Learn Computer
Science with Swift

Computation Concepts, Programming
Paradigms, Data Management, and
Modern Component Architectures
with Swift and Playgrounds

Jesse Feiler

ApPress’

Learn Computer
Science with Swift
Computation Concepts,
Programming Paradigms, Data
Management, and Modern

Component Architectures with
Swift and Playgrounds

Jesse Feiler

Apress’

Learn Computer Science with Swift: Computation Concepts, Programming
Paradigms, Data Management, and Modern Component Architectures
with Swift and Playgrounds

Jesse Feiler
Plattsburgh, New York, USA

ISBN-13 (pbk): 978-1-4842-3065-7 ISBN-13 (electronic): 978-1-4842-3066-4
https://doi.org/10.1007/978-1-4842-3066-4

Library of Congress Control Number: 2017962300
Copyright © 2018 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Aaron Crabtree
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-
4842-3065-7. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3066-4

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
About the Technical ReVIEWErcusssssmssssnsssassssasssassssassssnsssassssannsns Xiii
INtroductioncccccumsemmmsssmmmsssnnmssssnmsssnsssssnssssas s snn s nnnnns Xv
Chapter 1: Thinking Computationallycccccussemmmnssssnnnnmnsssnsnmnssssssnnns 1
Computer SCIENCE TOAAY.......evrererrererrererrerserersesersesessessssessessesasssssessessessssessesseses 2
Using SWift Playgrounds...........cccoccerrennnncrnieninesesse s sese e s ssssesenns 3
Basic Concepts and Practices of Computer Science Todayccecvrervvenierennen 5
Recognizing Patterns........ccocrnnnnnn s 6
USing ADSTracCtions.......c.ccoeverrninienn s 8
Combining Patterns and Abstractions for Development...........c.ccccvivvvcnicnnens 9
Fundamental Tasks for DEVEIOPErS.........ccccvvrenrrnine s 9
Formulating a Computational Problem............coccvvevnnennenennsesessenesesenennes 10
Modeling the Problem Or ProCESSc.cccevererrenerensesessesesesesessesessesessesesennes 14
Practicing DEeCOMPOSItION........cccvovrerrererererrnese s sennes 14
Rearranging and Recomposing the Project Piecesccovverrrcnerenernnnes 15
Validating ADStractions..........ccoeeceererereneresernese e 15

Here Comes the GOccvvererenereserseses s s 16
Chapter 2: Writing Code and Using Swift Playgrounds.........cccssseessanes 19
The Basics of Writing COUEcccvevvierrrierienirsirsere s sese e sses e sessessesseens 19
Actions and DAtaccceernerrnnnsns s 20
Combining Actions and Data..........cccevevverrerierenessensesesss s e ssssessessessessssessesees 22
What Happens Behind the Code........c.ccccumrninnnininnennsenssesesesesssesessesesseens 23

iii

TABLE OF CONTENTS

Compiling and Interpreting Code ... 25
Using SWift Playgroundsccooeerenrnnenenensesesssesesese s sessesenns 26
Moving On 0 Paradigms........ccccorenernsernsenessenmsese s sessssessese e sessesenns 35
Chapter 3: Exploring Programming Paradigms..........ccciunsssnnnnnssssnnnnns 37
Structured Programmingcoeevnesnenesnsesnsesessse s sessessssssessssessnns 38
Object-Oriented Programmingcccccveververerenessensesessssessessessessssessessesssssssessesses 4
Imperative Programming (Procedural Programming)ccccueeverreriersenseesersennas 46
Declarative Programmingccccviniininiennnsnsne s sessesessessssessesnens 46
Concurrent Programming..........ococeeereresersesesessesesssessssesessesessssesessessssesessssesenns 47
Chapter 4: Using Algorithms...........ouseeemmmmmmnmmmmssssssssnnsmmsssssssssssssnnns 49
Considering the Purpose of Algorithms..........cccueeeresrnsnnesese s 50
Creating a Numerology Algorithm ... 51
Looking Carefully at Algorithmsc.ccoevvrvrierinneniersene e sressssessessens 52
FUNCHIONS ...t 53
03T o £ 53
DEeSIgN PALtErNScccciiiriirerc s 53
Implementing the Numerology Algorithm in Swift.........cccoovvvvvvnivnsniennen 54
Implementing the Number Table ... 56
Implementing the Additioncccocvvninnnnrn 62
SUMMAIY.c.ueiterterereresee s s e s s ss e e s e s saese e e saesaesae e e e saesaese e e naesaesaenensenaenaes 67
Chapter 5: Managing Control Flow: Repetition...........cccevnnsnennnrnsssnnnnn 69
Getting Ready for a Multi-Step Control Flow Project with Random Numbers.....70
Creating a Random Number Playgroundccceevvnininennsnscnenssensensenns 72
Writing the Playground COde..........cccoeeererereenerererinesssese e sssesesenens 77
Creating Many Random NUMDETScccovrerrnererenerrsese e 83
Create a Repetition LOOP.......ccvvrvrenninini s se s snes 85

iv

TABLE OF CONTENTS

Creating the Code t0 Repeat.........ccccvcririnninininn e 85
Creating the Repetition Control (Limit)ccocveeerierrnrnnienniesers e 86
SUMIMANY.....eieeercereee e e e se e e re e e e e 89
Chapter 6: Working with Data: Collections.........cccccemmrrrrssssssssssnnnnnsnnas 91
USING TYPES ..eereerrrreerrese s s s se e se s s sn s s e se s se s sensssenns 92
SCAIAr DALAcovveeerreerire e ———————————— 93
Moving On to Collected Data...........ccocevvvrverierinnensersene e ssessssessesnens 93
L T N 1TSS 9
BasiC TErminologyc.ccoverervrsennenersirsss s s s s sse e s s 96
Indexing Array EIements.........cccvvinnininnnnnsnses e 97
SWift Arrays and TYPES ...vevvvverrerereerersereressssessesessessssessessesssssssessessessssessessens 98
Declaring and Creating ArraysS........coovcveerereeressersesesessessesessssessessessesessessesaes 98
MOdIfYiNG @ VAT @ITAY .v.evvevrererrererrerenserersessssesessessesessessesssssssessessessessssessens 101
Multi-DimenSional ATTAYScecevrerererrerseressssersesessesessessessessssessessessesessessens 104
Finding Array EIEMENtS.........ccveriererenieriereresserere s sessessessesessessessessssessessens 105
Adding and Deleting Array EIEMENTSccveriernrnsenienienensensesesesessessessens 109
Looping TRrough @n ArTay.......cccoeverreriesensssessessesessssessessesssssssessesssssssessesses 111
USING SBLS .uvirtitrrererertsrerese s sss e s e ssssesse s ssssessessesassss e ssesaesassessesaesssssssesseses 112
Basic Set Terminologycccvverrerererserseressssensesessssessessessessssessessessssessessens 113
Identifying and Finding Set EIEMents..........cccvrvevnrnienrennsenseseseesessenenees 113
Adding and Deleting Set EIeMentscccccvverievvrnsenienesessessessesesessessensens 115
WOrking With SEIScccvcvvririnrrrrr e snens 116
USiNg DiCtIONANIESccecvrcreresir s 116
Basic Dictionary Terminologyccccvverreereriersenseesesessesssesessessesseessessessens 117
Declaring and Creating a DIiCtionary..........cocveevverrereserserersnessesseressssessensens 117
Adding and Deleting Dictionary Elements...........cccccceevvrinnincnvnienenienienns 120
SUMMANY..c ettt e s e s e s r e e s ae s r e e e nne s 120

TABLE OF CONTENTS

Chapter 7: Working with Data: TYPesSccccrrmsssmmnsrsssssnnsssssssnsnssssnnns 123
Why Types Mater........cccincr s 124
Looking at Stacks and Heaps........c.cccevvvrvriennnnsnnennsnsessese s sessessesss s 126

Storing Data at RUntime ... 126
Stacks and QUEUES.......coceeeereererere e 128
HEAPS ..ot e ne 129
BASIC TYPES ...ecveeeerreeriee s 131
NUMEKIC STOTAQE.....ccerrecrereerrereresseresese e s e s srs e se s e sensesensenens 131
USING INTBOEIS ... s 131
Using Floating Point NUMDEISccoverrrenresersserenese s 132
Storing Strings and Charactersccoooreerrsrrrese e 134
Creating NEeW TYPES ...ccvveerrrrerrresereeressesesssse s e se s sessssessssessssesessesenns 134
Working With TUPIES.......covererecerresrrese e 138
SUMMAIY . veitetrerere st re e s s e s s e e s e s s sae e e e s aeeaesae e s e e aesae e e e naenaees 14

Chapter 8: Managing Control Flow: Conditionals, Switches, and

Enumerations..........ccccnnmmmmmsmmmmssssmsssssmsssssssssssssssssssssnns 143

WhEE'S NEXT? ... s 143
Using Go To Statements...0r NOt ... 146
USing Conditionals..........cccvveererrererenernsesessesere s seenes 150
SWiItChing CONErOL........ccvvveecrcrres e 158
Comparing Swift Switches to Other Languages..........ccocvvveernserensesesrenerennes 159
Exploring the Swift Switch Syntaxccccovvvninniesnsssrs s 160
Using Advanced Switch Case Elements: Ranges...........ccvnnninennnnnnes 161
Using Advanced Switch Case Elements: Where Clauses..........ccuoeerenerene. 163
Using Enumerated TYPES......ccvvvernnernenmnese s s s ssnnes 165
Swift’s Approach to Enumerated TYPesScccvveervvernnennniesesssesesesesssessnns 166
Using Swift Enums with Switch Statements............ccccrivninincnncncncennn, 167

TABLE OF CONTENTS

Exploring Repetitions and Strides........ccccvirnvninininnnsnsc s 171
While and Repeat-While LOOPS......c.ccocvvrnnnieniennsinsene s sessesessssessessessens 172
FOr-iN LOOPS.....ciiiieiesircne e s n s s sn e nnen 173
LS T 1 [177

SUMIMANY.....oeeeerercreree e e s e re e ne e e 178

Chapter 9: Storing Data and Sharing Data..........cccccenrrrrnssssnnnnnnnnnnnas 179

What IS the Data?..........ccoveererrnnsner s 181

Where Is the Data StOred?c.cuceveenenennsesnessnesess e sesesesseens 183
Storing Data in Nonpersistent App Storage........ccccvvrererrenernserssesessesensnnes 185
Storing Data in Persistent App StOragecoceevvvevnnenenesesnsesssesesesessnns 185
Storing Persistent Data Outside of App Storage on a Devicecccccenne. 187
Storing Data in Shared Storage Locations..........couevnnenerssernsesessessnenensnns 187

Who Is in Charge of the Data?...........cccvvrirnnnininiennsrrere s sesseenes 189
Ownership 0f DAta.......c.ccocvvrverierienrrrer e 189
Data INTEGIILY...ccceverrrierrere e e 190
USING ChECKSUMScverueriesersere e sessese s e sssses e ssessesessessessesssssssessesassessessesaes 191
Using Timestamps and Other Data Markers.........ccocvvvverevnnnsensenenensensenas 192
Version CONtrolcccveeerninnnesnsse s 193

How Is the Data Managed...........ccocvvernininneninsnsie e 194
Managing EXternal Dataccocevivvenverieriennsensenesn e sessessessessssessensens 194
Formatting and Structuring Data............cccoevvririennsninrnenrsere e 195

Handling Data That Is Not There: Swift Optionalscccvverivrvrnrerienesensenens 201

310111117 o OSSR S 206

Chapter 10: Building Components........cccccueemmsssssssssssssssssssssssssssnssnnes 207

Why Build COMPONENTSccerrierirerircseree s sessssnsssnens 207
Advantages of Components: Reusabilitycouevrrerernssnneseniesennsenenns 209
Advantages of Components: Manageabilityc.ccovrerereserensenessenerensenenns 209

vii

TABLE OF CONTENTS

The Basic Components of Development Projectsc.cccvivvnvnvniennnensenennes 210
Subroutines, Functions, Procedures, and Methodscccovvveecncrernnnen 210
ClASSEScueuerererrsseeseseressssee e e a s e se s 214

Larger Building BIOCKSc.ccovvrvrierininsinc s ses s 215

Looking at BIoCkS @and RECUISION..........ccevrerrenesessesesesesessesesseses e sessesessesessnnes 216
Terminology: BIOCKS @and ClOSUIES..........ccovenerrenerensmsesesesese s e sensesenns 216
USING @ CIOSUTE......cccerererierirene it 217
RECUISION ... e 219

Building a FUnction in SWift........c.ccccovreiniennnsnnesr s 219

SUMMAIY.c.ueitiirerere e s s e s s a e e s e s s b s b e e s e aesae e e e naenne e 231

Chapter 11: Using Events to Guide Actionsccccussseensrssssnnnsnsssanns 233

Where BIOCKS Fit IN ..o 234

Using Actions and Messaging for Managing Flow Control Summary 235

Passing a Button Press/Tap/Click On to... Somewhere.........cccccvvririrriernenn 236
Implement a Button with Known Action ..o, 236
Implement a Button with a Notification...........c.cceeininirininininnnecnccnennn, 241

SUMMANY....ceiveerereresese s se e e s s s se e nensenenns 248

Chapter 12: Getting into Xcode.........cccrumssummmmmmssssnnnmssssnnnsssssssnsnssssnnns 249

How t0 Write SOFEWATEccceerierrerinesere e 250

Developing an App With XCOUE........cvrvrerrrierierinsenseress s ssssesessessssessessenes 255
Setting Up the Project........ccvvevrinieni s sesessessssessesse s 255
Testing the Project (without Modifications)cccvevverienensnseriennesensensennens 259
Adding the Code and INterface.........ccvvverrrierierssnsensese s sessessesnens 261
Testing the Project (with Modifications)c.cuuennnnnnnsssennsseesenens 268

Debugging an App With XCOdeccuvvrrvrirnerrr e 268

LT 1§14 7 270

viii

https://doi.org/10.1007/978-1-4842-3066-4_11#Sec121

TABLE OF CONTENTS

Chapter 13: Bringing in People........ccccvnssmmmmmsssssnnsmsssssnssssssssssssssssnns 271
Computability for PEOPIE........ccoveeerecerrcerre et 271
The Development QUESTIONS ... s 273

What Are YOU DOINQ?ocvcererirrsre s se e se s s e ssesnens 274

Who Will Be INVOIVEA? ... 274

Why Will People Be INVOIVEd?..........cccvivnininierssnenese s sessesnens 275

When Will [t HAPPEN?.......ooccrcrcrse e ssssessesnens 275

Where Will the Project RUN? ... sessesnens 277

How Will You Know the RESUIS? ... 278

SUMMANY....eieeereeereree e e s se s s s e re e nen e s 279
Chapter 14: Graphics and Visualization Techniques

and Problems.........ccocmmmmmmmsnmmssmsssssssnmn. 281

Introducing ULility SMart..........cccvvrirnnin e ssssesesse s 282

Beginning the App (Utility Smart 1) ... 282

Refining the App (Utility Smart 2).........ccccvcrirninvnnrcrsnn s 288

COAE SNIPPELScreiirir i e 291

Creating @ POPOVEr: COUEc.vveerrererreerererere s 292

Creating a Popover: Storyboard.........c.ccccvvenrereresennnesesesers s 293

SUMMANY....ceiiierirerrrese e e e s ne e e 294

INA@X.iiiiisssnnnmnnnnnnnnssssssssnnnnnnnnsssssssnsnnnnnnnnssssssssnnnnnnnnnessssssnsnnnnnnnnnssssnnn 295

ix

About the Author

Jesse Feiler is an author and developer focusing on nonprofits and
small businesses using innovative tools and technologies. Active in the
community, he has served on the boards of Mid-Hudson Library System
(including three years as president), Philmont Main Street Committee,
Philmont and Plattsburgh Public Libraries, HB Studio and Playwrights
Foundation, Plattsburgh Planning Board, Friends of Saranac River Trail,
Saranac River Trail Greenway, and Spectra Arts.

His apps include NP Risk — The Nonprofit Risk App (with Gail
B. Nayowith), Saranac River Trail, Minutes Machine, and Utility Smart.
They are available through Champlain Arts on the App Store at http://bit.
ly/ChamplainArts.

His large-scale projects have included contingency planning and
support for open market monetary policy and bank supervision operations
for the Federal Reserve Bank of New York’s Systems Development and
Data Processing functions as chief of the Special Projects Staff and the
System Components Division; implementation of the Natural Sales
Projection Model at Young & Rubicam (the first computer-based new
product projection model); development of the Mac client for Prodigy to
implement their first web browser; management information systems and
interfaces for legal offices, Apple, and The Johnson Company; as well as
consulting, writing, and speaking about the Year 2000 problem.

Smaller-scale projects for businesses and nonprofits have included
design and development of the first digital version of Josef Albers’s
Interaction of Color (for Josef and Anni Albers Foundation and Yale
University Press), database and website development for Archipenko
Foundation, along with rescue missions for individuals and organizations

http://bit.ly/ChamplainArts
http://bit.ly/ChamplainArts

ABOUT THE AUTHOR

who found out about contingency planning when they least expected to
learn about it. Together with Curt Gervich, Associate Professor at State
University of New York College at Plattsburgh, he created Utility Smart, an
app to help people monitor their use of shared natural resources.

Jesse is founder of Friends of Saranac River Trail and of Philmont
Main Street Committee. He is heard regularly on The Roundtable from
WAMC Public Radio for the Northeast where he discusses the intersection
of society and technology. He is a speaker and guest lecturer as well as a
teacher and trainer specializing in the business and technology of iOS app
development. He also provides consulting services for organizations that
need help focusing on their objectives and the means to achieve them
with modern technology. He is co-author with Gail B. Nayowith of The
Nonprofit Risk Book as well as The Nonprofit Risk App — NP Risk).

xii

About the Technical Reviewer

A passionate developer and experience enthusiast, Aaron Crabtree has
been involved in mobile development since the dawn of the mobile device.
He has written and provided technical editing for a variety of books on the
topic, as well as taken the lead on some very cool, cutting-edge projects
over the years. His latest endeavor, building apps for augmented reality
devices, has flung him back where he wants to be: as an early adopter in an
environment that changes day by day as new innovation hits the market.
Hit him up on Twitter where he tweets about all things mobile and AR: @
aaron_crabtree

xiii

Introduction

Computer Science is the study of computers and their operations. It
includes concepts of computability and how software is designed that are
now being taught to students as young as six years old. It also includes
complex concepts of the largest, latest, and most advanced computers and
systems. This book provides an introduction to people who want to learn
the basics for practical reasons: they want to understand the principles

of computer science that will help them to become developers (or better
developers). The focus is on practical applications of computer science.
Along those lines, Swift, the modern language developed originally at
Apple, is used for many examples that are shown in Swift playgrounds. You
will find practical discussions of issues as varied as debugging techniques
and user-interface design that are essential to know in order to build apps
today. Note that Swift playgrounds are used to demonstrate a number of
computer science concepts, but this is not a book solely about Swift. Not
all of the language constructs are demonstrated in the book.

There is one critical piece of advice I give to people who want to learn
how to develop apps, and that is to use them. Download and try to use
every app that you possibly can. Read reviews of apps. Talk to people about
their experiences. Too often, people jump into trying to write apps without
knowing what the state of the art (and of the marketplace) is today.

Many people have helped in the development of this book. Carole
Jelen of Waterside Productions has once again been instrumental in
bringing the book into being. At Apress, Jessica Valiki and Aaron Black
have been essential guides and partners in helping to shape the book and

its content.

INTRODUCTION

In the course of writing this book, I've been lucky enough to be
involved in several app development projects that have provided case
studies and examples of the process of app development. Thanks are due
particularly to Curt Gervich, Maeve Sherry, and Michael Otton at Center
for Earth and Environmental Science at State University of New York
College at Plattsburgh as well as Sonal Patel-Dame of Plattsburgh High
School.

Downloading Playgrounds for the Book

You can download playgrounds from the book from the author’s website at
champlainarts.com.

CHAPTER 1

Thinking
Computationally

Computer science is the term that applies to the basic principles involved in
developing computer software and systems that incorporate that software. It
is abstract and theoretical in the sense that it typically is considered outside
the syntax and structure of specific computer languages and hardware.

That is the definition that we use in this book. If you explore other
books and articles on the Web (including descriptions of computer science
courses at all levels and types of education), you will find a wide array of
other definitions.

This chapter provides an overview of the topic and focuses on key
elements of computer science. This book provides a practical approach
to computer science, so you'll see how the elements can fit into your work
rather than looking at a theoretical view of computer science. The focus is
on how you will use the concepts and principles of computer science in
building real apps.

The key elements of computer science are divided into two groups in
this book. The first is the pair of concepts that developers use as part of
their work every day:

e Recognizing patterns

e Using abstractions

© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_1

CHAPTER 1 THINKING COMPUTATIONALLY

Then you'll see the four tasks that are used in every aspect of software
development from the largest system to the smallest component of a tiny
system. These tasks are the following:

e Formulating a computational problem
e Modeling the problem or process

e Practicing decomposition

e Validating abstractions

In the remaining chapters, you'll find descriptions of syntax elements
and structures, but in this chapter, the focus is on the concepts you use to
carry out the basic software development tasks that are over and above
syntax and structure.

Computer Science Today

Computer science principles and techniques are implemented in
computer hardware and software using various programming languages
and devices. Even users get into the picture as they learn to enter data,
share it with others, convert data from one format to another (think
spreadsheet to email) and a host of other tasks that demonstrate computer
science in action.

One of the challenges in teaching and learning computer science is
that in order to learn the principles, you have to have enough knowledge
and experience of computer hardware and software to understand how
they interact with computer science principles.

This has been a tremendous challenge for decades. If you want to
learn how to be a builder, you can start by building a doll house or a bird
house. Your materials might consist of paper and (if you want a permanent
structure) some glue or even staples. The basic principles of home
construction can be simply demonstrated and described.

CHAPTER 1 THINKING COMPUTATIONALLY

The challenge with computer science is that to build a small project,
you may be able to write a single line of code, but, in order for it to run and
do something - anything - you need a computer, and it needs an operating
system. (This was true going back to the earliest days of computers.)

The computer today will consist of electronic components, and the
operating system today of even the most minimal computer is incredibly
complex. The steps you take to get to a “simple” computer science app are
enormous.

Using Swift Playgrounds

If you have an iPad or Mac, you have access to Apple’s free Swift
Playgrounds tool. Together with the device itself, you have all of the
components you need to start to build simple apps with even a single line
of code.

Swift Playgrounds provides a massive infrastructure on top of which
you can write a few lines of code to start to explore computer science as
well as specific languages and techniques. You can run this code in the
playground and watch the results. (You can also modify the results and the
code as it is running if you want to experiment).

For your own use or for others, you can easily annotate the code.
Figure 1-1 shows a playground with annotations. It is running, and you can
see the result of the print statements at the bottom of the window. At the
right, you see a sidebar that monitors the code as it runs.

CHAPTER 1 THINKING COMPUTATIONALLY

L] Bnady | Tedry w TS M ED«s D2 0O

.

Swift Playground for Jesse Feiler's
Computer Science Book
Store data in arrays

Here's an array of arrays using JSON syntax

7 var myArray = [[[*Windows": 50, “Trash®: 80, "Layers": 50, "Rec... =
B[

"Date” 1513968111 .567985,
1 "Layers®:58,
11 "Recycling®:@.3567828407287643,
12 "Seore”:158,
1 "Thermostat™:50,
1% "Trash®:569,
1% "windows®:5@
1,

® [

15 "Date” :513948122. 893572,
"Layers":5@,

“Recyeling® 1¥9.75900000002001,
"Score” 1158,

“Thermostat®:5@,

“Trash" 160,

"windows *: 58

HEBNOH

Create a variable to store data

® let valuesMap = myArray.map {$8["Score"]} [3 times) =
Print it out

= print, (* valuesMap: \(valuesMap)*®} * valueshiap: [Optional(150.0], Ootioral(1500/ &

b=

Do it for another variable

¥ let sortedMap = mynrray.sorted(by: {(sl, e2) in return sl["Score”]! < s2["Scora"]i}) (2 times) =
% print, [* sortedMap: \lsortedMap.map{$el=Score®]})") (2 times) =
| =
Bl

Figure 1-1. Swift Playgrounds in action

If you see Figure 1-1 in color, you can see that the elements of code
syntax are colored automatically to help you understand what is going
on in the code. This coloring and indentation happens automatically as
you type.

In this book, you will find a number of examples of computer science
principles that are demonstrated with Swift Playgrounds. You can
download them as described in the Introduction.

One very important point to know about Swift Playgrounds is that
the code you are writing is real. It is real in the sense that it is actual code

CHAPTER 1 THINKING COMPUTATIONALLY

written in the Swift programming language (the language for most iOS,
tvOS, and watchOS apps today as well as a number of macOS apps). You
can copy some code from an app you're working on and paste it into a
playground so you can experiment with it. (There are some details on how
to do this in Chapter 7).

Note The playground shown in Figure 1-1 is a real-life example

of using production code in a playground. This code is part of an

app that was not doing exactly what it should. It was isolated into

a playground where we could fiddle with the syntax until it worked
properly. Once that was done, the revised code was pasted back

into the app, and it’s now part of Utility Smart that you can download
for free in the App Store. If some of the code in Figure 1-1 seems
complex, you are right. It was line 35 that caused the confusion. You'll
find out about the map function in Chapter 3.

Basic Concepts and Practices of Computer
Science Today

These are the basic concepts and practices that developers use in their
everyday work whether it is designing complex systems or writing very
simple apps. They apply to software that is used for games, for accounting,
for managing assets (real estate or digital media), or just about anything
else people want their computers to do. If you want details of the history
of computer science and the major steps to today’s world, you can find a
great deal of information on the Web and in your local library. This section
is based on actual developers’ work.

You can learn these over time as you develop apps, and you can find
them in many books and articles. These concepts and practices are not

CHAPTER 1 THINKING COMPUTATIONALLY

specific to computer science: they are part and parcel of many design and
development disciplines. (Don’t worry, the following section is devoted
specifically to software development).

Both of these concepts and practices stem from a very basic truth:
writing code is a complex and expensive process. Not only does the code
have to be written, but it also needs to be tested and revised over time.
Computer code can have a very long life. (When the Year 2000 problem
was addressed in the late 1990s, code from the 1950s and 1960s was found
in many production systems. The authors of the code in many cases were
retired or deceased, and what documentation that might have existed was
lost. Much of the cost of mitigating the Year 2000 problems derived from
rewriting existing code).

Because writing code is expensive, it is wise to minimize the amount
of code to be written and rewritten and tested. Both of these concepts help
to minimize the amount of code to be written. The overall theme is that to
write the best code possible (that is, well-written, well-tested, and well-
documented code) as quickly as possible, follow one simple rule: Don’t
Write Code. Failing that, write as little code as possible. And, to putitin a
more traditional way, use as much existing code as possible.

Recognizing Patterns

If you recognize patterns, you may be able to reduce the amount of work
you have to do by seeing a pattern and realizing that you can implement
the pattern itself rather than each particular variation of it from scratch.

A classic example of patterns is shown in Figure 1-2, the west front of
Notre Dame in Paris. Your first reaction may be personal (perhaps you
have been to Paris) or it may be general - along the lines of how beautiful
the facade is. An architect, designer, or software developer might go
beyond the personal and the general to notice that this facade consists of
three doorways at the street level and two towers at the top level.

THINKING COMPUTATIONALLY

CHAPTER 1

e, Paris

Figure 1-2. West front of Notre Dam

CHAPTER 1 THINKING COMPUTATIONALLY

The west front of Notre Dame presents a multitude of patterns that
repeat with slight variations. The three doorways at the first level are
similar in overall width and height, but if you look closely, they are
not copies of one another. Likewise, the two towers are fundamentally
the same, but they, too, have variations. Almost every other element
of the facade is part of a repeating pattern of one sort or another. (The
most obvious exception to this is the large rose window in the center
of the second level: it is unique, and its uniqueness reflects its religious
importance).

The importance of recognizing patterns is that once you do so, your
job in describing or implementing a concept (be it an app or a cathedral)
may be made easier. You no longer have to describe or build each detail or
component: you can describe the pattern that is replicated.

Using Abstractions

Often, as is the case on the west front of Notre Dame, patterns are repeated
with variations. (The dimensions of the doorways are the same but the
decoration and meaning of the statues differ.) The part of the pattern that
repeats can be considered an abstraction - the essence of the pattern. In
computer terms, the abstraction can be what you need to implement to
support multiple uses of the pattern.

For example, if you need code to ask the user of an app for an address, that
can become part of a pattern that also allows you to ask the user for a name.
(The term design pattern is sometimes used to describe the reusable code).

CHAPTER 1 THINKING COMPUTATIONALLY

Combining Patterns and Abstractions for
Development

In practice, developers often work with patterns and abstractions at the
same time because they are really two sides of the same coin. In designing
an app (or a part of an app), developers look to patterns that they can
implement with the same basic code. This reduces the amount of code that
needs to be written.

As the design process continues, developers also look for near-patterns.
If parts of the project can be modified slightly, a pattern may emerge. This
is an iterative, creative, and judgmental process. Frequently, the extreme of
pattern-building may make the app more complex for people to use. As a
project evolves with input from users and developers, refinements can be
made on both sides (user and developer) so that a good balance is made
between repetitive patterns and customization for the user.

As part of this process, you frequently find yourself looking at the
suggested process to see not only if there is some pattern to reuse but also
if there is an abstraction that can be created so that the user sees extreme
customization (that is, ease of use) and the developer works on a generic
abstraction).

A lot of the coding techniques you'll find in modern software
development help you to implement patterns and abstractions.

Fundamental Tasks for Developers

Building on the basic principles of patterns and abstractions, you can
actually start to plan your project. There are four basic tasks for developers.
Once you're familiar with them, the rest of the book explores specifics of
implementation.

e Formulating a computational problem

e Modeling the problem or process

CHAPTER 1 THINKING COMPUTATIONALLY

e Practicing decomposition

o Validating abstractions

Formulating a Computational Problem

The first step is formulating your project as a computational problem. This
is more than just saying, “Let’s build an app.” It means deciding not only
what your goal is but also why it is amenable to computation (that is, why
computer science comes into play). Computer science isn’t the answer

to everything: if you want to paint the dining room, it’s not going to be of
much help.

In theoretical computer science, there are at least five types of
computational problems. In deciding whether or not a specific project is
amenable to computerization, classic computer science suggests that you
find if it falls into one of these categories:

e Choice or decision. Find a yes/no answer to a specific
question. Typically, the question is phrased in terms of
numbers and values (is person X greater than 21 years
of age?, is value x odd or even?)

e Search. In this problem, a body of data is searched and
the choice/decision true values are returned. (Of all
students enrolled in a school, how many will be eligible
to vote in the next election?)

e Count. This variation asks merely how many values
would be returned from a search. Note that the
operations involved in a search can be more complex
than in a count - you don’t care who the students are
in this case so you don’t need to find out names or
addresses.

10

CHAPTER 1 THINKING COMPUTATIONALLY

e Optimization. Of all results of a search, which is the
best? If the search is for all eligible voters near a specific
address, you can use the results to optimize the result
to find the voters near a specific address who voted in
the last election and have a car (so might be willing to
provide a ride to the polling place).

e Function. In effect, this is a search problem (which
in turn is built on a choice problem). It is further
refined with the optimizable results that can be further
narrowed down. A simplified description of a function
problem is one that returns a more complicated
answer than yes/no or a count. (Remember, this is a
simplification.)

If a problem is not one of these five, it is not computational. This may
sound bizarre because it’s hard to see where something like Pages or
Excel or even Swift Playgrounds fits into this list. Never fear: a project can
be broken down into computational pieces. In fact, if you really want to
delve deeply into the project, you'll find that each line of code can often be
considered to consist of a number (often many) of computational pieces.

Recognizing and Describing the Problem

Once you have formulated the problem, your task isn’t over. There are still
two very important aspects involved in formulating an idea for an app. In
fact, these are steps that you take at the beginning and, repeatedly, at many
stages through the development process. You may be chomping at the bit
wanting to get into code and technology, but you have to start with the
idea: what is the purpose of your project? If it’s to build an app, what does
the app do?

11

CHAPTER 1 THINKING COMPUTATIONALLY

Perhaps the best guidance in formulating what your app does can be
found on websites like Kickstarter or any other resource that helps people
describe a not-yet-built project. You can answer any number of specific
questions, but you must somehow know what your project or app will
accomplish.

Many developers are happy to leave the marketing to other people,
but you must be able to describe the project in clear and specific terms for
many purposes beyond marketing. In the case of an app, one critical step
in the development process is getting an icon for the app. Icon design is a
very special area of design and graphic arts. Few developers produce final
icons (many provide rough sketches for development). You are likely to
need to sit with a graphic designer to discuss what the icon will look like.
That conversation starts out with the designer’s question: what does this

app do?

Tip The conversation between app developer and designer can be
particularly useful in the development process because it can clarify
the project. This applies to any discussion with a non-developer.
Describing the app to a friend or relative can be very productive: they
tend to ask basic questions that can help you refine your design.

Defining a Project and Goal

With a computational problem that you want to focus on and a description
of the problem in hand, you can move to defining a project and your goal.
The project in general is to refine the computational problem at the core
of your project and to make sure you can define it in appropriate terms

for anyone who needs to know about it (friends, relatives, colleagues,
investors, potential users, and the like).

12

CHAPTER 1 THINKING COMPUTATIONALLY

Specifically, you need to start thinking about the scope of your project.
Part of computer science is learning to define projects and split them into
component parts if necessary. For a specific project, you may want to think
about how to break it into manageable components even if you intend to
do it in one process. Knowing how to split it apart if necessary can be a
helpful backup plan in case you need to do it in the future.

What Isn’t a Computational Problem

The most common non-computational problems you run across tend to
involve people and data. (Note that this is an entirely subjective point of
view based on personal experiences. But it is shared by many developers).
Sometimes an app is envisioned as something almost magical - it will
provide the answer to a question posed by the user. If you cannot break
down the problem into computational components, you can’t answer
the question. In thinking and talking about a problem, you may want
to pose the question: how will we do this? You don’t need to look for an
answer in code at this point; rather, you need to know how the problem
under discussion can be resolved. If it involves a person’s judgment
and that judgment cannot be quantified, it’s hard to see how it can be
computational. If it involves referring to data and the data is not available,
you also have a non-computational problem. You may be able to break a
judgment down into computational components, but, ultimately, if you are
left with judgment that cannot be computed (“gut feeling” is a term some
people use for this), you need some tool other than computer science.

Tip Although not all problems are computational, you can frequently
use a computational formulation to crunch numbers and display data
so that a judgmental kernel is left. Users can use your app to clear
away every computational issue and then use their own judgment on
that non-computational kernel.

13

CHAPTER 1 THINKING COMPUTATIONALLY

Modeling the Problem or Process

As soon as you can formulate the problem and the part(s) of the problem
that your project encompasses, you can start to model the problem. At
this stage you can use any tools that you want to - pencil and paper, smart
board, iPad, or anything else. You might want to draw boxes that perform
parts of the task you want to build. Don’t worry about code - just think
about something (whatever it turns out to be) that, for example, computes
a person’s telephone number (yes, that is a computational problem - a
search).

This model might turn out to be how your app is structured, but at
this stage, it is just how parts of your app will do things that together make
up the entire app. What you want to do at this point is to decide if this
collection of tasks or operations (the terms are interchangeable in this
context) can produce the results you need. Once you have a rough model,
try to break it. What happens if the phone number lookup fails or returns
the wrong number? What other components will be impacted?

Don’t worry about every loose end in a high-level model, but many
people keep a list of these loose ends and assumptions. It’s very easy to
start assuming that they are all dealt with later on and, without that list
of assumptions, you can wind up with an almost-ready app that misses a
critical component. (Any developer can recount many examples of this).

Practicing Decomposition

Once you have a conceptual model, it’s time to drill down into it: take each
component apart and look at its components. (This process is known as
decomposition.) As you decompose the entire project into smaller and
smaller parts, you are often going to be specifying components that will be
implemented in code.

14

CHAPTER 1 THINKING COMPUTATIONALLY

As you decompose the model, you may start to realize that this or that
component is something that you know how to implement already or that
can be implemented using known resources. If you are very lucky, your
decomposed project can be implemented with very little additional work.

Rearranging and Recomposing the
Project Pieces

But “lucky” doesn’t happen very often. In the real world, what developers
often find is that if they make some adjustments to the model, the
decomposed pieces may become easier to implement. Perhaps the most
important point to make about the entire design process is that until it is
actually being implemented, everything should be considered changeable.

Take the project apart and put it back together again as you rethink
each component. The goal is to make a project that does what you want
it to do and to gradually refine the components into manageable and
implementable pieces.

There’s not a word about code yet. All of the modeling and
decomposition is theoretical. Many developers (including the author)
think that the longer you work hypothetically, the more robust your
implementation will be. Somehow, moving into the code implementation
can be a distraction from the design and planning process. Not everyone
agrees with this, but many developers do agree.

Validating Abstractions

One of the most important aspects of computer science is that it gives

us a way to talk about the development process and about not-yet-built
software. Concepts such as decomposition are formalized ways of working
in this realm of not-yet-built software. Of course, when a project is actually
implemented, the proof of the pudding is revealed: either it works or it
doesn’t.

15

CHAPTER 1 THINKING COMPUTATIONALLY

There actually is a third possibility: the project description is not clear
enough to be able to determine whether or not a specific implementation
works or not. If this happens, you can refine your project definition to
include the missing information or you can add more components to the
project itself.

What you are working with are abstractions of the project and its
components. In addition to decomposing and recomposing them, also
validate the abstractions. You can do this by stepping through whatever
process a component or group of components or the entire project model
will do.

The closer you get to a final project plan, the more specific and
concrete your validations should be. At the beginning it’s fine to test your
model and its abstractions with made-up scenarios and data. As you move
on, start seeing if your ideas stand the test of reality. Start pushing the
model components to the limits. Don’t just use common circumstances:
see if your model will handle extreme cases.

If you are working with clients or users, don’t rely solely on them. They
will be glad to detail the data they want you to work with, but try to get
actual data into your hands. You may need to start doing some number
crunching and data analysis yourself with a spreadsheet or database tool.
As many developers and analysts say, “The data doesn’t lie”

Here Comes the Code

If you have followed these steps in thinking through the problem you want
to address and the project with which you will address it, you should start
to feel comfortable with what lies ahead. Review your problem description
to make certain you haven’t veered off the track (this happens!). Try to
decompose the model you are constructing into components that can be
implemented. Check this draft model for completeness, and try to validate
it with real data.

16

CHAPTER 1 THINKING COMPUTATIONALLY

You now should have the outline of a project plan using some of
the tools and techniques of computer science including modeling,
decomposition, abstractions, and validation. Once you have moved into
implementation, you'll start to use different tools and techniques:

e Modeling that you can do with paper and pencil will be
replaced by implementation using code.

e Decomposition will be replaced by composition as you
put implemented components together.

o Abstractions become concrete implementations using

real data.
e Validation becomes real-world testing.

This begins with the next chapter.

17

CHAPTER 2

Writing Code and
Using Swift
Playgrounds

In Chapter 1, “Thinking Computationally,” you see the basic ideas
behind computer science and the fundamental tasks involved in
creating software - a high-level view. This chapter jumps to the other
extreme - writing code which is as low-level and detailed as you can get.
The remaining chapters in this book explore specific computer science
concepts and techniques - everything between the high- and low-level

views.

The Basics of Writing Code

The simplest kind of computer code is the type of code that was used in the
1950s and 1960s. Computers then were mainframe computers and some
minicomputers (like the PDP and VAX models). Input was with punched
cards and magnetic tape. Output consisted of printed reports as well as
punched cards and magnetic tape. (The cards and tape could become
input from one program to another).

19
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_2

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

Note This is a very high-level view of code: you'll find more details
and more specific terminology later on in this book.

Actions and Data

The essence of a computer program is performing an action with some data.
For example, you can write a program to print out (the action) some data.

Creating an Action

Many people wrote a common program, Hello World, as their first program.
It was published in The C Programming Language' by Brian Kernighan and
Dennis Ritchie; earlier versions are in other publications, but this is its first
major publication. The entire program is shown in Listing 2-1.

Listing 2-1. Hello World
#include <stdio.h>

main()
{
printf("hello, world\n");

}

The text “hello, world” is printed out with the printf statement.
Everything else in this little program is code that creates and accesses
the environment that makes printing possible. The program is a terrific
demonstration of the difficulty of teaching and learning coding: in order to
do one thing (print out a line of text), you need one line of code and four

'Kernighan, Brian W.; Ritchie, Dennis M. (1978). The C Programming Language
(1st ed.). Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-110163-3.

20

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

lines of overhead. This is the issue that is addressed in Swift Playgrounds
(described later in this chapter). With a playground, that overhead is
embodied in Swift Playgrounds itself, so you can just write the one line you
care about.

Believe it or not, this is a pretty revolutionary feature. (It's not a
revolutionary idea because people have tried to get this done for years, but
Swift Playgrounds may be the first widespread implementation of such a
simple coding tool).

In the single line of important code, you see one of the two basic
coding ideas: a command that will carry out an action. In almost every
programming language, there are commands you can use to instruct the
computer to do something in Hello World.

Using Data

The Hello World program prints out the phrase “hello, world” (ignore the
extraneous - for now - \n characters). Programming languages and systems
let you store data. If you store data, you can print out whatever the stored
data is. You typically store data in a variable or in an external medium
(external to the program, that is) such as a punched card, magnetic tape,
disk drive, or other storage.

Data from external storage can be brought into a program so that what
exists on disk or a punched card is moved to a variable inside the program.
You can also set a variable to contain specific data. The code for this varies
by language, but in general it will look like this:

x = "hello, world"

X is a variable: a storage location where you can put data and from
which you can get it back. The data is a quoted string of characters —
“hello, world” — the characters and the quotation marks are treated as a
single piece of data.

21

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS
This means that you can write code such as this:
printf (x);

You can combine the two techniques:

Listing 2-2. Building a combination of data and action

x = "hello, world"
printf (x)

While this may seem like a complication when you just want to
print out that phrase, consider what would happen if you wanted to do
something more complex than just printing. If there were five separate
commands to be carried out, keeping them together so that you can send
one variable to the collection of commands is efficient as long as you
can combine the five separate commands somehow. You can then send

another variable to the same collection of commands.

Combining Actions and Data

You often want to carry out several actions together. In various coding
languages, you can combine them into a collection of actions that can
be executed as if they were one. The terminology varies by language, but
a collection of actions is referred to as a method, function, procedure,
subroutine, or block. (There are variations in the specific meaning of those
terms, but they all refer to collections of actions).

You also can create collections of data. In the example shown here,
x is a variable. At its most basic level, it is a specific storage location that
can contain data. Collections of data are arrays, sets, and dictionaries.
(There are other terms as well).

22

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

Collections of actions can include data either as single variables or
as collections of data. Just as you can enter data values into actions (as in
printf ("hello, world") or use a variable as in Listing 2-2, you can use a
collection of data for the action to act on.

What Happens Behind the Code

The code that you write is designed to be more or less readable by humans.
Behind the scenes, there are two other types of code. At the most basic
level, there is machine code: these are the instructions that are executed

by the computer itself (its central processing unit or CPU). Each type of
computer may have its own language for machine code. In practice, today
the machine code is specific to the type of chip that is at the heart of the
computer. There may be several chips, but they typically use the same
machine code so that it can be executed on whatever chip is available at
any time. (See “Threads” in Chapter 6, “Building Components.”)

Machine language can be turned into assembly by the use of a program
called an assembler. Assembly (or assembly language) is a bit easier for
humans to read. The key component here is the assembler program
itself that does the conversion from assembly language to machine code.
The code is called assembly language or assembler; while the tool that
generates it is often called an assembler. The context clarifies whether you
are talking about the tool or the code.

Even more human-readable than assembly is a computer
programming language. The first languages such as COBOL and FORTRAN
in the 1950s are referred to as higher-level programming languages. They
are turned into assembly by programs called compilers.

Tip For more information, do research on Grace Hopper and her
colleagues.

23

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

The hierarchy of programming languages from simple to more
complex is this:

o machine code (the most basic);
e assembly;
o higher-level languages such as FORTRAN and COBOL;

o later on languages such as C, Pascal, and now Swift and
Python among many others make reading and writing
code by and for humans much easier.

Higher-level languages are ideally machine independent so that
someone who knows how to write COBOL, FORTRAN, or Swift should be
able to have that code compiled into assembler and then assembled into
machine language on any computer. Assemblers are usually machine-

(or chip-) specific. Thus if you write a program in a higher-level language,
it can be compiled into assembler and thence to machine code. Two points
are critically important:

e Although higher-level programming languages are
portable (the common term for running on multiple
computer architectures), the compilers that turn them
into assembler and machine code are specific to a
specific architecture of computer or chip.

o There are often cross-compilers that take a higher-level
programming language and compile it into assembler
for a different computer than the one on which it is
running.

Because assembler and machine code are specific to computer and
chip architectures as well as the even more important point that most
programming and coding today is done in higher-level languages, this
book (like most computer science references today) does not go into

24

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

assembler and machine language except for broad conceptual views such
as this section.

In today’s coding environment, compiled code is often combined with
graphics and many other assets. This process is referred to as building
(and the result is called a build.) The build process is often machine
specific. Thus, the code is machine independent if it uses a language such
as C, but the build process means that it is not portable. To write code that
can run on a specific computer, you need a compiler or cross-compiler
that can turn the code into assembler and thence to machine code; you
also need a build program to build it for the computer you are targeting
(the verb “target” is used to identify the ultimate computer on which your
code will run). A build program can even combine several programs in
several programming languages if you want.

Compiling and Interpreting Code

Today’s computers are much more powerful than those from the early
days of programming languages (the 1940s to 1970s). As a result, the very
clear pattern of machine code, assembly, and higher-level languages
with assemblers and compilers is more complex. Instead of compiling
programming language code, in some cases it can be interpreted: the
higher-level language is processed and turned into executable code so
quickly that it happens as quickly as it is typed.

Tip Executable code is the term for code that can actually run
on a computer. Sometimes, people refer to executable code as an
executable.

25

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

Using Swift Playgrounds

Swift playgrounds let you write code in the Swift language and have it
interpreted as you type it. Apple’s Xcode development tool, described in
Chapter 12, “Getting into Xcode,” combines the relevant compilers and
build processors to let you build apps. Playgrounds let you build and
explore interpreted code. You can share playgrounds with others, and, as
you see when you launch Swift Playgrounds, you start from a variety of
featured playgrounds as shown in Figure 2-1. If you don’t see this screen,
look for a + at the top right to begin browsing playgrounds.

IPag ¥ 318 PM 4 & 90 -
Cancel Learn to Code

Fl

Learn to Code

Learn serious code in a serigusly fun way

Learn to Code 2
Swift & Edition

Learn to Code 1
Swift & Editeon

Learn to Code 3 r
Swift & Edition

| GET

| GET GET

wPLearn To Code @Cra lenges T Accesscries P Starting Points

Figure 2-1. Explore Swift Playgrounds

26

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

Use the tabs at the bottom to explore the built-in Swift playgrounds.
Starting Points are good places to start building your own playgrounds. Tap
Get to download any of the playgrounds you see in Figure 2-1 or to start
working with one as you see in Figure 2-2 by tapping New Playground or +.

¢ -

Featared Wy Plavgeounds

Figure 2-2. You can create your own playgrounds

Your playgrounds can be as simple as a line or two of code such as
the code shown in Chapter 1. Alternatively, you can create more complex
playgrounds that you use to explore syntax and test your code. You can also
build playgrounds to share with others. These can be quite sophisticated.
One way to get started with Swift Playgrounds is to tap one of the featured
playgrounds to explore it. If you tap one of the featured playgrounds, you'll
see a description and more information as well as the all-important Get
button that lets you download it. Figure 2-3 shows the Get page for Learn
to Code 2 one of the early playgrounds.

27

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

Beyond the Basics

_‘ N Sq

GET

Learn to Code 2
Apple

Beyond the Basics

Description
In Learn to Code 2,

Figure 2-3. Explore Learn to Code 2

Note At the moment, many playgrounds are designed for teaching
coding to kids. If you explore shared code resources like GitHub,
you’ll see that professional developers are using playgrounds for
coding snippets, testing, and training users as well as teaching
people how to code.

If you tap Starting Points, you can view the choices in Swift
Playgrounds as you see in Figure 2-4 (note that the Starting Points change
as Swift Playgrounds is enhanced).

28

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

THEE AN # 9 -
Starting Points

-a = [(3

“oer | Shepes [oer| Answers Ter | Graphing Toer | Puzzie World |

[7] crapengas T Accossaries P Suarting Poiass

Figure 2-4. Starting points

Tap Get to download a starting point such as Shapes. It will download

to your playgrounds as you see in Figure 2-5.

29

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

Figure 2-5. Download the Shapes playground

Tap the playground to open it as you see in Figure 2-6.

30

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

let eircle = Cirelel()
circle.draggable = true

m P Run My Code
Figure 2-6.

Run the playground as you see in Figure 2-7.

31

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

Canvas

let eircle = Cirelel) -
circle.draggable = true

M B St
Figure 2-7. The playground runs

The blue circle is movable — tap and drag it around as you wish.
You've got your first playground running. You can return to your
playgrounds at any time with the four squares at the top left of the
window.

You can add a new playground to My Playgrounds with + either from
the top of the view or the large + on a shelf.

32

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

When you have a playground opened, use the three dots (ellipsis) at
the top right of the playground to explore additional tools as you see in
Figure 2-8.

Function chapter 10
func area(length: Double, width: Double) =-> Double { Tools

return length % width
} ? Playgrounds Help

B Take Picture
Create POF

a Record Movie

let result = area (length: 25, width: 3)

@ Broadcast Live

B Advanced

() P Run My Code

Figure 2-8. Use More to see other locations for your playground

33

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

In any of the displays of playgrounds such as you see in Figure 2-5,
you can tap the Share button in the top right to start sharing. You select a
playground, and then you will be able to use the sharing options you see in
Figure 2-9.

ol ¥ zaPM < % 57 -

Function chapter 10
iCloud Drive

Tag ta share with AlrDrop

Juwsn
Mae Pro

ol=]

Message Mail Open in NP Risk Add o Notes.

Add Peogie Copy

Figure 2-9. Share your playground

34

CHAPTER 2 WRITING CODE AND USING SWIFT PLAYGROUNDS

When you no longer need a playground, you can delete it from your

iPad. Tap the list of playgrounds in the top left as you see in Figure 2-10,

and tap edit. Select any of the listed playgrounds (there may be more than

one) with the dot to the left of the playground name, and then tap Delete.

88 = My Playground copy

+ My Playground copy Done

@ My Playground copy

BN let var if for while func

Figure 2-10. Delete a playground

Moving On to Paradigms

You now have the basic tools to use Swift Playgrounds to experiment.

The following chapter shows you examples of the two most important

programming paradigms today with examples of code for each.

35

CHAPTER 3

Exploring
Programming
Paradigms

The snippets of code that you have seen in this book so far are just that -
snippets. They show a single line of code that does one thing such as set a
variable or print out a string. That is the way that programming began: one
line of code after another.

Before long, the shortcomings of this line-after-line style of writing
code became apparent as programming backlogs grew and programmers
found themselves lost in line after line that they and others had written over
years. In various ways and various places, developers created standards,
styles, and other organizational structures so that the line-after-line style of
programming was easier to write, maintain, and understand.

This chapter provides a very high-level view of some of the most
common programming paradigms in use today. The paradigms are
divided into two groups here. There are paradigms that are implemented
in languages (that is, if you use a specific language, its rules require you
to conform to a paradigm even if you don’t realize it). There also are
paradigms that are implemented in the structure of a specific section of

code or even an entire app.

37
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_3

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

The reason for introducing the paradigms is to show that some of the
specific features and idiosyncrasies of different languages are, in fact,
common paradigms. In other words, understanding the basic paradigms
makes it easier to use languages and code that use those paradigms
because there is less to learn that is new.

Note The paradigms listed here are not exhaustive. There are other
paradigms and patterns of writing code, but these lists are the most
commonly used today. And all of them apply to Swift.

Structured Programming

Historically, the first major programming paradigm was structured
programming in the late 1950s with the ALGOL language. From the very
earliest days of programming, it was possible to interrupt the line-after-line
flow of control in a program by testing some condition with an if statement.
Depending on the result, the program could go to one specific line of code
or another one. Lines of code were numbered, so the control could pass

to line number X or line number Y depending on the outcome of the test.
Because they were used to control the program’s flow, line numbers were
important parts of the code itself, and that started to become a problem. In
the simplest case, if you wanted to insert a new line between lines 22 and
23, you wound up having to renumber everything, and that meant that a
statement transferring control to line 3825 might have to be renumbered

to 3826. Line numbering was one of the first problems that structured
programming addressed.

Beyond that, a proliferation of go to statements (or if statements that
functioned as go to statements) led to a mess of code that quickly became
difficult to understand and maintain. The problem is suggested in the
common name for the problem: spaghetti code.

38

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

One way to get rid of spaghetti code and line numbers is to collect
one or more lines of code into a block that can be identified by name.

Thus, instead of writing goto line 43, a developer could write goto
computeBalance or, depending on the language, perform computeBalance
or call computeBalance and the like. This code is much easier to read and
maintain.

By the 1970s, structured programming was generally considered to be
the preferred way of writing code. However, much old code existed and still
exists today, so you should not be surprised to encounter goto statements
in code that you are reading.

Line numbers are still used in some code, but by now, line numbers
are generally considered formatting rather than part of the code. When you
use playgrounds with Xcode on macOS, you'll find a line number option to
show or hide line numbers in Xcode » Preferences » Text Editing as you
see in Figure 3-1.

39

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

® Text Editing

@ w ¢ w /B o

igation Fonts & Colors Text Editing Key Bindings Source Control Components Locations

Editing Indentation

Show: [Line numbers
Code folding ribbon
v
Page guide at column: v
Highlight instances of selected symbol
Delay: 0.25 © seconds

Code completion: [Suggest completions while typing
Use Escape key to show completion suggestions
Automatically insert closing braces (“}")
Enable type-over completions
Automatically balance brackets in Objective-C method calls

While editing: [Automatically trim trailing whitespace
Including whitespace-only lines

Default text encoding: Unicode (UTF-8)

(o] o]

Default line endings: macOS [Unix (LF)

Convert existing files on save

Code coverage: [Show iteration counts

Figure 3-1. Set line number preferences in Xcode

Note Line numbers are so frowned upon today that while you
can show or hide them in Xcode, you cannot show then in Swift
Playgrounds on iPad. The same playground that can show line
numbers on macOS will not show them on your iPad.

Structured program is a style of programming: you can write structured
code in most programming languages.

40

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

Object-Oriented Programming

Like structured programming, object-oriented programming arose in the
late 1950s. The blocks of code that were introduced in languages such as
ALGOL were refined to become in essence small programs themselves. A
program consists of instructions as well as data. Objects in object-oriented
programming are basically the same: instructions and data. The biggest
difference is that these objects can be inside an app or program. In OOP (the
abbreviation for object-oriented programming), instructions in an object are
methods and the data consists of fields. Methods themselves are structured
blocks of code, which, themselves, can contain blocks of various sorts.

Furthermore, objects can inherit. They often represent real-world
concepts. For example, you can create an object that represents a building.
It can contain data such as an address and, perhaps, the dimensions of the
building. It may also contain instructions in the form of methods such as
one to calculate the square footage of the building.

Typically, an object is a runtime construct. The code that describes
it (that is, the descriptions of the methods and fields) is a class. A class
is instantiated as an actual object at runtime, and that runtime object is
referred to as an instance. The instance has a memory location. A class can
have many instances. For example, there may be thousands of building
instances in an app that works with a city.

Classes can inherit from one another. A class with its methods
and functions can be subclassed. The subclass has all of the data
and functionality of the base class, but it can add its own data and
functionality. Thus a building class might have a subclass of a house or
a shop. All instances of house or shop would have dimensions (each
instance has its own values for data), but the subclass house might have
data indicating the number of bedrooms, and the subclass shop might
have data about the type of business conducted there. You can write code
that handles a particular instance of building or one of its subclasses either
as the base class (building) or as the subclass. For instance, you can ask any

41

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

instance of building or a subclass for its square footage, but you can only
ask a show about its type of business.

Figure 3-2 shows the declarations of a Building class and two
subclasses (House and Shop) in a playground.

R Paradigms +

class Building {
var width = 8.8
var depth = 8.8
func squareFootage () -> Double {
return width * depth
}
¥

class House:Building {
var bedrooms = @
¥

class Shop:Building {
var businessType = **

¥
let myHouse = Housel)

let area = myHouse.squareFootage()

® lst test = myHouse.businessType

m " Run My Code

Figure 3-2. Declaring a class and two subclasses

You also see the creation of an instance of the House class with
this line:

let myHouse = House()

You can use the squareFootage function of myHouse to set a local
variable (area). However, if you attempt to use the function businessType of
the House subclass of Building, you'll get an error as you see in Figure 3-2.
In fact, in a playground, you'll have trouble typing the bad code.
businessType is an attribute of Shop and not of Building.

42

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

Remember that as a playground runs, you see the results of individual
lines of code in the sidebar at the right of the playground. As you see in
Figure 3-3, you can tap any of them to see the value.

Paradigms +

class Building {
var width = 0.8
var depth = 0.8
func squareFootage () => Double { 0.0
return width * depth 3
+ Add viewer

}

class House:Building {
var bedrooms = @
¥

class Shop:Building {
var businessType = **
}

let myHouse = Housel) a

let area = myHouse.squareFootage()

('-\) P Run My Code

aim el 2 @ oA

(0
IS
v
A
i

v
n

¥
=
®

Figure 3-3. Use a playground viewer

The buttons at the right of the playground indicate the type of result
you will see. In Figure 3-4, the first is a numeric value, as is the last one.
The opened result is an object.

43

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

Paradigms

class Building {
var width = @.0
var depth = 0.0
func squareFootage () —> Double {

return width % depth

class House:Building {

var bedrooms = 8

class Shop:Building {

var businessType = ""

Paradigms_Contents.Building

let myHouse = House() 0

Add viewer

let area = myHouse.squareFootage()

S C depth . == Wt < > <= >=

Figure 3-4. Observe an object

44

P Run My Code

X J A

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

If you decide to add a viewer to your playground, you'll be able to
follow the results without having to tap each time as you see in Figure 3-5.

- A—— Paradigms |

class Building {
var width = 8.0
var depth = 6.0
func sgquareFootage () -> Double {
return width # depth 123

0.0

class House:Building {

var bedrooms = @

class Shop:Building {

var businessType = ""

let myHouse = Housel()]
Paradigms_Contents.Building

0
let area = myHouse.squareFootage() 123
0.0
m P Run My Code
S C depth) == I= < > ==0 = & J oA

Figure 3-5. Open several viewers to follow the playground’s execution

45

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

This is a high-level overview, but it’s important in modern computer
science. The most common programming languages in use today are
object-oriented. OOP enforced at the language level as opposed to
structured programming, which is a style of writing (badly) in almost any
programming language. It is hard to write unstructured code in an OOP
program, but it can be done as anyone who has been tasked with fixing
such a situation can tell you.

Imperative Programming (Procedural
Programming)

Imperative programming uses statements to describe what an app or
program should do (the terms app and program are used interchangeably
in this section). Critically important is that the statements specify how the
program should achieve the desired results.

Imperative programming today often is based on blocks and
procedures: the imperative statements are grouped together into these
entities. The statements then invoke the required blocks or procedures as
needed to accomplish the program’s objectives.

Declarative Programming

By contrast with imperative programming, declarative programming
focuses on the results. As a developer, you specify what you want to
achieve and it is up to the environment (the operating system and
other components) to achieve that result. Certain constructs such as
some advanced functions in Swift are declarative. SQL's basic syntax is
declarative. (SQL is the most common database language in use today).

46

CHAPTER 3 EXPLORING PROGRAMMING PARADIGMS

COMPARING IMPERATIVE AND DECLARATIVE PROGRAMMING

If you want to find all of the buildings on a certain street in a city, you can do
it either imperatively or declaratively. (The following is an overview. For more
details, see the descriptions of loops and advanced functions in Chapter 4,
“Using Algorithms.”)

For the imperative method, you would loop through every building in the
city and check to see if it is on the desired street. You would then put these
buildings aside into a variable or other storage location.

For the declarative method, you would specify that you want all the buildings
on a certain street. The operating system and environment would do whatever
is necessary — probably some kind of loop — but you wouldn’t be involved. You
wouldn’t have to write that code.

Concurrent Programming

Concurrent programming and threading allows a program to run on
several processors or chips at the same time. In order to do this, it is
necessary to impose constraints on how the code is executed because
often the available processors are available in different sequences. There
is more on concurrency in the section on threads in Chapter 10, “Building

Components.”

47

CHAPTER 4

Using Algorithms

Algorithms are one of the key components of computer science, but they
go back to days long before computers. In “The Miller’s Tale” (1391),
Geoffrey Chaucer makes reference to “augrim” stones, which would

have been stones used in counting algorithms, but the term and concept
go back several centuries even before Chaucer. Simply described, an
algorithm is a sequence of actions (usually numeric) that, when performed
in a certain order, will produce a specific result.

Such sequences of actions can be written descriptively on paper, but
they also can be written in code. In either format - on paper or in code -
they can be used and reused in building apps, programs, modules, and
other components of computer science.

They are so ubiquitous in computer science and applications that
many people don’t even notice them, but it’s important to understand
what they are and how they can be used. That understanding can help
you get the most out of specific algorithms and the various techniques for
writing and debugging code that are based on algorithms.

Algorithms can be the building blocks of apps and systems. “Can be”
because some people would say that data structures are the building blocks,
and still others would opt for a variety of other building blocks. In reality,
avariety of building blocks come into play for most apps and systems
depending on who the developers are and what the system needs to do.

49
© Jesse Feiler 2018
]. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_4

CHAPTER 4 USING ALGORITHMS

Algorithms as commonly considered are the sequence of steps referred
to at the beginning of this chapter. Note that in that broad definition,
nowhere does it state that a specific language is involved: it’s just a
sequence of steps. That can be coded in any language in most cases.

Considering the Purpose of Algorithms

Why do you create an algorithm? Why don’t you just go ahead and write
code? The core answer is that an algorithm that is clearly described and
defined can be useful in many contexts. The logic and analysis can be reused.

It is expensive to write code. Every step of the process from design and
analysis to coding and testing can be expensive. Often, people focus only
on the coding part of the task. Experienced developers (and managers!) can
attest to the fact that written but untested code is not a finished product.

The first step - design and analysis - is often ignored as people focus
on writing code and, sometimes (but essentially), testing it. Design and
analysis seems not to be as real as the code and the testing. However, the
key to minimizing the costs of coding and testing often lies in the design and
analysis. Often a project gets well under way without a clear project definition,
and, when the lack of clarity becomes obvious, the project is in trouble.

By formalizing the design and analysis, you create a robust project.
The cost of design and analysis can be spread among many projects (either
formally or through your own knowledge and experience), but the design
and analysis need to be done in a rigorous way so that they can be used
and reused in the immediate project and in others.

That is where algorithms come into play. They let you formalize your
analysis. Once that is done, you can reuse the analysis with new or existing
code, but you don’t have to repeat the analysis. As you gain experience in
the world of software development, you will come across many algorithms
and create many for yourself. By having a rigorous definition of an
algorithm, its analysis is more easily reusable.

50

CHAPTER 4 USING ALGORITHMS

That is why algorithms are so important in software development: they
can help you reuse your work (and that of other people) so that you don’t
start from scratch each time you start a new project.

Creating a Numerology Algorithm

Bear in mind that algorithms have been around for centuries, and many of
them predate digital computers. Many well-known algorithms can be used
to find prime numbers, for example. The example that is presented in this
chapter addresses a simple issue of numerology. Numerology is a belief in a
relationship between numbers and events or concepts. Some people think
of 7 as a lucky number; others think of 13 as unlucky. There are reasons

for these connections, but in many cases it is unclear if the concept of luck
(good or bad) preceded or followed the reasons and explanations.

One particular application of numerology is using letters of the
alphabet as numbers and adding them up to get a number that represents
the name itself. For example, if you let the letter A stand for 1, B for 2, and
so forth, the name Dan has a numeric value of 19 as follows:

D=4
A=1
N=14
Total =19

The resulting number may itself be lucky or unlucky either on its own
or depending on the first or last digit (and there are any variations of the
interpretation).

Converting the letters to numbers also has many
variations. One of the most common makes the

numbers run from 1-10 (perhaps because that

51

CHAPTER 4 USING ALGORITHMS

makes it easier to count on fingers. In the example
given here (Dan), the result in a 1-10 variation
would be

D=4

A=1

N =4 (count to 10 and then start over with 1)
Total =9

What you have here is definitely an algorithm, albeit one with
variations. It is a sequence of steps:

o start with converting the letters to numbers one way or
another;

e add the numbers together.

You can design an app or system based on numerology where one step
is “compute the numerology number,” and then that step can be done with
the algorithm

Looking Carefully at Algorithms

With this simple numerology algorithm, you can look at how it can fit into
code you may write. Three basic concepts in computer science are similar
to algorithms but with key differences. The algorithm-like concepts are the
following:

o Functions
e Objects
e Design patterns

These often use algorithms in their implementations.

52

CHAPTER 4 USING ALGORITHMS

Functions

Algorithms can be expressed in natural languages like English or in
mathematical terminology. You can characterize them as abstract or
conceptual if you want. Comparing them to functions can make both of
those concepts clearer.

Briefly put, a function is an implementation of an algorithm in a
specific programming language. An algorithm can help you design an app
or part of an app, but a function can become part of it.

Objects

Object-oriented programming is generally traced back to the Simula
programming language in 1967. Today, it is used in many, if not most,
development processes. Briefly described, object-oriented programming
uses objects that incorporate data and functionality to be self-contained
and functional building blocks for apps.

Algorithms can inform the development of objects, their methods, and
data. Usually, they are part of the development process as they are in a full-
fledged app. Objects rarely consist only of an algorithm’s implementation:
that is more often the role of a function.

Design Patterns

Design patterns are sometimes considered alongside functions and
algorithms. As commonly used, the term design pattern refers to a
structure that can be used to implement an algorithm.

One of the key concepts of an algorithm is the steps it defines. Design
patterns are a feature of declarative programming in which the initial state
and desired final state are declared, but the specific steps are not part of
the design pattern. This alternative to declarative programming is often
called imperative programming.

53

CHAPTER 4 USING ALGORITHMS

Implementing the Numerology Algorithm in Swift

The basic numerology algorithm is described previously in this chapter. In
this section, you see one of the ways to convert it into code.

Note You will see several other approaches to implementing the
numerology algorithm (and others) throughout this book.

Basically, the algorithm has two steps:

o Convert each letter of a name (or other string) to a

number.
¢ Add all of the numbers.

The discussion of the algorithm has identified a few open questions
that need to be resolved in the implementation. This is common: the
algorithm specifies the steps to follow, but it doesn’t normally contain
code, and it may contain references to external questions and issues that
need resolution in order to implement the algorithm.

The most obvious point to consider is whether the conversion to a
number is based on the letter’s position in the alphabet (1 to 26) in English
or if the number uses only the numbers to 10 (perhaps useful if you're
counting on your fingers). In the first approach, the letter K would be 11,
but in the second, it would be 1.

In order to implement the algorithm, you need to know which choice
to make. In implementing this and any other algorithm, it is often a
common practice to look at these choices and, to the extent possible,
build an implementation that is general so that it can work with any of the
choices. The more general an algorithm implementation is, the more likely
it is that the implementation can be reused.

The heart of the algorithm has to be the mechanism for converting
a letter to a number. In order to set that up, you need to know which

54

CHAPTER 4 USING ALGORITHMS

numbering scheme to use (1-26 or 1-10). In addition, as soon as you start
to think about it, you'll need to consider the letters you will be converting.
Characters in software are can be either capital letters or lowercase.
When we talk of the letter J, we normally mean J (uppercase) as well as j
(lowercase). In converting a letter to a number, we need to know if we will
be working with uppercase or lowercase letters.

These are the types of questions that you encounter as you start
analyzing an algorithm for the purpose of implementing it. Note that the
algorithm, as described in English, doesn’t distinguish between upper- and
lowercase letters. This type of detail often comes up in the implementation
phase.

Tip Upper- and lowercase letters are distinct. The styles of
characters (italic, bold, underlined, and so forth) are applied to
characters. Each letter and symbol in an alphabet that can be used
in an app has a digital value (often called an ASCII code in old
terminology). This numeric value is different from the numerology
value. For example, uppercase A generally has a digital value of 65,
while lowercase A is 97. Those numbers are the same no matter
what style is applied to the letter.

These questions are general and abstract issues that need to
be resolved in order to implement the algorithm. Sometimes, it is
possible or even necessary to do such clarifications before any work
on implementation is done. In other cases (and frequently with simple
algorithms with only a few steps such as this one), you can implement
each step separately. You may wind up slightly modifying the natural
language description of the algorithm to specify how the output from one
step is used in a subsequent step so that you don’t have to worry about
implementing each step on its own.

55

CHAPTER 4 USING ALGORITHMS

With enough people and other resources, you can even implement the
steps out of sequence and simultaneously.

Implementing the Number Table

Frequently an algorithm has a step in which one type of data is
transformed into another type. In this case, a specific letter of the alphabet
needs to be transformed into a number that represents its sequence in the
alphabet - possibly using only the numbers 1-10.

There are two common ways of doing such a conversion:

o Insome cases, there is a computation that will do the
transformation.

o In other cases, you need to look up the transformed
value from a table that is stored.

The trade-off here is a common one. Do you store the conversion table
before you need it (possibly as part of the app code), or do you calculate
it? The trade-off is between runtime processing on an as-needed basis and
data storage that is dedicated to the data on a permanent basis.

In this case, the storage approach is easiest. First of all, there isn’t a
clear calculation that can be used for an as-needed conversion. Beyond
that, the amount of data to be stored is so small that you won'’t have
difficulty storing it even on the smallest device.

Having decided to store the data, the question for the implementation
is How? Swift can interact with a variety of databases, but, like most
programming languages, it has a variety of language elements that
are used to store and manage data. These include sets, arrays, and
dictionaries, which are described more fully in Chapter 6, “Working with
Data: Collections.” This implementation of numerology numbers will
serve as an introduction to Swift dictionaries, the mechanism used in this
implementation.

56

CHAPTER 4 USING ALGORITHMS

A Swift dictionary is an associative array. Arrays themselves are
collections of ordered data such as the name of each student in a class.
Each item (student) in the collection is identified by a number. This allows
you to access the appropriate item as you need to. It also lets you loop
through all of the items by referring to their numbers (they are called index
numbers or indexes). If you delete an item from an array, the other items
are moved up. In other words, if you delete item 8, item 9 becomes item 8.
The index numbers vary over time for each specific item.

An associative array doesn’t use index numbers: Instead, it uses a
key - often a string - to identify each item. Thus, if you use the string “eight”
to identify an item in an associative array, that is and will remain the key
for that item. In an array the items might be numbered 7, 8, 9, and if you
delete item 8 you will have 7 and 8 because 8 is deleted and 9 becomes
8. In an associative array, if your keys are “seven,” “eight,” and “nine,” and
you delete “eight,” you will have “seven” and “nine.” (In other languages,
associative arrays may be called hashes, hash tables, or maps.)

Tip This a trade-off between storage and processing. You will find
some old documentation and practitioners who argue that the cost of
the computation to look up each key at runtime slows down the app.
Logically it does, but with today’s processors, that “delay” is unlikely
to be meaningful. Write for today’s devices!

Swift dictionaries consist of pairs of keys and values. The keys can be
any type, but often are strings. The values can be any type that conforms
to the Hashable protocol. (This is described in Chapter 6.) The value can
be any type that you choose, but it must be same for all entries in the
dictionary. However, you can use types such as AnyObject for the values,
which give you a lot of leeway.

57

CHAPTER 4 USING ALGORITHMS

You can begin by declaring a variable of numerology numbers for
each letter of the alphabet. Listing 4-1 shows what that might look like.
In a declaration of a dictionary in Swift, the key/value pairs are shown
separated by a colon. The entire list is enclosed in square brackets. (Note
that, as you see in Chapter 6, you can add or delete dictionary entries.)

Listing 4-1. Numerology dictionary

let numbers = [

"a" i1,
"b" : 2,
"3,
"d" : 4,
"e" . 5,
" .6,
"g" : 7)
"h" : 8,
"i" 19,
"j" . 10,
"k"oeo11,
"1" 112,
"m" i 13,
"n" : 14,
"o" : 15,
"p" : 16,
"q" . 17,
"r" . 18,
"s" 1 19,
"t" @ 20,
"u" 21,
"v' 22,

58

CHAPTER 4 USING ALGORITHMS

"o.o23,
"oro24,
"1 25,
" 26

N < X =

To access the value for a specific key, you can use code such as this:
numbers["y"]

In an array, each index has a data element (you cannot access an
index beyond the bounds of the array, but otherwise you can access any
element). In a dictionary, the keys do not change as you add or delete
data. This means that the key “y” might have no value associated with it.
Therefore, when you access a key in a dictionary, Swift returns an optional
value that might be null. You can test to see if it is null, or you can unwrap
itwith ? or !. (Find out more in the section, “Handling Data That Isn’t
There (Optionals),” in Chapter 7.)

The dictionary structure can help you answer the question of upper-
and lowercase letters. Although keys must be unique, values do not need
to be. Thus, you can create a dictionary with both upper- and lowercase

letters for keys as you see in Listing 4-2.

Listing 4-2. Add uppercase letters

let numbers = [

"a" i1,
A1,
"b" 1 2,
"B" : 2,
"c" i3,
""" oe o3,
"d" : 4,
"D" : 4,

59

CHAPTER 4 USING ALGORITHMS

e" : 5,
"E" . 5,
“f" .6,
"F" . 6,
e 7,
"' o7,
"h" : 8,
"H" : 8,
"i" .9,
"I" . 9,
j" @ 10,
"] 10,
"k"o:o11,
K" 11,
"1 12,
"L :o12,
m" : 13,
"M" .13,
"n" : 14,
"N" @ 14,
'o" : 15,
"0" : 15,
‘p" : 16,
"P" : 16,
q" 17,
"Q" : 17,
' 1 18,
"R" : 18,
's" : 19,
"S" 1 19,
"t" : 20,
"T" @ 20,

60

CHAPTER 4 USING ALGORITHMS

"ooo21,
121,
"oo22,
122,
"oio23,
: 23,
"ro24,
24,
"1 25,
"1 25,
"1 26,

N N << X X = s < < cC <

If you want to unwrap the element, you can use code such as this:

print ("j force unwrapped: ", numbers["j"]!)

If you want to use a better and safer method, use the conditional cast

operator (as?) as you see here:

if let myValue = numbers ["r"] as? Int {
print ("myValue = ", myValue)

} else {
print ("no value")

}

The results are shown in Figure 4-1.

int (*§ = =, pubers[*y*]) j= Optional(25Kn"

int (*§ force unwrapped”, numbers(*y*)1) | force unwrapped 25\n
2 if let myValue = purbers ["y*] #s? Jot (

print (“myValue = *, myValue) myvalue = 26\

print (“nay
} else {

print (*No value®)
)

Figure 4-1. Testing the dictionary

61

CHAPTER 4 USING ALGORITHMS

Note in the sidebar that the Swift playground distinguishes between
optionals, forced unwrapped values, and values themselves.

Implementing the Addition

The addition process requires two steps:
e Split the name into individual characters.
o Lookup the numeric value of each one.

These two steps are inside a loop - you might want to call the loop itself
a step with two substeps.

You can set a variable to a name, then split it apart into individual
characters.

Here is the code to use if you want to use Swift’s string subscript syntax:

let name = "Jesse"
for character in "name"
print character

}

You need to be able to convert a character to its appropriate value.
Although the keys in a dictionary are unique, the values are not. Thus, the
code that you use to convert a value to a key is an optional (it may be nil if
there is no value for the key), and it may be an array (if there is more than
one value for the key).

The code to look up the keys for a value is shown in Figure 4-2.

lot chors = “Jossc®.characters.map{String(5@)) (6 timos)
M print (“chers=", chars) "chars= [, "¢, "s", "5, """

print ["s = *, chars(2]} J/ ancther example “s= sin®]

% lot keys = {numbers as NSDicticnary).allkeys(for: 1) [e |

Figure 4-2. Look up a key for a value

62

CHAPTER 4 USING ALGORITHMS

If you want to use the Swift 4 String map function, you can separate
each character using a closure that takes advantage of the fact that a Swift 4
String is a collection of characters. The code is shown here:

let name = "Jesse"
let x = name.map {Character in
print (Character)

}

This code merely disassembles and reassembles the characters and
string, but it is the beginning of the code you will need in the next step.

Now that you have seen how to split the string into characters, you can
loop through each character in turn. Listing 4-3 shows the code to loop
through each character.

Listing 4-3. Loop through each key

if keys.count > 0 {
print ("Keys for 1:
} else {
"No Key for value"

', keys)

}

Note that it is prudent to check that there is at least one key to look
up. You can experiment with these lines of code to go through all of the
elements in the dictionary.

You should be comfortable with manipulating the dictionary, so it’s
time to look up the values for each letter and add them up. Listing 4-4
shows that loop along with the initialization of the total variable that will
be used to accumulate the values.

63

CHAPTER 4 USING ALGORITHMS

Listing 4-4. Adding up the looked-up numbers

var total = 0
for eachKey in chars {
if let key = numbers[eachKey] {
print ("Looked-up key value for
numbers[eachKey]!)

, eachKey,

total += numbers[eachKey]!

}
}

print ("Total: ", total)

Figure 4-3 shows the playground and the output (the top part is not
shown because it is repetitive).

64

CHAPTER 4 USING ALGORITHMS

[=N Ready | Today at 2:57 PM L3 =@ & 020
BEK A s B8 ¢ » | Numerology <h?>|
¥ B e - B = T,
B Klieialc | w 2,
¥ Sources & 2,
» Resources L) 22,
ar 22,
8 : 23,
" : 23,
] : 24,
81 24,
52 5,
& 25,
5 : 26,
55 1 28
L |
&
58 print ("§ = *, numbors["y"1) /. Expression implicitly coerced from Int? o Any '] = Optional(25]\n" =
]
¢ print ("j force unwrapged®, nusters[®y®"]1) "j toree urwrapped 25\0° &
42 if let myValue = nusbers ["y"] as? Int { A Conditional downcast from ‘Int?"t...
&3 print ("myValue = *, myValue) “myValue = 25107 m
&t} else {
s print ("No valuc")
%}
49 lot namo = “Josso” “Jesse” -
0 let chars = *Jesse®.characters.map(String (581} {6 times) 1
1 print {"chars=", chacs) “charss [*J", "e", "5, " "e.5)
73 print ("s = “, chars[2]} // another example "s= 90"]
75 let keys = (nusbers as MSDictionary).allkeys(for: 1) [| =

7 if keys.count > @ {

% print ("Keys for 1: *, keys} “Koys for 1: [A, al\n” _]
7) else {

B "o Key for value®

gn o}

a2

&1 wvar total = @ o -
B4 for eachXey in chars {

8 if let key = nusborsleachieyl { 5 Value 'key was defined but never used; con..

B85 print ("Looked-up ey value for *, cachey, nuebors[eochKeyl!) {5 timos) -
ar ool += numbers[eachikey]! {5 times) o
L

B}

1 print ("Total: *, total) “Total: 56" -
= »

j = Optional(25)
j force unwrapped 25
myValue = 25
chars= ["37, "o", "s", "s", "o"]
5= 3
| Keys for 1: [A, a)

Looked-up key value for 3 18
Looked-up key value for e B
Looked-up key value for s 1%
Looked-up key value for s 19
Looked-up key velue for o 5

Total: B8

+|® [o]]

Figure 4-3. Running the app in a playground

There’s one more point to observe before moving on. If you look at the
top of the playground as shown in Figure 4-4, you'll see that the items in a
dictionary are in no order. Arrays are ordered, but dictionaries are not.

65

CHAPTER 4 USING ALGORITHMS

®eCe Ready | Today at 3:04 PM i3 = P O e Y
BE&R QA B < > [Numerclogy <a>
|!.Mm|rubw . 1 import Foundation
¥ | Sources

3 let numbors = (| [°H: 8, "w™: 23, "x™: 24, °8% 19, 8% 1, °C™: 3, r: 18, "¢ 3, "R™ 18, "0 5,76 @@ |
» Resources |

¥ (key "H", value 8)

Koy "H*

value 8
W (key "w", value 23)

ooy W

value 23
» (key “x", valug 24)
¥ (key “S°, va'ue 19)
B (key "A", value 1)
B (key “C*, value 3)
B (key ", vakie 18)
P lkey "c, value 3)
¥ (key "R, value 18)
B (key ", value 5)
» [key “G7, value 7]
W (key “E%, value 5)
B (key *°, value 10}
» (ki "V, value 22)
B (key "p", value 16)
B (key “B°, value 2)
P (kay "K=, value 11)
B (ke "o, value 15)
P [key "W, value 23)

W (key "%, value 12)
¥ (key P, vaiue 16)
P (key X7, value 24)
e (kay *D°, value 4)
» (key "n", value 14)
= (ley “J°, value 10)
B ey "u*, value 21)
» (key "%, value 9)

B ey "M", value 13)
¥ (key "q", value 17)
P ey v, value 22)
» (key "Z°, value 26)

2 »

j = Optional(25)
j force unwrapped 25
myValue = 26

chars= ["37, "o", "s", ", "o"]
s= 3

Keys for 1: [A, a)

Looked-up key value for 3 18
Looked-up key value for e B
Looked-up key value for s 18
Looked-up key value for s 19
Looked-up key value for o 5

+(® oH Total: B8

Figure 4-4. Elements in a dictionary

If you want to see how to duplicate Figure 4-4, repeat the code. Then
tap the Show Result button at the right of the first line of code. That will
open the result view at the left. Drag the bottom of the frame down to
enlarge the result to show as much of the let statement as you want to see.
You can open or close the disclosure triangles to see the data.

66

CHAPTER 4 USING ALGORITHMS

Summary

This chapter shows you the basics of algorithms - ordered steps to perform
an operation. They can be described in English or mathematically, but
they come to life when implemented in a specific language.

67

CHAPTER 5

Managing Control
Flow: Repetition

Algorithms consist of steps to take to solve a problem, compute a result,
or otherwise do the work of an app or part of it. Each step is normally
executed in turn, and, at the end of the process, your work is done.

This type of programming has a name: it is procedural or imperative
(those words are used in their normal common meanings). (The word for
a type of programming such as this is a paradigm so you will see references
to the imperative paradigm in many places).

The contrasting paradigm is declarative or functional programming.
The two paradigms coexist often in the same app or program. Both have
their roots in the earliest days of computers and computer programming,
but in a vast overgeneralization, it is possible to say that declarative/
functional programming had its roots in mathematics and logic while
procedural/imperative programming was the paradigm of choice among
the engineers who built the first computers.

Both paradigms are useful, and, because of that as well as the fact that
you may find both in the same project, we take no sides in the occasional
argument as to which is better. They’re both necessary and useful is this
book’s mantra.

69
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_5

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Getting Ready for a Multi-Step Control Flow
Project with Random Numbers

To explore a multi-step project and its control, you need something to
work with. One of the most common uses of multi-step projects is in
managing collections of data such as arrays. (There is more on arrays in
Chapter 6, Structuring Data - The Swift Issues.)

An array is like a list — a list of students in a classroom, items on a
shopping list, stops on an itinerary — any list at all. The simplest list to
work with is a list of numbers. Numbers carry almost no meaning, so you
won't be distracted by a list that might place Paris between Melbourne and
Auckland.

In order to have a set of numbers that really is meaningless, computer
scientists often use random numbers. Random numbers are just that —
numbers picked at random. Random numbers are used in many practical
applications. For example, if you have bowl full of raffle tickets, you often
would pick one at random to choose a winner of the raffle.

Random numbers are used in a variety of computer science processes
from automatically choosing game pieces and situations in a game to
statistical sampling and the conduct of randomized testing of drugs
and treatments as well as other scientific experiments. Because random
numbers are used in so many ways (including demonstrating computer
science control structures as in this chapter), it is useful to look at how you
create them for any of these purposes.

The first point to consider is that truly random numbers are hard to
create. In practice, they are usually generated by a series of calculations
that are designed to eliminate any patterns and therefore can be
considered to be random numbers. For this reason, the term pseudo-
random numbers is often used by people who want to be precise. For the
purposes of this book (and many other common purposes), the pseudo-
random numbers are fine for use; in this section, we use random number
in its broadest sense.

70

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Swift and playgrounds provide three built-in functions to produce
random numbers. They produce random numbers that you can then
use for your own purposes. You do not need to refer to a list of random
numbers (such lists do exist). They provide you with a random number
that is either between 0 and 1 or between 0 and an upper limit that you
provide. These numbers are returned as integers (specifically UInt32) or a
double in the case of drand48().

The three built-in Swift functions that generate random numbers are
as follows:

arc4random_uniform(_:) takes a single parameter
which must be an integer.

The random number will be between 0 and the parameter minus 1.
Thus, a call to arc4random_uniform(10) will return a value between 0 and 9.

drand48() returns a random number of double type. You do not
specify the range: the number will fall between 0 and 1.

arc4random() takes no parameters. The resulting number will be
between 0 and 2 ** 32-1.

In the case of drand48, you can take the resulting number and multiply
it by any value you want in order to get a random number between 0 and
that number. With arc4random_uniform(_:) you just provide the upper
bound so no multiplication is required.

Note that when you convert numbers from one type to another (float
or double to or from one of the integer types), the conversion process may
introduce some non-random aspects to the resulting number. For almost
all common purposes, this doesn’t matter.

If you want to preserve the randomness of the returned number, avoid
too much type conversion and manipulation. Particularly with floating-
point numbers, those calculations can introduce some non-random
elements into the mix. However, as pointed out previously, this is usually

not a problem in most applications of random numbers.

71

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Creating a Random Number Playground

You can build on the Answers playground that is distributed with iOS

so that you can experiment with random numbers. Here is a way to do
that. With the shelf showing, tap + at the top right, and then tap the New
Playground + button as you see in Figure 5-1.

iPad =

New Playground

class Wadlaing {
war width = @.8

Figure 5-1. Duplicate the Answers playground

72

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Tap the Starting Points tab at the bottom as shown in Figure 5-2 and
then get Answers by tapping its Get button.

iPad T 10:24 AM % 100% (-
Cancel Starting Points
@ l | = a
‘ |
= ===}
. I—
Blank Shapes Answers
Swift 4 Edition gt Swift 4 Edition o Swift 4 Edition it
P l pe
N
N -
7
Graphing Puzzle World
Swift 4 Edition oel Swift 4 Edition o=l

‘P_eau: To Code Iﬁclallenges ? Accessories P Slarting Points

Figure 5-2. Get Answers

73

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

A copy of Answers will be created for you as you see in Figure 5-3.

iPad = 12:48 PM + % 96% -
My Playgrounds |'T_‘| + Edit

| class Building {
¥ar width = 8.2
var gopth = 8.0
h{nc sauoreFactage 1) —» Dowble W

Teturn width = deptn
¥

€1ass House:Building {

Figure 5-3. Answers is created

74

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Tap Answers to open it as you see in Figure 5-4.

show("What is your name?")

let name = ask("Name")

show("Hi " + name)

Figure 5-4. Open Answers

75

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

When you download a playground (or a template in Xcode), the safest
thing to do is to see if it runs as-is. Not all templates and playgrounds
are configured to run, but it’s a good idea to see if you do have a running
playground. Tap the playground’s Run My Code button. You'll see the
result shown in Figure 5-5.

show("What is your name?"}

let name = ask("Name")

show("Hi " + name)

Figure 5-5. Run Answers

76

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

At the top of the playground, you see its result — a prompt and a data
entry field. Below that is a Stop button. Then you find the code itself and
the keyboard.

What you've got now in the Answers playground is an interactive
playground that displays a prompt and lets people enter a response. You're
ready to build on that.

Writing the Playground Code

You can build on existing code in Answers to ask people to enter an
upper limit for a random number to be generated using arc4random_
uniiform(_:) - the function that returns a pseudo-random number
between 0 and the upper limit given (minus 1 so the upper limit is outside
the range of random numbers). The result is a UInt32.

Here is the modified code.

First, ask the user to enter the upper limit:

show ("What is your name?")
becomes
show ("Upper limit for random number?")

let name = ask ("Name")
becomes
let upperLimit = ask ("Upper Limit")

show ("Hi " + name)
becomes
show (upperLimit)

You've now got a playground that runs and asks for a random number
limit and then shows the result. You can use the Swift playground to
modify the code. As you proceed, the shortcut bar and prompts will help
you write your code.

77

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

The input data is a string, so you'll need to convert it to an integer with
this code:

let intResponse = UInt32(upperLimit)
Generate the random number:
let random = arc4random_uniform(intResponse!)
random will be an integer, so convert it to a string for display
let randomString = String(random)
Finally show the result.
show (randomString)

Figure 5-6 shows the playground running. The upper limit is entered as
49 and the random number generated is 25.

78

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

show("Upper limit for random number?")

let upperLimit = ask("Upper Limit")
show(upperLimit)

let intResponse = UInt32(upperLimit)

let random = arc4random_uniform(intResponse!)

let randomString = String(random)
show (randomString)

se EEEEEE -~

Figure 5-6. Start to run the new playground

79

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

As the playground runs, you see that there are displayable results for
each line of executed code (as always in a playground). You can show
viewers for any of these that you want to as shown in Figure 5-7.

2 = Text > + e

I Upper limit for random number?

| 4o
| 49
| 25
(M P Run My Code
show(upperLimit)
let intResponse = UInt32(upperLimit) s
49
let random = arc4random_uniform(intResponse!) m
25
let randomString = 5tring(random)| abe

25

show (randomString)

SN : == [z < > M= == - S 3 A
Figure 5-7. Shows viewers for the playground as it runs

80

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Remember that Swift is strict with types so you need to convert strings
to integers and vice versa - it doesn’t happen automatically unless it is
unambiguously possible. This helps to keep Swift code robust. In addition
to the type conversions, note, too, that intResponse is an optional that
needs to be unwrapped with !. (In production code, you would be safer to
unwrap it with ? so that it will fail instead of crash if there is a nil there. In
Chapter 7, in the section “Handling Data That Isn’t There,” you'll find out
more about optionals.)

Go wrap up this section, and you can rename the Answer playground
Random. Display the shelf of playgrounds and then press and hold the
Answers playground. You'll be able to rename it as you see in Figure 5-8.

81

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Cancel Rename

1
. z X c v b n m g

Figure 5-8. Rename the playground to Random

82

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Creating Many Random Numbers

Remember that the purpose of creating random numbers in this chapter
is to create a collection of meaningless (random) data that you can use to
experiment with as you explore control management in code. It’s easy to
modify the Random playground to create several random numbers at a
time. Just add the following lines of code to create 6 random numbers.

You already have the code to create and show a single random number.
(Here is is again in case you need it here.)

var random = arc4random uniform(intResponse!)
var randomString = String(random)
show (randomString)

You can add to that code to create another random number:

random = arc4random uniform(intResponse!)
randomString = String(random)
show (randomString)

The only change you have to make is to remember that the original
code declares variables as constants with let. Change the declarations
to var so you can change their values, and in the subsequent calls, omit
the type. Figure 5-9 shows the playground that now creates two random
numbers (159 and 173) from the same intResponse.

83

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

show("Upper limit for random number?")

let upperLimit = ask("Upper Limit")
show(upperLimit)
let intResponse = UInt32(upperLimit)

var random = arc4random_uniform(intResponse!)

var randomString = String(random)
show (randomString)

random = arcé4random_uniform(intResponse!)

randomString = String(random)
show (randomString)

Figure 5-9. Create multiple random numbers

84

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Create a Repetition Loop

This cut-and-paste method obviously doesn’t scale well. Programming
languages typically implement a variety of loops to do repetitive tasks.
Repetition is a core principle of Computer Science. There are a number
of types of repetition that you can choose from with most programming
languages (including Swift).

All of the repetition structures have two primary components:

o There is a section of code that is subject to repetition. It
can be a single line of code, several lines, or calls to one
or more functions.

o There are controls for the repetition; basically, this
determines how many times the process is repeated.
Rather than a specific number of times, it can be
conditional so that the repetition continues until that
condition changes.

Note This chapter shows you how to produce multiple random
numbers: that is a basic use of repetition. Note that functional
programming (described in Chapter 10 shows another way of
handling repetition.)

Creating the Code to Repeat

Using the common repetition structure described here, you can set up
the loop to create multiple random numbers. The code to start is shown
in Listing 5-1. It asks for the upper limit of random numbers, converts
the input (a string) into an integer (UInt32), and then calls the random
number generator (arc4random_uniform(intResponse!))

85

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

After the code executes the first time, it needs to create the second
random number as in the previous listing. To repeat multiple times, you can
cut and paste that code. (Remember that the first time through you set the
variables, so it’s the second time code that you repeat as shown in Figure 5-9.

Creating the Repetition Control (Limit)

The other part of repetition is the mechanism for controlling it. The logic
of aloop like this in Swift is to use a variable to count the number of times
you've been through the loop.

You can name the counter something imaginative and creative like i.
Make certain that it is a var, because you will need to update it each time
you go through the loop. Set it initially to 0.

var i = 0

Each time you go through the repetition loop, you will create a new
random number and increment counter. The easiest way to do this in
Swift is with the += counter, which is a compound assignment operator.
It adds a value to a variable and assigns the added value to the variable.
If you have a variable x that is set to 4, this code will set it to 5.

X += 1

That is the most common use, but you can also use x += 4.2 if your
variable is a Double.

You do this in a while loop, which continues processing while its value
is true. Thus, to execute the loop three times, set x to 0, add one to it each
time you go through the while loop, and continue until the value of x is no
longer less than 3.

86

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Put all of this together, and you have a loop that can run 3 times as
shown in Listing 5-1.

Listing 5-1. Create 3 Random Numbers

let prompt = ask("Upper 1limit for random number")
let intResponse = UInt32(prompt)

var random = arc4random_uniform(intResponse!)
var randomString = String(random)
show (randomString)

var i = 0
while i < 3 {
i+=1

random = arc4random uniform(intResponse!)
randomString = String(random)
show (randomString)

The results are shown in Figure 5-10.

87

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

P Run My Code

show("Upper limit for random number?")

let upperLimit = ask("Upper Limit") woe
show(upperLimit)
let intResponse = UInt32(upperlLimit) =
var random = arc4random_uniform{intResponse!) =
var randomString = String(random) e
show (randomString)|
var i = @ -
while i < 3 {
i+=1 3
random = arc4random_uniform(intResponse!) 3=
randemString = String(random) 3=

show (randomString)
}

se CTTTT T

Figure 5-10. Generating random numbers in a loop

88

CHAPTER5 MANAGING CONTROL FLOW: REPETITION

Because you are not generating printed output, you don’t waste
resources by printing output on paper. Try changing 3 to 10000 to produce
10,000 random numbers. (Remember not to use the comma when entering
10000 as code). You'll see the results go by very quickly.

To speed things up, don’t show the result each time. Comment out the
show statement as follows

//show (randomString)

In order to see when your 10,000 iteration loop finishes, add a final
statement outside the brackets of the loop so that the last three lines look
like this:

show (randomString) }
show ("Done")

Things will go even faster!

There’s an important lesson to be learned here about just how fast and
powerful the processors on mobile devices are today. A lot of the tips and
“best practices” that you may find in older computer science books and
texts, you'll find many ways to economize on the use of processors and
storage. Those tips are still relevant, but the scales have changed and you
need to apply them in more extreme cases.

Summary

This chapter shows you the basics of repetition control flow. You see
how to set up a basic repetition in a Swift playground to generate 10,000
random numbers quickly. The basics of repetition control flow apply to
many other types of processes; you'll see them throughout this book.

89

CHAPTER 6

Working with Data:
Collections

In Chapter 5, you saw how to use repetition to create data - lots of it if you
followed the example to create 10,000 random numbers. The question may
have occurred to you: Why? What will you do with all that data that you
created with the repetition code?

Computers and computer science frequently join together to do useful
things. Neither data on its own without computation nor computation
without data is generally very useful. In this chapter you see how to put the
data you created in Chapter 5 into a usable collection. Later on in Chapter 9
(“Storing Data and Sharing Data”), you'll see how to make your data even
more useful than it will be in this chapter.

Remember that the constructs and principles that are the backbone
of computer science are there to make it easier to develop and maintain
software. Successful developers look for ways to incorporate existing
concepts and implementations into their product. That means less code to
write, debug, and maintain. So don’t just look at collections as tools to use
to implement your ideas. Rather, look at ways in which to mold your ideas
to take advantage of collections and other concepts so that there’s less
work for you to do.

91
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_6

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Using Types

Whether taken as single items or as collections, computer data is typed.
Each data element that an app uses has a type that is assigned by the
developer. Programming languages from almost the beginning have used
types to convert the bits of digital storage into numbers of various sorts.
The simplest conversion takes all of the bits in a computer word and uses
their on/off status to create a binary number. Depending on the number
of bits in a computer word, the binary number can range from 0 to a very
large number.

Very early in the development of computers and computer science,
it became obvious that this conversion of bits to a binary number wasn’t
nearly enough. A common solution was to take a bit at the high end of the
binary number and reserve it for a special purpose: a minus sign. Thus
both positive and negative numbers could be stored.

Further refinements included storing a single set of bits in a word
as if they were two separate integers. This allowed the representation
of floating-point numbers with one integer representing the significand
(sometimes called the mantissa) and the other representing the exponent
for the power of ten that will create the appropriate value when it is used to
multiply the significand. All of this is done with software - the actual words
of storage remain just a row of bits. Because conversions from one type of
number can be done easily, they are done all the time in software. Often
neither developer nor user is aware of this.

There are details about using built-in types as well as types that are
created by Swift in the following chapter. For now, just be aware that
types are constructs that convert the physical bits in a computer word to
something with meaning to developers, users, and normal people.

92

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

Scalar Data

The simplest form of data is a scalar or variable - a single data element that
is basically the same as a simple algebraic term as in

x=15

You will often find descriptions and definitions of scalars as the
contents of a single memory location. In fact, most of the time data is
stored in words that are collections of bits. The hardware handles these
words very efficiently as it stores and retrieves the contents of words.

When a computer word is 64 bits long, it can theoretically store 64
separate yes/no (Boolean) values. Hardware and software let you access
the word as a single value (usually a number) by the individual bits. You
can go further to access the bits in a word in groups that often correspond
to letters.

Moving On to Collected Data

Storing one number in a single computer word that is referenced by a
simple variable (a scalar) is a good way of keeping track of data that you
calculate or read in. You can then use the basic operations described in
other chapters of this book to manipulate the data and create more data in
other formats and styles.

Modern programming languages support various collections of data.
The most basic of these is an array - a numbered list of items (perhaps the
names of students in a classroom). Another common type of collection is a
set - a collection of items that is not a list (“set” is used in the sense in which
itis used in logic and mathematics). Swift implements both arrays and sets.

There is another type of collection called dictionary in Swift and
associative array in languages such as PHP. Whereas the items in an array
make up a numbered list, items in a dictionary are identified by strings or
other types.

93

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Arrays are the oldest and most basic collections in computer science.
Sets are the next oldest, and dictionaries (associative arrays) are the most
recent. This chapter examines each of these in chronological order.

All are subclasses of Collection, and most use the same basic
methods that are described first in arrays in this section. Note that
these classes are in Foundation, so you must use either of these import
statements in your Swift code of Playground:

import Foundation
import UIKit

It is always a good practice to import the smallest number of
frameworks possible. UIKit imports Foundation automatically, but if
you only need Foundation, import it explicitly and don’t worry about
importing the code you don’t need in UIKit. Xcode and the build process
will strip it out if it’s not needed, but it’s better just to import what you need
to begin with.

Using Arrays

Arrays in any computer language are basically ordered lists. A list of
students in a class is not ordered, but an alphabetized list is ordered.

Although arrays are ordered lists, sometimes the order is irrelevant. For
example, a list of students that is not ordered still contains all students in
the class. You don’t have to use the ordering in your code.

The numbering and ordering of elements in an array is handled by the
array construct itself: the numbers of individual items are not in the items
themselves unless you put them there. If you do, you can have items like
the ones shown in Table 6-1. Note that in Table 6-1 the indexes are integers
and the contents can be anything. The first two are strings, and the last one
is an integer (note the absence of quotes around it).

94

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

Table 6-1. Sample array

Index Contents

0 “Content 17”
1 “Data for item 32"
2 2

Arrays of one sort or another are available in almost every
programming language and operating system. They enable you to store
and retrieve data in a basic way; in addition, they make it easy to repeat
processes for the elements of an array.

As you delve into computer science, you will notice that concepts such
as arrays are the building blocks that you use. As is the case with arrays,
you'll find some basic features of these building blocks. (In the case of
arrays, it’s the basic principle that an array is an ordered list of elements
indexed as part of the data array rather than by elements within the array.)

Features beyond the basics have been implemented many times by
developers and designers who use programming languages to expand on
the basic structure. Over time, many of these enhancements and additions
have gradually moved into the programming languages and operating
systems. It is unfortunately true that many people continue to focus on the
initial building blocks and the individually crafted enhancements to it.

Swift itself incorporates many enhancements to basic arrays and their
functionality. This section discusses many of the things you can do with
arrays - most of which are built directly into Swift.

Experienced developers and designers know that using these features
in languages such as Swift is the path to successful code. The simplest way
to avoid bugs is not to write your own code, and the code that’s already
written in Swift and related frameworks has been written, tested, and
proven in use in some cases for decades if you include the Cocoa and
Cocoa Touch frameworks.

95

CHAPTER6 WORKING WITH DATA: COLLECTIONS

In the sections of this chapter that relate to arrays, the following topics
are covered:

e Basic Terminology

o Indexing Array Elements

o Swift Arrays and Types

e Declaring and Creating Arrays

e Modifying a var Array

e Multi-Dimensional Arrays

o Finding Array Elements

e Adding and Deleting Array Elements

o Looping Through an Array

Basic Terminology

These are terms that are commonly used in talking about arrays.
e The contents of an array are called items or elements.

o The ordering of an array is governed by one or more
indexes.

o Itemsin an array are written with subscripts that
identify the element or item by its numerical position
in the array.

o Inmany languages including Swift, arrays are written
with their subscripts in square brackets as in myArray [3],
which would be item number three in myArray.

96

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

Indexing Array Elements

As you see in Table 6-1, the array handles indexes, and you do whatever
you want with the contents of the array. Notice that the default index
numbers start at zero. This is a legacy of the original implementation of
arrays. In many cases, an array location was the first element of the array
(often the first word of storage), and the index is the distance from the first
element’s memory location. Thus, the first element (which you might think
of element number 1) has no distance from the first element because it is
the first element.

Some languages allow you to start indexing your array at a number
other than zero but, in fact, the language and operating system itself
perform the manipulations to convert the 0-based index to a different
base.

And, just to make things more interesting, the physical storage of an
array may not be consecutive memory locations today, but arrays start at
zero because they always have started at zero.

There are no gaps in arrays. Thus, if you look at Table 6-1 and were
to delete the item at index 1, the array would look like Table 6-2. The old
index 1 item is gone, and the previous index 2 item becomes index 1.

Table 6-2. Sample array with a row deleted

Index Contents
0 “Content 17”
1 2

Note See “Finding Array Elements” later in this chapter to see how
to locate array elements by content rather than by index.

97

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Swift Arrays and Types

Arrays in Swift are typed. That means that the elements of an array all have
a common type. You can create an array of integers, an array of strings, or
an array of any other type.

Having a single type in an array can make for some efficiencies in code
generation as well as others at runtime. (Furthermore, it can make your
code more robust because improperly mixing types within an array can be
flagged by the compiler rather than generating a runtime error.)

Of course, having a single type in an array can also be inconvenient
in some ways. Swift manages this with its hierarchy of types. As you will
see in Chapter 7, Swift types include basic types such as integers as well
as special types Any and AnyObject. Thus, you can create an array of Any,
which could include integers as well as strings.

It is a best practice in Swift to use the most restrictive types you can
use. Yes, you could create all of your arrays as Any? (that is, optional
versions of any type at all), but that bypasses all the checking and
optimization that is built in.

Declaring and Creating Arrays

In languages such as Swift, you must declare variables before you use
them. (This is different from languages such as PHP in which you can
create variables as you need them just by using them.)

Arrays are no different from any other symbols in Swift: you declare
them before you use them. Declarations of variables include their name
along with a modifier that determines if the variables is modifiable (var) or
not (let).

Because an array is typed, you commonly declare it with its type. There
are two forms of syntax you can use.

98

CHAPTER 6 WORKING WITH DATA: COLLECTIONS
The first method is to simply declare the array type as in:
Array <Int>

You can also declare a variable with both a name and a type that will be

an array using syntax such as this:
var intArray:[Int]

This is a normal declaration; the type following the colon is an array of
Ints.

This is just the declaration. If you attempt to use it you will get an error
message that it has not been initialized. Remember that there are two
steps to creating and using a variable or constant: the declaration must be
followed by initialization.

You can initialize an array just as you would initialize an instance of
a class or other elements in Swift. You add () after the name. This code

initializes the array:
intArray = [Int]()

You can declare, initialize, and print out the array in a Swift playground

asyou see in Figure 6-1.

[NN Ready | Today at 4:52 PM E o o080

e

« Typedarray
irport Foundation
var intArray:[Int]

{nthrtey = [Tntd() n ®

Figure 6-1. Declare and initialize an array

99

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Elements of an array are enclosed in square brackets. In Figure 6-1, you
can see that the array is empty. It is an opening and closing bracket. With
additional spacing, here is what the array looks like:

[]

You can combine the declaration and initialization of an array with the
following syntax:

var intArray2 = [Int]()

Figure 6-2 shows this syntax in action. As you can see, once again you
have created an empty array. (The debug area at the bottom of the window
is the best place to see that the results are identical.)

o0 ® Ready | Today at 5:03 PM = o o080
B < > & Typedaray

2 ieport Foundation

L war intArray:[Tnt)

L
¢ dintaArray = [Int)() n

T print ("\(intArray)®] [L)

¥ var intAzrayl = [Iﬂ:E;F 3] -

w print (*\(intArray2)*

[t]
= »

]
1

Figure 6-2. Declare and initialize an array in one line of code

This style is called initializer syntax.

Another way of declaring and creating an array is with an array literal:
that is, with the literal elements of the array. In this style, you declare the
array with its type;

var intArray3 : [Int]

100

CHAPTER 6 WORKING WITH DATA: COLLECTIONS
Then, to create the array you simply list the elements in square brackets:
var intArray3 : [Int] = [2, 3, 5, 7, 11]

You see this in Figure 6-3.

[NN] Ready | Today at 515 PM = o S0 a0
B < 2 |« Typedaray

2 ieporz Foundation

var intArray:[Int]

& dnt = [Inz){)
7 pri ("\(intArray)") T

if EE

% war intArray? = [Int)() n
w0 print ("\lintArray2)*) e

1 var intArTayd s [Int) = [2; 30 6.7, 11
13 print (“\lintArray3)®)

= »
8]
8]

[2, 9, 8, 7, 11]

Figure 6-3. Declare and initialize an array with literals

When you declare an array with literals, Swift can infer the type of the
array from the literals you provide.

Modifying a var array

There are three ways you can modify a var array:

e You can modify the array structure itself. That is, you
can add or delete elements from the array.

e You can modify the elements themselves so that
they contain different data values but the number of
elements remains the same.

¢ You can also do both.

101

CHAPTER6 WORKING WITH DATA: COLLECTIONS

In some languages the two types of modification are treated differently.
You can see this in the UITableViewController class of iOS and in apps that
use it.

Figure 6-4 shows the default behavior or UITableViewController. At
the left, you see a table view with rows grouped into sections; each section
has a header with a gray background. An Edit button is placed at the right
of the navigation bar at the top of the view. If you tap the Edit button,
the view switches to editing mode (specifically, it calls the setEditing
function in which you actually handle the transition to and from edit mode
for your app and its data).In editing mode (shown on the right), each row
has a red button at the left that lets you delete it. The developer can add
a + button at the top right to add a row. In some uses, the rows can be
rearranged.

Note The screenshots in this section are from The Nonprofit Risk
App on the App Store at https://itunes.apple.com/us/app/
np-risk/id1262903630?1s=1&mt=8.

All of these operations modify the array and its structure: they do not
affect the array’s data. Although, if a row is deleted, its data is deleted so in
that case the data is modified. The typical implementation of this type of
interface provides for the editing of the array itself as shown in Figure 6-4,
which shows the table view on the left and the table view in edit mode on
the right. If you tap on an item in the list you then move to the detail data
for that item as you see in Figure 6-5. Note that there is a new Edit button at
the top right of the detail view. This controls editing of the detail view - the
content of the array elements.

102

https://itunes.apple.com/us/app/np-risk/id1262903630?ls=1&mt=8
https://itunes.apple.com/us/app/np-risk/id1262903630?ls=1&mt=8

CHAPTER6 WORKING WITH DATA: COLLECTIONS

iPod = 6:56 PM * - iPod = 6:57 PM 3 -

{ Mitigation Action... ~ Edit < Cancel Mitigatio... + Done

[Functi,,,lPlan D‘ Review | Closed IFuncti... ‘Pran D| Review | Closed
Incomplete/inaccurate Information On A... jllincomplete/inaccurate Information On A...
Do One A Week O @ Do One A Week OF

Follow Up On Interns For Spr... > Follow Up On Interns For... @ >

Fix Sign-up Sheets To Rel... @

N

Fix Sign-up Sheets To Rely O...

W

Explore Integrating ID Cards... Explore Integrating ID Car... @

Remove Unnecessary Questi... Remove Unnecessary Qu... @ >

© 000 o
O 0000

Explore Integrating ID Cards... Explore Integrating ID Car... @ >

Irregular Or Missed Board Meetings Irregular Or Missed Board Meetings
Lack Of Conflict Of Interest Training Lack Of Conflict Of Interest Training

Use Webinar Once A Year Fo... (i) ° @ Use Webinar Once A Year... (i) >

D OB ~ [0 0 B -

Projects Overview Risk List Risk Register More Projects Qverview Risk List Risk Register More

Figure 6-4. (left) Table view and (right) Table view in edit mode

103

CHAPTER6 WORKING WITH DATA: COLLECTIONS

iPod = 7:08 PM 3 -

< Mitigation Action Details Edit

Remove Unnecessary Questions Fr...

2017-08

Resources

Need editing people.

Details

More

Figure 6-5. Editing the detail data of an array element

Multi-Dimensional Arrays

Arrays often have more than one dimension. A two-dimensional array
can handle data from a spreadsheet very easily. Such an array has two
indexes - one for rows and one for columns. Arrays can have a number of
dimensions in most languages.

For example, you could have an array representing customer
transactions. The first dimension might be customer data (name and
address for example). The next dimension might be for individual
transactions (with a date and amount). Then it might follow the dimension

104

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

of payments. You can’t do this in Swift, and, as you start thinking about it,
you may find it difficult to manage the multiple dimensions.

In any language, this kind of multi-dimensional array quickly becomes
unwieldy. We have other data structures that can more easily handle this
type of data. In Swift, you'll find other types of collections such as sets
and dictionaries that can organize data into specific types of collections.
The single dimension of a swift array can itself contain other arrays,
dictionaries, or sets; that dimension could also contain tuples that are yet
another way of organizing data within a single entity which can be stored
in an array. (Tuples are discussed in the following chapter.)

So don’t let the one-dimensional aspect of Swift arrays trouble you
until you have seen these other features of the language.

Finding Array Elements

Each element in an array can be accessed using its index. The first item
in an array is array[0] — remember arrays start at zero. However, as you
insert and delete elements, the indexes change so that the array has no
gaps. This means that what is index number 52 today may be index 35
tomorrow (and may not even be there the next day).

Swift (like a number of other languages) solves this issue for you by
letting you locate an array element by its content rather than by its index.
The code is shown in Figure 6-6.

105

CHAPTER6 WORKING WITH DATA: COLLECTIONS

o e Rsady | Teday at 5:07 P o = o olD Q0O

A

e <o
import Foundation

let demoArray = [13, 29, 11, -9]
print (demoArray)

& w
L

print (demoArray [2]) =

& oo

let test = demoArray.i

=

Int? index{of: Int)
Int index(after: Int)
Int index(before: Int)
Int index{i: Int, offsetBy: Int)
Int? index{i: Int, offsetBy: Int, limitedBy: Int)
DefaultRandomAccessIndices<[Int]l> indices
Zool isEmpty
volo dasertinesElementInt, atiIat)

BEEBBEBE8

B bu Lay #i UADUOUDUDLOUUCDLOY ULIRLL UIAPPILGE LLUNMaLl T 1o
frame #8: @x000000010d70d6d9 Arrays main + 281
frame #9: @x00000001117¢265d libdyld.dylib start + 1
frame #10: 6xP0OOOAO1117c265d libdyld.dylib start + 1

Figure 6-6. Finding an array element by value

You create an array with its values using
let demoArray = [13, 29, 11, -9]

In Figure 6-6, you can see that you can print the entire array with
print (demoArray)

You can get the third element (index 2) with

print (demoArray[2])

106

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

You can use the method index(of:) to find an element. Notice in
the code completion of Figure 6-6 that code completion expects an Int as
the argument. Nowhere did you declare the array as an array of Ints; the
parser has inferred that from the values you entered.

If you enter the values shown in Figure 6-7, a Double is inferred.

eoe Rsady | Teday at 5:07 Pl 0 = oD Q0O

B¢ > [amm Y
1 import Foundation

2

3 let demoArray = [13, 29, 11.5, -9] [m)
4 print (demoArray) (m
5

& print (demoArray [2]) =)
7

8 let test = demoArray.i

] Int? index(of: Double)

(M) Int index(after: Int)

M) Int index(before: Int)

(M) Int index{i: Int, offsetBy: Int)

] Int? index(i: Int, offsetBy: Int, limitedBy: Int)

(V] DefaultRandomAccessIndices<[Doublel> indices

(v 2ool isEmpty

B volo inserttnewElementDouble—ati—Int)

= »

ILanE % DAUDUUDUDLGEUTLON ULIRLL UIAPPLIGALiGnmain T 1oy
frame #8: @x002800010d1486d9 Arrays main + 201

frame #9: 9x00000001111f565d libdyld.dylib start + 1
frame #10: ©xPEBOOOR1111f565d libdyld.dylib start + 1

Figure 6-7. Swift infers an array of Doubles when appropriate

When you complete the code, the playground runs as you see in
Figure 6-8.

107

CHAPTER6 WORKING WITH DATA: COLLECTIONS

e

rT—
import Foundation

let demoArray = [13, 29, 1, -9]
print (demoArray)

print (demoArray [2])

R T R

let test = demoArray.index(of: 29)

EEID
| [13, 29, 1, -9]
1

X] Ready | Teday ot 5:08 PM Eo<olD QO

Figure 6-8. Create and print arrays in a Swift playground

Tip index(of:) and the code completion can be very useful.
Just start typing as shown in Figures 6-6 and 6-7 to see how Swift
has handled type inference. If you happened to create an array of Int
based on your initial data and you want to eventually add a float or
Double, declare it with the type as in let demoArray:Double =
[3, 29, 1, -9] This will create an array of Doubles even though
the initial values are Ints.

108

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

Adding and Deleting Array Elements

Adding and deleting array elements after you have first created it is not
complicated. The easiest way to get started is with code completion. Begin
by checking that your array’s declaration is var so that you can modify it.
(It might be let if you declared it with constants.)

If you think that the method you need is add, code completion will
balk. It’s append, and if you try that, you'll see that it works, and, as you see
in Figure 6-9, an Int is expected.

sne Paay | Todiey at 630 Pai LB il L B =]

import Foundation

var demoArray =
4 print (demoArray)

& print (dens, v [2])

8§ demoArray.app

M Void sppend(newElement: Int)

[m] ‘oid append(contents0f: Sequence]

] ool lexi aphicallyPz (other: 1

(M} lexicographicallyPrecedes(other: Sequence, by: (Int, Int] throws -» Bool) rethrows

M) sid removeAll{keepingCapacity: Booll

(M} nt>] split(separator: Imt, maxSplits: Int, omittingEmptySubsequences: Bool)

B split(separator: Int, maxSplits: Int, omittingEmptySubsequences: Boel)

[m] rt>] split(maxSplite: Int, omittingEmpt es: Bool, wher : {Int) throws -> Bool) rethrows

t @
frame #8: 0x00000001057a268d libdyld.dylib'start + 1
frame #9: x@00000010972266d 1ibdyld.dylib start + 1

Figure 6-9. Start to append a new array element

After you append the new array element, the playground runs as you
see in Figure 6-10.

109

CHAPTER6 WORKING WITH DATA: COLLECTIONS

(X] Bwady | Taduy #1630 P
- s

* import Foundation

1 var uamr:ay = [13, 29, 1, -9]
« print (demoArray)

print (de rray [2])

P

demoArcay.append (28]

1% print (demcArray)

= »

|[13, 29, 1, -9]

11

[13, 29, 1, -9, 28]

Figure 6-10. Append elements to a var array

You'll notice that appending adds elements at the end of the array.
There are a variety of additional methods in Swift that you can use. It’s easy

to use code completion and just scroll down to find relevant methods as
you see in Figure 6-11.

P ey ——— o oe=a
e <o

1 import Foundation

var demoArray = [13, 29, 1, -%]

print {(demoArray)

nm

print (dencAzzay [21)
demoArray.append(25)

print (demoArray)

demoArray.
void insertinewElement: Int, at: Int)
Int? poplast()
Int renovelat: Int)
Void renoveall(]
void renoveAll{keepingCapacity: Bool)
Veid replaceSubrange(subrang.<Int>, with: Collection) cks + ass
void reserveCapacity(mininunCapacity: Int) ;?}’: + 4a6
Int startIndex 1 é2

frome 76: Ox@E00@E018363d134 VIKit® Illnnn!i.l:itimﬂii.n + 159
freme &7: @x0000208101fce6d? Arrays main + 201
frome §O: OxDOAOOOO10L87R65d libdyld.dylib start + 1

Figure 6-11. Use code completion to see other array methods

Of course, you can also use Help » APIreference in Xcode or
developer.apple.com. Note that you can see methods to insert new
elements at various places in the array or to remove elements. These are

details of Swift and other languages, so you can explore the documentation.

110

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

The array principles are the same across languages and operating systems.
The only major difference is that some languages do not provide as many
built-in methods and functions to manipulate arrays. (Furthermore, some
people prefer to write the array manipulation code themselves although
that means more errors may be introduced into the code.)

Deleting an array element is simpler than adding one because you
don’t have to worry about keeping track of the new element and where
it belongs in the array. To delete an array element, just locate it either by
index or with one of the functions discussed in the previous section. To
remove an element, use one of the following methods of an array:

arrayName.remove(at: Int)

arrayName.removeFirst()

arrayName.removelast()

arrayName.removeFirst(n: Int) // to remove several first elements
arrayName.removelast(n:Int) // to remove several last elements

You can use index(of:Int) to find the index and then use
remove(at: Int).

Looping Through an Array

Often you want to access each of the elements of an array in turn. You
may want to display the names of each student in a class, you may want
to find the highest and lowest temperatures in a 24-hour period, you may
want to do anything else that involves looping through each element of
an array.

111

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Note Given an array of 10,000 random numbers (which you may
have already created), you might want to calculate the average of the
first 5,000 numbers and another average for the last 5,000 numbers.
The closer those averages are, the more random the numbers

are if they are all created as being between the same upper and
lower bounds (such as 0 and 1.0). This is discussed in Chapter 8,
“Managing Control Flow.”

Using Sets

Sets are collections — subclasses of Collection just like arrays. They are
the same sets that you encounter in set theory (a branch of mathematical
logic). If you haven’t read the previous section on arrays, you might want to
at least skim it because many of the set concepts are the same as for arrays.
(In fact, if you look at the documentation, you will find that many set and
array methods (like dictionary methods you will see later in this chapter)
are actually methods of Collection.

Sets have one critical feature that is the reason they are used in so
many places in Swift apps. Yes, you can do various set theory operations on
sets (unions, intersections, joins, and so forth — see “Working with Sets”
later in this section.) What matters to many developers is that sets can be
used in property lists (see Chapter 9, “Storing Data and Sharing Data”).
You can place a collection of various elements, most commonly instances
of classes or structures, into a set. At that point, the set can be used in a
property list and it will be written to and read from a property list or other
Cocoa/Cocoa Touch structures without any further coding on your part. So
if you want to forget about set theory and manipulating sets but use them
simply as a fast way to structure data to be stored and retrieved, you will
not be alone. This is one of the most-used aspects of sets.

112

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

Other features of sets discussed in this section are the following:
e Basic Set Terminology
o Identifying and Finding Set Elements
e Declaring and Creating Swift Sets and Types
e Adding and Deleting Set Elements

e Working with Sets

Basic Set Terminology

Sets are collections of elements that have no order to them. They are
unique. You cannot have two elements of a set that have the same value.
In an array, you can have multiple elements with the same value because
they also have unique indexes at any given moment (remember that those
indexes can change as elements are added to or removed from the array,
but at any given moment, the index is the way to access an array element
regardless of its value).

Identifying and Finding Set Elements

Behind the scenes, the elements of a set are hashed. That is, a formula

is applied to the contents in such as way as to create an integer that is
unique to the data that has been hashed. It is this hashed value that is
used to identify set elements. There is no need for a subscript or other
identification. Because the hashed values are stored, there are no
duplicates (that is, no two set elements can have the same hashed value).
In order to access a set element, all you need is to know that the element
is in the set. Once you know it is in the set, you need no further access
mechanism.

113

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Of course, you need to find out if it is a member of a set. There is a set
function for that:

contains (_:)
It returns a Bool, so you can use it as in the following code:

let myElement = // something
if mySet.contains (myElement) {
// go ahead and use it knowing that it’s a member of the set

}

Declaring and Creating Swift Sets and Types

A set is declared using a type such as this:

Set<Int>
Set<String>

and so forth with the other basic Swift types including Double and Bool.
You can create a set using syntax like this:

var mySet = Set<String>()

The set is created and empty.
As with arrays, you can use an array literal to create a set using syntax
such as the following:

var mySet: Set<String> = ["mountain”, "valley"]

This combines the basic type declaration with the creation of a variable
that contains the set’s initial data. Remember that if the set’s type can be
inferred from the initial elements, you can skip the type in the declaration,
but if the initial elements might suggest a less inclusive type than you want,
use the type declaration.

114

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

Adding and Deleting Set Elements

You can add an element to a set very simply as long as the new element
adheres to two important rules for sets:

1. The element cannot already be in the set.
Remember that set elements are unique.

2. The element must be of the type in the set
declaration. (Remember that you have Any? and
AnyObject? types you can use for tremendous
flexibility.)

To add an element to a set (as long as it obeys the two rules), the most
basic syntax is

insert(:)
asin
mySet.insert(myNewElement)
The companion removal method is
remove(_:)
asin
mySet.remove(myNewElement)

Because sets are not ordered, you don’t worry about where to insert
the element (first, last, or so forth). You insert it into the set wherever it
happens to go.

115

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Tip When debugging code, remember that sets are unordered,

but from time to time they may appear ordered because the order in
which you have added or removed elements may appear to create

an order but that is only a transient matter. From one execution of
your app to another the order may change. Do not rely on accidental
ordering that you may temporarily create while editing and debugging.

Working with Sets

The two basic set theory operations are supported with set methods in Swift:

aSet.union(anotherSet)
aSet.intersection(anotherSet)

Other methods support more advanced operations, but, as noted
previously, many sets are created for their ability to be easily written and
read. Their set theory operations aren’t used in many cases.

Note See Chapter 8, “Managing Control Flow” for iterating
through sets.

Using Dictionaries

Sets are totally unordered. Arrays are ordered by the sequence of items
in them. Dictionaries are more sophisticated. One way of thinking about
them is that they are ordered but not by numbers. With an array, you can
reference an element that is the fifth element of the array (remember the
array is zero-based) by using

myArray[6]

116

CHAPTER 6 WORKING WITH DATA: COLLECTIONS
With a dictionary, you might use syntax such as
myDictionary["six"]

Associative arrays are implemented in many languages such as PHP,
JavaScript, Python, Ruby, and Perl. In Swift and Objective-C, they are
dictionaries.

e Basic Dictionary Terminology
o Declaring and Creating a Dictionary

¢ Adding and Deleting Dictionary Elements

Basic Dictionary Terminology

There is no ordering to set elements. Elements in an array are indexed,

and the indexes are managed by the array itself. What is element number 5

today may be element 25 tomorrow depending on additions and deletions.
Dictionaries are collections of pairs of data: keys and values

(key-value pairs). Commonly, keys are strings, but they need not be (in

some languages dictionary or associative array keys must be strings).

Declaring and Creating a Dictionary
You can formally declare a dictionary in Swift with
Dictionary<Key, Value>

Key and Value are the types of keys and values in the dictionary.
The shorthand form omits the keyword Dictionary; you can declare a
dictionary with

[Key: Value]

Again, Key and Value are the types of keys and values in the dictionary.

117

CHAPTER6 WORKING WITH DATA: COLLECTIONS

You can create an empty dictionary using () after the declaration as in
Dictionary <Int, String>()

This declaration deliberately reverses a common dictionary structure
in which the key is a string. Here, the key is an Int and the value is a
string. That shows you the options available to you.

If you forget the () when you intend to create a dictionary, Fix-It will
remind you as you see in Figure 6-12.

eoe Ready | Today at 10:04 AM o =9 <0000

= 5 u Dictionaries {02
1 import Foundation -
2

3 Dictionary <Int, String>() O Ex d member name or call after type name (3|

© Expecied member name or constrsctor cal alter 1ypn name
Fsit Add asguments after the type 10 consiruct a valu of the fype

Fix-it Use 'seif’ to reference the type objeet

= >

Figure 6-12. Declaring and creating a dictionary

Tip If you use dictionaries, you must import Foundation in your
app or playground. If you are importing UIKit, you don’t need to import
Foundation as well because it is included in UIKit.

You can assign a newly declared and created dictionary to a variable
using code such as

var testDictionary = Dictionary <Int, String>()

If you tap the viewer in line 3 of Figure 6-13, you'll see how Swift
Playgrounds reports it:

[:]

118

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

[RN] Ready | Today at 10:08 AM AR || A (|
+ Dictionaries

1 import Foundation

3 var testDictionary = Dictionary <Int, String>() O]
]
& testDictionary[5] = "some text" =
some text

5 print (testDictionary)

= »

[5: "some text"]

Figure 6-13. Assign a dictionary to a var

Dictionary entries are enclosed in square brackets with a colon
separating the key and value. An empty dictionary has only the square
brackets and the colon as you see.

You can also create a dictionary from a dictionary literal that functions
much as an array literal does. It is enclosed in square brackets and
contains comma-separated key-value pairs.

As an example, assume you want to create this dictionary:

"Breakfast":"Eggs"
“Lunch": "Soup"
"Dinner": "Vegetables and Rice"

You can create it with a dictionary literal as in:

var menu = ["Breakfast":"Eggs", "Lunch":"Soup",

"Dinner":"Vegetables and Rice"]

119

CHAPTER6 WORKING WITH DATA: COLLECTIONS

Adding and Deleting Dictionary Elements

To add a dictionary element, insert it into the dictionary with its key as:
testDictionary [5] = "some text"

This is shown on line 4 of Figure 6-13.

You remove an element as follows
testDictionary.removeValue((forKey:Int)

As shown in Figure 6-14, code completion inserts the appropriate type
for the key depending on how you have declared the dictionary.

= . Bomenwe ‘0
1 import Foundation

3 war testDictionary = Dictionary <Int, String»() =

orary[6] = "some toxt”

ol
remaverlllkeapingCapacity: Boal)
reduce(initiolResult: Result, nextPartislResult: [Resu-lkey: Int, value: String)) throws —» Aesult) rethroms
roversed()
prefix(maxlongth: Int}
prefix(raslength: Int)

z]z]=]=]=]= [=]z]

Figure 6-14. Remove a dictionary element

Summary

This chapter shows you the basics collections in Swift and in computer
science in general. The constructs are basically the same in all languages
although some (such as associative arrays and dictionaries or sets) may
not be implemented in some special-purpose languages.

120

CHAPTER 6 WORKING WITH DATA: COLLECTIONS

All collections let you handle collections of data as a single entity. For
example, a set containing many elements can read or written with a single
line of code in Swift. Furthermore, you can use collections where single
variables are required. In a dictionary, for example, there can only be
one element for a given key. However, if that element is itself a collection
(an array, set, or dictionary), that entire collection can be part of another
collection. You'll see more on this in the following chapters.

121

CHAPTER 7

Working with Data:
Types

One of the basics of computer science is the concept of data types. In the
simplest case, a type is a way of interpreting the digital bits in a computer’s
memory or in a data stream for or from a storage device. Bits have one

of two values (on/off), and they are typically grouped together logically
into bytes. Bytes began as collections of bits that could represent a single
character; the first implementations were of six bits, but today bytes are
typically either bits so that more characters can be represented by a single
byte.

It is important to note that while bits are physical items, bytes are
logical collections. They are assembled and interpreted by hardware and
software based on the underlying bits.

The bits (the hardware) are physically collected into words that
typically can contain enough bits to form several characters, but,
remember, the assembling of bits into bytes is logical and not physical
while the assembling of bits into words is done in hardware.

Words can be accessed directly in software, which is what programs
and operating systems do all the time. You can use software to look inside
a word to work with individual bits and bytes.

123
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_7

CHAPTER 7 WORKING WITH DATA: TYPES

This chapter shows you what happens as words (physical groups of bits)
and bytes (logical groups of bits) are used by the operating system and,
through it, by users. One of the basic ways in which words are managed is by
grouping then into data types. This chapter explores data types and how you
can use them. The main topics covered in this chapter are the following:

e Why Types Matter

o Basic Types

o Working with Tuples
e Advanced Swift Types
o Creating New Types

e Handling Data That Isn’t There (Optionals)

Why Types Matter

The basics of types are simple. They are the primary intermediary between
the on/off bits in storage and data flows and the higher-level constructs
such as bits and bytes as well as the even-higher constructs that bits and
bytes form.

If that were all that types did, that would be enough (as it was in the
very earliest computers). It’s a critical link between the hardware and the
software. Computer science goes beyond the basics of how computers
work. It encompasses the concepts that let computers and people perform
useful work and communicate with one another. From that point of view,
types have another critical role to play.

A type provides the rules for assembling bits into words that can be
used. Those words can have types assigned to them (the usage is that the
words are typed). Those typed words are then used in code. Remember
that types are logical constructs — the physical words never change no
matter what type they are used as. (The data within the words change.)

124

CHAPTER 7 WORKING WITH DATA: TYPES

By referring to a word as a specific type, compilers can perform one of their
most critical roles. Languages and compilers support varying amounts of
type safety. Type safety is the set of rules that determines how a word of a
given type can be used in conjunction with other types. If the combination
of types is logically impossible according to the type safety rules, it is
caught as an error by the compiler, and the code won’t run. This is an
important role for the compiler to play, because the alternative is to just go
ahead and do something that is illogical and watch as the app crashes.

It is generally considered a good thing for coders to get the errors
rather than letting users get them.

Types and type safety make this possible.

You can mix types in various ways depending on the rules for each
type. For example, you can divide two integers by one another (5 divided
by 2, for example). The result that you probably want is a floating point
number (2.5).

Depending on the context, Swift, Xcode, or the runtime environment
will either refuse to perform an illegal operation (that is, it will get an
error), or it will warn you about performing a possibly illogical operation
(that is usually implemented with a warning to you, the coder).

A key part of implementing type safety is allowing developers to
convert one type to another (this is called type coercion). Sometimes, the
format of a number itself can serve as an indicator of its type. For example,
2 is an integer both in common usage and in Swift. 2.0 is a floating point
number (note the decimal point). Its value is the same as 2 (without a
decimal point), but it is of a different type.

Note Swift supports two kinds of floating point numbers. Float is
stored in such a way that it may have as few as 6 places to the right
of the decimal point. Double is stored with much greater precision.
Double is the preferred and default type for floating point numbers.

125

CHAPTER 7 WORKING WITH DATA: TYPES

Looking at Stacks and Heaps

Types describe how the bits in a word should be interpreted — be it as an
integer, floating point number, one or more characters or bytes, or even the
collection of individual bits that can be accessed as on/off values on their
own.

However, not everything you deal with in an app consists of words like
these. As you saw in Chapter 6, "Working with Data: Collections,” you also
need to deal with collections of data. Most of the time, these collections are
collections of words that are interpreted as certain types. As you will see
in Chapter 10, “Building Components,” sometimes you deal with objects.
Collections and objects don’t fit inside single words, so another type of
storage is needed. For items like these, operating systems typically reserve
a section of memory in which they can place these large and often variably
sized items.

Storing Data at Runtime

Where data is stored at runtime becomes a critical issue in designing
operating systems and compilers. It is largely — but not totally — handled
for you behind the scenes. Because it is not totally handled for you, you
need to know the basic concepts of runtime storage, and that is described
in this section. You'll also see how it all fits together so that you as a
developer can provide the functionality and responsiveness that users
expect from modern software and development techniques.

In the first days of computers (mainframe computers in the 1940s),
one program ran at a time. The entire computer was dedicated to running
that program. All of its resources (storage, communication channels,
and printers) were devoted to the program that was running. Among the
resources devoted to that single program were the computer itself and
its operators. If you wanted to run a program in most environments, you

made an appointment. It was a far cry from picking up an iPhone and

126

CHAPTER 7 WORKING WITH DATA: TYPES

tapping an app; these appointments were often scheduled for a time slot
sometime in the future. If your project was not a high priority, your time
slot might be 2:30 a.m. next Thursday.

This type of operation made a number of things much easier than they
are in today’s world. For one thing, with the entire computer available
to a single program, that meant all of its memory was dedicated to that
program with only a fairly small piece of that memory devoted to overhead
and maintenance of the computer (although the billing could be done
manually on cards or pages in a loose-leaf binder).

Now that people expect to run multiple apps at the same time on a
mobile device, it’s impossible to dedicate all of the device’s memory to
a single app. People wouldn’t stand for that. “What do you mean I can’t
watch a movie while I make a phone call and design a poster! I paid extra
for 256 gigs of storage! Where did it go? I'm going to take my iPhone to an
Apple Genius Bar and have them open it up to verify that someone didn’t
cheat me on my gigs.”

In order to make the most of the memory available in any device (this
goes back decades to the beginnings of time sharing in the 1960s), multiple
programs could run at the same time so that as resources like printers or
data storage devices were needed the program could be set aside with all
its data until the device was ready. Throughput was faster even though
there was time required to swap programs and data in and out. This is the
same basic model that we use today (this is a very basic overview).

Programs began to be structured in such a way that a discrete set of
code could execute from start to finish with the data that it needed. When
that set of code was completed, it and its data were simply discarded —
this is not the swapping in and out of programs and data to maximize the
use of resources. Rather, it is a separate type of requesting, using, and then
discarding memory. Both of these processes are necessary to make the
most of computers and their resources.

127

CHAPTER 7 WORKING WITH DATA: TYPES

Stacks and Queues

The word stack is used frequently in computer science. It is used in its
simple everyday sense of a pile of things (often a stack of paper, but
sometimes a stack of bricks or other objects). As is the case with everyday
stacks, you add items to the stack by placing them on top. The easiest way
of taking items off a stack is to take the topmost item. In computer science,
this is referred to as a last in-first out stack (sometimes referred to as LIFO).

With a stack, no matter how many items are in the stack, it’s really only
the top one (the last in/first out item) that needs to be accessed. The action
of adding items to the top of a stack and removing them from the top of
a stack is called pushing (pushing a new item onto the top of a stack) and
popping (removing the top item from the top of a stack).

The order of items in a stack is important.

A related concept to stacks is the concepts of queues. That, too, is an
ordered list of items, and you can also add items to the top of a queue.
However, with a queue, it is not the top item (the last added) that is the first to
be removed. Instead, with a queue you add items to the top (as in a stack), but
you remove items from the bottom. This is a last in-last out (LILO) structure.
You see this type of queue in action in many cases every day. In a supply
cabinet, you may store items in such a way that you use the oldest items first.

The order of items in a queue is just as important as in a stack.

Note The following is a simplified overview of memory
management designed to help you understand the basic principles.
Modern computers have significant enhancements and optimizations
beyond these basics.

Inside the computer as an app runs, the data that is required for a
section of code (a function or procedure in many cases, but this applies
to any section of code), is pushed onto a stack. This means that as the

128

CHAPTER 7 WORKING WITH DATA: TYPES

function or procedure starts to run, memory storage for each of the
variables needed by the code is set aside for the lifetime of the code. All of
the data is located together. When the section of code is finished, all of the
data set aside for the variables can be released to the system. This is called
cutting back the stack, and it is a critical way of reusing the memory of a
computer.

This way of optimizing memory use relies on being able to identify the
memory locations needed for the operation of a section of code. When that
code starts to run, whatever memory will be needed for its variables is set
aside (allocated) even if the variables are not yet in use. This assures that
the code can run to completion without running out of memory.

Heaps

Stacks are a simple way of organizing and reusing memory, but there’s one
big problem: not all data fits nicely onto a stack of computer words. Many
data structures are much bigger than a single word. The simplest example
of these are the collections discussed in Chapter 6. Almost every computer
language has its collection types, and storing them has always been a
challenge. One way it is addressed has been to place a computer word

on the stack that has a special meaning — it is a reference to the actual
data that is placed elsewhere in the computer’s memory. (This method

of handling arrays goes back to the 1950s.) By using such references, you
can continue the basic idea of cutting back a stack. It is just a little bit more
complicated because the operating system has to recognize that when

it cuts back an array reference word from the stack, it must release the
associated memory for the array in question.

All of this can work well even though it takes some time and processing
power to handle the references. An array is declared in a procedure,
method, or function and its elements are referenced somewhere else in
memory. The “somewhere” else is referred to commonly as the heap.
That’s just what it is — an unstructured heap of data. When the data for an

129

CHAPTER 7 WORKING WITH DATA: TYPES

array or other structured item is stored in the heap via a reference from the
stack, things are relatively easy to manage.

The big problem arises when there is data in the heap that is not
associated with a stack reference word. This situation is handled with yet
another strategy. The operating system still uses reference words on the
stack to refer to unstructured data in the heap, but there’s a new element
added to the process. The operating system keeps track of the number
of reference words pointing to some data in the heap. In the case of a
reference word on the stack, there’s only one reference: the one from the
stack. However, when there is shared data, this unstructured data on the
heap may be referred to by many references throughout your app. When
the operating system notices that the number of references to the data
decreases to zero, it can reuse that memory space.

All of this requires the operating system to keep track of the stacks
(for each app that’s running); storage in the heap; and, in the case of
mobile devices, constant changes in location as well as phone calls;
messages; tweets; and everything else that’s going on in those devices. The
amount of storage and processing power that are used for these operations
are significant in any computer.

Tip All of this work that is done behind the scenes on any computer
is most successful when users don’t know that it’s even happening.
However, when you are considering configuring a computer (or
buying a new one), these resources have to be factored into your
requirements. Having enough storage space for your library of a
thousand songs and nothing more is not going to leave you with a
functioning computer.

130

CHAPTER 7 WORKING WITH DATA: TYPES

Basic Types

The basic types for most computer languages represent numbers, characters,
and strings in various ways. Although the storage is ultimately one or more
computer words, the distinctions among these types are implemented
in software — the operating system and the apps that run on computers.
Computer words are basically interchangeable. In fact, one of the great
breakthroughs in the development of compilers and computer languages
was the realization that the data stored in and manipulated by a computer
could be what we normally would consider data (numbers, for example)
andit could also be computer instructions (add two numbers perhaps).
There is another type of storage that is used behind the scenes in
computer systems. Words can contain internal operational data and
instructions that are required for the operation of the computer itself. For
example, reference words (described in the previous section) are stored in
the same physical words that could otherwise be used for traditional data,
but the operating system makes certain that such data is protected from
unauthorized manipulation by apps and users.

Numeric Storage

There are two was to store numbers: they can be stored as integers (whole
numbers) or numbers with a fractional component (commonly referred to
by various names such as decimal numbers, which is actually a misleading

term in some cases).

Using Integers

Integer numbers are simple numbers. You can convert the bits in a
computer word into a base-2 number and there you have a number that
can be converted into any other base, but the most common conversion is
from base 2 to base 10.

131

CHAPTER 7 WORKING WITH DATA: TYPES

Computers typically use almost an entire word to store integers.
“Almost” the entire word because one bit is often reserved as a sign bit: it
indicates whether the number is positive or negative. In old computers,
storage space was so scarce that “wasting” it in a sign seemed to be
a shame in many cases where the number could never be negative.

Thus, you will find old documentation and descriptions are integers
and unsigned integers as separate types. Today, most integers on most
operating systems do have a sign bit.

In describing the conversion of bits in a word to a binary number, there
are two methods you can use. They are referred to as big-endian and
low-endian depending on whether the sequence of bits should be
interpreted from the most significant to least significant digit or vice versa.

This matters when you get down to the extreme details of architectures,
but today this is generally hidden from view so that by the time you receive
a stream of bits over a communications channel, the software at both ends
has converted it to formats that don’t rely on ended-ness.

Using Floating Point Numbers

There are a number of common ways of using floating point numbers.
Typically, the implementation of floating point numbers is left to a special
processor — a floating point unit (FPU). The basics of storing floating
points numbers generally consist of the following logic:

e The number is basically stored as an integer that may
be signed. This may be called a significand.

o Separately, an exponent is stored as another integer
that also may be signed.

Together, most numbers can be represented. For example, the number
12 can be stored with a significand of 12 (base 10), which may be stored in
binary as 1100.

132

CHAPTER 7 WORKING WITH DATA: TYPES

BINARY NUMBER NOTATION

In common usage, we talk about the places of a number starting from the
decimal point (see note later in this sidebar about decimal points) and moving
to the left or the right. The first place to the left of the point is for values of 0
to the base - 1. In base-10, that means that place (or any other) can have the
digits 0-9, but in base-2 any place can have digits 0-1.

The next place to the left is the base itself. Thus, in base-10, 12 is interpreted
as 2x1 plus 1x10.

In binary, the number is 12. Start from the right-hand side, which is where the
point would be and calculate:

0x1
0x2
1x4
1x8

The sum is 12.

The second place to the left is for the number of items in the base to

the second power. Thus, in base-10, the number 213 is 3x1 plus 1x10,

plus 2x100.

There is disagreement over what to call the decimal point in non-base-10
systems. Some people make the argument that a decimal point is unique to
base-10 (decimal) systems. Others argue that it is not unique to base-10 just
as digit can be used to refer to a character in any base as long as it is valid.
If you want an unambiguous generic term for the decimal point, you can call it
a radix point. Mathematicians (and perhaps no one else) will understand you.
In this chapter, we hedge a bit and refer to it as a point, which is a commonly
used way of avoiding unnecessary arguments.

133

CHAPTER 7 WORKING WITH DATA: TYPES

Storing Strings and Characters

Strings and characters are used to display text in apps ... sometimes. Text
can appear in images that are displayed in apps, and although you may
think that they are strings and characters, when they are part of an image,
they are as much an image as a photo of a cloud is.

Characters are represented by a sequence of bits. Depending on
the characters and language involved, a different number of bits can be
involved. Initially, characters in were six bits long, and then it stretched
to eight. Today, with Unicode characters, most of the characters and most
of the world’s languages can be displayed. The most commonly used
encodings you will encounter are UTF-8, UTF-16, and UTF-32 (the number
represents the number of bits used in a single character.

Strings are sequences of characters. As you can see from the possible
lengths of the characters, a string can easily extend far beyond a single
computer word so strings are normally not stored on the stack but are
accessed with some form of a reference word.

Creating New Types

When you declare a constant or variable, you specify its type. You can do
that with a type annotation or by setting a value for the constant or variable
so that Swift can infer the type as you see in the following examples.

var myVariable:Int // type annotation
var myVariable = 20 // inferred type

The type annotation becomes important when the inferred type might
be not what you want. For example, although 20 would let Swift infer an
Int type, the following code will make the variable into a Double.

var myVariable: Double = 20 // type annotation overrides
inferred Int type

134

CHAPTER 7 WORKING WITH DATA: TYPES

You can also declare new types in Swift. Other modern languages allow
you to do this as well, but traditional languages limit the types you can use
to what is built into the language and its compilers. This allows for the type
checking described previously in this chapter to be used to catch errors at
the coding/compiling process rather than when the user is trying to use
your app.

You can declare new types in Swift. Once declared, you can use them
just as the original types declaring variables and constants using them
and using your new types in type annotations. Your new types are built
on the existing types already in Swift (and in your own code). You can,
for example, create a type that relies on Int types. Your type can be used
alongside Int types. (You will see how this is useful in the following
section, “Working with Tuples.”)

To declare a new type, you use the Swift typealias syntax in which
one type is aliased to another. One reason to do this is to improve the
readability of your code. You can (and should) name your constants and
variables in a way that makes it clear what they are, but sometimes you
want to refine your nomenclature so that it is more precise. For example,
if you as use the built-in String type to name items that you deal with in
your app, using the String type is fine.

You may want to use a type alias to specify to yourself and others what
exactly that string represents. So you could use a typealias like this:

typealias productName = String

You can now use productName in declarations such as the following

var widgeti:productName = "Widget 1"

"Widget 2"

var widget2:productName

135

CHAPTER 7 WORKING WITH DATA: TYPES

You can move beyond simple names to use a typealias for a
collection type. For example, you could create an array of your inventory:

var inventory = Array <productName>()
inventory = [widget1, widget2]

You can add other arrays to an array as long as you respect the type.
Because arrays can have duplicate elements, you can make another array
out of widget1 and add that array to inventory.

inventory += [widget1]
print (inventory)

You can see the results in Figure 7-1.

eoe Ready | Toduy at 358 Pl @ <0030

2 Tveesias

//: Playground - noun: a place where people can play
3 [/import UIKit

5 typealias productName = String

7 var widgetl:productName = “widget 1" "Widget 1"

8 var widget2:productMame = "Widget 2" "Widget 2"

10 var inventory = Array <productName>() 1}

12 ["Widget 1", “Widget 2] L]
13 ["Widget 1", "Widget 2", "Widget 1]

15 print (inventory) “["Widget 1°, "Widget 2, "Widget 1"\n"

7
E »

|["widget 1", "Widget 2", "Widget 1"]

Figure 7-1. Add another element to the array

136

CHAPTER 7 WORKING WITH DATA: TYPES

You can use the same logic to add a string in its own array to the
inventory array.

inventory += ["dog"]
print (inventory)

You can add the string “dog” to inventory because inventory is an
array of type productName that is a typealias for String.

If you apply the same logic to a new array of an Int (17), you'll get
an error as you see in Figure 7-2. The array is an array of typealias
productName (String) and so Int types are not allowed.

inventory += [17]
print (inventory)

eoe Ready | Today at 403 Pl 0 = D S0 Qa0

3 + Typeaias -

1 //: Playground - noun: a place where people can play
3 [f/import UIKit
5 typealias productName = String

7 var widgetl:productName
8 wvar widget2:productName

"wWidget 1"
"Widget 2"

var inventory = Array <productName>()

inventory = [widgetl, widget2] Widget 1
nventery += [widgeti]

15 print (inventory)

7 inventory += [“dog"]
18 print (inventory)

020 inventory += [[17]1 © Binary operator ‘+=" cannot be apphied of type ‘Aray * (aka rray<String>...

= »
frame #6: ©xPEOPOOB1PeYcdl34 UIKit UIApplicationMain + 159
frame #7: 0x000000810d3546d9 Typealias'main + 2081
frame #8: @xPEOPEOB11140965d libdyld.dylib start + 1
frame #9: ©x088000011140965d libdyld.dylib'start + 1

Figure 7-2. You cannot add an Int to the array

137

CHAPTER 7 WORKING WITH DATA: TYPES

If you put the 17 in quotes so that it is a String, all will be well as you
see in Figure 7-3.

eoe Ready | Today at 404 PM @ <0030

2 Tveesias

1 //: Playground - noun: a place where people can play
3 [/import UIKit

5 typealias productName = String

7 var widgetl:productName = “Widget 1" “Widget 1"
8 var widget2:productName = "widget 2¢ “Widget 2"
var inventory = Array <productName>() 1]
12 inventory = [widgetl, widget2) ["Widget 1°,... =
3 inventory += [widgeti] ["Widget 1°,... @
5 print (inventory “["Widget 1",... %
7 inventory += ["dog"] ["Widget 1°... @
18 print (inventory) “["Widget 1",
20 inventory += ["17"] ["Widget 1°,... =
21 print (inventory)| “"Widget 1',...
[2

["widget 1", “Widget 2", “Widget 1]
["Widget 1", "Widget 2", “Widget 1", "dog"]
["widget 1", "widget 2", "Widget 1", "dog", "17"]

Figure 7-3. Add an Int as a String

Using typealias to make your code more readable is a very useful
idea, and it can help to prevent problems later on because the use of the
type can be made clear to you and other people who maintain the code.

Working with Tuples

The numbers, strings, and characters described in the previous section
are common to most computer languages today. There are variations that
have been implemented over time in most languages, and Swift has many

of them.

138

CHAPTER 7 WORKING WITH DATA: TYPES

Skipping over the many variations on the basic number, string, and
character types, we can look at a modern type that is implemented in Swift
and other languages such as Python and C# in similar ways. A fuple is a
sequence of types that together make up a single type.

You can, for instance, declare a tuple, which is a form of type that
you create from other types. You use typealias to provide an alias to an
existing type, and that existing type can be one that you create with a tuple.
In fact, using typealias to name a tuple may be the most common use of
typealias.

A tuple basically is a sequence of types enclosed in parentheses. It
is used in a type annotation or alias. For example, you can create a tuple
of two Double types to represent the dimensions (length and width) of a
rectangle). You can give it a typealias of dimensions as in the following
code:

typealias dimensions (Double, Double)
var myRectangle:dimensions = (2.0, 3.0)

You don’t have to use a typealias. You can create and use a tuple very
simple as in the following code:

var myRectangle = (2.0, 3.0)

There is no need to name a tuple type with a typealias unless you
want to refer to it elsewhere.

Tuples can be incredibly useful because they combine several items in
one addressable symbol (the typealias name if there is one). A function in
most languages can return a result that is normally one item. Many people
let a function return a collection (array, dictionary, or set), which has the
effect of returning multiple results. (In fact, dictionaries have commonly
been used to return multiple results in a single item.)

The items in a tuple are identified by order: You can’t rearrange them.
By default they are numbered starting at zero. Figure 7-4 shows how you
can create and use tuples. Notice in the viewer that follows line three

139

CHAPTER 7 WORKING WITH DATA: TYPES

that the two elements of the tuple are shown preceded by their default
names — .0 and .1.

When declaring a tuple, you can provide names for the items. In
Figure 7-4, note that in line 7 the items are named:

typealias dimensionsLabeled = (width: Double, height: Double)

o0 e Roady | Today at 1:28 PM

@ <00

[l

BE a TupleTypes
//: Tuples and Types
2 typealias dimensions = (Double,Double)

3 var myRectangle:dimensions = (2.0, 36.8) (02, .130) O]
02
130

4 print (myRectangle) (2.0, 30.0)\n" (O]
(2.0, 30.0)

5 var myRectangle2: (Double, Double) = (5.8, 2€) (.0 5,.120) =
05
120

6 print (myRectangle2) (5.0, 20.0)\n" (O]
(5.0, 20.0)

7 typealias dimensionsLabeled = (width: Double, height:
Double)
8 var mylabeledRectangle:dimensionsLabeled = (32.8, 64.8) (width 32, height 64) =

width 32
height 64

9 print (mylabeledRectangle.@, mylabeledRectangle.height)| "32.0 64.0\n" =
32.064.0

Figure 7-4. Declaring and using tuples

140

CHAPTER 7 WORKING WITH DATA: TYPES

You can refer to the items in a tuple by using the name of the variable
or constant followed by dot syntax and the name of each item as in line 9:

print (myLabeledRectangle.0, mylLabeledRectangle.height)

Even if you provide a name for an item in a tuple, you can still refer to it
by its default number.

Note The names of tuple elements are not quoted strings.

Summary

This chapter provides you with an overview of types as used for data.
You see the types that are common to all languages and operating systems
(numbers, characters, and strings) as well as types that you can create such
as tuples.

The use of types — even dynamic types — can make your code safer to
develop and to maintain.

With the data side of things under control, it is time to move on to look
at how operating systems and applications actually work with the data that
you declare and store. That is the topic of the next chapter.

141

CHAPTER 8

Managing Control
Flow: Conditionals,
Switches, and
Enumerations

In Chapter 5, you saw the basics of repetitions, but there’s a lot more to
managing control flow than looping through repetition code. This chapter
explores the other main control flow aspects of code. These are present in
most languages and operating systems.

What’s Next?

The basic flow of control in an app is from one line of code to the next.

A single line of code is a single statement even though it may involve
many steps — perhaps this is because the line of code causes a function or
method to run. Furthermore, several lines of code can be placed on one
physical line of code in Swift. As in many other languages a semicolon is
placed after each line of code when more than one is placed on a single

143
© Jesse Feiler 2018
]. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_8

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

line. Furthermore, to improve readability, a single line of code can be
stretched over several physical lines of code. Nevertheless, we refer to a
"line of code” as if it were both a physical and logical entity even though
there is not an exact equivalence.

No matter how it is formatted, each line of code is executed in an
app, and, most of the time, after it is completed, the next line of code is
executed. If there are no more lines of code, the app terminates.

This is the basic pattern for apps and programs from the dawn of
computer time. It is important to note that there is a major variation on this
pattern that is particularly prevalent in apps that rely on user interaction.
In these cases, the app starts running, and, once it has started running, it
waits for an external event to be passed to it (that event might be a user
action). When the event is received, the app processes it and then waits for
its next event. A program like this may terminate only when the computer
is turned off or restarted.

On i0S devices, you can specifically terminate apps that are waiting for
events. You can see them in Control Center as you see in Figure 8-1. Just
drag an app up to the top of the window to terminate it.

144

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

% NP Risk &5 MyNBCS

& Notability & Home

MacDonoughStreet
1 gt on

Figure 8-1. See running apps in Control Center on iOS 11 and later

145

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Within an app, the major exceptions to the next-line-of-code sequence
are the following:

¢ Go to. You can explicitly go to another line of code
other than the next line. As you will see, this is
normally discouraged, but it remains a commonly used
technique of managing control.

e Switch. You can execute one of several lines of code
(or sections of code) rather than the next line. This is
a useful technique to use when you want to do one
of several operations (show the current temperature,
show the calendar for next week, log out, or anything
else).

« Conditionals. You can execute a line of code if some

condition is (or isn’t) true.

¢ Repetitions. You can repeat one or more lines of
code as you saw in Chapter 5. There are a number of
variations on the repetition pattern — you can repeat
code until some condition is or isn’t true, for example.

Using Go To Statements...Or Not

In many programming languages (particularly older ones) it is possible
to directly specify the next statement to be executed after the current
statement. In order to do this, programming languages need some way
of identifying statements. Originally, this was done by numbering them
sequentially. Statements in Swift may be numbered by Xcode, but the
numbers are not part of the code itself.

146

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

In some languages (notably PL/1 and COBOL), statements can be
named. This is better than numbering them because the names don’t
change if you insert or delete statements. Line numbers are fragile.

When labels are used, they often must be the first characters on a line if
they are used on that line, and the label is terminated by a period, colon,
or other distinctive character. They typically cannot contain embedded
blanks.

In Swift and most modern languages, even if line numbers are shown,
they are only for your reference: you cannot transfer control to a specific
line number.

Figure 8-2 shows a Swift playground in Xcode with line numbers shown.

[NN Ready | Today at 12:42 PM = O SO0

» 7 Types

Exploring Types

5 import Foundation

7 wvar myInt:Int

myInt = Int(3.86/2.8) 1
1 var i1 =3 3
2 var i2 = 2 2
13

1% myInt = i1/i2 1

16

= »

Figure 8-2. Swift playground with lines numbers shown

147

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Figure 8-3 shows the same code with line numbers hidden.

[NN Ready | Today at12:43 PM = o SO0

» 7 Typos

Exploring Types

import Foundation

var mylInt:Int

myInt = Int(3.8/2.8) 1

var i1 = 3 3

var i2 = 2 2

myInt = i1/i2 1 |
= »

Figure 8-3. Swift playground with line numbers hidden

You turn line numbers on and off in Xcode preferences (Xcode »
Preferences) as shown in Figure 8-4. Once Preferences has opened, select
Text Editing from the top bar and choose the Editing option at the top of
the main window section. You can turn line numbers on and off depending
on what you're doing at the time. You might want to turn the line numbers
on if you're going to a code review meeting where people will want to talk
about the code whether it is printed out or shown on an Apple TV or other
device using AirPlay or a directly wired connection.

148

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

[] Text Editing
S0 j f e
1 @ @ © o [/ B 2 @
General i igation Fonts & Colors Text Editing Key Bindings Source Control Components Locations Server & Bots
Editing Indentation

Show: [Line numbers
Page guide at column: .
Highlight instances of selected symbal

Delay: 0.25 I seconds

Code leti g t pletions while typing
Use Escape key to show completion suggestions
Automatically insert closing braces (“}")
Enable type-over completions
Automatically balance brackets in Objective-C method calls
Enclose selection in matching delimiters

While editing: Automatically trim trailing whitespace
Including whitespace-only lines

Default text encoding: Unicode (UTF-8) B
Default line endings: macOS / Unix (LF) B

Convert existing files on save

Code coverage: [Show iteration counts

Figure 8-4. Xcode line number preferences in Xcode preferences

Line numbers along with go to statements have become artifacts of
the past in the coding world, but, just as in the physical world, the past is
always with us or, as William Faulkner wrote, “The past is never dead. It's
not even past.” [Requiem for a Nun and various misquoted variations on
the web] Being able to identify line numbers in discussions and documents
is very useful. (Line numbers are frequently used in the screenshots from
Xcode in this book, for example.)

Being able to specify a specific line as the next line to execute has
proven to be a dangerous programming technique. If you are writing code
and thinking about finding a way to jump to something other than the
next line of code, use one of the other techniques that are described in this

section.

149

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Being able to transfer control to a specific line of code results in what is
referred to as spaghetti code. It takes its name from the fact that if you draw
arrows indicating how a program executes, those arrows (in what is often
called a flow chart) start to look like a plate of spaghetti.

The alternative to line numbers and spaghetti code is structured
programming or structured code. The term was devised by Edsger
W. Dijkstra in 1968. A leading developer on the Burroughs Corporation
ALGOL programming team, his influence on that project and computer
programming in general in the late 1950s was enormous.

Note ALGOL on Burroughs mainframes was my second
programming language (my first was FORTRAN on CDC 6600
mainframes, which in the 1960s were considered the first successful
supercomputer). Much of the ALGOL syntax is relevant today and
some of its features are hallmarks of good programming style and
efficient coding for the largest and smallest devices.

Rather than transferring control to a specific line identified by label or
number, structured programming relies on structuring in the code into logical
sections (functions, procedures, or methods that you will find out more
about in Chapter 10, “Building Components,”). You can then transfer control
to the logical section, which may contain multiple lines of code. Because of
this structure, you don’t transfer control all over your code from one line to
another to another and so on (thus, the origin of the phrase spaghetti code).

Using Conditionals

Perhaps the simplest way of structuring your code to avoid random
jumping around from one statement to some other statement and then
on to confusion is to set up a binary choice. If some condition is true, then

150

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

execute the following line of code. This means that instead of jumping
around, you simply do or don’t execute the next line of code. The structure
and flow of your code remains fairly easy to understand.

You can even begin to expand on this pattern by setting up a three-way
choice: if a condition is true, execute this line of code, and if it is not true,
execute that line of code. Note that these are not distant lines of code —
they are sequential. In this way, the choice is easy to understand and the
flow of control is simple.

You can build even more by using compound statements so that a
group of statements are treated as one. The logic is then modified a little so
that conceptually it is

If this condition is true execute these following lines of code;
if it is not true execute those lines of code.

The lines of code remain sequential so that the condition (or if
statement) is evaluated and several lines that follow it are executed or,
if the condition is not true, several other lines that follow are executed.
Although the control takes one set of statements rather than another, all of
the code is together.

The initial part of this pattern is the conditional expression itself. In
its simplest form, it is an if statement. The basic style in Swift (and many
other languages) is illustrated in this code snippet:

Listing 8-1. Using a Swift if statement

var x = §

if x> 4

{

X =X+1
}

151

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

In languages in the C family, the syntax is slightly different, as shown in
Listing 8-2:

Listing 8-2. Using a C if statement

if (x > 4)
X = X + 1;

As you can seg, it is necessary to somehow differentiate between
the conditional test and the code to be executed (or not executed).
Parentheses or brackets are used for these purposes.

These are the concepts. Specific Swift examples follow.

Using Compound Statements in Swift

In many languages (including Swift) you can group statements together by
enclosing them in brackets as in the following:

{
let x

let y
}

This lets you treat the statements as a compound statement — that is,

1]
S Ui

one statement. This is particularly useful when used in conjunction with

a conditional test. This means that the Swift example shown previously in
Listing 8-1 can be enhanced. The brackets around the conditional code
mean that it is already a compound statement. To make the if statement
apply to several statements within a compound statement, you just add the
second statement to the interior of the bracketed compound statement as
in Listing 8-3.

152

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Listing 8-3. Using a Swift if statement with a compound statement

var x = §
if x > 4
{
X=X+1

print ("updated x")

You can use Xcode’s preferences to manage indentation. Choose
Xcode » Preferences and select Text Editing and the Indentation segment
at the top of the pane as shown in Figure 8-5.

L] Text Editing

@ w e o /B

igation Fonts & Colors Text Editing Key Bindings Source Control Compenents Locations

Editing Indentation
Prefer indent using: Spaces B
Tab width: 2| . spaces
Indent width: 2 [spaces

Tab key: Indents in leading whitespace B

Line wrapping: EJ Wrap lines to editor width
Indent wrapped lines by: 2 I spaces

Syntax-aware indenting: £ Automatically indent based on syntax
Indent solo “{" by: 2 . spaces
Indent f/ comments one level deeper
Align consecutive jf comments
Automatic indent for: "~ o .8
i o Return

Figure 8-5. Setting indentation options

153

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

With the settings shown in Figure 8-5, you can see how indentation
works in Figure 8-6. (The error is due to the fact that a disembodied
compound statement such as this one that is used only for a formatting

demonstration isn’t valid syntax.)

o0 ® Ready | Today at 6:03 AM o = o <o O3 0O

o8 « indents <0
import UIKit

let x = 5

o {
let x = 6
}

= »
frame #6: Ox000000010f7ada24 GraphicSSGrvices‘BSEUanERunMBdal + 62
frame #7: ©x00000001Paeffl34 UIKit UIApplicationMain + 159

frame #8: ©x00000001098866d9 indents 'main + 281
frame #9: 0x800800010d93b65d libdyld.dylib start + 1

Figure 8-6. Using indentation in Xcode preferences

What you don’t see in Figure 8-6 is that after typing the initial opening
bracket, the insertion point moves to the indented space on the following
line so you can keep typing. When you type the closing bracket, the
indentation is dropped and it moves to the left. Embedded embedded
statements of any length display properly.

154

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Note that there are different styles and standards for indenting code.
One of the most basic is where to place the opening bracket. This is
particularly important in conditional statements where there is code
before the opening bracket of a compound statement. The two basic styles
are shown in Listing 8-4 and Listing 8-5.

Listing 8-4. Dangling bracket

if x> 4
{

X=X+1

print ("updated x")
}

Listing 8-5. Embedded bracket

if x> 4
X=Xx+1
print ("updated x")
}

There are arguments to be made for both styles. In the dangling style,
the opening and closing brackets are aligned so it may be easier to pick out
the compound statement. In the embedded style (Listing 8-5), the opening
and closing brackets are not aligned, but the entire conditional statement
appears as one unit (which it is).

The issue can be a bit more complicated when you expand an if
statement to provide an else clause — that is, a statement or compound
statement to be executed if the condition is false. Listing 8-6 shows one
version of a dangling else bracket. Common variations on this style do not
indent the else.

155

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Listing 8-6. Dangling else bracket

if x> 4
{

X=Xx+1

print ("updated x")
}

else
{

print ("no update")
}

In Listing 8-7, you see an embedded else. By comparison with Listing
8-6, this emphasizes the two components of the if statement. Which style
you use is a matter of preference (your preference and the preferences of
your project team).

Listing 8-7. Embedded else bracket

if x> 4

X=X+1

print ("updated x")
} else {

print ("no update")
}

Ternary Operators

So far in this chapter, the discussion has focused on the control of
statements within an app. There is a related operator that is used in a
somewhat similar way. The ternary operator does not manage control flow;
rather, within a single statement it lets you choose between two alternate
values as a result. It is discussed here because it frequently is used to
replace more complex if statements.

156

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

The situation that ternary operators address is a common if pattern:

if x > 10 {

message = "greater than 10"
} else {

message = "not greater than 10"
}

Whether the condition is true or false, the message will be set to
something. With a ternary operator, you can make this much simpler. The
code using a ternary operator is a single line of code:

message = x > 10 ? "greater than 10" : "not greater than 10"

This is a replacement statement that incorporates the conditional test
and both the true and false results. Figure 8-7 shows this in a playground.

o0® Ready | Today at 10:50 AM = o o N n
» B Conditionall
1 let x = 1@ 10 C)
2 var message = "no messsage yet" "no messsage yet"
4 if x » 18 {
5 message = "greater than 1@"
6 } else {
message = "not greater than 18" "not greater than 10" (=
2}
10 print (message) “not greater than 10\n" (]
11
>

not greater than 18

Figure 8-7. Explore a ternary operator

You can test this code for yourself by downloading the Conditionall
playground as described in the Introduction. Try adjusting the value of x in
the first line of code and the test for x > 10 in the ternary operator; you
can also experiment with changing the text strings.

157

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Remember that ternary operators are operators within a single
statement (not even a compound statement although you can get fancy
and produce some almost undecipherable code if you try to push that
limit).

Switching Control

Conditional statements let you branch to one of two true/false conditions;
you can also place conditional statements within one or more branches
so that you continue to fork along true/false paths of various conditions. If
you want to implement more than a simple binary true/false branch, you
may find yourself deep in confusing branches of branches. You may realize
that what you want is more than two choices, but the if statement limits
you to one or two choices (two choices require an else clause as part of the
if statement).

The abstract idea of a switch statement is as follows:

e A condition is evaluated.

o Itsresultis used to choose a statement or set of
statements to be executed.

The basic idea is shown here in pseudocode in Listing 8-8:

Listing 8-8. Pseudocode generic switch statement

switch <expression to evaluate> {
case <expressionResult1l>: <one or more statements to execute>
case <expressionResult2>: <another one or more statements to
execute>

158

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Comparing Swift Switches to Other Languages

Note that the entire switch statement is enclosed in delimiters (brackets

in this case). Switch statements are great tools for writing structured code,

but there are a number of significant variations across languages. Here are

some of them:

Once an expression is evaluated and matched to an
expression result, that code is executed, but what
happens next? In some languages such as C, after
expressionResult1is chosen and executed, control
will pass to the following statements. The word break
is used at the end of a case element to cause control to
simply leave the entire switch statement.

break statements can appear anywhere. If you have five
case elements, you can place a break command after
any of them. You could choose the first case element,
execute it, drop through to execute the second case
element, and then terminate if a break statement is at
the end of the second case element.

In languages in the ALGOL and Pascal families
(including Swift), the choice is limited to executing
the case element. There may not be a need for a break
statement. (This is the case in Swift.)

The entire statement may be called a switch, a case, or
select.

The case elements are often called cases and are
identified by the keyword case.

Some languages (including Swift) let you modify the
conditions under which a case element is chosen.

159

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

» Many languages require a special case (often called
default), which is executed if there is no case element
matching the expression result.

Much of the variations may be due to the fact that although the
statement is powerful and can help you create more structured and
readable code, developers added additional features rapidly, and they
were inconsistent. This may have been related to the period in which these
statements were developed — it was a time (the 1960s) of a great deal of
language development and modification.

Exploring the Swift Switch Syntax

The Swift switch statement is highly structured and powerful. If you are
familiar with other language switch statements, it may be new to you,

so the basic Swift syntax is provided here and will continue in the “Using
Enumerations” section that follows).

The basic Swift syntax is shown in Listing 8-9. It is the same as the
generic pseudocode in Listing 8-8 but it has a default statement. The
default statement is required in Swift, and its interpretation may be
different than it is in other languages you are used to.

Swift switch statements must be exhaustive. That means that if the
controlling expression is of a certain type, the default statement applies to
all elements of that type other than those identified in case statements.

Listing 8-9. Basic Swift switch statement

switch <expression to evaluate> {
case <expressionResultl>: <one or more statements to execute>
case <expressionResult2>: <another one or more statements to
execute>
default: <one or more statements to execute>

160

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

This means that the controlling expression must have a type (and all
expressions have a type either implicitly or explicitly). break statements
are not required in Swift: a case expression executes and is terminated by
the next case element or by the end of the switch statement.

You can have multiple values handled by a single case element in Swift.
You simply combine the case elements as in:

case "result1", "result2":

In some other languages, you might be used to writing it differently;
this code won’t work in Swift because control doesn’t pass from one case
element to the next. It is terminated by the next case element.

case "resulta":
case "result2":

You can also use a number of other conditions for case elements. Two
are described in the following sections.

Using Advanced Switch Case Elements: Ranges

Listing 8-10 shows the use of a Swift switch using a range. The code begins
with the declaration of an optional variable (myUserID), which is an Int.

It is set to 6 so it has a value, but note that if it is not set (that is an unset
optional) this code will still function properly and not cause an error. It
uses optional binding to set userID (if possible) to the unwrapped value of
myUserID.

Note There is more on optionals and optional binding in Chapter 9.

161

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

The switch statement now uses userID (the unwrapped value of
myUserID) to choose a case statement to execute. In this case, the case is
defined using a Swift range:

5..<9

This Swift syntax means the range between 5 and 9. Note that there
are three characters in the range: 2 periods followed by <. It is not three
characters followed by <.

Listing 8-10. A Swift switch with a range
var myUserID:Int?
myUserID = 6

if let userID = myUserID {
switch (userID) {
case 5..<9: print ("first example:'
default: print ("not a known ID")

}

+ String(userID))

}

You can see the code in action in Figure 8-8.

162

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

[NoN) Ready | Today at 3:52 PM = @ SOE O
] « Switchl

var myUserID:Int? nil

myUserID = 6 [

if let userID = myUserID {
switch (userID) {
case 5..<9: print ("first example:" + String(userID)) "first example:6\n"
default: print ("not a known ID")
}
}

= »

| first example:é

Figure 8-8. Using a range in a Swift switch

Using Advanced Switch Case Elements: Where
Clauses

You can also create compound conditions with where in the case element,
as in the code shown in Listing 8-11.

Listing 8-11. Using a where clause in a Swift switch
var myUserID:Int?
myUserID = 6

if let userID2 = myUserID {
switch (userID2) {

163

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

case 5..<9 where userID2 < 7: print ("preferred user:" +
String(userID2))

case 5..<9: print ("not a preferred user:" + String(userID2))
default: print ("not a known ID")

}

This code builds on the code shown previously in Listing 8-10. Here,
the range condition is used twice. The first time, a where clause is added to
it to refine the case condition. The second time there is no where clause.

Note that these cases are evaluated one at a time in sequence. If you
reverse them so that the where follows the unconditional case as shown in
Listing 8-12, the unconditional case will be used and the where clause will
never be used.

Listing 8-12. Reversing where and general cases in a switch
statement

if let userID2 = myUserID {
switch (userID2) {
case 5..<9: print ("not a preferred user:" + String(userID2))
case 5..<9 where userID2 < 7: print ("preferred user:" +
String(userID2))
default: print ("not a known ID")

}

This code is shown executing in Figure 8-9.

164

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

ace Ready | Today at 1551 P AT (mli=1=]

- A gminent

var myUserID:Int? il
1 mylUserID = & [}
& if let userID = myUserId {
switch (userID) {
case 5..<%: print (“first example:" + StringluserlD)) “first example:B\n”

default: print (*not a kmown ID")

12 if let userIDZ = myUserID {
13 switch (userID2) {
14 case 5..<%: print ("not a preferred user:" + String{useriD2)) ‘not a preferred user&in”
15 case 5..<% where userlD2 < 7: print ("preferred user:" + String(userlD2))
default: print ("not a kmown ID*)

}

= »

Figure 8-9. Using a where clause in a Swift switch

Using Enumerated Types

Just as Swift switch statements build on existing switch statements in many

languages, so, too, Swift enumerations (enums) build on enumerations

in other languages. Enumerated types (shortened to enums in common

usage) are just that: a type that is constructed by enumerating its values.
The most common example of an enumerated type is Suit, which

has the values Clubs, Spades, Hearts, and Diamonds. In many program

languages (particularly the C languages), the order of enumerated types

matters because an integer number can be inferred or assigned to each

type value. Thus, in the example of Clubs, Spades, Hearts, and Diamonds,

the values by default would be as follows:

Clubs = 0
Spades
Hearts

1}
N

Diamonds

]
w

165

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

You can also assign values explicitly in any order you want. The cases
of enums are not strings so they are not quoted. You can use enum cases
to access their integer values. This means that you can use the enum case
Hearts in the example above as 2.

This works only in one direction: you can’t use 2 to indicate the Hearts
case of an enum called Suits. You can, however, write a small function that
converts an integer to a Suits name. One of the reasons for this reverse
conversion (from integer to enum case name) is that enum integers are not
unique in the namespace: the enum case Spades can have a value of 1 and
another enum with case Flowers can use the value of 1 for Geraniums.

As aresult, many people think of enums primarily as ways to use
integers to represent text values (the case names) to create what is
sometimes referred to as self-documenting code. (Some other people refer
to this as a joke. It’s an area of contention.)

Swift’s Approach to Enumerated Types

Swift has turned enumerated types into first-class types rather than just
a typing or documentation shortcut. In Swift the case names are (as in
other languages) not quoted strings. The notion of automatically assigning
values is used in some cases, but you can assign a raw value to each case.
That raw value can be an integer (as in most languages), but it can also be
a string, character, or number — even a floating point number).

Swift enums style capitalizes the enum name and uses lowercase for the
case values as in the following declarations.

enum Suit {
case club
case spade
case heart
case diamond

166

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Using Swift Enums with Switch Statements

Because enums in Swift are more tightly structured than in many other
languages, they fit well into Swift features such as the requirement that
switch statement case elements be exhaustive. You can use an enum to
assign a value as in the following line of code that assigns the enum case
club of the Suit enum to a constant called cardSuit:

let cardSuit = Suit.club

You can then start to create a switch statement that uses cardSuit. If
you attempt to close the switch statement, you will get an error as shown
in Figure 8-10.

[NN Ready | Today at 6:39 PM [: 3 = @ <o O ;O
28 » Enumsi <0>
enum Suit {
case club
case spade

case heart
case diamond
}

let cardSuit = Suit.club club
print (cardSuit) club\n

switch cardsuit {
case .club: print ("club")

o } 0 Switch must be exhaustive, consider adding a default clause

frame #5: Ox0000000107972a24 GraphicsServices GSEventRunModal + 62
frame #6: ©x00000001030c4134 UIKit'UIApplicationMain + 159

frame #7: ©x0000000101a4b6d9 Enumsl main + 21

frame #8: 0x0008000105b0065d libdyld.dylib start + 1

Figure 8-10. Swift flags non-exhaustive switch statements

167

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

This error message is made possible because Swift keeps track of the
cases for each enum. If you heed the message and type in the other cases,
you will no longer have an error as you see in Figure 8-11.

[NN Ready | Today at 6:40 PM = o <& O30

» Enums?
enum Suit {
case club
case spade
case heart
case diamond

let cardSuit = Suit.spade spade
print (cardSuit) "spade\n”

switch cardSuit {

case .club: print ("club")

case .spade: print ("spade") "spade\n”
case .heart: print ("heart")

case.diamond: print ("diamond")

= »

spade
spade

Figure 8-11. Creating an exhaustive switch statement with an enum

Instead of printing out a message for each case of a switch statement,
you can use the fact that enums are full-fledged types to refer to them more
generally, instead of printing out what the name of the case element is as
you see in Figure 8-11 or in Listing 8-13.

168

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Listing 8-13. Simplifying the switch statement.

switch cardSuit {
default: print (cardSuit)

}

In Listing 8-13 all of the control flows through the default case, and you
don’t even need the switch at all. You can achieve the same result with one
line of code:

print (cardSuit)

[NN Ready | Today at 7:06 PM = o S0

» Enums?
1 enum Suit {
2 case club
case spade
case heart
case diamond

let cardSuit = Suit.spade spade [
10 print (cardSuit) "spade\n” -

12 switch cardSuit {

13 case .club: print ("club")

14 case ,spade: print ("spade") "spade\n” L]
5 case .heart: print ("heart")

16 case.diamond: print ("diamond")

19 switch cardSuit {
20 default: print (cardSuit) "spade\n” C]
21}

= »

spade
spade
spade

Figure 8-12.

169

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

You can set the raw value of an enum. As noted previously, the raw value
can be a number (integer or floating point), character, string, or other
value. You simply add it in the enum declaration as shown in Listing 8-14.

If you do that, you can then retrieve it by accessing the rawValue
property of an enum as in

cardSuit.rawValue

The example shown previously in this chapter is updated in Figure 8-13
to show how you can print the raw value. You can access the raw value for
any purpose — it doesn’t have to be for printing. You can use a numeric
value to perform calculations, and you can also add a meaningful string to
the case name.

Listing 8-14. Using raw values in an enum

enum Suit:Double {
case club = 15.3

case spade = 32.6
case heart = 0.0
case diamond = -42.3

}
let cardSuit = Suit.spade

print (cardSuit)

print (cardSuit.rawValue)

170

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

[NN Ready | Today at 7:11 PM = o <& O30

» Enums?
1 enum Suit:Double {
case club = 15.3
) case spade = 32.6
& case heart = 2.0

5 case diamond = -42.3
64 }
8 let cardSuit = Suit.spade spade
9
print (cardSuit) "spade\n”

2 switch cardSuit {
13 case .club: print ("club”)
14 case ,spade: print ("spade") "spade\n”
15 case .heart: print ("heart")
16 case.diamond: print ("diamond")

switch cardSuit {
default: print (cardSuit) "spade\n”
}

23 switch cardSuit {
2 default: print (cardSuit.rawValue) "32.6\n" C

Figure 8-13. Displaying enum raw values

Exploring Repetitions and Strides

Most programming languages support a variety of repetition operators.
You see the basics in Chapter 5, “Managing Control Flow: Repetition” but
here is an overview of the common repetition variations. (All are available
in Swift, and, with occasional modifications, in most other languages you
may use.)

There are two basic types of repetition loops: while loops and for
loops. All repeat a statement or compound statement. while loops rely
on conditional statements for their control but for loops rely on data
structures for their control.

171

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

Note Repetitions repeat a statement or compound statement. To
simplify the text, this section refers to statements, but rest assured
that you can replace a single statement with a compound statement
enclosed in brackets { } as was discussed previously in this chapter
(“Using Compound Statements”).

While and Repeat-While Loops

There are two parts to a while loop: the condition that is true or false and
the statement to be repeated. The while loop behaves slightly differently
depending on whether the condition or the statement appears first.

If the condition is false when the while statement begins execution, the
difference becomes clear.

For a condition that is false initially, the following loop will not execute.
The code is executed as it would be in a natural language. Because the
while condition isn’t true, it won'’t execute. When the condition becomes
false, the while loop terminates.

Note If the condition never becomes false, the loop becomes an
infinite loop and will never stop. If the logic of your app is such that
the condition doesn’t change, you don’t want a while loop: You want
an if statement.

while <condition> {
<statement>

172

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

The other version of the while statement always executes at least once.
Here is the basic code:

repeat {
<statement>
} while <condition>

This loop will always execute at least once.

For-in Loops

These repetitions rely on collections (arrays, dictionaries, or sets). The
main for-in loops rely on iterations and enumerations.

Iterating Over a Collection

The simplest version simply loops through the collection (this is called
iteration). Listing 8-15 shows three simple collections (an array, a
dictionary, and a set) and how you can loop through each one with the
same syntax.

Listing 8-15. Using for-in loops for collections

let myArray = ["dog", 4.6] as [Any]

let myDictionary = ["name": "Rover", "weight": 20.5] as
[String : Any]

let mySet = ["name", "weight"]

for arrayItem in myArray {
print (arrayItem)
}

for dictionaryItem in myDictionary {
print (dictionaryItem)
}

173

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

for setElement in mySet {
print (setElement)

}

You can see this in the playground shown in Figure 8-14.

sce Meady | Totuy 2 8:48 A Siad | =i ==
: Forloces
1 let myArray = ["dog", 4.6) as [Any] ["dog”, 4.6] L
let myDictionery = ["name®: "Rover®, "weight®: 208.5] as [String : Anyl] ["name": "Rover’, “wei... &
let mySet = [“nam "‘weight"] [“name”, "weight"]

for arrayltem in myArray {

print (arrayItem) (2 times) =
for dictioneryItem in myDictionary {
print (dictionaryltem) (2 times)
i for setElement in mySet {
print (setElement) (2 times)
15}

=k

(key: “name", value: “Rover")
(key: "weight", value: 20.5)
name

weight

Figure 8-14. Explore loops in a playground

It is very common that you just want to deal with each item in a
collection in turn, and this does that job.

Looping Through Indexes (Arrays) and Keys
(Dictionaries)

In the case of arrays and dictionaries, sometimes you need not only the
value of the item but its index (in an array) and its key (in a dictionary).

Note Because sets are unordered, there are no keys or indexes
to use, so all you can do is iterate through the set elements as
described in the previous section.

174

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

There is a difference between iterating over elements of a collection
as described in the previous section and enumerating those elements.
You will see that in this section where an array is enumerated. That
enumeration provides each element of the array along with its index.
(Remember that array indexes are part of the array structure itself and not
part of the data.)

The built-in enumerated function provides tuples for each element of
the array. Each tuple consists of the array index and the value. If you call
enumerated() on an array, you will see those tuples as shown in Figure 8-15.
Note that the data used previously has been changed to include a third
item (cat) in the array. The data viewer in the playground shows the array
with its three elements. If you open it with the disclosure triangle, you'll
see the three indexes and their associated values.

e0e Feady | Today at 6:27 AM o 1= = R |
3 « Forloops
1 let myArray = ["dog", &.6, "cat"] as [Any] ["dog", 4.6, "cat”]

2
i let enumeration = myArray.enumerated() EnumeratedSequence<Array<Any>>
v["dog’, 4.6, "cat"]
0 "dog"
146
2 "cat"
E »

Figure 8-15. Results of enumerated() on an array

If you want to use the enumerated values, you can display them with
code such as the following. First, the enumerated function is called on the
myArray array. Then, a for-in loop operates on the myArray.enumerated()
result. The two values in each tuple are printed out.

175

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

for (index, item) in myArray.enumerated() {
print ("index: "

+ String(index) + " item:" +
String(describing: item))

}

The tuple names that you use don’t matter because it’s the order of the
items in the tuple that matter. If you want to change the code like this, it
will still work as well (as long as you update the print statement to match
the names you're giving to the tuple values.

It is important to note that because you are dealing with values that
are not all strings, you can take the Fix-It suggestions you'll get in Xcode
to convert the numbers to strings. They rely on the String(describing:)
function as you see in the code in this section.

To do a comparable enumeration with a dictionary, you don’t need to
call enumerated because the dictionary with its key-value pairs contains
the keys as well as the values with its data. Thus, you can just name the
tuple values as in

for (key, value) in myDictionary {
print ("key:"
}

The code in this section is shown in Listing 8-16.

+ key + " value:" + String(describing: value))

Listing 8-16.

let myArray = ["dog", 4.6] as [Any]
let myDictionary = ["name": "Rover", "weight": 20.5] as
[String : Any]

for (index, item) in myArray.enumerated() {
print ("index: " + String(index) +
String(describing: item))

item:" +

}

176

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

for (key, value) in myDictionary {

. n o " on . N .
print ("key:" + key + " value:" + String(describing: value))
eve oy | Todar ot 535 AM =
. Foriaces
1 let myArray = ["dog", 4.6) as [Any] ["dog”, 4.6]
let myDictionery = ["name®: "Rover®, "weight®: 208.5] as [String : Anyl] [“name": "Rover”, “wel... =
3|
2 for (index, item) in myArray.enumerated() {
print ("index: " + String(index) + " item:" + String(describing: item)) (2 times)
) for (key, value) in myDictionary {
print ("key:" + key + " value:" + String(describing: valuel) (2 timas)
}
= e

index: @ item:dog
index: 1 item:4.é
key:name value:Rover
key:weight value:28.5

Figure 8-16. Showing keys and indexes for dictionaries and arrays

Using Strides

In addition to the built-in repetitions (for-in and while), the Swift Standard
Library includes several that are frequently used in these situations. You
have already seen the enumerated() function, and it is worth exploring
others. One Standard Library function you may find useful is the
stride(from:to:by:) function. This function can be adopted by types
that adopt the Strideable protocol. You don’t have to worry much about
what that entails: just remember the list of types that are Strideable:

CGFloat
Decimal
Double
Float
Float80

177

CHAPTER 8 MANAGING CONTROL FLOW: CONDITIONALS, SWITCHES, AND ENUMERATIONS

When dealing with arrays of those types, you can apply the two stride
functions:

stride (from: to: by:)
stride (from: through: by:)

The difference between them is whether the limit is included in the
stride (through) or not (to). With stride, you can do some of the C-style
looping that you may be used to (specifically, you can look not just from
and to a value but using steps rather than increments of one.

Summary

This chapter goes into some basic computer science principles that are
common to many languages. In two of the topics discussed (enumerations
and switch statements), you see how Swift extends common functionality
and also makes common features more rigorously defined and used.

Having looked at data and types as well as control flow, you have many
of the basics of computer science at hand. The next step is to move on to
storing and retrieving data. After all, without those features, users have to
start from scratch each time they run an app.

178

CHAPTER 9

Storing Data and
Sharing Data

Computer science focuses on the design and use of computers in one
standard phrase. Although there are early examples of computer-like
devices (notably the Charles Babbage Analytical Engine in the 1830s,
the Jacquard loom in 1804, and the Enigma machines in the 1930s and
through the Second World War with Turing’s advances), the modern
computer age really began in the 1940s. The big steps forward in the 1940s
were significant hardware advances, and, arguably, the most important
step forward was the development of programming and compilers so that
computers could generate their own instructions from English-like code
written by humans. (Look at information about Grace Hopper and her
colleagues on the Internet for more details of the software side of things.)

Even with the development of personal computers in the late 1970s
and the rise of the Internet in the 1990s, not much changed in the basics of
computer science as new technologies and new capabilities emerged. One
thing that has changed — quite dramatically — is the storing and sharing
of data.

Whereas the advances in computer hardware have often been
dramatically heralded in the media, changes related to data seem to be of
less interest to many people. In fact, many people consider data and data

179
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_9

CHAPTER9 STORING DATA AND SHARING DATA

management to be an almost trivial part of the computer science world.
Oh, yes, there’s data, and it needs to be stored somewhere, but let’s look
at exciting things like 3D printing, social media, and forget about that
mundane data storage. (Ask almost any data management specialist for
an opinion on this topic, and you're likely to unleash a veritable torrent of
comments on the matter.)

The role of data is critical to computer science and its applications, and
that role has evolved in ways that few people have focused on until very
recently. This chapter addresses the data issues in computer science. It is
divided into four sections that address the four primary data concerns:

o Whatis the data? All apps generate, consume, and
store data. You may think your app is the exception, but
there are no exceptions if you look at all the data that
your app generates, consumes, and stores.

o Where is the data stored? With the exception of data
that is generated by hardware and software on demand,
the data that makes apps possible needs to be stored
somewhere. Sometimes the app is creating data,
and if that is the case, it typically needs to be stored
somewhere even if that location is temporary and on
some scratchpad that is built into the system or the app.

¢« Whoisin charge of the data? Is it static or is it updated
periodically (and, if it is updated, who does that)? Who
owns the data (that’s not an easy question to answer in
many cases)? What procedures are in place to manage
updates and data integrity and security?

e How s the data managed? This question covers
everything from the formats of data in spreadsheets to
database management systems and the issues in the
new sphere of Big Data.

180

CHAPTER9 STORING DATA AND SHARING DATA

Note This chapter is somewhat different from the others in this
book in that it doesn’t show you the code to write because most of
the issues are at a higher level than the code. In fact, it can be argued
that the issues of data management are at least as important as the
code that creates, manages, and uses the data. But whatever your
opinion on the relative importance of code and data, they are both so
important that both belong in any approach to computer science in
the twenty-first century. Perhaps fifty years ago when “data” meant
carton upon carton of punched cards, reel upon reel of magnetic
tape, and stacks and stack of paper documents to be keypunched,

it was possible to look at computer science without bothering about
all that data. It’s not true anymore. As the pioneers of computer
programming in the 1940s understood, computers can work with
codes that stand for numbers just as easily as codes that stand for
program logic and commands. Data and code are, in many ways,
interchangeable. That’s the lesson of Grace Hoppe: it’s what makes
compilers possible.

What Is the Data?

If you think the answer to this question is simple, think again. When you
read, hear, or see a news item about a data breach, hacking, or system
failure, you often find references to data that you never thought about
before. When you first start to think about the data that an app uses
(creates, generates, or manages), you think clearly of various aspects of
that data.

What the news reports often tell us is what many data managers have
known for quite a while: that application data is just the tip of the iceberg.

181

CHAPTER9 STORING DATA AND SHARING DATA

The time and place where someone used the app are important in many
cases, and those items are part of the app’s data. (If you don’t believe this,
follow the news items and look for what investigators are searching for
when they search for data on a suspect’s phone, desktop, or other device.)

Data sent to or from an app can fall into the “app data” category. Also
in the category of app data is the app description on an app store along
with comments on media (including social media) about what the app can
be used for, and how it is used.

All of this is “app data,” and all of it matters in various ways to various
people. The data that routine users of an app deal with in their routine uses
of the app is just part of the app’s data.

Everyone needs to be aware of this data whether you are a user,
developer, or manager whose job includes using an app and its data. Each
role has to think about the app data. Start with the designer or developer. If
you start to think about this data, you may decide that you cannot control
who keeps track of when and where people use your app.

That’s wrong.

The record of use is, in part, generated by the app itself, and that is
your responsibility if you are a developer or designer. If your app welcomes
returning users with a “Welcome Back!” message, that may be a friendly
welcome, but in order to generate it, you as the developer have to store the
information that distinguishes between a first-time user and a returning
user. Right away, you are storing information that may or may not be
important to your users (and to others). Every design decision of this kind
affects the app data.

In some cases, it clearly doesn’t matter, and in others it does matter
and the user knows it. If your app charges per use, it’s reasonable that
you're keeping track of the uses. In general, many experts in security and
data management suggest that you store everything you need and nothing
you don’t need. “It might come in handy some day” is really not a very
good rationale for deciding to store data. Remember that data that is not
stored can’t be stolen, it can’t be garbled or corrupted, and — perhaps

182

CHAPTER9 STORING DATA AND SHARING DATA

most important of all — it can’t take up valuable storage space on devices
and the cloud.

It is a source of amazement to many developers how clients come in
and sit down to discuss a new project with a long list of data to be stored
in this new project or app. If the developer asked the client where the data
will be stored, the response all too often is “in the app” or, sometimes, “in
the cloud.” Before you move very far into a project, make certain that you
understand exactly where the data will be stored. As you hone in on the
details of storing data, clients often start to understand what is entailed.
You can give them some estimates for the storage and maintenance of their
data, and, many times, the need to store lots and lots of possibly useful
“someday” data is reduced or disappears.

Remember: store what you need to store and nothing else. Read
histories of famous computer science projects and follow the adventures
of projects that have come to grief with overly ambitious data storage
schemes. There are many.

The need to clarify data and its storage doesn’t mean you shouldn’t
store data. You must store and use it in most cases. Just be careful.

Where Is the Data Stored?

If you take the broad approach to app data, right away you are considering
that it is stored in several places because the usage data will wind up being
stored possibly by an Internet service provider and all of the intermediate
participants in running the app. Even on a dedicated personal device with
no network connection, chances are that the usage data in some form or
other is stored in the device. However, moving beyond those cases, you can
look at where the app’s own data is stored — that is where the data other
than the environmental and usage data is stored.

This data is separate from the data used as the app is running
(that is, the stack and heap locations that are discussed in Chapter 7).

183

CHAPTER9 STORING DATA AND SHARING DATA

This is the data that an app may store to keep track of game scores or moves,
to manage data ranging from word processing text or spreadsheet data or
even recordings that the app makes of music or video). That is the data that
needs to be stored somewhere so that users can come back to it when they
want to continue working with it (or even when they want to erase it).

The term persistent storage is often used for such data storage. The term
has its roots in descriptions of storage devices that retain their data even
when they are powered off. If you turn off a disk drive, you can turn it on
again and use the data. That is persistent storage. If you have data stored
in the memory of a device as in the stack and heap, when the app stops
running or you power off the device, the data is gone - it’s nonpersistent.

Note These are the concepts. Because people so often expect
persistence of their data even if the actual storage device or
medium is not available, there are ways that hardware and software
developers can keep the data available even when the physical
storage is not available, so you may observe persistence in what
appears to be nonpersistent storage.

There are three main places where this specific app data can be stored
(that is, where the data that most users and developers think of when they
think of app data). Those places are:

o Storage for the app on the device while it is running.
o Storage for the app on the device that is persistent.

o Storage on the device that is generalized for all apps on
the device.

o Storage on storage-focused locations that are designed
specifically for storage (Google Drive, Apple iCloud,
Microsoft OneDrive and Azure, Dropbox, and the like).

184

CHAPTER9 STORING DATA AND SHARING DATA

Storing Data in Nonpersistent App Storage

Apps have storage locations that are available to them while they’'re
running. This space is nonpersistent, and the data is not retained after

the app stops running or the device is powered down. In fact, computer
storage is cheaper than it was, but it is still an expensive and scarce
resource. It is reused where possible by the operating systems. In order to
reuse data storage when possible, the operating system keeps track of data
that is no longer needed. When you “delete” data, you typically cause the
operating system to mark the data as deletable: it typically does actually
erase the data.

Note There are options available to actually delete data rather
than just mark it as reusable storage space. In fact, secure deletion
usually involves writing a random or known pattern over the storage
locations to be reused — sometimes repeatedly. It actually is very
hard to get rid of data once it has been written somewhere.

Although the reality may be different in some cases, developers
generally treat app storage as nonpersistent. To store data after the app
ends or to send it to other devices or apps, other techniques need to be
taken.

Storing Data in Persistent App Storage

The model of storage on iOS (which includes Swift) has dedicated
persistent app storage. This storage is allocated for the app’s use, and the
app and its developer can do what they want with the storage (although
there are size limits to this storage). This is the storage that is erased when
you delete an app from your device as you see in Figure 9-1.

185

CHAPTER9 STORING DATA AND SHARING DATA

Delete “"HBO GO"?

Deleting this app will also delete
its data.

Cancel Delete

Figure 9-1. Deleting an app deletes its data on iOS

CHAPTER9 STORING DATA AND SHARING DATA

Storing Persistent Data Outside of App Storage
on a Device

Apps on all computers from mainframe supercomputers to the tiniest
smartphones have the ability to read and write data to persistent storage.
This general ability is mitigated by the fact that those features may not be
available to every app. In general, storing data on a device in this way is
the right way to store data that is specific to a device, app, and user. For
example, you can use available storage to store scores in games, data that is
entered for analysis, or any other purpose.

These storage locations for apps are often referred to as sandboxes.
Among the mitigations that limit the possibilities for app reading and writing
data, the most common is restricting reading and writing to an app’s sandbox.

Note “Sandbox” is used in several senses. It can refer to a testing
area for apps and projects such as the sandboxes that let you test
out integration with eBay, Amazon, and the like. In such sandboxes,
you can actually test things such as purchases that will not actually
be charged to an actual credit card. Sandboxes often refer to runtime
nonpersistent data storage for apps such as heaps and stacks

as described in the previous section. A sandbox can also be the
persistent storage available only to a given app on a given device (or
on shared devices with a common user identifier such as an ApplelD).

Storing Data in Shared Storage Locations

There are many data storage locations for you to choose from once your
look beyond the device on which your app is running. Dropbox, and other
cloud services are common resources. Since iOS 11, the Files app on iOS
exposes the various locations for files to you as you see in Figure 9-2. If you

187

CHAPTER9 STORING DATA AND SHARING DATA

have Dropbox or other accounts, they show up in Locations. The integrated
user interface lets users see the files and their locations no matter where
they are. (Remember, that these are all persistent storage locations.)

iPad = 11:35 AM ¥ 1007 -

Edit iCloud Drive Select

Browse

Locations v
% iCloud Drive

SRT-F Setup Forms SRTG

U Recently Deleted MNitems 4 jitems

Favorites v

Tags v

@ Attention

O Writing
Library Swift-Objective-C test
101 PM Apr g, 2 535 P, Mar 25, 2016 at 4:43 PM

4 hytes

O Projects

) Volunteer

Development

O Work f

O Home
: Text File 2 TextEdit
@] Important 212 AM Jan 21, 2017 at 9:17 AM 14 itams
} Zero KB
Management

P
Zip

cument UlManagedDocument UlManagedDocument

test Test2 Test2
4 items Apr 3, 2016 at 9:35 PM
3B KB
[3
I Growse

Figure 9-2. Use Files to manage files and locations on iOS devices

188

CHAPTER9 STORING DATA AND SHARING DATA

Who Is in Charge of the Data?

If you have identified your app’s data and where it is to be stored, you
still have two issues to resolve: who is in charge of it and how is the data
managed and formatted. The issue of who is in charge (discussed in this
section) is remarkably untechnical.

If you write an app that lets people store some of their data — perhaps
sightings of wildlife along with the date, time, photo, and comments — who is
in charge of that data? Who owns it? Who can use it? There many questions.

Although computer science traditionally has focused on design and
implementation of computers and computer software, increasingly people
who work in the computer science fields are being asked to handle data
questions like these. The answers to these questions can be complex (and,
in many cases, there isn’t agreement as to what the answers may be).

In day-to-day practice of computer science by developers, designers,
users, managers, and everyone else who is involved, the issues of data
discussed in this chapter may be unresolved. Part of the lack of resolution
may be an absence of best practices and even a lack of people who are
aware of the issues.

Until such time as there are clear guidelines and standards, the
approach to data issues discussed in this chapter seems to be very much
haphazard. Many people who work in the field take the position that
unless there is some other guidance and standards for a specific project, it
behooves someone on each project to raise the issues discussed here and
to try to see that they are addressed in each project.

Ownership of Data

There are several aspects to the ownership of data. The most basic is who
has ownership in the sense of the legal right to publish (or not publish) the
data as well as the right to allow (or disallow) access in means other than
publication.

189

CHAPTER9 STORING DATA AND SHARING DATA

In today’s world, there may not be simple answers, but increasingly we
find that specific aspects of data ownership are addressed. In documents
and agreements of various legal status, people rely on representations
about ownership every time they post or view data from a social media
site.

The question of ownership often arises when data is put to a new
use. If you are using an app to track your wildlife sightings, you may think
that your data is your data and that’s the end of it. However, if your data
is aggregated along with wildlife sightings from other people — perhaps
millions of people — that data then may have significant value. That value
may be of value to scientists as well as to marketers. In its aggregated form,
your spotting of a black squirrel may be useful and valuable.

In building and managing apps, the awareness of ownership often has
to be built into the app. The issue of who is the owner of the data may not
need to be resolved, but more and more apps are being designed so that
if the value of the data becomes significant, the app can support what is
needed to profit from that value.

The ways of achieving these results aren’t particularly complicated.
They may be as simple as making certain that access to data in an app is
protected by some mechanism such as passwords or other credentials so
that access can be controlled and granted (or not) depending on identity,
payment, or some other criterion.

All too often, an app’s data design is such that instead of turning on
an option to manage access control, major architecture changes to data
storage and access are required to manage access control.

Data Integrity

Regardless of who owns data, there needs to be a mechanism in place

to secure the integrity of data. Stored data is inherently unstable if only
because the movement of data from computer to storage device and back
again is one of the weak spots of system development and integration.

190

CHAPTER9 STORING DATA AND SHARING DATA

In the simplest cases, the connection between computer operations and
data storage can be disrupted because the connection is missing (or
unstable). Either device can be missing or powered down.

Furthermore, the process of moving data is often fragile. The data
ultimately is a sequence of bits, and the integrity depends on each bit’s
value being accurately preserved during storage and transfer as well as the
sequence being similarly preserved.

There are three critical tools for use in managing data integrity:

e Checksums are used to help preserve the
representation of the data.

e Timestamps and other data markers are used to record
changes to the data

e Version control is used to help identify different

versions of data.

Using Checksums

To this end, there are many strategies available to developers and
designers. One of the most common and simplest is to use a mechanism
such as a checksum. In this approach, the binary digits (or, more
commonly, the bytes or characters) of data are treated as binary numbers.
They are manipulated — often by adding them up — and the result is
stored. When the data needs to be verified, the bytes or characters are
re-added and that sum is compared to the stored sum (the checksum).
This approach, which is often enhanced with further manipulations
such as division by prime numbers will catch common errors such as
an incorrect bit in a long string of data. In fact, many communication
protocols, devices, and standards allow for such checking and automatic
retransmission of possibly corrupted data.

A basic understanding of checksums (perhaps in no more detail than
this paragraph) is a part of a computer science practitioner’s toolkit.

191

CHAPTER9 STORING DATA AND SHARING DATA

Using Timestamps and Other Data Markers

Beyond the physical integrity of bits and bytes, there is a need to somehow
or other preserve the integrity of the data and its changes. Many database
designers automatically store a timestamp (the date and time) of the
storage of data and its updates.

Timestamps are often expressed and stored as a time interval since a
known date. There are several such reference dates in common use. (Epoch
date is a similar term.)

Among the common ones are:

e Midnight on January 1, 1970. This is the reference date
used in Unix (and related systems such as Linux and
macOS/iOS).

e Midnight on January 1, 2001. This was chosen to reflect
2001 being the year of the first release of Mac OS X
(now macOS).

Dates before the reference date are expressed as negative values of
seconds. The times expressed are generally in Coordinated Universal
Time(UTC), which formerly was known as Greenwich Mean Time (GMT).
Thus, these times are constant across the globe.

Along with timestamps, there often are other data markers that are
used to identify data and its changes. In addition to timestamps, there
are one or more universally unique identifiers (UUIDs). These are often
provided by operating systems. They are guaranteed to be as unique as
possible across the world. They are typically fairly long strings that you can
create through the operating system; you can also add your own identifiers
to them so that you have a universally unique identifier of a specific data
element. These can be helpful in debugging.

You will find comments that these markers take up valuable storage
space and that the computations involved in creating and decoding them
use up valuable computing resources.

192

CHAPTER9 STORING DATA AND SHARING DATA

These are absolutely valid concerns, but remember that their
significance has decreased over time with the advent of much more
powerful devices becoming the norm.

A common set of data markers is often stored as part of most data
items. The elements differ from project to project, but the values usually
come from this list:

o Timestamp of data creation (first storage)
e Timestamp of last modification
o Identification of data creation
1. User
2. Device
3. Location
o Identification of data modification
1. User
2. Device
3. Location
e Universally Unique Identifier of the data element.

e Dataversion

Version Control

No matter how skilled you are and how much experience you have, it is
unusual for your design of data storage to not need modifications over
time. There may be errors, but even if there aren’t, things change. You may
need to store different data, and some data that you have stored may be
irrelevant.

193

CHAPTER9 STORING DATA AND SHARING DATA

In order to handle situations like these, it is common to provide an
identifier for a data format — that means some identifier of what data is
being stored and how it is stored. A common practice is to store the version
identifier in the simplest form possible at the beginning of a data record.

A simple binary number is sufficient for version management.

If you do this, when your app reads (or writes) data, the first thing read
or written is this number. As soon as it is read, the app can then know what
else is stored in that record, and it can be read.

With Swift, the way this is often done is to store the version number
and follow it with a dictionary (see Chapter 6, “Working with Data:
Collections.” A dictionary is very flexible so that you can determine what
the keys are at runtime or even use the version number to let you know
what they are. If the meaning of keys changes with versions (a sometimes
unavoidable situation), you have all the data you need to decode or encode
the data.

How Is the Data Managed

There are two aspects to data management to consider:
o For external data, where and how it is managed.

o Formatting and structure of data.

Managing External Data

If data is stored externally, that might be on a connected computer or disk
drive to which your app has access. More commonly, apps store data in
external data providers that specialize in providing storage for apps.

These are special use versions of products such as Dropbox, Google
Drive, Box, OneDrive, and iCloud. These are geared to users who want
basic file-based storage for the most part.

194

CHAPTER9 STORING DATA AND SHARING DATA

In addition, there are on-demand hosting services such as Amazon
Web Services (AWS), Microsoft/Azure, Google Cloud Platform, Aliyun, and
IBM Bluemix/SoftLayer. The difference between these services is that they
are geared to use by apps that want to directly access data storage rather
than working with files. (Note that this is a basic overview.)

Most modern development environments support Internet-centered
protocols like REST that make it easy to read and write data remotely.

Even more important, these on-demand hosting services support
various types of software as a services (SaaS) and storage as a service. If
your app suddenly takes off and you need to increase your data storage
dramatically very quickly, this is what they do automatically.

Their data farms and data centers are located around the world and
processing can be passed off from one to the other around the globe and
around the clock. This is the way in which rapidly scalable apps are able
to be deployed. From the standpoint of the app, the storage is at a single
location even though in reality it can be widely distributed for redundancy
in case of failures and automated backups.

This bring us back to the basic question of where your app data is. In
these modern architectures, you — and no one — may know where it is.

Formatting and Structuring Data

Working with on-demand cloud storage means that you can determine the
type of storage that you use: the service only provides the storage.

Common storage protocols and formats come in several groups.

o Simple and portable. The most basic formats come
originally from spreadsheets. They are text-based
formats designed for rows and columns of data. The
two most common are comma-separated values (CSV),
text (tab-delimited). The data is character-based.

195

CHAPTER9 STORING DATA AND SHARING DATA

196

JSON. Java Script Object Notation is a character-based
format that structures data into a hierarchical structure
(such as students within a class, which is within a
school). JSON is a text-based format, so it can be read
and written with any tools that work with text. See
Listing 9-1 and Figure 9-3 for examples of using JSON
with Swift 4.

Property Lists. Apple has a property list (plist) design
pattern that consists of items with types of String,
Number, and Boolean as well as the collection types
Array and Dictionary. These can be combined, so a
property list might consist of a dictionary that itself
contains several arrays and another dictionary. As long
as all components are compatible plist types (String,
Number, Boolean, Array, and Dictionary), all will be
well. There are utility functions that quickly convert
property lists to and from formats that can easily be
stored. In addition, you can add your own types.

Proprietary formats. These are the formats that
traditionally have been used for special purposes in
proprietary apps. It is getting to the point where people
are leery of trapping their data in proprietary formats.
More and more, wise consumers and managers look for
the use of common formats or, if proprietary formats
are used, the ability to easily import and export data
from standard formats.

Dashboards and big data. Along with concern about
trapping data in proprietary formats, people are
recognizing that they need to combine data that is
stored in a variety of systems and formats. To that end,

CHAPTER9 STORING DATA AND SHARING DATA

dashboards and dashboard tools are being developed.
They take the data in whatever format it is and visualize
and synthesize it so that a unified picture can emerge.
(Tableau is a popular dashboard tool.)

¢ SQL and other databases. Traditional databases tend
to use proprietary formats for data storage, but they are
unified by their use of SQL as a management and query
language. The database management system (DBMS)
takes the responsiblity of storing the data, but almost
all DBMSs today provide SQL access. In this way,
Dashboards and SQL serve similar purposes: providing
common access to data stored in various formats.

Using JSON with Swift 4

JSON is rapidly becoming one of the most common formats for data
sharing. There have been several iterations of code in Objective-C and
Swift that convert to and from JSON (particularly between JSON and the
plist types). With Swift 4, those built-in tools have been rewritten and
simplified. They are shown in Listing 9-1.

Listing 9-1 shows a Swift playground that takes one of the plist types
(an array in this case) and converts it to JSON and back again. This is a
common way of sharing data with spreadsheet, databases, and even web
browsers (many of them can read and format JSON files).

In Listing 9-1, you see the setup of the playground. Note that
Foundation must be imported, but the JSON tools don’t require UIKit.
They are lower-level tools. A local array is created and then printed out.

import Foundation
let myArray = ["one", "two", "three"]
print (myArray)

197

CHAPTER9 STORING DATA AND SHARING DATA

There is a class in Swift 4’s standard library that handles JSON
conversion. You need to create your own instance of that class:

let jsonEncoder = JSONEncoder()

The heart of the playground is two lines of code that use the
jsonEncoder instance. The first line that is optional specifies in this case
that the format of the JSON text should be easy for people to read:

jsonEncoder.outputFormatting = .prettyPrinted

Next, you use the encodeToJSON instance to encode myArray (or any
other plist-compatible type). The result of encoding is stored in this
example in encodeToJSON.

let encodeToJSON = try? jsonEncoder.encode(myArray)

The option spaces the JSON text to make it more readable. In the full
listing in Listing 9-1, you'll see the error checking that surrounds this line
of code.

In Listing 9-1, encodeToJSON is then decoded using the same
jsonEncoder instance:

let decodeFromJSON = String(data: encodeToJSON, encoding: .utf8)

The UTF8 encoding is a standard text encoding that is commonly used.
You can find other encoding values in the documentation.

When you consider that you can encode and decode large arrays and
dictionaries into text to read and write, you have a very powerful way of
managing data that can be stored for other apps on other devices to read
and write.

198

CHAPTER9 STORING DATA AND SHARING DATA

Listing 9-1. Converting to and from JSON
import Foundation

let myArray = ["one", "two", "three"]

print (myArray)
let jsonEncoder = JSONEncoder()
jsonEncoder.outputFormatting = .prettyPrinted

if let encodeToJSON = try? jsonEncoder.encode(myArray) {
if let decodeFromJSON = String(data: encodeToJSON, encoding:
.utf8) {
print (decodeFromJSON)
} else {
print ("failed")
}
print ("did encode")
} else {
print ("failed2")
}

Figure 9-3 shows the playground code with error checking code added.

199

CHAPTER9 STORING DATA AND SHARING DATA

L R] Ready | Today st 823 AM
| -l
1 import Foundation

let myArray = ["one", "two", “three"]
print (myArray)
G let jsonEncoder = JSONEncoder()
s- l;'smn[r:ader.CUtputFnrmatTing = ,prettyPrinted
if let encodeToJSON = try? jsonEncoder.encode{myArray) {

if let decodeFrom)SON = String(data: encodeToJSON, encoding: .utf8) {
print (decodeFromJSON)

} else {
print ("failed")
}
print (“did encode")
} else {
print ("failed2")

20 }

IS

["one", "two", "three"]
"one",
two")

"three"

did encode

["one”, "two", “three"i
["one”, "two®, "three"m
Foundation. JSONE... =

Foundation.JSONE... (& |

fin “one“in "two... @

did encode|n’ (]

Figure 9-3. Encoding and Decoding JSON in a playground

Listing 9-2. Encoding/Decoding JSON (Swift 4)
import Foundation

let myArray = ["one", "two", "three"]

print (myArray)

let jsonEncoder = JSONEncoder()

jsonEncoder.outputFormatting = .prettyPrinted

200

CHAPTER9 STORING DATA AND SHARING DATA

if let encodeToJSON = try? jsonEncoder.encode(myArray) {
if let decodeFromJSON = String(data: encodeToJSON,
encoding: .utf8) {
print (decodeFromJSON)
} else {
print ("failed")
}
print ("did encode")
} else {
print ("failed2")
}

Handling Data That Is Not There: Swift
Optionals

One of the peskiest issues in computer science is the problem of how to
handle data that is not there. This is the case when there is missing data or
data that does not exist for any reason. If you leave the data blank, it may
be interpreted as a zero if the field is normally numeric. Counting a blank
field as zero will throw off averages if they are calculated. Of course, you
can simply ignore blank fields and keep your averages clean, but you then
have no way of indicating that there is no data for a valid reason. Perhaps
the reading on a sensor or gauge is missing because the telemetry or
power source has failed. If zero is a valid reading, then there is no way to
distinguish between zero-as-missing and zero-as value.

You can always pick another special number to use to indicate missing
data. Whatever number you choose can throw off calculations. (Many
mainframe computer programs used 99 to indicate missing data, including
the data for a year.) A year with a value 99 was unimagined in the 1960s

201

CHAPTER9 STORING DATA AND SHARING DATA

when such programs were often written. In the 1960s when financial
institutions were issuing 30-year mortgates and bonds that would mature
on or after 1999, this problem grew into the Year 2000 problem.

The only way to indicate missing data is to have some kind of value that
indicates whether the data is “real” or not. Different languages and systems
handle this issue in different ways. Swift uses optionals.

Optionals are written with a question mark; it indicates that the data
is of the specified type, but it may not exist at all. Thus a declaration for an
optional Int would be written as follows

var i: Int?

The variable can have any valid integer value; however, it can also have
no value. That is represented by nil as in

i=nil
You can test to see if a variable is nil or not using code such as this:
if i 1= nil ...

In Figure 9-4 you see an optional Int variable declared. It is not set to
anything, so its value is nil (you can see this in the sidebar at the right of

Figure 9-4.

[NoN Ready | Toduy a1 258 Pul E E O S0D0D 0

= + juniz <ad
1 var i: Int? nil |
3 print (i) Expression implicitly coerced from 'Int?' to Any “nif\n” “

if i '= nil {

& print (i) Expression implicitly coerced from 'Int? to Any
7 } else {
8 print ("i is nil") “i is nilyn’
g}

= »

nil

iis nil

Figure 9-4. Test for an optional value

202

CHAPTER9 STORING DATA AND SHARING DATA

You can test to see if it is not nil (line 5) and, if so, print it out.
Otherwise, you print a message that it is nil.

If you try to use the optional for any purpose, you will get an error as
you see in Line 11 of Figure 9-5. Most of the time, this is generated by the
playground or Xcode: it won’t even compile as you see in Figure 9-5.

L Xl Ready | Teduy w1 258 Pul @ = @

TP (all=l=]
B + jue2 <o |
vor ae ane : -
3 print (i) Expression implicitly coerced from Int? to Any i (=
5 if i 1= nil {
print (i) Expressicn implicitly coerced from 'Int?* to Any
7 } else {
print ("i is nil") i is nil\n w
3

11 let test = i/2

0 Value of optional type 'Int?* not unwrapped; did you mean to use 'l or '?'7
[2

Figure 9-5. Trying to use a nil

If you test to see that the value is not nil, then you can go ahead and
use it as you see in Figure 9-6.

e0® Ready | Todsy w350 Pl
] 3 ok

1 var i: Int?

i oprint (i) Expression implicitly coerced from 'Int?" to Any “nilin”]
5 if i 1= nil {
6 print (i)
7} else {
¢ print ("i is nil")

Expression implicitly coerced from 'Int?" to Any

8 iis nil\n' =
0}
1 iF 4 1= nil {

12 let test = illf2 Initialization of immutable value ‘test’ was never used; i ing with
13}

=B »
nil
iis nil

Figure 9-6. Using an optional

203

CHAPTER9 STORING DATA AND SHARING DATA

Even if a variable is declared as optional, you can see set its value.
Thereafter, if it is tested to see if it is nil, it will not be nil because it has a
value as you see in Figure 9-7. In Figure 9-7, you can see that the debug
pane shows the unwrapped value as an optional.

L] Ready | Today s 3:00 PM

E @ SN0 OO
¥ iz <A
1 var i: Int? = 14 14 =
print (i) Expression implicitly coerced from 'Int?' to Any “Optional(14)\n"=
5 if i 1= nil {
6 print (i) Expression implicitly coerced from 'Int?' to Any “Optional(14)\n"=
7} else {
¢ print ("i is nil")
9 }
11 if 1 1= nil {
let test = il/2 Initialization of immutable value test' was never used; i ing with assig 7 =
13}
=B »
Optional(1l4)
Optional(14)

Figure 9-7. Using optional binding

Instead of testing to see if an optional is nil, you can use Swift’s
optional binding. This lets you write code that may fail because part of it
is an optional. If it fails because a value is nil, the failure is graceful. If it

is not nil, the code proceeds. For example, in Figure 9-8 the code in line 3
starts the optional binding:

if let unwrappedI = i {

204

CHAPTER9 STORING DATA AND SHARING DATA

This code takes the value i that is declared as an integer, and attempts
to set that value to the new variable unwrappedI. If i is nil, setting
unwrappedI to the value of nil will fail. The entire clause will be false.
Thus, if i is nil in this snippet, this code will evaluate to false:

if let unwrappedI = i

Execution will continue with the else clause that prints “i is nil”

The process of looking inside an optional to see if it has a value is
called unwrapping. You perform unwrapping in two ways:

!'is forced unwrapping. The optional is treated as its underlying value.
If it happens to be nil, you will probably get an error.

? is conditional unwrapping; you use it in optional binding.

Figure 9-8 shows how this code behaves when the optional i is set to a
value in line 1.

L] Ready | Today 1 3:01 PM = e S0 O
s juril
1 var i: Int? = 14 14

if let unwrappedl = i {
4 print (unwrappedI) “14\n"
5 } else {
6 print ("net printable®)
72}

B »
14

Figure 9-8. Unwrapping a value

In Figure 9-9, you see how the code runs when the optional does not
have a value.

205

CHAPTER9 STORING DATA AND SHARING DATA

[NoN Ready | Today 1 3:01 PM = e S0 O
¥ o2
1 var i: Intd il
if let unwrappedl = i {
print (unwrappedI)
5 } else {
print ("not printable") ‘not printable\n” (& |
7}
EH e
not printable

Figure 9-9. Leaving an optional wrapped

Summary

Managing app data is a critical part of computer science projects even
though it is sometimes taken for granted. In this chapter, you see the
basic issues you must be aware of and plan for in your computer science
projects. Most of the issues in this chapter aren’t code based: they are the
basic issues of data management and ownership.

If you want to get back to the nuts and bolts of coding, have no fear.
The next chapter, (Chapter 10, “Building Components”) has plenty of code
to help you understand and build usable projects and components.

206

CHAPTER 10

Building Components

The basics of working with data and the flow of control can help you write
code, but how do you get from there to building something useful? (In fact,
this is one of the challenges of traditional programming instruction: people
learn on the first day how to write a program that prints out “Hello There,’
and there’s not a clear path from “Hello There” to building Facebook.)

This chapter provides you with a few of the stepping stones from a
single line of code to — if not Facebook, at least the tools you'll need to
start working in a software environment like that. (Mind you, there are
many stepping stones on that journey, and this chapter just provides you
with an overview.)

Why Build Components

There’s one phrase that sums up a major reason for building components:
“divide and conquer.” In fact, if you look on the Internet for references

to “divide and conquer,” you will find that it is the common name for a
specific architecture and development process in computer science. The
principle is analogous to the divide and conquer (or divide and rule)
phrase that dates back several millennia. If you take a large problem (or a
large group of people) you can often solve a problem or encourage people
to act in certain ways if you break the problem or the group down into
small groups or even individuals.

207
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_10

CHAPTER 10 BUILDING COMPONENTS

When it comes to app development, if your goal is to write the next
social media app (there’s a long line of people waiting to do that, in case
you're planning to do that), starting with a blank piece of paper or empty
screen isn’t going to get you very far. You could break down the app’s design
into large components — perhaps a handful of less than a dozen. From
there, you might subdivide each component; more likely, you would get
individuals or groups to work on specific components. Before you know it,
you'll have at last the broad outline of how to build a large and complex app.

There are theories and rules aplenty in the world of app design,
implementation, and management. A popular methodology (Agile)
encourages the development of working software as early as possible in the
process as possible. It won’t be complete, but it will run. This eliminates
the need for multiple documents and meetings to describe the possible
development path from the very beginning - something will be running in
some way.

The process continues with many iterations but at all times something
will be runnable. (In some environments, iterations are limited to a
week in length, which means that the steps along the road may be many
and small, but if there’s a need for backtracking it may not be terribly
disruptive.) And if there is a problem along the way, the next runnable
version — even if it’s a backtracking version — will only be a week away.

The idea of components as a divide-and-conquer strategy and
methodologies such as Agile in which small pieces are built and put together
reflects the need to get software developed as quickly and efficiently as
possible. In both of these methodologies as well as many others, the process of
building a large system involves building small components. The components
are either decomposed from the whole concept (divide and conquer) or they
are small components that become building blocks of the system.

Components have other advantages over building large-scale systems
in a single structure. Chief among these advantages are reusability and
manageability. Those features are major features of good computer
science design.

208

CHAPTER 10 BUILDING COMPONENTS

Advantages of Components: Reusability

When designers break a large system down into components that can be
developed separately, not only does it make the overall project simpler
in many cases, but it also can mean that some of the components will be
reusable. In providing the architecture for an overall system, designers
and developers look for components that can serve the dual purpose of
advancing the primary project along with a secondary purpose of being
able to stand on their own.

Now that we are well into a world in which people are used to using
computers, certain operations are becoming common. These range from
interface elements to specific types of operations such as login security,
saving documents, and the like.

The actual process of developing the overall structure involves looking
for places in the design where reusable components can be developed or
employed (after all, if they are reusable, they should be reused).

Making components reusable means that they need to be structured
for reuse. At the simplest level, that may mean nothing more than greater
attention to documentation than for a one-off code component. The value
of reusable components is directly related to how reusable they are so
documentation and overall structure are keys.

Advantages of Components: Manageability

When a large system is broken down into components that may be
implemented by different development teams, it is critical that their
behavior is clear. It’s not just a matter of documenting what a component
does but also a matter of thinking about what side effects it may have on
other parts of the larger system.

209

CHAPTER 10 BUILDING COMPONENTS

By being able to identify the functionality of a component, it is easy to
move it around on various system diagrams so that you can experiment
with its reuse.

Both reusability and manageability are enhanced by structuring
components with clear documentation and with a focus on specific actions
that they perform. Minimizing assumptions also plays into the picture:
ideally, a component should be able to be picked up and used without
much if any reprogramming.

The Basic Components of Development
Projects

Bear in mind the previous points as you explore the rest of this chapter. It is
devoted to explaining the major types of components that you encounter
in computer science projects. It also shows you how you can use them

for reusability and manageability of systems — including systems that

you decompose from a large group of code modules into a structured
collection of components.

Subroutines, Functions, Procedures, and
Methods

The most common components you find in projects are subroutines,
functions, procedures, and methods. Their names differ from one
programming language to another, and there are some differences in
their structures, but all of them basically are variations on the same
theme. They are miniature programs or apps. They receive input, do some
manipulations and calculations on the input, and then they generate
output.

210

CHAPTER 10 BUILDING COMPONENTS

The general structure is described in this section, with a focus on Swift.
This is the overall view, but it does apply to most components. The main
parts of a component are the following:

e Name

e Data inputs

e Data outputs

o Implementation — code

e Implementation — documentation

o Side effects and requirements

Naming Components

Each component you create has a name. The names in most

languages cannot contain spaces or special characters except for
underscore characters. Other rules apply to languages or to usage

in a given environment (such as a specific company). Names are

chosen for readability and reuse. They often consist of several words

that describe what the component will do. When several words are

used, they are typically connected with underscore characters or
camelcase capitalization (each word is capitalized except the first —
camelCaseFormatting, for example). If you are using underscores, such
aname might be camel case_formatting. You can combine the styles
into something such as camelCase_formatting. It is always a good idea to
adopt a standard for naming items as well as for using capitalization and
underscores (as well as other styles). It’s important for people to be able
to know what these items are. Remember that in some listing and cross-
references, the names may appear in alphabetical order, so you may want

to bear that in mind in your naming conventions.

211

CHAPTER 10 BUILDING COMPONENTS

Also, bear in mind that if you are writing code for reuse and are reusing
code that others have written, chances are very great that you will be working
with code that adheres to various naming conventions. Try for consistency
within individual components and, if possible, within related components
written in the same organization or group. Don’t spend too much time on
this: you can’t enforce standards on every developer in the world.

Data Inputs

Data for a component can be provided when the component runs. For
example, a component that calculates the area of an object might receive
two values: length and width. Other components receive streams of data
from devices such as real-time sensors like thermometers or from streams
of data (such as social media messages like Tweets).

It makes for good programming style and easier maintenance if the
inputs to a component can be clearly defined. Length and width are
such easy concepts. Sometimes, the amount of data to be provided to a
component is large and varied. One way of managing such input data is to
format it into a collection like an array, set, or dictionary. Thus, instead of
many data observations from a weather station, you might have an array
of such observations — that turns the many into one input item. You can
also use a more structured collection such as a dictionary where each
element consists of a key (the date/time of the observation) and a value
(the observation itself).

The clearer the inputs are, the more easily the code can be reused.

Data Outputs

Data outputs are subject to the same concerns as data inputs specifically
making the outputs clear in their meaning and in their structure. One specific
type of output is worth highlighting. Some outputs are designed specifically
to be used as inputs to other components. In such cases, any changes to
outputs need to be synchronized with changes to the related inputs.

212

CHAPTER 10 BUILDING COMPONENTS

This is not a trivial matter, because having such a dependency can limit
or even preclude the reusability of code on either side (input or output).
One common way of avoiding such problems is by assuming that all outputs
are going to be used in one way or another as inputs. Thus, the formats and
layouts of the outputs may well be designed using known methodologies
so that if necessary, outputs from one component can go to a translating
component and thence to the desired recipient. The intermediate component
then is responsible for the synchronization of input and output data.

Note This design pattern is shown in the common model-view-
controller design pattern used extensively in Swift and Cocoa. The
model is basically the data, and the view is the user interface to
that data. An intermediate component — the controller — mediates
between the model and the view. That structure allows both models
and views to be changed as needed: only the controllers need to be
modified as a result of changes to model or view.

Implementation — Code

The heart of a component is the code itself. That is what does the work.

Implementation — Documentation

The code itself is not sufficient implementation. The code needs to be
documented. Reuse is dependent on good documentation.

Side Effects and Requirements

In building successful components, most developers strive to minimize or
even eliminate any dependencies from outside the component. If data is
needed, it is good to provide it as input. Relying on the existence of some

213

CHAPTER 10 BUILDING COMPONENTS

data or other that is necessary for the component means once again that
the component’s reuse is limited to situations where that data is available.
On the other hand, if necessary data is provided with inputs, it is part and
parcel of the component.

Classes

Components like subroutines, functions, procedures, and methods let
you write what are in effect small programs with inputs, outputs, and
computations and calculations in the middle. Classes are a different type
of component. Using the object-oriented technologies developed in the
1960s and later, classes provide a different type of structure for reusable
components.

The object-oriented programming paradigm lets you build objects
that contain data and functionality in the form of code. The difference
is that the paradigm of components harkens back to the earliest days of
computers and computer programming where a program would run by
reading in its inputs, calculating something, and exporting its outputs.
(This is often called batch processing.) At the end of the process, the
program would terminate. Sometimes, a containing program would be
created so that at the end of the process, the next set of inputs would be
read and the next set of outputs would be generated (think of a billing
system).

Classes and object-oriented programming fit well into a world that is
no longer batch oriented. In many cases today, a class contains data or
the ability to receive data, it performs calculations, and then exports data.
So far that is the same as batch processing, but, in many object-oriented
systems the objects stay around. Some data is received, calculations are
done, some more data of a different is received, calculations are done,
and other operations may ensue. It’s not a matter or read/calculate/write
in many cases. Rather, an object may be capable of reading, writing, and
calculating at various times. Note that this is an observation of a common

214

CHAPTER 10 BUILDING COMPONENTS

difference between many batch-oriented components and many classes: it
is not a necessary distinction.

Classes are the descriptions of objects; as they are created
(instantiated) into instances, these objects may stay around for a while.
The clear distinction between inputs, computations, and outputs in basic
components isn’t relevant to many objects.

From the perspective of reusability, classes are just as reusable as other
components. Classes often contain components themselves. Typically,
those components are functions; they may also be methods. There is a
technical distinction between the two, but in practice, the terms are often
used interchangeably. (See the sample object-building example later in
this chapter.)

With Swift, structs and enumerations are treated much like classes in
many ways. There is more on structs and enums in Chapter 8.

Larger Building Blocks

In looking at reusable components including functions, methods,
procedures, and classes, modern languages like Swift let you create
larger building blocks. Just as classes can contain data and functionality,
Jframeworks can contain classes (and their components). The term
framework is used in several ways in computer science. The most basic
way is the same way it is used in English. There is also a specific use in
Swift and Xcode that lets you create reusable frameworks that you or
others can use in various projects. Cocoa and Cocoa Touch themselves
are frameworks. There are frameworks for user interface, audio, document
management, and many other commonly used parts of apps. Within the
frameworks, you'll find classes, and within the classes, you'll find more
classes and functions, and so on.

215

CHAPTER 10 BUILDING COMPONENTS

Looking at Blocks and Recursion

Components of code need to be packaged in one way or another to be
used and reused. There are two special cases of code reuse to examine:
blocks and recursion.

Terminology: Blocks and Closures

In the Swift documentation, you'll find this definition of a closure:

“Closures are self-contained blocks of functionality
that can be passed around and used in your code.”

Subroutines, functions, procedures, and methods are all blocks.
Compound statements (as described in Chapter 9) also are often blocks.
A block is a section of code that can be packaged with or without the
formal structure of a procedure, function, method, or class. If it is not
part of a formal structure, it may be packaged with brackets (or, in some
languages, parentheses).

What is critically important in the Swift definition is that it is “self-
contained.” When a block of code is used as a closure, if the code in the
block refers to variables outside of the block itself, those variables are
made available to the block that is now called a closure (because it has
closed around the variables that are needed for the block to execute.

In Swift, all closures are blocks and many blocks are also closures. In
practice, many people use the terms interchangeably.

The most common use of blocks is in cases where you want to
perform a block of code and you don’t know when you want to perform it.
Commonly, it is code that you want to perform after some event or another
has happened. If that event is out of your control, you don’t know when
you’ll need to execute the block of code.

216

CHAPTER 10 BUILDING COMPONENTS

Using a Closure

Here is a common example of using a closure. It is code that is typically
used in UIDocumentBrowserViewController to open documents in the
Files app iniOS 11 and later.

let document = UIDocument (fileURL: documentURL)
// instantiate a subclass of UIDocument
document.open (completionHandler: { (success) in
if success {
// show document
} else {
print ("no success opening document")
} // else
} // end of block
) // end of document.open parameters

Here is what the code does.

e Normally, you create an instance of UIDocument as the
comment indicates. A local variable called document (or
whatever you want) is typically used in this code.

e You then open the document using the UIDocument
open (completionhandler:) method.

o The argument of the method called completionHandler
is a block of code that will be called when open
completes. (This is a common naming convention.)

e The block of code that is the completion handler
is enclosed in brackets. The call to open with the
completion handler code removed makes this structure

clearer:

document.open (completionHandler: {...})

217

CHAPTER 10 BUILDING COMPONENTS

o The content of the block is shown here. When the
block is called, a single parameter will be passed in.
For convenience, it is named success here; as all
parameters, it is enclosed in parentheses.

Once success is passed in, it can be tested in an if
condition that indicates if opening was successful or
not. Thus, in this structure, the block is written out and
passed into open as the completionHandler parameter.
When the open function completes, it has the code
available to run in the completionHandler parameter.
How long it takes for that code to run depends on the
system workload.

(success) in
if success {
// show document
} else {
print ("no success opening document")
} // else
} // end of block

This type of structure makes multi-threading possible. That is, the
processing continues in one or more of the chips in the processor until the
completion handler comes into play.

In older software, you will often find this type of code implemented
using semaphores. Instead of waiting for open to finish, the code in older
apps might have a small loop that checks periodically to see if open has run.

In the architecture of Cocoa and Cocoa Touch, this structure that relies
on messaging and notifications makes for much simpler code to write in apps
and it makes for much simpler and faster code in the operating system itself.

You will find blocks used in many places.

218

CHAPTER 10 BUILDING COMPONENTS

Recursion

Recursion is another aspect of components you should know about. If you
have components that can be reused, they can reuse themselves. This lets
you write code that is structured and efficient. Be aware that if not used
carefully, it can cause problems. When you work with recursive code,
unless you find a way to stop the recursion, you can generate a form of
infinite loop that never ends in theory. In practice, it ends when the app
runs out of memory.

Note Infinite Loop is the name of the street on which Apple’s
Cupertino headquarters were located for many years. It is not an
infinite loop (you can see the entire thing if you stand on the street)
but it definitely is a loop. In 2017, Apple completed construction of its
new main headquarters near to Infinite Loop. The new headquarters
is known as Apple Park.

Building a Function in Swift

In talking about components, the terminology in Swift uses function rather
than method. In common usage, many people do refer to these items as
methods when they are part of a class (this is a legacy from years of usage
where the distinction mattered more than it does now). The alternative
terms (subroutine and procedure) are not used in Swift today.

A function consists of a name, inputs and outputs, and the code itself.
Here’s how to create a simple function in a Swift playground. This function
will compute an area based on two parameters (length and width).

Start by creating a new playground on an iPad as you see in Figure 10-1.
(You can do the same steps on a playground in Xcode, but the interface is
different and less interactive.) The empty playground has suggestions for

219

CHAPTER 10 BUILDING COMPONENTS

you in the bar at the bottom of the screen. Among the top-level suggestions
is func to create a function.

Blank

m P Run My Code

= let wvar if for while func & J oA

Figure 10-1. Create a new playground

Tap func, and the shell of a function is created for you by the
playground as you see in Figure 10-2.

220

CHAPTER 10 BUILDING COMPONENTS

L —— Blank =

fune QELEN) {
function body
}

M P Run My Code

1
. z X c v b n m ;

Figure 10-2. Start creating a function

Name is highlighted in red suggesting you should enter that first. The
function body is highlighted in gray suggesting that you attend to that next.
Type in the name of the function — area — as you see in Figure 10-3. Tap
the body of the function and it is now highlighted in red for you to attend to.

221

CHAPTER 10 BUILDING COMPONENTS

Blank

func areat) {

function body

}

| Run My Code
o »)

= let wvar if for while return func areaf) & J oA
Figure 10-3. Enter the function name

The next step would be to enter the function body. There are several
ways to do this. Chances are that no matter which route you take, you will
temporarily generate an error. (This is common in development.)

The single line of code shown in Figure 10-4 will return the value of
length multiplied by width. Neither variable has a value so far, so you'll
generate an error (the red dot at the left).

222

CHAPTER 10 BUILDING COMPONENTS

ga = Blank 4+ ooe

func area() {
[] return length + width
}

O] P Run My Code

]
. z v b n m .

X Cc

Figure 10-4. Start building the body of the function

One way of setting the values of length and width is to pass them into
the function as you see in Figure 10-5. (Passing data in with parameters
rather than hard-coding it inside the function body makes your code more
reusable.)

223

CHAPTER 10 BUILDING COMPONENTS

Blank

func areallength: Double, width: Double) {

[] return length # width
}
(M P RnMyCo

S c

q w e r t y u i 0 p &

a S d f g h j k | return

& z X c v b n m I : &
gl &)] 2123

Figure 10-5. Pass the parameters into the function

As you have seen in several code snippets in the book, the way to
declare a variable is with a name and a type. Thus, you can declare a
length variable (the name) of type Double with

length: Double

Double is the preferred floating point type to use in Swift (rather than
Float).

Although the parameters solve the problem of where to get the
data, the function needs to indicate in its declaration that a value will be
returned. This is the error you see in Figure 10-6.

224

CHAPTER 10 BUILDING COMPONENTS

= Blank -

func area(length: Double, width: Double) {
L] return length # width

Unexpected non-veid return value in void function

M P Run My Code

=i u ﬂ n m area(length: Double, width: Double)

g w e r t gy ju | 0

all slBalilalnllilx
- BB nnk

Figure 10-6. You must declare that a function will return a value

You can complete the function declaration as you see in Figure 10-7 so
that now it intends to return a value.

225

CHAPTER 10 BUILDING COMPONENTS

88 = Blank + oon

func area(length: Double, width: Double) -> Double}(
return length # width
}

O] P Run My Code

> < B T) e e 1

X Cc

Figure 10-7. The complete function

The return value syntax is
-> Double

This indicates that it is a return value of type Double.

If you want, you can run the code. Nothing will happen, but, in fact,
that is fairly good: no errors appear.

Just to recap the steps to build this small function, here they are:

o Tap func to create the shell

e Name the function

o Name the parameters passed in and set their types
e Name the return value

e Provide the body that computes the return value

226

CHAPTER 10 BUILDING COMPONENTS

Except for the first step where you create the function shell, you can
do these in any order. You'll get errors along the line either because you
haven’t declared a variable before using it or because you declare it and
don’t use it. After a while, you'll get used to this sequence.

You can add a line of code to invoke the function. You need to declare
avariable and set it to the result of the function. Look on the Shortcut Bar
and you'll find let (it’s just off the screen in Figure 10-8). You often have to
scroll along the Shortcut Bar. Tap let and you'll get the outline of code you
need to use as you see in Figure 10-8.

Blank

func area(length: Double, width: Double) -> Double {
return length # width

}

ler (ENED = value
(M P RunMyCode
S c
q w e r t y u i o p &
a S d f g h j k | return
& z X c v b n m I : &
f2oal () (1] 2123

Figure 10-8. Create a variable to use the function

227

CHAPTER 10 BUILDING COMPONENTS

Name the variable result (or anything you want), and type in the name
of the function as you seen in Figure 10-9. In the Shortcut Bar, the Swift
playground shows you the parameters (names and types).

Blank

func area(length: Double, width: Double) -> Double {
return length # width

}

let result = area |

(M P RunMyCode
Sick
q w e r t y u i 0 p &
a S d f g h j k | return
& z X c v b n m I : &
2128 | @ 0 2123

Figure 10-9. Start to use the function

Tap on the parameters in the Shortcut Bar, and they are filled in to
your code as you see in Figure 10-10. The first one (1ength) is highlighted
in red so that’s where you start. You get the number popover because the
playground knows you want to enter a number.

228

CHAPTER 10

Blank

func areallength: Double, width: Double) -> Double {
return length # width

}

let result = area (length: , width: Double)

- 5 &)
1 2 3
0 &
G area(length: Double, width: Double) Double 0

Figure 10-10. Start entering the parameters

BUILDING COMPONENTS

("\) P Run My Code

@ J A

You'll be guided through each of the parameters with appropriate data

entry tools as you see in Figure 10-11.

229

CHAPTER 10 BUILDING COMPONENTS

Blank

func areallength: Double, width: Double) -> Double {
return length # width

}

let result = area (length: 25, width: l

/ 8

4 5 6

1 2 3

0 &
G = |= < > <= »= +

Figure 10-11. Enter all parameters

%

M

P Run My Code

(R €3

You can now tap Run My Code and see the results as you see in

Figure 10-12.

230

~

CHAPTER 10 BUILDING COMPONENTS
Blank }
func areallength: Double, width: Double) -> Double {
return length * width =
¥ 75.0
let result = area (length: 25, width: 3) w
Add viewer
m P Run My Code
G let var if for while func result area(length: Double, width: Double) & J oA

Figure 10-12. Run your code and check the result in a viewer

Summary

This chapter describes the reasons to use software components and shows

you how to construct them in Swift. You see how a Swift playground can

walk you through the process of building a function. You can also just type

the code into Xcode, but sometimes it’s easier to switch between Swift

playgrounds and Xcode.

All components have the same basic parts. Here they are presented

with the names that you see in a playground.
e name
e inputs (parameters)
e outputs (returned value)

e body (code)

231

CHAPTER 11

Using Events to
Guide Actions

Computers have been getting smaller for years. Not only have their
components shrunk from vacuum tubes to transistors, there are now entire
systems on a single computer chip.

Users control apps. We launch them; interact with the interfaces; and,
when we're finished, we shut them down. Sometimes as in the case of iOS,
when we don’t use them for a while, their data is automatically moved to
a safe space to be ready for when we want to use them again. They may
never (or rarely) end. They just wait for the next user input.

That’s not how things work now, and it hasn’t really been true for
decades, but mental images take a long time to fade away. More and more,
apps are controlled by other apps and even by other computers. When we
set an alarm on a computer, another app keeps track of the time and then
triggers something on the computer.

You may say that that’s just delayed human interaction, but as you
start to think of how apps are controlled today, you will find more and
more controls that are far removed from human intervention. In general,
when you schedule something (perhaps using Siri) using a phrase such
as “remind me at...,” you're describing something that a computer can set
in motion. Whether your “at” is based on time or location, it’s easy for a
computer to figure out when “at” is true.

233
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_11

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

When your request to Siri is along the lines of “remind me when...”
chances are that there’s a more complex process involved in figuring out
if “when” is true. (Exclude the special case of “when it is 3:15,” which is
basically an “at” request.)

What is important about these “when” events is that they come as
a surprise to the person who sets them in motion. If you asked to be
reminded at 3:15, you may expect that reminder (and maybe even a
pre-reminder at 3:00). But “when” events may come with no expectation
on the part of the user. You'll see how that works later in this chapter when
looking at notifications in Swift and Cocoa.

Where Blocks Fit In

As you saw in Chapter 10, “Building Components,” you can modify the
normal sequence of command processing by using blocks. The snippet
of code here summarizes a common use of blocks. As noted in this
chapter, this is common code use in UIDocumentBrowserViewController
and many other places. The heart of the code is the document.
open(completionHandler:) function call. It opens the document, and,
when the document is opened, the completion handler is called and
executed so that you can inform the user that the document has or hasn’t
been successfully opened and take any other necessary actions (such as
updating the user interface with the contents of the document).

let document = UIDocument (fileURL: documentURL)
// instantiate UIDocument
document.open (completionHandler: { (success) in
if success {
// show document
} else {
print ("no success opening document")

234

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

} // else
} // end of block
) // end of document.open parameters

What is important to remember is that although there is a pause
between the call to open and the execution of the closure (either the
success branch or the else branch), that sequence is set in the initial
code that sets up the block. Unless the code in the block does something
unusual, that block will be the code that opens calls after attempting to
open the document.

Using Actions and Messaging for Managing
Flow Control Summary

It is commonly the case that you want to implement a different type of
managing the control flow rather than just waiting to move on to the next
step in the predefined sequence. That is where messaging comes into play.
Messaging lets you dynamically change what is going to be executed — not
just when it happens as you can do with completion handlers and closures.
Messaging lets you send some kind of message to a receiver that then
acts on it. Looking at the open code that uses a closure, consider the case
in which you do not want to specify what happens when the document
opens or doesn’t. A messaging structure lets you send a message to a
recipient that will then decide what to do about it. Messaging is used
extensively in modern apps for a variety of reasons, one of which is that it
helps in building maintainable apps because they don’t have to retain all
the logical linkages. In the open example, if you want to impost a limit of a
maximum of three open documents at a time, you need to know that every
open statement must obey that limit both in original coding as well as in
maintenance. (It will be very easy to forget to check on that limit when
you implement code to open a new type of document.) These issues can

235

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

be avoided by implementing a generalized opening section of code, but
often when you are retrofitting or maintaining code, you don’t control how
every piece of it is already working. Being able to post a notification that
something has happened and letting another part of the app unknown at
the time of writing handle it is simpler. And that’s where notifications come
into play. Here is a concrete example.

Note Messaging is widely used today. It is at the heart of
microkernel architectures for operating systems, and it is key to
Cocoa and Cocoa Touch frameworks. Some other frameworks and
development tools use different approaches and terminology, but this
is what you will find in Cocoa and Swift.

Passing a Button Press/Tap/Click On to...
Somewhere

In this example, you'll see how to implement a button that does something
that is not known when you write the button management code. This is an
overview of the notification architecture. It introduces you to some of the
tools in Xcode, the integrated development environment (IDE) used for all
Apple tools, but the details of using Xcode are described in the following
chapter so treat this section as a preview that focuses on notifications.

Implement a Button with Known Action

To start with, here is the common case of implementing a button that
does something that you know about and implement together with the
button. This example starts from the Tabbed App starter template build
into Xcode. If you create an app based on it, you will have an app with two
views as shown in Figure 11-1.

236

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

Carrier &

First View Second View

Loaded by FirstViewCaontroller Loaded by SecondViewController

iPhone & - i05 11.0 iPhone 8 - i0S 11.0

Figure 11-1. (left) Tabbed App First View and (right) Tabbed
App Second View

The basic template implements two view controllers and the tab bar
controller at the bottom that lets you switch between them.

You can add buttons to one of the view controllers along with a label as
you see in Figure 11-2.

237

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

Carrier 9:23 AM -
Label
Button
First View

Loaded by FirstViewController

First Second

Figure 11-2. Add a button and label

You will see that you can easily write code for the button so that it
changes the text in the label as you see in Figure 11-3 where the text has
changed to Button Tapped.

238

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

Carrier = 9:29 AM -

Button Tapped

Button

First View

Loaded by FirstViewController

First Second

Figure 11-3. Implement the button

The code to implement the button is not particularly complex
particularly with Xcode helping you along the way as you will see in
Chapter 12. The code for the button and label is shown in Listing 11-1 and
in Figure 11-4.

Listing 11-1. Implementing the button and label
import UIKit

class FirstViewController: UIViewController {
@IBOutlet weak var label: UILabel!
@IBOutlet weak var button: UIButton!

239

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

@IBAction func buttonAction(_ sender: Any) {
label.text = "Button Tapped"
}

override func viewDidlLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view,
typically from a nib.
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

SO0 b B A mreean

BERD LGS B ¢ BT e [et | [Fontestnie oa
] "

2 J/ FirstviesController.swift

1[4 Tabs
'
{4 Created by Jesse Feiler on 9/21/17.
{4 Copyright ® 2017 ChamplainArts. All rights reserved.
"

S

irport ULkt

1 elass FirstViemContraller: UlViewContrelles {
PIBOutlet weak var label: UlLabell
GIBOutlet weak var button: UIButton!
PIBAction fune buttenAction(_ sender: Anyl {

lab#l.text = "Button Tapped”

¥

18 override func wiewDidiesd() {
super.viwbidload()
/f Do any adaitional setup after loading the view, typically from a ndb.

}

override func didReceiveMemorywarning() {
super.didReceiveMerorynarningl)
/4 Dispose of sny resources that can be recrested.
¥
oy

o= QO o T e

Figure 11-4. Code for First View Controller

240

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

The code begins by linking the objects in the interface (using a
storyboard as described in Chapter 12) to the code. The label and button
are both @IBOutlet items — that means that they are in the interface but
can be addressed from code. You will see that one is the label and the other
is the button.

A similar style applies to @ BAction. That is the code that implements
the action for the button. You will see @1BOutlet and @IBAction
throughout code that implements the user interface.

The @IBAction line of code can be reformatted so that it is clearer:

@IBAction func buttonAction(_ sender: Any) {
label.text = "Button Tapped"

}

When the button is tapped, buttonAction is called and the text of the
label changes to Button Tapped.
That is all that it takes to implement a button and its action.

Implement a Button with a Notification

If you want to add a button that will update a label on the second view
controller, things get a little more difficult. It’s not hard to add a new button
to the first view controller that will start the process in motion. Figure 11-5
shows what that will look like.

241

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

Carrier 9:14 AM o (-

Button Tapped

Button

Motification Button

First View

Loaded by FirstViewController

First Second

Figure 11-5. Add a button to use a notification

You can also add a label to the second view controller as you see in
Figure 11-6. This will be the label that is updated by the notification button
on the first view controller.

242

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

Carrier 9:47 AM -

Second View

Loaded by SecondViewController

Label

First Sccond

Figure 11-6. Add a label to the second view controller

You can start to add the functionality to the button that will update
the label in the second view controller, but you immediately run into a
problem as shown in Listing 11-2 and Figure 11-7.

Listing 11-2. Code for notification button
import UIKit

class SecondViewController: UIViewController {
@IBOutlet weak var label: UILabel!
override func viewDidlLoad() {
super.viewDidLoad()

243

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

// Do any additional setup after loading the view,
typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

S

1ot notificationkey = "com.chanplai

lass SecondviewContreller: UIViesComtroller i
BI80utlet weak var label: UTLabell

Figure 11-7. Code for second view controller (Xcode)

The problem is that the declaration of the navigation button is in
the first view controller, but the declaration of the label that needs to be
updated is in the second navigation controller. How do you get from the
first view controller to the second view controller?

In this case, there are a number of ways to work around the problem.
The most obvious is to put the code into an object that connects to both
view controllers. That would mean that managing the buttons and labels

244

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

would move either into the app delegate or into the tab bar controller
that manages the two visible view controllers. Either of those strategies
will work, but the cost is that the app delegate or the tab bar controller
will become more complex. (In the case of the tab bar controller, it is the
difference between using a basic UITabBarController as in the template
and implementing a subclass so that you can modify one or both buttons
or labels from the subclass.)

As a general rule, added complexity is the cost you pay for mixing data
and interface elements. The solution is to use a notification.

Notifications consist of two components. The first broadcasts a
notification that an event has happened. The second component is an
observer that waits to find out about a notification. What is important is
that these do not have to know about one another. In the case of the button
and label in the first view controller, the communication is within that
view controller. With a notification, it can be generated by the first view
controller (where the notification button is) and observed by the second
view controller (where the label is).

Notifications are broadcast across an app; an object can request to be
notified of specific notifications, but there is no direct linkage as there is
among objects within a single view controller.

It is this lack of linkage that makes notifications so useful. It also
exposes an issue that you will see in the code that follows (along with the
solution).

Notification Basics

There are two key points to remember about notifications.

o Each notification has a name. This is not a string, but
rather a Notification.Name type. You'll see how to
specify this.

245

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

o Notifications may not be delivered. Because there is
no direct linkage between notification and observer, if a
notification is not observed, no error is generated. The
notifier posts a notification, and it may or may not be
observed.

Posting a Notification

The first step in the process of implementing the notification button is to
post it. Here is the standard code for posting a notification. It will be the
action for the notification button in the first view controller.

@IBAction func notificationButtonAction(_ sender: Any) {
NotificationCenter.default.post(
name: Notification.Name(rawValue:notificationKey),
object: nil,
userInfo: nil)

In this simple case, you need only have a name for the notification.
That is done in this line of code:

name: Notification.Name(rawValue:notificationKey),

That line refers to a variable declared in any area of your app (perhaps
in a globals.swift file) with the following code:

let notificationKey = "com.champlainarts.notificationKey"

Together, those two lines convert a string into a Notification.Name

type.

That’s all you have to do to post a notification from a button action
(or any either event).

246

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

Observing a Notification

To observe a notification, the object that wants to observe it needs to
register and then take some action. To observe a notification, here is the
line of code (it’s in the second view controller).

NotificationCenter.default.addObserver(
self,
selector: #selector(SecondViewController.
didReceiveNotificationResultText),
name: NSNotification.Name(rawValue: notificationKey),
object: nil)

That line of code specifies that if a notification with the given name
arrives, a specific function should be called (it is defined as a #selector).

@objc func didReceiveNotificationResultText () {
label.text = "Received Notification"

Once this setup is completed, the navigation button in the first view
controller can cause the label in the second view controller to be renamed.
Neither controller knows about the other, and the button doesn’t know
about the label. This means that if the observer’s action in response to the
button being clicked is something entirely different (that is, not setting a
label’s text), it should all still work.

Adding the observer should be done by an object that will be able
to act on the notification, so that code will go in that place. Your first
guess might be to put it into the viewDidLoad method of the second view
controller.

If you do that and run the app, you'll see a problem. viewDidLoad in
the second view controller isn’t called until the second view controller
is displayed. Thus, if you run the app and see the (default) first view

247

CHAPTER 11 USING EVENTS TO GUIDE ACTIONS

controller with its navigation button, tapping that button will send the
notification, but since the second view controller hasn’t been displayed
yet, viewDidLoad has not been called and the observer isn’t ready.

You can verify that this is the case by tapping the second view
controller tab, which will force viewDidLoad to be called and the observer
will be set up. Thereafter, the navigation button will work as you expect.

Summary

This is a common problem, and it will be explored in Chapter 12 as Xcode

is explored.

248

CHAPTER 12

Getting into Xcode

Previous chapters have covered many of the basics of computer science.
You've found some Swift playgrounds and snippets of code that illustrate
many of the concepts and issues. The focus of this book is on Swift and the
basic frameworks of iOS and macOS — Cocoa and Cocoa Touch.

To actually develop in these environments, you will need to use Xcode,
Apple’s integrated development environment (IDE). This chapter will give
you a general overview of how apps and other pieces of software are built
in general (that is, not just on these platforms and with Xcode). Then you'll
find a focus on how to begin development of an app with Xcode — this will
provide more detail of the overview discussed in Chapter 11.

There is a lot to Xcode and the various Apple frameworks, but the
focus of the following part of the chapter will be a real-life case study
of analyzing a problem in the code for Chapter 11. You have a leg up,
because that problem was described in Chapter 11, but in this chapter
you'll find a walkthrough of how to find and identify what the problem
is and how to fix it. Many developers believe that no amount of book- or
class-learning can compare to what you learn when you actually have to
diagnose and fix a bug.

249
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_12

CHAPTER 12 GETTING INTO XCODE

How to Write Software

Many people think that writing software means sitting down with a blank
screen or blank piece of paper and typing away. When you've typed
enough code, you have an app. This may have been true in the mainframe
era with punched cards, but it’s not true now.

An app today typically consists of code, graphical elements, other
forms of media (video, audio, and the like), as well as an enormous
amount of code in several frameworks that become part of the app. The
framework code handles routine functionality such as reading and writing
data, managing screen and mouse or trackpad, and much of what makes a
modern app a modern app.

This means that “writing” an app now starts to mean putting an app
together from a wide variety of components and pieces. Although the
mechanics of building an app are a separate topic than computer science,
a brief overview is worth considering so that you understand how the
pieces fit together.

Start by registering for an Apple developer ID at developer.apple.com.
You will walk through the process of registration. Note that if you are below
the age of majority (adulthood) in your region, you will need an adult to
vouch for you. If you are enrolled in a school or work for a company, they
may have an Apple developer account you can use.

Here is a generalized sequence of the steps in app development
on Xcode. You'll see how to start the process in the following section,
“Developing an App with Xcode.” These are the questions you will have to
answer, so start thinking about them before you begin.

1. Decide what the app will do. Sitting down to “write
an app” without knowing what that app will do is
futile. Whether you are working as an independent
developer, part of a corporate team, or in any other
configuration, having what is known as an elevator

250

CHAPTER 12 GETTING INTO XCODE

speech to sum up your project in a few seconds is

a good idea (many people would say it’s essential).
Your purpose or objective may change over time,
but that’s normal. Just make sure that you know
what today’s version is. (Note also that periodically
during the development process you may want

to think about versions.) Modern development
technologies like Agile suggest that at all times

there should be something runnable, and that

is a good practice to follow. This may mean that
periodically — maybe even once a week — you have
to take stock and either eliminate some functionality
or postpone it to a future version in order to have
next week’s version of the app on schedule.

Begin the app description. In addition to your
10-second version of the app’s purpose, many
people (including the author) suggest that you
start building the app’s App Store presence. That is
structured text and images that are more extensive
than your elevator speech version. If you will be
marketing your app yourself, you will need this
sooner or later. If other people do the marketing,
you can work out this description with them.

The main reason to start this description at the
beginning is that it provides more detail for you as
you are building the app. Look on developer.apple.
com for more information on building your app’s
online presence.

251

CHAPTER 12 GETTING INTO XCODE

3. Name the app. This can be a code name or a name
that you plan on changing later (when you think of
a better one). It is easy to change the name that will
appear in marketing materials and the App Store.
(This is a change from the beginning of the App
Store.)

Figure 12-1 shows the General tab for the app in
Xcode where you will provide this information.

soe » 1| gy Tobs) B Prone 8 Plus Tabs | Build Tabs: Succeeded | Yoslerdey a1 944 AM S [=]
BERSQAGCEo @8 < > B
v s (] Generel Capabiives Resoures Tags Inta Buld Settings Buid Phases Buid Rules.
» [Tabs
— PROJECT
< AppDulegate.cwitt v ity
2| FesewConueter swif B
+ SecondVie._miraler swit TARGETS: Dissilay Name
i storybossd S Tabs
e Bundie Kentdtier com.champleirarts Tabs
[E8 Assets wassels
U LawnchSeremn storyoosd version 10
ieto piist Beld 1
L Products
¥ Signing

B Astomatically marage sigring
X aule and codatn peoties, 0w O3, ad

b .
Team _Chamedain Arts Com B
Provisioning Profie Xcode Managed Profie ()

¥ Deployment Info

Deployment Target
Deviees Universal

Liain Interface Main

Device Orientation [Portrait
") Upside Down
5 Langscano Lett
B Landscape Right

Staws Bor Sty Deteunt B
~) Hide stats ber
Requires full screen
¥ App lcans and Launch Images
Appleont Soutce | Appicen Be
Lounch Images Source Use Asset Ct0leg...

Leunch Seroen Fle Lewsehereen B

~ Embedded Binaries

Asd embedded binaries here

o+ - @

@

Figure 12-1. Set General settings for the app

252

CHAPTER 12 GETTING INTO XCODE

Display name is the name people will see for your
app. (In this example, it is Tabs.)

The bundle identifier is the internal name for the
app. It can be different from the Display Name.

The bundle identifier must be a unique name. It is
normally constructed from your developer account

name.

Each version of the app (a build) will have its own
version and build identifiers. You usually start with
version 1.0 (you may prefer something like 0.1)
and build 1. Each time you submit an app build to
the App Store, you will increase the build counter
so that it is always unique and increasing. You can
skip build numbers, but you can’t go backward.
The version numbers will appear to users so it is up
to you and your managers and marketers when to
decide that the next build will be something like 2.0
rather than 1.16.

Using default values in Xcode are fine until you need
to work with the App Store.

Choose the app environments. Will you run the
app on iPhone, iPad, Apple Watch, tvOS Mac, or
other devices? What orientation(s) will you support
for iPhone and iPad? These are choices you need to
make at the beginning (and they are required for the
app description). The choices are modifiable, but
you need a starting point.

Choose these in Deployment Info as shown in
Figure 12-1.

253

CHAPTER 12 GETTING INTO XCODE

5. Choose the earliest app environment version
you support. The default versions in Xcode usually
adhere to Apple’s policy of supporting the current
and one prior version. Thus, with the release of
i0OS 11 in 2017, i0S 10 is generally supported. Some
apps support earlier versions.

This is also set in Deployment Info using the
Deployment Target drop-down list. You can use
the default values for the rest of the settings in
Figure 12-1.

6. Choose the app development environment. Xcode
is a given for the Apple frameworks, and Swift is
usually a given these days. If you are incorporating
third-party frameworks for your development, you
may not be able to use Swift but as this is written,
the legacy Objective-C frameworks are becoming
fewer and fewer. You also need to choose the Xcode
development version you want to support.

This will be set when you set up your project. It is
discussed in “Developing an App with Xcode” next
in this section.

7. Decide on the graphics. You may work with a
designer to develop what the app should look like.
Also start considering an app logo.

8. Choose the capabilities you will support on the
Capabilities tab as shown in Figure 12-2. These
can be changed later, but this gives you an idea
of what you can build in. (Note that it’s easier to
choose capabilities now and not use them than to
retrofit them later in most cases.)

254

CHAPTER 12 GETTING INTO XCODE

—— L Wy st T
e Tibs
e} Lacan
= - —
ina/Carpete Seietcny
ot St
—
Pt e i B [
P
CE coumm
e
D e e B
- — S
- i
& wmeires
ED
E3
CEn
CE3
NS — Bueao
e~
wEl+ - @

Figure 12-2. Set capabilities

Developing an App with Xcode

With your app plans in mind, you can start to actually develop an app with
Xcode.

Setting Up the Project

Here are the steps to begin with.

Begin by launching Xcode. You can download it for free from the App
Store. Use About Xcode to check the version of Xcode you have installed
as you see in Figure 12-3. Note that Xcode build identifiers that tend to be
more complex than the simpler style most developers use for numbers like
1, 2, 3, and so forth.

255

CHAPTER 12 GETTING INTO XCODE

Xcode

Version 9.0 (8A235)

Acknowledgments

License Agreement

Figure 12-3. Version 9.0 build 9A235 of Xcode

Choose New » Project from the Xcode menu to begin your project as

you see in Figure 12-4.

& o B © 3 ehoose s mmpists for your new project:
Bl ~evos nos meos cose -
Hpglication
1 # R B
Single View Agp Game e — Cocumen Beted Munter-Detl Apa
Rualty dpp rop
[| oo P
LLE oo o
Page-Dassd Apa Tebbed App SuckerPackdon iMessageAzp
Framemork & Librar
= B L]
Coses Touen Cocon Touch heatal Ubeary
Framework Saatic Library
Carcel

No Selaction

ocueo

No Matches

Figure 12-4. Create a new project

256

CHAPTER 12 GETTING INTO XCODE

You will be able to choose a template to start with. In this chapter,
Tabbed App is used. When you have time, explore the other templates by
creating projects with them. You can always delete them after you have
experimented with them.

You will be prompted to select a location on disk for your project.
The project will then open in Xcode. You'll see it in a window like that in
Figure 12-1. You can use the settings in the top right to show and hide the
various parts of the window. (There’s more on navigating with Xcode on
developer.apple.com and the in-app help.)

Figure 12-5 shows the app at this point. Note that in Figure 12-1,
the Utilities at the right are not shown, but they are shown at the right
of Figure 12-5. Most developers show and hide the panes of the Xcode
window as they work.

257

CHAPTER 12

a8 > oy Teks) B Prone 8 Plus
BERQACED @ <
D Gereea
et PROJECT
< AppDutegate.switt =)
s FirsViswContrclior swift = Taks
+1 SecondVie_ntroler.swit TARGETS
Main szorybased oy Tabs
B8 Assets wassets
LRSI S0y 08t
into.piist
» L Products
all oEl|+ - @

& Tobs

Capabiites

GETTING INTO XCODE

Tabs | Build Tabs: Suceeeded | Yestordey a1 44 AM

Resouree Tegs Ity Build Satngs

* signing

18 futematically manego sigring
Xee ate wd update oroliles, aoo 13,

Team | Crusrplain Arts Corp.
Provigloning Prefie Xeode Maraged Prote (O

Sigring Certificate Phone Developer: Jesse Feler [FURCTM2SUV)

T Deployment into
Degloyment Targat
Devices | Universa
Main interface Main
Davice Crieenaticn [Porirat
Upsice Down

& Lancscape Leht
Lanzscape Right

Status Dar Style | Defoult
Hide status bar
T Requires I screen
¥ App lcons and Launch Images
App koons Source | Apploon
Lawnch images Source Use Asset Catslog..

Laurch Screen File | LaunchSoreen

¥ Embedded Binaries

¥ Linked Framewerks and Linrasies

Buld Phases

B @
Do

gyt | Identity snd Typs
Hams | Tabs

Lecstien Abssiutn

Full Path. fser JeesolalierDeckton)
Writng/Compuier 52

aer Sclencel
Wrltss Sont/Chapsert1Fias,
adepro) o

Taus Tabs xe:

Project Deturent

Peojoct Format Keode 8.0-compatible
Orgarization | Champlainkrts
Claga Pugtix

Taut Settings
Ingeat Usng _5paces

whthg 2
b ==

1B Wrag lines

0D0O@D0o

No Malches

Figure 12-5. Review the app

With just a few clicks or taps, you can create a new project in Xcode,

but look at Figure 12-6 to see the number of files and folders that you have

created. Unless you are well-experienced with Xcode, do not move or

rename the project files: leave them where Xcode put them. The two most

important components are the xcodeproj file (shown at the bottom of the

list in Figure 12-6) and the project folder (Tabs in this case). If you collapse

the folders, you'll see that the project consists of the xcodeproj file and the

project folder. Those two items can be moved together to another place,

but they must be next to one another in a folder (or on the desktop).

258

CHAPTER 12 GETTING INTO XCODE

eace I Files
< 2 Ecm EIER YRS a Q, Search
| Back/Forward View Arrange Action Share Add Tags Search
Files [+
Favorites Hame Date Modified Size~ King
15} jesseteiler v [Tabs Yesterday, 10:58 AM BEKE Folder
@ A v [Tabs Today, §:25 PM 39KB Folder
359 FirstViewController.swift Yesterday, 8:56 AM 827 bytes Swift S..e Code
© oownloads SecondViewController.swift Sep 21, 2017, 6:58 PM 1KB Swilt S..e Code
%2 Dropbox Info.plist Sep 21, 2017, 5:26 PM 2KB Property List
AppCelegate.swift Sep 21, 2017, 5:26 PM 2KB Swift S..e Code
G2 Desktop v [Assets.xcassets Today, 5:25 PM 12KE Folder
[Documents + [Applcon.appiconset Sep 21, 2017, 5:26 PM 1KB Folder
& iCloud Drive * [second.imageset Sep 21, 2017, 5:26 PM 3KB Folder
» [first.imageset Sep 21, 2017, 5:26 PM 3KE Folder
[shared ¥ [Base.lproj Yesterday, 2:23 AM 15KE Folder
¥ Applications 7 LaunchSer...storyboard Sep 21, 2017, 5:26 BM 2KB Interfa..cument
" Main.storyboard Yesterday, 9:23 AM 13 KB Interfa._.cument
Devices Bl Tabs.xcodeproj Sep 21, 2017, 5:26 FM Xcode Project
(@) Remote Disc
:_] Backup &
2] Macintosh HD
| 1 of 14 salected, 20.73 GB available

Figure 12-6. Browse the app'’s files

Testing the Project (without Modifications)

Ifitis not already open, launch the project in Xcode by double-clicking
Tabs.xcodeproj. That should open the window you've seen before.
Remember that you may have to use the controls at the top right to show or
hide the parts of the main window. Figure 12-7 shows you the View menu
that you can use instead of the controls at the top right.

259

CHAPTER 12 GETTING INTO XCODE

Standard Editor [
Assistant Editor B
Version Editor I
Navigators b
Debug Area 1
Utilities B

Figure 12-7. Explore the View menu

Show or hide parts of the main window. If you want to explore them,
use this View menu to show or hide them, and you'll be able to match the
terminology to the sections of the Xcode window you're looking at.

Use the arrow at the top left of the main window (shown in Figure 12-5)
to build and run the app. You should see the results in Figure 12-8 (left and
right).

260

CHAPTER 12 GETTING INTO XCODE

Carrier ¥

First View Second View

Loaded by FirstViewController Loaded by SecondViewController

iPhone 8 - i0S 11.0 iPhone 8 - i0S 1.0

Figure 12-8. Build and run the app

Adding the Code and Interface

Once you are satisfied that a template works properly, you can add your
modifications. As you saw in Chapter 11, you can add interface elements
to your app in the files and folders created as part of your project, not
the folder called base.lproj. This folder will be in most of your projects. It
contains the interface elements. Today, those are built using storyboards.
(In the past they were built with xib and nib files.)

261

CHAPTER 12 GETTING INTO XCODE

The base.lproj folder consolidates all of your interface elements in one
place so that you can easily localize them.

The storyboards give you a graphical tool to draw your interface and
connect it to your code. This section provides a very brief overview for you:
there is more in the Xcode documentation and at developer.apple.com.
There is also a lot of information on the Web, but make certain that it is
recent: there is a lot of old code out there.

If you click on a storyboard in Xcode, it will open and you will be able to
edit your interface. There already is an interface (that’s what you see when
you run the template as shown in Figure 12-8). Inside the main storyboard,
you'll see a schematic view of the interface as you see in Figure 12-9. (This
view includes some elements that have been added — they were added in
Chapter 11 and you’ll see more about how to add them later in this chapter.)

First View

Second View

) Virw s e 05 ™+ P e

Figure 12-9. main.storyboard

262

CHAPTER 12 GETTING INTO XCODE

At the bottom of the utility area at the right of the window, you see a
list of the objects that you can drag onto the storyboard. You don’t have to
draw anything — just drag.

The elements of the interface are scenes, and they are implemented
in code by view controllers. Most view controllers are visible, and that is
the case here. In the Tabs template, there are three view controllers: the
first and second views, and a tab bar controller that controls them as you
tap the buttons. The tab bar controller appears at the bottom of both view
controllers.

As you build your interface with objects from the utility area, you
can switch to the Assistant editor as you see in Figure 12-10. (You use the
two interlocking circles in the top right of the main window to do this.)
Assistant editor leaves the storyboard on the left side and shows the
relevant code on the right side of the window. You control drag from an
interface element to the code. You will be prompted to name the element
in the code. A filled-in circle indicates that the code is connected to the
interface. When it is connected, hovering over the interface will show you
the name of the connected code element as you see in Figure 12-10.

263

CHAPTER 12 GETTING INTO XCODE

Second View

ity e

R

Figure 12-10. Connecting the interface to code

This is the key part of linking the code to the interface.
If you want to troubleshoot your connections, one simple way is to

control click on the relevant view controller in the storyboard to bring up

the view controller connections shown in Figure 12-11.

264

¥ Triggered Segues
manual

¥ Outlets
button
label
searchDisplayController
view

Presenting Segues
Relationship

Show

Show Detail

Present Modally

Present As Popover

Embed

Push (deprecated)

Modal (deprecated)

Custom

Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection
Received Actions
buttonAction:

notificationButtonAction:

CHAPTER 12 GETTING INTO XCODE

Tab Bar Controller

view controllers

Button

Touch Up Inside
Notification Button
Touch Up Inside
Notification Button
Touch Up Inside

Figure 12-11. View controller connections

2»O0@@® O

®@ O O 00000000 @

Explore the interface and the elements to get a feel for this critical part

of building an app for iOS or mac OS.

265

CHAPTER 12 GETTING INTO XCODE

The code that was introduced in Chapter 11 builds on the user
interface. It is repeated here for convenience. Listing 12-1 is the code to
post a notification.

Listing 12-1. Post a notification
import UIKit

class FirstViewController: UIViewController {
@IBOutlet weak var label: UILabel!
@IBOutlet weak var button: UIButton!
@IBAction func buttonAction(_ sender: Any) {
label.text = "Button Tapped"

}

// POST THE NOTIFICATION
@IBAction func notificationButtonAction(_ sender: Any) {
NotificationCenter.default.post(
name: Notification.Name(rawValue:notificationKey),
object: nil,
userInfo: nil)

}

override func viewDidlLoad() {
super.viewDidlLoad()
// Do any additional setup after loading the view,
typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}
}

266

CHAPTER 12 GETTING INTO XCODE

Listing 12-2 shows the code to observe the notification.

Listing 12-2. Observe a notification
import UIKit
let notificationKey = "com.champlainarts.notificationKey"

class SecondViewController: UIViewController {
@IBOutlet weak var label: UILabel!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view,
typically from a nib.

// OBSERVE THE NOTIFICATION

NotificationCenter.default.addObserver(
self,
selector: #selector(SecondViewController.
didReceiveNotificationResultText),
name: NSNotification.Name(rawValue: notificationKey),
object: nil)

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

@objc func didReceiveNotificationResultText () {
label.text = "Received Notification"

267

CHAPTER 12 GETTING INTO XCODE

Testing the Project (with Modifications)

Start to test the app again, and you will periodically encounter a problem.
It may be a pesky one for you to solve because it appears to be erratic. The
debugging tips in the next section show you how to proceed.

Debugging an App with Xcode

With your buttons and code in place, you'll see that if you click the
navigation button in the first view controller, nothing seems to happen.
The first step in debugging is to use a breakpoint. This causes the app to
stop at a designated spot. The simplest way to proceed if you are not seeing
something happen that should happen is to set a breakpoint on the line of
code that is causing the problem (in this case, by not running). You set a
breakpoint by clicking in the gutter at the left of a line of code as shown in
Figure 12-12.

class SecondViewControlles: UlViesController {
et weak var label: UILabell

o fune wiesDidLead() {
]

Figure 12-12. Set a breakpoint

268

CHAPTER 12 GETTING INTO XCODE

Run the app again, click the navigation button, and wait for the
breakpoint to be triggered.

It won’t happen.

All of this and you have confirmed what you already saw, but now you
have added the fact that it’s not just that the notification isn’t acted on, it’s
never received.

In a case like this, a common practice is to back up. What should have
called the didReceiveNotificationResultText function?

Because this is a small snippet of code, the answer is right in front
of you on line 24: that’s where the notification observer is set up. Set a
breakpoint there and see what happens when you run the app again.

The result is the same: this line of code is not being called so the
observer is not set up.

At this point, you have to do a little thinking to figure out how that
can have happened. If you think or do research or ask colleagues about
this, you'll probably get the same answer from everyone: if the code is not
called, then the function that it is in is not being called (viewDidLoad). That
may make no sense because you can see the second view controller.

With both breakpoints still set, you can do some more experimenting.
What you'll find is that the second view controller’s viewDidLoad function
is called just before it is displayed. If you run the app and click the
navigation button in the first view controller, the observer is not yet set
up. Use the tab at the bottom of the view to switch to the second view
controller to force the view to load, and then go back to the first view
controller and try it again. You'll see that now the notification works
properly.

This is a very common problem (and a very common class of
problem). It is not limited to iOS or Cocoa: this type of problem and
debugging technique is common.

The solution is that the observer needs to be set up before a
notification is generated. This means that the observer has to be placed
in some part of the app that is present right at the beginning. You may

269

CHAPTER 12 GETTING INTO XCODE

consider making AppDelegate the place for the observer (and it is
commonly used to receive notifications for just this reason).

Summary

This chapter shows you the basics of Xcode so that you can get started
implementing the ideas and concepts of computer science in apps. Swift
playgrounds are an invaluable way of experimenting, but there are some
features that require more complex features that you need to start building
your own apps.

As noted, the concepts of debugging described in this chapter are
not unique to iOS or Cocoa. You can use then in most languages and
environments.

270

CHAPTER 13

Bringing in People

The field of computer science is often thought of in purely computer
hardware and software terms. Somewhere, we as a society need to look at
how people are involved because they are the users, creators, managers,
and funders of computer science projects.

This chapter looks at the people side of computer science with a focus
on the world of apps. Although the issues and principles described here
apply to projects that may appear not to involve people (interplanetary
space missions, control software for electric grids and generators), there are
people involved if only in the management and funding of those projects.

However, the focus in this chapter is more on the projects that you are
likely to work on with your knowledge of computer science. First is a quick
overview of the formal idea of what is and isn’t computable; then you’ll
find a list of the questions to ask and answer about a specific project you
may be developing. These are the questions that have to be resolved

Computability for People

The core of computer science is the idea of computability. Simply put,
computability is a problem that can be solved with systematic steps. This
is different from an algorithm in that algorithms tend to be focused on
smaller areas than the computability problems. Thus, the solution of a
computability problem may include one or more algorithms.

271
© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_13

CHAPTER 13 BRINGING IN PEOPLE

Note If you talk to various people, you’ll find out that there are
several candidates for “core” of computer science, and computability
is one of them. It is particularly useful now because a lot of the
current tools for teaching computer science to young people (even
preschoolers) focus on computability.

There are two basic types of computable problems:

e Decision problems. Given a collection of items, is an
item part of that collection or not? Is this invoice part of
the set of unpaid bills? Is the user ID authorized to log
in? These are problems with a yes-or-no answer.

o Function or computable problems. These are
problems that need to be calculated. What is the
product of X times Y?

Other types of computable problems are optimization problems (how
best to do something — often how best to compute the answer to one of
the two basic types given specific data) and search problems. Problems
are often decomposed into sub-problems so that even the most complex
problem can be broken into computable pieces.

The main reason for thinking about computable problems is to be
able to say with some confidence (and based on some logical analysis)
that a particular problem is or isn’t computable. That, after all, is the
first question people consider when they are thinking of putting their
knowledge of computer science to work: Can computer science help me
solve this problem?

272

CHAPTER 13 BRINGING IN PEOPLE

The Development Questions

You can find many guides to app development on the Web and in various
publications. The following six questions are the ones that need to be
answered at the beginning of any computer science project. If you can’t
answer these questions, you will sooner or later come to problems in your
project. Someone who is experienced in the use of computer science is
expected to be able to help put projects together. That may not be part of a
formal curriculum, but it is part of the real world. (If you talk to someone
about a potential job where “computer science” is one of the requirements,
a familiarity with the development process is usually as important as
knowledge of the terminology.)

The six questions may seem too simple to you if you're chomping at
the bit and wanting to write code, but they have to be answered before you
and others invest time, energy, and money in a project that is not clearly
fleshed out. More details of each question (including how to answer it) are
found later in this chapter.

Tip As you start to answer these questions, remember that you can
always change your mind, and, in fact, you should plan to change and
evolve your answers as any computer science project evolves.

Here are the six questions:
e What are you doing?

e Whois it for? Who will build it, use it, manage it,
maintain it, and fund it?

e Why are you building it? Why will people use it?

o When will the project take place? When will it start, and
when will it end?

273

CHAPTER 13 BRINGING IN PEOPLE

e Where will the project run? What device(s) will it run
on; will it require other computer resources such as a
web server or database?

o How will you know the results of the project?

What Are You Doing?

The project may be about building an app, but it could be about building
an open data resource so that other people can build apps that run on

the public data. Many people suggest that this question should be able

to be answered in 10 seconds (it’s sometimes called an elevator speech
suggesting that it's what you would say if you found yourself in an elevator
with your boss or someone else important and you have the amount of
time it takes the elevator to go one floor).

If a friend says, “What are you working on?,’” most of the time the
answer should be only a few seconds long. It is absolutely amazing how
hard it is for many people to answer that question. If you can’t describe
the project simply, chances are you can’t implement it. Even the most
complicated projects can be summarized: land an unmanned spacecraft
on Mars. That’s a simple description of a very complicated (and successful)
set of missions.

Who Will Be Involved?

Who will do the work on the project, and who will use the end result? Are
you building an app for your own benefit so you learn how to build an app
and build your portfolio of projects? Is it a project for a job you have or
want to have? Will the users be adept users of mobile devices (if that’s what
you're using) or will they be people who have 400 games on their mobile
device but don’t know how to change Settings? Will they be people who
are adept at using mobile devices but have never used a desk- or laptop

274

CHAPTER 13 BRINGING IN PEOPLE

personal computer? (Yes, the number of people without experience with
personal computers is growing.)

Who will manage or lead the project? In many projects, a team works
together. More and more we are seeing collaborative cross-disciplinary
projects that benefit from the structured interaction of people from
different fields. If you're not familiar with data science and the projects
that use it, you might look for references to data science on the Web.
There are many examples of successful projects, most of which involve the
development or use of computer science technologies.

Why Will People Be Involved?

This boils down to the benefits that people will derive from the project. Are
they working on it to get a grade, get a job, make money? The motivations
for people who will use the project are typically different from the
motivations of people who develop it.

When Will It Happen?

This is actually one of the most difficult questions to answer. In the non-
digital world, it is pretty easy to determine when a project is finished: a
dignitary cuts the ribbon, a band plays, and the bridge is open. Everyone
can see that.

Software isn’t visible. In the old days of shrink-wrapped software,
people could see the packages in a store, and that certainly made the
project seem complete. Determining when the project happens requires
you to pull together the answers for What, Who, and Why along with any
changes you have made.

There’s a new perspective on What Are You Doing? With the additional
information you have from the previous questions, now that question can
be refined: what are you delivering?

275

CHAPTER 13 BRINGING IN PEOPLE

In the world of product development (and especially software
development), a common phrase is minimum viable product or MVP.
There are various interpretations of this phrase, but it generally is taken to
mean something that runs and performs the basic functions you expect in
the final product.

This may mean that error messages are not complete (which may
mean that the app may crash if not used carefully). It may mean that some
options are not yet implemented. But it means that you can show someone
what “it” is without using a slide presentation: there is something that will
run.

One interpretation of minimal viable product is that it can be — or is
being — sold. Sometimes it’s sold as an introductory or preview version
(even if the purchase price is free), but there is something there that works.

As you start to decide when you will have a basic product, there are
now a set of additional questions to answer. Basically, for most computer
science projects, you will be looking at a sequence of deliverables. (There
may be early-stage deliverables on a project such as a project proposal, a
slide presentation, and the like, but those are not yet something that runs.)

Depending on what you are building, you have a variety of options.
Here is an overview of the options, but you can have many, many others.
This just gives you an idea of the possibilities for delivering your work.

You can plan on versions of an app or database (or any other computer
science project). Typically, these versions are numbered 1, 2, 3... Intermediate
versions can be numbered. It is not uncommon for a first release to be Version
1. It may quickly be followed by Version 1.1, which might contain some fixes
for typos and other problems. You may continue on until Version 1 is stable.
At that point, it’s time to start thinking about Version 2.

As you move along, you can start to create a road map so that you have
a sense of what your versions will be. This road map and schedule will turn
into your project management tool. Typically the main versions (1, 2, 3)
and perhaps major subdivisions (1.1, 2.3, etc.) are tied to marketing efforts
(if they are apply). These milestones may also be tied to an academic

276

CHAPTER 13 BRINGING IN PEOPLE

calendar, milestones for funding (grant or investment), or other dates.
Remember that once a milestone is attached to a date such as an academic
calendar or a payment, it is no longer totally under the control of the
computer science staff.

There’s another aspect to When for you to consider. Once the project
is stable, will it be used on a regular basis? If you are building a database
to be maintained with products that will be popular around the year-end
holidays, your critical time span for updating the database might be July
(a typical lead time for year-end holiday data preparation). Plan what will
be happening to and with your app, database, or other project.

Where Will the Project Run?

Although software may be imaginary, it needs devices on which to run.
You have two major decisions about where you work will run. If it involves
data that must be stored in a centralized location, the common practice

is to host it on a web server; apps and websites can access it using the
common REST protocol. There is typically a cost for that storage, but it
can usually be managed fairly reasonable. Of course, if your project is for
an organization that already has web storage available (a corporation,
university, or private business), you may not have to worry.

Cloud platforms such as Amazon Web Services, Azure, and IBM let you
use and easily configure cloud storage. These platforms are designed to
react quickly to increased usage as a client suddenly needs more (or less)
storage.

If you are building an app, you need to decide which platform it will
run on. At the moment, there are four major mobile platforms:

e i0S

¢ Android
e Windows
e Web

277

CHAPTER 13 BRINGING IN PEOPLE

Some apps must run on all of those platforms (think of an online
banking app). Others can run on just one of them. In many cases, one
platform is picked to start with. (Sort of a variation on minimal viable
product.) Once it is running, it is possible to get feedback and, if necessary,
additional support for further work on the project.

Microsoft has a Xamarin product that interests many people. It is
based on .NET and C#. The goal is the elusive write once/run anywhere
dream so that you can write code for i0OS, Android, Windows, or macOS
and have it run anywhere. The challenge with these strategies is that as
modifications are made to the target systems, the combined system (like
Xamarin) tends to lag behind. For many, many purposes, this is a very
useful way of working. For others, the lack of contemporaneous support for
the latest native OS features is a serious problem.

Regardless of your opinion, if you want to be a guide through the world
of computer science to colleagues and clients, you need to understand the
cross-platform and multi-platform issues.

How Will You Know the Results?

If you've decided what you're doing, who you're doing it for, why you're
doing it, as well as when and where it will be used, you almost have the
project plan for a computer science project mapped out. All that remains is
to determine how to measure the status and success of the project.
Interestingly enough, this question that seems so obvious to many
people is just as difficult for people to answer as the first one (what are you
doing?). Once again, this is a question that didn’t really matter too much
in the non-digital world where you could see the results of your labors.
You can measure sales or downloads of apps, but is that what you want?
If you're working on an app that is designed to increase sales at a brick-
and-mortar store, the downloads of the app don’t matter nearly as much
as the sales in the stores. If you are building a database of holiday gifts,
the most obvious metric is the sales of those gifts. The web is littered with

278

CHAPTER 13 BRINGING IN PEOPLE

abandoned shopping carts on e-commerce sites (an oft-cited statistic is
around 67% of shopping carts are abandoned, but that is from 2014 and
online shopping sites are trying to bring that number down with new
interface tools).

A major benefit of online app distribution such as the App Store is the
wealth of data that is generated. (You can find a great deal of it on App
Annie — https://www.appannie.com.) Many people find all those data
incredibly useful, but if you really want to use it well, look at the data that
will be available to you in the App Store and other metrics like App Annie
and visitors to websites and databases. Look at what will be available and
plan your results strategy. Don’t wait until you have the data to decide
what to do with it: set up your analysis right from the start.

That way, you can track your results.

Summary

This chapter shows you how computer science can fit into projects that you
work on in other disciplines. As the world of apps takes shape (remember
the App Store opened only in July 2008, less than 10 years before this book
is being written), it is expected that people who know computer science
know both the technology and the ways in which it can be used.

279

https://www.appannie.com/

CHAPTER 14

Graphics and
Visualization
Techniques and
Problems

You have seen examples of code, Xcode, and a storyboard in Chapters 11
and 12. In those cases as well as in the Swift playgrounds in other chapters,
you can see code and principles of design and implementation. This
chapter is different in that it does not focus on how to do one thing.

Rather, this chapter walks through a real-life sequence of implementation
questions and solutions. You can see how an interface evolves and how

to look at it not as just a pretty picture but as something that is useful in
conveying information and helping people work with an app that becomes
useful to them.

281
© Jesse Feiler 2018
]. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_14

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

Introducing Utility Smart

The case study in this chapter is real. It traces the evolution of the interface
of Utility Smart, an app designed to help people develop awareness of
the natural resources that they use and to moderate their use of those
resources.

The app starts from a simple idea: pose questions about recent
use of resources to people and let them answer using sliders. There is
background information that people can browse for more information, but
the heart of the app is the sliders.

The data is saved on the device, and it can be plotted on a graph.
The data is sharable using various technologies such as email and
AirDrop. It was built for Swift and Cocoa Touch by Jesse Feiler. The Utility
Smart project is led by Professor Curt Gervich of the Center for Earth
and Environmental Science at State University of New York College at
Plattsburgh. (If you want to see it in action, it is a free download from the
App Store at http://bit.ly/UtilitySmart.)

Beginning the App (Utility Smart 1)

Using the basic questions from Chapter 13, we began by thinking about
what we wanted to do. The point of the sliders was to provide a simple
interface to let people enter their observed and behavioral data in less
than a minute. Figure 14-1 shows the first iteration of the app. (Note that
this is Version 1.0 of Utility Smart; it is no longer available in the App Store
because it has been replaced with the later versions shown in this chapter.)

282

http://bit.ly/UtilitySmart

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

Carrier 9:35 AM -

|—_T—| Save

I'm indoors and I'm feeling...

Shivering Sweating
The heat is...
Off Blasting

The windows are...

Closed Wide Ooen
Layers I'm wearing...

Shirt Sweater Shirt + Sweater More

olnl

rrent Conditions

=_' 1'\;‘\.:':-)

Figure 14-1. Sliders, version 1

To provide for flexibility, note that the interface uses a navigation
controller and navigation item that provides the bar at the top of the
window with Share button (left), and Save button (right). It is embedded in
a tab bar controller (note the tabs at the bottom).

Note The navigation controller provides the bar at the top of the
window; the navigation item, which is the lower part of the navigation
controller, is where the buttons and title are located.

283

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

This type of user interface is flexible because it’s easy to add up to
five tabs at the bottom, and, with the addition of more buttons in the
navigation controller at the top, you easily have a variety of destinations
from any view in the app.

Utility Smart has run on all iOS devices including iPad from the
beginning, but many developers find it easier to work from the small
devices and scale up than the reverse. That is the case here: the basic
development is done on iPhone; Auto Layout is used for refinements.

The sliders are a useful part of the Cocoa Touch framework, and it’s
not difficult to reinforce the meaning of the settings by adjusting the
background color to reflect the value of the slider. The code is shown later
in this chapter, and the result is shown in Figure 14-2.

284

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

Carrier 115 PM -

m Save

I'm indoors and I'm feeling...

Shivering Sweating
The heat is...

off Blasting

The windows are...

Closed Wide Open

o

§ oflnll L&

Current Conditions

Figure 14-2. Set background color based on slider value

The interface you see in Figure 14-2 is quite impressive to demonstrate:
you slide the slider back and forth and the background color changes
(from red to green to red) to reflect the environmental impact. It’s very
impressive.

And not very subtle. Although we are working with small devices, their
screens are powerful and, with today’s resolutions, you don’t need such
blunt tools to get peoples’ attention. Figure 14-3 shows the next iteration. It
actually uses the same code based on the slider values; this time, instead of
changing the background color of the slider view, the background color of
the text is changed. In addition, the navigation bar’s color is changed to a
standard color for all of the app screens.

285

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

I'm recycling...

5+ bing

I'm throwing out 6.7 bagis)

Mol 10+ bags

The windows level is 34....
Clased Wide Dpen

Layers I'm wearing...
O

“Turn the heat down, don't open a window!”

ollnl j%' @

Current Choices Ecoliary Plattshurgh Info

Figure 14-3. Text backgrounds change

There is space on the view for comments to be shown to encourage
positive behaviors. (This is in addition to the colors of the text
background.)

As you work with interfaces, you'll soon learn the cardinal rule: there
is never enough space. (If you are designing a sign for the Goodyear blimp,
there’s not enough space.)

Figure 14-4 shows the introductory screen of Utility Smart 1.0 with
scrolling text that extends beyond the window. In addition to not having

286

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

enough room for all the text, project team discussions brought up the fact
that there really should be two types of information:

o Information about the resource as shown in Figure 14-4
is one type of information.

e Asecond type of information — tips or advice —
can help people learn what they can do to help use
resources wisely.

In the last day I've used the reycling bin...

MNat at all 10+ times
In the last day I've used the trash bin...

Mat at all 10+ times
The heat is...

o Blasti

The windows are...

Closed Wide Open
Layers I'm wearing...
One M,

¥

Report your utility choices by using the sliders.
Tell Utility Smart about how you're recycling
and disposing of trash, and how you're using
electricity. Save your choices in your EcoDiary.
Utility Smart will cheer you on when you report
smart utility choices and give you feedback to
help you improve your decisions when it senses
you need assistance.

If you're chilly, reach for a sweater instead of
the thermostat. If you're comfortable, that's
great, but can you turn down the heat, put a
sweatshirt on, and be just as comfy?
Encourage your friends to be Utility Smart by
sharina vour results over Facebook and Twitter.

ol ‘) @

Cumrent Choices EcoDiary. Flattshurgh Infa. Preview

Figure 14-4. Not enough space...

287

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

It would be nice to have more space and to be able to differentiate
between the two types of information. By emphasizing the different types
of information in this and other cases, you can make it more usable for

the user.

Refining the App (Utility Smart 2)

It’s very common that as an app like this evolves, you have to stop
complaining about not having enough space and do something about
it. The solution for Utility Smart 2 is to break one aspect of the interface.
Instead of putting all the sliders on one screen, if you split them apart with
one slider per screen, you have much more space to work with. You lose
the ability to see everything all at once, but you can have more space for
information.

That is the approach taken in Utility Smart 2. Figure 14-5 shows a single
slider.

288

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

Recycling and Waste

Recycling

In the last day I've used the recycling bin...7

Nat at all 10+ times

9/25/17, 6:20 AM 79

olll 2 ®
Infa.

Current Choices EcoDiary Flattshurgh Preview

Figure 14-5. One slider per page

There’s much more space now for background information. Because
the sliders are no longer on one screen, it doesn’t make too much sense
to share one slider’s data, so that frees up the space at the left of the
navigation item. It can be replaced with an Info button as you see in
Figure 14-5. That button can be connected in the storyboard to a popover
for a tip as you see in Figure 14-6.

289

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

Tip
Think of suggestions to add to help

people use utility resources more
wisely.

} =10+ times

9/25/17, 6:20 AM 79

ofiol ‘) @

Current Cholces. EcoDiary. Plattshurgh Infa Preview

Figure 14-6. Tip popover

This is a much more efficient use of space. It's more elegant and it is
much more extensible for more information. Because popover views are
full-fledged views, if you wanted to come back and put a video into a tip
popover, that’s easy to do.

One of the important lessons to learn in computer science is to
constantly remember how you can implement features that have room for
extension and expansion.

Another vital lesson to learn is that you can’t design a good interface
sitting at your desk. In fact, as a developer, you probably know too much
about what the app can do to be able to build a useful interface for people

290

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

who have never seen it before (or for people who have seen it before but
approach it from a different perspective).

Figure 14-7 shows Utility Smart team members Curt Gervich, Maeve
Sherry, and Michael Otton sharing interface ideas and reactions with a
science class at Plattsburgh High School taught by Sonal Patel-Dame.
Trying out ideas and suggestions with a broad range of users and potential
users can help you refine your interface.

Figure 14-7. Utility Smart 2 interface brainstorming session

Code Snippets

The code to implement parts of this interface is simple because it uses
some very basic Cocoa Touch tools.

291

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

Creating a Popover: Code

The popover will be presented from a view controller. As is usually the
case, you create a subclass of UIViewController. The important code is
shown in Listing 14-1.

Here are the steps to implement the popover in the view controller:

o Make the view controller a
UIPopoverPresentationControllerDelegate in the
class declaration.

o Create the popover in the storyboard (shown in
the following section).

o Implement prepare(for segue:) for the popover.

e Add adaptivePresentationStyle (for controller:)
to manage popover size.

Listing 14-1. Creating a popover
import UIKit

class NowPageViewController: UIViewController,
UIPopoverPresentationControllerDelegate {

. code omitted

override func prepare(for segue: UIStoryboardSegue,
sender: Any?) {
switch segue.identifier! {
case "tipPopoverSegue":
segue.destination.popoverPresentationController!
.delegate = self
default: break

}
}

292

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

func adaptivePresentationStyle(for controller:
UIPresentationController, traitCollection: UITraitCollection)
-> UIModalPresentationStyle

{

return .none

. code omitted

Creating a Popover: Storyboard

In your storyboard, add a new view controller as you see in Figure 14-8. In
Figure 14-8 it has a title (label) and a text view. Select it and choose the Size
inspector in the utilities are. Set it to Freeform. Dimensions of 300x400 are
a good starting place for a popover.

RN

Figure 14-8. Set popover size

Control-drag from the view controller to the popover to create a segue.
Next, highlight the segue you have created as shown in Figure 14-9.

293

CHAPTER 14 GRAPHICS AND VISUALIZATION TECHNIQUES AND PROBLEMS

[T st - " W [=H=M=]

Figure 14-9. Provide a name for the segue

With the segue highlighted, click the Attributes inspector and
name it. The name must match the name in prepareForSegue code —
tipPopoverSegue in this example.

That should create the popover for you.

Summary

The issues of visualization and interface creation are best resolved with
an iterative process and with input from as many people as possible. One
caution: don’t ask for interface advice directly, because people will give
you answers based on other things they have seen. Watch what they do
and try to do. See what confuses them. If you talk to them, talk to them
about actions and meaning: it’s your job to figure out what things should
look like.

294

Index

A

Abstractions
patterns and, 9
validation, 15-16
Algorithms
building blocks of apps and
systems, 49
concepts, 52
design patterns, 53
functions, 53
implementation
addition, 62-66
number table, 56, 58-59, 61
numerology, 54-55
numerology, 51-52
objects, 53
purpose of, 50
sequences of actions, 49
Arrays
adding and deleting
elements, 109-111
basic terminology, 96
concepts, 95
declaration and creation
add (), 99
elements, 100
error message, 99
initialization, 100

© Jesse Feiler 2018

initializer syntax, 100
literals, 101
Swift, 98
variables, 98
developers and designers, 95
elements, 94, 97
enhancements, 95
features, 95
finding, elements, 105-108
looping, 111
modification, var array
editing, 102-104
structure, 102
types, 102
UlTableViewController, 102
multi-dimensional, 104
ordered lists, 94
sorting, 95
Swift, 95
Swift arrays and types, 98

Assembler, 23

Blocks fit in, 234
Button

action, 236
add, 238
buttonAction, 241

295

J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4

https://doi.org/10.1007/978-1-4842-3066-4

INDEX

Button (cont.)
code, 241
@IBAction, 241
implementation, 239
and label, 239
notification
add, 242
add label, 243
basics, 245
broadcast, 245
code, 243-244
components, 245
navigation, 244
observation, 247
posting, 246
view controller, 242
Tabbed App, 237

C

Code snippets
code, popover, 292-293
storyboard, 293-294
Coding
actions and data, 22
assembler, 23
compilers, 23
compiling and interpreting, 25
creation, action, 20-21
data usage, 21
design, 23
environment, 25
process, 25

296

programming languages, 24
programming paradigms, 35
Swift playgrounds, 26-27,
32-33, 35
type of, 19
Compilers, 23
Components
advantages
manageability, 209
reusability, 209
Agile, 208
app development, 208
basic, 231
blocks and closures, 216
closure usage, 217-218
divide and conquer, 207
functions, Swift
body of, 222-223
complete, 226
creation, 220-221
declaration, 225
errors, 227
iPad, 219
name, 222
outcomes, 230-231
parameters, 224, 228-230
return value, 226
simple, 219
small, 226
Tap func, 220
values, 223
variables, 227
larger building blocks, 215

projects development
classes, 214-215
code, 213
data inputs and
outputs, 212
documentation, 213
names, 211-212
side effects and
requirements, 213
recursion, 219
specific, 208
theories and rules, 208
Computer science
basic concepts and practices, 5
challenges, 2
code, 6
components, 3
developers (see Developers
fundamental tasks)
different tools and
techniques, 17
elements, 1
principles and techniques, 2
recognize patterns
abstractions, 8, 9
West front of Notre Dame,
Paris, 7
review, 16
Swift Playgrounds tool, 3-5
term, 1
Concurrent programming, 47
Control flow management
apps and programs, 144
C if statement, 152

INDEX

compound statements, Swift
conditional test, 152
dangling bracket, 155
dangling else bracket, 155
embedded, 154
embedded bracket, 155
embedded else, 156
if statement, 153
indentation options, 153
Xcode preferences, 154
condition, 151
Control Center, 145
dangerous programming
technique, 149
enumerated types
Swift enums, 167-168,
170-171
Swift’s approach, 166
values, 165-166
exceptions, 146
line of code, 144
programming languages, 146
repetitions and strides
(see Repetitions)
structured programming/
structured code, 150
Swift if statement, 151
Swift playground
with line numbers hidden, 148
with lines numbers, 147
switching (see Switching control)
ternary operators, 156, 157
transfer, 150
Xcode preferences, 148

297

INDEX

D,EF

Data

app, 182, 206
charge
computers and computer
software, 189
guidelines and
standards, 189
integrity (see Data integrity)
ownership, 189-190
developers, 183
development, 179
functions, 180
management (see Data
management)
managers, 181
record, 182
store (see Storing and
sharing data)
Swift optionals
binding, 204
declaration, 202
missing data, 201
playground or Xcode, 203
test, 202
unwrapping, 205
value, 203
variable, 204
wrapped, 206

Data collections

arrays (see Arrays)
classes, 94
dictionaries (see Dictionaries)

298

modern programming
languages, 93
scalar/variable, 93
sets (see Sets)
storing, 93
types, 92
Data integrity
checksums, 191
moving data, 191
stored data, 190
timestamps and data
markers, 192-193
tools, 191
version control, 193
Data management
external data, 194-195
formatting and structuring
JSON with Swift 4, 197-201
storage protocols, 195, 197
Data types
basic
binary number notation, 133
computer languages, 131
floating point numbers, 132
integers, 131
numeric storage, 131
storing strings and
characters, 134
bits and bytes, 123, 124
concept of, 123
context, Swif, Xcode, 125
creation, new types
arrays, 136
constant/variable, 134

inferred type, 134
Int as string, 138
inventory array, 137
productName, 135
Swift, 135
typealias syntax, 135
languages, 141
safety, 125
stacks
and heaps, 129-130
and queues, 128-129
storing data,
runtime, 126-127
tuples, 138-141
Declarative programming, 46-47
Design patterns, algorithms, 53
Developers fundamental tasks
decomposition, 14
formulation, computational
problem, 10-11
modeling, problem/process, 14
non-computational
problems, 13
project and goal, 12-13
rearranging and recomposing, 15
recognizing and describing
problem, 11
validating abstractions, 15-16
Dictionaries
array, 116
basic dictionary
terminology, 117
declaration and creation, 118

INDEX

elements, add and delete, 120
functions, 119
Key and Value, 117
Swift playgrounds
reports, 118

G H

Graphics and visualization
techniques
background information, 282
beginning the App (Utility
Smart)
background color, slider
value, 284-285
information types, 287
iOS devices, 284
navigation controller and
navigation, 283
positive behaviors, 286
sliders, version 1, 283
space, 287
text, 285-286
code snippets, 291, 293-294
data, 282
iterative process, 294
refining the App (Utility Smart)
slider, 288-289
space, background
information, 289
team members, 291
tip popover, 290
views, 290

299

INDEX

LJ, KL
Imperative and procedural
programming, 46

Managing control flow
actions and messaging, 235
creation, repetition loop (see
Repetition loop, creation)
declarative/functional
programming, 69
programming, 69
random numbers (see Multi-
step control flow project
with random numbers)
Multi-step control flow project with
random numbers
arc4random_uniform(_:), 71
array, 70
built-in Swift functions, 71
computer science processes, 70
conversion and manipulation, 71
creation
copy, Answers, 74
duplicate, answers
playground, 72
Get button, 73
interactive playground, 77
multiple random numbers, 84
New Playground +
button, 72
open Answers, 75
purpose of, 83

300

run Answers, 76
generations, 70
playground code, 77-78, 80, 82

N

Number table algorithm
associative array, 57
conditional cast operator, 61
conversion, 56
data, 56
Hashable protocol, 57
keys and values, 57
numerology dictionary, 58-59
storage approach, 56
Swift dictionaries, 57
testing, 61
upper- and lowercase

letters, 59-61
variables, 58

O

Object-oriented programming
algorithms, 53
classes, 41
concepts, 41
declarations, 42
House class, 42
instructions and data, 41
languages, 46
late 1950s, 41
methods, 41
outcomes, 43-44

playground viewer, 43
runtime construction, 41
viewers, 45

Ownership, data, 189-190

PQ

People knowledge, projects
computability, 271-272
development questions

determination, 275
elevator speech, 274
involvement, 274

new perspective, 275
outcomes, 278-279
planning, 276

product development, 276

run, cloud platforms, 277-278

Programming paradigms
coding, 37
concurrent, 47
declarative, 46-47
imperative and procedural, 46

implementation, languages, 37

object-oriented (see Object-
oriented programming)
structured, 38, 40

R

Repetition loop
creation
code, 85-86
control, 86-89

INDEX

structures, 85
types, 85
Repetitions
for-in loops
arrays and
dictionaries, 174-177
collections, 173-174
explore, 174
and strides, 177
variations, 171
while and repeat-while
loops, 172-173

S

Scalar data, 93
Sets
basic set terminology, 113
concepts, 112
elements
adding and deleting, 115
function, 114
identification, 113
swift sets and types, 114
features, 113
set theory operations, 116
Swift apps, 112
Storing and sharing data
app, 183
data usage, 183
Internet service provider, 183
locations, 187-188
nonpersistent app, 185
persistent app, 185-186

301

INDEX

Storing and sharing data (cont.)
persistent data outside
of app, 187
persistent storage, 184
places, 184
Structured programming, 38, 40
Swift playgrounds
creation, 27
delete, 35
feature, 26
locations, 33
sharing options, 34
view, 32
Switching control
advanced Switch case elements
range, 161-163
if statement, 158
pseudocode, 158
statement, 159-160
Swift syntax, 160-161
where clause, 163-165

T, U
Ternary operators, 156, 158
Timestamps, 192-193
Tuples
code, 139
declaration, 140
function, 139
Python and C#, 139
sequence of types, 139

302

vV, W

Validation, abstractions, 15-16

XY Z
Xcode

Apple frameworks, 249

Apple’s IDE, 249

app review, 258

App Store, 255

basics, 270

browse, 259

code and interface
connection, 264
elements, 262
observe notification, 267
post notification, 266
storyboard, 262
view controller

connections, 264, 265

creation, new project, 256

debugging, 268-269

features, 270

identifiers, 255

process
capabilities, 254-255
choose, 254
code name, 252-253
description, 251
environments, 253
graphics, 254

version, 254
write an app, 250
project test with
modifications, 268
project test without
modifications

INDEX

controls, 259

Tabs.xcodeproj, 259

View menu, 260
Tabbed App, 257
Version 9.0, 9A235, 256
writing app, 250

303

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Thinking Computationally
	 Computer Science Today
	 Using Swift Playgrounds
	 Basic Concepts and Practices of Computer Science Today
	 Recognizing Patterns
	 Using Abstractions
	 Combining Patterns and Abstractions for Development

	 Fundamental Tasks for Developers
	 Formulating a Computational Problem
	 Recognizing and Describing the Problem
	 Defining a Project and Goal
	What Isn’t a Computational Problem

	 Modeling the Problem or Process
	 Practicing Decomposition
	 Rearranging and Recomposing the Project Pieces
	 Validating Abstractions

	 Here Comes the Code

	Chapter 2: Writing Code and Using Swift Playgrounds
	 The Basics of Writing Code
	 Actions and Data
	 Creating an Action
	 Using Data

	 Combining Actions and Data
	 What Happens Behind the Code
	 Compiling and Interpreting Code
	 Using Swift Playgrounds
	 Moving On to Paradigms

	Chapter 3: Exploring Programming Paradigms
	 Structured Programming
	 Object-Oriented Programming
	 Imperative Programming (Procedural Programming)
	 Declarative Programming
	 Concurrent Programming

	Chapter 4: Using Algorithms
	 Considering the Purpose of Algorithms
	 Creating a Numerology Algorithm
	 Looking Carefully at Algorithms
	 Functions
	 Objects
	 Design Patterns
	 Implementing the Numerology Algorithm in Swift
	 Implementing the Number Table
	 Implementing the Addition

	 Summary

	Chapter 5: Managing Control Flow: Repetition
	 Getting Ready for a Multi-Step Control Flow Project with Random Numbers
	 Creating a Random Number Playground
	 Writing the Playground Code

	 Creating Many Random Numbers
	 Create a Repetition Loop
	 Creating the Code to Repeat
	 Creating the Repetition Control (Limit)

	 Summary

	Chapter 6: Working with Data: Collections
	 Using Types
	 Scalar Data
	 Moving On to Collected Data
	 Using Arrays
	 Basic Terminology
	 Indexing Array Elements
	 Swift Arrays and Types
	 Declaring and Creating Arrays
	 Modifying a var array
	 Multi-Dimensional Arrays
	 Finding Array Elements
	 Adding and Deleting Array Elements
	 Looping Through an Array

	 Using Sets
	 Basic Set Terminology
	 Identifying and Finding Set Elements
	 Declaring and Creating Swift Sets and Types

	 Adding and Deleting Set Elements
	 Working with Sets

	 Using Dictionaries
	 Basic Dictionary Terminology
	 Declaring and Creating a Dictionary
	 Adding and Deleting Dictionary Elements

	 Summary

	Chapter 7: Working with Data: Types
	 Why Types Matter
	 Looking at Stacks and Heaps
	 Storing Data at Runtime
	 Stacks and Queues
	 Heaps

	 Basic Types
	 Numeric Storage
	 Using Integers
	 Using Floating Point Numbers
	 Storing Strings and Characters

	 Creating New Types
	 Working with Tuples
	 Summary

	Chapter 8: Managing Control Flow: Conditionals, Switches, and Enumerations
	 What’s Next?
	 Using Go To Statements…Or Not
	 Using Conditionals
	 Using Compound Statements in Swift
	 Ternary Operators

	 Switching Control
	 Comparing Swift Switches to Other Languages
	 Exploring the Swift Switch Syntax
	 Using Advanced Switch Case Elements: Ranges
	 Using Advanced Switch Case Elements: Where Clauses

	 Using Enumerated Types
	 Swift’s Approach to Enumerated Types
	 Using Swift Enums with Switch Statements

	 Exploring Repetitions and Strides
	 While and Repeat-While Loops
	 For-in Loops
	 Iterating Over a Collection
	 Looping Through Indexes (Arrays) and Keys (Dictionaries)

	 Using Strides

	 Summary

	Chapter 9: Storing Data and Sharing Data
	 What Is the Data?
	 Where Is the Data Stored?
	 Storing Data in Nonpersistent App Storage
	 Storing Data in Persistent App Storage
	 Storing Persistent Data Outside of App Storage on a Device
	 Storing Data in Shared Storage Locations

	 Who Is in Charge of the Data?
	 Ownership of Data
	 Data Integrity
	 Using Checksums
	 Using Timestamps and Other Data Markers
	 Version Control

	 How Is the Data Managed
	 Managing External Data
	 Formatting and Structuring Data
	 Using JSON with Swift 4

	 Handling Data That Is Not There: Swift Optionals
	 Summary

	Chapter 10: Building Components
	 Why Build Components
	 Advantages of Components: Reusability
	 Advantages of Components: Manageability

	 The Basic Components of Development Projects
	 Subroutines, Functions, Procedures, and Methods
	 Naming Components
	 Data Inputs
	 Data Outputs
	 Implementation – Code
	 Implementation – Documentation
	 Side Effects and Requirements

	 Classes

	 Larger Building Blocks
	 Looking at Blocks and Recursion
	 Terminology: Blocks and Closures
	 Using a Closure
	 Recursion

	 Building a Function in Swift
	 Summary

	Chapter 11: Using Events to Guide Actions
	 Where Blocks Fit In
	 Using Actions and Messaging for Managing Flow Control Summary
	 Passing a Button Press/Tap/Click On to… Somewhere
	 Implement a Button with Known Action
	 Implement a Button with a Notification
	 Notification Basics
	 Posting a Notification
	 Observing a Notification

	 Summary

	Chapter 12: Getting into Xcode
	 How to Write Software
	 Developing an App with Xcode
	 Setting Up the Project
	 Testing the Project (without Modifications)
	 Adding the Code and Interface
	 Testing the Project (with Modifications)

	 Debugging an App with Xcode
	 Summary

	Chapter 13: Bringing in People
	 Computability for People
	 The Development Questions
	 What Are You Doing?
	 Who Will Be Involved?
	 Why Will People Be Involved?
	 When Will It Happen?
	 Where Will the Project Run?
	 How Will You Know the Results?

	 Summary

	Chapter 14: Graphics and Visualization Techniques and Problems
	 Introducing Utility Smart
	 Beginning the App (Utility Smart 1)
	 Refining the App (Utility Smart 2)
	 Code Snippets
	 Creating a Popover: Code
	 Creating a Popover: Storyboard

	 Summary

	Index

