
Turn off the device.2.
Hold down the Power button for 3 seconds.3.
Hold down the Home button without releasing the Power button for exactly 104.
seconds.
Release the Power button and continue to hold down the Home button until you5.

Data Acquisition from iOS Devices

[94]

are alerted by iTunes with the iTunes has detected an iPhone in recovery mode.
You must restore the iPhone before it can be used with iTunes message.

At this point, the iPhone screen will be black and should not display anything. The iPhone
is ready to be used in DFU mode. If you see the Apple logo or other signals that the device
is booting, repeat steps 2 through 5 until iTunes displays that message.

Most forensic tools running on a Windows platform will provide these instructions, with
graphics, as shown in the following screenshot. This figures shows UFED Physical Analyzer
being used to physically acquire an iOS device:

UFED Physical Analyzer explains how to place a device into DFU-mode

To verify whether the iPhone is in DFU mode on Mac OS X, launch System Information
and go to the USB option. You should see a device similar to what is shown in the
following screenshot:

Data Acquisition from iOS Devices

[95]

The MAC system information displaying a DFU-mode device

Just like in recovery mode, to exit DFU mode, hold down the Home button and the Power
button until the Apple logo appears on the device.

More information can be found on methods to verify DFU mode at

.

Pulling the cable during acquisition while the device is in DFU mode will not harm the
device. Most tools will alert the examiner to not disconnect the device. However, in certain
situations, such as covert or undercover operations, a device may have to be unplugged
abruptly. If this is something you are faced with, rest assured that the device will not be
damaged, but it is unlikely that you will obtain a forensic image that you can later examine.

Data Acquisition from iOS Devices

[96]

Setting up the forensic environment
The first edition of Practical Mobile Forensics included several methods of performing iOS
device forensics on a Mac. This book incorporates methods for performing acquisition on a
Windows system as well as a Mac. Most of the forensic tools supported by Windows and
Mac platforms leverage iTunes during the acquisition process. In order to prevent cross-
contamination of data, a fresh installation of iTunes should be used for every investigation.
It is recommended that you install the software recommended by your tools to ensure that
you don't cause device conflicts on the PC.

You will find that few tools work on both Mac and Windows platforms. Most examiners
select the platform and then branch into the tools that provide the best support. Some will
say that you should always examine an iOS device using a Mac; however, some of the most
robust smartphone tools run on the Windows platform.

Physical acquisition
iOS devices have two types of memory: volatile (RAM) and non-volatile (NAND Flash).
RAM is used to load and execute the key parts of the operating system or the application.
The data stored on the RAM is lost after a device reboots. RAM usually contains very
important application information, such as active applications, usernames, passwords, and
encryption keys. Though the information stored in the RAM can be crucial in an
investigation, currently there is no easy method or tool available to acquire the RAM
memory from a live iPhone.

Unlike RAM, NAND is non-volatile memory and retains the data stored in it even after a
device reboots. NAND flash is the main storage area and contains the system files and user
data (

). This document, written by NIST, not only covers memory storage in mobile
devices, but mobile device forensic practices in general.

The goal of physical acquisition is to perform a bit-by-bit copy of the NAND memory,
similar to the way in which a computer hard drive would be forensically acquired. While
data storage seems similar, NAND differs from the magnetic media found in modern hard
drives. NAND memory is cheaper, faster, and holds a great amount of data. Thus, NAND is
the ideal storage for mobile devices as mentioned in Learning iOS Forensics, Mattia Epifani
and Pasquale Stiparo, Packt Publishing.

Physical acquisition has the greatest potential for recovering data from iOS devices;
however, current and evolving security features (secure boot chain, storage encryption, and
passcode) on these devices may hinder the accessibility of the data during forensic

Data Acquisition from iOS Devices

[97]

acquisition. Researchers and commercial forensic tool vendors are continually attempting
new techniques to bypass the security features and perform physical acquisition on iOS
devices. The methods allowing physical access to iOS devices are discussed in the following
section.

Physical acquisition via a custom ramdisk
Acquisition via a custom ramdisk is a novel method to acquire data from an iPhone. By
exploiting a weakness in the boot process while the device is in DFU mode, it loads a
custom ramdisk and then gets access to the file system. A custom ramdisk contains the
forensic tools necessary to dump the file system over USB via an SSH tunnel. If done
correctly, loading a custom ramdisk onto a device will not alter the user data, and thus the
evidence will not be destroyed.

Imagine a computer that is protected with an OS-level password; we can still access the
hard disk contents by booting with a live CD. Similarly, on the iPhone, we can load a
custom ramdisk over USB and access the file system. However, the iPhone secure boot
chain may prevent us from loading the custom ramdisk. We can achieve this by exploiting a
Boot ROM vulnerability and patching successive stages, as shown in the following figure:

An exploited boot chain of an iPhone in DFU mode

Data Acquisition from iOS Devices

[98]

Hacker communities have found several Boot ROM vulnerabilities in A4 devices (iPhone 4
and older iPhone models). Currently, there are possible vulnerabilities that may provide
access to A5-A7 devices, but there is no guarantee. Currently, A8 and later devices prove to
be the most difficult in detecting vulnerabilities or methods to physically access the device.
The state (jailbroken or not), the model, and OS version all play a role in determining
accessibility. Boot ROM vulnerabilities cannot be fixed with software updates, effectively
making a device vulnerable forever.

Smartphone forensic tools leverage these vulnerabilities as a method to physically access
iOS devices. Tools such as Elcomsoft, MSAB, and Cellebrite that offer physical acquisition
support often show the examiner the process of loading the custom Boot ROM onto the iOS
device. This takes the guesswork out of the equation as the steps are simple to follow. As
we will explain now, UFED Physical Analyzer instructs the examiner to carry out the
required steps to place the device into DFU mode. From there, the tool will alert the
examiner if the device is supported for physical acquisition or if another method must be
used to acquire data from the device.

It is recommended that the examiner attempt physical acquisition regardless of the
advertised support by the tool because we never know the true state of the device (for
example, jailbroken or not) and we just might get lucky.

Custom Bootloader being uploaded to an iPhone 4

Data Acquisition from iOS Devices

[99]

Imaging the user and system partitions
As discussed in , Understanding the Internals of iOS Devices, NAND flash on iOS
devices contains two logical disk partitions: system partition and user data partition. On a
non-jailbroken device, the system partition will be kept in the read-only format. The user
data partition contains all the user-installed applications and data.

For full forensic analysis, it is preferred that both the system and user partition are acquired.
Most forensic tools will capture both partitions in one image. If the examiner has a time
crunch, at the minimum, they should dump the entire data (user) partition. To acquire a
full-disk image, both the data and system partitions should be selected, as shown in the
following figure:

Physical acquisition of the system and user partitions by UFED Physical Analyzer

Data Acquisition from iOS Devices

[100]

Other forensic tools provide physical acquisition access similar to the provided examples
above, as described in , iOS Forensic Tools. Our best is advice is to ensure that
you have tested and validated your forensic tool of choice prior to using it to conduct a
forensic acquisition.

Encrypted file systems
In addition to the acquisition hurdles, the file system on the iPhone is encrypted. Since the
release of the iPhone 3GS, the hardware and firmware encryption are built into iOS devices.
Every iOS device has a dedicated AES 256-bit crypto engine (the AES cryptographic
accelerator) with two hardcoded keys: UID (Unique ID) and GID (Group ID) (as stated by
Zdziarski). The CPU on the device cannot read the hardcoded keys but can use them for
encryption and decryption through the AES accelerator. The UID key is unique for each
device and is used to create device-specific keys (the key and the key) that are
later used for file system encryption. The UID allows data to be cryptographically tied to a
particular device; so, even if the flash chip is moved from one device to other, the files are
not readable and remain encrypted. The GID key is shared by all devices with the same
application processor (for example, all devices that use the A7 chip) and is used to decrypt
the iOS firmware images (IPSW) during installation, restore, and update. The GID prevents
hackers from reversing the firmware and finding security vulnerabilities.

Apart from the UID and GID, all other cryptographic keys are created by the system's
random number generator (RNG) using an algorithm based on Yarrow.

More information on encryption and Yarrow-based algorithms can be
found at

.

When this method of access is granted, we get a plethora of data from the iOS device. The
following is an example of UFED Physical Analyzer prompting the user to select the type of
acquisition they wish to perform on the device. Where possible, always get a physical image
of an iOS device first and then follow with a file system and logical. Why, you may ask?
Because each acquisition method provides us access with varying amounts of information.
Only the most well-trained examiners will uncover all data from a physical acquisition
without the help of a file system and logical acquisition report to guide their investigative
path. Best practices say to grab a physical acquisition first. Unfortunately, this is rarely an
option with modern iOS devices.

Data Acquisition from iOS Devices

[101]

Physical Extraction as offered by UFED Physical Analyzer

File system acquisition
The term file system acquisition was first introduced by Cellebrite, but has since been
adopted by other commercial forensic tools and is sometime referred to as advanced logical
acquisition. This method of acquisition enables the examiner to gain more data than
obtained via a logical acquisition because it provides access to file system data. While this is
not a substitute for a physical acquisition, it is the next best thing. For most iOS devices,
which are not jailbroken, a file system image is the most data that we can obtain from the
device using conventional methods.

This method of acquisition provides access to the user data partition only. The system
partition of the device is only acquired via physical access. Should the device be jailbroken,
additional data will be captured during the acquisition. Most tools offer one method to
acquire the file system of an iOS device. Cellebrite offers between one and three methods,
all of which differ per device. Method 1 and Method 2 are the most recognized by
Cellebrite users. Some may even claim ignorance of the existence of Method 3, which is
provided when a jailbroken device is connected. When so many options are presented, most
examiners have a difficult time selecting the best option, especially when they are permitted
a limited amount of time to capture the data.

Wherever possible, it recommended that each method be captured to ensure that the most
data is acquired for the device in support of the forensic acquisition. When this isn't
possible, the fastest method suggested should be selected first followed by all other options

Data Acquisition from iOS Devices

[102]

as time allows. Method 3 is the recommended acquisition approach for the jailbroken iOS
devices and provides the most amount of data for the iPhone connected. Some compare
Method 3 to a physical acquisition, but in reality, nothing but a true physical acquisition
provides access to the amount of data that a physical acquisition does.

Advanced Logical Extraction options by UFED Physical Analyzer

Currently, Cellebrite does not offer a method for merging the reports acquired by more than
one file system dump method. Thus, the examiner is required to examine the output of each
method separately and then compare and merge the results into a single report.

The reality is that a file system dump, or Advanced Logical Extraction, as referred to by
other forensic tools such as Cellebrite, enables the examiner to gain access to certain files
and directories on the iOS device. Manual decoding and carving may be required, which
will be covered in , iOS Data Analysis and Recovery. Some tools require the iOS
device be in DFU mode prior to performing a file system image of the data.

Data Acquisition from iOS Devices

[103]

Logical acquisition
A logical acquisition captures what is accessible to the user. In simple terms, it often ignores
the underlying and system files. Deleted data may be reported during a logical acquisition
simply because the files are marked as deleted but they exist in the free space of the SQLite
databases saved on that device. We will discuss recovering SQLite data and deleted artifacts
in , iOS Data Analysis and Recovery.

A logical acquisition is the simplest to ascertain if the device is unlocked, as it simply
captures the active user data on the device. Most tools and methods that support logical
acquisition of iOS devices will fail if the device is locked. Some think that if a physical
image is captured, there is little to no need for a logical acquisition. However, not all data is
parsed in a physical image, which is why having access to logical image, resulting in
readable data will assist in digging deep in the physical image for artifacts to support your
forensic investigation.

A logical image is similar, if not the same data, as obtained during a backup copy of the iOS
device. Backup image files will be discussed in , Data Acquisition from
iOS Backups. Even though the data is captured in a similar manner during a logical and
backup acquisition, it is important for the examiner to understand the differences the tools
offer and to capture both, wherever possible.

A logical acquisition is the fastest, easiest, and cheapest way to gain access to data stored on
an iOS device. There are a variety of tools ranging from commercial to free that are capable
of capturing logical acquisitions. Most of these tools require the device be unlocked or
access to the plist file from the host machine be readily available. The lockdown file, which
is stored as plist file on “trusted computers” enables the examiner to trick the device into
believing it is unlocked or “trusted” on the forensic workstation. The lockdown files are
located in on OS X Macs and in
on Windows 7 and later releases. Once these files are located, the examiner can leverage the
files to access the device. In the following sections, we will cover bypassing locked iOS
devices and brute-forcing password cracking, where possible, using different methods.

Data Acquisition from iOS Devices

[104]

The following table summarizes the acquisition possibilities on non-jailbroken iOS devices:

iOS device support for non-jailbroken devices

Data Acquisition from iOS Devices

[105]

Bypassing the passcode
iOS devices provide an option for users to set a passcode on their device to prevent
unauthorized access. Once a passcode is set, whenever the device is turned on or awakened
from sleep mode, the passcode is required to access the data. Depending on the settings
selected by the user, the iOS device may remain unlocked or automatically lock after a set
amount of time. However, just because the device is in the unlocked state does not mean an
examiner can connect it to a forensic workstation and forensically acquire the data without
any issues. Some acquisition methods require the device to reboot, which will lock the
device upon start-up. Additionally, some acquisition methods require the examiner to enter
the passcode on the iOS device prior to the acquisition initiating. This is one of the hardest
concepts to grasp as an examiner. Just when it seems like we have a stroke of luck, the tool
requests the passcode to proceed.

Before we go any further, let's discuss the current methods for locking iOS devices. iOS
supports a simple four-digit code, a six-digit passcode, and complex alphanumeric
passcodes of any length. Introduced with the iPhone 5S, the user fingerprint scan can also
be used to lock/unlock the device. For iPhone 5S, the user must also select a simple four-
digit code to use in case the fingerprint is not recognized. By default, the passcode is a four-
digit numeric code, but by modifying the settings, it can be set to be a complex passcode.
The user also has the option to erase all the contents on the iPhone after 10 failed passcode
attempts. Even when a fingerprint is in place, most forensic tools require that the passcode
that backs up the fingerprint be used to access the data on the iOS device.

Passcode-locked devices are being utilized more frequently due to general user awareness
of theft and security policies from organizations. Circumventing the passcode is not always
possible due to security improvements in iOS. The forensic examiner should try to obtain
the passcode from the owner to prevent issues in acquiring data from locked iOS devices.
When the passcode is known, it can be entered in the forensic tool as shown in the
following figure. Once the passcode is entered correctly, it is saved for the session and
cached to the forensic workstation. You may find that other tools leverage the cached
session password and can also acquire the locked iOS device. Guessing passwords within
the forensic tool is the best method, as guessing on the iOS device itself can cause the user
data to be wiped.

Data Acquisition from iOS Devices

[106]

Test passcode option in UFED Physical Analyzer

In the initial releases of iOS until iOS 3, the passcode for unlocking the device was stored
directly in the keychain, a place to store passwords securely on the iPhone. This passcode
security can be bypassed by just removing the record from the keychain or by removing the
UI setting that asks for the passcode after booting with the custom ramdisk.

Since iOS 4, the passcode is not stored on the device in any format. By setting a device
passcode, the user automatically enables data protection, which protects the data at rest.
With data protection, the data on the device is encrypted with a set of class keys stored in
the system keybag. The system keybag itself is protected by a passcode key, generated from
the user's passcode and the device's UID. So, in order to decrypt the protected keychain
items and files on the file system, you first need to decrypt the system keybag. If there is no
passcode, the system keybag can be easily decrypted. If there is a simple four-digit
passcode, you will have to guess it to decrypt the system keybag. As the passcode is tangled

Data Acquisition from iOS Devices

[107]

with the device's UID key, brute force attempts must be performed on the device. Also, the
same passcode on different devices generates different passcode keys as the UID is unique
for every device. Passcode brute force attacks performed at the springboard level introduce
delays, lock the device, and may lead to the wiping of data. However, these protection
mechanisms are not applicable when you are performing a brute force attack on a kernel
extension (AppleKeyStore) to decrypt the system keybag. It is worth mentioning that some
tools will attempt to crack the passcode on an iOS device by accessing the host computer for
which that iOS device was connected and synced. The tool accesses the pairing key through
an escrow file to decrypt the locked device. For this to work, the examiner would need to
have access to both the iOS device and the host computer to which the device is backed
up. To do this, you need to perform the following steps:

Connect the iOS device to the Mac.1.
Download the script from 2.

.
On Mac OS X, open a terminal and run the following command:3.

$sudo python python_scripts/demo_bruteforce.py

The brute force script uses the port opened with to communicate with
the ramdisk tools on the device. The script brute forces the passcode, decrypts the System
keybag, dumps the data protection keys, and places them into a directory named with
the Unique Device Identifier (UDID) of the target device in a format.

Note that this method may not work on newer iOS devices as the iOS-Data
Protection tools were developed to support legacy iOS devices.

As a result, you should see something like the following:

Connecting to device : b716de79051ef093a98fc3ff1c46ca5e36faabc3 Keybag UUID
: 5b14620bd1e74013bfa66325b6946773
Enter passcode or leave blank for bruteforce:

Hit Enter on the keyboard to start the brute force process:

Data Acquisition from iOS Devices

[108]

If the user chooses a strong passcode that is not easy to guess, we can still access the files
protected with and keychain items protected by
the data protection classes.

On a Windows computer, tools such as the IP-Box, a Chinese hacker tool, can be used to
brute force the passcode. Keep in mind that this method can wipe the device if the user
elects to wipe the device after 10 failed passcode attempts, which is shown in the following
screenshot:

Data Acquisition from iOS Devices

[109]

User settings to wipe data after 10 failed passcode attempts

The iP-Box was tested and evaluated by Detective Cindy Murphy. Her work is referenced
in the following screenshots.

Detective Murphy's work on the IP-Box and instructions for use can be
found at

.

This “black box“ essentially provides access to otherwise inaccessible iOS devices due to the
lock state. Brute force and dictionary attacks are run against the devices to provide access
for forensic acquisition. The following screenshot shows the iP-Box attempting to crack a
locked iOS device:

Data Acquisition from iOS Devices

[110]

Detective Murphy using the iP-Box to crack a locked iOS device

The iP-Box requires special cables and iP-Box Software to gain access to the passcode of the
device. False positives are common and require the examiner to restart the brute force
attack. This method, while time consuming, can provide great success for otherwise
inaccessible devices. The iP-Box claims support for all iOS versions and models. However,
this tool was not designed for forensics and it is at the examiner's discretion to use it. For
devices running iOS 8 and later versions, the cables shown in the following screenshot are
required. According to Detective Murphy's white paper, these cables can be purchased from

.

Cables required for use with iP-Box for devices running iOS8+

If you own UFED Physical Analyzer, you can attempt to brute force the passcode by
manually guessing the passcode in the tool. This is time consuming, as Physical Analyzer
does not present the option to run dictionary files or customized keyword lists in attempt to
crack passcodes.

Data Acquisition from iOS Devices

[111]

As you can see, as discussed in , Understanding the Internals of iOS Devices, the
examiner must know the iOS version running on the device prior to acquisition, certain
brute force lock bypass attempts, and analysis.

Other tools exist that offer a similar capability, such as UFED User Lock Code Recovery
Tool. Just like the iP-Box, this tool requires specialized cables and a camera, which senses
screen changes on the iOS device to crack the passcode. The UFED User Lock Code
Recovery Tool can bypass locks on both iOS and Android devices as shown in the following
screenshot:

UFED User Lock Code Recovery Tool

For criminal investigations, Cellebrite Advanced Investigative Services (CAIS) can crack
the passcode on an iOS device that is mailed to them by law enforcement agencies
worldwide. They in turn send you the passcode and/or the unlocked device, enabling you
to conduct your forensic acquisition and analysis.

More information on CAIS can be found on their website

.

Data Acquisition from iOS Devices

[112]

Acquisition of jailbroken devices
We recommend treating all iOS devices the same. This means, do not try to handle
jailbroken devices one manner and non-jailbroken in another manner. Essentially, try
everything possible to gain access to that device. First, try a physical acquisition. If this
method fails, attempt a file system acquisition, followed by a logical acquisition. If the
device is locked and the passcode is required to acquire the device, attempt to crack it. The
state of the iOS device should not keep you from trying your hardest to get a full physical
image. For devices that are truly jailbroken, you will see how much easier this makes your
life when attempting to acquire data.

There are several methods on both Mac and Windows platforms that support the
acquisition of iOS devices. Earlier, we discussed the physical and file system section of this
chapter; UFED Physical Analyzer offers additional support for jailbroken iOS devices. If the
device is jailbroken, a physical acquisition is possible. The exception to this is the 64-bit
iPhone 6, 6 Plus, 6S, and 6S Plus. Currently, Elcomsoft is the only forensic tool offering
support for physical acquisition of these newer devices. However, they must be jailbroken.

Best practices recommend obtaining a forensic acquisition prior to connecting the iOS
device to terminal on a Mac and attempting to access the data directly. In order to
determine if the device has been jailbroken, the examiner has a few options:

Attach the iOS device to your forensic kit and perform an acquisition. If it's a
newer iOS device and physical acquisition is supported, it's likely the device is
jailbroken. Caution: The reported state of the device is not always correct!
Examine the fstab file to determine if the system partition is read only (ro) or
read/write (rw). If the device is jailbroken, it can be accessed via a Mac using
terminal to SSH into the device and mount the file system using iFuse or similar
methods. Once the device is connected, we can navigate to private | etc |
fstab. Examine the fstab to determine if is ro or rw. If the
partition is rw, the device is jailbroken and is likely running a version prior to iOS
7. This file is no longer updated from ro to rw on newer iOS versions. We believe
the file stopped being updated with a version of iOS 7.
Look for traces of jailbroken applications and startup screens as described
in , Understanding the Internals of iOS Devices.

Data Acquisition from iOS Devices

[113]

Regardless of the method used to identify a jailbreak, it is recommended that the examiner
use more than one way to identify the state of the iOS device. Why, you may ask? Take a
look at the following screenshot: we can see the Device Summary provided by UFED
Physical Analyzer after a file system acquisition:

UFED Physical Analyzer identifying an iPhone6 as being jailbroken

When examining the fstab of the same iPhone, we get the results shown in the following
screenshot, which would lead the examiner to believe that this device is not jailbroken.

Examining fstab on a Mac

When a discrepancy like this occurs, it is recommended that you first identify the iOS
version running on the device as explained in , Understanding the Internals of iOS
Devices. Once identified, if the iOS version is iOS 7+, the fstab cannot be relied upon as a
trusted source of a jailbreak state. Thus, the examiner needs to try more than one tool to see
what options are offered during acquisition (for example, physical acquisition success of an

Data Acquisition from iOS Devices

[114]

unsupported device, method 3 offered for file system acquisition, and so on.)

There are several methods available on both Mac and Windows computers for acquiring
data from jailbroken devices. Free Windows tools, such as Magnet CE, will create image
files of jailbroken devices. When a jailbroken device is connected, the tool will provide file
system, hence the examiner should realize they are dealing with a jailbroken iOS device.

As shown in the following screenshot, Full is grayed out because the attached iOS device is
not jailbroken. When the examiner selects More info this is explained. If this device were
jailbroken, the option would be selectable and the acquisition would ensue.

Magnet CE acquisition options for a non-jailbroken device

On a Mac, a user can SSH into the jailbroken iOS device and acquire/copy data from the
device onto external media for examination. This is the fastest way to triage an iOS device,
as the access is immediately granted. The following screenshot shows the iPhone mounted
with access to applications stored on the device:

Data Acquisition from iOS Devices

[115]

Examining a jailbroken iPhone using ifuse to mount and view the data

While this is the fastest way to triage a jailbroken device, it's not the best method for
obtaining a forensically sound image, as the device is mounted and data can be changed or
modified. Best practices recommend creating a forensic image prior to interacting directly
with the iOS device when possible.

For jailbroken iPhones, refer to the acquisition support in the following table. At the time of
writing, it is still legal to jailbreak iPads, and they are not included in the preceding table as
we are not encouraging illegal activity to gain access to user data on iOS devices.

Data Acquisition from iOS Devices

[116]

iOS device support for jailbroken iPhones

Summary
The first step in the iOS device forensic examination is to acquire the data from the device.
There are several different ways to acquire data from an iOS device. This chapter covered
physical, file system, and logical acquisition techniques, including techniques of acquiring
jailbroken devices and methods to bypass passcodes using commercial, free, and hacker
tools. Physical acquisition is the preferred acquisition method as it recovers as close as we
can get to a bit-by-bit copy of the data from the device; however, it is not possible to
perform physical acquisition on all iOS devices.

While physical acquisition is the best method for forensically obtaining a majority of the
data from iOS devices, backup files may exist or be the only method to extract data from the
device.

The next chapter discusses iOS device backup files in detail to include user, forensic,
encrypted, and iCloud backup files, and the methods to conduct your forensic examination.

55
Data Acquisition from iOS

Backups
In the previous chapter, we covered techniques to acquire data from an iOS device. This
chapter covers techniques to acquire a backup of files from the device onto a computer or
iCloud using Apple's synchronization protocol.

The physical acquisition of an iOS device provides the most data in an investigation, but
you can also find a wealth of information on iOS backups. iOS device users have several
options to back up data present on their devices. Users can choose to back up data to their
computer using the Apple iTunes software or to the Apple cloud storage service known
as iCloud. Every time an iPhone is synched with a computer or to iCloud, it creates a
backup by copying the selected files from the device. The user can determine what is
contained in the backup, so some may be more inclusive than others. Also, the user can
back up to both a computer and iCloud, and the data derived from each location may differ.
This often occurs due to the limitations of iCloud free storage. The user may simply back up
photos and contacts to iCloud, but they take a complete backup of all data on
their computer. As previously mentioned, a physical acquisition provides the best access to
all data on the iOS device; however, depending on the device, the best information may be
recovered from a backup file.

In this chapter, we will cover the following topics:

iTunes and iCloud backup files
Creating and analyzing backup files
How to handle encrypted backup files
Backup file contents, file structure, and artifact recovery

Data Acquisition from iOS Backups

[118]

iTunes backup
A wealth of information is stored on any computer that has been previously synched with
an iOS device. These computers, commonly referred to as host computers, can have
historical data and passcode-bypass certificates. In a criminal investigation, a search
warrant can be obtained to seize a computer that belongs to a suspect to access the backup
and lockdown certificates. For all other cases, consent or permissible access is required. iOS
backup file forensics mainly involves analyzing an offline backup produced by an iPhone,
iPad, iPod touch, and/or Apple Watch. The Apple Watch data will be contained within the
iPhone backup for which is it synched.

The iTunes backup method is also useful in cases when physical, file system, and logical
acquisition of an iOS device is not feasible. In this situation, examiners essentially create an
iTunes backup of the device and analyze it using forensic software. Thus, it is important for
an examiner to completely understand the backup process and the tools involved to ensure
they are capable of creating a forensic backup without contaminating the devices with other
data existing in iTunes.

iPhone backup files can be created using the iTunes software, which is available for the
MAC OS X and Windows platforms. iTunes is a free utility provided by Apple for data
synchronization and management between iOS devices and the computer. iTunes uses
Apple's proprietary synchronization protocol to copy data from the iOS device to a
computer. For example, an iPhone can be synched with a computer using a cable or Wi-Fi.
iTunes provides an option for encrypted backup, but by default, it creates an unencrypted
backup whenever an iPhone is synched. Encrypted backups, when cracked, provide
additional access to data stored on the iOS device. This will be discussed later in this
chapter.

Users often create backup files to protect their data in the event that there device is
damaged or lost. We either create a forensic backup to act as the best evidence or simply
extract data from existing iOS backup files to search for legacy information. For example, if I
am under investigation and I delete files or wipe my iPhone, my backup files on iCloud and
my Mac still exist. Depending on whether iTunes or iCloud was used, multiple backups for
the same device may exist. The examiner will have to forensically analyze each backup to
uncover artifacts relating to the investigation.

iTunes is configured to automatically initiate the synchronization process once the iOS
device is connected to the computer. To avoid unintended data exchange between the iOS
device and the computer, disable the automatic synchronization process before connecting
your evidence to the forensic workstation. The screenshot in step 2 illustrates the option
that disables automatic syncing in iTunes Version 12.3.1.23.

Data Acquisition from iOS Backups

[119]

To disable auto-syncing in iTunes, perform the following steps:

Navigate to iTunes | Preferences | Devices.1.
Check Prevent iPods, iPhones, and iPads from syncing automatically and click2.
on the OK button.

iTunes-disabling automatic sync

As seen in the preceding screenshot, iOS backup files exist on the system. If this3.
were a forensic workstation, these backup files would not exist or would be
permanently removed to prevent cross-contamination.
Once you verify the synchronization settings, connect the iOS device to the4.
computer using a USB cable. If the connected device is not protected with a
passcode, iTunes immediately recognizes the device. This can be verified by the
iPhone icon displayed in the upper-left corner of the iTunes interface as shown in
the following screenshot:

Data Acquisition from iOS Backups

[120]

iTunes-iPhone recognized

If the connected iPhone is protected with a passcode, iTunes prompts the user to5.
unlock the device before starting the sync process, as shown in the following
screenshot. Once the iPhone is unlocked with a valid passcode, iTunes recognizes
the device and allows the user to back up and sync with the computer. Once an
iPhone is successfully synched with a computer, iTunes allows it to back up
without unlocking the device when the same iPhone is connected to that
computer again.

Data Acquisition from iOS Backups

[121]

iTunes-iPhone locked message

Once the passcode is entered, the user may enable Trust between the computer6.
and the iPhone. The user will be prompted to press Continue on the computer
and select Trust on the iPhone.

iTunes-Access permissions

Data Acquisition from iOS Backups

[122]

Once iTunes recognizes the device, a single click on the iPhone icon displays the7.
iPhone summary including the iPhone's name, capacity, firmware version, serial
number, free space, and phone number, as shown in the preceding screenshot.
The iPhone Summary page also displays the options to create backups. Steps to
create a backup were discussed earlier in this chapter.

Pairing records
When iTunes detects the iOS device, sets of pairing records are exchanged between the
device and the computer. Pairing is the mechanism by which your computer establishes a
trusted relationship with your device so that iTunes can communicate with it. Once a
computer has been paired, it can access personal information on the device and can even
initiate a backup of the device. Pairing was introduced in iOS7 and is required for
connecting with the device. At the time of writing this book, pairing is still in use.

On the iPhone, pairing records are stored in the
 directory. Depending on your

acquisition method, this directory may not be available for examination. The directory will
contain multiple pairing records if the device is paired with multiple computers. Pairing
records are stored as a property list () file with a filename representing the unique
identifier given to the computer. Property list files are binary-formatted XML-like files,
explained in detail in , iOS Data Analysis and Recovery. Pairing records on the
device contain the HostID, root certificate, device certificate, and host certificate. For
example, the content shown in the following screenshot was located in a pairing record on
one particular iPhone with a file
named . Pairing records stored on the
iPhone are deleted only when the phone is restored to the factory state.

Pairing records on the iPhone

On the computer, pairing records are stored in a preconfigured location depending on the
operating system as shown in the following table. Pairing records are stored as a property

Data Acquisition from iOS Backups

[123]

list file with a filename representing the iPhone's unique device identifier. Pairing records
on the computer are known as lockdown certificates.

Operating system Location

Windows

Mac OS X

Pairing records on the computer contain the device certificate, Escrow keybag, root
certificate, host certificate, host private key, and root certificate and private key. For
example, the content shown in the following screenshot was located in a pairing record on
one particular computer with a file named

.

Pairing record on a computer

The Escrow keybag stored on the computer allows iTunes to back up and sync with the
device even in a locked state. The Escrow keybag is a copy of the System keybag and
contains a collection of data protection class keys that are used for encryption on the iOS
device. Commercial tools that claim to be able to crack a locked iPhone without brute force
require access to the host computer and thus the Escrow keybag. The keybag improves the
user experience during device synchronization and gives access to all classes of data on the
device without entering the passcode.

The Escrow keybag is protected with a newly generated key computed from the key
and stored in an escrow record on the device. The escrow record is a property list file stored
in the directory with a
filename that represents the computer's unique identifier. Starting with iOS 5, escrow
records are protected with the data protection class,
which ties the encryption to the user's passcode. So, the device passcode must be entered
before backing up with iTunes for the first time and, starting with iOS7, the device and
computer must form a Trust.

Data Acquisition from iOS Backups

[124]

Understanding the backup structure
When the iPhone is backed up to a computer, the backup files are stored in a backup
directory, which exists as a 40-character hexadecimal string and corresponds to the Unique
Device Identifier (UDID) of the device. The backup process may take a considerable
amount of time depending on the size of the data stored on the iPhone during the first
backup. The location of the backup directory in which your backup data is stored depends
on the computer's operating system. The following table displays a list of the common
operating systems and the default location of the iTunes backup directory:

Operating system Backup directory location

Windows XP

Windows
Vista/7/8+/10

Mac OS X
(~ represents your Home folder)

iOS backup file locations

During the first sync, iTunes creates a backup directory and takes a complete backup of the
device. Currently, on subsequent syncs, iTunes only backs up the files that are modified on
the device and updates the existing backup directory. This has not always been true as in
the past a new backup was created every time the iOS device was backed up. Also, when a
device is updated or restored, iTunes automatically initiates a backup and takes a
differential backup. A differential backup has the same name as the backup directory, but
is appended with a dash (), the ISO date of the backup, a dash (), and the time in a 24-
hour format with seconds ().

In the following screenshot, we see both normal and differential backup files:

User created and differential backup files on a Mac

Data Acquisition from iOS Backups

[125]

The iTunes backup may make a copy of everything on the device to include contacts, SMS,
photos, the calendar, music, call logs, configuration files, documents, the keychain, network
settings, offline web application cache, bookmarks, cookies, application data (if selected),
and so on. For example, e-mail and passwords will not be extracted if the backup is not
encrypted. The backup also contains device details such as the serial number, UDID, SIM
details, and phone number. This information can also be used to prove a relationship
between the backup and the mobile device.

The backup directory contains four standard files along with the individual data files,
which may exist in various formats depending on the version of iTunes. Older versions will
contain , , , and some files with no file extensions, which
have been used by the most recent versions of iTunes. The standard files store details about
the backup and the device from which it was derived. It's worth noting that these files
should remain unencrypted regardless of the state of the backup. These file names are as
follows:

The first three files are property list files that can be easily analyzed using the Property List
Editor application on Mac OS X or Windows.

info.plist
The file stores details about the backed up device and typically contains the
following information:

Device name and display name: This is the name of the device, which typically
includes the owner's name
ICCID: This is the Integrated Circuit Card Identifier, which is the serial number
of the SIM
Last backup date: This is the timestamp of the last successful backup
IMEI: This is the International Mobile Equipment Identity, which is used to
uniquely identify the mobile phone
Phone Number: This is the phone number of the device at the time of backup
Installed applications: This is the list of application identifiers on the device
Product type and production version: This is the device's model and firmware
version

Data Acquisition from iOS Backups

[126]

Serial number: This is the serial number of the device
iTunes version: This is the version of iTunes that generated the backup
Target Identifier and Unique Identifier: This is the UDID of the device

manifest.plist
The file describes the contents of the backup and typically contains the
following information:

Applications: This is a list of third-party applications installed on the backed up
device, their version numbers, and bundle identifiers.
Date: This is the timestamp of a backup created or last updated.
IsEncrypted: This identifies whether the backup is encrypted or not. For
encrypted backups the value is , otherwise it is .
Lockdown: This contains device details, the last backup computer's name, and
other remote syncing profiles.
WasPasscodeSet: This identifies whether a passcode was set on the device when
it was last synched.
Backup keybag: Starting with iOS 4, a Backup keybag is created for each backup
made by iTunes. The Backup keybag contains a new set of data protection class
keys that are different from the keys in the System keybag, and backed up data is
re-encrypted with the new class keys. Keys in the Backup keybag facilitate the
storage of backups in a secure manner.

status.plist
The file stores details about the backup status and typically contains the
following information:

BackupState: This identifies whether the backup is a new backup or one that has
been updated
Date: This is the timestamp of the last time the backup was modified
IsFullBackup: This identifies whether or not the backup was a full backup of the
device

Data Acquisition from iOS Backups

[127]

manifest.mbdb
The file is a binary file and contains records about all other files in the
backup directory along with the file sizes, file type, and file structure.

Hal Pomeranz, a SANS instructor, wrote a script to parse the
 file for forensic analysis:

. Hal's parser will work even on encrypted backup files.

The file header and record format are shown in the following tables.

Header
The file header is a fixed value of 6 bytes. This value acts as a magic string to identify the
file format.

Type Data Description

uint8 mbdb\5\0 This files a magic string

The file header

Record
Each record in the file contains details about a file in the backup.

Type Data Description

String Domain This is the domain name

String Path This is the file path

String Target This is an absolute path for symbolic links

String Digest This contains SHA1 hash for directories and for
 files, and for files

String Encryption key This indicates encrypted files and
for unencrypted files

uint16 Mode This identifies file type for symbolic link, for
directory, and for regular files

uint64 inode number This is a lookup entry in the inode table

Data Acquisition from iOS Backups

[128]

Type Data Description

uint32 User ID This is mostly

uint32 Group ID This is mostly

uint32 Last modified time This is the file's last modified time in the Unix time format

uint32 Last accessed time This is the file's last accessed time in the Unix time format

uint32 Created time This is the file created time in the Unix time format

uint64 Size This is the length of a file. It is for a symbolic link and a
directory

uint8 Protection class This is the data protection class To

uint8 Number of properties This is the number of extended attributes

The file record

Apart from the standard files, the backup directory also contains hundreds of backup files
with varying file extensions depending on the version of iTunes used to create the backup,
as described earlier. In the following screenshot, we can see that the backup was created
with the latest version of iTunes in which the files do not contain a file extension. The
backup files are uniquely named with a 40-character hexadecimal string. These filenames
signify a unique identifier for each data set copied from the iPhone.

iPhone backup files

Data Acquisition from iOS Backups

[129]

In iOS, files are categorized into more than 12 domains. All of the application files are
classified into the class and other files on the file system are classified into 11+
system domains shown in the following screenshot. The list of system domains is stored in
a property list file located under on the
device. This file can be accessed via multiple acquisition methods and can be examined with
free or commercial tools.

The 40-character hexadecimal filename in the backup directory is the SHA1 hash value of
the file path appended to the respective domain name with a dash () symbol. For instance,
the database file is a member of and is located
under . The backup file name
of is , which can be
obtained by computing the SHA1 hash value of the string

.

System domains on the iPhone

Data Acquisition from iOS Backups

[130]

Unencrypted backup
There are several tools available to create backup files. Some commercial tools, such as
MSAB XRY and Cellebrite, will use iTunes to create a backup file for examination. If you
don't have one of these tools, you can use a fresh installation of iTunes to create a backup
file for examination. Keep in mind, an encrypted backup file that can be cracked provides
us with access to more data than an unencrypted backup file.

To create an unencrypted backup, perform the following steps:

Connect the iOS device to the forensic workstation using the appropriate iPhone1.
cable.
On the forensic workstation, launch iTunes.2.
Click on the iPhone icon displayed in the upper-left corner of the iTunes3.
interface. It displays the iPhone Summary page.
On the iPhone summary page, select the This computer checkbox and click on4.
the Back Up Now button. Notice that the option to encrypt the backup is also
located here. This will be covered later in this chapter.

iTunes-iPhone summary

Data Acquisition from iOS Backups

[131]

Once the Back Up Now option is selected, iTunes will ask the examiner if they5.
are sure that they do not want to encrypt the backup file.

iTunes prompt to choose whether to encrypt the backup or not

For this example, we are electing to select Don't Encrypt to demonstrate all6.
options for creating iOS backup files.

Extracting unencrypted backups
There are many free and commercial tools available to analyze data from unencrypted
backups. These tools parse the file, restore the filenames, and create the
file structure that users see on the iOS device. Some popular tools include the iPhone
Backup Extractor, iExplorer, and commercial tools such as BlackLight, XRY, Physical
Analyzer, IEF Mobile, and more.

iPhone Backup Extractor
iPhone Backup Extractor is a free tool for Mac OS X, which can be downloaded from

. This tool provides a great
triage view for free, but it will have to be purchased to extract the full dataset contained in
the backup.

The Backup Extractor expects backup files to be located in the default location
. The tool will allow you to

Data Acquisition from iOS Backups

[132]

add additional locations should your backups be stored on external evidence drives.

To extract the backup, follow these steps:

Launch the app and click on the Add Backups (+) button if the tool doesn't1.
automatically add the backup file from the default location. The tool will display
a list of backups available on the forensic workstation. Both local and
iCloudbackups can be selected for extraction. Select the backup that you wish to
extract and click on the Choose button, as shown in the following screenshot:

iPhone Backup Extractor-choosing backups

Data Acquisition from iOS Backups

[133]

When you choose the backup, iPhone Backup Extractor allows you to extract the2.
individual applications and the iOS file system backup, as shown in the following
screenshot (more data is retrievable when the tool is purchased):

iPhone Backup Extractor

Choose the files you would like to extract and then click on Extract. You are3.
prompted for a destination directory to save the extracted files.

iExplorer
iExplorer is a free tool for Mac OS X and Windows, which can be downloaded from

. This tool provides
access to artifacts contained within an iOS backup file. Note, the Windows version requires
an iOS device be attached for examination. iExplorer on Mac allows the examiner to connect
an iOS device for examination or to examine backups contained in the default
location . You will need to
copy any backups you wish to extract to the default location. Once downloaded and
installed, this tool is very easy to use.

Data Acquisition from iOS Backups

[134]

To extract the backup, follow these steps:

Launch the app and select Browse iTunes Backups.1.

iExplorer

The tool will show all backup files residing in the directory. Select the2.
iOS device you wish to examine. The available artifacts will be displayed.

Data Acquisition from iOS Backups

[135]

iExplorer – forensic artifacts

BlackLight
BlackLight is a commercial tool offered by BlackBag Forensics. This tool is one of the few
that function on both Windows and Mac OS X, proving great support for all iOS acquisition
types, even for encrypted backup files where the passcode is known or the lockdown file is
available. BlackBag also provide free training in the use of the tool; visit

 for more
information.

Data Acquisition from iOS Backups

[136]

To extract the backup, perform the following steps:

Launch the app and select Add and then Add iOS Backup…1.

BlackLight – adding an iOS backup file

Navigate to the backup file and then select the method for extraction.2.
The Comprehensive option takes the longest, but parses the most artifacts for
examination.

Data Acquisition from iOS Backups

[137]

BlackLight – extraction options

Data Acquisition from iOS Backups

[138]

When processing has completed, an Artifacts summary can be viewed.3.

BlackLight – Artifacts summary

The best part of this tool is the access provided to the native files for deep dive analysis,
which will be covered in , iOS Data Analysis and Recovery.

Data Acquisition from iOS Backups

[139]

BlackLight – broswer

Decrypting the keychain
For unencrypted backups, all the backup files are stored unencrypted except the keychain.
The keychain file contents are encrypted with a set of class keys in the Backup keybag. The
Backup keybag itself is protected with a key () derived from the iPhone hardware key
(UID key). So, in order to decrypt the keychain, you need to extract the key from the
device using the techniques explained in , Data
Acquisition from iOS Devices.

Another option is to use a commercial tool, such as Elcomsoft Phone Breaker's Explore
Keychain feature, which provides access to the keychain file if the user's passcode is known.

Data Acquisition from iOS Backups

[140]

Elcomsoft Phone Breaker – unencrypted backup explore keychain

The tool will then prompt the examiner to enter the passcode to access the device, not the
passcode for a backup file since the backup is unencrypted.

Elcomsoft Phone Breaker – accessing the keychain

Data Acquisition from iOS Backups

[141]

Encrypted backup
iTunes provides an option for users to encrypt their backups using a password. Forensic
examiners may elect to create an encrypted backup to protect the evidence or to gain access
to data that is otherwise inaccessible if the backup is not encrypted. For example, e-mail and
passwords will not be extracted if the backup is not encrypted. It is pertinent that the
examiner document the password should encryption be used.

To create an encrypted backup, perform the following steps:

Connect the iOS device to the forensic workstation using the appropriate Apple1.
cable.
On the forensic workstation, launch iTunes.2.
Click on the iPhone icon displayed in the upper-left corner of the iTunes3.
interface. It displays the iPhone summary page.
In the iPhone summary page, select the This computer checkbox and select4.
the Encrypt iPhone backup option. Selecting the option prompts you to enter a
password, as shown in the following screenshot.

iTunes – encrypting the backup file (1)

Set a password and click on the Set Password button. It creates an encrypted5.
backup.

Data Acquisition from iOS Backups

[142]

iTunes – Encrypting the backup file (2)

If a backup is password-protected, the password is set on the device itself and stored in the
keychain file. Also, whenever the device is connected to iTunes, it automatically chooses the
Encrypt iPhone backup option regardless of whether the users own a copy of iTunes being
used on their computer or someone else's. So, even if you have access to the suspect's
iPhone, you cannot produce an unencrypted backup unless you know the backup
password. This includes when attempting to create a forensic acquisition of the device,
unless physical acquisition is supported.

Extracting encrypted backups
For encrypted backups, the backup files are encrypted using the algorithm in the
CBC mode, with a unique key and a null IV (initialization vector). The unique file keys are
protected with a set of class keys from the Backup keybag. The class keys in the Backup
keybag are protected with a key derived from the password set in iTunes through 10,000
iterations of PBKDF2 (Password-Based Key Derivation Function 2). Both open source and
commercial tools provide support for encrypted backup file parsing if the password is
known. Some tools won't even prompt for a password, which make them useless in a
forensic investigation. Other tools will attempt to crack the password.

Data Acquisition from iOS Backups

[143]

Decrypting the keychain
Encrypted backup files can be cracked using brute force attacks in both command line and
GUI tools. For encrypted backups, the keychain items protected with the
data protection class are encrypted using a set of class keys that are protected with the
key . All other keychain items are encrypted using a set of class keys that are
protected with a password set in iTunes. If you want to extract protected
items, you need to extract a key from the device using the
techniques explained in , Data Acquisition from iOS Devices.

Elcomsoft Phone Breaker
Elcomsoft Phone Breaker is a GPU-accelerated commercial tool from Elcomsoft developed
for the Windows platform. The tool can decrypt an encrypted backup file when the backup
password is not available. The tool provides an option to launch a password brute-force
attack on the encrypted backup if the backup password is not available. Elcomsoft Phone
Breaker tries to recover the plain-text password that protects the encrypted backup using
dictionary and brute-force attacks. Passwords, which are relatively short and simple, can be
recovered in a reasonable time. But if the backup is protected with a strong and complex
password, breaking it can take forever.

To brute force the backup password, perform the following steps:

Launch the Elcomsoft Phone Breaker tool and the tool's main screen will appear,1.
as shown in the following screenshot:

Data Acquisition from iOS Backups

[144]

Elcomsoft Phone Breaker – Password Recovery Wizard

Navigate to Password Recovery Wizard | Choose Source | iOS device backup.2.
Navigate to the backup file you want to crack and select the
file.
Configure the brute-force pattern in the Attacks section and click on the Start 3.
button to start the brute force attack. If the brute force attack is successful, the tool
displays the password on the main screen.

Data Acquisition from iOS Backups

[145]

Elcomsoft Phone Breaker-password dictionary attack

Working with iCloud backups
iCloud is a cloud storage and cloud computing service by Apple launched in October 2011.
The service allows users to keep data such as calendars, contacts, reminders, photos,
documents, bookmarks, applications, notes, and more in sync across multiple compatible
devices (iOS devices running with iOS 5 or later, computers with Mac OS X 10.7.2 or later,
and Microsoft Windows) using a centralized iCloud account. The service also allows users
to wirelessly and automatically back up their iOS devices to iCloud. iCloud also provides
other services, such as Find My iPhone (to track a lost phone and wipe it remotely), Find
My Friends(to share locations with friends and notify the user when a device arrives at a
certain location), and so on.

Signing up with iCloud is free and simple to do with an Apple ID. When you sign up for
iCloud, Apple grants you access to 5 GB of free remote storage. If you need more storage,
you can purchase the upgrade plan. To keep your data secure, Apple forces users to choose

Data Acquisition from iOS Backups

[146]

a strong password when creating an Apple ID to use with iCloud. The password must have
a minimum of eight characters, a number, an uppercase letter, and a lowercase letter.

iOS devices running on iOS 5 and later allow users to back up the device settings and data
to iCloud. Data backed up includes photos, videos, documents, application data, device
settings, messages, contacts, calendar, e-mail, keychain, and so on. You can turn on iCloud
backup on your device by navigating to Settings | iCloud, as shown in the following
screenshot. iCloud can automatically back up your data when your phone is plugged in,
locked, and connected to Wi-Fi. This is to say, iCloud backups represent a fresh and near
real-time copy of information stored on the device, as long as space is available to create a
current backup.

iCloud backup options on the iPhone

Data Acquisition from iOS Backups

[147]

You can also initiate an iCloud backup from a computer by connecting the device to iTunes
and choosing the iCloud option. iCloud backups are incremental; that is, once the initial
iCloudbackup is completed, all the subsequent backups only copy the files that are changed
on the device. iCloud secures your data by encrypting it when it is transmitted over the
Internet, storing it in an encrypted format on the server, and using secure tokens for
authentication.

Apple's built-in apps (for example, e-mail and Contacts) use a secure token to access iCloud
services. Using secure tokens for authentication eliminates the need to store the iCloud
password on devices and computers.

Extracting iCloud backups
Online backups stored on the iCloud are commonly retrieved when the original iOS device
is damaged, upgraded, or lost. To extract a backup from iCloud, you must know the user's
Apple ID and password. With the known Apple ID and password, you can log on to

 and get access to contacts, notes, e-mail, calendar, photos, reminders, and
more. To extract the complete backup from iCloud, you can use Elcomsoft Phone Breaker.
As iCloud is not the fastest cloud storage, downloading a large backup with Elcomsoft
Phone Breaker can take hours and may not be successful. To speed up the investigation, the
tool provides an option to download selected files.

To extract the iCloud backup, perform the following steps:

Launch Elcomsoft Phone Breaker.1.
Navigate to Tools | Apple | Download backup from iCloud. You are prompted2.
to sign in with your Apple ID and password.
Successfully signing in with your Apple ID lists the available device backups that3.
can be downloaded, as shown in the following screenshot:

Data Acquisition from iOS Backups

[148]

iCloud backup options on the iPhone

Select the backup you need and click on Download. You are prompted for a4.
destination directory to save the extracted files into a number of domain
directories by restoring the original filenames. The tool also provides an option to
download the backup without restoring the original filenames so that you can
use third-party software for analysis.

For iCloud backups, the keychain file contents are encrypted with a set of class keys in the
Backup keybag. The Backup keybag itself is protected with a key () derived from the
iPhone hardware key (UID key). You can follow the techniques explained in the preceding
sections to decrypt the keychain from the extracted iCloudbackup.

Data Acquisition from iOS Backups

[149]

Summary
iOS device backups contain essential information that may be your only source of evidence.
Information stored in iOS backups includes photos, videos, contacts, e-mail, call logs, user
accounts and passwords, applications, device settings, and so on. This chapter covered
techniques to create backup files and retrieve data from iTunes and iCloud backups
including encrypted backup files, wherever possible. , iOS Data Analysis and
Recovery, goes further into the forensic investigation by showing the examiner how to
analyze the data recovered from the backup files. Areas containing data of potential
evidentiary value will be explained in detail. , iOS Data Analysis and Recovery,
will then teach you how to analyze the data pulled from , Data Acquisition from
iOS Devices, and artifacts pulled from backup files as discussed in this chapter.

66
Android Data Extraction

Techniques
Using any of the screen lock bypass techniques explained in , Android Forensic
Setup and Pre Data Extraction Techniques, an examiner can try to access a locked device. Once
the device is accessible, the next task is to extract the information present on the device. This
can be achieved by applying various data extraction techniques to the Android device. This
chapter will help you to identify the sensitive locations present on an Android device and
explain various logical and physical techniques that can be applied to the device in order to
extract the necessary information.

In this chapter, we will cover the following topics:

Logical data extraction using ADB pull, ADB backup, ADB dumpsys, and content
providers
Physical extraction, which covers imaging an Android device and SD card, JTAG,
and chip-off techniques

Data extraction techniques
Data residing on an Android device may be an integral part of civil, criminal, or internal
investigations done as part of a corporate company's internal probe. While dealing with
investigations involving Android devices, the forensic examiner needs to be mindful of the
issues that need to be taken care of during the forensic process; this includes determining
whether root access is permitted (via consent or legal authority) and what data can be
extracted and analyzed during the investigation. For example, in a criminal case involving
stalking, the court may only allow for SMS, call logs, and photos to be extracted and
analyzed on the Android device belonging to the suspect. In this case, it may make the most

Android Data Extraction Techniques

[151]

sense to logically capture just those specific items. However, it is best to obtain full physical
data extraction of the device and only examine the areas admissible by the court. You never
know where your investigation may lead and it is best to obtain as much data from the
device immediately rather than wish you had a full image should the scope of consent
change.

The data extraction techniques on an Android device can be classified into three types:

Manual data extraction
Logical data extraction
Physical data extraction

As described in , Introduction to Mobile Forensics, manual extraction involves
browsing through the device normally and capturing any valuable information. While
logical extraction deals with accessing the file system, physical extraction is about extracting
a bit-by-bit image of the device. The extraction methods for each of these types will be
described in detail in the following sections.

Some methods may require the device to be rooted in order to fully access
the data. Each method has different implications, and their success rates
will depend on the tool, the method used, and the device's make and
model.

Manual data extraction
This method of extraction involves the examiner utilizing the normal user interface of the
mobile device to access content present in the memory. The examiner will browse through
the device normally by accessing different menus to view the details such as call logs, text
messages, and IM chats. The content of each screen is captured by taking pictures and can
be presented as evidence. The main drawback with this type of examination is that only the
files that are accessible via the operating system (in UI mode) can be investigated. Care
must be taken when manually examining the device as it's easy to press the wrong button
and erase or add data. Manual extraction should be used as the last resort to verify findings
extracted using one of the other methods. Certain circumstances may warrant the examiner
to conduct manual examination as the first step. This may include cases of life or death
situations or missing persons where a quick scan of the device may lead the police to the
individual.

Android Data Extraction Techniques

[152]

Logical data extraction
Logical data extraction techniques extract the data present on the device by interacting with
the operating system and by accessing the file system. These techniques are significant
because they provide valuable data, work on most devices, and are easy to use. Once again,
the concept of rooting comes into the picture while extracting the data. Logical techniques
do not actually require root access for data extraction. However, having root access on a
device allows you to access all the files present on a device. This means that some data may
be extracted on a non-rooted device while root access will open the device and provide
access to all the files present on the device. Hence, having root access to a device would
greatly influence the amount and kind of data that could be extracted through logical
techniques. The following sections explain various techniques that can be used to extract
data logically from an Android device.

ADB pull data extraction
As seen earlier, adb is a command-line tool that helps you communicate with the device to
retrieve information. Using adb, you can extract data from all the files on the device or only
the relevant files in which you are interested.

To access an Android device through adb, it's necessary that the USB debugging option is
enabled. From Android 4.2.2, due to secure USB debugging, the host connecting to the
device should also be authorized. If the device is locked and USB debugging is not enabled,
try to bypass the screen lock using the techniques mentioned in , Android
Forensic Setup and Pre Data Extraction Techniques.

As a forensic examiner, it's important to know how the data is stored on the Android device
and to understand where important and sensitive information is stored so that the data can
be extracted accordingly. Application data often contains a wealth of user data that may be
relevant to the investigation. All files pertaining to applications of interest should be
examined for relevance, as will be explained in , Android Data Analysis and
Recovery. The application data can be stored in one of the following locations:

Shared preferences: This stores data in key-value pairs in a lightweight XML
format. Shared preference files are stored in the folder of the
application directory.
Internal storage: This stores data that is private and is present in the device's
internal memory. Files saved to the internal storage are private and cannot be
accessed by other applications.
External storage: This stores data that is public in the device's external memory,
which does not usually enforce security mechanisms. This data is available

Android Data Extraction Techniques

[153]

in the directory.
SQLite database: This data is available in
the database. They are usually stored with the
file extension. The data present in a SQLite file can be viewed using a SQLite
browser () or by
executing the necessary SQLite commands on the respective files.

Every Android application stores data on the device using any of the preceding data
storage options. So, the Contacts application would store all the information about the
contact details in the folder under its package name. Note that is
a part of your device's internal storage where all the apps are installed under normal
circumstances. Some application data will reside on the SD card and in the
partition. Using adb, we can pull the data present in this partition for further analysis using
the command. Once again, it's important to note that this directory is only
accessible on a rooted phone.

On a rooted phone, the command on the databases folder of the Dropbox app
can be executed as follows:

Similarly, on a rooted phone, the entire folder can be pulled in this manner. As
shown in the following screenshot, the complete directory on the Android device
was copied to the local directory on the machine. The entire data directory was extracted in
97 seconds. The extraction time will vary depending on the amount of data residing
in .

Android Data Extraction Techniques

[154]

The directory extracted to a forensic workstation

On a non-rooted device, a pull command on the directory does not extract the files as
shown in the following output, since the shell user does not have permission to access those
files:

The data copied from a rooted phone through the preceding process maintains its directory
structure, thus allowing an investigator to browse through the necessary files to gain access
to the information. By analyzing the data of the respective applications, a forensic expert
can gather critical information that can influence the outcome of the investigation. Note that
examining the folders natively on your forensic workstation will alter the dates and times of
the content. The examiner should make a copy of the original output to use for a date/time
comparison.

Android Data Extraction Techniques

[155]

Using SQLite Browser to view the data
SQLite Browser is a tool that can help during the course of analyzing the extracted data.
SQLite Browser allows you to explore the database files with the following extensions:

, , , , and . The main advantage of using SQLite
Browser is that it shows the data in a table form. Navigate to File | Open Database to open
a file using SQLite Browser. As shown in the following screenshot, there are three
tabs: Database Structure, Browse Data, and Execute SQL. The Browse Data tab allows you
to see the information present in different tables within the files.

We will be mostly using this tab during our analysis. Alternately, Oxygen Forensic SQLite
Database Viewer can also be used for the same purpose. Recovering deleted data from
database files is possible and will be explained in , Android Data Analysis and
Recovery.

SQLite Browser

The following sections throw light on identifying important data and manually extracting
various details from an Android phone.

Extracting device information
Knowing the details of your Android device, such as the model, version, and more, will aid
your investigation. For example, when the device is physically damaged and prohibits the
examination of the device information, you can grab the details about the device by viewing
the file present in the folder, as follows:

Android Data Extraction Techniques

[156]

Extracting call logs
Accessing the call logs of a phone is often required during the investigation to confirm
certain events. The information about call logs is stored in the file located at

. As mentioned earlier,
you can use SQLite Browser to see the data present in this file after extracting it to a local
folder on the forensic workstation. As shown in the following screenshot, using the

 command, the necessary files can be extracted to a folder on the forensic
workstation, as shown in the following screenshot:

Android Data Extraction Techniques

[157]

The file copied to a local folder

Note that applications used to make calls can store call log details in the respective
application folder. All communication applications must be examined for call log details, as
follows:

C:\android-sdk-windows\platform-tools>adb.exe pull
/data/data/com.android.providers.contacts C:\temp

Now, open the file using SQLite Browser (by navigating to File | Open
Database) and browse through the data present in different tables. The table present
in the file provides information about the call history. The following
screenshot highlights the call history along with the name, number, duration, and date:

Android Data Extraction Techniques

[158]

Extracting SMS/MMS
During the course of investigation, a forensic examiner may be asked to retrieve the text
messages that are sent by and delivered to a particular mobile device. Hence, it is important
to understand where the details are stored and how to access the data. The file
which is present under
the location contains the
necessary details. As with call logs, the examiner must ensure that applications capable of
messaging are examined for relevant message logs, as follows:

The phone number can be seen under the address column and the corresponding text
message can be seen under the body column, as shown in the following screenshot:

The calls table in the file

Android Data Extraction Techniques

[159]

Extracting browser history
Extracting browser history information is one task that is often required to be reconstructed
by a forensic examiner. Apart from the default Android Browser, there are different
browser applications that can be used on an Android phone, such as Firefox Mobile, Google
Chrome, and so on. All of these browsers store their browser history in the SQLite
format. For our example, we are extracting data from the default Android browser to our
forensic workstation. This data is located at . The file
named contains the browser history details. The following screenshot shows
the browser data as represented by Oxygen Forensic SQLite Database Viewer. Note that the
trial version will hide certain information.

The file in Oxygen Forensic SQLite Viewer

Android Data Extraction Techniques

[160]

Analysis of social networking/IM chats
Social networking and IM chat applications such as Facebook, Twitter, and WhatsApp
reveal sensitive data, which could be helpful during the investigation of any case. The
analysis is pretty much the same as with any other Android applications. Download the
data to a forensic workstation and analyze the files to find out if you can unearth any
sensitive information. For example, let's look at the Facebook application and try to see
what data can be extracted. First, we extract the
folder and navigate to the folder. The file present under this folder
contains the information that is associated to the user's account. The table
contains information about the friend's names along with their phone numbers, e-mail IDs,
and date of birth, as shown in the following screenshot. Similarly, other files can be
analyzed to find out if any sensitive information can be gathered.

The file in SQLite browser

Similarly, by analyzing the data present in the folder, information about geo-
location, calendar events, user notes, and more can be grabbed.

Android Data Extraction Techniques

[161]

ADB backup extraction
Starting from Android 4.0, Google implemented the
functionality, which allows users to back up application data to a computer using the adb
tool. This process does not require root access and hence can be very useful during forensic
examination. But the main drawback is that it does not back up every application installed
on the device. The backup feature is application dependent as the owner of the application
can choose to allow backups. Backups are allowed by default, but the developer can disable
it if he wants to. Hence, most of the third-party apps have this enabled, and thus the

 command will work for them. Here is the syntax for the command:

adb backup [-f <file>] [-apk|-noapk] [-shared|-noshared] [-all]
[-system|nosystem] [<packages...>]

: This is used to choose where the backup file will be stored. If not specified, it
defaults to in the present working directory.

: This is used to choose whether or not to back up the file.
The default is .

: This is used to choose whether or not to back up the (APK
expansion) files. It defaults to .

: This is used to choose whether or not to back up data
from shared storage and the SD card. The default is .

: This includes all applications for which backups are enabled.
: This is used to choose whether or not to include system

applications. It defaults to .
: This is used to list a specific package name to be backed up.

Once the device is connected to the workstation and adb is able to access it, run the
 command, as shown in the following screenshot:

The command

Android Data Extraction Techniques

[162]

Once the command is run, the user then needs to approve the permission on the device, as
shown in the following screenshot. For this reason, if the device is screen locked, it's not
possible to take a backup.

Backup permission on the device

An Android backup file is stored as a file and by default it is stored in the
 folder of the Android SDK. There are free tools, such as Android Backup Extractor,

that can convert the file into a file, which can then be viewed. Android Backup
Extractor can be downloaded
from . This tool is a Java-based
application, so ensure that Java is installed on the workstation before using the tool. To
convert the backup file to format, issue the following command:

java -jar abe.jar unpack backup.ab backup.tar

Android Data Extraction Techniques

[163]

This will automatically create a file with the extension, which can then be viewed
easily using Archive tools such as WinRAR or 7Zip. However, note that if the password
was entered on the device when the backup was created, the file would be encrypted and
hence the examiner needs to provide the password as an argument in the preceding
command. The backup file contains two main folders – and . The folder
contains all the information that is present under for the applications included
in the backup. The folder contains all the data present on the SD card.

ADB dumpsys extraction
The command allows you to gather information about services and
applications running on the system. The command gives diagnostic
output for all system services. The command does not require root privileges to be
executed and requires only USB debugging to be enabled as with any other adb command.
As shown in the following screenshot, to see the list of all services that you can use with

 run the command:

The command

Analyzing certain dumpsys services, such as Wi-Fi, user, notification and so on, can be
helpful in certain scenarios. Here are some of the interesting cases where running the

 command could be helpful during forensic analysis.

Android Data Extraction Techniques

[164]

The service can be used to get information about device ID or
the IMEI number, as shown in the following screenshot.

The command showing the IMEI number

The service gives information about Wi-Fi points accessed by the user. It
shows the SSIDs of the connections which have been saved. This information can be used to
pin down the user to a particular location. Here is the command which gives
this information:

The command showing last connected Wi-Fi details

The service gives information about recently used applications
along with their date of usage. For example, the following screenshot shows that no apps
were used on 02-01-2016; but on 01-31-2016, the Google Chrome browser was used and
there was also an attempt to back up the phone data.

Android Data Extraction Techniques

[165]

The command showing recently used apps

Depending on the case being investigated, the forensic analyst needs to figure out if any of
the dumpsys commands can be of use. Running a command immediately after a
device seizure can be extremely helpful later on. By running the
command, you can record all the dumpsys service information.

Using content providers
In Android, the data of one application cannot be accessed by another application under
normal circumstances. However, Android provides a mechanism through which data can
be shared with other applications. This is precisely achieved through the use of content
providers. Content providers present data to external applications in the form of one or
more tables. These tables are no different from the tables found in a relational database.
They can be used by the applications to share data usually through the URI addressing
scheme. They are used by other applications that access the provider using a provider-client
object. During the installation of an app, the user determines whether or not the app can
gain access to the requested data (content providers). For instance, contacts, SMS/MMS,
calendar, and so on, are examples of content providers.

Hence, by taking advantage of this, we can create an app that can grab all the information
from all the available content providers. This is precisely how most of the commercial
forensic tools work. The advantage of this method is it can be used on both rooted and non-
rooted devices. For our example, we use AFLogical, which takes advantage of the content
provider mechanism to gain access to the information. This tool extracts the data and saves
it to an SD card in CSV format. The following steps extract the information from an

Android Data Extraction Techniques

[166]

Android device using AFLogical Open Source Edition 1.5.2:

Download AFLogical OSE 1.5.21.
from

.

The AFLogical LE edition is capable of extracting a large set of information
and requires registration with viaForensics using an active law
enforcement or government agency e-mail. AFLogical OSE can pull all
available MMSs, SMSs, contacts, and call logs.

Ensure that USB debugging mode is enabled and connect the device to the2.
workstation.
Verify that the device is identified by issuing the following command:3.

Save the AFLogical OSE app in the home directory and issue the following4.
command to install it on the device:

Once the application is installed, you can run it directly from the device and click5.
on the Capture button present at the bottom of the app, as shown in the following
screenshot:

Android Data Extraction Techniques

[167]

The AFLogical OSE app

The app starts extracting data from the respective content providers, and once the6.
process is complete, a message will be displayed, as shown in the following
screenshot:

Message displayed after the extraction is complete

The extracted data is saved to the SD card of the device in a directory7.

Android Data Extraction Techniques

[168]

named . The extracted information is stored in CSV files, as shown in
the following figure. The CSV files can be viewed using any editor.

Files extracted using AFLogical OSE

The file present in the same directory provides information about the8.
device including the IMEI number, IMSI number, Android version, information
about installed applications, and so on.

However, note that third-party apps' installation should be allowed (by selecting the
Unknown Sources option) on the device for this to work. Other tools that can help during
investigation to logically extract data will be covered in , Android App Analysis,
Malware and Reverse Engineering.

Physical data extraction
Physical extraction refers to the process of obtaining an exact bit-by-bit image of the device.
It is important to understand that a bit-by-bit image is not similar to copying and pasting
the contents on the device. If we copy and paste the contents on a device, it will only copy
the available files such as visible files, hidden files, and system-related files. This method is
considered as a logical image. With this method, deleted files and files that are not

Android Data Extraction Techniques

[169]

accessible are not copied by the command. Deleted files can be recovered (based on
the circumstances) using certain techniques, which we will see in the following chapters.
Unlike logical extraction, physical extraction is an exact copy of the device's memory and
includes more information such as the slack space, unallocated space, and so on.

Android data extraction through physical techniques is commonly performed using the
command, while other advanced techniques such as JTAG and chip-off are also available
but are usually hard to implement and require great precision and experience to try them
on real devices during the course of an investigation. JTAG and chip-off techniques are
covered in detail in the following sections. However, extracting data through the
command requires root access. The following sections provide an overview of various
techniques to perform physical extraction.

Imaging an Android Phone
Imaging a device is one of the most important steps in mobile device forensics. When
possible, it's imperative to obtain a physical image of the Android device before performing
any techniques to extract the data directly from the device. In forensics, this process of
obtaining a physical acquisition is commonly called imaging the device. The terms physical
image, forensic image, or raw image are often used to refer to the image captured through
this process. Let's first revisit how imaging is done on a desktop computer as it helps us to
correlate and realize the problems associated with imaging Android devices. Let's assume
that a desktop computer, which is not powered on, is seized from a suspect and sent for
forensic examination. In this case, a typical forensic examiner would remove the hard disk,
connect it to a write blocker and obtain a bit-by-bit forensic image using any of the available
tools. The original hard disk is then safely protected during the forensic imaging of the data.
With an Android device, all the areas that contain data cannot be easily removed. Also, if
the device is active at the time of receiving it for examination, it is not possible to analyze
the device without making any changes to it because any interaction would change the state
of the device.

An Android device may have two file storage areas, internal and external storage. Internal
storage refers to the built-in non-volatile memory. External storage refers to the removable
storage medium such as a micro SD card. However, it's important to note that some devices
do not have a removable storage medium such as an SD card, but they divide the available
permanent storage space into internal and external storage. Hence, it's not always true that
external storage is something that is removable. When a removable SD card is present, a
forensic image of the memory card has to be obtained. As discussed in

, Understanding Android, these removable cards are generally formatted with the FAT 32
file system. Some mobile device acquisition methods will acquire the SD card through the
Android device. This process, while useful, will be slow due to the speed limitations of the

Android Data Extraction Techniques

[170]

USB phone cables.

Android, by default, does not provide access to the internal directories and system-related
files. This restricted access is to ensure the security of the device. For instance, the

 folder is not accessible on a non-rooted device. This folder is especially of
interest to us because it stores most of the user-created data, and many applications write
valuable data into this folder. Hence, to obtain an image of the device, we need to root the
Android device. Rooting a device gives us superuser privileges and access to all the data. It
is important to realize that this book has been stressing that all the steps taken should be
forensically sound and should not make changes to the device whenever possible. Rooting
an Android device will make changes to it and should be tested on any device that the
examiner has not previously investigated. Rooting is common for Android devices, but
getting root access could alter the device in a manner that renders the data changed or
worse yet—wiped. Some Android devices, such as the Nexus 4 and 5, may force the data
partition to be wiped prior to allowing root access. This negates the need to root the device
in order to gain access because all the user data is lost during the process. Just remember
that while rooting provides access to more data when successfully done, it can also wipe the
data or destroy the phone. Hence, you must ensure that you have consent or legal rights to
manipulate the Android device prior to proceeding with the root. As rooting techniques
have been discussed in , Android Forensic Setup and Pre Data Extraction
Techniques, we will proceed with the example assuming that the device is rooted.

The following is a step-by-step process to obtain a forensic image of a rooted Android
device:

Connect the Android device to the workstation and verify that the device is1.
identified by issuing the command, as shown here:

Once the adb access is ready, the partitions can be acquired from the Android2.
device using the following steps:

1. Using the dd command: The command can be used to create a raw
image of the device. This command helps us create a bit-by-bit image of the
Android device by copying low-level data.

Android Data Extraction Techniques

[171]

2. Inserting a new SD card: Insert a new SD card into the device in order to
copy the image file to this card. Make sure that this SD card is wiped and
does not contain any other data.

3. Executing the command: The file system of an Android device is stored in
different locations within the partition. A simple mount command on a
Samsung Galaxy S3 phone returns the following output:

From the preceding output, we can identify the blocks where3.
the , , and partitions are mounted. Although it's
important to image all the files, most of the data is present in the
and partitions. When time allows, all partitions should be acquired for
completeness. Once this is done, execute the following command to image the
device:

dd if=/dev/block/mmcblk0p12 of=/sdcard/tmp.image

In the preceding example, the data partition of a Samsung Galaxy SIII was used (where
is the input file and is the output file).

The preceding command will make a bit-by-bit image of the file (data
partition) and copy the image file to an SD card. Once this is done, the image file can be
analyzed using the available forensic software.

Android Data Extraction Techniques

[172]

The examiner must ensure that the SD card has enough storage space to
contain the data partition image. Other methods are available to acquire
data from the rooted devices.

Imaging a memory (SD) card
There are many tools available that can image a memory card. The following example uses
WinHex to create a raw disk image of the SD card. The following is a step-by-step process
to image a memory card using WinHex:

Connecting the memory card: Remove the SD card from the memory slot and1.
use a card reader to connect the memory card to the forensic workstation.
Write protect the card: Open the disk using WinHex. Navigate to Options | Edit2.
Mode and select write-protected mode, as shown in the following screenshot.
This is to make sure that the device is write protected and no data can be written
on it.

WinHex view of Edit Mode (left) and WinHex Read-only Mode enabled (right)

Calculating the hash value: Calculate the hash value of the memory card to make3.
sure that no changes are made at any point during the investigation. Navigate
to Tools | Compute hash and choose any hashing algorithm.
Creating the image of the disk: Navigate to File | Create Disk Image, as shown4.

Android Data Extraction Techniques

[173]

in the following screenshot. Select the Raw image option () to create an
image. This completes the imaging of the memory card.

The WinHex disk image option

Once a forensic image is obtained using any of the methods described previously, it needs
to be analysed to extract the relevant information. There are several commercial tools, such
as Cellebrite, XRY, and so on, that can analyse the image files. Analysing Android images is
covered in detail in , Android Data Analysis and Recovery.

Joint Test Action Group
Joint Test Action Group (JTAG) involves using advanced data acquisition methods, which
involve connecting to specific ports on the device and instructing the processor to transfer
the data stored on the device. Using this method, a full physical image of a device can be
acquired. It is always recommended to first try out the other techniques mentioned earlier,
as they are easy to implement and require less effort. Examiners must have proper training
and experience prior to attempting JTAG as the device may be damaged if handled
improperly.

Android Data Extraction Techniques

[174]

The JTAG process usually involves the following forensic steps:

In JTAG, the device Test Access Ports (TAPs) are used to access the CPU of the1.
device. Identifying the TAPs is the primary and most important step. TAPs are
identified and the connection is traced to the CPU to find out which pad is
responsible for each function. Although device manufacturers document
resources about the JTAG schematics of a particular device, they are not released
for general viewing. A good site for JTAG on an Android device
is .
Wire leads are then soldered to appropriate connector pins and the other end is2.
connected to the device that can control the CPU, as shown in the following
image (published by). JTAG jigs can be used to forgo
soldering for certain devices. The use of a jig or JTAG adapter negates the need to
solder, as it connects the TAPs to the CPU.

The JTAG setup

Android Data Extraction Techniques

[175]

Once the preceding steps are complete, power must be applied to boot the CPU.3.
The voltage that must be applied depends on the specifications released by the
hardware manufacturer. Do not apply a voltage beyond the number mentioned
in the specification.
After applying the power, a full binary memory dump of the NAND flash can be4.
extracted.
Analyze the extracted data using the forensic techniques and tools learned in this5.
book. A raw file will be obtained during the acquisition and most forensic
tools support ingestion and analysis of this image format.

It is also important to understand that the JTAG technique should not result in loss of
functionality of the device. If reassembled properly, the device should function without any
problems. Although the JTAG technique is effective in extracting the data, only experienced
and qualified personnel should attempt it. Any error in soldering the JTAG pads or
applying a different voltage could damage the device entirely.

Chip-off
Chip-off, as the name suggests, is a technique where the NAND flash chips are removed
from the device and examined to extract the information. Hence, this technique will work
even when the device is passcode-protected and USB debugging is not enabled. Unlike the
JTAG technique where the device functions normally after examination, the chip-off
technique usually results in destruction of the device, that is, it is more difficult to reattach
the NAND flash to the device after examination. The process of reattaching the NAND flash
to the device is called re-balling and requires training and practice.

Chip-off techniques usually involve the following forensic steps:

All of the chips on the device must be researched to determine which chip1.
contains user data. Once determined, the NAND flash is physically removed
from the device. This can be done by applying heat to desolder the chip, as
shown in the following image (published by). This is a
very delicate process and must be done with great care as it may result in
damaging the NAND flash.

Android Data Extraction Techniques

[176]

The chip-off technique

The chip is then cleaned and repaired to make sure that the connectors are2.
present and functioning.
Using specialized hardware device adapters, the chip can now be read. This is3.
done by inserting the chip into the hardware device, which supports the specific
NAND flash chip. In this process, raw data is acquired from the chip resulting in
a file.
The data acquired can now be analyzed using forensic techniques and the tools4.
described earlier.

The chip-off technique is most helpful when the device is damaged severely, locked, or
otherwise inaccessible. However, the application of this technique requires not only
expertise but also costly equipment and tools. There is always a risk of damaging the
NAND flash while removing it and hence it is recommended to try out the logical
techniques first to extract any data.

Android Data Extraction Techniques

[177]

While root access is a must to perform any of the techniques discussed earlier, it must be
noted here that at the time of writing this book, none of these techniques would work on
devices which have Full Disk Encryption (FDE) enabled. As discussed in ,
Understanding Android, Google has mandated the use of FDE for most devices starting from
Android 6.0. Although some techniques were demonstrated and published for decrypting
full disk encryption, they are device specific and are not widely applicable.

Summary
Extracting data from an Android device is one of the crucial steps during the course of an
investigation. Once the device is accessible, an examiner can extract the data using manual,
logical, or physical data extraction techniques. Logical techniques extract the data by
interacting with the device using tools such as ADB. Physical techniques on the other hand
access a larger set of data, they are complex and require great deal of expertise to perform.
Imaging a device produces a bit-by-bit image of the device which is later analyzed using
tools. Imaging a device is one of the primary steps to ensure that the data on the device is
not modified.

In the next chapter, we will see how to extract relevant data such as call logs, text messages,
browsing history, and so on from an image file. We will also cover data recovery techniques
using which we can recover the data deleted from a device.

77
iOS Data Analysis and

Recovery
A key aspect in iOS device forensics is to examine and analyze the data acquired to
interpret the evidence. Data on most iOS devices is encrypted, and it requires that the data
partition is decrypted prior to an examination. In the previous chapters, you learned
various techniques to acquire data from an iOS device. The raw disk image obtained during
physical acquisition, the file system dump, or the logical or backup file contains hundreds
of data files that are often decrypted by the forensic tools described in earlier chapters. Even
when the data is parsed and decrypted by the forensic tool, manual analysis may be
required to uncover additional artifacts or to simply validate your findings. This chapter
will help you understand how data is stored on iOS devices, and it will walk you through
the key artifacts that should be examined in each investigation to recover the most data
possible.

In this chapter, we will be covering the following topics:

How iOS devices store data
Key artifacts to examine in every investigation (databases and plists)
The best tools and methods to extract key evidence
How to recover deleted data from key database files

Timestamps
Before examining the data, it is important to understand the different timestamps that are
used on iOS devices. Timestamps found on iOS devices are presented either in the UNIX
timestamp or Mac absolute time format. The examiner must ensure that the tools properly

iOS Data Analysis and Recovery

[179]

convert the timestamps for the files. Access to the raw SQLite files will allow the examiner
to verify these timestamps manually. Further information on iOS timestamps can be found
at

.

UNIX timestamps
A UNIX timestamp is the number of seconds that offsets the UNIX epoch time, which starts
on January 1, 1970. A UNIX timestamp can be converted easily using the command on
a Mac workstation or using an online UNIX epoch converter on a Windows workstation.
The command is as follows:

$date -r 1455070351
Tues Feb 9 21:12:31 EST 2016

Mac absolute time
iOS devices adopted the use of Mac absolute time with iOS 5 for most of the data. Mac
absolute time is the number of seconds that offsets the Mac epoch time, which starts on
January 1, 2001. The difference between the UNIX epoch time and the Mac time is exactly
978,307,200 seconds. To convert the UNIX epoch time to Mac absolute time, add 978,307,200
to it and calculate it as a UNIX timestamp. For example, the command that can be
used to covert Mac absolute time is as follows:

$date -r 1455070351
Tues Feb 9 21:12:31 EST 2016

Online converters prove to be useful to convert both Mac epoch and UNIX timestamps for
iOS devices, especially when using a Windows PC. In addition to this, commercial forensic
tools and open source scripts often provide converted date/time stamps.

SQLite databases
SQLite is an open source, in-process library that implements a self-contained, zero
configuration, and transactional SQL database engine. This is a complete database with
multiple tables, triggers, and views that are contained in a single cross-platform file. As
SQLite is portable, reliable, and small, it is a popular database format that appears in many
mobile platforms.

iOS Data Analysis and Recovery

[180]

Apple iOS devices, like other smartphones, make heavy use of SQLite databases for data
storage. Many of the built-in applications, such as Phone, Messages, Mail, Calendar, and
Notes, store data in SQLite databases. Apart from this, third-party applications installed on
the device also leverage SQLite databases for data storage.

SQLite databases are created with or without a file extension. They typically have the
 or file extensions, but some databases are given other extensions as well.

Data in SQLite files is broken up into tables that contain the actual data. To access the data
stored in these files, a tool that can read them is needed. Most commercial forensic tools,
such as Oxygen, SQLite Forensic Browser, and Physical Analyzer provide support for the
examination of SQLite databases. If you don't own one of these tools, some good free tools
are as follows:

SQLite Browser: This can be downloaded from
.

SQLite command-line client: This can be downloaded from
.

SQLite Professional (): This is a free graphical
user interface (GUI) from Hankinsoft Development for Mac OS X users. You can
download it from Apple's App Store.
SQLite Spy: This is a free GUI tool for Windows. You can download it from

.

Mac OS X includes the SQLite command-line utility (sqlite3) by default. This command-line
utility can easily access individual files and issue SQL queries against a database. In the
following sections, we will use both the command-line utility and other SQLite
tools and browsers to retrieve data from various SQLite databases. Before retrieving the
data, the basic commands that you will need to learn are explained in the following
sections.

Connecting to a database
Manual examination of iOS SQLite database files is possible with the use of free tools. The
following is an example of how to examine a database using native Mac commands in the
terminal. Make sure that your device image is mounted as read-only to prevent changes
being made to the original evidence. To connect to a SQLite database from the command
line, run the command in the terminal by entering your database file. This will
give you a SQL prompt where you can issue SQL queries:

$sqlite3 filename.sqlitedb

iOS Data Analysis and Recovery

[181]

SQLite version 3.8.5 2014-08-15 22:37:57
Enter ".help" for usage hints. sqlite>

To disconnect, use the command. It exits the SQLite client and returns to the terminal
prompt.

SQLite special commands
Once you connect to a database, there are a number of built-in SQLite commands, which are
known as dot commands and can be used to obtain information from the database files.
You can obtain the list of special commands by issuing the command in the SQLite
prompt. These are SQLite-specific commands, and they do not require a semicolon at the
end of the command. The most commonly used dot commands include the following:

: This lists all of the tables within a database. The following example
displays the list of tables found inside the database:

sqlite> .tables
_SqliteDatabaseProperties chat_message_join
attachment handle
chat message chat_handle_join
message_attachment_join

: This displays the SQL statement that was used to
construct the table. The following example displays the schema for the handle
table, which is found inside the database:

sqlite> .schema handle
CREATE TABLE handle (ROWID INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE, id
TEXT NOT NULL, country TEXT, service TEXT NOT NULL, uncanonicalized_id
TEXT, UNIQUE (id,service));

: This dumps the entire content of a table into SQL
statements. The following example displays the dump of the table, which
is found inside the database:

sqlite> .dump handle
PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE handle (ROWID INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE, id
TEXT NOT NULL, country TEXT, service TEXT NOT NULL, uncanonicalized_id
TEXT, UNIQUE (id,service));
INSERT INTO "handle"
VALUES(7,'9951512182','in','SMS','9908923323');

iOS Data Analysis and Recovery

[182]

COMMIT;

: This redirects the output to a file on the disk instead of
showing it on the screen.

: This displays the column title whenever you issue a
statement.

: This displays the list of available SQLite dot commands.
: This disconnects from the database and exits the SQLite command shell.

: This sets the output mode where can be csv, HTML, tabs, and
so on.

Make sure that there is no space in between the SQLite prompt and the dot
command; otherwise, the entire command will be ignored.

Standard SQL queries
In addition to the SQLite dot commands, standard SQL queries, such as

, , , , and more, can be issued to SQLite databases on the
command line. Unlike the SQLite dot commands, standard SQL queries expect a semicolon
at the end of the command.

Most of the databases that you will examine will contain only a reasonable number of
records, so you can issue a statement, which outputs all of the data contained in the
table. This will be covered in detail throughout this chapter.

Accessing a database using commercial tools
While manual examination of iOS SQLite database files is possible with the use of free tools,
most examiners prefer commercial support prior to digging manually in the files for
examination. The following is an example of how to examine a database using SQLite
Forensic Browser—a Windows based tool by Sanderson Forensics at

.

iOS Data Analysis and Recovery

[183]

Launch SQLite Forensics Browser and navigate to File | Create New Case or File | Open
SQLite DB:

Creating a case in SQLite Forensics

Once the SQLite DB file is open, the examiner can access the various tables that are
contained within the database, leverage the tool to convert date/time stamps, and visually
look at the SQL queries being run behind the scenes to access the data. The file is
being loaded into the tool for examination in the following screenshot:

iOS Data Analysis and Recovery

[184]

Loading a database into SQLite Forensics

Once loaded, tables can be selected for parsing. Note that the tool displays the queries that
are being run behind the scenes to produce the output. These queries should be the same
ones that will be displayed manually later in this chapter. These queries can be used on a
Mac to validate your findings:

iOS Data Analysis and Recovery

[185]

Examining the file in SQLite Forensics

All of the columns can be formatted to show the best version of the data. For example, the
date/time stamps highlighted in the preceding screenshot can be converted to Mac Absolute
Time within the tool, as discussed earlier in this chapter. Simply right-click on it and select
the date format:

iOS Data Analysis and Recovery

[186]

Data conversion selection in SQLite Forensics

Once converted, the dates and time shown previously are converted to a format that is
easier to examine:

iOS Data Analysis and Recovery

[187]

Data conversion output in SQLite Forensics

All of the database files that are described next can be loaded, examined, and reported
using a tool such as SQLite Forensics Browser. In addition to this, the database files
explained in the following sections can be exported from SQLite Forensics Browser by
creating a report or exporting relevant files to include in your final forensic report.

Key artifacts – important iOS database files
Raw disk images, file system and logical dumps, and the backup that you extracted as per
the instructions in , Data Acquisition from iOS Devices, and , Data
Acquisition from iOS Backups, should contain the following SQLite databases that may be
important to your investigation. Should these files not be recovered, make sure that you
acquired the iOS device correctly. The files that are shown in the following sections are
extracted from an iOS 9 device. As Apple adds new features to the built-in applications
with every iOS release, the format of the files may vary for different iOS versions. The

iOS Data Analysis and Recovery

[188]

locations of these files have also changed since iOS 6, so make sure to learn where your key
artifacts are located. Due to version changes, you may need to modify the queries listed
slightly to work on your iOS version. More information regarding important database files
can be found at .

Address book contacts
The address book contains a wealth of information about the owner's personal contacts.
With the exception of third-party applications, the address book contains contact entries for
all of the contacts that are stored on the device. The address book database is a
file, and it can be found
at . The

 file contains several tables, of which the following three are of
particular interest:

: This contains the name, organization, notes, and more for each
contact.

: This contains phone numbers, e-mail addresses, website URLs,
and more for the entries in the table. The table uses
a file to associate the contact information with a from
the table.

: This table contains labels to identify the kind of
information stored in the table.

Some of the data stored within the file could be from third-party
applications. The examiner should manually examine the application file folders to ensure
that all the contacts are accounted for and examined.

While all commands below can be run natively on a Mac, we are going to use SQLPro for
SQLite to examine the most common databases found on iOS devices and add some
commercial tools, where relevant, to show a variety of examination options. This is a free
tool that simplifies the process and provides a clear view of the data to the examiner. Once
the database is loaded, you can draft queries to examine the data most relevant to you and
the address book into a CSV file named :

iOS Data Analysis and Recovery

[189]

The file in SQLPro

Above, you can see the suggested query to parse data from the table. In later
examples, table joins may be required to capture all of the information. The query also
converts the Mac absolute time into a readable form using the SQLite function.
The results can be exported for insertion in your final forensic report.

iOS Data Analysis and Recovery

[190]

SQLPro output from the file

Note that “favorites” are called out in the Notes section. Thus, when a user marks a contact
as a favorite, you may find this artifact. It is common for some columns to contain little to
no data.

Address book images
In addition to the address book's data, each contact may contain an image associated with
it. This image is displayed on the screen whenever the user receives an incoming call from a
particular contact. These images can be created by third-party applications that have access
to the contacts on the device. Often, the contact is linked to a third-party application profile
photo. The address book images database is a file, and it can be found
at .

The address book images can be parsed manually, but using commercial software makes
this process much more practical. Most free and commercial tools will provide access to the
address book images. However, some tools will not make the link between the graphic and
the contact, which may require some manual rebuilding. Sometimes, the free solutions
work best when parsing simple data from iOS devices. Next, we examine the address book
images in iExplorer, which was introduced in , Data Acquisition from iOS
Backups. In this example, we simply loaded the iOS dataset into iExplorer and navigated to
the file for examination.

iOS Data Analysis and Recovery

[191]

Examining in iExplorer

In this example, we can see that Kathryn is a contact on the phone, and her profile picture is
being pulled from her Google account. Thus, the iPhone user in this example provided
Google access to the contacts and the link was made. This happens often with common
applications, such as Twitter, Facebook, Google, LinkedIn, and Instagram, to name a few.

When the user links a picture from their phone or takes a picture using the camera and
assigns the photo as a contact, you will find no reference to a profile for the photo and the
output will resemble what is shown in the following screenshot for the contact:

Examining in iExplorer

iOS Data Analysis and Recovery

[192]

Call history
Phone or FaceTime calls placed, missed, and received by the user are logged in the call
history along with other metadata, such as call duration, date/time, and more. The call
history database is a file, and it can be found at

, depending on the iOS
version. The file was introduced with iOS 8 and is currently in
use at the time of writing (iOS 9). Keep in mind that most devices can be updated and will
most likely have data in both locations, which means that you need to be aware of how the
data is stored in each location and whether or not your tool is extracting data from each
database. For this reason, we will examine both in this section.

The table in the or file contains the call
history. Depending on the database that is used, a limited number of calls may be stored in
the active database. Just because the database removes the oldest record when space is
needed does not mean this data is deleted. It's simply in the free pages of the SQLite
database file, and it can be recovered using forensic tools or manually. Each record in
the table indicates the phone number or address, a UNIX timestamp of when the call
was initiated, the duration of the call in seconds, a status flag to identify whether the call
was an outgoing call, incoming call, blocked call, or FaceTime call, the mobile county code
(MCC), the mobile network code (MNC), and more. You can find a list of MCC/MNC codes
at .

The status flags for calls have changed as iOS versions are modified. In order to avoid
confusion, we encourage you to recreate a call log if the status flags do not seem to make
sense. The best way to understand the evidence is often to recreate it yourself. Simply place,
accept, and reject a call, conduct the same with FaceTime, and examine your findings. Just
make sure that you are using the same iOS version of the device that you are examining.

FaceTime status flags may vary depending on the method that is used to initiate the call.
For example, data plans utilize different flags than Wi-Fi calls. When considering the
importance of this, think about if Wi-Fi was used. We could then dig deeper and examine
Wi-Fi access points that the device was connected to and place the device at a specific
location when a call was made. There are several status flags that are available for FaceTime
calls, and these vary between iOS devices, so again, please validate your findings.

You can run the following queries in SQLPro for SQLite to dump the call history into a CSV
file named :

iOS Data Analysis and Recovery

[193]

Examining in SQLitePro

In the preceding screenshot, we can see the SQL queries that are required to parse
 from an iOS 9 device. In this particular database, normal calls

were identified with the flag of 1 and FaceTime as 8. With this version of iOS, the call log
also attempts to associate a phone number with a location. This data should be verified
prior to including it in your report.

Commercial tools can also be used to parse this information. Each tool will function
differently, and it will provide access to various amounts of extracted data. Again, it is the
job of the examiner to determine whether all data was extracted, is it being interpreted by
the tool correctly (that is, status flags, dates, and more), and do you need to manually query
the data for verification, as shown in the preceding screenshot. The results are shown in
BlackLight in the following screenshot (refer to

):

iOS Data Analysis and Recovery

[194]

Examining in BlackLight

If you are examining a device that has been upgraded, you need a tool that will parse both
or a tool that provides access to the raw databases for you to examine by running the
previous queries. In the following example, we examine an iPhone 5s that was released
with iOS 7 but was upgraded to iOS 9. UFED Physical Analyzer is being used to examine
these call logs. We see that 792 calls are being extracted by the tool. In this example, the tool
was parsing both the and files in addition to
parsing deleted data. As shown in the following screenshot, we not only see the extracted
information (address, linked name from contacts, timestamp, duration, type, and source),
but we also get access to the location in Hex for where this data is being extracted. This
makes verification a lot easier.

Examining and files in Physical Analyzer

As you may need to query to extract information if you don't have
access to commercial tools, the following screenshot shows you how to do this. In this
example of an iPhone 5s running iOS 7, the following status flags were validated: 17 =
outgoing FaceTime, 16 = incoming or missed FaceTime, 9 = outgoing call, and = incoming
call. Again, it is best to validate your findings every time you examine a new iOS version.

iOS Data Analysis and Recovery

[195]

Examining in SQLitePro

SMS messages
The Short Message Service (SMS) database contains text and multimedia messages that
were sent from and received by the device along with the phone number of the remote
party, date and time, and other carrier information. Starting with iOS 5, iMessages data is
also stored in the SMS database. iMessage allows users to send SMS and MMS messages
over a cellular or Wi-Fi network to other iOS or OS X users, thus providing an alternative to
SMS. The SMS database is a file, and it can be found
at . This location has not changed as iOS

iOS Data Analysis and Recovery

[196]

versions have been released.

You can run the following queries in SQLitePro for SQLite and dump the SMS database into
a CSV file named :

Examining in SQLitePro

Calendar events
Calendar events that have been manually created by the user or synced using a mail
application or other third-party applications are stored in the calendar database. The
calendar database is a file and can be found
at .

The table in the file contains the calendar events
summary, description, start date, end date, and more. You can run the following queries in
SQLite Pro for SQLite to dump the calendar database into a CSV file named :

iOS Data Analysis and Recovery

[197]

Examining in SQLitePro

Note that reminders and tasks are often saved in the file. These files
may not contain a start or end time depending on the event. In addition to this, the
preceding description column will include details that were included in the calendar invite,
as shown in the preceding screenshot. In addition to this, calendar items can contain
completion dates (to-do or task items), reminder dates/times, and exist from multiple
locations (that is, e-mail accounts, third-party applications, and more). It is best to use a
commercial tool when possible so that these items are easy to parse. From here, dive deep
into the manual queries to validate your tool. When multiple items are feeding information
into the , the and tables will have to be joined in the
query. An example of multiple feeds into one is shown in UFED Physical
Analyzer, as follows:

iOS Data Analysis and Recovery

[198]

Examining in Physical Analyzer

Notes
The database contains the notes that are created by the user using the device's built-
in Notes application. Notes is the simplest application, often containing the most sensitive
and confidential information. The database is a file and can be found
at .

The and tables in the file contain the notes title, content,
creation date, modification date, and more. You can run the following queries to dump
the database into a CSV file named :

iOS Data Analysis and Recovery

[199]

Examining notes in SQLitePro

Safari bookmarks and cache
The Safari browser used on an Apple device allows users to bookmark their favorite
websites. The bookmarks database is a file, and it can be found
at . The Safari browser stores
the recently downloaded and cached data in a database. The database is a file
and can be found
at .
The file contains cached URLs and the web server's responses along with the timestamps. In
addition to this, Safari stores information from various sites in the database that is
located in the directory. The
directory contains unique databases for each website, as shown in the following screenshot:

iOS Data Analysis and Recovery

[200]

The folder contents

All of the Safari files can be extracted using queries, as already demonstrated. In addition to
Safari, other browsers can be used and contain data on an iOS device. For this reason, we
recommend using a tool built to parse Internet History to ensure that data is not
overlooked. Magnet Forensics offers IEF Mobile (Internet Evidence Finder), which is
fantastic for the extraction of browser artifacts from iOS devices.

The photos metadata
A manifestation of the photos in the device's photo album is stored in a database located at

. The photos metadata
database file is a member of .

You can run the following queries to view the photos stored in the database. From here, you
can use the directory to locate the file path and the filename to track down the photo:

iOS Data Analysis and Recovery

[201]

Examining in SQLitePro

Consolidated GPS cache
Geolocation history of cell towers and Wi-Fi on the device is stored in one of the two
possible databases that are located at . The
databases are either or . Both database files are
members of . The version of iOS will determine which database is used. These
databases contain location information for cell towers that the device came into close
proximity with, as well as Wi-Fi networks that were available for the device to connect to.
These databases are often used to place a person near a specific location, as this data is
cached to one of these database files without the user's consent.

For this example, we will examine the file. The
table in the file contains the location information along with the
timestamps. The file, when opened with SQLite Professional, displays the data, as shown in

iOS Data Analysis and Recovery

[202]

the following screenshot. Note that the file is no longer backed up
when the user syncs with iTunes. In addition to this, location information exists all over the
iOS device. Tying a location to the device is one of the more complex topics and takes some
time to master:

The view with SQLitePro

Voicemail
The database contains metadata about each voicemail that is stored on the
device that includes the sender's phone number, callback number, timestamp and message
duration, and more. The voicemail recordings are stored as audio files that can be
played by any media player that supports the AMR codec (for example, QuickTime
Player). The database is a file, and it can be found at

, while the actual voicemail
recordings are stored in the directory.

iOS Data Analysis and Recovery

[203]

Property lists
A property list, commonly referred to as a plist, is a structured data format used to store,
organize, and access various data types of data on an iOS device as well as a Mac OS X
device. Plists are binary-formatted files, and they can be viewed using a Property List
Editor, which is capable of reading or converting the binary format to ASCII.

Plist files may or may not have a file extension. To access the data stored in these
files, you need a tool that can read them. Some of the good free tools include the following:

Plist Editor for Windows, which can be downloaded from

The plutil command-line utility on Mac OS X

You can also view the plist files using XCode. Mac OS X includes the plutil command-line
utility by default. The command-line utility can easily convert the binary-formatted files
into human readable files. In addition to this, most commercial forensic tools, such as
Oxygen Forensics, include great support to parse plist files.

The following example displays the Safari browser file:

The in Plist Editor for Windows

iOS Data Analysis and Recovery

[204]

Important plist files
Raw disk images or the backup that you extracted in , Data Acquisition from iOS
Devices, and , Data Acquisition from iOS Backups, should contain the following
plist files that are important for an investigation. The files displayed are extracted from an
iOS 9 device. The file locations may vary for your iOS version.

The HomeDomain plist files
The following are the plist files, which contain data that may be relevant to
your investigation:

: This contains the last phone number entered into the dialer regardless of
whether it was dialed or not

: This contains a list of the contacts that were added to the
phone's favorite list

: This contains a list of the e-mail accounts configured on the device

: This contains the country code that was used for the App Store on the device
:

This contains the last latitude, longitude, and address pinned in the Maps
application

: This contains the e-mail fetching dates and the e-mail signatures used

: This contains a list of world clocks used

: This contains the keyboard language that was last used on the device

: This contains a list of the recent searches made through Safari

:This contains a list of applications that are shown in the interface and iOS
version

: This contains information about the current time zone, timers, alarms, and

iOS Data Analysis and Recovery

[205]

stopwatches

: This contains the cities for weather reports, date, and time of the last update
:

This contains a list of the stocks tracked

: This contains the status of Bluetooth and Wi-Fi networks

: This contains a history of the phone numbers and other accounts
that were conferenced using FaceTime

: This contains a list of application identifiers that use the location service on
the device

: This contains the
web browsing history of Safari

: This
contains the web page title and the URL of all suspended web pages on Safari

: This contains the
bookmarked locations within the Maps application

: This contains a list of all system and user applications loaded onto the
device and their disk paths

: This contains a cached copy of the data stored on the device's clipboard

The RootDomain plist files
The following files listed should be examined for relevance to your
investigation:

: This contains information about whether airplane mode is
presently enabled on the device

: This directory
contains property lists with private keys used in order to pair the device to a
computer

: This
contains the location settings for applications and system services

iOS Data Analysis and Recovery

[206]

The WirelessDomain plist files
The following plist file contains useful information to identify the SIM
card last used in the device and other information:

The SystemPreferencesDomain plist files
The two plist files containing data of evidentiary value from the

 files are listed, as follows:

: This contains networking information of the cached IP

: This contains a list of previously known Wi-Fi networks and the last time
each one was connected to

Other important files
Apart from SQLite and plist files, several other locations may contain valuable information
to an investigation.

The others sources include the following:

Cookies
Keyboard cache
Photos
Wallpaper
Snapshots
Recordings
Third-party applications

iOS Data Analysis and Recovery

[207]

Cookies
Cookies can be recovered
from . This file is a
standard binary file containing cookies that are saved when web pages are accessed on the
device. This information can be a good indication of what websites the user has been
actively visiting. Keep in mind that third-party applications may also contain this file.

To convert the binary cookie to human readable format, run the
Python script on the cookie file, as in the following command (the Python script source code
is available in the code bundle of the book):

$python BinaryCookieReader.py Cookies.binarycookies
Cookie : __utma=167051323.813879307.1359034257.1367989551.1386632713.9;
domain=.testflightapp.com; path=/; expires=Wed, 09 Dec 2015;
Cookie : __utmb=167051323.24.8.1386633092975; domain=.testflightapp.com;
path=/; expires=Tue, 10 Dec 2013;
Cookie :
__utmz=167051323.1386632713.9.1.utmcsr=(direct)|utmccn=(direct)|utmcm
d=(none); domain=.testflightapp.com; path=/; expires=Tue, 10 Jun 2014;
Cookie : tfapp=1d29da4a798a90186f1d4bfce3ce2f23;
domain=.testflightapp.com; path=/; expires=Thu, 09 Feb 2017;
Cookie : user_segment=Prospect; domain=.testflightapp.com; path=/;
expires=Wed, 08 Jan 2014; [...]

Keyboard cache
Keyboard cache is captured and saved in the file. The file is located
at and contains
keyboard cache, which comprises of text entered by the user. This text is cached as part of
the device's autocorrect feature, and it was designed to autocomplete the predictive
common words as well as cache words typed by the user on the device. The file keeps a list
of approximately 600 words per language that are used on the iOS device. Commonly, this
file is the only source of the artifact should the data be inaccessible, encrypted, or
permanently deleted from the iOS device.

The is a binary file, and it can be viewed using a hex editor. This file
may contain passwords that are cached by the iOS device, and they can be used to achieve
brute force attacks on the device or an encrypted backup of the device. This is sometimes
one of the best artifacts recovered from an iOS device.

iOS Data Analysis and Recovery

[208]

Photos
Photos are stored in a directory located at , which
contains the photos taken with the device's built-in camera, screenshots, selfies,
photostream, recently deleted photos, and accompanying thumbnails. Some third-party
applications will also store photos taken in this directory. Every photo stored in the
folder contains EXIF (Exchangeable Image File Format) data. EXIF data stored in the photo
can be extracted using exiftool, which can be downloaded from

. EXIF data may also contain the geographical information
when a photo is tagged with the user's geo location if the user has enabled location
permissions on the iOS device.

Wallpaper
The current background wallpaper set for the iOS device can be recovered from the

 file that is found
in .
This is complemented with a thumbnail named in the same directory. The wallpaper
picture may contain identifying information about the user, which could help in a missing
persons case or an iOS device recovered from a theft investigation.

Snapshots
The directory contains screenshots of the most recent states of built-in
applications at the time that they were suspended. This directory is located
in . This file may not be accessible
if a physical acquisition is not obtained. In this instance, carving for photos is the best
recovery attempt. Every time an application is suspended to the background by clicking on
the Home button, a snapshot is taken to produce a nice shrinking effect. Third-party
applications also store the snapshot cache inside their application's folder.

iOS Data Analysis and Recovery

[209]

Recordings
The iPhone allows a user to record voice memos very easily. The recorded voice memos are
stored in the directory. Recordings here
could be used to identify a person, based on their voice, and they may also contain
information, such as voice reminders, which won't be stored in the calendar database.
Recordings provide a lot of information to the examiner as they are user-created and often
not deleted.

Downloaded applications
Third-party applications, which are downloaded and installed from the App Store, include
applications, such as Facebook, WhatsApp, Viber, Threema, Tango, Skype, Gmail, and
more, contain a wealth of information that is useful for an investigation. Some third-party
applications use the encoding, which needs to be converted for viewing purposes
as well as encryption. Applications that encrypt the database file may prevent the examiner
from accessing the data residing in the tables. Encryption varies amongst these applications
based on the application and iOS versions.

A unique subdirectory GUI is created for each application that is installed on the device in
the directory. Most of the files stored in the
application's directory are in the SQLite and plist format. Each file must be examined for
relevance. We recommend using Oxygen Forensics and IEF Mobile when possible to extract
these artifacts quickly before going back and manually running queries and parsing the
data.

The Apple Watch
Examining the Apple Watch is new and exciting. The good news is that the files found on
the watch are similar, if not the same as those found on the iPhone. We are going to see the
data primarily existing in the SQLite database and plist files, and this is examined by
creating or examining an iPhone backup file. Remember that an iPhone running iOS 8.2 or
later is the only iOS device capable of being linked to the Apple Watch.

One unique aspect about the Apple Watch is that the data pertaining to the watch is stored
in the directory within the backup, which is shown in
the following screenshot:

iOS Data Analysis and Recovery

[210]

The Apple Watch data directory

Here, you will find exact copies of files found on the iPhone. If the case relies upon
determining what happened on the Apple Watch versus the iPhone, it may be impossible to
solve. As of Watch 2.0, the files that are used by both the iPhone and the watch are exact
copies of one another, and they do not contain status flags stating where the activity was
initiated. This is one of the hardest topics to cover in all aspects of data synchronization. For

iOS Data Analysis and Recovery

[211]

example, if you examine my iPhone backup that contains my Apple Watch data, you will
see map information in
mobile that occurs
before the Apple Watch was released. This should be impossible, but it's simply because
Apple is copying the iPhone maps database and placing a copy in the Apple Watch data
location. The following is an example of what data in the file looks
like when being examined in UFED Physical Analyzer. While this tool is expensive, it is one
of the best analytical platforms for manually carving and hunting artifacts that relate to
your investigation. In this example, a keyword search was run for the term “current
location” within the file. From these results, we can ascertain that
the user was at the address highlighted in the following screenshot when asking for or
researching directions on the iPhone or the Watch. Remember, this is an exact copy of the
same file, so we currently cannot say whether this location was stamped by the watch or the
iPhone:

The in Physical Analyzer

Some of the more common Apple Watch artifacts that can be recovered include the
following:

AddressBook
GeoServices

iOS Data Analysis and Recovery

[212]

Health
Mail
Passes
Preferences
PairdSync
Photos

This list is just a sample of the most popular items that we can recover data from on the
Apple Watch. Again, these artifacts primarily exist as SQLite and plist files within the
mobile directory. For Watch identifiers, the binary plist file
located at mobile can be examined
to determine the watch name, make, model, OS, and GUID. At the time of writing this book,
the iPhone backup was our best method to acquire and access data from the Apple Watch.
We can only assume that the data stored on the Apple Watch has the same hardware level
restrictions keeping from performing JTAG on the iOS devices. However, who knows what
the future may bring with regard to accessing this data?

Recovering deleted SQLite records
SQLite databases store the deleted records within the database itself, so it is possible to
recover deleted data, such as contacts, SMS, calendar, notes, e-mail and voicemail, and more
by parsing the corresponding SQLite database. If a SQLite database is vacuumed or
defragmented, the likelihood of recovering the deleted data is minimal. The amount of
cleanup that these databases require relies heavily on the iOS version, the device, and the
user's settings on the device.

A SQLite database file comprises one or more fixed size pages, which are used just once.
SQLite uses a b-tree layout of pages to store indices and table content. Detailed information
on the b-tree layout is explained at

.

Commercial forensic tools provide support to recover deleted data from SQLite database
files, but they don't always recover all of the data, nor do they support extracting data from
all databases on an iOS device. It is recommended that each database containing key
artifacts be examined for deleted data. The key artifacts, or databases, already discussed in
this book, should be examined using free parses, hex viewers, or even your forensic tool to
determine whether the user deleted artifacts that are relevant to the investigation.

To carve a SQLite database, you can examine the data in raw hex or use ,
a free Python script developed by Mari DeGrazia. The Python script can be downloaded

iOS Data Analysis and Recovery

[213]

from .

The following example recovers the deleted records from the file and
dumps the output to the file. This script should work on all database files
recovered from iOS devices. To validate your findings from running the script, simply
examine the database in a hex viewer to ensure nothing is overlooked:

$python sqliteparse.py -f notes.sqlitedb -r -o output.txt

In addition to this, performing a dump of the database file can also reveal deleted
records that may have been missed, as shown in the following command:

$strings notes.sqlitedb

Should you prefer a GUI, Mari kindly created one and placed it on her
website .

Summary
This chapter covered various data analysis techniques and specified the locations for
common artifacts within the iOS device's file system. When writing this chapter, we aimed
to cover the most popular artifacts that tie into most investigations. Clearly, it is impossible
to cover them all. We hope that once you learn how to extract data from SQLite and plist
files, intuition and persistence will assist you in parsing the artifact not covered.

Keep in mind that most open source and commercial tools are able to pull active and
deleted data from common database files, such as contacts, calls, SMS, and more, but they
often overlook the third-party application database files. Our best advice is to know how to
recover the data manually, just in case you need to validate your findings or testify to how
your tool functions.

We covered techniques to recover deleted SQLite records that prove useful in most iOS
device investigations. Again, the acquisition method, encoding, and encryption schemas
can affect the amount of data that you can recover during your examination. In ,
iOS Forensic Tools, we introduced tools that will aid in parsing the files covered in this
chapter. While it's nice to use a forensic tool that is capable of parsing common artifacts on
iOS devices, the hard part is putting the puzzle together and understanding how tool
functions. The goal of this chapter was to demonstrate how the forensic tools parse iOS
data, how the different tools represent the data, and mainly, how to manually query the
databases where needed. Third-party application files were touched on, but they were not

iOS Data Analysis and Recovery

[214]

covered in depth in this chapter. We saved the best for last and will cover third-party
application files in , Parsing Third-Party Application Files. The next chapter
introduces Android forensics and covers the fundamental concepts of the Android
platform.

88
Android Data Analysis and

Recovery
In the previous chapter, we covered various logical and physical extraction techniques. In
physical extraction, a bit-by-bit image of the Android device is obtained, which contains
valuable information. In this chapter, we will learn how to analyze and extract relevant
data, such as call logs, text messages, and so on, from an image file. While the data
extraction and analysis techniques provide information about various details, not all
techniques can provide information about the deleted data. Data recovery is a crucial aspect
of mobile forensics, as it helps to unearth the deleted items. This chapter aims at covering
various techniques, which can be used by a forensic analyst to recover the data from an
Android device.

In this chapter, we will cover the following two major topics:

Analyzing and extracting data from Android image files using the open source
tool, Autopsy
Various techniques to recover deleted files from the SD card and internal
memory

Analyzing an Android image
The term “Android image” refers to the physical image (also called forensic image or raw
image) that is obtained by performing any of the physical data extraction techniques. Using
the techniques explained in , Android Data Extraction Techniques, you can image
the entire block or any particular block that is of relevance to the investigation.
Once the image is obtained, an investigator can manually go through the contents of the file
or take advantage of the available tools to parse through the contents. Commercial tools,

Android Data Analysis and Recovery

[216]

such as Cellebrite, XRY, and so on, can drill into the data and present a comprehensive
picture of the contents. Autopsy is one of the very widely-used open source tools in the
forensics world that performs an excellent job of analyzing an Android image.

Autopsy
Autopsy is a forensic platform and acts as a GUI for the Sleuth Kit. It is available for free
download at . The Sleuth Kit is a collection of UNIX and
Windows-based tools and utilities, which are used to perform forensic analysis. Autopsy
displays the results by forensically analyzing a given volume and thereby helps
investigators focus on relevant sections of the data. Autopsy is free, extensible, and it has
several modules that can be plugged in. Autopsy can be used to load and analyze an
Android image that is obtained after physical extraction.

Adding an image to Autopsy
Once you have downloaded and installed Autopsy, follow these steps to add an image to
Autopsy:

Open the Autopsy tool and select the Create New case option, as shown in1.
following screenshot:

Creating new case in Autopsy

Android Data Analysis and Recovery

[217]

Enter all the necessary case details, including the name of the case, the location2.
where data needs to be stored, and so on, as shown in the following screenshot:

Entering case information in Autopsy

Enter the case number and examiner details and click on Finish.3.
Now, click on the Add Data Source button, add the image file to be analyzed,4.
and click on Next:

Entering Data Source information in Autopsy

Android Data Analysis and Recovery

[218]

On the next screen, you can configure what modules have to be run on the5.
images, as shown in the following screenshot. It is recommended to select the
Recent Activity, Exif Parser, Keyword Search, and Android Analyzer modules. In
the next step, click on Finish:

Configuring modules in Autopsy

Once this is one done, the tool usually takes a few minutes to parse through the image
depending on its size. During this time, you might see some errors or warning messages if
any are encountered by the tool. However, Autopsy provides the fastest access to the
artifacts and the file system as compared to other tools.

Android Data Analysis and Recovery

[219]

Analyzing an image using Autopsy
Once the image is loaded, expand the file present under Data Sources to see data present in
the image. For example, the following screenshot shows the contents of the
folder:

Analyzing image in Autopsy

In the preceding example, only the portion of the device has been imaged. If the
entire device is imaged, then the tool would show more volumes. Depending on the
underlying details of the investigation, relevant portions need to be analyzed. In the
following example, by examining the folders present under , we
can extract the list of various sites visited by the user along with their dates:

Android Data Analysis and Recovery

[220]

Analyzing browsing details in Autopsy

Valuable data, such as text messages, browsing history, chats, call history, pictures, videos,
location details, and so on, could be unearthed by analyzing the data presents under
various sections.

Android data recovery
Data recovery is one of the most significant and powerful aspects of forensic analysis. The
ability to recover deleted data can be crucial to crack many civil and criminal cases. From a
normal user's point of view, recovering data that has been deleted would usually refer to
the operating system's built-in solutions, such as the Recycle Bin in Windows. While it's true
that data can be recovered from these locations, due to an increase in user awareness, these
options don't often work. For instance, on a desktop computer, people now use Shift + Delete
as a way to delete a file completely from their desktop.

Android Data Analysis and Recovery

[221]

Data recovery is the process of retrieving deleted data from a device when it cannot be
accessed normally. Consider the scenario where a mobile phone has been seized from a
terrorist. Wouldn't it be of greatest importance to know which items were deleted by the
terrorist? Access to any deleted SMS messages, pictures, dialed numbers, application data,
and more can be of critical importance, as they often reveal sensitive information. With
Android, it is possible to recover most of the deleted data if the device files are properly
acquired. However, if proper care is not taken while handling the device, the deleted data
could be lost forever. To ensure that the deleted data is not overwritten, it is recommended
to keep the following points in mind:

Do not use the phone for any activity after seizing it. The deleted data exists on
the device until the space is needed by some other incoming data. Hence, the
phone must not be used for any sort of activity so as to prevent the data from
being overwritten.
Even when the phone is not used, without any intervention from our end, data
can be overwritten. For instance, an incoming SMS would automatically occupy
the space, which could overwrite the data marked for deletion. To prevent
occurrence of such events, the examiner should follow the forensic handling
methods described in the previous chapters. The easiest solution is to place the
device in airplane mode or disable all connectivity options on the device. This
prevents the delivery of any new messages.

All Android file systems have metadata that contains information about the hierarchy of
files, filenames, and so on. Deletion will not really erase this data but remove the file system
metadata. When text messages or any other files are deleted from the device, they are just
made invisible to the use, but the files are still present on the device. Essentially, the files are
simply marked for deletion, but they reside on the file system until being overwritten.
Recovering deleted data from an Android device involves two scenarios: recovering data
that is deleted from the SD card, such as pictures, videos, application data, and more, and
recovering data that is deleted from the internal memory of the device. The following
sections cover the techniques that can be used to recover deleted data from both the SD card
and the internal memory of the Android device.

Android Data Analysis and Recovery

[222]

Recovering deleted data from external SD card
Data present on SD cards can reveal a lot of information for forensic investigators. SD cards
are capable of storing pictures and videos taken by the phone's camera, voice recordings,
application data, cached files, and more. Essentially, anything that can be stored on a
computer hard drive can be stored on an SD card as much as the available space allows.

Recovering the deleted data from an external SD card is a straightforward process. SD cards
can be mounted as an external mass storage device and forensically acquired using
standard digital forensic methods, as discussed in , Android Data Extraction
Techniques. As mentioned in the previous chapters, SD cards in Android devices often use
the FAT32 file system. The main reason for this is that the FAT32 file system is widely
supported in most operating systems, including Windows, Linux, and Mac OS X. The
maximum file size on a FAT32 formatted drive is around 4 GB. With increasingly high
resolution formats now available, this limit is commonly reached. Apart from this, FAT32
can be used on partitions that are less than 32 GB in size. Hence, the exFAT file system,
which overcomes these problems, is now being used in some of the devices.

Recovering the deleted data from an external SD card can be easily accomplished if it can be
mounted as a drive. Hence, if the SD card is removable, connect it to workstation using a
write blocker for acquisition. Examiners must understand that Android devices might use
space on the SD card to cache application data; therefore, it is important to make sure that
as much data as possible is obtained from the device prior to removing the SD card. Some
of the older devices automatically mount the device as a drive when connected through
USB. It is a sound forensic practice to not work directly on the device for the purpose of
data extraction, data recovery, and so on. Hence, a physical image of the SD card needs to
be taken and all required analysis is performed on the image itself. It is recommended to
acquire the SD card through the device as well as separately to ensure that all data is
obtained. To achieve the SD card image, through can be used while the device is
running to obtain an image of the SD card of the device if the device cannot be powered off
due to possible evidence running in the memory. If the SD card is removed and connected
to the workstation through a card reader, it appears as external mass storage and then can
be imaged using the standard forensic techniques described in earlier chapters.

Once the image is obtained, it can be analyzed using any standard forensic tools, such as
FTK Imager. FTK Imager is a simple tool that can be used to create and analyze disk images.
It is available for download at

.

Android Data Analysis and Recovery

[223]

The following is a step-by-step process to recover the deleted files from an SD card image
using FTK Imager:

Start FTK Imager and click on File and then click on Add Evidence Item in the1.
menu:

Adding evidence in FTK Imager

Select as Image File as the evidence type in the Select Source dialog and click2.
on Next:

Selecting File Type in FTK Imager

Android Data Analysis and Recovery

[224]

In the Select File dialog, go to the location where the SD card image3.
file is present, select it, and click on Finish:

Selecting the image file for analysis in FTK Imager

The contents of the SD card image are then shown in the View pane. You can browse
through the folders by clicking on the sign. When a folder is highlighted, the contents are
shown on the right pane. When a file is selected, its contents can be seen in the bottom pane.

Android Data Analysis and Recovery

[225]

As shown in the following screenshot, the deleted files are also shown with a red over the
icon:

Deleted files shown with a red cross over the icons in FTK Imager

To copy the deleted files to the workstation, right-click on the marked file and select Export
Files, as shown in the following screenshot:

Recovering deleted images in FTK Imager

Android Data Analysis and Recovery

[226]

It is also recommended to check whether the device has any backup applications or files
installed. The initial release of Android did not include a mechanism for the users to back
up their personal data. Hence, several backup applications were used extensively by the
users. Using these apps, users have the ability to back up their data either to the SD card or
to the cloud. For example, the Super Backup app contains the options to back up call logs,
contacts, SMS, and more, as shown in the following screenshot:

The Super Backup Android app

Upon detection of a backup application, the forensic examiners must attempt to determine
where the data is stored. Usually, the backup folder path is the internal SD card. The folder
path is also present in the backup app's settings. The data saved in a backup may contain
important information and thus, looking for any third-party backup app on the device
would be very helpful.

Recovering data deleted from internal memory
Recovering files that are deleted from Android's internal memory (such as SMS, contacts,
app data, and more) is not supported by all analytical tools and may require manual
carving. Unlike some media containing common file systems, such as SD cards, the file
system may not be recognized and mounted by forensic tools. Also, the examiner cannot get
access to the raw partitions of the internal memory of an Android phone unless the phone is
rooted. The following are some of the other issues that the examiner may face when
attempting to recover data from the internal memory on Android devices:

Android Data Analysis and Recovery

[227]

To get access to the internal memory, you can try to root the phone. However, the
rooting process might involve writing some data to the partition, and this
process could overwrite the data of value on the device.
Unlike SD cards, the internal file system here is not FAT32 (which is widely
supported by forensic tools). The internal file system could be YAFFS2 (in older
devices), EXT3, EXT4, RFS, or something proprietary built to run on Android.
Therefore, many of the recovery tools designed for use with Windows file
systems won't work.
Application data on Android devices is commonly stored in the SQLite format.
While most forensic tools provide access to the database files, they may have to
be exported and viewed in a native browser. The examiner must examine the raw
data to ensure that the deleted data is not overlooked by the forensic tool.

The discussed reasons make it difficult, but not impossible, to recover the deleted data from
the internal memory. The internal memory of Android devices holds a bulk of the user data
and the possible keys to your investigation. As previously mentioned, the device must be
rooted in order to access the raw partitions. Most of the Android recovery tools on the
market do not highlight the fact that they only work on rooted phones. Let's now take a
look at how we can recover deleted data from an Android phone.

Recovering deleted files by parsing SQLite files
Android uses SQLite files to store most data. Data related to text messages, e-mails, and
certain app data is stored in SQLite files. SQLite databases can store deleted data within the
database itself. Files marked for deletion by the user no longer appear in the active SQLite
database files. Therefore, it is possible to recover the deleted data, such as text messages,
contacts, and more. There are two areas within a SQLite page that can contain deleted data:
unallocated blocks and free blocks.

Most of the commercial tools that recover deleted data scan the unallocated blocks and free
blocks of the SQLite pages. Parsing the deleted data can be done using the available forensic
tools, such as Oxygen Forensics SQLite Viewer. The trial version of the SQLite Viewer can
be used for this purpose; however, there are certain limitations on the amount of data that
you can recover. You can write your own script to parse the files for deleted content, and
for this, you need to have a good understanding of the SQLite file format. The
link is a good place to start. If you do not
want to reinvent and want to reuse the existing scripts, you can try the available open
source Python scripts
(

) to parse the SQLite files for deleted records.

Android Data Analysis and Recovery

[228]

For our example, we will recover deleted SMSes from an Android device. Recovering
deleted SMSes from an Android phone is quite often requested as part of forensic analysis
on a device mainly because text messages contain data, which can reveal a lot of
information. There are different ways to recover deleted text messages on an Android
device. First, we need to understand where the messages are being stored on the device. In

, Android Data Extraction Techniques, we explained the important locations on the
Android device where user data is stored. Here is a quick recap of this:

Every application stores its data under the folder (again, this
requires root access to acquire data)
The files under the
location, ,
contain details about the SMS/MMS

Under the mentioned location, text messages are stored in a SQLite database file, which is
named . Deleted text messages can be recovered by examining this file. Here are
the steps to recover deleted SMSes using the file:

On the Android device, enable the USB debugging mode and connect the device1.
to the forensic workstation. Using the adb command-line tool, extract
the folder present at by issuing the
command:

Once the files are extracted to the local machine, use the Oxygen Forensics
SQLite Viewer tool to open the file.

Click on the table named sms and observe the current message under the Tables2.
data tab in the tool.
One way to view the deleted data is by clicking on the Blocks containing deleted3.
data tab, as shown in the following screenshot:

Android Data Analysis and Recovery

[229]

Recovering deleted SMS messages

Similarly, other data residing on Android devices that store data in SQLite files can be
recovered by parsing for deleted content. When the preceding method doesn't provide
access to the deleted data, the examiner should look at the file in raw hex file for data
marked as deleted, which can be manually carved and reported.

Recovering files using file carving techniques
File carving is an extremely useful method in forensics because it allows data that has been
deleted or hidden to be recovered for analysis. In simple terms, file carving is the process of
reassembling computer files from fragments in the absence of file system metadata. In file
carving, specified file types are searched for and extracted across the binary data to create a
forensic image of a partition or an entire disk. File carving recovers files from the
unallocated space in a drive based merely on file structure and content without any
matching file system metadata. Unallocated space refers to the part of the drive that no
longer holds any file information indicated by the file system structures, such as the file
table.

Android Data Analysis and Recovery

[230]

Files can be recovered or reconstructed by scanning the raw bytes of the disk and
reassembling them. This can be done by examining the header (the first few bytes) and
footer (the last few bytes) of a file.

File carving methods are categorized based on the underlying technique in use. The header-
footer carving method relies on recovering the files based on their header and footer
information. For instance, the JPEG files start with and end with . The
locations of the header and footer are identified and everything between those two
endpoints is carved. Similarly, the carving method based on the file structure uses the
internal layout of a file to reconstruct the file. However, the traditional file-carving
techniques, such as the ones that we've already explained, may not work if the data is
fragmented. To overcome this, new techniques, such as smart carving use the fragmentation
characteristics of several popular file systems to recover the data.

Once the phone is imaged, it can be analyzed using tools, such as Scalpel. Scalpel is a
powerful open source utility to carve files. This tool analyzes the block database storage,
identifies the deleted files, and recovers them. Scalpel is file system-independent and is
known to work on various file systems, including FAT, NTFS, EXT2, EXT3, HFS, and more.
More details about Scalpel can be found at .
The following steps explain how to use Scalpel on an Ubuntu workstation:

Install Scalpel on the Ubuntu workstation using the 1.
 command.

The file present under the directory contains2.
information about the supported file types, as shown in the following screenshot:

The scalpel configuration file

Android Data Analysis and Recovery

[231]

This file needs to be modified in order to mention the files that are related
to Android. A sample file can be downloaded
from

. You can also uncomment the files and save the file to select
file types of your choice. Once this is done, replace the original file
with the one that is downloaded.

Scalpel needs to be run along with the preceding configuration file on the 3.
image being examined. You can run the tool using the command shown in the
following screenshot by inputting the configuration file and the file. Once this
command is run, the tool starts to carve the files and build them accordingly:

Running the Scalpel tool on a file

Android Data Analysis and Recovery

[232]

The output folder that was specified in the preceding command now contains4.
lists of folders that are based on the file types, as shown in the following
screenshot. Each of these folders contains data that is based on the folder name.
For instance, contains files related to the extension that has been
recovered:

Output folder after running the Scalpel tool

As shown in the preceding screenshot, each folder contains recovered data from5.
the Android device, such as images, PDF files, ZIP files, and more. While some
pictures are recovered completely, some are not recovered fully, as shown in the
following screenshot:

Recovered data using the Scalpel tool

Android Data Analysis and Recovery

[233]

Applications such as DiskDigger can be installed on Android devices to recover different
types of files from both the internal memory and SD cards. DiskDigger includes support for
JPG files, MP3 and WAV audio, MP4 and 3GP video, raw camera formats, Microsoft Office
files (DOC, XLS, and PPT), and more. However, as mentioned earlier, the application
requires root privileges on the Android device in order to recover the content from the
internal memory. Thus, file-carving techniques play a very important role in recovering
important deleted files from the device's internal memory.

Recovering contacts using your Google account
You can also restore the contacts on the device using the Restore Contacts option through
the Google account that is configured on the device. This would work if the user of the
device has previously synced their contacts using the Sync Settings option available in
Android. This option synchronizes the contacts and other details and would store them in
the cloud. A forensic examiner with legal authority or proper consent can restore the
deleted contacts if they can get access to the Google account configured on the device. Once
the account is accessed, perform the following steps to restore the data:

Log in to your Gmail account.1.
Click on Gmail in the top–left corner and select Contacts, as shown in the2.
following screenshot:

The Contacts menu in Gmail

Android Data Analysis and Recovery

[234]

Click on More, which is present above the contacts list.3.
Click on Restore Contacts, and the following screen will appear:4.

The Restore Contacts dialog box

You can restore the contact list to the state that it was in at any point within the5.
past 30 days using this technique.

Android Data Analysis and Recovery

[235]

Summary
Recovery of the deleted data on Android devices depends on various factors, which heavily
rely on access to the data residing in the internal memory and SD card. While the recovery
of deleted items from external storage, such as an SD card, is easy, the recovery of deleted
items from the internal memory takes considerable effort. SQLite file parsing and file
carving techniques are two methods that are used to recover deleted data extracted from an
Android device.

The next chapter discusses forensic analysis of Android apps, malware, and the reverse
engineering of Android apps.

99
Understanding Android

In the previous chapters, we covered details about iOS devices, including the file system
structure, key artifacts, backup files, and acquisition and analysis methods. Starting with
this chapter, we will focus on the Android platform and how to perform forensics on
Android devices. Having a good understanding of the Android ecosystem, security
constraints, file systems, and other features proves useful during forensic investigation.
Gaining knowledge of these fundamentals would help a forensic expert to take informed
decisions while conducting an investigation.

We will cover the following topics in this chapter:

Android models
Android security
The Android file hierarchy
The Android file system

The evolution of Android
Before we take a dive into the ocean of Android, let's first spend some time discussing the
evolution of Android, or what we call The Android Story. Back in 2005, Google started
investing money in start-up companies that it thought would be profitable in the future.
Android Inc., founded in 2003 by Andy Rubin, Rich Miner, Nick Sears, and Chris White,
was one such company acquired by Google that later turned out to be the best deal ever.
During its first two years, Android Inc. operated under secrecy. It described itself as a
company making software for mobile phones. Rubin later stayed with Google to pioneer
Android as an operating system that revolutionized the way mobile handsets operate. With
this acquisition it was clear that Google was eyeing the mobile phone market. At Google,
Rubin, along with his team, developed a powerful and flexible operating system built on a

Understanding Android

[237]

Linux kernel. There was speculation everywhere about what Google was trying to do. Some
reported that Google was trying to incorporate search and other applications into mobile
handsets. A few others reported that Google was developing its own mobile handset.
Finally in 2007, Open Handset Alliance (OHA), a group of technology companies, device
manufacturers, chipset makers, and wireless carriers, was formed with the main objective of
proposing open standards for the mobile platform. Together, they developed Android—the
first open and free mobile platform built on Linux kernel 2.6. Later in 2008, HTC Dream was
released, which was the first phone to run the Android operating system. After that, it was
a dream run for Android, with its market share increasing exponentially over the next few
years. At the time of writing this book, Android remains by far the most used OS
throughout the world. According to IDC, in the second quarter of 2015, Android dominated
the industry with 82.8% market share. Since its release in 2007, Android has come up with
various versions. The most recent major Android update is Android 6.0,
dubbed Marshmallow, which was released in October 2015. Several versions of its Linux-
based OS have been released in alphabetical order.

The version history of Android can be found at
, an overview of which is shown

in the following table:

Version Version name Release year

Android 1.0 Apple pie 2008

Android 1.1 Banana bread 2009

Android 1.5 Cupcake 2009

Android 1.6 Donut 2009

Android 2.0 Eclair 2009

Android 2.2 Froyo 2010

Android 2.3 Gingerbread 2010

Android 3.0 Honeycomb 2011

Android 4.0 Ice Cream Sandwich 2011

Android 4.1 Jelly Bean 2012

Android 4.4 KitKat 2013

Android 5.0 Lollipop 2014

Android 6.0 Marshmallow 2015

Understanding Android

[238]

The Android model
To effectively understand the forensic concepts of Android, it would be helpful to have a
basic understanding of the Android architecture. Just like a computer, any computing
system that interacts with the user and performs complicated tasks requires an operating
system to handle the tasks effectively. This operating system (whether it's a desktop
operating system or a mobile phone operating system) takes the responsibility of managing
the resources of the system and to provide a way for the applications to talk to the
hardware or physical components to accomplish certain tasks. Android is currently the
most popular mobile operating system designed to power mobile devices. You can find out
more about this at .

Android is open source and the code is released under the Apache license. Practically, this
means anyone (especially device manufacturers) can access it, freely modify it, and use the
software according to the requirements of any device. This is one of the primary reasons for
its wide acceptance. Notable players that use Android include Samsung, HTC, Sony, and
LG.

As with any other platform, Android consists of a stack of layers running one above the
other. To understand the Android ecosystem, it's essential to have a basic understanding of
what these layers are and what they do. The following figure summarizes the various layers
involved in the Android software stack:

Understanding Android

[239]

Android architecture referenced from

Each of these layers performs several operations that support specific operating system
functions. The functions and operations of the layers are explained in depth at

. Each layer
provides services to the layers lying on top of it.

The Linux kernel layer
Android OS is built on top of the Linux kernel with some architectural changes made by
Google. There are several reasons for choosing the Linux kernel. Most importantly, Linux is
a portable platform that can be compiled easily on different hardware. The kernel acts as an
abstraction layer between the software and hardware present on the device. Consider the
case of a camera click. What happens when you take a photo using the camera button on
your device? At some point, the hardware instruction (pressing a button) has to be
converted to a software instruction (to take a picture and store it in the gallery). The kernel
contains drivers to facilitate this process. When the user presses on the button, the

Understanding Android

[240]

instruction goes to the corresponding camera driver in the kernel, which sends the
necessary commands to the camera hardware, similar to what occurs when a key is pressed
on a keyboard. In simple words, the drivers in the kernel command control the underlying
hardware. As shown in the preceding figure, the kernel contains drivers related to Wi-Fi,
Bluetooth, USB, audio, display, and so on.

The Linux kernel is responsible for managing the core functionality of Android, such as
process management, memory management, security, and networking. Linux is a proven
platform when it comes to security and process management. Android has taken leverage
of the existing Linux open source OS to build a solid foundation for its ecosystem. Each
version of Android has a different version of the underlying Linux kernel. The Lollipop
Android version is known to use Linux kernel 3.16.1, whereas the Marshmallow version is
known to use Linux kernel 3.18.10.

Libraries
The next layer in the Android architecture consists of Android's native libraries. The
libraries are written in the C or C++ language and help the device to handle different kinds
of data. For example, the SQLite libraries are useful for storing and retrieving the data from
a database. Other libraries include Media Framework, WebKit, Surface Manager, and SSL.
The Media Framework library acts as the main interface to provide a service to the other
underlying libraries. The WebKit library provides web pages in web browsers, and the
surface manager maintains the graphics. In the same layer, we have Android Runtime,
which consists of the Dalvik virtual machine (DVM) and core libraries. The Android
runtime is responsible for running applications on Android devices. The term “runtime”
refers to the lapse in time from when an application is launched until it is shut down.

Dalvik virtual machine
All the applications that you install on the Android device are written in the Java
programming language. When a Java program is compiled, we get bytecode. A virtual
machine is an application that acts as an operating system, that is, it is possible to run a
Windows OS on a Mac or vice versa using a virtual machine. JVM is one such virtual
machine that can execute the previously mentioned bytecode. But, Android versions before
5.0 use something called Dalvik virtual machine (DVM) to run their applications.

DVM runs Dalvik bytecode, which is Java bytecode converted by the Dex compiler. Thus,
the files are converted to dex files using the dx tool. Dalvik bytecode, when
compared with Java bytecode, is more suitable for low-memory and low-processing
environments. Also, note that JVM's bytecode consists of one or more files

Understanding Android

[241]

depending on the number of Java files that are present in an application, but Dalvik
bytecode is composed of only one dex file. Each Android application runs its own instance
of DVM. This is a crucial aspect of Android security and will be addressed in detail
in , Android Forensic Setup and Pre Data Extraction Techniques.

The following figure provides an insight into how Android's DVM differs from Java's JVM:

JVM versus DVM

Android Runtime (ART)
From Android 5.0 Lollipop version, Dalvik was replaced by Android Runtime (ART). As
discussed previously, earlier versions of Android used trace-based just-in-time (JIT)
compilation with Dalvik. In trace-based JIT, frequently executed operations are identified
and dynamically compiled to native machine code. This native execution of these frequently
used bytecodes called traces provides significant performance improvements. Unlike
Dalvik, ART uses ahead-of-time (AOT) compilation which compiles entire applications into
native machine code upon their installation. This would automatically increase the install
time for an application but a major advantage is that this eliminates Dalvik's interpretation
and trace-based JIT compilation, and thereby increases the efficiency and also reduces

Understanding Android

[242]

power consumption. ART uses a utility called dex2oat that accepts DEX files as input and
generates a compiled app executable for the target device. With ART, the (optimised
dex) files are replaced with the Executable and Linkable Format (ELF) executables.

The Application Framework layer
The application framework is the layer responsible for handling the basic functioning of a
phone, such as resource management, handling calls, and so on. This is the block with
which the applications installed on the device directly talk to it. The following are some of
the important blocks in the application framework layer:

Telephony manager: This block manages all the voice calls
Content provider: This block manages the sharing of data between different
applications
Resource manager: This block helps manage various resources used in
applications

The applications layer
The application layer is the topmost layer where the user can interact directly with the
device. There are two kinds of application—preinstalled applications and user-installed
applications. Preinstalled applications, such as Dialer, Web Browser, Contacts, and more,
come along with the device. User-installed applications can be downloaded from different
places, such as Google Play Store, Amazon Marketplace, and so on. Everything that you see
on your phone (contacts, mail, camera, and so on) is an application.

The Android security
Android was designed with a specific focus on security. Android as a platform offers and
enforces certain features that safeguard the user data present on the mobile through
multilayered security. There are certain safe defaults that will protect the user and certain
offerings that can be leveraged by the development community to build secure applications.
The following are issues that are to be kept in mind while incorporating the Android
security controls:

Protecting user-related data
Safeguarding the system resources
Making sure that one application cannot access the data of another application

Understanding Android

[243]

The next few sections will help us understand more about Android's security features and
offerings.

A detailed explanation on Android security can be found at
.

Secure kernel
Linux has evolved as a trusted platform over the years, and Android has leveraged this fact
using it as its kernel. The user-based permission model of Linux has in fact worked well for
Android. As mentioned earlier, there is a lot of specific code built into the Linux kernel.
With each Android version release, the kernel version has also changed. The following table
shows Android versions and their corresponding kernel versions:

Android version Linux kernel version

1 2.6.25

1.5 2.6.27

1.6 2.6.29

2.2 2.6.32

2.3 2.6.35

3.0 2.6.36

4.0 3.0.1

4.1 3.0.31

4.2 3.4.0

4.2 3.4.39

4.4 3.8

5.0 3.16.1

6.0 3.18.1

Linux kernel versions used in Android

Understanding Android

[244]

The permission model
As shown in the following screenshot, any Android application must be granted
permissions to access sensitive functionality, such as the Internet, dialer, and so on, by the
user. This provides an opportunity for the user to know in advance which functionality on
the device is being accessed by the application. Simply put, it requires the user's permission
to perform any kind of malicious activity (stealing data, compromising the system, and so
on).

This model helps the user to prevent attacks, but if the user is unaware and gives away a lot
of permissions, it leaves them in trouble (remember, when it comes to installing malware on
any device, the weakest link is always the user).

The permission model in Android

Understanding Android

[245]

Until Android 6.0, users needed to grant the permissions during install time. Users had to
either accept all the permissions or not install the application. But, starting from Android
6.0, users grant permissions to apps while the app is running. This new permission system
also gives the user more control over the app's functionality by allowing the user to grant
selective permissions. For example, a user can deny a particular app to access his location
but provide access to Internet. The user can revoke the permissions at any time, by going to
the app's Settings screen.

Application sandbox
In Linux systems, each user is assigned a unique user ID (UID), and users are segregated so
that one user cannot access the data of another user. However, all applications under a
particular user are run with the same privileges. Similarly, in Android, each application
runs as a unique user. In other words, a UID is assigned to each application and is run as a
separate process. This concept ensures an application sandbox at the kernel level. The
kernel manages the security restrictions between the applications by making use of existing
Linux concepts, such as UID and GID. If an application attempts to do something malicious,
say to read the data of another application, this is not permitted as the application does not
have the user privileges. Hence, the operating system protects an application from accessing
the data of another application.

Secure inter-process communication
Android offers secure inter-process communication through which one's activity in an
application can send messages to another activity in the same application or a different
application. To achieve this, Android provides inter-process communication (IPC)
mechanisms: intents, services, content providers, and so on.

Application signing
It is mandatory that all of the installed applications be digitally signed. Developers can
place their applications in Google's Play Store only after signing the applications. The
private key with which the application is signed is held by the developer. Using the same
key, a developer can provide updates to their application, share data between the
applications, and so on.

Understanding Android

[246]

Security-Enhanced Linux
Security-Enhanced Linux (SELinux) is a new security feature introduced in Android 4.3
and fully enforced in Android 5.0. Until this addition, Android security was based
on Discretionary Access Control (DAC), which means applications can ask for
permissions, and users can grant or deny those permissions. Thus, malware can create
havoc on the phones by gaining those permissions. But SE Android uses Mandatory Access
Control (MAC), which ensures that applications work in isolated environments. Hence,
even if a user installs a malware app, the malware cannot access the OS and corrupt the
device. SELinux is used to enforce MAC over all the processes, including the ones running
with root privileges. SELinux operates on the principle of default denial-anything that is not
explicitly allowed is denied. SELinux can operate in one of the two global
modes: permissive mode, in which permission denials are logged but not enforced,
and enforcing mode, in which denials are both logged and enforced. More details about
SELinux can be found at

.

Full disk encryption
With Android 6.0 Marshmallow, Google has mandated full disk encryption for most
devices, provided that the hardware meets certain minimum standards. Encryption is the
process of converting data into cipher text using a secret key. On Android devices, full disk
encryption refers to the process of encrypting all user data using a secret key. Once a device
is encrypted, all user-created data is automatically encrypted before writing it to disk and
all reads automatically decrypt data before returning it to the calling process. Full disk
encryption in Android works only with an Embedded Multimedia Card (eMMC) and a
similar flash devices that present themselves to the kernel as block devices.

Understanding Android

[247]

The Android file hierarchy
In order to perform forensic analysis on any system (desktop or mobile), it's important to
understand the underlying file hierarchy. A basic understanding of how Android organizes
its data in files and folders helps a forensic analyst narrow down their research to specific
issues. Just like any other operating system, Android uses several partitions. This chapter
provides an insight into some of the most significant partitions and the content stored in
them.

It's worth mentioning again that Android uses the Linux kernel. Hence, if you are familiar
with Unix-like systems, you will understand the file hierarchy in Android very well. For
those who are not very well acquainted with the Linux model, here is some basic
information: in Linux, the file hierarchy is a single tree with the top of the tree being
denoted as (called the “root”). This is different from the concept of organizing files in
drives (as with Windows). Whether the file system is local or remote, it will be present
under the root. The Android file hierarchy is a customized version of this existing Linux
hierarchy. Based on the device manufacturer and the underlying Linux version, the
structure of this hierarchy may have a few insignificant changes. The following is a list of
important folders that are common to most Android devices. Some of the folders listed are
only visible through root access. Rooting is the process of gaining privileged access on an
Android device. More details about rooting and executing the adb commands (which are
shown in the following bullets) are covered in detail in , Android Forensic Setup
and Pre Data Extraction Techniques.

: As the name suggests, this partition has the information and files required
for the phone to boot. It contains the kernel and RAM disk, and so without this
partition the phone cannot start its processes. Data residing in RAM is rich in
value and should be captured during a forensic acquisition.

: This partition contains system-related files other than the kernel and
RAM disk. This folder should never be deleted as that will make the device
unbootable. The contents of this partition can be viewed using the following
command:

Understanding Android

[248]

: This is designed for backup purposes and allows the device to boot
into recovery mode. In recovery mode, you can find tools to repair your phone
installation.

: This is the partition that contains the data of each application. Most of the
data belonging to the user, such as the contacts, SMSs, and dialed numbers, is
stored in this folder. This folder has significant importance from a forensic point
of view as it holds valuable data. The contents of the folder can be viewed
using the following command:

Understanding Android

[249]

: This is the folder used to store the frequently accessed data and some of
the logs for faster retrieval. The partition is also important to the forensic
investigation as the data residing here may no longer be present in the
partition.

Understanding Android

[250]

: As the name suggests, this folder contains information about
miscellaneous settings. These settings mostly define the state of the device, that is
on/off. Information about hardware settings, USB settings, and so on, can be
accessed from this folder.

: This is the partition that holds all the information present on the SD
card. It is valuable as it can contain information such as pictures, videos, files,
documents, and so on.

The Android file system
Understanding the file system is one essential part of forensic methodologies. Knowledge
about properties and the structure of a file system proves to be useful during forensic
analysis. The file system refers to the way data is stored, organized, and retrieved from a
volume. A basic installation may be based on one volume split into several partitions; here,
each partition can be managed by a different file system. As is true in Linux, Android
utilizes mount points and not drives (that is, or). Each file system defines its own
rules for managing the files in the volume. Depending on these rules, each file system offers
a different speed for file retrieval, security, size, and so on. Linux uses several file systems
and so does Android. From a forensic point of view, it's important to understand which file
systems are used by Android and to identify the file systems that are of significance to the
investigation. For example, the file system that stores the user's data is of primary concern
to us as against a file system used to boot the device.

Understanding Android

[251]

Viewing file systems on an Android device
The file systems supported by the Android kernel can be determined by checking the
contents of the file in the folder. The content of this file can be viewed
using the following command:

In the preceding output, the first column tells us whether the file system is mounted on the
device. The ones with the property are not mounted on the device. The second
column lists all the file systems present on the device. A simple mount command displays
different partitions available on the device, as follows:

Understanding Android

[252]

The following is a brief overview of the important file systems

The root file system () is one of the main components of Android and
contains all the information required to boot the device. When the device starts
the boot process, it needs access to many core files, and thus, it mounts the root
file system. As shown in the preceding mount command-line output, this file
system is mounted at (root folder). Hence, this is the file system on which all
the other file systems are slowly mounted. If this file system is corrupt, the device
cannot be booted.
The file system mounts the folder, which contains information about
the configuration of the device. The following output shows various folders
under the directory in an Android device:

Since the data present in these folders is mostly related to configuration, this is not usually
of much significance to a forensic investigator. But, there can be some circumstances where
we might want to check whether a particular setting was enabled on the phone, and

Understanding Android

[253]

analyzing this folder could be useful under such conditions.

Note that each folder consists of a large number of files. Capturing this
data through forensic acquisition is the best method to ensure that this
data is not changed during examination.

The file system presents an interface to the terminal session on an
Android device. It is mounted at . Whenever a terminal connection is
established, for instance, when an adb shell is connected to an Android device, a
new node is created under . The following is the output showing this
when the adb shell is connected to the device:

shell@Android:/ $ ls -l /dev/pts
ls -l /dev/pts
crw------- shell shell 136, 0 2013-10-26 16:56 0

The file system stands for control groups. Android devices use this file
system to track their job. They are responsible for aggregating the tasks and
keeping track of them. This data is generally not very useful during forensic
analysis.
The file system contains information about kernel data structures,
processes, and other system-related information under the directory. For
instance, the directory contains files related to kernel parameters.
Similarly, displays the list of available file systems on the
device. The following command shows all the information about the CPU of the
device:

Understanding Android

[254]

Similarly, there are many other useful files that provide valuable information
when you traverse them.

The file system is a temporary storage facility on the device that stores the
files in RAM (volatile memory). The main advantage of using RAM is faster
access and retrieval. But, once the device is restarted or switched off, this data
will not be accessible anymore. Hence, it's important for a forensic investigator to
examine the data in RAM before a device reboot happens or to extract the data
via RAM acquisition methods.

Understanding Android

[255]

Common file systems found on Android
The Extended File System (EXT), which was introduced in 1992 specifically for the Linux
kernel, was one of the first file systems, and it used virtual file system. EXT2, EXT3, and
EXT4 are the subsequent versions. Journaling is the main advantage of EXT3 over EXT2.
With EXT3, in case of an unexpected shutdown, there is no need to verify the file system.
The EXT4 file system, the fourth extended file system, has gained significance with mobile
devices implementing dual-core processors. The YAFFS2 file system is known to have a
bottleneck on dual-core systems. With the Gingerbread version of Android, the YAFFS file
system was swapped for EXT4.

The following are the mount points that use EXT4 on Samsung Galaxy S3 mobile:

/dev/block/mmcblk0p9 /system ext4 ro,noatime,barrier=1,data=ordered 0 0
/dev/block/mmcblk0p3 /efs ext4
rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered 0 0
/dev/block/mmcblk0p8 /cache ext4
rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered 0 0
/dev/block/mmcblk0p12 /data ext4
rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered,n
oauto_da_alloc,discard 0 0

VFAT is an extension to the FAT16 and FAT32 file systems. Microsoft's FAT32 file system is
supported by most Android devices. It is supported by almost all the major operating
systems, including Windows, Linux, and Mac OS. This enables these systems to easily read,
modify, and delete the files present on the FAT32 portion of the Android device. Most of
the external SD cards are formatted using the FAT32 file system.

Observe the following output, which shows that the mount points
 and use the VFAT file system:

Yet Another Flash File System 2 (YAFFS2) is an open source, single-threaded file system

Understanding Android

[256]

released in 2002. It is mainly designed to be fast when dealing with the NAND flash.
YAFFS2 utilizes OOB (out of band), and this is often not captured or decoded correctly
during forensic acquisition, which makes analysis difficult. We will discuss this further
in , Android Data Extraction Techniques. YAFFS2 was the most popular release at
one point and is still widely used in Android devices. YAFFS2 is a log-structured file
system. Data integrity is guaranteed even in the case of a sudden power outage. In 2010,
there was an announcement stating that in releases after Gingerbread, devices were going
to move from YAFFS2 to EXT4. Currently, YAFFS2 is not supported by newer kernel
versions, but certain mobile manufacturers might still continue to support it.

Flash Friendly File System (F2FS) was released in February 2013 to support Samsung
devices running the Linux 3.8 kernel. F2FS relies on log-structured methods that optimize
the NAND flash memory. The offline support features are a highlight of this file system.
Yet, the file system is still transient and being updated.

Robust File System (RFS) supports NAND flash memory on Samsung devices. RFS can be
summarized as a FAT16 (or FAT32) file system where journaling is enabled through a
transaction log. Many users complain that Samsung should stick with EXT4. RFS has been
known to have lag times that slow down the features of Android.

Summary
Understanding the underlying features, file systems, and capabilities of an Android device
proves useful in a forensic investigation. Unlike iOS, several variants of Android exist as
many devices run the Android operating system and each may have different file systems
and unique features. The fact that Android is open and customizable also changes the
playing field of digital forensics. A forensic examiner must be prepared to expect the
unexpected when handling an Android device.

In the next chapter, we will discuss methods for accessing the data stored on Android
devices.

110
Android Forensic Setup and Pre

Data Extraction Techniques
In the previous chapter, we covered the fundamentals of Android architecture, security
features, file systems, and other capabilities. Having an established forensic environment
before the start of an examination is important as it ensures that the data is protected while
the examiner maintains control of the workstation. This chapter will explain the process and
considerations when setting up a digital forensic examination environment. It is paramount
that the examiner maintains control of the forensic environment at all times. This prevents
the introduction of contaminants that could affect the forensic investigation.

We will cover the following topics in this chapter:

Setting up a forensic environment
Connecting the device and accessing it from a workstation
Screen lock bypass techniques
Gaining root access to the device

Setting up the forensic environment for
Android
A forensic examiner may encounter a wide range of mobiles during their investigation over
the course of time. Hence, it is necessary to have a basic environment setup on top of which
he can build based on the requirement. It is also very important that the forensic expert
maintains complete control over the environment at all times to avoid any unexpected
situations. Setting up a proper lab environment is an essential part of the forensic process.
The Android forensic setup usually involves the following steps:

Android Forensic Setup and Pre Data Extraction Techniques

[258]

Start with a fresh or forensically sterile computer environment. This means that1.
other data is not present on the system or is contained in a manner that it cannot
contaminate the present investigation.
Install the basic software necessary to connect to the device. Android forensic2.
tools and methodologies will work on Windows, Linux, and OS X platforms.
Obtain access to the device. An examiner must be able to enable settings or3.
bypass them in order to allow the data to be extracted from the Android device.
Issue commands to the device through the methods defined in this chapter and4.
in , Android Data Extraction Techniques.

The following sections provide guidance on setting up a basic Android forensic
workstation.

The Android Software Development Kit
The Android Software Development Kit (SDK) helps the development world to build, test,
and debug applications to run on Android. This is achieved by providing the necessary
tools to create the applications. But along with this, it also provides valuable documentation
and other tools that can be of great help during the investigation of an Android device. A
good understanding of the Android SDK will help you to get to grips with the particulars of
a device and the data on the device.

The Android SDK consists of software libraries, APIs, tools, emulators,
and other reference material. It can be downloaded for free from

.

During a forensic investigation, the SDK helps connect to and access the data on the
Android device. The Android SDK is updated very frequently, so it's important to verify
that your workstation also remains updated. The Android SDK can run on Windows,
Linux, and OS X.

The Android SDK installation
A working installation of the Android SDK is a must during the investigation of a forensic
device. Most websites recognize the operating system on the computer and will prompt you
to download the correct Android SDK. Unlike Android Studio, the SDK tools package only
includes the core SDK tools, which you can access from a command line.

Android Forensic Setup and Pre Data Extraction Techniques

[259]

The following is a step-by-step procedure to install the Android SDK on a Windows 7
machine:

Before you install the Android SDK, make sure that your system has Java1.
Development Kit installed because the Android SDK relies on Java SE
Development Kit (JDK).

JDK can be downloaded from

.

Download the latest version of the Android SDK from 2.
. The installer version of

the SDK is recommended for this purpose.
Run the installer file, which we downloaded in the previous step. You will see a3.
wizard window, as seen in the following screenshot. After this, run through the
routine Next steps that you encounter.

Android SDK Tools setup wizard

Android Forensic Setup and Pre Data Extraction Techniques

[260]

The installation location is the user's choice and must be remembered for future4.
access. In this example, we will install it in the folder. Click on the Install
button and choose the location (say,). The necessary files will
be extracted to this folder.
Open the directory () and double-click on 5.
to begin the update process. Make sure that you select Android SDK Platform
tools and any one release platform version of Android, as shown in the following
screenshot. Some of the items in the list are chosen by default. For instance, it is
necessary to install the USB driver in order to work with Android devices in
Windows. In our example, Google USB Driver is selected. Similarly, you can
find other items under the Extras section. Accept the license and install it, as
shown in the following screenshot:

Android SDK license

Android Forensic Setup and Pre Data Extraction Techniques

[261]

This completes the Android SDK installation. You can also update the system's
environment variables (path) by pointing to the executable files so that you can avoid
navigating to the SDK folder every time in order to execute a command. This can be done
by navigating to Control panel | System | Advanced Settings | Environment Variables
and then adding an SDK path to it.

The installation of the Android SDK on OS X and Linux may vary. Make
sure that you follow all the steps provided with the SDK download for full
functionality.

An Android Virtual Device
Once the Android SDK is installed along with the release platform, you can create an
Android Virtual Device (also called an emulator/AVD), which is often used by developers
when creating new applications. However, an emulator has significance from a forensic
perspective too. Emulators are useful when trying to understand how applications behave
and execute on a device. This could be helpful to confirm certain findings that are
unearthed during a forensic investigation. Also, while working on a device which is
running on an older platform, you can design an emulator with the same platform.
Furthermore, before installing a forensic tool on a real device, the emulator can be used to
find out how a forensic tool works and changes content on an Android device. To create a
new AVD (on the Windows workstation), perform the following steps:

Open the command prompt (). Start the AVD manager from the1.
command line by navigating to the path where the SDK is installed, and call
the tool with the option, as shown in the following command line.
This would automatically open the AVD manager:

 C:\android-sdk\tools>android avd

Alternatively, the AVD manager can also be started using the graphical
AVD manager. To start this, navigate to the location where the SDK is
installed () in our example and double-click on AVD
Manager.

Android Forensic Setup and Pre Data Extraction Techniques

[262]

The Android Virtual Device Manager window is as shown in the following
screenshot:

Android Virtual Device Manager

Android Forensic Setup and Pre Data Extraction Techniques

[263]

Click on New in the AVD Manager window to create a new virtual device. Click2.
on Edit to change the configuration of an existing virtual device as shown in the
following screenshot:

Virtual device configuration

Android Forensic Setup and Pre Data Extraction Techniques

[264]

Enter the following details :3.

AVD Name: This option is used to provide a name for the virtual device, for
example, .
Device: This option is used to select any device from the available options based
on the screen size.
Target: This option helps you select the platform of the device. Note that only the
versions that were selected and installed during the SDK installation will be
shown here to be selected.

Similarly, you can select hardware features to customize the emulator, for
example, the size of internal storage memory, SD card, and so on.

A confirmation message is shown once the device is successfully created. Now,4.
select the AVD and click on Start. This will prompt you with the launch options.
Select any option and click on Launch.
This should launch the emulator. Note that this could take a few minutes or even5.
longer depending on the workstation's CPU and RAM. The emulator does
consume a significant amount of resources on the system. After a successful
launch, the AVD will run as shown in the following screenshot:

The Android emulator

Android Forensic Setup and Pre Data Extraction Techniques

[265]

From a forensic perspective, analysts and security researchers can leverage the functionality
of an emulator to understand the file system, data storage, and so on. The data created
when working on an emulator is stored in your home directory in a folder named

. For instance, in our example, the details about the ForensicsAVD emulator that
we created earlier are stored
under . Among the various files
present under this directory, the following are the files that are of interest for a forensic
analyst:

: This is the disk image of the partition (remember that we
discussed the partition of an Android device in

, Understanding Android).
: This is the disk image of the SD card partition.

: This is the disk image of the partition. The
partition contains valuable information about the device user.

Connecting an Android device to a workstation
Forensic acquisition of an Android device using open source tools requires connecting the
device to a forensic workstation. Forensic acquisition of any device should be conducted on
a forensically sterile workstation. This means that the workstation is strictly used for
forensics and not for personal use.

Note that anytime a device is plugged into a computer, changes can be
made to the device. The examiner must have full control of all interactions
with the Android device at all times.

The following steps should be performed by the examiner in order to connect the device
successfully to a workstation. Note that write protection may prevent the successful
acquisition of the device since commands may need to be pushed to the device in order to
pull information. All the following steps should be validated on a test device prior to
attempting them on real evidence.

Android Forensic Setup and Pre Data Extraction Techniques

[266]

Identifying the device cable
The physical USB interface of an Android device allows it to connect to a computer to share
data, such as songs, videos, and photos. This USB interface might change from
manufacturer to manufacturer and also from device to device. For example, some devices
use mini-USB while some others use micro-USB and USB Type C. Apart from this, some
manufacturers use their own proprietary formats, such as EXT-USB, EXT micro-USB, and so
on. The first step in acquiring an Android device is to determine what kind of device cable
is required.

Installing the device drivers
In order to identify the device properly, the computer may need certain drivers to be
installed. Without necessary drivers, the computer may not identify and work with the
connected device. But the issue is that since Android is allowed to be modified and
customized by the manufacturers, there is no single generic driver that would work for all
the Android devices. Each manufacturer writes its own proprietary drivers and distributes
them over the Internet. So, it's important to identify specific device drivers that need to be
installed. Of course, some of the Android forensic toolkits (which we will discuss in the
following chapters) do come with some generic drivers or a set of most used drivers; they
may not work with all the models of Android phones. Some Windows operating systems
are able to autodetect and install the drivers once the device is plugged in, but more often
than not, it fails. The device drivers for each manufacturer can be found on their respective
websites.

Accessing the connected device
If you haven't done so already, connect the unlocked Android device to the computer
directly using the USB cable. The Android device will appear as a new drive and you can
access the files on the external storage. Some older Android devices may not be accessible
unless the Turn on USB Storage option is enabled on the phone, as shown in the following
screenshot:

Android Forensic Setup and Pre Data Extraction Techniques

[267]

USB mass storage

In some Android phones (especially with HTC), the device may expose more than one
functionality when connected with a USB cable. For instance, as shown in the following
screenshot, when an HTC device is connected, it presents a menu with four options. The
default selection is Charge only. When the Disk drive option is selected, it is mounted as a
disk drive.

HTC mobile USB options

Android Forensic Setup and Pre Data Extraction Techniques

[268]

When the device is mounted as a disk drive, you will be able to access the SD card present
on the device. From a forensic point of view, the SD card has significant value as it may
contain files that are important for an investigation. However, the core application data
stored under will remain on the device and cannot be accessed through these
methods.

The Android Debug Bridge
Considered to be one of the most crucial components in Android forensics, the Android
Debug Bridge is a command-line tool that allows you to communicate with the Android
device and control it. We will learn about the ADB in detail in the coming chapters;
however, we will focus on a basic introduction to ADB for now. You can access the ADB
tool under .

Before we discuss anything about adb, we need to have an understanding about the USB
debugging option.

USB debugging
The primary function of this option is to enable communication between the Android
device and a workstation on which the Android SDK is installed. On a Samsung phone, you
can access this under Settings | Developer Options, as shown in the following screenshot.
Other Android phones may have different environments and configuration features. The
examiner may have to force the Developer Options option by accessing build mode.

The USB debugging option in Samsung mobiles

Android Forensic Setup and Pre Data Extraction Techniques

[269]

However, starting from Android 4.2, the Developer Options menu is hidden to make sure
that users do not enable it by accident. To enable it, go to Settings | About Phone and then
tap the Build Number field seven times. After this, Developer Options will be available in
the Settings menu. Prior to Android 4.2.2, enabling this option was the only requirement
of communicating with the device over adb. However, starting from Android 4.2.2, Google
has introduced the Secure USB debugging option. This feature only allows hosts that are
explicitly authorized by the user to connect to the device using adb. Thus, when you
connect the device to a new workstation via USB in order to access adb, you need to first
unlock the device and authorize access by clicking on OK in the confirmation window
shown in the following screenshot. If Always allow from this computer is checked, the
device will not prompt for authorization in future.

Secure USB debugging

When the USB debugging option is selected, the device will run the adb daemon () in
the background and will continuously look for a USB connection. The daemon will usually
run under a non-privileged shell user account and thus will not provide access to the
complete data. However, on rooted phones, will run under the root account and thus
provide access to all the data. It is not recommended to root a device to gain full access
unless all other forensic methods fail. Should the examiner elect to root an Android device,
the methods must be well documented and tested prior to attempting it on real evidence.
Rooting will be discussed at the end of this chapter.

Android Forensic Setup and Pre Data Extraction Techniques

[270]

On the workstation where the Android SDK is installed, will run as a background
process. Also, on the same workstation, a client program will run, which can be invoked
from a shell by issuing the command. When the adb client is started, it first checks if an
adb daemon is already running. If the response is negative, it initiates a new process to start
the adb daemon. The adb client program communicates with local over port .

Accessing the device using adb
Once the environment setup is complete and the Android device is in USB debugging
mode, connect the Android device the forensic workstation with a USB cable and start
using adb.

Detecting connected devices
The following adb command provides a list of all the devices connected to the forensic
workstation. This will also list the emulator if it is running at the time of issuing the
command. Also, remember that if the necessary drivers are not installed, then the following
command will show a blank message. If you encounter that situation, download the
necessary drivers from the manufacturer and install them.

Killing the local adb server
The following command kills the local adb service:

 C:\android-sdk\platform-tools>adb.exe kill-server

After killing the local adb service, issue the adb devices command and observe that the
server is started, as shown in the following screenshot:

Android Forensic Setup and Pre Data Extraction Techniques

[271]

Accessing the adb shell
This command allows forensic examiners to access the shell on an Android device and
interact with the device.

The following is the command to access the adb shell and execute a basic command to
see the contents of the current directory:

C:\android-sdk\platform-tools>adb.exe shell
shell@android:/ $ ls
ls
acct
cache
config
d
data
default.prop
dev
efs
etc
factory
fstab.smdk4x12
init
init.bt.rc
init.goldfish.rc
init.rc
init.smdk4x12.rc
init.smdk4x12.usb.rc
....

The Android emulator can be used by forensic examiners to execute and understand the
adb commands before using them on the device. In , Android Data Extraction
Techniques, we will explain more about leveraging adb to install applications, copy files and
folders from the device, view device logs, and so on.

Android Forensic Setup and Pre Data Extraction Techniques

[272]

Handling an Android device
Handling an Android device in a proper manner prior to the forensic investigation is a very
important task. Care should be taken to make sure that our unintentional actions don't
result in data modification or any other unwanted happenings. The following sections
throw light on certain issues that need to be considered while handling the device in the
initial stages of forensic investigation.

With the improvements in technology, the concept of device locking has effectively
changed over the last few years. Most users now have a passcode locking mechanism
enabled on their device due to the increase in general security awareness. Before we look at
some of the techniques to bypass locked Android devices, it is important not to miss an
opportunity to disable the passcode when there is a chance.

When an Android device, which is to be analyzed, is first accessed, check whether the
device is still active (unlocked). If so, change the settings of the device to enable greater
access to the device. So, when the device is still active, consider performing the following
tasks:

Enabling USB debugging: Once the USB debugging option is enabled, it gives
greater access to the device through the adb connection. This is of great
significance when it comes to extracting data from the device. The location to
enable USB debugging might change from device to device, but it's usually
under Developer Options in Settings. Most methods for physically acquiring
Android devices require USB debugging to be enabled.
Enabling the “Stay awake” setting: If the Stay awake option is selected and the
device is connected for charging, then the device never locks. Again, if the device
locks, the acquisition can be halted.
Increasing screen timeout: This is the time for which the device will be
effectively active once it is unlocked. The location to access this setting varies
depending upon the model of the device. On a Samsung Galaxy S3 phone, you
can access the same by navigating to Settings | Display | Screen Timeout.

Apart from this, as mentioned in , Introduction to Mobile Forensics, the device
needs to be isolated from the network to make sure that remote wipe options do not work
on the device. The Android Device Manager allows the phone to be remotely wiped or
locked. This can be done by signing in to the Google account, which is configured on the
mobile. More details about this are mentioned in the following section. If the Android
device is not set up to allow remote wiping, the device can only be locked using the
Android Device Manager. Also, there are several Mobile Device Management (MDM)
software products available on the market, which allow users to remotely lock or wipe the
Android device. Some of these may not require specific settings to be enabled on the device.

Android Forensic Setup and Pre Data Extraction Techniques

[273]

Using the available remote wipe software, it is possible to delete all the data, including e-
mails, applications, photos, contacts, and other files including those found on the SD card.
To isolate the device from the network, you can put the device in airplane mode and disable
Wi-Fi as an extra precaution. Enabling airplane mode and disabling Wi-Fi works well as the
device will not be able to communicate over a cellular network and cannot be accessed via
Wi-Fi. Removing the SIM card from the phone is also an option but that does not effectively
stop the device from communicating over Wi-Fi or some other cellular networks. To place
the device in airplane mode, press and hold the Power/Off button and select airplane
mode.

All these steps can be done when the Android device is not locked. However, during the
investigation, we commonly encounter devices that are locked. Hence, it's important to
understand how to bypass the lock code if it is enabled on an Android device.

Screen lock bypassing techniques
Due to the increase in user awareness and the ease of functionality, there has been an
exponential increase in the usage of passcode options to lock Android devices. Hence,
bypassing the device's screen lock during a forensic investigation becomes increasingly
important. The applicability of the screen lock bypass techniques discussed so far are based
on the situation. Note that some of these methods may result in making changes to the
device. Make sure that you test and validate all the steps listed on non-evidentiary Android
devices. The examiner must have authorization to make the required changes to the device,
document all steps taken, and be able to describe the steps taken if a courtroom testimony is
required.

Currently, there are three types of screen lock mechanisms offered by Android. Although
there are some devices which have voice lock, face lock, and fingerprint lock options, we
will limit our discussion to the following three options since these are most widely used on
all Android devices:

Pattern lock: The user sets a pattern or design on the phone and the same must
be drawn to unlock the device. Android was the first smartphone to introduce a
pattern lock.
PIN code: This is the most common lock option and is found on many mobile
phones. The PIN code is a 4-digit number that needs to be entered to unlock the
device.
Passcode (alphanumeric): This is an alphanumeric passcode. Unlike the PIN,
which takes four digits, the alphanumeric passcode takes more than just digits.

Android Forensic Setup and Pre Data Extraction Techniques

[274]

The following section details some of the techniques to bypass these Android lock
mechanisms. Depending on the situation, these techniques might help an investigator to
bypass the screen lock.

Using adb to bypass the screen lock
If USB debugging appears to be enabled on the Android device, it is wise to take advantage
of it by connecting with adb using USB, as discussed in the earlier sections. The examiner
should connect the device to the forensic workstation and issue the
command. If the device shows up, it implies that USB debugging is enabled. If the Android
device is locked, the examiner must attempt to bypass the screen lock. The following are the
two methods that may allow the examiner to bypass the screen lock when USB debugging
is enabled.

Deleting the gesture.key file
Deleting the file will remove the pattern lock on the device. However, it's
important to note that this will permanently change the device as the pattern lock is gone.
This should be considered if conducting cover operations. This is how the process is done:

Connect the device to the forensic workstation (a Windows machine in our1.
example) using a USB cable.
Open the command prompt and execute the following instructions:2.

adb.exe shell
cd /data/system
rm gesture.key

Reboot the device. If the pattern lock still appears, just draw any random design3.
and observe that the device should unlock without any trouble.

This method works when the device is rooted. This method may not be
successful on unrooted devices. Rooting an Android device should not be
performed without proper authorization as the device is altered.

Android Forensic Setup and Pre Data Extraction Techniques

[275]

Updating the settings.db file
To update the file, perform the following steps:

Connect the device to the forensic workstation using a USB cable.1.
Open the command prompt and execute the following instructions:2.

Exit and reboot the device.3.
The Android device should be unlocked. If not, attempt to remove 4.
as explained earlier.

Checking for the modified recovery mode and
adb connection
In Android, recovery refers to the dedicated partition where the recovery console is present.
The two main functions of recovery are to delete all user data and install updates. For
instance, when you factory reset your phone, recovery boots up and deletes all the data.
Similarly, when updates are to be installed on the phone, it is done in recovery mode. There
are many enthusiastic Android users who install custom ROM through a modified recovery
module. This modified recovery module is mainly used to make the process of installing
custom ROM easy. Recovery mode can be accessed in different ways depending on the
manufacturer of the device, which is easily available on the Internet. Usually, this is done
by holding different keys together such as the volume button and power button. Once in
recovery mode, connect the device to the workstation and try to access the adb connection.
If the device has a recovery mode which is not modified, the examiner may not be able to
access the adb connection. The modified recovery versions of the device present the user
with different options and can be easily noticed as shown in the following screenshot:

Android Forensic Setup and Pre Data Extraction Techniques

[276]

Flashing a new recovery partition
There are mechanisms available to flash the recovery partition of an Android device with a
modified image. The Fastboot utility would facilitate this process. Fastboot is a diagnostic
protocol that comes with the SDK package, used primarily to modify the flash file system
through a USB connection from a host computer. For this, you need to start the device in
boot loader mode, in which only the most basic hardware initialization is performed. Once
the protocol is enabled on the device, it will accept a specific set of commands that are sent
to it via the USB cable using a command line. Flashing or rewriting a partition with a binary
image stored on the computer is one such command that is allowed. Once the recovery is
flashed, boot the device in recovery mode, mount the and partitions, and
use adb to remove the file. Reboot the phone and you should be able to
bypass the screen lock. However, this works only if the device bootloader is unlocked. Also,
flashing permanently alters the device. Instead of flashing, you could use the

 command to boot to a recovery image temporarily to delete the key file without
permanently changing the recovery partition.

Using automated tools
There are several automated solutions available in the market for unlocking Android
devices. Commercial tools such as Cellebrite and XRY are capable of bypassing the screen
locks, but most of them require USB debugging to be enabled. We will now examine how to
unlock an Android device using the UFED user lock code recovery tool. Also, this tool only

Android Forensic Setup and Pre Data Extraction Techniques

[277]

works on those devices that support USB OTG. This process also requires a UFED camera,
Cable No. 500-Bypass lock, and Cable No. 501-Bypass lock. Once the tool is installed on the
workstation, follow these steps to unlock an Android device:

Run the tool on the work station and press 1, as shown in the following1.
screenshot:

UFED user lock code recovery tool

Now, connect side A of Cable No. 500-Bypasslock to a USB port of the2.
workstation. Also connect side B of Cable No. 500-Bypasslock to Cable No. 501-
OTG, and then connect the other end to the device.
Once connected, the tool prompts you to select the recovery profile. Select 13.
(Manually select the recovery profile).

Android Forensic Setup and Pre Data Extraction Techniques

[278]

Now, select the lock type used on the device and the recovery profile and4.
proceed by following the instructions on the screen.
After this, make sure that the keypad appears on the device screen and that it's5.
ready to accept the PIN code.
Close any message windows that may appear. Press 1 and hit Enter. Now make6.
five incorrect login attempts by entering random input, and click on Forgot
pattern at the bottom of the device.
Follow the instructions on the screen, wait for the camera window to open, and7.
then click on the camera window.
Use the cursor to select any non-empty area on the device's screen by placing the8.
green square over it. For example, select any number on the screen. This is used
by the tool to detect if the device is unlocked. Press Enter to start the process.
The tool will try a number of combinations to unlock the device. Once unlocked,9.
it would prompt you to end the process.

Using Android Device Manager
Most of the latest Android phones come with a service called Android Device Manager,
which helps owners of a device to locate their lost phone. This service can also be used to
unlock a device; however, this is possible only when you know the Google account
credentials that are configured on the device. If you have access to the account credentials,
then follow these steps to unlock the device:

Visit on your workstation.1.
Sign in using the Google account that is configured on the device.2.
Select the device you need to unlock and click on Lock, as shown in the following3.
screenshot:

Android Forensic Setup and Pre Data Extraction Techniques

[279]

Android Device Manager

Enter a temporary password and click on Lock again.4.
Once it's successful, enter the temporary password on the device to unlock it.5.

It can be done without knowing the credentials of the computer where the login is saved
(that is, the suspect's PC). Similarly, if you are dealing with a Samsung device, you can also
try Samsung's FindMyMobile service, which enables you to set a temporary password to
unlock the device.

Smudge attack
In rare cases, a smudge attack may be used to deduce the password of a touchscreen mobile
device. This attack relies on identifying the smudges left behind by the user's fingers. While
this may present a bypass method, it must be said that a smudge attack is unlikely since
most Android devices are touchscreen and smudges will also be present from using the
device. However, it has been demonstrated that under proper lighting, the smudges that are

Android Forensic Setup and Pre Data Extraction Techniques

[280]

left behind can easily be detected as shown in the following screenshot. By analyzing the
smudge marks, we can discern the pattern that is used to unlock the screen. This attack is
more likely to work while discerning the pattern lock on the Android device. In some cases,
PIN codes can also be recovered depending upon the cleanliness of the screen. So, during a
forensic investigation, care should be taken when the device is first handled to make sure
that the screen is not touched.

Smudges visible on a device under proper lighting (source:

)

Using the Forgot Password/Forgot Pattern option
If you know the username and password of the primary Gmail address that is configured
on the device, you can change the PIN, password, or swipe on the device. After making a
certain number of failed attempts to unlock the screen, Android provides an option named
Forgot Pattern or Forgot Password, as shown in the following screenshot:

Android Forensic Setup and Pre Data Extraction Techniques

[281]

Forgot pattern option on an Android device

Tap on that link and sign in using the Gmail username and password. This will allow you
to create a new pattern lock or passcode for the device.

Note that this works only on devices running Android 4.4 or earlier.

Bypassing Third-Party Lock Screen by booting
into safe mode
If the screen lock is a third-party app rather than the inbuilt lock, it can be bypassed by
booting into safe mode and disabling it. To boot into safe mode on Android device 4.1 or
later, long-press the power button until the power options menu appears. Then long-press
the Power Off option and you'll be asked if you want to reboot your Android device into
safe mode. Tap the OK button as shown in the following screenshot.

Android Forensic Setup and Pre Data Extraction Techniques

[282]

Safe mode in Android

Once you're in safe mode, you can disable the third-party lock screen app or uninstall it
completely. After this, reboot the device and you should be able to access it without any
lock screen.

Secure USB debugging bypass using adb keys
As mentioned earlier, while using USB debugging, if the Always allow from this computer
option is checked, the device will not prompt for authorization in future. This is done by
storing certain keys, namely and , on the computer. Any attempt to
connect to from an untrusted computer is denied. In this case, the and the

 files can be pulled from the suspect's computer and copied to the investigators
workstation. The device will then assume that it is communicating with a known,
authorized computer. The and files can be found at

 on Windows machines.

Secure USB debugging bypass in Android 4.4.2
As explained in the earlier sections, the secure USB debugging feature introduced in
Android 4.4.2 allows only authorized workstations to connect to the device. However,
there's a bug in this feature as reported at which
allows bypassing the Secure USB debugging feature and connecting the device to any
workstation. Here are the steps to follow to bypass Secure USB debugging on an Android
4.2.2 device:

Android Forensic Setup and Pre Data Extraction Techniques

[283]

On an unlocked device, attempt to use adb and observe that an error message is1.
shown by the device.
Now, navigate to either the emergency dialer or the lock-screen camera and2.
execute the following commands:

 $ adb kill-server
$ adb shell

Observe that the confirmation dialog is now triggered and the workstation can be3.
authorized without unlocking the device. As shown in the following screenshot,
the confirmation dialog box is displayed on the emergency dialer.

Bypassing Secure USB debugging in Android 4.2.2

Once connected to the device through adb, try to bypass the lock screen using4.
following command:

 $ adb shell pm clear com.android.keyguard

Android Forensic Setup and Pre Data Extraction Techniques

[284]

Crashing the lock screen UI in Android 5.x
On devices running Android 5.0 to 5.1.1, the password lock screen (not pin or pattern lock)
can be bypassed by crashing the screen UI. This can be accomplished by following these
steps as explained at :

Click on the Emergency Call option on the lock screen and then enter any1.
random input (for example, 10 asterisks) on the dialer screen.
Double-tap the field to highlight the entered text, as shown in the following2.
screenshot, and choose Copy. Now paste it into the same field.

Crashing lock screen UI

Repeat this process of copying and pasting to add more characters until double-3.
tapping the field no longer highlights the characters.
Go back to the lock screen and open the camera shortcut. Now, pull down the4.
notifications screen and tap the Settings icon. You will then be prompted to enter
a password.

Android Forensic Setup and Pre Data Extraction Techniques

[285]

Long-press the input field and choose Paste and repeat this process several more5.
times. After pasting enough characters into the field, the lock screen will crash
and allow you to access the device.

Other techniques
All of the previously mentioned techniques and the commercial tools available prove to be
useful to the forensic examiner trying to get access to the data on the Android devices.
However, there could be situations where none of these techniques work. To obtain a
complete physical image of the device, techniques such as chip-off and JTAG may be
required when commercial and open source solutions fail. A short description of these
techniques is mentioned here.

While the chip-off technique removes the memory chip from a circuit and tries to read it,
the JTAG technique involves probing the JTAG Test Access Ports (TAPs) and soldering
connectors to the JTAG ports in order to read data from the device memory. The chip-off
technique is more destructive because once the chip is removed from the device, it is
difficult to restore the device back to its original functional state. Also, expertise is needed
to carefully remove the chip from the device by desoldering the chip from the circuit board.
The heat required to remove the chip can also damage or destroy the data stored on that
chip. Hence, this technique should be looked upon only when the data is not retrievable by
open source or commercial tools or the device is damaged beyond repair. When using the
JTAG technique, JTAG ports help an examiner to access the memory chip to retrieve a
physical image of the data without needing to remove the chip. To turn off the screen lock
on a device, an examiner can identify where the lock code is stored in the physical memory
dump, turn off the locking, and copy that data back to the device. Commercial tools, such as
Cellebrite Physical Analyzer, can accept the files from chip-off and JTAG acquisitions
and crack the lock code for the examiner. Once the code is either manually removed or
cracked, the examiner can analyze the device using normal techniques.

Both the chip-off and JTAG techniques require extensive research and
experience to be attempted on a real device. A great resource for JTAG and
chip-off on devices can be found at

.

Android Forensic Setup and Pre Data Extraction Techniques

[286]

Gaining root access
As a mobile device forensic examiner, it is essential to know everything that relates to
twisting and tweaking the device. This would help you to understand the internal working
of the device in detail and comprehend many issues that you may face during your
investigation. Rooting Android phones has become a common phenomenon and you can
expect to encounter rooted phones during forensic examinations. The examiner, where
applicable, may also need to root the device in order to acquire data for the forensic
examination. Hence, it's important to know the ins and outs of rooted devices and how they
are different from the other phones. The following sections cover information about
Android rooting and other related concepts.

What is rooting?
The default administrative account in Unix-like operating systems is called “root“. So, in
Linux, the root user has the power to start/stop any system service, edit/delete any file,
change the privileges of other users, and so on. We have already learned that Android uses
the Linux kernel, and hence, most of the concepts present in Linux are applicable to
Android as well. However, most of the Android phones do not let you log in as a root user
by default.

Rooting an Android phone is all about gaining access on the device to
perform actions that are not normally allowed on the device.
Manufacturers want the devices to function in a certain manner for normal
users. Rooting a device may void a warranty since root opens the system
to vulnerabilities and provides the user with superuser capabilities.

Imagine a malicious application having access to an entire Android system with root access.
Remember that in Android, each application is treated as a separate user and issues a UID.
Thus, the applications have access to limited resources and the concept of application
isolation is enforced. Essentially, rooting an Android device allows superuser capabilities
and provides open access to the Android device.

Rooting an Android device
Even though the hardware manufacturers try to put enough restrictions to restrict access to
the root, hackers have always found different ways to get access to the root. The process of
rooting varies depending on the underlying device manufacturer. But rooting any device
usually involves exploiting a security bug in the device's firmware and then copying the
(superuser) binary to a location in the current process's path () and

Android Forensic Setup and Pre Data Extraction Techniques

[287]

granting it executable permissions with the command.

For the sake of simplicity, imagine that an Android device has three to four partitions,
which run programs not entirely related to Android (Android being one among them).

The boot loader is present in the first partition and is the first program that runs when the
phone is powered on. The primary job of this boot loader is to boot other partitions and
load the Android partition, commonly referred to as ROM by default. To see the boot loader
menu, a specific key combination is required such as holding the power button and
pressing the volume up button. This menu provides options for you to boot into other
partitions, such as the recovery partition.

The recovery partition deals with installing upgrades to the phone, which are written
directly to the Android ROM partition. This is the mode that you see when you install any
official update on the device. Device manufacturers make sure that only official updates are
installed through the recovery partition. Thus, bypassing this restriction would allow you to
install/flash any unlocked Android ROM. Modified recovery programs are those that not
only allow an easier rooting process but also provide various options that are not seen in
the normal recovery mode. The following screenshot shows the normal recovery mode:

Normal Android system recovery mode

The following screenshot shows the modified recovery mode:

Android Forensic Setup and Pre Data Extraction Techniques

[288]

The modified recovery mode

The most commonly-used recovery program in the Android world is the Clockwork
recovery, also called ClockworkMod. Hence, most of the rooting methods begin by flashing
a modified recovery to the recovery partition. After that, you can issue an update, which
can root the device. However, you don't need to perform all the actions manually as
software is available for most of the models, which can root your phone with a single click.

Rooting a device has both advantages and disadvantages associated with it.

The following are the advantages of rooting:

Rooting allows modification of the software on the device to the deepest level.
For example, you can overclock or underclock the device's CPU.
It allows restrictions imposed on the device by carriers, manufacturers, and so on,
to be bypassed.
For extreme customization, new customized ROMs can be downloaded and
installed.

The following are the disadvantages of rooting:

Rooting a device must be done with extreme care as errors may result in
irreparable damage to the software on the phone, turning the device into a
useless brick.
Rooting might void the warranty of a device.

Android Forensic Setup and Pre Data Extraction Techniques

[289]

Rooting results in increased exposure to malware and other attacks. Malware
with access to the entire Android system can create havoc.

Once the device is rooted, applications such as the Superuser app are available to provide
and deny root privileges. This app helps you to grant and manage superuser rights on the
device, as shown in the following screenshot:

Application requesting root access

Root access – adb shell
A normal Android phone does not allow you to access certain directories and files on the
device. For example, try to access the folder on an Android device, which is
not rooted. You will see the following message:

Android Forensic Setup and Pre Data Extraction Techniques

[290]

On a rooted phone, you can run the adb shell as a root by issuing the following command:

C:\android-sdk\platform-tools>adb.exe root
restarting adbd as root

Thus, rooting a phone enables you to access folders and data, which are otherwise not
accessible. Also, note that symbolizes root or superuser access, while reflects a normal
user, as shown in the preceding command lines.

Summary
A proper forensic workstation setup is required prior to conducting investigations on an
Android device. Using open source methods to acquire and analyze Android devices
requires the installation of specific software on the forensic workstation. If the method of
forensic acquisition requires the Android device to be unlocked, the examiner needs to
determine the best method to gain access to the device. Various screen lock bypass
techniques explained in this chapter help an examiner to bypass the passcode under
different circumstances. Depending on the forensic acquisition method and scope of the
investigation, rooting the device should provide complete access to the files present on the
device.

Android Forensic Setup and Pre Data Extraction Techniques

[291]

Now that the basic concepts of gaining access to an Android device have been covered, we
will cover acquisition techniques and describe how the data is being pulled using each
method in , Android Data Extraction Techniques.

111
Android App Analysis, Malware,

and Reverse Engineering
Third-party applications are commonly used by smartphone users. Android users
download and install several apps from app stores, such as Google Play. During forensic
investigations, it is often helpful to perform an analysis of these apps to retrieve valuable
data and to detect any malware. For instance, a photo vault app might lock sensitive images
present on the device. Hence, it would be of great significance to have the knowledge to
identify the passcode for the photo vault app. Also, apps, such as Facebook, WhatsApp,
Skype, and so on, are widely used these days, and they are often the source of valuable data
that aids in cracking a case. Hence, it would be important to know what kind of data these
apps store and the location of this data. While the data extraction and data recovery
techniques discussed in earlier chapters provide access to valuable data, app analysis would
help us gain information about the specifics of an application, such as preferences and
permissions. In this chapter, we will cover the following topics:

Analyzing some of the most widely-used Android apps to retrieve valuable data
Techniques to reverse-engineer an Android application
Android malware

Analyzing Android apps
On Android, everything the user interacts with is an application. While some apps are
preinstalled by the device manufacturer, others are downloaded and installed by the user.
For example even routine functions, such as contacts, calls, SMS, and so on, are performed
through their respective apps. Thus, Android app analysis is crucial during the course of an
investigation. Several third-party apps, such as WhatsApp, Facebook, Skype, Chrome

Android App Analysis, Malware, and Reverse Engineering

[293]

browser, and so on, are used widely, and they handle a lot of valuable information.
Depending on the type of application, most of these apps store sensitive information on the
device's internal memory or SD card. Analyzing them may provide information about the
location details of the user, his communication with others, and so on. Using the forensic
techniques described earlier, it is possible to get access to the data stored by these
applications. However, a forensic examiner needs to develop the necessary skills to convert
the available data into useful data. This is achieved when you have a comprehensive
understanding of how the application handles data.

As discussed in the previous chapters, all applications store their data in the
folder by default. Apps also store certain other data on the SD card if they want to by asking
permission during the time of installation. Information about applications present on the
device can be gathered by inspecting the contents of the folder, but this is not
straightforward. Hence, as an alternative you can inspect the file present
under . This file contains information about all the apps along with their
package names and data path, as shown in the following screenshot:

Content of the file

We will now cover various third-party apps that are widely used and handle valuable data.
The following apps are covered only to make the reader familiar with the kind of data that
can be extracted and the possible locations where the data can be obtained.

Facebook Android app analysis
The FacebookAndroid app is one of the most widely used social networking applications. It
stores the information under with the

Android App Analysis, Malware, and Reverse Engineering

[294]

package name. The following details provide an overview of the kind of information that
can be gathered across various files:

Facebook Contacts: Information about the user's Facebook contacts can be
retrieved by analyzing the database, which is present under the
following path:

Path:

The database (SQLite file) contains a table named ,
which has most of the information, such as their first name, last name, display
name, URL for display picture, and so on.

Facebook Notifications: Information about a user's notifications can be gathered
by analyzing the database, which is present under the
following path:

Path:

The table present under the preceding path holds the
information. The column confirms whether a notification has been
seen or not. The column points to the time when the notification was
updated. The column contains the notification and the sender
information.

Facebook Messages: A Facebook message conversation may be of crucial
importance in several cases and can be viewed by analyzing the
database:

Path:

Videos from newsfeed: The folder contains videos downloaded
from the user's newsfeed. Note that these are not the videos posted by the user,
but rather they are the videos that appeared on his newsfeed:

Path:

Images from newsfeed: The folder contains various images that appear
on the user's profile, such as the ones from his newsfeed, contact profile pictures,
and so on. Several directories are present within this folder, and images may be
stored in formats other than , such as :

Path:

Android App Analysis, Malware, and Reverse Engineering

[295]

Newsfeed data: The database contains data shown to the user on
his newsfeed. As shown in the following screenshot, analyzing this database
would provide valuable information, such as when a particular story was loaded
by the device (the column), if a particular story was seen by the user
(the column), where the corresponding files of a story are stored on
the device (the column), and so on:

Path:

The Facebook file analyzed in SQLite browser

WhatsApp Android app analysis
WhatsApp is the most popular chat (audio and video) messaging service used by more than
a billion people across the globe. It stores the information under

 with the package name The following is an
overview of the important files that are of interest from a forensic perspective:

Users Profile pic: The user's profile picture is saved with the filename
and is present under the following path:

Path:

Users Phone Number (associated with WhatsApp): The file present under the
main folder contains the phone number that is associated with the user's
WhatsApp account. Note that this may or may not be the phone number that is
associated with the SIM:

Android App Analysis, Malware, and Reverse Engineering

[296]

Path:

Contacts Profile pic: The directory has thumbnails of profile pictures
of the user's contacts (who use WhatsApp):

Path:

Chat messages: All the message-related information including chats, sender
details, and so on is present in the file, which is present in the
following location:

Path:

WhatsApp Files: Most of the files shared with WhatsApp, such as images,
videos, audio messages, and so on, are stored on the SD card in the following
location:

Path:

Both sent and received files are stored separately here with their respective folder names.

Skype Android app analysis
Skype is an app that offers video chat and voice call services. The application's data is
stored under the folder with the package name . The
following are important artifacts that can be extracted by analyzing the Skype app:

Username and IP address: The file present under the following
path contains information about the username and the last IP address that
connected to Skype:

Path:

Profile pic: The user's profile picture is present in the / directory
whose path is as follows:

Path:

Call logs: Information about call logs made from Skype is available in
the file. Analyzing this file gives us a lot of information:

Path:

Android App Analysis, Malware, and Reverse Engineering

[297]

For example, the table provides information about call duration,
the field gives the start time of a call, and
the field indicates when the call is initiated (this includes
unanswered calls). The column indicated whether the call was incoming
(value= 1) or outgoing (value= 2).

Chat Messages: The table present in the file contains all the
chat messages. The and columns provide information
about who wrote the message. The column shows the date/time of
the message. The column contains the content of the message.

Path:

Files transferred: The table contains information about transferred
files, such as the filename, the size of the file, and their location on the device, and
so on:

Path:

Group chats: The table shows a list of users who are present in a
particular chat. The adder column shows the user who initiated the conversation:

Path:

Gmail Android app analysis
Gmail is a widely-used e-mail service offered by Google. The application data is saved
under the folder with the package name The
following are important artifacts that can be extracted by analyzing the Gmail app:

Account Details: The XML files present under confirm the e-
mail account details. Details of other accounts, which are linked to the current e-
mail, can be identified from the file:

Path:

Attachments: Attachments that are recently used in both sending and receiving
mails are saved to the directory. This is valuable because it gives access
to items deleted from the mail too. The following is the exact path for this folder:

Path:

Android App Analysis, Malware, and Reverse Engineering

[298]

List of attachments present under Gmail's cache directory

E-mail Subject: The subject of this e-mail can be recovered by analyzing
the table present in the

 db file.

Path:

Search History: Any text searches that were made within the app are stored in
the file present at the following location:

Path:

Google Chrome Android app analysis
Google Chrome is the default web browser in Nexus and many other devices, and it is used
widely to browse the Internet. The application data is present under the folder
with the package name . The following are important artifacts that
can be extracted by analyzing the Gmail app:

Profile pic: The profile pic of the user is stored with the filename Google Profile
 in the following location:

Path:

Android App Analysis, Malware, and Reverse Engineering

[299]

Bookmarks: The file contains information about all the bookmarks
synced with the account. Details, such as the site name, URL, and the time when
it's bookmarked, can be gathered by analyzing this file:

Path:

Browsing History: The file contains the user's web history stored in
the various tables. For example, as shown in the following screenshot,
the table contains information about the searches that
were made using the Chrome browser:

Google Chrome browsing history

The table contains a list of sites visited by the user (but not all the sites).
It's interesting to note that Chrome stores the data belonging to not just the device
but the account in general. In other words, information about sites visited from
other devices using the same account is also stored on the device. For example,
the table contains the browsing history for a Google account across several
devices:

Path:

Android App Analysis, Malware, and Reverse Engineering

[300]

Login Data: The database contains login information of different
sites saved in the browser. The site URL, along with the username and password,
is stored in the respective tables:

Path:

Frequently visited sites: The database contains a list of frequently
visited sites:

Path:

Other data: Other information, such as the phone numbers or e-mail addresses
entered by the user during form fills across different sites, is stored in the

 database. Tables present within this database contain autofill data:

Path:

Reverse engineering Android apps
The examiner may need to deal with applications that stand as a barrier to accessing the
required information. For instance, take the case of the gallery on a phone that is locked by
an app locker application. In this case, in order to access the pictures and videos stored in
the gallery, you first need to enter the passcode to the app locker. Hence, it would be
interesting to know how the app locker app stores the password on the device. You might
look into the SQLite database files. However, if they are encrypted, then it's hard to even
predict that it's a password. Reverse engineering applications would be helpful in such
cases where you want to better understand the application and how the application stores
the data.

To state it in simple terms, reverse engineering is the process of retrieving source code from
an executable. Reverse engineering an Android app is done in order to understand the
functioning of the app, data storage, the security mechanisms in place, and more. Before we
proceed to learn how to reverse engineer an Android app, here is a quick recap of the
Android apps:

All the applications that are installed on the Android device are written in the
Java programming language.
When a Java program is compiled, we get bytecode. This is sent to a dex
compiler, which converts it into a Dalvik bytecode.
Thus, the class files are converted to dex files using a dx tool. Android uses
something called Dalvik virtual machine (DVM) to run its applications.

Android App Analysis, Malware, and Reverse Engineering

[301]

JVM's bytecode consists of one or more class files depending on the number of
Java files that are present in an application. Regardless, a Dalvik bytecode is
composed of only one dex file.

Thus, the dex files, XML files, and other resources that are required to run an application,
are packaged into an Android package file (an APK file). These APK files are simply a
collection of items within a ZIP file. Therefore, if you rename an APK extension file to ,
then you will be able to see the contents of the file. However, before this, you need to get
access to the APK file of the application that is installed on the phone. Here is how the APK
file corresponding to an application can be accessed.

Extracting an APK file from an Android device
Apps that come preinstalled with the phone are stored in the directory.
Third-party applications that are downloaded by the user are stored in the
folder. The following method helps you gain access to the APK files on the device, and it
works on both rooted and nonrooted devices:

Identify the package name of the app by issuing the following command:1.

List of package names present on the device

Android App Analysis, Malware, and Reverse Engineering

[302]

As shown in the preceding command line output, the list of package names is
displayed. Try to find a match between the app in question and the package
name. Usually, the package names are very much related to the app names.
Alternatively, you can use the Android Market or Google Play to identify the
package name easily. The URL for an app in Google Play contains the package
name, as shown in the following screenshot:

Facebook App in Google Play Store

Identify the full pathname of the APK file for the desired package by issuing the2.
following command:

Android App Analysis, Malware, and Reverse Engineering

[303]

Pull the APK file from the Android device to the forensic workstation using the3.
 command:

You can also use applications such as ES Explorer to get the APK file of an Android
application. Now, let's analyze the contents of an APK file. An Android package is a
container for an Android app's resources and executables. It's a zipped file that contains the
following files:

: This contains information about the permissions and
more

: This is the class file converted to a dex file by the dex compiler
: The application's resources, such as the image files, sound files, and more,

are present in this directory
: This contains native libraries that the application may use

: This contains information about the application's signature and
signed checksums for all the other files in the package.

Once the APK file is obtained, you can proceed to reverse engineer the Android application.

Steps to reverse engineer Android apps
APK files can be reverse engineered in different ways to get the original code. The following
is one method that uses the dex2jar and JD-GUI tools to gain access to the application code.
For our example, we will examine the file. The following
are the steps to successfully reverse engineer the APK file:

Rename the extension to to see the contents of the file. Rename1.
the file to

, and extract the contents of this file using any file
archiver application. The following screenshot shows the files extracted from the
original file :

Android App Analysis, Malware, and Reverse Engineering

[304]

Extracted files of an APK file

The file discussed in the earlier sections can be accessed after2.
extracting the contents of the APK file. This dex file needs to be converted to a
class file in Java. This can be done using the dex2jar tool.
Download the dex2jar tool from ,3.
drop the file into the dex2jar tools directory, and issue the
following command:

C:\Users\Rohit\Desktop\Training\Android\dex2jar-0.0.9.15>d2j- dex2jar.bat
classes.dex
dex2jar classes.dex -> classes-dex2jar.jar

When the preceding command is successfully run, it creates a new 4.
 file in the same directory, as shown in the following screenshot:

Android App Analysis, Malware, and Reverse Engineering

[305]

The file created by the dex2jar tool

To view the contents of this jar file, you can use a tool such as JD-GUI. As shown5.
in the following screenshot, the files present in an Android application and the
corresponding code can be seen:

The JD-GUI tool

Android App Analysis, Malware, and Reverse Engineering

[306]

Once we get access to the code, it is easy to analyze how the application stores the values,
permissions, and more information that may be helpful to bypass certain restrictions. When
malware is found on a device, this method to decompile and analyze the application may
prove useful, as it will show what is being accessed by the malware and provide clues to
where the data is being sent. The following sections focus in detail on Android malware.

Android malware
As Android continues to increase its market share, so do attacks or malware targeted at
Android users. Mobile malware is a broad term that refers to a piece of software that
performs unintended actions and includes Trojans, spyware, adware, ransomware, and so
on. According to Pulse Secure, 97 percent of mobile malware is focused at the Android
operating system (

). As per statistics released by G-
DATA software, almost 4,900 new Android samples are being discovered every day. The
following is a sample screenshot that shows the rise of Android malware over the past few
years (referenced from

):

One of the primary reasons for this situation is that, unlike Apple's App Store, which is
tightly controlled by the company, Google's Play Store is an open ecosystem without any

Android App Analysis, Malware, and Reverse Engineering

[307]

detailed upfront security reviews. Malware developers can easily move their apps to Play
Store and thereby distribute their apps. Google now has a malware detecting software
named Google Bouncer, which will automatically scan an uploaded app for malware but
attackers have figured out several ways to remain undetected. Moreover, Android officially
allows loading apps downloaded over the Internet (side-loading) unlike iOS, which does
not allow unsigned apps. For example, as shown in the following screenshot, when the
Unknown sources option is selected on an Android device, it allows the user to install apps
that are downloaded from any site over internet:

Sideloading option in Android

The third-party app stores that host Android apps are known to be the hub of malware.
This prompted Google to roll out the Verify apps feature starting from Android 4.2, which

Android App Analysis, Malware, and Reverse Engineering

[308]

scans apps locally on Android devices to look for malicious activities, such as SMS abuse.
As shown in the following screenshot, the Verify apps feature may warn the user or in
some cases may even block the installation. However, this is an opt-in service, so users can
disable this feature if they choose to:

Verify apps feature in Android

Once malware gets into a device, it can perform dangerous actions, some of which are
listed, as follows:

Send and read your text messages
Steal sensitive data, such as pictures, videos, credit card numbers, and so on
Manipulate files or data present on the device
Send SMS to a premium-rated number
Infect your browser and steal any data typed into it
Change device settings

Android App Analysis, Malware, and Reverse Engineering

[309]

Wipe the entire data present on the device
Lock the device until a ransom is paid
Display advertisements continuously

Advanced malware is also capable of rooting the device and installing new apps. For
example, the Android Mazar malware, discovered in Feb 2016, spreads via text messages
and is capable of gaining administrator rights on phones, allowing it to wipe handsets,
make calls, or read texts.

A full list of Android malware families and their capabilities is available at
 for

reference.

How does malware spread?
An Android device can be infected with malware in several different ways. The following
are some of the possible ways:

Repackaging legitimate application: This is the most common method used by
attackers. The attacker first downloads a legitimate application, disassembles it,
then adds their malicious code, and reassembles the application. The new
malicious application now functions exactly as the legitimate application does,
but it also performs malicious activity in the background. These kind of
applications are commonly found in the third-party Android app stores and are
downloaded by several people.
Exploiting Android vulnerabilities: In this scenario, an attacker exploits the bugs
or the vulnerabilities that are discovered in the Android platform to install his
malicious application or to perform any unwanted actions. For example, installer
hijacking, identified in 2015, has been exploited by attackers to replace an
Android application with malware during installation.
Bluetooth and MMS propagation: Malware is also spread via Bluetooth and
MMS. The victim receives the malware when the device is in discoverable mode,
for example, when it can be seen by other Bluetooth-enabled devices. In the case
of MMS, the malware is attached to the message just as computer viruses are
send through e-mail attachments. However, in both these methods, the user has
to agree at least once to run the file.
App downloading malicious update: In this case, the app originally installed
does not contain any malicious code but a function present within the code will
download malicious commands at runtime. This can be done via a stealthy

Android App Analysis, Malware, and Reverse Engineering

[310]

update or user update. For example, the Plankton malware uses stealthy updates
that directly download a JAR file from a remote server and do not need any user
permission. In the case of user updates, the user has to allow the app to
download the new version of the app.
Remote Install: The attacker may compromise the credentials of the user's
account on the device and thereby remotely install apps on the device. This
generally happens in targeted scenarios and is less frequent compared to the
other two methods just described.

Identifying Android malware
From a forensic perspective, it's important to identify the presence of any malware on the
device prior to performing any analysis. This is because malware can alter the state of the
device or contents on the device, thereby making the analysis or the results inconsistent.
There are tools available in the market that can analyze the physical extraction to identify
malware. For example, Cellebrite UFED Physical Analyzer has BitDefender's antimalware
technology, which scans for malware. As shown in the following screenshot, once the
physical image is loaded into the tool, the file can be scanned for malware.

Scanning for malware in UFED Physical Analyzer

Android App Analysis, Malware, and Reverse Engineering

[311]

Once the scan starts, the BitDefender software tries to unpack the files and looks for
infected or malicious files. Hence, the process is automatic, and the tool points to the
malicious apps, as shown in the following screenshot:

Malware scanner results in UFED Physical Analyzer

The tool simply points out that something malicious is present on the device. The forensic
investigator has to then manually confirm whether this is a valid issue by analyzing the
respective application. This is where the reverse engineering skills that were discussed in
the previous sections need to be leveraged. Once the application is reverse engineered and
code is obtained, it is recommended that you take a look at the file
to find out the app permissions. This will be helpful to understand where the app stores the
data, what resources it is trying to access, and so on. For example, a Flashlight application
does not need read/write access to your SD card data or to make a call.

Android App Analysis, Malware, and Reverse Engineering

[312]

Permissions in the file

It's also important to note that the tool may not identify a valid case if the details are
obfuscated in the file. Hence, as a forensic investigator it's important to develop the
necessary skills to reverse engineer any suspicious apps and analyze the code to identify
malicious behavior. In some investigations, the nature of the malware that is present on the
device may also result in arriving at certain crucial conclusions, which may affect the
outcome of a case. For example, consider an internal investigation in a corporation that
involves sending abusive messages to other employees. Identifying malware on this device
that sends.

Android App Analysis, Malware, and Reverse Engineering

[313]

Summary
Android app analysis helps a forensic investigator to look for valuable data in
relevant locations on the device. Reverse engineering Android apps is the process of
retrieving source code from an APK file. Using certain tools, such as dex2jar, Android apps
can be reverse engineered in order to understand the functionality of the app and data
storage, identify malware, and more. Identifying malware present on the device is crucial as
it may affect the outcome of the investigation. Tools such as UFED Physical Analyzer come
with BitDefender software, which can automatically scan for malware. The next chapter
covers performing forensics on Windows Mobile devices.

112
Windows Phone Forensics

Windows phones are becoming more widely used, and they may be encountered during
forensic investigations. These devices are the most affordable on the market, so
understanding how to acquire, analyze, and decode data from Windows phones is
important. Locating and interpreting digital evidence that is present on these devices
requires a specialized knowledge of the Windows Phone operating system and may not
always be possible. Commercial forensic and open source tools provide limited support to
acquire user data from Windows devices. As Windows Phones do not occupy much of the
mobile market space, most forensic practitioners are unfamiliar with the data formats,
embedded databases used, and other artifacts that exist on the device. This chapter provides
an overview of Windows Phone forensics, describing various methods of acquiring and
examining data on Windows mobile devices.

In this chapter, we will cover the following topics:

Windows Phone OS
Windows Phone Security
Jailbreaking Windows Phones
Forensic acquisition and analysis

Windows Phone OS
Windows Phone is a proprietary mobile operating system developed by Microsoft. It was
launched as a successor to Windows Mobile, but it does not provide backward
compatibility with the previous platform. Windows Phone was first launched in October
2010 with Windows Phone 7. The version history of the Windows Phone operating system
then continued with the release of Windows Phone 7.5, Windows Phone 7.8, Windows
Phone 8.1, and Windows Phone 10. Although the market share of this operating system is

Windows Phone Forensics

[315]

limited, there is certainly a case for optimism based on the following reasons:

The computer operating system market is still dominated by Windows. This
gives Windows Phone OS greater flexibility to provide users with a computer
environment that they are familiar with.
Windows Phones are the most affordable smartphone on the market.

The following sections will provide more detail about Windows Phone 8 and 8.1, its
features, and its underlying security model. We believe that data is stored similarly on
Windows Phone 7 and Windows Phone 10, so the methods defined in the following sections
should work on both operating systems. At the time of writing, Windows Phone 10 was just
being introduced as an option for upgrade on Windows 8 and 8.1 devices and was available
for purchase on new Windows Phones.

Unlike Android and iOS devices, Windows Phone comes with a new interface, which uses
so-called tiles for apps instead of icons, as shown in the following figure. These tiles can be
designed and updated by the user.

The Windows Phone home screen

Windows Phone Forensics

[316]

Similarly to other mobile platforms, Windows Phone allows for the installation of third-
party apps. These apps can be downloaded from the Windows Phone Marketplace, which is
managed by Microsoft. When comparing the amount of apps available for iOS and Android
devices, the Windows Phone pales in comparison. However, applications are available and
the examiner should expect to see them on Windows Phone devices.

The Windows Phone introduced new features, making it similar to other smartphones
when compared to Windows Mobile:

Cortana: This is the personal assistant for the device. It was introduced in
Windows 8.1 and is still present on Windows 10 devices. Cortana aids the user by
fielding questions using Bing, setting reminders, sending texts, and essentially
using all the functionality to provide the user with a better and easier experience.
Everything that Cortana does leaves a trace on the device.
Wallet: This stores credit card accounts, boarding passes, tickets, coupons, and
more.
Geofence and advanced location settings: These provide the user with
additional protection as the phone can detect when it is out of a trusted zone and
may lock itself.
Additional features: These are features such as live Tiles, enhanced colors, quiet
hours, and more.

Other common applications associated with the Windows Phone include OneDrive,
(formerly SkyDrive), OneNote, and Office 365 Synchronization. OneDrive provides the user
with access to all of their documents and files from any device. OneNote is essentially the
same, but it acts as a notebook or diary. Office 365 provides the user with constant access to
their e-mail, calendar, contacts, and more across multiple devices.

The introduction of data synchronization across multiple devices makes our job as forensic
examiners difficult. It is our job to determine how the evidence was placed on the device. Is
it possible to definitively state how an artifact was placed on a device? To be honest, this
depends. Nobody wants to hear this response, but a lot of factors must be considered. What
is the app? What OS is running on the device? What is the artifact? For example, let's
consider SkyDrive. If the device contains documents from SkyDrive, the original author
should be contained within the metadata. This, together with examining whether or not the
content was shared to the device, may provide a glimpse into how the artifact was created.
However, when examining a calendar entry when Office 365 is in place, it may be
impossible to state if the user created the entry on their phone, PC, or laptop. The
synchronization is instantaneous and status flags stating where the artifact was created do
not always exist. If this artifact is indeed the “smoking gun” of the investigation, you need
to apply your skills to uncover other artifacts that support your findings. Digging deeper
into the data is required.

Windows Phone Forensics

[317]

Security model
The security model of Windows Phone is designed to make sure that the user data present
on the device is safe and secure. The following sections provide a brief explanation of the
concepts on which Windows Phone security is built.

Windows chambers
The Windows Phone is heavily built on the principles of least privilege and isolation. This
has been consistent since the inception of Windows Phone 7. To achieve this, Windows
Phone introduced the concept of chambers. Each chamber has an isolation boundary where
processes can run. Depending on the security policy of a specific chamber, a process
running in this chamber has the privilege of accessing the OS resources and capabilities
(). There
are four types of security chambers. The following is a brief description of each one of them:

Trusted Computing Base (TCB): This processes here have unrestricted access to
most of the Windows Phone resources. This chamber has the privileges to modify
policies and enforce the security model. The kernel runs in this chamber.
Elevated Rights Chamber (ERC): This chamber is less privileged than the TCB
chamber. It has the privileges to access all resources except the security policy.
This chamber is mainly used for services and user-mode drivers, which provide
functionality intended for use by other applications on the phone.
Standard Rights Chamber (SRC): This is the default chamber for preinstalled
applications, such as Microsoft Outlook Mobile 2010.
Least Privileged Chamber (LPC): This is the default chamber for all the
applications that are downloaded and installed through the Marketplace Hub
(which is also known as the Windows Phone Marketplace).

Encryption
Windows Phone 8 introduced Bitlocker technology to encrypt all user data that is stored on
the device via AES 128-bit encryption. The user can simply flip the switch to enable this
feature and all of their data residing on the internal storage of the device is encrypted. In
addition, the user can encrypt their SD card, assuming the phone has one, and set a
password or PIN on their device. Should all of these locks and encryption be enabled,
accessing the data on this device may be impossible, unless the password is recovered.

Windows Phone Forensics

[318]

Capability-based model
Capabilities are defined as the resources on the phone (camera, location information,
microphone, and more) associated with security, privacy, and cost. The LPC has a minimal
set of access rights by default. However, this can be expanded by requesting more
capabilities during the installation. Capabilities are granted during the app installation and
cannot be modified or elevated during runtime. For this reason, it is difficult to side-load
applications or force custom bootcode to the device to gain forensic access, as it is normally
rejected prior to boot up.

To install an app on a Windows phone, you need to sign in to Marketplace with a Windows
Live ID. During installation, apps are required to ask the user for permission before using
certain capabilities, an example of which is shown in the following screenshot:

Windows app requesting user permissions ()

This is similar to the permission model in Android. This gives the user the freedom to learn
about all the capabilities that an application has before installing the application. The list of
all capabilities is included in the application manifest file, which can
be accessed through Visual Studio or other methods that are defined at

.

Windows Phone Forensics

[319]

App sandboxing
Apps in Windows Phone run in a sandboxed environment. This means every application on
Windows Phone runs in its own chamber. Applications are isolated from each other and
cannot access the data of other applications. If any app needs to save information to the
device, it can do so using the isolated storage, which is restricted from access by other
applications. Also, the third-party applications installed on Windows Phone cannot run in
the background; that is, when the user switches to a different application, the previously-
used application is shut down (although the application state is preserved). This ensures
that the application cannot perform activities, such as communicating over the Internet
when the user is not using the application. These restrictions also make the Windows Phone
less susceptible to malware, but never assume that any device is safe. It is just more
challenging for malware to function on these devices.

The Windows Phone file system
The Windows Phone file system is more or less similar to the file systems used in Windows
7, Windows 8, or Windows 10. From the root directory, one can reach different files and
folders that are available on this device. From a forensic perspective, the following are some
of the folders that can yield valuable data. All the listed directories are located in the root
directory:

Application Data: This directory contains data of preinstalled apps on the phone,
such as Outlook, Maps, and Internet Explorer.
Applications: This directory contains the apps installed by the user. The isolated
storage, which is allocated or used by each app, is also located in this folder.
My Documents: This directory holds different Office documents, such as Word,
Excel, or PowerPoint. The directory also includes configuration files and
multimedia files, such as music or videos.
Windows: This directory contains files that are related to the Windows Phone
operating system.

The acquisition method used here will determine the amount of file system access that the
examiner has to the device. For example, a physical image may provide access to several
partitions that can be recovered from the data dump. We are looking at a Windows Phone 8
device that contained 28 partitions in the following screenshot. Partitions 27 and 28 contain
the relevant data.

Windows Phone Forensics

[320]

These screenshots were provided by Cindy Murphy, who co-authored
Windows Phone 8 Forensic Artifacts, which can be found at

.

Windows Phone 8 system partition

The partition in the preceding screenshot, Partition 27, contained the system data from the
Windows Phone. As in all Windows investigation, the system data contains artifacts
relevant to investigations.

While most artifacts will exist in the Data Partition, it is always best
practice to capture and analyze both when possible.

In this example, Partition 28 contained the User or Data Partition. Depending on the device,
the partition numbers may vary. In the example provided by Cindy Murphy, the Data
Partition is shown in the following figure as Partition 28. Here, the SMS, e-mail, application
data, contacts, call logs, and Internet history were recovered using custom scripts and
methods to extract the relevant data. These methods will be discussed later in this chapter:

Windows Phone Forensics

[321]

Windows Phone 8 data partition

Windows Phone also maintains the Windows registry, a database that stores environment
variables on the operating system. The Windows registry is basically a directory that stores
settings and options for the Microsoft operating system. The Windows Phone is no
different. When examining a Windows Phone, an examiner will expect to see the

, , , , , and hives. While these hives
may be unique to the phone, they can be examined just like traditional Windows registry
hives.

A detailed case investigation is included in the paper by Cindy Murphy. This involves a
criminal case of a Home Invasion and Sexual Assault and details the efforts of great minds
in the forensic community to uncover artifacts that assisted in closing the investigation.
Sometimes, the mobile device is the most important artifact pertaining to the case. For more
information, refer to

.

Data acquisition
Acquiring data from a Windows Phone is challenging for forensic examiners, as the
Physical, File System, and Logical methods that were defined in previous chapters are not
greatly supported. In addition to this, the phone may need to be at a specific battery charge
state (%) in order for the commercial tool to recognize and acquire the device. This is often
one of the most difficult steps in acquiring Windows Phones. You will hear stories of
seasoned examiners using the flashlight app on the phone to drain the battery. Yes, actually
using a feature of a phone just to get the device into a state where forensic methods will
allow access.

Windows Phone Forensics

[322]

One of the most common techniques implemented by commercial tools attempting data
acquisition is to install an application or agent on the device, which enables a two way
communication for commands to be sent to the device in order to extract data. This could
result in certain changes on the device; nevertheless, this is still forensically sound if the
examiner follows standard protocols and has tested the validity of the tool being used.
These protocols include proper testing to ensure no user data is changed (and if changed,
documenting what occurred), validation of the method on a test device, and documenting
all steps taken during the acquisition process. For this acquisition method to work, the app
needs to be installed with the privileges of the Standard Rights Chamber. This may require
the examiner to copy the manufacturer's DLLs, which have higher privileges, into the user
app. This allows the app to access methods and resources that are usually limited to native
apps. In addition to this, the device must be unlocked or these methods may not work.

Most examiners rely on forensic tools and methods to acquire mobile devices. Again, these
practices are not as supported for Windows Phones. Keep in mind that, to deploy and run
an app on Windows Phone, both the phone and the developer must be registered and
unlocked by Microsoft. This restriction can be bypassed by unlocking the device using tools,
such as ChevronWP for Windows Phone 7 devices, and a public jailbreak for Windows
Phone 8 to 10 devices. More information on these jailbreaks can be found at

. These jailbreaks basically allow the bypassing of the
Marketplace procedure and allow you to sideload (run unsigned applications without the
restrictions listed) an unpublished application. All jailbreaks must be tested in order to
ensure they will not change user data, brick the device, or even wipe the data partition. The
latest jailbreaks for the Windows Phone 8, 8.1, and 10 devices leverage vulnerabilities that
are quickly patched by Microsoft. At the time of writing this book, a successful jailbreak for
Windows 8.1 was not accessible to the author, but we are not saying it is impossible and
that one does not exist. When attempting to jailbreak our test device, we were only
accessing a Chinese method that did not support our device. This is shown in the following
screenshot. If the red X had not identified an unsupported device, the jailbreak could have
occurred successfully. Refer to

.

Windows Phone Forensics

[323]

Windows Phone jailbreak

Sideloading using ChevronWP7
This method will only work on Windows Phone 7 devices. Make sure that your model is
supported for this jailbreak. As explained earlier, in order to install the app that provides
access to the file system of the phone, we first need to unlock the device (similar to
jailbreaking on iOS devices). This method will only work on a Windows Phone that is not
locked with a passcode. This can be done using the ChevronWP7 tool by performing the
following steps:

Download the and files. Note that these files1.
are often removed and are not always available on the same site. One location
that currently has the files available for download
is .
Install file on the Windows Phone. Note that the methods for2.
the installation of ChevronWP7 may require techniques that are not standard to
forensic practices. Thus, all methods must be tested on a sample Windows Phone

Windows Phone Forensics

[324]

to ensure user data is not lost in the process of attempting to extract the data. One
method to install ChevronWP7 includes sending it to an e-mail and accessing it.
This method should be used as a last resort when all other acquisition methods
fail.
Connect the phone to your computer and make sure that the device is not3.
passcode-locked. If the device is locked and the password is known, enter the
password only when prompted by the computer. Do not guess the password on
the Windows Phone as multiple incorrect guesses may wipe the user data.
Run the file, check both the boxes shown in the following4.
screenshot, and click on Unlock. This enables the developer unlock on the device
and also enables you to install any third-party app without a Marketplace
developer account:

The ChevronWP7 tool

To execute native code in a user app, the DLL is used.
This DLL provides the method, which can import native manufacturer
DLLs. Hence, by including this DLL in a user app, it is possible to execute native code
within the app and get access to the entire file system of the phone, including the isolated
storage.

Windows Phone Forensics

[325]

Commercial forensic tool acquisition methods
There are a few commercial tools available that offer support for the acquisition of
Windows Phone devices. Cellebrite UFED offers support to acquire Windows Phone
devices using the Logical, File System, and Physical methods. At the time of writing this
book, the devices listed in the following table are supported for acquisition and analysis:

Windows Phone Forensics

[326]

Some of these acquisition methods are more robust, obtain a full physical dump of the data,
and can bypass some lock codes on specific devices. However, some device support
includes simply extracting contacts and pictures from the device. It is important for the
examiner to realize that specific steps must be taken as directed by the tool. Acquiring these
devices is not easy and often the examiner will find that the tool will not be successful.

When the tool seems to fail, attempt to acquire the device using the Smartphone/PDA
option offered in UFED. To do this, follow these steps:

Launch UFED4PC and select Mobile Device.1.
Select Browse Manually.2.
Select Smartphones.3.
Select the Windows device that you are attempting to acquire, as shown in the4.
following image:

UFED4PC extraction generic method options

Try all the methods that are offered, starting with Physical, File System, and5.
Logical (in that order, where possible.)

Windows Phone Forensics

[327]

UFED4PC extraction options

Follow all the remaining steps and try all offered acquisition methods until6.
successful.

Cellebrite may alert you that the acquisition is not successful for several reasons. When this
occurs, try every option to ensure you have exhausted the commercial options available. An
example of an acquisition attempt in UFED4PC is shown as follows:

Launch UFED4PC.1.
Select your Make and Model for the device.2.
Select the Physical, File System, or Logical acquisition method (offerings will3.
vary depending on the device model).

In this example, only the Logical acquisition was supported. Two methods are available.
The first option uses a cable and the second uses Bluetooth. In this example, a special UFED
cable is required. I selected the UFED cable first, as Bluetooth requires that additional
changes be made to the phone during pairing:

UFED4PC Logical extraction options

Windows Phone Forensics

[328]

When attempting to acquire the device with cable A with black tip T-100, only multimedia
files were accessible. In this situation, acquire these items:

UFED4PC extraction options (cable)

Then, attempt the same acquisition, but select Bluetooth. Follow the instructions to pair the
device to the forensic workstation:

UFED4PC extraction options (Bluetooth)

Windows Phone Forensics

[329]

With this acquisition method, we were able to obtain contacts. Note that there was not a
method offered to obtain SMS, MMS, Email, IM, Calendar, Call Logs, Apps data, and
others. It is suggested you repeat the Generic methods listed in the previous screenshot
using the Smartphone option in UFED4PC.

Error messages are more common during the acquisition of Windows Phone devices when
compared to other phones. Unfortunately, the state of the device and how it was used can
affect the data that can be extracted. Note that in the following screenshot the phone cannot
be acquired because the device does not contain photos. In this example, the user saved all
of the pictures on the device to the SD card. Unfortunately, this is a reality and a common
error. At this point, attempt another acquisition method. The following screenshot shows
common error messages that may be reported by the tool. Here, we are looking at an
extraction error from UFED4PC:

UFED4PC extraction error message

Oxygen Detective provides both acquisition and analysis support for Windows Phone
devices. As previously mentioned, several extraction methods will be offered, and errors
are expected, as these devices are difficult to acquire. At the time of writing this book,
Oxygen Detective offers support for the following devices:

Windows Phone Forensics

[330]

Windows Phone Forensics

[331]

To acquire a supported device, perform the following steps:

Launch Oxygen Forensic Detective.1.
Select Connect Device.2.
Select your preferred connection method. Manual device selection is preferred, as3.
it provides the examiner with the most control over the extraction:

The Oxygen Detective Extraction wizard

Next, select the model that you wish to acquire. If the model is not available,4.
simply attempt to acquire the device as a generic device. First try the cable
method, followed by the Bluetooth method if needed:

Windows Phone Forensics

[332]

Oxygen Detective Device Selection options

Continue following the prompts to name the case file and select the artifacts to5.
extract. Be prepared to troubleshoot errors.
Open the extraction and begin analysis.6.

Extracting data without the use of commercial
tools
On an unlocked device, it may be possible to run an app that can extract the user data
present in the phone. This device may have to be jailbroken for this to work. Several apps
that do this are available, and they depend on the version of Windows running on the
phone and the version on your forensic PC. Two apps will be covered in this section. The
first is TouchXperience and the second is Windows Phone app for Desktop.

Windows Phone Forensics

[333]

The TouchXperience app, which comes with the Windows Mobile Device Manager
(WPDM), can be used for this purpose. WPDM is the management software for Windows
Phone 7. The TouchXperience client app extracts data, such as the file system, from the
mobile device, and WPDM retrieves this data and converts it into a human-readable
graphical format. The following are the steps that will help a forensic examiner extract user
data present on an unlocked Windows Phone device:

Download Windows Phone SDK 7.1 and the Zune software on the forensic1.
workstation and install it
().
Download the Windows Phone Device Manager on the workstation, and2.
launch
().
Connect the device to the workstation, and it should be detected automatically. If3.
it is not detected, make sure that a passcode is not set on the device. If it is, this
process may fail if the passcode is unknown.
Windows Phone Device Manager will automatically install the TouchXperience4.
app when the phone is connected for the first time. Make sure that you set what
the software is allowed to do on the device (that is, make sure not to change the
user data, not update date/time settings, or anything else that will modify the
user data). Make sure to document that TouchXperience was installed in order to
extract data from the Windows Phone, as standard forensic methods provide
little support for these devices.
Thereafter, the following screen is presented, providing access to a vast amount5.
of files that are present on the device:

Windows Phone Forensics

[334]

Windows Phone Device Manager

The home screen displays information about the model of the phone, OS version, and more.
Click on Manage applications to see the information about installed apps on the device, as
shown in the next screenshot. WPDM also provides other functionality, such as media
management, synchronization of files and folders, and more. From a forensic point of view,
the File Explorer is the most interesting part of this software. It provides read, write, and
executable access to most of the files that are present on the Windows Phone 7 device:

Windows Phone Forensics

[335]

Windows Phone Device Manager – The Manage Applications screen

Using this acquisition technique, you can access two types of data: system data and
application data. System data is mainly the data that is required to run the phone, and
application data is the data created and used by different applications that are installed on
the device. While system data may not contain data relevant to your investigation,
application data is very valuable. Regardless, all data should be acquired from any
smartphone, as the examination must be complete and capture all the data contained on the
device when possible. The following sections discuss the steps to be followed to extract
application data from a Windows Phone device. The application data will contain the bulk
of the user-created data, and it will provide the most value to your investigation.

Windows Phone app for Desktop works like the app that we just defined, but it supports
the Windows Phone 8 device. Note that both the phone and the SD card can be accessed.
The user relies on this app to transfer and sync files similar to how iPhone users rely on
iTunes. Examiners rely on this app as a method to extract user artifacts when all other
options are exhausted. When attempting to acquire data from the SD card, please refer to
the methods discussed later in this chapter.

Windows Phone Forensics

[336]

Windows Phone app for Desktop

Other options for Windows 8.1 include the Windows Phone Appand Phone Companion
App for Windows 10 devices. These apps provide the user with additional functionality
and allow for the copying of files from the PC to the phone and or SD card.

SD card data extraction methods
Windows Phones may contain removable SD cards. These cards may be secured with a key
that prevents the SD card from being removed and used or accessed via other devices
(phones, cameras, computers, and more). This is different from the key that is created if the
user encrypts the SD card. Brute force and dictionary attacks can be run on user-encrypted
SD cards to attempt to access the data. When examining a Windows Phone, it is best to
research the device to see whether SD card security will be a factor when acquiring data
from the device. If so, simply follow the preceding steps and acquire the SD card data
through the phone during forensic extraction; or refer to the following chart.

For devices where the SD card can be removed, you have two scenarios to consider. If the
device is on, should you acquire the phone and the SD card as is? If the device is off, should
you remove the SD card and acquire the device using FTK Imager as discussed in

Windows Phone Forensics

[337]

, Android Data Analysis and Recovery? The answer is: it depends. In forensics, we use this
statement frequently, but it remains true. If you leave the device on, it must be isolated from
the network to ensure that it is not remotely accessed and immediately acquired, or the
battery will drain and, ultimately, the device may power down. If the device is off and you
remove the SD card, you must ensure that the card remains tied to the device itself and is
acquired both externally and internally to ensure all data is captured. In a normal situation,
the following chart suggests recommended steps to handle SD cards that are found in
Windows Phones:

Most commercial forensic tools will offer to extract data from SD cards. Often, the phone
extraction will only be data residing on the SD card. This is often the case when there is no
support for a specific Windows Phone. If the SD card is not recognized by the tool and the
data is not extracted, it is likely that the SD card has been encrypted by the user, and the
password for the device is different from the password for the SD card. When this occurs,
try to crack the passcode and re-acquire the device. Note that cracking a passcode on an SD
card may not always be possible, but it's worth a shot using brute-force and dictionary
attacks as you would on a standard hard drive or external device.

Windows Phone Forensics

[338]

When acquiring an SD that has been removed from a Windows Phone, FTK Imager is a free
and reliable option to create a forensically sound image that can be examined in a variety of
tools. To create an SD card image, follow these steps:

Remove the SD card from the device and make sure to document all identifiers1.
on the card and the phone to ensure that they are not permanently separated.
Insert the SD card into a write blocker and insert this into your forensic2.
workstation.
Launch FTK Imager.3.
Select File and then select Create Disk Image.4.
Select Physical Drive:5.

FTK Imager – creating a disk image

Use the drop-down to select the correct device. (Hint: look at the make and size to6.
ensure that you are acquiring the correct device.)
Select Finish.7.
Click on Add and select Image Type. For this example, is going to be used as8.
it is supported by most commercial and open source methods for analysis.

Windows Phone Forensics

[339]

FTK Imager – Selecting Image Type

Enter the relevant case information and select Next. This can be skipped.9.
Select the Image Destination.10.

FTK Imager – Saving your image file

Windows Phone Forensics

[340]

Select Finish and then select Start. It is recommended that you verify images11.
after they are created.

Once complete, your results will be displayed. We will cover analyzing the SD card data in
the following sections.

Key artifacts for examination
No matter which method was used to acquire the data, the following key artifacts should be
examined.

Extracting SMS
All the incoming and outgoing short messages (SMS) in Windows Phone 7 – 8.1 are stored
in the file named , which is present under the

 directory. An example of Windows 7
SMS is shown in the next screenshot. It is not possible to copy this file directly because this
file is always in use. When this file is renamed (for example, to
or), it automatically creates a copy of the file. Once the copy is made, this file
can now be examined using a normal text editor. Take a look at the following screenshot:

The file in Windows Phone

Windows Phone Forensics

[341]

Extracting e-mail
Windows Phone devices use Outlook as their standard e-mail client. This can be used to
synchronize with various e-mail services, such as Google, YahooMail, and more. Data that
belongs to Outlook is currently stored in the

 directory, as shown in the
following screenshot:

Windows Phone: extracting e-mail

As shown in the next screenshot, there are different folders present that contain different
data. For example, the folder contains pictures of the user's contacts (e-mail receivers).
This folder is being used as an example. This folder will not be consistently named folder
across Windows Phone devices. Take a look at the following screenshot:

Windows Phone: folder

Windows Phone Forensics

[342]

Although the files are present with the extension, by renaming them to , we can
view the pictures as shown in the following screenshot:

Windows Phone: renaming data files to JPG files

Similarly, folder contains information about e-mail messages. By renaming the files
to , we can view the content of the e-mail messages. Again, each folder should be
examined for relevance as they may contain e-mail messages, attachments, contacts, and
more.

When an app meant to access Windows Phone devices just does not seem to sync to your
device, the phone can be connected to the forensic workstation, and it can be manually
explored by the examiner. This should be the last method used, as a Windows computer is
known to reach out and 'talk' to the phone, so data will appear in a non-write protected
format and can be changed:

Windows Phone: Windows Explorer view

Windows Phone Forensics

[343]

Note that both the device and the SD card are accessible. Use caution when exploring in this
view as changes can be made to the device. Additionally, files in use by the device will be
locked, but the directory will be present:

Windows Phone: Windows Explorer view of files

System and Data files are viewable via this exploration method. Note that the Windows
Phone is similar to a PC and contains a file that can be parsed for user activity
and other artifacts:

Windows Phone Forensics

[344]

Windows Phone: Windows Explorer view of directories

While some contents locked by the device may be inaccessible, it provides a glimpse as to
what exists on the device. This is a great method to validate the forensic extraction to ensure
no data was missed.

Extracting application data
The folder contains all the applications that are installed on the phone. Each
application has its own directory, which is identified with a unique application ID. Inside
the application ID folder, there are other important folders, such
as , , , and more. Most of the crucial information is
usually present in the folder. For example, as shown in the next
screenshot, the folder in Facebook contains the following data:

Windows Phone Forensics

[345]

Contents of the folder

By analyzing these folders, a forensic analyst can gather a lot of information that could aid
the investigation. The following are some of the findings from our Facebook app analysis
example:

The file in the following screenshot contains the user's profile
name and a link to the user's profile and profile picture.
All the pictures that are used by the Facebook app are stored in the folder
present in the directory. To view these images, change the
extension of the files to .
The folder contains most of the information about the

Windows Phone Forensics

[346]

Facebook account. By parsing this folder, information about friends, friend
requests, messages, and more can be obtained. This is straightforward as all the
files, once extracted, can be manually examined for their relevance to the
investigation.

The folder of the Facebook app

Another location that contains application data is the
 directory.

Similarly, by examining the Internet Explorer app, a forensic examiner can gather
information about the sites visited by the user. All this data can be found under the

 or
 directories. By analyzing the Maps

application, information about the user location and other details can be obtained. The call
logs can be recovered from on most devices. Keep in
mind that the location may vary depending on the OS and the Windows device. However,
the directory containing the data (, , and so on) remains the same. A great
source to conduct forensics on a Windows Phone device can be found
at

.

Windows Phone Forensics

[347]

Summary
Acquiring data from Windows Phone devices is challenging as they are secure and
commercial forensic tools and open source methods do not provide easy solutions for
forensic examiners. Multiple tools, chip-off, JTAG, and the methods defined in this book are
some of the methods that provide access to user data on Windows Phone devices. Often,
you will find that Windows Phone devices require multiple extraction methods to acquire
accessible data. The biggest challenge is getting access to the device to acquire the data.
Once the data is available, all the extracted information can be analyzed by the examiner.
UFED Physical Analyzer and Oxygen Detective both accept JTAG and chip-off extractions
for analysis.

Again, the device must not contain a passcode. It must be unlocked (jailbroken or rooted) to
use non-commercial methods, and it may be modified by the examiner in order to extract
the data using the methods defined in this chapter. While some may challenge us and say
that these methods are not common in forensic practices, they must realize that these
methods may be the only way to obtain user data from Windows Phone devices. In the next
chapter, we will cover third-party applications, that while challenging, are more often
supported by commercial and open source methods.

113
Parsing Third-Party Application

Files
Third-party applications have taken the smartphone community by storm. Most
smartphone owners have more than one app on their device that they rely on to chat, game,
get directions, or share pictures. According to

, there are almost 4
million apps existing worldwide for the various smartphones. Apple App Store offers
approximately 1.5 million apps, Google Play offers 1.6 million, Amazon offers 400,000 apps,
and Windows offers 340,000. This number is expected to grow exponentially through 2017.

The goal of this chapter is to introduce you the various applications seen on Android, iOS
devices, and Windows Phones. Each application will vary due to versions and devices, but
their underlying structures are similar. We will look at how the data is stored and why
preference files are important to your investigation.

We will cover the following topics in detail in this chapter:

Different third-party applications
How applications are stored on iOS devices
How applications are stored on Android devices
Windows Phone 8 application storage
How to use both commercial and open source solutions to parse application data

Parsing Third-Party Application Files

[349]

Third-party application overview
Third-party applications are an integral part of mobile device investigations. Often, the key
artifacts seem to exist within an application. This requires the examiner to understand
where application data is stored on the device, how application data is saved for this
platform, and which tool best helps uncover the evidence. Manual parsing is often a key
factor when examining third-party applications on any smartphone. While some
commercial tools, such as Magnet IEF, are known for application parsing support, no tool is
perfect and it's virtually impossible for tools to keep up with the frequent updates that are
released for each application. Most often, you will realize that the commercial tools parse
the most popular applications on the market. For example, when Facebook purchased
WhatsApp, Cellebrite, IEF, and Oxygen Forensics started supporting this application.
Facebook is extremely popular, but data isn't always extracted or parsed, due to security
features that are built into the app. This is where all apps differ. Our best advice is to test,
test, and test! You can download an app, populate data, and examine the results to see how
your view of the evidence compares to your actual evidence. This practice will enable you
to understand how updates change the artifacts, how evidence locations have changed, and
how to manually extract artifacts that your tools are missing. Additionally, reverse-
engineering an app and analyzing its code will help us identify where the data is stored and
how it is stored.

Most applications do not require a data plan for use. They can fully function off a WiFi
network, which means that apps function when a person travels to a region in which their
device will not work. For example, when I travel, I rely on Skype, Viber, and WhatsApp to
call and text family and friends. All that is required is that my smartphone is connected to
WiFi.

We have already addressed some third-party application extraction and analysis tips in this
book. In addition to this, we discussed the files that need to be examined to understand and
analyze application data in , iOS Data Analysis and Recovery, ,
Android Data Analysis and Recovery, , Android App Analysis, Malware, and Reverse
Engineering, and , Windows Phone Forensics. This chapter will dive deeper into
the applications and relevant files and prepare the examiner for the analysis of these
artifacts. Each application has a purpose. Most tools provide support for the most popular
application in each category. The rest is up to you. A glimpse of applications as presented
by Oxygen Detective is shown in the following screenshot. As expected, these are not all of
the applications that are present on the device; rather, these are just the ones that the tool
knows how to parse:

Parsing Third-Party Application Files

[350]

Example of applications parsed by Oxygen

Chat applications
Chat applications are among the most common applications on the market. These
applications provide users with the ability to chat outside the standard SMS services offered
by the network service provider and device and sometimes in a secure method. By secure,
the apps may offer encryption, private profiles, private group chats, and more.
Additionally, these apps enable the user to message others without the need for a data plan,
as WiFi provides all the access that they need. Tango, Facebook Messenger, WhatsApp,
Skype, and SnapChat are some of the more popular applications.

Parsing artifacts from chat applications is not always simple. Often, multiple tools and
methods will be required to extract all of the data. Commercial tools may only parse a
portion of the data, forcing the examiner to learn how to examine and recover all data or
miss evidence. Oxygen Detective is being used to parse chat messages from Tango on an
Android device in the following screenshot. Note that the message does not show the image
in the table. However, this image can be “pieced” back into the message, as shown in the
following screenshot, to provide the total picture of what was being shared in the
conversation. In this example, the graphic was located and is shown with an arrow pointing
to the message to which it belongs. This was a manual process and was not performed by
the tool:

Parsing Third-Party Application Files

[351]

An example of piecing application chat logs back together

GPS applications
Most users branch outside their standard phone apps for GPS support. This includes getting
directions to locations and obtaining maps for areas of interest. Common GPS applications
include Waze, Google Maps, and more. Waze goes beyond just providing directions, as it
also alerts the user to road hazards, traffic, and police officers that are along the path they
are driving:

Parsing Third-Party Application Files

[352]

The Waze application

Other applications that store location information include Twitter, Instagram, Facebook,
FourSquare, and so on. These applications enable a user to alert friends and followers
to their location when they create a post or share an image/video. All of these transactions
are tracked within the app. Understanding this is key to uncovering additional artifacts that
are not reported by your forensic tool.

When examining location information from GPS applications, it is best to assume that you
need to manually examine the databases and preference files that are associated with that
application. We recommend using your forensic tool to triage the data on the device and
then dive deeply into the artifacts, which will be discussed later in this chapter. An example
of Waze being parsed by UFED Physical Analyzer is in the following screenshot. Here, we
can see that the user had five favorite locations, 74 mapped locations, and 70 recent
directions. All of this information must be manually verified if it pertains to the
investigation. This is due to the fact that the tool cannot determine whether the user typed

Parsing Third-Party Application Files

[353]

the address, whether it was suggested, or whether the user even traveled to that location.
Proper skills are required by the examiner to tie a user to a specific location and this takes
more than a forensic tool.

The Waze application in UFED physical analyzer

Secure applications
Secure, self-destructing, did it ever even happen? Ignore the claims of data retention and
hunt for that data! These apps often make claims that are simply untrue. These applications
are designed with security in mind. However, updates are released so quickly, and quality
assurance checks seem to not be strong enough to catch everything. On occasion, you will
find an app with an encrypted or nonexistent database, but the file has journal, write ahead
logs, or shared memory files that contain portions of the chats that were supposed to be
encrypted. In addition to this, the user can save media files that are shared, take screenshots
of the conversations, and do much more. Often, you may uncover the images, audio, and
video files that were shared and supposed to be encrypted.

Some popular secure messaging applications include Telegram, Wickr, and Signal. Some of
these are encrypted, and nothing is recoverable. However, this all depends on the device,
the OS running on the smartphone, and the version of the app. The security level of these
apps is publicly advertised, but again take this with a grain of salt. You should always
assume that there could be a vulnerability in the app that may provide you with access
forensically. Dig for this evidence!

Parsing Third-Party Application Files

[354]

Information on how secure some of these apps are can be found at
.

Financial applications
Applications that utilize financial information, such as credit card information and personal
banking, are required to be encrypted and secure. iOS devices will not acquire these apps
without an Apple ID and password. Even if you have the user's Apple ID and password,
the data extracted should still be encrypted. Some examples of financial applications
include Google Wallet, Windows Phone Wallet, PayPal, Apple Pay, and In-App Purchases.
When you examine a device, you may see that the app was installed with the associated
application metadata, but account information and transactions will not be accessible.

Social networking applications
Commercial support for social networking applications is strong as they are the most
popular apps that are downloaded from the app stores. These applications allow users to
make posts, share locations, chat publically, and privately and essentially catalog their life.
Common social networking applications include Facebook, Twitter, and Instagram. Often,
users will enable one app, such as Instagram, to have access to Facebook and Twitter so that
posting is seamless. Thus, when examining devices, the user may find multiple copies of the
same file or conversation due to the sharing between apps.

When examining these apps with commercial tools, it is common for chats and contacts to
be parsed. Other data is often overlooked. Again, this means the examiner must look at the
data dump to ensure that nothing is missed. As an example, we are going to take a look at
Twitter. This application stores a lot of information that may require more than one tool to
parse. Additionally, the user may have to manually examine the database files to ensure
that all artifacts have been recovered.

Let's take a look at what the tool was able to extract. As stated several times in this book,
start with what the tool is telling you is installed, and then formulate keywords and
methods to dig deep into the file system. We can see the user account information for
Twitter, as well as the file path where this data is being extracted, in the following
screenshot:

Parsing Third-Party Application Files

[355]

Twitter as parsed by Oxygen Detective

The next logical step is to view what the tool can tell you about the application and how it
was used. Oxygen Detective provided the following information for Twitter account usage.
Note that both public Tweets and private messages (DM) are recovered:

Twitter usage by Oxygen Detective

Parsing Third-Party Application Files

[356]

After examining what was parsed by the tool, the database files should be examined to
ensure nothing was missed. This is not always simple, as each account and function may
have a unique database. By function, we mean that contacts may be stored in one database
while chats and account information are stored in another. Once you become more familiar
with common applications, you will know where to look first. At the time of writing this
book, the following databases were the most relevant:

: This database contains account information, such as the username
: This database contains notifications, messages, contacts, and

statuses

In the following screenshot, we can see all of the databases that are associated with Twitter.
Again, start with what you know and dig deeper:

Twitter databases containing user activity

Parsing Third-Party Application Files

[357]

Each database may contain unique data that can be parsed for additional artifacts. These
applications also contain unique values, which can be used as keywords to search
for other devices with traces of communication within an investigation. For this example,
we can see values, the creation date (UNIX timestamp), and the data, which is the
result of private messaging on Twitter:

Twitter private messaging artifacts

Custom queries can be written to parse Twitter databases of interest. A good example of
how to do this is shown, as follows. This query is specific to parsing Twitter contacts:

SELECT
_id AS "Index",
user_id,
username,
name,
datetime (profile_created/1000,'UNIXEPOCH','localtime') AS "Profile
Created",
description AS "Twitter Description",
web_url,
location,
followers,
friends AS "Following",
users.statuses AS "Number of Tweets",
datetime (profile_created/1000,'UNIXEPOCH','localtime'),
image_url,
datetime (updated/1000,'UNIXEPOCH','localtime') AS "Profile Updated",
datetime (friendship_time/1000,'UNIXEPOCH','localtime') AS "Became
Friends"
FROM users

Parsing Third-Party Application Files

[358]

Encoding versus encryption
The terms encoding and encryption are used so frequently when discussing applications
and smartphone data that they are often confused. Encoding is essentially the process of
obfuscating a message or piece of information to appear as raw code. In some cases, the
goal of encoding is to make the data unrecognizable to the computer or the user. In reality,
the primary goal of encoding is to transform the input into a different format using a
publicly available scheme. In other words, anyone can easily decode an encoded value.
Encryption, however, transforms the data using a key in order to keep it secret from others.
So, encrypted text can be reversed only if you have the key. Most applications claim that
they encrypt the data or that the data is never saved to disk. While this is true for some,
most are simply encoded. Encoding options can vary, but the most common for smartphone
data is Base64. Messaging apps often rely on Base64 encoding to make the data appear to be
hidden or “safe.” A common artifact of Base64 is the padding of the data with an “=” when
the encoded bytes are not divisible by three.

Until a little over a year ago, Oxygen Forensics and Autopsy were two of the few tools
supporting the decoding of Base64 payloads from applications derived from smartphones.
For these tools to parse the data, they must support the application containing the encoding.
Currently, MSAB, UFED Physical Analyzer, and Magnet IEF also provide Base64 decoding
support.

An example of Base64-encoded messages is shown in the following screenshot. This data is
from the Tango chat application:

Base64-encoded Tango messages

Parsing Third-Party Application Files

[359]

Encryption is a bit more difficult as the app may not even provide access to the encrypted
data. For example, the database directory may be empty or the cells containing the
encrypted data are simply empty. Occasionally, you will have access to the encrypted blobs
within the databases, but this data cannot always be decrypted. Again, when you face
encrypted data, look elsewhere. Have you examined the journal and write ahead logs?
Have you examined the cache and media directories? Have you examined the SD card?
These are common questions you will often have to ask yourself to ensure you are not
relying on your forensic tools too much and that you are covering your bases to ensure
nothing is overlooked. As explain explained, start with what you know. We know that the
cache and database directories store user data, so this is a great place to start your manual
examination:

Data storage locations for applications

Parsing Third-Party Application Files

[360]

Application data storage
Almost all applications rely on SQLite for data storage. These databases can be stored
internally on the device or on the SD card for relevant phones. When SQLite is used,
temporary memory files are commonly associated to each database to make SQLite more
efficient. These files, which were previously mentioned, are write ahead logs (WAL) and
shared memory files (SHM). These files may contain data that is not present in the SQLite
database. Few tools will parse this information, but the ones that are offered by Sanderson
Forensics, will get you started. Go to

. We can see several
WAL and SHM files associated with various WhatsApp database files in the following
screenshot:

An SHM and WAL example

In addition to SQLite databases, other devices rely on Plist, XML, JSON, and DAT files for
application data storage, account data storage, purchase information, and user preferences.
These files will be discussed in the Android, iOS, and Windows Phone sections.

Parsing Third-Party Application Files

[361]

iOS applications
Apple relies on SQLite and Plists as common locations for application data storage. On
occasion, JSON files will be used for application data. Examining applications recovered
from an iOS device can be overwhelming. We suggest you start with what you know and
what your tool is telling you. Examine the Installed Applications listed by your tool of
choice. From here, go directly to the applications directory and ensure that nothing is being
overlooked. When a user deletes an app, the databases often remain, and the link to the
installed application is simply broken. Examining all areas of the iOS device will prevent
the examiner from missing data:

Installed applications on an iPhone

After examining the installed applications, search the and directories
for relevant Plist files that may contain application artifacts. Finally, examine the
directory on the iPhone as well as the one associated with the app to recover additional
artifacts, such as shared photos, videos, audio files, and profile pictures. in the following
screenshot, we are examining the directory associated to the WhatsApp application:

Parsing Third-Party Application Files

[362]

Application data on an iPhone

Android applications
Android devices heavily rely on SQLite for application storage. The preference files for each
application are often in the DAT or XML files. More so than an iOS device, examining
application on an Android may be one of the most tedious tasks due to the various locations
that data may be stored in. The best place to start is with a tool that will provide a listing of
what is installed on the device. Next, go to the subdirectories off the directory.
Remember, these applications may possess unique names and may be difficult to locate.
You may have to research the application to gain a better understanding of the filenames
that are associated with each of them. The following screenshot is an example of application
directories on an Android device:

Parsing Third-Party Application Files

[363]

Application data on an Android device

Each of these application directories will contain a lot of data to examine. We recommend
starting with the and directories and then expanding your analysis to
other locations on the device. The next locations to examine include the and
partitions. If the data appears to be missing or is claimed to have been deleted, do not forget
to examine the directory on the device and SD card.

Application data can exist in several locations in the directories. Using a tool, such as
UFED Physical Analyzer, which provides keyword-searching capabilities spanning beyond
parsed items, will really help in locating artifacts pertaining to specific applications. We are
looking at the large amount of data stored in the directory on an Android device in
the following screenshot. This data is unique from what is stored in the application
directory that was discussed previously. Each location needs to be thoroughly examined to
ensure nothing is missed. It is important that you take what you learned in previous
chapters to analyze Android application data:

Parsing Third-Party Application Files

[364]

Unique application data in the directory

Windows Phone applications
Applications found on Windows Phones are no different than those found on iOS and
Android devices. SQLite is the most common format used for data storage. However, not all
devices allow for SQLite files to be stored internally on the phone. For these devices, all
application data will be found on the SD card. Some may view this as lucky because it saves
us from having to examine several locations on the device, but the SD card and the
applications themselves may be encrypted.

Where possible, it is best to remove the SD card and acquire it using a forensic tool. When
this is not possible, the next best method would be to try to acquire the SD card through the

Parsing Third-Party Application Files

[365]

phone using a forensic tool. Again, this will often result in missed data. As a final effort, live
analysis can be completed by mounting the device and using Windows Explorer to view the
applications stored on the device and SD card, as discussed in , Windows Phone
Forensics.

Forensic methods used to extract third-party
application data
Almost all commercial tools will attempt to support the extraction of third-party
applications. We recommend that you test your tools thoroughly and often if you rely on
tool output for your investigative results. This is because the apps are updated so frequently
that it is nearly impossible for the tools to not miss something. You must learn the
applications, how they work, and how the devices store the data for each. We strongly
recommend that you use your tool to triage the case and then dive into the data to manually
extract anything that the tools miss. Make sure that you only include factual data in your
forensic report and not everything that the tools parses. The tools cannot decipher the
difference between device and human creation. Only a trained examiner can do this with
confidence.

Commercial tools
As you have seen in this book, there are many tools that can handle the job of smartphone
forensics. However, there are a few that really shine when it comes to parsing application
data. Magnet IEF, Oxygen Detective, Forensics Suite, and UFED Physical Analyzer are a
few that do a good job of recovering data from the application categories discussed in this
chapter. We will take a quick glance at how to leverage each of these tools to parse
application data. Keep in mind that these tools will not find every application and will not
parse all data for applications.

Oxygen Detective
Oxygen Detective can be used to examine application data. For this example, we are
assuming the acquisition is complete, and we are simply attempting to analyze the data.
Note that Oxygen is capable of acquiring and analyzing smartphones. In this example, we
acquired the device with Cellebrite UFED and analyzed it with Oxygen. To load a data
dump of a device and examine application artifacts, follow these steps:

Parsing Third-Party Application Files

[366]

Launch Oxygen Detective.1.
Select the Import File option and choose your image. Multiple image formats are2.
supported for ingestion into Oxygen.
After parsing is complete, start examining the parsed applications:3.

The Oxygen Detective application view

Next, start examining applications of interest by clicking on the application and4.
examining all of the associated files.

Parsing Third-Party Application Files

[367]

Once you select the application, you will be presented with the data that was5.
parsed and the full file path of where the data was extracted. Use this path to
manually verify the findings. We are looking at the Pinterest application in the
following screenshot. Note how the container, file, and table of interest
are provided and hyperlinked for the user. The tool is even encouraging you to
dig deeper and verify the findings:

Oxygen Detective Pinterest example

Oxygen Detective has built-in features for keyword searching, bookmarking, and
reporting. In addition, the SQLite Database and Plist Viewer will provide a
method to examine relevant application data.

Report all account information, chats, messages, locations, and any other data of6.
interest as this provides relevance to your investigation.

Magnet IEF
Magnet IEF has been known as one of the leaders in Internet and application parsing for
digital media. They are just as strong with mobile devices. Again, one tool cannot do the
job, but IEF proves to be the strongest and parses the most applications from Android, iOS,

Parsing Third-Party Application Files

[368]

and Windows Phones. The downside to this tool is that we are forced to rely on the
reported artifacts as the file system is not normalized and provided for manual
examination. To use IEF to examine application artifacts, follow these steps:

Launch IEF and then select MOBILE (note that, if MOBILE is grayed out, you1.
need to obtain a license that provides mobile support from Magnet Forensics):

Magnet IEF

Select IMAGES and navigate to your image file. More than one image can be2.
loaded and parsed at the same time.
Select NEXT and determine what you want to parse. We recommend selecting3.
CHECK ALL:

Parsing Third-Party Application Files

[369]

Magnet IEF supported artifacts

Browse to the location where you wish to save the case file and select Find4.
Evidence.
Once complete, the IEF Report Viewer will be displayed:5.

Parsing Third-Party Application Files

[370]

Application Artifacts in Magnet IEF

The first step in examination is to review what is parsed by IEF. In the preceding
screenshot, we can see that Telegram was parsed. Start your examination in the most
relevant location. For example, if you are looking for Telegram chats, go right to that
location and start examining the artifacts. Note that Messages and Chats are pulled into two
different categories. This is common when Private Messaging is used. All relevant
application containers should be examined. Additionally, IEF provides the full file path
from which the data was recovered. Use another tool to navigate to this file for verification
and manual examination.

IEF also provides logical keyword search; essentially it will search what it can parse and
nothing else, bookmarking and reporting. Make sure that you only report factual
application artifacts and incorporate this into your final forensic report.

Parsing Third-Party Application Files

[371]

UFED Physical Analyzer
Physical Analyzer is one of the most well-known mobile forensic tools on the market. This
tool is one of the best platforms to manually conduct an examination in addition to
leveraging the data parsed by the tool. For application analysis, Physical Analyzer is good
at parsing chats and contacts for each supported application. For data that in not parsed,
Physical Analyzer provides an analytical platform that enables the user to browse the file
system to uncover additional artifacts. Keyword searching is robust in this tool and is
capable of searching raw Hex as well as parsed data. In addition, a SQLite viewer is
included.

To conduct a forensic examination of application data in Physical Analyzer, follow these
steps to get started:

Launch Physical Analyzer by double-clicking on the UFD shortcut image file or by double-
clicking on the tool icon.

Load the image file and wait until parsing completes.

Examine the parsed artifacts, as shown in the following screenshot. For this example, we are
examining Tango. Physical Analyzer recovered Tango data in Chats, Contacts, Installed
Applications, Passwords, and User Accounts:

Tango as parsed by Physical Analyzer

We recommend examining what is parsed and referring to the hyperlink of where the data
is being extracted. Navigate to this path and then examine the entire application directory.

Parsing Third-Party Application Files

[372]

To find the application directory, leverage built-in keyword searching capabilities to aid in
the investigation. Remember, you may have to conduct research to determine the file names
associated to the app if this is not apparent. Tango, for example, does not use the term
Tango in the file paths or filenames. The directory is and the primary database is

. This makes our job harder because we can't simply search for Tango and get
accurate results.

Open source tools
For those on a budget, it is possible to examine application data from smartphones using
open source solutions and cheap tools. These solutions are more difficult, and they are often
not the answer for those new to forensics who need the assistance of a tool to aid in data
extraction and analysis. Examining application data is tedious, and if you do not know
where to look, the chances are that you will need to spend some money to get a head start.
Tools, such as Andriller, can be purchased for around $500. This not free, but it's also not
$10,000, which is what some of the other commercial tools cost. We will cover a few of our
favorite tools that are useful in parsing application data from smartphones.

Autopsy
Autopsy is one of the best tools to examine Android and Windows Phones. Unfortunately,
iOS parsing is not provided in Autopsy. Autopsy can be downloaded from

. When using Autopsy, the Android Analyzer module will parse some
application data from the device. This module is unique in that it is currently the only tool
that parses WordsWithFriends, a gaming application, and was the first tool, other than
Oxygen Forensics, to provide Base64 decoding support for Tango chat messages. Some say
that Autopsy is the free solution for those who cannot afford Physical Analyzer.

To use Autopsy, download the software and install it on a Windows machine and follow
these instructions. Make sure that you are always using the latest version:

Launch Autopsy.1.
Create a new case:2.

Parsing Third-Party Application Files

[373]

Autopsy case creation

Select Next and then click on Finish.3.
Navigate to your image file and select Next.4.
Select the modules that you wish to run. Keyword Search and Android Analyzer5.
will be the most fruitful for an Android device. These modules can also be run
after the image is ingested. The Keyword search will prove to be just as robust as
Physical Analyzer:

Parsing Third-Party Application Files

[374]

Autopsy module selection

Autopsy provides access to file system data faster than any commercial or open6.
source tool available. Knowing where to go from there is the hard part. Again,
start with anything that is in the extracted content and then dive into the file
system and examine the files that we discussed in this book and relevant
application data:

Parsing Third-Party Application Files

[375]

Autopsy results

Once you have identified applications of interest, start with what is parsed and then
examine the relevant database, cache, and preference files. At the time of writing, Autopsy
did not have a SQLite viewer available. All databases must be exported and examined in a
SQLite viewer. We like SQLite Forensic Browser, which has been discussed in this book.

Autopsy was able to parse Tango chat messages and contacts, similarly to Physical
Analyzer, IEF, and Oxygen. The following screenshot shows the results of the decoded
messages:

Parsing Third-Party Application Files

[376]

Tango decoded by Autopsy

Other methods to extract application data
One of the easiest ways to parse application data is to create custom SQLite queries and
Python scripts to parse data of interest. We discussed several suggestions and examples of
queries and scripts throughout this book. Python is one of the best solutions because it is
free and we have full access to the libraries. One thing to keep in mind is that our scripts
have to be updated frequently to keep up with application updates. Also, make sure your
encoding schemas are correct to prevent application artifacts from being missed or not
interpreted correctly.

In addition to Python scripts, free parsers that support application extraction already exist.
WhatsApp Extract is a free tool for both Android and iOS that will extract WhatsApp
application data from devices. Often, this free tool will extract more data than the
commercial solutions, depending on the permissions the user allocated during installation.
Others, such as Mari DeGrazia () and
Adrian Leong (), have
developed scripts to parse applications, recover deleted data from SQLite free pages,
decode Base64, and more. We recommend using what is already available before
developing your own.

Parsing Third-Party Application Files

[377]

Summary
Many apps are not what they claim to be. Never trust what you read about the apps, as
Quality Assurance testing across these apps is not consistent, and we have determined
several vulnerabilities and security flaws over the years that provide us with methods of
piecing application data back together. In addition, application updates will change the way
we need to look at the data. Understanding each smartphone and how it stores application
data is the first step in successfully examining applications on smartphones. Knowing that
updates may change data locations, encoding, and encryption, and how your tool functions,
is one of the hardest concepts for examiners to grasp. It is your job to learn the capabilities
of the application to uncover the most data from the mobile device.

Understanding how an application works is hard enough, and then we have to consider
how to extract the artifacts. As you have read in this book, there are so many ways to parse
data from smartphones. One tool is never enough and the reality is that mobile forensics
can be expensive. We hope that we have provided you with a practical guide that teaches
you to acquire and analyze artifacts that are recovered from smartphones. Take what you
learned and apply it immediately to your methods to conduct mobile forensics or use it to
make you more prepared for your next job. Remember that practice, testing, and training
will make you better at your job and help you perfect the art of mobile forensics.

Index

A
adb command
 local adb server, killing
 used, for accessing adb shell
 used, for detecting connected device
 used, for handling Android device
ADB pull data extraction
 about
 browser history, extracting
 call logs, extracting
 device information, extracting
 SMS/MMS, extracting
 social networking/IM chats, analyzing
 SQLite Browser, used for data viewing
Adrian Leong
 reference link
advanced logical acquisition
AFLogical
 about
 download link
ahead-of-time (AOT)
Android apps, reverse engineering
 APK file, extracting from Android device ,

 steps
Android apps
 analyzing
 Facebook Android app analysis
 Gmail Android app analysis
 Google Chrome Android app analysis
 reverse engineering
 Skype Android app analysis
 WhatsApp Android app analysis
Android Debug Bridge
 about
 USB debugging ,

Android device, connecting to workstation
 about
 device cable, identifying
 device drivers, installing
Android device
 connecting, to workstation
 rooting
Android forensic setup
 steps
Android image
 analyzing
Android malware, spreading ways
 Android vulnerabilities, exploiting
 app downloading malicious update
 bluetooth and MMS propagation
 legitimate application, repacking
 remote install
Android malware
 about
 identifying ,
 reference link ,
 spreading, reasons
Android model
 about
 Android Runtime (ART)
 application framework layer
 application layer
 Dalvik virtual machine
 libraries
 Linux kernel layer
 reference link
Android operating system
 reference link
Android Runtime (ART)
Android security
 about
 application sandbox

[379]

 application signing
 full disk encryption
 permission model
 reference link
 secure inter-process communication
 secure kernel
Android Software Development Kit (SDK)
 installation , , ,
 reference link ,
Android Virtual Device (AVD)
Android
 about
 evolution
 file hierarchy
 reference link ,
 versions
Apple iTunes
Apple Watch
 about ,
 artifacts
 hardware
 models ,
 reference link
application data storage
 about
 Android application
 iOS application
 Windows Phone applications
apps
 securing, reference link
archiving phase
autopsy
 about
 download link ,
 image, adding to , ,
 used, for analyzing image
 using

B
b-tree layout
 reference link
backup password
 bruteforcing
best practices, forensics
 about

 changes, documenting
 evidence, documenting
 evidence, preserving
 evidence, securing
black box
BlackLight
 about
 features
 reference link
 usages
blocks, application framework layer
 content provider
 resource manager
 telephony manager
Boot ROM
 about
 reference link
built-in apps, Apple
 Contacts
 e-mail

C
CAIS
 reference link
Cellebrite UFED (Universal Forensic Extraction

Device)
Cellebrite UFED Physical Analyzer
 features
 reference link
 supported devices
 usages , , ,
 working with
chambers
ChevronWP7.exe file
 download link
Clockwork recovery
ClockworkMod
commercial tools, used for extracting third-party

application data
 about
 Magnet IEF
 Oxygen Detective
 Physical Analyzer
Contacts application
Cydia

[380]

D
Dalvik bytecode
Dalvik virtual machine (DVM)
data acquisition methods
 logical ,
 manual ,
 physical
data acquisition
 about ,
 commercial forensic tool acquisition methods

, , ,
 data extraction, commercial tools avoiding
 key artifacts, for examination
 SD card data extraction methods ,
 sideloading, ChevronWP7 used
data extraction
data extraction techniques
 logical data extraction
 manual data extraction
 physical data extraction
 types
data recovery, Android
 about ,
 deleted data, recovering from external SD card

, , , ,
 deleted data, recovering from internal memory

 deleted files recovery, by parsing SQLite files
,

 files, recovering with file carving techniques
data synchronization
deleted SQL records
 recovering
Device Firmware Upgrade (DFU) mode ,
device locking
dex2jar tool
 about
 reference link
dex2oat
differential backup
digital evidence
 obtaining, from mobile devices
digital forensics
Discretionary Access Control (DAC)

DiskDigger
dot commands

E
Elcomsoft iOS Forensic Toolkit (EIFT)
 about
 features
 guided mode , , ,
 manual mode
 reference link
 supported devices
 supported devices, compatibilities
 uses
Elcomsoft Phone Breaker , ,
encoding
 versus encryption ,
encrypted backup
 creating
 extracting
 keychain, decrypting
encrypted file system
encryption ,
ES Explorer
evidence rules
 about
 admissible
 authentic
 believable
 complete
 reliable
Exchangeable Image File Format (EXIF)
Executable and Linkable Format (ELF)
exiftool
 reference link
Explore Keychain feature
Extended File System (EXT)

F
Facebook Android app
 analysis
faraday bag
Fastboot utility
features, Windows Phone
 cortana
 Geofence and advanced location settings

[381]

 wallet
file hierarchy, Android
 /boot
 /cache
 /data
 /misc
 /recovery
 /sdcard
 /system
 about
file system acquisition ,
file system, Android
 about
 cgroup file system
 devpts file system
 Extended File System (EXT)
 Flash Friendly File System (F2FS)
 proc file system
 Robust File System (RFS)
 root file system
 sysfs
 tmpfs file system
 VFAT
 viewing
 Yet Another Flash File System 2(YAFFS2)
files
 about
 cookies
 downloaded applications
 keyboard cache
 photos
 recordings
 snapshots
 wallpaper
filesystem
 about
 disk partition
 user data partition
Find My iPhone feature
forensic environment, setting up for Android
 Android Debug Bridge
 Android Software Development Kit (SDK)
 Android Virtual Device (AVD) , , ,

,
 connected device, accessing ,

 device, accessing with adb command
 setting up
forensic
 best practices
 examination, performing
forensically sound
forensics methods, used for third-party application

data
 commercial tools
 open source tools
fstab file
FTK Imager
 download link
Full Dick Encryption (FDE)

G
Gmail Android app
 analysis
Google account
 used, for recovering contacts ,
Google Chrome Android app
 analysis
Google USB Driver
graphical user interface (GUI)

H
hardcoded keys
 GID (Group ID)
 UID (Unique ID)
HFS Plus filesystem
 about ,
 reference link
HFS Plus volume
 about
 structure
HFSX

I
iCloud backups
 extracting
 working with ,
iCloud
 about ,
 Find My Friends

[382]

 Find My iPhone
identification phase, mobile phone evidence

extraction
 device information, identifying
 examination goals
 external data storage
 legal authority
 potential evidence sources
ideviceinfo command-line tool
imaging the device
International Telecommunication Union
Internet Evidence Finder (IEF) Mobile
iOS database files
 about
 address book contacts ,
 address book images
 calendar events
 call history ,
 consolidated GPS cache
 notes
 photos metadata
 reference link
 Safari bookmarks
 Short Message Service (SMS)
 voicemail
iOS devices
 analyzing, with free methods
 data, reference link
 non-volatile (NAND Flash)
 operating modes
 volatile (RAM) memory
iOS security
 about ,
 activation lock
 Address Space Layout Randomization (ASLR)

 code signaling
 data execution prevention (DEP)
 data protection
 data wipe
 encryption
 passcodes
 privilege separation
 Sandboxing
 Stack smashing protection

IP-Box
 reference link
iPad hardware
 about
 reference link
iPad models
 about ,
 reference link
iPad Pro
 reference link
iPhone backup
 structure
iPhone models
 about
 hardware model, identifying ,
iPhone OS
 about
 APP Store
 iOS architecture
 iOS security
 jailbreaking
iPhone
 hardware ,
iTunes backup structure
 info.plist file
 manifest.mbdb file
 manifest.plist file
 status.plist file
iTunes backup
 about
 auto-syncing, disabling ,
 encrypted backup
 records, pairing ,
 structure
 uncrypted backup
iTunes software
iTunes
 download link

J
jailbreak
 reference link ,
jailbroken devices
 acquisitioning ,
Java SE Development Kit (SDK)

[383]

JD-GUI tools ,
Joint Test Action Group (JTAG)
 about ,
 reference link
 steps
just-in-time (JIT)

K
kernel
 reference link
key artifacts, for extraction
 application data, extracting
 e-mail, extracting , ,
 SMS, extracting

L
lockdown certificates
logical acquisition ,
logical data extraction
 about
 ADB backup extraction , ,
 ADB dumpsys extraction , ,
 ADB pull data extraction
 content providers, using ,
 Join Test Action Group (JTAG)
Low Level Bootloader (LLB)

M
Magnet ACQUIRE
 about
 features
 reference link
 usages
Mandatory Access Control (MAC)
manifest.mbdb file
 header
 record
 reference link
Mari DeGrazia
 reference link
Marshmallow
MCC/MNC codes
 reference link
Mobile Device Management (MDB)

mobile forensics
 about
 acquisition
 approaches
 challenges
 examination/analysis
 seizure category
 tool leveling system
mobile operating systems
 Android
 iOS
 overview
 Windows phone
mobile phone evidence extraction
 about
 archiving phase
 document and reporting phase
 intake phase
 isolation phase
 preparation phase
 presentation phase
 processing phase
 verification phase
mobile phones
 potential evidence stored

N
NAND flash
 reference link
NowSecureCE
 features
 reference link
 usages
 working with

O
Open Handset Alliance (OHA)
open source tools, used for extracting third-party

application data
 about
 autopsy
 other methods
operating modes, iOS devices
 about
 Device Firmware Upgrade (DFU) ,

[384]

 forensic environment, setting up
 normal mode
 recovery mode
out of band (OOB)
Oxygen Forensic Detective
 about
 features
 reference link
 usage
Oxygen Forensic Extractor
 used, for performing iOS device acquisition
Oxygen Forensics SQLite Viewer

P
passcode
 bypassing ,
Phone Companion App
photo vault app
physical acquisition
 about
 system partition, imaging
 user partition, imaging
 via custom ramdisk ,
physical data extraction
 about
 Android Phone, imaging ,
 chip-off technique
 memory card (SD) card, imaging
Plist Editor
 reference link
plist files
 about
 HomeDomain plist files
 RootDomain plist files
 SystemPreferencesDomain
 WirelessDomain plist files
private messages (DM)
Property List Editor
property list
 about ,
 plist files
Python script
 download link
 reference link

Q
QuickTime Player

R
ramdisk
random number generator (RNG)
re-balling
read only (ro)
read-only memory (ROM)
read/write (rw)
recovery loop
redsnow tool
 about
 reference link
Restore Contacts option
Robust File System (RFS)
root
root access
 adb shell, using
 gaining
rooting
 about
 advantages
 disadvantages

S
scalpel.conf file
 reference link
Scalpel
 about ,
 reference link
screen lock bypassing techniques
 about
 adb command, using
 adb connection
 Android Device Manager, using
 automated tools, using
 Forgot Password/Forgot Pattern option, using

 gesture.key files, deleting
 lock screen UI, crashing in Android 5.X
 modified recovery mode, checking for
 new recovery partition, flashing
 other techniques

[385]

 secure USB debugging bypass, adb keys used

 secure USB debugging bypass, in Android 4.4.2

 settings.db file, updating
 smudge attack
 third-party lock screen bypass, by booting into

safe mode
screen lock
 about
 passcode (alphanumeric)
 pattern lock
 PIN code
secure boot chain
security chambers
 Elevated Rights Chamber (ERC)
 Least Privileged Chamber (LPC)
 Trusted Computing Base (TCB)
security model, Windows Phone
 App sandboxing
 capability-based model
 encryption
 Windows chambers
Security-Enhanced Linux (SELinux)
 about
 enforcing mode
 permissive mode
 reference link
shared memory files (SHM)
Skype Android app
 analysis
SQLite Browser
 reference link
SQLite command-line client
 reference link
SQLite databases
 about
 accessing, with commercial tools ,
 iOS database files
 special commands ,
 SQLite Browser
 SQLite command-line client
 SQLite Professional
 SQLite Spy
 standard SQL queries

SQLite Forensic Browser
 reference link
SQLite Professional
 reference link
SQLite Spy
 reference link
sqlite3
stack canary
Super Backup app
superuser capabilities
superuser privileges
Sync Settings option
system keybag ,
system partition

T
Test Access Port (TAPs)
third-party applications
 chat applications
 data extraction, forensic methods used
 financial application
 GPS application
 overview
 secure applications
 social networking applications , ,
tiles
timestamps
 about
 Mac absolute time
 reference link
 UNIX timestamps
tool leveling system
 about
 chip-off
 hex dump
 logical extraction
 manual extraction
 micro read
TouchXperience

U
unencrypted backup
 about
 BlackLight , ,
 extracting

 iExplorer
 iPhone Backup Extractor
 keychain, decrypting
Unique Device Identifier (UDID) ,
UNIX epoch time
URI addressing scheme
user data partition

V
verification phase, mobile phone evidence

extraction
 about
 extracted data, comparing to handset data
 hash values, using
 multiple tools, used for comparing results
Verify apps feature
VFAT

W
WhatsApp Android app
 analysis
Windows Mobile Device Manager (WPDM)
Windows Phone App

Windows Phone app for Desktop ,
Windows Phone SDK 7.1
 download link
Windows Phone
 about
 filesystem ,
 reference link ,
 security model
Windows registry
WinHex
 used, for imaging memory card
wiping
 reference link
WMAppManifest.xml application
 reference link
WPDeviceManager.exe file
 download link
write ahead logs (WAL)
 reference link
write blocker

Y
Yet Another Flash File System 2 (YAFFS2)

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Introduction to Mobile Forensics
	Why do we need mobile forensics?
	Mobile forensics
	Challenges in mobile forensics

	The mobile phone evidence extraction process
	The evidence intake phase
	The identification phase
	The legal authority
	The goals of the examination
	The make, model, and identifying information for the device
	Removable and external data storage
	Other sources of potential evidence

	The preparation phase
	The isolation phase
	The processing phase
	The verification phase
	Comparing extracted data to the handset data
	Using multiple tools and comparing the results
	Using hash values

	The document and reporting phase
	The presentation phase
	The archiving phase

	Practical mobile forensic approaches
	Mobile operating systems overview
	Android
	iOS
	Windows phone

	Mobile forensic tool leveling system
	Manual extraction
	Logical extraction
	Hex dump
	Chip-off
	Micro read

	Data acquisition methods
	Physical acquisition
	Logical acquisition
	Manual acquisition

	Potential evidence stored on mobile phones
	Rules of evidence
	Good forensic practices
	Securing the evidence
	Preserving the evidence
	Documenting the evidence
	Documenting all changes

	Summary

	Understanding the Internals of iOS Devices
	iPhone models
	Identifying the correct hardware model

	iPhone hardware
	iPad models
	Understanding the iPad hardware
	Apple Watch models
	Understanding the Apple Watch hardware
	File system
	The HFS Plus file system
	The HFS Plus volume

	Disk layout
	iPhone operating system
	The iOS architecture
	iOS security
	Passcodes
	Code signing
	Sandboxing
	Encryption
	Data protection
	Address Space Layout Randomization
	Privilege separation
	Stack smashing protection
	Data execution prevention
	Data wipe
	Activation Lock

	The App Store
	Jailbreaking

	Summary

	iOS Forensic Tools
	Working with Elcomsoft iOS Forensic Toolkit
	Features of EIFT
	Usage of EIFT
	The guided mode
	The manual mode

	EIFT-supported devices
	Compatibility notes

	Oxygen Forensic Detective
	Features of Oxygen Forensic Detective
	Usage of Oxygen Forensic Detective

	Working with Cellebrite UFED Physical Analyzer
	Features of Cellebrite UFED Physical Analyzer
	Usage of Cellebrite UFED Physical Analyzer
	Supported devices

	Working with BlackLight
	Features of BlackLight
	Usage of BlackLight

	Open source or free methods
	Working with Magnet span /ACQUIRE/span
	Features of Magnet span /ACQUIRE/span
	Usage of Magnet span /ACQUIRE/span

	Working with NowSecureCE
	Features of NowSecureCE
	Usage of NowSecureCE

	Summary

	Data Acquisition from iOS Devices
	Operating modes of iOS devices
	The normal mode
	The recovery mode
	DFU mode
	Setting up the forensic environment

	Physical acquisition
	Physical acquisition via a custom ramdisk
	Imaging the user and system partitions

	Encrypted file systems
	File system acquisition
	Logical acquisition
	Bypassing the passcode
	Acquisition of jailbroken devices
	Summary

	Data Acquisition from iOS Backups
	iTunes backup
	Pairing records
	Understanding the backup structure
	info.plist
	manifest.plist
	status.plist
	manifest.mbdb
	Header
	Record

	Unencrypted backup
	Extracting unencrypted backups
	iPhone Backup Extractor
	iExplorer
	BlackLight

	Decrypting the keychain

	Encrypted backup
	Extracting encrypted backups
	Decrypting the keychain
	Elcomsoft Phone Breaker

	Working with iCloud backupa //as
	Extracting iCloud backups

	Summary

	Android Data Extraction Techniques
	Data extraction techniques
	Manual data extraction
	Logical data extraction
	ADB pull data extraction
	Using SQLite Browser to view the data
	Extracting device information
	Extracting call logs
	Extracting SMS/MMS
	Extracting browser history
	Analysis of social networking/IM chats

	ADB backup extraction
	ADB dumpsys extraction
	Using content providers

	Physical data extraction
	Imaging an Android Phone
	Imaging a memory (SD) card
	strong /Joint Test Action Group/strong
	Chip-off

	Summary

	iOS Data Analysis and Recovery
	Timestamps
	UNIX timestamps
	Mac absolute time

	SQLite databases
	Connecting to a database
	SQLite special commands
	Standard SQL queries
	Accessing a database using commercial tools
	Key artifacts – important iOS database files
	Address book contacts
	Address book images
	Call history
	SMS messages
	Calendar events
	Notes
	Safari bookmarks and cache
	The photos metadata
	Consolidated GPS cache
	Voicemail

	Property lists
	Important plist files
	The HomeDomain plist files
	The RootDomain plist files
	The WirelessDomain plist files
	The SystemPreferencesDomain plist files

	Other important files
	Cookies
	Keyboard cache
	Photos
	Wallpaper
	Snapshots
	Recordings
	Downloaded applications

	The Apple Watch
	Recovering deleted SQLite records
	Summary

	Android Data Analysis and Recovery
	Analyzing an Android image
	Autopsy
	Adding an image to Autopsy
	Analyzing an image using Autopsy

	Android data recovery
	Recovering deleted data from external SD card
	Recovering data deleted from internal memory
	Recovering deleted files by parsing SQLite files
	Recovering files using file carving techniques
	Recovering contacts using your Google account

	Summary

	Understanding Android
	The evolution of Android
	The Android model
	The Linux kernel layer
	Libraries
	Dalvik virtual machine
	Android Runtime (ART)
	The Application Framework layer
	The applications layer

	The Android security
	Secure kernel
	The permission model
	Application sandbox
	Secure inter-process communication
	Application signing
	Security-Enhanced Linux
	Full disk encryption

	The Android file hierarchy
	The Android file system
	Viewing file systems on an Android device
	Common file systems found on Android

	Summary

	Android Forensic Setup and Pre Data Extraction Techniques
	Setting up the forensic environment for Android
	The Android Software Development Kit
	The Android SDK installation
	An Android Virtual Device
	Connecting an Android device to a workstation
	Identifying the device cable
	Installing the device drivers

	Accessing the connected device
	The Android Debug Bridge
	USB debugging

	Accessing the device using adb
	Detecting connected devices
	Killing the local adb server
	Accessing the adb shell

	Handling an Android device

	Screen lock bypassing techniques
	Using adb to bypass the screen lock
	Deleting the gesture.key file
	Updating the settings.db file
	Checking for the modified recovery mode and adb connection
	Flashing a new recovery partition
	Using automated tools
	Using Android Device Manager
	Smudge attack
	Using the Forgot Password/Forgot Pattern option
	Bypassing Third-Party Lock Screen by booting into safe mode
	Secure USB debugging bypass using adb keys
	Secure USB debugging bypass in Android 4.4.2
	Crashing the lock screen UI in Android 5.x
	Other techniques

	Gaining root access
	What is rooting?
	Rooting an Android device
	Root access – adb shell

	Summary

	Android App Analysis, Malware, and Reverse Engineering
	Analyzing Android apps
	Facebook Android app analysis
	WhatsApp Android app analysis
	Skype Android app analysis
	Gmail Android app analysis
	Google Chrome Android app analysis

	Reverse engineering Android apps
	Extracting an APK file from an Android device
	Steps to reverse engineer Android apps

	Android malware
	How does malware spread?
	Identifying Android malware

	Summary

	Windows Phone Forensics
	Windows Phone OS
	Security model
	Windows chambers
	Encryption
	Capability-based model
	App sandboxing

	The Windows Phone file system
	Data acquisition
	Sideloading using ChevronWP7
	Commercial forensic tool acquisition methods
	Extracting data without the use of commercial tools
	SD card data extraction methods
	Key artifacts for examination
	Extracting SMS
	Extracting e-mail
	Extracting application data

	Summary

	Parsing Third-Party Application Files
	Third-party application overview
	Chat applications
	GPS applications
	Secure applications
	Financial applications
	Social networking applications

	Encoding versus encryption
	Application data storage
	iOS applications
	Android applications
	Windows Phone applications

	Forensic methods used to extract third-party application data
	Commercial tools
	Oxygen Detective
	Magnet IEF
	UFED Physical Analyzer

	Open source tools
	Autopsy
	Other methods to extract application data

	Summary

	Index

