
Jonathon Manning,
Paris Buttfield-Addison & Tim Nugent

Learning

 Swift
BUILDING APPS FOR macOS, iOS, AND BEYOND

2nd Edition

Covers Swift 3.x

Jon Manning, Paris Buttfield-Addison, and Tim Nugent

Learning Swift
Building Apps for macOS, iOS, and Beyond

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96706-5

[LSI]

Learning Swift
by Jon Manning, Paris Buttfield-Addison, and Tim Nugent

Copyright © 2017 Secret Lab. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Melanie Yarbrough
Copyeditor: James Fraleigh
Proofreader: Amanda Kersey

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2016: First Edition
March 2017: Second Edition

Revision History for the Second Edition
2017-03-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491967065 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Swift, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491967065

Table of Contents

Preface. ix

Part I. Swift Basics

1. Getting Started. 3
The Apple Developer Program 5

Registering for the Apple Developer Program 6
Downloading Xcode 7

Creating Your First Project with Xcode 8
The Xcode Interface 13

Developing a Simple Swift Application 21
Designing the Interface 22
Connecting the Code 23

Using the iOS Simulator 26
Conclusion 27

2. The Basics of Swift. 29
The Swift Programming Language 30

Swift 2 Versus Swift 3 32
Playgrounds 32
Comments 35
Variables and Constants 35
Operators 36
Control Flow 37

Loops 37
Switches 39

Types 41

iii

Working with Strings 42
Comparing Strings 43
Searching Strings 43
Optional Types 44
Type Casting 46
Tuples 47
Arrays 47
Dictionaries 49
Enumerations 50
Associated Values 51
Sets 52

Functions and Closures 53
Using Functions as Variables 56
Closures 58
The defer Keyword 59
The guard Keyword 60

Making Your Code Swifty 60
Conclusion 61

3. Swift for Object-Oriented App Development. 63
Classes and Objects 63

Initialization and Deinitialization 65
Properties 66
Inheritance 66
Protocols 70
Extensions 71
Access Control 72
Operator Overloading 75
Generics 76
Subscripts 77

Structures 78
Modules 78
The Swift Standard Library, Foundation, Cocoa, and Cocoa Touch 79
Swift Package Manager 80
Data 83

Loading Data from Files and URLs 83
Serialization and Deserialization 84

Error Handling 85
Memory Management 87
Design Patterns in Cocoa and Cocoa Touch 89

Model-View-Controller 89
Delegation 90

iv | Table of Contents

Structuring an App 92
The Application Delegate 93
Window Controllers and View Controllers 93
Nibs and Storyboards 94

Conclusion 94

Part II. A macOS App

4. Setting Up the macOS Notes App. 97
Designing the macOS Notes App 98
Creating the macOS Project 101
Defining a Document Type 105
Adding the Icon 110
Conclusion 112

5. Working with Documents on macOS. 113
The NSDocument Class 113
Storing Data in the Document 114
Storing Text 115

Package File Formats 116
The guard Keyword, and Why It’s Great 120
Saving Files 121
Loading Files 124

A Basic UI 125
Conclusion 134

6. User Interfaces and iCloud. 135
Updating the UI 135
Document-Filetype-Extension UI 139

Getting an Icon for the Collection View Cells 143
Adding Attachments 145
Storing and Managing Attachments 153
Displaying Data in the Collection View 157

Enhancing Attachments 160
Opening Attachments 160

Adding Attachments via Drag-and-Drop 163
Adding QuickLook 166

Location 171
iCloud 177
The Basics of iCloud 178
Conclusion 181

Table of Contents | v

Part III. An iOS App

7. Setting Up the iOS Notes App. 185
Designing the iOS Notes App 186
Creating the iOS Project 192
Enabling the iOS App for iCloud 196
Defining a Document Type 200
Conclusion 202

8. Working with Files in iCloud. 203
The App Sandbox 203
iCloud Availability 205
Creating the Document List View Controller 206

View Controllers and Storyboards 208
The Navigation Controller 208
Collection Views 212
Using Constraints to Control Size and Position 214

Creating the Document Class 218
Listing Documents 225
Creating Documents 234
Downloading from iCloud 237
Deleting Documents 241
Renaming Documents 247
Conclusion 251

9. Working with Documents on iOS. 253
Adding a View to Display Notes 253
Editing and Saving Documents 262
Conclusion 264

10. Working with Files and File Types. 265
Setting Up the Interface for Attachments 265
Listing Attachments 269

Determining Types of Attachments 271
Displaying Attachment Cells 274

Dealing with Conflicts 280
Creating the Quick Look Thumbnail 286
Conclusion 289

11. Images and Deletion. 291
Adding Attachments 291
Adding Image Attachments 293

vi | Table of Contents

Viewing Attachments 300
Deleting Attachments 310
Conclusion 317

12. Supporting the iOS Ecosystem. 319
Sharing with UIActivityController 319
Handoffs 322
Searchability 327

Indexing Activities 329
Spotlight Extensions 330

Conclusion 341

13. Multimedia and Location Attachments. 343
Audio Attachments 343
Video Attachments 356
Location Attachment 364
Conclusion 374

14. Polishing the iOS App. 375
Opening Links in SFSafariViewController 375

3D Touch 379
Home Screen Quick Actions 380
Peek and Pop 383

Settings 387
Undo Support 388
Images with Filters 391
Worldwide Apps 395

Internationalization 396
Localization 399

Accessibility 405
Splitscreen Multitasking 410
Conclusion 411

Part IV. Extending Your Apps

15. Building a watchOS App. 415
Designing for the Watch 416
Designing Our watchOS App 418
Creating the watchOS Extension 420

Communicating with the iPhone 424
User Interfaces for the Apple Watch 438

Table of Contents | vii

Showing Note Contents 444
Creating New Notes 450
Adding Handoff Between the Watch and the iPhone 452
Glances 455

Conclusion 459

16. Code Quality and Distribution. 461
Debugging 461
Instruments 464
Testing 468

Unit Testing 469
UI Testing 470

Using Objective-C and Swift in the Same Project 472
Using Swift Objects in Objective-C 472
Using Objective-C Objects in Swift 473

The App Store 474
App Thinning 475
Testing iOS Apps with TestFlight 476

Conclusion 477

Index. 479

viii | Table of Contents

Preface

Welcome to Learning Swift! This book will help you put the Swift programming lan‐
guage into practice by walking you through the development of a note-taking appli‐
cation for the Apple iOS, macOS, and watchOS platforms.

Swift is a pretty amazing modern language, taking the best from other newer lan‐
guages without reinventing the wheel. Swift is easy to write, easy to read, and really
hard to make mistakes in.

Our philosophy is that the best way to learn Swift is to build apps using it! To build
apps, though, you need a great framework, and Apple has several: Cocoa, Cocoa
Touch, and WatchKit, to name only a few. This book could quite easily be titled
Learning Cocoa and Cocoa Touch with Swift, or something similar, because the frame‐
works are just as important as the language itself. At the time of writing, Swift is cur‐
rently at version 3, and has a bright future ahead of it.

Resources Used in This Book
We recommend following the book by writing code yourself as you progress through
each chapter. If you get stuck, or just want to archive a copy of the code, you can find
what you need via our website.

As this book teaches you how to build a real-world app, we primarily focus on show‐
ing you the coding side of things. We’re not going to ask you to paint your own icons,
so we’ve provided them for you. You can also download them from our website.

Audience and Approach
This book is solely focused on Swift 3 and does not cover the use of Objective-C. We
might mention it occasionally, but we don’t expect you to know how to use it. We first
cover the basics of the Swift 3 language, and then move on to teach as much of the
language as we can, as well as the use of the Cocoa, Cocoa Touch, and watchOS

ix

http://www.secretlab.com.au/books/learning-swift-3

frameworks, through the construction of a complete app for both macOS and iOS. As
a reminder, Swift is the programming language, Cocoa is the framework for macOS
apps, Cocoa Touch is the framework for iOS apps, and somewhat predictably,
watchOS is the framework for the Apple Watch.

This book’s approach differs from that of other programming books that you may
have encountered. As we’ve mentioned, we believe that the best way to learn Swift is
to build apps using it. We assume that you’re a reasonably capable programmer, but
we don’t assume you’ve ever developed for iOS or macOS, or used Swift or Objective-
C before. We also assume that you’re fairly comfortable navigating macOS and iOS as
a user.

Organization of This Book
In this book, we’ll be talking about Cocoa and Cocoa Touch, the frameworks used on
macOS and iOS, respectively. Along the way, we’ll also be covering Swift, including its
syntax and features.

In Part I, “Swift Basics”, we begin with a look at the tools used for programming with
Swift, as well as the Apple Developer Program. Then we move on to the basics of the
Swift programming language and structuring a program for Apple’s platforms, as well
as common design patterns.

Chapter 1 covers the basics of Apple’s developer program and guides you through a
simple Swift app.

Chapter 2 explores all the basics of Swift and prepares you for using it to build more
complex applications.

Chapter 3 discusses Swift’s object-oriented features, as well as the structure of a good
app.

In Part II, “A macOS App”, we build a simple note-taking application for Macs, tar‐
geting macOS. Along the way, we discuss the design of the app, how it’s structured,
how it uses documents, and how to build all the features.

Chapter 4 starts off our macOS notes app and sets up the document model and icon.

Chapter 5 goes into detail on working with documents in macOS apps.

Chapter 6 connects the app to iCloud and finishes up the macOS app.

In Part III, “An iOS App”, we build a fully featured iOS note-taking application as a
companion for the macOS app from Part II.

Chapter 7 starts off our iOS app and sets up the same document model for iOS.

Chapter 8 connects the iOS app to iCloud.

x | Preface

Chapter 9 creates an interface on iOS for displaying our notes.

Chapter 10 sets up the iOS app to handle attachments.

Chapter 11 adds image support to the iOS app.

Chapter 12 adds sharing and searching support to the iOS app.

Chapter 13 adds audio, video, and location attachments to the iOS app.

Chapter 14 finishes the iOS app with a whole lot of polish!

In Part IV, “Extending Your Apps”, we add a watchOS app and explore bug hunting
and performance tuning.

Chapter 15 adds a watchOS app to the iOS app, allowing for Apple Watch support.

Chapter 16 explores debugging and performance tuning.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xi

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, errata, etc.) is available for down‐
load at our website.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Swift, Second Edition by
Jonathon Manning, Paris Buttfield-Addison, and Tim Nugent (O’Reilly). Copyright
2017 Secret Lab, 978-1-491-96706-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

xii | Preface

http://secretlab.com.au/books/learning-swift
mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-swift.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Jon thanks his mother, father, and the rest of his crazily extended family for their tre‐
mendous support.

Paris thanks his mother, without whom he wouldn’t be doing anything nearly as
interesting, let alone writing books.

Tim thanks his parents and family for putting up with his rather lackluster approach
to life.

We’d all like to thank our editors, Rachel Roumeliotis and Brian MacDonald—their
skill and advice were invaluable to completing the book. Likewise, all the O’Reilly
Media staff we’ve interacted with over the course of writing the book have been the
absolute gurus of their fields.

A huge thank you to Tony Gray and the Apple University Consortium (AUC) for the
monumental boost they gave us and others listed on this page. We wouldn’t be writ‐
ing this book if it weren’t for them. And now you’re writing books, too, Tony—sorry
about that!

Preface | xiii

http://bit.ly/learning-swift
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.auc.edu.au

Thanks also to Neal Goldstein, who deserves full credit and/or blame for getting us
into the whole book-writing racket.

We’re thankful for the support of the goons at MacLab (who know who they are and
continue to stand watch for Admiral Dolphin’s inevitable apotheosis), as well as pro‐
fessor Christopher Lueg, Dr. Leonie Ellis, and the rest of the staff at the University of
Tasmania for putting up with us. “Apologies” to Mark Pesce. He knows why.

Additional thanks to Rex S., Nic W., Andrew B., Jess L., and Ash J., for a wide variety
of reasons. And very special thanks to Steve Jobs, without whom this book (and many
others like it) would not have reason to exist.

Thanks also to our tech reviewers, with special thanks to Chris Devers and Tony Gray
for their thoroughness and professionalism.

Finally, thank you very much for buying our book—we appreciate it! And if you have
any feedback, please let us know. You can email us at lab@secretlab.com.au and find us
on Twitter at @thesecretlab.

xiv | Preface

mailto:lab@secretlab.com.au
http://twitter.com/thesecretlab

PART I

Swift Basics

CHAPTER 1

Getting Started

This book teaches the Swift 3 programming language by exploring the development
of three applications for Apple platforms: macOS, iOS, and watchOS. This book’s
approach might differ from what you’re used to, because our philosophy is that the
best way to learn Swift is to build apps using it! The vast majority of the code in this
book will be part of the apps we’re building—a full note-taking app for macOS, iOS,
and watchOS—rather than individual pieces of sample code. You can see the final
product in Figure 1-1.

3

Figure 1-1. Our finished app, for macOS, iOS, and watchOS

Our app is fully functional, but we do make some deliberate design and feature deci‐
sions along the way to constrain the scope a little (the book is almost 500 pages!). As
we mentioned in the Preface, we assume that you’re a reasonably capable program‐
mer, but we don’t assume you’ve ever developed for iOS or macOS, or used Swift or
Objective-C before. We also assume that you’re fairly comfortable navigating macOS
and iOS as a user.

We recommend that you work through this book front to back,
building the macOS app, then the iOS app, then the watchOS app,
even if you’re only interested in one of the platforms. By approach‐
ing the book this way, you’ll get the best understanding of what
building a real app with Swift requires.

Programming with Swift, and using the Cocoa and Cocoa Touch frameworks to
develop macOS and iOS apps, respectively, involves using a set of tools developed by
Apple. In this chapter, you’ll learn about these tools, where to get them, how to use
them, how they work together, and what they can do. At the end of this chapter, you’ll
make a very simple Swift application for iOS. Then we dive into the details of the
Swift language and Apple’s frameworks in the following two chapters.

4 | Chapter 1: Getting Started

The Apple development tools have a long and storied history. Orig‐
inally a set of standalone application tools for the NeXTSTEP OS,
they were eventually adopted by Apple for use as the official
macOS tools. Later, Apple largely consolidated them into one appli‐
cation, known as Xcode, though some of the applications (such as
Instruments and the iOS simulator) remain somewhat separate,
owing to their relatively peripheral role in the development pro‐
cess. You’ll notice the prefix NS on many of the classes you use for
Cocoa and Cocoa Touch development with Swift. This prefix
comes from the NeXTSTEP heritage of many of Apple’s frame‐
works.

In addition to the development tools, Apple offers developers a paid membership in
its Developer Program, which provides resources and support. The program allows
access to online developer forums and specialized technical support for those interes‐
ted in talking to the framework engineers. If you are just interested in learning Swift
and exploring the development tools, you can do so for free. You will need a paid
membership, however, if you wish to use developer services like iCloud in your apps
or to distribute anything you build through either the iOS or macOS App Store.

Swift is open source, but this doesn’t really mean much when it
comes to using it to develop apps for macOS, iOS, and watchOS.
There’s an excellent community of people working on the language
that you can find at the Swift website.

With the introduction of Apple’s curated App Stores for macOS, iOS, and watchOS, as
well as emerging Apple platforms like tvOS, the Developer Program has become the
official way for developers to provide their credentials when submitting applications
to Apple—in essence, it is your ticket to selling apps through Apple. In this chapter,
you’ll learn how to sign up for the Apple Developer Program, as well as how to use
Xcode, the development tool used to build apps in Swift.

The Apple Developer Program
The paid Apple Developer Program provides access to beta development tools, beta
operating system releases, and distribution ability through Apple’s app store. It also
allows you to use some of the cloud-dependent features of the platforms, such as
iCloud, CloudKit, In-App Purchase, and App Groups.

The Apple Developer Program | 5

https://developer.apple.com/programs/
http://swift.org
https://developer.apple.com/programs/

We will be using a lot of cloud-dependent features, including
iCloud, in the apps we build throughout this book. You will not be
able to run these apps if you do not have a paid membership.

It isn’t necessary to be a member of the Apple Developer Program if you don’t intend
to submit apps to the app stores, or don’t need the cloud-dependent features. We
strongly recommend joining, though, if you intend to build apps for any of Apple’s
platforms, as the other benefits are substantial:

• Access to the Apple Developer Forums, which are frequented by Apple engineers
and designed to allow you to ask questions of your fellow developers and the
people who wrote the OS.

• Access to beta versions of the OS before they are released to the public, which
enables you to test your applications on the next version of the macOS, iOS,
watchOS, and tvOS platforms, and make necessary changes ahead of time. You
also receive beta versions of the development tools.

• A digital signing certificate (one for each platform) used to identify you to the
App Stores. Without this, you cannot submit apps to the App Store, making a
membership mandatory for anyone who wants to release software either for free
or for sale via an App Store.

That said, registering for the Developer Program isn’t necessary to view the docu‐
mentation or to download the current version of the developer tools, so you can play
around with writing apps without opening your wallet.

Registering for the Apple Developer Program
To register for the Developer Program, you’ll first need an Apple ID. It’s quite likely
that you already have one, as the majority of Apple’s online services require one to
identify you. If you’ve ever used iCloud, the iTunes store (for music or apps), or
Apple’s support and repair service, you already have an ID. You might even have
more than one (one of this book’s authors has four). If you don’t yet have an ID, you’ll
create one as part of the registration process. When you register for the Developer
Program, the membership gets added to your Apple ID.

6 | Chapter 1: Getting Started

https://developer.apple.com/devforums/

If you don’t want to register for the paid developer program, you
can skip to “Downloading Xcode” on page 7 for instructions on
installing Xcode, the developer tools.
Once again, keep in mind that you won’t be able to build the apps
that we teach in this book if you don’t have a paid membership, as
we use cloud-dependent features such as iCloud.
There are alternatives to many of Apple’s tools—such as the Google
Maps SDK for iOS, or cloud-storage services from Amazon and
Microsoft. However, you’ll still need a paid membership through
Apple to put apps in the iTunes App Store.

Once you’re on the Apple Developer Program website, simply click Enroll, and follow
the steps to enroll.

You can choose to register as an individual or as a company. If you register as an indi‐
vidual, your apps will be sold under your name. If you register as a company, your
apps will be sold under your company’s legal name. Choose carefully, as it’s very diffi‐
cult to convince Apple to change your program’s type.

If you’re registering as an individual, you’ll just need your credit card. If you’re regis‐
tering as a company, you’ll need your credit card as well as documentation that
proves you have authority to bind your company to Apple’s terms and conditions.

For information on code signing and using Xcode to test and run
your apps on your own physical devices, see Apple’s App Distribu‐
tion Guide. We don’t cover this in the book, as it’s a process that
changes often.

Apple usually takes about 24 hours to activate an account for individuals, and longer
for companies. Once you’ve received confirmation from Apple, you’ll be emailed a
link to activate your account; when that’s done, you’re a full-fledged developer!

Downloading Xcode
To develop apps for either platform, you’ll use Xcode, Apple’s integrated development
environment. Xcode combines a source code editor, debugger, compiler, profiler, iOS
simulator, Apple Watch simulator, and more into one package. It’s where you’ll spend
the majority of your time when developing applications.

At the time of writing, Xcode is only available for Mac, but who
knows what the future holds for the iPad Pro?

The Apple Developer Program | 7

https://developer.apple.com/programs/
http://bit.ly/app_dist_guide
http://bit.ly/app_dist_guide

You can get Xcode from the Mac App Store. Simply open the App Store application
and search for “Xcode,” and it’ll pop up. It’s a free download, though it’s rather large
(several gigabytes at the time of writing).

Once you’ve downloaded Xcode, it’s straightforward enough to install it. The Mac
App Store gives you an application that on first launch sets up everything you need to
use Xcode. Just launch the downloaded app, and follow the prompts, and you’ll be up
and running in no time.

This book covers Swift 3, which is available only if you’re using
Xcode 8 or later. Make sure you’re using the latest version of Xcode
from the Mac App Store. It’s good practice to use the latest Xcode at
all times.

Creating Your First Project with Xcode
Xcode is designed around a single window. Each of your projects will have one win‐
dow, which adapts to show what you’re working on.

To start exploring Xcode, you’ll first need to create a project by following these steps:

1. Launch Xcode. You can find it by opening Spotlight (by pressing ⌘-space bar)
and typing Xcode. You can also find it by opening the Finder, going to your hard
drive, and opening the Applications directory. If you had any projects open previ‐
ously, Xcode will open them for you. Otherwise, the “Welcome to Xcode” screen
appears (see Figure 1-2).

8 | Chapter 1: Getting Started

Figure 1-2. The “Welcome to Xcode” screen

2. Create a new project by clicking “Create a new Xcode project” or go to
File→New→Project.
You’ll be asked what kind of application to create. The template selector is divi‐
ded into two areas. On the lefthand side, you’ll find a collection of application
categories. You can choose to create an iOS, watchOS, or macOS application
from the project templates, which will set up a project directory to get you
started.
Because we’re just poking around Xcode at the moment, it doesn’t really matter
what we select, so choose Application under the iOS header and select Single
View Application. This creates an empty iOS application and displays the project
settings window shown in Figure 1-3.

Creating Your First Project with Xcode | 9

Figure 1-3. The project settings window

3. Name the application. Enter HelloSwift in the Product Name section.
4. Enter information about the project. Depending on the kind of project template

you select, you’ll be asked to provide different information about how the new
project should be configured.
At a minimum, you’ll be asked for the following information, no matter which
platform and template you choose:

The product’s name
This is the name of the project and is visible to the user. You can change this
later.

Your organization’s name
This is the name of your company or group. It’s not directly used by Xcode,
but new source code files that you create will mention it.

Your organization identifier
This is used to generate a bundle ID, a string that looks like a reverse domain
name (e.g., if O’Reilly made an application named MyUsefulApplication, the
bundle ID would be com.oreilly.MyUsefulApplication).

10 | Chapter 1: Getting Started

Bundle IDs are the unique identifier for an application,
and are used to identify that app to the system and to the
App Store. Because each bundle ID must be unique, the
same ID can’t be used for more than one application in
either of the iOS or Mac App Stores. That’s why the for‐
mat is based on domain names—if you own the site use‐
fulsoftware.com, all of your bundle IDs would begin with
com.usefulsoftware, and you won’t accidentally use a bun‐
dle ID that someone else is using or wants to use because
nobody else owns the same domain name.

If you don’t have a domain name, enter anything you like, as long as it looks
like a backward domain name (e.g., com.mycompany will work).

If you plan on releasing your app, either to the App Store
or elsewhere, it’s very important to use a company identi‐
fier that matches a domain name you own. The App Store
requires it, and the fact that the operating system uses the
bundle ID that it generates from the company identifier
means that using a domain name that you own eliminates
the possibility of accidentally creating a bundle ID that
conflicts with someone else’s.

If you’re writing an application for the Mac App Store, you’ll also be prompted
for the App Store category (whether it’s a game, an educational app, a social net‐
working app, or something else).
Depending on the template, you may also be asked for other information (e.g.,
the file extension for your documents if you are creating a document-aware
application, such as a Mac app). You’ll also be asked which language you want to
use; because this book is about Swift, you should probably choose Swift! The
additional information needed for this project is covered in the following steps.

5. Make the application run on the iPhone by choosing iPhone from the Devices
drop-down list.

iOS applications can run on the iPad, iPhone, or both. Appli‐
cations that run on both are called “universal” applications and
run the same binary but have different user interfaces. For this
exercise, just choose iPhone. You should be building universal
iOS apps in general, and we’ll be doing that when we properly
start on iOS in Part III.

Creating Your First Project with Xcode | 11

6. Leave the rest of the settings as shown in Figure 1-4. Click Next to create the
project.

Figure 1-4. The project settings

7. Choose where to save the project. Select a location that suits you. We recommend
putting all your work related to this book (and other Swift programming learning
you might do) in one folder. You might notice a little checkbox for Source Con‐
trol; this creates a source code control repository for your code, giving you a
place where you can save and manage different versions of your code as you cre‐
ate them. While in general this is a good idea to use, for this example project,
make sure this is unchecked.

Once you’ve done this, Xcode will open the project, and you can now start using the
entire Xcode interface, as shown in Figure 1-5.

12 | Chapter 1: Getting Started

Figure 1-5. The entire Xcode interface

The Xcode Interface
As mentioned, Xcode shows your entire project in a single window, which is divided
into a number of sections. You can open and close each section at will, depending on
what you want to see.

Let’s take a look at each of these sections and examine what they do.

The editor
The Xcode editor (Figure 1-6) is where you’ll be spending most of your time. All
source code editing, interface design, and project configuration take place in this sec‐
tion of the application, which changes depending on which file you have open.

If you’re editing source code, the editor is a text editor, with code completion, syntax
highlighting, and all the usual features that developers have come to expect from an
integrated development environment. If you’re modifying a user interface, the editor
becomes a visual editor, allowing you to drag around the components of your inter‐
face. Other kinds of files have their own specialized editors as well.

When you first create a project, the editor will start by showing the project settings, as
seen in Figure 1-6.

Creating Your First Project with Xcode | 13

Figure 1-6. Xcode’s editor, showing the project settings

The editor can also be split into a main editor and an assistant editor through the edi‐
tor selector. The assistant shows files that are related to the file open in the main edi‐
tor. It will continue to show files that have a relationship to whatever is open, even if
you open different files.

For example, if you open an interface file and then open the assistant, the assistant
will, by default, show related code for the interface you’re editing. If you open another
interface file, the assistant will show the code for the newly opened files.

At the top of the editor, you’ll find the jump bar. The jump bar lets you quickly jump
from the content that you’re editing to another piece of related content, such as a file
in the same folder. The jump bar is a fast way to navigate your project.

The toolbar
The Xcode toolbar (Figure 1-7) acts as mission control for the entire interface. It’s the
only part of Xcode that doesn’t significantly change as you develop your applications,
and it serves as the place where you can control what your code is doing.

Figure 1-7. Xcode’s toolbar

From left to right, after the macOS window controls, the toolbar features the follow‐
ing items:

Run button (Figure 1-8)
Clicking this button instructs Xcode to compile and run the application.

14 | Chapter 1: Getting Started

Figure 1-8. The Run button

Depending on the kind of application you’re running and your currently selected
settings, this button will have different effects:

• If you’re creating a Mac application, the new app will appear in the Dock and
will run on your machine.

• If you’re creating an iOS application, the new app will launch in either the
iOS simulator or on a connected iOS device, such as an iPhone or iPad.
Additionally, if you click and hold this button, you can change it from Run to
another action, such as Test, Profile, or Analyze. The Test action runs any
unit tests that you have set up; the Profile action runs the application Instru‐
ments (we cover this much later, in Chapter 16); and the Analyze action
checks your code and points out potential problems and bugs.

Stop button (Figure 1-9)
Clicking this button stops any task that Xcode is currently doing—if it’s building
your application, it stops; and if your application is running in the debugger, it
quits it.

Figure 1-9. The Stop button

Creating Your First Project with Xcode | 15

Scheme selector (Figure 1-10)
Schemes are what Xcode calls build configurations—that is, what’s being built,
how, and where it will run (i.e., on your computer or on a connected device).

Figure 1-10. The scheme selector

Projects can have multiple apps inside them. When you use the scheme selector,
you choose which app, or target, to build.

To select a target, click the lefthand side of the scheme selector.

You can also choose where the application will run. If you are building a Mac
application, you will almost always want to run the application on your Mac. If
you’re building an iOS application, however, you have the option of running the
application on an iPhone simulator or an iPad simulator. (These are in fact the
same application; it simply changes shape depending on the scheme that you’ve
selected.) You can also choose to run the application on a connected iOS device if
it has been set up for development.

Status display (Figure 1-11)
The status display shows what Xcode is doing—building your application, down‐
loading documentation, installing an application on an iOS device, and so on.

Figure 1-11. The status display

If there is more than one task in progress, a small button will appear on the left‐
hand side, which cycles through the current tasks when clicked.

Editor selector (Figure 1-12)
The editor selector determines how the editor is laid out. You can choose to dis‐
play either a single editor, the editor with the assistant, or the versions editor,

16 | Chapter 1: Getting Started

which allows you to compare different versions of a file if you’re using a revision
control system like Git or Subversion.

Figure 1-12. The editor selector

We don’t have anywhere near the space needed to talk about
using version control in your projects in this book, but it’s an
important topic. We recommend Jon Loeliger and Matthew
McCullough’s Version Control with Git, 2nd Edition (O’Reilly).

View selector (Figure 1-13)
The view selector controls whether the navigator, debug, and utility panes appear
on screen. If you’re pressed for screen space or simply want less clutter, you can
quickly summon and dismiss these parts of the screen by clicking each of the
elements.

Figure 1-13. The view selector

The navigator
The lefthand side of the Xcode window is the navigator, which presents information
about your project (Figure 1-14).

Creating Your First Project with Xcode | 17

http://shop.oreilly.com/product/0636920022862.do

Figure 1-14. The navigator pane has eight tabs at the top

The navigator is divided into eight tabs, from left to right:

Project navigator
Lists all the files that make up your project. This is the most commonly used nav‐
igator, as it determines what is shown in the editor. Whatever is selected in the
project navigator is opened in the editor.

Symbol navigator
Lists all the classes and functions that exist in your project. If you’re looking for a
quick summary of a class or want to jump directly to a method in that class, the
symbol navigator is a handy tool.

Search navigator
Allows you to perform searches across your project if you’re looking for specific
text. (The shortcut is ⌘-Shift-F. Press ⌘-F to search the current open document.)

Issue navigator
Lists all the problems that Xcode has noticed in your code. This includes warn‐
ings, compilation errors, and issues that the built-in code analyzer has spotted.

18 | Chapter 1: Getting Started

Test navigator
Shows all the unit tests associated with your project. Unit tests used to be an
optional component of Xcode but are now built into Xcode directly. Unit tests are
discussed much later, in “Unit Testing” on page 469.

Debug navigator
Activated when you’re debugging a program, and it allows you to examine the
state of the various threads that make up your program.

Breakpoint navigator
Lists all of the breakpoints that you’ve set for use while debugging.

Report navigator
Lists all the activity that Xcode has done with your project (such as building,
debugging, and analyzing). You can go back and view previous build reports
from earlier in your Xcode session, too.

Utilities
The utilities pane (Figure 1-15) shows additional information related to what you’re
doing in the editor. If you’re editing a Swift source file, for example, the utilities pane
allows you to view and modify settings for that file.

The utilities pane is split into two sections: the inspector, which shows extra details
and settings for the selected item; and the library, which is a collection of items that
you can add to your project. The inspector and the library are most heavily used
when you’re building user interfaces; however, the library also contains a number of
useful items, such as file templates and code snippets, which you can drag and drop
into place.

Creating Your First Project with Xcode | 19

Figure 1-15. The utilities pane, showing information for a source file

20 | Chapter 1: Getting Started

The debug area
The debug area (Figure 1-16) shows information reported by the debugger when the
program is running. Whenever you want to see what the application is reporting
while running, you can view it in the debug area. By default the debug area is not
shown unless there is a program running. You can bring up the debug area by using
the Xcode Toolbar View selector middle button.

Figure 1-16. The debug area

The area is split into two sections: the lefthand side shows the values of local variables
when the application is paused; the righthand side shows the ongoing log from the
debugger, which includes any logging that comes from the debugged application.

You can show or hide the debug area by clicking the view selector, at the top right of
the window (see Figure 1-17).

Figure 1-17. The central button in the view selector, which hides and shows the debug
area

Developing a Simple Swift Application
Through the bulk of this book, we’ll be developing a complex, full-fledged Swift
application, spanning three of Apple’s platforms: macOS, iOS, and watchOS. But for
now, before we even explore how and why Swift itself works, we’re going to get a brief
taste by building a very, very simple application for iOS.

If you’re more interested in Mac development, don’t worry! Exactly
the same techniques apply, and we’ll be exploring Mac apps in
detail later on, in Part II.

This simple application is extremely cutting-edge: it will display a single button that,
when tapped, will pop up an alert and change the button’s label to “Test!” We’re going

Developing a Simple Swift Application | 21

to build on the project we created earlier in “Creating Your First Project with Xcode”
on page 8, so make sure you have that project open.

It’s generally good practice to create the interface first and then add code. This means
that your code is written with an understanding of how it maps to what the user sees.

To that end, we’ll start by designing the interface for the application.

Designing the Interface
When building an application’s interface using Cocoa and Cocoa Touch, you have
two options. You can either design your application’s screens in a storyboard, which
shows how all the screens link together, or you can design each screen in isolation. As
a general rule, storyboards are a better way to create your interfaces even if you only
have a single view, as in the case of this first application we are building. The reason is
that if you later want to give your application more than one view, it will be easier to
do that in a storyboard.

Start by opening the interface file and adding a button. These are the steps you’ll need
to follow:

1. First, we’ll need to open the main storyboard. Because newly created projects use
storyboards by default, your app’s interface is stored in the Main.storyboard file.
Open it by selecting Main.storyboard in the project navigator. The editor will
change to show the application’s single, blank frame. You may need to pan or
zoom the view around to fit it on your monitor.

2. Next, we need to drag in a button. We’re going to add a single button to the
frame. All user interface controls are kept in the Object library, which is at the
bottom of the utilities pane on the righthand side of the screen.
To find the button, you can either scroll through the list until you find Button, or
type button in the search field at the bottom of the library.
Once you’ve located it, drag it into the frame.

3. At this point, we need to configure the button. Every item that you add to an
interface can be configured. For now, we’ll change only the text on the button.
Select the new button by clicking it, and select the Attributes Inspector, which is
the fourth tab from the right at the top of the utilities pane. You can also reach it
by pressing ⌘-Option-4.
There are many attributes on the button; look for the one labeled Title. The Title
attribute has two different components inside it: a drop-down box and a text field
containing “Button.” In the text field, change the button’s Title to “Hello!”

22 | Chapter 1: Getting Started

You can also change the button’s title by double-clicking it in
the interface.

Our simple interface is now complete (Figure 1-18). The only thing left to do is to
connect it to code.

Figure 1-18. Our completed simple interface

Connecting the Code
Applications aren’t just interfaces—as a developer, you also need to write code. To
work with the interface you’ve designed, you need to create connections between
your code and your interface.

Developing a Simple Swift Application | 23

There are two kinds of connections that you can make:

Outlets
Variables that refer to objects in the interface. Using outlets, you can instruct a
button to change color or size, or to hide itself. There are also outlet collections,
which allow you to create an array of outlets and choose which objects it contains
in the interface builder.

Actions
Methods in your code that are run in response to the user interacting with an
object. These interactions include the user touching a finger to an object, drag‐
ging a finger, and so on.

To make the application behave as we’ve just described—tapping the button displays a
label and changes the button’s text—we’ll need to use both an outlet and an action.
The action will run when the button is tapped and will use the outlet connection to
the button to modify its label.

To create actions and outlets, you need to have both the interface builder and its cor‐
responding code open. Then hold down the Control key and drag from an object in
the interface builder to your code (or to another object in the interface builder, if you
want to make a connection between two objects in your interface).

We’ll now create the necessary connections:

1. First, open the assistant by selecting the second button in the editor selector in
the toolbar. The symbol is two interlocking circles.
The assistant should open and show the corresponding code for the interface
ViewController.swift. If it doesn’t, click the intertwining circles icon (which repre‐
sents the assistant) inside the jump bar and navigate to Automatic→View‐
Controller.swift. Make sure you don’t select the assistant symbol in the toolbar, as
that will close the assistant editor.

2. Create the button’s outlet. Hold down the Control key and drag from the button
into the space below the first { in the code.
A pop-up window will appear. Leave everything as the default, but change the
Name to helloButton. Click Connect.
A new line of code will appear: Xcode has created the connection for you, which
appears in your code as a property in your class:
@IBOutlet weak var helloButton : UIButton!

3. Create the button’s action. Hold down the Control key, and again drag from the
button into the space below the line of code we just created. A pop-up window
will again appear.

24 | Chapter 1: Getting Started

This time, change the Connection from Outlet to Action, set the Name to showA
lert, and click Connect.
More code will appear. Xcode has created the connection, which is a method
inside the ViewController class:
@IBAction func showAlert(sender: Any) {
}

4. In the showAlert method you just created, add in the new code:
let alert = UIAlertController(title: "Hello!", message: "Hello, world!",
 preferredStyle: UIAlertControllerStyle.alert)
alert.addAction(UIAlertAction(title: "Close",
 style: UIAlertActionStyle.default, handler: nil))
self.present(alert, animated: true, completion: nil)
self.helloButton.setTitle("Test!", forState: UIControlState.normal)

This code does the following things:

It creates a UIAlertController, which displays a message to the user in a
pop-up window. It prepares it by setting its title to “Hello!” and the text
inside the window to “Hello, world!”

Finally, an action that dismisses the alert is added, with the text “Close”.

The alert is then shown to the user.

Finally, it sets the title of the button to “Test!”

The application is now ready to run. Click the Run button in the upper-left cor‐
ner. The application will launch in the iPhone simulator. Don’t worry if the app
takes a while to launch the first time; the simulator can take a fair amount of time
on first launch.

If you happen to have an iPhone or iPad connected to your com‐
puter, Xcode will try to launch the application on the device rather
than in the simulator. To make Xcode use the simulator, go to the
Scheme menu in the upper-left corner of the window and change
the selected scheme to the simulator.

When the app finishes launching in the simulator, tap the button. An alert will
appear; when you close it, you’ll notice that the button’s text has changed.

Developing a Simple Swift Application | 25

Using the iOS Simulator
The iOS simulator (Figure 1-19) allows you to test out iOS applications without hav‐
ing to use actual devices. It’s a useful tool, but keep in mind that the simulator behaves
very differently compared to a real device.

Figure 1-19. The iOS simulator

For one thing, the simulator is a lot faster than a real device and has a lot more mem‐
ory. That’s because the simulator makes use of your computer’s resources—if your
Mac has 8 GB of RAM, so will the simulator, and if you’re building a processor-

26 | Chapter 1: Getting Started

intensive application, it will run much more smoothly on the simulator than on a real
device.

The iOS simulator can simulate many different kinds of devices: everything from the
iPad 2 to the latest iPad Pro, and from the Retina display 3.5- and 4-inch iPhone-
sized devices to the latest 4.7-inch and 5.5-inch iPhones. It can also test on variable-
size devices.

To change the device, open the Hardware menu, choose Device, and select the device
you want to simulate. You can also change which simulator to use via the scheme
selector in Xcode. Each simulator device is unique, and they do not share informa‐
tion. So if you want to test your application on different simulators, you will need to
build it again through Xcode.

If you change hardware in the simulator while running an app, it
will crash and Xcode will alert you. Be wary of changing the hard‐
ware in the simulator while testing applications unless you really
like crashes.

You can also simulate hardware events, such as the Home button being pressed or the
iPhone being locked. To simulate pressing the Home button, you can either choose
Hardware→Home, or press ⌘-Shift-H. To lock the device, press ⌘-L or choose Hard‐
ware→Lock.

There are a number of additional features in the simulator, which we’ll examine more
closely as they become relevant to the various parts of iOS we’ll be discussing.

Conclusion
In this chapter, we’ve looked at the basics of the Apple Developer Program, as well as
the tools used for building apps. We’ve also made a really quick and simple iOS app,
just to give you a taste of the process. In the next two chapters, we’ll look at the Swift
programming language, using a feature of Xcode and Swift called Playgrounds to
work with Swift code outside the application context.

Conclusion | 27

CHAPTER 2

The Basics of Swift

The Swift programming language was first introduced in June 2014 at Apple’s World‐
wide Developers Conference (WWDC). Swift was a surprise to everyone: Apple had
managed to develop an entire language (as well as all the supporting libraries, devel‐
oper tools, and documentation) and make it work seamlessly with the existing
Objective-C language. And on top of that, it was a really good “1.0” language.

In June 2015, Apple announced Swift 2.0, improving the performance of the lan‐
guage, adding a collection of new features, and making the Cocoa and Cocoa Touch
platform APIs more Swift-like in style. Swift was open sourced on December 3, 2015,
and is now as much a community-run project as an Apple-run one. We can expect
Swift to evolve over time, in line with the developments in the Swift Open Source
project.

Xcode supports having multiple versions of the Swift language
installed. You might have a different version of the language if, for
example, you’ve downloaded a copy of Swift from the open source
project. For information on how to get a copy and use it in Xcode,
go to the Swift project’s Download page.

This book covers Swift 3, which was released in September 13, 2016. The 3.0 release
was a very big deal in the Swift community and included numerous changes to the
language as well as to the standard library. With the release of Swift 3, future changes
to the language aim to be smaller in scope and more backward compatible.

If you have older Swift code that you need to update to the latest
stable Swift syntax, Xcode provides a converter. Open the Edit
menu and choose Convert→To Latest Swift Syntax to get started.

29

http://www.swift.org
http://www.swift.org
https://swift.org/download/

Swift draws upon an extensive history of language design and has a number of very
cool design features that make developing software easier, simpler, and safer. We’ll
begin this chapter with a high-level overview of what Swift aims to do, and how it sets
about doing it, before we dive into the details of the language.

As Swift develops, it’s likely that some of the syntax that we use in
this book will become out of date or change (as is true for any pro‐
gramming book). We’ll keep the book’s page on our site up to date
with a changelog for the latest Swift for as long as we’re able.

In this chapter, you’ll learn the basics of coding in Swift 3.0.

The Swift Programming Language
The Swift programming language has the following goals:

Safety
Swift is designed to be a safe language. Many of the pitfalls of C, such as acciden‐
tally working with null pointers, are much harder to encounter. Swift is very
strongly typed, and objects aren’t allowed to be null except under very specific
circumstances.

Modernity
Swift contains a large number of modern language features designed to make it
easy to express the logic of your code. These include pattern-matching switch
statements (see “Switches” on page 39), closures (“Closures” on page 58), and the
concept of all values being objects to which you can attach properties and func‐
tions (“Extensions” on page 71).

Power
Swift has access to the entire Objective-C runtime and is seamlessly bridged to
Objective-C’s classes as well as its own standard library. This means that you can
use Swift right away to write full iOS and macOS apps—you don’t need to wait
for anyone to port any features from Objective-C to Swift. And if you’ve never
used Objective-C, then you don’t need to worry about Objective-C! You can do
everything you need to develop for Apple platforms using Swift.

So, what does Swift look like? Here’s an example:

func sumNumbers(numbers: Int...) -> Int {
 var total = 0
 for number in numbers {
 total += number
 }
 return total
}

30 | Chapter 2: The Basics of Swift

http://www.secretlab.com.au/books/learning-swift

let sum = sumNumbers(2,3,4,5)
print(sum)

This code snippet does the following things:

First, a function called sumNumbers is defined. This function takes one or more
Int values, which are integers (whole numbers), and returns a single Int. The
Int... denotes that the function takes a variable number of Int values; you can
access these values through the numbers variable, which is an array.

Inside the function, the variable total is declared. Note that the type isn’t
given—the compiler knows that it stores an Int, because it’s being set to the inte‐
ger value of 0.

Next, a for-in loop starts up, which loops over every number that was sent to the
method. Notice again that the type of the number variable isn’t defined—the com‐
piler infers that, given that numbers is an array of Int values, number should itself
be an Int.

The value of number is added to total.

When the loop is complete, total is returned.

The function sumNumbers is called with a collection of integers, and the result is
stored in the new variable sum. This variable is constant: by defining it with the
let keyword, we tell the compiler that its value never changes. Attempting to
change the value of a constant is an error.

Finally, we display the value using the print function, which prints values out to
the console.

There are a few interesting things to note here:

• You usually don’t need to define the type of variables. The compiler will do that
for you, based on what values you’re using.

• Even though the sumNumbers function takes a variable number of parameters,
there’s no weird syntax to deal with it (if you’re a C or C++ programmer, you
might remember struggling with va_start and friends).

• Variables that are declared with the let keyword are constants. The language is
designed so that any variables that can be a constant should be one to prevent
accidental changes later. Importantly, constants in Swift don’t have to be known

The Swift Programming Language | 31

at compile time. Instead, you can think of them as variables that are set only
once.

Swift 2 Versus Swift 3
If you already know Swift 2 and want to quickly get up to speed with what’s new in
the Swift 3 universe, here’s a quick rundown of the main changes:

• The great renaming. Almost every function and property was renamed in some
way. All function parameters now have labels unless you say otherwise; redun‐
dant words have been omitted; and the NS prefix was mostly dropped, so farewell
NSURL and UIColor.redColor(), hello URL and UIColor.red. Additionally, Swift
now has rules around how you should be naming your properties and functions,
which we’ll cover in “Making Your Code Swifty” on page 60.

• C-style for loop and the ++ and -- operators are now gone. After a long debate,
both the C-style for loop and the increment and decrement operators were seen
as holdovers from old languages. They made Swift trickier to learn for newcom‐
ers and just didn’t feel right in Swift. You can use for-in, while loops or stride
to replace their functionality.

• The private access modifier has been changed. Declaring parts of your code as
private means they can only be used when in the same scope as they were
declared. A new access modifier called fileprivate was introduced to perform
the same functionality private had in Swift 2.

• Swift Package Manager was released. Swift now comes with a nifty package man‐
ager to handle downloading and managing distribution of Swift code. If in the
past you were using Carthage or Cocoapods, the Swift Package Manager works in
a similar fashion. We’ll talk more about using the package manager in “Swift
Package Manager” on page 80.

If you have a Swift 2 codebase and are not quite ready to move to Swift 3, you can use
the version 2.3 released along with Swift 3.0—although you really ought to be moving
to Swift 3 as soon as possible.

Playgrounds
The easiest way to learn Swift is to use a playground. Playgrounds are environments
that let you write Swift code and see its results instantly. You don’t need to build and
run your code to see the results, and the code doesn’t need to be a part of a larger app.
This means that if you want to play around with the language, a function, or even
with a piece of a larger app, you don’t need to make it part of an entire app.

32 | Chapter 2: The Basics of Swift

The remainder of this chapter (but not the remainder of the book!) is written assum‐
ing that the code is being run in a playground. You should get used to working in one
if you want to follow along! Playgrounds are really useful, and we strongly recom‐
mend you use them when experimenting with and learning Swift.

It’s really useful to have quick access to a playground when you’re
learning and ultimately working with Swift. We recommend drag‐
ging a playground file (from wherever you saved it in the Finder) to
your macOS Dock. That way, you can use it to test Swift code
quickly and easily.

To start using a playground, you can create one from the “Welcome to Xcode” screen
that appears when Xcode starts up (see Figure 2-1).

You can also choose File→New→New Playground and create a new playground from
there. We’ll be working with iOS playgrounds in this part.

The difference between iOS and macOS playgrounds is simply the
libraries they have access to. For the purposes of these next few
chapters, there’s not a huge distinction between the two, but if you
were making a playground that specifically tested some iOS code,
you’d need to create an iOS playground.

When you create a playground, you’ll see something that looks like Figure 2-2. On
the lefthand side of the window, you can type Swift code. On the righthand side of the
window, you’ll see the result of each line of code that you write.

Playgrounds | 33

Figure 2-1. The “Welcome to Xcode” screen (click “Get started with a playground” to cre‐
ate a new playground)

Figure 2-2. An empty playground

34 | Chapter 2: The Basics of Swift

Comments
Comments in Swift are nonexecutable text. You can use comments as a note or
reminder to yourself. We use comments often in sample code in this book; they are
ignored by the compiler.

You can begin a single-line comment with two forward slashes (//) or open a multi‐
line comment using a forward slash and an asterisk (/*) and close it using an asterisk
followed by a forward slash (*/). Multiline comments can be nested:

 // This is a single-line comment.

 /* This is a multiple-line
 comment. */

 /*
 This is a comment.

 /* This is also a comment, inside the first! */

 Still a comment!
 */

Playgrounds (and only playgrounds) support a rich-text markup
within comments that allows you to define headings, lists, and
quotes, as well as include images and links. You can learn more
about this in Apple’s Markup Formatting Reference.

Variables and Constants
You define a variable in Swift using either the let or var keywords:

 var myVariable = 123
 let myConstantVariable = 123

When you define a variable using var, you’re allowed to change its value. If you
define one using let, it’s never allowed to change. Swift encourages you to use con‐
stants as much as possible, because they’re safer—if you know that a value can never
change, it won’t cause a bug by changing without you knowing about it:

 myVariable += 5

 myConstantVariable += 2
 // (ERROR: can't change a constant variable)

In addition to letting the compiler infer the type of your variables, you can also
explicitly tell the compiler what value the variable should have:

Comments | 35

http://apple.co/1q1OyWo

 // Explicit type of integer
 let anExplicitInteger : Int = 2

Variables and constants are allowed to initially have no value, but you need to assign
a value to them before you try to access them. In other words, if you create a variable
and don’t give it a value, the only thing you can do with it is to give it a value. After
that, you can use it as normal:

 var someVariable : Int
 someVariable += 2
 // ERROR: someVariable doesn't have a value, so can't add 2 to it
 someVariable = 2
 someVariable += 2
 // WORKS, because someVariable has a value to add to

Unlike many popular languages, Swift doesn’t require that you end
your lines of code with a semicolon. However, if you want to, that’s
totally OK.
You can also break your lines of code over multiple lines without
problems, like this:

 var someVariable =
 "Yes"

The single exception to the rule of not needing to use semicolons is
when you want to put multiple statements on a single line. In those
cases, you separate the statements with a semicolon:

 someVariable = "No"; print(someVariable)

Operators
To work with the contents of variables, you use operators. There’s a wide variety of
operators built into Swift, the most common of which are the arithmetic operators (+,
-, /, *, etc.):

 1 + 7 // 8
 6 - 5 // 1
 4 / 2 // 2
 4 * 0 // 0

In almost all cases, operators can only be used with two values of
the same type (see “Types” on page 41). If you try to divide a num‐
ber by a string, you’ll get a compile error.

In addition to these basic operators, you’ll also frequently work with equality and
inequality operators. These check to see whether two values are the same:

36 | Chapter 2: The Basics of Swift

 2 == 2 // true
 2 != 2 // false
 "yes" == "no" // false
 "yes" != "no" // true

Finally, the third most frequent operator you’ll encounter is the . operator, which lets
you access methods and properties:

 true.description // "true"

 4.advanced(by: 3) // 7

We’ll be covering methods and properties in more detail in “Classes
and Objects” on page 63.

Control Flow
In every program you write, you’ll want control over what code gets executed and
when. For this, we’ll make use of if statements, loops, and so on. The syntax for con‐
trol flow in Swift is very straightforward and includes some handy additional features
as well.

if statements in Swift are pretty much the same as in any other language, though in
Swift there’s no need to wrap the expression you’re checking in parentheses:

 if 1+1 == 2 {
 print("The math checks out")
 }
 // Prints "The math checks out", which is a relief

In Swift, the body of all if statements—as well as all loops—must be put between two
braces ({ and }). In C, C++, Java, and Objective-C, you can omit these braces if you
just want to have a single statement in your loop or if statement, like this:

if (something)
 do_something(); // NOT allowed in Swift!

However, this has led to all kinds of bugs and security problems caused by program‐
mers forgetting to include braces. So, in Swift, they’re mandatory.

Loops
When you have a collection of items, such as an array, you can use a for-in loop to
iterate over every item:

 let loopingArray = [1,2,3,4,5]
 var loopSum = 0

Control Flow | 37

 for number in loopingArray {
 loopSum += number
 }
 loopSum // = 15

The number variable used in the for-in loop is implicitly created. You don’t need to
define a variable called number to make it work.

You can also use a for-in loop to iterate over a range of values. For example:

 var firstCounter = 0
 for index in 1 ..< 10 {
 firstCounter += 1
 }
 // Loops 9 times

Note the ..< operator on the second line. This is a range operator, which Swift uses to
describe a range of numbers from one value to another. There are actually two range
operators: two dots and a left angle bracket (..<) and three dots and no angle bracket
(...). Called the half-range operator, ..< means a range that starts at the first value
and goes up to but does not include the last value. For example, the range 5..<9 con‐
tains the numbers 5, 6, 7, and 8. If you want to create a range that does include the last
number, you instead use the closed-range operator (...). The range 5...9 contains the
numbers 5, 6, 7, 8, and 9. You can use an inclusive range operator in for-in loops like
so:

 var secondCounter = 0
 for index in 1 ... 10 { // note the three dots, not two
 secondCounter += 1
 }
 // Loops 10 times

You can do a lot with the for loop and ranges but sometimes you need a bit more
control over how the loop iterates; this is where stride comes into play. The stride
function allows you to precisely control how you iterate over a sequence. So, for
example, say you wanted to iterate between 0 and 1, going up by 0.1 each time:

 for i in stride(from: 0, to: 1, by: 0.1) {
 print(i)
 }

This is the stride(from: to: by:) form, which is exclusive of the final number;
there is also an inclusive form stride(from: through: by:).

A while loop lets you repeatedly run code while a certain condition remains true. For
example:

 var countDown = 5
 while countDown > 0 {
 countDown -= 1

38 | Chapter 2: The Basics of Swift

 }
 countDown // = 0

while loops check to see if the condition at the start of the loop evaluates to true, and
if it does, they run the code (and then return to the start). In addition to while loops,
the repeat-while loop runs the code at least once and then checks the condition:

 var countUp = 0
 repeat {
 countUp += 1
 } while countUp < 5
 countUp // = 5

You can include the values of variables in strings by using the fol‐
lowing syntax:

let myNumber = 3
let myString = "My number is \(myNumber)"
// = "My number is 3"

You can also include the results of expressions:
let OtherString = "My number plus 1 is \(myNumber + 1)"
// = "My number plus one is 4"

Switches
A switch is a powerful way to run code that depends on the value of a variable.
Switches exist in other languages, but Swift kicks them into high gear.

To run different code based on the value of an integer, you can use a switch state‐
ment like this:

 let integerSwitch = 3

 switch integerSwitch {
 case 0:
 print("It's 0")
 case 1:
 print("It's 1")
 case 2:
 print("It's 2")
 default: // note: default is mandatory if not all
 // cases are covered (or can be covered)
 print("It's something else")
 }
 // Prints "It's something else"

In Swift, you can use the switch statement to handle more than just integers. You can
switch on many things, including string values:

 let stringSwitch = "Hello"

Control Flow | 39

 switch stringSwitch {
 case "Hello":
 print("A greeting")
 case "Goodbye":
 print("A farewell")
 default:
 print("Something else")
 }
 // Prints "A greeting"

You can also switch on tuples, variables that are bundles of similar data; they’re cov‐
ered more in “Tuples” on page 47. This functionality is especially powerful, as you
can write cases that run when only one of the components matches your condition:

 let tupleSwitch = ("Yes", 123)

 switch tupleSwitch {
 case ("Yes", 123):
 print("Tuple contains 'Yes' and '123'")
 case ("Yes", _):
 print("Tuple contains 'Yes' and something else")
 case (let string, _):
 print("Tuple contains the string '\(string)' and something else")
 default:
 break
 }
 // Prints "Tuple contains 'Yes' and '123'"

Finally, you can also use ranges in switches to create code that runs when the value
you’re testing falls between certain ranges:

 var someNumber = 15

 switch someNumber {
 case 0...10:
 print("Number is between 0 and 10")
 case 11...20:
 print("Number is between 11 and 20")
 case 21:
 print("Number is 21!")
 default:
 print("Number is something else")
 }
 // Prints "Number is between 11 and 20"

Switches in Swift work a little differently than switches in C and Objective-C. In
Swift, the execution of a section in a switch statement doesn’t automatically “fall
through” into the next section, which means you don’t need to include a break key‐
word at the end of your section.

40 | Chapter 2: The Basics of Swift

If you do want execution to fall through from one case into the
next, you use the fallthrough keyword, like so:

 let fallthroughSwitch = 10

 switch fallthroughSwitch {
 case 0..<20:
 print("Number is between 0 and 20")
 fallthrough
 case 0..<30:
 print("Number is between 0 and 30")
 default:
 print("Number is something else")
 }
 // Prints "Number is between 0 and 20"
 (and then)
 // "Number is between 0 and 30"

Additionally, switch statements are required to be exhaustive. This means that the
switch statement must cover all possible values. If you’re switching using a Bool type,
which can either be true or false, you must provide handlers for both values. If you
don’t, it’s a compiler error.

However, it’s sometimes not possible to cover all cases. With integers, for example, it’s
impossible to write a case for all possible numbers. In these cases, you provide a
default case, which is shorthand for “every other possible value.” So, to recap: in
Swift, you either provide a case for all possible values, or you provide a default case.

If multiple cases in a switch statement overlap—for example, case
0...10 and case 5...15—then the first matching case will be
used.

Types
Swift out of the box includes a variety of types to cover many basic situations:

Int

Represents whole numbers (e.g., 1)

Double

Represents decimal numbers (e.g., 1.2)

String

Represents a list of characters (e.g., "hello world")

Types | 41

Bool

Represents Boolean state (i.e., true or false)

These aren’t the only basic types that come with Swift, but they’re the ones you’ll run
into the most.

You don’t need to define what type the variable is. Swift will infer its type from its
initial value. This means that when you define a variable and set it to the value 2, that
variable will be an Int:

 // Implicit type of integer
 var anInteger = 2

Most types can’t be combined, because the compiler doesn’t know what the result
would be. For example, you can’t add a String to an Int value, because the result is
meaningless:

 // ERROR: Can't add a string to an integer
 anInteger += "Yes"

Working with Strings
In Swift, strings are sequences of Unicode characters. This means that they’re able to
store pretty much any character that has ever been a part of a human language, which
is great news for making your app translatable to other languages.

Creating a string in Swift is easy. You can create an empty string by creating a string
literal with nothing in it:

 let emptyString = ""

You can also create an empty string by using the String type’s initializer:

 let anotherEmptyString = String()

To check to see if a string is empty, you use the isEmpty property:

 emptyString.isEmpty // = true

You can also combine strings by using the + and += operators:

 var composingAString = "Hello"
 composingAString += ", World!" // = "Hello, World!"

Internally a string is a sequence of Character objects, each representing a Unicode
character. To loop over every character in a string, you can use a for-in loop:

 var reversedString = ""
 for character in "Hello".characters {
 reversedString = String(character) + reversedString
 }
 reversedString // = "olleH"

42 | Chapter 2: The Basics of Swift

To work out how many characters are in a string, you use the count function:

 "Hello".characters.count // = 5

The count function actually works on any collection, including
arrays and dictionaries.
Note that the number of characters in a string is not the same as the
number of bytes. Unicode characters can range in size from 1 byte
to 4 bytes, depending on their type (emoji, for example, are 4
bytes).

To change the case of a string, you use the uppercased and lowercased functions,
which return modified versions of the original string:

 string1.uppercased() // = "HELLO"
 string2.lowercased() // = "hello"

Comparing Strings
To compare two different strings, you just use the == operator. This operator checks
the contents of two strings to see if they contain the same characters:

 let string1 : String = "Hello"
 let string2 : String = "Hel" + "lo"

 if string1 == string2 {
 print("The strings are equal")
 }

In other languages like C and Objective-C, the == operator checks
to see if two values are equal, or if two variables refer to the same
location in memory. If you really do want to see if two string vari‐
ables refer to the same object, you use the === operator (note that
it’s three equals signs, instead of two):

 if string1 as AnyObject === string2 as AnyObject {
 print("The strings are the same object")
 }

AnyObject in Swift means “any object, of any type.”

Searching Strings
You can check to see if a string has a given suffix or prefix by using the hasPrefix
and hasSuffix methods:

 if string1.hasPrefix("H") {
 print("String begins with an H")
 }

Types | 43

 if string1.hasSuffix("llo") {
 print("String ends in 'llo'")
 }

Optional Types
It’s often very useful to have variables that can sometimes have no value. For example,
you might have a variable that stores a number to display to the user, but you don’t
know what that number is yet. As we’ve seen already, Swift variables need to have a
value. One solution might be to use the number zero to represent “no value”; indeed,
many languages, including C, C++, Java, and Objective-C, do just this. However, this
creates a problem: there is no way to distinguish between the value zero and no value
at all. What if the value you want to show is actually zero?

To deal with this issue, Swift makes a very clear distinction between “no value” and all
other values. “No value” is referred to as nil and is a different type from all others.

If you’re coming from Objective-C, you might remember that nil
is actually defined as a void pointer to zero. This makes it techni‐
cally a number, which means, in Objective-C, you can do things
like this:

 int i = (int)(nil)+2;
 // Equals 2 (because 0 + 2 = 2)

This isn’t allowed in Swift, because nil and Int are different types.

However, recall that all variables in Swift are required to have values. If you want a
variable to be allowed to sometimes be nil, you make it an optional variable. This is
useful in situations where you don’t know if something will occur; for example, when
downloading an image from the internet, you do not know if you will get back a valid
image file or gibberish. You define optional variables by using a question mark (?) as
part of their type:

 // Optional integer, allowed to be nil
 var anOptionalInteger : Int? = nil
 anOptionalInteger = 42

Only optional variables are allowed to be set to nil. If a variable isn’t defined as
optional, it’s not allowed to be set to the nil value:

 // Nonoptional (regular), NOT allowed to be nil
 var aNonOptionalInteger = 42

 aNonOptionalInteger = nil
 // ERROR: only optional values can be nil

44 | Chapter 2: The Basics of Swift

If you create an optional variable and don’t assign it a value, it will
default to nil.

You can check to see if an optional variable has a value by using an if statement:

 if anOptionalInteger != nil {
 print("It has a value!")
 } else {
 print("It has no value!")
 }

When you have an optional variable, you can unwrap it to get at its value. You do this
using the ! character.

Note that if you unwrap an optional variable, and it has no value, your program will
throw a runtime error, and the program will crash:

 // Optional types must be unwrapped using !
 anOptionalInteger = 2
 1 + anOptionalInteger! // = 3

 anOptionalInteger = nil
 1 + anOptionalInteger!
 // CRASH: anOptionalInteger = nil, can't use nil data

If you don’t want to unwrap your optional variables every time you want to use them,
you can declare a variable as an implicitly unwrapped optional, like this:

 var implicitlyUnwrappedOptionalInteger : Int!
 implicitlyUnwrappedOptionalInteger = 1
 1 + implicitlyUnwrappedOptionalInteger // = 2

Implicitly unwrapped optionals are regular optionals: they can either contain nil, or
not. However, whenever you access their value, the compiler unwraps it.

This lets you use their values directly but can be unsafe, because when an optional is
unwrapped and has no value, your program crashes.

Implicitly unwrapped optionals let you get away with not explicitly
unwrapping them when you use them, which can make you forget
that they can sometimes be nil. Use this with caution.

You can use an if-let statement to check to see if an optional variable has a value;
and if it does, assign that value to a constant (nonoptional) variable, and then run
some code. This can save you quite a few lines of code while preserving the safety of
first checking to see if an optional variable actually has a value to work with.

Types | 45

An if-let statement looks like this:

 var conditionalString : String? = "a string"

 if let theString = conditionalString {
 print("The string is '\(theString)'")
 } else {
 print("The string is nil")
 }
 // Prints "The string is 'a string'"

Type Casting
Swift is strongly typed. This means that it relies upon objects being of the type it
expects when passing arguments to functions. Sometimes you need to check the type
of an instance, or treat it as a different type, and that’s where type casting comes in.

Using the is, as!, and as? operators, you can test for types, as well as downcast—that
is, treat an instance as one of its subclassses. (We’ll discuss subclasses in “Inheritance”
on page 66.)

You can also use these operators to check whether a type conforms to a protocol.
We’ll touch more on protocols later, in “Protocols” on page 70.

You can use the is operator to check if an instance is a certain subclass, for example:

 if thing is String {
 print("Thing is a string!")
 }

The as? operator checks the type of a variable and returns an optional value of the
specified type:

 var maybeString = thing as? String

 // maybeString is a String?—an optional string.
 // If the check didn't work, maybeString will be nil.

Using the as! operator works in the same way as the as? operator, except that it
returns a nonoptional value of the specified type. If the value can’t be converted to the
desired type, your program crashes:

 var definitelyString = thing as! String

 // definitelyString is a String and is guaranteed to have a value

The as! operator is for when you’re absolutely sure that the value
you’re converting is the right type, and you don’t want to work with
optionals.

46 | Chapter 2: The Basics of Swift

You can convert between certain types in Swift. For example, to convert an Int to a
String, you do this:

 let aString = String(2)
 // = "2"

Note that not all types can be converted to other types. It depends on the specific
types you’re trying to convert between, and the precise value of the thing you’re try‐
ing to convert. For example, the String "2" can be converted to an Int, but the
String “Hello” can’t.

You also can’t convert types by directly assigning variables—you must explicitly cast.
Attempting to assign a value of one type to a variable with another produces an error:

 // ERROR: Can't directly convert between types
 let aString = anInteger

Tuples
A tuple is a simple collection of data. Tuples let you bundle any number of values of
any type together into a single value:

 let aTuple = (1, "Yes")

Once you have a tuple, you can get values out of it by index:

 let theNumber = aTuple.0 // = 1

In addition to using indices to get the values out of a tuple, you can also apply labels
to values inside tuples:

 let anotherTuple = (aNumber: 1, aString: "Yes")

 let theOtherNumber = anotherTuple.aNumber // = 1

Arrays
Arrays are ordered lists of values and are very easy to create in Swift. To create an
array, you use square brackets ([]):

 // Array of integers
 let arrayOfIntegers : [Int] = [1,2,3]

Swift can also infer the type of the array:

 // Type of array is implied
 let implicitArrayOfIntegers = [1,2,3]

Types | 47

Arrays can contain a mix of different types of values. However, if
you do this, Swift will be forced to assume that it’s an array of
objects of an unknown type, instead of an array of a single type.

You can create an empty array as well, though you need to manually specify its type if
you do this:

 // You can also create an empty array, but you must provide the type
 let anotherArray = [Int]()

While most of the time your arrays will all be single-value types,
you can mix and match types in a single array.

Once you have an array, you can work with its contents. For example, you can append
objects to the end of the array using the append function:

 var myArray = [1,2,3]
 myArray.append(4)
 // = [1,2,3,4]

In addition to appending to the end of the array, you can also insert objects at any
point in the array. Swift arrays start at index 0, making this code the opposite of
append:

 myArray.insert(5, at: 0)
 // = [5,1,2,3,4]

You can’t insert items into an array beyond its bounds. For exam‐
ple, if you tried to insert an item at element 99, it wouldn’t work
and would throw a runtime error (i.e., your program would crash).
Typically, the two most common cases in which you add things to
an array are when you add them to the end (using append) and at
the start (using insert at index 0).

You can also remove items from an array. Doing so automatically reindexes the array
so you don’t end up with empty elements inside your arrays. To remove an item, you
indicate its index in the array. So to remove the fifth element from the array, you’d do
this:

 myArray.remove(at: 4)
 // = [5,1,2,3]

You can also quickly reverse the contents of an array using the reverse function:

48 | Chapter 2: The Basics of Swift

 myArray.reverse()
 // = [3,2,1,5]

It is worth noting that in this example, the reverse function
doesn’t reverse myArray but instead returns a new array that is the
reverse of myArray.

Finally, it’s often useful to know how many items are in an array. You can work this
out using the array’s count property:

 myArray.count
 // = 4

Arrays are frequently in for-in loops; see “Control Flow” on page
37.

If you define an array with the let keyword, its contents become immutable (i.e., it’s
not allowed to change its contents):

 let immutableArray = [42,24]

When you create an array by using the shorthand of a list of
comma-separated values surrounded by square brackets, you are
initializing it as an array literal. This is just shorthand for the full
initializer; [42, 24] actually gets compiled to Array(arrayLit
eral: 42, 24).

Dictionaries
A dictionary is a type that maps keys to values. Dictionaries are useful for when you
want to represent a collection of related information.

In a dictionary, you associate a key with a related value. For example, to store infor‐
mation about the crew of a space station, you could use a dictionary like this:

 var crew = [
 "Captain": "Benjamin Sisko",
 "First Officer": "Kira Nerys",
 "Constable": "Odo"
];

When you have a dictionary, you can access its contents through subscripting—that is,
using square brackets ([and]) after a variable’s name to describe what you want to

Types | 49

get from that variable. For example, to get the "Captain" value from the crew vari‐
able, you do this:

 crew["Captain"]
 // = "Benjamin Sisko"

You can also set values in a dictionary using subscripting. For example, to register the
fact that Julian Bashir is the station’s doctor:

 crew["Doctor"] = "Julian Bashir"

In the previous example, we’re talking about a dictionary that uses String values for
both its keys and its values. However, it doesn’t have to be set up this way—dictionar‐
ies can actually contain almost any value. For example, you can make a dictionary use
Int values for both keys and values:

 // This dictionary uses integers for both keys and values
 var aNumberDictionary = [1: 2]
 aNumberDictionary[21] = 23

You can mix and match different types in your arrays and dictionaries; for example,
you can make a dictionary that contains both strings and integers as values:

 var aMixedDictionary = ["one": 1, "two": "twoooo"] as [String: Any]
 // (If you declare a dictionary with different types,
 // you need to add the type annotation to reassure the
 // compiler that that's actually what you wanted to do)

Enumerations
Creating an enumeration is an easy way to group a collection of related or like values
and work with them in a safe, clean way. An enumeration is a first-class type that is
restricted to a defined list of possible values.

Defining an enumeration is easy. Use the enum keyword, name the type, and place
each possible case between the braces, using the keyword case to differentiate each
one:

 // Enumeration of top-secret future iPads that definitely
 // will never exist
 enum FutureiPad {
 case iPadSuperPro

 case iPadTotallyPro

 case iPadLudicrous
 }

Once you’ve got your enumeration, you can use it like any other variable in Swift:

 var nextiPad = FutureiPad.iPadTotallyPro

50 | Chapter 2: The Basics of Swift

You can also change it to a different value of the type:

 nextiPad = .iPadSuperPro

Or use a switch statement to match enumeration values:

 switch nextiPad {
 case .iPadSuperPro:
 print("Too big!")

 case .iPadTotallyPro:
 print("Too small!")

 case .iPadLudicrous:
 print("Just right!")
 }

You might be familiar with enums, or enumerations, in other programming lan‐
guages. They’re much the same in Swift, with the exception that they don’t automati‐
cally have a corresponding integer value. The members of an enumeration are values
themselves and are of the type of that enumeration. They can, of course, have a corre‐
sponding integer number. Because Swift does it this way, enumerations are safe and
explicit.

Associated Values
Enumerations in Swift allow you to store associated values. The associated values can
be any type, and each member of the enumeration can have a different set of values.

For example, if you wanted to represent two types of weapons that a spaceship in a
video game could have, you might do this:

 enum Weapon {
 case laser
 case missiles
 }

Using associated values, you could also allow a laser power level, or the range of mis‐
siles, to be specified:

 enum Weapon {
 case laser(powerLevel: Int)
 case missiles(range: Int)
 }

To work with these associated values, you provide them when assigning to the vari‐
able:

 let spaceLaser = Weapon.laser(powerLevel: 5)

Types | 51

Enumerations with associated values aren’t so much containers for
those values as they are a specialization of the enumeration’s value.
Don’t think of Laser(powerLevel: 5) as “laser, with the number 5
inside it”; instead, think of it as “a laser of value 5.”

You can use the switch statement with associated values, which allows you to
pattern-match on more specific values in your enumeration:

 switch spaceLaser {
 case .laser(powerLevel: 0...10):
 print("It's a laser with power from 0 to 10!")
 case .laser:
 print("It's a laser!")
 case .missiles(let range):
 print("It's a missile with range \(range)!")
 }
 // Prints "It's a laser with power from 0 to 10!"

Sets
A set lets you store a collection of unique values of the same type. Sets are unordered
and can store anything from integers and strings to classes or structs.

You can create an empty set by using the Set type’s initializer. When you do, you
specify the type of values that will be stored in the set:

 var setOfStrings = Set<String>()

Alternatively, you can create a set with an array literal. If you do this, Swift will figure
out what type to use, based on the type of values in the array:

 var fruitSet: Set = ["apple", "orange", "orange", "banana"]

To be stored in a set, a type must be hashable. All the provided
types are hashable, but you can also make your own types hashable
by making them conform to the Hashable protocol. We talk more
about protocols in “Protocols” on page 70.

Objects in a set are unique. If you add the same object twice to a set, it’s only included
in the set once. For example, in the preceding code, we included the string "orange"
twice in the array, bringing it to a total of four items; however, if we ask the set how
many objects it contains, it will report only three:

 fruitSet.count
 // = 3

You can access or modify a set in all the usual ways, including checking its count
property, checking if it’s empty, and adding and removing items:

52 | Chapter 2: The Basics of Swift

 if fruitSet.isEmpty {
 print("My set is empty!")
 }

 // Add a new item to the set
 fruitSet.insert("pear")

 // Remove an item from the set
 fruitSet.remove("apple")
 // mySet now contains {"banana", "pear", "orange"}

You can, of course, also iterate over a set, just like you would with an array or dictio‐
nary:

 for fruit in fruitSet {
 let fruitPlural = fruit + "s"
 print("You know what's tasty? \(fruitPlural.uppercased()).")
 }

You can also perform unions, intersections, exclusions, and sub‐
tractions, as well as check if sets are supersets or subsets of each
other. For more information, check out Apple’s Collection Types
documentation.

Functions and Closures
In Swift, you define functions to perform tasks with data. Functions let you organize
your code into small, repeatable chunks, like so:

 func sayHello() {
 print("Hello")
 }

 sayHello()

Functions can return a value to the code that calls them. When you define a function
that returns a type, you must indicate the type of the data that it returns by using the
arrow (->) symbol:

 func usefulNumber() -> Int {
 return 123
 }

 usefulNumber()

When the usefulNumber function is called, the code between the two braces ({ and })
is run.

Functions and Closures | 53

http://apple.co/21TwOIb
http://apple.co/21TwOIb

Inside a function’s parentheses, you can pass it parameters, which it’s able to use to do
work. When you define parameters for a function, you must also define the type of
those parameters:

 func addNumbers(firstValue: Int, secondValue: Int) -> Int {
 return firstValue + secondValue
 }

 addNumbers(firstValue: 1, secondValue: 2)

A function can return a single value, as we’ve already seen, but it can also return mul‐
tiple values, in the form of a tuple. In addition, you can attach names to the values in
the tuple, making it easier to work with the returned value:

 func processNumbers(firstValue: Int, secondValue: Int)
 -> (doubled: Int, quadrupled: Int) {
 return (firstValue * 2, secondValue * 4)
 }
 processNumbers(firstValue: 2, secondValue: 4)

When you call a function that returns a tuple, you can access its value by index or by
name (if it has them):

 // Accessing by number:
 processNumbers(firstValue: 2, secondValue: 4).1 // = 16
 // Same thing but with names:
 processNumbers(firstValue: 2, secondValue: 4).quadrupled // = 16

By default, all parameters after the first one must have a label associated with them,
and the label is necessary in calling the function. You can see this in action in the pre‐
ceding code sample: the second parameter has secondValue: before it. Swift includes
this to make it easier to read the code; when parameters have labels, it’s a lot easier to
remember what each parameter is for.

However, sometimes you don’t need a label before parameter names, especially when
it’s very obvious what the parameters are for. In these cases, you can tell Swift to not
require a label before the parameters by placing an underscore before the name:

 func subtractNumbers(_ num1 : Int, _ num2 : Int) -> Int {
 return num1 - num2
 }

 subtractNumbers(5, 3) // = 2

The underscore is used throughout Swift to represent the concept
“I don’t care what this is.” It’s an idea that appears in several other
languages, such as Prolog.

54 | Chapter 2: The Basics of Swift

By default, the label for the parameter is the same as the parameter’s name. However,
if you prefer to, you can provide a custom label for a parameter. To override the
default label for a parameter, you put the label before the parameter’s name, like so:

 func addNumber(firstNumber num1 : Int, toSecondNumber num2: Int) -> Int {
 return num1 + num2
 }

 addNumber(firstNumber: 2, toSecondNumber: 3) // = 5

You can also create functions whose parameters have default values. This means that
you can call these functions and omit certain parameters; if you do, those parameters
will use the value used in the function’s definition:

 func multiplyNumbers2 (firstNumber: Int, multiplier: Int = 2) -> Int {
 return firstNumber * multiplier;
 }
 // Parameters with default values can be omitted
 multiplyNumbers2(firstNumber: 2) // = 4

Sometimes, you’ll want to use functions with a variable number of parameters. A
parameter with a variable number of values is called a variadic parameter. In these
cases, you want a function to handle any number of parameters, ranging from 0 to an
unlimited number. To do this, use three dots (...) to indicate that a parameter has a
variable number of values. Inside the body of the function, the variadic parameter
becomes an array, which you can use like any other:

 func sumNumbers(numbers: Int...) -> Int {
 // In this function, 'numbers' is an array of Ints
 var total = 0
 for number in numbers {
 total += number
 }
 return total
 }
 sumNumbers(numbers: 2,3,4,5) // = 14

When using variable parameters, you can have as many nonvaria‐
dic parameters as you like. However, note that you can only have a
single variadic parameter, and any parameter listed after a variadic
parameter must have an external parameter name.

Normally, function parameters and return values are passed by value; you are given a
copy of the parameters and return values. However, if you define a parameter with
the inout keyword, you can pass the parameter by reference and directly change the
value that’s stored in the variable. You can use this to swap two variables using a func‐
tion, like so:

Functions and Closures | 55

 func swapValues(firstValue: inout Int, secondValue: inout Int) {
 (firstValue, secondValue) = (secondValue, firstValue)
 }

 var swap1 = 2
 var swap2 = 3
 swapValues(firstValue: &swap1, secondValue: &swap2)
 swap1 // = 3
 swap2 // = 2

When you pass in a variable as an inout parameter, you preface it with an ampersand
(&). This reminds you that its value is going to change when you call the function.

Using Functions as Variables
You can store functions in variables. To do this, you first declare a variable as capable
of storing a function that takes certain parameters and returns a value. Once that’s
done, you can store any function that takes those types of parameters and returns the
same type of value in the variable:

 var numbersFunc: (Int, Int) -> Int;
 // numbersFunc can now store any function
 // that takes two ints and returns an int

 // Using the 'addNumbers' function from before, which takes two numbers
 // and adds them
 numbersFunc = addNumbers
 numbersFunc(2, 3) // = 5

Functions can also receive and use other functions as parameters. This means that
you can combine functions:

 func timesThree(number: Int) -> Int {
 return number * 3
 }

 func doSomethingToNumber(aNumber: Int, thingToDo: (Int)->Int) -> Int {
 // We've received some function as a parameter, which we refer to as
 // 'thingToDo' inside this function

 // Call the function 'thingToDo' using 'aNumber', and return the result
 return thingToDo(aNumber);
 }

 // Give the 'timesThree' function to use as 'thingToDo'
 doSomethingToNumber(aNumber: 4, thingToDo: timesThree) // = 12

Functions can also return other functions. This means that you can use a function that
creates a new function, which you can use in your code:

 // This function takes an Int as a parameter. It returns a new function that
 // takes an Int parameter and return an Int.

56 | Chapter 2: The Basics of Swift

 func createAdder(numberToAdd: Int) -> (Int) -> Int {
 func adder(number: Int) -> Int {
 return number + numberToAdd
 }
 return adder
 }
 var addTwo = createAdder(numberToAdd: 2)

 // addTwo is now a function that can be called
 addTwo(2) // = 4

A function can also “capture” a value and use it multiple times. This is a tricky con‐
cept, so we’ll go into it in a bit of detail. Consider the following example code:

 func createIncrementor(incrementAmount: Int) -> () -> Int {
 var amount = 0
 func incrementor() -> Int {
 amount += incrementAmount
 return amount
 }
 return incrementor
 }

 var incrementByTen = createIncrementor(incrementAmount: 10)
 incrementByTen() // = 10
 incrementByTen() // = 20

 var incrementByFifteen = createIncrementor(incrementAmount: 15)
 incrementByFifteen() // = 15

This example does the following things:

The createIncrementor function takes an Int parameter and returns a function
that takes no parameters and returns an Int.

Inside the function, a variable called amount is created and set to 0.

A new function is created inside the createIncrementor function, which takes
no parameters and returns an Int.

Inside this new function, the amount variable has the incrementAmount parame‐
ter added to it, and then returned. Notice that the amount variable is outside of
this function.

The incrementor function is then returned.

The createIncrementor function can then be used to create a new incrementor
function. In the first example, one is created with the incremementAmount param‐
eter set to 10.

Functions and Closures | 57

Each time this function is called, it will return a value that’s 10 higher than the
last time it was called. The reason it’s doing this is because the function that crea
teIncrementor returned captured the variable amount; every time it’s called, that
variable goes up by incrementAmount.

The amount variable is not shared between individual functions, however. When
a new incrementor is created, it has its own separate amount variable.

The second function goes up by 15.

This feature of Swift allows you to create functions that act as generators, functions
that return different values each time they’re called.

Closures
Another feature of Swift is that of closures, which are small, anonymous chunks of
code that you can use like functions. Closures are great for passing to other functions
to tell them how they should carry out a certain task.

To give you an example of how closures work, consider the built-in sort function.
This function takes an array and a closure, and uses that closure to determine how
two individual elements of that array should be ordered (i.e., which one should go
first in the array):

 var sortingInline = [2, 5, 98, 2, 13]
 sortingInline.sort() // = [2, 2, 5, 13, 98]

To sort an array so that small numbers go before large numbers, you can provide a
closure that describes how to do the sort, like this:

 var numbers = [2, 1, 56, 32, 120, 13]

 // Sort so that small numbers go before large numbers
 var numbersSorted = numbers.sorted(by: {
 (n1: Int, n2: Int) -> Bool in return n2 > n1
 })
 // = [1, 2, 13, 32, 56, 120]

Closures have a special keyword, in. The in keyword lets Swift know where to break
up the closure from its definition and its implementation. So in our previous exam‐
ple, the definition was (n1: Int, n2: Int)->Bool, and the implementation of that
closure came after the in keyword: return n2 > n1.

If you come from Objective-C land, the in keyword works similar
to the ^ syntax in blocks.

58 | Chapter 2: The Basics of Swift

A closure, like a function, takes parameters. In the preceding example, the closure
specifies the name and type of the parameters that it works with. However, you don’t
need to be quite so verbose—the compiler can infer the type of the parameters for
you, much like it can with variables. Notice the lack of types in the parameters for the
following closure:

 var numbersSortedReverse = numbers.sorted(by: {n1, n2 in return n1 > n2})
 // = [120, 56, 32, 13, 2, 1]

You can make it even more terse if you don’t especially care what names the parame‐
ters should have. If you omit the parameter names, you can just refer to each parame‐
ter by number (the first parameter is called $0, the second is called $1, etc.).

Additionally, if your closure only contains a single line of code, you can omit the
return keyword:

 var numbersSortedAgain = numbers.sorted(by: {
 $1 > $0
 }) // = [1, 2, 13, 32, 56, 120]

Finally, if a closure is the last parameter in a function call, you can put it outside the
parentheses. This is purely something that improves readability and doesn’t change
how the closure works:

 var numbersSortedReversedAgain = numbers.sorted {
 $0 > $1
 } // = [120, 56, 32, 13, 2, 1]

The line breaks in this code are optional, too. You could also do this:

 var numbersSortedReversedOneMoreTime = numbers.sorted { $0 > $1 }
 // = [120, 56, 32, 13, 2, 1]

Just like functions, closures can be stored in variables. In that case, you can call them
just like a function:

 var comparator = {(a: Int, b:Int) in a < b}
 comparator(1,2) // = true

The defer Keyword
Sometimes, you’ll want to run some code, but at a later date. For example, if you’re
writing code that opens a file and makes some changes, you’ll also need to ensure that
the file is closed when you’re done. This is important, and it’s easy to forget when you
start writing your method.

The defer keyword lets you write code that will run at a later time. Specifically, code
you put in a defer block will run when the current flow of execution leaves the cur‐
rent scope—that is, the current function, loop body, and so on:

Functions and Closures | 59

 func doSomeWork() {
 print("Getting started!")
 defer {
 print("All done!")
 }
 print("Getting to work!")
 }

 doSomeWork()
 // Prints "Getting started!", "Getting to work!" and "All done!", in that order

defer is a resource management technique, not a means of imple‐
menting asynchronous code!

The guard Keyword
There are often cases where your code needs to check to see if a certain condition
holds. For example, if you’re writing a method to withdraw money from a bank
account, you can’t go ahead with the operation if the bank account’s balance is too
low.

The guard keyword lets you define a test that needs to pass; alternatively, if it doesn’t
pass, a block of code is run. This might sound very similar to the if statement, but it
has a twist: the block of code that runs if the test doesn’t pass is required to exit the
current flow of execution. That is, if it’s inside a function, it has to return from that
function; it’s a compiler error if it doesn’t. This guarantees that if the condition doesn’t
hold, the code following the guard statement will not be executed:

 guard 2+2 == 4 else {
 print("The universe makes no sense")
 return // this is mandatory!
 }
 print("We can continue with our daily lives")

Making Your Code Swifty
With the release of version 3.0 the Swift community has made some guidelines to fol‐
low when designing, creating, and naming your code and APIs. The full guidelines
can be seen on the API Design Guidelines website and are well worth checking out,
but the cornerstone of it all is clarity. Some general rules to remember:

• When writing functions, remember that you will only write it once but will use it
many times, so keep the names as simple and unambiguous as possible. For
example, the remove(at:) function on arrays removes an element at the index

60 | Chapter 2: The Basics of Swift

https://swift.org/documentation/api-design-guidelines/

passed in. Using it like anArray.remove(at: 2) is clear and unambiguous,
whereas if it were just anArray.remove(2) we wouldn’t know if it were removing
the element at index 2 or removing the object 2 from the array.

• Where possible, make your functions read like an English sentence; anAr
ray.insert(x at: y) reads better than anArray.insert(x index: y). Addi‐
tionally, when making mutating and nonmutating functions, make the mutating
functions sound like verbs and name the nonmutating form with the “-ed” or “-
ing” suffix, so anArray.sort() would modify the anArray variable whereas anAr
ray.sorted() would return a sorted copy.

• Finally, avoid abbreviations, acronyms, and obscure terms. Unless they are
domain specific to what you are writing, they are just going to make it harder to
understand later on.

Conclusion
In this chapter, we’ve looked at the basics of programming with Swift. In the next
chapter, we’ll dive into some of the language’s more advanced components, such as
objects, memory management, working with data, and error handling. After that,
we’ll continue our exploration of Swift through the construction of three apps.

Conclusion | 61

CHAPTER 3

Swift for Object-Oriented
App Development

The previous chapter looked at the basic building blocks of programming in Swift. In
this chapter, we’re going to look at some of the more advanced features of Swift, such
as memory management, working with files and external data, and error handling.
We’ll also touch on interoperating with Apple’s older programming language,
Objective-C.

Swift’s features allow it to be used as an object-oriented programming language. This
means that you do the majority of your work by creating and manipulating objects—
chunks of data and code that represent a thing that can perform some useful work or
store some useful data.

Classes and Objects
In Swift, as with Objective-C, Java, and C++ (and many other languages), you define
templates for your objects using classes. Classes in Swift look like this:

 class Vehicle {

 }

Classes contain both properties and methods. Properties are variables that are part of a
class, and methods are functions that are part of a class.

The Vehicle class in the following example contains two properties: an optional
String called color, and an Int called maxSpeed. Property declarations look the same
as variable declarations do in other code:

63

 class Vehicle {

 var color: String?
 var maxSpeed = 80

 }

Methods in a class look the same as functions anywhere else. Code that’s in a method
can access the properties of a class by using the self keyword, which refers to the
object that’s currently running the code:

 class Vehicle {

 var color: String?
 var maxSpeed = 80

 func description() -> String {
 return "A \(self.color) vehicle"
 }

 func travel() {
 print("Traveling at \(maxSpeed) kph")
 }
 }

If you are wondering what the \() inside the string is, this is string
interpolation, which lets you make strings from myriad types. We
talk more about strings in “Working with Strings” on page 42.

You can omit the self keyword if it’s obvious that the property is part of the current
object. In the previous example, description uses the self keyword, while travel
doesn’t.

When you’ve defined a class, you can create instances of the class (called an object) to
work with. Instances have their own copies of the class’s properties and functions.

For example, to define an instance of the Vehicle class, you define a variable and call
the class’s initializer. Once that’s done, you can work with the class’s functions and
properties:

 var redVehicle = Vehicle()
 redVehicle.color = "Red"
 redVehicle.maxSpeed = 90
 redVehicle.travel() // prints "Traveling at 90 kph"
 redVehicle.description() // = "A Red vehicle"

64 | Chapter 3: Swift for Object-Oriented App Development

Initialization and Deinitialization
When you create an object in Swift, a special method known as its initializer is called.
The initializer is the method that you use to set up the initial state of an object and is
always named init.

Swift has two types of initializers, convenience initializers and designated initializers. A
designated initializer sets up everything you need to use that object, often using
default settings where necessary. A convenience initializer, as its name implies, makes
setting up the instance more convenient by allowing for more information to be
included in the initialization. A convenience initializer must call the designated ini‐
tializer as part of its setup.

In addition to initializers, you can run code when removing an object, in a method
called a deinitializer, named deinit. This runs when the retain count of an object
drops to zero (see “Memory Management” on page 87) and is called right before the
object is removed from memory. This is your object’s final opportunity to do any nec‐
essary cleanup before it goes away forever:

 class InitAndDeinitExample {
 // Designated (i.e., main) initializer
 init () {
 print("I've been created!")
 }
 // Convenience initializer, required to call the
 // designated initializer (above)
 convenience init (text: String) {
 self.init() // this is mandatory
 print("I was called with the convenience initializer!")
 }
 // Deinitializer
 deinit {
 print("I'm going away!")
 }
 }

 var example : InitAndDeinitExample?

 // using the designated initializer
 example = InitAndDeinitExample() // prints "I've been created!"
 example = nil // prints "I'm going away"

 // using the convenience initializer
 example = InitAndDeinitExample(text: "Hello")
 // prints "I've been created!" and then
 // "I was called with the convenience initializer"

An initializer can also return nil. This can be useful when your initializer isn’t able to
usefully construct an object. For example, the URL class has an initializer that takes a

Classes and Objects | 65

string and converts it into a URL; if the string isn’t a valid URL, the initializer returns
nil.

To create an initializer that can return nil—also known as a failable initializer—put a
question mark after the init keyword, and return nil if the initializer decides that it
can’t successfully construct the object:

 // This is a convenience initializer that can sometimes fail, returning nil
 // Note the ? after the word 'init'
 convenience init? (value: Int) {
 self.init()

 if value > 5 {
 // We can't initialize this object; return nil to indicate failure
 return nil
 }

 }

When you use a failable initializer, it will always return an optional:

 var failableExample = InitAndDeinitExample.init(value: 6)
 // = nil

Properties
Classes store their data in properties. Properties, as previously mentioned, are vari‐
ables or constants that are attached to instances of classes. Properties that you’ve
added to a class are usually accessed like this:

 class Counter {
 var number: Int = 0
 }
 let myCounter = Counter()
 myCounter.number = 2

However, as objects get more complex, it can cause a problem for you as a program‐
mer. If you wanted to represent vehicles with engines, you’d need to add a property to
the Vehicle class; however, this would mean that all Vehicle instances would have
this property, even if they didn’t need one. To keep things better organized, it’s better
to move properties that are specific to a subset of your objects to a new class that
inherits properties from another.

Inheritance
When you define a class, you can create one that inherits from another. When a class
inherits from another (called the parent class), it incorporates all its parent’s functions
and properties. In Swift, classes are allowed to have only a single parent class. This is

66 | Chapter 3: Swift for Object-Oriented App Development

the same as Objective-C, but differs from C++, which allows classes to have multiple
parents (known as multiple inheritance).

To create a class that inherits from another, you put the name of the class you’re
inheriting from after the name of the class you’re creating, like so:

 class Car: Vehicle {

 var engineType : String = "V8"

 }

Classes that inherit from other classes can override functions in their parent class.
This means that you can create subclasses that inherit most of their functionality, but
can specialize in certain areas. For example, the Car class contains an engineType
property; only Car instances will have this property.

To override a function, you redeclare it in your subclass and add the override key‐
word to let the compiler know that you aren’t accidentally creating a method with the
same name as one in the parent class.

In an overridden function, it’s often very useful to call back to the parent class’s ver‐
sion of that function. You can do this through the super keyword, which lets you get
access to the superclass’s functions:

 class Car: Vehicle {

 var engineType : String = "V8"

 // Inherited classes can override functions
 override func description() -> String {
 let description = super.description()
 return description + ", which is a car"
 }

 }

Computed properties
In the previous example, the property is a simple value stored in the object. This is
known in Swift as a stored property. However, you can do more with properties,
including creating properties that use code to figure out their value. These are known
as computed properties, and you can use them to provide a simpler interface to infor‐
mation stored in your classes.

For example, consider a class that represents a rectangle, which has both a width and
a height property. It’d be useful to have an additional property that contains the area,
but you don’t want that to be a third stored property. Instead, you can use a computed

Classes and Objects | 67

property, which looks like a regular property from the outside, but on the inside is
really a function that figures out the value when needed.

To define a computed property, you declare a variable in the same way as you do for a
stored property, but add braces ({ and }) after it. Inside these braces, you provide a
get section, and optionally a set section:

 class Rectangle {
 var width: Double = 0.0
 var height: Double = 0.0
 var area : Double {
 // computed getter
 get {
 return width * height
 }

 // computed setter
 set {
 // Assume equal dimensions (i.e., a square)
 width = sqrt(newValue)
 height = sqrt(newValue)
 }
 }
 }

When creating setters for your computed properties, you are given the new value
passed into the setter passed in as a constant called newValue.

In the previous example, we computed the area by multiplying the width and height.
The property is also settable—if you set the area of the rectangle, the code assumes
that you want to create a square and updates the width and height to the square root
of the area.

Working with computed properties looks identical to working with stored properties:

 var rect = Rectangle()
 rect.width = 3.0
 rect.height = 4.5
 rect.area // = 13.5
 rect.area = 9 // width & height now both 3.0

Observers
When working with properties, you often may want to run some code whenever a
property changes. To support this, Swift lets you add observers to your properties.
These are small chunks of code that can run just before or after a property’s value
changes. To create a property observer, add braces after your property (much like you
do with computed properties), and include willSet and didSet blocks. These blocks
each get passed a parameter—willSet, which is called before the property’s value
changes, is given the value that is about to be set, and didSet is given the old value:

68 | Chapter 3: Swift for Object-Oriented App Development

 class PropertyObserverExample {
 var number : Int = 0 {
 willSet(newNumber) {
 print("About to change to \(newNumber)")
 }
 didSet(oldNumber) {
 print("Just changed from \(oldNumber) to \(self.number)!")
 }
 }
 }

Property observers don’t change anything about how you actually work with the
property—they just add further behavior before and after the property changes:

 var observer = PropertyObserverExample()
 observer.number = 4
 // prints "About to change to 4", then "Just changed from 0 to 4!"

Lazy properties
You can also make a property lazy. A lazy property is one that doesn’t get set up until
the first time it’s accessed. This lets you defer some of the more time-consuming work
of setting up a class to later on, when it’s actually needed. To define a property as lazy,
you put the lazy keyword in front of it. Lazy loading is very useful to save on mem‐
ory for properties that may not be used—there is no point in initializing something
that won’t be used!

You can see lazy properties in action in the following example. In this code, there are
two properties, both of the same type, but one of them is lazy:

 class SomeExpensiveClass {
 init(id : Int) {
 print("Expensive class \(id) created!")
 }
 }

 class LazyPropertyExample {
 var expensiveClass1 = SomeExpensiveClass(id: 1)
 // Note that we're actually constructing a class,
 // but it's labeled as lazy
 lazy var expensiveClass2 = SomeExpensiveClass(id: 2)

 init() {
 print("First class created!")
 }
 }

 var lazyExample = LazyPropertyExample()
 // prints "Expensive class 1 created", then "First class created!"

 lazyExample.expensiveClass1 // prints nothing, it's already created
 lazyExample.expensiveClass2 // prints "Expensive class 2 created!"

Classes and Objects | 69

In this example, when the lazyExample variable is created, it immediately creates the
first instance of SomeExpensiveClass. However, the second instance isn’t created
until it’s actually used by the code.

Protocols
A protocol can be thought of as a list of requirements for a class. When you define a
protocol, you’re creating a list of properties and methods that classes can declare that
they have.

A protocol looks very much like a class, with the exception that you don’t provide any
actual code—you just define what kinds of properties and functions exist and how
they can be accessed.

For example, if you wanted to create a protocol that describes any object that can
blink on and off, you could use this:

 protocol Blinking {

 // This property must be (at least) gettable
 var isBlinking : Bool { get }

 // This property must be gettable and settable
 var blinkSpeed: Double { get set }

 // This function must exist, but what it does is up to the implementor
 func startBlinking(blinkSpeed: Double) -> Void
 }

Once you have a protocol, you can create classes that conform to a protocol. When a
class conforms to a protocol, it’s effectively promising to the compiler that it imple‐
ments all of the properties and methods listed in that protocol. It’s allowed to have
more stuff besides that, and it’s also allowed to conform to multiple protocols.

To continue this example, you could create a specific class called Light that imple‐
ments the Blinking protocol. Remember, all a protocol does is specify what a class
can do—the class itself is responsible for determining how it does it:

 class TrafficLight : Blinking {
 var isBlinking: Bool = false

 var blinkSpeed : Double = 0.0

 func startBlinking(blinkSpeed : Double) {
 print("I am a traffic light, and I am now blinking")
 isBlinking = true

 // We say "self.blinkSpeed" here, as opposed to "blinkSpeed",
 // to help the compiler tell the difference between the
 // parameter 'blinkSpeed' and the property

70 | Chapter 3: Swift for Object-Oriented App Development

 self.blinkSpeed = blinkSpeed
 }
 }

 class Lighthouse : Blinking {
 var isBlinking: Bool = false

 var blinkSpeed : Double = 0.0

 func startBlinking(blinkSpeed : Double) {
 print("I am a lighthouse, and I am now blinking")
 isBlinking = true

 self.blinkSpeed = blinkSpeed
 }
 }

The advantage of using protocols is that you can use Swift’s type system to refer to
any object that conforms to a given protocol. This is useful because you get to specify
that you only care about whether an object conforms to the protocol—the specific
type of the class doesn’t matter since we are using the protocol as a type:

 var aBlinkingThing : Blinking
 // can be ANY object that has the Blinking protocol

 aBlinkingThing = TrafficLight()

 aBlinkingThing.startBlinking(blinkSpeed: 4.0) // prints "I am now blinking"
 aBlinkingThing.blinkSpeed // = 4.0

 aBlinkingThing = Lighthouse()

Extensions
In Swift, you can extend existing types and add further methods and computed prop‐
erties. This is very useful in two situations:

• You’re working with a type that someone else wrote, and you want to add func‐
tionality to it but either don’t have access to its source code or don’t want to mess
around with it.

• You’re working with a type that you wrote, and you want to divide its functional‐
ity into different sections for readability.

Extensions let you do both with ease. In Swift, you can extend any type—that is, you
can extend both classes that you write, as well as built-in types like Int and String.

To create an extension, you use the extension keyword, followed by the name of the
type you want to extend. For example, to add methods and properties to the built-in
Int type, you can do this:

Classes and Objects | 71

 extension Int {
 var double : Int {
 return self * 2
 }
 func multiplyWith(anotherNumber: Int) -> Int {
 return self * anotherNumber
 }
 }

Once you extend a type, the methods and properties you defined in the extension are
available to every instance of that type:

 2.double // = 4
 4.multiplyWith(anotherNumber: 32) // = 128

You can only add computed properties in an extension. You can’t
add your own stored properties.

You can also use extensions to make a type conform to a protocol. For example, you
can make the Int type conform to the Blinking protocol described earlier:

 extension Int : Blinking {
 var isBlinking : Bool {
 return false;
 }

 var blinkSpeed : Double {
 get {
 return 0.0;
 }
 set {
 // Do nothing
 }
 }

 func startBlinking(blinkSpeed : Double) {
 print("I am the integer \(self). I do not blink.")
 }
 }
 2.isBlinking // = false
 2.startBlinking(blinkSpeed: 2.0)
 // prints "I am the integer 2. I do not blink."

Access Control
Swift defines four levels of access control, which determines what information is
accessible to which parts of the application:

72 | Chapter 3: Swift for Object-Oriented App Development

Public
Public classes, methods, and properties are accessible by any part of the app. For
example, all of the classes in UIKit that you use to build iOS apps are public.

Internal
Internal entities (data and methods) are only accessible to the module in which
they’re defined. A module is an application, library, or framework. This is why
you can’t access the inner workings of UIKit—it’s defined as internal to the UIKit
framework. Internal is the default level of access control: if you don’t specify the
access control level, it’s assumed to be internal.

Fileprivate
Fileprivate entities are only accessible to the file in which it’s declared. This
means that you can create classes that hide their inner workings from other
classes in the same module, which helps to keep the amount of surface area that
those classes expose to each other to a minimum.

Private
Private entities are only accessible to the current declaration scope, and this is the
most restrictive access modifier. This means you can create functions and objects
that can hide their internals from everything else in the module and file. By
marking something private, you create functionality you never want others to
touch, even inside extensions. This means you can declare a method as private
inside a class, and an extension of that class cannot access that method.

The kind of access control that a method or property can have depends on the access
level of the class that it’s contained in. You can’t make a method more accessible than
the class in which it’s contained. For example, you can’t define a private class that has
a public method.

To specify the access level for a class, you add the appropriate keyword before the
class keyword. To define a public class called AccessControl, for instance, you’d
write the following:

 public class AccessControl {

 }

By default, all properties and methods are internal. You can explicitly define a mem‐
ber as internal if you want, but it isn’t necessary:

 // Accessible to this module only
 // 'internal' here is the default and can be omitted
 internal var internalProperty = 123

The exception is for classes defined as private or fileprivate—if you don’t declare
an access control level for a member, it’s set as private or fileprivate, not inter

Classes and Objects | 73

nal. It is impossible to specify an access level for a member of an entity that is more
open than the entity itself.

When you declare a method or property as public, it becomes visible to everyone in
your app:

 // Accessible to everyone
 public var publicProperty = 123

If you declare a method or property as private, it’s only accessible from within the
scope in which it’s declared:

 // Only accessible in this class
 private var privateProperty = 123

The difference between private and fileprivate may not be obvious at first glance,
but private is far more restrictive than fileprivate. Using private means only
within the scope it’s declared can it be used, so even code inside extensions will be
restricted:

 class AccessObject {
 func doAThing()
 {
 print("doing a thing")
 }
 }
 extension AccessObject {
 private func doAPrivateThing() {
 print("doing a private thing")
 }
 fileprivate func doAFilePrivateThing() {
 print("doing a fileprivate thing")
 // can call private functions here
 // as we are in the same scope
 doAPrivateThing()
 }
 }

 let accessDemo = AccessObject()
 accessDemo.doAThing()
 accessDemo.doAFilePrivateThing()
 // the following won't work
 // accessDemo.doAPrivateThing()

Finally, you can render a property as read-only by declaring that its setter is filepri
vate. This means that you can freely read and write the property’s value within the
source file that it’s declared in, but other files can only read its value:

 // The setter is fileprivate, so other files can't modify it
 fileprivate(set) var privateSetterProperty = 123

74 | Chapter 3: Swift for Object-Oriented App Development

Operator Overloading
An operator is actually a function that takes one or two values and returns a value.
Operators, just like other functions, can be overloaded. For example, you could repre‐
sent the + function like this:

 func + (left: Int, right: Int) -> Int {
 return left + right
 }

The preceding example actually calls itself in an infinitely recursive
way, which hangs your app. Don’t actually write this code.

Swift lets you define new operators and overload existing ones for your new types,
which means that if you have a new type of data, you can operate on that data using
both existing operators, as well as new ones you invent yourself.

For example, imagine you have an object called Vector2D, which stores two floating-
point numbers:

 class Vector2D {
 var x : Float = 0.0
 var y : Float = 0.0

 init (x : Float, y: Float) {
 self.x = x
 self.y = y
 }
 }

If you want to allow adding instances of this type of object together using the + opera‐
tor, all you need to do is provide an implementation of the + function:

 func +(left : Vector2D, right: Vector2D) -> Vector2D {
 let result = Vector2D(x: left.x + right.x, y: left.y + right.y)

 return result
 }

You can then use it as you’d expect:

 let first = Vector2D(x: 2, y: 2)
 let second = Vector2D(x: 4, y: 1)

 let result = first + second
 // = (x:6, y:3)

Classes and Objects | 75

For information on how to create your own custom operators, see
the “Advanced Operators” section of The Swift Programming Lan‐
guage.

Generics
Swift is a statically typed language. This means that the Swift compiler needs to defin‐
itively know what type of information your code is dealing with. This means that you
can’t pass a string to code that expects to deal with a date (which is something that
can happen in Objective-C!).

However, this rigidity means that you lose some flexibility. It’s annoying to have to
write a chunk of code that does some work with strings, and another that works with
dates.

This is where generics come in. Generics allow you to write code that doesn’t need to
know precisely what information it’s dealing with. An example of this kind of use is in
arrays: they don’t actually do any work with the data they store, but instead just store
it in an ordered collection. Arrays are, in fact, generics.

To create a generic type, you name your object as usual, and then specify any generic
types between angle brackets. T is traditionally the term used, but you can put any‐
thing you like. For example, to create a generic Tree object, which contains a value
and any number of child Tree objects, you’d do the following:

 class Tree <T> {

 // 'T' can now be used as a type inside this class

 // 'value' is of type T
 var value : T

 // 'children' is an array of Tree objects that have
 // the same type as this one
 private (set) var children : [Tree <T>] = []

 // We can initialize this object with a value of type T
 init(value : T) {
 self.value = value
 }

 // And we can add a child node to our list of children
 func addChild(value : T) -> Tree <T> {
 let newChild = Tree<T>(value: value)
 children.append(newChild)
 return newChild
 }
 }

76 | Chapter 3: Swift for Object-Oriented App Development

http://apple.co/1r1RiTJ

Once a generic type is defined, you can create a specific, nongeneric type from it. For
example, the Tree generic type just defined can be used to create a version that works
with Ints and one that works with Strings:

 // Tree of integers
 let integerTree = Tree<Int>(value: 5)

 // Can add children that contain Ints
 integerTree.addChild(value: 10)
 integerTree.addChild(value: 5)

 // Tree of strings
 let stringTree = Tree<String>(value: "Hello")

 stringTree.addChild(value: "Yes")
 stringTree.addChild(value: "Internets")

Subscripts
When you work with arrays and dictionaries, you use square brackets, [and], to
indicate to Swift what part of the array or dictionary you want to work with. The term
for this is subscripting, and it’s something that your own classes and types can adopt.

You do this using the subscript keyword, and define what it means to get and set
values via a subscript. For example, let’s say you want to access the individual bits
inside an 8-bit integer. You can do this with subscripting, like so:

 // Extend the unsigned 8-bit integer type
 extension UInt8 {

 // Allow subscripting this type using UInt8s;
 subscript(bit: UInt8) -> UInt8 {

 // This is run when you do things like "value[x]"
 get {
 return (self >> bit & 0x07) & 1
 }

 // This is run when you do things like "value[x] = y"
 set {
 let cleanBit = bit & 0x07
 let mask = 0xFF ^ (1 << cleanBit)
 let shiftedBit = (newValue & 1) << cleanBit
 self = self & mask | shiftedBit
 }
 }
 }

With this in place, you can access the individual bits inside the number by reading
and writing them:

Classes and Objects | 77

 var byte : UInt8 = 212

 byte[0] // 0
 byte[2] // 1
 byte[5] // 0
 byte[6] // 1

 // Change the last bit
 byte[7] = 0

 // The number is now changed!
 byte // = 84

Structures
For the most part, structures are very similar to classes: you can put properties and
methods in them, they have initializers, and they generally behave in an object-like
way, just like a class does. However, there are two main things that differentiate them
from classes:

• Structures do not have inheritance—that is, you cannot make a structure inherit
its methods and properties from another.

• When you pass a structure around in your code, the structure is always copied.

Structures are declared as follows:

 struct Point {
 var x: Int
 var y: Int
 }

In Swift, structures are value types, which are always copied when
passed around. Some value types in Swift include Int, String,
Array, and Dictionary, all of which are implemented as structures.

Additionally, structures in Swift get a compiler-provided initializer, called the mem‐
berwise initializer, if you don’t provide one yourself:

 let p = Point(x: 2, y: 3)

Modules
In Swift, code is grouped into modules. When you define a framework or application,
all of the code that’s added to it is placed within that target’s module. To get access to
the code, you use the import keyword:

78 | Chapter 3: Swift for Object-Oriented App Development

 import AVFoundation

Depending on your programming background, you are probably used to including
code to make sure you don’t accidentally include something multiple times. In Swift
you don’t have to worry about this. Modules are clever enough to handle potential
import conflicts, letting you focus on making great apps!

The Swift Standard Library, Foundation, Cocoa, and
Cocoa Touch
The different features you work with in Swift come from different places, or libraries,
depending on how platform-specific they are. These are the four main libraries you’ll
access:

The Swift Standard Library
Contains all of the lowest-level types and functions that you’ll be working with,
including Int, String, math functions, arrays, and dictionaries.

You don’t need to do anything special to access the standard library; all Swift pro‐
grams have access to it.

Foundation
A slightly higher-level library that provides more tools and types, such as
NSNotificationCenter, which is used to broadcast application-wide notifica‐
tions, and JSONSerialization, which allows you to read and write JSON data.

You import the Foundation library with the import Foundation statement, at the
top of your file.

Cocoa
Specific to macOS and includes features like buttons, windows, image views, and
menus.

You import Cocoa with the import Cocoa statement.

Cocoa Touch
On iOS, provides equivalent tools and functionality from Cocoa: views, touch
input, sensor capabilities, and so on.

You import Cocoa Touch with the import UIKit statement.

If you import Cocoa or Cocoa Touch, you’ll also import Foundation. You don’t need
to import both.

The Swift Standard Library, Foundation, Cocoa, and Cocoa Touch | 79

There are also equivalent libraries for tvOS and watchOS. There are
also some third-party tools and libraries for Swift, but these are
well beyond the scope of this book.

Swift Package Manager
When you do need to get access to other people’s code and libraries, you could man‐
ually download the Swift files and add them to your codebase. This is error prone,
however, and requires you to handle downloading not only the code you want, but all
the code it also needs to run. A better way would be to use a tool to handle all this.
For iOS development there are two popular tools to do this: Carthage and Cocoa‐
pods. Apple wanted something that everything can use. This is why it made the Swift
Package Manager.

The Swift Package Manager is simple enough to use: you create a package file that
describes what you want to include, you tell the package manager to resolve the
dependencies and download the code, and the package manager then downloads and
builds the code into a library you can use in your project. Let’s take a look at using the
Swift Package Manager to download some code we can then use. For this, we will use
the example package manager project Apple created and made available for people to
experiment with on GitHub.

We will be recreating the project from scratch instead of using their completed one,
but the goal will be to create a Swift program that can create a standard deck of play‐
ing cards, shuffle the deck, and then deal out some cards, displaying what is on each
card. Most of the work is done for us; we just need to write some code to hook all the
bits together. The library we will be downloading is called DeckOfPlayingCards; this
is our only dependency. DeckOfPlayingCards, however, has two dependencies, Play
ingCard and FisherYates. PlayingCard represents a single card and FisherYates is
a little function to shuffle an array into a random order.

First thing we need to do is make a package file; this tells the package manager what
we need downloaded and built. Open Xcode, go to File→New File, and select Swift
File. When the save dialog box appears, name it Package.swift and save it in a sensible
spot.

You have to name your package file Package.swift. If you don’t, the
Swift Package Manager won’t be able to find it!

Open Package.swift and replace it with the following:

80 | Chapter 3: Swift for Object-Oriented App Development

https://github.com/apple/example-package-dealer

 import PackageDescription

 let package = Package(
 name: "Dealer",
 dependencies:
[
 .Package(
 url:"https://github.com/apple/example-package-deckofplayingcards.git",
 majorVersion: 3)
]
)

Let’s take a look at what this is doing. First, it is importing the PackageDescription
module; this module allows us to define a Package object that will tell the Package
Manager what to download. Then we are creating a new Package object, which has
two parameters: a name of the package (Dealer), and then what dependencies our
package will need. In this case we only need the DeckOfPlayingCards dependency, so
we set the URL of where we can get the DeckOfPlayingCards and then a version
number. All Swift packages use the semver semantic versioning system, so we can
specify major, minor, and patch versions; but in this case we will just use the major
version of 3. It is worth noting that the dependencies are an array; we can have as
many packages as we want, and we can also have greater control over the modules
being downloaded, including excluding certain modules, setting ranges for the ver‐
sions, or even making multiple build targets that chain into one another. For this
example, though, we want to keep it simple.

Now we need to write a small program to make use of all modules we’re about to
download. Inside Xcode, create a new Swift file by going to File→New File and select
Swift File. This time we will name it main.swift and save it with the package file. Open
main.swift and replace it with the following:

 import DeckOfPlayingCards

 var deck = Deck.standard52CardDeck()
 deck.shuffle()

 for _ in 0...5
 {
 guard let card = deck.deal() else
 {
 print("No More Cards!")
 break
 }
 print(card)
 }

This program is pretty straightforward: first we import the DeckOfPlayingCards
module, then we create a new deck of cards and shuffle them. Then we enter a for

Swift Package Manager | 81

http://semver.org

loop that runs five times, printing out cards after doing a quick check that the deck
hasn’t run out of cards.

So with our package ready, and our program to use it complete, it is time to build
this. We are going to be building and running the project through the command line;
as it stands the Swift Package Manager works better through the command line.
Future and better integration with Xcode is coming sometime down the track:

1. Open Terminal.app.
2. Navigate to where you saved the two Swift files by typing cd <path/to/

where/you/saved/your/files> and then pressing Return.
3. Build the program by typing swift build.

This will tell the Swift Package Manager to read our Package.swift file, download
all the required dependencies, and then build them. Once it has done that it will
also build our main.swift program into a little executable program we can run in
the terminal.

This is because we specified the single Swift file main.swift,
which tells the Swift tools we want an executable built. You can
also have the Swift tools generate an Xcode project; to do this,
change the command to swift package generate-xcodeproj
and it will download the packages and make a new Xcode
project with them included.

4. Run our little program by typing .build/debug/Dealer; this will run the pro‐
gram called Dealer (the name we set back in the Package.swift file) inside
the .build/debug/ folder. The output will look something like:
♠8
♣7
♠9
♠J
♣2
♢5

We just used the Swift Package Manager and a teensy bit of our own code to write a
small program. This is only scraping the surface of what the Swift Package Manager
can do; it is a very powerful tool with hundreds of options, and it is well worth taking
a full look at it at the official site on GitHub.

82 | Chapter 3: Swift for Object-Oriented App Development

https://github.com/apple/swift-package-manager

Data
In Cocoa, you’ll frequently find yourself working with chunks of arbitrary data that
you need to save to or load from disk, or that you’ve downloaded from the network.
Cocoa represents these as Data objects.

You can get a Data object in a variety of ways. For example, if you have a string that
you want to convert to a Data object, you can use the string’s dataUsingEncoding
method, like so:

 let stringToConvert = "Hello, Swift"
 let data = stringToConvert.data(using: String.Encoding.utf8)

Loading Data from Files and URLs
You can also load data from a URL or file location on disk. If the file is one of the
resources built into your project, you first need to work out where on disk it’s being
stored; once you have that, you can load its contents into memory.

To get the location of a built-in file, you first use the Bundle class to determine where
a given file is being stored on disk using the path forResource method. Once you’ve
done that, you construct a Data object by providing it either a URL or a filepath:

 // Loading from URL
 if let URL = URL(string: "https://oreilly.com") {
 let loadedDataFromURL = try? Data(contentsOf: URL)
 }

 // Loading from a file
 if let filePath = Bundle.main
 .path(forResource: "SomeFile", ofType: "txt") {
 let loadedDataFromPath = NSData(contentsOfFile:filePath)
 }

Using Data(contentsO) this way to get data over the network will
cause pauses and slowdowns because the code will wait for the data
to be loaded. If you’re making an app that loads data over the net‐
work, consider using a dedicated library that specializes in doing it,
like AlamoFire.

A bundle, represented by the Bundle class, is an object that bundles up all the resour‐
ces that your apps can use. You can use Bundle to load and unload code, images,
audio, or almost anything imaginable without having to deal directly with the filesys‐
tem.

Data | 83

https://github.com/Alamofire/Alamofire

Serialization and Deserialization
You can also convert an object to data to make it easier to save, load, or send the
object. To do this, you first make an object conform to the NSObject and NSCoding
protocols, and then add two methods—encodeWithCoder and an initializer that takes
an NSCoder:

 class SerializableObject : NSObject, NSCoding {

 var name : String?

 func encode(with aCoder: NSCoder) {
 aCoder.encode(name!, forKey:"name")
 }

 override init() {
 self.name = "My Object"
 }

 required init(coder aDecoder: NSCoder) {
 self.name = aDecoder.decodeObject(forKey: "name") as? String
 }
 }

An object that conforms to NSCoding can be converted to an NSData object, and also
be loaded from one, via the NSKeyedArchiver and NSKeyedUnarchiver classes. The
trick is in the encode method and in the special initializer: in the encode method, you
take the NSCoder that’s passed in as a parameter and store any values that you want to
keep in it. Later, in the initializer, you pull those values out.

Converting these objects to and from data is very straightforward and looks like this:

 let anObject = SerializableObject()

 anObject.name = "My Thing That I'm Saving"

 // Converting it to data
 let objectConvertedToData =
 NSKeyedArchiver.archivedData(withRootObject: anObject)

 // Converting it back
 // Note that the conversion might fail, so 'unarchiveObjectWithData' returns
 // an optional value. So, use 'as?' to check to see if it worked.
 let loadedObject =
 NSKeyedUnarchiver.unarchiveObject(with: objectConvertedToData)
 as? SerializableObject

 loadedObject?.name
 // = "My Thing That I'm Saving"

84 | Chapter 3: Swift for Object-Oriented App Development

Error Handling
It’s normal for computer programs to generate errors. When that happens, you need
to be ready to handle them, and Swift makes this particularly easy and robust.

If you programmed using Objective-C or Swift 1.0, you might be familiar with a dif‐
ferent error-handling system. Previously, an NSError object would be passed as a
pointer; when something could fail, you’d pass in an NSError object as a parameter,
and if there was an error you could fill the object with information.

This was powerful, as it allowed the return value of a method to be separated from
any potential error information. But it was easy to forget to look inside the NSError
object. Swift 2.0 replaces this system, and while it expects a little more from program‐
mers now, it is much clearer to read, gives you greater safety by making sure all errors
are caught, and requires less messing around with pointers.

In Swift, errors can be any type that conforms to the Error protocol. The Error pro‐
tocol doesn’t have any required functions or properties, which means that any class,
enum, or structure can be an error. When your code encounters an error, you throw
an error.

For compatibility in Swift, the Objective-C error type NSError is an
Error, which means it can be thrown like every other Error.

For example, let’s define an enumeration for problems that can relate to a bank
account. By making the enumeration an Error, we can throw it as an error:

 enum BankError : Error {
 // Not enough money in the account
 case notEnoughFunds

 // Can't create an account with negative money
 case cannotBeginWithNegativeFunds

 // Can't make a negative deposit or withdrawal
 case cannotMakeNegativeTransaction(amount:Float)
 }

Functions that can throw errors must be marked with the throws keyword, which
goes after the function’s return type:

 // A simple bank account class
 class BankAccount {

 // The amount of money in the account
 private (set) var balance : Float = 0.0

Error Handling | 85

 // Initializes the account with an amount of money.
 // Throws an error if you try to create the account
 // with negative funds.
 init(amount:Float) throws {

 // Ensure that we have a non-negative amount of money
 guard amount > 0 else {
 throw BankError.cannotBeginWithNegativeFunds
 }
 balance = amount
 }

 // Adds some money to the account
 func deposit(amount: Float) throws {

 // Ensure that we're trying to deposit a non-negative amount
 guard amount > 0 else {
 throw BankError.cannotMakeNegativeTransaction(amount: amount)
 }
 balance += amount
 }

 // Withdraws money from the bank account
 func withdraw(amount : Float) throws {

 // Ensure that we're trying to deposit a non-negative amount
 guard amount > 0 else {
 throw BankError.cannotMakeNegativeTransaction(amount: amount)
 }

 // Ensure that we have enough to withdraw this amount
 guard balance >= amount else {
 throw BankError.notEnoughFunds
 }

 balance -= amount
 }
 }

When you call any function, method, or initializer that throws, you are required to
wrap it in a do-catch block. In the do block, you call the methods that may potentially
throw errors; each time you do, you preface the potentially throwing call with try. If
the method call throws an error, the do block stops executing and the catch clause
runs:

 do {
 let vacationFund = try BankAccount(amount: 5)

 try vacationFund.deposit(amount: 5)

 try vacationFund.withdraw(amount: 11)

86 | Chapter 3: Swift for Object-Oriented App Development

 } catch let error as BankError {

 // Catch any BankError that was thrown
 switch (error) {
 case .notEnoughFunds:
 print("Not enough funds in account!")
 case .cannotBeginWithNegativeFunds:
 print("Tried to start an account with negative money!")
 case .cannotMakeNegativeTransaction(let amount):
 print("Tried to do a transaction with a negative amount of \(amount)!")
 }

 } catch let error {
 // (Optional:) catch other types of errors
 }

However, it can sometimes be cumbersome to wrap calls to methods that can throw
errors in a do-catch block. Sometimes you may not care about the specifics of the
error; you just care if there was an error or not. This is where the try? statement
comes in. If you preface a call to something that can throw an error with try?, and it
does throw an error, the result will be nil:

This means that the return type of any call that you try? will be an
optional.

 let secretBankAccountOrNot = try? BankAccount(amount: -50) // = nil

Finally, there are sometimes cases where your program needs the method call to suc‐
ceed and guarantee a returned value. If you call a method with try!, and it throws an
error, your program will simply crash. (This has the same effect as using try? to
receive an optional and then using the force-unwrap operator (!) on that optional.)

 let secretBankAccountOrNot = try! BankAccount(amount: -50) // crash!

The try? and try! statements do not need to be in a do-catch block. If you do put
them in one, any errors won’t be caught by the catch block; they’ll still just either
evaluate to nil or crash.

Memory Management
Objects in Swift are memory managed. When an object is being used, Swift keeps it in
memory; when it’s no longer being used, it’s removed from memory.

Memory Management | 87

The technique that Swift uses to keep track of which objects are being used and which
are not is called reference counting. When an object is assigned to a variable, a counter
called the retain count goes up by 1. When the object is no longer assigned to that
variable, the retain count goes down. If the retain count ever reaches 0, that means
that no variables are referring to that object, and the object is then removed from
memory.

The nice thing about Swift is that this all happens at the compiler level. As the com‐
piler reads your code, it keeps track of when objects get assigned to variables and
adds code that increments and decrements the retain count.

However, this automatic memory management has one potential snag that you need
to keep an eye out for: retain cycles.

A retain cycle is where you have two objects that refer to each other, but are otherwise
not referred to by any other part of the application. Because those objects refer to
each other, their retain count is not zero, which means they stay in memory; however,
because no variable in the rest of the application refers to them, they’re inaccessible
(and consequently useless).

Swift solves this using the concept of weak references. A weak reference is a variable
that refers to an object, but doesn’t change the retain count of that object. You use
weak references when you don’t particularly care whether an object stays in memory
or not (i.e., your code isn’t the owner of that object).

To declare a weak reference in Swift, you use the weak keyword, like so:

 class Class1 {
 init() {
 print("Class 1 being created!")
 }

 deinit {
 print("Class 1 going away!")
 }
 }

 class Class2 {
 // Weak vars are implicitly optional
 weak var weakRef : Class1?
 }

The topic of memory management can get complex if you’re doing
more advanced things. If you’d like to learn more about it, see the
section “Automatic Reference Counting” in The Swift Programming
Language.

88 | Chapter 3: Swift for Object-Oriented App Development

http://apple.co/21TDi9O
http://apple.co/21TDi9O

Design Patterns in Cocoa and Cocoa Touch
Cocoa is built around a number of design patterns whose purpose is to make your life
as a developer more consistent and (one hopes) more productive. Three key patterns
are the model-view-controller (MVC) pattern, upon which most of Cocoa and Cocoa
Touch is built; the delegation pattern, which allows both your code and Cocoa to be
highly flexible in determining what code gets run by whom; and notifications, which
allow your code to watch for important events that happen within your app. We’ll be
working with notifications in a very hands-on sense later in the book (in Chapters 13
and 14); at the moment, let’s dive in to model-view-controller and delegation!

Model-View-Controller
The model-view-controller design pattern is one of the fundamental design patterns
in Cocoa. Let’s take a look at what each of these parts means:

Models
Objects that contain data or otherwise coordinate the storing, management, and
delivery of data to other objects. Models can be as simple as a string or as compli‐
cated as an entire database—their purpose is to store data and provide it to other
objects. They don’t care what happens to the data once they give it to someone
else; their only concern is managing how the data is stored.

Views
Objects that work directly with the user, providing information to them and
receiving input back. Views do not manage the data that they display—they only
show it to the user. Views are also responsible for informing other objects when
the user interacts with them. Like data and models, views do not care what hap‐
pens next—their responsibility ends with informing the rest of the application.

Controllers
Objects that mediate between models and views and contain the bulk of what
some call the “business logic” of an application—the actual logic that defines
what the application is and how it responds to user input. At a minimum, the
controller is responsible for retrieving information from the model and provid‐
ing it to the view; it is also responsible for providing information to the model
when it is informed by the view that the user has interacted with it.

For an illustration of the model-view-controller design pattern in action, imagine a
simple text editor. In this example, the application loads a text file from disk and
presents its contents to the user in a text field. The user makes changes in the text
field and saves those changes back to disk.

We can break this application down into model, view, and controller objects:

Design Patterns in Cocoa and Cocoa Touch | 89

• The model is an object that is responsible for loading the text file from disk and
writing it back out to disk. It is also responsible for providing the text as a string
to any object that asks for it.

• The view is the text field, which asks another object for a string to display and
then displays the text. It also accepts keyboard input from the user; whenever the
user types, it informs another object that the text has changed. It is also able to
tell another object when the user has told it to save changes.

• The controller is the object responsible for instructing the model object to load a
file from disk, and it passes the text to the view. It receives updates from the view
object when the text has changed and passes those changes to the model. Finally,
it can be told by the view that the user has asked to save the changes; when that
happens, it instructs the model to do the work of actually writing the file out to
disk.

Breaking the application into these areas of responsibility enables us to more easily
make changes to it.

For example, if the developer decides that the next version of the application should
add the ability to upload the text file to the internet whenever the file is saved, the
only thing that must be changed is the model class—the controller can stay the same,
and the view never changes.

Likewise, clearly defining which objects are responsible for which features makes it
easier to make changes to an application while maintaining a clear structure in the
project. If the developer decides to add a spell-checking feature to the application,
that code should clearly be added to the controller, as it has nothing to do with how
the text is presented to the user or stored on disk. (You could, of course, add some
features to the view that would allow it to indicate which words are misspelled, but
the bulk of the code would need to be added in the controller.)

The majority of the classes described in this chapter, such as NSData, arrays, and dic‐
tionaries, are model classes; all they do is store and present information to other
classes. NSKeyedArchiver is a controller class; it takes information and performs logi‐
cal operations on it. NSButton and UITextField are examples of view objects; they
present information to the user and do not care about how the data is managed.

The model-view-controller paradigm becomes very important when you start look‐
ing at the more advanced Cocoa features, like the document architecture and bind‐
ings, both of which are covered throughout this book.

Delegation
Delegation is Cocoa’s term for passing off some responsibilities of an object to
another. An example of this is the UIApplication object, which represents an appli‐

90 | Chapter 3: Swift for Object-Oriented App Development

1 C++’s answer to this problem is multiple inheritance, which has its own problems.

cation on iOS. This object needs to know what should happen when the application
moves to the background. Many other languages handle this problem by subclassing
—for example, in C++, the UIApplication class would define an empty placeholder
method for applicationDidEnterBackground, and then you as a developer would
subclass UIApplication and override the applicationDidEnterBackground method.

However, this is a particularly heavy-handed solution and causes additional
problems—it increases the complexity of your code, and also means that if you want
to override the behavior of two classes, you need separate subclasses for each one.1

Swift’s answer to this problem is built around the fact that an object can determine, at
runtime, whether another object is capable of responding to a method.

Let’s say Object A wants to let Object B know that something is going to happen or
has happened and stores a reference to Object B as an instance variable. This refer‐
ence to Object B is known as the delegate. When the event happens, Object A checks
to see if the delegate object (Object B) implements a method that suits the event—for
delegates of the UIApplication class, for example, the application delegate is asked if
it implements the applicationDidEnterBackground method. If it does, that method
is called.

Because of this loose coupling, it’s possible for an object to be the delegate for multi‐
ple objects. For example, an object could become the delegate of both an audio play‐
back object and an image picker, and be notified both when audio playback
completes and when an image has been captured by the camera.

Because the model-view-controller pattern is built around a very loose coupling of
objects, it helps to have a more rigidly defined interface between objects so that your
application can know with more certainty how one object expects others to behave.

The specific messages used by delegates are often listed in protocols. For example, if
your object wants to be the delegate of an AVAudioPlayer object, it should conform to
the AVAudioPlayerDelegate protocol.

Working with delegates in Swift is easy. Imagine you have two classes, and you want
one of them to act as the delegate for another:

 // Define a protocol that has a function called handleIntruder
 protocol HouseSecurityDelegate {

 // We don't define the function here, but rather
 // indicate that any class that is a HouseSecurityDelegate
 // is required to have a handleIntruder() function
 func handleIntruder()
 }

Design Patterns in Cocoa and Cocoa Touch | 91

 class House {
 // The delegate can be any object that conforms
 // to the HouseSecurityDelegate protocol
 var delegate : HouseSecurityDelegate?

 func burglarDetected() {
 // Check to see if the delegate is there, then call it
 delegate?.handleIntruder()
 }
 }

 class GuardDog : HouseSecurityDelegate {
 func handleIntruder() {
 print("Releasing the hounds!")
 }
 }

 let myHouse = House()
 myHouse.burglarDetected() // does nothing

 let theHounds = GuardDog()
 myHouse.delegate = theHounds
 myHouse.burglarDetected() // prints "Releasing the hounds!"

The burglarDetected method needs to check that a security delegate exists for the
house before calling its handleIntruder method. It does this using a Swift feature
called optional chaining, which lets you access something that depends on an optional
having a value, without specifically testing the optional first. If the optional has a
value, in this case a houseSecurityDelegate, its handleIntruder method is called. If
the optional is nil, nothing happens. You can use optional chaining to access the
properties, method, or subscripts of your classes, structures, and enumerations in this
way.

Structuring an App
Before we wrap up this part and begin our long, deep dive into building real-world
apps, it’s worth looking at the big picture of how apps are built, both on macOS and
iOS.

iOS and macOS are built on the idea of event-driven programming. Anything that
your app does is in response to an event of some kind. On macOS, events include the
mouse moving or clicking, keyboard input, and the window resizing; on iOS, they
include touch input and sensor input. On both iOS and macOS, events can also
include timers firing or the screen refreshing.

At their core, apps are about the run loop, an infinite loop that waits for an event to
fire, and then takes appropriate actions. Most of those actions are handled by the

92 | Chapter 3: Swift for Object-Oriented App Development

built-in parts of your app; for example, swiping your finger on a list will cause the list
to adjust its position. However, there are several events that your code handles. For
example, when a button is clicked, as part of handling this event, the code calls a
method that you write.

The Application Delegate
The delegation pattern is used a lot for event handling. Every time the operating sys‐
tem needs to let your app know that an interesting event has happened, the applica‐
tion delegate object—which you write—has a method called on it. The application
delegate object—usually shortened to app delegate—is just an instance of a class that
conforms to the NSApplicationDelegate (on macOS) or UIApplicationDelegate
(on iOS) protocol. When you create a project, Xcode adds a file that contains a class
that implements the correct protocol for your platform.

The app delegate contains methods like application(_, didFinishLaunchingWi
thOptions:); these methods are called when events happen (like when the applica‐
tion finishes launching). You provide code in these methods to run when the events
occur.

Window Controllers and View Controllers
Window controllers are objects that manage a window’s contents on macOS, and view
controllers manage a view’s contents on both iOS and macOS. On iOS a view control‐
ler is usually fullscreen, but on macOS that may not be the case (although the view
that controller manages is usually the full size of the window containing it).

When working with documents, you’ll be provided with a window
controller that allows you to keep your logic in the document class.
We’ll look at this in more detail in Chapter 4.

View controllers can manage other view controllers; for example, navigation control‐
lers are a view controller that manages multiple child view controllers. View control‐
lers exist on iOS and macOS, while window controllers exist only on macOS (because
the concept of windows really only exists on macOS).

Structuring an App | 93

Windows in Swift are the individual windows of the application
(i.e., the entire box that the application shows on the screen). A
view, on the other hand, is contained inside a window and repre‐
sents and is responsible for the elements within. In iOS you will
have a single window per application, and multiple views will be
shown inside that window. In macOS your application might have
multiple windows, each with its own views.

Nibs and Storyboards
When an application starts, it loads its interface. The interface is stored inside a file,
and there are two types of files: nib files and storyboard files. Both are used in the
interface builder to design and lay out an interface.

Nib files contain a collection of objects, and are generally used to represent a single
window or view; they also contain nonvisible objects, such as controller objects, when
needed.

Storyboards take this idea and extend it by storing multiple interfaces—that is, views
and windows—and letting you describe how you get from one interface to another,
using connections called segues.

Conclusion
In this chapter, you’ve learned about how to work with object-oriented programming
in Swift and how to get some more real-world tasks done using the functionality pro‐
vided by Cocoa and Cocoa Touch. In the next part of this book, we’ll use these skills
to start building actual apps.

94 | Chapter 3: Swift for Object-Oriented App Development

PART II

A macOS App

CHAPTER 4

Setting Up the macOS Notes App

In Part I, we looked at the Apple Developer Program, the tools you use for developing
on Apple platforms, and the fundamentals of the Swift language. Now we’re actually
going to build some apps!

In this chapter, we’ll start building Notes. Notes is a Mac app that lets you write notes,
which contain text plus a number of other attachments: images, locations, videos,
sounds, contacts, and more. We’ll be creating an iOS counterpart for Notes later on,
in Part III.

We’re not going to be doing any coding in this chapter, but it’s still important! We’ll be
doing all the setup to make a real, working macOS app, using Xcode, by the end of
the chapter (it won’t do much, though!).

The kind of setup that we’ll be doing in this chapter is fundamental to the creation of
most Swift-based applications for macOS and iOS. One of the most striking things
about developing for Apple’s platforms using Xcode and Swift is just how much work
is done for you. Just one or two years ago, the setup we’ll accomplish in this chapter
would have taken lines upon lines of code.

Even if you’re only interested in learning to use Swift to create iOS applications, we
suggest that you work through the chapters (there are only three!) that cover the cre‐
ation of the macOS application anyway. You’ll gain a better understanding of using
Swift with Xcode to build applications, and you’ll be better equipped to work on the
iOS application once we start on that, in Part III.

97

Designing the macOS Notes App
When we first sat down to build this app, the only thing we had figured out so far was
that we wanted to “make a notes app that lets you add attachments.” To determine
how this would work overall, we started drawing wireframes.

A wireframe is a very rough drawing of the app that you’re about to
make. It’s much faster to get your ideas down on paper (digital or
physical) than it is to actually implement the app itself, and the act
of drawing your ideas helps you organize your thoughts.

The application that we used to make these wireframes was OmniGraffle, a fantastic
vector drawing tool that’s very well suited for wireframes. You don’t need any soft‐
ware at all to get started figuring out an app idea, however—pencil and paper will
work just as well.

The wireframes were drawn several weeks before we started writing
this book, not once we had a finished app ready. This means, just
like wireframes for real-world products, they differ slightly from
the finished product. This is OK when your development team is
small, such as when it’s just you and maybe one other, because in
this case, the goal of wireframing isn’t to create a perfect blueprint
for others to implement, but rather to get a solid understanding of
how your app needs to work.
This book isn’t here to teach you how to design wireframes or con‐
ceptualize the applications that you’ll build, but we have to start
somewhere. Programming without considering what you’re build‐
ing, in our experience, leads to poor-quality software. That’s why
we’re starting with wireframes and showing them to you.

The process for figuring out how the wireframes needed to come together came from
the OmniGraffle equivalent of doodling: we drew rectangles on the page, pretended
they were windows, and asked ourselves how we’d use the app. When we (inevitably)
ran up against a limitation in the design, we went back to the design and added,
removed, or changed the content of the screen. We continued to go back and forth on
this design until we were sure that the app’s design was usable.

You can see the wireframe for the app in Figure 4-1.

98 | Chapter 4: Setting Up the macOS Notes App

Figure 4-1. The macOS app’s wireframes

On macOS, each document is given its own window. The app itself has no “main win‐
dow”; instead, the only visible component will be the document windows.

The focus of the app is the text editor, which takes up the majority of the space.
Underneath it, a horizontally scrolling list of all of the attachments is shown. For each
attachment in the document, we’ll show a preview image. Next to the list of attach‐
ments, we’ll show a button that allows the user to attach new items to the document;
when it’s clicked, a popover will appear that presents the various options available.
Above this button, we’ll add a button that opens the location attachment, if one is
present.

By the end of these chapters, the app outlined in the wireframes will be a real, work‐
ing app, as shown in Figure 4-2.

Designing the macOS Notes App | 99

Figure 4-2. The macOS app

The Mac app has several key features:

• It uses the macOS document model, which means that it gets a number of useful
behaviors for free, including versioning and autosave, plus the ability to associate
its document types with the app (meaning that when you double-click a file, it
will open in the app).

• Documents contain text that can be formatted—that is, you can italicize and bold
text, change the color of letters, and so on.

• Documents can also store attachments. When you add an attachment, it’s dis‐
played in a list underneath the text area.

• You can add attachments by either clicking an Add button, which presents a win‐
dow that lets you select the file you want to add, or by dragging and dropping the
file into the list of attachments.

100 | Chapter 4: Setting Up the macOS Notes App

• Double-clicking an attachment presents a Quick Look window that allows you to
view the contents of the file.

• You can open the location that’s attached to the document (which we’ll examine
in quite a bit more detail when we build the iOS app in Part III) in the Maps
application.

Let’s get started!

Creating the macOS Project
The first thing we need to do is create an Xcode project for our macOS app. We’ll be
working in this project for most of the rest of the book, including the iOS app, which
will be added as a target in the same project. If you need a refresher on Xcode and the
development tools, see Chapter 1.

1. Launch Xcode, as shown in Figure 4-3.

Figure 4-3. The “Welcome to Xcode” screen

2. Click the “Create a new Xcode project” button.
The list of project templates will appear. Click Application under the macOS
heading, in the left column (which includes categories for Apple’s other plat‐
forms, such as iOS, tvOS, and watchOS), and then select Cocoa Application
(Figure 4-4). Click Next.

Creating the macOS Project | 101

The other templates provide a default setup for different types
of application. You can do everything provided by each tem‐
plate manually, if you want. They’re just a collection of pro‐
vided files and code. The templates shown in Figure 4-4 are
those provided by Apple, and they ship with Xcode.

Figure 4-4. Selecting a Cocoa app

3. You’ll be prompted to give the project a name, plus some additional information
(see Figure 4-5). Use the following settings:

• Product Name: Notes
• Organization Name: Your company’s name. Enter your own name if you’re

not making this app for a company.
• Organization Identifier: Your domain name, reversed; for example, if you

own mycompany.com, enter com.mycompany. (Customize this based on your
domain name; if you don’t have one, enter com.example.)

102 | Chapter 4: Setting Up the macOS Notes App

Figure 4-5. Configuring the Cocoa app

The organization name and the product name are used to
create the app’s bundle identifier. A bundle identifier is a
period-separated string that uniquely identifies a bundle of
code and resources. For example, if you use com.example as
your organization identifier, the bundle ID will be com.exam
ple.Notes.
Bundle identifiers are used everywhere in the macOS and
iOS ecosystem. A bundle identifier forms the basis of your
app ID, which is the unique string that identifies your app
on the App Store. Bundle IDs are used to distinguish
between apps. Your app’s bundle ID is also used as the basis
of other IDs, such as the uniform type identifier (UTI) for
your documents, which we’ll cover in “Defining a Docu‐
ment Type” on page 105.

• Language: Swift
We’re setting the language to Swift, because—well—this is a Swift book! You
can set this to Objective-C if you want, though! But the rest of the book will
make absolutely no sense if you do.

• Use Storyboards: Off

Creating the macOS Project | 103

We’re not turning storyboards on here because we’re going to use the other
means of creating a UI, nibs, for the macOS app. We’ll use storyboards when
we build the iOS app, in Part III. We’re deliberately using both UI techniques
so you’ll get experience with both. We’ll explain more about nibs versus story‐
boards in “A Basic UI” on page 125.

• Create Document-Based Application: On
This setting asks Xcode to provide the basics of a document-based application
to us, in the template that it generates for the project. This will give us a Docu
ment class that we can build from. A document-based application is one that
handles multiple documents, each with its own window. Much of this infra‐
structure is provided for free by Apple’s document architecture. You can learn
more about this in the documentation.

• Document Extension: note
Since our Notes app will work with documents that represent notes, we set the
file extension for the basic document-based application that Xcode is going to
generate to something that makes sense. In this case, we’ll be making a Notes
app that works with .note files. We’ll talk about this more throughout the
remainder of this chapter.

• Use Core Data: Off
Core Data is a framework provided by Apple that lets you store data in a man‐
ner similar to a database, but local to your app. We’re not using Core Data in
this book, as it’s a topic that warrants a book all on its own. Additionally, the
limits of Core Data are quite easy to hit, and it’s often more useful, as well as
more of a learning experience, to build storage infrastructure for your app
from scratch. If we’d turned this on, stubs for Core Data, as well as a data
model, would be added to the project that Xcode will generate for us. If you
really must, you can learn more about Core Data in the documentation. Don’t
say we didn’t warn you!

• Include Unit Tests: On
• Include UI Tests: On

Leaving these two on creates stubs for unit tests and UI tests, respectively. We’ll
touch on these subjects much later, in Chapter 16.

If you’re using macOS Yosemite, note that UI tests will run
only on macOS 10.11 El Capitan or later. You can create a
project that includes UI tests on Yosemite, but you won’t be
able to run them.

104 | Chapter 4: Setting Up the macOS Notes App

http://bit.ly/abt_cocoa_doc_architecture
http://apple.co/21THwOU

4. Click the “Next” button, and Xcode will ask you where you’d like to save the
project (which will be a folder with the same name as you put in the Product
field), and then it will create a project for you to work with.
Now that the project has been set up, we need to provide more information about
the documents that this app will be working with.

We recommend that you store this project (and, indeed, any‐
thing else that you might work on) in Git, or a similar version
control system. It’s out of the scope of this book to explore Git,
but we strongly recommend you take some time to explore it
if you’re not already using it. Xcode has some basic support for
Git built in, which you can read about in Apple’s documenta‐
tion.

5. Select the Notes project at the top of the Project Navigator (Figure 4-6). If you
need a refresher on the Xcode interface, flip back to “The Xcode Interface” on
page 13.

Figure 4-6. Selecting the project

The main editor will show information about the overall project.
There’s a lot that you get for free just by creating the project. In addition to the
app itself, you get an application that is capable of working with document-like
objects. If you run the application right now, you’ll already be able to create new
“documents” by pressing ⌘-N, though you won’t yet be able to save them to disk.

Defining a Document Type
We’ll now provide some more information about the document type. Notes will be a
document-based application, which means it will behave like other document-based
applications on macOS, such as Pages or TextEdit.

Defining a Document Type | 105

http://apple.co/21TI7zS
http://apple.co/21TI7zS

1. Select the Notes application from the list of targets. As a reminder, a project can
contain multiple targets, each of which collects the code, user interface, and other
resources required to generate a product. We first mentioned targets back in
“The Xcode Interface” on page 13.
If you don’t see the list of targets, make sure the Notes project (it has a blueprint
icon) is selected in the Project Navigator, and then click the icon that looks like a
square with a vertical line inside it, at the top left of the editor (Figure 4-7). This
will toggle the projects and targets list (Figure 4-8).

Figure 4-7. Opening the targets list

Figure 4-8. Selecting the Notes target

2. Select the Info tab from the top of the editor, shown in Figure 4-9.

Figure 4-9. The Info tab

3. Scroll down to the Document Types section, and open it by clicking the triangle.
There’s already the beginnings of a document type laid out, because we asked
Xcode to create a document-based application, and it knows that such an appli‐
cation will need a document type.

106 | Chapter 4: Setting Up the macOS Notes App

We need to add a little more description, including a proper name for the docu‐
ment, as well as an identifier similar to our organization identifier, so our docu‐
ment type won’t collide with any other possible files with a .note extension:
a. Set Name to Note.
b. Set Identifier to your organization identifier, plus .Note. For example, if your

organization identifier is com.example, the document’s identifier is com.exam
ple.Note.
This defines this document as conforming to this uniform type identifier,
which is the method by which the system works out the types of files.

A uniform type identifier looks very similar to a bundle identifier: it’s a period-
separated string. For example, the UTI for PDF files is com.adobe.pdf.

UTIs were invented to deal with the thorny problem of identifying the types of files. If
you’re given a blob of information, what you can do with it depends on the kind of
data that it contains. For example, Adobe Photoshop can open images but not Word
documents, and if the user wants to open a Word document, the operating system
shouldn’t even consider opening it in Photoshop. However, it’s not reasonable for the
OS to inspect the contents of the file to tell the difference, so we need some kind of
metadata that describes those contents.

Originally, file types were simply identified by the file extension. For example, the
JSON data interchange format uses the file extension .json. This worked fairly well,
until we hit the problem of type granularity.

You see, a JSON file isn’t just describable solely as JSON data—it’s also a text file, a
chunk of binary data, and a file (as opposed to a directory). There are thousands of
plain-text formats out there, and a text editor shouldn’t have to manually specify each
one that it’s capable of opening.

This is where UTIs come in. UTIs are a hierarchy of types: when a UTI is declared, it
also declares all of the other types that it conforms to. For example, the UTI for JSON
is public.json; this UTI also conforms to public.text, which represents plain text
and itself conforms to both public.data and public.content. This means that, even
if you don’t know anything about the specifics of the JSON file format, you know that
JSON is text.

When you create a new type of document, you add information to the app that
exports the new UTI. This means that when the app is installed on the system, the
operating system will detect the fact that you’re declaring a new type of document. In
addition, because your app registers itself as one that can also open that type of docu‐
ment, the system will record that if the user double-clicks files of that type, your app
should be the one that’s launched.

Defining a Document Type | 107

When you export a UTI, you provide as much information as possible about it: any
icon to use, a textual description of what the type is, all existing UTIs that the new
type conforms to, and any other information that the system can use to identify the
file. This additional information includes things that other operating systems use,
such as file extensions, MIME types, and OSTypes (which were used by Mac OS Clas‐
sic, the precursor to macOS).

Different kinds of apps work with different kinds of data, and it
helps to be familiar with the different types of UTIs that are out
there. You can find a list of UTIs that the system defines in Apple’s
documentation.

The document type in this app will be one that conforms to the com.apple.package
type, which means that it’s a folder that contains other files, but should be presented
to the user as a single file. macOS and iOS make extensive use of packages, since
they’re a very convenient way to present a file that contains other information. This is
perfect for our file format, since it contains attachments.

We’ll be talking more about this approach in “Package File For‐
mats” on page 116.

1. Select the box for “Document is distributed as a bundle” (Figure 4-10).

Figure 4-10. Defining a document type

The Note document type that we’ve just described is a new type that the rest of
the system doesn’t know about yet. Because we’ve just invented this new UTI, we
need to export it to the system, as shown in Figure 4-11. Let’s do that now.

2. Open the Exported UTIs section.
3. Click the + button in this section to add a new entry.
4. Provide the following information, as shown in Figure 4-11:

a. Set Description to Note.

108 | Chapter 4: Setting Up the macOS Notes App

http://apple.co/1UCACPq
http://apple.co/1UCACPq

b. Set Extensions to note.
c. Set Identifier to the same as the identifier you provided earlier (e.g., com.exam

ple.Note).
d. Set Conforms To to com.apple.package. This tells the system that files of this

type are actually folders (“packages”) of files.

Figure 4-11. Defining a new uniform type identifier

5. Run the app by clicking the play button in the upper-left corner of the window,
or by pressing ⌘-R on your keyboard. After compiling, the app will launch.
It doesn’t do much, but you can already create new documents by pressing ⌘-N, as
shown in Figure 4-12. Pretty neat!

It might not seem like you’ve done a lot, because we haven’t done any programming
(we did warn you!). But really, you’ve accomplished a whole lot in this chapter, helped
along by parts of the process that Xcode automates. In brief, you’ve:

• created a brand-new macOS app, complete with support for multiple documents,
open in multiple windows.

• defined a brand-new file extension, .note, and told the system about it by export‐
ing it as a UTI.

• been given a Document class, written in Swift, for you to extend to do what you
need. (Did you notice the Document.swift file in the Project Navigator? We’ll be
working with that in the next chapter!)

Defining a Document Type | 109

Figure 4-12. The current state of the app

In the next chapter, we’ll make the app even better, but there’s one last cosmetic thing
we need to do first!

Adding the Icon
Finally, we’ll add the icon to the application’s asset catalog. We probably wouldn’t
really add the application icon at this point in the process, but since we’re providing
an icon for you to use, and since apps look better with an actual icon instead of the
Apple default icon, we thought we’d do it here. It’s also a good opportunity to talk
about asset catalogs.

In Xcode, an asset catalog is a file that contains the assets that your app uses. It is
most commonly used to store images, but can be used to store all sorts of assets: data
files, app icons, placeholder images for certain OS features, and various other things.

110 | Chapter 4: Setting Up the macOS Notes App

The predominant use for asset catalogs is storing images. Asset catalogs simplify
management of images that your app uses as part of its user interface. Importantly,
each image itself is composed of each of the different versions that the system could
use. A good example of this in practice is the icon that we’re about to add.

A macOS app’s icon can be presented at a variety of sizes: if it’s in the Dock, it will
probably be about 64 pixels high; but if it’s being shown in List mode in the Finder, it
may be only 16 pixels high. This gets even more complicated when you add Retina
displays into the mix, where there may be more physical pixels per screen point than
a non-Retina screen (that is, an image might report itself as 16 × 16 screen points, but
will physically be a 32 × 32 pixel image). For optimal image quality, it’s best to provide
a separate image file for different sizes—as shown in the following exercise; down‐
scaling a large image or upscaling a small one generally results in a pretty significant
drop in image quality:

1. Locate the macOS Icon.png and macOS Icon@2x.png files in the downloaded
resources. As a reminder, these are available via this book’s website.

2. Open the Assets.xcassets file, and select the AppIcon item in the list of assets.
3. Drag the macOS Icon.png file onto the slot labeled 1x Mac 512pt. Next, drag the

macOS Icon@2x.png file onto the slot labeled 2x Mac 512pt.

The app now has an icon (see Figure 4-13)! You might be wondering what the “1x”
and “2x” mean: the 1x icon is the version of the icon for non-Retina displays, and the
2x icon is the version of the icon for Retina displays. The 2x image is double the reso‐
lution of the 1x image. You can learn more about Retina displays and macOS apps in
Apple’s documentation.

Rather than requiring you to individually address each possible version of the image,
the asset catalog saves you time by creating image sets for each image. The application
image is an image set, which lets you provide multiple files for a single image. At run‐
time, the system will select the most appropriate image to use. You still provide the
images, but you only have to refer to what the image is representing by name, rather
than the specific resolution version. In this case, the system looks for the AppIcon
item, in the asset catalog, and knows to use the 1x version for non-Retina displays,
and the 2x version for Retina displays.

Adding the Icon | 111

http://www.secretlab.com.au/books/learning-swift/
http://apple.co/1UCCS9k

Figure 4-13. The app icon

Conclusion
Now that you’ve made it to the end of this first chapter on creating macOS apps, let’s
look back at what you’ve learned. In addition to developing an idea of how
document-based applications work and how this particular app will work, we’ve done
some fairly low-level plumbing of the type system and introduced an entirely new
document type. In the next chapter, we’ll start adding features to the app and start
building an actual, working, feature-full app.

112 | Chapter 4: Setting Up the macOS Notes App

CHAPTER 5

Working with Documents on macOS

Now that we’ve done the groundwork for the macOS application, we can start adding
the features that power it. Here’s where we’ll actually be doing some programming
with Swift.

Because most of the functionality of the app, along with the user interface, comes
from the Document class that was automatically provided when we first created the
project in Xcode, we’ll be spending most of our time working with Document and
enhancing its features to meet our needs. We’ll be adding support for storing text
inside our note document format, creating a user interface to show that text and mak‐
ing sure the app can save and open note files.

Along the way, we’ll talk about how documents work on macOS, how to build appli‐
cations that work with the document system to help users get their work done, and
how Swift fits into all of this.

The NSDocument Class
In macOS, documents are represented by the NSDocument class. When you create a
new type of document, you subclass this class, inheriting from it, and add the proper‐
ties and methods that are specific to your situation. For example, later in this chapter,
we’ll be adding properties that store the text of the note. If you need a refresher about
subclassing and inheritance, refer back to “Inheritance” on page 66.

iOS has a similar class, called UIDocument. We’ll be looking at UIDo
cument in lots of detail in Chapter 9.

113

The NSDocument class and its many related classes form a framework that allows you
to focus on the specifics of how your application needs to work. You don’t, for exam‐
ple, need to reimplement common features like a filepicker to let the user choose
what file to open. By using NSDocument, you also automatically gain access to
advanced features like autosaving and versions.

An instance of NSDocument, or one of its subclasses, represents a single document and
its contents. When the application wants to create a new document, it creates a new
instance of the class; when that document needs to be saved, the system calls a
method that returns an encoded version of the document’s contents, which the sys‐
tem then writes to disk. When an existing document needs to be loaded, an instance
is created and then given an encoded representation to use.

This means that your NSDocument subclasses never directly work with the filesystem,
which allows macOS to do several behind-the-scenes tricks, like automatically saving
backup copies or saving snapshots over time.

NSDocument is not part of the Swift programming language, but is
instead part of the AppKit framework. AppKit is the framework
Apple provides to build graphical applications for macOS, and it
contains windows, buttons, menus, text fields, and so on. You can
learn more about AppKit in Apple’s documentation.

We’re going to work with NSDocument, using Swift, through the rest of this chapter,
and we’ll explain how it fits together as we go.

Storing Data in the Document
In Chapter 4 we created a new project and asked it to set up a “document-based appli‐
cation” for us. Because of this, our project already has a Document class file in place,
with some method stubs, as shown here (with comments removed). You’ll find this in
the Document.swift file, which you can open by clicking it in the Project Navigator,
located on the left side of the screen. As ever, if you need a refresher on the structure
of Xcode’s user interface, check back to “The Xcode Interface” on page 13.

When you open Document.swift in the editor, you’ll see a number of stub functions
that the template gave us. Here are the two we are interested in:

override func dataOfType(typeName: String) throws -> NSData {
 throw NSError(domain: NSOSStatusErrorDomain, code: unimpErr, userInfo: nil)
}

override func readFromData(data: NSData, ofType typeName: String) throws {
 throw NSError(domain: NSOSStatusErrorDomain, code: unimpErr, userInfo: nil)
}

114 | Chapter 5: Working with Documents on macOS

http://apple.co/21TU0G6

The method stubs provided to us don’t really do much at the moment. All we have
right now are some methods that get called when a document of whatever type (in
our case, a note) gets written to, read from, or displayed. We’re going to need to make
sure this Document class is actually useful to us.

The throw keyword, in this case, causes an NSError object to be
relayed back to the document system, indicating that there was a
problem in saving or opening the document. In this case, the prob‐
lem is that the methods are unimplemented.

The first thing we need to do is customize our Document class to support storing the
data that our documents contain. There are two main items that the documents keep:
the text and the attachments. The first item is very straightforward; the second is
quite a bit trickier.

Storing Text
The Notes application is primarily about storing written text. In just about every pro‐
gramming language under the sun, text is stored in strings, which means that we’ll
need to add a string property in which to store the document’s text.

Strings in Swift are really powerful. In Swift, a string is stored as a
series of Unicode characters. If you’re an old Objective-C program‐
mer, you might (or might not, if you disliked NSString!) be pleased
to know that Swift String class is bridged to Foundation’s
NSString class, which means you can do anything to a Swift
String that you could do to an NSString. If you don’t know what
this means, then you don’t need to worry about it!

However, the Notes application should be slightly fancier than a plain-text editor. We
want the user to be able to bold and italicize the text, or maybe both, and regular
strings can’t store this information. To do so, we’ll need to use a different type than
String: we’ll need to use NSAttributedString.

NSAttributedString is from Foundation, the base layer of classes
that were created to support Objective-C, Apple’s other program‐
ming language. Because of this, NSAttributedString has a few dif‐
ferences around its use compared to the native Swift String class;
but in practice, this often doesn’t matter.

An attributed string is a type of string that contains attributes that apply to ranges of
characters. These attributes include things like bold, color, and font.

Storing Text | 115

Attributed text is also referred to as rich text.

1. Open the Document.swift class file containing stubs created by Xcode.
2. Add the following property to the Document class above the init method:

 // Main text content
 var text : NSAttributedString = NSAttributedString()

Although in theory you can put your property declarations pretty
much anywhere you want, it is standard practice to add them to the
top of the class declaration. We talked more about properties in
Swift back in Chapter 2.

This NSAttributedString property has a default value of the empty attributed string
and will be used to store the text for a note file. NSAttributedString is all you need
in order to store and work with formatted text (that is, text with attributes, such as a
font and a size) almost anywhere within your apps. User interface elements provided
by Apple support NSAttributedString and know how to display it. It’s that easy!

Package File Formats
In addition to storing plain text, the Document class also needs to store attachments.
These attachments can be any file that the user chooses, which means that we need to
think carefully about how we approach this.

On most operating systems, documents are represented as single file. This makes a lot
of intuitive sense in most situations, since a “document” can be thought of as a single
“thing” on the disk. However, if you have a complex document format that contains
lots of different information, it can cause a lot of work: the document system needs to
read through the file, determine what information is where, and parse it into a usable
in-memory representation. If the file is large, this can mean that the system needs to
make sure that it doesn’t run out of memory while reading the file.

macOS deals with this kind of problem in a simpler, more elegant way. Instead of
requiring all documents to be individual files, documents can also be packages: fold‐
ers that contain multiple files. The NSDocument class is capable of working with both
flat files and packages in the same way.

A file package allows you to use the filesystem to work with different parts of your
document. For example, Apple’s presentation tool Keynote uses a package file format

116 | Chapter 5: Working with Documents on macOS

to store the content of the slides separately from the images that appear on those
slides. Additionally, all applications on macOS and iOS are themselves packages:
when you build an application using Xcode, what’s produced is a folder that contains,
among much else, the compiled binary, all images and resources, and files containing
information that describes the capabilities of the application to the operating system.

Package file formats have a lot of advantages, but they have a single,
large disadvantage: you can’t directly email a folder to someone.
Instead, you have to store the folder in an archive, such as a ZIP
file. Additionally, users of other operating systems won’t see a pack‐
age as a single document, but rather as a folder.

To work with package file formats, you use the FileWrapper class. A FileWrapper is
an object that represents either a single file, or a directory of multiple files (each of
which can itself be a file wrapper representing a directory).

The Document class will contain at least two file wrappers:

• One for the .rtf file containing the text, called Text.rtf
• One for a folder called Attachments, which will store the attachments.

We need two file wrappers in order to store both parts of a note. As we described in
Chapter 4, a note is composed of formatted text, plus any number of attachments,
which can be arbitrary files. To store the text to disk—which is represented and
manipulated within our Swift code as an NSAttributedString—we use one file wrap‐
per to store it, saving it using the preexisting rich-text format (RTF). To store the
attachments, we’ll use a folder, called Attachments, which will live inside the package
that represents an individual .note file.

We need to implement methods that load from and save to a file wrapper, as well as
the necessary machinery for accessing the contents of the files. We’ll implement the
first file wrapper, for the text of a note, in this chapter, and the second file wrapper,
for attachments, in the next chapter.

However, before we start implementing the Document class, we need to do a little bit
of preparation. First, we’ll define the names of the important files and folders that are
kept inside the documents; next, we’ll lay out the types of errors that can be generated
while working with the documents.

These will be kept inside an enum, which we talked about in “Enumerations” on page
50; by using this approach, we’ll avoid annoying bugs caused by typos. This enumera‐
tion is one that we’ll be adding to as we extend the functionality of the Document class.
Add the following enumeration to the top of Document.swift (that is, before the Docu
ment class):

Storing Text | 117

 // Names of files/directories in the package
 enum NoteDocumentFileNames : String {
 case TextFile = "Text.rtf"

 case AttachmentsDirectory = "Attachments"

 }

Opening and saving a document can fail. To diagnose why it failed, it’s useful to build
a list of error codes, which will help us figure out the precise causes of failures. The
list of errors we’ve chosen here is derived from Apple’s list of possible NSError types.

In the NSError system (which we discussed back in “Error Handling” on page 85),
each possible error is represented by an error code: a number that represents the error
in question. Rather than having to manually specify the error codes for each thing
that could go wrong, we’ll use an enumeration; this allows us to focus on the errors
themselves instead of having to be reminded that we’re really working with numbers.

Note that the type associated with this enumeration is String. This
allows us to associate each value of the enumeration with a corre‐
sponding string.

1. Add the following list of possible errors, which is also an enumeration. This enu‐
merator is an Int type, since that’s what NSError requires for its error codes. As
with the NoteDocumentFileNames enumeration, we want to add this one above
the class definition, at the top of the Document.swift file:
 enum ErrorCode : Int {

 /// We couldn't find the document at all.
 case cannotAccessDocument

 /// We couldn't access any file wrappers inside this document.
 case cannotLoadFileWrappers

 /// We couldn't load the Text.rtf file.
 case cannotLoadText

 /// We couldn't access the Attachments folder.
 case cannotAccessAttachments

 /// We couldn't save the Text.rtf file.
 case cannotSaveText

 /// We couldn't save an attachment.

118 | Chapter 5: Working with Documents on macOS

http://apple.co/21TV6BM

 case cannotSaveAttachment
 }

We’re using a triple-slash (///) for our comments in the preceding code for a rea‐
son. The triple-slash tells Xcode to treat that comment as documentation. Put
triple-slash comments above method names and entries in enums to define what
they mean, and Option-click those names to see this documentation.
To save typing, we’ll also create a method that prepares an NSError object for us
based on the types of errors that can occur while a user is opening or saving a
document.

2. Above the Document class definition, implement the err function:
let ErrorDomain = "NotesErrorDomain"

func err(_ code: ErrorCode,
 _ userInfo:[AnyHashable: Any]? = nil) -> NSError {
 // Generate an NSError object, using ErrorDomain, and using whatever
 // value we were passed.
 return NSError(domain: ErrorDomain,
 code: code.rawValue,
 userInfo: userInfo)
}

The userInfo parameter is a little complex, so let’s break it
down a bit. The underscore before the parameter’s name (user
Info) indicates to Swift that calls to this function don’t need to
label the parameter—they can just call it as err(A, B) instead
of err(A, userInfo: B). The type of the parameter is an
optional dictionary that maps NSObjects to any object. If this
parameter is omitted, this parameter’s value defaults to nil.

This function takes our enumeration from before, as well as the object that
caused the error, and returns an NSError object.
The NSError class represents something—anything—that can go wrong. In order
to properly deal with the specific things that can go wrong while someone is
working with the document, it’s useful to have an NSError that describes what
happened. However, the NSError class’s initializer is complicated and verbose.
It’s easier to instead create a simple little function that you can just pass a value
from the ErrorCode enumeration in, as in this example (which is part of the code
we’ll be writing later), instead of having to pass in the ErrorDomain variable and
an Int version of the error code. It saves typing and reduces the chance of acci‐
dentally introducing a bug.

Storing Text | 119

You’ll be using the err method later in this chapter, when we start making the
loading and saving system. Here’s what it looks like:
 // Load the text data as RTF
 guard let documentText = NSAttributedString(rtf: documentTextData,
 documentAttributes: nil) else {
 throw err(.cannotLoadText)
 }

The guard Keyword, and Why It’s Great
You’ll notice we’re using the guard keyword in the previous example. The guard key‐
word was introduced in Swift 2 and helps you to avoid writing two kinds of painful
code: if-pyramids (sometimes called “pyramids of doom”), and early returns.

An if-pyramid looks something like this:

if let someObjectA = optionalA {
 if let someObjectB = optionalB {
 if let someObjectC = optionalC {
 // Do something that relies on all three of these optionals
 // having a value
 }
 }
}

And an early return looks something like this:

if conditionA == "thing" { return }
if conditionB == "thing" { return }
if conditionC == "thing" { return }

// Do something that relies on conditionA, conditionB, and
// conditionC all NOT being equal to "thing"

// Don't forget to include the 'return' statements, or you're in trouble!

We suspect that at least one of these looks familiar! The guard keyword lets you avoid
this pain. It embodies Swift’s philosophy of encouraging, or even forcing, you to write
safe code. You tell guard what you want to be the case, rather than what you don’t
want to be the case; this makes it easier to read the code and understand what’s going
on.

When you use guard, you provide a condition to test and a chunk of code. If the con‐
dition evaluates to false, then the chunk of code is executed. So far, this might seem
similar to the if statement, but it has an interesting extra requirement: at the end of
the code, you’re required to exit from the current scope. This means, for example,
you’ll have to return from the function you’re in. For example:

120 | Chapter 5: Working with Documents on macOS

guard someText.characters.count > 0 else {
 throw err(.TextIsEmpty)
}

Here, we guard on the premise that a variable called someText has more than zero
characters. If it doesn’t, we throw an error. Again, while guard might not look that
different from a bunch of if statements right now, it’s a lot easier to read and under‐
stand what the code is going to do.

Getting back to the app, there is one more task we need to do before we can start sav‐
ing and loading files. We’ll add a property to the Document class: a FileWrapper that
represents the file on disk. We’ll be using this later to access the attachments that are
stored in the document.

Add the following property to the Document class (this goes inside the class defini‐
tion):

 var documentFileWrapper = FileWrapper(directoryWithFileWrappers: [:])

The documentFileWrapper will represent the contents of the document folder, and
we’ll use it to add files to the package. Defining the variable with the default value
FileWrapper(directoryWithFileWrappers: [:]) ensures that the variable will
always contain a valid file wrapper to work with.

Saving Files
With the groundwork in place, we can now implement the guts of loading and saving.
We’ll start by implementing the method that saves the content, and then we’ll imple‐
ment the loading method.

The saving method, fileWrapper ofType, an NSDocument method we are going to
override, is required to return an FileWrapper that represents a file or directory to be
saved to disk. It’s important to note that you don’t actually write a file yourself;
instead, the FileWrapper object merely represents a file and its contents, and it’s up to
macOS to actually commit that object to disk. The advantage of doing it like this is
that you can construct whatever organization you need for your package file format
without actually having to have files written to disk. You simply create “imaginary”
files and folders out of FileWrapper objects and return them from this method, and
the system takes care of actually writing them to disk.

Inside the Document class, implement the fileWrapper ofType method, which pre‐
pares and returns a file wrapper to the system, which then saves it to disk:

 override func fileWrapper(ofType typeName: String) throws -> FileWrapper {

 let textRTFData = try self.text.data(
 from: NSRange(0..<self.text.length),
 documentAttributes: [

Storing Text | 121

 NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType
]
)

 // If the current document file wrapper already contains a
 // text file, remove it - we'll replace it with a new one
 if let oldTextFileWrapper = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldTextFileWrapper)
 }

 // Save the text data into the file
 self.documentFileWrapper.addRegularFile(
 withContents: textRTFData,
 preferredFilename: NoteDocumentFileNames.TextFile.rawValue
)

 // Return the main document's file wrapper - this is what will
 // be saved on disk
 return self.documentFileWrapper
 }

This function takes a single parameter: a string, which contains a UTI that describes
the kind of file that the system would like returned to it.

In this application, which only works with one type of file, we can
safely ignore this parameter. In an app that can open and save mul‐
tiple types of documents, you’d need to check the contents of this
parameter and tailor your behavior accordingly. For example, in an
image-editing application that can work with both PNG and JPEG
images, if the user wants to save her image as a PNG, the typeName
parameter would be public.png, and you’d need to ensure that you
produce a PNG image.

The method creates a new variable, called textRTFData, which contains the text of
the document encoded as an RTF document. The line in which this happens is com‐
plex, so let’s take a closer look at it:

 let textRTFData = try self.text.data(
 from: NSRange(0..<self.text.length),
 documentAttributes: [
 NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType
]
)

This line of code does a lot of work, all at once. It first accesses the self.text prop‐
erty, and accesses the NSAttributedString that contains the document’s text. It then
calls the data fromRange method to convert this attributed string into a collection of
bytes that can be written to disk. This method first requires an NSRange, which repre‐

122 | Chapter 5: Working with Documents on macOS

sents a chunk of the text; in this case, we want the entire text, so we ask for the range
starting at zero (the start of the text) and ending at the last character in the text.

The data fromRange method also needs to know how the data should be formatted,
because there are multiple ways to represent formatted text; we indicate that we want
RTF text by passing in a dictionary that contains the NSDocumentTypeDocumentAttri
bute key, which is associated with the value NSRTFTextDocumentType.

This whole line is prefixed with the try keyword, which is required because data
fromRange is capable of failing. However, we don’t need to actually deal with this
error, because the fileWrapperOfType method itself is marked as capable of failing
(this is the throws keyword at the top of the function). In other words, if there is a
problem in getting the formatted data, the entire function will immediately return,
and the calling function will need to deal with the error object that is generated. (The
calling function, in this case, is part of the macOS document system; we don’t need to
worry about the specifics. But if you’re curious, it displays an alert box to users to tell
them that there was a problem saving their file.)

At this point, the method is taking advantage of an especially useful combination of
Swift’s features. Remember that, in Swift, nonoptional variables are required to be
non-nil—that is, they have a value. The only way for the dataFromRange method to
fail to provide a value is to completely fail in its task. This is indicated from the way
that dataFromRange’s method is declared:

func data(from range: NSRange,
 documentAttributes dict: [String : Any] = [:]) throws -> Data

Notice how the return type of this method is Data, not Data? (with a question mark
at the end). This indicates that the method will either succeed and give you a value, or
completely fail. If it fails, the fact that this method throws and that any errors from
data fromRange are not specifically caught means that the method will immediately
return. This means that you don’t have to do any nil checking or optional unwrap‐
ping on the value you get back from data fromRange.

Once the textRTFData variable has been created, the method then needs to deter‐
mine whether or not it needs to replace any existing text file. The reason for this is
that a FileWrapper can have multiple file wrappers inside it with the same name. We
can’t simply say “add a new file wrapper called Text.rtf,” because if one already existed,
it would be added as "Text 2.rtf,” or something similar. As a result, the document asks
itself if it already has a file wrapper for the text file; if one exists, it is removed.

After that, a new file wrapper is created that contains the textRTFData that we pre‐
pared earlier. This is added to the document’s documentFileWrapper.

Storing Text | 123

Remember, documentFileWrapper is guaranteed to always exist
and be ready to use, because it was defined with a default value.

Finally, the documentFileWrapper is returned to the system. At this point, it’s now in
the hands of the operating system; it will be saved, as needed, by macOS.

Loading Files
Next, we’ll implement the function that loads the data from the various files into
memory. This is basically the reverse of the fileWrapperOfType method: it receives a
FileWrapper and uses its contents to get the useful information out.

Implement the read from fileWrapper method, which loads the document from the
file wrapper:

 override func read(from fileWrapper: FileWrapper,
 ofType typeName: String) throws {

 // Ensure that we have additional file wrappers in this file wrapper
 guard let fileWrappers = fileWrapper.fileWrappers else {
 throw err(.cannotLoadFileWrappers)
 }

 // Ensure that we can access the document text
 guard let documentTextData =
 fileWrappers[NoteDocumentFileNames.TextFile.rawValue]?
 .regularFileContents else {
 throw err(.cannotLoadText)
 }

 // Load the text data as RTF
 guard let documentText = NSAttributedString(rtf: documentTextData,
 documentAttributes: nil) else {
 throw err(.cannotLoadText)
 }

 // Keep the text in memory
 self.documentFileWrapper = fileWrapper

 self.text = documentText

 }

This function takes a FileWrapper and uses guard to make sure that we actually have
access to our collection of file wrappers; otherwise, it throws one of our errors, from
the enumeration we made earlier. It then checks that there is text inside that we can
access (again, otherwise throwing an error) and then loads the text into an

124 | Chapter 5: Working with Documents on macOS

NSAttributedString (which stores formatted text, as we discussed earlier). If that
fails, then we throw yet another possible error.

If we have successfully made it past the three guard statements, then we have success‐
fully loaded the text. We can now store the loaded text in the text property; we’ll also
keep the FileWrapper that we just loaded from in the documentFileWrapper prop‐
erty. This is is used later, when the document is saved.

In this book, because the Note file format uses a package file format, we’ll be using the
methods that are specific to package file format. However, this is only one of the two
approaches.

If you’re making a document-based application that stores its data in flatfiles, you
implement the read from data: and data ofType: methods instead of the read
from fileWrapper: and fileWrapper ofType: methods. In the read from data:
method, your class is handed an NSData object that contains the raw data loaded from
the file that the user wants to open, and it’s up to you to interpret the contents of that
data:

 override func read(from data: Data, ofType typeName: String) throws {
 // Load data from "data".
 }

Conversely, the data ofType method is expected to create and return a Data object
that contains the information that should be written out to disk:

 override func data(ofType typeName: String) throws -> Data {
 // Return an NSData object. Here's an example:
 return "Hello".data(using: String.Encoding.utf8)!
 }

Don’t implement both the FileWrapper methods and the Data
methods in the same class. If you do, you’re likely to confuse the
system in regards to how your documents are stored.

A Basic UI
Now that the document class has been prepared, we can create a user interface that
will let users actually edit their documents. We’re going to create a UI at this point,
because if we don’t, it will be hard to make sure that the app is behaving as expected.
macOS apps are very visual (and iOS apps even more so) and are more often than not
—as is the case here—intrinsically linked between code and interface.

A Basic UI | 125

It’s very easy to think of Xcode’s interface builder as being a tool
that lets you design a layout and then serialize it into some form of
markup that describes the position, type, size, and so on of each
object.This is not what’s happening. The interface you build is
actually the real, bona fide interface that your app uses, not a visual
representation of it. This has some consequences that we’ll touch
on as they come up. We also mentioned this back in “Designing the
Interface” on page 22.

In macOS and iOS, you design an interface using Xcode’s built-in interface builder.
The interface builder is a drag-and-drop environment in which you both lay out your
interface and also connect it to your code. The interface files are stored either as nib
files or as storyboard files; nib files are simpler to work with than storyboards, but
storyboards have more features. We briefly touched on the interface builder earlier, in
“Developing a Simple Swift Application” on page 21.

We’ll be using nib files in the macOS app, and storyboard files in
the iOS app. The user interface needs of the macOS app are much
simpler than those of the iOS app we’ll be building later, and this
way you get to see the use of nibs and storyboards in one book!

When the application creates or opens a document, it needs to present some kind of
interface to the user. It does this by first asking the Document instance that it just cre‐
ated for the name of the nib file that will contain the document’s UI, by accessing its
windowNibName property:

 override var windowNibName: String? {
 // Document supports multiple NSWindowControllers; you should remove
 // this property and override -makeWindowControllers instead.
 return "Document"
 }

Let’s now implement the user interface:

1. Open Document.xib, as shown in Figure 5-1.

126 | Chapter 5: Working with Documents on macOS

Figure 5-1. The empty Document.xib, opened for the first time

Nib used to stand for “NeXT Interface Builder,” which was the
original program that developers used to create their inter‐
faces. The file format was later changed from a custom binary
format to XML, which is why the files have the filename exten‐
sion .xib. It’s still referred to as “nib.” The N in the various NS-
prefixed classes has the same origin.

2. Set the window’s Full Screen mode to Primary Window (see Figure 5-2). Full-
screen support is free, especially when you use constraints, but you need to turn
it on. Do this by clicking the icon representing the window in the sidebar of the
nib editor (it’s below the “A” icon made out of a paintbrush, pencil, and ruler).
Then use the Attributes Inspector (one of the tabs on the right side of the screen)
to select Primary Window from the drop-down menu next to Full Screen.

A Basic UI | 127

Figure 5-2. Selecting the window in the outline

3. The window includes a label; select it and delete it. We’ll be building our own
interface and don’t need it.

If you need a reminder of where to find the Attributes Inspec‐
tor, the Object library, or any other part of the Xcode user
interface, revisit “The Xcode Interface” on page 13.

4. Search for NSTextView in the Object library (see Figure 5-3).

An NSTextView is used for drawing text (and selecting and
modifying text). It’s a simple interface to Cocoa’s very, very
powerful text system. You can read more about it in Apple’s
documentation.

128 | Chapter 5: Working with Documents on macOS

http://apple.co/1UCYl1H
http://apple.co/1UCYl1H

Figure 5-3. An NSTextView

5. Drag it into the interface and resize it to fill the window, leaving a little bit of
margin on all sides (Figure 5-4).

A Basic UI | 129

Figure 5-4. Adding the text view

6. Select the text view and open the Editor menu. Choose Resolve Auto Layout
Issues→Reset to Suggested Constraints. This will add constraints that define the
view’s position and size in the window.

Constraints are rules that define the position and size of the
different parts of the user interface. We’ll be looking at them in
a lot of detail as we build the macOS and iOS apps.

7. If it isn’t already open, open the outline by clicking the icon at the lower left of
the view (Figure 5-5).

130 | Chapter 5: Working with Documents on macOS

Figure 5-5. The outline button

8. Expand the Bordered Scroll View, and then expand the Clip View that’s inside it.
Select the Text View (Figure 5-6).

You might also be wondering what’s up with the fact that a text
view is really a Bordered Scroll View, which contains a Clip
View, which contains the Text View itself. The issue is compli‐
cated and mostly boils down to “for historical reasons,” but the
essentials are as follows: the text view simply displays text and
allows the user to type, a clip view provides some underlying
support for the scroll view, and the scroll view allows users to
scroll to access the content of the text view if they type more
than can fit in the view.

A Basic UI | 131

Figure 5-6. Selecting the Text View, inside its parent views

9. Open the Attributes Inspector (if it isn’t already visible) and scroll down to the
bottom of the list. Turn on Smart Links. This will make any URLs that the user
enters appear as clickable links.
Finally, we need to connect the user interface to the underlying Document class.
To do this, we’ll use bindings, which link the value of a user interface element,
such as a text field or a label, to a property in another object. When you make
changes to the UI element, the property is updated; when the property is upda‐
ted, the UI element is updated as well.

Bindings are available only on macOS. On iOS, we’d need to
manually register to be notified of changes that the user
makes.

10. Open the Bindings Inspector by either clicking the second-to-last button at the
top of the utilities pane, or by pressing ⌥-⌘-7 (see Figure 5-7).

Figure 5-7. The Bindings Inspector

11. Open the Attributed String section.
12. Select the Bind To box.
13. Change Bind To to File’s Owner.
14. Change Model Key Path to self.text.

132 | Chapter 5: Working with Documents on macOS

15. Run the app; you can now enter and save text (Figure 5-8). Close the document
and reopen it, and notice that the contents of the document are saved. You also
get free undo and revision control—lots of stuff is taken care of for you!

Bindings are an incredibly powerful technology that’s available on
macOS. They save you a lot of work in ensuring that your controls
and the data that they represent are in sync, and they can be
applied to almost every control. In addition to binding individual
controls, like the text field in this app, you can bind the content of
collection views and table views. We won’t be doing that in this app,
but you can learn more about it in Cocoa Bindings Programming
Topics.

Figure 5-8. The app in its current form

A Basic UI | 133

http://apple.co/1UCZypP
http://apple.co/1UCZypP

After you’ve saved a document, locate it in the Finder and right-click it. Choose Show
Package Contents, and you’ll find the Text.rtf file, as shown in Figure 5-9. This is the
text file wrapper that we wrote to earlier, when we added code to fileWrapperOfType
inside the Document class.

Figure 5-9. The text file inside the document

Conclusion
We’ve accomplished a lot in this chapter! At a high level, we’ve:

• manipulated the document model of macOS, which is built on NSDocument.
• worked with styled (attributed) text, storing it in memory, in Swift, using
NSAttributedString, and on disk as a rich-text format file.

• used FileWrapper to save and load data, connecting it back to the Document class
that was created for us by Xcode back in Chapter 4.

In the next chapter, we’ll add attachment support to the macOS app.

134 | Chapter 5: Working with Documents on macOS

CHAPTER 6

User Interfaces and iCloud

In its current state, our note-taking app for macOS allows you to view and edit the
text in documents. In this chapter, we’ll add the ability to work with attachments, and
then we’ll add support for iCloud.

First, we’ll add support for the general concept of attachments—that is, attaching
arbitrary files to a notes document, including the user interface; and then we’ll
expand it, adding support for double-clicking attachments to open them, including
attachments that represent a real-world location, and dragging and dropping files on
notes to attach them. We’ll also add support for Quick Look on our notes file format,
allowing users to view the contents of a note from within the macOS Finder.

As you learned in “Package File Formats” on page 116, when we set up the file wrap‐
pers for this app, attachments are stored in the document’s Attachments directory.
This means that the Document class needs tools for working with the contents of this
directory. It also needs an interface for presenting the attachments and a method of
adding new attachments.

In this chapter, we’ll use NSCollectionView, some more advanced features of File
Wrapper, and NSOpenPanel to select files to add as attachments. The NSCollection
View and NSOpenPanel classes are advanced user interface elements of macOS that
will allow you to present a grid or list of data, and allow users to pick files from the
filesystem for use in your app, respectively.

Updating the UI
The first thing we need to do is update our user interface, adding a collection view to
show a list of attachments. In the previous chapter, we wrote code and then created a
UI. This time we’re going to make a UI, then write code. This is because the UI we’re

135

making here is a little more complex than the UI from the last chapter, and we’ll need
certain parts of it in place before we can connect the code we’ll be writing to it:

1. Open Document.xib.
2. Resize the text view (using the handles, just like any GUI resize) we added in the

last chapter so that there’s more margin at the bottom of the window (see
Figure 6-1). This margin is where the collection view will go.

Figure 6-1. Resizing the text view to make room

3. Search for NSCollectionView in the Object library (see Figure 6-2). Drag in a
collection view. We’re going to use this to display any attachments for the open
note document.
NSCollectionView is provided by AppKit to display a grid of other views. Each
view it displays is managed by an NSCollectionViewItem.
To create the collection view, we also need to create the view for each cell. We
only need to create one of these views—the collection view will create and man‐
age multiple copies of them, one for each attachment in the documents.

136 | Chapter 6: User Interfaces and iCloud

The closest equivalent for iOS is a UICollectionView, which
we’ll use later on, in “Collection Views” on page 212.

Figure 6-2. Finding the NSCollectionView

4. Resize the collection view to fill the margin beneath the text view, but leave some
space on the righthand side (see Figure 6-3).

Updating the UI | 137

Figure 6-3. Adding the collection view

5. Select the collection view and open the Attributes Inspector. In the Layout
options, change it to Flow, which will create a nice, simple, linear layout for our
attachments.

6. Select both the text view and the collection view. Open the Editor menu, choose
Resolve Auto Layout Issues, and choose Reset to Suggested Constraints.

7. Open Document.swift in the Assistant.
8. Hold down the Control key, and drag from the collection view into the Document

class. Create a new outlet connection called attachmentsList. You can now close
the Assistant if you need the screen space.

9. Hold down the Control key again, and drag from the collection view to the File’s
Owner in the outline. Choose “delegate” from the list that appears.

10. Hold down the Control key a third time, and drag from the collection view to the
File’s Owner. Choose “dataSource” from the list that appears.

138 | Chapter 6: User Interfaces and iCloud

Because of the hierarchy of views in our interface, selecting
from the interface will often grab a parent object instead of the
view we want. It is generally easier to select the correct object
from the outline than from the views.

For just a few clicks and some dragging, we have done rather a lot. We added a collec‐
tion view to our interface and then we used the built-in tool to fix the constraints on
our interface. Next, we created an outlet for the collection so we can refer to it in our
code. Finally, we hooked up the delegate and dataSource properties of the collec‐
tion view to our Document.swift class. We’ve done all of this so we can refer to and
configure the collection view in our code.

Document-Filetype-Extension UI
Next, we need to design the view that will be used for each attachment in the collec‐
tion view. At the same time, we’ll create a new class that will act as the manager for
the cell’s view. We won’t be adding any code to this class right away, but it saves a little
time to do it now rather than to create the file later:

1. Create a new Cocoa class named AttachmentCell by going to File→New→File in
the menu or by pressing ⌘-N. Make it a subclass of NSCollectionViewItem, and
turn on “Also create XIB file for user interface,” as shown in Figure 6-4.

Document-Filetype-Extension UI | 139

Figure 6-4. Adding the AttachmentCell

2. Open the newly created AttachmentCell.xib.
3. Go to the Object library, and search for Collection View Item (Figure 6-5). Drag

one into the outline view, at the left.

140 | Chapter 6: User Interfaces and iCloud

Figure 6-5. Searching for a collection view item

4. We need to make the collection view use the AttachmentCell class, so select it
and go to the Identity Inspector. Change its class from NSCollectionViewItem to
AttachmentCell (Figure 6-6).

Document-Filetype-Extension UI | 141

Figure 6-6. Changing the class for the collection view

We’ll now add an image view to represent the attachments, and a label to show
their file extension.

5. Search for NSImageView in the Objects library (Figure 6-7).

Figure 6-7. The NSImageView in the library

6. Drag in an image view, and place it in the center of the canvas. Resize it to give it
a bit of space around the edges (Figure 6-8).

142 | Chapter 6: User Interfaces and iCloud

Figure 6-8. Adding the image view

7. Next, we’ll add a label to show the file type. Drag in a label from the Object
library, and place it beneath the image view.

8. Select the new image view and label, and open the Editor menu. Choose Resolve
Auto Layout Issues→Reset to Suggested Constraints.
Next, we need to tell the collection view item about the image view and text field
that we just added. Hold down the Control key, and drag from the attachment
cell in the outline to the image view. Select imageView in the menu that appears.

9. Repeat this process, but this time drag from the attachment cell to the label, and
select textField in the menu.

10. Repeat this process a third time, and Control-drag from the attachment cell onto
the view that contains the image view (not the image view itself). Select view in
the menu that appears.

Collection view items already have an outlet set up for an image
view and a text field, so you don’t need to create them yourself.

The interface for the collection view cells are now ready. It’s time to set up the Docu
ment class to be able to provide data to the collection view.

Getting an Icon for the Collection View Cells
As part of displaying attachments, we need some kind of picture to show them. We’ll
also display the file extension of each attachment in the label that you just created.

Document-Filetype-Extension UI | 143

We’re talking about two types of “extension” here: one is the file’s
extension (e.g., the “rtf ” component of a filename Text.rtf), and the
other is in terms of a Swift extension, which we covered in “Exten‐
sions” on page 71. Don’t get confused! We often do.

Because attachments are represented by FileWrapper objects, we need a way to get a
representative image from them. This means extending the FileWrapper class to add
a method that returns an image. We’ll also need a way to get the file’s extension so that
it can be displayed:

1. Open Document.swift.
2. Add the following extension to the top of the file, outside the Document class:

 extension FileWrapper {

 dynamic var fileExtension : String? {
 return self.preferredFilename?.components(separatedBy: ".").last
 }

 dynamic var thumbnailImage : NSImage {

 if let fileExtension = self.fileExtension {
 return NSWorkspace.shared().icon(forFileType: fileExtension)
 } else {
 return NSWorkspace.shared().icon(forFileType: "")
 }
 }

 func conformsToType(_ type: CFString) -> Bool {

 // Get the extension of this file
 guard let fileExtension = self.fileExtension else {
 // If we can't get a file extension,
 // assume that it doesn't conform
 return false
 }

 // Get the file type of the attachment based on its extension
 guard let fileType = UTTypeCreatePreferredIdentifierForTag(
 kUTTagClassFilenameExtension, fileExtension as CFString, nil)?
 .takeRetainedValue() else {
 // If we can't figure out the file type
 // from the extension, it also doesn't conform
 return false
 }

 // Ask the system if this file type conforms to the provided type
 return UTTypeConformsTo(fileType, type)

144 | Chapter 6: User Interfaces and iCloud

 }
 }

This extends FileWrapper to provide a means for getting a thumbnail—in this case,
the icon for a specific file extension—for each attachment. The extension is in the
Document.swift file because of the close relationship the file wrappers have with the
document—it makes sense to keep the related functionality together.

The fileExtension property takes the name of the FileWrapper and splits it up at
every . character. It then returns the last item in this list.

The thumbnailImage property takes the fileExtension and asks the NSWorkspace,
which represents the environment in which the app is running, to provide the image
used for files with this extension. If the extension is nil, a generic icon is used.

Finally, conformsToType takes the fileExtension and asks the operating system’s
type system to convert the file extension into an object representing that file type. If
this succeeds, that type object is used to check whether it conforms to the provided
type identifier.

If you are wondering what the takeRetainedValue() function is
doing, or why we have these weird-looking values like kUTTagClass
FilenameExtension, it’s because this code is using some libraries
that are written in the C programming language, not in Swift.
Unfortunately for us, C is not as nice as Swift, so we need to jump
through a few hoops and use some weird syntax to get the two lan‐
guages to play nicely with each other.

Adding Attachments
Finally, we need to add the button, which we’ll use to allow users to add new attach‐
ments. We’ll be adding code to this button shortly to actually make it work. First, do
the following:

1. Open Document.xib.
2. Search for NSButton in the Object library (see Figure 6-9).

Document-Filetype-Extension UI | 145

Figure 6-9. The NSButton in the library

3. Drag in a gradient button, and place it in the lower-right corner of the window
(Figure 6-10).

4. Resize it to 32 × 32.
5. Select the collection view, the text view, and the button. Open the Editor menu,

and choose Resolve Auto Layout Issues→Reset to Suggested Constraints.

146 | Chapter 6: User Interfaces and iCloud

Figure 6-10. Adding the button

Next, we’ll set up the user interface that appears when this button is clicked. We’ll
need to create a new class that controls it. We’re making a new class, which will
come with a XIB file of its own, because this piece of UI will be displayed in a
popover. We’ll explain popovers in a moment.

6. Open the File menu, and choose New→File.
7. Select the Source item under macOS, and then select Cocoa Class (Figure 6-11).

Click Next.

Document-Filetype-Extension UI | 147

Figure 6-11. Selecting the Cocoa Class file type

8. Name the new class AddAttachmentViewController, and make it a subclass of
NSViewController. Select “Also create XIB file for user interface,” and ensure that
the language is set to Swift (Figure 6-12).

148 | Chapter 6: User Interfaces and iCloud

Figure 6-12. Setting up the new file

9. Open AddAttachmentViewController.xib. You’ll see a brand-new, empty view
(Figure 6-13).

Figure 6-13. The empty AddAttachmentViewController.xib

Document-Filetype-Extension UI | 149

10. Resize the empty view to about one-quarter of the width and height.
11. Add a new push button to the view and set its text to Add File, as shown in

Figure 6-14. Place it in the center of the view, and add constraints that keep it in
the center by opening the Editor menu and choosing Resolve Auto Layout
Issues→Reset to Suggested Constraints.

Figure 6-14. Adding the Add File button

12. Now we’ll confirm that the File’s Owner is correct. Select the File’s Owner at the
top of the outline (Figure 6-15). File’s Owner exists within every nib file. It’s a
placeholder object that represents the controller object that works with the con‐
tents of the nib. Connecting File’s Owner to the class AddAttachmentViewControl
ler (which is inside the AddAttachmentViewController.swift file) means the
instance of AddAttachmentViewController can work with objects (like the user
interface elements) inside the nib file. (There is generally an automatic connec‐
tion between the Swift file and the nib file, because we asked Xcode to “also create
XIB file” when we added this class, but it is always worth double checking.)

Figure 6-15. The File’s Owner

13. Go to the Identity Inspector by clicking the third icon at the top of the utilities
pane, or by pressing ⌥-⌘-3 (Figure 6-16).

150 | Chapter 6: User Interfaces and iCloud

Figure 6-16. The Identity Inspector

14. Change the class to AddAttachmentViewController (Figure 6-17).

Figure 6-17. Updating the object’s class

15. Open the Assistant by clicking the Assistant Editor button, or by pressing ⌥-⌘-⏎
(Figure 6-18).

Figure 6-18. The Assistant Editor button

16. Ensure that the Assistant is showing the AddAttachmentViewController.swift file
by clicking the leftmost segment of the jump bar and choosing Auto‐
matic→AddAttachmentViewController.swift (Figure 6-19).

Figure 6-19. Finding AddAttachmentViewController.swift in the jump bar

17. Hold down the Control key, and drag from the Add File button into the AddAt
tachmentViewController class. Release the mouse button, and in the window
that appears, create a new Action connection named addFile (see Figure 6-20).
As a reminder, we talked about Action connections back in “Connecting the
Code” on page 23.

Document-Filetype-Extension UI | 151

Figure 6-20. Defining a new action method

18. Close the Assistant by pressing either the Standard Editor button (Figure 6-21)
or ⌘-⏎.

Figure 6-21. The Standard Editor button

19. Open AddAttachmentViewController.swift.
20. Add the AddAttachmentDelegate protocol to the top of the file:

 protocol AddAttachmentDelegate {

 func addFile()

 }

We introduced protocols back in “Protocols” on page 70. Using a protocol for
this feature allows us to take advantage of a powerful programming concept that
Swift encourages: the idea that objects should know as little about each other as
possible. The less an object knows about another, the fewer assumptions it can
make about how it’s going to behave and what methods and properties it has.
This approach means that it becomes a lot less tempting to make an object
depend upon the internals of how another object works.
The AddAttachmentDelegate protocol defines a single method, addFile, because
there’s only one thing that the AddAttachmentViewController needs to know
about the delegate object: what method to call when the user adds a file. It
doesn’t need to know that the delegate object will be the Document object, and it
doesn’t need to know about any of that object’s methods and properties beyond
addFile.

152 | Chapter 6: User Interfaces and iCloud

21. Add a new property to the AddAttachmentViewController class:
 var delegate : AddAttachmentDelegate?

22. Update the addFile method by adding the following code:
 @IBAction func addFile(_ sender: AnyObject) {
 self.delegate?.addFile()
 }

This code provides an action that can be called from a user interface element cre‐
ated in the interface builder, which calls the addFile method on the delegate
object.
Finally, we’ll add the ability to display the new attachment screen.

23. Open Document.xib, and open Document.swift in the Assistant Editor.
24. Hold down the Control key, and drag from the + button into the Document class.

Create a new action called addAttachment.

Storing and Managing Attachments
We now need to implement support for actually storing and managing attachments
in these documents:

1. Add the attachmentsDirectoryWrapper computed property to the Document
class, which returns a FileWrapper that represents the document’s Attachments
folder. A computed property is essentially a property that behaves like a function:
the code inside it runs every time it’s accessed. We discussed computed proper‐
ties, in “Properties” on page 66:
 fileprivate var attachmentsDirectoryWrapper : FileWrapper? {

 guard let fileWrappers = self.documentFileWrapper.fileWrappers else {
 NSLog("Attempting to access document's contents, but none found!")
 return nil
 }

 var attachmentsDirectoryWrapper =
 fileWrappers[NoteDocumentFileNames.AttachmentsDirectory.rawValue]

 if attachmentsDirectoryWrapper == nil {

 attachmentsDirectoryWrapper =
 FileWrapper(directoryWithFileWrappers: [:])

 attachmentsDirectoryWrapper?.preferredFilename =
 NoteDocumentFileNames.AttachmentsDirectory.rawValue

Document-Filetype-Extension UI | 153

self.documentFileWrapper
 .addFileWrapper(attachmentsDirectoryWrapper!)
 }

 return attachmentsDirectoryWrapper
 }

The attachmentsDirectoryWrapper property represents the Attachments folder
inside the document’s package. When you access it, first it does a safety check to
get access to the list of file wrappers inside the document. It then checks to see if
that list already contains an Attachments directory; if it doesn’t, a new one is cre‐
ated and added to the document. Last, the file wrapper is returned.

2. Next, add the addAttachmentAtURL method, which adds a new attachment to the
document:
 func addAttachmentAtURL(_ url:URL) throws {

 guard attachmentsDirectoryWrapper != nil else {
 throw err(.cannotAccessAttachments)
 }

 self.willChangeValue(forKey: "attachedFiles")

 let newAttachment = try FileWrapper(url: url,
 options: FileWrapper.ReadingOptions.immediate)

 attachmentsDirectoryWrapper?.addFileWrapper(newAttachment)

 self.updateChangeCount(.changeDone)
 self.didChangeValue(forKey: "attachedFiles")
 }

This method adds an attachment to the document’s Attachments directory. It
works by first getting access to the attachmentsDirectoryWrapper (by calling
the property that you just added); it then indicates to the system that the atta
chedFiles property will change. A new FileWrapper containing the provided file
is created and added to the attachmentsDirectoryWrapper. Last, the fact that the
document’s contents were changed is registered.

3. Finally, add the attachedFiles property, which returns the list of FileWrappers
currently inside the document:
 dynamic var attachedFiles : [FileWrapper]? {
 if let attachmentsFileWrappers =
 self.attachmentsDirectoryWrapper?.fileWrappers {

 let attachments = Array(attachmentsFileWrappers.values)

 return attachments

154 | Chapter 6: User Interfaces and iCloud

 } else {
 return nil
 }
 }

The attachedFiles property simply gets the dictionary that maps filenames to
file wrappers inside the Attachments directory and returns the list of file wrap‐
pers. The dynamic keyword here indicates to any other object that’s watching the
variable for changes that it can be changed by other parts of the object.
We want to display the Add File button in a popover, so we’ll need a property in
which to store that popover.

A popover is provided by NSPopover and is a piece of user
interface that sits on top of existing content. Popovers are
available on both macOS and iOS. We’ll use an iOS popover
later on, in “Adding Attachments” on page 291.

4. Add the following property to the Document class:
 var popover : NSPopover?

5. Next, update the addAttachment method to include the following code:
 @IBAction func addAttachment(_ sender: NSButton) {

 if let viewController = AddAttachmentViewController(
 nibName:"AddAttachmentViewController", bundle:Bundle.main
) {

 self.popover = NSPopover()

 self.popover?.behavior = .transient

 self.popover?.contentViewController = viewController

 self.popover?.show(relativeTo: sender.bounds,
 of: sender, preferredEdge: NSRectEdge.maxY)
 }

 }

Note that you need to make the sender parameter’s type NSBut
ton. That’s important because showRelativeToRect expects
the ofView parameter to be an NSView or one of its subclasses.

Document-Filetype-Extension UI | 155

This method creates an AddAttachmentViewController using the AddAttach‐
mentViewController.xib file that you designed earlier. Once the file has been cre‐
ated, the popover is set up to display the view controller and is then displayed
while attached to the button.
To be notified when the user selects a type of attachment, we need to conform to
the AddAttachmentDelegate protocol. We’ll do this in an extension to help keep
the code we’re about to add separate from the core functionality of the Document
class.

6. Add the following extension to Document.swift outside of the Document class:
 extension Document : AddAttachmentDelegate {

 }

7. Add the required addFile method to this extension:
 func addFile() {

 let panel = NSOpenPanel()

 panel.allowsMultipleSelection = false
 panel.canChooseDirectories = false
 panel.canChooseFiles = true

 panel.begin { (result) -> Void in
 if result == NSModalResponseOK,
 let resultURL = panel.urls.first {

 do {
 // We were given a URL - copy it in!
 try self.addAttachmentAtURL(resultURL)

 // Refresh the attachments list
 self.attachmentsList?.reloadData()

 } catch let error as NSError {

 // There was an error adding the attachment.
 // Show the user!

 // Try to get a window to present a sheet in
 if let window = self.windowForSheet {

 // Present the error in a sheet
 NSApp.presentError(error,
 modalFor: window,
 delegate: nil,
 didPresent: nil,
 contextInfo: nil)

156 | Chapter 6: User Interfaces and iCloud

 } else {
 // No window, so present it in a dialog box
 NSApp.presentError(error)
 }
 }
 }
 }

 }

addFile creates an instance of NSOpenPanel, a class provided by Apple that lets
users browse the filesystem and pick a file. It sets some options on the NSOpenPa
nel, disallowing users to pick more than one file at a time, preventing them from
choosing directories and allowing them to pick only individual files.
addFile then presents the panel to the user and gets the selected URL. It then
calls addAttachmentAtURL with the URL of the file the user selected; if this results
in an error, it’s presented to the user.

8. Update the addAttachment method to make the AddAttachmentViewController
use the document as its delegate:
 @IBAction func addAttachment(_ sender: NSButton) {

 if let viewController = AddAttachmentViewController(
 nibName:"AddAttachmentViewController", bundle:Bundle.main
) {

> viewController.delegate = self

 self.popover = NSPopover()

 self.popover?.behavior = .transient

 self.popover?.contentViewController = viewController

 self.popover?.show(relativeTo: sender.bounds,
 of: sender, preferredEdge: NSRectEdge.maxY)
 }

 }

Displaying Data in the Collection View
We now have everything that we need to display content in the collection view, except
for the methods that actually deliver data to the collection view itself. Let’s add that
now!

Document-Filetype-Extension UI | 157

To provide cells to a collection view, we need to connect its dataSource outlet (which
we set up earlier) to an object that conforms to the NSCollectionViewDataSource
protocol. This means that we need to make the Document class conform to this proto‐
col. We’ll do this using an extension.

1. Add the following code to the Document.swift file:
 extension Document : NSCollectionViewDataSource {

 }

There are two methods that you need to implement in order to conform to NSCol
lectionViewDataSource. The first tells the system how many items exist, and the
second provides an NSCollectionViewItem for the collection view to display.

2. Add the following method to the extension you just added:
 func collectionView(_ collectionView: NSCollectionView,
 numberOfItemsInSection section: Int) -> Int {

 // The number of items is equal to the number of
 // attachments we have. If for some reason we can't
 // access attachedFiles, we have zero items.
 return self.attachedFiles?.count ?? 0
 }

The ?? operator is called the nil coalescing operator. If the
value on the lefthand side of the ?? is nil, the value on the
righthand side is used instead. It’s a faster way of saying:

if let count = self.attachedFiles?.count {
 return count
} else {
 return 0
}

This method is called for each section (that is, each group of cells) that exists in
the collection view. By default, a collection view only contains a single section, so
we ignore the section parameter and simply return the number of items in the
attachedFiles list, or 0 if that list can’t be accessed.
Next, we need to add a method that returns an NSCollectionViewItem for each
attachment.

3. Add the following method to the extension:
 func collectionView(_ collectionView: NSCollectionView,
 itemForRepresentedObjectAt indexPath: IndexPath)
 -> NSCollectionViewItem {

158 | Chapter 6: User Interfaces and iCloud

 // Get the attachment that this cell should represent
 let attachment = self.attachedFiles![indexPath.item]

 // Get the cell itself
 let item = collectionView
 .makeItem(withIdentifier: "AttachmentCell", for: indexPath)
 as! AttachmentCell

 // Display the image and file extension in the ecell
 item.imageView?.image = attachment.thumbnailImage
 item.textField?.stringValue = attachment.fileExtension ?? ""

 return item
 }

This method first uses the indexPath parameter, which describes the location in
the collection view that we’re trying to display, to locate the appropriate attach‐
ment. It then calls the makeItem withIdentifier method to get a NSCollection
ViewItem object, which it then casts to an AttachmentCell.
The reason this cast works (and why we can use the as! operator) is that makeI
temWithIdentifier’s first parameter is used by macOS to search for a .xib file
with the same name. If this .xib file contains a Collection View Item (which we
added earlier), it’s returned.

We then use the imageView and textField properties of the AttachmentCell to set
up the image view with the icon with the thumbnail image and the label with the file
extension.

Now we are ready to test our fancy new attachment system! Run the app and add an
attachment. It will appear in the list of attachments (Figure 6-22). If you save the
document and then view its contents, it’s there!

Document-Filetype-Extension UI | 159

Figure 6-22. Basic attachments are working

Enhancing Attachments
We’ve got the basics of attachments down, so now we need to add support for some
more advanced features in our attachment system, such as the ability to actually open
attachments, include Quick Look attachments, view location attachments in the sys‐
tem Maps application, and drag files into the app to attach them.

Opening Attachments
First, we want to be able to double-click an attachment and have that file open up in
whatever application is most appropriate for it.

To do this, we need to first recognize a double-click on a collection view item. Next,
we need a method of telling the system to open the attachment that the collection
view item represents.

160 | Chapter 6: User Interfaces and iCloud

To recognize double-clicks, we need to implement the mouseDown method in the
AttachmentCell class. mouseDown, which is provided by default with a view, doesn’t
come with support for double-clicks—the mouse action, not the band—so we’ll be
adding it. We also need a way for the AttachmentCells to tell the Document about
when this happens.

First, we’ll define a protocol for the document to implement.

1. Open Document.swift, and add the following protocol to the file:
 @objc protocol AttachmentCellDelegate : NSObjectProtocol {
 func openSelectedAttachment(_ collectionViewItem : NSCollectionViewItem)
 }

Again, we’re using a protocol here to limit the amount of
information that the Document needs to know about whatever
object ends up viewing the attachment. It only needs to know
how to ask the object to open the attachment.

Next, we’ll add an extension to the Document class that makes it open whatever
attachment is currently selected. This works through a little Apple magic: we use
NSWorkspace, which is provided to work with other parts of the system your app
is running on, such as launching other apps or files and working with connected
devices, and ask it to open the URL of the attached file (you can learn more about
NSWorkSpace in Apple’s documentation):
 extension Document : AttachmentCellDelegate {
 func openSelectedAttachment(_ collectionItem: NSCollectionViewItem) {

 // Get the index of this item, or bail out
 guard let selectedIndex = (self.attachmentsList
 .indexPath(for: collectionItem) as NSIndexPath?)?.item else {
 return
 }

 // Get the attachment in question, or bail out
 guard let attachment = self.attachedFiles?[selectedIndex] else {
 return
 }

 // First, ensure that the document is saved
 self.autosave(withImplicitCancellability: false,
 completionHandler: { (error) -> Void in
 var url = self.fileURL
 url = url?.appendingPathComponent(
 NoteDocumentFileNames.AttachmentsDirectory.rawValue,
 isDirectory: true)

Enhancing Attachments | 161

https://en.wikipedia.org/wiki/The_Doubleclicks
http://apple.co/21UtHj1

 url = url?
 .appendingPathComponent(attachment.preferredFilename!)

 if let path = url?.path {
 NSWorkspace.shared().openFile(
 path, withApplication: nil, andDeactivate: true)
 }
 })

 }
 }

We’ll now make the AttachmentCell have a property that lets it keep a reference
to an object that conforms to AttachmentCellDelegate.

2. Open AttachmentCell.swift.
3. Add the following property to the AttachmentCell class:

 class AttachmentCell: NSCollectionViewItem {

> weak var delegate : AttachmentCellDelegate?

 }

Next, we’ll implement mouseDown. This method is called whenever the user clicks
on the cell’s view; in this method, we’ll check to see if we’ve clicked twice, and if
we have, we’ll call the delegate’s openSelectedAttachment method.

4. Add the following method to AttachmentCell:
 override func mouseDown(with theEvent: NSEvent) {
 if (theEvent.clickCount == 2) {
 delegate?.openSelectedAttachment(self)
 }
 }

Finally, we need to make all AttachmentCells use the Document as their dele
gate.

5. Open Document.swift.
6. Add the following line of code to the collectionView(_, itemForRepresente

dObjectAt indexPath:) method:
 func collectionView(_ collectionView: NSCollectionView,
 itemForRepresentedObjectAt indexPath: IndexPath)
 -> NSCollectionViewItem {

 // Get the attachment that this cell should represent
 let attachment = self.attachedFiles![indexPath.item]

162 | Chapter 6: User Interfaces and iCloud

 // Get the cell itself
 let item = collectionView
 .makeItem(withIdentifier: "AttachmentCell", for: indexPath)
 as! AttachmentCell

 // Display the image and file extension in the ecell
 item.imageView?.image = attachment.thumbnailImage
 item.textField?.stringValue = attachment.fileExtension ?? ""

> // Make this cell use us as its delegate
> item.delegate = self

 return item
 }

7. You’re done! Run the app, and double-click an attachment. It will open!

Adding Attachments via Drag-and-Drop
Next we’re going to add support for dragging and dropping files on our app to attach
them to notes.

To add support for drag-and-drop in a view, you implement certain methods that
define what kinds of content can be dropped onto a view, such as URLs, colors, and
text. The collection view has special support for delegating this to another object, so
we’ll use that.

We need to make the attachments list register for dragging. The best place to do that
is in the method windowControllerDidLoadNib, which is called after the interface has
loaded, but before it appears on screen. In windowControllerDidLoadNib, all of the
views that the user can see are prepared and ready to be displayed, which means it’s
the earliest chance we have to set up the behavior of our user interface. After window
ControllerDidLoadNib has finished, the bindings system kicks in, pulling informa‐
tion from the Document object and displaying the data in the views in the window.

1. Update the windowControllerDidLoadNib method to the Document class:
 override func windowControllerDidLoadNib(_ windowController:
 NSWindowController) {

 self.attachmentsList.register(forDraggedTypes: [NSURLPboardType])

 self.checkForLocation()

 }

Adding Attachments via Drag-and-Drop | 163

By calling register forDraggedTypes and passing in an array containing the
NSURLPboardType value, we’re telling the collection view that we will accept
NSURLs—that is, links to files on disk—that get dropped on it.
Finally, we need to add methods that the collection view will call when files are
dragged. We’ll do this by adding an extension to the Document class that makes it
conform to the NSCollectionViewDelegate protocol.

We could put these methods directly into the Document class.
However, using an extension makes it a lot easier to keep the
methods that are specific to NSCollectionViewDelegate in a
single place.

2. Add the following extension to Document.swift:
 extension Document : NSCollectionViewDelegate {

 func collectionView(_ collectionView: NSCollectionView,
 validateDrop draggingInfo: NSDraggingInfo,
 proposedIndexPath proposedDropIndexPath:
 AutoreleasingUnsafeMutablePointer<NSIndexPath>,
 dropOperation proposedDropOperation:
 UnsafeMutablePointer<NSCollectionViewDropOperation>)
 -> NSDragOperation {

 // Indicate to the user that if they release the mouse button,
 // it will "copy" whatever they're dragging.
 return NSDragOperation.copy
 }

 func collectionView(_ collectionView: NSCollectionView,
 acceptDrop draggingInfo: NSDraggingInfo,
 indexPath: IndexPath,
 dropOperation: NSCollectionViewDropOperation) -> Bool {

 // Get the pasteboard that contains the info the user dropped
 let pasteboard = draggingInfo.draggingPasteboard()

 // We need to check to see if the pasteboard contains a URL.
 // If it does, we also need to create the URL from the
 // pasteboard contents. The initializer for this is in the
 // NSURL type (not URL!), so we use that, and then convert
 // it to URL.

 // If the pasteboard contains a URL, and we can get that URL...
 if pasteboard.types?.contains(NSURLPboardType) == true,

 let url = NSURL(from: pasteboard) as? URL

164 | Chapter 6: User Interfaces and iCloud

 {
 // Then attempt to add that as an attachment!
 do {
 // Add it to the document
 try self.addAttachmentAtURL(url)

 // Reload the attachments list to display it
 attachmentsList.reloadData()

 // It succeeded!
 return true
 } catch let error as NSError {

 // Uh-oh. Present the error in a dialog box.
 self.presentError(error)

 // It failed, so tell the system to animate the
 // dropped item back to where it came from
 return false
 }

 }

 return false
 }

 }

We’re implementing two important methods here: the validateDrop method,
and the acceptDrop method.
The validateDrop method is called when the user drags something over the col‐
lection view. We’ve already told the collection view that it will accept URLs in gen‐
eral; the validateDrop method allows us to be more selective about the URLs
that we accept. In this app, we’ll accept any old URL, so we’ll instantly return
NSDragOperation.copy to indicate that we should tell the user that dropping the
object will result in it being copied.
The acceptDrop method is called when the user drops the file (that is, releases the
mouse button while the cursor is over the collection view). At this point, we use
the draggingInfo parameter to get information about what was dropped.
In macOS’s drag-and-drop system, you don’t drop entire files, but rather just
NSURL objects that link to files. This means that we first have to access the URL by
using the NSURL method’s fromPasteboard: initializer. If that works, we use the
addAttachmentAtURL method, which we wrote before; if it doesn’t work, we use
the NSDocument class’s built-in presentError method to tell the user about the
problem.

Adding Attachments via Drag-and-Drop | 165

Finally, the method returns either true or false to indicate that the drop was
accepted or not. If the drop was not accepted, macOS will animate the dragged
object “flying back” to where it was dragged from, which tells the user that the
drag failed.
You can now drag and drop files onto the list of attachments (see Figure 6-23)!

Figure 6-23. Drag-and-drop being demonstrated

Adding QuickLook
If a document uses a package file format, you can very easily take advantage of the
Quick Look feature of macOS by including a folder called QuickLook. If this folder
contains a file called Preview.png (or .txt, .pdf, and so on), it will be displayed when
the user selects the file in Finder and presses the space bar. We’re only going to imple‐
ment Quick Look for the text component of a note, since displaying all the attach‐
ments goes beyond its capabilities.

166 | Chapter 6: User Interfaces and iCloud

Additionally, if the QuickLook folder contains a file called Thumbnail.png (or similar),
this will be used as the document’s icon.

First, we’ll add items to the NoteDocumentFileNames enumeration, and then we’ll add
code to fileWrapperOfType that makes it save a copy of the Text.rtf file in the Quick‐
Look folder.

1. Add the following items to the NoteDocumentFileNames enumeration:
 // Names of files/directories in the package
 enum NoteDocumentFileNames : String {
 case TextFile = "Text.rtf"

 case AttachmentsDirectory = "Attachments"

> case QuickLookDirectory = "QuickLook"
>
> case QuickLookTextFile = "Preview.rtf"
>
> case QuickLookThumbnail = "Thumbnail.png"

 }

2. Next, add the following method to the Document class:
 func iconImageDataWithSize(_ size: CGSize) -> Data? {

 let image = NSImage(size: size)

 image.lockFocus()

 let entireImageRect = CGRect(origin: CGPoint.zero, size: size)

 // Fill the background with white
 let backgroundRect = NSBezierPath(rect: entireImageRect)
 NSColor.white.setFill()
 backgroundRect.fill()

 if self.attachedFiles?.count >= 1 {
 // Render our text, and the first attachment
 let attachmentImage = self.attachedFiles?[0].thumbnailImage

 let result = entireImageRect.divided(atDistance:
 entireImageRect.size.height / 2.0, from: CGRectEdge.minYEdge)

 self.text.draw(in: result.slice)

 attachmentImage?.draw(in: result.remainder)
 } else {
 // Just render our text
 self.text.draw(in: entireImageRect)

Adding Attachments via Drag-and-Drop | 167

 }

 let bitmapRepresentation =
 NSBitmapImageRep(focusedViewRect: entireImageRect)

 image.unlockFocus()

 // Convert it to a PNG
 return bitmapRepresentation?
 .representation(using: .PNG, properties: [:])

 }

This method is responsible for preparing an image and then returning it as an
NSData object containing a PNG. We first start building the image by creating a
new NSImage object, passing in the size of the image we want to create. We then
call the lockFocus method, which tells the drawing system that we wish to start
drawing into this new image.
Next, we start the drawing itself. We first fill the entire image with a white back‐
ground and then check to see if we have attachments. If we have any attachments,
we draw the first attachment’s thumbnail image into the top half of the canvas,
and the text of the note into the bottom half; if we have no attachments, we draw
just the text.
Once the drawing is done, we create an NSBitmapImageRep object, which allows
us to convert the image into a bitmap format, such as PNG. This is necessary,
because NSImage can also just as easily be converted to a vector format, like PDF;
we need to be specific about what we want to do with the image.
Once the bitmap representation has been created, we call unlockFocus to tell the
drawing system that we’re done working with the image.

If you call lockFocus, you must call unlockFocus. If you don’t,
you’ll cause all kinds of problems, because the drawing system
won’t know that you’re done drawing content into your image.

Finally, we can return a Data object by asking the bitmap representation to pro‐
vide a PNG version of itself, which we then return.
Now that documents are capable of producing a thumbnail image that represents
themselves, we can use these thumbnails in the document’s Quick Look preview.

3. Add the following code to fileWrapperOfType:
 override func fileWrapper(ofType typeName: String) throws -> FileWrapper {

168 | Chapter 6: User Interfaces and iCloud

 let textRTFData = try self.text.data(
 from: NSRange(0..<self.text.length),
 documentAttributes: [
 NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType
]
)

 // If the current document file wrapper already contains a
 // text file, remove it - we'll replace it with a new one
 if let oldTextFileWrapper = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldTextFileWrapper)
 }

> // Create the QuickLook folder
>
> let thumbnailImageData =
> self.iconImageDataWithSize(CGSize(width: 512, height: 512))!
> let thumbnailWrapper =
> FileWrapper(regularFileWithContents: thumbnailImageData)
>
> let quicklookPreview =
> FileWrapper(regularFileWithContents: textRTFData)
>
> let quickLookFolderFileWrapper =
> FileWrapper(directoryWithFileWrappers: [
> NoteDocumentFileNames.QuickLookTextFile.rawValue: quicklookPreview,
> NoteDocumentFileNames.QuickLookThumbnail.rawValue: thumbnailWrapper
>])
>
> quickLookFolderFileWrapper.preferredFilename
> = NoteDocumentFileNames.QuickLookDirectory.rawValue
>
> // Remove the old QuickLook folder if it existed
> if let oldQuickLookFolder = self.documentFileWrapper
> .fileWrappers?[NoteDocumentFileNames.QuickLookDirectory.rawValue] {
> self.documentFileWrapper.removeFileWrapper(oldQuickLookFolder)
> }
>
> // Add the new QuickLook folder
> self.documentFileWrapper.addFileWrapper(quickLookFolderFileWrapper)

 // Return the main document's file wrapper - this is what will
 // be saved on disk
 return self.documentFileWrapper
 }

This method gets the PNG data that contains the document’s thumbnail image
and creates a FileWrapper to represent a file that stores that data. Next, it takes
the note’s text, which has previously already been stored in the textRTFData vari‐

Adding Attachments via Drag-and-Drop | 169

able, and stores it in a second FileWrapper, to represent the document’s preview
file. Finally, a third FileWrapper is created, which represents the folder that con‐
tains the thumbnail and preview files.
Next the method checks to see if the document’s file wrapper already contains a
QuickLook folder. If it does, it’s removed. Finally, the newly created QuickLook
folder is added to the document’s file wrapper. As a result, when the document is
saved, the QuickLook folder and its required files are written to disk.

4. Run the app and save the document. Select the document in the Finder, and hit
the space bar. You’ll see the document’s text, as shown in Figure 6-24.

Figure 6-24. Quick Look working on a Notes file

170 | Chapter 6: User Interfaces and iCloud

Location
Now we’ll add special support to the Document class to make it open locations in the
Maps app. It doesn’t really make a lot of sense to have a location just be an attach‐
ment; after all, what would it represent? Instead, we will make it so that we determine
our location once, when we create a new note, and we’ll save it separately from the
rest of the attachments.

The location will be stored in a file next to the main text document. This file will store
the location as a latitude and longitude coordinate pair, in the JSON file format.
When a document is created, the application will attempt to get the computer’s cur‐
rent location; if it succeeds, it will store the location, and if it fails, it will give up.
While the location is being determined, the window will show a spinning activity
indicator.

If a document has a location attached to it—either because the location has just been
determined, or because a document was opened that already had an attachment—
then we’ll show a button that, when clicked, opens the location in the Maps applica‐
tion:

1. Open the Assets.xcassets file.
2. Drag the Location.pdf image into the list of images—we’ll use this as our location

button.
3. Open Document.xib; this will be where we make all our changes to the UI.
4. Drag in a new Gradient button, and place it above the Add Attachment button,

in line with the attachments list.
5. Set its height to be 34 points and its width to be 32 points.
6. Set its image to be the Location image we just added into the Assets.
7. Add constraints to the button’s width, height, distance to upper view, and dis‐

tance to trailing edge of upper view. This will pin the button to its current posi‐
tion and dimensions.
With this done our UI should look like Figure 6-25.

8. Next drag in an Indeterminate Circular Progress Indicator (which is a fancy way
of saying a spinner) and place it centered over the Location button. We will use
this to indicate when location is being determined.

9. Add constraints to the spinner to center it vertically and horizontally with the
Location button.
The last part is to hook the new button and spinner up to some outlets and
actions.

10. Inside Document.swift connect the spinner to an outlet called locationSpinner.

Location | 171

11. Connect the button to an outlet called locationButton.
12. Connect the button’s action to an action called showLocation.

Figure 6-25. The Location button, bottom right, above the Add Attachment button

With that done, we are finished with the changes to our UI and we can start imple‐
menting the code:

1. Open Document.swift and import the CoreLocation and MapKit libraries. These
give us all the required functionality to determine and show location:
 import MapKit
 import CoreLocation

2. Add a new property to the Document class:
 var location : CLLocationCoordinate2D?

A CLLocationCoordinate2D is a simple struct that represents a spot on the earth
as a latitude and longitude. This will represent the location once we determine it.

172 | Chapter 6: User Interfaces and iCloud

3. Add a CLLocationManager property to the Document class. This will be the object
that determines the note’s location:
 var locationManager = CLLocationManager()

Location managers work by delegate methods: you configure the location man‐
ager to determine location, ask it to do so, and then let it go. As determining
location can take an indeterminate amount of time, the location manager will
inform its delegate when it has a location.

4. Now we’ll implement the required delegate methods for our location manager.
We are going to be doing this as an extension to the Document class to keep it all
neat and tidy:
 extension Document : CLLocationManagerDelegate {
 func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {

 guard let location = locations.first else {
 NSLog("Received didUpdateLocations, but received no locations")
 return
 }

 self.location = location.coordinate

 self.locationSpinner.isHidden = true
 self.locationButton.isHidden = false

 manager.stopUpdatingLocation()
 }

 func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 let alert = NSAlert(error: error)

 alert.runModal()

 self.locationSpinner.isHidden = true
 self.locationButton.isHidden = true
 }
}

The first method locationManager didUpdateLocations is called when the
location manager has determined a location. In this case we are doing a quick
check to make sure there is actually a location; if there is, we store it in our loca‐
tion property and then update the UI to stop the spinner spinning and to show
the location button. The second method, locationManager didFailWithError,
is called if the location manager encounters an error. In this case all we do is
show it and then update the UI to hide the button and the spinner.

Location | 173

5. Add a new method to check for a location:
 func checkForLocation() {
 // Check to see if we need to add a location
 let raw = NoteDocumentFileNames.locationAttachment.rawValue
 if let locationRawData =
 self.documentFileWrapper.fileWrappers?[raw]?.regularFileContents,
 let locationData = try? JSONSerialization.jsonObject(
 with: locationRawData,
 options: []) as? [String:Double],
 let latitude = locationData?["lat"],
 let longitude = locationData?["long"]
 {
 self.location =
 CLLocationCoordinate2D(latitude: latitude, longitude: longitude)

 locationButton.isHidden = false
 locationSpinner.isHidden = true

 return
 }

 switch CLLocationManager.authorizationStatus() {

 // If we're authorized
 // or we haven't yet gotten permission, start checking
 case .notDetermined:
 fallthrough
 case .authorized:
 locationButton.isHidden = true
 locationSpinner.isHidden = false
 locationSpinner.startAnimation(nil)

 locationManager.delegate = self

 locationManager.startUpdatingLocation()

 // If it's any other state (i.e. denied or restricted), hide all UI
 default:
 locationButton.isHidden = true
 locationSpinner.isHidden = true
 }
}

First, this method checks the filewrappers to see if there is already a location. If
there isn’t, we switch over the authorization status of the location manager. There
are a few options here, but basically if the user has denied permission, all we do is
hide the button and spinner. If the user has given permission, we tell the location
manager that we will be its delegate and to start looking for locations. Finally we
hide the button and start our spinner spinning. Now you might notice there is

174 | Chapter 6: User Interfaces and iCloud

some reference to a NoteDocumentFileNames.locationAttachment type that we
haven’t yet set up—don’t worry about that as we will implement that soon.

6. Add this code to the windowControllerDidLoadNib method:
 override func windowControllerDidLoadNib(_ windowController:
 NSWindowController) {

 self.attachmentsList.register(forDraggedTypes: [NSURLPboardType])

> self.checkForLocation()

 }

7. Now implement the showLocation action we set up earlier:
 @IBAction func showLocation(_ sender : NSButton) {

 guard let location = self.location else {
 NSLog("Attempted to show the location, but there isn't one")
 return
 }

 // Build a placemark with that coordinate
 let placemark =
 MKPlacemark(coordinate: location,
 addressDictionary: nil)
 // Build a map item from that placemark...
 let mapItem = MKMapItem(placemark: placemark)
 // And open the map item in the Maps app!
 mapItem.openInMaps(launchOptions: nil)
 }

This method creates a new MKPlacemark, which is one of those little pins you see
on the Maps app, and then opens the placemark inside Maps.

There are just two more changes to make. First, we don’t actually support location
attachments in the document model, so let’s change that now:

1. Add a new value to the NoteDocumentFileNames enumeration:
 case locationAttachment = "location.json"

This is what we used earlier when we checked if we already have a location.
2. Add the following to the fileWrapper ofType method:

 override func fileWrapper(ofType typeName: String) throws -> FileWrapper {

 let textRTFData = try self.text.data(
 from: NSRange(0..<self.text.length),
 documentAttributes: [
 NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType

Location | 175

]
)

 // If the current document file wrapper already contains a
 // text file, remove it - we'll replace it with a new one
 if let oldTextFileWrapper = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldTextFileWrapper)
 }

 // Create the QuickLook folder

 let thumbnailImageData =
 self.iconImageDataWithSize(CGSize(width: 512, height: 512))!
 let thumbnailWrapper =
 FileWrapper(regularFileWithContents: thumbnailImageData)

 let quicklookPreview =
 FileWrapper(regularFileWithContents: textRTFData)

 let quickLookFolderFileWrapper =
 FileWrapper(directoryWithFileWrappers: [
 NoteDocumentFileNames.QuickLookTextFile.rawValue: quicklookPreview,
 NoteDocumentFileNames.QuickLookThumbnail.rawValue: thumbnailWrapper
])

 quickLookFolderFileWrapper.preferredFilename
 = NoteDocumentFileNames.QuickLookDirectory.rawValue

 // Remove the old QuickLook folder if it existed
 if let oldQuickLookFolder = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.QuickLookDirectory.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldQuickLookFolder)
 }

 // Add the new QuickLook folder
 self.documentFileWrapper.addFileWrapper(quickLookFolderFileWrapper)

> if let oldLocationFileWrapper = self.documentFileWrapper
> .fileWrappers?[NoteDocumentFileNames.locationAttachment.rawValue] {
> self.documentFileWrapper.removeFileWrapper(oldLocationFileWrapper)
> }
>
> if let location = self.location {
>
> let locationDictionary = ["lat":location.latitude,
> "long": location.longitude]
> if let locationData = try? JSONSerialization.data(withJSONObject:
> locationDictionary, options: [])
> {

176 | Chapter 6: User Interfaces and iCloud

> // Save the location data into the file
> self.documentFileWrapper.addRegularFile(
> withContents: locationData,
> preferredFilename:
> NoteDocumentFileNames.locationAttachment.rawValue)
> }

 // Save the text data into the file
 self.documentFileWrapper.addRegularFile(
 withContents: textRTFData,
 preferredFilename: NoteDocumentFileNames.TextFile.rawValue
)

 // Return the main document's file wrapper - this is what will
 // be saved on disk
 return self.documentFileWrapper
 }

This is where we actually load and save our location attachment. In our case what
we have is a simple JSON file that stores a latitude and longitude, and we use the
built in JSONSerialization class to do so.

It’s worth noting that there are already established file formats for
storing location data, such as GeoJSON or KML, but these are quite
large systems designed to handle far more than what we need. This
is why we made our own instead of using one of the standards.

With that done, we can now add and show locations in the app!

iCloud
The Mac app is now almost entirely done and dusted, and the last thing to add is inte‐
gration with iCloud, which will make all documents that you create in the app avail‐
able on the user’s other devices.

To be able to effectively test and develop applications (for both
macOS and iOS) that use iCloud, you will need to make sure your
devices are set up with your own iCloud account. If iCloud is not
enabled, you can’t test apps you develop that use iCloud.

iCloud is an online storage and syncing service provided by Apple. It is promoted as a
service that makes “all of your data available on all of your devices”: the user’s mail,
settings, documents, and data are all synced via the iCloud server across all devices
that are signed in to the same account.

iCloud | 177

On macOS, an application doesn’t need to do a great deal of work to gain access to
iCloud’s file-syncing services. All you need to do is turn the feature on in Xcode, and
macOS will take care of the rest. This is a very short section!

The minimal amount of work required to make a macOS app work with iCloud is
almost the opposite of the amount of work required to make an iOS app work with
iCloud. macOS and iCloud, for document-based apps, is easy. iOS and iCloud is…
not! Sorry!

The Basics of iCloud
iCloud actually exists as three related services:

• iCloud key/value storage allows applications to store simple information, like
strings and numbers, in a dictionary-like structure that’s synced across all of a
user’s devices.

• iCloud document storage provides a folder to each application whose contents
are synced across devices.

• CloudKit is a cloud-hosted database that allows both applications running on the
user’s devices as well as external services, like a server that you host, to access the
data.

iCloud is designed to provide maximum privacy and safety for the user: your apps are
able to access only data made by an app that you own, and iCloud is available only to
apps that have been signed by a registered Apple developer.

To add support for storing data in iCloud, you must provision the application for
used with iCloud. This isn’t as ominous as it sounds (at least for the macOS app):

1. Click the project at the top of the Project Navigator.
2. Select the Notes target, and go to the General tab. Ensure that the team is not set

to None; if it is, select your development team. If you don’t have a development
team, refer to “The Apple Developer Program” on page 5 to learn how to set up
your account.

3. Go to the Capabilities tab.
4. Turn iCloud on.

Xcode will spin for a few moments while it sets up your application for use with
iCloud.

5. In the Services section, select iCloud Documents, and deselect everything else
(Figure 6-26).

178 | Chapter 6: User Interfaces and iCloud

Figure 6-26. Setting up iCloud

Note the name of the iCloud container: in Figure 6-26, it’s “iCloud.au.com.secret‐
lab.Notes,” but yours will be different. You’ll need this in a moment.

The name of the iCloud container will be used in a moment to
ensure that the iCloud Drive folder for this app is visible.

Next, we need to indicate to the system that this application should have a folder
in iCloud Drive. iCloud Drive is the users’ view of all of the various files they’ve
stored in iCloud, and each application that has access to iCloud can potentially
have a folder appear in iCloud Drive.

Having the ability to store documents in iCloud is not the
same thing as having a visible folder in the iCloud Drive inter‐
face. If you have iCloud Documents turned on, your app can
store files in iCloud, but your app won’t appear in iCloud
Drive. You need to turn it on manually.

6. Go to the Info tab. Add a new entry to the Custom macOS Target Properties list
by moving the mouse over anywhere in the list and clicking the + button. Name
the new entry NSUbiquitousContainers, and change its type to Dictionary by
clicking anywhere inside its second column (Figure 6-27).

The Basics of iCloud | 179

Figure 6-27. Adding a new entry to the custom target properties list

7. Expand the new NSUbiquitousContainers entry, and add a new entry inside it
by moving the mouse over the row and clicking the + button. This entry should
have the same name as your iCloud container from earlier, and its type should be
Dictionary.

8. Add the following three entries to this dictionary (by moving the mouse over this
additional row that you just added, and clicking +), as shown in Figure 6-28:

• NSUbiquitousContainerIsDocumentScopePublic (Boolean): YES
• NSUbiquitousContainerSupportedFolderLevels (String): Any
• NSUbiquitousContainerName (String): Notes

Figure 6-28. The newly added entries

The app is now set up for iCloud. You can save documents in iCloud Drive, and
they’ll be synced across all devices that have the Notes app installed. When we imple‐
ment the iOS app in Part III, it will receive the documents as well.

180 | Chapter 6: User Interfaces and iCloud

iCloud, being a networked service, can occasionally behave in ways
you don’t expect. If you’re having trouble figuring out why iCloud
is doing things you don’t want it to, like failing to sync changes to
files, there’s a debugging tool that you can use to observe what
iCloud’s doing behind the scenes.
Open the Terminal app, which you’ll find in the Applications→Util‐
ities folder. Next, type the following and press Return:

brctl log --wait --shorten

This will start logging all iCloud activity across all applications
until you press Control-C.

Conclusion
We’ve done a huge amount in this chapter! In brief, we’ve:

• Explored more complex pieces of macOS user interface that are available, such as
NSCollectionView (which provides the ability to display a grid of views, and
used it to display a list of attachments for our notes) and NSPopover.

• Used outlets and actions, allowing us to easily connect code to the user interface
of our apps.

• Created new classes, and subclassed existing classes, to add functionality.
• Implemented Quick Look on our custom file format, allowing users of our app to

preview the contents of files using the macOS Finder.
• Added iCloud support.

That’s basically everything we’re going to do for the macOS app in this book. We’re
keeping it short and simple. If you’re interested in taking it further, we’ll provide
some suggestions on our website.

In the next part of the book, we’ll start working with iOS!

Conclusion | 181

http://www.secretlab.com.au/books/learning-swift

PART III

An iOS App

CHAPTER 7

Setting Up the iOS Notes App

People carry their phones everywhere, and they expect to have access to everything,
any time. This means that, for a note-taking app like the one we made in Part II, our
users are going to want access to the notes that they’ve been writing while on their
phones.

Over the next several chapters, we’ll implement an iOS application that allows users
to both write new notes while on the go and also access the notes that they’ve made
on their Mac, using the macOS app we built in Part II. Because the Mac app was
already set up using iCloud, their documents already exist in the cloud; this means
that our iOS application will be able to access them.

By storing documents that were created on the phone in iCloud, users can seamlessly
move from their desktop computer to their phone and back again, while having
access to all of their documents at the same time. Additionally, if they own more than
one iOS device—for example, both an iPhone and an iPad—their documents will
exist on all of their devices at the same time.

You can download the resources for this app, including wireframes,
mockups, and icons from this book’s website.

We’ll be doing a lot more coding in this part than we did back in Part II, when we
built the macOS app. We’ll begin the iOS app by first discussing its design—both its
visual design and the design of the software. Next, we’ll dive in and begin creating the
app, assembling a new Xcode project for it, adding the icon, and adding support for
iCloud. We’re setting up iCloud up front for the iOS app, instead of at the end, as we
did for the macOS app (in “iCloud” on page 177) because iCloud is so tightly integra‐

185

http://www.secretlab.com.au/books/learning-swift

ted with everything in iOS and can’t just be turned on as with on macOS. After set‐
ting up iCloud, we’ll set up the iOS app to work with the same Note document type
we created for the macOS app in “Defining a Document Type” on page 105.

Designing the iOS Notes App
The most obvious difference between an iOS device and a Mac is the difference
between the two display sizes. An iPhone is much smaller than a Mac, and while the
iPad is bigger, it’s still quite small. Only iPad Pro approaches, and in some cases
exceeds, a regular laptop’s size.

On top of this difference in size, iOS devices have a second, more important distinc‐
tion: the user interacts with the interface using a touchscreen. Touchscreens change
the way that you interact with any user interface, for a number of reasons. First,
because the user’s hand is not transparent, anything the user is touching is covered up
by the finger that’s touching it. On top of that, the rest of the hand that’s attached to
that finger—the palm, wrist, and so on—also covers up even more of the screen.
Additionally, fingertips are significantly less precise than a mouse cursor, which
means that everything needs to be bigger if you want the user to actually be able to
touch it.

You might think that it’s incredibly obvious that a mobile device is
likely to be much smaller than a traditional computer, and you’d be
right; but it’s amazing how many mobile developers forget this and
try to cram everything into a single screen of a mobile app inter‐
face.

On top of the constraints imposed by the touchscreen, you have a number of other
hardware issues to deal with: the phone relies on a battery, which means that you
have to be very economical with the amount of power that the app consumes. Addi‐
tionally, because users will be switching from WiFi to cell coverage as they move
around, your app can’t rely on access to the internet.

Finally, there are constraints imposed by iOS itself. Unlike in macOS, there is no
Finder application that acts as the host for all other apps; instead of working primarily
with their documents in the Finder, users work with apps in the home screen. This
means that every iOS app that works with files is responsible for presenting the list of
the user’s files. This includes searching the iCloud container for files that the app
should present, as well as identifying when that list of files changes due to other devi‐
ces making changes to the container.

186 | Chapter 7: Setting Up the iOS Notes App

Starting with iOS 9, users can browse the contents of their iCloud
Drive using a built-in app. However, the user may not be using it—
the app can be disabled, the user may not have access to iCloud, or
the user may simply not know where to find it. The iCloud Drive
app is meant to be a secondary method for users to access their
files, because the iOS philosophy is that apps “contain” their docu‐
ments. This means that your app needs to present and manage its
own list of documents.

Additionally, not every file that’s in the user’s iCloud container will be downloaded to
the device. This differs from how it works on macOS, which automatically downloads
every file. Your app needs to specifically request to download each file that the user
wants to access.

With this in mind, we started designing wireframes for the iOS app: the basic layout
of each screen for the app, and how they relate (see Figures 7-1 and 7-2).

Figure 7-1. The document list

Designing the iOS Notes App | 187

Figure 7-2. A single document

You’ll notice that the attachments list appears at the top of the screen, instead of at the
bottom. The reason for this is the on-screen keyboard, which occludes everything in
the bottom half of the screen; if users want to access their attachments, it’s not reason‐
able to ask them to dismiss the keyboard first.

At the end of these chapters, you’ll have implemented the whole application, which
will look like Figures 7-3 through 7-5.

188 | Chapter 7: Setting Up the iOS Notes App

Figure 7-3. The document list

Designing the iOS Notes App | 189

Figure 7-4. A single document

190 | Chapter 7: Setting Up the iOS Notes App

Figure 7-5. Locations

The iOS app will have many features, and we’ll be adding all of them over the coming
chapters:

• Compatibility with the macOS app’s documents: users can start writing a note on
macOS and make changes to it on any of their iOS devices.

• Files are stored in either iCloud or locally on the user’s device, as per the user’s
preference.

Designing the iOS Notes App | 191

• Conflict resolution for notes, so users can pick the most recent version if there’s a
conflict when notes are synchronized between devices.

• Attachments can be added to notes and viewed. These attachments include:
— images and videos, captured using the device’s camera.
— audio recordings, captured with the microphone.
— locations, captured with the device’s GPS when you create a note.

• Image attachments can be shared via any of the user’s apps that support sharing
(Twitter, Facebook, Pinterest, and so on).

• Handoff support allows users to instantly move from one device to the next while
editing a document.

• Search indexing means that notes appear in Spotlight search results.
• Undo support means that users can instantly revert a change that they’ve made to

the note text.
• Links are detected in note text, and when users tap them, an embedded web

browser will appear.
• Users can customize the behavior of the app via the Settings app.
• Images can have filters applied to them, such as grayscale and film effects.
• Text to speech means users can select text in the document and have their device

speak it.

You’ll notice that the iOS app has many more features than the Mac
app. Most of this is because Mac apps have quite a bit of stuff
already taken care of for them: if we double-click an image, it
launches in the Preview app, whereas an iOS app has to create its
own view controller and present it in an image view. iOS apps just
take more work.

Creating the iOS Project
Because it’s part of the same collection of products, the iOS app will be added as a
target attached to the original project. This allows it to share code with the Mac tar‐
get, and it keeps everything in one place (if you need a reminder on targets, flip back
to “The Xcode Interface” on page 13):

1. Open the File menu, and choose New→Target.
2. In the window that appears, select Application under the iOS heading. Select

Single-View Application, and then click Next (see Figure 7-6).

192 | Chapter 7: Setting Up the iOS Notes App

Figure 7-6. Creating the target

Xcode provides a number of different templates for iOS applications, but they’re
all fundamentally the same. The only difference between most of them is which
view controllers are set up ahead of time. We’re using a Single-View Application
because we’ll be building things out piece by piece, and we don’t want a lot of
boilerplate that we either have to contrive a use for or delete.
The other templates are as they sound: Master-Detail provides the basics of an
app with a list down the left side and a detail view on the right side (like Mail);
Page-Based provides the basics of an app with multiple views scrolling across the
screen (like Weather); Tabbed provides the basics of a tab bar setup (like Music);
and Game provides an empty game view, using Apple’s SceneKit framework. As
you become familiar with the basics of iOS development, you’ll typically start
most of your apps from the Single-View template, as we do here, because you’ll
want to define what’s going on yourself, rather than rely on a template skeleton.

3. Name the application Notes-iOS. Set Devices to Universal, and ensure that Use
Core Data is turned off (see Figure 7-7). Click Finish.

Creating the iOS Project | 193

Figure 7-7. Finishing up the target

Core Data

Core Data is a database framework that comes bundled with iOS
and macOS. Core Data is a huge, powerful, complex system that’s
designed for working with objects in a database. It’s so huge, in fact,
that describing it usually fills entire books.
Core Data is very well suited for when the data your app needs to
work with is composed of multiple objects that all need to link
together. For the app in this book, we just need to save chunks of
raw text and attachments via file wrappers; however, if we were
forced to not use file wrappers and had to store all of the compo‐
nents of the documents in a single file, Core Data might be a useful
way of dealing with it.
If you want to learn more about Core Data, we highly recommend
Marcus S. Zarra’s Core Data: Data Storage and Management for iOS,
macOS, and iCloud (Pragmatic Programmers); additionally, Apple’s
documentation is extremely good.

194 | Chapter 7: Setting Up the iOS Notes App

http://apple.co/21UuYGV
http://apple.co/21UuYGV

There will now be an additional scheme in the scheme selector for Notes-iOS, at the
top left of the window. Select it, and choose any simulator device you wish, so that
pressing ⌘R will launch the app (Figure 7-8).

Figure 7-8. Selecting the scheme

Finally, we’ll add the icon. All icons are available in the resources for this book; if you
don’t already have them, grab them by following the instructions in “Resources Used
in This Book” on page ix.

iOS icons come in multiple sizes, and each one is designed for a different purpose.
This is because of the diversity of devices that run iOS; in addition to iPhone and
iPad, there’s also the fact that different devices have different screen densities. Devices
with a Retina display (that is, the devices with high-resolution screens, such as all
iPhones after the iPhone 4 and all iPads after the iPad 3) need higher-resolution
icons; in addition, larger models of iPhones, such as the iPhone 6 Plus and iPhone 6S
Plus, have even higher resolutions.

To give your app an icon on iOS, you need multiple copies of the same image. Again,
we’ve provided these in the downloadable resources.

To add the icon, follow these steps:

1. Open the iOS app’s Assets.xcassets file, and select the AppIcon entry. You’ll see a
collection of slots—one for each of the different possible icon sizes.

2. Drag and drop the files from the downloadable resources into the slots. Use the
names of each file to work out which slot they belong in; for example,
Icon-60@2x.png belongs in the “60pt” category’s “@2x” slot.

If you accidentally add an image to the wrong icon category, you
can remove it by selecting the errant image slot and pressing
Delete.

When you’re done, the asset catalog should look like Figure 7-9. If you need a
reminder on asset catalogs, refer to “Adding the Icon” on page 110, when we added
the icon to the macOS app.

Creating the iOS Project | 195

Figure 7-9. The asset catalog for the icons

Enabling the iOS App for iCloud
We’ll now set up the project so that it has access to the same iCloud container as the
macOS app. In particular, we need to enable the iCloud Documents feature, which
will give the app access to the iCloud container.

196 | Chapter 7: Setting Up the iOS Notes App

You need to have a paid Apple developer account in order for your
apps to access iCloud. If you don’t have one, head to “The Apple
Developer Program” on page 5 to learn how to set up your account.

1. Select the project at the top of the Project Navigator. The project properties will
appear. Select the Notes-iOS target (Figure 7-10).

Figure 7-10. Selecting the target

2. Go to the Capabilities tab and find the iCloud section. Turn the switch on, and
Xcode will add support for iCloud to the Notes-iOS target. It’ll take a moment, so
wait for the spinner to go away.

3. Once iCloud has been enabled, you need to enable access to iCloud Documents
so that you can access the iCloud container folder that stores the files, and you
need to configure the application to access the same container as the Mac app.
We don’t need the iOS application to have its own, separate container.
Change the Services setting to only iCloud Documents, and change the Contain‐
ers setting to “Specify custom containers.” Next, select the iCloud container that
you set up for the Mac app, and no others. See Figure 7-11.

Enabling the iOS App for iCloud | 197

Figure 7-11. Enabling iCloud

Don’t forget that iCloud can be used for more than just document
storage. You can also store simple key/value data, as well as more
complex database-oriented apps; for more info, see “iCloud” on
page 177.

Next, we need to ensure that the app has access to iCloud. To do this, we’ll ask the
FileManager to tell us the location of the iCloud container on the disk; calling this
will result in the creation of an iCloud container, if none previously existed.

Apple requires that you also have the ability to solely store files
locally, if iCloud is not available or not turned on. We’ll talk about
this more in “iCloud Availability” on page 205.

1. Open AppDelegate.swift.
2. Add the following code to application(_,didFinishLaunchingWithOptions:):

 // Ensure we've got access to iCloud
 let backgroundQueue = OperationQueue()
 backgroundQueue.addOperation() {
 // Pass 'nil' to this method to get the URL for the first
 // iCloud container listed in the app's entitlements
 let ubiquityContainerURL = FileManager.default
 .url(forUbiquityContainerIdentifier: nil)

198 | Chapter 7: Setting Up the iOS Notes App

 print("Ubiquity container URL: \(ubiquityContainerURL)")
 }

Note that the call to url(forUbiquityContainerIdentifier:) is done in a back‐
ground queue. This is because the first time you call this method, the system per‐
forms quite a bit of work to set up the container before the method returns. As a
result, calling this on the main thread means that it will block anything else from
happening, including responding to user input, so make sure to do it in the back‐
ground.

On iOS—indeed, on all modern operating systems—programs
are divided into one or more threads of execution. Threads are
executed simultaneously by the CPU, which means that run‐
ning multiple threads means you can do multiple things at
once. iOS and Mac apps always have at least one thread, called
the main thread. All user interface work is done on the main
thread, which means that if something takes a lot of time to
finish—like preparing the iCloud container—then the app will
appear to hang. We deal with this by creating a background
queue and doing the work there.

Before you launch, you should sign in to iCloud on your iOS simulator.

Testing iCloud in the Simulator

It’s very strongly suggested that you create a new Apple ID and
use that to do your testing; if you do, it’s less of a problem if
you accidentally erase all documents in the iCloud container.
Apple’s Documentation provides guidance on this process.

3. To sign in to iCloud in the simulator, follow the same steps as you do on the
device by using the Settings application, navigating to the iCloud section, and
entering your username and password.
You can now test the application. To do this, you need to install it on a system
that is signed in to iCloud. This can be either a simulator or a real device that’s
signed in to iCloud; it’s up to you.

Each device and simulator has its own settings, so to move
between them you’ll need to make sure they are signed in to
iCloud with the account you are using.

Enabling the iOS App for iCloud | 199

http://apple.co/21Uvdla

4. Go back to Xcode and run the app; after a few seconds, it will log the location of
the container!

If you get a nil value instead of a URL, double-check the Settings
app to make sure that you’re signed in to iCloud. Additionally,
check the project’s Capabilities tab to make sure that the app is per‐
mitted to access iCloud.

Defining a Document Type
Now that the application has access to iCloud, we will set it up so it registers the Note
document type with the system. Because iOS apps present their own methods for list‐
ing and opening documents, this isn’t as critical to the whole document flow as it is in
macOS, but it is necessary to support later features, such as Handoff. As a result, it’s
better to get it done sooner rather than later:

1. Go to the project properties, and select the Notes-iOS target.
2. Select the Info tab. Scroll down to the Document Type section, and click the tri‐

angle to open it.
3. Click the + button to create a new document type (Figure 7-12), and fill in the

following fields:

• Name: Note
• Types: au.com.secretlab.Note

Figure 7-12. Adding a new document type

200 | Chapter 7: Setting Up the iOS Notes App

In place of au.com.secretlab.Note you will have to input
your own identifier if you want it to work correctly with the
macOS app you made earlier!

4. Add an entry to the “Additional document type properties” field by clicking the
triangle inside the box, and then clicking in the field that’s exposed. Name the
entry CFBundleTypeExtensions, and set its type to Array.

5. Next, add an entry to this new array: a string, with the value note.

Now that the application has registered that it can open these documents, we need to
expose a uniform type identifier (UTI) to the system that describes what the type
actually is. Check back to “Defining a Document Type” on page 105, when we set up
the document type for macOS, for more information on UTIs:

1. Open the Exported UTIs section, and click the + button to create a new type.
2. Fill in the fields as follows:

• Description: Note
• Identifier: au.com.secretlab.Note
• Conforms to: com.apple.package

3. Add an entry to the “Additional exported UTI properties” field by clicking the tri‐
angle inside the box, and then clicking in the field that’s exposed. Name it UTType
TagSpecification, and set its type to Dictionary.

4. Add a single entry to this dictionary: public.filename-extension; set its type to
Array.

5. Add a single element to this array: the string note.

Make sure that you type everything as written, with the same capi‐
talization. If you used a different identifier back when you created
the macOS application, use that here in place of au.com.secret
lab.Note.

The app is now associated with this type (see Figure 7-13); when the app is installed,
the iPhone will register the following things:

• A file format named Note exists.
• It has the file extension .note.

Defining a Document Type | 201

• It conforms to the com.apple.package format.

Figure 7-13. The finished document and exported UTI

Conclusion
In this chapter, we’ve laid the groundwork for our iOS counterpart to the macOS app.
We’ve looked at the planned design of the app, consisting of wireframes and a plan‐
ned feature set; created a new project for the iOS app to live in, adding it as a target
alongside the macOS app; enabled iCloud document support; and set up the same
document type we made for the macOS app in the iOS app.

In the next chapter, we’ll build upon this foundation and start working on actually
using the files in iCloud.

202 | Chapter 7: Setting Up the iOS Notes App

CHAPTER 8

Working with Files in iCloud

In this chapter, we’ll discuss working with documents in iCloud on iOS. File manage‐
ment in iOS is handled by the apps themselves, rather than by a system-provided app
like the Finder. As a result, we need to take care of tasks like providing a list of all
available files to the user, opening the files, and saving changes.

This means that, when you work with documents in iOS, you need to do quite a bit
more work. While you still have built-in automatic saving, you need to manually
open and close documents; additionally, because bindings don’t exist on iOS, you
need to manually update the contents of the document object whenever the user pro‐
vides input.

We’ll start by listing whatever’s already in iCloud, to demonstrate that we’ve got access
to the same container as the Mac app and also to provide what will eventually become
the user interface for opening these documents. Next, we’ll implement the Document
class, which is the iOS counterpart of the Mac app’s Document class. Finally, we’ll add
support for creating new documents.

The App Sandbox
Apps on iOS are extremely limited in terms of the files that they’re allowed to access.
Any app that you install via the App Store—which means any third-party app—is
sandboxed: the system will only permit it to read and write files in a single folder. This
keeps any other app from reaching into the app’s files and prevents your app from
poking around the user’s other files. The goal is to preserve user privacy: if apps can’t
get into files they shouldn’t, it becomes a lot less likely for the user’s data to be
breached by a malicious app.

When installed, apps are placed inside a directory with a predefined structure that
looks like Figure 8-1.

203

Figure 8-1. An empty application sandbox

The different folders that exist in the sandbox have special meaning to iOS:

• The Documents folder contains documents created by the user. Everything inside
this folder is backed up to iCloud or to the user’s computer if iCloud backups are
disabled.

• The Library folder contains files that the app uses to operate. It has two subfold‐
ers:
— The Preferences folder contains the user preferences, which are accessed via

the UserDefaults class (more on this class later in this chapter!). These files
are included in the backup.

— The Caches folder stores data that the app stores locally to improve perfor‐
mance. This includes things like resources downloaded from the internet or
files that can otherwise be regenerated if needed. These files are not included
in the backup, and the system will delete the contents of the Caches folder
when it begins to run low on storage space.

204 | Chapter 8: Working with Files in iCloud

• The tmp folder is a temporary storage area that gives users a place to store files
that they only need for a moment. This folder is not included in the backup;
additionally, the system reserves the right to delete the contents of this folder at
any time.

The sandbox also includes the iCloud container, which is a folder stored on disk.
However, the specific location of the iCloud container is irrelevant to you as the
developer, since you don’t actually use the built-in filesystem management tools to
work with it. Instead, as you’ll see as we implement the application, you treat the
whole thing as a separate layer of abstraction.

iCloud Availability
When you’re writing an application, you can never assume that your app will always
have access to iCloud. For example, consider the following scenarios:

• Your app is downloaded, but the user has no iCloud account.
• The user has an iCloud account, and is using your app to store documents in

iCloud, but later signs out of the account.
• The user starts with no iCloud account, but later signs into iCloud.

Apps that use iCloud aren’t allowed to rely on access to iCloud. If you’re making an
app, you’re required to let users decline to store their files in iCloud; if they do, their
files have to be stored locally.

This means that any code that works with files needs to work with both files saved
locally and files saved inside iCloud. For this reason, we strongly recommend that
you never store data both in iCloud and locally at the same time; for one reason, users
should never care about the details of where the files they’re looking at are stored
(they should just be “on the phone”); and for another, you don’t want to have to keep
track of which file is local and which is remote.

There isn’t a single solution to this problem, so we’ll describe how the Notes applica‐
tion deals with it:

• When the application first launches (and only on the first launch), it asks if the
user wants to use iCloud or use local files only. It saves the user’s choice.

• Depending on whether the user chose to use iCloud or not, the app will store all
documents in either iCloud or in local storage.

• The app will expose a setting to let users change their minds (which we’ll cover in
“Settings” on page 387).

iCloud Availability | 205

• If the user previously chose to store files locally, and later opts to store them on
iCloud instead, all files will be moved from local storage to iCloud.

With this in mind, let’s get building!

Creating the Document List View Controller
The documents in the application’s iCloud container need to be shown to the user so
that they can be selected and opened. To do this, we’ll need to create a user interface
that can present this list.

There are three main options for presenting this sort of list in apps:

• A list, using UITableView, that looks similar to the list seen in the iOS Settings
application (Figure 8-2)

Figure 8-2. The Settings list

• A grid, using UICollectionView, that looks similar to the iOS Photos application
(Figure 8-3)

• Something entirely custom and handcoded

In this app, we’ll use a UICollectionView. The main reason for this choice is that
table views don’t look good when they’re very wide, which is what will happen on the
iPad, whereas collection views can look good at any size.

206 | Chapter 8: Working with Files in iCloud

Figure 8-3. The Photos grid

To get started, we’ll first rename the view controller that the template starts with to
something more descriptive. This is purely for our own convenience—the app will
function the same way, but it’s a lot clearer to refer to a “document list view control‐
ler” than to just a “view controller”:

1. Find the ViewController.swift file in the Project navigator.
2. Rename ViewController.swift to DocumentListViewController.swift (Figure 8-4).

Do this by clicking ViewController.swift and pressing Return.

Creating the Document List View Controller | 207

3. Open this file, and rename the ViewController class to DocumentListViewCon
troller. Make DocumentListViewController be a subclass of UICollection
ViewController.

Figure 8-4. The newly renamed file

View Controllers and Storyboards
The code that runs the view controller is kept inside the DocumentListViewControl‐
ler.swift file. However, this is only half of the picture; in addition to the code, you also
need to design the interface. To do this, you’ll work with a storyboard.

A storyboard is a file that contains the interfaces for multiple view controllers, all
linked together with segues. Storyboards allow you to work with your application’s
screens all in a single place, which gives you a much better idea of how the whole
thing fits together. Storyboards are the preferred method of building apps for iOS,
because the constraints placed upon the software by the device (such as the limited
screen size) mean that what the user sees is limited to one screen at a time. Story‐
boards help you navigate the structure of your app.

When you created the project, a storyboard file was created for you. For most apps,
you generally don’t need to create a new storyboard beyond the first one.

The Navigation Controller
Now we’ll start building the interface for the document list view controller:

1. Open Main.storyboard. You’ll be looking at an empty view controller, which was
created when the project was first created.

2. Select the existing view controller in the canvas and delete it. We’ll replace it with
our own in order to get a better picture of how these things come together.

3. Enter navigation controller in the Object library. The list will be reduced to
just the navigation controller object, allowing you to quickly drag it out into the
empty storyboard (see Figure 8-5).

208 | Chapter 8: Working with Files in iCloud

Figure 8-5. Locating the navigation controller

4. Drag out a navigation controller into the storyboard. By default, it comes with a
table view controller, which we don’t need; we’ll be using a collection view con‐
troller, so select the table view controller and delete it (Figure 8-6).

Figure 8-6. The navigation controller, with the table view controller that comes with
it by default; you’ll need to delete the table view controller

When the storyboard starts up, it needs to know what view controller to show
first. This view controller, which Xcode calls the initial view controller, will be
installed as the window’s root view controller before the app is presented to the
user.
Currently, there is no initial view controller, because we just deleted the earlier
ones. This means that if you were to launch the app now, you’d simply get a black
screen.

5. Select the navigation controller that you just added, and go to the Attributes
Inspector. Select the Is Initial View Controller checkbox (Figure 8-7).

Creating the Document List View Controller | 209

Figure 8-7. Making the navigation controller the initial view controller.

6. Go to the Object library, and search for a collection view controller. Drag it out
into the storyboard (Figure 8-8).

Figure 8-8. Locating the collection view controller

By default, collection view controllers have a transparent background, which isn’t
exactly nice to look at, so we need to change it to white so we can properly see it:

1. Select the collection view inside the collection view controller we just added.
2. If it isn’t open, open the Attributes Inspector and scroll down to the View section.
3. Under the background property, press the small disclosure arrow and choose

White Color. Now the collection view has a background we can more easily see
(Figure 8-9).

210 | Chapter 8: Working with Files in iCloud

Figure 8-9. Changing the background color of the collection view

The entire purpose of a navigation controller is to present other view controllers.
When it first appears, the navigation controller needs to have at least one view con‐
troller to present: the root view controller.

We’ll now make the new collection view controller be the root view controller of the
navigation controller:

1. Hold down the Control key, and drag from the navigation controller to the col‐
lection view controller. Select “root view controller” from the menu that appears.

Drag from the view controller, not the view. It’s easiest to do
this by zooming out first. You can also use the navigation con‐
troller and collection view controller representations in the
outline if your prefer.

Now we need to link the new collection view controller up to our custom class we
created.

2. Select the collection view controller and open the Identity Inspector.
3. Change the class to DocumentListViewController.

Creating the Document List View Controller | 211

Collection Views
Collection views present a grid of cells; each cell contains views that present whatever
information you want.

You don’t create the individual cells in a collection view yourself; instead, you create a
single prototype cell and prepare the views inside that. Typically, you also create a sub‐
class of the base UICollectionViewCell class and set it as the custom class for the
cell. Doing this allows you to create outlets in the custom class that link to the views
you design in the interface builder.

To display its data, a collection view contacts an object, known as its data source, to
ask questions about the information it should display. These questions include, “how
many sections are there?”, “how many items are there in each section?”, and “what
should I display for this specific item in this specific section?” This works exactly the
same as the NSCollectionView we wrote in the macOS application, just with different
method calls.

When you use a collection view controller, the link between the
collection view and the data source (which the view controller itself
acts as) is automatically set up. If you’re doing it yourself, you make
your view controller—or any other object in the scene—conform to
the UICollectionViewDataSource protocol (see “Protocols” on
page 70).

Once you’ve designed the cell, you give it an identifier. This is used in the collection
View(_, cellForItemAt:) method to prepare and return the correct type of cell for
a given item in the collection view; we’ll be creating this method later in the chapter.

Next, we’ll set up the cell that will represent each note. To do that, we’ll define the
class that controls each cell, and then we’ll set up the cell’s interface:

1. Open DocumentListViewController.swift.
2. Add the FileCollectionViewCell class to the end of the file:

 class FileCollectionViewCell : UICollectionViewCell {
 @IBOutlet weak var fileNameLabel : UILabel?

 @IBOutlet weak var imageView : UIImageView?

 var renameHander : ((Void) -> Void)?

 @IBAction func renameTapped() {
 renameHander?()
 }

212 | Chapter 8: Working with Files in iCloud

 }

This code defines the class, a subclass of UICollectionViewCell, that specifies
how each cell showing a note will behave. Right now it doesn’t do much; it just
has a UIImageView and some stubs to handle renaming in the future. But, now
that the class exists, we can use it to set up the cell.

3. Open Main.storyboard, and select the collection view in the document list view
controller (Figure 8-10).

Figure 8-10. Locating the collection view in the outline

4. Open the Size Inspector, and set Cell Size to 180 × 180 (Figure 8-11). If you don’t
see any fields to change the cell size, change the cell size from Default to Custom
in the drop-down box.

Figure 8-11. Setting the size of the cells

5. Select the cell. It looks like Figure 8-12.

Creating the Document List View Controller | 213

Figure 8-12. The collection view cell

6. Open the Identity Inspector, and change its class from UICollectionViewCell to
FileCollectionViewCell.

7. Open the Attributes Inspector and set the cell’s Identifier to FileCell.
8. Drag in a UILabel and place it at the bottom of the view.

Using Constraints to Control Size and Position
When a view is added to the screen, it needs to know its size and position. Views on
iOS are never shown in isolation—they’re always displayed alongside other content,
inside other views, and in cooperation with other stuff that the user cares about. This
means that the position and size of any view depends upon where everything else on
the screen is: content should never overlap other content, for example; and if you
place a button in the bottom-right corner of a view, it should stay in that corner even
when that view changes size.

This is where constraints come in. A constraint is a rule that defines some component
of a view’s size and position. These constraints are rules like, “view A’s top edge is
always 10 points away from view B’s bottom edge” or, “view A’s width is equal to half
of the screen width.”

The constraints of a view always need to be sufficient to define the size and position
of that view. If there aren’t enough constraints to fully define this, then the system will
warn you, and you’ll end up with a different layout to what you expect.

If you add no constraints to a view, the system will automatically
add the constraints that set its size and position, based upon where
it was placed in the interface builder.

To add constraints, you select a view and click one of the buttons at the bottom right
of the canvas (Figure 8-13).

214 | Chapter 8: Working with Files in iCloud

Figure 8-13. The constraint buttons, at the bottom right of the canvas

The buttons in this collection are, from left to right:

Stack
This button allows you to quickly arrange a collection of views into a vertical or
horizontal stack. We’ll be working with stack views in Chapter 10.

Align
This button allows you to add constraints that align the selected view(s) to other
views. For example, you can add constraints that say “the horizontal center of this
view is the same as its containing view”; doing this will center the view along that
line.

Pin
This button allows you to define the spacing between the selected view(s) to
other views. For example, using this button, you can add constraints that say “the
leading edge of this view is always 20 points away from the trailing edge of
another view.”

Resolve Auto Layout Issues
This button opens a menu that contains useful tools for resolving common prob‐
lems with your constraints.

To place this label in the correct location, we need to add constraints to it that center
it horizontally, keep it at the bottom of the container, and make it fill the width of the
container while also ensuring that it has the correct height:

1. With the label selected, click the Align button, and turn on Horizontally in Cen‐
ter. Click Add Constraints.

2. Click the Pin button, and click the red bar icons at the left, right, and bottom.
Additionally, set the Height to 20. Click Add Constraints.

Creating the Document List View Controller | 215

By doing this, you’ve added the following constraints:

• Align center X to container
• Leading space to container margin = 0
• Trailing space to container margin = 0
• Bottom space to container margin = 0
• Height = 20

These constraints make the label take up the bottom section of
the view.

3. Next, drag in a UIView. This will eventually be the preview image for the note
documents.

4. Set its background color to something visible, like an orange color. (The precise
color doesn’t matter; this is just for your temporary use so that you can see the
position and size of the view.)

5. Using the Align and Pin menus, add the following constraints:

• Leading space to container margin = 0
• Trailing space to container margin = 0
• Top space to container margin = 0
• Bottom space to the UILabel = 8

These constraints make the view take up the space above the label and ensure
that there’s a buffer between the view and the label.

6. Next, drag in a UIImageView, and place it inside the orange view.
7. Resize it to fill the entire view.

The cell should now look like Figure 8-14.

216 | Chapter 8: Working with Files in iCloud

Figure 8-14. The laid-out collection view cell

8. Add the following constraints:

• Leading space to superview = 0
• Trailing space to superview = 0
• Top space to superview = 0
• Bottom space to superview = 0

For this view, ensure that “Constrain to Margins” is off. This
is because the view should be flush with the edges; we want
the constraints to be relative to the edge, not to the margins.
The view would be inset if the constraints were relative to
the margins.

These constraints make the image view fill its container.
You can now connect the label and image view to the FileCollectionView
Cell.

9. Open the Assistant, and ensure that it’s got DocumentListViewController.swift
open. If it doesn’t, use the jump bar to navigate to Automatic→DocumentList‐
ViewController.swift.

10. Drag from the well—the small circle just to the left of the number 13 in
Figure 8-15—at the left of the fileNameLabel property to the label in the cell.
When you release the mouse button, the property will be connected to the label.

Creating the Document List View Controller | 217

Figure 8-15. Connecting from the outlet to the label

11. Repeat the process for the image view: drag from the imageView property to the
image view.

Each document can now display its filename, as well as its preview image.

Creating the Document Class
We need a Document class for the iOS app. It’s similar to the Mac app, but we subclass
UIDocument instead of NSDocument, and implement different methods.

NSDocument, which we used earlier for the macOS app, behaves a
bit differently than UIDocument on iOS. They provide the same
fundamental features, but approach things a little differently.
One of the main differences is that NSDocument has some knowl‐
edge of the interface that the user will interact with, while UIDocu
ment does not. The reason for this is that, on macOS, it’s easy to
take an interface and use bindings to connect it to the document’s
code, whereas we need to create a view controller on iOS to medi‐
ate the flow of information between the document and the inter‐
face.
There are a few minor API differences, as well. In NSDocument, you
implement either data(ofType:) or fileWrapper(ofType:) to
provide the ability to save the document; in UIDocument, you
implement contents(forType:), which can return either an Data
object or an FileWrapper object.

1. Open the File menu and choose New→File.
2. Select “Cocoa Touch class” and click Next.
3. Set the name of the class to Document and set the “Subclass of ” to UIDocument

(see Figure 8-16). Click Next.

218 | Chapter 8: Working with Files in iCloud

Figure 8-16. Adding the class

4. When saving the new class, make sure that it’s added to the Notes-iOS target.
Several important things need to be the same across the two different classes—for
example, the names of the files in the file package. For this reason, we’ll move the
code that’s common to both the Mac and iOS document classes into a separate
file.

5. Right-click the project and select New Group. A new group will appear in the
Project Navigator; name it Common.

6. Select this new group and go to the File Inspector.
7. Click the little folder icon to set its location (see Figure 8-17). An open dialog box

will appear, showing the project.

Figure 8-17. The location icon

Creating the Document Class | 219

8. In it, make a new folder called Common and then click Choose.
You’ve just made a new folder in which to put files that are common to both
projects.

A group in Xcode does not necessarily have to map to a folder
on the filesystem. Here, we created a group and then assigned
it to a folder location that happened to have the same name.
Groups don’t have to represent a real folder at all, and can sim‐
ply exist within the project hierarchy. The metadata that says
what files live in the group is maintained by Xcode when you
drag a file into them.

9. Right-click the Common group and add a new Swift file.

Don’t add a new Cocoa Touch class; you’re adding a new,
empty file. We’re not using this file to make a Swift class; we’re
going to use it to store some variables that are common to
both the iOS and macOS project, and we don’t need a class to
do that.

10. Name this new document DocumentCommon.swift.
11. With the DocumentCommon.swift file selected, open the File Inspector and add it

to both the Notes and Notes-iOS targets by checking the boxes for each target in
the Target Membership pane (see Figure 8-18).

A target in Xcode specifies a thing (called a product) to build
and tells Xcode how to build it and what files to use. Because
we want DocumentCommon.swift to be part of both the
macOS and the iOS products, we add it to both targets.

220 | Chapter 8: Working with Files in iCloud

Figure 8-18. Adding the file to the targets

12. Open the DocumentCommon.swift file, and add the following code to it:
 // We can be throwing a lot of errors in this class, and they'll all
 // be in the same error domain and using error codes from the same
 // enum, so here's a little convenience func to save typing and space

 let ErrorDomain = "NotesErrorDomain"

func err(_ code: ErrorCode,
 _ userInfo:[AnyHashable: Any]? = nil) -> NSError {
 // Generate an NSError object, using ErrorDomain, and using whatever

Creating the Document Class | 221

 // value we were passed.
 return NSError(domain: ErrorDomain,
 code: code.rawValue,
 userInfo: userInfo)
}

 // Names of files/directories in the package
 enum NoteDocumentFileNames : String {
 case TextFile = "Text.rtf"

 case AttachmentsDirectory = "Attachments"

 case QuickLookDirectory = "QuickLook"

 case QuickLookTextFile = "Preview.rtf"

 case QuickLookThumbnail = "Thumbnail.png"

 case locationAttachment = "location.json"
 }

 let NotesUseiCloudKey = "use_icloud"
 let NotesHasPromptedForiCloudKey = "has_prompted_for_icloud"

 /// Things that can go wrong
 enum ErrorCode : Int {

 /// We couldn't find the document at all.
 case cannotAccessDocument

 /// We couldn't access any file wrappers inside this document.
 case cannotLoadFileWrappers

 /// We couldn't load the Text.rtf file.
 case cannotLoadText

 /// We couldn't access the Attachments folder.
 case cannotAccessAttachments

 /// We couldn't save the Text.rtf file.
 case cannotSaveText

 /// We couldn't save an attachment.
 case cannotSaveAttachment
 }

All this code contains is a convenience function for errors, an enumeration con‐
taining all the possible files inside the package of our Note document type, and

222 | Chapter 8: Working with Files in iCloud

the error codes we created earlier. Check back to “Package File Formats” on page
116, when we were setting up the macOS app, for a reminder.

Because we are building this application in stages, we have just rewritten a whole
bunch of code that already existed inside Document.swift. We therefore need to delete
the duplicated code. Open Document.swift and delete the ErrorDomain constant, err
method, and NotesDocumentFileNames and ErrorCode enums.

If you don’t delete the duplicate code, you will get build errors.

If you’ve done everything correctly, the Mac app should still build with no errors.
Double-check that now by changing the scheme to the Notes app and pressing ⌘-B. If
it doesn’t, double-check that the DocumentCommon.swift file’s Target Membership
settings include the Mac app.

You’re now ready to set up the iOS document class:

1. Open the iOS app’s Document.swift file.
2. Add the following code to the Document class:

 var text = NSAttributedString(string: "") {
 didSet {
 self.updateChangeCount(UIDocumentChangeKind.done)
 }
 }

 var locationWrapper : FileWrapper?

 var documentFileWrapper = FileWrapper(directoryWithFileWrappers: [:])

 override func contents(forType typeName: String) throws -> Any {

 let textRTFData = try self.text.data(
 from: NSRange(0..<self.text.length),
 documentAttributes:
 [NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType])

 if let oldTextFileWrapper = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldTextFileWrapper)
 }

 // checking if there is already a location saved
 let rawLocationVal = NoteDocumentFileNames.locationAttachment.rawValue

Creating the Document Class | 223

 if self.documentFileWrapper.fileWrappers?[rawLocationVal] == nil {
 // saving the location if there is one
 if let location = self.locationWrapper {
 self.documentFileWrapper.addFileWrapper(location)
 }
 }

 self.documentFileWrapper.addRegularFile(withContents: textRTFData,
 preferredFilename: NoteDocumentFileNames.TextFile.rawValue)

 return self.documentFileWrapper
 }

 override func load(fromContents contents: Any,
 ofType typeName: String?) throws {

 // Ensure that we've been given a file wrapper
 guard let fileWrapper = contents as? FileWrapper else {
 throw err(.cannotLoadFileWrappers)
 }

 // Ensure that this file wrapper contains the text file,
 // and that we can read it
 guard let textFileWrapper = fileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue],
 let textFileData = textFileWrapper.regularFileContents else {
 throw err(.cannotLoadText)
 }

 // Read in the RTF
 self.text = try NSAttributedString(data: textFileData,
 options: [NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType],
 documentAttributes: nil)

 // Keep a reference to the file wrapper
 self.documentFileWrapper = fileWrapper

 // opening the location filewrapper
 let rawLocationVal = NoteDocumentFileNames.locationAttachment.rawValue
 self.locationWrapper = fileWrapper.fileWrappers?[rawLocationVal]

 }

This block of code:

• adds the NSAttributedString property text, which defaults to the empty
attributed string.

• adds the FileWrapper property documentFileWrapper, which defaults to an
empty directory file wrapper.

224 | Chapter 8: Working with Files in iCloud

• implements load(fromContents:) to load the text.
• implements contents(forType:) to store the text. Importantly, in the con
tents(forType:) method, the app first checks to see if there’s already an exist‐
ing text file. If one exists, it’s removed so that the new text file can replace it.

With this done, we’ve now implemented the text-related features of the Document
system.

Listing Documents
We can now start listing documents in our UICollectionView. To show the user a list
of available files, we need to have a way of finding out what files exist. As we dis‐
cussed in “iCloud Availability” on page 205, there are two possible places where files
can be found: in the iCloud container or locally on the device.

Strictly speaking, files stored in iCloud are also stored locally on
the device, but it’s useful to think of them as existing outside the
device. Doing this helps you to remember that the files may not yet
have been downloaded and are therefore not ready to use.

To find files in iCloud, we use a class called NSMetadataQuery to compose a search
query to return all files with a .note extension inside the iCloud container. Finding
files stored locally simply involves asking the operating system to give us a list of files.

Regardless of how we find the list of files that are available, we need to keep track of
this list so that it can be used to populate the list of documents that the user can see.
To handle this, we’ll create an array of URL objects:

1. Open DocumentListViewController.swift.
2. Add the availableFiles property:

 var availableFiles : [URL] = []

This variable will store the URL for every file in the container that the app cur‐
rently knows about. We’ll now add code that will watch for changes to the list, so
that if a new file is added—such as by another device—then the app will find out
about it.

3. Add the iCloudAvailable property to the DocumentListViewController class:
 class var iCloudAvailable : Bool {

 if UserDefaults.standard
 .bool(forKey: NotesUseiCloudKey) == false {

Listing Documents | 225

 return false
 }

 return FileManager.default.ubiquityIdentityToken != nil
 }

This is a class property: one that’s part of the class, and not
attached to any specific instance of that class. You access this
property by saying DocumentListViewController.iCloudA
vailable; you don’t need to have an instance of the class to
access it.

This computed property returns true if the user is signed in to iCloud and has
indicated that he or she wants to use iCloud; otherwise, it returns false. If you
need a reminder on computed properties in Swift, flip back to “Properties” on
page 66.

4. Add the metadataQuery, queryDidFinishGatheringObserver, and queryDidUp
dateObserver properties:
 var queryDidFinishGatheringObserver : AnyObject?
 var queryDidUpdateObserver: AnyObject?

 var metadataQuery : NSMetadataQuery = {
 let metadataQuery = NSMetadataQuery()

 metadataQuery.searchScopes =
 [NSMetadataQueryUbiquitousDocumentsScope]

 metadataQuery.predicate = NSPredicate(format: "%K LIKE '*.note'",
 NSMetadataItemFSNameKey)
 metadataQuery.sortDescriptors = [
 NSSortDescriptor(key: NSMetadataItemFSContentChangeDateKey,
 ascending: false)
]

 return metadataQuery
 }()

This composes a NSMetaDataQuery query to look for files with our Notes file
extension by making its predicate search for filenames ending in .note. You can
customize and refine this search query by providing a different query; you can
find more information on how to compose these queries in the Predicate Pro‐
gramming Guide.

226 | Chapter 8: Working with Files in iCloud

http://apple.co/1q6hwUY
http://apple.co/1q6hwUY

Note the parentheses at the end of the preceding code snippet
and the equals sign before the opening brace near the top. This
format means that, when the DocumentListViewController is
created, the metadataQuery object will be created and pre‐
pared before any other code executes. This means that the rest
of the code doesn’t need to check to see if metadataQuery is
ready to use or not—we’re guaranteeing that it always will be
ready.

5. Add the following code, which implements the localDocumentsDirectoryURL
property. That property gives us the folder in which to store our local documents
and implements the ubiquitousDocumentsDirectoryURL property, which in turn
gives us the location of where to put documents in order for them to be stored in
iCloud:
 class var localDocumentsDirectoryURL : URL {
 return FileManager.default.urls(
 for: .documentDirectory,
 in: .userDomainMask).first!
 }

 class var ubiquitousDocumentsDirectoryURL : URL? {
 return FileManager.default
 .url(forUbiquityContainerIdentifier: nil)?
 .appendingPathComponent("Documents")
 }

The urls(for:in:) method allows you to request a type of directory that you’d
like—for example, .documentDirectory lets you request a place to store user
documents. The method returns an array of URLs that you can use; on iOS, this
will always point to the app sandbox’s Documents folder. Because we specifically
want the URL, and not an array of URLs, we return the first entry in the array;
because this is optional, we must first unwrap it with !. It’s worth pointing out
that this will crash the program if, for some reason, urls(for:in:) returns an
empty array; however, this won’t happen, because all iOS apps are given a Docu‐
ments directory when they’re installed.

These two variables are class variables to ensure that they
don’t depend on the state of any specific instance of the Docu
mentListViewController class. This isn’t strictly necessary,
but it helps to keep things tidier.

6. Make viewDidLoad set up the observers, which will be updated when the meta‐
data query discovers new files:

Listing Documents | 227

 override func viewDidLoad() {
 super.viewDidLoad()

 self.queryDidUpdateObserver = NotificationCenter.default
 .addObserver(forName: NSNotification.Name.NSMetadataQueryDidUpdate,
 object: metadataQuery,
 queue: OperationQueue.main) { (notification) in
 self.queryUpdated()
 }
 self.queryDidFinishGatheringObserver = NotificationCenter.default
 .addObserver(
 forName: NSNotification.Name.NSMetadataQueryDidFinishGathering,
 object: metadataQuery,
 queue: OperationQueue.main) { (notification) in
 self.queryUpdated()
}

 }

When the document list controller’s view loads, we need to register with the sys‐
tem the fact that if either NSMetadataQueryDidFinishGatheringNotification
or NSMetadataQueryDidUpdateNotification is posted, we want to run some
code in response. The NSMetadataQueryDidFinishGatheringNotification is
sent when the metadata query finishes its initial search for content, and the NSMe
tadataQueryDidUpdateNotification is sent when any new files are discovered
after this initial search. In both of these cases, we’ll call a method called queryUp
dated, which we’ll add shortly.

7. Implement the refreshLocalFilesList method:
 func refreshLocalFileList() {

 do {
 var localFiles = try FileManager.default
 .contentsOfDirectory(
 at: DocumentListViewController.localDocumentsDirectoryURL,
 includingPropertiesForKeys: [URLResourceKey.nameKey],
 options: [
 .skipsPackageDescendants,
 .skipsSubdirectoryDescendants
]
)

 localFiles = localFiles.filter({ (url) in
 return url.pathExtension == "note"
 })

 if (DocumentListViewController.iCloudAvailable) {
 // Move these files into iCloud

228 | Chapter 8: Working with Files in iCloud

 for file in localFiles {
 if let ubiquitousDestinationURL =
 DocumentListViewController
 .ubiquitousDocumentsDirectoryURL?
 .appendingPathComponent(file.lastPathComponent) {
 do {
 try FileManager.default
 .setUbiquitous(true,
 itemAt: file,
 destinationURL:
 ubiquitousDestinationURL)
 } catch let error as NSError {
 NSLog("Failed to move file \(file) " +
 "to iCloud: \(error)")
 }
 }

 }
 } else {
 // Add these files to the list of files we know about
 availableFiles.append(contentsOf: localFiles)
 }

 } catch let error as NSError {
 NSLog("Failed to list local documents: \(error)")
 }

 }

This looks for files stored locally. If it finds local files, and if iCloud is available,
those files will be moved into iCloud for the NSMetadataQuery to find; if iCloud
is not available, their URLs will be added to the availableFiles array so that the
collection view displays them.
You’ll notice that we use the FileManager class to access the list of files and also
to move documents into iCloud. The FileManager class is your gateway to the
filesystem. Just about anything you can do with files or folders can be done with
FileManager, including creating, moving, copying, renaming, and deleting files.
Next, we need to make the viewDidLoad method ask users if they want to use
iCloud; if they’ve been asked already, then it should either start searching iCloud
or list the collection of local files.

8. Add the following code to the end of the viewDidLoad method:
 override func viewDidLoad() {
 super.viewDidLoad()

 self.queryDidUpdateObserver = NotificationCenter.default
 .addObserver(forName: NSNotification.Name.NSMetadataQueryDidUpdate,

Listing Documents | 229

 object: metadataQuery,
 queue: OperationQueue.main) { (notification) in
 self.queryUpdated()
 }
 self.queryDidFinishGatheringObserver = NotificationCenter.default
 .addObserver(
 forName: NSNotification.Name.NSMetadataQueryDidFinishGathering,
 object: metadataQuery,
 queue: OperationQueue.main) { (notification) in
 self.queryUpdated()
}

> let hasPromptedForiCloud = UserDefaults.standard
> .bool(forKey: NotesHasPromptedForiCloudKey)
>
> if hasPromptedForiCloud == false {
> let alert = UIAlertController(title: "Use iCloud?",
> message: "Do you want to store your documents in iCloud, " +
> "or store them locally?",
> preferredStyle: UIAlertControllerStyle.alert)
>
> alert.addAction(UIAlertAction(title: "iCloud",
> style: .default,
> handler: { (action) in
>
> UserDefaults.standard
> .set(true, forKey: NotesUseiCloudKey)
>
> self.metadataQuery.start()
> }))
>
> alert.addAction(UIAlertAction(title: "Local Only", style: .default,
> handler: { (action) in
>
> UserDefaults.standard
> .set(false, forKey: NotesUseiCloudKey)
>
> self.refreshLocalFileList()
> }))
>
> self.present(alert, animated: true, completion: nil)
>
> UserDefaults.standard
> .set(true, forKey: NotesHasPromptedForiCloudKey)
>
> } else {
> metadataQuery.start()
> refreshLocalFileList()
> }

230 | Chapter 8: Working with Files in iCloud

 }

This code displays an alert that, on the first launch of the application, asks users if
they’d like to use iCloud. It first checks to see if the user has already seen the
iCloud prompt. If not, then an alert is constructed from a UIAlertController
object. There are two possible actions that the user can take: choose to use
iCloud, or choose to save documents locally only. If the user chooses to save it in
iCloud, then the iCloud-searching metadata query is started; if the user chooses
to save locally, then the refreshLocalFileList method that you just wrote is
called. In either case, the user’s preference is recorded in the user preferences sys‐
tem. The alert is then presented, and the method records the fact that the user
has seen this prompt.
If the user has previously seen the prompt, then the query is started and the file
list is refreshed. This is done on purpose:

• If the user is not using iCloud, then the metadata query will find no files. This
is fine, because checking for local files will happen immediately afterward.

• If the user is using iCloud, then the metadata query will begin searching for
files; at the same time, by searching for local files, it will move any files that
were stored locally into iCloud. This is useful for when the user previously
elected to not use iCloud, but then changed his or her mind. We don’t want
any files to be stranded in local storage; we want to ensure that we sweep up
any local files and store them in iCloud.

9. Implement the queryUpdated method, which is called if the NSMetadataQuery
finds any files in iCloud. This method updates the list of known files in iCloud:
 func queryUpdated() {
 self.collectionView?.reloadData()

 // Ensure that the metadata query's results can be accessed
 guard let items = self.metadataQuery.results as? [NSMetadataItem] else
{
 return
}

 // Ensure that iCloud is available—if it's unavailable,
 // we shouldn't bother looking for files.
 guard DocumentListViewController.iCloudAvailable else {
 return;
 }

 // Clear the list of files we know about.
 availableFiles = []

Listing Documents | 231

 // Discover any local files, which don't need to be downloaded.
 refreshLocalFileList()

 for item in items {

 // Ensure that we can get the file URL for this item
 guard let url =
 item.value(forAttribute: NSMetadataItemURLKey) as? URL else {
 // We need to have the URL to access it, so move on
 // to the next file by breaking out of this loop
 continue
 }

 // Add it to the list of available files
 availableFiles.append(url)

 }

 }

We’ll now add the two critical methods that provide data to the UICollection
View:

• collectionView(_, numberOfItemsInSection:), which is given a section
number (starting at zero) and returns the number of items in that section.

• collectionView(_, cellForItemAt: indexPath), which is given an Index
Path object, which contains a section number and an item number. It’s
expected to return a UICollectionViewCell that’s been prepared with the data
that should appear for this point in the grid.

There’s also a third important method: numberOfSections(in:), which returns the
number of sections in the table view. However, if you don’t implement it, the collec‐
tion view assumes that there is one section. We only have one section in this collec‐
tion view, so we’ll save some typing and not include it:

1. Implement the numberOfItemsInSection and cellForItemAt:indexPath meth‐
ods:
 override func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {

 // There are as many cells as there are items in iCloud
 return self.availableFiles.count
 }

 override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

232 | Chapter 8: Working with Files in iCloud

 // Get our cell
 let cell = collectionView
 .dequeueReusableCell(withReuseIdentifier: "FileCell",
 for: indexPath) as! FileCollectionViewCell

 // Get this object from the list of known files
 let url = availableFiles[indexPath.row]

 // Get the display name
 var fileName : AnyObject?
 do {
 try (url as NSURL).getResourceValue(&fileName,
 forKey: URLResourceKey.nameKey)

 if let fileName = fileName as? String {
 cell.fileNameLabel!.text = fileName
 }
 } catch {
 cell.fileNameLabel!.text = "Loading..."
 }

 return cell

 }

The numberOfItemsInSections is responsible for letting the collection view
know how many items need to be displayed. There are always as many items in
the collection view as there are URL objects in the list, so we just ask the availa
bleFiles variable for its count.
The cellForItemAt:indexPath method is more complex. It’s responsible for
providing to the collection view each of its cells and making sure that each cell
has the correct content.
You might notice that we don’t actually create our own cells—that is, we never
call the initializer for FileCollectionViewCell. Instead, we call the dequeueReu
sableCell(withReuseIdentifier: for:) method on the collection view.
We do this for performance reasons. If you had a large number of items to dis‐
play in the collection view, it’s extremely inefficient to create all of the possible
cells; and creating a cell on demand is bad as well, because memory allocation
can be CPU-intensive.
Instead, the collection view system maintains a reuse queue system. When a cell is
scrolled off-screen, it’s not removed from memory; instead, it’s simply taken off
the screen and placed in the queue. When a new cell needs to appear, you call
dequeueReusableCell(withReuseIdentifier: for:) to retrieve a cell from the
queue. If the queue is empty, a new cell is allocated and created.

Listing Documents | 233

This approach to reusing a small number of UI elements is
quite common in Cocoa and Cocoa Touch, where only a small
number of elements ever exist and are simply reconfigured
and reused as needed.

This, by the way, is why you gave the cell an identifier in the interface builder.
The reuse identifier you pass in to the call to dequeueReusableCell(withReuseI
dentifier: for:) is what the collection view uses to determine which queue of
UICollectionViewCells to get a cell from.

2. Run the app! If there are documents in the container from before (when you
were making the macOS app), they will appear—it might take a moment.

Creating Documents
Currently, the app can show documents that have been added to the iCloud container,
but it can’t create its own. Let’s make that happen!

At this point, the icons shown in the document list will still be a flat
color. Additionally, the code that actually makes the documents
download from iCloud hasn’t yet been added yet, so you’ll just see
the word “Loading…” under each of the icons. Don’t panic—we’ll
be adding both of these in time.

In iOS, documents must be manually created by your code. You do this by creating a
new instance of your UIDocument class, and then telling it to save; this will create the
document on the disk.

This is the same method that is used to update an existing docu‐
ment on disk.

Now we can start creating new documents.

The way that saving works is this: we first create the document and save it to the local
Documents directory. Once it’s written, we can then move it into iCloud, where it will
be synced to all devices.

Inside DocumentListViewController.swift, implement the createDocument function,
which creates and saves the document:

234 | Chapter 8: Working with Files in iCloud

 func createDocument() {

 // Create a unique name for this new document by adding the date
 let formatter = DocumentListViewController.documentNameDateFormatter
let documentDate = formatter.string(from: Date())
 let documentName = "Document \(documentDate).note"

 // Work out where we're going to store it, temporarily
 let documentDestinationURL = DocumentListViewController
 .localDocumentsDirectoryURL
 .appendingPathComponent(documentName)

 // Create the document and try to save it locally
 let newDocument = Document(fileURL:documentDestinationURL)
 newDocument.save(to: documentDestinationURL,
 for: .forCreating) { (success) -> Void in

 if (DocumentListViewController.iCloudAvailable) {

 // If we have the ability to use iCloud...
 // If we successfully created it, attempt to move it to iCloud
 if success == true, let ubiquitousDestinationURL =
 DocumentListViewController.ubiquitousDocumentsDirectoryURL?
 .appendingPathComponent(documentName) {

 // Perform the move to iCloud in the background
 OperationQueue().addOperation { () -> Void in
 do {
 try FileManager.default
 .setUbiquitous(true,
 itemAt: documentDestinationURL,
 destinationURL: ubiquitousDestinationURL)

 OperationQueue.main
 .addOperation { () -> Void in

 self.availableFiles
 .append(ubiquitousDestinationURL)

 self.collectionView?.reloadData()
 }
 } catch let error as NSError {
 NSLog("Error storing document in iCloud! " +
 "\(error.localizedDescription)")
 }
 }
 }
 } else {
 // We can't save it to iCloud, so it stays in local storage.

 self.availableFiles.append(documentDestinationURL)
 self.collectionView?.reloadData()

Creating Documents | 235

 }
 }
 }

This code first creates the file locally, and then does different things depending on
whether the user has access to iCloud or not:

• If the user has access to iCloud, it works out where it should exist in iCloud, and
then moves it to that location. It does this in a background queue because it can
take a moment to finish moving to the iCloud container.

• If the user has no access to iCloud, it manually adds the document to the list of
files and reloads the list. It does this because, unlike when iCloud is available,
there’s no object watching the directory and keeping the file list up to date. Once
that’s done, the document is opened.

Now that we have the ability to create documents, we need a way to let the user ini‐
tiate the process. We’ll do this by adding a little button to the top of the screen, by
adding a UIBarButtonItem to the view controller’s UINavigationItem.

Every view controller that exists inside a UINavigationController has a
UINavigationItem. This is an object that contains the content for the navigation bar
for that view controller: its title and any buttons that should go in the bar. When the
view controller is on screen, the navigation controller will use our DocumentListView
Controller’s navigation item to populate the navigation bar (see Figure 8-19).

Figure 8-19. The Add button, which will be added to the top of the screen

There’s only ever one navigation bar in the entire navigation con‐
troller. When you switch from one view controller to another, the
navigation controller notices this fact and updates the contents of
the bar, animating it into place.

236 | Chapter 8: Working with Files in iCloud

To create the button, we’ll use a UIBarButtonItem. This is a button designed to go
inside either a navigation bar or a toolbar. You can create one in the storyboard, but
it’s useful to know how to create one programmatically as well.

We’ll use a UIBarButtonItem to show our Add button, which will look like a little +
icon. When the button is tapped, the createDocument method that you just added
will be run:

1. Add the following code to the viewDidLoad method:
 let addButton = UIBarButtonItem(barButtonSystemItem: .add,
 target: self,
 action: #selector(DocumentListViewController.createDocument))
 self.navigationItem.rightBarButtonItem = addButton

Notice the target and action parameters that are passed to the UIBarButton
Item’s initializer. When the user taps the button, iOS will call the action method
on the target object. This means that tapping the Add button will call the crea
teDocument method that you added earlier.

2. Run the app, click the + button, and add new files!

Downloading from iCloud
We’ve already got the app listing files, whether the user has chosen to get them locally
or use iCloud. If the files are all stored locally, then we have no problem: the files are
in place, and we can open them. However, if they’re stored in iCloud, we hit a snag:
the files that are in iCloud and are being reported by the NSMetadataQuery are not yet
downloaded to the local device, which means we can’t use them.

On macOS, this isn’t a problem, because the system will automatically download
every single file that’s in the iCloud container. iOS doesn’t do this, because there’s sig‐
nificantly less storage space available on the smaller device, and the user may be on a
cellular network.

If we want to be able to open the user’s files, we need to download them. Additionally,
we need to be able to tell whether a file is downloaded or not. Finally, we need to be
able to convey to users that a file is not yet ready to be opened so that they don’t get
confused when they try to open a file that the system hasn’t downloaded yet.

In this application, we’re automatically downloading all files that
we know about. This isn’t the best approach for all apps, especially
if the files can be quite large; in those situations, you should wait
for the user to explicitly request for a file to be downloaded.

Downloading from iCloud | 237

First, we need to show files that aren’t yet downloaded:

1. Still inside DocumentListViewController.swift, implement itemIsOpenable,
which tells us if we have downloaded the latest version of the file:
 // Returns true if the document can be opened right now
 func itemIsOpenable(_ url:URL?) -> Bool {

 // Return false if item is nil
 guard let itemURL = url else {
 return false
 }

 // Return true if we don't have access to iCloud (which means
 // that it's not possible for it to be in conflict - we'll always have
 // the latest copy)
 if DocumentListViewController.iCloudAvailable == false {
 return true
 }

 // Ask the system for the download status
 var resource : URLResourceValues
 do {
 resource = try itemURL.resourceValues(forKeys:
 [.ubiquitousItemDownloadingStatusKey])
 } catch let error as NSError {
 NSLog("Failed to get downloading status for \(itemURL): \(error)")
 // If we can't get that, we can't open it
 return false
 }

 // Return true if this file is the most current version
 if resource.ubiquitousItemDownloadingStatus ==
 URLUbiquitousItemDownloadingStatus.current {
 return true
 } else {
 return false
 }
 }

The itemIsOpenable method returns true when the file is fit to be opened, and
false otherwise. If the app doesn’t have any access to iCloud, then the file must
be openable; however, if the app does have access to iCloud, we have to do some
additional checks.
First, we ask the URL to let us know what the downloading status is for the file. We
do this by using the resourceValues forKey: method, which returns a collec‐
tion of resources inside the URL determined by the keys parameter passed in,
giving us control over what resources we want. In this case we only want a single

238 | Chapter 8: Working with Files in iCloud

value, .ubiquitousItemDownloadingStatusKey, which tells us the current down‐
load state of an iCloud resource, as the keys parameter is a set we can pass in
more keys if we wanted more information; but in this case just the one is enough.
A file can be in one of several download states:

• URLUbiquitousItemDownloadingStatus.notDownloaded means we don’t have
it

• URLUbiquitousItemDownloadingStatus.downloaded means it’s downloaded,
but it’s out of date

• URLUbiquitousItemDownloadingStatus.current means it’s downloaded and
up-to-date
We can only open files that are downloaded and up to date; otherwise, we have
to tell the user that it’s not openable.

2. Add checks in cellForItemAt indexPath to make unavailable documents trans‐
parent:
 override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 // Get our cell
 let cell = collectionView
 .dequeueReusableCell(withReuseIdentifier: "FileCell",
 for: indexPath) as! FileCollectionViewCell

 // Get this object from the list of known files
 let url = availableFiles[indexPath.row]

 // Get the display name
 var fileName : AnyObject?
 do {
 try (url as NSURL).getResourceValue(&fileName,
 forKey: URLResourceKey.nameKey)

 if let fileName = fileName as? String {
 cell.fileNameLabel!.text = fileName
 }
 } catch {
 cell.fileNameLabel!.text = "Loading..."
 }

> // If this cell is openable, make it fully visible, and
> // make the cell able to be touched
> if itemIsOpenable(url) {
> cell.alpha = 1.0
> cell.isUserInteractionEnabled = true

Downloading from iCloud | 239

> } else {
> // But if it's not, make it semitransparent, and
> // make the cell not respond to input
> cell.alpha = 0.5
> cell.isUserInteractionEnabled = false
> }

 return cell

 }

To let the user know whether a document can be opened or not, we’ll set the
alpha property of the cell to 0.5 if the cell is not openable. The alpha property
controls how transparent the view is: 1.0 means it’s fully opaque, and 0.0 means
it’s entirely see-through.

3. Next, update queryUpdated to begin downloading any files that aren’t already
downloaded:
 func queryUpdated() {
 self.collectionView?.reloadData()

 // Ensure that the metadata query's results can be accessed
 guard let items = self.metadataQuery.results as? [NSMetadataItem] else
{
 return
}

 // Ensure that iCloud is available - if it's unavailable,
 // we shouldn't bother looking for files.
 guard DocumentListViewController.iCloudAvailable else {
 return;
 }

 // Clear the list of files we know about.
 availableFiles = []

 // Discover any local files, which don't need to be downloaded.
 refreshLocalFileList()

 for item in items {

 // Ensure that we can get the file URL for this item
 guard let url =
 item.value(forAttribute: NSMetadataItemURLKey) as? URL else {
 // We need to have the URL to access it, so move on
 // to the next file by breaking out of this loop
 continue
 }

240 | Chapter 8: Working with Files in iCloud

 // Add it to the list of available files
 availableFiles.append(url)

> // Check to see if we already have the latest version downloaded
> if itemIsOpenable(url) == true {
> // We only need to download if it isn't already openable
> continue
> }
>
> // Ask the system to try to download it
> do {
> try FileManager.default
> .startDownloadingUbiquitousItem(at: url)
>
> } catch let error as NSError {
> // Problem! :(
> print("Error downloading item! \(error)")
>
> }

 }

 }

When this code has been added, when you launch the iOS app, documents that
have already been added to the iCloud container from other locations—such as
from the macOS app—will start downloading. You’ll see the “Loading…” text
under the icons start gradually disappearing and being replaced with the actual
filenames.
As you can see, there’s not a huge amount of work that needs to be done for the
app to ensure that files are available. All we have to do is first check to see if it’s
not already available; if it’s not, then we ask the FileManager to start download‐
ing the file. The NSMetadataQuery will update us later when the file finishes
downloading.

4. Run the app. Any files that are not yet downloaded to the device will start down‐
loading; until they’re downloaded, they’ll be semitransparent in the documents
list.

Deleting Documents
Now we’ll add some of the groundwork support for editing. We need to do two things
to hook this up: first, we’ll add an icon into the project that can be used for the Delete
button, and then we’ll add a button that will use that icon:

1. Open the Assets.xcassets asset catalog.

Deleting Documents | 241

2. Drag the Delete icon, available in the Design folder in the downloaded resources
(see “Resources Used in This Book” on page ix), into the list of assets. Unlike in
the past where we’ve been dragging images into predetermined slots, we can just
drag the image into anywhere in the asset pane.

3. Open Main.storyboard and select the FileCollectionViewCell.
4. Search for UIButton in the Object library and drag a new button into the cell.
5. Go to the Attributes Inspector, and change the button’s Type from System to Cus‐

tom.
6. Delete the button’s title and set its image to Delete.
7. Position it at the top-right corner of the cell.
8. Open the Editor menu, and choose Resolve Auto Layout Issues→Reset to Sug‐

gested Constraints. The result is shown in Figure 8-20.

Figure 8-20. The delete button

9. Open DocumentListViewController.swift in the Assistant.
10. Hold down the Control key, and drag from the delete button into FileCollec

tionViewCell. Create a new outlet for the button called deleteButton.
11. Hold down the Control key again, and drag from the delete button into FileCol

lectionViewCell. Create a new action for the button called deleteTapped.
12. Add the following property to FileCollectionViewCell:

 var deletionHander : ((Void) -> Void)?

This will be a closure that is run when the user taps the delete button.
13. Add the following code to the deleteTapped method:

242 | Chapter 8: Working with Files in iCloud

 @IBAction func deleteTapped() {
 deletionHander?()
 }

This method calls the deletion closure; the actual content of the closure will be set
up in collectionView(cellForItemAt:).

We want to draw the user’s attention to the deletion buttons when they appear. To do
this, we’ll make the cells fade out, using iOS’s animation system, when the deletion
buttons are visible.

Animating a property of a UIView is as simple as telling the UIView class that you’d
like to animate and indicating how long the animation should take. You also provide
a closure, which the UIView class will run when it’s ready to start animating content.
Inside this closure, you make the changes you want: changing size, opacity, color, and
mode.

Add the following method to FileCollectionViewCell:

 func setEditing(_ editing: Bool, animated:Bool) {
 let alpha : CGFloat = editing ? 1.0 : 0.0
 if animated {
 UIView.animate(withDuration: 0.25, animations: { () -> Void in
 self.deleteButton?.alpha = alpha
 })
 } else {
 self.deleteButton?.alpha = alpha
 }
 }

The setEditing method simply changes the opacity of the cell’s deleteButton.
When setEditing is called, it receives two parameters: first, whether the button
should be visible or not, and second, whether the change in opacity should be anima‐
ted.

The change in opacity should be animated if the cell is on screen. It doesn’t look great
for a view to suddenly pop from fully opaque to slightly transparent, so it should
gradually fade, via an animation. However, if the view is off-screen, it shouldn’t fade.

If the change in opacity needs to be animated, the second parameter of this method is
set to true. This wraps the change to the deleteButton’s alpha property inside a call
to UIView’s animate(withDuration: animations:); otherwise, it’s simply assigned.

We’ll now add a button that puts the collection of documents into Edit mode. There’s
actually an incredibly simple way to add an Edit button, and you can do it with a sin‐
gle line of code.

Add the following code to the bottom of the viewDidLoad method:

self.navigation.leftBarButtonItem = self.editButtonItem

Deleting Documents | 243

The editButtonItem method returns a UIBarButtonItem that, when tapped, calls the
setEditing method. We’ll implement that now.

Inside DocumentListViewController.swift, implement the setEditing method to
make all cells that are visible change their editing state:

 override func setEditing(_ editing: Bool, animated: Bool) {

 super.setEditing(editing, animated: animated)

 for visibleCell in self.collectionView?.visibleCells
 as! [FileCollectionViewCell] {

 visibleCell.setEditing(editing, animated: animated)
 }
 }

First, notice the call to super.setEditing. The superclass implementation of setEdit
ing updates the class’s editing property, which we’ll make use of in a moment, and
also updates the edit button that you added a moment ago to show either Edit or
Done. Once it’s done with that, it asks the collection view to provide an array of all
visible FileCollectionViewCells. Each of these cells then has its setEditing
method called.

Finally, we need to ensure that any cells that aren’t visible also have their deletion but‐
ton’s opacity at the correct level. Remember, collection view cells that aren’t visible
don’t actually exist; they’re waiting in limbo to be added to the collection view on
demand. This means that, in our cellForItemAtIndexPath method, we’ll need to
ensure that the deletion button’s opacity is set correctly.

This is why the FileCollectionViewCell’s setEditing method
allows you to control whether the change is animated or not. Cells
that are being prepared in cellForItemAtIndexPath should not
animate the change, because it would look a little odd for them to
be fading in as you scroll. In addition, we’ll give all cells a closure to
call when the deletion button is tapped.

Add the following code to collectionView(_, cellForRowAt: indexPath) to add
the deletion handler for cells. When the cell’s delete button is tapped, we’ll call the
deleteDocumentAtURL method, which we’ll add in a moment:

 override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 // Get our cell
 let cell = collectionView
 .dequeueReusableCell(withReuseIdentifier: "FileCell",
 for: indexPath) as! FileCollectionViewCell

244 | Chapter 8: Working with Files in iCloud

 // Get this object from the list of known files
 let url = availableFiles[indexPath.row]

 // Get the display name
 var fileName : AnyObject?
 do {
 try (url as NSURL).getResourceValue(&fileName,
 forKey: URLResourceKey.nameKey)

 if let fileName = fileName as? String {
 cell.fileNameLabel!.text = fileName
 }
 } catch {
 cell.fileNameLabel!.text = "Loading..."
 }

> cell.setEditing(self.isEditing, animated: false)
> cell.deletionHander = {
> self.deleteDocumentAtURL(url)
> }

 // If this cell is openable, make it fully visible, and
 // make the cell able to be touched
 if itemIsOpenable(url) {
 cell.alpha = 1.0
 cell.isUserInteractionEnabled = true
 } else {
 // But if it's not, make it semitransparent, and
 // make the cell not respond to input
 cell.alpha = 0.5
 cell.isUserInteractionEnabled = false
 }

 return cell

 }

Finally, add the deleteDocumentAtURL method, which actually deletes it:

 func deleteDocumentAtURL(_ url: URL) {

 let fileCoordinator = NSFileCoordinator(filePresenter: nil)
 fileCoordinator.coordinate(writingItemAt: url,
 options: .forDeleting, error: nil) { (urlForModifying) -> Void in
 do {
 try FileManager.default
 .removeItem(at: urlForModifying)

 // Remove the URL from the list

 self.availableFiles = self.availableFiles.filter {
 $0 != url

Deleting Documents | 245

 }

 // Update the collection
 self.collectionView?.reloadData()

 } catch let error as NSError {
 let alert = UIAlertController(title: "Error deleting",
 message: error.localizedDescription,
 preferredStyle: UIAlertControllerStyle.alert)

 alert.addAction(UIAlertAction(title: "Done",
 style: .default, handler: nil))

 self.present(alert,
 animated: true,
 completion: nil)
 }
 }
 }

The deleteDocumentAtURL method, as its name suggests, removes a document from
the system. However, you might notice that the line that actually does the deleting—
that is, the call to FileManager’s removeItem(at:url) method—is wrapped in a lot of
other stuff. All of that is necessary, because the app is being extremely cautious about
deleting the file at a safe time to do it. It does this through the use of an NSFileCoordi
nator.

The NSFileCoordinator class allows you to ensure that file-related tasks, such as
opening, saving, deleting, and renaming files, are done in a way that won’t interfere
with any other task on the system trying to work with the same file. For example, if
you happen to attempt to open a file at the same time it’s deleted, you don’t want both
actions to happen at the same time.

The coordinate(writingItemAt:url) method lets you tell the system ahead of time
what you intend to do with the file. In this case, we’re passing the .ForDeleting flag,
indicating that we’d like to remove the file entirely. We also pass in a closure, which is
run after the system has ensured that it’s safe to make changes. You’ll notice that the
closure itself receives a parameter, called urlForModifying. This is an URL that the file
coordinator provides to you to make changes to. This may or may not be the same as
the original URL that you passed in; it’s possible that, in some cases, the file coordina‐
tor might provide you with a temporary URL for you to use instead.

Inside the closure, we remove the file by calling removeItem(at:url), passing in the
URL that the file coordinator has given us. We also remove the original URL—not the
one that the file coordinator has given us—from the list of available files. We do this
by using the filter method on the array, which filters the array to only include items

246 | Chapter 8: Working with Files in iCloud

that are not url. We use the original URL because if urlForModifying is different
from the original url variable, we may not actually remove the entry from the list.

Lastly, we update the list of files by calling the collection view’s reloadData method.

Run the app, and tap the Edit button. The delete buttons will appear, and you can tap
them to delete them.

Renaming Documents
Finally, we’ll add the ability to rename documents when you tap their labels. The code
for this will work in a similar way to deleting them: we’ll give each cell a closure to
run when the user taps the label; and in this closure, we’ll present a box that lets the
user enter a new name.

To detect taps on the label, we need to create a gesture recognizer and connect it. We’ll
be using a very simple “tap” gesture recognizer in this chapter, but we’ll be using a
more complex one later, in “Deleting Attachments” on page 310:

1. Open Main.storyboard, and locate the label in the collection view cell.
2. Select the label, and go to the Attributes Inspector. Scroll down to the View sec‐

tion in the inspector, and select the User Interaction Enabled checkbox. This will
allow the label to respond to taps.

Let’s now add the ability to detect when the user has tapped the label:

1. Add the following code to the collectionView(_, cellForItemAt: indexPath)
method, after the deletion code:
 override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 // Get our cell
 let cell = collectionView
 .dequeueReusableCell(withReuseIdentifier: "FileCell",
 for: indexPath) as! FileCollectionViewCell

 // Get this object from the list of known files
 let url = availableFiles[indexPath.row]

 // Get the display name
 var fileName : AnyObject?
 do {
 try (url as NSURL).getResourceValue(&fileName,
 forKey: URLResourceKey.nameKey)

 if let fileName = fileName as? String {
 cell.fileNameLabel!.text = fileName

Renaming Documents | 247

 }
 } catch {
 cell.fileNameLabel!.text = "Loading..."
 }

 cell.setEditing(self.isEditing, animated: false)
 cell.deletionHander = {
 self.deleteDocumentAtURL(url)
 }

> let labelTapRecognizer = UITapGestureRecognizer(target:cell,
> action: #selector(FileCollectionViewCell.renameTapped))))
>
> cell.fileNameLabel?.gestureRecognizers = [labelTapRecognizer]
>
> cell.renameHander = {
> self.renameDocumentAtURL(url)
> }

 // If this cell is openable, make it fully visible, and
 // make the cell able to be touched
 if itemIsOpenable(url) {
 cell.alpha = 1.0
 cell.isUserInteractionEnabled = true
 } else {
 // But if it's not, make it semitransparent, and
 // make the cell not respond to input
 cell.alpha = 0.5
 cell.isUserInteractionEnabled = false
 }

 return cell

 }

This code does several things:

• First, it removes any existing gesture recognizers from the label. This is neces‐
sary because cells get reused; if we don’t remove existing recognizers, we’ll end
up with labels that attempt to rename multiple files at once when they’re
tapped.

• Next, it creates a new UITapGestureRecognizer and makes it call the cell’s
renameTapped method. It then adds it to the label. Once this is done, tapping
the label will make the cell call the rename handler block, which is added next.
The rename block simply calls the renameDocumentAtURL method, which you’ll
add in a second.

2. Add the following method to DocumentListViewController:

248 | Chapter 8: Working with Files in iCloud

 func renameDocumentAtURL(_ url: URL) {

 // Create an alert box
 let renameBox = UIAlertController(title: "Rename Document",
 message: nil, preferredStyle: .alert)

 // Add a text field to it that contains its current name, sans ".note"
 renameBox.addTextField(configurationHandler: { (textField) -> Void in
 let filename = url.lastPathComponent
 .replacingOccurrences(of: ".note", with: "")
 textField.text = filename
 })

 // Add the cancel button, which does nothing
 renameBox.addAction(UIAlertAction(title: "Cancel",
 style: .cancel, handler: nil))

 // Add the rename button, which actually does the renaming
 renameBox.addAction(UIAlertAction(title: "Rename",
 style: .default) { (action) in

 // Attempt to construct a destination URL from
 // the name the user provided
 if let newName = renameBox.textFields?.first?.text
 {
 let destinationURL = url.deletingLastPathComponent()
 .appendingPathComponent(newName + ".note")

 let fileCoordinator =
 NSFileCoordinator(filePresenter: nil)

 // Indicate that we intend to do writing
 fileCoordinator.coordinate(writingItemAt: url,
 options: [],
 writingItemAt: destinationURL,
 options: [],
 error: nil,
 byAccessor: { (origin, destination) -> Void in

 do {
 // Perform the actual move
 try FileManager.default
 .moveItem(at: origin,
 to: destination)

 // Remove the original URL from the file
 // list by filtering it out
 self.availableFiles =
 self.availableFiles.filter{$0 != url}

Renaming Documents | 249

 // Add the new URL to the file list
 self.availableFiles.append(destination)

 // Refresh our collection of files
 self.collectionView?.reloadData()
 } catch let error as NSError {
 NSLog("Failed to move \(origin) to " +
 "\(destination): \(error)")
 }

 })

 }
 })

 // Finally, present the box.

 self.present(renameBox, animated: true, completion: nil)
 }

This method does several things:

• First, it creates a UIAlertController, which will be the interface through
which the user actually renames the file.

• It adds a text field to it, using the addTextField method. This method takes a
closure, which is called to fill the text field with content; in this case, it will
contain the file’s current name.

• It then adds two buttons: a cancel button, which does nothing except close the
box, and a rename button.
The rename button, when tapped, gets the text that was entered and constructs
a new URL for the document, representing where it will be moved to.

In Unix-based operating systems, such as iOS, “renaming” a
file really means moving it to a new location. If you move a
file called apples.txt to a new location called oranges.txt,
you’ve renamed that file.

Once it has the new URL, it creates an NSFileCoordinator and asks it to coor‐
dinate a writing operation that involves both the file’s original location and the
file’s new location.
When the file coordinator is ready to perform the write, the FileManager is
then used to move the file from its original location to the new location. The
file’s original URL is removed from the availableFiles list, and the new loca‐
tion is then added.

250 | Chapter 8: Working with Files in iCloud

Finally, the collection view is asked to refresh its contents, and the user can
view the result of the rename.

3. Now run the app and rename some files!

Conclusion
We have done a lot in this chapter, and we’ve added a whole lot of code! We’ve done
the following:

• Implemented the iOS Document version of the document class, using UIDocument,
as a counterpart to the macOS version of our document class, which uses NSDocu
ment

• Added support for listing whatever note documents are stored in iCloud
• Added support for creating new documents and deleting or renaming existing

documents

So we’ve covered lot of the ins and outs of working with iCloud on iOS for docu‐
ments. In the next chapter, we’ll add a new view to display the text content of notes
and allow people to actually edit their notes, as well as save them.

Conclusion | 251

CHAPTER 9

Working with Documents on iOS

In this chapter, we’ll start making the iOS app feel more like an actual app: we’ll add
the ability to open notes and view their contents, as well as the ability to edit and save
changes to notes.

Along the way, we’ll create and connect up more new view controllers, create another
new UI, and set up a segue to move between the list of notes and the note contents.
We’ll also use UITextViewDelegate to update the note document when the note text
changes.

Adding a View to Display Notes
At the moment, the app has got the basics of note storage, but we don’t have any abil‐
ity to actually view or edit our notes on iOS. To add this, we’ll create a view controller
that lets you see and modify the content of note documents:

1. Open the File menu and choose New→File.
2. Ensure “Also create XIB file” is unchecked; we’ll be using the storyboard we

already have set up.
3. Select Cocoa Touch Class and click Next.
4. Name the new class DocumentViewController, and make it a subclass of UIView

Controller. This will be responsible for the displaying the note, and eventually
letting us edit the contents of notes.

5. Open Main.storyboard.
6. Go to the Object library and drag a new view controller into the canvas.

253

7. Select the new view controller, open the Identity Inspector, and set its class to
DocumentViewController (see Figure 9-1). This connects the view controller in
the storyboard to the view controller class that we just created.

Figure 9-1. Setting the new view controller’s class to DocumentViewController

8. Hold down the Control key and drag from the document list view controller to
the new document view controller. A list of potential types of segues you can cre‐
ate will appear; click Show (see Figure 9-2).

A segue is a transition between one view (and view controller)
to another. Segues are used only with storyboards, not nibs.
Segues are triggered, typically, by user interaction, and end
when the new view controller is displayed. You construct the
segue in the interface builder, and then it’s either triggered
automatically or manually through code using the performSe
gue(withIdentifier:sender:) method. We’ll be using this
later in the chapter.

Figure 9-2. Creating the segue

254 | Chapter 9: Working with Documents on iOS

9. Select the “Show segue to ‘Document View Controller’” item in the outline, and
go to the Attributes Inspector.

10. Set the Identifier of the segue to ShowDocument (Figure 9-3).

Figure 9-3. Configuring the segue

Next, we’ll set up the user interface for the document view controller:

1. Add a UITextView to the document view controller. We’ll use this to display the
text contents of a note document.

2. Resize it to fill the entire screen, and add the following constraints to it:

• Leading spacing to container’s leading margin = 0
• Trailing spacing to container’s trailing margin = 0
• Bottom spacing to bottom layout guide = 0
• Top spacing to top layout guide = 0

This will make the text view that we just added fill the majority of the screen.

3. Go to the Attributes Inspector, and change its mode from Plain to Attributed
(Figure 9-4). We’ll be displaying attributed text—text that has formatting
attributes—so we need to make sure that the text view we’re using knows how to
display that.

Adding a View to Display Notes | 255

Figure 9-4. Setting the mode of the text view

4. Open DocumentViewController.swift.
5. Add the following code to implement the textView, document, and documentURL

properties:
 @IBOutlet weak var textView : UITextView!

 fileprivate var document : Document?

 // The location of the document we're showing
 var documentURL:URL? {
 // When it's set, create a new document object for us to open
 didSet {
 if let url = documentURL {
 self.document = Document(fileURL:url)
 }
 }
 }

The textView property will be used to connect this code to the text view that
shows the document’s text, while the document property holds the Document
object that’s currently open. The documentURL property stores the location of the
document that the view controller is currently displaying; importantly, when it’s
set, it creates and prepares the document property with a Document object to use.

6. Open Main.storyboard and open DocumentViewController.swift in the Assistant.
Connect the text view to the textView outlet.

For a quick reminder on how to connect views to outlets, see
“Connecting the Code” on page 23.

7. Implement viewWillAppear to open the document and load information from it:
 override func viewWillAppear(_ animated: Bool) {
 // Ensure that we actually have a document
 guard let document = self.document else {
 NSLog("No document to display!")

256 | Chapter 9: Working with Documents on iOS

 _ = self.navigationController?.popViewController(animated: true)
 return
 }

 // If this document is not already open, open it
 if document.documentState.contains(UIDocumentState.closed) {
 document.open { (success) -> Void in
 if success == true {
 self.textView?.attributedText = document.text

 }
 else
 {
 // We can't open it! Show an alert!
 let alertTitle = "Error"
 let alertMessage = "Failed to open document"
 let alert = UIAlertController(title: alertTitle,
 message: alertMessage,
 preferredStyle: UIAlertControllerStyle.alert)

 // Add a button that returns to the previous screen
 alert.addAction(UIAlertAction(title: "Close",
 style: .default, handler: { (action) -> Void in
 _ = self.navigationController?
 .popViewController(animated: true)
 }))

 // Show the alert
 self.present(alert,
 animated: true,
 completion: nil)
 }

 // checking if there isn't already a location file
 if self.document?.locationWrapper == nil {
 // determining our location permission status
 let status = CLLocationManager.authorizationStatus()

 if status != .denied && status != .restricted {
 self.locationManager = CLLocationManager()
 self.locationManager?.delegate = self

 if status == .notDetermined {
 self.locationManager?
 .requestWhenInUseAuthorization()
 else {
 self.locationManager?.desiredAccuracy
 = kCLLocationAccuracyBest
 self.locationManager?.startUpdatingLocation()
 }

Adding a View to Display Notes | 257

 }
 }
 self.updateBarItems()
 }
 }

 }

The code for opening documents is verbose but pretty straightforward. We first
check to ensure that the view controller actually has a Document to open; if it
doesn’t, it tells the navigation controller to return to the document list.
Next, it asks if the document is currently closed. If it is, we can open it by calling
open(completionHandler:). This attempts to open the document and takes a
closure that gets informed whether it was successfully opened or not. If opening
succeeds, the Document’s properties now contain the data that we need, like its
text; as a result, we can grab the note’s text and display it in the textView.
If opening the document fails, we need to tell the user about it. To handle this, we
create and display a UIAlertController.

Next, we’ll make tapping a file in the document list view controller open that docu‐
ment:

1. Open DocumentListViewController.swift.
2. Implement the didSelectItemAt: to trigger the segue to the document:

 override func collectionView(_ collectionView: UICollectionView,
 didSelectItemAt indexPath: IndexPath) {

 // Did we select a cell that has an item that is openable?
 let selectedItem = availableFiles[indexPath.row]

 if itemIsOpenable(selectedItem) {
 self.performSegue(withIdentifier: "ShowDocument",
 sender: selectedItem)
 }

 }

The didSelectItemAt: method is called when the user taps any item in the col‐
lection view, and receives as parameters the collection view that contained the
item, plus an IndexPath that represents the position of the item in question.
IndexPath objects are really just containers for two numbers: the section and the
row. Collection views can be broken up into multiple sections, and each section
can contain multiple rows.
To access the correct document, we need to figure out the URL representing the
item the user just selected. Because we only have a single section in this collection

258 | Chapter 9: Working with Documents on iOS

view, we can just use the row property to get the URL from the availableFiles
list. If that URL is openable (which we test by using the itemIsOpenable
method), we ask the system to perform the ShowDocument segue, passing in the
URL.

We can also access the row property in IndexPath using the item
property. They both represent the same value.

When we ask the system to perform a segue, the view controller at the other end of
the segue will be created and displayed. Before it’s shown, however, we’re given a
chance to prepare it with the right information that it will need. In this case, the Docu
mentViewController at the other end of the segue will need to receive the correct URL
so that it can open the document:

1. Open DocumentListViewController.swift.
2. Implement prepare(for: sender:) to prepare the next view controller:

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 // If the segue is "ShowDocument" and the destination view controller
 // is a DocumentViewController...
 if segue.identifier == "ShowDocument",
 let documentVC = segue.destination
 as? DocumentViewController
 {

 // If it's a URL we can open...
 if let url = sender as? URL {
 // Provide the url to the view controller
 documentVC.documentURL = url
 } else {
 // it's something else, oh no!
 fatalError("ShowDocument segue was called with an " +
 "invalid sender of type \(type(of: sender))")
 }

 }
 }

The prepare(for:sender:) method is called whenever the view controller is
about to show another view controller, via a segue. It receives as its parameters
the segue itself, represented by a UIStoryboardSegue object, as well as whatever
object was responsible for triggering the segue. In the case of the ShowDocument

Adding a View to Display Notes | 259

segue, the sender is an URL, because we passed that in as the sender parameter to
the performSegue(withIdentifier) method in didSelectItemAt.
To get the view controller that we’re about to transition to, we ask the segue for its
destinationViewController property and ask Swift to try to give it to us as a
DocumentViewController. Next, we double-check the type of the sender and
make sure that it’s an URL. Finally, we give the view controller the URL.

Now’s a great time to build and run the app. You should now be able to tap document
thumbnails and segue to the editing screen, and get a “back” button to return to the
document list, which is provided automatically by the navigation controller. Edits can
be made, though they can’t be saved yet. But, still! There’s some good progress hap‐
pening here.

Finally, we also want to open documents that we’ve just created. We’ll do this by creat‐
ing a method called openDocumentWithPath, which will receive a String that con‐
tains a path. It will prepare an NSURL, and then call performSegueWithIdentifier,
passing the URL as the sender.

We’ll be using this method from multiple different places later in
this book, so we’re putting it in a method.

1. Implement the openDocumentWithPath method, which takes a path and attempts
to open it:
 func openDocumentWithPath(_ path : String) {

 // Build a file URL from this path
 let url = URL(fileURLWithPath: path)

 // Open this document
 self.performSegue(withIdentifier: "ShowDocument", sender: url)

 }

Next, when a document is created, we’ll want the app to immediately open it for
editing.

2. Add the calls to openDocumentWithPath to the createDocument method:
 func createDocument() {

 // Create a unique name for this new document by adding the date
 let formatter = DocumentListViewController.documentNameDateFormatter
let documentDate = formatter.string(from: Date())

260 | Chapter 9: Working with Documents on iOS

 let documentName = "Document \(documentDate).note"

 // Work out where we're going to store it, temporarily
 let documentDestinationURL = DocumentListViewController
 .localDocumentsDirectoryURL
 .appendingPathComponent(documentName)

 // Create the document and try to save it locally
 let newDocument = Document(fileURL:documentDestinationURL)
 newDocument.save(to: documentDestinationURL,
 for: .forCreating) { (success) -> Void in

 if (DocumentListViewController.iCloudAvailable) {

 // If we have the ability to use iCloud...
 // If we successfully created it, attempt to move it to iCloud
 if success == true, let ubiquitousDestinationURL =
 DocumentListViewController.ubiquitousDocumentsDirectoryURL?
 .appendingPathComponent(documentName) {

 // Perform the move to iCloud in the background
 OperationQueue().addOperation { () -> Void in
 do {
 try FileManager.default
 .setUbiquitous(true,
 itemAt: documentDestinationURL,
 destinationURL: ubiquitousDestinationURL)

 OperationQueue.main
 .addOperation { () -> Void in

 self.availableFiles
 .append(ubiquitousDestinationURL)

> // Open the document
> self.openDocumentWithPath(
> ubiquitousDestinationURL.path)

 self.collectionView?.reloadData()
 }
 } catch let error as NSError {
 NSLog("Error storing document in iCloud! " +
 "\(error.localizedDescription)")
 }
 }
 }
 } else {
 // We can't save it to iCloud, so it stays in local storage

 self.availableFiles.append(documentDestinationURL)

Adding a View to Display Notes | 261

 self.collectionView?.reloadData()

> // Just open it locally
> self.openDocumentWithPath(documentDestinationURL.path)
 }
 }
 }

We’re now able to open documents, but not much else. Next, we’ll add the ability to
actually edit the document.

Editing and Saving Documents
The last critical feature of this app is to let the user make changes to the document.
When you’re using the UIDocument system, your documents are automatically saved
when the user leaves your application or when you close the document. You don’t
need to manually save changes—the system will automatically take care of it for you.
To signal to iOS that the user is done with the document, we’ll close the document
when the user leaves the DocumentViewController.

This means that, if the document was modified, the system will call contentsForType
and ask the Document class to provide a FileWrapper containing the document’s con‐
tents, which will be saved to disk.

However, the system has to know that changes were applied in the first place, so, in
order to tell the document that changes were made, we need to use the updateChange
Count method when the user makes a change to the text field. To find out that bit of
information, we need to ask the text view to let the view controller know when a
change is made:

1. Open DocumentViewController.swift.
2. Make DocumentViewController conform to UITextViewDelegate by adding

UITextViewDelegate to the class’s definition:
 class DocumentViewController: UIViewController, UITextViewDelegate {

When an object conforms to the UITextViewDelegate protocol, it’s able to act as
the delegate for a text view. This means that it can be notified about events that
happen to the text view, such as the user making changes to the content of the
text view.

3. Implement the textViewDidChange method to store text in the document, and
update the document’s change count:
 func textViewDidChange(_ textView: UITextView) {

 document?.text = textView.attributedText

262 | Chapter 9: Working with Documents on iOS

 document?.updateChangeCount(.done)
 }

Even though it’s called the change “count,” you don’t really work
with a number of changes. Rather, the change count is internal to
the document system; your app doesn’t need to know what the
change count is; you just need to update it when the user modifies
the content of the document.

With this method in place, the view controller is able to respond to a text view chang‐
ing its content. We use this opportunity to update the Document’s text property, and
then call updateChangeCount to signal to the document that the user has made a
change to its content. This indicates to the UIDocument system that the document has
changes that need to be written to disk; when the system decides that it’s a good time
or when the document is closed, the changes will be saved.

Now that the document’s contents are updated, we need to tell the document system
to close the document when we leave the view controller:

1. Implement viewWillDisappear to close the document:
 override func viewWillDisappear(_ animated: Bool) {

 self.document?.close(completionHandler: nil)
 }

2. Open Main.storyboard.
3. Hold down the Control key, and drag from the text view to the document view

controller (Figure 9-5). Select “delegate” from the menu that appears.

Remember to drag to the view controller itself, not the view
that the view controller is managing. If you drag to the little
yellow circle icon above the view controller’s interface, you’ll
always be connecting to the right thing.

Figure 9-5. A drag in progress

Editing and Saving Documents | 263

4. Launch the app, open a document, make changes, close it, and reopen it—the
changes are still there!

Conclusion
In this chapter, we’ve added the ability to open notes and view their contents, as well
as the ability to actually edit and save the changes to notes. We did this by creating
some new view controllers and their UI in storyboards and connecting them with
segues.

In the next chapter, we’ll add support for file attachments and update the interface to
show a list of attachments.

264 | Chapter 9: Working with Documents on iOS

CHAPTER 10

Working with Files and File Types

At the moment, the iOS app can work with the text content of note documents, but
doesn’t really know anything about attachments that might have been added through
the macOS app.

In this chapter, we’ll add support for working with attachments to the iOS app, as well
as make its handling of note documents more robust. We’ll do this by adding—you
guessed it—more user interface to:

• Display any attachments
• Handle conflict resolution, for when a file is synced from multiple devices
• Add Quick Look support, to display a thumbnail preview of attachments

Setting Up the Interface for Attachments
First, we’ll update the interface for the document view controller to support showing
the list of attachments. This will involve reworking everything, as well as some rea‐
sonably complex constraints, so it’s easier to start from scratch:

1. Open Main.storyboard.
2. Delete the text view from the document view controller’s interface. We’ll be

reconstructing the interface, with room for the attachments to be displayed, so it’s
easier to remove everything than it is to rearrange.

3. It’ll be easier to do this without the top bar in the way, so select the document
view controller, and in the Simulated Metrics section of the Inspector, change
Top Bar from Inferred to None (Figure 10-1).

265

Figure 10-1. Setting the mode of the top bar

4. Drag a UIScrollView into the interface; this will enable us to display content
larger than the view it’s currently in (see Figure 10-2).
We want the scroll view to fill the entire screen. By default, constraints are made
relative to the margins, and to the layout guides at the top and the bottom. How‐
ever, because the contents of the entire screen need to scroll, we want to take up
all the space. This means that we need to add constraints differently.

5. Add constraints to the scroll view by selecting the scroll view and clicking the Pin
button at the bottom right of the window. Turn off “Constrain to margins” and
set all four of the numbers that appear to 0. Change Update Frames to Items of
New Constraints, and click Add 4 Constraints. The scroll view will now fill the
screen.
We’ll now add controls inside it. In particular, we’ll be adding a stack view, which
will contain the text editor and the collection view that will show the list of
attachments. A stack view handles most of the work of laying out views in a hori‐
zontal or vertical stack. If all you care about is “these views should be next to each
other,” and you don’t want to have to deal with more complex layouts, then stack
views are exactly what you want.

While UIStackView is a single class, it appears in the Object
library twice: once for “vertical stack view,” and once for “hori‐
zontal stack view.”

266 | Chapter 10: Working with Files and File Types

Figure 10-2. The empty document view controller interface

6. Drag a vertical UIStackView into the scroll view.
7. With the stack view selected, click the Pin button, and set the top, leading, trail‐

ing, and bottom space to 0.
8. Next, resize the stack view so that it’s the same width as the scroll view.
9. Hold down the Control key and drag from the stack view to the scroll view. A list

of possible constraints will appear; choose Equal Widths.

Setting Up the Interface for Attachments | 267

It’s important to make it the same width as the scroll view. This
ensures that the scroll view doesn’t collapse it to 0.

10. Inside the Attribute Inspector, ensure that the stack view’s Alignment and Distri‐
bution are both set to Fill. This means that the stack view will make the size of its
child views sufficient to fill up the stack view’s boundaries.

11. Drag a UICollectionView into the stack view.
12. Hold down the Control key and drag from the collection view to the collection

view itself. Choose Height from the menu that appears.
13. Select the collection view’s cell and resize the cell size to 88 by 88.
14. Set the collection view’s background color to 90% white (very slightly gray) in the

Attributes Inspector.
Next, we’ll add (back) the text view, just like we did in the previous chapter.

15. Add a UITextView to the stack view.
It needs no constraints, since the stack view will size and position it. Setting the
height to 88 for the collection view, and adding no other constraints, will make
the stack view do two things: position the collection view at the very top and
make it fill the width of the screen, and make other views expand their height to
fill the remaining space.

16. Connect the document view controller’s textView outlet to this text view.

The textView property has the type UITextView, which means
that the connection can only be made to a text view. The inter‐
face builder won’t let you connect to any other type of view.

17. Make the text view use the document view controller as its delegate, by Control-
dragging from the text view onto the document view controller in the outline.

18. Select the text view, and go to the Attributes Inspector. Set the text view to use
attributed text and then turn Scrolling Enabled off—it’s not necessary, because it’s
already contained inside a scroll view (see Figure 10-3).

268 | Chapter 10: Working with Files and File Types

Figure 10-3. Disabling scrolling on the text view

19. Run the app; the text now appears underneath the collection view.

Listing Attachments
Now that the interface is set up, we’ll add support for storing attachments in the iOS
Document class:

1. Open Document.swift.
2. Add the following code to add the attachmentsDirectoryWrapper property,

which returns the FileWrapper representing the folder where attachments are
stored. If it doesn’t exist, it creates it:
 fileprivate var attachmentsDirectoryWrapper : FileWrapper? {

 // Ensure that we can actually work with this document
 guard let fileWrappers = self.documentFileWrapper.fileWrappers else {
 NSLog("Attempting to access document's contents, but none found!")
 return nil
 }

 // Try to get the attachments directory
 var attachmentsDirectoryWrapper =
 fileWrappers[NoteDocumentFileNames.AttachmentsDirectory.rawValue]

 // If it doesn't exist...
 if attachmentsDirectoryWrapper == nil {

 // Create it
 attachmentsDirectoryWrapper =
 FileWrapper(directoryWithFileWrappers: [:])
 attachmentsDirectoryWrapper?.preferredFilename =

Listing Attachments | 269

 NoteDocumentFileNames.AttachmentsDirectory.rawValue

 // And then add it
 self.documentFileWrapper
 .addFileWrapper(attachmentsDirectoryWrapper!)

 // We made a change to the file, so record that
 self.updateChangeCount(UIDocumentChangeKind.done)
 }

 // Either way, return it
 return attachmentsDirectoryWrapper
 }

The attachmentsDirectoryWrapper computed property first checks to make
sure the Document’s file wrapper actually has a usable array of file wrappers to
access. Generally, this is always true, but if it’s not, we can’t continue.
Next, we attempt to get the file wrapper for the Attachments directory. If that
doesn’t exist, then we first create it, and add it to the document’s file wrapper.
Either way, by the end of the method, we’ve got an Attachments directory to use,
which we then return.

3. Add the attachedFiles property, which returns an array of FileWrappers, each
of which represents an attached file:
 dynamic var attachedFiles : [FileWrapper]? {

 // Get the contents of the attachments directory
 guard let attachmentsFileWrappers =
 attachmentsDirectoryWrapper?.fileWrappers else {
 NSLog("Can't access the attachments directory!")
 return nil
 }

 // attachmentsFileWrappers is a dictionary mapping filenames
 // to FileWrapper objects; we only care about the FileWrappers,
 // so return that as an array
 return Array(attachmentsFileWrappers.values)

 }

To return the list of all attachments, we first ensure that we have an attachments
directory to use. Next, we need to do a little bit of conversion. The fileWrappers
property on FileWrapper objects returns a dictionary, in which strings are map‐
ped to other FileWrappers. If we don’t care about the filenames, and only care
about the file wrappers, we need to ask the dictionary for its values value, and
then ask Swift to convert it to an Array, which we then return.

270 | Chapter 10: Working with Files and File Types

4. Add the addAttachmentAtURL method, which adds an attachment to the docu‐
ment by copying it in:
 @discardableResult func addAttachmentAtURL(_ url:URL) throws -> FileWrapper
{

 // Ensure that we have a place to put attachments
 guard attachmentsDirectoryWrapper != nil else {
 throw err(.cannotAccessAttachments)
 }

 // Create the new attachment with this file, or throw an error
 let newAttachment = try FileWrapper(url: url,
 options: FileWrapper.ReadingOptions.immediate)

 // Add it to the attachments directory
 attachmentsDirectoryWrapper?.addFileWrapper(newAttachment)

 // Mark ourselves as needing to save
 self.updateChangeCount(UIDocumentChangeKind.done)

 return newAttachment
 }

Adding an attachment to the Document class works almost identically to the Mac
version of the same method (seen in “Storing and Managing Attachments” on
page 153). We first check to ensure that we have a file wrapper that we can place
our attachments in, and then attempt to create a new file wrapper for the attach‐
ment. It’s then added to the Attachments directory, and we record the fact that the
document changed.

Determining Types of Attachments
To show attachments in the list, we need a way to visually represent them. This means
that we need to show some kind of thumbnail image. We’ll start by adding the default
File image, which will be used as the fallback for when the app doesn’t have special
support for a type of file:

1. Open the Assets.xcassets file.
2. Drag the File.pdf image from the resources we provided on our website into the

list of images to add it to the collection.

Next, we’ll implement a way for the document to determine the type of the attach‐
ment, and a method to generate a thumbnail for the attachment. We’ll do this by
adding methods to the FileWrapper class that allow it to determine its file type and to
return a UIImage that’s appropriate for the type:

Listing Attachments | 271

1. Open Document.swift.
2. Import the MobileCoreServices framework by adding this to the top of the file:

 import MobileCoreServices

MobileCoreServices framework gives us access to uniform
type identifiers—unique identifiers for each type of data, such
as PDF, text, or JPEG. By using UTIs we can determine what
type of data is inside an attachment without having to guess
based on the attachment’s name.

3. Add a new extension to FileWrapper by adding the following code to Docu‐
ment.swift. We’ll be putting our extra methods for FileWrapper into it:
 extension FileWrapper {

 }

4. Next, add the fileExtension property and the conformsToType method to this
extension, which determines the file type:
 var fileExtension : String? {
 return self.preferredFilename?
 .components(separatedBy: ".").last
 }

 func conformsToType(_ type: CFString) -> Bool {

 // Get the extension of this file
 guard let fileExtension = fileExtension else {
 // If we can't get a file extension, assume that it doesn't conform
 return false
 }

 // Get the file type of the attachment based on its extension
 guard let fileType = UTTypeCreatePreferredIdentifierForTag(
 kUTTagClassFilenameExtension, fileExtension as CFString, nil)?
 .takeRetainedValue() else {
 // If we can't figure out the file type from the extension,
 // it also doesn't conform
 return false
 }

 // Ask the system if this file type conforms to the provided type
 return UTTypeConformsTo(fileType, type)
 }

272 | Chapter 10: Working with Files and File Types

The fileExtension property simply splits the file extension’s preferredFile
name wherever a . appears, and takes the last item from that array. This has the
effect of getting the file extension.
The conformsToType method takes a UTI, stored in a CFString, and asks the
type system to give us the UTI that applies to our file extension (using the fileEx
tension property we just added). If that UTI conforms to the UTI that was
passed in as a parameter, then we return true.

The takeRetainedValue method is necessary because the UTType
collection of methods is written in C and isn’t designed with Swift’s
memory management system. The takeRetainedValue method
signals to Swift that it’s responsible for disposing of the returned
value from UTTypeCreatePreferredIdentifierForTag when it’s all
done.

Finally, we’ll add the method thumbnailImage to the extension, which uses the infor‐
mation from conformsToType to figure out and return the image:

 func thumbnailImage() -> UIImage? {

 if self.conformsToType(kUTTypeImage) {
 // If it's an image, return it as a UIImage

 // Ensure that we can get the contents of the file
 guard let attachmentContent = self.regularFileContents else {
 return nil
 }

 // Attempt to convert the file's contents to text
 return UIImage(data: attachmentContent)
 }

 // We don't know what type it is, so return nil
 return nil
 }

The thumbnailImage property is one that we’ll be adding to over time, as we continue
to add support for additional types of attachments. At the moment, it simply checks
to see if the file wrapper is an image file; if it is, it returns a UIImage based on the
content of the file.

Listing Attachments | 273

This is an early example of how UTIs can be powerful. To identify
if the file wrapper is an image, we don’t need to manually check to
see if the file extension is .png, .jpg, .jpeg, and so on. We can simply
ask the system. In addition, if iOS adds support for some additional
image format, our code will automatically handle it.

Displaying Attachment Cells
Now that attachments are capable of providing an image, we’ll make the attachments
collection view show cells. We’ll show one cell for each attachment, plus an additional
“add new attachment” cell, which will add a new attachment when tapped.

First, we’ll add the image for this “add attachment” cell, and then we’ll connect up the
collection view to the document view controller:

1. Open the Assets.xcassets file.
2. Add the AddAttachment.pdf image to the list of images. Next, we’ll define the

class that powers the collection view cells that represent each attachment.
3. In DocumentViewController.swift, add AttachmentCell. It’s a subclass of UICol

lectionViewCell that has an outlet for an image view and for a label:
 class AttachmentCell : UICollectionViewCell {

 @IBOutlet weak var imageView : UIImageView?

 @IBOutlet weak var extensionLabel : UILabel?

 }

Manually Adding Attachments
Because the iOS app doesn’t have a way to add attachments yet, if you’re using the iOS
simulator, the easiest way to test the feature we’re about to build is to manually add
some attachments yourself. This also gives you a peek into how your app is laid out in
an iOS system. You can do this by opening the document package in the iCloud con‐
tainer and adding attachments:

1. Launch the app, and note the path that the app logs when it starts up. It should
begin with something similar to file:///Users/.

2. Copy this URL excluding the file:// at the start, and open the Terminal applica‐
tion. You’ll find it in the Applications→Utilities folder on your Mac’s hard drive.

3. Type open, type a " (double quotes), and then paste the URL. Type another " and
press Enter. The container’s folder will open in the Finder.

274 | Chapter 10: Working with Files and File Types

4. Open the Documents folder, and you’ll find the list of documents that the iPhone
simulator can access. Right-click one of them, and click Show Package Contents.
(If you don’t have any documents, create one in the iPhone app, and it will appear
in the Finder window.)

5. Open the Attachments folder. If it doesn’t exist, create it (taking care to spell it
correctly and use the same capitalization).

6. Drag any file you like into this folder. For best results, use an image.
7. You’re done! The document now has an attachment.

If you like, you can also add attachments using the macOS application we completed
earlier in the book.

Next, let’s make the view controller use this new class to show the list of all attach‐
ments:

1. Open DocumentViewController.swift.
2. Add an outlet for a UICollectionView called attachmentsCollectionView:

 @IBOutlet weak var attachmentsCollectionView : UICollectionView!

3. Create an extension on DocumentViewController that conforms to UICollec
tionViewDataSource and UICollectionViewDelegate:
 extension DocumentViewController : UICollectionViewDataSource,
 UICollectionViewDelegate {

 }

Putting the UICollectionViewDelegate and UICollection
ViewDataSource methods in an extension allows us to keep
these methods separate from the methods and properties that
are specific to the DocumentViewController object. It’s purely
a stylistic choice.

4. Implement the numberOfItemsInSection method in this extension, which
returns the number of attachments the document has, plus an additional cell (for
the “add attachment” cell):
 func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {

 // No cells if the document is closed or if it doesn't exist
 if self.document!.documentState.contains(.closed) {
 return 0
 }

Listing Attachments | 275

 guard let attachments = self.document?.attachedFiles else {
 // No cells if we can't access the attached files list
 return 0
 }

 // Return as many cells as we have, plus the add cell
 return attachments.count + 1
 }

To figure out how many items need to exist in the attachments list, we need to
first check to see if the document is closed; if it is, then we can’t display any
attachments, or the “add” cell. (This will be the case when the view controller has
appeared on screen, but the document hasn’t finished opening yet.) We then ask
for the document’s attachedFiles array and return its length, plus one. This
additional cell will be the “add attachment” cell.

5. Implement the collectionView(cellForItemAt:) method:
 func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 // Work out how many cells we need to display
 let totalNumberOfCells =
 collectionView.numberOfItems(inSection: indexPath.section)

 // Figure out if we're being asked to configure the Add cell,
 // or any other cell. If we're the last cell, it's the Add cell.
 let isAddCell = indexPath.row == (totalNumberOfCells - 1)

 // The place to store the cell. By making it 'let', we're ensuring
 // that we never accidentally fail to give it a value - the
 // compiler will call us out.
 let cell : UICollectionViewCell

 // Create and return the 'Add' cell if we need to
 if isAddCell {
 cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: "AddAttachmentCell", for: indexPath)
 } else {

 // This is a regular attachment cell

 // Get the cell
 let attachmentCell = collectionView
 .dequeueReusableCell(withReuseIdentifier: "AttachmentCell",
 for: indexPath) as! AttachmentCell

 // Get a thumbnail image for the attachment
 let attachment = self.document?.attachedFiles?[indexPath.row]

276 | Chapter 10: Working with Files and File Types

 var image = attachment?.thumbnailImage()

 // Give it to the cell
 if image == nil {

 // We don't know what it is, so use a generic image
 image = UIImage(named: "File")

 // Also set the label
 attachmentCell.extensionLabel?.text =
 attachment?.fileExtension?.uppercased()

 } else {
 // We know what it is, so ensure that the label is empty
 attachmentCell.extensionLabel?.text = nil
 }
 attachmentCell.imageView?.image = image

 // Use this cell
 cell = attachmentCell
 }

 return cell

 }

The collectionView(cellForItemAt:) method is very similar to its counterpart
in the DocumentListViewController: the collection view will provide an index
path, and we use it to grab a thumbnail image for the attachment, which is dis‐
played in the cell. The only significant twist in this method is that if the index
path refers to the last item in the collection view, we don’t display an attachment
but instead display the AddAttachmentCell.

We’ll now create the interface for the attachment cells:

1. Open Main.storyboard and select the collection view.
2. Go to the Attributes Inspector, change the number of Items from 1 to 2, and set

the Scroll Direction to Horizontal (Figure 10-4).

Listing Attachments | 277

Figure 10-4. Updating the collection view’s settings

3. Select the first cell and set its Identifier to AttachmentCell.
4. Go to the Identity Inspector, and set the class of this cell to AttachmentCell.
5. Select the second cell and set its Identifier to AddAttachmentCell.
6. Drag a UIImageView into both of these cells.
7. Make them both fill their cells—that is, resize them to fill the cell, and add con‐

straints that pin the distances from all edges to 0.
8. Select the image view that you just added to the first cell—that is, Attachment

Cell—and go to the Attributes Inspector. Set its Mode to Aspect Fill. This will
make the image fill all of the image view.

9. Add a label to the first cell. Place it near the bottom of the cell, and resize it to fill
the width:

• Reduce the font size to 13.
• Set its text alignment to Center.
• Add constraints that pin the label to the bottom of the cell, and to the left and

right edges.

10. Next, select the image view in the second cell (AddAttachmentCell). Set its Mode
to Center. This will center the image in the middle of the view, without scaling.

11. Set the AddAttachmentCell’s image view’s Image property to AddAttachment, as
shown in Figure 10-5.

278 | Chapter 10: Working with Files and File Types

Figure 10-5. Setting the image view’s image

The collection view’s cells should now look like Figure 10-6.

Figure 10-6. The configured collection view

12. Open DocumentViewController.swift in the Assistant.
13. Connect the empty image view in AttachmentCell to the imageView outlet of

AttachmentCell.
14. Connect the label to the extensionLabel outlet.
15. Connect the attachmentsCollectionView outlet of the DocumentViewControl

ler class to the collection view.
16. Hold down the Control key and drag from the collection view to the view con‐

troller, and then choose “data source” from the menu that appears.
17. Repeat the process, this time choosing “delegate” from the menu.
18. Open DocumentViewController.swift, and add the following code to the code in

viewWillAppear:
 // If this document is not already open, open it
 if document.documentState.contains(UIDocumentState.closed) {
 document.open { (success) -> Void in
 if success == true {
 self.textView?.attributedText = document.text

> self.attachmentsCollectionView?.reloadData()

 }

Listing Attachments | 279

1 Dropbox doesn’t throw away the other versions; instead, it sticks Jon’s conflicted copy to the end of them so
that you can later decide what you want to do.

This code makes the view controller reload the contents of the collection view
once the document is opened. This ensures that the list of attachments actually
contains content.

19. Finally, add the following code to the end of viewWillAppear to make the attach‐
ments list refresh even if the document wasn’t just freshly opened:
 // And reload our list of attachments, in case it changed
 // while we were away
 self.attachmentsCollectionView?.reloadData()

20. Run the app. You’ll see the list of attachments, plus an add cell!

Dealing with Conflicts
This is now a good point to address conflict resolution in the files. When you’re mak‐
ing an application that uses iCloud—or, for that matter, any app that deals with files
that can be opened by multiple entities at the same time—you need to handle situa‐
tions in which a file is changed from two places at once.

Consider the following situation: you’re about to board your flight, and you’re editing
a note. Your flight is called, so you hit Save and close your laptop. As a result, your file
doesn’t get saved to iCloud yet. On board the flight, you pull out your phone, and
open your document. You make some changes and put your phone away. You later
get off the plane, and your phone syncs its changes to iCloud. You then get home and
open up your laptop, which finally has a chance to send your changes to iCloud. Sud‐
denly, there’s a problem: the file was changed from two places at once, which means
that the file is in conflict. Which version of the file is correct? The file on your laptop,
or the file on your phone? Or both?

It’s up to your app to decide what to do. There are three main methods for resolving a
conflict:

• Pick whichever file was most recently modified, and throw away all others. A var‐
iant of this technique is used by Dropbox.1

• Look at the contents of both files, and attempt to automatically merge them. This
technique is used by source code management systems like Git.

• Present the user with the list of files that are in conflict, and ask them to choose
the version to keep. This technique is used in Apple’s productivity applications,
like Pages and Keynote.

280 | Chapter 10: Working with Files and File Types

Our app will pick the third option: if a document ends up in a conflicted state, then
we’ll simply show the list of possible options to users and let them decide. The advan‐
tage to doing this is that it’s simple to think about and generally what the user wants;
the downside is that it will always involve discarding data:

1. Add the following property to the DocumentViewController class:
 var stateChangedObserver : AnyObject?

2. Add the following code to viewWillAppear:
 // If this document is not already open, open it
 if document.documentState.contains(UIDocumentState.closed) {
 document.open { (success) -> Void in
 if success == true {
 self.textView?.attributedText = document.text

> // Register for state change notifications
> self.stateChangedObserver = Notification.default
 .addObserver(
> forName: NSNotification.Name.UIDocumentStateChanged,
> object: document,
> queue: nil,
> using: { (notification) -> Void in
> self.documentStateChanged()
> })
>
> self.documentStateChanged()

 }

This code registers a closure with the system, which will be run every time iOS
receives a notification that the document’s state has changed. In this case, all it
will do is call the documentStateChanged method, which will handle conflicts for
us.
Currently, the view controller will close the document when the view controller
disappears. This can happen for a number of reasons, and we don’t want the
document to be closed except when the user taps the back button to go back to
the document list. We therefore need to add some code to support this.

3. Add the following property to DocumentViewController to keep track of
whether we should close the document when viewWillDisappear is called:
 fileprivate var shouldCloseOnDisappear = true

We’ll use a UIAlertController to present the list of possible actions the user can
take. We’ve used UIAlertControllers before to present a message and possible
actions for the user to take, but they’ve all been presented as dialog boxes—small
windows that appear with buttons underneath. When you could have multiple

Dealing with Conflicts | 281

options for the user to select from, or when the options might be quite wide, then
an action sheet is better. Action sheets slide up from the bottom of the window
and provide you room for multiple options. Functionally, there’s no difference;
the only way they differ is in their presentation.

4. Add the following method to DocumentViewController:
 func documentStateChanged() {
 if let document = self.document
 , document.documentState.contains(UIDocumentState.inConflict) {

 // Gather all conflicted versions
 guard var conflictedVersions = NSFileVersion
 .unresolvedConflictVersionsOfItem(at: document.fileURL) else {
 fatalError("The document is in conflict, but no " +
 "conflicting versions were found. This should not happen.")
 }
 let currentVersion
 = NSFileVersion.currentVersionOfItem(at: document.fileURL)!

 // And include our own local version
 conflictedVersions += [currentVersion]

 // Prepare a chooser
 let title = "Resolve conflicts"
 let message = "Choose a version of this document to keep."

 let picker = UIAlertController(title: title, message: message,
 preferredStyle: UIAlertControllerStyle.actionSheet)

 let dateFormatter = DateFormatter()
 dateFormatter.dateStyle = .short
 dateFormatter.timeStyle = .short

 // We'll use this multiple times, so save it as a variable
 let cancelAndClose = { (action:UIAlertAction) -> Void in
 // Give up and return
 _ = self.navigationController?
 .popViewController(animated: true)
 }

 // For each version, offer it as an option
 for version in conflictedVersions {
 let description = "Edited on " +
 "\(version.localizedNameOfSavingComputer!) at " +
 "\(dateFormatter.string(from: version.modificationDate!))"

 let action = UIAlertAction(title: description,
 style: UIAlertActionStyle.default,
 handler: { (action) -> Void in

282 | Chapter 10: Working with Files and File Types

 // If it was selected, use this version
 do {

 if version != currentVersion {
 try version.replaceItem(at: document.fileURL,
 options: .byMoving)
 try NSFileVersion
 .removeOtherVersionOfItem(at: document.fileURL)
}

 document.revert(toContentsOf: document.fileURL,
 completionHandler: { (success) -> Void in

 self.textView.attributedText = document.text
 self.attachmentsCollectionView?.reloadData()

 })

 for version in conflictedVersions{
 version.isResolved = true
 }

 } catch let error as NSError {
 // If there was a problem, let the user know and
 // close the document
 let errorView = UIAlertController(title: "Error",
 message: error.localizedDescription,
 preferredStyle: UIAlertControllerStyle.alert)

 errorView.addAction(UIAlertAction(title: "Done",
 style: UIAlertActionStyle.cancel,
 handler: cancelAndClose))

 self.shouldCloseOnDisappear = false
 self.present(errorView,
 animated: true,
 completion: nil)
 }

 })
 picker.addAction(action)
 }

 // Add a 'choose later' option
 picker.addAction(UIAlertAction(title: "Choose Later",
 style: UIAlertActionStyle.cancel, handler: cancelAndClose))

 self.shouldCloseOnDisappear = false

Dealing with Conflicts | 283

 // Finally, show the picker
 self.present(picker, animated: true, completion: nil)
 }
 }

First, this method asks if the document is in a conflicted state. If it is, we’ve got
some problems to solve! We ask the system to provide us with a list of all of the
possible versions of this file. We then add the local device’s current version of this
file to the list.
We then create a closure, called cancelAndClose, which bails on the whole oper‐
ation and returns to the document list view controller. This is kept in a variable,
because it’s used both for the Choose Later option (which we’ll add in a moment),
as well as for when there’s a problem resolving the conflict.
Once this is done, we create a UIAlertAction, and, for each version of the file, we
create a new action. This action displays the name of the computer that created
the conflicting version, as well as the date and time that the version was created.
When the action is selected, the app indicates to the system that we should use
the action’s associated version of the file and discard every other version.
If there’s a problem, we present a separate alert controller, indicating to the user
that something’s gone wrong. This alert controller only has a single action, which,
when tapped, runs the cancelAndClose code.
Finally, we add a final option, labeled Choose Later, which simply runs the can
celAndClose code (see Figure 10-7). The action sheet is then presented, letting
the user choose what to do.

284 | Chapter 10: Working with Files and File Types

Figure 10-7. The interface that appears when resolving conflicts

5. Add the following code to viewWillDisappear to use the shouldCloseOnDisap
pear property to determine whether the document should be closed or not.
Additionally, we’ll clear the state changed observer:
 override func viewWillDisappear(_ animated: Bool) {

> if shouldCloseOnDisappear == false {
> return
> }

Dealing with Conflicts | 285

> self.stateChangedObserver = nil

 self.document?.close(completionHandler: nil)
 }

6. Add the following code to the very end of viewWillAppear to reset the flag to
true when the view controller reappears:
 // We may be reappearing after having presented an attachment,
 // which means that our 'don't close on disappear' flag has been set.
 // Regardless, clear that flag.
 self.shouldCloseOnDisappear = true

You can now test to see if it worked:

1. Open a document in the Mac application and make some changes. Don’t save the
changes yet.

2. Open the same document in the iOS application, ideally on a real device, and
make some different changes to the ones you made on the Mac app.

3. Save and close the document in the Mac application, and then close the docu‐
ment in the iOS app. This will cause both of the apps to save their own versions,
which will conflict with each other.

4. Wait a little bit—30 seconds or so—for both of the changes to be uploaded to
iCloud and synchronized to the different apps.

5. Open the document one last time in the iOS app. Because it’s in conflict, you’ll
see the UI that you just created!

Creating the Quick Look Thumbnail
Now that we can access the attachments, we’ll add support for Quick Look in the iOS
app.

We’ll add a method to the Document class that generates a Data containing a PNG-
encoded image that can be used for the app. This will generate the same kind of
image as used in the Mac app (which we added in “Adding QuickLook” on page 166);
the difference being that we need to use the iOS methods for drawing:

1. Add the following method to the Document class:
 func iconImageDataWithSize(_ size: CGSize) -> Data? {
 UIGraphicsBeginImageContext(size)
 defer {
 UIGraphicsEndImageContext()
 }

286 | Chapter 10: Working with Files and File Types

 let entireImageRect = CGRect(origin: CGPoint.zero, size: size)

 // Fill the background with white
 let backgroundRect = UIBezierPath(rect: entireImageRect)
 UIColor.white.setFill()
 backgroundRect.fill()

 if (self.attachedFiles?.count)! >= 1 {
 // Render our text, and the first attachment
 let attachmentImage = self.attachedFiles?[0].thumbnailImage()

 let result = entireImageRect.divided(atDistance:
 entireImageRect.size.height / 2.0, from: CGRectEdge.minYEdge)

 self.text.draw(in: result.slice)
 attachmentImage?.draw(in: result.remainder)
 } else {
 // Just render our text
 self.text.draw(in: entireImageRect)
 }

 let image = UIGraphicsGetImageFromCurrentImageContext()
 return UIImagePNGRepresentation(image!)
 }

To create the image in iOS, we first call UIGraphicsBeginImageContext to indi‐
cate that we’d like to start drawing in a canvas with the specified size. In addi‐
tion, we need to be sure to tell iOS that we’re done with this drawing once we are
finished; to ensure that we don’t forget, we’ll use the defer keyword.
When you use defer, any code that you put in its associated block of code will be
run when you exit the current scope. In this case, it means that just before we
return from this method, we’ll call UIGraphicsEndImageContext. defer is a great
way to ensure that you clean up after yourself while keeping your cleanup code
close to the code that actually creates the mess in the first place.
When we’re drawing this icon, we use the UIBezierPath and UIColor classes to
paint the entire canvas white. We then do the exact same thing as in the Mac ver‐
sion: if we have at least one attachment, we get its thumbnail image and draw it in
the top half of the canvas while drawing the text in the lower half. If we don’t
have any attachments, we just draw the text.
Finally, we get the image from iOS by calling UIGraphicsGetImageFromCurrentI
mageContext, and convert it to a Data containing the PNG-encoded image by
calling UIImagePNGRepresentation.

2. Add the following code to the contentsForType method to add the Quick Look
files to the document package:

Creating the Quick Look Thumbnail | 287

 override func contents(forType typeName: String) throws -> Any {

 let textRTFData = try self.text.data(
 from: NSRange(0..<self.text.length),
 documentAttributes:
 [NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType])

 if let oldTextFileWrapper = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldTextFileWrapper)
 }

> // Create the QuickLook folder
>
> let thumbnailImageData =
> self.iconImageDataWithSize(CGSize(width: 512, height: 512))!
>
> let thumbnailWrapper =
> FileWrapper(regularFileWithContents: thumbnailImageData)
>
> let quicklookPreview =
> FileWrapper(regularFileWithContents: textRTFData)
>
> let quickLookFolderFileWrapper =
> FileWrapper(directoryWithFileWrappers: [
> NoteDocumentFileNames.QuickLookTextFile.rawValue: quicklookPreview,
> NoteDocumentFileNames.QuickLookThumbnail.rawValue: thumbnailWrapper
>])
> quickLookFolderFileWrapper.preferredFilename =
> NoteDocumentFileNames.QuickLookDirectory.rawValue
>
> // Remove the old QuickLook folder if it existed
> if let oldQuickLookFolder = self.documentFileWrapper
> .fileWrappers?[NoteDocumentFileNames.QuickLookDirectory.rawValue] {
> self.documentFileWrapper.removeFileWrapper(oldQuickLookFolder)
> }
>
> // Add the new QuickLook folder
> self.documentFileWrapper.addFileWrapper(quickLookFolderFileWrapper)

 // checking if there is already a location saved
 let rawLocationVal = NoteDocumentFileNames.locationAttachment.rawValue
 if self.documentFileWrapper.fileWrappers?[rawLocationVal] == nil {
 // saving the location if there is one
 if let location = self.locationWrapper {
 self.documentFileWrapper.addFileWrapper(location)
 }
 }

 self.documentFileWrapper.addRegularFile(withContents: textRTFData,

288 | Chapter 10: Working with Files and File Types

 preferredFilename: NoteDocumentFileNames.TextFile.rawValue)

 return self.documentFileWrapper
 }

Again, this is almost identical to the code seen in the Mac version: we create a file
wrapper for the QuickLook folder, as well as file wrappers for both the thumbnail
and preview file. We then remove the old QuickLook folder, if it exists, and add
the new one to the document.

3. Run the app. When you close a document, it will update its Quick Look thumb‐
nail.

Conclusion
We’ve now added a significant new feature to the iOS app. As a result, we’re almost at
feature parity with the Mac app; from now on, it’s nothing but awesome new features.
In the next chapter, we’ll add the ability to create and add brand-new attachments,
straight from the iOS app.

Conclusion | 289

CHAPTER 11

Images and Deletion

In this chapter, we’ll add the interface that allows the user to create new attachments
in the iOS version. Once that’s done, we’ll create the first attachment viewing inter‐
face, for image attachments, and then add the ability to remove attachments from
Notes documents.

Adding Attachments
First, we’ll get started by letting users add new attachments to their documents.

To be able to create and add new attachments, we need to create an interface that lets
the user choose which type of attachment to add. Initially, this will only present a sin‐
gle option. This will be a popover on iPad, and a modal display on iPhone; addition‐
ally, on the iPhone, we need to add the controls that will allow the user to cancel
selecting it.

A popover is a view that floats above the rest of your app. Popovers
are great for presenting information about a specific item on the
screen, or to provide access to tools, settings, or actions for a spe‐
cific object. Popovers are most commonly used on the iPad, which
is what we’re doing here, where a modal view would really pull
users out of what they’re doing. We’re using a modal view on non-
iPad devices, where we have less available screen space.

1. Open DocumentViewController.swift.
2. Add a new method to the DocumentViewController class:

 func addAttachment(_ sourceView : UIView) {

 let title = "Add attachment"

291

 let actionSheet
 = UIAlertController(title: title,
 message: nil,
 preferredStyle: UIAlertControllerStyle
 .actionSheet)

 actionSheet.addAction(UIAlertAction(title: "Cancel",
 style: UIAlertActionStyle.cancel, handler: nil))

 // If this is on an iPad, present it in a popover connected
 // to the source view
 if UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiom.pad {

 actionSheet.modalPresentationStyle
 = .popover
 actionSheet.popoverPresentationController?.sourceView
 = sourceView
 actionSheet.popoverPresentationController?.sourceRect
 = sourceView.bounds
 }

 self.present(actionSheet, animated: true, completion: nil)

 }

We’ll be returning to this method several times, as we add support for other types
of attachments. At the moment, all it does is present a UIAlertController that
contains a single option, which closes it. However, note the sourceView parame‐
ter that gets passed to this method. This is used on the iPad, where the action
sheet will be presented in a popover, which is visually attached to the source
View’s location on screen.

3. Add the collectionView(_, didSelectItemAt indexPath:) method to the
extension that implements the UICollectionViewDelegate protocol. This
method is run when the user taps a cell in the attachment view; to start, we’ll
detect if the user tapped the add cell and call the addAttachment method:
 func collectionView(_ collectionView: UICollectionView,
 didSelectItemAt indexPath: IndexPath) {

 // Get the cell that the user interacted with; bail if we can't get it
 guard let selectedCell = collectionView
 .cellForItem(at: indexPath) else {
 return
 }

 // Work out how many cells we have
 let totalNumberOfCells = collectionView

292 | Chapter 11: Images and Deletion

 .numberOfItems(inSection: indexPath.section)

 // If we have selected the last cell, show the Add screen
 if indexPath.row == totalNumberOfCells - 1 {
 addAttachment(selectedCell)
 }
 }

This method is run whenever the user taps a cell in the attachments list. Eventu‐
ally, we’ll extend this method to actually open attachments that the user taps; for
now, we’ll just detect whether the user has tapped the last cell in the list. We do
this by asking the collection view to tell us how many cells exist in the collection,
as well as asking for the actual UICollectionViewCell object that the user has
tapped. If the index path of the selected cell represents the last item in the list, we
call addAttachment method, passing in the cell.

Remember, an UICollectionViewCell is a view, which means the
addAttachment method is able to use it to present its popover rela‐
tive to the cell’s position. In other words, the popover can appear
attached to the add button.

Run the app, and open a document. Tap the add button, and you’ll get a modal screen
on iPhone and a popover on iPad.

Adding Image Attachments
Currently, the list of possible attachments that users can add is empty; all they can do
is dismiss the pop up. We’ll add a method that shows the camera and lets the user
take a photo, which is then added as an attachment.

To do this, we’ll be using UIImagePickerController, which provides Apple-created
interfaces for capturing images and movies, as well as the gallery of previously cap‐
tured images and movies. All interaction in the UIImagePickerController is pro‐
vided and handled for you, with the results passed to a delegate object.

Adding Image Attachments | 293

UIImagePickerController can have different source types
assigned to it: the camera, for taking new images or movies, or the
photo library, for choosing from existing images and movies from
which to choose. In this app, we only use the source type of UIIma
gePickerControllerSourceType.camera, but you could very
easily extend it to support the photo gallery as well, by providing
access to a UIImagePickerController with a source type of UIIma
gePickerControllerSourceType.photoLibrary. You can learn
more in Apple’s UIImagePickerController class reference.

1. First, because captured images will arrive as raw chunks of data, we need a way to
add them as attachments to the document. Open Document.swift and add the fol‐
lowing method to the Document class:
 func addAttachmentWithData(_ data: Data, name: String) throws {

 guard attachmentsDirectoryWrapper != nil else {
 throw err(.cannotAccessAttachments)
 }

 let newAttachment = FileWrapper(regularFileWithContents: data)

 newAttachment.preferredFilename = name

 attachmentsDirectoryWrapper?.addFileWrapper(newAttachment)

 self.updateChangeCount(.done)

 }

This method takes a Data that should be added to the document, as well as its
filename. Data objects on their own don’t have any concept of a filename, so it
needs to be a separate parameter.
To add the data, we construct a FileWrapper using the regularFileWithCon
tents initializer, which takes the Data object. We then provide the new file wrap‐
per with a name and add it to the Attachments folder, just like we do in
addAttachmentAtURL. Finally, we update the change count, marking the docu‐
ment in need of saving.

2. Next, we’ll add a method that presents a UIImagePickerController. Open Docu‐
mentViewController.swift, and add the following method to DocumentViewCon
troller:
 func addPhoto() {
 let picker = UIImagePickerController()

 picker.sourceType = .camera

294 | Chapter 11: Images and Deletion

http://apple.co/1PIdCG7

 picker.delegate = self

 self.shouldCloseOnDisappear = false

 self.present(picker, animated: true, completion: nil)
 }

You’ll get a compiler error on the line that sets delegate to
self, saying that the class doesn’t conform to the protocol.
Don’t panic: we’re about to tackle that next.

The addPhoto method creates a UIImagePickerController, which is a view con‐
troller that lets the user either take a photo using the built-in camera, or select a
photo from the photo library. In this case, we’re specifying that we want to use
the camera. We then instruct it that we want it to contact this object when the
user takes a photo, by setting its delegate to self; set the shouldCloseOnDisap
pear flag to false to prevent viewWillDisappear from closing the document
when the image picker view controller appears; and then present the view con‐
troller.

3. Add the following extension to DocumentViewController, which adds support
for dealing with the UIImagePickerController:
 extension DocumentViewController : UIImagePickerControllerDelegate,
 UINavigationControllerDelegate {

 func imagePickerController(_ picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : Any]) {
 do {

 let edited = UIImagePickerControllerEditedImage
 let original = UIImagePickerControllerOriginalImage
 if let image = (info[edited] as? UIImage
 ?? info[original] as? UIImage) {

 guard let imageData =
 UIImageJPEGRepresentation(image, 0.8) else {
 throw err(.cannotSaveAttachment)
 }

 try self.document?.addAttachmentWithData(imageData,
 name: "Image \(arc4random()).jpg")

 self.attachmentsCollectionView?.reloadData()

 } else {

Adding Image Attachments | 295

 throw err(.cannotSaveAttachment)
 }
 } catch let error as NSError {
 NSLog("Error adding attachment: \(error)")
 }

 self.dismiss(animated: true, completion: nil)
 }

 }

By extending the DocumentViewController to conform the UIImagePicker
ControllerDelegate protocol, we’re enabling the view controller to respond
when the user takes a photo. When the user takes a photo, the didFinishPicking
MediaWithInfo method is called, which receives a dictionary describing the
media that the user selected. This dictionary can contain quite a lot of stuff, but
we specifically want the photo that the user has taken.
The photo can be in one of two possible places in this dictionary. If the user took
a photo and then edited it (such as by cropping it, which the UIImagePicker
Controller supports), then the image will be in the dictionary under the UIIma
gePickerControllerEditedImage key. Otherwise, if the user has not edited it,
we can access the image through the UIImagePickerControllerOriginalImage
key.

If the user edits the photo, both the edited and original images
will be available. Absent a specific reason for doing otherwise,
you should always use the edited version to avoid throwing
away the user’s editing efforts. However, unless the user
actually did edit the image, UIImagePickerControllerEdited
Image will be nil. For that reason, we try to access the edited
image first and then fall back the original image if it’s nil.

Once we have the image, we encode it to JPEG, using the UIImageJPEGRepresen
tation function. This function takes a UIImage, as well as a compression factor,
which is a float ranging from 0 (lowest size) to 1 (highest quality); a good com‐
promise value is 0.8, which we’re using here. This function returns a Data object,
which means we can just call the Document object’s addAttachmentWithData
method.
Then we dismiss the entire image picker by calling dismiss(animated:, comple
tion:).

4. Lastly, we need to add the buttons that actually presents the camera. Go to the
top of the file, and import the AVFoundation framework:

296 | Chapter 11: Images and Deletion

 import AVFoundation

This isn’t strictly necessary to access the camera, but it is
required to determine whether you have permission to access
the camera.

5. Add the following code to the addAttachment method to add the Camera entry
to the attachment pop up. This button will either show the camera or ask the user
for permission to go to the Settings app to enable access to the camera. In addi‐
tion, we’ll also add a cancel button that closes the pop up:
 func addAttachment(_ sourceView : UIView) {

 let title = "Add attachment"

 let actionSheet
 = UIAlertController(title: title,
 message: nil,
 preferredStyle: UIAlertControllerStyle
 .actionSheet)

> // If a camera is available to use...
> if UIImagePickerController
> .isSourceTypeAvailable(UIImagePickerControllerSourceType.camera) {
> // this variable contains a closure that shows the image picker,
> // or asks the user to grant permission.
> var handler : (_ action:UIAlertAction) -> Void
>
> let authorizationStatus = AVCaptureDevice
> .authorizationStatus(forMediaType: AVMediaTypeVideo)
>
> switch authorizationStatus {
> case .authorized:
> fallthrough
> case .notDetermined:
> // If we have permission, or we don't know if it's been denied,
> // then the closure shows the image picker.
> handler = { (action) in
> self.addPhoto()
> }
> default:
>
> // Otherwise, when the button is tapped, ask for permission.
> handler = { (action) in
>
> let title = "Camera access required"
> let message = "Go to Settings to grant permission to" +

Adding Image Attachments | 297

> "access the camera."
> let cancelButton = "Cancel"
> let settingsButton = "Settings"
>
> let alert = UIAlertController(title: title,
 message: message,
 preferredStyle: .alert)
>
> // The Cancel button just closes the alert.
> alert.addAction(UIAlertAction(title: cancelButton,
> style: .cancel, handler: nil))
>
> // The Settings button opens this app's settings page,
> // allowing the user to grant us permission.
> alert.addAction(UIAlertAction(title: settingsButton,
> style: .default, handler: { (action) in
>
> if let settingsURL = URL(
> string: UIApplicationOpenSettingsURLString) {
>
> UIApplication.shared
> .openURL(settingsURL)
> }
>
> }))
>
> self.present(alert,
> animated: true,
> completion: nil)
> }
> }
>
> // Either way, show the Camera item; when it's selected, the
> // appropriate code will run.
> actionSheet.addAction(UIAlertAction(title: "Camera",
> style: UIAlertActionStyle.default, handler: handler))
> }

 actionSheet.addAction(UIAlertAction(title: "Cancel",
 style: UIAlertActionStyle.cancel, handler: nil))

 // If this is on an iPad, present it in a popover connected
 // to the source view
 if UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiom.pad {

 actionSheet.modalPresentationStyle
 = .popover
 actionSheet.popoverPresentationController?.sourceView
 = sourceView
 actionSheet.popoverPresentationController?.sourceRect

298 | Chapter 11: Images and Deletion

 = sourceView.bounds
 }

 self.present(actionSheet, animated: true, completion: nil)

 }

This code does quite a bit. First, it asks the UIImagePickerController class to
determine if a camera of any kind is available. If it’s not—which is the case on the
iOS simulator—then there’s no point in offering the camera as an option.

Running Code on the Device

If you aren’t already, now’s a good time to run your app on the
device. To do this, make sure that you’re signed in to your iOS
developer account by opening the Xcode menu, choosing
Preferences, opening the Accounts tab, and adding your Apple
ID. Once you’ve signed in, connect your device to your com‐
puter using the USB cable, and open the scheme selector at the
top left of the Xcode window. Select your device and then click
the Run button. Xcode will compile and install your app on
your device.

We then create a variable that holds the action that will run when the user taps
the Camera option in the list of possible attachments to add. The actual code that
goes into this variable will depend on whether the user has granted permission to
access the camera. If the app has explicit permission or the user hasn’t yet deci‐
ded, the closure will simply call the addPhoto method, which presents the
UIImagePickerController. When it appears, the image picker will ask the user
for permission to access the camera if it hasn’t already been granted.
If the user has explicitly denied permission, then we can’t present the image
picker controller. If we did, the image picker won’t ask for permission a second
time, and as a result, the user would be looking at a useless, black screen. Instead,
we prepare a dialog box that explains the situation and includes an action that,
when tapped, takes the user to the Settings screen to enable the app to have
access.

As we mentioned earlier, you could extend this to support
using photos from the device photo gallery.

6. There is one final step before we can run the application: we need to set our
project up to have permission to access the camera. As iOS is a privacy-conscious

Adding Image Attachments | 299

platform, it is very important that everything we do as developers keeps user pri‐
vacy in our minds. Sometimes this is enforced by the platform, and accessing the
camera is one of those situations.
Open info.plist. In here we are going to add in a particular key-value pair that
will do a few things. It will let our application access the camera (still with user
permission) and will display a message explaining to the user why we need to
access the camera. Without this key-value pair added to info.plist, the iOS
ecosystem will simply refuse to allow our app access to the camera and won’t
even ask the user if he wants to give us permission.
Right-click in the editor below all the other key-value pairs and select Add Row.
Type Privacy - Camera Usage Description. As you are typing, Xcode should
offer an autocompletion, and it is well worth using it to make sure you don’t get
the key wrong. Now the type of this value should be set to String automatically,
but if it isn’t, make sure to manually change it to String. Finally, in the Value col‐
umn add a message you want to be shown to the user when he first tries to access
the camera. For our application, we enter We'll use the camera to take pho
tos and videos, and add them as attachments. but each app is different and
will have different reasons, so choose your message wisely.

7. Run the app. You can now add images to documents, and they’ll appear in the list
of attachments.

Viewing Attachments
Because there are multiple different types of attachment, it doesn’t make much sense
to duplicate the “show a view controller” code for each one. We’re going to create a
new view controller for each type of attachment, but we don’t want to have to write
the same code over and over again for showing each different type of view controller.
It doesn’t make sense to repeat things like “if it’s an image segue, then get the image
view controller and give it the image.”

Instead, we’ll create a protocol for these view controllers, which means we can treat
them all the same way: we’ll just give them the FileWrapper that represents the
attachment, and they can do whatever they need to it. This way we only need to write
the code to show an attachment once:

1. Open DocumentViewController.swift.
2. Add the AttachmentViewer protocol:

 protocol AttachmentViewer : NSObjectProtocol {

 // The attachment to view. If this is nil,
 // the viewer should instead attempt to create a new

300 | Chapter 11: Images and Deletion

 // attachment, if applicable.
 var attachmentFile : FileWrapper? { get set }

 // The document attached to this file
 var document : Document? { get set }
 }

Classes that conform to the AttachmentViewer protocol need to have two prop‐
erties: the attachmentFile property, which is an optional FileWrapper, and the
document property, which is an optional Document. Each of the view controllers
that we’ll be making will conform to this protocol, meaning that they can all be
treated in the same way, and the DocumentViewController won’t have to care
about the specific type of each attachment view controller it presents.

Next, we’ll implement the view controller that displays the image:

1. Open the File menu and choose New→File.
2. Select Cocoa Touch Class and click Next.
3. Name the new class ImageAttachmentViewController and make it a subclass of

UIViewController.
4. Open ImageAttachmentViewController.swift, and make the class conform to the

AttachmentViewer protocol:
 class ImageAttachmentViewController: UIViewController, AttachmentViewer {

Doing this will simplify how DocumentViewController works
with the view controller, when we get to it later in this chapter.

5. Add an imageView outlet:
 @IBOutlet weak var imageView : UIImageView?

6. Add an attachmentFile and document property to conform to the Attachment
Viewer protocol:
 var attachmentFile : FileWrapper?

 var document : Document?

7. Implement viewDidLoad to load the image from the data:
 override func viewDidLoad() {
 super.viewDidLoad()

 // If we have data, and can make an image out of it...
 if let data = attachmentFile?.regularFileContents,

Viewing Attachments | 301

 let image = UIImage(data: data) {
 // Set the image
 self.imageView?.image = image

 }
 }

When the view loads, we need to present whatever image is represented by the
attachment given to this view controller by the DocumentViewController. We’ll
be making DocumentViewController actually give the view controller its attach‐
ment shortly.
To display it, we grab whatever Data is inside the file wrapper and attempt to
make a UIImage out of it. If this succeeds, we pass this image to the UIImageView
for it to display.

Next, we’ll set up the interface for this new view controller:

1. Open Main.storyboard and add a new UIViewController.
2. Select the new view controller and go to the Identity Inspector.
3. Change its class to ImageAttachmentViewController.
4. Select the view and go to the Attributes Inspector.
5. Change the background color to black (Figure 11-1).

Figure 11-1. Updating the background color

302 | Chapter 11: Images and Deletion

6. Drag in a UIImageView and add constraints to make it fill the screen.
7. Go to the Attributes Inspector and set its Content Mode to Aspect Fit.
8. Hold down the Control key and drag from the image attachment view controller

in the outline to the image view. Select the imageView outlet from the list that
appears.
The interface should now look like Figure 11-2.

Figure 11-2. The laid-out image view

We’ll now create a segue that connects this image attachment view controller to the
document view controller:

Viewing Attachments | 303

1. In the outline, hold down the Control key and drag from the document view
controller to the image attachment view controller. When prompted, choose to
make a “present as popover” segue.

2. Select the new segue and go to the Attributes Inspector.
3. Set the identifier of the new segue to ShowImageAttachment.
4. Drag from the well in the Anchor slot in the Attributes Inspector to the docu‐

ment view controller’s view. The Anchor is the view that the popover will be
attached to.

Next, we’ll add support for triggering a segue when an attachment is tapped. Impor‐
tantly, we need to detect the type of the attachment and use that to determine which
segue to use:

1. Open DocumentViewController.swift and add the following line of code to the
top of the file, next to the other import statements:
 import MobileCoreServices

2. Next, add code in didSelectItemAt indexPath to detect the type of the attach‐
ment and trigger a segue:
 func collectionView(_ collectionView: UICollectionView,
 didSelectItemAt indexPath: IndexPath) {

> // Do nothing if we are editing
> if self.isEditingAttachments {
> return
> }

 // Get the cell that the user interacted with; bail if we can't get it
 guard let selectedCell = collectionView
 .cellForItem(at: indexPath) else {
 return
 }

 // Work out how many cells we have
 let totalNumberOfCells = collectionView
 .numberOfItems(inSection: indexPath.section)

 // If we have selected the last cell, show the Add screen
 if indexPath.row == totalNumberOfCells - 1 {
 addAttachment(selectedCell)
 }
> else {
> // Otherwise, show a different view controller based on the type
> // of the attachment
> guard let attachment = self.document?

304 | Chapter 11: Images and Deletion

> .attachedFiles?[(indexPath as IndexPath).row] else {
>
> NSLog("No attachment for this cell!")
> return
> }
>
> let segueName : String?
>
> if attachment.conformsToType(kUTTypeImage) {
> segueName = "ShowImageAttachment"
>
> }
>
> } else {
>
> segueName = nil
> }
>
> // If we have a segue, run it now
> if let theSegue = segueName {
> self.performSegue(withIdentifier: theSegue,
> sender: selectedCell)
> }
>
> }
 }

Our earlier implementation of didSelectItemAt indexPath simply detected if
the user was tapping the last cell, which resulted in the new attachment list
appearing. However, we now need to handle what to do when the user taps any of
the actual attachment cells.
First, we attempt to get whatever attachment the selected cell represents by asking
the document’s attachedFiles array to give us the appropriate FileWrapper.
Next, we need to decide what segue to run, based on the type of the attachment.
Different types of attachments will require different view controllers, and each
view controller will need a different segue to reach it.
At the moment, the only type of attachment that we have is images, so we simply
ask the attachment if it conforms to the “image” type. If it does, then the name of
the segue we need to run is ShowImageAttachment.

We’ll be adding more to this part of the method as we add more
attachment types.

Viewing Attachments | 305

Finally, if we have a segue to run, we perform it:

1. Add the prepare(for segue:, sender:) method to the DocumentViewControl
ler class, which gives the attachment to the view controller:
 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 // If we're going to an AttachmentViewer...
 if let attachmentViewer
 = segue.destination as? AttachmentViewer {

 // Give the attachment viewer our document
 attachmentViewer.document = self.document!

 // If we were coming from a cell, get the attachment
 // that this cell represents so that we can view it
 if let cell = sender as? UICollectionViewCell,
 let indexPath =
 self.attachmentsCollectionView?.indexPath(for: cell),
 let attachment = self.document?.attachedFiles?[indexPath.row] {

 attachmentViewer.attachmentFile = attachment
 } else {
 // we don't have an attachment
 }

 // Don't close the document when showing the view controller
 self.shouldCloseOnDisappear = false

 // If this has a popover, present it from the the attachments list
 if let popover =
 segue.destination.popoverPresentationController {

 popover.sourceView = self.attachmentsCollectionView
 popover.sourceRect = self.attachmentsCollectionView.bounds

 }
 }
 else if segue.identifier == "ShowLocationSegue" {
 if let destination =
 segue.destination as? LocationAttachmentViewController {
 destination.locationAttachment = self.document?.locationWrapper
 }
 }
 }

It’s in this method that we can take advantage of the AttachmentViewer protocol.
Remember, ImageAttachmentViewController is an AttachmentViewer, and so
will be every other view controller that can display an attachment. As a result, the

306 | Chapter 11: Images and Deletion

prepare(for segue:, sender:) method doesn’t have to be able to tell the differ‐
ence between the different view controllers that will be presenting the attach‐
ment; all it needs to do is give the attachment viewer its attachment.
To do this, it first checks to see if the sender of this segue—that is, the object that
was passed in as the sender parameter to performSegue—is a UICollectionView
Cell. If it is, we can figure out the attachment by asking the collection view for its
index path and use that to get the attachment filewrapper.

If there’s no attachment available, then that’s not a problem—
instead, the attachment view controller will be presented with
no attachment and will let the user create a new one. This
doesn’t apply to the image view controller, because images get
created by one type of view controller and viewed by another,
but it will apply to other types of attachments.

2. Run the app. You can now tap image attachments and view them!
However, there’s a problem on the iPhone: it lacks any way to close the view con‐
troller. The view will appear, but there won’t be a close button. Let’s add that.

3. In the prepare(for segue:, sender:) method, set up the view controller to
make the popover controller its delegate. You’ll get a compiler error, saying that
DocumentViewController doesn’t conform to the necessary protocol. Don’t
worry—we’ll fix that in a moment:
 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 // If we're going to an AttachmentViewer...
 if let attachmentViewer
 = segue.destination as? AttachmentViewer {

 // Give the attachment viewer our document
 attachmentViewer.document = self.document!

 // If we were coming from a cell, get the attachment
 // that this cell represents so that we can view it
 if let cell = sender as? UICollectionViewCell,
 let indexPath =
 self.attachmentsCollectionView?.indexPath(for: cell),
 let attachment = self.document?.attachedFiles?[indexPath.row] {

 attachmentViewer.attachmentFile = attachment
 } else {
 // we don't have an attachment
 }

 // If this has a popover, present it from the the attachments list

Viewing Attachments | 307

 if let popover =
 segue.destination.popoverPresentationController {

> // Ensure that we add a close button to the popover on iPhone
> popover.delegate = self

 popover.sourceView = self.attachmentsCollectionView
 popover.sourceRect = self.attachmentsCollectionView.bounds

 }
 }
> else if segue.identifier == "ShowLocationSegue" {
> if let destination =
> segue.destination as? LocationAttachmentViewController {
> destination.locationAttachment = self.document?.locationWrapper
> }
> }
 }

4. Next, add the extension to DocumentViewController that makes it conform to
UIPopoverPresentationControllerDelegate:
 extension DocumentViewController : UIPopoverPresentationControllerDelegate
{
 // called by the system to determine which view controller
 // should be the content of the popover
 func presentationController(_ controller: UIPresentationController,
 viewControllerForAdaptivePresentationStyle
 style: UIModalPresentationStyle) -> UIViewController? {

 // Get the view controller that we want to present
 let presentedViewController = controller.presentedViewController

 // If we're showing a popover, and that popover is being shown
 // as a full-screen modal (which happens on iPhone)...
 if style == UIModalPresentationStyle.fullScreen && controller
 is UIPopoverPresentationController {

 // Create a navigation controller that contains the content
 let navigationController = UINavigationController(
 rootViewController: controller.presentedViewController)

 // Create and set up a "Done" button, and add it to the
 // navigation controller.
 // It will call the 'dismissModalView' button, below
 let closeButton = UIBarButtonItem(title: "Done",
 style: UIBarButtonItemStyle.done, target: self,
 action: #selector(DocumentViewController.dismissModalView))

 presentedViewController.navigationItem

308 | Chapter 11: Images and Deletion

 .rightBarButtonItem = closeButton

 // Tell the system that the content should be this new
 // navigation controller.
 return navigationController
 } else {

 // Just return the content
 return presentedViewController
 }
 }

 func dismissModalView() {
 self.dismiss(animated: true, completion: nil)
 }
 }

When a view controller is shown in a popover, the popover is managed by a UIPo
poverPresentationController. This object manages the contents of the pop‐
over and gives us an opportunity to make changes to how the view controller is
presented.
Specifically, if the view controller is being presented on an iPhone, we want to
wrap the view controller in a navigation controller. Doing this means that the
view controller will have a navigation bar at the top, in which we can place a
Done button. When this button is tapped, we want the current view controller—
that is, the DocumentViewController—to dismiss the attachment view controller.
However, on the iPad, we don’t need to do this, because when you tap outside the
view controller, the popover is closed. We therefore shouldn’t do this extra work
of adding and configuring a Done button if we’re not running on the iPad.
There’s one last consideration we need to take. So far in this chunk of code, we’ve
been mostly talking about how we need to perform differently when we’re on the
iPad, but that’s not precisely correct. The reason this needs to behave differently
is because, on the iPhone, when you request a popover, it will slide up from the
bottom of the screen, covering everything else. This is due to the extremely limi‐
ted screen space available on the phone: there’s no point in wasting the space
around the edges of the screen.
This is usually not a concern on the iPad, but things can change when the iPad is
displayed in a split-screen view. If you’re in another app, and you swipe from the
righthand side of the screen, you can summon the Notes application and place it
in a little bar, roughly one-third the width of the screen. When this happens, the
app is practically just a tall iPhone.

Viewing Attachments | 309

Because applications can change their presentation styles, it’s almost always better
to ask yourself what is the specific behavior you’re trying to deal with. Don’t sim‐
ply assume that the iPad behaves one way, and the iPhone behaves another.
So, rather than simply ask, “Are we on the iPad?” we’ll instead check to see what
style of presentation the popover is using. If it’s .fullScreen, then we need to
add the Done button.
The most straightforward way to add a navigation bar to the top of the content
view controller is to put that view controller in a navigation controller. While it’s
possible to reach into the content view controller and insert a UINavigationBar
into the top of the screen, you would then have to ensure that the navigation bar
you’ve just added doesn’t cover anything else up. It’s easier to simply get a naviga‐
tion controller, which takes care of resizing the content view controller’s view to
make room for the navigation bar.
So, we do this and embed the content view controller in the new navigation con‐
troller. We then create a new UIBarButtonItem and add it to the content view
controller’s UINavigationItem, which causes the button to appear at the top
right. When the button is being created, we set its target to self (that is, the
DocumentViewController) and the action to dismissModalView. This is a new
method that simply calls dimiss(animated:, completion:); when this happens,
the popover is dismissed.
Lastly, the navigation controller that now contains the content view controller is
returned.

5. Run the application. You’ll now have a close button when on the iPhone.

Deleting Attachments
We’ll use the standard deleting gesture: when you tap and hold an attachment, we’ll
display a delete button. To detect when the user touches and holds on a cell, we’ll use
a gesture recognizer. Just as with the tap gesture recognizer that we added to the
labels in the DocumentListViewController in “Renaming Documents” on page 247,
we’ll add a long-press gesture recognizer to detect when the user holds a finger down
on the attachment. When the user does this, deletion buttons will appear, allowing
the user to remove attachments. When these delete buttons appear, we also need a
way to cancel deletion.

310 | Chapter 11: Images and Deletion

So far in this book, we’ve seen tap gesture recognizers, and we’re
about to start looking at long-press recognizers. There are several
other types of recognizers available:

• Pan recognizers detect when a finger drags over the screen.
• Pinch recognizers detect when two fingers are placed on the

screen and are moved together or away from each other.
• Rotation recognizers detect when two fingers are placed on the

screen and then rotated around a central point.
• Swipe recognizers detect when a finger makes a swiping

motion.
• Screen-edge swipe recognizers detect when a finger makes a

swiping motion that begins off-screen.

We’ll add a delegate protocol that lets cells notify their delegate that they’ve been
deleted:

1. Add the AttachmentCellDelegate protocol to DocumentViewController.swift:
 protocol AttachmentCellDelegate {
 func attachmentCellWasDeleted(_ cell: AttachmentCell)
 }

2. Go to the AttachmentCell class, also in DocumentViewController.swift.
3. Add the following code to the class:

 class AttachmentCell : UICollectionViewCell {

 @IBOutlet weak var imageView : UIImageView?

 @IBOutlet weak var extensionLabel : UILabel?

> @IBOutlet weak var deleteButton : UIButton?
>
> var editMode = false {
> didSet {
> // Full alpha if we're editing, zero if we're not
> deleteButton?.alpha = editMode ? 1 : 0
> }
> }
>
> var delegate : AttachmentCellDelegate?
>
> @IBAction func delete() {
> self.delegate?.attachmentCellWasDeleted(self)
> }

Deleting Attachments | 311

>
 }

4. Add the isEditingAttachments property to DocumentViewController, which
keeps track of whether the delete button attached to each cell should appear or
not:
 fileprivate var isEditingAttachments = false

5. In cellForItemAt, set the editMode property of AttachmentCell to true if the
view controller is in Edit mode:
 func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 // Work out how many cells we need to display
 let totalNumberOfCells =
 collectionView.numberOfItems(inSection: indexPath.section)

 // Figure out if we're being asked to configure the Add cell,
 // or any other cell. If we're the last cell, it's the Add cell.
 let isAddCell = indexPath.row == (totalNumberOfCells - 1)

 // The place to store the cell. By making it 'let', we're ensuring
 // that we never accidentally fail to give it a value - the
 // compiler will call us out.
 let cell : UICollectionViewCell

 // Create and return the 'Add' cell if we need to
 if isAddCell {
 cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: "AddAttachmentCell", for: indexPath)
 } else {

 // This is a regular attachment cell

 // Get the cell
 let attachmentCell = collectionView
 .dequeueReusableCell(withReuseIdentifier: "AttachmentCell",
 for: indexPath) as! AttachmentCell

 // Get a thumbnail image for the attachment
 let attachment = self.document?.attachedFiles?[indexPath.row]
 var image = attachment?.thumbnailImage()

 // Give it to the cell
 if image == nil {

 // We don't know what it is, so use a generic image
 image = UIImage(named: "File")

312 | Chapter 11: Images and Deletion

 // Also set the label
 attachmentCell.extensionLabel?.text =
 attachment?.fileExtension?.uppercased()

 } else {
 // We know what it is, so ensure that the label is empty
 attachmentCell.extensionLabel?.text = nil
 }
 attachmentCell.imageView?.image = image

> // The cell should be in edit mode if the view controller is
> attachmentCell.editMode = isEditingAttachments
>
 // Use this cell
 cell = attachmentCell
 }

 return cell

 }

This ensures that all newly created attachment cells have their deletion button’s
visibility correctly set.

6. Add the beginEditMode action method; this makes all visible cells enter their
Edit mode and adds a Done button to the navigation bar:
 func beginEditMode() {

 self.isEditingAttachments = true

 UIView.animate(withDuration: 0.1, animations: { () -> Void in
 for cell in self.attachmentsCollectionView!.visibleCells {

 if let attachmentCell = cell as? AttachmentCell {
 attachmentCell.editMode = true
 } else {
 cell.alpha = 0
 }
 }
 })

 let doneButton = UIBarButtonItem(barButtonSystemItem:
 UIBarButtonSystemItem.done, target: self,
 action: #selector(DocumentViewController.endEditMode))
 self.navigationItem.rightBarButtonItem = doneButton

 }

Deleting Attachments | 313

This does three things. First, it causes every attachment cell to change its Edit
mode, causing its delete button to appear. At the same time, it causes every non-
attachment cell (that is, the add cell) to fade out to nothing.
Finally, it creates and adds a new bar button item, labeled Done, which calls the
endEditMode method that we’re about to add. It places it at the righthand side of
the navigation bar.

7. Add the endEditMode method:
 func endEditMode() {

 self.isEditingAttachments = false

 UIView.animate(withDuration: 0.1, animations: { () -> Void in
 for cell in self.attachmentsCollectionView!.visibleCells {

 if let attachmentCell = cell as? AttachmentCell {
 attachmentCell.editMode = false
 } else {
 cell.alpha = 1
 }
 }
 })

 self.navigationItem.rightBarButtonItem = nil
 }

This method does the reverse of the beginEditMode method by making all visible
AttachmentCells leave Edit mode, ensuring the add cell is visible, and removing
the Done button.

8. Add code at the start of didSelectItemAt to ensure that we don’t try to view an
attachment if we’re in Edit mode:
 // Do nothing if we are editing
 if self.isEditingAttachments {
 return
 }

Next, we’ll add the button to the AttachmentCell, which will appear when the cell
enters Edit mode (that is, when the user long-presses it):

1. Open Main.storyboard, and locate the AttachmentCell in the document view
controller.

2. Drag a UIButton into the AttachmentCell.
3. Go to the Attributes Inspector and change its type to Custom.
4. Remove the button’s label and set the image to Delete (Figure 11-3).

314 | Chapter 11: Images and Deletion

Figure 11-3. The delete button

5. Position the button at the top right of the cell, and add constraints that pin the
top and right edges to the container.

6. Open DocumentViewController.swift, and locate the AttachmentCell class. Drag
from the well next to the deleteButton outlet to the button you just added.

7. Hold down the Control key and drag from the deleteButton outlet to this but‐
ton.

8. Add code in the DocumentViewController’s collectionView(_, cellForItemAt
indexPath:) method to add a long-press gesture recognizer that enters Delete
mode:
 // The cell should be in edit mode if the view controller is
 attachmentCell.editMode = isEditingAttachments

> // Add a long-press gesture to it, if it doesn't
> // already have it
> let longPressGesture = UILongPressGestureRecognizer(target: self,
> action: #selector(DocumentViewController.beginEditMode))
> attachmentCell.gestureRecognizers = [longPressGesture]

Deleting Attachments | 315

Now we make the buttons actually delete stuff. We’ll add a delegate protocol that lets
cells notify their delegate that they’ve been deleted:

1. Add the AttachmentCellDelegate protocol to DocumentViewController.swift:
 protocol AttachmentCellDelegate {
 func attachmentCellWasDeleted(_ cell: AttachmentCell)
 }

2. Add the delegate property on AttachmentCell:
 var delegate : AttachmentCellDelegate?

3. Open Main.storyboard, and open DocumentViewController.swift in the Assistant.
4. Hold down the Control key and drag from the delete button onto the delete

method in the AttachmentCell class.
5. Open Document.swift and add the deleteAttachment method to the Document

class, which removes an attachment:
 func deleteAttachment(_ attachment:FileWrapper) throws {

 guard attachmentsDirectoryWrapper != nil else {
 throw err(.cannotAccessAttachments)
 }

 attachmentsDirectoryWrapper?.removeFileWrapper(attachment)

 self.updateChangeCount(.done)

 }

6. Go back to DocumentViewController.swift, and add an extension to Document
ViewController that conforms to AttachmentCellDelegate. We’re adding this
in an extension mostly to keep these methods visually separated in the code; it’s
purely a stylistic choice:
 extension DocumentViewController : AttachmentCellDelegate {

 func attachmentCellWasDeleted(_ cell: AttachmentCell) {
 guard let indexPath = self.attachmentsCollectionView?
 .indexPath(for: cell) else {
 return
 }

 guard let attachment = self.document?
 .attachedFiles?[indexPath.row] else {
 return
 }
 do {
 try self.document?.deleteAttachment(attachment)

316 | Chapter 11: Images and Deletion

 self.attachmentsCollectionView?
 .deleteItems(at: [indexPath])

 self.endEditMode()
 } catch let error as NSError {
 NSLog("Failed to delete attachment: \(error)")
 }

 }
 }

7. Add code to collectionView(_, cellForItemAt indexPath:) that sets the cell’s
delegate to self:
 // Add a long-press gesture to it, if it doesn't
 // already have it
 let longPressGesture = UILongPressGestureRecognizer(target: self,
 action: #selector(DocumentViewController.beginEditMode))
 attachmentCell.gestureRecognizers = [longPressGesture]

> // Contact us when the user taps the delete button
> attachmentCell.delegate = self

8. Run the app—you can now delete attachments!

Conclusion
In this chapter, we created the interface that allows the user to create new attachments
in the iOS version. We also added support for viewing images attached to note docu‐
ments and the ability to remove attachments from Notes documents.

Conclusion | 317

CHAPTER 12

Supporting the iOS Ecosystem

In this chapter, we’ll add support for sharing, handoffs (so users can resume what
they’re doing on other iOS devices or in the macOS app), and search (so the iOS
search system can be used to find text within note documents). All three of these fea‐
tures help to integrate your app into the wider context of the user’s phone, which
means that your app is no longer an island.

Sharing with UIActivityController
We’ll start by adding sharing support to the image attachment view controller, as
shown in Figure 12-1.

319

Figure 12-1. The standard iOS share sheet

Sharing on iOS is handled by UIActivityViewController, which provides a standard
view controller offering system services, such as copy and paste, as well as sharing to
social media, email, or text messaging. Other apps can also provide share destina‐
tions.

1. Open Main.storyboard and go to the image attachment view controller.

320 | Chapter 12: Supporting the iOS Ecosystem

2. Add a UIToolBar from the Object library to the view and place it at the bottom of
the screen. This will also include a UIBarButtonItem, which works pretty much
exactly like our old friend UIButton, but is customized to work in toolbars.

3. Resize the toolbar to make it fit the width of the screen. Next, click the Pin menu,
and pin the left, right, and bottom edges of the view. This will keep it at the bot‐
tom of the screen and make it always fill the width of the screen.

4. Select the button and set its System Item property to Action, as shown in
Figure 12-2. This will change its icon to the standard iOS share icon.

Figure 12-2. Setting the button to the Action mode

5. Open ImageAttachmentViewController.swift in the Assistant editor.
6. Hold down the Control key and drag from the toolbar button you just added into

ImageAttachmentViewController. Create a new action called shareImage.
7. Add the following code to the shareImage method. Note that the type for the

sender parameter is UIBarButtonItem—you’ll need to change it when you start
writing the code:

 @IBAction func shareImage(_ sender: UIBarButtonItem) {

 // Ensure that we're actually showing an image
 guard let image = self.imageView?.image else {
 return
 }

 let activityController = UIActivityViewController(
 activityItems: [image], applicationActivities: nil)

 // If we are being presented in a window that's a Regular width,
 // show it in a popover (rather than the default modal)
 if UIApplication.shared.keyWindow?.traitCollection
 .horizontalSizeClass == UIUserInterfaceSizeClass.regular {
 activityController.modalPresentationStyle = .popover

 activityController.popoverPresentationController?
 .barButtonItem = sender
 }

Sharing with UIActivityController | 321

 self.present(activityController, animated: true,
 completion: nil)

 }

When the share button is tapped, we want to prepare and present a UIActivityCon
troller, which will allow the user to do something with the image. What that some‐
thing actually is depends upon the capabilities of the system and the apps that the user
has installed. To create it, you pass in an array of activityItems, which can be a wide
variety of things: URLs, images, text, chunks of data, and so on. The UIActivityCon
troller will then determine what services can accept these items, and then let the
user choose what to do.

When the app is being presented in a larger screen, such as on an iPhone 6 Plus or
iPad, we want to show it as a popover. To detect this, we ask the window in which the
app is running to tell us about its horizontal size class—that is, whether it is in a hori‐
zontally “compact” view, or a horizontally larger “regular” view. If it’s in a regular-
sized view, we instruct the activity controller to use a popover, and we set the
barButtonItem property on the popoverPresentationController to the sender,
which will visually connect the popover to the share button in the toolbar.

Handoffs
Let’s imagine that your user’s on a bus, tapping out a note. She arrives at her stop, gets
off the bus, and walks into the office, still writing the note. Eventually, she reaches her
desk, and she wants to finish up the note. She could finish it up on the phone, but
she’s right in front of a dedicated workstation. Rather than deal with a tiny
touchscreen, she instead uses Handoff to move her work from her phone to the desk‐
top.

Handoff is a technology on the Mac, iOS, and watchOS that allows the user to start an
activity on one device and seamlessly move to another device (see Figure 12-3). The
way it works is this: applications register activity types with the system, which are
simple text strings that are the same across all of the different apps that can receive
the handoff. When the user opens a document, she marks it as the current activity;
this makes the operating system broadcast this fact to all nearby devices. When the
user decides to activate Handoff on another device, the originating device and the
receiving device quickly swap information about what he wants to do, and the receiv‐
ing device’s app delegate is then given the opportunity to continue the activity.

322 | Chapter 12: Supporting the iOS Ecosystem

Figure 12-3. Handoffs working with Safari on iOS and macOS

Because we’re using NSDocument and UIDocument, lots of the details
of this get taken care of for you. If you weren’t using the document
system, you’d need to manually create your own NSUserActivity
objects before calling becomeCurrent. For more information, see
the Handoff Programming Guide in the Xcode documentation.

To get started using Handoff, we need to describe to the system the type of “activity”
that is associated with editing this document. When we do this, the device will inform
all other devices that belong to the same person that this specific document is being
edited:

1. Select the project at the top of the Project Navigator (Figure 12-4).

Handoffs | 323

http://bit.ly/handoff_programming_guide

Figure 12-4. Selecting the project in the Project Navigator

2. Go to the Notes target settings (that is, the macOS app) and scroll down to the
Document Types section.

3. Add a new entry in “Additional document type properties” by expanding the
“Additional document type properties” triangle, selecting the CFBundleTypOS
Types entry, and clicking the + button that appears.

4. Call the new entry NSUbiquitousDocumentUserActivityType and set its type to
String. Set its value to au.com.secretlab.Notes.editing.

5. Now go to the same place in Notes-iOS, and add the same entry.

If you have been using a custom bundleID throughout, make
sure you use that here with .editing appended at the end. If
you don’t do this, handoffs will not work.

Once you’ve done this, the two applications will associate a Handoff-able activity
with their document types. When the document is open, the app will be able to
simply say to the system, “Begin broadcasting the fact that this document is
open.”

6. Open the AppDelegate.swift file that belongs to the Notes-iOS target (not the
macOS one!).

7. Implement the following method, which returns to the list of documents and
then signals that that view controller should resume an activity:
 func application(_ application: UIApplication,
 continue userActivity: NSUserActivity,
 restorationHandler: @escaping ([Any]?) -> Void) -> Bool {

 // Return to the list of documents
 if let navigationController =
 self.window?.rootViewController as? UINavigationController {

 navigationController.popToRootViewController(animated: false)

324 | Chapter 12: Supporting the iOS Ecosystem

 // We're now at the list of documents; tell the restoration
 // system that this view controller needs to be informed
 // that we're continuing the activity
 if let topViewController = navigationController.topViewController {
 restorationHandler([topViewController])
 }

 return true
 }
 return false
 }

The continueUserActivity method is called when the user has decided to hand
off the activity from one device to the next. The userActivity object contains
the information describing what the user wants to do, and this method is respon‐
sible for telling the app what needs to happen to let the user pick up from where
the last device left off.
It does this through the restorationHandler closure that it receives as a parame‐
ter. This closure takes an array of objects that the app should call the restoreU
serActivityState method on; this method receives the NSUserActivity as a
parameter, which can be used to continue the state.
The reason for doing this is to move as much of the logic that drives the continu‐
ation of the activity to the view controllers, instead of making the app delegate
have to know about the details of how documents get opened.
The way that we’ll handle this in this app is to return to the DocumentListView
Controller, and then indicate that the view controller should be told about the
handoff by passing it to the restorationHandler.

8. Open DocumentListViewController.swift.
9. Add the following method to the DocumentListViewController class:

 override func restoreUserActivityState(_ activity: NSUserActivity) {
 // We're being told to open a document

 if let url = activity.userInfo?[NSUserActivityDocumentURLKey] as? URL {

 // Open the document
 self.performSegue(withIdentifier: "ShowDocument", sender: url)
 }

 }

This method is called as a result of passing the DocumentListViewController to
the restorationHandler in continueUserActivity. Here, we extract the URL
for the document that the user wants to open by getting it from the NSUserActiv
ity’s userInfo dictionary, and then performing the ShowDocument segue, passing

Handoffs | 325

in the URL to open. This means that when the application is launched through
the Handoff system, the document list will immediately open the document that
the user wants.

10. Finally, add the following code to the viewWillAppear method of DocumentView
Controller to make the activity current:
 // If this document is not already open, open it
 if document.documentState.contains(UIDocumentState.closed) {
 document.open { (success) -> Void in
 if success == true {
 self.textView?.attributedText = document.text

 self.attachmentsCollectionView?.reloadData()

> // We are now engaged in this activity
> document.userActivity?.becomeCurrent()

 // Register for state change notifications
 self.stateChangedObserver = Notification.default
 .addObserver(
 forName: NSNotification.Name.UIDocumentStateChanged,
 object: document,
 queue: nil,
 using: { (notification) -> Void in
 self.documentStateChanged()
 })

 self.documentStateChanged()

 }

Every UIDocument has an NSUserActivity. To indicate to the system, and to
every other device that the user owns, that the user’s current task is editing this
document, we call becomeCurrent on the document’s userActivity. This causes
the current device to broadcast to all other devices in range, letting them know
that we’re offering to hand off this activity.
You can now test handoffs. Launch the iOS app on your phone, and then launch
the macOS app. Open a document on your phone, and a Handoff icon will
appear at the left of the dock on your Mac, as shown in Figure 12-5.

326 | Chapter 12: Supporting the iOS Ecosystem

Figure 12-5. Handoff on macOS

The reverse will also work on iOS: open a document on your Mac, and the iOS
app’s icon will appear on the lock screen (Figure 12-6).

Figure 12-6. Handoff on iOS—the handoff icon is shown in the bottom-left corner

Searchability
Spotlight, shown in Figure 12-7, is iOS’s built-in searching system. When you pull
down on the icons on the home screen, you enter Spotlight, where you can type and
search for content inside your device and on the web.

Searchability | 327

Figure 12-7. Searching with Spotlight on iOS

The next feature we’ll add is the ability for users to search the phone to find docu‐
ments that they’ve written. There are three different searching technologies that we
can use to support this: NSUserActivity objects, Core Spotlight, and web indexing:

• NSUserActivity allows you to index parts of your app—for example, if you have
an app that downloads and shows recipes, every time the user views a recipe, you
record that as an activity and describe how to get back to this screen; Spotlight
indexes this activity and displays it if the user searches for things that match the
activity’s description.

328 | Chapter 12: Supporting the iOS Ecosystem

• Core Spotlight gives you control over the search index: you manually submit
metadata items into the index. We’ll be covering using Core Spotlight in “Index‐
ing Activities” on page 329.

• Web indexing allows you to mark up websites for Apple’s search crawler to view.

Because we’re not building web apps in this book, we won’t be cov‐
ering web archiving. If you’re interested in it, you can read more
about it in the App Search Programming Guide, in the Xcode doc‐
umentation.

We’ll be covering marking NSUserActivity objects as searchable in this chapter. We’ll
also talk about creating a Spotlight indexing extension, which provides additional
search functionality by registering the contents of all documents in the app with Core
Spotlight.

Indexing Activities
We’ll start by adding support for indexing the app through NSUserActivity:

1. Open DocumentViewController.swift.
2. Import the Core Spotlight framework at the top of the file:

 import CoreSpotlight

3. Update the viewWillAppear method to add searchable metadata to the docu‐
ment’s user activity when the document is opened:
 // If this document is not already open, open it
 if document.documentState.contains(UIDocumentState.closed) {
 document.open { (success) -> Void in
 if success == true {
 self.textView?.attributedText = document.text

 self.attachmentsCollectionView?.reloadData()

> // Add support for searching for this document
> document.userActivity?.title = document.localizedName
>
> let contentAttributeSet
> = CSSearchableItemAttributeSet(
> itemContentType: document.fileType!)
>
> contentAttributeSet.title = document.localizedName
> contentAttributeSet.contentDescription = document.text.string
>
> document.userActivity?.contentAttributeSet

Searchability | 329

http://apple.co/22UCur2

> = contentAttributeSet
>
> document.userActivity?.isEligibleForSearch = true

 // We are now engaged in this activity
 document.userActivity?.becomeCurrent()

 // Register for state change notifications
 self.stateChangedObserver = Notification.default
 .addObserver(
 forName: NSNotification.Name.UIDocumentStateChanged,
 object: document,
 queue: nil,
 using: { (notification) -> Void in
 self.documentStateChanged()
 })

 self.documentStateChanged()

 }

This code adds further metadata to the document’s userActivity. First, it pro‐
vides a name for the document, which will appear in the Spotlight search results.
In addition, we create a CSSearchableItemAttributeSet, which is the (overcom‐
plicated) term for “stuff the search system uses to decide if it’s what the user’s
looking for.” In this case, we provide two pieces of information: the name again
and the text of the document.
We then provide this to the userActivity and mark it as available for searching.

You can now test searching. Run the app and open a document. Type some words
into the document, close the app, and go to the Search field (swipe down while on the
home screen). Type in some of the words that you added to the document, and your
document will appear! When you tap the search result, the app will launch, and you’ll
be taken to the document.

Spotlight Extensions
If you want your app’s contents to appear in Spotlight, you need to add information
about that content to the searchable index. The searchable index is the search database
used to locate everything on the device; if it’s not in the index, it won’t appear when
you search for it.

In “Searchability” on page 327, we added some initial support for searchability by
marking the NSUserActivities that represent the documents as searchable. How‐
ever, the limitation of this is that documents only become searchable when they’re

330 | Chapter 12: Supporting the iOS Ecosystem

opened, and if users change their content on another device, the search index won’t
get updated to reflect their new contents until they’re opened.

To address this, we’ll add a Spotlight indexing app extension. This is periodically
awakened by the system and asked to update the searchable index. The specifics of
what this involves are entirely up to your app; in our case, we’ll scan the entire collec‐
tion of documents.

App Extensions
An app extension is a program that’s embedded in an app and used by the system for
some auxiliary role. There are many different app extension types available, in addi‐
tion to the Spotlight extension that we’re adding in this chapter:

Action extension
Appear as entries in a UIActivityController, allowing your app to receive and
process content. Dropbox’s “Save to Dropbox” feature is an action extension.

Audio unit extensions
Allow an app to provide an audio unit, which is a plug-in that audio-processing
apps can use to generate, modify, or receive audio.

Content blocker extensions
Allow an app to provide a list of URLs and URL patterns from which Safari will
refuse to load resources. Content blockers are primarily designed to let apps pro‐
vide ad-blocking functionality to Safari by filtering out content from specific
sites, such as ads hosted on ad-providing servers.

Custom keyboard extensions
Allow your app to provide an entirely customized keyboard for the user to use. A
famous example is the gesture-driven keyboard Swype.

Document providers
Allow other applications to access files stored in your app’s sandbox. For exam‐
ple, the Git version control app Working Copy allows other applications to access
files under its control and make changes.

Photo editing extensions
Loaded by the Photos application and can be used to create a processed version
of a photo in the user’s photo library. The app Waterlogue is an excellent example
of this: users can create a watercolor version of any photo without having to leave
the Photos app.

Share extensions
Closely related to action extensions and allow your app to receive content for
sharing. The Twitter, Facebook, and Pinterest apps all provide share extensions.

Searchability | 331

Shared Links extensions
Allow apps to place links in the Safari “Shared Links” section. For example, the
Twitter app provides one of these extensions, which makes any links from people
you follow appear in Safari.

Let’s get started by adding the extension to the project:

1. Open the File menu, and choose New→Target.
2. Choose iOS→Application Extension→Spotlight Index Extension (see

Figure 12-8).

Figure 12-8. Adding the Spotlight Index Extension target

The reason we’re adding a new target is because extensions are technically
entirely separate programs, which means they’re compiled and linked separately
from their container application.

3. Name the new target Notes-SpotlightIndexer.
Once you click Finish, Xcode will pop up a little window asking if you want to
activate the new scheme created. When you created the Spotlight extension,
Xcode also made a new scheme for us to use to build the extension.

4. Click Activate to move to the new scheme.

332 | Chapter 12: Supporting the iOS Ecosystem

We now need to give the extension access to the iCloud container, because to access
the user’s documents, we need access to the container in which they’re located:

1. Go to the target’s properties and then the Capabilities tab.
2. Turn on iCloud and wait for it to finish spinning.
3. Turn on iCloud Documents.
4. Select the iCloud container used by the Mac and iOS apps, and ensure that no

other container is selected. To do this, change “Use default container” to “Specify
custom container.”

The extension now has permission to access the container.

Next, we need to ensure that the Notes-SpotlightIndexer target is able to use the enu‐
meration that defines the names of important files:

1. Open the DocumentCommon.swift file, and open the File Inspector by choosing
View→Utilities→Show File Inspector.

2. Ensure that the checkbox next to “Notes-SpotlightIndexer” is selected
(Figure 12-9).

Figure 12-9. Adding the DocumentCommon.swift file to the Notes-SpotlightIndexer
target

Searchability | 333

The order of the list of targets in your project might look slightly
different. This is OK, as long as the file is added to the right targets.

Next, we’ll implement the Spotlight indexer itself:

1. Open IndexRequestHandler.swift, which was created when you added the target
—it’s provided as part of the template code that Xcode generates. This file imple‐
ments the core functionality of the indexer by implementing the IndexReques
tHandler class.

2. Add the following line of code to the top of the file:
 import UIKit

There are two main methods in the index request handler:

• searchableIndex(_,reindexAllSearchableItemsWithAcknowledgementHan

dler:)

• searchableIndex(_,reindexSearchableItemsWithIdentifiers:, acknowl

edgementHandler:)

The first method is called to let the index updater know that it should rescan
the entire collection of data and add it to Spotlight. The second is called to let
the updater know that it should rescan certain specific files.
To allow the extension to function, we first need to be able to get the collection
of all documents known to the app. To do this, we’ll implement a computed
property that looks for all documents, in both the local Documents folder and
in the iCloud container.

3. Add the following computed property to the IndexRequestHandler class:
 var availableFiles : [URL] {

 let fileManager = FileManager.default

 var allFiles : [URL] = []

 // Get the list of all local files
 if let localDocumentsFolder
 = fileManager.urls(for: .documentDirectory,
 in: .userDomainMask).first {
 do {

 let localFiles = try fileManager
 .contentsOfDirectory(atPath: localDocumentsFolder.path)
 .map({

334 | Chapter 12: Supporting the iOS Ecosystem

 localDocumentsFolder.appendingPathComponent($0,
 isDirectory: false)
 })

 allFiles.append(contentsOf: localFiles)
 } catch {
 NSLog("Failed to get list of local files!")
 }
 }

 // Get the list of documents in iCloud
 if let documentsFolder = fileManager
 .url(forUbiquityContainerIdentifier: nil)?
 .appendingPathComponent("Documents", isDirectory: true) {
 do {

 // Get the list of files
 let iCloudFiles = try fileManager
 .contentsOfDirectory(atPath: documentsFolder.path)
 .map({
 documentsFolder.appendingPathComponent($0,
 isDirectory: false)
 })

 allFiles.append(contentsOf: iCloudFiles)

 } catch {
 // Log an error and return the empty array
 NSLog("Failed to get contents of iCloud container")
 return []
 }

 }

 // Filter these to only those that end in ".note",
 // and return NSURLs of these

 return allFiles
 .filter({ $0.lastPathComponent.hasSuffix(".note") })

 }

This method builds an array of URL objects, first by looking in the local Docu‐
ments folder, and second by accessing the iCloud folder if it’s able to. It then fil‐
ters this array to include only files ending in .note.
Each document that we want to add to the index needs to be represented by a
CSSearchableItem object. This object contains the actual information that will
be added to the Spotlight index and contains three critical pieces of information:
the title of the document, its contents, and its URL.

Searchability | 335

4. Add the following method to IndexRequestHandler:
 func itemForURL(_ url: URL) -> CSSearchableItem? {

 // If this URL doesn't exist, return nil
 if (url as NSURL).checkResourceIsReachableAndReturnError(nil) == false
{
 return nil
 }

 // Replace this with your own type identifier
 let attributeSet = CSSearchableItemAttributeSet(
 itemContentType: "au.com.secretlab.Note")

 attributeSet.title = url.lastPathComponent

 // Get the text in this file
 let textFileURL = url.appendingPathComponent(
 NoteDocumentFileNames.TextFile.rawValue)

 if let textData = try? Data(contentsOf: textFileURL),
 let text = try? NSAttributedString(data: textData,
 options:
 [NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType],
 documentAttributes: nil) {

 attributeSet.contentDescription = text.string

 } else {
 attributeSet.contentDescription = ""
 }

 let item =
 CSSearchableItem(uniqueIdentifier: url.absoluteString,
 domainIdentifier: "au.com.secretlab.Notes",
 attributeSet: attributeSet)

 return item
 }

You’ll need to change the domainIdentifier from
au.com.secretlab.Notes to your own app’s bundle identifier.

This method generates a CSSearchableItem for a given URL. It does this by
attempting to reach into the document and extract the text content from the
Text.rtf file it contains. It then combines this with the document’s name and its

336 | Chapter 12: Supporting the iOS Ecosystem

URL, which it uses as the searchable item’s unique identifier, and returns the
item. If the file that the URL points to doesn’t exist, it returns nil.

Next, we need to implement the method that updates the entire index. This method is
passed an acknowledgementHandler parameter, which is a closure that the method
needs to call when the work of updating the index is complete.

This method, and the reindexSearchableItemsWithIdentifiers
method, must call the acknowledgementHandler. If it doesn’t, then
iOS will assume that the attempt to update the index has failed.

1. Delete the searchableIndex(_, reindexAllSearchableItemsWithAcknowledge
mentHandler:) method, and replace it with the following code:
 override func searchableIndex(_ searchableIndex: CSSearchableIndex,
 reindexAllSearchableItemsWithAcknowledgementHandler
 acknowledgementHandler: @escaping () -> Void) {

 // Reindex all data with the provided index

 let files = availableFiles

 var allItems : [CSSearchableItem] = []

 for file in files {
 if let item = itemForURL(file) {
 allItems.append(item)
 }

 }

 searchableIndex.indexSearchableItems(allItems) { (error) -> Void in
 acknowledgementHandler()
 }

 }

This method simply gets the list of all available files and creates a CSSearchableI
tem for them. It then provides this list of searchable items to the index; when this
is complete, a closure is run that calls the acknowledgementHandler.
Finally, we need to implement the method that takes a specific set of CSSearcha
bleItems and refreshes the index with their contents.

2. Delete the searchableIndex(_, reindexSearchableItemsWithIdentifiers:,
acknowledgementHandler:) method, and replace it with the following code:

Searchability | 337

 override func searchableIndex(_ searchableIndex: CSSearchableIndex,
 reindexSearchableItemsWithIdentifiers identifiers: [String],
 acknowledgementHandler: @escaping () -> Void) {

 // Reindex any items with the given identifiers and the provided index

 var itemsToIndex : [CSSearchableItem] = []
 var itemsToRemove : [String] = []

 for identifier in identifiers {

 if let url = URL(string: identifier), let item = itemForURL(url) {
 itemsToIndex.append(item)
 } else {
 itemsToRemove.append(identifier)
 }
 }

 searchableIndex.indexSearchableItems(itemsToIndex) { (error) -> Void in
 searchableIndex
 .deleteSearchableItems(withIdentifiers: itemsToRemove) {
 (error) -> Void in
 acknowledgementHandler()
 }
 }

 }

When this method is called, it receives a list of identifiers for CSSearchableI
tems. Because the identifiers are URLs, we can use them to access the specific
documents that need reindexing. To reindex a document, we just generate a new
CSSearchableItem with the same identifier; when it’s submitted to the indexer, it
will replace the older one.

We also need to use this opportunity to remove items from the index. If the user has
deleted a document, we need to remove its corresponding entry from the index. We
do this by detecting when we fail to create a CSSearchableItem; if we do, then the
document is missing, and we add the document’s identifier to a list of items to
remove.

Finally, we’ll make the app capable of opening documents after the user has selected
them:

1. Open DocumentListViewController.swift.
2. Import the Core Spotlight framework at the top of the file:

 import CoreSpotlight

3. Add the following code to the restoreUserActivityState method:

338 | Chapter 12: Supporting the iOS Ecosystem

 override func restoreUserActivityState(_ activity: NSUserActivity) {
 // We're being told to open a document

 if let url = activity.userInfo?[NSUserActivityDocumentURLKey] as? URL {

 // Open the document
 self.performSegue(withIdentifier: "ShowDocument", sender: url)
 }

> // We're coming from a search result
> if let searchableItemIdentifier = activity
> .userInfo?[CSSearchableItemActivityIdentifier] as? String,
> let url = URL(string: searchableItemIdentifier) {
> // Open the document
> self.performSegue(withIdentifier: "ShowDocument", sender: url)
> }

 }

When the user taps a search result in Spotlight, the app is launched just as if the
user used Handoff (see Figure 12-10): an NSUserActivity is given to the app del‐
egate’s continueUserActivity method, which summons the document list. The
document list, in its restoreUserActivityState method, can then check to see
if the activity is actually a search result. If it is, we get the result’s identifier, using
the CSSearchableItemActivityIdentifier key. Remember that this is a URL, so
we can immediately load it.

Searchability | 339

Figure 12-10. Search results and a corresponding note open in the app

You’re done! The app will now periodically index all of its documents, making them
appear in the search results.

340 | Chapter 12: Supporting the iOS Ecosystem

Low Power Mode
The indexing extension will run in the background, even when the phone is locked.
This means that the app is consuming power, which can be a problem when the bat‐
tery is low.

Low power mode is a feature of iOS, introduced in iOS 9, that helps to extend the
available battery power of the device by disabling as many features as it can, while still
preserving basic device operation. When enabled, low power mode disables:

• Background apps
• Background mail fetch
• Certain animated UI elements and visual effects

iOS devices will automatically offer to enter low power mode when they hit 20% bat‐
tery, but users can choose to activate it at any time in Settings.

Your application should respect a user’s low power mode settings and postpone any
CPU- or network-intensive operations until low power mode is turned off. To do this,
listen for NSProcessInfoPowerStateDidChangeNotification notifications, in this
case by adding a new observer to our app’s NSNotificationCenter.

When our selector method is called, we can then check if NSProcessInfo.proces
sInfo().lowPowerModeEnabled is true, and take steps to reduce our power con‐
sumption if it is.

In the case of background-running extensions like the Spotlight indexing extension,
you don’t generally need to respond to low power mode, because iOS will simply not
run the background extension while low power mode is active. However, it’s useful to
know about low power mode when your app is in the foreground.

Conclusion
When an application participates in the wider iOS ecosystem, it feels like it “belongs”
on the user’s device. When you take advantage of as many system features as possible,
rather than reinventing new systems from whole cloth, it’s more likely that users will
consider your apps an indispensable part of their device use.

Conclusion | 341

CHAPTER 13

Multimedia and Location Attachments

In this chapter, we’ll improve the iOS app by adding more capabilities to the attach‐
ment system. We’ll add support for audio and video attachments as well as an attach‐
ment to store where the note was created.

In Notes, each attachment is represented by a file that’s added to the document’s
Attachments directory and is managed by a view controller. Because of the architec‐
ture of the application, all we need to do to add support for different attachment types
is to create a new view controller for it and add code to a couple of existing methods
in DocumentListViewController to make them open the necessary view controller
for each attachment type.

Let’s get started by building support for adding audio attachments.

Audio Attachments
This attachment we’ll add gives us the ability to record audio and play it back. We’ll
do this by using the AVFoundation framework, which includes two classes: AVAudio
Recorder will be used to record the audio, and AVAudioPlayer will be used to play it
back.

We’re just scratching the surface of the iOS audio capabilities. You
can learn more about the audio frameworks on iOS in Apple’s doc‐
umentation.

First, we’ll add some icons that will be needed for this additional screen:

1. Open Assets.xcassets.

343

http://apple.co/22UK1pM
http://apple.co/22UK1pM

2. Add the Audio, Record, Play, and Stop icons to the asset catalog.

Next, we’ll add an entry to the list of attachment types for audio:

1. Add the following code to the addAttachment method:
 func addAttachment(_ sourceView : UIView) {

 let title = "Add attachment"

 let actionSheet
 = UIAlertController(title: title,
 message: nil,
 preferredStyle: UIAlertControllerStyle
 .actionSheet)

 // If a camera is available to use...
 if UIImagePickerController
 .isSourceTypeAvailable(UIImagePickerControllerSourceType.camera) {
 // This variable contains a closure that shows the image picker,
 // or asks the user to grant permission.
 var handler : (_ action:UIAlertAction) -> Void

 let authorizationStatus = AVCaptureDevice
 .authorizationStatus(forMediaType: AVMediaTypeVideo)

 switch authorizationStatus {
 case .authorized:
 fallthrough
 case .notDetermined:
 // If we have permission, or we don't know if it's been denied,
 // then the closure shows the image picker.
 handler = { (action) in
 self.addPhoto()
 }
 default:

 // Otherwise, when the button is tapped, ask for permission.
 handler = { (action) in

 let title = "Camera access required"
 let message = "Go to Settings to grant permission to" +
 "access the camera."
 let cancelButton = "Cancel"
 let settingsButton = "Settings"

 let alert = UIAlertController(title: title,
 message: message,
 preferredStyle: .alert)

344 | Chapter 13: Multimedia and Location Attachments

 // The Cancel button just closes the alert.
 alert.addAction(UIAlertAction(title: cancelButton,
 style: .cancel, handler: nil))

 // The Settings button opens this app's settings page,
 // allowing the user to grant us permission.
 alert.addAction(UIAlertAction(title: settingsButton,
 style: .default, handler: { (action) in

 if let settingsURL = URL(
 string: UIApplicationOpenSettingsURLString) {

 UIApplication.shared
 .openURL(settingsURL)
 }

 }))

 self.present(alert,
 animated: true,
 completion: nil)
 }
 }

 // Either way, show the Camera item; when it's selected, the
 // appropriate code will run.
 actionSheet.addAction(UIAlertAction(title: "Camera",
 style: UIAlertActionStyle.default, handler: handler))
 }

> actionSheet.addAction(UIAlertAction(title: "Audio",
> style: UIAlertActionStyle.default, handler: { (action) -> Void in
> self.addAudio()
> }))

 actionSheet.addAction(UIAlertAction(title: "Cancel",
 style: UIAlertActionStyle.cancel, handler: nil))

 // If this is on an iPad, present it in a popover connected
 // to the source view
 if UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiom.pad {

 actionSheet.modalPresentationStyle
 = .popover
 actionSheet.popoverPresentationController?.sourceView
 = sourceView
 actionSheet.popoverPresentationController?.sourceRect
 = sourceView.bounds
 }

Audio Attachments | 345

 self.present(actionSheet, animated: true, completion: nil)

 }

Just like when we added support for photo attachments, we also need to add a
new entry for audio attachments.

2. Add the addAudio method to DocumentViewController:
 func addAudio() {
 self.performSegue(withIdentifier: "ShowAudioAttachment", sender: nil)
 }

Additionally, we need to trigger the right segue when the user decides to add an
audio attachment.

3. Open the File menu and choose New→File.
4. Create a new UIViewController subclass named AudioAttachmentViewControl

ler.
5. Open AudioAttachmentViewController.swift.
6. Import the AVFoundation framework into view controller; this framework

includes everything we could possibly need for loading, playing, and pausing
audio and video content.

7. Make AudioAttachmentViewController conform to the AttachmentViewer and
AVAudioPlayerDelegate protocols:
 class AudioAttachmentViewController: UIViewController, AttachmentViewer,
 AVAudioPlayerDelegate

8. Add the attachmentFile and document properties, which are required by the
AttachmentViewer protocol:
 var attachmentFile : FileWrapper?
 var document : Document?

9. Add outlet properties for the record, play, and stop buttons that we’re about to
add:
 @IBOutlet weak var stopButton: UIButton!
 @IBOutlet weak var playButton: UIButton!
 @IBOutlet weak var recordButton: UIButton!

10. Finally, add an audio player and audio recorder:
 var audioPlayer : AVAudioPlayer?
 var audioRecorder : AVAudioRecorder?

Time to create the user interface!
11. Open Main.storyboard.

346 | Chapter 13: Multimedia and Location Attachments

12. Drag in a new view controller, and set its class to AudioAttachmentViewControl
ler in the Identity Inspector.

13. Hold down the Control key and drag from the document view controller to this
new view controller. Choose “popover” from the list of segue types:

• Set the newly created segue’s Anchor View to the document view controller’s
view.

• Set the identifier for this segue to ShowAudioAttachment.
We’ll use a stack view to manage the three different buttons. Only one of them
will appear at a time, and we want the currently visible button to appear in the
center of the screen. Rather than overlay the buttons, we’ll put them all in a
centered stack view.

14. Search for UIStackView in the Object library and drag a vertical stack view into
the audio attachment view controller’s interface (Figure 13-1).

Figure 13-1. A vertical stack view

15. Center the stack view in the screen. Next, click the Align button at the lower-
right corner, and turn on both “Horizontally in container” and “Vertically in con‐
tainer.” Click Add 2 Constraints; this will add centering constraints to the stack
view.

Audio Attachments | 347

16. Drag a new UIButton into the stack view. In the Attributes Inspector, set type to
Custom, delete the label text, and set image to Record.

The stack view will resize to match the size of the button when
you add the button. This is expected!

17. Repeat this process, adding two more buttons, with Play and Stop icons.
When you’re done, the stack view should look like Figure 13-2.

Figure 13-2. The view controller’s interface

348 | Chapter 13: Multimedia and Location Attachments

The order of the buttons doesn’t matter, so if you added the
buttons in different positions and you like that, stick with it.

18. Next, connect each button to its corresponding outlet; the record button should
be connected to recordButton, and so on for the rest.

19. Connect each button to new actions in AudioAttachmentViewController, called
recordTapped, playTapped, and stopTapped:
 @IBAction func recordTapped(_ sender: AnyObject) {
 beginRecording()
 }
 @IBAction func playTapped(_ sender: AnyObject) {
 beginPlaying()
 }
 @IBAction func stopTapped(_ sender: AnyObject) {
 stopRecording()
 stopPlaying()
 }

These methods simply respond to the buttons being tapped. The stop button
serves a dual purpose—when tapped, it stops both the recorder and the player.

20. Implement the updateButtonState method:
 func updateButtonState() {
 if self.audioRecorder?.isRecording == true ||
 self.audioPlayer?.isPlaying == true {

 // We are either recording or playing, so
 // show the stop button
 self.recordButton.isHidden = true
 self.playButton.isHidden = true

 self.stopButton.isHidden = false
 } else if self.audioPlayer != nil {

 // We have a recording ready to go
 self.recordButton.isHidden = true
 self.stopButton.isHidden = true

 self.playButton.isHidden = false
 } else {

 // We have no recording.

 self.playButton.isHidden = true
 self.stopButton.isHidden = true

Audio Attachments | 349

 self.recordButton.isHidden = false
 }

 }

The updateButtonState method is called from multiple places in this class. All it
does is ensure that the right button is visible, based on whether the audio player
is playing, or whether the audio recorder is recording.

21. Implement the beginRecording and stopRecording methods:
 func beginRecording () {

 // Ensure that we have permission. If we don't,
 // we can't record, but should display a dialog that prompts
 // the user to change the settings.

 AVAudioSession.sharedInstance().requestRecordPermission {
 (hasPermission) -> Void in

 guard hasPermission else {

 // We don't have permission. Let the user know.
 let title = "Microphone access required"
 let message = "We need access to the microphone" +
 "to record audio."
 let cancelButton = "Cancel"
 let settingsButton = "Settings"

 let alert = UIAlertController(title: title, message: message,
 preferredStyle: .alert)

 // The Cancel button just closes the alert.
 alert.addAction(UIAlertAction(title: cancelButton,
 style: .cancel, handler: nil))

 // The Settings button opens this app's settings page,
 // allowing the user to grant us permission.
 alert.addAction(UIAlertAction(title: settingsButton,
 style: .default, handler: { (action) in

 if let settingsURL
 = URL(string: UIApplicationOpenSettingsURLString) {
 UIApplication.shared
 .openURL(settingsURL)
 }

 }))

 self.present(alert,

350 | Chapter 13: Multimedia and Location Attachments

 animated: true,
 completion: nil)
 return
 }

 // We have permission!

 // Try to use the same filename as before, if possible

 let fileName = self.attachmentFile?.preferredFilename ??
 "Recording \(Int(arc4random())).wav"

 let temporaryURL = URL(fileURLWithPath: NSTemporaryDirectory())
 .appendingPathComponent(fileName)

 do {
 self.audioRecorder = try AVAudioRecorder(url: temporaryURL,
 settings: [:])

 self.audioRecorder?.record()
 } catch let error as NSError {
 NSLog("Failed to start recording: \(error)")
 }

 self.updateButtonState()
 }

 }
 func stopRecording () {
 guard let recorder = self.audioRecorder else {
 return
 }
 recorder.stop()

 self.audioPlayer = try? AVAudioPlayer(contentsOf: recorder.url)

 updateButtonState()
 }

The beginRecording method first determines if the user has granted permission
to access the microphone. If permission is not granted, we create and display an
alert box letting the user know that it’s not possible to record. If it is, we create a
URL that points to a temporary location, and ask the audio recorder to begin
recording.
Much like what we had to do with the camera permissions, we need to set a spe‐
cific key inside the applications info.plist—without this key-value pair, iOS
will refuse to let our app use the microphone. Inside info.plist add a new row
into the dictionary. Type Privacy - Microphone Usage Description for the

Audio Attachments | 351

key and type a message you want to be displayed when the app first tries to use
the microphone. We used We'll use the microphone to record audio

attachments, but you should go with whatever works best for you.

You can’t assume that the user has given permission to access the
microphone. As a result, if you want to record audio, you need to
first check if the app has permission by calling the AVSession
method requestRecordPermission. This method takes a closure as
a parameter, which receives as its parameter a bool value indicating
whether the app has permission to record.
This closure may not be called immediately. If it’s the first time the
app has ever asked for permission, then iOS will ask if the user
wants to grant your app permission. After the user answers, the
closure will be called.
If you really need the user to grant permission, and it’s been previ‐
ously withheld, you can send the user to the app’s Settings page,
which contains the controls for granting permission. Be careful
about annoying the user about this, though!

1. Implement the beginPlaying and stopPlaying methods:
 func beginPlaying() {
 self.audioPlayer?.delegate = self
 self.audioPlayer?.play()

 updateButtonState()
 }

 func stopPlaying() {
 audioPlayer?.stop()

 updateButtonState()
 }

The beginPlaying and stopPlaying methods are quite straightforward: they
start and stop the audio player, and then call updateButtonState to ensure that
the correct button is appearing. Importantly, beginPlaying also sets the dele
gate of the audio player so that the AudioAttachmentViewController receives a
method call when the audio finishes playing.

2. Implement the prepareAudioPlayer method, which works out the location of
the file to play from and prepares the audio player:
 func prepareAudioPlayer() {

 guard let data = self.attachmentFile?.regularFileContents else {

352 | Chapter 13: Multimedia and Location Attachments

 return
 }

 do {
 self.audioPlayer = try AVAudioPlayer(data: data)
 } catch let error as NSError {
 NSLog("Failed to prepare audio player: \(error)")
 }

 self.updateButtonState()

 }

The prepareAudioPlayer method checks to see if the AudioAttachmentViewCon
troller has an attachment to work with; if it does, it attempts to create the audio
player, using the data stored inside the attachment.

3. Implement the audioPlayerDidFinishPlaying method, which is part of the
AVAudioPlayerDelegate protocol:
 func audioPlayerDidFinishPlaying(_ player: AVAudioPlayer,
 successfully flag: Bool) {
 updateButtonState()
 }

When the audio finishes playing, we have a very simple task to complete: we
update the state of the button. Because the audio player is no longer playing, it
will change from the “stop” symbol to the “play” symbol.

4. Finally, implement the viewDidLoad and viewWillDisappear methods:
 override func viewDidLoad() {

 if attachmentFile != nil {
 prepareAudioPlayer()
 }

 // Indicate to the system that we will be both recording audio,
 // and also playing back audio
 do {
 try AVAudioSession.sharedInstance()
 .setCategory(AVAudioSessionCategoryPlayAndRecord)
 } catch let error as NSError {
 print("Error preparing for recording! \(error)")
 }

 updateButtonState()
 }
 override func viewWillDisappear(_ animated: Bool) {
 if let recorder = self.audioRecorder {

Audio Attachments | 353

 // We have a recorder, which means we have a recording to attach
 do {
 attachmentFile =
 try self.document?.addAttachmentAtURL(recorder.url)

 prepareAudioPlayer()

 } catch let error as NSError {
 NSLog("Failed to attach recording: \(error)")
 }
 }
 }

The viewDidLoad method first gets the audio player prepared, if an audio attach‐
ment is present. It then signals to the system that the application will be both
playing back and recording audio; this enables the microphone, and permits
simultaneous use of the microphone and the speaker. Finally, it updates the but‐
ton to whatever state is appropriate, depending on whether we have audio to play.
The viewWillDisappear method is responsible for saving any recorded audio.
Because the AVAudioRecorder saves directly to a temporary URL, we simply need
to copy it into the Document by calling addAttachmentAtURL.

Now we’ll add support for working with audio attachments in the document view
controller. First, we’ll make the Document class return a suitable image for audio
attachments, and then we’ll make the DocumentViewController present the AudioAt
tachmentViewController when an audio attachment is tapped:

1. Open Document.swift, and add the following code to FileWrapper’s thumbnail
Image method:
 func thumbnailImage() -> UIImage? {

 if self.conformsToType(kUTTypeImage) {
 // If it's an image, return it as a UIImage

 // Ensure that we can get the contents of the file
 guard let attachmentContent = self.regularFileContents else {
 return nil
 }

 // Attempt to convert the file's contents to text
 return UIImage(data: attachmentContent)
 }

> if (self.conformsToType(kUTTypeAudio)) {
> return UIImage(named: "Audio")
> }

354 | Chapter 13: Multimedia and Location Attachments

 // We don't know what type it is, so return nil
 return nil
 }

All we’re doing here is making the FileWrapper return the Audio.pdf image if it
represents an audio file of any kind.

2. Open DocumentViewController.swift, and add the following code to Document
ViewController’s collectionView(_, didSelectItemAt indexPath:) method:
 func collectionView(_ collectionView: UICollectionView,
 didSelectItemAt indexPath: IndexPath) {

 // Do nothing if we are editing
 if self.isEditingAttachments {
 return
 }

 // Get the cell that the user interacted with; bail if we can't get it
 guard let selectedCell = collectionView
 .cellForItem(at: indexPath) else {
 return
 }

 // Work out how many cells we have
 let totalNumberOfCells = collectionView
 .numberOfItems(inSection: indexPath.section)

 // If we have selected the last cell, show the Add screen
 if indexPath.row == totalNumberOfCells - 1 {
 addAttachment(selectedCell)
 }
 else {
 // Otherwise, show a different view controller based on the type
 // of the attachment
 guard let attachment = self.document?
 .attachedFiles?[(indexPath as IndexPath).row] else {

 NSLog("No attachment for this cell!")
 return
 }

 let segueName : String?

 if attachment.conformsToType(kUTTypeImage) {
 segueName = "ShowImageAttachment"

 }
> else if attachment.conformsToType(kUTTypeAudio) {
> segueName = "ShowAudioAttachment"
> }

Audio Attachments | 355

 } else {

 // We have no view controller for this.
 // Instead, show a UIDocumentInteractionController

 self.document?.URLForAttachment(attachment,
 completion: { (url) -> Void in

 if let attachmentURL = url {
 let documentInteraction
 = UIDocumentInteractionController(url: attachmentURL)

 documentInteraction
 .presentOptionsMenu(from: selectedCell.bounds,
 in: selectedCell, animated: true)
 }

 })

 segueName = nil
 }

 // If we have a segue, run it now
 if let theSegue = segueName {
 self.performSegue(withIdentifier: theSegue,
 sender: selectedCell)
 }

 }
 }

Again, there’s not a huge amount of stuff we need to add here; we simply need to
run the ShowAudioAttachment segue when the user selects an audio attachment.

Unfortunately, the simulator doesn’t allow you to record audio, as it
doesn’t have any actual recording hardware. It will, however, allow
you to play back any audio you recorded on other devices.

You can now add and play back audio attachments!

Video Attachments
iOS has extensive video capture abilities, so we’re now going to add support for
recording video to our app. Unlike with the first two types of attachments that we’ve

356 | Chapter 13: Multimedia and Location Attachments

implemented, we don’t need to implement our own view controller; instead, we’ll
make use of iOS-provided view controllers. We’ll make the UIImagePicker

Controller—which we first mentioned back in “Adding Image Attachments” on page
293—record video, and we’ll make use of a new view controller, AVPlayerViewCon
troller, to actually play the video back:

1. First, we’ll add an icon to represent this type of attachment. Open Assets.xcassets
and add the Video icon to it.

2. Next, we’ll add support to the Document class to make it return an image for vid‐
eos. Open Document.swift, and add the following code to FileWrapper’s thumb
nailImage method:
 func thumbnailImage() -> UIImage? {

 if self.conformsToType(kUTTypeImage) {
 // If it's an image, return it as a UIImage

 // Ensure that we can get the contents of the file
 guard let attachmentContent = self.regularFileContents else {
 return nil
 }

 // Attempt to convert the file's contents to text
 return UIImage(data: attachmentContent)
 }

 if (self.conformsToType(kUTTypeAudio)) {
 return UIImage(named: "Audio")
 }

> if (self.conformsToType(kUTTypeMovie)) {
> return UIImage(named: "Video")
> }

 // We don't know what type it is, so return nil
 return nil
 }

As you might have guessed, this detects whether the file wrapper is any type of
movie, and returns the Video.pdf image you just added.

3. We’ll now make changes to the addPhoto method that allows the user to record
video in addition to taking photos. Open DocumentViewController.swift and add
the following code to the addPhoto method:
 func addPhoto() {
 let picker = UIImagePickerController()

 picker.sourceType = .camera

Video Attachments | 357

> picker.mediaTypes = UIImagePickerController
> .availableMediaTypes(
> for: UIImagePickerControllerSourceType.camera)!

 picker.delegate = self

 self.shouldCloseOnDisappear = false

 self.present(picker, animated: true, completion: nil)
 }

By default, a UIImagePickerController will only support taking photos—in the
overwhelming majority of all use cases, that’s all you need. However, you can
control what types of media the image picker will accept by modifying the medi
aTypes property. In this case, we’re asking the image picker class for all types of
media that the camera can produce, and then telling the image picker that we’ll
take them all.

4. Next, we’ll make the document picker capable of detecting when the user recor‐
ded a video. If the user did, we get a URL that points at the recorded video, which
means that we can add it as an attachment. Update the imagePickerControl
ler(_, didFinishPickingMediaWithInfo:) method with the following code:
 func imagePickerController(_ picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : Any]) {
 do {

 let edited = UIImagePickerControllerEditedImage
 let original = UIImagePickerControllerOriginalImage
 if let image = (info[edited] as? UIImage
 ?? info[original] as? UIImage) {

 guard let imageData =
 UIImageJPEGRepresentation(image, 0.8) else {
 throw err(.cannotSaveAttachment)
 }

 try self.document?.addAttachmentWithData(imageData,
 name: "Image \(arc4random()).jpg")

 self.attachmentsCollectionView?.reloadData()

> } else if let mediaURL
> = (info[UIImagePickerControllerMediaURL]) as? URL {
>
> try self.document?.addAttachmentAtURL(mediaURL)
 } else {
 throw err(.cannotSaveAttachment)
 }

358 | Chapter 13: Multimedia and Location Attachments

 } catch let error as NSError {
 NSLog("Error adding attachment: \(error)")
 }

 self.dismiss(animated: true, completion: nil)
 }

When we first implemented the ability to take photos, we used the UIImagePick
erControllerOriginalImage and UIImagePickerControllerEditedImage to
retrieve the photo from the info dictionary. However, we now need to be able to
get videos as well. We can detect if the user took a video by checking to see if
there’s any value in the info dictionary for the UIImagePickerControllerMe
diaURL key. This URL points to the location on disk of the video the user took;
this makes it extremely convenient, since we can then use it with the addAttach
mentAtURL method to add the attachment.

5. Run the app—you can now capture video!

Next, we’ll make it possible to view the recorded video. We’ll do this by preparing a
built-in view controller type, called AVPlayerViewController, and using that to show
the video. This will also enable us to show the video in Picture in Picture mode,
which lets users opt to view a video playing in their apps in a movable and resizeable
window that sits on top of other content, allowing them to use other apps while they
watch videos.

The AVPlayerViewController is the view controller used in the built-in Videos appli‐
cation. It’s capable of playing any video format that iOS can natively play.

To work, AVPlayerViewController requires a URL that points to the video file the
user wants to play. Up until now, we’ve been able to work directly with the data inside
the attachment FileWrappers, but that won’t work for video. Part of the reason for
this is that video files can be huge—we don’t want to have to load them into memory
in the form of a Data in order to work with them.

We therefore need to be able to ask the Document class to provide us with a URL for a
given attachment. This has a complication, however: if we ask for the URL for an
attachment that has just been added, before the document is saved, then the attach‐
ment may not yet have been written to disk, which means it has no URL.

To solve this, we’ll force the Document to save itself to disk before we attempt to get
the URL. However, this has its own complication: saving the document is an asyn‐
chronous task, meaning that it might take some time to complete. Therefore, any
method that asks for the URL of an attachment must itself be asynchronous: it needs to
take a closure as a parameter that, after the document finishes saving, is called. This
closure will receive as its parameter the URL for the attachment.

Video Attachments | 359

1. Open Document.swift and add the following method to the Document class:
 // Given an attachment, eventually returns its URL, if possible.
 // It might be nil if 1. this isn't one of our attachments or
 // 2. we failed to save, in which case the attachment may not exist
 // on disk.
 func URLForAttachment(_ attachment: FileWrapper,
 completion: @escaping (URL?) -> Void) {

 // Ensure that this is an attachment we have
 guard let attachments = self.attachedFiles
 , attachments.contains(attachment) else {
 completion(nil)
 return
 }

 // Ensure that this attachment has a filename
 guard let fileName = attachment.preferredFilename else {
 completion(nil)
 return
 }

 self.autosave { (success) -> Void in
 if success {

 // We're now certain that attachments actually
 // exist on disk, so we can get their URL
 let attachmentURL = self.fileURL
 .appendingPathComponent(
 NoteDocumentFileNames.AttachmentsDirectory.rawValue,
 isDirectory: true).appendingPathComponent(fileName)

 completion(attachmentURL)

 } else {
 NSLog("Failed to autosave!")
 completion(nil)
 }
 }

 }

Now that we can get the URL for an attachment, we can work with the AVPlayer
ViewController.

2. Import the AVKit framework at the top of DocumentViewController.swift:
 import AVKit

360 | Chapter 13: Multimedia and Location Attachments

3. Update DocumentViewController’s collectionView(_, didSelectItemAt

indexPath:) method to show an AVPlayerViewController when a video attach‐
ment is tapped:
 func collectionView(_ collectionView: UICollectionView,
 didSelectItemAt indexPath: IndexPath) {

 // Do nothing if we are editing
 if self.isEditingAttachments {
 return
 }

 // Get the cell that the user interacted with; bail if we can't get it
 guard let selectedCell = collectionView
 .cellForItem(at: indexPath) else {
 return
 }

 // Work out how many cells we have
 let totalNumberOfCells = collectionView
 .numberOfItems(inSection: indexPath.section)

 // If we have selected the last cell, show the Add screen
 if indexPath.row == totalNumberOfCells - 1 {
 addAttachment(selectedCell)
 }
 else {
 // Otherwise, show a different view controller based on the type
 // of the attachment
 guard let attachment = self.document?
 .attachedFiles?[(indexPath as IndexPath).row] else {

 NSLog("No attachment for this cell!")
 return
 }

 let segueName : String?

 if attachment.conformsToType(kUTTypeImage) {
 segueName = "ShowImageAttachment"

 }
 else if attachment.conformsToType(kUTTypeAudio) {
 segueName = "ShowAudioAttachment"
 }

> else if attachment.conformsToType(kUTTypeMovie) {
>
> self.document?.URLForAttachment(attachment,
> completion: { (url) -> Void in

Video Attachments | 361

>
> if let attachmentURL = url {
> let media = AVPlayerViewController()
> media.player = AVPlayer(url: attachmentURL)
>
> self.present(media, animated: true,
> completion: nil)
> }
> })
>
> segueName = nil
 } else {

 // We have no view controller for this.
 // Instead, show a UIDocumentInteractionController

 self.document?.URLForAttachment(attachment,
 completion: { (url) -> Void in

 if let attachmentURL = url {
 let documentInteraction
 = UIDocumentInteractionController(url: attachmentURL)

 documentInteraction
 .presentOptionsMenu(from: selectedCell.bounds,
 in: selectedCell, animated: true)
 }

 })

 segueName = nil
 }

 // If we have a segue, run it now
 if let theSegue = segueName {
 self.performSegue(withIdentifier: theSegue,
 sender: selectedCell)
 }

 }
 }

When the user selects a video, we don’t actually want to use a segue to move to a
view controller that we’ve made. Instead, we create a new AVPlayerViewControl
ler and give it the URL of the attachment. We then manually present it, using
present(viewController:, animated:), and set segueName to nil, indicating
that we don’t want to actually run a segue. You can now tap videos and play them
back.

362 | Chapter 13: Multimedia and Location Attachments

Finally, we’ll now enable support for Picture in Picture mode:

1. Go to the Notes-iOS target’s Capabilities, and scroll down to the Background
Modes section.

2. Turn on “Audio, AirPlay and Picture in Picture” (see Figure 13-3).

Figure 13-3. Enabling the “Audio, AirPlay and Picture in Picture” background mode

3. Finally, add the following line of code to the code you just added in didSelectI
temAt indexPath:
 else if attachment.conformsToType(kUTTypeMovie) {

 self.document?.URLForAttachment(attachment,
 completion: { (url) -> Void in

 if let attachmentURL = url {
 let media = AVPlayerViewController()
 media.player = AVPlayer(url: attachmentURL)

> let _ = try? AVAudioSession.sharedInstance()
> .setCategory(AVAudioSessionCategoryPlayback)

 self.present(media, animated: true,
 completion: nil)
 }
 })

 segueName = nil

Video Attachments | 363

By setting the application’s audio session category to AVAudioSessionCategory
Playback, you’re indicating to the system that the application is simply playing
back content. This will enable Picture in Picture mode for the player.

Users can now tap the Picture in Picture button while watching a video, and it will
scale down into the corner. This view will stick around, even if they leave the app.

Location Attachment
iOS devices have a whole slew of clever sensors on them, and the one we care the
most about now is the GPS. When it comes time to determine the location of the
device, however, iOS doesn’t rely solely on the GPS! It has a whole bag of tricks that
allow it to more accurately and rapidly pinpoint a location.

The Core Location framework provides a whole suite of location-
based features for you to use—everything from a quick and effi‐
cient way to get the current location, to monitoring entry and exit
from specific regions, looking for Bluetooth beacons, to significant
change location alerts.
We’re only going to be using a tiny portion of the features of Core
Location here. If you’d like to know more, check out Apple’s Loca‐
tion and Maps Programming Guide.

There are three ways that iOS can figure out its location on the planet:

• Using the positioning radios, by receiving a GPS or GLONASS signal from orbit‐
ing satellites

• Using WiFi location, in which the iOS device uses a crowd-sourced database of
hotspot physical locations; depending on the hotspots the device can see, the
device can estimate where it is in the world

• Using cell towers, which work in essentially the same way as WiFi locations, but
with towers that provide cellular phone and data coverage

The Core Location system is designed so you don’t need to know the details of how
the device is figuring out its location. Instead you simply ask the iOS device to start
tracking the user’s location, and it will provide it to you. It will use whatever hardware
it thinks necessary, based on how precise a measurement you’ve asked for.

The user’s location is private. Your app won’t have access to it
without user permission, and the user isn’t required to give it to
you. This means that any app that works with user location has to
be prepared for the user saying no.

364 | Chapter 13: Multimedia and Location Attachments

http://apple.co/22UHNXD
http://apple.co/22UHNXD

We’ll now add the ability to attach locations to documents. The way location attach‐
ments work will be a little bit different from other attachments, as it doesn’t really
make a lot of sense to add a location to a note. Instead, much like what we did in the
macOS application, we will set it up so that when creating a new note we will store
the location it was created. This won’t be an attachment like the images or audio
attachments; rather, it will be its own special file inside the document. This means this
attachment, unlike the others, will be read only, and we will view it as a pin on a map
using MapKit.

There are few standard file formats for storing location informa‐
tion, such as KML or GeoJSON, but they are both designed for fea‐
tures much larger than what we need, so we’ll make our own. Our
location attachments will just be a little JSON file that stores a lati‐
tude and longitude coordinate pair, following the same lines as the
macOS app.

We’ll be using MapKit to handle viewing the attachment and showing the map. Map‐
Kit provides fully featured maps, created by Apple, for you to use in your apps. Maps
can include pretty much everything the Maps app that ships with iOS and macOS can
do, from street-level map information to satellite view to 3D buildings. MapKit also
supports custom annotations, as well as automatic support to easily zoom and pan
the map.

Custom annotations can be defined by a single point (a lat/long pair) or as an overlay
that is defined by a number of points that form a shape. Annotations and overlays
behave as you’d expect, and are not just unintelligent subviews; they move and resize
appropriately when the user pans, zooms, or otherwise manipulates the map.

First, we’ll set up the application to use location services:

1. Open the application’s Info.plist file.
2. Add a new string value to the dictionary: NSLocationWhenInUseUsageDescrip

tion. Set its value to the string We'll use your position to show where you
were when you created your notes.. This string will be shown to the user in a
pop up when the app first tries to determine location.

Much like with the camera and microphone, don’t ever ask to
access a user’s location when you don’t really need it. Apple
frowns upon this, and users will come to distrust you. Treat
access to a user’s location with care.

3. Open the Assets.xcassets file.

Location Attachment | 365

4. Drag the Current Location.pdf image into the list of images.
5. Rename it to be Position.

We now have an image ready to display for when we hook up the location attachment
code, and we are correctly configured to ask the user’s permission to use location.

Next we will need to add the code to handle looking after the location JSON file to
our document model:

1. Open Document.swift.
2. Add a new FileWrapper property into the Document class:

 var locationWrapper : FileWrapper?

This will be used to store our location JSON file when we get around to creating
it.

3. Add the following to the contents forType method:
 override func contents(forType typeName: String) throws -> Any {

 let textRTFData = try self.text.data(
 from: NSRange(0..<self.text.length),
 documentAttributes:
 [NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType])

 if let oldTextFileWrapper = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldTextFileWrapper)
 }

 // Create the QuickLook folder

 let thumbnailImageData =
 self.iconImageDataWithSize(CGSize(width: 512, height: 512))!

 let thumbnailWrapper =
 FileWrapper(regularFileWithContents: thumbnailImageData)

 let quicklookPreview =
 FileWrapper(regularFileWithContents: textRTFData)

 let quickLookFolderFileWrapper =
 FileWrapper(directoryWithFileWrappers: [
 NoteDocumentFileNames.QuickLookTextFile.rawValue: quicklookPreview,
 NoteDocumentFileNames.QuickLookThumbnail.rawValue: thumbnailWrapper
])
 quickLookFolderFileWrapper.preferredFilename =
 NoteDocumentFileNames.QuickLookDirectory.rawValue

366 | Chapter 13: Multimedia and Location Attachments

 // Remove the old QuickLook folder if it existed
 if let oldQuickLookFolder = self.documentFileWrapper
 .fileWrappers?[NoteDocumentFileNames.QuickLookDirectory.rawValue] {
 self.documentFileWrapper.removeFileWrapper(oldQuickLookFolder)
 }

 // Add the new QuickLook folder
 self.documentFileWrapper.addFileWrapper(quickLookFolderFileWrapper)

> // checking if there is already a location saved
> let rawLocationVal = NoteDocumentFileNames.locationAttachment.rawValue
> if self.documentFileWrapper.fileWrappers?[rawLocationVal] == nil {
> // saving the location if there is one
> if let location = self.locationWrapper {
> self.documentFileWrapper.addFileWrapper(location)
> }
> }

 self.documentFileWrapper.addRegularFile(withContents: textRTFData,
 preferredFilename: NoteDocumentFileNames.TextFile.rawValue)

 return self.documentFileWrapper
 }

This will check if we need to save a location and store it; otherwise, do nothing.
4. Add the following to load fromContents:

 override func load(fromContents contents: Any,
 ofType typeName: String?) throws {

 // Ensure that we've been given a file wrapper
 guard let fileWrapper = contents as? FileWrapper else {
 throw err(.cannotLoadFileWrappers)
 }

 // Ensure that this file wrapper contains the text file,
 // and that we can read it
 guard let textFileWrapper = fileWrapper
 .fileWrappers?[NoteDocumentFileNames.TextFile.rawValue],
 let textFileData = textFileWrapper.regularFileContents else {
 throw err(.cannotLoadText)
 }

 // Read in the RTF
 self.text = try NSAttributedString(data: textFileData,
 options: [NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType],
 documentAttributes: nil)

 // Keep a reference to the file wrapper
 self.documentFileWrapper = fileWrapper

Location Attachment | 367

> // opening the location filewrapper
> let rawLocationVal = NoteDocumentFileNames.locationAttachment.rawValue
> self.locationWrapper = fileWrapper.fileWrappers?[rawLocationVal]

 }

This will load our location; now all we need to do is write some code to let us
save a location once we determine it.

5. Add the following new method to Document:
 func addLocation(withData data: Data) {
 // making sure we don't already have a location
 guard self.locationWrapper == nil else {
 return
 }

 let newLocation = FileWrapper(regularFileWithContents: data)
 newLocation.preferredFilename
 = NoteDocumentFileNames.locationAttachment.rawValue

 self.locationWrapper = newLocation

 self.updateChangeCount(.done)
 }

Next, we’ll create the view controller that we will use to show our attachment. First
we’ll set up the code, and then we’ll build the interface:

1. Create a new file by going to to the File menu and choosing File→New.
2. Select Cocoa Touch Class and click Next.
3. Name the new class LocationAttachmentViewController and make it a subclass

of UIViewController.
4. Open the LocationAttachmentViewController.swift file that was added to your

project.
5. Import the MapKit frameworks:

 import MapKit

6. Create an outlet for our location attachment property. This will be passed in
when the view controller is called to appear:
 var locationAttachment: FileWrapper?

7. Then create an outlet for our map view:
 @IBOutlet weak var mapview: MKMapView?

8. Open Main.storyboard and drag in a new UIViewController.

368 | Chapter 13: Multimedia and Location Attachments

9. Go to the Identity Inspector, and change the class of the view controller to Loca
tionAttachmentViewController.

10. Drag an MKMapView into the view controller’s interface.
11. Add constraints that make it fill the entire interface.
12. Go to the Attributes Inspector and select the Shows User Location checkbox.

This will make the small blue user location appear on the map should the user be
near the note’s annotation. While this isn’t necessary, it is a nice touch.

13. Hold down the Control key and drag from the view controller to the map view.
Choose “mapView” from the menu that appears.

Now it is time to implement the code to draw an annotation on the map based on the
JSON file passed into the attachmentFile property. Open LocationAttachmentView‐
Controller.swift and implement the viewWillAppear method:

 override func viewWillAppear(_ animated: Bool) {
 if let data = locationAttachment?.regularFileContents {
 do {
 guard let loadedData =
 try JSONSerialization.jsonObject(with: data,
 options: JSONSerialization.ReadingOptions())
 as? [String:CLLocationDegrees] else {
 return
 }

 if let latitude = loadedData["lat"],
 let longitude = loadedData["long"] {
 let coordinate = CLLocationCoordinate2D(latitude: latitude,
 longitude: longitude)

 // create a new annotation to show on the map
 let annotation = MKPointAnnotation()
 annotation.coordinate = coordinate
 annotation.title = "Note created here"

 self.mapview?.addAnnotation(annotation)

 // moving the map to focus on the annotation
 self.mapview?.setCenter(coordinate, animated: true)
 }
 }
 catch let error as NSError {
 print("failed to load location: \(error)")
 }
 }
 }

This will create a new MKPointAnnotation, which is the default pin style annotation
on maps. Now we could create a custom annotation and draw our own picture, but

Location Attachment | 369

for our app the built-in point annotation will do nicely. We set a title that appears
when the user taps the pin. This code finishes up by moving the center of the map to
be the same position as where the annotation is.

In our code, we don’t zoom the map at all; we just pan it to the pin.
Zooming a map is a bit stranger than it might seem, as the map is
being displayed as a rectangle on our device but the Earth is a
sphere (mostly). iOS uses what is called the Mercator projection to
map the surface of the Earth onto a rectangular display. This has
some interesting side effects such as how far zoomed-in the map
appears, changing depending on how far north or south you go.
Keep this in mind if you expect your app users to be moving
around the world a great deal.

Now it is time to hook up the code to actually determine the user’s location, and save
that as a JSON attachment in the document. Core Location works by creating a man‐
ager, configuring it, and then waiting for it to tell its delegate about what is happen‐
ing. We don’t directly talk to the location services; we only talk to the manager as its
delegate.

1. Open DocumentViewController.swift. We will need the Core Location framework
to determine the location, so let’s do that first:
 import CoreLocation

2. Next we need to conform to the CLLocationManagerDelegate protocol; this will
give us all the methods and callbacks we will need to determine users location:
 extension DocumentViewController: CLLocationManagerDelegate {

We are doing this in an extension just to keep our code neat and tidy. This is
where we will put all our CLLocationManagerDelegate methods.

3. Now we will need a new property that will hold our location manager:
 var locationManager : CLLocationManager?

4. It’s time to set up our location manager. Add the following to the bottom of the
viewWillAppear method, inside the document.open closure:
 // checking if there isn't already a location file
 if self.document?.locationWrapper == nil {
 // determining our location permission status
 let status = CLLocationManager.authorizationStatus()

 if status != .denied && status != .restricted {
 self.locationManager = CLLocationManager()
 self.locationManager?.delegate = self

 if status == .notDetermined {

370 | Chapter 13: Multimedia and Location Attachments

 self.locationManager?.requestWhenInUseAuthorization()
 }
 else {
 self.locationManager?.desiredAccuracy
 = kCLLocationAccuracyBest
 self.locationManager?.startUpdatingLocation()
 }
 }
 }
 self.updateBarItems()

In this code, we first we check if there is already a location set for this note; if
there is then we do nothing. If there isn’t, then we need to see if we have permis‐
sion to access the location services. If we don’t, we ask permission; if permission
has previously been given, we tell the location manager to start checking our
location. We also have a call to update the navigation bar items, which we’ll han‐
dle in a moment. As far as the location is concerned, however, from this point
onward it is up to the location manager and its delegate methods.

Now we want to update the updateBarItems method to show either a spinning activ‐
ity indicator, using the UIActivityIndicatorView class, while we are working out
location, or a button to segue to the attachment view controller we made earlier:

 // the button to segue to the attachment view controller
 let image = UIImage(named: "Position")
 let showButton = UIBarButtonItem(image: image, style: .plain,
 target: self, action: #selector(showLocation))

 // if there is already a location
 if self.document?.locationWrapper != nil {
 // we show the segue button
 rightButtonItems.append(showButton)
 } else {
 // if we don't have permission or permission is denied
 let status = CLLocationManager.authorizationStatus()

 if status == .denied || status == .restricted {
 // we don't have permission
 rightButtonItems.append(showButton)
 } else {
 // the activity indicator to show when determining location
 let spinner = UIActivityIndicatorView(activityIndicatorStyle: .gray)
 spinner.startAnimating()
 let spinItem = UIBarButtonItem(customView: spinner)
 rightButtonItems.append(spinItem)
 }
 }

If you are wondering what the showLocationAttachment selector is, don’t worry—we
will implement that shortly.

Location Attachment | 371

You might have noticed how we have wrapped our UIActivity
IndicatorView inside a UIBarButtonItem. That’s because the navi‐
gation bar can only show UI elements that are UiBarButtonItems
and our spinner is not, so we have to wrap it inside one before we
can show it.

Now it is time to implement all the location manager delegate methods we need:

1. The first location manager delegate we need to handle is when the authorization
changes. This will get called after the user first chooses whether or not to allow
location services. Implement the locationManager didChangeAuthorization

status: method:
 func locationManager(_ manager: CLLocationManager,
 didChangeAuthorization status: CLAuthorizationStatus) {
 if status == .authorizedWhenInUse {
 self.locationManager?.desiredAccuracy = kCLLocationAccuracyBest
 self.locationManager?.startUpdatingLocation()
 }
 self.updateBarItems()
 }

All we are doing in here is looking to see if we have permission to start tracking
location; if we do, we ask the location manager to start; otherwise, we do nothing.
In some apps you may really need location more than a note app does, so in here
you may want to let the user know if permission is declined. For us, not worrying
about it is fine.

2. Now that we are set up and have asked the location manager to determine our
location, we need to handle when a location is determined. Implement the loca
tionManager didUpdateLocations method:
 func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 self.locationManager?.stopUpdatingLocation()
 guard let location = locations.last else {
 return
 }

 // creating a json representation of our location
 let latitude = location.coordinate.latitude
 let longitude = location.coordinate.longitude

 let locationData = ["lat":latitude, "long":longitude]

 do {
 let json = try JSONSerialization.data(withJSONObject: locationData,
 options: JSONSerialization.WritingOptions())

372 | Chapter 13: Multimedia and Location Attachments

 // saving our location to the document
 self.document?.addLocation(withData: json)
 }
 catch let error as NSError
 {
 print("unable to save location: \(error)")
 self.locationManager?.startUpdatingLocation()
 }
 self.updateBarItems()
 }

This method gets called whenever the location manager has determined a loca‐
tion from the location hardware. Because of how the hardware works, it is possi‐
ble that we have determined multiple locations within a few moments, so the
results are passed in as an array called locations. From this array we grab the
latest location determined and use this to build up our JSON, which we then
store. Finally, because the location hardware can be quite battery intensive, we
make sure to turn it off when we are no longer using it.

This will be ready to go, with just one more feature: we need to be able to trigger an
appropriate segue when the user chooses to view the location:

1. Implement the showLocation method we said we’d make earlier:
 func showLocation() {
 self.performSegue(withIdentifier: "ShowLocationSegue", sender: self)
 }

This will trigger the location segue ShowLocationSegue, which we will now set
up.

2. Open main.storyboard.
3. Hold down the Control key and drag from the document view controller to the

location attachment view controller. Choose “show” from the list that appears.
Normal attachments are presented as popovers, but because the location attach‐
ment is a bit different, we will signal this by using a different segue style.

4. Give the segue the identifier ShowLocationSegue.
5. Add the following to the prepare(for segue: sender:) method after where we

check if the segue is for an attachment:
 else if segue.identifier == "ShowLocationSegue" {
 if let destination = segue.destination as?
 LocationAttachmentViewController {
 destination.locationAttachment = self.document?.locationWrapper
 }
 }

Location Attachment | 373

Now that we have the segue hooked up, we can run our app and add a location
attachment to our notes!

Conclusion
In this chapter, we’ve improved the iOS app by adding support for richer attachments,
audio, video, and locations. To do this we’ve added new view controllers for the dif‐
ferent attachment types and connected our new views and controllers to our existing
views.

374 | Chapter 13: Multimedia and Location Attachments

CHAPTER 14

Polishing the iOS App

Our iOS notes application is now largely feature-complete. It’s fully operational, but
could do with a few more finishing touches to add some polish. In this chapter, we’ll
add support for opening links in the provided web browser view controller, overall
app settings, undo, and image filters.

Opening Links in SFSafariViewController
Links in the text are currently tappable, but this functionality is not ideal, for two rea‐
sons:

• It’s available only when the text view is not editable.
• Tapping links launches Safari, taking users out of the app. This is probably some‐

thing they don’t want.

To fix the first problem, we’ll add support for moving between an “editing” mode and
a “viewing” mode for the DocumentViewController. To fix the second, we’ll override
the existing behavior for opening links, and instead open them in the SFSafariView
Controller.

There are three ways in which an app can display web content: creating a custom
mini-browser by using WKWebView or UIWebView, pushing the user out of the app by
opening Safari using openURL, or using SFSafariViewController to display a com‐
pact version of Safari within the app.

WKWebView or UIWebView are outside the scope of this book, as these days they’re only
necessary if you’re doing something complex with web views, or you’re making your
own web browser for iOS (like Chrome, Firefox, Mercury Browser, or similar). In the
past, most apps implemented their own custom mini-browser using either UIWebView

375

or the newer WKWebView to display web content. This wasn’t ideal for a number of rea‐
sons, chief among them the fact that each in-app mini-browser ended up with its own
unique UI and didn’t have access to iCloud Keychain, among other Safari features.

We cover SFSafariViewController here because it’s the best way for apps to allow
users to open web content: it behaves like Safari, it looks like Safari, it’s easy to use,
and it has access to all of Safari’s features, such as content blockers and iCloud Key‐
chain. It also easily allows users to open the web page you send them to in full Safari
if they wish (see Figure 14-1).

Figure 14-1. SFSafariViewController showing the authors’ website

376 | Chapter 14: Polishing the iOS App

This ensures that the contents of the navigation bar are appropriately set up, both
when the document is opened and when the view controller reappears after returning
from another view controller.

When the document opens, we want to begin in the “viewing” state:

1. Add the following code to viewDidLoad:
 override func viewDidLoad() {

 super.viewDidLoad()

> self.editing = false

 }

2. Next, override the setEditing method to make the text view editable or not:
 override func setEditing(_ editing: Bool, animated: Bool) {
 super.setEditing(editing, animated: animated)

 self.textView.isEditable = editing

 if editing {
 // If we are now editing, make the text view take
 // focus and display the keyboard
 self.textView.becomeFirstResponder()
 }

 updateBarItems()
 }

When you run the app, you can now tap the Edit button, which will change to
Done. At that point, you can make changes to the document.

We’ll now make the text view detect links:

1. Open Main.storyboard, and go to the document view controller.
2. Select the text view and go to the Attributes Inspector.
3. Turn on Links in the Detection section (see Figure 14-2).

Figure 14-2. Turning on link detection for the text field

Opening Links in SFSafariViewController | 377

Now, any links in the text view will become tappable when you leave Edit mode.

Finally, we’ll intercept the link taps and open them in an SFSafariViewController:

1. Open DocumentViewController.swift.
2. Import the SafariServices framework at the top of the file:

 import SafariServices

3. Implement textView(_, shouldInteractWith URL:, inRange:) to present an
SFSafariViewController (see Figure 14-3):
 func textView(_ textView: UITextView, shouldInteractWith URL: URL,
 in characterRange: NSRange) -> Bool {

 let safari = SFSafariViewController(url: URL)
 self.present(safari, animated: true, completion: nil)

 // return false to not launch in Safari
 return false
 }

This method is called because we’ve already set the text view’s dele‐
gate—we set that up earlier in “Editing and Saving Documents” on
page 262.

378 | Chapter 14: Polishing the iOS App

Figure 14-3. SFSafariViewController showing the O’Reilly website

3D Touch
If you’re using an iPhone 6S, 6S Plus, or any iPhone 7 model, you can use 3D Touch
to get a quick preview of any link inside the SFSafariViewController by pressing
firmly on a link.

Certain iOS devices are able to detect and make use of the pressure applied to the
screen when a user touches it, in order to provide quick access to application func‐

Opening Links in SFSafariViewController | 379

tionality. There are a couple of ways you can use this: home screen quick actions and
Peek and Pop.

Home Screen Quick Actions
A home screen quick action is a menu item that appears when the user presses firmly
on your app’s icon. Quick actions make your app quickly perform an action in the
background, or jump straight to a common target in the app.

There are two kinds of home screen quick actions: static and dynamic. Static actions
never change, while dynamic actions can be added at runtime.

To add a static action, you add an array to your app’s Info.plist called UIApplication
ShortcutItems; this is an array of dictionaries, which each contain the following
items:

UIApplicationShortcutItemType: Required
The app will receive this string.

UIApplicationShortcutItemTitle: Required
The user will see this label.

UIApplicationShortcutItemSubtitle: Optional
The user will see this label under the title.

UIApplicationShortcutItemIconFile: Optional
Provide your own file.

UIApplicationShortcutIconType: Optional
Use a system-provided icon.

UIApplicationShortcutItemUserInfo: Optional
Dictionary that will be passed to the app.

A dynamic action is an instance of the UIApplicationShortcutItem object; the app’s
shared UIApplication object has an array called shortcutItems, which you can con‐
trol. When you add a shortcut action object to this array, a new menu item will
appear when the app’s icon is firmly pressed. For our app let’s make a static action that
will allow you to create a new note from the home menu:

1. The first thing we need to do is modify our info.plist to support our create note
action. Open info.plist and insert a new key-value pair into the plist; the key
should be UIApplicationShortcutItems and the type should be Array.

2. Modify the first and only item in the array to be a Dictionary; this is where we
will add the information iOS will use to build up the Quick Action.

380 | Chapter 14: Polishing the iOS App

3. Add a new key-value pair to the Dictionary, set the key to be UIApplication
ShortcutItemTitle, and the value to be a String saying New Note.

4. Now we need to add in the type of action for the shortcut. Add in another key-
value pair with the key UIApplicationShortcutItemType and make the value a
string saying au.com.secretlab.Notes.new-note. Make sure to replace
au.com.secretlab.Notes with the bundle identifier for your app. The app will
use this type later so we can determine when the app was launched by the Quick
Action or not.

5. Finally, add one more key-value pair to the dictionary, set the key to UIApplica
tionShortcutItemIconType and the value to the String UIApplicationShortcu
tIconTypeCompose. This will show the default creation icon used throughout iOS
next to the text New Note when your user performs the quick action.

With that done, we can start writing the code to handle when the user performs a
quick action:

1. Inside AppDelegate.swft we will add a new property to handle the action type:
 let createNoteActionType = "au.com.secretlab.Notes.new-note"

2. This will just give us a reference so we don’t misspell it later on, as this string is
the identifier we get told about when the quick action occurs. Now we need to
add a small check to the bottom of application didFinishLaunchingWithOp
tions method to check if we were launched by the quick action:
 // Did we launch as a result of using a shortcut option?
 if let shortcutItem =
 launchOptions?[.shortcutItem] as? UIApplicationShortcutItem
{

 // We did! Was it the 'create note' shortcut?
 if shortcutItem.type == createNoteActionType {
 // Create a new document.
 createNewDocument()
 }

 // Return false to indicate that 'performActionForShortcutItem'
 // doesn't need to be called
 return false
 }

3. This code checks if the app was launched by a quick action; if it was we then
check if it was the quick action we defined earlier. If all that is the case, we run a
method called createNewDocument, which we are about to write, to handle the
actual creation of a new note.

Opening Links in SFSafariViewController | 381

4. The last thing we have to do is write the createNewDocument function. Add a new
function to AppDelegate.swift:
 func createNewDocument() {

 // Ensure that the root view controller is a navigation controller
 guard let navigationController =
 self.window?.rootViewController as? UINavigationController else {
 fatalError("The root view controller is not a navigationcontroller")
 }

 // Ensure that the navigation controller's root view controller is the
 // Document List
 guard let documentList = navigationController.viewControllers.first
 as? DocumentListViewController else {
 fatalError("first view controller isn't DocumentListViewController")
 }

 // Move back to the root view controller
 navigationController.popToRootViewController(animated: false)

 // Ask the document list to create a new document
 documentList.createDocument()
 }

This method is pretty straightforward: it grabs the app’s navigation controller,
then grabs the document list view controller from the navigation controller, and
then finally tells the document list view controller to create a new note. With that
done we can run the app on your 3D Touch–enabled phone and you can create a
new note straight from the home screen! You can see what this looks like in
Figure 14-4.

382 | Chapter 14: Polishing the iOS App

Figure 14-4. The home screen quick action

While we always recommend you use the actual device for testing
your apps, 3D Touch is still a new feature that most iPhones don’t
have. Much like with the camera or other hardware features, the
simulator can’t emulate it, with one exception. If your Macbook is
equipped with a Force Trackpad you can use its pressure detection
to simulate 3D Touch. Open the iOS Simulator, go to Hard‐
ware→Touch Pressure→Use Trackpad Force, and this will enable
3D Touch simulation via your trackpad. However, this is still not as
good as testing on the real hardware!

Peek and Pop
Peek and Pop is a feature that allows the user to get a quick preview of content by
pressing firmly on an element on the screen; if the user pushes harder, the content
opens. For example, in the Mail app, if you press firmly on an email, you get a quick
preview; if you press harder, the preview “pops” up and fills the screen, as though

Opening Links in SFSafariViewController | 383

you’d tapped the email in the list. For our application we will make it so that when
you peek on a note inside the document list view controller, it shows a small preview,
and when you fully commit and push a little harder it will pop open the full note:

1. To add support for Peek and Pop, the first thing we need to do is add an identifier
to the DocumentViewContoller inside the Storyboard. We will use the identifier
later on to summon a preview of the note.

2. Open up main.storyboard and select the DocumentViewController inside the
storyboard. Open up the Inspectors and go to the Identity Inspector tab, then
under the Identity section add DocumentViewController to the Storyboard ID.

In addition to the higher-level interactions the system provides,
you can also directly access force information from UITouch objects
as the system receives them. To access this, use the force property
on the UITouch object.

Now with that done, the next step is to register the document list view controller as
supporting Peek and Pop:

1. Open DocumentListViewController.swift and add the following to the bottom of
viewDidLoad:
 // Mark the collection view as preview-able, if our current device supports
 // 3D Touch.
 if self.traitCollection.forceTouchCapability == .available {
 self.registerForPreviewing(with: self,
 sourceView: self.collectionView!)
 }

This method does a check to see if the device the app is running on is capable of
using 3D Touch; if so, it registers the collection view showing all the notes as
ready to support Peek and Pop. They aren’t yet but we will add that functionality
in next.

2. To participate in Peek and Pop, you provide an object that conforms to UIView
ControllerPreviewingDelegate. This delegate receives calls to the methods
previewingContext viewControllerForLocation and previewingContext
viewControllerToCommit. The first method is called when the user starts press‐
ing firmly on the view, and returns a view controller to display; the second is
called when the user presses even harder, preparing for a transition to the pre‐
view view controller. We will implement these as an extension on the Documen
tListViewController to keep it all tidy:
 extension DocumentListViewController : UIViewControllerPreviewingDelegate {
 func previewingContext(

384 | Chapter 14: Polishing the iOS App

 _ previewingContext: UIViewControllerPreviewing,
 viewControllerForLocation location: CGPoint) -> UIViewController? {

 // Determine which cell was tapped; if we can't
 // return nil to indicate that we can't offer a preview
 guard let indexPath =
 self.collectionView?.indexPathForItem(at: location) else {
 return nil
 }

 // Get the cell object for this location
 guard let cell =
 self.collectionView?.cellForItem(at: indexPath) else {
 fatalError("We have an index path, but not a cell")
 }

 // Determine the document URL that this cell represents
 let selectedItem = availableFiles[indexPath.item]

 // Tell the previewing context about
 // the shape that should remain unblurred
 previewingContext.sourceRect = cell.frame

 // Create a DocumentViewController for showing this file
 guard let documentVC = self.storyboard?.instantiateViewController(
 withIdentifier: "DocumentViewController")
 as? DocumentViewController else
 {
 fatalError("Expected to get a DocumentViewController here " +
 "- make sure that the Document View Controller's" +
 "storyboard identifier is set up correctly")
 }

 // Give the document URL to the document view controller
 documentVC.documentURL = selectedItem

 // Create a navigation controller to embed this in
 let navigationVC =
 UINavigationController(rootViewController: documentVC)

 // Return this navigation controller
 return navigationVC
 }

 func previewingContext(_ previewingContext: UIViewControllerPreviewing,
 commit viewControllerToCommit: UIViewController)
 {
 // The viewControllerToCommit is a navigation controller
 // that contains a document view controller.
 // Ensure that this is the case.

Opening Links in SFSafariViewController | 385

 guard let navigationVC = viewControllerToCommit as?
 UINavigationController else {
 fatalError("Expected the preview view controller" +
 "to be a navigation controller")
 }

 guard let documentVC = navigationVC.viewControllers.first
 as? DocumentViewController else {
 fatalError("View controller is not a document view controller")
 }

 // Get the document view controller's URL
 guard let url = documentVC.documentURL else {
 fatalError("Expected the document view controller" +
 "to have a document set")
 }

 // Present the segue, just as if we'd tapped the cell
 self.performSegue(withIdentifier: "ShowDocument", sender: url)
 }
}

There is a fair bit of code here, but it is all pretty simple. First we add an extension to
the DocumentListViewController class to say we support Peek and Pop. Then we
implement the two required methods.

previewingContext viewControllerForLocation: first gets the cell and note inside
the collection view that the user wants to preview. We use the cell frame to tell the
previewing system not to blur the cell itself; this will also have the effect of blurring
everything that isn’t the cell. Then we use the Storyboard identifier set up earlier to
create a new document view controller, and we pass it the selected note. Finally we
create a new navigation controller to wrap around the Document View Controller as
the Document View Controller requires it, and this all gets returned. The previewing
system will then show a preview of this note through the returned view controller.

previewingContext commit viewControllerToCommit: is the second method and is
called when the user commits to the note after seeing the preview popping it into
existence and working otherwise exactly the same as if the user had tapped the note
cell. An important parameter of this method is the viewControllerToCommit; this is
the same view controller the user started to preview earlier. This method does some
checks to make sure that the viewControllerToCommit is a valid DocumentViewCon
troller with a surrounding navigation controller. If it is, we can then grab the note
out of the view controller and use it as part of the normal segue to view a note.

With all this done, we can now run the app and peek and pop on our notes!

386 | Chapter 14: Polishing the iOS App

For more information on how to use 3D Touch in your apps, check
out the Adopting 3D Touch on iPhone guide.

Settings
We’ll now add a setting to our app, one that controls whether documents are in the
Edit state that we just set up when they’re opened.

Settings are stored in the UserDefaults class, which works like a giant dictionary that
sticks around, even when the application quits. This is one of myriad ways that an
app can store data—it’s probably the simplest, least powerful, least flexible way, but it
gets the job done when it comes to storing very small pieces of information, such as
settings.

UserDefaults can only store certain kinds of objects, which happen to be the same
kinds that a property list can store. These objects are called property list values, and
consist of the types String, Number, Date, Array, Data, and Dictionary. UserDe
faults should only be used for storing very small pieces of information:

1. Open the File menu and choose New→File.
2. Add a new iOS→Resource→Settings Bundle. Name it Settings and add it to the

Notes-iOS target.
3. Open the Settings.bundle that was just added, and open the Root.plist file inside it.
4. Remove all items from the Preference Items list.
5. Select the Preferences Items and press Enter to create a new one.
6. Set the Type of the new item to Toggle Switch.
7. Set the Title to “Documents are editable when opened.”
8. Set the Identifier to “document_edit_on_open.”

We’ll now make the app actually use the preference:

1. Open DocumentViewController.swift.
2. Remove this line of code from viewDidLoad:

 self.editing = false

3. Replace it with this:
 self.isEditing = UserDefaults.standard.bool(forKey:"document_edit_on_open")

Settings | 387

http://apple.co/22UQbX4

Install the app on your device (or in the simulator) and then go to the Settings app.
Change the settings and then go back into the app. Note the difference in behavior!
(See Figure 14-5.)

Figure 14-5. The app settings

Undo Support
Next we’ll add support for undoing changes to the text view via the built-in undo
manager. This means that we’ll ask the undo system to notify us about changes in the
ability to undo; we’ll also add a button that can trigger undo actions. Undo on iOS is

388 | Chapter 14: Polishing the iOS App

provided by UndoManager, which allows you to register things that the user might
want to undo, and how to undo them. It also takes care of redoing anything that is
undone, if needed.

UITextView provides its own UndoManager, so we’ll make use of that:

1. Add the following properties to DocumentViewController:
 var undoButton : UIBarButtonItem?
 var didUndoObserver : AnyObject?
 var didRedoObserver : AnyObject?

2. Add the following code to viewDidLoad to register changes to the ability to undo
or redo a change:
 let respondToUndoOrRedo = { (notification:Notification) -> Void in
 self.undoButton?.isEnabled = self.textView.undoManager?.canUndo == true
 }

 didUndoObserver = NotificationCenter.default
 .addObserver(forName: NSNotification.Name.NSUndoManagerDidUndoChange,
 object: nil,
 queue: nil,
 using: respondToUndoOrRedo)

 didRedoObserver = NotificationCenter.default
 .addObserver(forName: NSNotification.Name.NSUndoManagerDidRedoChange,
 object: nil,
 queue: nil,
 using: respondToUndoOrRedo)

We want to run the same code when the user performs either an undo or a redo.
Because the addObserver forName: method takes a closure as its parameter, we
can just write the code once, and use it twice.

3. Add the following code to updateBarItems to change the Undo button’s enabled
state:
 func updateBarItems() {
 var rightButtonItems : [UIBarButtonItem] = []
 rightButtonItems.append(self.editButtonItem)

> if isEditing {
> undoButton = UIBarButtonItem(barButtonSystemItem: .undo,
> target: self.textView?.undoManager,
> action: #selector(UndoManager.undo))
>
> undoButton?.isEnabled = self.textView?.undoManager?.canUndo == true
> rightButtonItems.append(undoButton!)
> }

Undo Support | 389

 // the button to segue to the attachment view controller
 let image = UIImage(named: "Position")
 let showButton = UIBarButtonItem(
 image: image,
 style: .plain,
 target: self,
 action: #selector(showLocation))

 // if there is already a location
 if self.document?.locationWrapper != nil {
 // we show the segue button
 rightButtonItems.append(showButton)
 } else {
 // if we don't have permission or permission is denied
 let status = CLLocationManager.authorizationStatus()

 if status == .denied || status == .restricted {
 // we don't have permission
 rightButtonItems.append(showButton)
 } else {
 // the activity indicator to show when determining location
 let spinner
 = UIActivityIndicatorView(activityIndicatorStyle: .gray)
 spinner.startAnimating()
 let spinItem = UIBarButtonItem(customView: spinner)
 rightButtonItems.append(spinItem)
 }
 }

 self.navigationItem.rightBarButtonItems = rightButtonItems

 }

When the bar items are updated, we need to add an Undo button to the right‐
hand side of the navigation bar if the document is in editing mode. In addition,
we need to ensure that the Undo button is disabled if it’s not possible to perform
an undo. We check this by asking the text view’s undo manager if it’s currently
possible.

4. Add the following code to textViewDidChange:
 func textViewDidChange(_ textView: UITextView) {

> self.undoButton?.isEnabled = self.textView.undoManager?.canUndo == true

 document?.text = textView.attributedText
 document?.updateChangeCount(.done)
 }

390 | Chapter 14: Polishing the iOS App

Every time the text view changes, we need to check to see if it’s possible for the
text view to undo a change. We can then use this to update whether or not the
Undo button should be available.

5. Update the code in the documentStateChanged method with the following code
to update the Undo button:
 document.revert(toContentsOf: document.fileURL,
 completionHandler: { (success) -> Void in

 self.textView.attributedText = document.text
 self.attachmentsCollectionView?.reloadData()

> self.updateBarItems()
 })

 for version in conflictedVersions{
 version.isResolved = true
 }

This gets called when a conflict is detected between the local copy and the iCloud
copy. All this code is doing is ensuring that, when the text view has changed due
to the document’s contents being updated, the Undo button is or is not available.

6. Run the app. When you enter Edit mode, an Undo button will appear; it will be
disabled if you can’t undo, and if you make changes, you can tap it to undo those
changes.

Images with Filters
Everyone loves filters! We’re going to add the ability for users to apply filters to their
images. When the user is viewing an image, we’ll also show three different, filtered
versions of the image as buttons along the bottom of the screen. When the user taps
these buttons, the main image view will change to show the filtered version of the
image.

The filters available to you are very similar to the filters available in
Instagram: they make the photo look like it was shot on film or
through cheaper lenses.

We’re going to use Core Image to apply the filters. Core Image is a framework pro‐
vided by Apple that provides image filtering, enhancement, editing, and other useful
nondestructive or pipeline-based image editing capabilities. Core Image underpins

Images with Filters | 391

the photo editing provided by Apple’s Photos app on both iOS and macOS. You can
learn more about Core Image in Apple’s Core Image Programing Guide.

1. Open Main.storyboard, and go to the image attachment view controller.
2. Add a UIView to the interface.
3. Make it fill the width of the screen and 80 points tall.
4. Pin it to the bottom and sides.
5. Set its background color to black, with 0.5 alpha.
6. Add three buttons to it and place them at the left, center, and right. Make them

all the same height as the view they’re contained in, and make them square.
7. Set their content mode to “aspect fit.”

If you are having trouble seeing the buttons on the black back‐
ground, feel free to use a different background color. We chose
black because we think it looks the best for this, but it’s your
app, so go wild!

8. Open ImageAttachmentViewController.swift in the Assistant.
Because there are multiple buttons, it doesn’t make much sense to create separate
outlets for each of them. Instead, we’ll use an outlet collection.

An outlet collection is an outlet that lets you point to a bunch
of different things, rather than just a single thing. This is useful
here because all the buttons that change the filter are essen‐
tially doing the same thing, but each applies a different filter.
Instead of creating a single outlet for each button, it’s easier to
deal with them as an array rather than as separate properties.

9. Add the following filterButtons property to ImageAttachmentViewControl
ler:
 @IBOutlet var filterButtons: [UIButton]!

Note the square brackets for the creation of the array of UIBut
ton objects! This is an array of buttons, not a single button.

10. Drag from the well at the left of the filterButtons property to each of the three
buttons. This will add them to the array.

392 | Chapter 14: Polishing the iOS App

http://apple.co/1RR35x3

11. Connect them all to a new action called showFilteredImage. (Only create a sin‐
gle action—after creating the method, Control-drag from the second and third
buttons onto the method.)

12. Add the following code to the showFilteredImage method:
 @IBAction func showFilteredImage(_ sender: UIButton) {

 self.imageView?.image = sender.image(for: UIControlState())
 self.imageView?.contentMode = .scaleAspectFit

 }

13. Add the prepareFilterPreviews method to ImageAttachmentViewController:
 func prepareFilterPreviews() {

 let filters : [CIFilter?] = [
 CIFilter(name: "CIPhotoEffectChrome"),
 CIFilter(name: "CIPhotoEffectNoir"),
 CIFilter(name: "CIPhotoEffectInstant"),
]

 guard let image = self.imageView?.image else {
 return
 }

 let context = CIContext(options: nil)

 for (number, filter) in filters.enumerated() {

 let button = filterButtons[number]

 let unprocessedImage = CIImage(image: image)

 filter?.setValue(unprocessedImage, forKey: kCIInputImageKey)

 if let processedCIImage =
 filter?.value(forKey: kCIOutputImageKey) as? CIImage{

 // Render the result into a CGImage
 let image = context.createCGImage(processedCIImage,
 from: CGRect(origin: CGPoint.zero, size: image.size))

 button.setImage(UIImage(cgImage: image!),
 for: UIControlState())
 }
 }
 }

Images with Filters | 393

In this method, we’re updating the images in the three filterButtons by run‐
ning the source image through three filters. These filters are CIFilter objects,
which we create by naming them.

You can find the full list of available filters in the Core Image
Filter Reference, available in the Xcode documentation.

To generate them, we create a Core Image context and then iterate through the
three filters. We do this using the enumerate function, which, for each item in the
list, returns a tuple (see “Tuples” on page 47) containing the index number of the
item, and the item itself. For example, the first time the loop runs, you’ll get the
number 0 and the CIPhotoEffectChrome filter. We’ll be using this to work with
the filterButtons array.
For each filter, we grab the corresponding button. We then create a new CIImage
using the original image and pass it into the filter. Once it’s in the filter, we can
extract the processed image; once we have that, we need to convert it first into a
CGImage, and then convert that into a UIImage for the button to use.

It’s possible to go straight from a CIImage to a UIImage,
bypassing the CGImage step. However, if you do this, you’ll end
up with an image that just behaves oddly—for example, the
image will always be stretched to fill the contents of whatever
image view you place it in.

14. Add the following code to the viewDidLoad method:
 override func viewDidLoad() {
 super.viewDidLoad()

 // If we have data, and can make an image out of it...
 if let data = attachmentFile?.regularFileContents,
 let image = UIImage(data: data) {
 // Set the image
 self.imageView?.image = image

> prepareFilterPreviews()
 }
 }

All we’re adding here is the call to prepareFilterPreviews, which updates the
filter buttons.

394 | Chapter 14: Polishing the iOS App

http://apple.co/1RR3MpY
http://apple.co/1RR3MpY

15. Run the application. When you view an Image attachment, you’ll see three differ‐
ent versions underneath it (see Figure 14-6). Tap them to view a larger version of
that filtered image.

Figure 14-6. The image filters

Worldwide Apps
Not all of your users are going to speak your language. There’s an unfortunate ten‐
dency among software developers in the English-speaking world to assume that all

Worldwide Apps | 395

users speak their language. This significantly reduces the number of people who can
use their software.

However, making an app support multiple languages is easier than you think. There
are two parts to making an app multilingual: internationalization and localization.

Internationalization
Internationalization is the process of preparing an app for localization. You do this by
separating the text used in your app from the app itself, making it load any user-
facing language resources at runtime based on the user’s language preferences, and
adjusting your user interface to support different lengths of text. In addition, your
app should take into account whether the user’s language displays text in a left-to-
right direction (such as English and French), or in a right-to-left direction (such as
Hebrew and Arabic).

The possibility of your app running in a different language direc‐
tion than your own is the reason the horizontal constraints applied
to views refer to “leading” and “trailing” space rather than “left” or
“right” space. In a left-to-right language, leading space is on the left
and trailing on the right, while in a right-to-left language, leading
space is on the right and trailing on the left. Both iOS and macOS
will automatically use the appropriate direction for the user’s lan‐
guage.

There are two major tasks involved in internationalizing your app: replacing all text
in your code with calls to methods that load localized text at runtime, and testing and
adjusting your interface to support the text in your app being a different width than
your development language.

To make your app load the text that the user will read at runtime, use the NSLocali
zedString function. This function allows you to leave the text in the code for you to
read (and therefore understand what the text is for), while also ensuring that the app
isn’t actually hardcoding a specific language.

Let’s take a look at how to do this by internationalizing a string in the Notes app.
Open DocumentViewController.swift and replace the line of code where we set a title
with the following line of code at the top of the addAttachment method:

 let title = NSLocalizedString("Add attachment", comment:"Add attachment title")

The NSLocalizedString function takes two parameters. The first is the key, which
indicates to the system which string you want; the second is the comment, a piece of
text that explains what the string is for to people who do the translating.

396 | Chapter 14: Polishing the iOS App

NSLocalizedString works by searching the application for any strings tables that are
targeted at the user’s current language. If it finds an entry for key in the strings tables,
the function returns the string it found. If it can’t find any strings tables for the user’s
current language, or if it can’t find the key in the strings tables it did find, then the
function returns the key string.

If you run the app and access the string (by selecting some text and looking at the
menu that appears), you won’t see any difference. However, in the next section, we’ll
begin localizing the app into French, and this call to NSLocalizedString will change
its behavior.

Until you receive translated text from whomever’s doing your translating, it’s usually
not possible to accurately determine how your application’s interface will need to
change to suit the new language. For example, German text tends to be significantly
longer than Chinese.

However, there’s a useful rule of thumb: generally, text in different languages will
never be more than twice as long as your native development language. Xcode is
aware of this and lets you test your application in a fake “language” that simply
repeats every piece of text twice. For example, the string "New Document" would
appear as "New Document New Document". If every piece of text in your app is dou‐
bled, you can see how your interface might need to adjust to account for wider-than-
expected text.

To use this double-length localization, you’ll need to ask Xcode to launch your app
using a new language as follows:

1. Open the Product menu and choose Scheme→Edit Scheme.
2. Go to the Run section and choose the Options tab.
3. Open the Application Language menu, shown in Figure 14-7.

Worldwide Apps | 397

Figure 14-7. Changing the scheme language

4. Choose Double Length Pseudolanguage (Figure 14-8).

Figure 14-8. Using the double length localization

5. Click Close and then run your app. All text will be double-length (Figure 14-9).

398 | Chapter 14: Polishing the iOS App

Figure 14-9. The application running in the double-length pseudolanguage

You can also use the Right to Left Pseudolanguage option, which
reverses the writing order of your text, allowing you to test the lay‐
out and behavior of your app in right-to-left languages.

Localization
Once you’ve internationalized your application, you can localize it into a specific lan‐
guage. The majority of this work involves providing new text for your international‐
ized strings. In the previous section, we internationalized the add attachment title;
next, we’ll localize this into French:

1. Add a new Strings file to the app by opening the New File window and choosing
iOS→Resources→Strings File (Figure 14-10).

Worldwide Apps | 399

Figure 14-10. Adding a Strings file

2. Name the new file Localizable.strings.
Xcode allows you to localize resource files, which means instructing Xcode to
create a new copy of the file; the new copy is used only when the app is being run
in a specific language. Resource files can have as many localizations as you like.

First, we’ll localize the Localizable.strings file for your current development language;
next, we’ll add a new localization to this file for French:

1. Select the Localizable.strings file in the Project Navigator, and then go to the File
Inspector.

2. Click the Localize button (Figure 14-11).

400 | Chapter 14: Polishing the iOS App

Figure 14-11. Localizing the Localizable.strings file

Xcode will ask you what you want to do with this file. You can either make the cur‐
rent version of the file the “Base” version, or you can make this file the localized ver‐
sion for your current language. Choose Base, and click Localize (Figure 14-12).

The Base localization is the version of the file that the app will fall
back to if it can’t find a string in the user’s current language. If it
can’t find a string in the Base localization either, then the call to
NSLocalizedString will return the key that was passed to it.

Worldwide Apps | 401

Figure 14-12. Choosing to make this version the Base localization

When you click Localize, the Localization section of the File Inspector will change to
show the list of possible languages to which this file can be localized. This list will
include the Base localization, as well as any other current localizations. At the
moment, the app will support only one localization: your current language. (In our
case, that’s English, which is why it appears in Figure 14-13.)

Figure 14-13. The Localization list, showing the Base localization and the available
localizations

To add support for another language, you must first mark the project as capable of
using it:

1. Go to the Project info page. Scroll down to the Localizations list. You’ll find one
entry in there: the Development language. Click the + button at the bottom of the
list, and choose “French (fr)” from the menu that appears (Figure 14-14).

402 | Chapter 14: Polishing the iOS App

Figure 14-14. Adding the French language

A window will appear, asking you which files should be localized (Figure 14-15).
The files available will include all storyboards and .xib files, as well as any files
that you’ve manually localized (which includes the Localizable.strings file).

Figure 14-15. Selecting file to localize

2. Click Finish.
This registers French as a language into which the app can be localized.
If you look at the Project Navigator, you’ll notice that these files have a disclosure
indicator next to them. If you click this, you’ll see that they now exist as multiple
files; the original Base language version, and a French .strings file (Figure 14-16).

Worldwide Apps | 403

Figure 14-16. The list of different localizations for the file

3. Open the Localizable.strings (Base) file. It’s inside the Localizable.strings file. Add
the following text to it:
 "Add attachment" = "Add attachment";

4. Next, open the Localizable.strings (French) file. Add the following text to it:
 "Add attachment" = "Ajouter une pièce jointe";

The Add attachment view controller title is now localized! We can test this by
asking Xcode to launch the app in the French language.

5. Return to the Edit Scheme window by opening the Product menu and choosing
Scheme→Edit Scheme.

6. Go to the Run section and go to the Options tab.
7. Change the Application Language to French.

“French” now appears in this menu because you’ve added it as
a language that your app supports.

8. Close the window, and run the app.
9. Test the localization by selecting the text and confirming that French appears

when adding an attachment (Figure 14-17).

404 | Chapter 14: Polishing the iOS App

Figure 14-17. The app, localized into French

You’ve now localized one piece of the app! The next step is to localize all strings into
French. This is left, as they say, as an exercise for the reader.

Luckily for us, a lot of the work of localizing an app is handled for
us by the system. Because the app uses standard controls provided
by the system, such as the Edit and Back buttons, they’ll be dis‐
played in French as well.

Accessibility
Not everyone is able to see your app. The ability to read the contents of the screen
varies from person to person; some users may have no trouble at all, while some are
totally blind, and some are partially sighted. On top of this, there are users who have
good vision but have trouble reading text, such as people with dyslexia.

Both iOS and macOS have support for VoiceOver, a built-in screen reader. VoiceOver
is able to read text that appears on the screen, as well as describe nontextual elements,
like the layout of a screen.

The good news is that your app doesn’t need to do much to support VoiceOver. The
components from which your app is made—buttons, labels, text fields, and so on—
are already set up to work with VoiceOver. However, it’s very important to test how
your app would be used by a person who can’t see your app.

To start testing an application with VoiceOver, you’ll first need to set up your phone
to make it easy to turn VoiceOver on or off. VoiceOver changes the way that iOS
responds to touches; for example, when using VoiceOver, tapping a button selects that
button rather than triggering the action.

Accessibility | 405

1. Launch the Settings app on your iOS device.
2. Go to General→Accessibility→Accessibility Shortcut.

The Accessibility Shortcut is triggered when you triple-click the home button.

There are several accessibility features that can be triggered by
the home button, including inverting all colors on the screen
and turning on a screen zoom feature. While these are useful,
they’re not something that you as a developer have much con‐
trol over, so we’ll focus on VoiceOver.

3. Turn on VoiceOver and turn everything else off.
4. Launch the app on your iPhone and triple-click the home button. VoiceOver will

turn on (Figure 14-18).
When you tap the screen, iOS selects whatever’s under your finger and describes
it to you. You can swipe left and right to select the previous or next item, and
double-tap to “open” the currently selected item.

406 | Chapter 14: Polishing the iOS App

Figure 14-18. Configuring the Accessibility shortcut

5. Tap the + button once. iOS will select the button.
6. Double-tap anywhere on the screen. A new document will be created

(Figure 14-19).

Accessibility | 407

Figure 14-19. VoiceOver in the Notes app

7. Exit the new document by tapping the Back button once, and then double-
tapping the screen to exit the document.

If your vision is fine, it’s difficult to accurately gauge what it’s
like to use the phone while not being able to see the screen,
because it’s extremely hard to keep your eyes closed or not
sneak a peek at the screen. To disable the screen entirely while
using VoiceOver, tap the screen three times with three fingers.

8. Try to open a document. You’ll notice that, while you can select the document’s
name, you can’t actually tap the cell to open the document. The reason for this is
that VoiceOver doesn’t know that the cell works in the same way as a button. To
fix this, we need to provide some accessibility information.

9. Open Main.storyboard, and go to the document list view controller.
10. Find the FileCell in the document collection view.
11. Select the view that contains the image view. When users tap the cell, they’ll gen‐

erally be tapping this view. We need to tell VoiceOver that this view is interactive.
12. Go to the Identity Inspector and scroll down to the Accessibility section.
13. Select the Accessibility Enabled checkbox, as well as the User Interaction Enabled

and Button checkboxes (Figure 14-20).

408 | Chapter 14: Polishing the iOS App

Figure 14-20. Enabling accessibility for the document cell

14. Rerun the application on your phone. You can now select and open documents.

Accessibility | 409

While VoiceOver isn’t supported in the iOS simulator, you can test
your application in a similar way by turning on the Accessibility
Inspector. You can find it in the simulator’s Settings app, in Gen‐
eral→Accessibility→Accessibility Inspector. While the Accessibility
Inspector is enabled, touches on the screen will behave in the same
way as iOS; additionally, the simulator will display the information
that would be provided to the user about the currently selected
item.

Splitscreen Multitasking
On certain hardware, it’s possible to run two apps at the same time, side by side on
the screen. This feature, shown in Figure 14-21, is known as splitscreen multitasking.
To activate it, swipe in from the righthand side of the screen and pick an app. This
works on the simulator, too.

Figure 14-21. Splitscreen multitasking

410 | Chapter 14: Polishing the iOS App

Splitscreen multitasking is fully available only on iPad Air 2, iPad
Mini 4, and the iPad Pro; it’s available in a limited mode on earlier
devices.

You don’t actually need to do anything to support it; because this app is using con‐
straints, the interface will lay itself out appropriately.

This view can be resized, so your constraints will handle it (and also change size
classes when needed).

Conclusion
In this chapter, we added the following collection of finishing touches to our iOS app:

• We added text-to-speech support, and along the way learned how to add things
to the menu that appears when text is selected.

• We detected links inside the text content of notes, and added the ability for users
to tap links and open them in the provided web browser view controller, SFSafar
iViewController.

• We added app settings, available via the iOS Settings application.
• We added undo support, using NSUndoManager.
• We added image filters, using Core Image.
• Finally, we looked at how you can add localization and accessibility support into

your apps.

In Part IV, we’ll add Apple Watch support to the iOS app, explore a selection of more
advanced iOS features, and touch on debugging and problem tracing with your Swift
code.

Conclusion | 411

PART IV

Extending Your Apps

CHAPTER 15

Building a watchOS App

In Part I of this book we explored the Apple developer ecosystem and the developer
tools, as well as the basics of programming with Swift and how to structure apps for
Apple’s platforms. In Parts II and III, we learned the fundamentals of Swift by creat‐
ing an app for both macOS and iOS, respectively; our app shares data through
iCloud, lets us makes notes with a variety of attachment types, and generally behaves
as a good, modern application for Mac, iPhone, or iPad. But Apple’s platforms don’t
just stop at conventional computers and handheld computers—they also extend to
wearable computers: Apple Watch.

It’s important to remember that you can’t build a watchOS app
without also building and distributing an iOS app. watchOS apps
are supplied to a tethered Apple Watch via an application users
install on their iPhone.

Apple Watch runs watchOS. watchOS is quite similar to iOS in many ways, and has
many of the same frameworks and basic building blocks that you’ve come to expect.
In this chapter, we’ll extend our Notes app to also support the Apple Watch.

Of course, Apple also ships the Apple TV, which runs another var‐
iant of iOS called tvOS. tvOS is beyond the scope of this book, since
it’s mostly targeted at entertainment apps and games, and we’re
here to learn Swift through app development. Everything you’ve
learned in this book about Swift, and much of the Cocoa and
Cocoa Touch frameworks, applies to tvOS, too; it just has its own
set of frameworks, as well as variants on the ones we’ve used here.
The best place for learning more about tvOS is Apple’s documenta‐
tion.

415

https://developer.apple.com/tvos/documentation/
https://developer.apple.com/tvos/documentation/

We’ll begin working with watchOS by first discussing how to design for it—from both
a visual and a software standpoint. We’ll then build out a very simple app, making use
of the various features of watchOS, including glances and communicating with iOS.

If you want to learn more about building apps for the Apple Watch,
we recommend the book Swift Development for the Apple Watch
(O’Reilly), by some of the same authors who wrote this book
(hello!). Apple’s documentation is also a good reference.

Designing for the Watch
Before we start looking at building the Notes application for the Apple Watch, let’s
take a closer look at the Apple Watch itself (see Figure 15-1).

Just by looking at the device, we can immediately see a number of constraints that are
placed upon all software:

• The screen is extremely small. This limits both the amount of content that can be
displayed at once, and also the area in which the user can interact with that con‐
tent.

• Because the screen is small, touching the screen means covering up a large per‐
centage of the visible content. The Digital Crown, on the side of the device, is
therefore used to scroll the screen up and down while still keeping everything
visible.

• The device is strapped to the wrist. Because we can’t move our lower arms with
the same precision as our fingers, the device will be moving around underneath
the user’s fingers. At the same time, the user might be doing some other activity,
or holding something, further complicating how the device is moving. Compare
this to the phone or tablet, in which users have a lot of control in the off-hand
that holds the device.

416 | Chapter 15: Building a watchOS App

http://shop.oreilly.com/product/0636920039570.do
https://developer.apple.com/watchos/

Figure 15-1. The Apple Watch

In addition to these physical constraints, there are a number of technical constraints
imposed on your apps. The watch is a very low-powered device and relies on commu‐

Designing for the Watch | 417

nication with an iPhone to access a number of resources. This means that the archi‐
tecture of the watchOS app is distinct to the Apple Watch.

There are three components at play when working with a watchOS app: the container
iOS app, the WatchKit app, and the WatchKit extension:

• The WatchKit app contains the resources (interface, UI, etc.) used by the
watchOS application.

• The WatchKit extension contains the code; both are installed on the watch.
• Both the WatchKit app and the WatchKit extension are embedded in an iOS

application, which is distributed through the App Store. When the user down‐
loads the app from the App Store, the app and extension are transferred to the
user’s Apple Watch.

Designing Our watchOS App
The watchOS app for Notes needs to be very careful in terms of how it’s designed. We
can’t replicate the entire feature set of the iOS app, nor should we: users are not going
to want to access every single thing that they can do on their phone. Instead, we need
to focus on the most important and most frequently accessed features.

In our opinion, there are precisely two things that the user will want to do:

• Look at a note
• Make a new note

We’ll therefore gear the entire design around these two features. Just as with the Mac
and iOS apps, we created wireframes as part of our thinking about how the watchOS
app should work.

To access notes, the user needs a way to see the list of available notes. To enable this,
we need a screen that presents a list of buttons that, when tapped, displays the note
(see Figure 15-2).

418 | Chapter 15: Building a watchOS App

Figure 15-2. The note list on the watch

Displaying the note itself is easy; we just need to display a bunch of text (see
Figure 15-3). We’re specifically excluding attachments from the Apple Watch applica‐
tion, because it’s our opinion that the user will care more about the note’s text rather
than the things attached to it.

Designing Our watchOS App | 419

Figure 15-3. The note content on the watch

Creating the watchOS Extension
The first thing we need to do to create an app for the watch is add a WatchKit app
extension to our project. We do this by adding yet another new target. Let’s get
started:

1. Open the File menu and choose New→Target.
2. In the watchOS section, choose WatchKit App and click Next (Figure 15-4).

420 | Chapter 15: Building a watchOS App

You’ll notice that there’s also a template called “WatchKit App for watchOS 1”;
watchOS 1 did not allow apps to actually run on the watch, and instead every‐
thing was done via network to the phone, with the watch handling display only.
watchOS 2 and beyond, which is what we’re using here, actually allows apps to
run on the watch. You shouldn’t ever use the watchOS 1 template at this point.

Figure 15-4. Creating the watchOS app

3. Name the application Watch1.

The name “Watch” is only for our internal use. On the Apple
Watch, it will take the name of the container iOS app. Xcode
will make the bundle identifier the same as iOS app’s,
with .Watch appended. This is because Watch apps are embed‐
ded inside iOS app.

4. Ensure that Include Glance Scene is turned on (Figure 15-5). We’ll be adding a
glance, which is a single-screen view of your app that users can access from their
watch face, in “Glances” on page 455.

Creating the watchOS Extension | 421

Figure 15-5. Configuring the watchOS app target

5. When you click Finish, Xcode will create the target and then ask you if you want
to activate the new scheme. We want to start working on the watchOS app right
away, so click Activate (Figure 15-6).

Figure 15-6. Activating the scheme

Now that the application has been set up, we’ll add the watchOS app’s icons to its asset
catalog. Adding icons to an asset catalog should be very familiar at this point!

422 | Chapter 15: Building a watchOS App

1. Open the Assets.xcassets file inside the Watch group (not the one in the Watch
Extension group).

The images to use for the icons are provided in the resources
that accompany this book. If you don’t have them already, fol‐
low the instructions in “Resources Used in This Book” on page
ix to get them.

2. Select the AppIcon image set, and drag and drop the images into the slots, as
shown in Figure 15-7. Remember to use the filenames to determine the correct
slot for each image—for example, the slot “Apple Watch Companion Settings
29pt 2x” should use the image Icon-AppleWatch-Companion-Settings@2x.png.

Figure 15-7. Adding the icons for the project

When you’re building a watchOS application, you need to use
the same developer identity for both the iOS app and the
watchOS app. If you only have a single developer account,
you’re fine. If you use more than one, then double-check the
Team setting in the General tab of the Watch and Notes-iOS
project info.

3. In the Scheme Selector at the top left of the Xcode window, set the active scheme
to a simulator plus a watch. Any combination of iPhone and Watch will do.

Creating the watchOS Extension | 423

If you have an iPhone and an Apple Watch (that is, the real
devices, not just the simulator), you can build and run straight
onto your watch; watches don’t have to leave your wrist for
you to install stuff. Note that testing on the simulator is a lot
easier. If you’re testing on an Apple Watch, you may have to go
to the home screen and tap the icon to launch it.

4. Press ⌘-R to build and run the app.

Because you’re about to install the app onto a new simulator, the
simulated iPhone on which you’re going to install won’t be signed
in to iCloud. To fix this, once the iPhone appears, sign it into
iCloud by opening the Settings application, selecting iCloud, and
tapping Sign In.

Communicating with the iPhone
By default, the app is blank. Let’s fix that and let the app retrieve the notes from the
phone.

To get access to any data stored on its paired iPhone, you use the WatchConnectivity
framework, which allows you to communicate with the phone by sending messages.
These messages are simply dictionaries containing very small chunks of information,
like strings and numbers.

First, we’ll define the different messages that can be sent back and forth between the
Apple Watch and the iPhone. There are three different types of messages that will be
sent:

List all notes
The watch wants to receive the list of notes. The iPhone should send back an
array of dictionaries; each dictionary will contain the name of the note and its
URL.

Open note
The watch wants to display the content of a note. It will pass the URL of a note;
the iPhone should open it, retrieve its text, and send it back.

Create note
The watch wants to create a note. It will pass the text that the note should con‐
tain; the iPhone will create the note and return the updated list of all notes (that
is, it will have the same reply as “list all notes”).

424 | Chapter 15: Building a watchOS App

The actual data that’s transferred between the watch and the phone is simply a dictio‐
nary; the contents of this dictionary will depend on what type of message it is, which
is indicated by the value of the “name” entry in the dictionary.

We now need to define the actual messages that will be sent back and forth. Because a
message is just a dictionary, to distinguish between the three different types of mes‐
sages, the dictionary will need to contain an entry that describes the “name” of the
message. Additionally, each value that can be sent in either direction needs a name as
well so that it can be retrieved from the dictionaries that are sent back and forth.

The best place to define these is in DocumentCommon.swift, which is the Swift file
that’s currently shared among all of the different targets. We’ll add it to the Watch
extension target, too:

1. Select DocumentCommon.swift and open the File Inspector. Set its Target Mem‐
bership to include the Watch Extension.
Doing this includes the DocumentCommon.swift file in the watchOS application.

2. Next, add the following code to the end of DocumentCommon.swift:
 let WatchMessageTypeKey = "msg"
 let WatchMessageTypeListAllNotesKey = "list"
 let WatchMessageTypeLoadNoteKey = "load"
 let WatchMessageTypeCreateNoteKey = "create"

 let WatchMessageContentNameKey = "name"
 let WatchMessageContentURLKey = "url"
 let WatchMessageContentTextKey = "text"
 let WatchMessageContentListKey = "list"

These strings will be used in the messages that are sent back and forth between
the iPhone and the watch.

In this application, multiple different screens will need to access the iPhone via
WatchConnectivity. Rather than spreading this work over all of the app, it’s better to
centralize it into a single object. To that end, we’ll create a class that handles all
iPhone/watch communication:

1. Open ExtensionDelegate.swift.
2. Import the WatchConnectivity framework by adding it to the list of imports:

 import WatchConnectivity

This framework enables the Apple Watch and the iPhone to which it’s tethered to
talk to each other over the network. The practicalities of how this happens are
handled for you: sometimes it might be over Bluetooth, sometimes it might be
over WiFi, and sometimes it’ll be a combination of both. The iPhone to which

Creating the watchOS Extension | 425

the watch is tethered doesn’t even need to be on the same network for this to
work.

3. Add the following class to the end of the file. Note that it conforms to WCSession
Delegate:
 class SessionManager : NSObject, WCSessionDelegate {

 }

The WCSessionDelegate protocol defines methods that are called when the
device receives a message. Both the watchOS app and the iOS app will have a
class that implements WCSessionDelegate, since they’ll both need to respond to
messages.
We want this class to be a singleton—that is, a class of which there’s only ever one
instance, and everyone accesses the same instance. We’ve seen this pattern before
—for example, the NSFileManager class’s defaultManager property provides
access to a single, shared instance of the class.
To make a shared instance of this class available, we’ll define a static constant
property that, when then application loads, is initialized to an instance of the
class.

4. Add the following property to SessionManager:
 static let sharedSession = SessionManager()

Additionally, when the instance is created, we’ll get in touch with the shared
WCSession and tell it to use this instance as its delegate. Doing this means that
we’ll receive messages from the session.
This won’t happen on the watch, but it will happen on the iPhone, so now’s a
good time to introduce it.

5. Add the following code to SessionManager:
 var session : WCSession { return WCSession.default() }

 override init() {
 super.init()
 session.delegate = self
 session.activate()
 }

When the SessionManager class is created—which happens when the sharedSes
sion variable is created—then the shared WCSession class is told to use the Ses
sionManager as its delegate. This means that the SessionManager will be notified
when a message arrives. We then activate the session, enabling communication
between the watch and the iPhone.

426 | Chapter 15: Building a watchOS App

However, the session won’t activate immediately. Instead, the session will take a
moment before it’s ready; when it is, or if it encounters a problem, it will call a
method on its delegate, called session(_, activationDidCompleteWith: error:).
This method indicates that activation either completed successfully, or failed.

This poses a minor problem for our design. Other objects in the Watch Extension
shouldn’t have to know or care about whether the session is active or not; they should
simply try to send messages, and get back a reply (or an error).

To deal with this, we’ll set up a simple message queue in the SessionManager class.
When the SessionManager is asked to send a message, and the session is not yet
active, it will instead store the message call in a closure, which it keeps in an array.
When the session becomes active, all closures in this array are called. This has the
effect of delaying any attempt to deliver a message until the session becomes active.

We’ll begin by adding the array that stores these deferred tasks. Add the following
type alias and property to the SessionManager class:

 // To save us some typing, we'll define a type called
 // 'DeferredSessionTask', which is a closure that accepts an
 // optional error and returns nothing
 typealias DeferredSessionTask = (Error?) -> Void

 // The 'deferredTasks' array is a list of all tasks that are
 // waiting for the session to activate
 var deferredTasks : [DeferredSessionTask] = []

Next, we’ll add the method that queues up a task. If the session is already active, then
the task will be run right away; otherwise, it will be added to the array. Add the fol‐
lowing method to the SessionManager class:

 // Runs a closure when the session becomes active. If the session is
 // already active, the closure is run immediately.
 func runTaskWhenSessionActive(completionBlock: @escaping DeferredSessionTask) {

 // If the session is already active, run the block immediately
 // with no error
 if session.activationState == .activated {
 completionBlock(nil)
 } else {
 // Otherwise, add this task to the list,
 // and request that the session activate
 deferredTasks.append(completionBlock)
 session.activate()
 }
 }

Finally, we’ll implement the session(_, activationDidCompleteWith: error:)

method. In this method, the queued up tasks are all run. If there was a problem, the

Creating the watchOS Extension | 427

error that this method receives as a parameter is passed to the tasks. Add the follow‐
ing method to the SessionManager class:

 func session(_ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {

 // Either the session was activated, or error != nil.
 // Call each task, passing the current value of error.
 for task in deferredTasks {
 task(error)
 }

 // Clear the list.
 deferredTasks = []

 }

We now need to have some way for the watch to keep track of the notes that it knows
about. We don’t need to have a complete representation of the entire note—we just
need to know about the names and URLs of notes that exist on the phone.

To that end, we’ll create a struct that just stores the name as a String, and the URL as
a NSURL. Because the iPhone will be passing information about the notes as dictionar‐
ies, we’ll also add an initializer to this struct that allows it to use a dictionary to set
itself up.

Finally, it’s worth pointing out that this struct will be inside the SessionManager class.
This decision is entirely a stylistic one; it’s slightly nicer to keep related stuff together:

1. Add the following code to SessionManager:
 struct NoteInfo : Equatable {
 var name : String
 var URL : Foundation.URL?

 init(dictionary:[String:AnyObject]) {

 let name
 = dictionary[WatchMessageContentNameKey] as? String
 ?? "(no name)"

 self.name = name

 if let URLString = dictionary[WatchMessageContentURLKey] as? String
{
 self.URL = Foundation.URL(string: URLString)
 }

 }

428 | Chapter 15: Building a watchOS App

 static func == (lhs: NoteInfo, rhs: NoteInfo) -> Bool {
 return lhs.name == rhs.name && lhs.URL == rhs.URL
 }
 }

The NoteInfo struct is used on the watch to represent a single note. It’s a very
simple, pared-back version of the Document class, which stores two critical things:
the name of the document, which is shown to the user, and the URL of the docu‐
ment as it exists on the iPhone. We also provide an initializer that lets it use a
dictionary to get its initial values.

2. Next, we’ll add an array to store this collection of notes. Add the following prop‐
erty to SessionManager:
 var notes : [NoteInfo] = []

Then, because there are two different messages that can result in us receiving a
list of notes, we’ll break out the code that updates the notes array into its own
method. This will help to keep the code tidy, since we can then just call this
method and pass in the information we got from the phone to it as a parameter,
rather than having to write the same code twice.

3. Add the following method to SessionManager:
 func updateLocalNoteListWithReply(_ reply:[String:Any]) {

 // Did we receive a dictionary in the reply?
 if let noteList = reply[WatchMessageContentListKey]
 as? [[String:AnyObject]] {

 // Convert all dictionaries to notes
 self.notes = noteList.map({ (dict) -> NoteInfo in
 return NoteInfo(dictionary: dict)
 })

 }
 }

This method simply takes the dictionary that we’ve received and turns it into an
array of notes, which is stored in the notes property.
We can now add the methods that send messages to the iPhone and receive the
results. The users of these methods will need to provide a closure, which will be
called when the information has been loaded, and serves as the means for the
information to be passed back.
We’ll start with the method that asks for the list of notes.

4. Add the following method to SessionManager:
func updateList(_ completionHandler: @escaping ([NoteInfo], NSError?)->Void)
{

Creating the watchOS Extension | 429

 let message = [
 WatchMessageTypeKey : WatchMessageTypeListAllNotesKey
]

 self.runTaskWhenSessionActive { (error) in

 if error != nil {
 completionHandler([], error as NSError?)
 return
 }

 self.session.sendMessage(message, replyHandler: {
 reply in

 self.updateLocalNoteListWithReply(reply as [String:AnyObject])

 completionHandler(self.notes, nil)

 }, errorHandler: { error in
 print("Error! \(error)")
 completionHandler([], error as NSError?)

 })
 }

 }

When the updateList method is called, we prepare a message by creating a dic‐
tionary. We then ask the WCSession to send the message to the iPhone and pro‐
vide a closure that’s called when the iPhone’s reply arrives. When it does, we
simply call updateLocalNoteListWithReply. Additionally, this method has its
own completion handler, allowing our UI to be notified about when it’s time to
update what the user can see.

5. Next, we’ll implement the method that asks for a specific note by its URL and
receives its text:
 func loadNote(_ noteURL: URL,
 completionHandler: @escaping (String?, Error?) -> Void) {

 let message = [
 WatchMessageTypeKey: WatchMessageTypeLoadNoteKey,
 WatchMessageContentURLKey: noteURL.absoluteString
]

 self.runTaskWhenSessionActive { (error) in
 if error != nil {
 completionHandler(nil, error)
 return

430 | Chapter 15: Building a watchOS App

 }

 self.session.sendMessage(message, replyHandler: {
 reply in

 let text = reply[WatchMessageContentTextKey] as? String

 completionHandler(text, nil)
 },
 errorHandler: { error in
 completionHandler(nil, error)
 })
 }

 }

This method is extremely similar to the updateList method, except that it
requests a specific note from the iPhone. The iPhone will return the text of the
note, which is then given to updateList’s completion handler.

6. Finally, we’ll implement the method that asks the iPhone to create a new note
with provided text (which will eventually come from the Apple Watch’s built-in
dictation system) and that receives an updated list of notes:
 func createNote(_ text:String,
 completionHandler: @escaping ([NoteInfo], Error?)->Void) {

 let message = [
 WatchMessageTypeKey : WatchMessageTypeCreateNoteKey,
 WatchMessageContentTextKey : text
]

 self.runTaskWhenSessionActive { (error) in

 if error != nil {
 completionHandler([], error)
 return
 }

 self.session.sendMessage(message, replyHandler: {
 reply in

 self.updateLocalNoteListWithReply(reply)

 completionHandler(self.notes, nil)

 }, errorHandler: {
 error in

 completionHandler([], error)

Creating the watchOS Extension | 431

 })
 }

 }

The createNote method simply takes the text to be used in a new note and fires
it off to the iPhone. The iPhone will create the document and then return the
updated list of documents available, allowing us to refresh the list immediately
after creating a new note.

We’re done with the watch side of things. The messages are sent, and the reply is
interpreted and used. Next, we need to add support for these messages to the iPhone.
We’ll do this by extending the AppDelegate class to act as the delegate for the WCSes
sion, which will allow it to receive messages from the watch. We’ll then implement
code, in the iOS app, that allows it to reply to the messages that it’s received:

1. Open the iOS app’s AppDelegate.swift file.
2. Add the WatchConnectivity framework to the list of imports:

 import WatchConnectivity

3. Next, add the extension that makes AppDelegate conform to WCSessionDele
gate. We’re doing this to keep the WCSessionDelegate methods separate from
the rest of the methods, for ease of reading. First, we’ll include some methods
that are called when the state of the WCSession changes:
 extension AppDelegate : WCSessionDelegate {

 public func session(_ session: WCSession,
 activationDidCompleteWith
 activationState: WCSessionActivationState,
 error: Error?) {
 NSLog("Watch session is now in activation state \(activationState)")
 }

 public func sessionDidDeactivate(_ session: WCSession) {
 NSLog("Watch session deactivated")
 }

 public func sessionDidBecomeInactive(_ session: WCSession) {
 NSLog("Watch session is now inactive")
 }

 }

Next, we need to receive messages from the Apple Watch and determine what to do
with them. To do this, we need to implement the method session(_, didReceive

432 | Chapter 15: Building a watchOS App

Message:, replyHandler:) in the extension. This method will receive the message
that was sent from the watch and determine what to do about it.

To keep things tidy, we’ll implement a handler method for each of the three different
types of messages that can be received.

One of the parameters that the didReceiveMessage method receives is a closure,
which must be called in order to reply to the message; therefore, this closure will be
passed to the handler methods.

Let’s get started by implementing didReceiveMessage:

1. Add the following method to the AppDelegate’s WCSessionDelegate extension:
 func session(_ session: WCSession,
 didReceiveMessage message: [String : Any],
 replyHandler: @escaping ([String : Any]) -> Void) {

 if let messageName = message[WatchMessageTypeKey] as? String {

 switch messageName {
 case WatchMessageTypeListAllNotesKey:
 handleListAllNotes(replyHandler)
 case WatchMessageTypeLoadNoteKey:
 if let uString = message[WatchMessageContentURLKey] as? String,
 let url = URL(string: uString) {
 handleLoadNote(url, replyHandler: replyHandler)
 } else {
 // If there's no URL, then fall through to the
 // default case fallthrough
 }
 case WatchMessageTypeCreateNoteKey:
 if let textForNote = message[WatchMessageContentTextKey]
 as? String {

 handleCreateNote(textForNote, replyHandler: replyHandler)
 } else {
 // No text provided? Fall through to the default case
 fallthrough
 }

 default:
 // Don't know what this is, so reply with the empty dictionary
 replyHandler([:])
 }
 }
 }

When we receive a message from the watch, we check the value of the message’s
WatchMessageTypeKey. Based on the value, we call either the handleListAll

Creating the watchOS Extension | 433

Notes, handleLoadNote, or handleCreateNote method. In each case, we pass the
replyHandler closure to these methods, allowing the method to send a reply.

2. Next, implement the handleListAllNotes method, which uses an NSFile
Manager to list the current contents of the iCloud container, builds an array of
dictionaries that represents the contents, and passes this dictionary as a reply to
the message:
 func handleListAllNotes(_ replyHandler: ([String:Any]) -> Void) {

 let fileManager = FileManager.default

 var allFiles : [URL] = []

 do {

 // Add the list of cloud documents
 if let documentsFolder = fileManager
 .url(forUbiquityContainerIdentifier: nil)?
 .appendingPathComponent("Documents", isDirectory: true) {
 let cloudFiles = try fileManager
 .contentsOfDirectory(atPath: documentsFolder.path)
 .map({
 documentsFolder.appendingPathComponent($0,
 isDirectory: false)
 })
 allFiles.append(contentsOf: cloudFiles)
 }

 // Add the list of all local documents

 if let localDocumentsFolder
 = fileManager.urls(for: .documentDirectory,
 in: .userDomainMask).first {

 let localFiles =
 try fileManager
 .contentsOfDirectory(atPath: localDocumentsFolder.path)
 .map({
 localDocumentsFolder.appendingPathComponent($0,
 isDirectory: false)
 })
 allFiles.append(contentsOf: localFiles)
 }

 // Filter these to only those that end in ".note",

 let noteFiles = allFiles
 .filter({
 $0.lastPathComponent.hasSuffix(".note")

434 | Chapter 15: Building a watchOS App

 })

 // Convert this list into an array of dictionaries, each
 // containing the note's name and URL
 let results = noteFiles.map({ url in

 [
 WatchMessageContentNameKey: url.lastPathComponent,
 WatchMessageContentURLKey: url.absoluteString
]

 })

 // Bundle up this into our reply dictionary
 let reply = [
 WatchMessageContentListKey: results
]

 replyHandler(reply as [String : AnyObject])

 } catch let error as NSError {
 // Log an error and return the empty array
 NSLog("Failed to get contents of Documents folder: \(error)")
 replyHandler([:])
 }

 }

In this method, we’re querying for the list of all documents and filtering that list
down to only those whose filenames end in .note. We then use this list to create a
reply dictionary, which we pass to the replyHandler. As a result, the watch will
receive the list of available notes.

3. Next, implement the handleLoadNote method, which receives the URL of a note
to load, opens that document, and retrieves its text, which it passes back as the
reply:
 func handleLoadNote(_ url: URL,
 replyHandler: @escaping ([String:Any]) -> Void) {
 let document = Document(fileURL:url)
 document.open { success in

 // Ensure that we successfully opened the document
 guard success == true else {
 // If we didn't, reply with an empty dictionary and bail out
 replyHandler([:])
 return
 }

 // Extract the plain, nonattributed text from the document

Creating the watchOS Extension | 435

 let text = document.text.string

 // Build the reply with this response
 let reply = [
 WatchMessageContentTextKey: text
]

 // Close the document; don't provide a completion handler,
 // because we're not making changes and therefore don't care
 // if a save succeeds or not
 document.close(completionHandler: nil)

 replyHandler(reply as [String : AnyObject])
 }

 }

To return the text of a note, we first need to open the Document and ask it for its
text. Before we return it, we close the document; note that we don’t provide a clo‐
sure to closeWithCompletionHandler, since we’re not making any changes to the
document, and therefore don’t need to worry about whether saving the document
when it was closed succeeded.

4. Finally, implement the handleCreateNote method, which receives some text to
save in a new note; it creates the new document, gives it the text, and saves it; it
then calls handleListAllNotes, passing the reply handler, so that the watch
receives the updated list of documents:
 func handleCreateNote(_ text: String,
 replyHandler: @escaping ([String:Any]) -> Void) {

 let formatter = DocumentListViewController.documentNameDateFormatter
 let documentDate = formatter.string(from: Date())
 let documentName = "Document \(documentDate) from Watch.note"

 // Determine where the file should be saved locally
 // (before moving to iCloud)
 guard let documentsFolder = FileManager.default
 .urls(for: .documentDirectory,
 in: .userDomainMask).first else {
 self.handleListAllNotes(replyHandler)
 return
 }

 let documentDestinationURL = documentsFolder
 .appendingPathComponent(documentName)

 guard let ubiquitousDocumentsDirectoryURL =
 FileManager.default.url(forUbiquityContainerIdentifier: nil)?
 .appendingPathComponent("Documents") else {

436 | Chapter 15: Building a watchOS App

 self.handleListAllNotes(replyHandler)
 return
 }

 // Prepare the document and try to save it locally
 let newDocument = Document(fileURL:documentDestinationURL)
 newDocument.text = NSAttributedString(string: text)

 // Try to save it locally
 newDocument.save(to: documentDestinationURL,
 for: .forCreating) { (success) -> Void in

 // Did the save succeed? If not, just reply with the
 // list of notes.
 guard success == true else {
 self.handleListAllNotes(replyHandler)
 return
 }

 // OK, it succeeded!

 // Move it to iCloud
 let ubiquitousDestinationURL = ubiquitousDocumentsDirectoryURL
 .appendingPathComponent(documentName)

 // Perform the move to iCloud in the background
 OperationQueue().addOperation { () -> Void in
 do {
 try FileManager.default
 .setUbiquitous(true,
 itemAt: documentDestinationURL,
 destinationURL: ubiquitousDestinationURL)

 } catch let error as NSError {
 NSLog("Error storing document in iCloud! " +
 "\(error.localizedDescription)")
 }

 OperationQueue.main
 .addOperation { () -> Void in
 // Pass back the list of everything currently
 // in iCloud
 self.handleListAllNotes(replyHandler)
 }
 }

 }
 }

Creating the watchOS Extension | 437

The last method to implement involves creating a new note. This is very similar
to the createDocument method we implemented back in “Creating Documents”
on page 234, but with one change: when we successfully finish creating the docu‐
ment, we call handleListAllNotes, which results in the Apple Watch receiving
the updated list of documents.
Finally, we need to make the WCSession use the app delegate, which is now capa‐
ble of receiving and replying to messages from the watch, as its delegate.

5. Add the following code to AppDelegate’s didFinishLaunchingWithOptions
method to set up and activate the session:
 WCSession.default().delegate = self
 WCSession.default().activate()

Just as on the Apple Watch, we need to configure the WCSession to let us know
when we receive a message. We also call activateSession to turn on the two-
way communication between the two devices.

Congratulations! The iPhone and Apple Watch are now able to talk to each other. We
don’t have a user interface on the watch yet, so it’s not very useful!

Let’s put this new functionality to use by building the Watch app’s interface.

User Interfaces for the Apple Watch
We’ll now start making the interface that the user works with on the watch. The
watch app will be composed of two WKInterfaceController subclasses: one that dis‐
plays the list of notes, and one that displays the content of a single note.

By default, the Xcode template contains a single WKInterfaceController, called
InterfaceController. This name isn’t the greatest, since it doesn’t describe what the
interface controller is for, so we’ll start by renaming it:

1. Rename the file InterfaceController.swift to NoteListInterfaceController.swift.
2. Open this file and rename the InterfaceController class to NoteListInterface

Controller.

Because the Apple Watch app is configured to look for an interface controller class
called InterfaceController at startup, we need to change this setting:

1. Open the Watch extension’s Info.plist file and find the RemoteInterfacePrinci
palClass entry.

2. Change this entry from $(PRODUCT_MODULE_NAME).InterfaceController to
$(PRODUCT_MODULE_NAME).NoteListInterfaceController.

438 | Chapter 15: Building a watchOS App

Next, we’ll create the class that controls the second screen (the one that shows the
contents of a note). Each separate interface controller should be a separate class so
that each screen can operate independently.

1. Open the File menu and choose New→File.
2. Choose the Source category in the watchOS section, and select “WatchKit class.”

Click Next.

Remember, creating a new class really means creating a Swift
file; the advantage of using this method is that some of the
setup will be taken care of for you.

3. Name the new class NoteInterfaceController, and make it a subclass of WKIn
terfaceController (see Figure 15-8).

Figure 15-8. Configuring the new class

We’ll now set up the storyboard that the watchOS application uses. We used story‐
boards for the iOS app, back in Part III, and we’ll be using them again here for the
watchOS app:

1. Open the Interface.storyboard file and find the interface controller. Select it.

Creating the watchOS Extension | 439

2. Open the Identity Inspector and change its class from InterfaceController to
NoteListInterfaceController.
This will make the new interface controller use the NoteListInterfaceControl
ler class that we just created.

3. Open the Attributes Inspector and change its title to Notes.
This updates the label at the top of the screen to Notes.

We’re finally ready to build the interface. The note list will show, as its name suggests,
a list of notes. In watchOS, you use a table to show lists of content; each row in the
table can have its interface customized to your requirements.

The contents of each row are controlled by a row controller, which is a custom object
that you create. Each type of row requires a new row controller class.

Unlike UICollectionViews and UITableViews, there’s no special class for the row
controllers that you should subclass. You just subclass the generic NSObject class:

1. Go to the Object library, and search for a table (Figure 15-9).

Figure 15-9. A Table in the Object library

2. Drag a table into the interface controller. It will fill the width of the screen
(Figure 15-10).

440 | Chapter 15: Building a watchOS App

Figure 15-10. A Table object, filling the width of the screen

Next, we’ll create the row controller class for the rows. Remember, each row will rep‐
resent a note that the watch knows about:

1. Open NoteListInterfaceController.swift in the Assistant Editor.
2. Add the following NoteRow class to the bottom of the file:

 class NoteRow : NSObject {

 }

3. Select the row controller in the outline and go to the Identity Inspector. Set its
class to NoteRow.

4. Go to the Attributes Inspector and set its identifier to NoteRow as well. We’ll use
this to populate the table’s contents.

5. Search for Label in the Object library and drag it into the table’s row.
6. Select the new label and set its text to Note Name.

The interface for the note list is now fully designed and should look like Figure 15-11.

Creating the watchOS Extension | 441

Figure 15-11. The interface for the note list

We’ll now connect the interface to the code. First, we need to connect the label in the
table’s row to an outlet in the NoteRow class; next, we need to connect the table itself
to the interface controller:

1. Hold down the Control key and drag from the label into the NoteRow class. Cre‐
ate a new outlet called nameLabel.

2. Hold down the Control key a second time and drag from the table into the Note
ListInterfaceController class. Create a new outlet, noteListTable, by drag‐
ging from the table entry in the outline.

Drag from the outline, not from the table in the canvas. If the drag
starts from the canvas, you’ll end up creating an outlet for the
wrong type of object.

We can now set up the NoteInterfaceController to request a list of notes from the
watch, via the SessionManager, and populate the table.

Because there will eventually be two reasons for updating the table (both when the
app starts up, and when the user has added a new note), we’ll break out the code that
updates the table into its own function, updateListWithNotes:

1. Add the following method to NoteListInterfaceController:

442 | Chapter 15: Building a watchOS App

 func updateListWithNotes(_ notes: [SessionManager.NoteInfo]) {

 // Have the notes changed? Don't do anything if not.
 if notes == self.displayedNotes {
 return
 }

 self.noteListTable.setNumberOfRows(notes.count, withRowType: "NoteRow")

 for (i, note) in notes.enumerated() {
 if let row = self.noteListTable.rowController(at: i) as? NoteRow {
 row.nameLabel.setText(note.name)
 }
 }

 self.displayedNotes = notes
 }

This method will be called by the willActivate method, which we’ll add to
shortly. It receives a list of NoteInfo objects, which it uses to populate the con‐
tents of the table view.
When the interface controller first appears, we need to query the iPhone for the
list of notes and then call updateListWithNotes.

2. Add the following method to NoteListViewController:
 override func willActivate() {
 SessionManager.sharedSession.updateList() { notes, error in
 self.updateListWithNotes(notes)
 }
 }

When the interface controller appears on screen, it needs to get the list of notes
to display. To get this, we ask the SessionManager to request the list of notes
from the iPhone; when we receive the reply, we call updateListWithNotes to
make it appear.
We can now test the app.

3. Run the application. The list of notes will appear (see Figure 15-12).

Creating the watchOS Extension | 443

Figure 15-12. The list of notes

Showing Note Contents
Next, we’ll create a new interface controller that shows the contents of a single note.
When the user taps a note in the NoteListInterfaceController, we’ll use a segue to
transition to this new interface controller, which will then request the text of a note
from the iPhone. Once it receives the text, it will display it in a label.

Let’s start by creating the interface for the new interface controller:

1. Go to the Object library, and search for Interface Controller. A few different
options will appear; the one you want is the base Interface Controller, which
should appear at the top of the list (see Figure 15-13).
The other options are the Glance Interface Controller, which allows you to create
a custom UI for glances (screens that appear when the user swipes up from the
bottom of the watch screen), and the Notification Interface Controller, which
allows you to create a custom UI for notifications that your app receives. We
want a generic, simple interface controller to add to the app.

444 | Chapter 15: Building a watchOS App

Figure 15-13. Searching for Interface Controller in the Object library—the base
Interface Controller, which is the one we want, is selected

2. Drag in a new interface controller.
3. Select it and go to the Identity Inspector. Change its class from WKInterfaceCon

troller to NoteInterfaceController to make it use that class’s code.
4. Go to the Attributes Inspector and change its title to Note.

Next, we’ll create the segue that connects the note list interface controller to the note
interface controller:

1. Hold down the Control key and drag from the Note Row—that is, the single row
in the table view—to the note interface controller. When you release the mouse
button, a menu will appear with the available types of segue (Figure 15-14).
Choose Push.
The alternative is to create a modal segue, which slides an interface controller up
from the bottom of the screen. It’s designed for alerts and other modal content.

Creating the watchOS Extension | 445

Figure 15-14. Creating the segue

2. Select this new segue and go to the Attributes Inspector. Change its identifier to
ShowNote.

We can now create the interface for the interface controller:

1. Drag a label into the interface controller.
2. Go to the Attributes Inspector and set the Lines value to 0. This will make the

label resize to fit all of the text; if the lines value is 0, then the label resizes itself to
fit all lines of text, rather than truncating after a fixed number of allowed lines.

3. Set the Text value to Note Content. This text will be replaced with the actual
content of the note at runtime.

The entire interface, for both interface controllers, should now look like Figure 15-15.

Figure 15-15. The completed interface

Finally, we can connect the label in the note interface controller to the code:

1. Open NoteInterfaceController in the Assistant. Hold down the Control key
and drag from the Note Content label into the NoteInterfaceController class.
Create a new outlet called noteContentLabel.

446 | Chapter 15: Building a watchOS App

2. Run the application, and tap one of the notes. You’ll be taken to the new interface
controller!

Next, we’ll make the NoteListInterfaceController respond to the user tapping the
cell and make it pass along the selected note’s URL to the NoteInterfaceController.
This will allow the NoteInterfaceController to request the contents of the docu‐
ment.

To do this, we’ll implement the contextForSegueWithIdentifier method, which
watchOS calls when a table row is tapped. This method is expected to return a context
object, which can be of any type; this object is passed to the next interface controller’s
awakeWithContext method as a parameter.

1. Open NoteListInterfaceController.swift and add the following method to it:
 override func contextForSegue(withIdentifier segueIdentifier: String,
 in table: WKInterfaceTable, rowIndex: Int) -> Any? {

 // Was this the ShowNote segue?
 if segueIdentifier == "ShowNote" {
 // Pass the URL for the selected note to the interface controller
 return SessionManager.sharedSession.notes[rowIndex].URL
 }

 return nil
 }

This code works in the same way as the prepareForSegue method that UIView
Controllers implement. It checks to make sure that we’re running the ShowNote
segue, and if we are, we pass the URL of the note that the user has selected.

2. Next, we’ll implement awakeWithContext in the NoteInterfaceController to
make it use this NSURL to request the note text. The NoteInterfaceController
will give this NSURL to the SessionManager, which will give it to the iPhone to
retrieve the content of the document.

3. Open NoteInterfaceController.swift and update awakeWithContext to look like
the following code:
 override func awake(withContext context: Any?) {

 // We've hopefully received an NSURL that points at a
 // note on the iPhone we want to display!

 if let url = context as? URL {

 // First, clear the label - it might take a moment for
 // the text to appear.
 self.noteContentLabel.setText(nil)

Creating the watchOS Extension | 447

 SessionManager.sharedSession.loadNote(url,
 completionHandler: { text, error -> Void in

 if let theText = text {
 // We have the text! Display it.
 self.noteContentLabel.setText(theText)
 }
 })
 }

 }

In the NoteInterfaceController’s awakeWithContext method, the context is
whatever object was returned by the contextForSegueWithIdentifier method.
If this is an NSURL, then we use it to request the text of the note. If we receive the
text, we display it in the noteContentLabel.

4. Run the app. When you tap a note, its contents will now appear! (See
Figure 15-16.)

Figure 15-16. A note being tapped in the list, and then displayed

There’s one last thing to do. It’s possible that the transfer of the text might fail; if this
happens, we should show an alert to the user to indicate that something’s gone wrong.
Add the following code to awakeWithContext:

 override func awake(withContext context: Any?) {

 // We've hopefully received an NSURL that points at a
 // note on the iPhone we want to display!

 if let url = context as? URL {

448 | Chapter 15: Building a watchOS App

 // First, clear the label - it might take a moment for
 // the text to appear.
 self.noteContentLabel.setText(nil)

 SessionManager.sharedSession.loadNote(url,
 completionHandler: { text, error -> Void in

> if let theError = error {
> // We have an error! Present it, and add a button
> // that closes this screen when tapped.
>
> let closeAction = WKAlertAction(title: "Close",
> style: WKAlertActionStyle.default,
> handler: { () -> Void in
> self.pop()
> })
>
> self.presentAlert(withTitle: "Error loading note",
> message: theError.localizedDescription,
> preferredStyle: WKAlertControllerStyle.alert,
> actions: [closeAction])
>
> return
> }

 if let theText = text {
 // We have the text! Display it.
 self.noteContentLabel.setText(theText)
 }
 })
 }

 }

The completion handler passed to loadNote receives either the text content or an
NSError object. If we have an error, then we show an alert interface controller by call‐
ing presentAlertControllerWithTitle.

We aren’t using do-catch here because the error comes from out‐
side this method, rather than being created by calling a method
that throws.

When you run the application again, if there’s ever an error in displaying the contents
of the note, an alert will appear (see Figure 15-17).

Creating the watchOS Extension | 449

Figure 15-17. The alert that appears when there’s an error displaying the contents of the
note

Creating New Notes
Next, we’ll add the ability to create new notes on the Apple Watch. We’ll do this
through a menu item: when the user force-touches the note list screen (that is, presses
hard on the watch’s surface), a button will appear that allows him or her to write a
new note. If this button is tapped, the watch will allow the user to dictate some text;
once this is done, the NoteListInterfaceController will send this text to the
iPhone to create the note.

The only meaningful way to do text input on the Apple Watch is
with voice recognition.

First, we’ll create the menu item:

1. Go to the Interface.storyboard file.
2. Search for Menu in the Object library and drag it onto the NoteListInterfaceCon

troller.
3. Select the menu item that comes by default, and go to the Attributes Inspector.
4. Set its image to Add, and its title to Create Note.
5. Hold down the Control key and drag from the Menu item into NoteListInterfa

ceController. Create a new action called createNote.

450 | Chapter 15: Building a watchOS App

6. Add the following code to the createNote method:
 @IBAction func createNote() {

 let suggestions = [
 "Awesome note!",
 "What a great test note!",
 "I love purchasing and reading books from O'Reilly Media!"
]

 self.presentTextInputController(withSuggestions: suggestions,
 allowedInputMode: WKTextInputMode.plain) {
 (results) -> Void in

 if let text = results?.first as? String {
 SessionManager
 .sharedSession
 .createNote(text, completionHandler: { notes, error in
 self.updateListWithNotes(notes)
 })
 }
 }
 }

This method displays a text input view controller, which permits the user to
either select from an array of options that you provide or dictate a response.

If you pass in nil for the list of suggestions, the text input con‐
troller will go straight to dictation, instead of letting the user
pick from a list of options. Dictation doesn’t work on the sim‐
ulator, so if you want to test it without a device, always pass in
some suggestions.

7. Run the application and force-touch the note list to start dictating. When you’re
done, new notes will be created (see Figure 15-18).

Creating the watchOS Extension | 451

Figure 15-18. The force-touch menu

Adding Handoff Between the Watch and the iPhone
We’ll now add the ability to hand off from the Apple Watch to the iPhone. If a user is
viewing a note on the watch and then turns on the iPhone, a Handoff icon will appear
in the bottom left of the screen; if the user swipes up from this icon, the document
will open in the iOS app.

This functionality is provided through the same system that makes Handoff work
between the iPhone and the Mac: a user activity is broadcast by the watch, and when
the user decides to continue the activity on the phone, they exchange information.

There’s only one snag when it comes to the Apple Watch/iPhone handoff: unlike the
Mac/iPhone handoff, we aren’t able to take advantage of the fact that NSDocument/
UIDocument deal with passing the URL for the document for us. We’ll need to pass it
along ourselves. This means adding a little bit of extra information into the user
activity on the watch, and looking for that information on the iPhone.

Handoff works only on a physical device. You’ll need to build and run the app on
your actual Apple Watch and iPhone to test this:

1. Open DocumentCommon.swift.
2. Add the following line of code to the file:

 let WatchHandoffDocumentURL = "watch_document_url_key"

We’ll use this key to find the URL of the document when handing off from the
watch to another device.

452 | Chapter 15: Building a watchOS App

3. Next, open DocumentListViewController.swift and add the following code to the
restoreUserActivityState method:
 override func restoreUserActivityState(_ activity: NSUserActivity) {
 // We're being told to open a document

 if let url = activity.userInfo?[NSUserActivityDocumentURLKey] as? URL {

 // Open the document
 self.performSegue(withIdentifier: "ShowDocument", sender: url)
 }

> // This is coming from the watch
> if let urlString = activity
> .userInfo?[WatchHandoffDocumentURL] as? String,
> let url = URL(string: urlString) {
> // Open the document
> self.performSegue(withIdentifier: "ShowDocument", sender: url)
> }

 // We're coming from a search result
 if let searchableItemIdentifier = activity
 .userInfo?[CSSearchableItemActivityIdentifier] as? String,
 let url = URL(string: searchableItemIdentifier) {
 // Open the document
 self.performSegue(withIdentifier: "ShowDocument", sender: url)
 }

 }

If the handoff dictionary contains a value for the key WatchHandoffDocumentURL,
we extract the URL from it and use it to open the document.

Finally, we’ll make the NoteInterfaceController let other devices know that the
user is looking at a document. This will cause the user’s other devices to show the
app’s icon either on the lock screen (for iOS devices) or in the Dock (on Macs):

1. Open NoteInterfaceController.swift and add the following code to the awakeWith
Context method:
 override func awake(withContext context: Any?) {

 // We've hopefully received an NSURL that points at a
 // note on the iPhone we want to display!

 if let url = context as? URL {

 // First, clear the label - it might take a moment for
 // the text to appear.
 self.noteContentLabel.setText(nil)

Creating the watchOS Extension | 453

> let activityInfo = [WatchHandoffDocumentURL: url.absoluteString]
>
> // Note that this string needs to be the same as
> // the activity type you defined in the Info.plist for the iOS
> // and Mac apps
> updateUserActivity("au.com.secretlab.Notes.editing",
> userInfo: activityInfo, webpageURL: nil)

 SessionManager.sharedSession.loadNote(url,
 completionHandler: { text, error -> Void in

 if let theError = error {
 // We have an error! Present it, and add a button
 // that closes this screen when tapped.

 let closeAction = WKAlertAction(title: "Close",
 style: WKAlertActionStyle.default,
 handler: { () -> Void in
 self.pop()
 })

 self.presentAlert(withTitle: "Error loading note",
 message: theError.localizedDescription,
 preferredStyle: WKAlertControllerStyle.alert,
 actions: [closeAction])

 return
 }

 if let theText = text {
 // We have the text! Display it.
 self.noteContentLabel.setText(theText)
 }
 })
 }

 }

First, we create a dictionary that contains the note’s URL. We then call updateU
serActivity, which broadcasts the fact that the user is looking at this particular
document to the user’s other devices.

2. Run the app on your Apple Watch and open a Note. Turn your iPhone on, and
see the iOS app’s icon in the lower-left corner. Swipe up, and the document you’re
viewing on your watch will be opened in the iOS app! (See Figure 15-19.)

454 | Chapter 15: Building a watchOS App

You’ll also see the Mac app’s icon appear in the Dock, with an Apple
Watch icon. This means that you can hand off from your watch to
your Mac as well as to your iPhone.

Figure 15-19. The Handoff icon on an iPhone’s home screen, and in the Mac’s Dock

Glances
Glances allow users to quickly view information while they’re using their watch,
without having to launch the watchOS app. Glances can display custom content, but
cannot be interactive and are limited to one screen. Tapping a glance can launch the
watchOS app, though.

Creating the watchOS Extension | 455

Glances are simple but powerful. Learn more about them in Apple’s
WatchKit documentation.

We’re going to add a glance to our watchOS app that allows users to very quickly
jump into the watchOS app and begin dictating a new note.

When you tap a glance, its corresponding app is launched on the watch. There’s no
direct way to communicate between a glance and its app; instead, your glance’s inter‐
face controller creates a user activity—in exactly the same way as you do for Handoff
—when it appears. If the user taps the glance, the app is opened; it should then check
to see what the current user activity is, and respond accordingly.

The design of the glance is a single, large Add image, to make it unambiguous that
tapping the glance will make a new note (Figure 15-20). The image is available in the
book’s resources (see “Resources Used in This Book” on page ix).

Figure 15-20. The image we’ll be using for the watchOS glance

First, we’ll add this image:

1. Open the Assets.xcasset file in the Watch group (not the one in the Watch exten‐
sion group).

2. Drag the Watch Glance Add image from the resources that accompany this book
into the list of image sets.

456 | Chapter 15: Building a watchOS App

https://developer.apple.com/watchos/resources/
https://developer.apple.com/watchos/resources/

We’ll now add the code to the GlanceController class to make it set the current user
activity to one that will make the NoteListInterfaceController start creating a new
note when it appears:

1. Open GlanceController.swift, which is a file that Xcode created for you when you
created the app.

2. Update the willActivate method to look like the following code:
 override func willActivate() {
 // This method is called when watch view controller is
 // about to be visible to user
 updateUserActivity("au.com.secretlab.Notes.creating",
 userInfo: ["editing":true], webpageURL: nil)
 super.willActivate()
 }

By calling updateUserActivity, we’re indicating to the larger watchOS system
that the user is about to create a document if the glance is tapped.

Next, we’ll make the NoteListInterfaceController detect this user activity and
begin creating a note. If the glance is tapped, the watchOS app is launched, and the
first interface controller that appears will have the handleUserActivity method
called on it. At this point, we can grab information from that activity and figure out if
the user wants to begin creating a note:

1. Open NoteListInterfaceController.swift.
2. Add the following method to the NoteListInterfaceController class:

 override func handleUserActivity(_ userInfo: [AnyHashable: Any]?) {
 if userInfo?["editing"] as? Bool == true {
 // Start creating a note
 createNote()

 // Clear the user activity
 invalidateUserActivity()
 }
 }

If the user activity contains the editing flag, which we set in the GlanceControl
ler’s willActivate method, then we call createNote to begin creating a new
note. We then call invalidateUserActivity to clear the user’s current activity,
tidying up after ourselves.

Finally, we’ll implement the user interface for the glance.

Glances have a very specific layout pattern. There’s a smaller top section and a larger
lower section. You don’t have a huge amount of flexibility in this, primarily for effi‐

Creating the watchOS Extension | 457

ciency reasons: by constraining what your layout looks like, the watch is able to save
quite a bit of power.

1. Open Interface.storyboard and go to the glance interface controller.
2. Select the interface controller. Set the Upper section’s interface to the option that

contains a single small label. Set the Lower section’s interface to the option that
contains a single image.

3. Select the label in the upper section. In the Attributes Inspector, set its text to
Notes.

4. Select the image object that now appears in the lower section of the glance’s inter‐
face. In the Attributes Inspector, set its image to Watch Glance Add, and set its
mode to Center.

The interface is now ready; see Figure 15-21.

Figure 15-21. The glance interface

You can now test the glance by running it on your Apple Watch; when you tap the
glance, the app will launch, and immediately enter dictation mode to let you create
the note.

You may need to manually add the glance to your watch through
the Watch app on your iPhone.

458 | Chapter 15: Building a watchOS App

To test the glance in the simulator, use the scheme selector to select the “Glance -
Watch” scheme. If the target is a simulator, the simulated watch will show the glance.

Conclusion
In this chapter, we extended the iOS app to add support for the Apple Watch. We
built a simple watchOS app that allows users to look at their notes and create new
notes on the Apple Watch. To do this, we worked with the WatchKit, the framework
for building watchOS apps, and the communication system between the watch and
the phone. We also added support for handoffs to the watchOS app, so users can
work with the same information when moving between the devices.

Conclusion | 459

CHAPTER 16

Code Quality and Distribution

In this chapter, we’ll talk about some tools and techniques you can use to ensure that
your code is as good as it can be. Specifically, we’ll be talking about how to monitor
your app and find ways to improve its performance, how to track down and fix bugs,
and how to set up your application to run automatic tests on itself, which will help
you make changes to the code without accidentally breaking its features.

After that, we’ll talk about how to use automated tools to ensure that every piece of
the app works every step of the way as you continue to build your project. Finally,
we’ll talk about how to deal with the App Store, including code signing requirements
and delivering your product to Apple for distribution, as well as how to ensure that
only the assets that the user’s device actually needs are downloaded.

Debugging
Sometimes, your code just doesn’t work the way you want it to: either you have a
crash, or a more subtle behavioral difference. To track down these problems, you can
use Xcode’s built-in debugger. A debugger is a program that can interrupt the execu‐
tion of an app, gather data from its variables, and help you figure out what the app’s
doing.

To use the debugger, you add breakpoints. A breakpoint is a point in the program at
which the debugger should stop, allowing the developer (that’s you!) to inspect the
program’s current state.

When a program is stopped at a breakpoint, you can step through its execution, line
by line, observing the data stored in both the local variables and in the properties of
the classes change. By carefully observing the behavior of your app, you can track
down the causes of problems and fix them.

461

In addition, you can make the debugger automatically jump in the moment the appli‐
cation crashes, allowing you to figure out the cause of the crash.

To add a breakpoint to your application, simply click inside the gray area at the left of
the code. When you do, a small blue arrow will appear, representing the point at
which the program will stop (Figure 16-1).

Figure 16-1. A breakpoint

If you run the application and trigger the code that has the breakpoint, your program
will pause and Xcode will appear, showing the debug view (Figure 16-2).

When the debugger is active, a number of things appear:

• The Debug Inspector, at the left of the Xcode window, shows a stack trace, indi‐
cating where in the program the execution has stopped, and which methods were
called to reach this point.

• The debug view appears and is split into two sections:
— On the left, the list of all local variables is displayed. From here, you can see

the current value of all local variables, as well as access the current object’s
properties in the self variable.

— On the right, the LLDB console appears. From here, you can type commands
for the debugger to interpret. The most useful command is po, which causes
the debugger to print the value of the specified expression.

462 | Chapter 16: Code Quality and Distribution

Figure 16-2. The program, stopped in the debugger

At the top of the debug view, you can find buttons that control the execution of the
debugger (see Figure 16-3). The most important are the first six:

• The first button closes the debug view.
• The second button enables or disables breakpoints.
• The third button resumes execution of the program.
• The fourth button moves to the next line of code.
• The fifth button steps into the next method call.
• The sixth button continues until the current method returns, and then stops.

Figure 16-3. The debug view’s controls

The debugger is an essential tool for diagnosing problems in your app. Don’t hesitate
to stick a breakpoint in to figure out what your code is actually doing!

Debugging | 463

Instruments
The Instruments tool tracks the activity of an application. You can monitor just about
every single aspect of an application, from high-level metrics like how much data it’s
transferring over the network, down to low-level information about the OpenGL
commands that the app executed in a single frame.

If your app is running slowly, Instruments lets you figure out which part of your
application is responsible for taking up the majority of the time; if your app is con‐
suming too much memory, you can work out what’s responsible for allocating it.

There are two ways to use Instruments. First, you can get a high-level summary of the
behavior of your app in Xcode (see Figure 16-4); if you need more information, you
can launch the separate Instruments app.

To access the high-level summary of how your app is performing, simply run it and
go to the debug navigator. Underneath the app’s name, you’ll find four entries—CPU,
Memory, Disk, and Network—showing the current performance status of the app:
how much of the system’s CPU capacity it’s using, how much total memory, how
much data is being read and written to disk, how much network traffic the app is get‐
ting. When you select these, you’ll be shown a more detailed picture of the selected
aspect.

If you’re testing on a Mac, or on an iOS device—that is, not the
simulator—then you’ll also see energy consumption data. If you’re
on a Mac, you’ll also see iCloud usage data.

464 | Chapter 16: Code Quality and Distribution

Figure 16-4. Performance data in Xcode

You’ll notice a button labeled “Profile in Instruments” at the top-right corner of the
view. If you click this, Xcode will offer to transfer control of the application to Instru‐
ments, allowing you to gather a more detailed view of the application.

You can use Instruments to profile both the simulator and a real
device. However, the simulator has different performance charac‐
teristics than real devices, and real users don’t use the simulator.
Always test the performance of your app on an actual device before
shipping to the App Store.

You can also launch your app directly into Instruments, allowing you to gather data
through the entire run of your app from start to finish. To do this, open the Product
menu and choose Profile.

To demonstrate, let’s profile the Notes application to identify performance hotspots
when viewing image attachments:

1. Choose Product → Profile, or press ⌘-I.
2. If Instruments is not already open, it will ask you which tools in Instruments you

want to use to gather data about your app (Figure 16-5). Select the Time Profiler,
and click Choose. (If Instruments is already profiling your app, it will start a new
run using the existing tools, and you should close it and try again.)

Instruments | 465

Figure 16-5. Selecting the Time Profiler tool

3. Click the Record button at the top left of the window.
4. Instruments will launch, showing the CPU Usage tool (Figure 16-6).

Figure 16-6. Instruments, using the CPU Usage tool

466 | Chapter 16: Code Quality and Distribution

As you use the application, the CPU usage will be logged. We’ll now perform some
tests to determine which methods are taking up most of the time:

1. Open a document. Once the document is open, go to Instruments and press the
Pause button.

2. Look at the Call Tree pane, which takes up the majority of the bottom section of
the window. This window shows the amount of CPU time taken up by each
thread; additionally, you can dive into each thread to find out which methods
took up the most CPU time.

The less time spent on the CPU, the better your performance.

When you’re tuning the performance of your application, there’s not much sense in
wading through the huge collection of methods that you didn’t write. To that end, we
can filter this view to show only the code that you have control over:

1. Find the Display Settings button, at the top of the panel in the bottom right of the
screen. Click it, and you’ll see a collection of options to control how the data is
displayed.

2. Turn off everything except Hide System Libraries. When you do this, the Call
List will be reduced to just your methods. Additionally, they’ll be ordered based
on how much each time each method took (see Figure 16-7).

Figure 16-7. Instruments, after the display has been filtered

The content of the detail area, which is the lower half of the screen, depends on
which instrument you’re working with. For the CPU Usage instrument, the col‐
umns in the Detail Area’s Call Tree view are:

Running Time
The total amount of time taken by the current row, including any of the
methods that it calls.

Instruments | 467

Self (ms)
The total amount of time taken by the current row, not including any of the
methods it calls.

Symbol Name
The name of the method in question.
You’ll notice that main is taking up the majority of the time. This makes
sense, because main is the function that kicks off the entirety of the applica‐
tion. If you open the list of methods, you’ll see the methods that main calls;
each one can in turn be opened.

You can double-click a line in this table to be taken to a view of the
source code, which shows the most CPU-heavy lines of code.

This process of measuring the work done by the app, determining the point that
needs changing, and optimizing it can be applied many times, and in different ways.
In this section, we’ve only looked at reducing the time spent on the CPU; however,
you can use the same principles to reduce the amount of memory consumed, data
written to and read from disk, and data transferred over the network.

Testing
While simple apps are easy to test, complex apps get very difficult to properly test. It’s
simple enough to add some code and then check that it works; but the more code you
add, the more you increase the chance that a change in one part of the code will break
something elsewhere. To make sure that all of the app works, you need to test all of
the app. However, this has many problems:

• It’s tedious and boring, which means you’ll be less likely to do it thoroughly.
• Because it’s repetitious, you’ll end up testing a feature in the same way every time,

and you may not be paying close attention.
• Some problems appear only if you use the app in a certain way. The more specific

the use case, the less you’ll test it.

To address these problems, modern software development heavily relies on automa‐
ted testing. Automated testing solves these problems immediately, by running the
same tests in the same way every time, and by checking every step of the way; addi‐
tionally, automated testing frees up your mental workload a lot.

468 | Chapter 16: Code Quality and Distribution

There are two types of automated tests in Xcode: unit tests and user interface tests.

Unit Testing
Unit tests are small, isolated, independent tests that run to verify the behavior of a
specific part of your code. Unit tests are perfect for ensuring that the output of a
method you’ve written is what you expect. For example, the code that we wrote all the
way back in “Location” on page 171 to load a location from JSON is very straightfor‐
ward to test: given some valid JSON containing values for lat and lon, we expect to
be able to create a CLLocationCoordinates; additionally, and just as importantly, if
we give it invalid JSON or JSON that doesn’t contain those values, we should expect to
fail to get a coordinate.

Unit tests are placed inside a unit test bundle. You can choose to either include unit
tests when you create the project, or you can add one to an existing project by open‐
ing the File menu and choosing New→Target, then opening the Tests section and
choosing Unit Tests (see Figure 16-8).

Figure 16-8. Adding a Unit Test bundle to a project

Test bundles contain one or more test cases; each test case is actually a subclass of
XCTestCase, which itself contains the individual unit tests. A test case looks like this:

Testing | 469

 func testDocumentTypeDetection() {

 // Create an NSFileWrapper using some empty data
 let data = NSData()
 let document = NSFileWrapper(regularFileWithContents: data)

 // Give it a name
 document.preferredFilename = "Hello.jpg"

 // It should now think that it's an image
 XCTAssertTrue(document.conformsToType(kUTTypeImage))

 }

The tests inside XCTestCase class are its methods. When Xcode runs the tests, which
we’ll show in a moment, it first locates all subclasses of XCTestCase, and then finds all
methods of each subclass that begin with the word test. Each test is then run: first,
the test case’s setUp method is run, then the test itself, followed by the test case’s tear
Down method.

You’ll notice the use of the XCTAssertTrue functions. This method is one of many
XCTAssert functions, all of which test a certain condition; if it fails, the entire test
fails, and Xcode moves on to the next test. You can find the entire list of XCTAssert
functions in the Xcode testing documentation.

To run the unit test for your current target, press ⌘-U, or click the icon at the left of
the top line of a specific test, as shown in Figure 16-9.

Figure 16-9. Running a specific test

Xcode will launch your app, perform the test(s), and report back on which tests, if
any, failed.

UI Testing
To get a complete picture of how your app works, unit tests on their own aren’t
enough. Testing a single isolated chunk of your code, while extremely useful, isn’t suf‐
ficient to give you confidence that the app itself, with all of its interacting compo‐
nents, is being tested. For example, it’s simply not feasible to write a concise unit test
for “create a document, edit it, and save it.”

Instead, you can use UI tests to verify that the app is behaving the way you want it to
as it’s used. A UI test is a recording of how the user interacts with the user interface;
however, these recordings are done in a very clever way. While a UI test is being

470 | Chapter 16: Code Quality and Distribution

http://apple.co/22VaRyg

recorded, Xcode notes every interaction that you perform, and adds a line of code
that reproduces that step.

The result is code that looks like this (we’ve added comments to describe what’s going
on):

 func testCreatingSavingAndClosingDocument() {

 // Get the app
 let app = XCUIApplication()

 // Choose File->New
 let menuBarsQuery = XCUIApplication().menuBars
 menuBarsQuery.menuBarItems["File"].click()
 menuBarsQuery.menuItems["New"].click()

 // Get the new 'Untitled' window
 let untitledWindow = app.windows["Untitled"]

 // Get the main text view
 let textView = untitledWindow.childrenMatchingType(.ScrollView)
 .elementBoundByIndex(0).childrenMatchingType(.TextView).element

 // Type some text
 textView.typeText("This is a useful document that I'm testing.")

 // Save it by pressing Command-S
 textView.typeKey("s", modifierFlags:.Command)

 // The save sheet has appeared; type "Test" in it and press return
 untitledWindow.sheets["save"].childrenMatchingType(.TextField)
 .elementBoundByIndex(0).typeText("Test\r")

 // Close the document
 app.windows["Test"].typeKey("w", modifierFlags:.Command)
 }

UI tests are run the same way as your unit tests. When they’re run, the system will
take control over your computer and perform the exact steps as laid down in the test.
This ensures that your app is tested in the exact same way, every time.

Testing | 471

You can also record your interactions with an app directly into a UI
test. This is extremely useful, since it means that you don’t have to
learn the API involved—you can just use the app as you would nor‐
mally, and Xcode will note what you did. For more information, see
Writing Tests in the Xcode documentation.

Build Bots
A build bot is a program running on a server that watches for changes in your source
code, and automatically builds, tests, and packages your software. Build bots are great
for reducing the load on your main development computer, and for ensuring that
your tests are always run.

To create a build bot, you’ll first need to have a Mac running the Apple-provided
macOS Server application, which you can purchase from the App Store. You can find
more information on how to set up build bots in the Xcode Server and Continuous
Integration Guide.

Using Objective-C and Swift in the Same Project
If you’re making a new project from scratch, you’ll likely have the opportunity to
write all of your code in Swift. However, if you have an existing project written in
Objective-C, and want to write code in Swift, you need a way to bridge the two. The
same thing applies in reverse, for when you have a project written in Swift and need
to add some Objective-C code.

Using Swift Objects in Objective-C
To make objects written in Swift available in Objective-C, you need to add the @objc
tag in front of them. For example, if you have a class written in Swift called Cat, you
write the class as normal and prepend @objc to its name:

 @objc class Cat : NSObject {
 var name : String = ""

 func speak() -> String {
 return "Meow"
 }
 }

Classes that are defined in Swift are available to Objective-C only if
they’re a subclass of NSObject (or any of NSObject’s subclasses).

472 | Chapter 16: Code Quality and Distribution

http://apple.co/22VbeJ1
http://apple.co/22VblV3
http://apple.co/22VblV3

In your Objective-C code, you import an Xcode-generated header file that makes all
of your @objc-tagged Swift code available to Objective-C:

 #import "MyAppName-Swift.h"

Once it’s imported, you can use the class as if it had originally been written in
Objective-C:

 Cat* myCat = [[Cat alloc] init];
 myCat.name = @"Fluffy";
 [myCat speak];

Using Objective-C Objects in Swift
To use classes and other code written in Objective-C in your Swift code, you fill out a
bridging header. When you add an Objective-C file to a project containing Swift files,
or vice versa, Xcode will offer to create and add a bridging header to your project.

Inside this header, you add #import statements for all of the Objective-C files you
want to export to Swift. Then, inside your Swift code, you can use the Objective-C
classes as if they had been originally written in Swift.

This method is actually how your code accesses the majority of the
Cocoa and Cocoa Touch APIs, which are mostly written in
Objective-C.

For example, consider a class written in Objective-C, like so:

 @interface Elevator

 - (void) moveUp;
 - (void) moveDown;

 @property NSString* modelName;

 @end

All you need to do is import the class’s header file into the bridging header that Xcode
generates for you:

 #import "Elevator.h"

Once that’s done, you can use the class in Swift as if it were originally written in Swift:

 let theElevator = Elevator()

 theElevator.moveUp()
 theElevator.moveDown()

Using Objective-C and Swift in the Same Project | 473

 theElevator.modelName = "The Great Glass Elevator"

Interoperation between Swift and Objective-C is a large and com‐
plex topic, and there’s much more that you should know if you plan
on making the two work together. Apple has written an entire book
on the topic, Using Swift with Cocoa and Objective-C, which is
available for free both online and on the iBooks Store.

The App Store
Once you’ve written your app, it’s time to get it out to the world. To do this, you need
to submit it to the App Store.

The App Store is the only way that Apple permits third-party iOS apps to be dis‐
tributed to the public. To submit to the App Store, you need the following things:

• An app, ready to go out to the public
• A distribution certificate, signed by Apple
• The text and images for the app’s page on the App Store

iOS devices run only signed code. This means that, in order to run your app on an
actual device, and to submit to the App Store, you need to get a certificate from
Apple. Getting a certificate is free if you just want to make apps that run on your own
devices; if you want to submit to the App Store, you need to join the Apple Developer
Program, which is $99 USD per year.

Because the App Store submission process mostly takes place on
websites, it’s difficult to write a book that stays up to date with it.
We therefore strongly encourage you to read Apple’s App Distribu‐
tion Guide, which discusses both the technical requirements as well
as the information you need to provide for the App Store.

When you submit an application to the App Store, it is first checked by automated
systems and then by a human. The automated systems perform checks that are easily
computer-run, such as making sure that the app has all of the necessary icons for the
platform that it runs on. Once the automated checks have passed, the app goes into a
queue while it waits for a human being to look at it. This is what Apple refers to as
app review. App review isn’t a scary process, and the review team is not there to judge
you on the quality of your app; instead, the review checks to see if your app violates
any of the App Store Review Guidelines. These reviews are generally common sense
and exist to help Apple maintain the overall quality of the App Store.

474 | Chapter 16: Code Quality and Distribution

http://apple.co/22Vea8G
https://developer.apple.com/programs/
https://developer.apple.com/programs/
http://apple.co/22VepR3
http://apple.co/22VepR3
http://apple.co/2nwiR6R

After Apple has approved your application, you’ll receive an automated email indicat‐
ing whether the app has passed review or has been rejected. If your app is rejected,
don’t worry! Almost all app rejections are due to a simple thing that’s easily changed;
the most common one that we’ve heard has been forgetting to test an app with flight
mode turned on, which cuts off access to all internet services, including iCloud. Sim‐
ply fix the issue and resubmit your app.

If your app has been approved, you just need to press the button in iTunes Connect to
release it. A few hours later, your app will be in the App Store!

App Thinning
While it’s important to design your app to work on as many devices as possible, the
fact remains that when an app is downloaded onto a specific type of device, it will
never make use of the resources that are necessary for it to work on other devices. For
example, an app that runs on both the iPad and the iPhone needs an icon for both,
and you need to include it in your app when you deliver it to the App Store. However,
when you download it onto your iPhone, there’s no point in downloading the iPad
version of the icon.

To deal with this issue, Xcode has support for app thinning. App thinning involves
marking certain files with information about what kinds of devices will use the differ‐
ent resources included in the app. For example, if you select an image set in an asset
catalog, you can specify which types of devices the image will appear in (such as
iPhone only, iPad only, and so on); however, you can also be extremely specific with
the conditions in which the asset will be included (see Figure 16-10). These include
specifying the minimum amount of memory that must be available for the image to
be downloaded, or the minimum graphics hardware capability.

The App Store | 475

Figure 16-10. App thinning options for an image set in an asset catalog

Testing iOS Apps with TestFlight
TestFlight is a service operated by Apple that allows you to send copies of your app to
people for testing. TestFlight allows you to submit testing builds to up to 25 people
who are members of your Developer Program account. You can also send the app to
up to 1,000 additional people for testing, once the app is given a preliminary review
by Apple.

To use TestFlight, you configure the application in iTunes Connect by providing
information like the app’s name, icon, and description. You also create a list of users
who should receive the application. You then upload a build of the app through
Xcode, and Apple emails them a link to download and test it.

476 | Chapter 16: Code Quality and Distribution

We’re not covering TestFlight in detail in this book, as the user
interface and steps for distributing via TestFlight change frequently.

For more information on how to use TestFlight, see the iTunes Connect documenta‐
tion.

Conclusion
If you’ve read this far, congratulations. You’ve built three complete, complex apps
from start to finish for a variety of platforms, and you’re ready to build even bigger.

We hope that you’ve enjoyed your journey through this book. If you’ve made some‐
thing, we’d love to hear about it! Send us an email at learningswift@secretlab.com.au.

Conclusion | 477

http://bit.ly/testing_w_testflight
http://bit.ly/testing_w_testflight
mailto:learningswift@secretlab.com.au

Index

Symbols
! character, unwrapping optional variables, 45
!= (inequality) operator, 36
& (ampersand), prefacing variables passed to

functions as inout parameters, 56
+ (addition) operator, combining strings, 42
++ (increment) operator, 32
+= (compound assignment) operator

combining strings, 42
-- (decrement) operator, 32
-> (arrow) symbol, 53
. (dot) operator, accessing methods and proper‐

ties, 37
..< (range) operator, 38
.xib file extension

AddAttachmentViewController.xib, 148
/* */, delimiting multiline comments, 35
//, in single-line comments, 35
/// (triple slash) in comments, 119
3D Touch, 379

more information on, 387
simulating, 383

; (semicolon), ending statements in Swift, 36
== (equality) operator, 36

comparing strings, 43
=== (identity) operator, 43
?? (nil coalescing) operator, 158
[] (square brackets)

creating arrays with, 47, 392
subscripting classes and objects, 77
subscripting dictionary contents, 50

_ (underscore) in Swift, 54
{} (curly braces), delimiting if statements and

loops, 37

… (closed range) operator, 38
using in switches, 40

… indicating variadic parameters, 55

A
acceptDrop method, 165
access control, 72
accessibility, 405-410
action sheets, 282
actions, 24

action extensions, 331
beginEditMode, 313
calling action method on target object, 237
creating Action connection for addFile, 151
creating addAttachment action, 153
deleteTapped, for delete button in iOS Notes

app, 242
dismissModalView, 310
for AudioAttachmentViewController but‐

tons, 349
home screen quick actions, 380-383
showFilteredImage, 393
showLocation, 171

implementing, 175
activities

handoffs, 322-327, 452-455
searchability, 327-341
sharing with UIActivityViewController,

319-322
addAttachment method, 157
addAttachmentAtURL method, 154, 157, 271,

354
AddAttachmentDelegate protocol, 152, 156
AddAttachmentViewController, 148

479

adding Add File button to, 151
in a popover, 156

addAttachmentWithData method, 296
addPhoto method, 357
AlamoFire library, 83
alerts

asking users if they want to use iCloud, 231
for conflicts in files, 281

Align button, 215
alpha property, 240
Analyze action, 15
animation, properties in UIView, 243
app delegate, 93
App Distribution Guide, 7, 474
app extensions

running in the background, 341
types of, 331

app ID, 103
app sandbox, 203
App Store, 5

submitting apps to, 474-477
app review, 474
necessary items, 474

app thinning, 475
AppDelegate class, extending to act as delegate

for WCSession, 432-438
append function, 48
AppKit framework, 114
Apple Developer Program, 5-8, 474

downloading Xcode, 7
registering for, 6

Apple development tools, 5
Apple ID, 6

creating for testing iCloud, 199
Apple platforms, 3
Apple TV, 415
Apple Watch, 415

(see also watchOS)
building and running apps on, 424
examining, 416

application categories (Xcode), 9
array literals, 49

using to create sets, 52
arrays, 47-49

appending objects to, 48
counting items in, 49
generics and, 76
inserting objects into, 48
removing items from, 48

reversing contents of, 48
sorting using a closure, 58
variadic parameters in function bodies, 55

arrow symbol (->), 53
as operator

as!, 46, 159
as?, 46

asset catalogs
adding Audio, Record, Play, and Stop icons,

343
adding Delete icon, 242
adding iOS Notes app icon to, 195
adding macOS Notes app icon to, 110-111
adding Video icon, 357
adding watchOS app icons to, 423
Watch Glance Add image, dragging into,

456
associated values, 51
attachedFiles property, 154, 270
attachment cells, displaying on iOS, 274-280
AttachmentCell class, 311

cellForItemAt and editMode properties, 312
AttachmentCellDelegate protocol, 311, 316
attachments

document-based Notes app on iOS
adding attachments, 291-293
adding image attachments, 293-300
adding QuickLook, 286-289
audio attachments, 343-356
conflicts in files, 280-286
deleting attachments, 310
listing attachments, 269-280
location attachments, 364-374
setting up attachment interface, 265-269
video attachments, 356-364
viewing attachments, 300-310

document-based Notes app on macOS, 117,
135-181
adding attachments via drag-and-drop,

163-166
adding QuickLook, 166-171
document-filetype-extension UI,

139-159
updating UI to list attachments, 135

attachmentsDirectoryWrapper property, 153,
269

AttachmentViewer protocol, 301
attachmentFile and document properties,

346

480 | Index

attributed strings, 115, 122
Attributed String section, Bindings Inspec‐

tor, 133
Attributes Inspector, 22, 127

Is Initial View Controller, 209
Smart Links, 132
View section, User Interaction Enabled, 247

audio attachments (iOS), 343-356
audio recorder and audio player, 346
audioPlayerDidFinishPlaying method, 353
beginPlaying and stopPlaying methods, 352
beginRecording and stopRecording meth‐

ods, 350
DocumentViewController support for, 346,

354
microphone permissions for users, 352
prepareAudioPlayer method, 352
updateButtonState method, 352
viewDidLoad and viewWillDisappear meth‐

ods, 353
audio session category, 364
audio unit extensions, 331
Audio, AirPlay and Picture in Picture back‐

ground modes, 363
AudioAttachmentViewController, 346
availableFiles property, 225
AVAudioPlayer, 343
AVAudioPlayerDelegate protocol, 346, 353
AVAudioRecorder, 343

saving to temporary URL, 354
AVAudioSessionCategoryPlayback, 364
AVFoundation framework, 296, 343
AVPlayerViewController, 357, 359

showing when video attachment is tapped,
361

AVSession class, requestRecordPermission
method, 352

awakeWithContext method, 447, 453

B
Background Modes, 363
background queue, 199
background-running extensions, 341
Base localization, 401
beginEditMode function, 313
beginPlaying method, 352
beginRecording method, 350
bindings, 132

benefits of, 133

opening Bindings Inspector, 132
bitmap format, converting images to, 168
Bool type, 42
break keyword in switches, 40
breakpoint navigator (Xcode), 19
breakpoints, 461
bridging headers, 473
build bots, 472
bundle IDs, 10, 103
bundles, 83
buttons

Add File button for AddAttachmentView‐
Controller, 145

adding to application interface, 22
adding to AudioAttachmentViewController

interface, 347
connecting to code, 24
Delete button for iOS Notes app, 242
Delete button, adding to AttachmentCell,

314
displaying Add Files button in a popover,

155
Edit button, adding in iOS, 243
for audio attachments

updateButtonStates method, 349
for navigation bars or toolbars, 237
image filter buttons, 392
location button for Notes app on macOS,

171
navigation bar, 372
Undo button, enabled state, 389

C
C language, 145

for loops, 32
UTType collection of methods, 273

Caches folder, iOS app sandbox, 204
camera, 293

adding Camera entry to attachment popup
in iOS, 297

cancelAndClose method, 284
Capabilities tab (Xcode), turning iCloud on,

178, 197
cases (switch statements), 39-41
catch clause (do-catch block), 86
cell towers, locations from, 364
cellForItemAt:indexPath method, 233, 239
cells (in collection views), 212, 232, 293

deletion button opacity, editing, 244

Index | 481

displaying attachment cells in iOS, 274-280
reuse queue system, 233

certificates, 474
CFBundleTypeExtensions, 201
CGImage, 394
Character object, 42
checkForLocation method, 174
CIFilter object, 394
CIPhotoEffectChrome filter, 394
class keyword, access modifiers preceding, 73
class properties, 226
class variables, 227
classes, 63-78

access control, 73
creating instances of, 64
defined in Objective-C, using in Swift, 473
defined in Swift, using in Objective-C, 472
extending, 71
generic, 76
inheritance, 66
properties, 66

computed properties, 67
lazy, 69
observers, 68

properties and methods, 63
protocols, 70
subscripting, 77

CLLocationCoordinate2D, 172
CLLocationManager property, 173
CLLocationManagerDelegate protocol, 370
closed range operator (…), 38
closures, 58

as parameter in function call, 59
deletionHander in iOS Notes app, 242
in keyword, 58
parameters, 59
storing in variables, 59

cloud-dependent features, 6
CloudKit, 178
Cocoa and Cocoa Touch, 4, 473

Cocoa Bindings Programming Topics, 133
Cocoa's text system, 128
design patterns, 89-92
designing a simple application interface, 22
importing, 79
reuse of UI elements, 234

code quality and distribution, 461-477
debugging code, 461-463
distributing code via the App Store, 474-477

Instruments tool, 464-468
testing, 468-472
using Objective-C and Swift in a project,

472-474
code, connecting to app interface, 23
Collection Types documentation, 53
collection view controllers, 210
collection view items, 139
collection views

adding to macOS document app UI, 135
attachment cells in iOS, 274-280
data source, 212
displaying data in, 157-160
drag-and-drop support, 163-166
in DocumentListView controller, 212

methods providing data to, 232
itemForRepresentedObjectAt indexPath

method, 162
collectionView(cellForItemAt:) method, 277
com.apple.package type, 108
comments, 35

treating as documentation in Xcode, 119
computed properties, 67

attachmentsDirectoryWrapper, 153
in extensions, 72

conflict resolution in files, 280-289, 391
conformsToType method, 273
constants, 31, 35
constraints

adding to views, 214
physical constraints of Apple Watch, 416
technical constraints on watchOS apps, 417
using to control view size and position, 214

content blocker extensions, 331
content view controller, embedding in naviga‐

tion controller, 310
contentsforType method, 225, 262, 366
contextForSegueWithIdentifier method, 447
control flow, 37-41

if statements, 37
loops, 37
switches, 39

controllers, 89
controller classes, 90
window and view, 93

controls
binding to data, 133
in Object Library, 22

convenience initializers, 65

482 | Index

coordinate(writingItemAt:url) method, 246
copying value types, 78
Core Data framework

about, 194
turning off for iOS Notes app, 193
Xcode setting for, 104

Core Image Filter Reference, 394
Core Image framework, 391
Core Location framework, 172, 364, 370
Core Spotlight framework, 329
count function, 43
count property

arrays, 49
sets, 52

CPU Usage tool, 466
createNewDocument function, 381
CSSearchableItem object, 336
CSSearchableItemActivityIdentifier, 339
custom target properties list, adding new entry,

179

D
data, 83-85

loading from files and URLs, 83
serialization and deserialization, 84

data models, 89
Data object, 294
data source (collection view), 138, 212

conforming to NSCollectionViewItem pro‐
tocol, 158

dataUsingEncoding method, 83
debug area (Xcode), 21
debug navigator (Xcode), 19
debugging, 461-463

adding breakpoints, 461
using Xcode debugger, 461

default case, 41
defer keyword, 59, 287
deinitializers, 65
delegation, 90

AddAttachmentDelegate protocol, 152, 156
application delegate, 93
AttachmentCell using Document as dele‐

gate, 162
delegate methods for location manager on

macOS, 173
delegate property of collection view, hook‐

ing to Document, 138
deleteAttachment method, 316

deleteDocumentAtURL method, 244
design patterns in Cocoa and Cocoa Touch,

89-92
delegation, 90
model-view-controller, 89

designated initializers, 65
destinationViewController property, 260
Developer Program, 5-8, 474

downloading Xcode, 7
registering for, 6

development tools, 4
devices, changing for iOS simulator, 27
dialog boxes, 281
dictionaries, 49
didFinishLaunchingWithOptions: method, 93
didFinishPickingMediaWithInfo method, 296,

358
didSelectItemAt indexPath method, 258, 304
didSet block, 68
didUpdateLocations method (location man‐

ager), 372
distribution certificates, 474
do-catch block

not using, 449
wrapping functions, methods, and initializ‐

ers in, 86
Document class, 113

(see also documents)
adding documentFileWrapper property, 121
adding ErrorCode enum, 118
adding NoteDocumentFileNames enum,

117
adding text property, NSAttributedString,

115
creating for iOS Notes app, 218-225

addAttachmentWithData method, 294
adding attachments, 269
deleteAttachment method, 316
URLForAttachment method, 359

err function implementation, 119
extending to conform to NSCollectionView‐

Delegate, 164
file wrappers, 117
fileWrapper ofType method implementa‐

tion, 121
document providers, 331
document-filetype-extension UI, 139-159

adding attachments, 145-153

Index | 483

displaying data in the collection view,
157-159

getting an icon for collection view cells, 143
storing and managing attachments, 153-157

documentation, treating comments as, 119
DocumentListView controller (iOS Notes app),

206-218
collection views, 212
createDocument function, 234
delete button in FileCollectionViewCell, 242
handoffs, 325
itemIsOpenable method, 238
listing documents, 225-234
navigation controller, 208
navigation item, using to populate naviga‐

tion bar, 236
Peek and Pop support, 384
setEditing method, implementing, 244
size and position, using constraints to con‐

trol, 214
storyboard for view controllers, 208
support for working with audio attach‐

ments, 354
turning on link detection for text fields, 378
undo support, 389

documents
defining document type for iOS Notes app,

200-202
document-based Notes app for macOS, 104

defining the document, 105-110
document file extension, 104

working with, in iCloud on iOS, 203-251
app sandbox, 203
creating documents, 234-237
creating the Document class, 218-225
deleting documents, 241-247
downloading from iCloud, 237-241
iCloud availability, 205
renaming documents, 247-251

working with, on iOS, 253-264
adding a view to display notes, 253-262
editing and saving documents, 262-264

working with, on macOS, 113-134
basic UI, 125-134
NSDocument class, 113
storing data in the document, 114
storing text, 115-125

Documents folder, iOS app sandbox, 204
documentStateChanged method, 281

updating Undo button, 391
DocumentViewController (iOS Notes app),

253-262
addAudio method, 346
editing and saving documents, 262-264
moving between editing mode and viewing

mode, 375
dot operator (.), 37
Double type, 42
double-clicks on collection view items, recog‐

nizing on macOS, 160
double-length localization, 397
downloading status, 238
drag-and-drop, adding attachments via,

163-166
dynamic actions (home screen quick actions),

380
dynamic keyword, 155

E
early returns, 120
editable text views, 377
editButtonItem method, 244
editing property, 244
editMode property (AttachmentCell), 312
editor (Xcode), 13

editor selector, 16
empty arrays, 48
empty sets, 52
empty strings, 42
endEditMode function, 314
enumerations, 50

associated values, 51
error codes for documents on macOS, 118
names of files and directories in a package,

117
equality operator (==), 36

comparing strings, 43
error handling, 85-87

for documents in iOS Notes app, 221
for documents on macOS

err function, 119
ErrorCode enum, 118

functions throwing errors, 85
datafromRange method, 123
NSError object, 115

try? or try! statement, 87
watchOS Notes, awakeWithContext

method, 449

484 | Index

wrapping functions, methods, and initializ‐
ers in do-catch block, 86

event-driven programming, 92
expressions, including results of, 39
extension keyword, 71
extensions, 71

app, 331
extending FileWrapper class, 144
WatchKit extension, 418

F
failable initializers, 66
fallthrough keyword, 41
file extensions, 108

fileExtension property, 273
File Inspector, 400

Localization section, 402
Target Membership, Watch Extension, 425

file types, 107
determining types of attachments on iOS,

271-274
file wrappers, 117

adding documentFileWrapper property, 224
containing multiple files wrappers of same

name, 123
extending FileWrapper by adding method to

renturn an image, 144
for attachments in iOS Notes app, 294
for location attachment, 175
for PNG image data in QuickLook on

macOS, 168
loading documents from, 124
representing attached files, 270
representing Attachments directory, 153
return by fileWrapper ofType method, 121

File's Owner (in nib files), 150
FileManager class, 229

moving files when renaming them, 250
removeItem(at:url) method, 246

fileprivate (access control), 32, 73
declaring a property setter as, 74
private versus, 74

files
apps working with, files saved locally and in

iCloud, 205
browsing filesystem and picking a file, 157
download states, 239
file formats for location data, 177, 365
loading data from, 83, 124

local storage requirement, 198
saving for documents on macOS, 121
working with files and file types on iOS,

265-289
conflicts in files, 280-286

FileWrapper class, 135
(see also file wrappers)
thumbnailImage method, 354, 357

filters for images, 391-395
flatfiles, document-based app storing its data in,

125
for loops (C-style), elimination from Swift 3, 32
for-in loops, 32

iterating over every character in a string, 42
iterating over sets, 53
stride function in, 38
using closed range operator in, 38

Foundation, 79, 115
Full Screen mode (windows), 127
functions, 53-58

capturing a value and using it multiple
times, 57

closure as last parameter in call, 59
default parameters, 55
deferred execution, 59
guard statements and, 60
guidelines for writing, 60
overloading, 75
overriding, 67
passing parameters by reference, 55
passing parameters to, 54
receiving other functions as parameters, 56
return values, 53
returning multiple values or tuples, 54
returning other functions, 56
throwing errors, 85

wrapping in do-catch block, 86
using as variables, 56
variable number of parameters, 55

G
generators, functions acting as, 58
generics, 76

creating a nongeneric type from, 77
gesture recognizer, creating, 247
Git, 105
GitHub, Swift Package Manager, 82
GlanceController class, 457
glances, 421, 455-459

Index | 485

Glance Interface Controller, 444
GPS or GLONASS signals, 364
guard keyword, 60, 124

benefits of, 120

H
handoffs

between Apple Watch and iPhone, 452-455
between iOS and macOS, 322-327

hardware issues in mobile devices, 186
hardware, changing for iOS simulator, 27
hashable types, 52
hasPrefix method, 43
hasSuffix method, 43
home screen quick actions, 380-383

I
iCloud, 6, 177-181

access to container by Spotlight indexing
app extension, 333

container name, 179
debugging tool for services, 181
enabling iOS Notes app for, 196-200

testing iCloud, 199
logging all activity across applications on

macOS, 181
services, key/value storage, document stor‐

age, and CloudKit, 178
signing simulated iPhone into, 424
user intefaces and, 135
working with iOS files in, 203-251

creating documents, 234
deleting documents, 241-247
downloading from iCloud, 237-241
iCloud availability, 205
listing documents, 225-234
renaming documents, 247-251

Xcode support, activating, 178
iCloud Drive

browsing contents on iOS, 187
folder in, 179

iCloudAvailable property, 225
icons

application shortcut, 381
Audio, Record, Play, and Stop, adding to

asset catalog, 343
drawing image for QuickLook in iOS Notes

app, 286
getting icon for collection view, 143

iOS Notes app icon, adding to assets catalog,
195

macOS Notes app icon, adding to asset cata‐
log, 110-111

share icon in iOS, 321
Video icon, adding to asset catalog, 357
watchOS app icons, 423

identifier (collection view cells), 212
reuse identifier, 234

Identity Inspector, 150
Accessibility section, 408

identity operator (===), 43
if statements, 37

checking whether optional variable has a
value, 45

if-pyramids, 120
if-let statements, 45
image sets, 111
image views

adding to represent attachments, 142-159
connecting to outlet for DocumentListView

controller, 218
ImageAttachmentViewController (iOS Notes

app), 301-310, 392-395
adding shareImage action, 321

images
adding image attachments to documents on

iOS, 293-300
applying filters to, 391-395
creating QuickLook thumbnail for iOS

Notes app, 286-289
including with playgrounds, 35
QuickLook thumbnail for macOS docu‐

ments, 166-171
immutable arrays, 49
implicitly unwrapped optionals, 45
import keyword, 78
in keyword, 58
Include Glance Scene, 421
Indeterminate Circular Progress Indicator, 171
IndexPath object, 258
IndexRequestHandler class, 334
indices

array, 48
searchable index, 329-330
using to get values out of tuples, 47

inequality operator (!=), 36
Info tab (Xcode)

Custom macOS Target Properties, 179

486 | Index

Document Type, 200
inheritance, 66
init keyword, ? after, 66
initial view controller, 209
initializers, 65

memberwise, 78
throwing errors, wrapping in do-catch

block, 86
inout keyword, 55
insert function, 48
inspector (Xcode utilities), 19
Instruments, 464-468

high-level summary of app behavior in
Xcode, 464

profiling in, 465
CPU Usage tool, 467
Time Profiler tool, 465

Int type, 42
converting to a String, 47
extending to conform to Blinking protocol

(example), 72
Int values in dictionaries, 50

Interface Controller, searching for, in Object
library, 444

InterfaceController template, 438
interfaces, 125

(see also UIs (user interfaces))
connecting to code, 23
designing a simple application interface, 22
Xcode interface builder, 126

internal (access control), 73
default for methods and properties, 73

internationalization, 396-399
iOS, 3

(see also Notes app (iOS))
application delegate object, 93
applications, 11
Cocoa Touch for app development, 4
container app for watchOS apps, 418, 421
developing a simple Swift application for,

21-25
playgrounds, 33
setting up the Notes app, 185-202

creating the Xcode project, 192-196
defining a document type, 200-202
designing the app, 186-192
enabling for iCloud, 196-200

supporting the ecosystem, 319-341
handoffs, 322-327

searchability, 327-341
sharing, 319-322

testing applications with TestFlight, 476
UIDocument class, 113
using iOS simulator, 26-27
view controller, 93
watchOS apps and, 415
working with documents on, 253-264
working with files in iCloud, 203-251

app sandbox, 203
iOS simulator (see simulators)
iPad

popovers on, 291
size of, compared to Mac, 186
splitscreen multitasking, 411

iPhone
3D Touch, using to preview links in SFSa‐

fariViewController, 379
Apple Watch communication with, 417,

424-438
Apple Watch tethered to, 415
handoff between Watch and, 452, 455
modal displays on, 291
simulated, for watchOS app, 424
size of, compared to Mac, 186

is operator, 46
isEditingAttachments property, 312
isEmpty property (strings), 42
issue navigator (Xcode), 18
itemIsOpenable method, 238, 259

J
JPEG, encoding images to, 296
JSON location data, testing, 469
JSONSerialization class, 177

K
key/value pairs in dictionaries, 49
key/value storage (iCloud), 178
keyboard extensions (custom), 331

L
labels

for values inside tuples, 47
function parameters, 54
outlet for fileNameLabel property, 217
renaming documents when tapped on, 247

Index | 487

languages, making an app multilingual,
395-405

layout
designing, Xcode interface builder, 126
Resolve Auto Layout Issues button, 215

lazy keyword, 69
lazy loading, 69
let keyword, 31, 35

defining arrays with, 49
Library (Xcode utilities), 19
links

in iOS Notes app, 192
in playgrounds, 35
opening in SFSafariView controller, 375-387
shared links extensions, 332
Smart Links in Attributes Inspector, 132

lists, presenting in iOS apps, options for, 206
load fromContents method, 367
localDocumentDirectoryURL property, 227
localization, 399-405

app, localized into French, 404
Localization list, 402

location data
document-based Notes app on macOS,

171-177
Location and Maps Programming Guide,

364
location attachments in iOS Notes app,

364-374
activity spinner or segue to view control‐

ler, 371
code determining user location, hooking

up, 370
contentsForType method, 366
load fromContents method, 367
location manager, 370
methods of determining location on iOS,

364
saving locations, 368
ShowLocationSegue, 373
view controller to show, 368

testing, 469
location managers, 172, 370

handling authorization changes, 372
updating locations, 372

LocationAttachmentViewController, 368
lockFocus method, 168
logging

debugger log in Xcode, 21

iCloud activity across applications on
macOS, 181

loops, 37
low power mode, 341
lowercaseString property, 43

M
Mac OS Classic, 108
macOS, 3

(see also Notes app (macOS))
application delegate object, 93
Cocoa framework for app development, 4
handoffs between iOS and, 322-327
Notes app

setting up, 97-112
playgrounds, 33
Server application, 472
window and view controllers, 93
working with documents, 113-134

basic UI, 125-134
NSDocument class, 113
storing data in the document, 114
storing text, 115-125

main function, 468
main thread, 199
Main.storyboard file, 22
MapKit library, 172, 365
maps

creating map annotation for user location,
369

creating map view for location attachments,
369

zooming, 370
Maps app, 365
margins, constraining views to, 217
media attachments, 343-364

audio, 343-356
video, 356-364

memberwise initializers, 78
memory management, 87-88
messages between Apple Watch and iPhone,

424
receiving messages on iPhone, 432

metadata
adding to document's user activity, 329
for files, 107

metadata queries, 225, 226
file downloads from iCloud, 240
implementing queryUpdate method, 231

488 | Index

notifications sent from, 228
methods, 63

access control, 73
overriding, 67
private, 74
public, 74
throwing errors, wrapping in do-catch

block, 86
MIME types, 108
MKMapView, 369
MKPlacemark, 175
MKPointAnnotation, 369
mobile devices, size, compared to traditional

computers, 186
MobileCoreServices framework, 272
MobileCoreServices, importing, 304
modal displays, 291
model-view-controller design pattern, 89
models, 89

model classes, 90
modules, 78
mouseDown method, 161

implementing for AttachmentCell, 162

N
navigation controllers

embedding content view controller in, 310
for DocumentListView controller, 208
view controllers in, UINavigationItem, 236

navigator (Xcode), 18
network, loading data over, 83
nib files, 94, 126

File's Owner, 150
nil, 44

initializers returning, 65
optional variables set to, 44

nil coalescing operator (??), 158
NoteDocumentFileNames enum, 167

adding location attachment, 175
NoteDocumentFileNames.locationAttachment,

174
NoteInterfaceController, 445-449

awakeWithContext method, 453
NoteListInterfaceController, 438-443

contextForSegueWithIdentifier method, 447
createNote method, 450
handleUserActivity method, 457

NoteListViewController, 443
Notes app (iOS), 185-202

attachments, 291-317
adding image attachments, 293-300
deleting, 310-317
listing, 265-289
location attachments, 364-374
media attachments, 343-364
viewing, 300-310

creating the app
communicating with iPhone, 424-438
creating new notes, 450-452
user interfaces, 438-444

creating the Xcode project, 192-196
defining a document type, 200-202
designing, 186-192

features, 191
enabling for iCloud, 196-200
finishing touches, 375-411

accessibility, 405-410
images with filters, 391-395
making it a worldwide app, 395-405
opening links in SFSafariViewControl‐

ler, 375-387
settings, 387-388
splitscreen multitasking, 410
undo support, 388-391

supporting the iOS ecosystem, 319-341
working with documents on iOS, 253-264

adding a view to display notes, 253-262
editing and saving documents, 262-264

working with files in iCloud, 203-251
app sandbox, 203
creating documents, 234-237
creating the Document class, 218-225
creating the DocumentListView control‐

ler, 206-218
deleting documents, 241-247
downloading from iCloud, 237-241
iCloud availability, 205
listing documents, 225-234
renaming documents, 247-251

Notes app (macOS), 97-112
adding app icon to asset catalog, 110-111
adding attachments, 135-181
creating Xcode project for, 101-105
defining a document type, 105-110
designing, 98-101

drawing wireframes, 98
key features, 100

working with documents, 113-134

Index | 489

Notes app (watchOS)
creating the app, 420-459

glances, 455-459
handoff between Watch and iPhone,

452-455
showing note contents, 444-450

designing, 418-420
notifications, 89

document state change, 281
Notification Interface Conroller, 444
NSNotificationCenter, 79
power state change in iOS devices, 341
sent from metadata queries, 228

NSApplicationDelegate protocol, 93
NSAttributedString class, 115, 122

text property, 224
NSBitmapImageRep object, 168
NSBundle class, 83
NSButton object, 90, 145
NSCoding protocol, 84
NSCollectionView object, 135-139

adding to document app on macOS, 136
NSCollectionViewDataSource protocol, 158
NSCollectionViewDelegate protocol, 164
NSCollectionViewItem, 136, 158
NSData object, 83, 168
NSDocument class, 113

differences from UIDocument, 218
NSError object, 85, 115

error codes for documents on macOS, 118
NSFileCoordinator class, 246
NSImage object, 168
NSImageView object, 142
NSKeyedArchiver class, 84, 90
NSKeyedUnarchiver class, 84
NSLocalizedString function, 396
NSMetadataQuery class, 225
NSObject class, 472
NSObject protocol, 84
NSOpenPanel class, 157
NSPopover object, 155
NSRange object, 122
NSString class, 115
NSTextView object, 128
NSUbiquitousContainers, 179
NSURL object, 165
NSUserActivity class, 326
NSWorkspace class, 161
numberOfItemsInSection method, 232, 275

O
Object Library, 22
object-oriented app development, 63-94

classes and objects, 63-78
data, 83-85
error handling, 85-87
memory management, 87-88
modules, 78
structures, 78
structuring an app, 92-94

app delegate, 93
nibs and storyboards, 94
window and view controllers, 93

Swift Package Manager, 80-82
Swift Standard library, Foundation, Cocoa,

and Cocoa Touch, 79
Objective-C, 29

Foundation library for support of, 115
using with Swift in a project, 472-474

Objective-C objects in Swift, 473
Swift objects in Objective-C, 472

objects, 63
generic, 76
initialization and deinitialization, 65
memory management, 87
Objective-C, using in Swift, 473
serializing/deserializing, 84
subscripting, 77
Swift, using in Objective-C, 472

observers, 68
setting up with viewDidLoad, 227

OmniGraffle, 98
opacity, animating for Delete button, 243
openDocumentWithPath method, 260, 260
openSelectedAttachment method, 162
operators, 36

overloading, 75
optional chaining, 92
optional variables, 44-46

checking and assigning value using if-let, 45
checking for value using if statement, 45
failable initializers returning, 66
set to nil value, 44
unwrapping to get value, 45

organization name, 10, 201
OSTypes, 108
outlet collections, 24
outlets, 24

490 | Index

connecting label and image view for Docu‐
mentListView, 217

creating for Document and collection view
on macOS, 138

for audio buttons, 346
for locationAttachment and mapview prop‐

erties, 368
locationButton, 171
locationSpinner, 171
noteContentLabel, 446
outlet collection, 392

overloading (operator), 75
override keyword, 67
overriding functions, 67

P
package manager, Swift Package Manager, 32,

80-82
packages

com.apple.package type, 108
creating a package file, 80
package file formats, 116

disadvantage of, 117
parameters

default value for function parameters, 55
in closures, 59
passing by reference, 55
passing to functions, 54
variadic, 55

parent class, 66
Peek and Pop, 383-387
performance

app performance data in Xcode, 464
profiling in Instruments, 465

performSegueWithIdentifier method, 260
photo editing extensions, 331
photos

addPhoto method, 357
photo editing in Photos app, 391

Picture in Picture mode, 363
Pin button, 215
Play button, 346
playgrounds, 32

rich-text markup within comments, 35
PNG, encoding images as, 287
polishing the iOS app (see Notes app (iOS), fin‐

ishing touches)
popovers, 291

AudioAttachmentViewController in, 347

displaying attachments in macOS document
app, 155-157

UIActivityController on iOS, 322
view controllers shown in, 309

Predicate Programming Guide, 226
predicate search, 226
Preference Items list, 387
Preferences folder, iOS app sandbox, 204
prepare(for segue:, sender:) method, 307, 373
prepare(for:sender:) method, 259
prepareAudioPlayer method, 352
prepareFilterPreviews method, 393
previewingContext commit viewControllerTo‐

Commit: method, 386
previewingContext viewControllerForLocation:

method, 386
previewingContext viewControllerToCommit

method, 384
private (access control), 73

versus fileprivate, 74
private access modifier, change to fileprivate, 32
product name, 10
Profile action, 15
profiling in Instruments, 465
project navigator (Xcode), 18
project settings window (Xcode), 12
projects

creating in Xcode, 8-13
creating macOS Notes project in Xcode,

101-105
properties

access control, 73
class, 63, 226

accessing, 66
computed, 67, 72
declarations, 116
lazy, 69
observers, 68
private, 74
public, 74
rendering as read-only, with fileprivate set‐

ter, 74
stored, 67

property list values, 387
protocols, 70

AddAttachmentDelegate protocol, 152
AttachmentCellDelegate protocol, 161
checking whether a type conforms to, 46
creating classes that conform to, 70

Index | 491

making types conform to, using extensions,
72

messages used by delegates, 91
NSCollectionViewDelegate, 164

prototype cells (collection views), 212
public (access control), 73

Q
quality of code (see code quality and distribu‐

tion)
queryUpdated method, 231, 240
quick actions (see home screen quick actions)
QuickLook

adding to document-based Notes app on
iOS, 286-289

adding to document-based Notes app on
macOS, 166-171

R
range operator (..<), 38
ranges

NSRange, representing a chunk of text in a
document, 122

using in switch statements, 40
Record button

for audio attachments, 346
for iOS audio attachments, 348

reference counting, 88
refreshLocalFilesList method, 228
registering for dragging, attachments list on

macOS, 163
RemoteInterfacePrincipalClass, 438
remove function, 48
renameDocumentAtURL, 248
renameTapped method, 248
renaming of code elements, Swift version 3, 32
repeat-while loops, 39
report navigator (Xcode), 19
requestRecordPermission method, 352
Resolve Auto Layout Issues button, 215
resourceValues forKey: method, 238
retain count, 88
retain cycles, 88
Retina and non-Retina displays, images for, 111
return keyword, omitting in closures, 59
return nil in failable initializers, 66
reuse identifier (collection view cells), 234
reverse function, 48
rich text, 116

rich-text format (RTF), 117, 122
rich-text markup within comments, 35
root view controller, 211
run loop, 92

S
Safari

launching by tapping links, 375
SFSafariViewController and, 376

SafariServices framework, 378
sandbox, apps on iOS, 203
schemes

changing application language, 404
scheme selector in Xcode, 16

changing the simulator, 27
selecting for iOS Notes app, 195
selecting for watchOS apps, 423

screens, splitscreen multitasking, 410
scroll views, 266
search navigator (Xcode), 18
searchability on iOS, 327-341

indexing activities, 329-330
using Spotlight extensions, 330-341

segues, 94, 208
between view controllers, 259
for audio attachments, 346
ShowAudioAttachment, 356
ShowDocument, 258
ShowImageAttachment segue, 304, 305
ShowLocationSegue, 373

self keyword, 64
self variable, 462
semantic versioning, 81
serialization and deserialization, 84
SessionManager class, 426-432, 443

createNote method, 431
deferred session tasks, 427
loadNote method, 430
NoteInfo struct, 428
runTaskWhenSessionActive method, 427
session activation, 427
sharedSession property, 426
telling shared WCSession to use as delegate,

426
updateList method, 429
updateLocalNoteListWithReply method,

429
setEditing method, 244
sets, 52

492 | Index

settings (Notes iOS app), 387
SFSafariViewController, opening links in,

375-387
previewing links with 3D Touch, 379
using home screen quick actions, 380-383
using Peek and Pop, 383-387

share extensions, 331
shared links extensions, 332
sharing on iOS, 319-322
shortcuts, application, 380
shouldCloseOnDisappear property, 285
showAlert method, 25
showFilteredImage method, 393
simulators, 16

for watchOS apps, 423
iOS simulator

Accessibility Insepctor, 410
testing iCloud on, 199

profiling in Instruments, 465
using iOS simulator, 26-27

Single-View Application template, 193
singletons, 426
size class, 322
Size Inspector, setting Cell Size, 213
sort function, 58
source types (UIImagePickerController), 294
spinners, 171, 371
splitscreen multitasking, 410
Spotlight, 327-341

indexing activities, 329-330
indexing app extension, 330-341

Stack button, 215
stack traces, 462
stack views, 266, 267

vertical stack view, 347
stateChangedObserver property, 281
static actions (home screen quick actions), 380
status display (Xcode toolbar), 16
Stop button, audio attachments, 346
stopPlaying method, 352
stopRecording method, 350
stored properties, 67
storyboards, 22, 94, 126

Use Storyboards setting in Xcode, 104
view controllers and, 208

stride function, 32, 38
string interpolation, 64
String type, 42, 115

converting Int type to, 47

creating an empty string, 42
in dictionaries, 50

strings, 42-44
changing case of, 43
combining, 42
comparing, 43
creating, 42
dataUsingEncoding method, 83
localized, 396
searching, 43
text storage in, 115

strings tables, 397
structures, 78
subclassing, 91
subscript keyword, 77
subscripting, 50, 77
super keyword, 67
Swift

language basics, 29-61
API design guidelines, 60
changes to syntax, 30
comments, 35
control flow, 37-41
example code snippet, 30
functions and closures, 53-60
goals of the language, 30
operators, 36
playgrounds, 32
types, 41-53
variables and constants, 35
version 2 versus version 3, 32

main website, 5
using with Objective-C in a project, 472-474

Objective-C objects in Swift, 473
version 3, 8, 29

.swift files, connection to nib files, 150
Swift Package Manager, 32, 80-82
Swift Standard Library, 79
switches, 39

fallthrough keyword, 41
in Swift, differences from C and Objective-

C, 40
requirement to be exhaustive, 41
switching on String values, 39
switching on tuples, 40
using ranges in, 40
using to match enumeration associated val‐

ues, 52
using to match enumeration values, 51

Index | 493

symbol navigator (Xcode), 18

T
table view controllers, 209
templates

Cocoa Application, 101
project template selector in Xcode, 9
Xcode templates for iOS applications, 193

Terminal, 274
building Swift programs, 82
logging all iCloud activity across all applica‐

tions, 181
Test action, 15
testing, 468-472

UI (user interface), 470
unit testing, 469

test cases, 469
using build bots, 472
using TestFlight to test iOS apps, 476
Xcode settings to create stubs for unit tests

and UI tests, 104
text

attributed or rich text, 116
in different languages, length of, 397
loading and storing in iOS Notes app, 225
storing in macOS documents, 115-125

loading files, 124
package file formats, 116
saving files, 121

text editors, 13
in iOS Notes app, 266
in macOS Notes app, 99, 115

text input view controller, 451
text property, 125

adding to Document class on iOS, 224
text views, 268

adding to macOS Notes app, 128
making editable or not, 377
undo support, 389

textViewDidChange method, 262, 390
threads, 199
throw keyword, 115
throws keyword, 85, 123
thumbnails

creating QuickLook thumbnail for iOS
Notes app, 286-289

for attachments in iOS Notes app, 273
icon for specific file extension, 145
image for videos, 357

QuickLook on macOS, 167
(see also images)

thumbnailImage method, FileWrapper, 354
tmp folder, iOS app sandbox, 205
toolbar (Xcode), 14

editor selector, 16
Run button, 14
status display, 16
Stop button, 15
view selector, 17

touchscreens, 186
try keyword, 123

before methods throwing errors, 86
using try? or try!, 87

tuples, 40, 47
return values of functions, 54

tvOS, 415
type casting, 46
types, 41-53

arrays, 47-49
associated values, 51
converting between, 47
dictionaries, 49
enumerations, 50
extending, 71
function parameters, 54
generic, 76

creating a nongeneric type from, 77
hashable, 52
of variables, 31, 35
operators and, 36
optional, 44-46
protocols and, 71
sets, 52
strings, 42-44
tuples, 47

U
ubiquitousDocumentDirectoryURL property,

227
UIActivityIndicatorView class, 371
UIActivityViewController, 320
UIAlertAction object, 284
UIAlertController object, 231, 250, 281
UIApplication object, 91
UIApplicationDelegate protocol, 93
UIApplicationShortcutIconTypeCompose, 381
UIApplicationShortcutItemIconType, 381
UIApplicationShortcutItems, 380

494 | Index

UIApplicationShortcutItemType, 381
UIBarButtonItem object, 237, 321, 372
UIBezierPath class, 287
UIButton object, 242
UICollectionView object, 206
UICollectionViewCell class, 212, 293
UICollectionViewController class, 208
UICollectionViewDataSource, 275
UICollectionViewDelegate protocol, 275, 292
UIColor class, 287
UIDocument class, 113, 218

differences from NSDocument, 218
UIGraphicsBeginImageContext, 287
UIGraphicsEndImageContext, 287
UIGraphicsGetImageFromCurrentImageCon‐

text, 287
UIImage object, 394
UIImageJPEGRepresentation function, 296
UIImagePickerController class, 293, 294, 357

controlling types of media accepted with
mediaTypes property, 358

UIImagePickerControllerDelegate protocol,
296

UIImagePickerControllerMediaURL, 359
UIImagePNGRepresentation, 287
UIImageView object, 213, 216
UINavigationItem object, 236
UIPopoverPresentationController object, 309
UIPopoverPresentationControllerDelegate, 308
UIs (user interfaces)

basic UI for document app on macOS,
125-134

controls, 22
document-based Notes app for macOS

document-filetype-extension UI,
139-159

updating UI to list attachments, 135
for Apple Watch, 438-444
testing, 104, 470
touchscreens changing interaction with, 186

UIScrollView object, 266
UIStackView class, 266, 347
UIStoryboardSegue object, 259
UITableView object, 206
UITapGestureRecognizer object, 248
UITextField object, 90
UITextView object, UndoManager, 389
UITextViewDelegate protocol, 253, 262
UIToolBar object, 321

UIView object, 216
animating a property in, 243

UIViewControllerPreviewingDelegate, 384
UIWebView object, 375
undo support in iOS apps, 388-391
UndoManager class, 388
Unicode characters, 42
uniform type identifiers (see UTIs)
unit testing, 469

running a test for your current target, 470
unit test bundles, 469
Xcode project setting for, 104

universal applications, 11
Unix-based operating systems, renaming files,

250
unlockFocus method, 168
unwrapping optional variables, 45
updateBarItems method, 371
updateButtonState method, 349, 352
updateChangeCount method, 262
updateUserActivity method, 457
uppercaseString property, 43
URLs

for attachments, 359
for files in iCloud container, in iOS Notes

app, 225
loading data from, 83
location on disk for videos, 359
making clickable links, 132
NSURL objects, dropping in macOS, 165
provided by file coordinator to make

changes, 246
user activities, 452

(see also activities)
User Interaction Enabled, 247
UserDefaults class, 387
userInfo dictionary (NSUserActivity), 326
Using Swift with Cocoa and Objective-C, 474
utilities pane (Xcode), 19
UTIs (uniform type identifiers), 107

exporting to the system, 108
fileWrapper ofType method parameter, 122
for data in attachments, 272
for file extensions, 273
UTTypeTagSpecification, 201

UTType collection of methods, 273

V
validateDrop method, 165

Index | 495

value types, 78
var keyword, 35
variables

defining with let or var keywords, 35
local variables, values of, 21
optional, 44

implicitly unwrapped optional, 45
passing to function as inout parameter, 55
storing closures in, 59
types, 31, 35, 42
using functions as, 56
values in strings, including, 39

variadic parameters, 55
video attachments (iOS), 356-364

addPhoto method, 357
AVPlayerViewController, 359
Document class returning image for videos,

357
document picker detecting when user

records a video, 358
enabling support for Picture in Picture

mode, 363
showing AVPlayerViewController when

video attachment is tapped, 361
view controllers, 357

view controllers, 93
AddAttachmentViewController, 148
creating DocumentListView controller,

206-218
storyboard for, 208

DocumentViewController, creating,
253-262

for iOS applications, 193
in navigation controller, UINavigationItem,

236
shown in popovers, 309

view selector (Xcode toolbar), 17
viewDidLoad method

asking users if they want to use iCloud, 229
for audio attachments, 353
setting up observers, 227
undoing/redoing changes, 389

views, 89, 94
animating a property in, 243
size and position, 214
view objects, 90

viewWillAppear method, 279
adding searchable metadata to documents,

329

for location attachment view controller, 369
viewWillDisappear method, 263

for audio attachments, 353
shouldCloseOnDisappear property, using,

285
VoiceOver screen reader, 405-410

W
WatchConnectivity framework, 424

handling communication between Watch
and iPhone, 425

WatchKit app, 418
configuring, 420

WatchKit extension, 418
watchOS, 3, 415-459

creating an app, 420-459
communication with iPhone, 424-438
creating new notes, 450-452
glances, 455-459
handoff between Watch and iPhone,

452-455
iOS and watchOS apps, 415
showing note contents, 444-450
user interfaces, 438-444

designing for Apple Watch, 416
designing our watchOS app, 418-420

WCSessionDelegate protocol, 426, 432
extending AppDelegate to conform to,

432-438
weak keyword, 88
weak references, 88
web views, 375
while loops, 32, 38
WiFi location, 364
willSet block, 68
windowControllerDidLoadNib method, 163,

175
windows, 94

for document app on macOS, 126
Full Screen mode set to Primary Win‐

dow, 127
in Cocoa, 79
window controllers, 93
window resizing on macOS, 92

wireframes, 98
designing for iOS Notes app, 187
for macOS Notes app, 98

WKInterfaceController, 438, 445
WKWebView, 375

496 | Index

worldwide apps, 395-405
internationalization, 396-399
localization, 399-405

X
Xcode

app thinning support, 475
converter for older Swift versions, 29
creating a new project, 8-13
creating iOS Notes app project, 192-196
creating project for macOS Notes app,

101-105
debugger, 461

debug view controls, 463
developing a simple Swift application, 21-25
double-length text localization, 397
downloading, 7
Git support, 105

groups in, 219
iCloud support for projects, 178
interface

debug area, 21
editor, 13
navigator, 18
toolbar, 14
utilities, 19

interface builder, 126
performance data in, 464
playgrounds, 33
testing documentation, 470
using iOS simulator, 26-27
versions, and Swift 3, 8

XCTestCase class, 469
.xib file extension, 127, 139
XML, nib files, 127

Index | 497

About the Authors
Paris Buttfield-Addison is an author and a designer of games at Secret Lab, which he
co-founded with Jon. Paris has a PhD in computing and a degree in medieval history.
Paris can be found online at www.paris.id.au and on Twitter as @parisba.

Jon Manning is an iOS software engineer, independent game developer, and author.
In addition to writing books like these, he designs and builds games at Secret Lab,
which he cofounded with Paris. Jon has a PhD in computing, in which he studied the
manipulation of ranking systems in social media sites. Jon can be found on Twitter as
@desplesda.

Tim Nugent pretends to be a mobile app developer, game designer, PhD student, and
now he even pretends to be an author. When he isn’t busy avoiding being found out
as a fraud, he spends most of his time designing and creating little apps and games he
won’t let anyone see. Tim spent a disproportionately long time writing this tiny little
bio, most of which was spent trying to stick a witty sci-fi reference in, before he sim‐
ply gave up. Tim can be found as @The_McJones on Twitter.

Colophon
The animal on the cover of Learning Swift is a fairy martin (Petrochelidon ariel), a
member of the swallow family that breeds in Australia. This migratory bird winters
through most of Australia, though some instead reach New Guinea and Indonesia.

The fairy martin averages 12 centimeters in length and weighs up to 11 grams. It is
dumpy with a square tail; adults are iridescent blue on their backs with brown wings
and tail, and a whitish behind. Its pale rump distinguishes this species from other
Australian swallows. Males and females have similar coloring, but younger birds have
duller coloring and paler foreheads and fringes. The fairy martin has a high-pitched
twitter and a chrrrr call.

During breeding season—from August to January—fairy martins gather in tens of
nests; the largest known colony contained 700 nests. They traditionally nest near cliff
faces, natural holes in dead trees, riverbanks, or rock crevices, but are increasingly
found in manmade sites such as culverts, pipes, bridges, or buildings. Both sexes help
build the nests, which consist of up to 1,000 mud pellets and are lined with dried
grass and feathers. Fairy martins breed in clutches, which usually consist of up to four
or five eggs.

Fairy martins feed in large flocks, catching flying insects in the air or in swarms over
water. This is a highly gregarious species that often gathers in large groups that
include tree martins.

https://blog.paris.id.au

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Illustrated Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Resources Used in This Book
	Audience and Approach
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. Swift Basics
	Chapter 1. Getting Started
	The Apple Developer Program
	Registering for the Apple Developer Program
	Downloading Xcode

	Creating Your First Project with Xcode
	The Xcode Interface

	Developing a Simple Swift Application
	Designing the Interface
	Connecting the Code

	Using the iOS Simulator
	Conclusion

	Chapter 2. The Basics of Swift
	The Swift Programming Language
	Swift 2 Versus Swift 3

	Playgrounds
	Comments
	Variables and Constants
	Operators
	Control Flow
	Loops
	Switches

	Types
	Working with Strings
	Comparing Strings
	Searching Strings
	Optional Types
	Type Casting
	Tuples
	Arrays
	Dictionaries
	Enumerations
	Associated Values
	Sets

	Functions and Closures
	Using Functions as Variables
	Closures
	The defer Keyword
	The guard Keyword

	Making Your Code Swifty
	Conclusion

	Chapter 3. Swift for Object-Oriented App Development
	Classes and Objects
	Initialization and Deinitialization
	Properties
	Inheritance
	Protocols
	Extensions
	Access Control
	Operator Overloading
	Generics
	Subscripts

	Structures
	Modules
	The Swift Standard Library, Foundation, Cocoa, and Cocoa Touch
	Swift Package Manager
	Data
	Loading Data from Files and URLs
	Serialization and Deserialization

	Error Handling
	Memory Management
	Design Patterns in Cocoa and Cocoa Touch
	Model-View-Controller
	Delegation

	Structuring an App
	The Application Delegate
	Window Controllers and View Controllers
	Nibs and Storyboards

	Conclusion

	Part II. A macOS App
	Chapter 4. Setting Up the macOS Notes App
	Designing the macOS Notes App
	Creating the macOS Project
	Defining a Document Type
	Adding the Icon
	Conclusion

	Chapter 5. Working with Documents on macOS
	The NSDocument Class
	Storing Data in the Document
	Storing Text
	Package File Formats
	The guard Keyword, and Why It’s Great
	Saving Files
	Loading Files

	A Basic UI
	Conclusion

	Chapter 6. User Interfaces and iCloud
	Updating the UI
	Document-Filetype-Extension UI
	Getting an Icon for the Collection View Cells
	Adding Attachments
	Storing and Managing Attachments
	Displaying Data in the Collection View

	Enhancing Attachments
	Opening Attachments

	Adding Attachments via Drag-and-Drop
	Adding QuickLook

	Location
	iCloud
	The Basics of iCloud
	Conclusion

	Part III. An iOS App
	Chapter 7. Setting Up the iOS Notes App
	Designing the iOS Notes App
	Creating the iOS Project
	Enabling the iOS App for iCloud
	Defining a Document Type
	Conclusion

	Chapter 8. Working with Files in iCloud
	The App Sandbox
	iCloud Availability
	Creating the Document List View Controller
	View Controllers and Storyboards
	The Navigation Controller
	Collection Views
	Using Constraints to Control Size and Position

	Creating the Document Class
	Listing Documents
	Creating Documents
	Downloading from iCloud
	Deleting Documents
	Renaming Documents
	Conclusion

	Chapter 9. Working with Documents on iOS
	Adding a View to Display Notes
	Editing and Saving Documents
	Conclusion

	Chapter 10. Working with Files and File Types
	Setting Up the Interface for Attachments
	Listing Attachments
	Determining Types of Attachments
	Displaying Attachment Cells

	Dealing with Conflicts
	Creating the Quick Look Thumbnail
	Conclusion

	Chapter 11. Images and Deletion
	Adding Attachments
	Adding Image Attachments
	Viewing Attachments
	Deleting Attachments
	Conclusion

	Chapter 12. Supporting the iOS Ecosystem
	Sharing with UIActivityController
	Handoffs
	Searchability
	Indexing Activities
	Spotlight Extensions

	Conclusion

	Chapter 13. Multimedia and Location Attachments
	Audio Attachments
	Video Attachments
	Location Attachment
	Conclusion

	Chapter 14. Polishing the iOS App
	Opening Links in SFSafariViewController
	3D Touch
	Home Screen Quick Actions
	Peek and Pop

	Settings
	Undo Support
	Images with Filters
	Worldwide Apps
	Internationalization
	Localization

	Accessibility
	Splitscreen Multitasking
	Conclusion

	Part IV. Extending Your Apps
	Chapter 15. Building a watchOS App
	Designing for the Watch
	Designing Our watchOS App
	Creating the watchOS Extension
	Communicating with the iPhone
	User Interfaces for the Apple Watch
	Showing Note Contents
	Creating New Notes
	Adding Handoff Between the Watch and the iPhone
	Glances

	Conclusion

	Chapter 16. Code Quality and Distribution
	Debugging
	Instruments
	Testing
	Unit Testing
	UI Testing

	Using Objective-C and Swift in the Same Project
	Using Swift Objects in Objective-C
	Using Objective-C Objects in Swift

	The App Store
	App Thinning
	Testing iOS Apps with TestFlight

	Conclusion

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

