

tmux	2

Productive	Mouse-Free	Development

by	Brian	P.	Hogan

Version:	P1.0	(November	2016)

Copyright	©	2016	The	Pragmatic	Programmers,	LLC.	This	book	is	licensed	to	the	individual	who
purchased	it.	We	don't	copy-protect	it	because	that	would	limit	your	ability	to	use	it	for	your	own
purposes.	Please	don't	break	this	trust—you	can	use	this	across	all	of	your	devices	but	please	do	not
share	this	copy	with	other	members	of	your	team,	with	friends,	or	via	file	sharing	services.	Thanks.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	The	Pragmatic	Programmers,	LLC	was
aware	of	a	trademark	claim,	the	designations	have	been	printed	in	initial	capital	letters	or	in	all	capitals.
The	Pragmatic	Starter	Kit,	The	Pragmatic	Programmer,	Pragmatic	Programming,	Pragmatic	Bookshelf
and	the	linking	g	device	are	trademarks	of	The	Pragmatic	Programmers,	LLC.

Every	precaution	was	taken	in	the	preparation	of	this	book.	However,	the	publisher	assumes	no
responsibility	for	errors	or	omissions,	or	for	damages	that	may	result	from	the	use	of	information
(including	program	listings)	contained	herein.

About	the	Pragmatic	Bookshelf
The	Pragmatic	Bookshelf	is	an	agile	publishing	company.	We’re	here	because	we	want	to	improve	the
lives	of	developers.	We	do	this	by	creating	timely,	practical	titles,	written	by	programmers	for
programmers.

Our	Pragmatic	courses,	workshops,	and	other	products	can	help	you	and	your	team	create	better
software	and	have	more	fun.	For	more	information,	as	well	as	the	latest	Pragmatic	titles,	please	visit	us
at	http://pragprog.com.

Our	ebooks	do	not	contain	any	Digital	Restrictions	Management,	and	have	always	been	DRM-free.	We
pioneered	the	beta	book	concept,	where	you	can	purchase	and	read	a	book	while	it’s	still	being	written,
and	provide	feedback	to	the	author	to	help	make	a	better	book	for	everyone.	Free	resources	for	all
purchasers	include	source	code	downloads	(if	applicable),	errata	and	discussion	forums,	all	available	on
the	book's	home	page	at	pragprog.com.	We’re	here	to	make	your	life	easier.

New	Book	Announcements

Want	to	keep	up	on	our	latest	titles	and	announcements,	and	occasional	special	offers?	Just	create	an
account	on	pragprog.com	(an	email	address	and	a	password	is	all	it	takes)	and	select	the	checkbox	to
receive	newsletters.	You	can	also	follow	us	on	twitter	as	@pragprog.

About	Ebook	Formats

If	you	buy	directly	from	pragprog.com,	you	get	ebooks	in	all	available	formats	for	one	price.	You	can
synch	your	ebooks	amongst	all	your	devices	(including	iPhone/iPad,	Android,	laptops,	etc.)	via	Dropbox.
You	get	free	updates	for	the	life	of	the	edition.	And,	of	course,	you	can	always	come	back	and	re-
download	your	books	when	needed.	Ebooks	bought	from	the	Amazon	Kindle	store	are	subject	to
Amazon's	polices.	Limitations	in	Amazon's	file	format	may	cause	ebooks	to	display	differently	on
different	devices.	For	more	information,	please	see	our	FAQ	at	pragprog.com/frequently-asked-
questions/ebooks.	To	learn	more	about	this	book	and	access	the	free	resources,	go	to
https://pragprog.com/book/bhtmux2,	the	book's	homepage.

Thanks	for	your	continued	support,

Dave	Thomas	and	Andy	Hunt
The	Pragmatic	Programmers

The	team	that	produced	this	book	includes:	Susannah	Davidson	Pfalzer	(editor),
Nicole	Abramowitz	(copyeditor), Gilson	Graphics	(layout), Janet	Furlow	(producer)

For	customer	support,	please	contact	support@pragprog.com.

For	international	rights,	please	contact	rights@pragprog.com.

http://pragprog.com
https://pragprog.com
https://pragprog.com
https://pragprog.com/frequently-asked-questions/ebooks
https://pragprog.com/book/bhtmux2
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table	of	Contents

	 Acknowledgments

	 Preface
What	Is	tmux?
Who	Should	Read	This	Book
What’s	in	This	Book
Changes	in	the	Second	Edition
What	You	Need
Conventions
Online	Resources

1. Learning	the	Basics
Installing	tmux
Starting	tmux
The	Command	Prefix
Detaching	and	Attaching	Sessions
Working	with	Windows
Working	with	Panes
Working	with	Command	Mode
What’s	Next?
For	Future	Reference

2. Configuring	tmux
Introducing	the	.tmux.conf	File
Customizing	Keys,	Commands,	and	User	Input
Visual	Styling
Customizing	the	Status	Line’s	Content
What’s	Next?
For	Future	Reference

3. Scripting	Customized	tmux	Environments
Creating	a	Custom	Setup	with	tmux	Commands
Using	tmux	Configuration	for	Setup
Managing	Configuration	with	tmuxinator
What’s	Next?
For	Future	Reference

4. Working	With	Text	and	Buffers
Scrolling	Through	Output	with	Copy	Mode
Copying	and	Pasting	Text
Working	with	the	Clipboard	on	Linux
Using	OS	X	Clipboard	Commands
What’s	Next?
For	Future	Reference

5. Pair	Programming	with	tmux
Pairing	with	a	Shared	Account
Using	a	Shared	Account	and	Grouped	Sessions
Quickly	Pairing	with	tmate
Pairing	with	Separate	Accounts	and	Sockets
What’s	Next?
For	Future	Reference

6. Workflows
Working	Effectively	with	Panes	and	Windows
Managing	Sessions
tmux	and	Your	Operating	System
Extending	tmux	with	Plugins
What’s	Next?
For	Future	Reference

A1. Our	Configuration

Copyright	©	2016,	The	Pragmatic	Bookshelf.

What	readers	are	saying	about	tmux	2:
Productive	Mouse-Free	Development
A	must-have	book	for	anyone	that	uses	the	command	line	daily.	This	is	a	book	I	have	been
recommending	since	it	was	first	published,	and	I	will	definitely	recommend	it	again!

→ Jeff	Holland
Senior	software	engineer,	Ackmann	&	Dickenson

The	tricks	mentioned	in	this	book	completely	changed	my	workflow.	I	recommend	this	book	to
anyone	who	is	looking	to	improve	their	workflow	on	the	command	line.

→ Jacob	Chae
Software	engineer,	Assurant

The	author	always	has	something	amazing	in	store	for	you:	custom	commands	to	fire	up	your
development	environment,	customizing	it,	pair	programming,	and	many	use	cases.	This	book
makes	you	step	up	your	game	in	becoming	a	more	efficient	developer.

→ Peter	Perlepes
Software	engineer,	adaplo

I	had	zero	tmux	experience	before	picking	up	the	book,	and	I	could	use	tmux	in	my	day-to-day
routine	after	reading	the	book.

→Nick	McGinness
Software	engineer,	Direct	Supply

Acknowledgments
	

Thank	you	for	reading	this	book.	It’s	my	sincere	hope	that	this	book	will	help	you	get	better	at
what	you	do	by	making	you	faster	and	more	productive.

Thank	you,	Chris	Johnson,	for	initially	showing	me	what	tmux	was	all	about,	and	for	pointing	me
in	the	right	direction	with	my	initial	questions.	It	completely	changed	how	I	work,	and	it’s	what
motivated	me	to	share	this	amazing	tool	with	everyone.

Thank	you,	Dave	Thomas,	for	convincing	me	to	publish	the	first	edition	of	this	book.	I’m	very
proud	of	the	first	edition	and	how	many	people	it	helped.	And	thank	you,	Andy	Hunt	and	Janet
Furlow,	for	all	the	work	you	do	to	deliver	the	best	technical	books	out	there.

Thank	you,	Susannah	Pfalzer,	for	working	with	me	again.	You	challenged	me	once	again	to	grow
as	an	author,	and	this	book	and	I	are	better	for	it.

Thank	you,	Alessandro	Bahgat,	Jacob	Chae,	Jeff	Holland,	Michael	Hunter,	Sean	Lindsay,	Lokesh
Kumar	Makani,	Nick	McGinness,	Stephen	Orr,	Peter	Perlepes,	Charley	Stran,	and	Colin	Yates,
for	reviewing	this	book.	The	second	edition	is	more	clear	and	has	better	explanations	because	of
the	time	you	took	to	read	through	this	book	and	try	out	every	example.	Anything	that’s	still	broken
is	my	fault.

Thank	you	to	my	business	associates,	Mitch	Bullard,	Kevin	Gisi,	Alex	Henry,	Jeff	Holland,	Nick
LaMuro,	Austen	Ott,	Erich	Tesky,	Myles	Steinhauser,	Josh	Swan,	Chris	Warren,	and	Mike	Weber,
for	your	continued	support.

Thank	you,	Ana	and	Lisa,	for	your	love	and	inspiration.

Finally,	thank	you,	Carissa,	for	your	love	and	support.	Thank	you	for	all	you	do	for	our	family.

Copyright	©	2016,	The	Pragmatic	Bookshelf.

Preface
	

Your	mouse	is	slowing	you	down.

When	it	was	first	introduced,	the	mouse	created	a	new	way	for	people	to	interact	with	computers.
We	can	click,	double-click,	and	even	triple-click	to	open	documents,	switch	windows,	and	select
text.	And	thanks	to	trackpads,	we	can	even	swipe	and	use	gestures	to	interact	with	our
applications.	The	mouse,	along	with	graphical	interfaces,	made	computers	just	a	little	easier	to
use	for	the	average	person.	But	there’s	a	downside	to	the	mouse,	especially	for	programmers.

As	we	build	software,	we	work	with	multiple	programs	throughout	the	course	of	our	day.	A	web
developer,	for	example,	might	have	a	database	console,	a	web	server,	and	a	text	editor	running	at
the	same	time.	Switching	between	these	with	the	mouse	can	slow	you	down.	It	may	not	seem	like
much,	but	moving	your	hand	off	of	the	keyboard’s	home	row,	placing	it	on	the	mouse,	locating	the
pointer,	and	performing	the	task	can	eat	up	time	and	break	your	focus.	And	it	can	also	induce
strain	on	your	wrist,	arm,	or	shoulder.	That	repetitive	movement	of	reaching	for	your	mouse	can
cause	some	serious	discomfort	if	you’re	not	careful	about	how	you	hold	that	mouse.

Using	tmux,	you	can	create	an	environment	like	this,	right	in	your	terminal,	managed	entirely
without	a	mouse:

Using	tmux’s	windows,	you	can	easily	manage	a	text	editor,	a	database	console,	and	a	local	web
server	within	a	single	environment.	And	you	can	split	tmux	windows	into	sections,	so	multiple

apps	can	run	side	by	side.	This	means	you	can	run	a	text-based	browser,	an	IRC	client,	or	your
automated	tests	in	the	same	window	as	your	main	editor.

Best	of	all,	you	can	quickly	move	between	these	windows	and	panes	using	only	the	keyboard.
Over	time,	the	keystrokes	you	use	to	manage	your	environment	will	become	second	nature	to	you,
which	will	greatly	increase	both	your	concentration	and	your	productivity.

In	this	book,	you’ll	learn	how	to	configure,	use,	and	customize	tmux.	You’ll	learn	how	to	manage
multiple	programs	simultaneously,	write	scripts	to	create	custom	environments,	and	use	tmux	to
work	remotely	with	others.	With	tmux,	you	can	create	a	work	environment	that	keeps	almost
everything	you	need	at	your	fingertips.

What	Is	tmux?
tmux	is	a	terminal	multiplexer.	It	lets	you	use	a	single	environment	to	launch	multiple	terminals,
or	windows,	each	running	its	own	process	or	program.	For	example,	you	can	launch	tmux	and
load	up	the	Vim	text	editor.	You	can	then	create	a	new	window,	load	up	a	database	console,	and
switch	back	and	forth	between	these	programs	all	within	a	single	session.

If	you	use	a	modern	operating	system	and	a	terminal	that	has	tabs,	this	doesn’t	sound	like	anything
new.	But	running	multiple	programs	simultaneously	is	only	one	of	tmux’s	features.	You	can	divide
your	terminal	windows	into	horizontal	or	vertical	panes,	which	means	you	can	run	two	or	more
programs	on	the	same	screen	side	by	side.	And	you	can	do	it	all	without	using	the	mouse.

You	can	also	detach	from	a	session,	meaning	you	can	leave	your	environment	running	in	the
background.	If	you’ve	used	GNU-Screen	before,	you’re	familiar	with	this	feature.	In	many	ways,
tmux	is	like	GNU-Screen	with	a	lot	of	extra	features	and	a	much	simpler	configuration	system.
And	since	tmux	uses	a	client-server	model,	you	can	control	windows	and	panes	from	a	central
location,	or	even	jump	between	multiple	sessions	from	a	single	terminal	window.	This	client-
server	model	also	lets	you	create	scripts	and	interact	with	tmux	from	other	windows	or
applications.

Over	the	course	of	this	book,	we’ll	explore	all	of	these	features	and	more.

Who	Should	Read	This	Book
Whether	you’re	a	system	administrator	or	a	software	developer	who	spends	a	good	part	of	your
time	using	the	terminal	and	command-line	tools,	this	book	aims	to	help	you	work	faster.

If	you’re	a	software	developer,	you’ll	see	how	to	use	tmux	to	build	a	development	environment
that	can	make	working	with	multiple	terminal	sessions	a	breeze.	And	if	you’re	already
comfortable	using	Vim	or	Emacs,	you’ll	see	how	tmux	can	accelerate	your	workflow	even	more.

If	you’re	a	system	administrator	or	a	developer	who	spends	some	time	working	with	remote
servers,	you’ll	be	interested	in	how	you	can	leverage	tmux	to	create	a	persistent	dashboard	for
managing	or	monitoring	servers.

What’s	in	This	Book
This	book	will	show	you	how	to	incorporate	tmux	into	your	work	by	taking	you	through	its	basic
features	and	showing	you	how	you	might	apply	them	to	everyday	situations.

In	Chapter	1,	​Learning	the	Basics ​,	you’ll	learn	about	the	basic	features	of	tmux	as	you	create
sessions,	panes,	and	windows	and	learn	how	to	perform	basic	navigation.

In	Chapter	2,	​Configuring	tmux ​,	you’ll	redefine	many	of	the	default	keybindings	and	customize
how	tmux	looks.

In	Chapter	3,	​Scripting	Customized	tmux	Environments ​,	you’ll	script	your	own	development
environment	using	the	command-line	interface,	configuration	files,	and	the	tmuxinator	program.

After	that,	you’ll	work	with	text	in	Chapter	4,	​Working	With	Text	and	Buffers ​.	You’ll	use	the
keyboard	to	move	backwards	through	the	buffer,	select	and	copy	text,	and	work	with	multiple
paste	buffers.

Next,	in	Chapter	5,	​Pair	Programming	with	tmux ​,	you’ll	set	up	tmux	so	that	you	and	a	coworker
can	work	together	on	the	same	codebase	from	different	computers	using	tmux.

Finally,	Chapter	6,	​Workflows ​	covers	more	advanced	ways	to	manage	windows,	panes,	and
sessions,	and	shows	you	how	to	be	even	more	productive	with	tmux.

Changes	in	the	Second	Edition
This	new	edition	has	some	notable	changes	from	the	first	edition.	tmux	2.1	and	2.2	introduced
several	backwards-incompatible	changes	that	this	edition	addresses;	this	edition	also	introduces
some	new	options.	And	tmux	is	now	more	popular	than	it	was,	so	there	are	more	tools	and	tricks
you	can	use	to	improve	your	workflow.	Here’s	what’s	new:

All	examples	require	at	least	tmux	2.3.

This	book	now	covers	installation	on	Windows	10,	where	tmux	is	supported	under
Microsoft’s	Windows	Subsystem	for	Linux.

Chapter	2,	​Configuring	tmux ​	includes	more	options	for	identifying	the	active	pane,	uses
more	updated	methods	for	controlling	tmux’s	visual	styles,	and	removes	some	outdated
configuration	options	that	no	longer	work.

Chapter	3,	​Scripting	Customized	tmux	Environments ​	contains	updated	instructions	for
Tmuxinator	and	its	new	configuration	format,	as	well	as	information	on	how	to	export	tmux
scripts	from	Tmuxinator.

Chapter	4,	​Working	With	Text	and	Buffers ​	has	an	updated	method	for	getting	text	to	and	from
system	clipboards	on	Linux	and	Mac.

Chapter	5,	​Pair	Programming	with	tmux ​	now	includes	instructions	on	generating	an	SSH
key,	and	discusses	how	to	use	tmate	as	a	quick	alternative.

Chapter	6,	​Workflows ​	contains	several	new	sections:

​Opening	a	Pane	in	the	Current	Directory ​

​Keeping	Specific	Configuration	Separate ​

​Integrating	Seamlessly	with	Vim​

​Extending	tmux	with	Plugins ​

What	You	Need
In	order	to	use	tmux,	you’ll	need	a	computer	that	runs	Mac	OS	X,	Windows	10	with	Bash	support,
or	a	flavor	of	Unix	or	Linux.	Unfortunately,	tmux	doesn’t	run	under	the	regular	Windows
Command	Prompt	or	Powershell,	but	it	will	run	great	on	a	virtual	machine,	VPS,	or	shared
hosting	environment	running	Linux	or	FreeBSD.

You	should	also	have	a	good	grasp	of	using	command-line	tools	on	a	Linux	or	Unix	system.	We’ll
use	the	Bash	shell	in	this	book,	and	being	comfortable	with	creating	directories	and	text	files,	as
well	as	some	basic	scripting,	will	help	you	move	more	quickly	through	the	examples.

While	not	required,	experience	with	text	editors	such	as	Vim	or	Emacs	might	be	helpful.	tmux
works	much	the	same	way,	and	it	has	some	predefined	keyboard	shortcuts	that	you	may	find
familiar	if	you	use	one	of	these	text	editors.

Conventions
tmux	is	a	tool	that’s	driven	by	the	keyboard.	You’ll	encounter	many	keyboard	shortcuts	throughout
the	book.	Since	tmux	supports	both	lowercase	and	uppercase	keyboard	shortcuts,	it	may
sometimes	be	unclear	which	key	the	book	is	referencing.

To	keep	it	simple,	these	are	the	conventions	I’ve	used.

CTRL - b 	means	“press	the	 CTRL 	and	 b 	keys	simultaneously.”

CTRL - R 	means	you’ll	press	the	 CTRL 	and	 r 	keys	simultaneously,	but	you’ll	need	to	use	the
SHIFT 	key	to	produce	the	capital	“R.”	I	won’t	explicitly	show	the	 SHIFT 	key	in	any	of	these
keystrokes.

CTRL - b 	 d 	means	“press	the	 CTRL 	and	 b 	keys	simultaneously,	then	release,	and	then	press	 d .”
In	Chapter	1,	​Learning	the	Basics ​,	you’ll	learn	about	the	command	prefix,	which	will	use
this	notation,	but	shortened	to	 PREFIX 	 d .

I’ll	show	some	terminal	commands	throughout	the	book,	like

​	 ​$	 ​​tmux ​​	 ​​new-session​

The	dollar	sign	represents	the	prompt	from	the	Bash	shell	session.	You	won’t	need	to	type	it
when	you	type	the	command.	It	just	denotes	that	this	is	a	command	you	should	type.

Finally,	as	you’ll	see	in	Chapter	2,	​Configuring	tmux ​,	you	can	configure	tmux	with	a
configuration	file	called	tmux.conf.	Filenames	starting	with	a	period	don’t	show	up	in
directory	listings	on	most	systems	or	text	editors	by	default.	Code	listings	in	this	book	have	a
header	that	points	to	the	file	in	the	book’s	source	code	download,	like	this:

config/tmux.conf

​	 ​#	Setting	the	prefix	from	C-b	to	C-a ​
​	 set	-g	prefix	C-a

To	make	it	easy	for	you	to	find	the	file	in	the	source	code	download,	I’ve	named	the	example
file	tmux.conf,	without	the	leading	period.	The	headers	above	the	code	listing	reference	that
file.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

[1]

Online	Resources
The	book’s	website[1]	has	links	to	an	interactive	discussion	forum	as	well	as	a	place	to	submit
errata	for	the	book.	You’ll	also	find	the	source	code	for	the	configuration	files	and	scripts	we	use
in	this	book.	You	can	click	the	box	above	the	code	excerpts	to	download	that	source	code
directly.

Working	with	tmux	has	made	me	much	more	productive,	and	I’m	excited	to	share	my	experiences
with	you.	Let’s	get	started	by	installing	tmux	and	working	with	its	basic	features.

Footnotes

http://pragprog.com/titles/bhtmux2

Copyright	©	2016,	The	Pragmatic	Bookshelf.

http://pragprog.com/titles/bhtmux2

Chapter	1

Learning	the	Basics
	

tmux	can	be	an	incredible	productivity	booster	once	you	get	the	hang	of	it.	In	this	chapter,	you’ll
get	acquainted	with	tmux’s	basic	features	as	you	manage	applications	within	sessions,	windows,
and	panes.	These	simple	concepts	make	up	the	foundation	of	what	makes	tmux	an	amazing
environment	for	developers	and	system	administrators	alike.

But	before	you	can	learn	how	to	use	these	basic	features,	you	need	to	get	tmux	installed.

Installing	tmux
You	can	install	tmux	in	one	of	two	ways:	using	a	package	manager	for	your	operating	system,	or
building	tmux	from	source.

Whichever	method	you	choose,	you’ll	want	to	ensure	you	install	tmux	version	2.2	or	higher.
Earlier	versions	of	tmux	don’t	support	some	of	the	features	we’re	going	to	cover	in	this	book,	or
have	configuration	that’s	incompatible.

Installing	on	a	Mac
The	easiest	way	to	install	tmux	on	the	Mac	is	with	Homebrew.[2]

First,	install	Xcode	through	the	Mac	App	Store.	Once	Xcode	is	installed,	open	a	new	terminal
and	run	the	command

​	 ​$	 ​​xcode-select ​​	 ​​--install​

to	install	the	command-line	tools	that	Homebrew	needs.

Next,	install	Homebrew	by	following	the	instructions	on	the	Homebrew	website.

Finally,	install	tmux	with	the	following	terminal	command:

​	 ​$	 ​​brew​​	 ​​install​​	 ​​tmux ​

To	ensure	that	tmux	is	installed	properly,	and	to	check	that	you	have	the	correct	version,	execute
this	command	from	your	terminal:

​	 ​$	 ​​tmux ​​	 ​​-V​
​	 tmux	2.3

Installing	on	Windows	10
In	August	of	2016,	Microsoft	released	an	update	to	Windows	10	that	brings	the	Bash	shell	to
Windows.	This	shell	is	powered	by	Ubuntu	and	supports	tmux.	To	use	it,	first	put	your	machine	in
Developer	mode.	Open	the	Settings	app,	select	Update	&	Security,	and	then	choose	For
Developers.	Enable	the	“Developer	Mode”	option.

Next,	open	the	Control	Panel	and	select	Programs.	Then	click	Turn	Windows	Features	On	Or	Off.
Locate	and	enable	the	option	for	“Windows	Subsystem	For	Linux.”	Then	reboot	your	computer.

When	the	computer	reboots,	open	a	Command	Prompt	and	type

​	 ​C:\> ​​	 ​​bash​

You’ll	be	prompted	to	install	Bash	from	the	Windows	Store.	It’s	a	free	download	that	takes
several	minutes	to	download	and	extract,	but	in	a	short	time	you’ll	be	ready	to	install	tmux.

Once	Bash	is	installed,	move	on	to	the	next	section,	as	you’ll	install	tmux	from	source	as	if	you
were	using	Ubuntu.

Installing	on	Linux
On	Linux,	your	best	bet	is	to	install	tmux	by	downloading	the	source	code	and	compiling	it
yourself.	Package	managers	don’t	always	have	the	most	recent	version	of	tmux	available.	The
process	of	installing	tmux	is	the	same	on	all	platforms.	You’ll	need	the	GCC	compiler,	and	libevent
and	ncurses,	which	tmux	depends	on.

For	Ubuntu,	you	can	install	all	of	these	with	the	apt	package	manager:

​	 ​$	 ​​sudo ​​	 ​​apt-get ​​	 ​​install​​	 ​​build-essential​​	 ​​libevent-dev ​​	 ​​libncurses-dev ​

Once	you	have	the	compilers	and	prerequisites	installed,	grab	the	tmux	source	code	and
download	it.[3]	Untar	the	downloaded	version	and	install	it	like	this:

​	 ​$	 ​​tar​​	 ​​-zxvf​​	 ​​tmux-2.3.tar.gz​
​	 ​$	 ​​cd​​	 ​​tmux-2.3 ​
​	 ​$	 ​​./configure ​
​	 ​$	 ​​make ​
​	 ​$	 ​​sudo ​​	 ​​make ​​	 ​​install​

You	can	test	out	the	installation	by	executing	this	from	the	terminal,	which	returns	the	currently
installed	version	of	tmux:

​	 ​$	 ​​tmux ​​	 ​​-V​
​	 tmux	2.3

Now	that	you	have	tmux	properly	installed,	let’s	explore	the	core	features	of	tmux,	starting	with	a
basic	session.

Starting	tmux
Starting	tmux	is	as	easy	as	typing

​	 ​$	 ​​tmux ​

from	a	terminal	window.	You’ll	see	something	that	looks	like	the	following	image	appear	on	your
screen.

This	is	a	tmux	“session,”	and	it	works	just	like	your	normal	terminal	session.	You	can	issue	any
terminal	command	you’d	like,	and	everything	will	work	as	expected.

To	close	the	tmux	session,	simply	type

​	 ​$	 ​​exit ​

in	the	session	itself.	This	will	close	tmux	and	then	return	you	to	the	standard	terminal.

But,	unless	you’re	only	using	tmux	for	a	very	brief	period,	this	isn’t	the	best	way	to	work	with
sessions	in	tmux.	You	can	instead	create	“named	sessions”	that	you	can	then	identify	and	work
with	later.

Creating	Named	Sessions
You	can	have	multiple	sessions	on	a	single	computer,	and	you’ll	want	to	be	able	to	keep	them
organized.	For	example,	you	might	have	one	session	for	each	application	you’re	developing,	or	a

session	for	work	and	a	session	for	your	cool	side	project.	You	can	keep	these	sessions	organized
by	giving	each	session	you	create	its	own	unique	name.	Try	it	out	right	now.	Create	a	named
session	called	“basic”	with	the	following	command:

​	 ​$	 ​​tmux ​​	 ​​new-session​​	 ​​-s ​​	 ​​basic ​

You	can	shorten	this	command	to

​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​basic ​

When	you	enter	this	command,	you’ll	be	brought	into	a	brand-new	tmux	session,	but	you	won’t
really	notice	anything	special	or	different	than	if	you	started	things	up	normally.	If	you	typed	exit,
you’d	just	be	right	back	at	the	terminal.	Named	sessions	come	in	handy	when	you	want	to	leave
tmux	running	in	the	background,	which	we’ll	discuss	shortly.	But	before	you	continue,	type

​	 ​$	 ​​exit ​

to	exit	tmux.

Before	we	look	at	how	to	work	with	tmux	sessions	and	run	programs	in	the	background,	let’s	talk
about	how	we	send	commands	to	tmux.

The	Command	Prefix
Since	our	command-line	programs	run	inside	tmux,	we	need	a	way	to	tell	tmux	that	the	command
we’re	typing	is	for	tmux	and	not	for	the	underlying	application.	The	 CTRL - b 	combination	does	just
that.	This	combination	is	called	the	command	prefix.

You	prefix	each	tmux	command	with	this	key	combination.	To	get	a	feel	for	how	this	works,	open
tmux	again:

​	 ​$	 ​​tmux ​

Then,	inside	of	tmux,	press	 CTRL - b ,	then	press	 t .	A	large	clock	will	appear	on	the	screen.

It’s	important	to	note	that	you	don’t	hold	all	these	keys	down	together.	Instead,	first	press	 CTRL - b
simultaneously,	release	those	keys,	and	then	immediately	press	the	key	for	the	command	you	want
to	send	to	tmux.

Throughout	the	rest	of	this	book,	I’ll	use	the	notation	 PREFIX ,	followed	by	the	shortcut	key	for	tmux
commands,	like	 PREFIX 	 d 	for	detaching	from	a	session.	In	Chapter	2,	​Configuring	tmux ​,	you’ll
remap	the	prefix	to	an	easier	combination,	but	until	then,	you’ll	use	the	default	of	 CTRL - b
whenever	you	see	 PREFIX .

Press	the	 ENTER 	key	to	dismiss	the	clock,	and	exit	tmux	by	typing	exit.	Now	let’s	look	at	how	to	run
programs	in	the	background.

Detaching	and	Attaching	Sessions
One	of	tmux’s	biggest	advantages	is	that	you	can	fire	it	up,	start	up	programs	or	processes	inside
the	tmux	environment,	and	then	leave	it	running	in	the	background	by	“detaching”	from	the
session.

If	you	close	a	regular	terminal	session,	all	the	programs	you	have	running	in	that	session	are
killed	off.	But	when	you	detach	from	a	tmux	session,	you’re	not	actually	closing	tmux.	Any
programs	you	started	up	in	that	session	will	stay	running.	You	can	then	“attach”	to	the	session	and
pick	up	where	you	left	off.	To	demonstrate,	let’s	create	a	new	named	tmux	session,	start	up	a
program,	and	detach	from	the	session.	First,	create	the	session:

​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​basic ​

Then,	within	the	tmux	session,	start	an	application	called	top,	which	monitors	our	memory	and
CPU	usage,	like	this:

​	 ​$	 ​​top​

You’ll	have	something	that	looks	like	the	following	figure	running	in	your	terminal.

Now,	detach	from	the	tmux	session	by	pressing	 PREFIX 	 d .	This	returns	you	to	your	regular	terminal
prompt.

Now,	let’s	look	at	how	to	get	back	in	to	that	tmux	session	we	left	running.	But	before	we	do,	close

your	terminal	window.

Reattaching	to	Existing	Sessions
We’ve	set	up	a	tmux	session,	fired	up	a	program	inside	the	session,	detached	from	it,	and	closed
our	terminal	session,	but	the	tmux	session	is	still	chugging	along,	along	with	the	top	application	we
launched.

You	can	list	existing	tmux	sessions	using	the	command

​	 ​$	 ​​tmux ​​	 ​​list-sessions ​

in	a	new	terminal	window.	You	can	shorten	the	command	to	this:

​	 ​$	 ​​tmux ​​	 ​​ls ​

The	command	shows	that	there’s	one	session	currently	running:

​	 basic:	1	windows	(created	Tue	Aug	23	16:58:26	2016)	[105x25]

To	attach	to	the	session,	use	the	attach	keyword.	If	you	only	have	one	session	running,	you	can
simply	use

​	 ​$	 ​​tmux ​​	 ​​attach​

and	you’ll	be	attached	to	the	session	again.	Things	get	more	tricky	if	you	have	more	than	one
session	running.	Detach	from	the	basic	session	with	 PREFIX 	 d .

Now	create	a	new	tmux	session	in	the	background	using	the	command

​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​second_session​​	 ​​-d​

This	creates	a	new	session,	but	doesn’t	attach	to	the	session	automatically.

Now	list	the	sections,	and	you’ll	see	two	sessions	running:

​	 ​$	 ​​tmux ​​	 ​​ls ​
​	 basic:	1	windows	(created	Tue	Aug	23	16:58:26	2016)	[105x25]
​	 second_session:	1	windows	(created	Tue	Aug	23	17:49:21	2016)	[105x25]

You	can	attach	to	the	session	you	want	by	using	the	-t	flag,	followed	by	the	session	name.	Run	the
following	command:

​	 ​$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​second_session​

This	attaches	you	to	the	second_session	tmux	session.	You	can	detach	from	this	session	just	as	you	did

previously,	using	 PREFIX 	 d ,	and	then	attach	to	a	different	session.	In	​Moving	Between	Sessions ​,
you’ll	see	some	other	ways	to	move	between	active	sessions.	But	for	now,	let’s	remove	the	active
sessions.

Killing	Sessions
You	can	type	exit	within	a	session	to	destroy	the	session,	but	you	can	also	kill	off	sessions	with	the
kill-session	command.	It	works	just	like	tmux	attach:

​	 ​$	 ​​tmux ​​	 ​​kill-session​​	 ​​-t ​​	 ​​basic ​
​	 ​$	 ​​tmux ​​	 ​​kill-session​​	 ​​-t ​​	 ​​second_session​

This	is	useful	for	situations	where	a	program	in	a	session	is	hanging.

If	you	list	the	sessions	again,	you’ll	get	this	message:

​	 ​$	 ​​tmux ​​	 ​​ls ​
​	 no	server	running	on	/tmp/tmux-1002/default

Since	there	are	no	tmux	sessions	running,	tmux	itself	isn’t	running,	so	it	isn’t	able	to	handle	the
request.

Now	that	you	know	the	basics	of	creating	and	working	with	sessions,	let’s	look	at	how	we	can
work	with	multiple	programs	within	a	single	session.

Working	with	Windows
It’s	possible,	and	very	common,	to	run	multiple,	simultaneous	commands	within	a	tmux	session.
We	can	keep	these	organized	with	windows,	which	are	similar	to	tabs	in	modern	graphical
terminal	emulators	or	web	browsers.

When	we	create	a	new	tmux	session,	the	environment	sets	up	an	initial	window	for	us.	We	can
create	as	many	as	we’d	like,	and	they	will	persist	when	we	detach	and	reattach.

Let’s	create	a	new	session	that	has	two	windows.	The	first	window	will	have	our	normal	prompt,
and	the	second	window	will	run	the	top	command.	Create	a	named	session	called	“windows,”	like
this:

​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​windows ​​	 ​​-n​​	 ​​shell​

By	using	the	-n	flag,	we	tell	tmux	to	name	the	first	window	so	we	can	identify	it	easily.

Now	let’s	add	a	window	to	this	session.

Creating	and	Naming	Windows
To	create	a	window	in	a	current	session,	press	 PREFIX 	 c .	Creating	a	window	like	this
automatically	brings	the	new	window	into	focus.	From	here,	you	can	start	up	another	application.
Let’s	start	top	in	this	new	window.

​	 ​$	 ​​top​

The	first	window	has	a	name	you	defined,	called	“shell,”	but	the	second	window	now	appears	to
have	the	name	“top.”	This	window’s	name	changes	based	on	the	app	that’s	currently	running
because	you	never	gave	it	a	default	name	when	you	created	it.	So	let’s	give	this	window	a	proper
name.

To	rename	a	window,	press	 PREFIX 	followed	by	 , 	(a	comma),	and	the	status	line	changes,	letting
you	rename	the	current	window.	Go	ahead	and	rename	the	window	to	“Processes.”

You	can	create	as	many	windows	in	a	tmux	session	as	you’d	like.	But	once	you	have	more	than
one,	you	need	to	be	able	to	move	between	them.

Moving	Between	Windows
So	far,	you’ve	created	two	windows	in	your	environment,	and	you	can	navigate	around	these
windows	in	several	ways.	When	you	only	have	two	windows,	you	can	quickly	move	between

windows	with	 PREFIX 	 n ,	for	“next	window.”	This	cycles	through	the	windows	you	have	open.
Since	you	only	have	two	windows	right	now,	this	just	toggles	between	them.

You	can	use	 PREFIX 	 p 	to	go	to	the	previous	window.

By	default,	windows	in	tmux	each	have	a	number,	starting	at	0.	You	can	quickly	jump	to	the	first
window	with	 PREFIX 	 0 ,	and	the	second	window	with	 PREFIX 	 1 .	This	zero-based	array	of	windows
isn’t	always	intuitive,	and	in	Chapter	2,	​Configuring	tmux ​,	you’ll	see	how	to	make	the	list	of
windows	start	at	one	instead	of	zero.

If	you	end	up	with	more	than	nine	windows,	you	can	use	 PREFIX 	 w 	to	display	a	visual	menu	of	your
windows	so	you	can	select	the	one	you’d	like.	You	can	also	use	 PREFIX 	 f 	to	find	a	window	that
contains	a	string	of	text.	Typing	the	text	and	pressing	 ENTER 	displays	a	list	of	windows	containing
that	text.

From	here,	you	can	continue	creating	new	windows	and	launching	programs.	When	you	detach
from	your	session	and	reattach	later,	your	windows	will	all	be	where	you	left	them.

To	close	a	window,	you	can	either	type	“exit”	into	the	prompt	in	the	window,	or	you	can	use	 PREFIX
& ,	which	displays	a	confirmation	message	in	the	status	bar	before	killing	off	the	window.	If	you
accept,	your	previous	window	comes	into	focus.	To	completely	close	out	the	tmux	session,	you
have	to	close	all	the	windows	in	the	session.

Creating	windows	is	great,	but	we	can	make	tmux	even	more	useful	by	splitting	a	window	into
panes.

Working	with	Panes
Having	programs	in	separate	windows	is	fine	for	stuff	we	don’t	mind	having	out	of	the	way.	But
with	tmux,	we	can	divide	a	single	session	into	panes.

Create	a	new	tmux	session	called	“panes”	so	we	can	experiment	with	how	panes	work.	Exit	any
existing	tmux	sessions	and	create	a	new	one	like	this:

​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​panes ​

We	can	split	windows	vertically	or	horizontally.	Let’s	split	the	window	in	half	vertically	first,
and	then	horizontally,	creating	one	large	pane	on	the	left	and	two	smaller	panes	on	the	right,	as
shown	in	the	figure.

In	the	tmux	session,	press	 PREFIX 	 % ,	and	the	window	will	divide	down	the	middle	and	start	up	a
second	terminal	session	in	the	new	pane.	In	addition,	the	focus	will	move	to	this	new	pane.

Pressing	 PREFIX 	 " 	(double	quote)	will	split	this	new	pane	in	half	horizontally.	By	default,	new
panes	split	the	existing	pane	in	half	evenly.

To	cycle	through	the	panes,	press	 PREFIX 	 o .	You	can	also	use	 PREFIX ,	followed	by	the	 UP ,	 DOWN ,	 LEFT ,
or	 RIGHT 	keys	to	move	around	the	panes.

With	just	a	couple	keystrokes,	we’ve	divided	one	window	into	a	workspace	with	three	panes.
Let’s	look	at	how	we	can	rearrange	these	panes	with	layouts.

Pane	Layouts
We	can	resize	a	pane,	either	using	incremental	resizing	or	by	using	templates.	Resizing	panes
incrementally	using	the	default	keybindings	is	quite	awkward.	In	Chapter	2,	​Configuring	tmux ​,
we’ll	define	some	shortcuts	to	make	resizing	panes	easier.	For	now,	we’ll	use	one	of	tmux’s
several	default	pane	layouts:

even-horizontal	stacks	all	panes	horizontally,	left	to	right.

even-vertical	stacks	all	panes	vertically,	top	to	bottom.

main-horizontal	creates	one	larger	pane	on	the	top	and	smaller	panes	underneath.

main-vertical	creates	one	large	pane	on	the	left	side	of	the	screen,	and	stacks	the	rest	of	the
panes	vertically	on	the	right.

tiled	arranges	all	panes	evenly	on	the	screen.

You	can	cycle	through	these	layouts	by	pressing	 PREFIX 	 SPACEBAR .

Closing	Panes
You	close	a	pane	the	same	way	you	exit	a	terminal	session	or	a	tmux	window:	you	simply	type
“exit”	in	the	pane.	You	can	also	kill	a	pane	with	 PREFIX 	 x ,	which	also	closes	the	window	if	there’s
only	one	pane	in	that	window.

You’ll	be	asked	to	confirm	if	you	want	to	kill	the	specified	pane.	Killing	a	pane	like	this	is	great
for	situations	where	the	pane	has	gotten	stuck,	or	you	can’t	interact	with	it	anymore.

So	far,	we’ve	been	able	to	create	new	sessions,	create	windows	and	panes,	and	move	around	a
bit.	Before	we	move	on	to	more	advanced	topics,	let’s	explore	some	additional	tmux	commands.

Working	with	Command	Mode
So	far,	we’ve	used	key	combinations	to	create	windows	and	panes,	but	those	keybindings	are
actually	just	shortcuts	for	tmux	commands	with	some	preset	options.	We	can	execute	tmux
commands	two	ways:	from	the	terminal	itself	or	from	the	command	area	in	the	tmux	status	line.
You’ll	learn	about	using	tmux	commands	from	the	terminal	in	Chapter	3,	​Scripting	Customized
tmux	Environments ​,	but	for	now,	let’s	explore	tmux’s	Command	mode	by	using	it	to	create	some
new	windows	and	panes	in	our	workspace.

To	enter	Command	mode,	press	 PREFIX 	 : 	(the	colon)	from	within	a	running	tmux	session.	The
status	line	changes	color	and	we	get	a	prompt	that	indicates	that	we	can	type	our	command.	Create
a	new	window	by	using	the	new-window	command,	like	this:

new-window	-n	console

By	using	a	command	rather	than	the	shortcut,	you	can	create	a	new	window	and	give	it	a	name	at
the	same	time	by	using	the	-n	flag.	Let’s	take	this	a	step	further	and	launch	a	new	window	that
starts	the	top	program.	To	do	that,	we	enter	Command	mode	and	type	this	command:

new-window	-n	processes	"top"

When	you	press	 ENTER ,	a	new	window	appears	and	the	top	application	runs,	showing	your	running
processes.

Specifying	an	initial	command	for	a	window	is	extremely	handy	for	short-term	tasks,	but	there’s	a
slight	wrinkle;	if	you	exit	the	top	app	by	pressing	 q ,	the	tmux	window	you	created	will	also	close.
You	can	use	configuration	settings	to	get	around	this,	but	if	you	want	the	window	to	persist,
simply	create	it	without	specifying	an	initial	command,	and	then	execute	your	own	command	in
the	new	window.

You	can	use	Command	mode	to	create	new	windows,	new	panes,	or	new	sessions,	or	even	set
other	environmental	options.	In	Chapter	2,	​Configuring	tmux ​,	we’ll	create	a	few	custom
keybindings	to	make	some	of	these	commands	easier	to	use.

What’s	Next?
In	this	chapter,	you	explored	the	very	basic	usage	of	tmux	sessions,	panes,	windows,	and
commands,	but	there’s	a	lot	more	you	can	try.

By	pressing	 PREFIX 	 ? ,	you	can	get	a	list	of	all	predefined	tmux	keybindings	and	the	associated
commands	these	trigger.

As	you	work	with	tmux,	think	about	how	you	can	create	different	environments	for	your	work.	If
you’re	monitoring	servers,	you	could	use	tmux	panes	to	create	a	dashboard	that	shows	your
various	monitoring	scripts	and	log	files.

With	the	basics	under	our	belt,	let’s	put	together	a	custom	configuration	we	can	use	for	the	rest	of
our	work.

For	Future	Reference

Creating	Sessions

Command Description
tmux	new-session Creates	a	new	session	without	a	name.	Can	be	shortened	to

tmux	new	or	simply	tmux.
tmux	new	-s	development Creates	a	new	session	called	“development.”
tmux	new	-s	development	-n	editor Creates	a	session	named	“development”	and	names	the

first	window	“editor.”
tmux	attach	-t	development Attaches	to	a	session	named	“development.”

Default	Commands	for	Sessions,	Windows,	and	Panes

Command Description
PREFIX 	 d Detaches	from	the	session,	leaving	the	session	running	in	the	background.
PREFIX 	 : Enters	Command	mode.
PREFIX 	 c Creates	a	new	window	from	within	an	existing	tmux	session.	Shortcut	for	new-

window.
PREFIX 	 n Moves	to	the	next	window.
PREFIX 	 p Moves	to	the	previous	window.
PREFIX

0… 9

Selects	windows	by	number.

PREFIX 	 w Displays	a	selectable	list	of	windows	in	the	current	session.
PREFIX 	 f Searches	for	a	window	that	contains	the	text	you	specify.	Displays	a	selectable

list	of	windows	containing	that	text	in	the	current	session.
PREFIX 	 , Displays	a	prompt	to	rename	a	window.
PREFIX 	 & Closes	the	current	window	after	prompting	for	confirmation.
PREFIX 	 % Divides	the	current	window	in	half	vertically.
PREFIX 	 " Divides	the	current	window	in	half	horizontally.
PREFIX 	 o Cycles	through	open	panes.
PREFIX 	 q Momentarily	displays	pane	numbers	in	each	pane.
PREFIX 	 x Closes	the	current	pane	after	prompting	for	confirmation.
PREFIX 	 SPACE Cycles	through	the	various	pane	layouts.

[2]

[3]

Footnotes

http://brew.sh

https://tmux.github.io/

Copyright	©	2016,	The	Pragmatic	Bookshelf.

http://brew.sh
https://tmux.github.io/

Chapter	2

Configuring	tmux
	

tmux,	by	default,	doesn’t	have	the	most	friendly	commands.	Many	of	the	most	important	and	useful
features	are	assigned	to	hard-to-reach	keystrokes	or	consist	of	long,	verbose	command	strings.
And	tmux’s	default	color	scheme	isn’t	very	easy	on	the	eyes.	In	this	chapter,	you’ll	build	a	basic
configuration	file	for	your	environment	that	you’ll	then	use	for	the	rest	of	this	book.	You’ll	start
out	by	customizing	how	you	navigate	around	the	screen	and	how	you	create	and	resize	panes,	and
then	you’ll	explore	some	more	advanced	settings.	You’ll	also	learn	how	to	make	sure	your
terminal	is	properly	configured	so	that	some	of	the	settings	you’ll	make	to	tmux’s	appearance	look
good	on	your	screen.	When	you’re	done,	you’ll	have	a	better	understanding	of	how	flexible	tmux
is,	and	you	can	start	making	it	your	own.	Let’s	start	by	talking	about	how	to	configure	tmux	in	the
first	place.

Introducing	the	.tmux.conf	File
By	default,	tmux	looks	for	configuration	settings	in	two	places.	It	first	looks	in	/etc/tmux.conf	for	a
system-wide	configuration.	It	then	looks	for	a	file	called	.tmux.conf	in	the	current	user’s	home
directory.	If	these	files	don’t	exist,	tmux	simply	uses	its	default	settings.	We	don’t	need	to	create	a
system-wide	configuration,	so	let’s	create	a	brand-new	configuration	file	in	our	home	directory.
Execute	the	following	command	in	your	shell:

​	 ​$	 ​​touch​​	 ​​~/.tmux.conf​

In	this	file	we	can	do	everything	from	defining	new	key	shortcuts	to	setting	up	a	default
environment	with	multiple	windows,	panes,	and	running	programs.	Let’s	start	by	setting	a	couple
basic	options	that	will	make	working	with	tmux	much	easier.

The	.tmux.conf	file	is	a	hidden	file	and	doesn’t	show	up	in	file	explorers	or	directory
listings	by	default.	The	labels	above	the	code	listings	in	this	book	reference	the	file
as	tmux.conf,	without	the	leading	period,	so	it	corresponds	with	the	file	in	the	book’s
source	code	download.

Defining	an	Easier	Prefix
As	you	saw	earlier,	tmux	uses	 CTRL - b 	as	its	command	prefix.	Many	tmux	users	started	out	using
GNU-Screen,	which	uses	 CTRL - a 	for	its	command	prefix.	 CTRL - a 	is	an	excellent	choice	for	a
prefix	because	it’s	easier	to	trigger,	especially	if	you	remap	your	computer’s	 CAPS	LOCK 	key	to	 CTRL
as	explained	in	the	sidebar	that	follows.	This	keeps	your	hands	on	the	home	row	of	your
keyboard.

Remapping	the	Caps	Lock	Key
On	many	keyboards,	the	 CAPS	LOCK 	key	sits	right	next	to	the	 a 	key	on	the	home	row	of	the	keyboard.	By	remapping	this	key
to	 CTRL ,	you	can	make	triggering	commands	more	comfortable.

On	your	Mac,	you	can	remap	the	 CAPS	LOCK 	key	under	the	Keyboard	preference	pane,	under	System	Preferences.	Just	press
the	Modifier	Keys	button	and	change	the	action	for	 CAPS	LOCK 	to	“Control.”

Under	Linux,	the	process	can	be	a	little	more	tricky	depending	on	your	distribution	or	window	manager,	but	you	can	find
several	methods	described	on	the	Emacs	wiki.[4]

This	small	change	to	your	configuration	can	save	you	a	surprising	amount	of	time	over	the	course	of	a	day.

To	set	options	in	the	.tmux.conf	file,	use	the	set-option	command,	which	you	can	shorten	to	set.	You
define	the	tmux	prefix	by	adding	this	to	the	.tmux.conf	file:

config/tmux.conf

​	 ​#	Setting	the	prefix	from	C-b	to	C-a ​
​	 set	-g	prefix	C-a

In	this	example,	we’re	using	the	-g	switch,	for	“global,”	which	sets	the	option	for	all	tmux
sessions	we	create.

The	line	starting	with	#	is	a	comment.	It’s	a	good	idea	to	put	comments	in	your	configuration	files;
they’ll	jog	your	memory	later	on	when	you	go	back	and	look	at	your	configuration	a	few	months
from	now.	Comments	in	a	tmux	configuration	file	work	just	like	comments	in	source	code.

While	not	necessary,	we	can	use	the	unbind-key,	or	unbind	command,	to	remove	a	keybinding	that’s
been	defined,	so	we	can	assign	a	different	command	to	this	key	later.	Let’s	free	up	 CTRL - b 	like
this:

config/tmux.conf

​	 ​#	Free	the	original	Ctrl-b	prefix	keybinding ​
​	 unbind	C-b

Changes	to	the	file	aren’t	read	by	tmux	automatically.	So	if	you’re	editing	your	.tmux.conf	file	while
tmux	is	running,	you’ll	either	need	to	completely	close	all	tmux	sessions,	or	enter	tmux’s
Command	mode	with	 PREFIX 	 : 	and	type	this	whenever	you	make	a	change:

​	 source-file	~/.tmux.conf

You	can	now	use	 CTRL - a 	for	your	prefix.	The	rest	of	the	examples	in	this	book	will	continue	to
refer	to	it	as	 PREFIX ,	though.

Changing	the	Default	Delay
tmux	adds	a	very	small	delay	when	sending	commands,	and	this	delay	can	interfere	with	other
programs	such	as	the	Vim	text	editor.	We	can	set	this	delay	so	it’s	much	more	responsive.	Add	this
line	to	your	configuration	file:

​	 ​#setting	the	delay	between	prefix	and	command ​
​	 set	-s	escape-time	1

Once	you	reload	the	configuration	file,	you’ll	be	able	to	issue	keystrokes	without	delay.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Setting	the	Window	and	Panes	Index
In	Chapter	1,	​Learning	the	Basics ​,	you	learned	about	windows	and	how	when	you	create	more
than	one	window	in	a	session,	you	have	to	reference	windows	by	their	index.	This	index	starts	at
zero,	which	can	be	a	little	awkward,	since	you’d	have	to	use	 PREFIX 	 0 	to	access	the	first	window.
By	adding	this	line	to	your	configuration	file

​	 ​#	Set	the	base	index	for	windows	to	1	instead	of	0 ​
​	 set	-g	base-index	1

the	window	index	will	start	at	1,	so	you	can	use	 PREFIX 	 1 	to	jump	to	the	first	window.	That’s	a	lot
easier	since	the	keys	on	the	keyboard	now	directly	correspond	with	the	windows	listed	in	the
status	line.

You	can	also	set	the	starting	index	for	panes	using	the	pane-base-index	option.	Add	this	line	to	your
configuration	so	you	have	some	consistency	between	pane	and	window	numbering.

config/tmux.conf

​	 ​#	Set	the	base	index	for	panes	to	1	instead	of	0 ​
​	 setw	-g	pane-base-index	1

Up	until	now,	we’ve	used	the	set	command,	which	sets	options	for	the	tmux	session.	In	order	to
configure	options	that	affect	how	we	interact	with	windows,	we	have	to	use	another	command,
called	set-window-option,	which	we	can	shorten	to	setw.	In	this	book,	I’ve	used	the	shortened	versions
of	commands	to	make	the	configuration	examples	fit	on	one	line.

Now	let’s	build	some	useful	shortcuts	that	will	increase	your	productivity.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Customizing	Keys,	Commands,	and	User	Input
Many	of	the	default	keyboard	shortcuts	in	tmux	are	a	bit	of	a	stretch,	both	physically	and	mentally.
Not	only	is	 PREFIX 	 % 	hard	to	press,	as	it	involves	holding	three	keys,	but	without	looking	at	the
command	reference,	there’s	no	easy	way	to	remember	what	it	does.

In	this	section,	we’ll	define,	or	redefine,	some	of	the	most-used	tmux	commands.	Let’s	start	by
creating	a	custom	keybinding	to	reload	the	tmux	configuration.

Creating	a	Shortcut	to	Reload	the	Configuration
Every	time	you	make	a	change	to	your	configuration	file,	you	either	have	to	shut	down	all	sessions
and	then	restart	tmux,	or	issue	the	source	command	to	reload	your	configuration	from	within	the
running	instances.	Let’s	create	a	custom	keybinding	to	reload	the	configuration	file.

The	bind	command	defines	a	new	keybinding.	You	specify	the	key	you	want	to	use,	followed	by	the
command	you	want	to	perform.

Let’s	define	 PREFIX 	 r 	so	it	reloads	the	.tmux.conf	file	in	the	current	session.	Add	this	line	to	your
configuration	file:

​	 bind	r	source-file	~/.tmux.conf

When	you	define	keybindings	using	bind,	you	still	have	to	push	the	 PREFIX 	key	before	you	can	press
the	newly	defined	key.	And	while	you	just	defined	a	new	command	to	make	reloading	the	tmux
configuration	easier,	you	can’t	use	it	until	you	reload	the	configuration	file.	So	be	sure	to	enter
Command	mode	with	 PREFIX 	 : 	and	type

​	 source-file	~/.tmux.conf

one	more	time.

When	you	reload	the	file,	you	might	not	always	be	able	to	tell	that	anything	changed,	but	you	can
use	the	display	command	to	put	a	message	in	the	status	line.	Modify	your	reload	command	to	display
the	text	“Reloaded!”	when	the	configuration	file	loads:

config/tmux.conf

​	 ​#	Reload	the	file	with	Prefix	r ​
​	 bind	r	source-file	~/.tmux.conf	​\; ​	display	​"Reloaded!" ​

As	you	can	see,	you	can	bind	a	key	to	a	series	of	commands	by	separating	the	commands	with	the

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

\;	character	combination.

Defining	Keybindings	That	Don't	Require	a	Prefix
Using	the	bind	command	with	the	-n	prefix	tells	tmux	that	the	keybinding	doesn’t	require	pressing	the	prefix.	For	example,

​	 bind-key	-n	C-r	source-file	~/.tmux.conf

would	make	 CTRL - r 	reload	the	configuration	file.	Unfortunately,	this	would	completely	disable	that	key	combination	in	any
application	that’s	running	in	a	tmux	session,	so	you’ll	want	to	use	this	with	care.

With	this	keybinding	in	place,	you	can	make	additional	changes	to	the	configuration	file	and	then
immediately	activate	them	by	pressing	 PREFIX 	 r .

Sending	the	Prefix	to	Other	Applications
We’ve	remapped	 CTRL - a 	as	the	Prefix,	but	programs	such	as	Vim,	Emacs,	and	even	the	regular
Bash	shell	also	use	that	combination.	You’ll	probably	want	to	configure	tmux	to	send	that
command	through	when	you	need	it.	You	can	do	that	by	binding	the	send-prefix	command	to	a
keystroke,	like	this:

​	 ​#	Ensure	that	we	can	send	Ctrl-A	to	other	apps ​
​	 bind	C-a	send-prefix

After	reloading	the	configuration	file,	you	can	send	 CTRL - a 	to	an	application	running	within	tmux
simply	by	pressing	 CTRL - a 	twice.

Splitting	Panes
The	default	keys	for	splitting	panes	can	be	difficult	to	remember,	so	let’s	set	our	own	keys	that	we
won’t	be	able	to	forget.	We’ll	set	the	horizontal	split	to	 PREFIX 	 | 	and	the	vertical	split	to	 PREFIX 	 - .
To	do	that,	add	these	lines	to	your	configuration:

config/tmux.conf

​	 ​#	splitting	panes	with	|	and	- ​
​	 bind	|	split-window	-h
​	 bind	-	split-window	-v

At	first	glance,	this	may	look	backwards.	The	-v	and	-h	flags	on	split-window	stand	for	“vertical”	and
“horizontal”	splits,	but	to	tmux,	a	vertical	split	means	creating	a	new	pane	below	the	existing
pane	so	the	panes	are	stacked	vertically	on	top	of	each	other.	A	horizontal	split	means	creating	a
new	pane	next	to	the	existing	one	so	the	panes	are	stacked	horizontally	across	the	screen.	So,	in

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

order	to	divide	the	window	vertically,	we	use	a	“horizontal”	split,	and	to	divide	it	horizontally,
we	use	a	“vertical”	split.

These	new	shortcuts	give	us	a	nice	visual	association.	If	we	want	our	windows	split,	we	simply
press	the	key	that	looks	like	the	split	we	want	to	create.

Remapping	Movement	Keys
Moving	from	pane	to	pane	with	 PREFIX 	 o 	is	cumbersome,	and	using	the	arrow	keys	means	you	have
to	take	your	fingers	off	the	home	row.	If	you	use	the	Vim	text	editor,	you’re	probably	familiar	with
its	use	of	 h ,	 j ,	 k ,	and	 l 	for	movement	keys.	You	can	remap	the	movement	keys	in	tmux	to	these
same	keys.

​	 ​#	moving	between	panes	with	Prefix	h,j,k,l​
​	 bind	h	​select ​-pane	-L
​	 bind	j	​select ​-pane	-D
​	 bind	k	​select ​-pane	-U
​	 bind	l	​select ​-pane	-R

In	addition,	you	can	use	 PREFIX 	 CTRL - h 	and	 PREFIX 	 CTRL - l 	to	cycle	through	the	windows	by	binding
those	keystrokes	to	the	respective	commands:

​	 ​#	Quick	window	selection ​
​	 bind	-r	C-h	​select ​-window	-t	:-
​	 bind	-r	C-l	​select ​-window	-t	:+

Provided	you’ve	mapped	your	 CAPS	LOCK 	key	to	the	 CTRL 	key,	you	can	now	move	between	panes
without	moving	your	hands	off	the	home	row.

Resizing	Panes
To	resize	a	pane,	you	can	enter	Command	mode	and	type	resize-pane	-D	to	resize	a	pane	downward
one	row	at	a	time.	You	can	increase	the	resizing	increment	by	passing	a	number	after	the
direction,	such	as	resize-pane	-D	5.	The	command	itself	is	pretty	verbose,	but	you	can	make	some
keybindings	to	make	resizing	panes	easier.

Let’s	use	a	variation	of	the	Vim	movement	keys	to	resize	windows.	We’ll	use	 PREFIX 	 H ,	 PREFIX 	 J ,
PREFIX 	 K ,	and	 PREFIX 	 L 	to	change	the	size	of	the	panes.	Add	these	lines	to	your	configuration	file:

​	 bind	H	resize-pane	-L	5
​	 bind	J	resize-pane	-D	5
​	 bind	K	resize-pane	-U	5
​	 bind	L	resize-pane	-R	5

Notice	that	we’re	using	uppercase	letters	in	the	configuration	file.	tmux	allows	both	lowercase
and	uppercase	letters	for	keystrokes.	You’ll	need	to	use	the	 SHIFT 	key	to	trigger	the	uppercase
keystroke.

Using	these	movement	keys	will	help	us	keep	track	of	which	way	we	want	the	window	size	to
change.	For	example,	if	we	have	a	window	divided	into	two	panes	stacked	vertically,	like	this

​	 -------------------
​	 |																	|
​	 |					Pane	1						|
​	 |																	|
​	 -------------------
​	 |																	|
​	 |					Pane	2						|
​	 |																	|
​	 -------------------

and	we	want	to	increase	the	size	of	Pane	1,	then	we’d	place	our	cursor	inside	Pane	1	and	then
press	 PREFIX 	 J ,	which	moves	the	horizontal	divider	downward.	If	we	pressed	 PREFIX 	 K ,	we	would
move	the	horizontal	divider	up.

With	the	configuration	we	just	used,	you	have	to	use	the	 PREFIX 	each	time	you	want	to	resize	the
pane.	But	if	you	use	the	-r	flag	with	the	bind	command,	you	can	specify	that	you	want	the	key	to	be
repeatable,	meaning	you	can	press	the	prefix	key	only	once	and	then	continuously	press	the
defined	key	within	a	given	window	of	time,	called	the	repeat	limit.

Redefine	the	window	resizing	commands	by	adding	the	-r	option:

​	 ​#	Pane	resizing	panes	with	Prefix	H,J,K,L​
​	 bind	-r	H	resize-pane	-L	5
​	 bind	-r	J	resize-pane	-D	5
​	 bind	-r	K	resize-pane	-U	5
​	 bind	-r	L	resize-pane	-R	5

Now	you	can	resize	the	panes	by	pressing	 PREFIX 	 J 	once,	and	then	press	 J 	until	the	window	is	the
size	you	want.	The	default	repeat	limit	is	500	milliseconds,	and	can	be	changed	by	setting	the
repeat-time	option	to	a	higher	value.

Now	let’s	turn	our	attention	to	how	tmux	can	work	with	the	mouse.

Handling	the	Mouse
While	tmux	is	meant	to	be	completely	keyboard-driven,	there	are	times	when	you	may	find	it
easier	to	use	the	mouse.	If	your	terminal	is	set	up	to	forward	mouse	clicks	and	movement	through

to	programs	in	the	terminal,	then	you	can	tell	tmux	how	to	handle	certain	mouse	events.

Sometimes	it’s	nice	to	be	able	to	scroll	up	through	the	terminal	buffer	with	the	mouse	wheel,	or	to
select	windows	and	panes,	especially	when	you’re	just	getting	started	with	tmux.	To	configure
tmux	so	we	can	use	the	mouse,	we	need	to	enable	mouse	mode.

​	 set	-g	mouse	on

This	setting	configures	tmux	so	it	will	let	us	use	the	mouse	to	select	a	pane	or	resize	a	pane,	let	us
click	the	window	list	to	select	a	window,	or	even	let	us	use	the	mouse	to	scroll	backwards
through	the	buffer	if	your	terminal	supports	it.

This	can	be	a	handy	addition	to	your	configuration,	but	remember	that	using	the	mouse	with	tmux
will	slow	you	down.	Even	though	being	able	to	scroll	and	click	might	seem	like	a	neat	idea,	you
should	learn	the	keyboard	equivalents	for	switching	panes	and	moving	forward	and	backward
through	the	buffers.	So,	for	our	configuration	file,	we’re	going	to	disable	the	mouse.

config/tmux.conf

​	 ​#	mouse	support	-	set	to	on	if	you	want	to	use	the	mouse ​
​	 set	-g	mouse	off

Setting	this	option	prevents	us	from	accidentally	doing	things	when	we	select	the	terminal
window	with	our	mouse,	and	it	forces	us	to	get	more	comfortable	with	the	keyboard.

The	flexible	configuration	system	tmux	provides	lets	you	customize	the	way	you	interact	with	the
interface,	but	you	can	also	configure	its	appearance	to	make	its	interface	easier	to	see,	and	in
some	cases,	more	informative.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Visual	Styling
tmux	provides	quite	a	few	ways	to	customize	your	environment’s	appearance.	In	this	section,
we’ll	walk	through	configuring	some	of	these	options,	as	we	customize	the	status	line	and	other
components.	We’ll	start	by	configuring	the	colors	for	various	elements,	then	we’ll	turn	our	bland
status	line	into	something	that	will	provide	us	with	some	vital	information	about	our	environment.

Configuring	Colors
To	get	the	best	visual	experience	out	of	tmux,	make	sure	that	both	your	terminal	and	tmux	are
configured	for	256	colors.

Using	the	tput	command,	you	can	quickly	determine	the	number	of	colors	supported	by	your
terminal	session.	Enter	the	command

​	 ​$	 ​​tput ​​	 ​​colors ​
​	 256

into	your	terminal.	If	you	don’t	see	256	as	the	result,	you’ll	need	to	do	a	little	configuration.

You	may	need	to	configure	your	terminal	to	use	xterm’s	256	mode.	On	the	Mac,	you	can	configure
this	in	the	Terminal	app	by	editing	the	profile	as	shown	in	the	following	figure:

If	you’re	using	iTerm2,[5]	you	can	find	this	by	editing	the	default	profile	and	changing	the	terminal
mode	to	xterm-256color,	as	shown	in	the	following	figure:

If	you’re	using	Linux,	you	might	need	to	add

​	 [-z	​" ​$TMUX​" ​]	&&	export	TERM=xterm-256color

to	your	.bashrc	file	to	enable	a	256-color	terminal.	This	conditional	statement	ensures	that	the	TERM
variable	is	only	set	outside	of	tmux,	since	tmux	sets	its	own	terminal.

Also,	ensure	that	your	terminal	emulator	supports	displaying	UTF-8	characters	so	that	visual
elements	such	as	the	pane	dividers	appear	as	dashed	lines.

To	make	tmux	display	things	in	256	colors,	add	this	line	to	our	.tmux.conf	file:

config/tmux.conf

​	 ​#	Set	the	default	terminal	mode	to	256color	mode ​
​	 set	-g	default-terminal	​"screen-256color" ​

Once	the	right	color	mode	is	set,	you’ll	find	it	much	easier	to	use	programs	such	as	Vim,	Emacs,
and	other	full-color	programs	from	within	tmux,	especially	when	you	are	using	more	complex
color	schemes	for	syntax	highlighting.	Just	take	a	look	at	this	figure	to	see	the	difference.

Now	let’s	configure	the	appearance	of	tmux’s	components,	starting	with	colors.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Changing	Colors
You	can	change	the	colors	of	several	parts	of	the	tmux	interface,	including	the	status	line,	window
list,	message	area,	and	even	the	pane	borders.

tmux	provides	variables	you	can	use	to	specify	colors,	including	black,	red,	green,	yellow,	blue,	magenta,
cyan,	or	white.	You	can	also	use	colour0	to	colour255	to	reference	more	specific	colors	on	the	256	color
palette.

To	find	the	numbers	for	those	colors,	you	can	run	this	simple	shell	script	to	get	the	color	variable
you’d	like	to	use:[6]

​	 ​for	 ​i	​in​	{0..255}	;	​do ​
​	 ​		 ​printf	​" ​​\x ​​1b[38;5; ​​${ ​i​} ​​m​​${ ​i​} ​​	" ​
​	 ​done ​

When	you	execute	this	command,	you’ll	see	the	following	output	in	your	terminal,	displaying	the
colors:

tmux	has	specific	configuration	options	to	change	foreground	and	background	colors	for	each	of
its	components.	Let’s	start	exploring	these	by	customizing	the	colors	of	the	status	line.

Changing	the	Status	Line	Colors

The	default	status	line	has	black	text	on	a	bright	green	background.	It’s	pretty	bland,	and
depending	on	your	terminal	configuration,	it	can	be	hard	to	read.	Let’s	make	it	have	white	text	on
a	black	background	by	default,	so	it	looks	like	this:

The	status-style	option	sets	the	foreground	and	background	colors	of	the	status	line,	as	well	as	the
style.	Add	the	following	line	to	your	configuration	to	set	the	status	line	colors:

config/tmux.conf

​	 ​#	set	the	status	line's	colors ​
​	 set	-g	status-style	fg=white,bg=black

You	can	set	the	foreground	color	and	the	background	color,	and	you	can	control	the	appearance	of
the	text,	depending	on	whether	or	not	your	terminal	supports	it.	As	you	can	probably	guess,	the	fg
option	sets	the	foreground	color,	and	the	bg	option	sets	the	background	color.

This	command	supports	the	options	dim,	bright	(or	bold),	reverse,	and	blink	in	addition	to	colors.	For
example,	to	make	the	status	line’s	text	white	and	bold,	you’d	use	the	following	configuration:

​	 set	-g	status-style	fg=white,bold,bg=black

You	can	also	customize	the	colors	of	the	items	within	the	status	line.	Let’s	start	by	customizing	the
window	list.

Changing	the	Window	List	Colors
tmux	displays	a	list	of	windows	in	the	status	line.	Let’s	make	it	more	apparent	which	window	is
active	by	styling	the	active	window	red	and	the	inactive	windows	cyan.	The	option	window-status-
style	controls	how	regular	windows	look,	and	the	window-status-current-style	option	controls	how	the
active	window	looks.	To	configure	the	colors,	you	use	the	same	syntax	you	used	for	the	status-style
option.

Let’s	make	the	names	of	the	windows	cyan,	like	this:

Add	this	to	your	configuration	file:

config/tmux.conf

​	 ​#	set	the	color	of	the	window	list​
​	 setw	-g	window-status-style	fg=cyan,bg=black

You	can	use	default	for	a	value	so	it	inherits	from	the	color	of	the	status	line.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

To	style	the	active	window	with	a	red	background	and	bold	white	text,	add	this	to	your
configuration:

​	 ​#	set	colors	for	the	active	window​
​	 setw	-g	window-status-current-style	fg=white,bold,bg=red

Now	inactive	windows	are	cyan,	and	the	active	window	is	easily	identifiable:

This	takes	care	of	the	window	list.	Let’s	look	at	how	we	can	customize	how	panes	within	a
window	appear.

Changing	the	Appearance	of	Panes
We	have	a	few	options	to	control	how	panes	look.	We	can	control	the	color	of	the	pane	dividers,
we	can	define	colors	to	make	the	active	pane	more	apparent,	and	we	can	even	“dim	out”	the
inactive	panes.

Panes	have	both	foreground	and	background	colors.	The	foreground	color	of	a	pane	is	the	actual
dashed	line	that	makes	up	the	border.	The	background	color,	by	default,	is	black,	but	if	we	color	it
when	the	pane	is	active,	we	can	make	the	active	pane	extremely	noticeable,	as	shown	in	the
following	figure:

Add	this	to	your	configuration	file	to	add	this	effect	to	your	environment:

config/tmux.conf

​	 ​#	colors	for	pane	borders ​

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

​	 setw	-g	pane-border-style	fg=green,bg=black
​	 setw	-g	pane-active-border-style	fg=white,bg=yellow

Finally,	you	may	want	to	be	able	to	more	easily	determine	what	the	active	pane	is	by	changing	the
color	of	the	foreground	or	background	of	the	current	pane.	Or,	you	might	want	to	fade	out	panes
that	are	not	in	use.	The	set-window-style	and	set-window-active-style	options	let	you	control	the	foreground
and	background	colors,	although	you	have	to	specify	both	the	foreground	and	background	colors
as	part	of	the	value	you	set	for	the	option.

Let’s	dim	out	any	pane	that’s	not	active.	We’ll	achieve	this	by	actually	dimming	all	of	the	panes,
and	then	making	the	active	pane	look	normal.	Add	these	lines	to	your	configuration:

​	 ​#	active	pane	normal,	other	shaded	out​
​	 setw	-g	window-style	fg=colour240,bg=colour235
​	 setw	-g	window-active-style	fg=white,bg=black

To	create	the	dimming	effect,	we	set	the	foreground	text	color	to	a	lighter	grey,	and	then	use	a
darker	grey	for	the	background	color.	Then	for	the	active	window,	we	use	black	and	white.

With	this	change	and	the	active	pane	borders,	it	should	be	pretty	clear	which	pane	is	active.	Now
let’s	touch	up	the	area	of	tmux	where	we	issue	commands.

Customizing	the	tmux	Command	Line

We	can	also	customize	the	command	line,	where	we	enter	tmux	commands	and	see	alert	messages.
The	approach	is	almost	identical	to	the	way	we	styled	the	status	line	itself.	Let’s	change	the
background	color	to	black	and	the	text	color	to	white.	We’ll	use	a	bright	white	so	the	message
stands	out	in	more	detail.	Add	this	to	your	configuration:

config/tmux.conf

​	 ​#	Command	/	message	line ​
​	 set	-g	message-style	fg=white,bold,bg=black

That	was	easy.	Now	let’s	change	the	areas	of	the	status	line	on	both	sides	of	the	window	list.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Customizing	the	Status	Line’s	Content
The	tmux	status	line	can	display	nearly	any	information	we	want.	We	can	use	some	predefined
components	or	create	our	own	by	executing	shell	commands.

The	status	line	consists	of	three	components:	a	left	panel,	the	window	list,	and	a	right	panel.	By
default,	it	looks	like	this:

​	 [development]	0:bash*																						"example.local"	13:37	31-Oct-16

On	the	left	side,	we	have	the	name	of	the	tmux	session	followed	by	the	list	of	windows.	The	list
of	windows	shows	the	numerical	index	of	the	current	window	and	its	name.	On	the	right	side,	we
have	the	hostname	of	our	server	followed	by	the	date	and	time.	Let’s	customize	the	content	of	our
status	line.

Configuring	Status	Line	Items
You	can	change	the	content	in	the	left	or	right	panels	of	the	status	bar	using	a	combination	of	text
and	variables.	The	following	table	shows	the	possible	variables	we	can	use	in	our	status	line.

Table	1.	Status	Line	Variables

Variable Description
#H Hostname	of	local	host
#h Hostname	of	local	host	without	the	domain

name
#F Current	window	flag
#I Current	window	index
#P Current	pane	index
#S Current	session	name
#T Current	window	title
#W Current	window	name
## A	literal	#
#(shell-command) First	line	of	the	shell	command’s	output
#[attributes] Color	or	attribute	change

For	example,	if	you	wanted	to	show	just	the	name	of	the	current	tmux	session	on	the	left,	you’d
use	the	set-option	-g	status-left	option	with	the	#S	value,	like	this:

​	 set	-g	status-left	​"#S" ​

But	you	can	also	make	it	stand	out	more	by	using	an	attribute	to	set	the	foreground	color,	like	this:

​	 set	-g	status-left	​"#[fg=green]#S" ​

You	can	add	as	many	attributes	and	items	to	the	status	line	as	you	want.	To	demonstrate,	let’s	alter
the	left	side	of	the	status	line	so	it	shows	the	session	name	in	green,	the	current	window	number	in
yellow,	and	the	current	pane	in	cyan.	Add	this	line	to	your	configuration	file:

​	 set	-g	status-left	​"#[fg=green]#S	#[fg=yellow]#I	#[fg=cyan]#P" ​

You	can	add	any	arbitrary	text	into	the	status	line,	too.	Let’s	add	text	to	make	the	session,	window,
and	pane	more	noticeable,	like	this:

config/tmux.conf

​	 ​#	Status	line	left	side	to	show	Session:window:pane ​
​	 set	-g	status-left-length	40
​	 set	-g	status-left	​"#[fg=green]Session:	#S	#[fg=yellow]#I	#[fg=cyan]#P" ​

We	set	the	status-left-length	option	because	the	output	we’ve	specified	is	too	long	for	the	default
length,	so	we	have	to	make	that	region	wider.

You	can	configure	the	right	side	of	the	status	line	too.	Add	the	current	date	and	time,	like	this:

config/tmux.conf

​	 ​#	Status	line	right	side	-		31-Oct	13:37 ​
​	 set	-g	status-right	​"#[fg=cyan]%d	%b	%R" ​

This	formats	the	date	as	“31-Oct	13:37,”	but	you	can	format	it	however	you’d	like,	using	the
standard	strftime	time	formatting	mechanism	used	in	many	programming	languages.[7]	Your	status
line	should	now	look	like	this:

You	can	take	things	a	step	further	by	incorporating	shell	commands	into	the	mix	by	using	the	#(shell-
command)	variable	to	return	the	result	of	any	external	command-line	program	into	the	status	line.
We’ll	go	into	this	in	detail	in	​Adding	Battery	Life	to	the	Status	Line ​.

Keeping	Status	Line	Info	Up	to	Date
We’ve	added	the	current	time	and	some	other	dynamic	information	to	our	status	line,	but	we	need
to	tell	tmux	how	often	to	refresh	that	information	periodically.	By	default,	tmux	refreshes	the
status	line	every	15	seconds.	We	can	specify	exactly	how	quickly	tmux	refreshes	its	status	line

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

with	set-option	-g	status-interval	followed	by	the	refresh	interval	in	seconds,	like	this:

​	 ​#	Update	the	status	line	every	sixty	seconds ​
​	 set	-g	status-interval	60

This	would	refresh	the	status	line	every	60	seconds.	Keep	in	mind	that	if	you’re	firing	off	shell
commands,	those	will	be	executed	once	per	interval,	so	be	careful	not	to	load	too	many	resource-
intensive	scripts.

Centering	the	Window	List
We	can	also	control	the	placement	of	the	window	list.	By	default,	the	window	list	is	left-aligned,
but	we	can	center	the	window	list	in	between	the	left	and	right	status	areas	with	a	single
configuration	change:

config/tmux.conf

​	 ​#	Center	the	window	list	in	the	status	line ​
​	 set	-g	status-justify	centre

With	this	in	place,	the	window	list	appears	centered:

As	you	create	new	windows,	the	window	list	will	shift	accordingly,	staying	in	the	center	of	the
status	line.

Identifying	Activity	in	Other	Windows
When	you’re	working	with	more	than	one	window,	you’ll	want	to	be	notified	when	something
happens	in	one	of	the	other	windows	in	your	session	so	you	can	react	to	it.	You	can	do	that	by
adding	a	visual	notification,	like	this:

config/tmux.conf

​	 ​#	enable	activity	alerts ​
​	 setw	-g	monitor-activity	on
​	 set	-g	visual-activity	on

The	monitor-activity	on	command	highlights	the	window	name	in	the	status	line	when	there’s	activity	in
that	window.	The	visual-activity	on	line	tells	tmux	to	show	a	message	in	the	status	line	as	well.

Now	when	one	of	the	other	windows	has	some	activity,	it’ll	stand	out	with	a	cyan	background,
like	the	“top”	window	shown	here:

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Once	you	switch	to	that	window,	the	colors	will	revert	back	to	normal.	If	you	want	to	configure
different	colors,	you	can	do	so	with	setw	-g	window-status-activity-style	and	the	colors	of	your	choice.

What’s	Next?
We’ve	built	up	a	pretty	solid	configuration	file	throughout	this	chapter.	Look	at	Appendix	1,	​Our
Configuration​	to	see	the	whole	.tmux.conf	file.

You	can	define	additional	options	in	your	.tmux.conf	file.	For	example,	in	Chapter	3,	​Scripting
Customized	tmux	Environments ​,	you’ll	set	up	a	custom	default	work	environment	using	project-
specific	configuration	files.

In	addition,	you	can	configure	a	default	configuration	for	your	system	in	/etc/tmux.conf.	This	is	great
for	situations	where	you’ve	set	up	a	shared	server	so	members	of	your	team	can	collaborate,	or	if
you	just	want	to	ensure	that	every	user	on	the	system	has	some	sensible	defaults.

Now	that	you	have	a	configuration	defined,	let’s	look	at	creating	your	own	custom	development
environments	with	scripts	so	you	can	take	advantage	of	tmux’s	panes	and	windows	without	having
to	set	them	up	every	day.

For	Future	Reference

Keybindings	defined	in	this	chapter

Command Description
CTRL - a The	new	 PREFIX .
PREFIX 	 a Sends	 CTRL - a 	to	the	program	running	in	a	tmux	window	or

pane.
PREFIX 	 r Reloads	the	tmux	configuration	file.
PREFIX 	 | Splits	the	window	horizontally.
PREFIX 	 - Splits	the	window	vertically.
PREFIX 	 h ,	 PREFIX 	 j ,	 PREFIX 	 k ,	and
PREFIX 	 l

Moves	between	panes.

PREFIX 	 H ,	 PREFIX 	 J ,	 PREFIX 	 K ,	and
PREFIX 	 L

Resizes	the	current	pane.

PREFIX 	 CTRL - h 	and	 PREFIX 	 CTRL - l Moves	forward	and	backward	through	windows.

Commands	to	control	tmux’s	behavior

Command Description
set	-g	prefix	C-a Sets	the	key	combination	for	the	Prefix	key.
set	-sg	escape-time	n Sets	the	amount	of	time	(in	milliseconds)	tmux	waits	for	a

keystroke	after	pressing	 PREFIX .
set	-g	base-index	1 Sets	the	base	index	for	windows	to	1	instead	of	0.
setw	-g	pane-base-index	1 Sets	the	base	index	for	panes	to	1	instead	of	0.
source-file	[file] Loads	a	configuration	file.	Use	this	to	reload	the	existing

configuration	or	bring	in	additional	configuration	options
later.

bind	C-a	send-prefix Configures	tmux	to	send	the	prefix	when	pressing	the	 PREFIX
combination	twice	consecutively.

bind-key	[key]	[command] Creates	a	keybinding	that	executes	the	specified	command.
Can	be	shortened	to	bind.

bind-key	-r	[key]	[command] Creates	a	keybinding	that	is	repeatable,	meaning	you	only
need	to	press	the	 PREFIX 	key	once,	and	you	can	press	the

assigned	key	repeatedly	afterwards.	This	is	useful	for
commands	where	you	want	to	cycle	through	elements	or
resize	panes.	Can	be	shortened	to	bind.

unbind-key	[key] Removes	a	defined	keybinding	so	it	can	be	bound	to	a
different	command.	Can	be	shortened	to	unbind.

display-message	or	display Displays	the	given	text	in	the	status	message.
set-option	[flags]	[option]	[value] Sets	options	for	sessions.	Using	the	-g	flag	sets	the	option

for	all	sessions.
set-window-option	[option]	[value] Sets	options	for	windows,	such	as	activity	notifications,

cursor	movement,	or	other	elements	related	to	windows	and
panes.

set	-a Appends	values	onto	existing	options	rather	than	replacing
the	option’s	value.

set	-g	mouse	off Disables	mouse	support	in	tmux.	Set	to	on	if	you	wish	to	use
the	mouse.

set	-g	default-terminal	"screen-256color" Defines	the	terminal	type	for	windows.	Sets	the	value	of
TERM,	which	other	programs	will	use.	screen-256color	ensures
the	widest	compatibility	with	programs	originally	written
for	the	screen	program.

Commands	to	control	tmux’s	appearance

Command Description
set	-g	status-style Sets	the	foreground	and	background	color	for	the	status	line.

Supports	the	options	dim,	bright	(or	bold),	reverse,	and	blink	in
addition	to	colors.

Example:	set	-g	status-style	fg=white,bold,bg=black
setw	-g	window-status-style Sets	the	foreground	and	background	color	of	the	window

list	in	the	status	line.	Uses	the	same	options	as	status-style.
setw	-g	window-status-current-style Sets	the	foreground	and	background	color	of	the	active

window	in	the	window	list	in	the	status	line.	Uses	the	same
options	as	status-style.

setw	-g	window-status-activity-style Sets	the	foreground	and	background	color	of	any	window
with	background	activity.	Uses	the	same	options	as	status-
style.

setw	-g	pane-border-style Sets	the	foreground	and	background	color	of	the	pane

[4]

[5]

[6]

[7]

borders.	Uses	the	same	options	as	status-style.
setw	-g	pane-active-border-style Sets	the	foreground	and	background	color	of	the	active

pane’s	border.	Uses	the	same	options	as	status-style.
setw	-g	window-style Sets	the	foreground	and	background	color	of	the	window.

Uses	the	same	options	as	status-style.
setw	-g	window-active-style Sets	the	foreground	and	background	color	of	the	active

window.	Uses	the	same	options	as	status-style.
setw	-g	message-style Sets	the	foreground	and	background	color	of	the	message

area	and	tmux	command	line.	Uses	the	same	options	as	status-
style.

set	-g	status-length-left	and	set	-g	status-
length-right

Controls	the	number	of	visible	characters	in	the	left	and
right	sides	of	the	status	line.

set	-g	status-left	and	set	-g	status-right Configures	the	items	that	appear	in	the	left	and	right	sides	of
the	status	line.

set	-g	status-interval	n Defines	the	refresh	interval	for	the	status	line,	where	n	is
the	number	of	seconds	between	refreshes.

set	-g	status-justify	centre Centers	the	window	list	in	the	status	line.
setw	-g	monitor-activity	on Looks	for	activity	in	other	windows	and	highlights	the	name

of	the	window	with	background	activity.
set	-g	visual-activity	on Displays	a	message	in	the	message	area	when	there	is

activity	in	another	window.

Footnotes

http://www.emacswiki.org/emacs/MovingTheCtrlKey

http://www.iterm2.com

http://superuser.com/questions/285381/how-does-the-tmux-color-palette-work

See	http://www.foragoodstrftime.com/	for	a	handy	tool	to	help	you	find	the	perfect	time	format.

Copyright	©	2016,	The	Pragmatic	Bookshelf.

http://www.emacswiki.org/emacs/MovingTheCtrlKey
http://www.iterm2.com
http://superuser.com/questions/285381/how-does-the-tmux-color-palette-work
http://www.foragoodstrftime.com/

Chapter	3

Scripting	Customized	tmux	Environments
	

You	probably	run	a	wide	collection	of	tools	and	programs	as	you	work	on	your	projects.	If	you’re
working	on	a	web	application,	you	most	likely	need	to	have	a	command	shell,	a	text	editor,	a
database	console,	and	another	window	dedicated	to	running	your	automated	test	suite	for	your
application.	That’s	a	lot	of	windows	to	manage,	and	a	lot	of	commands	to	type	to	get	it	all	fired
up.

Imagine	being	able	to	come	to	your	workstation,	ready	to	tackle	that	new	feature,	and	being	able
to	bring	every	one	of	those	programs	up,	each	in	its	own	pane	or	window	in	a	single	tmux	session,
using	a	single	command.	We	can	use	tmux’s	client-server	model	to	create	custom	scripts	that	build
up	our	development	environments,	splitting	windows	and	launching	programs	for	us
automatically.	We’ll	explore	how	to	do	this	manually	first,	and	then	we’ll	look	at	more	advanced
automatic	tools.

Creating	a	Custom	Setup	with	tmux	Commands
We’ve	already	explored	how	we	use	the	tmux	command	to	create	new	tmux	sessions,	but	the	tmux
command	takes	many	other	options.	We	can	take	an	existing	session	and	split	its	windows	into
panes,	change	layouts,	or	even	start	up	applications	within	the	session.

The	key	to	this	is	the	-t	switch,	or	the	“target.”	When	you	have	a	named	tmux	session,	you	can
attach	to	it	like	this:

​	 ​$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​[session_name] ​

You	can	use	this	target	switch	to	direct	a	tmux	command	to	the	appropriate	tmux	session.	Create	a
new	tmux	session	called	“development,”	like	this:

​	 ​$	 ​​tmux ​​	 ​​new-session​​	 ​​-s ​​	 ​​development ​

Then	detach	from	the	session	with	 PREFIX 	 d .	Even	though	you’re	no	longer	connected,	you	can	split
the	window	in	the	tmux	session	horizontally	by	issuing	this	command:

​	 ​$	 ​​tmux ​​	 ​​split-window​​	 ​​-h​​	 ​​-t ​​	 ​​development ​

When	you	attach	to	the	session	again,	the	window	will	split	into	two	panes.	Attach	to	your	session
again	to	see	for	yourself.

​	 ​$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​development ​

In	fact,	you	don’t	even	have	to	detach	from	a	tmux	session	to	send	commands.	You	can	open
another	terminal	and	split	the	window	again,	but	this	time	with	a	vertical	split.	Try	it	out.	Open	a
second	terminal	window	or	tab,	and	enter	this	command:

​	 ​$	 ​​tmux ​​	 ​​split-window​​	 ​​-v ​​	 ​​-t ​​	 ​​development ​

Using	this	approach,	you	can	customize	your	environment	easily.	Let’s	explore	this	concept	by
creating	our	own	development	environment.

Scripting	a	Project	Configuration
In	Chapter	1,	​Learning	the	Basics ​,	we	discussed	tmux	commands	such	as	new-session	and	new-
window.	Let’s	write	a	simple	script	using	these	and	similar	commands	that	creates	a	new	tmux
session	and	creates	a	window	with	a	couple	panes	and	two	additional	windows	with	one	pane
each.	To	top	it	off,	we’ll	launch	applications	in	each	of	the	panes.

Let’s	start	by	creating	a	new	script	called	development	in	our	home	directory.	We’ll	make	this	script

executable	too,	so	we	can	run	it	like	any	other	executable	program	from	our	shell.	Execute	these
commands	in	your	terminal:

​	 ​$	 ​​touch​​	 ​​~/development ​
​	 ​$	 ​​chmod​​	 ​​+x ​​	 ​​~/development ​

When	we	start	up	our	session,	we	want	to	change	to	the	directory	for	our	project.	We’ll	call	that
directory	devproject.	And	before	we	can	change	to	that	directory,	we’d	better	create	it	first.

​	 ​$	 ​​mkdir​​	 ​​~/devproject ​

Now,	open	the	~/development	script	in	your	text	editor	and	add	this	line	to	create	a	new	tmux	session
called	“development”:

scripting/development

​	 tmux	new-session	-s	development	-n	editor	-d

We’re	passing	a	couple	additional	parameters	when	we	create	this	new	session.	First,	we’re
creating	this	session	and	naming	it	with	the	-s	flag	like	we’ve	done	before.	Then	we	give	the
initial	window	a	name	of	“editor,”	and	then	immediately	detach	from	this	new	session	with	the	-d
flag.

Next,	add	a	line	to	our	configuration	that	uses	tmux’s	send-keys	command	to	change	the	current
directory	to	the	one	we’re	using	for	our	project:

​	 tmux	send-keys	-t	development	​'cd	~/devproject'​	C-m

We	place	C-m	at	the	end	of	the	line	to	send	the	Carriage	Return	sequence,	represented	by	Ctrl-M.[8]

This	is	how	we	tell	tmux	to	press	the	 ENTER 	key.

We’ll	use	the	same	approach	to	open	the	Vim	text	editor	in	that	window.	Add	this	line	to	your
script:

​	 tmux	send-keys	-t	development	​'vim'​	C-m

With	these	three	commands,	we’ve	created	a	new	session,	changed	to	a	directory,	and	opened	a
text	editor,	but	our	environment	isn’t	yet	complete.	Let’s	split	the	main	editor	window	so	we	have
a	small	terminal	window	on	the	bottom.	We	do	this	with	the	split-window	command.	Add	this	line	to
your	script:

​	 tmux	split-window	-v	-t	development

This	splits	the	main	window	in	half	horizontally.	You	could	have	specified	a	percentage	using

http://media.pragprog.com/titles/bhtmux2/code/scripting/development

something	like

​	 tmux	split-window	-v	-p	10	-t	development

but	for	now,	just	leave	the	split-window	command	as	is	and	then	select	one	of	the	default	tmux	layouts
—the	main-horizontal	one—by	adding	this	to	your	script:

​	 tmux	​select ​-layout	-t	development	main-horizontal

We’ve	created	our	first	window	and	split	it	into	two	panes,	but	the	bottom	pane	needs	to	open	in
the	project	folder.	We	already	know	how	we	send	commands	to	tmux	instances,	but	now	we	have
to	target	those	commands	at	specific	panes	and	windows.

Targeting	Specific	Panes	and	Windows
With	commands	such	as	send-keys,	you	can	specify	not	only	the	target	session,	but	also	the	target
window	and	pane.	In	the	configuration	file	you	created	back	in	Chapter	2,	​Configuring	tmux ​,	you
specified	a	base-index	of	1,	meaning	that	your	window	numbering	starts	at	1.	This	base	index	doesn’t
affect	the	panes,	though,	which	is	why	you	also	set	the	pane-base-index	to	1.	In	our	case,	we	have	two
panes	in	our	current	setup,	like	the	following	example:

​	 --------------------------
​	 |																								|
​	 |									Pane	1									|
​	 |																								|
​	 --------------------------
​	 |									Pane	2									|
​	 --------------------------

We	have	the	Vim	text	editor	open	in	Pane	1,	and	we	want	to	send	a	command	to	Pane	2	that
changes	to	our	project	directory.	We	target	a	pane	using	the	format	[session]:[window].[pane],	so	to
target	Pane	2,	we’d	use	development:1.2.	So,	add	this	line	to	your	script,	and	you’ll	get	exactly	what
you	want:

​	 tmux	send-keys	-t	development:1.2	​'cd	~/devproject'​	C-m

We’re	almost	there.	Let’s	finish	up	this	configuration	by	adding	a	couple	more	windows	to	the
session.

Creating	and	Selecting	Windows

We	want	a	second	window	in	our	session	that	will	be	a	full-screen	console.	We	can	create	that
new	window	using	the	new-window	command.	Add	these	lines	to	your	script:

​	 tmux	new-window	-n	console	-t	development
​	 tmux	send-keys	-t	development:2	​'cd	~/devproject'​	C-m

After	we	create	the	window,	we	use	send-keys	to	once	again	change	into	our	project	directory.	We
only	have	one	pane	in	our	new	window,	so	we	only	have	to	specify	the	window	number	in	the
target.

When	we	start	up	our	session,	we	want	our	first	window	to	be	displayed,	and	we	do	that	with	the
select-window	command:

​	 tmux	​select ​-window	-t	development:1
​	 tmux	attach	-t	development

We	could	continue	to	add	to	this	script,	creating	additional	windows	and	panes,	starting	up	remote
connections	to	our	servers,	tailing	log	files,	connecting	to	database	consoles,	or	even	running
commands	that	pull	down	the	latest	version	of	our	code	when	we	start	working.	But	we’ll	stop
here,	and	simply	end	our	script	by	finally	attaching	to	the	session	so	it	shows	up	on	the	screen,
ready	for	us	to	begin	working.	Our	entire	script	looks	like	this:

​	 tmux	new-session	-s	development	-n	editor	-d
​	 tmux	send-keys	-t	development	​'cd	~/devproject'​	C-m
​	 tmux	send-keys	-t	development	​'vim'​	C-m
​	 tmux	split-window	-v	-t	development
​	 tmux	​select ​-layout	-t	development	main-horizontal
​	 tmux	send-keys	-t	development:1.2	​'cd	~/devproject'​	C-m
​	 tmux	new-window	-n	console	-t	development
​	 tmux	send-keys	-t	development:2	​'cd	~/devproject'​	C-m
​	 tmux	​select ​-window	-t	development:1
​	 tmux	attach	-t	development

When	you	run	it	with

​	 ​$	 ​​~/development ​

your	environment	will	look	like	this:

One	drawback	to	this	approach	is	that	this	script	creates	a	brand-new	session.	It	won’t	work
properly	if	you	run	it	a	second	time	while	the	development	session	is	currently	running.	You	could
modify	the	script	to	check	if	a	session	with	that	name	already	exists	by	using	the	tmux	has-session
command	and	only	create	the	session	if	it’s	not	there,	like	this:

scripting/reattach/development

​	 tmux	has-session	-t	development
​	 ​if​	[$?	!=	0]
​	 ​then​
​	 ​		 ​tmux	new-session	-s	development	-n	editor	-d
​	 		tmux	send-keys	-t	development	​'cd	~/devproject'​	C-m
​	 		tmux	send-keys	-t	development	​'vim'​	C-m
​	 		tmux	split-window	-v	-t	development
​	 		tmux	​select ​-layout	-t	development	main-horizontal
​	 		tmux	send-keys	-t	development:1.2	​'cd	~/devproject'​	C-m
​	 		tmux	new-window	-n	console	-t	development
​	 		tmux	send-keys	-t	development:2	​'cd	~/devproject'​	C-m
​	 		tmux	​select ​-window	-t	development:1
​	 ​fi​
​	 tmux	attach	-t	development

This	approach	works	well	for	a	single	project	setup.	You	could	modify	this	further	by	using	a
variable	for	the	project	name	to	make	the	script	more	generic,	but	let’s	look	at	a	couple	other
ways	we	can	configure	things	to	manage	multiple	projects.

http://media.pragprog.com/titles/bhtmux2/code/scripting/reattach/development

Using	tmux	Configuration	for	Setup
The	.tmux.conf	file	itself	can	include	commands	that	set	up	a	default	environment.	If	you	wanted
every	tmux	session	to	start	in	the	same	default	folder,	or	automatically	open	a	split	window,	you
could	bake	that	right	in	to	your	default	configuration,	simply	by	using	the	appropriate	commands.

But	you	can	also	specify	a	configuration	file	when	you	start	up	an	instance	of	tmux,	by	using	the	-f
flag.	This	way	you	don’t	have	to	change	your	original	default	configuration	file,	and	you	can
check	your	configuration	file	in	with	your	project’s	source	code.	You	can	also	set	up	your	own
per-project	configuration	options,	such	as	new	keyboard	shortcuts	to	run	commands	or	start	your
test	suite.

Let’s	try	this	out.	Create	a	new	file	called	app.conf.

​	 ​$	 ​​touch​​	 ​​app.conf​

Inside	this	file,	you	can	use	the	same	commands	you	just	learned	about	in	the	previous	section,	but
since	you’re	inside	the	configuration	file	rather	than	a	shell	script,	you	don’t	have	to	explicitly
prefix	each	command	with	tmux.	Add	this	code	to	your	app.conf	file:

scripting/app.conf

​	 source-file	~/.tmux.conf
​	 new-session	-s	development	-n	editor	-d
​	 send-keys	-t	development	​'cd	~/devproject'​	C-m
​	 send-keys	-t	development	​'vim'​	C-m
​	 split-window	-v	-t	development
​	 ​select ​-layout	-t	development	main-horizontal
​	 send-keys	-t	development:1.2	​'cd	~/devproject'​	C-m
​	 new-window	-n	console	-t	development
​	 send-keys	-t	development:2	​'cd	~/devproject'​	C-m
​	 ​select ​-window	-t	development:1

This	code	first	loads	your	existing	.tmux.conf	file.	This	way	you’ll	have	all	your	environment
settings	you	previously	defined,	including	your	keybindings	and	status	bar	settings.	This	isn’t
mandatory,	but	if	you	left	this	off,	you’d	have	to	use	all	the	default	keybindings	and	options,	or
you’d	have	to	define	your	own	options	in	this	file.

To	use	this	configuration	file,	pass	the	-f	flag	followed	by	the	path	to	the	config	file.	You	also	have
to	start	tmux	with	the	attach	command,	like	this:

​	 ​$	 ​​tmux ​​	 ​​-f​​	 ​​app.conf​​	 ​​attach​

http://media.pragprog.com/titles/bhtmux2/code/scripting/app.conf

This	is	because,	by	default,	tmux	always	calls	the	new-session	command	when	it	starts.	This	file
creates	a	new	session	already,	so	you’d	have	two	tmux	sessions	running	if	you	left	off	attach.

This	approach	gives	you	a	lot	of	flexibility,	but	you	can	gain	even	more	by	using	a	command-line
tool	called	tmuxinator.

Managing	Configuration	with	tmuxinator
tmuxinator	is	a	simple	tool	you	can	use	to	define	and	manage	different	tmux	configurations.	You
define	window	layouts	and	commands	in	a	simple	YAML	format,	and	then	launch	them	with	the
tmuxinator	command.	Unlike	the	other	approaches,	tmuxinator	offers	a	central	location	for	your
configurations	and	a	much	easier	dialect	for	creating	complex	layouts.	It	also	lets	you	specify
commands	that	should	always	run	before	each	window	gets	created.

tmuxinator	requires	the	Ruby	interpreter,	so	you’ll	need	to	have	that	on	your	system.	Mac	OS	X
users	already	have	Ruby	installed,	and	Linux	users	can	usually	install	Ruby	through	a	package
manager.	However,	if	you	plan	to	use	Ruby	for	anything	beyond	tmuxinator,	I	strongly	encourage
you	to	install	Ruby	through	RVM	by	following	along	with	the	instructions	on	the	RVM	website.[9]

Install	tmuxinator	by	using	Rubygems,	which	is	the	package	management	system	for	Ruby.

​	 ​$	 ​​gem​​	 ​​install​​	 ​​tmuxinator​

If	you	are	not	using	RVM,	you	will	need	to	run	this	as	root	or	with	the	sudo	command.

tmuxinator	needs	the	$EDITOR	shell	environment	to	be	defined,	so	if	you	haven’t	set	yours	yet,
you’ll	want	to	do	that	in	your	.bashrc	file	on	Linux,	or	.bash_profile	on	OS	X.	For	example,	to	define
Vim	as	the	default	editor,	you’d	add	this	line	to	your	Bash	configuration:

​	 export	EDITOR=vim

Now	we	can	create	a	new	tmuxinator	project.	Let’s	call	it	“development.”	Execute	this	command:

​	 ​$	 ​​tmuxinator​​	 ​​open​​	 ​​development ​

This	pops	open	the	editor	you	assigned	to	the	$EDITOR	environment	variable	and	displays	the
default	project	configuration,	which	looks	like	this:

scripting/default.yaml

​	 ​#	~/.tmuxinator/development.yml​
​	
​	 ​name ​:	​development​
​	 ​root​:	​~/​
​	
​	 ​#	a	bunch	of	comments.... ​
​	
​	 ​windows ​:
​	 		-	​editor ​:
​	 						​layout​:	​main-vertical​

http://media.pragprog.com/titles/bhtmux2/code/scripting/default.yaml

​	 						​panes ​:
​	 								-	​vim​
​	 								-	​guard ​
​	 		-	​server ​:	​bundle	exec	rails	s ​
​	 		-	​logs ​:	​tail	-f	log/development.log ​

This	is	an	environment	that	a	Ruby	on	Rails	developer	who	works	with	Git	might	really
appreciate.	This	creates	a	tmux	session	with	three	windows.	The	first	window	is	divided	into	two
panes,	using	the	main-vertical	layout	scheme.	The	left	pane	opens	Vim,	and	the	right	pane	opens
Guard,	a	Ruby	program	that	watches	files	for	changes	and	executes	tasks,	like	test	runners.	The
second	window	launches	Rails’	built-in	web	server,	and	the	third	window	uses	the	tail	command
to	follow	the	application’s	development	log	file.

As	you	can	see,	tmuxinator	makes	it	trivial	to	define	not	only	the	windows	and	panes,	but	also
what	commands	we	want	to	execute	in	each	one.	Let’s	use	Tmuxinator	to	construct	our
development	environment,	with	Vim	in	the	top	pane	and	a	terminal	on	the	bottom,	starting	in	the
~/devproject	folder.	Remove	the	contents	of	this	file	and	replace	it	with	the	following	code:

scripting/development.yaml

​	 ​name ​:	​development​
​	 ​root​:	​~/devproject​
​	 ​windows ​:
​	 		-	​editor ​:
​	 						​layout​:	​main-horizontal​
​	 						​panes ​:
​	 								-	​vim​
​	 								-	​#empty,	will	just	run	plain	bash ​
​	 		-	​console ​:	​#	empty ​

The	yml	file	format	uses	two	spaces	for	indenting,	so	it’s	really	important	to	ensure	you	format	the
file	correctly	and	that	you	don’t	accidentally	use	tabs	when	you	write	the	file.

To	fire	up	the	new	environment,	save	the	config	file	and	then	execute	the	following	command:

​	 ​$	 ​​tmuxinator​​	 ​​development ​

tmuxinator	automatically	loads	up	your	original	.tmux.conf	file,	applies	the	settings,	and	then
arranges	the	windows	and	panes	for	you,	just	like	you	specified.	If	you	want	to	make	more
changes	to	your	environment,	just	use

​	 ​$	 ​​tmuxinator​​	 ​​open​​	 ​​development ​

again	and	edit	the	configuration.

By	default,	the	configuration	files	for	tmuxinator	are	located	in	~/.tmuxinator/,	so	you	can	find	those

http://media.pragprog.com/titles/bhtmux2/code/scripting/development.yaml

and	back	them	up,	or	share	them	with	others.

Under	the	hood,	tmuxinator	is	just	constructing	a	script	that	executes	the	individual	tmux
commands	just	like	we	did	when	we	wrote	our	own	script.	However,	it’s	a	nicer	syntax	that’s
pretty	easy	to	follow.	It	does	require	a	Ruby	interpreter	on	your	machine,	though,	so	it	may	not	be
something	you’ll	set	up	on	every	environment	where	you’d	like	to	use	tmux.	However,	you	can
use	Tmuxinator	to	generate	a	configuration	you	can	use	anywhere.	The	tmuxinator	debug	command	can
display	the	script	that	Tmuxinator	will	use:

​	 ​$	 ​​tmuxinator​​	 ​​debug ​​	 ​​development ​

Here’s	what	the	output	looks	like:

​	 ​#!/bin/bash ​
​	
​	 ​#	Clear	rbenv	variables	before	starting	tmux ​
​	 unset	RBENV_VERSION
​	 unset	RBENV_DIR
​	
​	 tmux	start-server;
​	
​	 		cd	/home/brianhogan/devproject
​	
​	 		​#	Run	pre	command. ​
​	
​	 		​#	Create	the	session	and	the	first	window.	Manually	switch	to	root​
​	 		​#	directory	if	required	to	support	tmux	<	1.9 ​
​	 		TMUX=	tmux	new-session	-d	-s	development	-n	editor
​	 		tmux	send-keys	-t	development:1	cd​\	 ​/home/brianhogan/devproject	C-m
​	
​	 		​#	Create	other	windows. ​
​	 		tmux	new-window		-t	development:2	-n	console
​	
​	 		​#	Window	"editor" ​
​	 		tmux	send-keys	-t	development:1.1	vim	C-m
​	
​	 		tmux	splitw	-c	/home/brianhogan/devproject	-t	development:1
​	 		tmux	​select ​-layout	-t	development:1	tiled
​	
​	 		tmux	​select ​-layout	-t	development:1	tiled
​	
​	 		tmux	​select ​-layout	-t	development:1	main-horizontal
​	 		tmux	​select ​-pane	-t	development:1.1
​	
​	 		​#	Window	"console" ​
​	
​	 		tmux	​select ​-window	-t	1
​	

​	 		​if​	[-z	​" ​$TMUX​" ​];	​then​
​	 ​				 ​tmux	-u	attach-session	-t	development
​	 		​else ​
​	 ​				 ​tmux	-u	switch-client	-t	development
​	 		​fi​

You	could	save	the	output	of	tmuxinator	debug	to	a	script	you	can	run	on	any	machine.	You	can	also
use	this	option	to	troubleshoot	any	issues	you	might	be	having	as	you	develop	your	configuration
file.

What’s	Next?
You	can	use	every	tmux	command	through	the	shell,	which	means	you	can	write	scripts	to
automate	nearly	every	aspect	of	tmux,	including	running	sessions.	For	example,	you	could	create	a
keyboard	binding	that	sources	a	shell	script	that	divides	the	current	window	into	two	panes	and
logs	you	into	your	production	web	and	database	servers.

We’ve	covered	a	lot	so	far.	You	know	how	to	set	up	projects,	move	around	panes	and	windows,
and	launch	your	consoles.	You’ve	tinkered	around	with	your	configuration	enough	to	understand
how	to	customize	things	to	your	liking.	And	you’ve	experimented	with	three	separate	ways	to
script	out	your	tmux	environment.	But	as	you	start	to	integrate	tmux	into	your	workflow,	you’ll
start	to	notice	some	new	issues	crop	up.	For	example,	the	results	of	tests	or	application	logs	start
to	scroll	off	the	screen,	and	you’ll	want	to	be	able	to	scroll	up	to	read	things.	And	you’ll	probably
want	to	copy	and	paste	text	between	panes,	windows,	or	other	applications.	So	let’s	learn	how	to
work	with	tmux’s	output	buffers	next.

For	Future	Reference

Scriptable	tmux	commands

Command Description
tmux	new-session	-s

development	-n

editor

Creates	a	session	named	“development”	and	names	the	first	window
“editor.”

tmux	attach	-t

development
Attaches	to	a	session	named	“development.”

tmux	send-keys	-t

development

’[keys]’	C-m

Sends	the	keystrokes	to	the	“development”	session’s	active	window	or	pane.
C-m	is	equivalent	to	pressing	the	 ENTER 	key.

tmux	send-keys	-t

development:1.1

’[keys]’	C-m

Sends	the	keystrokes	to	the	“development”	session’s	first	window	and	first
pane,	provided	the	window	and	pane	indexes	are	set	to	1.	C-m	is	equivalent	to
pressing	the	 ENTER 	key.

tmux	select-window

-t	development:1
Selects	the	first	window	of	“development,”	making	it	the	active	window.

tmux	split-window	-

v	-p	10	-t

development

Splits	the	current	window	in	the	“development”	session	vertically,	dividing	it
in	half	horizontally,	and	sets	its	height	to	10%	of	the	total	window	size.

tmux	select-layout	-t

development	main-

horizontal

Sets	the	layout	for	the	“development”	session	to	main-horizontal.

tmux	source-file

[file]
Loads	the	specified	tmux	configuration	file.

tmux	-f	app.conf

attach
Loads	the	app.conf	configuration	file	and	attaches	to	a	session	created	within
the	app.conf	file.

tmuxinator	commands

Command Description
tmuxinator	open

[name]
Opens	the	configuration	file	for	the	project	name	in	the	default	text	editor.	Creates
the	configuration	if	it	doesn’t	exist.

tmuxinator

[name]
Loads	the	tmux	session	for	the	given	project.	Creates	the	session	from	the
contents	of	the	project’s	configuration	file	if	no	session	currently	exists,	or

[8]

[9]

attaches	to	the	session.
tmuxinator	list Lists	all	current	projects.
tmuxinator	copy

[source]

[destination]

Copies	a	project	configuration.

tmuxinator

delete	[name]
Deletes	the	specified	project.

tmuxinator

implode
Deletes	all	current	projects.

tmuxinator

doctor
Looks	for	problems	with	the	tmuxinator	and	system	configuration.

tmuxinator

debug
Shows	the	script	that	tmuxinator	will	run,	helping	you	figure	out	what’s	going
wrong.

Footnotes

http://en.wikipedia.org/wiki/Carriage_return

https://rvm.io/

Copyright	©	2016,	The	Pragmatic	Bookshelf.

http://en.wikipedia.org/wiki/Carriage_return
https://rvm.io/

Chapter	4

Working	With	Text	and	Buffers
	

Throughout	the	course	of	your	average	day,	you’ll	copy	and	paste	text	more	times	than	you	can
keep	track	of.	When	you’re	working	with	tmux,	you	will	eventually	come	to	the	point	where	you
need	to	scroll	backwards	through	the	terminal’s	output	buffer	to	see	something	that	scrolled	off	the
screen.	You	might	also	need	to	copy	some	text	and	paste	it	into	a	file	or	into	another	program.
This	chapter	is	all	about	how	to	manage	the	text	inside	your	sessions.	You’ll	see	how	to	use	the
keyboard	to	scroll	through	tmux’s	output	buffer,	how	to	work	with	multiple	paste	buffers,	and	how
to	work	with	the	system	clipboard.

Scrolling	Through	Output	with	Copy	Mode
When	you	work	with	programs	in	the	terminal,	it’s	common	that	the	output	from	these	programs
scrolls	off	the	screen.	But	when	you	use	tmux,	you	can	use	the	keyboard	to	move	backwards
through	the	output	buffer	so	you	can	see	what	you	missed.	This	is	especially	useful	for	those	times
when	you’re	running	tests	or	watching	log	files	and	you	can’t	just	rely	on	the	less	command	or	your
text	editor.

Pressing	 PREFIX 	 [places	you	in	Copy	mode.	You	can	then	use	your	movement	keys	to	move	the
cursor	around	the	screen.	By	default,	the	arrow	keys	work.	But	in	Chapter	2,	​Configuring	tmux ​,
you	configured	tmux	to	use	Vim	keys	for	moving	between	windows	and	resizing	panes	so	you
wouldn’t	have	to	take	your	hands	off	the	home	row.	tmux	has	a	vi	mode	for	working	with	the	buffer
as	well.	To	enable	it,	add	this	line	to	.tmux.conf:

config/tmux.conf

​	 ​#	enable	vi	keys. ​
​	 setw	-g	mode-keys	vi

With	this	option	set,	you	can	use	 h ,	 j ,	 k ,	and	 l 	to	move	around	your	buffer.

To	get	out	of	Copy	mode,	press	the	 ENTER 	key.	Moving	around	one	character	at	a	time	isn’t	very
efficient.	Since	you	enabled	vi	mode,	you	can	also	use	some	other	visible	shortcuts	to	move
around	the	buffer.

For	example,	you	can	use	 w 	to	jump	to	the	next	word	and	 b 	to	jump	back	one	word.	And	you	can
use	 f ,	followed	by	any	character,	to	jump	to	that	character	on	the	same	line,	and	 F 	to	jump
backwards	on	the	line.

Moving	Quickly	Through	the	Buffer
When	you	have	several	pages	of	buffered	output,	moving	the	cursor	around	to	scroll	isn’t	going	to
be	that	useful.	Instead	of	moving	word	by	word	or	character	by	character,	you	can	scroll	through
the	buffer	page	by	page,	or	jump	to	the	beginning	or	end	of	the	buffer.

You	can	move	up	one	page	with	 CTRL - b 	and	down	one	page	with	 CTRL - f .	You	can	jump	all	the
way	to	the	top	of	the	buffer’s	history	with	 g ,	and	then	jump	all	the	way	to	the	bottom	with	 G .

Searching	Through	the	Buffer
You	don’t	have	to	browse	through	the	hundreds	of	lines	of	content	page	by	page	if	you	know	what

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

you’re	looking	for.	By	pressing	 ? 	in	Copy	mode,	you	can	search	upwards	for	phrases	or
keywords.	Simply	press	 ? ,	type	in	the	search	phrase,	and	press	 ENTER 	to	jump	to	the	first
occurrence	of	the	phrase.	Then	press	 n 	to	jump	to	the	next	occurrence,	or	 N 	to	move	to	the
previous.

To	search	downward,	press	 / 	instead	of	 ? .	Pressing	 n 	then	jumps	to	the	next	occurrence,	and	 N
jumps	to	the	previous	occurrence.

Learning	to	move	around	the	buffer	this	way	will	dramatically	speed	you	up.	It’s	faster	to	type	the
word	you	want	to	move	to	instead	of	using	the	arrows	to	move	around,	especially	if	you’re
looking	through	the	output	of	log	files.

Now	let’s	explore	how	to	copy	text	from	one	pane	and	paste	it	to	another.	This	is	Copy	mode,
after	all.

Copying	and	Pasting	Text
Moving	around	and	looking	for	things	in	the	output	buffer	is	usually	only	half	the	equation.	We
often	need	to	copy	some	text	so	we	can	do	something	useful	with	it.	tmux’s	Copy	mode	gives	us
the	opportunity	to	select	and	copy	text	to	a	paste	buffer	so	we	can	dump	that	text	elsewhere.

To	copy	text,	enter	Copy	mode	and	move	the	cursor	to	where	you	want	to	start	selecting	text.	Then
press	 SPACE 	and	move	the	cursor	to	the	end	of	the	text.	When	you	press	 ENTER ,	the	selected	text	gets
copied	into	a	paste	buffer.

To	paste	the	contents	you	just	captured,	press	 PREFIX] .

Let’s	look	at	a	few	ways	to	copy	and	paste	text	from	our	main	output	buffer.

Capturing	a	Pane
tmux	has	a	handy	shortcut	that	copies	the	entire	visible	contents	of	a	pane	to	a	paste	buffer.	Enter
tmux’s	Command	mode	with	 PREFIX 	 : 	and	type

capture-pane

The	contents	of	the	pane	will	be	in	a	paste	buffer.	You	can	then	paste	that	content	into	another
pane	or	window	by	pressing	 PREFIX] .

Showing	and	Saving	the	Buffer
You	can	display	the	contents	of	your	paste	buffer	by	using	the	show-buffer	command	in	Command
mode,	or	from	a	terminal	session	with

​	 ​$	 ​​tmux ​​	 ​​show-buffer​

However,	by	using	the	save-buffer	command,	you	can	save	the	buffer	to	a	file,	which	can	often	be	a
real	time	saver.	In	fact,	you	can	capture	the	contents	of	the	current	pane	to	a	text	file.

In	Command	mode,	execute	the	command	capture-pane;	save-buffer	buffer.txt.	You	could	easily	map	that
command	to	a	keystroke	if	you	wanted.

Using	Multiple	Paste	Buffers
tmux	maintains	a	stack	of	paste	buffers,	which	means	you	can	copy	text	without	replacing	the
buffer’s	existing	content.	This	is	much	more	flexible	than	the	traditional	clipboard	offered	by	the

operating	system.

Every	time	you	copy	some	new	text,	tmux	creates	a	new	paste	buffer,	putting	the	new	buffer	at	the
top	of	the	stack.	To	demonstrate,	fire	up	a	new	tmux	session	and	load	up	a	text	editor	such	as	Vim
or	Nano.	In	the	editor,	type	the	following	sentences,	one	per	line:

​	 First	sentence	is	first.
​	 Next	sentence	is	next.
​	 Last	sentence	is	last.

Now	copy	some	text	to	the	paste	buffer	using	tmux.	Enter	Copy	mode	with	 PREFIX 	 [.	Move	to	the
start	of	the	first	sentence,	press	 SPACE 	to	start	selecting	text,	move	to	the	end	of	the	first	sentence,
and	press	 ENTER 	to	copy	the	selection.	Repeat	this	with	the	second	and	third	sentences.

Each	time	you	copied	text,	tmux	created	a	new	buffer.	You	can	see	these	buffers	with	the	list-buffers
command.

​	 0:	22	bytes:	"Last	sentence	is	last."
​	 1:	22	bytes:	"Next	sentence	is	next."
​	 2:	24	bytes:	"First	sentence	is	first."

Pressing	 PREFIX] 	always	pastes	buffer	0,	but	you	can	issue	the	command	choose-buffer	to	select	a
buffer	and	paste	the	contents	into	the	focused	pane.

Split	the	current	window	in	half	and	launch	Nano	in	the	second	pane,	then	enter	Command	mode
and	type	this:

choose-buffer

You’ll	be	presented	with	a	list	that	looks	like	this:

You	can	select	any	entry	in	the	list,	press	 ENTER ,	and	the	text	will	be	inserted	into	the	selected	pane.

This	is	an	excellent	way	to	manage	multiple	bits	of	text,	especially	in	text-based	environments
where	you	don’t	have	access	to	an	OS-level	clipboard.

These	buffers	are	shared	across	all	running	tmux	sessions,	too,	so	you	can	take	content	from	one
session	and	paste	it	into	another.

Remapping	Copy	and	Paste	Keys
If	you	use	Vim	and	you’d	like	to	make	the	copy	and	paste	command	keys	a	little	more	familiar,
you	can	remap	the	keys	in	your	configuration.	For	example,	you	can	use	 PREFIX 	 ESCAPE 	to	enter	Copy
mode,	then	use	 v 	to	start	Visual	mode	to	select	your	text,	use	 y 	to	“yank”	text	into	the	buffer,	and
use	 p 	to	paste	the	text:

​	 bind	Escape	copy-mode
​	 bind	-t	vi-copy	​'v'​	begin-selection
​	 bind	-t	vi-copy	​'y'​	copy-selection
​	 unbind	p
​	 bind	p	paste-buffer

This	can	be	a	real	productivity	boost	if	you	happen	to	do	a	lot	of	copying	and	pasting	between
windows	and	panes	and	are	already	comfortable	with	the	keys	that	Vim	uses.

Working	with	the	Clipboard	on	Linux
Using	the	xclip	utility,[10]	you	can	integrate	your	buffers	with	the	Linux	system	clipboard	so	you	can
more	easily	copy	and	paste	between	programs.

First,	you	have	to	install	xclip.	On	Ubuntu,	use	this	command:

​	 ​$	 ​​sudo ​​	 ​​apt-get ​​	 ​​install​​	 ​​xclip​

Then	we	use	tmux’s	save-buffer	and	set-buffer	commands	with	xclip.

To	copy	the	current	buffer	to	the	system	clipboard,	we	add	this	command	to	our	.tmux.conf	file:

​	 bind	C-c	run	​"tmux	save-buffer	-	|	xclip	-i	-sel	clipboard" ​

This	configures	 PREFIX 	 CTRL - c 	so	it	pipes	the	current	buffer	to	xclip.

So,	you	enter	Copy	mode,	select	your	text,	press	 y ,	and	then	press	 PREFIX 	 CTRL - c 	to	get	your	text
on	the	clipboard.	You	can	speed	up	the	process	by	binding	the	 y 	key	to	send	the	output	to	xclip
directly:

​	 bind	-t	vi-copy	y	copy-pipe	​"xclip	-sel	clip	-i" ​

Now	text	you	select	and	copy	in	Copy	mode	will	be	on	your	system	clipboard.

To	paste	text	from	the	system	clipboard	into	a	tmux	session,	add	this	line	to	your	configuration:

​	 bind	C-v	run	​"tmux	set-buffer	 ​​\" ​​$(​xclip	-o	-sel	clipboard​) ​​\" ​​;	tmux	paste-buffer" ​

This	configures	tmux	to	pull	the	content	from	xclip	into	a	new	tmux	buffer	and	then	pastes	it	into	the
selected	tmux	window	or	pane	when	you	press	 PREFIX 	 CTRL - v .

Using	OS	X	Clipboard	Commands
If	you’re	a	Mac	user,	you	may	be	familiar	with	OS	X’s	command-line	clipboard	utilities	pbcopy
and	pbpaste.	These	simple	utilities	make	it	a	snap	to	work	with	the	clipboard.	The	pbcopy	command
captures	text	to	the	system	clipboard,	and	the	pbpaste	command	pastes	content	out.	For	example,
you	can	use	pbcopy	and	cat	together	to	easily	put	the	contents	of	your	.tmux.conf	file	into	the	clipboard
so	you	can	paste	it	in	an	email	or	on	the	web,	like	this:

​	 ​$	 ​​cat ​​	 ​​~/.tmux.conf​​	 ​​|​​	 ​​pbcopy​

This	is	a	pretty	handy	way	to	work	with	text,	but	tmux	doesn’t	have	access	to	these	utilities,	so	we
can’t	use	them	while	running	inside	a	tmux	session.	We	can	use	a	wrapper	program	written	by
Chris	Johnsen	to	get	around	this	limitation.[11]

To	use	this	wrapper	script,	we	first	install	the	script	with	Homebrew.	While	you	could	install	this
from	source,	using	Homebrew	simplifies	the	process:

​	 ​$	 ​​brew​​	 ​​install​​	 ​​reattach-to-user-namespace ​

Then	configure	tmux	to	use	the	wrapper	by	adding	this	line	to	your	.tmux.conf:

​	 set	-g	default-command	"reattach-to-user-namespace	-l	/bin/bash"

This	configures	the	default	command	that	tmux	uses	for	new	windows,	so	it	loads	the	Bash	shell
through	the	wrapper	script.	If	you	use	a	shell	other	than	Bash,	like	Fish	or	zsh,	you’d	specify	its
path	or	command	instead.

Once	you	reload	the	configuration	file,	you’ll	be	able	to	use	the	pbcopy	command	again.	And	as	an
added	bonus,	you	can	send	the	contents	of	the	current	tmux	buffer	to	the	system	clipboard:

​	 ​$	 ​​tmux ​​	 ​​show-buffer​​	 ​​|​​	 ​​pbcopy​

Or	you	can	paste	the	clipboard	contents	with	this:

​	 ​$	 ​​tmux ​​	 ​​set-buffer​​	 ​​$(pbpaste); ​​	 ​​tmux ​​	 ​​paste-buffer​

This	means	that	you	can	also	create	keyboard	shortcuts	to	do	this,	just	like	you	did	in	​Working
with	the	Clipboard	on	Linux ​.	Unfortunately,	the	wrapper	program	we’re	using	doesn’t	work	with
tmux’s	run	command.	The	workaround	is	to	explicitly	prefix	pbpaste	and	pbcopy	with	the	wrapper
script.	So,	to	support	copying	the	buffer	to	the	system	clipboard,	add	this	line	to	your	.tmux.conf
file:

​	 bind	C-c	run	​"tmux	save-buffer	-	|	reattach-to-user-namespace	pbcopy" ​

Just	like	with	Linux,	you	can	also	configure	tmux’s	Copy	mode	to	send	the	text	you	copy	directly
to	the	system	clipboard	by	adding	this	keybinding	to	your	configuration:

​	 bind	-t	vi-copy	y	copy-pipe	​"reattach-to-user-namespace	pbcopy" ​

Now	when	you	select	text	in	Copy	mode	and	press	 y ,	the	text	will	be	sent	to	pbcopy	and	will	be	on
your	system	clipboard,	ready	for	use	in	other	programs.

To	support	pasting	from	the	system	clipboard,	we’d	add	this	longer	command,	which	must	be	all
on	one	line.

​	 bind	C-v	run	​\​
​	 ​"tmux	set-buffer	 ​​\" ​​$(​reattach-to-user-namespace	pbpaste​) ​​\" ​​;	tmux	paste-buffer" ​

This	provides	a	simple	solution	to	an	otherwise	fairly	complex	problem.

What’s	Next?
By	using	tmux	paste	buffers	to	move	text	around,	you	gain	the	ability	to	have	a	clipboard	in
situations	where	you	might	not	have	one,	such	as	when	you’re	logged	into	the	console	of	a	server
or	without	a	graphical	terminal.	Being	able	to	scroll	back	through	the	history	of	a	long	console
output	can	be	a	huge	help.	It’s	worth	installing	tmux	directly	on	your	servers	for	that	reason	alone.

Now	that	you	have	a	good	understanding	of	how	to	find,	copy,	and	paste	text,	you	can	start
working	tmux	into	your	daily	routine.	For	many	developers,	pair	programming	is	often	part	of	that
routine.	Let’s	take	a	look	at	how	to	use	tmux	to	work	with	another	developer.

For	Future	Reference

Shortcut	keys

Shortcut Description
PREFIX 	 [Enters	Copy	mode.
PREFIX] Pastes	current	buffer	contents.
PREFIX 	 = Lists	all	paste	buffers	and	pastes	selected	buffer	contents.

Copy	mode	movement	keys	(vi	mode)

Command Description
h ,	 j ,	 k ,	and	 l Moves	the	cursor	left,	down,	up,	and	right,	respectively.
w Moves	the	cursor	forward	one	word	at	a	time.
b Moves	the	cursor	backward	one	word	at	a	time.
f 	followed	by	any	character Moves	to	the	next	occurrence	of	the	specified	character.
F 	followed	by	any	character Moves	to	the	previous	occurrence	of	the	specified	character.
CTRL - b Scrolls	up	one	page.
CTRL - f Scrolls	down	one	page.
g Jumps	to	the	top	of	the	buffer.
G Jumps	to	the	bottom	of	the	buffer.
? Starts	a	search	backward	through	the	buffer.
/ Starts	a	search	forward	through	the	buffer.

Commands

Command Description
show-buffer Displays	current	buffer	contents.
capture-pane Captures	the	selected	pane’s	visible	contents	to	a	new	buffer.
list-buffers Lists	all	paste	buffers.
choose-buffer Shows	paste	buffers	and	pastes	the	contents	of	the	one	you	select.
save-buffer	[filename] Saves	the	buffer’s	contents	to	the	specified	file.

Footnotes

[10]

[11]

http://sourceforge.net/projects/xclip/

https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard

Copyright	©	2016,	The	Pragmatic	Bookshelf.

http://sourceforge.net/projects/xclip/
https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard

Chapter	5

Pair	Programming	with	tmux
	

Up	until	now,	you’ve	been	making	configuration	changes	and	learning	how	to	work	within	tmux	on
your	own	machine.	But	one	of	the	most	popular	uses	of	tmux	by	developers	is	pair	programming.
It	was	actually	my	first	introduction	to	tmux,	and	I	immediately	saw	the	potential	as	my	friend
walked	me	through	using	its	various	features.

Pair	programming	has	a	lot	of	great	benefits.	Working	with	another	developer	can	help	you	see
things	you	might	not	have	seen	on	your	own,	but	unless	you’re	physically	in	the	same	location,
pair	programming	can	be	somewhat	difficult.	Screen-sharing	through	iChat,	Skype,	or	even
GoToMeeting	takes	up	a	lot	of	bandwidth	and	can	be	dodgy	when	you’re	not	using	the	best
network	connection.	In	this	chapter,	we’ll	explore	using	tmux	for	pair	programming,	so	you	can
work	remotely	with	another	developer	on	even	the	slowest	hotel	Wi-Fi	connection.

There	are	two	ways	to	work	with	remote	users.	The	first	method	involves	creating	a	new	user
account	that	you	and	others	share.	You	set	up	tmux	and	your	development	environment	under	that
account	and	use	it	as	a	shared	workspace.	The	second	approach	uses	tmux’s	sockets	so	you	can
have	a	second	user	connect	to	your	tmux	session	without	having	to	share	your	user	account.

Both	of	these	methods	have	an	inherent	security	flaw:	they	let	someone	else	see	things	on	your
screen	and	in	your	account.	You’re	inviting	someone	in	to	potentially	look	at	your	files.	To	get
around	this,	it’s	wise	to	use	an	intermediate	server	for	pairing.	Using	a	low-cost	VPS	or	a	virtual
machine	with	VirtualBox[12]	and	Vagrant[13],	you	can	quickly	create	a	development	environment	for
pairing.	In	this	chapter,	we’ll	be	working	with	a	remote	server	as	we	explore	both	of	these
approaches.

Pairing	with	a	Shared	Account
Using	a	shared	account	is	the	simplest	way	to	work	with	another	user.	In	a	nutshell,	you	enable
SSH	access	on	the	machine	that	will	act	as	the	host,	install	and	configure	tmux	on	that	machine,
and	then	create	a	tmux	session	there.	The	second	user	logs	into	that	machine	with	the	same	user
account	and	attaches	to	the	session.	By	using	SSH	public	keys,	you	can	make	the	login	process
somewhat	transparent.	Let’s	walk	through	the	setup.	For	this	example,	we’ll	use	a	server	called
puzzles	running	Ubuntu	that	has	the	SSH	daemon	installed.

First,	create	a	“tmux”	user	on	the	server.	This	is	the	user	everyone	will	use	to	connect	to	the
pairing	session.	On	the	remote	server,	execute	this	command:

​	 ​tmux@puzzles$	 ​​adduser​​	 ​​tmux ​

We	want	to	configure	the	account	so	we	can	take	SSH	keys	from	other	developers	and	use	them	to
log	into	this	account.	We	do	this	by	creating	the	file	~/.ssh/authorized_keys	under	the	tmux	account.	So,
use	the	su	command	to	switch	to	the	user:

​	 ​tmux@puzzles$	 ​​su​​	 ​​tmux ​

Then	create	the	.ssh	folder	and	the	.ssh/authorized_keys	file,	setting	the	appropriate	permissions.	Only
the	tmux	user	should	be	allowed	to	read,	write,	or	execute	the	folder	and	file.

​	 ​tmux@puzzles$	 ​​mkdir​​	 ​​~/.ssh​
​	 ​tmux@puzzles$	 ​​touch​​	 ​​~/.ssh/authorized_keys ​
​	 ​tmux@puzzles$	 ​​chmod​​	 ​​700 ​​	 ​​~/.ssh​
​	 ​tmux@puzzles$	 ​​chmod​​	 ​​600 ​​	 ​​~/.ssh/authorized_keys ​

Each	user	you’d	like	to	connect	needs	a	public	key,	which	they	would	generate	on	their	local
machine.	To	generate	a	key,	use	the	command

​	 ​$	 ​​ssh-keygen​

and	follow	the	prompts	on	the	screen.

Then	each	user	would	transfer	their	public	key	over	to	the	server	and	add	it	to	the	authorized_keys
file.	There	are	a	number	of	ways	to	do	this,	but	the	most	universal	approach	would	be	to	use	cat
and	ssh	to	transfer	the	key	and	append	it	to	authorized_keys	at	the	same	time,	like	this:

​	 ​$	 ​​cat ​​	 ​​~/.ssh/id_rsa.pub​​	 ​​|​​	 ​​ssh​​	 ​​tmux@your_server​​	 ​​'cat	>>	.ssh/authorized_keys'​

You’ll	be	prompted	for	the	tmux	user’s	password	before	you	can	connect.

The	command	ssh-copy-id	makes	this	process	slightly	easier.	If	you	install	this	command	using	your
package	manager	on	your	client,	then	you	can	transfer	the	key	like	this:

​	 ​$	 ​​ssh-copy-id​​	 ​​tmux@your_server​

This	copies	the	.id_rsa.pub	file	automatically.

You	would	repeat	this	process	for	any	other	users	you	wanted	to	share	this	account	with.

Then	on	the	remote	server,	you’d	set	up	tmux,	text	editors,	compilers,	programming	languages,
and	version	control	systems	just	like	you	would	on	any	other	development	environment.	Then	you
create	a	new	tmux	session	on	the	server:

​	 ​tmux@puzzles$	 ​​tmux ​​	 ​​new-session​​	 ​​-s ​​	 ​​Pairing ​

Another	member	of	your	team	can	log	in	to	the	same	machine	and	attach	to	the	session	with	this:

​	 ​tmux@puzzles$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​Pairing ​

You	can	then	work	collaboratively	on	the	project.	What’s	more,	you	can	detach	from	the	session
and	reattach	to	it	later,	which	means	you	can	leave	your	environment	running	for	days	or	even
weeks	at	a	time.	You’d	have	a	persistent	development	environment	you	can	log	into	from
anywhere	that	has	a	terminal	with	SSH	support.

Using	a	Shared	Account	and	Grouped	Sessions
When	two	people	are	attached	to	the	same	tmux	session,	they	usually	both	see	the	same	thing	and
interact	with	the	same	windows.	But	there	are	times	when	it’s	helpful	if	one	person	can	work	in	a
different	window	without	completely	taking	over	control.

Using	“grouped	sessions,”	you	can	do	just	that.	Let’s	demonstrate	by	creating	a	new	session	on
our	remote	server	called	groupedsession.

​	 ​tmux@puzzles$	 ​​tmux ​​	 ​​new-session​​	 ​​-s ​​	 ​​groupedsession​

Then,	instead	of	attaching	to	the	session,	another	user	can	join	that	session	by	creating	a	new
session	by	specifying	the	target	of	the	original	session	groupedsession	and	then	specifying	their	own
session	name,	like	this:

​	 ​tmux@puzzles$	 ​​tmux ​​	 ​​new-session​​	 ​​-t ​​	 ​​groupedsession​​	 ​​-s ​​	 ​​mysession​

When	the	second	session	launches,	both	users	can	interact	with	the	session	at	the	same	time,	just
as	if	the	second	user	had	attached	to	the	session.	However,	the	users	can	create	windows
independent	of	each	other.	So,	if	our	new	user	creates	a	window,	you’ll	both	see	the	new	window
show	up	in	the	status	line,	but	you’ll	stay	on	the	window	you’re	currently	working	in!	This	is	great
for	those	“Hey,	let	me	just	try	something”	moments,	or	when	one	person	wants	to	use	Emacs	and
the	other	person	prefers	Vim:

The	second	user	can	kill	off	their	session	with	kill-session,	and	the	original	will	still	exist.	However,
both	sessions	will	be	killed	if	all	windows	are	closed,	so	be	careful!

That’s	a	lot	of	work	to	go	through	if	you	just	want	someone	to	jump	in	and	help	you	out	with	some
code.	So	let’s	look	at	a	simple	alternative	that	takes	almost	no	time	to	set	up.

Quickly	Pairing	with	tmate
tmate[14]	is	a	fork	of	tmux	designed	to	make	pair	programming	painless.	Using	tmate,	you	can
quickly	invite	another	developer	to	collaborate.	When	you	launch	tmate,	it	generates	an	address
that	your	pair	can	use	to	make	the	connection.	You	don’t	have	to	set	up	any	keys	or	use	any
intermediate	services.	Instead,	tmate’s	servers	handle	tunneling	the	connection	for	you.

The	catch	is	that	you	have	to	install	tmate	and	use	it	instead	of	tmux.	But	don’t	worry;	it
completely	supports	the	configuration	you’ve	already	built.	Let’s	look	at	how	to	get	it	installed.

On	Ubuntu,	you	can	install	it	by	adding	the	tmate	PPA	to	your	package	manager:

​	 ​$	 ​​sudo ​​	 ​​apt-get ​​	 ​​install​​	 ​​software-properties-common​
​	 ​$	 ​​sudo ​​	 ​​add-apt-repository​​	 ​​ppa:tmate.io/archive ​
​	 ​$	 ​​sudo ​​	 ​​apt-get ​​	 ​​update ​​	 ​​&& ​​	 ​​sudo ​​	 ​​apt-get ​​	 ​​install​​	 ​​tmate ​

On	the	Mac,	you	can	install	it	with	Homebrew:

​	 ​$	 ​​brew​​	 ​​install​​	 ​​tmate ​

Once	tmate	is	installed,	fire	it	up	with

​	 ​$	 ​​tmate ​

and	tmate	will	launch,	displaying	the	connection	address	in	the	bottom	of	the	window	where	your
status	line	would	be.

Copy	that	address	and	send	it	to	your	pair,	and	they’ll	be	able	to	join	you	instantly.	If	the	address
disappears	before	you	can	copy	it,	or	you’d	like	to	see	it	again,	execute	the	command

​	 ​$	 ​​tmate ​​	 ​​show-messages ​

to	view	the	address	again,	along	with	some	other	interesting	details,	including	a	read-only
address	you	can	send	to	someone	if	you	just	want	to	demonstrate	something	and	don’t	want	them
to	have	any	control:

​	 Sun	Sep	25	17:46:13	2016	[tmate]	Connecting	to	ssh.tmate.io...
​	 Sun	Sep	25	17:46:13	2016	[tmate]	Note:	clear	your	terminal	before	sharing	readonly
​	 access
​	 Sun	Sep	25	17:46:13	2016	[tmate]	web	session	read	only:	https://...
​	 Sun	Sep	25	17:46:13	2016	[tmate]	ssh	session	read	only:	ssh	...
​	 Sun	Sep	25	17:46:13	2016	[tmate]	web	session:	https://...
​	 Sun	Sep	25	17:46:13	2016	[tmate]	ssh	session:	ssh	...

tmate	supports	the	same	commands	that	tmux	supports,	so	you	can	create	named	sessions	and	even
script	up	your	configurations.	You	can	even	use	it	with	Tmuxinator	by	adding	the	following	to
your	Tmuxinator	YAML	file:

​	 ​tmux_options ​:	​-S	/tmp/your_project_name_tmate_socket​
​	 ​tmux_command ​:	​tmate ​

Since	tmate	creates	a	randomly	named	socket	file,	we	just	tell	it	not	to	do	that	by	passing	the	-S
switch.	Then	we	tell	Tmuxinator	that	it	should	use	tmate	instead	of	tmux.

Using	tmate	with	Your	Own	Servers
If	you	feel	uncomfortable	going	through	http://ssh.tmate.io	to	connect	to	other	sessions,	you	can	find	instructions	for	setting	up
your	own	server	at	the	tmate	website.[15]	It	provides	you	with	the	server,	which	you	compile	and	install	on	your	own	Linux
server.	Then	you	run	the	server	and	configure	client	machines	to	use	that	server	instead	of	the	default	service.	This	may	add
more	security,	but	you’ll	want	to	think	about	redundancy	and	availability.	For	example,	the	tmate.io	address	resolves	to
multiple	backend	servers,	ensuring	high	availability.	If	you	want	to	ensure	continuity,	you’ll	want	to	configure	your
environment	in	a	similar	way.

Using	shared	accounts	or	tmate	is	easy,	but	it’s	not	always	desirable	to	share	user	accounts	with
team	members	or	let	someone	remotely	access	your	development	machine.	Let’s	look	at	an
alternative	approach.

http://ssh.tmate.io

Pairing	with	Separate	Accounts	and	Sockets
Using	tmux’s	support	for	sockets,	you	can	create	sessions	that	multiple	users	can	connect	to	with
ease.

To	test	this	out,	create	two	new	user	accounts	for	the	session:	one	called	“ted”	and	another	named
“barney.”

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​adduser​​	 ​​ted​

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​adduser​​	 ​​barney​

Next,	create	the	“tmux”	group	and	the	/var/tmux	folder	that	will	hold	the	shared	sessions.

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​addgroup​​	 ​​tmux ​

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​mkdir​​	 ​​/var/tmux ​

Next,	change	the	group	ownership	of	the	/var/tmux	folder	so	that	the	tmux	group	has	access:

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​chgrp​​	 ​​tmux ​​	 ​​/var/tmux ​

Then	alter	the	permissions	on	the	folder	so	that	new	files	will	be	accessible	for	all	members	of
the	tmux	group:

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​chmod​​	 ​​g+ws ​​	 ​​/var/tmux ​

Finally,	add	ted	and	barney	to	the	tmux	group.

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​usermod​​	 ​​-aG​​	 ​​tmux ​​	 ​​ted​

​	 ​tmux@puzzles$	 ​​sudo ​​	 ​​usermod​​	 ​​-aG​​	 ​​tmux ​​	 ​​barney​

Now	let’s	look	at	how	these	users	can	work	together	on	a	project.

Creating	and	Sharing	Sessions
So	far,	you’ve	used	the	new-session	command	to	create	these	sessions,	but	that	uses	the	default
socket	location,	which	won’t	be	reachable	by	every	user.	Instead	of	creating	named	sessions,	we
create	our	sessions	using	the	-S	switch.

Log	in	to	your	server	as	ted	and	create	a	new	tmux	session	using	a	socket	file	in	the	/var/tmux/	folder:

​	 ​ted@puzzles$	 ​​tmux ​​	 ​​-S​​	 ​​/var/tmux/pairing ​

In	another	terminal	window,	log	in	as	barney	and	then	attach	to	the	session.	But	instead	of
specifying	the	target	with	the	-t	switch,	specify	the	location	of	the	socket	file,	like	this:

​	 ​barney@puzzles$	 ​​tmux ​​	 ​​-S​​	 ​​/var/tmux/pairing ​​	 ​​attach​

The	barney	user	now	attaches	to	the	tmux	session	and	sees	everything	that	the	ted	user	sees.

It’s	important	to	note	that	when	using	this	approach,	the	.tmux.conf	file	used	is	the	one	that	started	up
the	session.	Having	two	separate	accounts	doesn’t	mean	that	each	account	gets	to	use	its	own
configuration	files	within	the	tmux	session,	but	it	does	mean	they	can	customize	their	accounts	for
other	purposes,	and	can	each	initiate	their	own	tmux	session	as	needed.	More	importantly,	it
keeps	barney	out	of	ted’s	home	directory.

What’s	Next?
Now	that	you	know	how	to	use	tmux	to	share	your	screen	with	others,	you	can	use	it	for	remote
training,	impromptu	collaboration	on	open	source	projects,	or	even	presentations.

In	addition,	you	could	use	this	technique	to	fire	up	a	tmux	session	on	one	of	your	production
servers,	load	up	monitoring	tools	or	consoles,	and	then	detach	from	it,	leaving	those	tools	running
in	the	background.	Then	you	simply	connect	to	your	machine,	reattach	to	the	session,	and
everything	is	back	where	you	left	it.	I	do	something	similar	with	my	development	environment.	I
set	up	tmux	on	a	VPS,	which	lets	me	use	nothing	more	than	an	iPad,	an	SSH	client,	and	a
Bluetooth	keyboard	to	hack	on	code	when	I’m	away	from	home.	It	even	works	brilliantly	over	the
3G	network.

Pair	programming	and	working	remotely	are	just	two	examples	of	how	incorporating	tmux	into
your	workflow	can	make	you	more	productive.	In	the	next	chapter,	we’ll	look	at	other
enhancements	we	can	make	to	our	environment	as	we	explore	advanced	ways	to	work	with
windows,	panes,	and	our	system	in	general.

[12]

[13]

[14]

[15]

For	Future	Reference

Command Description
tmux	new-session	-t	[existing	session]	-s

[new	session]
Creates	a	connection	to	a	grouped	session.

tmux	show-messages Displays	a	log	of	messages	in	the	current	window,	useful
for	debugging.

tmux	-S	[socket] Creates	a	new	session	using	a	socket	instead	of	a	name.
tmux	-S	[socket]	attach Attaches	to	an	existing	session	using	a	socket	instead	of	a

name.

Footnotes

https://www.virtualbox.org/

https://www.vagrantup.com/docs/getting-started/

https://tmate.io/

https://tmate.io/

Copyright	©	2016,	The	Pragmatic	Bookshelf.

https://www.virtualbox.org/
https://www.vagrantup.com/docs/getting-started/
https://tmate.io/
https://tmate.io/

Chapter	6

Workflows
	

By	itself,	tmux	is	just	another	terminal	with	a	few	bells	and	whistles	that	let	us	display...more
terminal	sessions.	But	tmux	makes	it	easier	to	work	with	the	programs	we	run	in	those	sessions,
so	this	chapter	will	explore	some	common,	and	uncommon,	configurations	and	commands	that	you
may	find	useful	in	your	day-to-day	work.	You’ll	see	some	advanced	ways	to	manage	your	panes
and	sessions,	how	to	make	tmux	work	with	your	shell	of	choice,	how	to	extend	tmux	commands
with	external	scripts,	and	how	to	create	keybindings	that	execute	several	commands.	Let’s	start
with	windows	and	panes.

Working	Effectively	with	Panes	and	Windows
Throughout	this	book,	you’ve	seen	ways	to	divide	up	your	tmux	sessions	into	panes	and	windows.
In	this	section,	we’ll	look	at	more	advanced	ways	to	work	with	those	panes	and	windows.

Turning	a	Pane	into	a	Window
Panes	are	great	for	dividing	up	a	workspace,	but	sometimes	you	might	want	to	“pop	out”	a	pane
into	its	own	window.	tmux	has	a	command	to	do	just	that.

Inside	any	pane,	press	 PREFIX 	 ! 	and	tmux	will	create	a	new	window	from	your	pane,	removing	the
original	pane.

Turning	a	Window	into	a	Pane
Occasionally,	it’s	nice	to	consolidate	a	workspace.	You	can	easily	take	a	window	and	turn	it	into
a	pane.	To	do	this,	issue	the	join-pane	command.

Try	it	out.	Create	a	new	tmux	session	with	two	windows.

​	 ​$	 ​​tmux ​​	 ​​new-session​​	 ​​-s ​​	 ​​panes ​​	 ​​-n​​	 ​​first ​​	 ​​-d​
​	 ​$	 ​​tmux ​​	 ​​new-window​​	 ​​-t ​​	 ​​panes ​​	 ​​-n​​	 ​​second​
​	 ​$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​panes ​

Now,	to	move	the	first	window	into	a	pane	in	the	second	window,	press	 PREFIX 	 : 	to	enter
Command	mode,	and	type	this:

join-pane	-s	panes:1

This	means	“Take	window	1	of	the	panes	session	and	join	it	to	the	current	window,”	since	we	did
not	specify	a	target.	When	you	“join”	a	pane,	you’re	essentially	moving	a	pane	from	one	session
to	another.	You	specify	the	source	window	and	pane,	followed	by	the	target	window	and	pane.	If
you	leave	the	target	off,	the	current	focused	window	becomes	the	target.

You	can	use	this	technique	to	move	panes	around	as	well.	If	your	first	window	had	two	panes,	you
could	specify	the	source	pane	like	this,	keeping	in	mind	that	you	set	the	window	and	pane	base
indexes	to	1	instead	of	0	back	in	Chapter	2,	​Configuring	tmux ​.

join-pane	-s	panes:1.1

This	command	grabs	the	first	pane	of	the	first	window	and	joins	it	to	the	current	window.

To	take	it	a	step	further,	you	can	specify	a	different	source	session,	using	the	notation	[session_name]:
[window].[pane],	and	you	can	specify	a	target	window	using	the	-t	flag	using	the	same	notation.	This
lets	you	pull	panes	from	one	session	into	another.

Maximizing	and	Restoring	Panes
Sometimes	you	just	want	a	pane	to	go	full-screen	for	a	bit	so	you	can	see	its	contents	or	work	in	a
more	focused	way.	You	could	use	the	break-pane	command.	But	then	you’d	have	to	use	join-pane	to	put
it	back	where	it	was.	But	there’s	a	better	way.	The	resize-pane	command	accepts	the	-Z	option	for
zooming	a	pane.	Best	of	all,	it’s	already	mapped	to	 PREFIX 	 z ,	and	pressing	it	again	restores	the
pane	to	its	original	size.

Launching	Commands	in	Panes
In	Chapter	3,	​Scripting	Customized	tmux	Environments ​,	we	explored	how	to	use	shell	commands
and	send-keys	to	launch	programs	in	our	panes,	but	we	can	execute	commands	automatically	when
we	launch	a	window	or	a	pane.

We	have	two	servers,	burns	and	smithers,	which	run	our	web	server	and	database	server,
respectively.	When	we	start	up	tmux,	we	want	to	connect	to	these	servers	using	a	single	window
with	two	panes.

Let’s	create	a	new	script	called	servers.sh	and	create	one	session	connecting	to	two	servers:

​	 ​$	 ​​tmux ​​	 ​​new-session​​	 ​​-s ​​	 ​​servers ​​	 ​​-d​​	 ​​"ssh	deploy@burns" ​
​	 ​$	 ​​tmux ​​	 ​​split-window​​	 ​​-v ​​	 ​​"ssh	dba@smithers" ​
​	 ​$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​servers ​

When	we	create	a	new	session,	we	can	pass	the	command	we	want	to	execute	as	the	last
argument.	In	our	case,	we	fire	off	the	new	session	and	connect	to	burns	in	the	first	window,	and	we
detach	the	session.	Then	we	divide	the	window	using	a	vertical	split	and	then	connect	to	smithers.

This	configuration	has	a	handy	side	effect:	when	we	log	off	of	our	remote	servers,	the	pane	or
window	will	close.

Opening	a	Pane	in	the	Current	Directory
When	you	open	a	new	pane,	tmux	places	you	in	the	directory	where	you	originally	launched	tmux.
Sometimes	that’s	exactly	what	you	want,	but	if	you	navigated	into	another	directory,	you	might
want	to	create	a	new	pane	that	starts	in	that	directory	instead.

You	can	use	the	pane_current_path	variable	provided	by	tmux	when	creating	a	new	pane.	Open

Command	mode	and	execute

​	 split-window	-v	-c		​"#{pane_current_path}" ​

This	splits	the	window	horizontally,	but	opens	the	new	terminal	session	in	the	same	working
directory	as	the	current	pane	or	window.

You	can	add	this	to	your	configuration	file	to	make	this	easy.	Instead	of	changing	the	existing
bindings	for	splits,	add	new	ones	so	you	can	choose	the	behavior	you’d	like:

workflows/tmux.conf

​	 ​#	split	pane	and	retain	the	current	directory	of	existing	pane ​
​	 bind	_	split-window	-v	-c		​"#{pane_current_path}" ​
​	 bind	​\	 ​split-window	-h	-c	​"#{pane_current_path}" ​

This	configures	things	so	that	 PREFIX 	 _ 	splits	the	window	horizontally	and	 PREFIX 	 / 	splits	the
window	vertically.

Issuing	Commands	in	Many	Panes	Simultaneously
Every	once	in	a	while,	you	might	need	to	execute	the	same	command	in	multiple	panes.	You	might
need	to	run	the	same	update	script	on	two	servers,	for	example.	You	can	do	this	easily	with	tmux.

Using	the	command	set-window-option	synchronize-panes	on,	anything	you	type	in	one	pane	will	be
immediately	broadcast	to	the	other	panes	in	the	current	session.	Once	you’ve	issued	the	command,
you	can	turn	it	off	with	set-window-option	synchronize-panes	off.

To	make	this	easier	to	do,	you	can	map	this	to	 PREFIX 	 CTRL - s ,	like	this:

workflows/tmux.conf

​	 ​#	shortcut	for	synchronize-panes	toggle ​
​	 bind	C-s	set-window-option	synchronize-panes

By	not	specifying	the	off	or	on	option,	the	synchronize-panes	command	acts	as	a	toggle.	While	this	isn’t
something	you’ll	use	very	often,	it’s	amazingly	handy	when	you	need	it.

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

Managing	Sessions
As	you	get	more	comfortable	with	tmux,	you	may	find	yourself	using	more	than	one	tmux	session
simultaneously.	For	example,	you	may	fire	up	unique	tmux	sessions	for	each	application	you’re
working	on	so	you	can	keep	the	environments	contained.	There	are	some	great	tmux	features	to
make	managing	these	sessions	painless.

Moving	Between	Sessions
All	tmux	sessions	on	a	single	machine	route	through	a	single	server.	That	means	you	can	move
effortlessly	between	your	sessions	from	a	single	client.

Let’s	try	this	out.	Start	two	detached	tmux	sessions,	one	named	“editor,”	which	launches	Vim,	and
the	other	running	the	top	command,	called	“processes”:

​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​editor​​	 ​​-d​​	 ​​vim​
​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​processes ​​	 ​​-d​​	 ​​top​

Connect	to	the	“editor”	session	with

​	 ​$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​editor​

and	then	press	 PREFIX 	 (to	go	to	the	previous	session	and	 PREFIX) 	to	move	to	the	next	session.

You	can	also	use	 PREFIX 	 s 	to	display	a	list	of	sessions,	so	you	can	quickly	navigate	between
sessions:

You	can	use	the	 j 	and	 k 	keys	to	move	up	and	down	if	you’ve	configured	tmux	to	use	Vim-like
movement,	and	you	can	press	 SPACE 	to	expand	a	session	so	you	can	jump	to	a	specific	window	or
pane.

You	can	add	custom	keybindings	for	this	to	your	.tmux.conf	file	by	binding	keys	to	the	switch-client
command.	The	default	configuration	looks	like	this:

​	 bind		(switch-client	-p
​	 bind)	switch-client	-n

If	you’ve	set	up	multiple	workspaces,	this	is	an	extremely	efficient	way	to	move	around	your

environments,	without	detaching	and	reattaching.

Moving	Windows	Between	Sessions
You	can	move	a	window	from	one	session	to	another.	This	is	handy	in	case	you’ve	started	up	a
process	in	one	environment	and	want	to	move	it	around	or	want	to	consolidate	your	workspaces.

The	move-window	command	is	mapped	to	 PREFIX 	 . 	(the	period),	so	you	can	bring	up	the	window	you
want	to	move,	press	the	key	combination,	and	then	type	the	name	of	the	target	session.

To	try	this	out,	create	two	sessions,	with	the	names	“editor”	and	“processes,”	running	vim	and	top
respectively:

​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​editor​​	 ​​-d​​	 ​​vim​
​	 ​$	 ​​tmux ​​	 ​​new​​	 ​​-s ​​	 ​​processes ​​	 ​​-d​​	 ​​top​

Let’s	move	the	window	in	the	“processes”	session	into	the	“editor”	session.

First,	attach	to	the	“processes”	session	with	this:

​	 ​$	 ​​tmux ​​	 ​​attach​​	 ​​-t ​​	 ​​processes ​

Then,	press	 PREFIX 	 . 	and	type	“editor”	in	the	command	line	that	appears.

This	removes	the	only	window	in	the	“processes”	session,	causing	it	to	close.	If	you	attach	to	the
“editor”	session,	you’ll	see	both	windows.

You	can	use	shell	commands	to	do	this,	too,	so	you	don’t	need	to	consolidate	things	by	opening
sessions.	To	do	that,	use	move-window,	like	this:

​	 ​$	 ​​tmux ​​	 ​​move-window​​	 ​​-s ​​	 ​​processes:1 ​​	 ​​-t ​​	 ​​editor​

This	moves	the	first	window	of	the	“processes”	session	to	the	“editor”	session.

Creating	or	Attaching	to	Existing	Sessions
So	far,	we’ve	always	taken	the	approach	of	creating	new	tmux	sessions	whenever	we	want	to
work.	However,	we	can	actually	detect	if	a	tmux	session	exists	and	connect	to	it	if	it	does.

The	has-session	command	returns	a	Boolean	value	that	we	can	use	in	a	shell	script.	That	means	we
can	do	something	like	this	in	a	Bash	script:

​	 ​if​	!	tmux	has-session	-t	development;	​then​
​	 ​		 ​exec	tmux	new-session	-s	development	-d
​	 		​#	other	setup	commands	before	attaching.... ​

​	 ​fi​
​	 exec	tmux	attach	-t	development

If	you	modify	the	script	to	take	an	argument,	you	can	use	this	to	create	a	single	script	that	you	can
use	to	connect	to	or	create	any	tmux	session.

tmux	and	Your	Operating	System
As	tmux	becomes	part	of	your	workflow,	you	may	want	to	integrate	it	more	tightly	with	your
operating	system.	In	this	section,	you’ll	discover	ways	to	make	tmux	and	your	system	work	well
together.

Using	a	Different	Shell
In	this	book,	we’ve	used	the	Bash	shell,	but	if	you’re	a	fan	of	zsh,	you	can	still	get	all	the	tmux
goodness.

Just	explicitly	set	the	default	shell	in	.tmux.conf	like	this:

​	 set	-g	default-shell	/bin/zsh

Since	tmux	is	just	a	terminal	multiplexer	and	not	a	shell	of	its	own,	you	just	specify	exactly	what
to	run	when	it	starts.

Launching	tmux	by	Default
You	can	configure	your	system	to	launch	tmux	automatically	when	you	open	a	terminal.	And	using
what	you	know	about	session	names,	you	can	create	a	new	session	if	one	doesn’t	exist,	or	attach
to	one	that	does.

When	tmux	is	running,	it	sets	the	TERM	variable	to	“screen”	or	the	value	of	the	default-terminal	setting
in	the	configuration	file.	You	can	use	this	value	in	your	.bashrc	(or	.bash_profile	on	macOS)	file	to
determine	whether	or	not	you’re	currently	in	a	tmux	session.	You	set	your	tmux	terminal	to
“screen-256color”	back	in	Chapter	2,	​Configuring	tmux ​,	so	you	could	use	that	to	detect	if	tmux	is
actually	running.

For	example,	you	could	add	these	lines	to	the	end	of	your	.bashrc	file:

​	 ​if​	[[​" ​$TERM​" ​	!=	​"screen-256color" ​]]
​	 ​then​
​	 ​		 ​tmux	attach-session	-t	​" ​$USER​" ​	||	tmux	new-session	-s	​" ​$USER​" ​
​	 ​fi​

This	first	checks	that	you’re	not	already	in	a	tmux	session.	If	that’s	the	case,	it	attempts	to	attach	to
a	session	with	a	session	name	of	$USER,	which	is	your	username.	You	can	replace	this	with	any
value	you	want,	but	using	the	username	helps	avoid	conflicts.

If	the	session	doesn’t	exist,	tmux	will	throw	an	error	that	the	shell	script	can	interpret	as	a	false

value.	It	can	then	run	the	right	side	of	the	expression,	which	creates	a	new	session	with	your
username	as	the	session’s	name.	It	then	exits	out	of	the	script.

When	the	tmux	session	starts	up,	it	will	run	through	our	.bashrc	or	.bash_profile	file	again,	but	this	time
it	will	see	that	we’re	in	a	tmux	session,	skip	over	this	chunk	of	code,	and	execute	the	rest	of	the
commands	in	our	configuration	file,	ensuring	that	all	our	environment	variables	are	set	for	us.

Now	every	time	you	open	a	new	terminal,	you’ll	be	in	a	tmux	session.	Be	careful,	though,	since
each	time	you	open	a	new	terminal	session	on	your	machine,	it	will	be	attached	to	the	same
session.	Exiting	tmux	in	one	terminal	will	exit	tmux	in	all	of	them.

Keeping	Specific	Configuration	Separate
In	Chapter	4,	​Working	With	Text	and	Buffers ​,	you	learned	how	to	make	tmux	work	with	the	OS	X
and	Linux	system	clipboards,	and	this	involved	adding	some	specific	configuration	options	to
your	.tmux.conf	file.	But	if	you	wanted	your	configuration	to	work	on	both	operating	systems,	you’d
run	into	some	conflicts.

The	solution	is	to	move	your	OS-specific	configuration	into	a	separate	file	and	then	tell	tmux	to
load	it	up	by	using	tmux’s	if-shell	command	and	the	source	command.

Try	it	out.	Create	a	new	file	called	.tmux.mac.conf	in	your	home	directory:

​	 ​$	 ​​touch​​	 ​​~/.tmux.mac.conf​

In	that	file,	put	all	the	code	to	make	the	Mac’s	clipboard	work	with	tmux:

workflows/tmux.mac.conf

​	 ​#	Setting	the	namespace ​
​	 set	-g	default-command	​"reattach-to-user-namespace	-l	/bin/bash" ​
​	
​	 ​#	Prefix	C-c	copy	buffer	to	system	clipboard ​
​	 bind	C-c	run	​"tmux	save-buffer	-	|	reattach-to-user-namespace	pbcopy" ​
​	
​	 ​#	Prefix	C-v	paste	system	clipboard	into	tmux ​
​	 bind	C-v	run	\
​	 ​"tmux	set-buffer	\" ​$(reattach-to-user-namespace	pbpaste)\​";	tmux	paste-buffer" ​
​	
​	 ​#	use	y	in	visual	mode	to	copy	text	to	system	clipboard ​
​	 bind	-t	vi-copy	y	copy-pipe	​"reattach-to-user-namespace	pbcopy" ​

Then	open	.tmux.conf	and	remove	any	lines	related	to	OS	X	if	you’ve	put	them	in.	Then	add	this	to
the	end	of	the	file:

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.mac.conf

workflows/tmux.conf

​	 ​#	Load	mac-specific	settings ​
​	 ​if​-shell	​"uname	|	grep	-q	Darwin" ​	​"source-file	~/.tmux.mac.conf" ​

The	if-shell	command	runs	a	shell	command,	and	if	it	was	successful,	it	executes	the	step.	In	this
case,	we	tell	tmux	to	run	the	uname	command	and	use	grep	to	see	if	it	contains	the	word	“Darwin.”
If	it	does,	it’s	a	safe	bet	we’re	on	a	Mac,	so	we	load	the	configuration	file.

You	could	use	a	similar	approach	to	load	an	additional	bit	of	configuration	only	if	it	exists.	For
example,	you	may	want	to	share	your	main	.tmux.conf	file	with	the	world	on	GitHub,	but	you	may
want	to	keep	some	of	your	own	secret	sauce	private.	So	move	all	of	those	tricks	into	.tmux.private,
and	add	this	to	your	.tmux.conf	file:

workflows/tmux.conf

​	 ​#	load	private	settings	if	they	exist​
​	 ​if​-shell	​"[-f	~/.tmux.private]" ​	​"source	~/.tmux.private" ​

This	will	only	load	the	file	if	it	exists.

Recording	Program	Output	to	a	Log
Sometimes	it’s	useful	to	be	able	to	capture	the	output	of	a	terminal	session	to	a	log.	You	already
learned	how	to	use	capture-pane	and	save-buffer	to	do	this,	but	tmux	can	actually	record	the	activity	in
a	pane	right	to	a	text	file	with	the	pipe-pane	command.	This	is	similar	to	the	script	command	available
in	many	shells,	except	that	with	pipe-pane,	you	can	toggle	it	on	and	off	at	will,	and	you	can	start	it
after	a	program	is	already	running.

To	activate	this,	enter	Command	mode	and	type	pipe-pane	-o	"cat	>>	mylog.txt".

You	can	use	the	-o	flag	to	toggle	the	output,	which	means	if	you	send	the	exact	command	again,	you
can	turn	the	logging	off.	To	make	it	easier	to	execute	this	command,	add	this	to	your	configuration
script	as	a	shortcut	key.

workflows/tmux.conf

​	 ​#	Log	output	to	a	text	file	on	demand ​
​	 bind	P	pipe-pane	-o	​"cat	>>~/#W.log" ​	​\; ​	display	​"Toggled	logging	to	~/#W.log" ​

Now	you	can	press	 PREFIX 	 P 	to	toggle	logging.	Thanks	to	the	display	command	(short	for	display-
message),	you’ll	see	the	name	of	the	log	file	displayed	in	the	status	line.	The	display	command	has
access	to	the	same	variables	as	the	status	line,	which	you	learned	about	in	Table	1,	​Status	Line
Variables ​.

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

Adding	Battery	Life	to	the	Status	Line
If	you	use	tmux	on	a	laptop,	you	may	want	to	show	the	remaining	battery	life	in	your	status	line,
especially	if	you	run	your	terminal	in	full-screen	mode.	It	turns	out	that	this	is	a	simple	thing	to
add	thanks	to	the	#(shell-command)	variable.

Let’s	add	the	battery	status	to	our	configuration	file.	Grab	a	shell	script	that	can	fetch	the
remaining	battery	charge	and	display	it	to	the	screen.	We’ll	place	this	in	a	file	called	battery	in	our
home	folder	and	tell	tmux	to	run	it	for	us.

First,	download	the	file:

​	 ​$	 ​​wget ​​	 ​​--no-check-certificate ​​	 ​​\​
​	 ​https://raw.github.com/richo/battery/master/bin/battery​

You	can	also	find	the	battery	script	in	the	book’s	source	code	downloads.

Now	make	it	executable	so	tmux	can	use	it:

​	 ​$	 ​​chmod​​	 ​​+x ​​	 ​​~/battery​

Test	it	out	by	running

​	 ​$	 ​​~/battery​​	 ​​Discharging ​

If	you’re	running	this	on	a	laptop	without	the	power	cord	plugged	in,	you’ll	see	the	percentage	left
on	the	battery.

We	can	get	tmux	to	display	the	output	of	any	command-line	program	in	its	status	bar	by	using	#
(<command>).	So,	to	display	the	battery	in	front	of	the	clock,	change	the	status-right	line	in	.tmux.conf	to
this:

​	 ​#	Status	line	right	side	-		50%	|	31	Oct	13:37 ​
​	 set	-g	status-right	​"#(~/battery	Discharging)	|	#[fg=cyan]%d	%b	%R" ​

Now,	when	you	reload	the	.tmux.conf	file,	the	battery	status	indicator	will	appear.

To	get	battery	status	when	it’s	charging,	you’ll	need	to	execute	the	command

​	 ​$	 ​​~/battery​​	 ​​Charging ​

and	work	that	into	the	status	line.	I’ll	leave	that	up	to	you.

You	can	use	this	approach	to	customize	your	status	line	further.	You’d	simply	need	to	write	your

own	script	that	returns	the	value	you	want	to	display,	and	then	drop	it	into	the	status	line.

Integrating	Seamlessly	with	Vim
The	Vim	text	editor	works	pretty	well	with	tmux,	but	developer	Mislav	Marohnić	developed	a
solution	that	lets	you	move	between	tmux	panes	and	Vim	splits	seamlessly.	To	make	this	work,
you’ll	need	to	install	Chris	Toomey’s	vim-tmux-navigator	plugin	for	Vim[16]	and	add	some
keybindings	to	your	.tmux.conf	file.

This	setup	will	create	the	following	keybindings:

CTRL - j 	moves	up

CTRL - k 	moves	down

CTRL - h 	moves	left

CTRL - l 	moves	right

If	you’re	in	tmux	and	you	move	into	Vim,	then	the	Vim	plugin	will	take	over.	If	you’re	in	Vim	and
you	move	to	tmux,	then	tmux	will	take	over.	Instead	of	having	to	learn	two	sets	of	commands	to
navigate,	you	just	have	one.	To	set	this	up,	install	the	Vim	plugin	using	Vundle	by	adding	this	to
your	.vimrc	file:

​	 Plugin	'christoomey/vim-tmux-navigator'

Then	save	your	.vimrc	file	and	run

​	 :PluginInstall

in	Vim	to	install	the	plugin.

Then	in	.tmux.conf,	add	these	lines:

workflows/tmux.conf

​	 is_vim=​"ps	-o	state=	-o	comm=	-t	'#{pane_tty}'	 ​​\​
​	 ​				|	grep	-iqE	'^[^TXZ]+	+(​​\\​​S+​​\\​​/)?g?(view|n?vim?x?)(diff)? ​$'​" ​
​	 bind-key	-n	C-h	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-h" ​		​"select-pane	-L" ​
​	 bind-key	-n	C-j	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-j" ​		​"select-pane	-D" ​
​	 bind-key	-n	C-k	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-k" ​		​"select-pane	-U" ​
​	 bind-key	-n	C-l	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-l" ​		​"select-pane	-R" ​
​	 bind-key	-n	C-​\	 ​​if​-shell	​" ​$is_vim​" ​	​"send-keys	C- ​​\\​​" ​	​"select-pane	-l" ​
​	
​	 bind	C-l	send-keys	​'C-l'​

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

CTRL - l 	is	the	keybinding	used	by	the	readline	library	in	many	shells	for	clearing	the	screen.	The	last
line	of	this	configuration	sets	up	 PREFIX 	 CTRL - l 	to	issue	that	command	instead.

Extending	tmux	with	Plugins
So	far,	we’ve	made	modifications	directly	to	the	tmux	configuration	file.	While	that	works,	it	can
be	a	little	awkward	when	doing	something	more	complex.	Bruno	Sutic	developed	a	solution	to
this	called	TPM,	the	tmux	plugin	manager.	Since	then,	more	and	more	people	have	come	together
to	build	plugins	to	extend	tmux.	Let’s	use	TPM	to	install	the	incredibly	useful	tmux-resurrect[17]

plugin,	which	can	restore	tmux	sessions	even	after	a	reboot!

To	set	it	up,	first	clone	the	repository	into	a	folder	called	~/.tmux/plugins/tpm:

​	 ​$	 ​​git ​​	 ​​clone ​​	 ​​https://github.com/tmux-plugins/tpm​​	 ​​~/.tmux/plugins/tpm​

Then	add	these	lines	to	your	.tmux.conf	file:

workflows/tmux.conf

​	 set	-g	@plugin	​'tmux-plugins/tpm'​
​	 set	-g	@plugin	​'tmux-plugins/tmux-resurrect'​
​	 run	​'~/.tmux/plugins/tpm/tpm'​

First	we	list	TPM	itself,	followed	by	the	tmux-resurrect	plugin.	Then	we	load	TPM	so	it	can	load
other	plugins.	Save	this	file	and	reload	your	configuration.	Then	press	 PREFIX 	 I 	to	install	the
plugin.	You’ll	see	this	output	in	tmux:

​	 Already	installed	"tpm"
​	
​	 Installing	"tmux-resurrect"
​	 		"tmux-resurrect"	download	success
​	
​	 TMUX	environment	reloaded.
​	
​	 Done,	press	ENTER	to	continue.

Now	test	out	the	tmux-resurrect	program.	Open	a	couple	more	panes,	and	then	press	 PREFIX 	 CTRL - s 	to
save	the	state	of	the	tmux	session.	Then	close	all	of	the	panes	and	exit	tmux.	Finally,	reload	tmux
and	press	 PREFIX 	 CTRL - r 	to	restore	the	session	you	saved.	All	of	your	panes	will	come	back!

Visit	the	list	of	tmux	plugins[18]	and	find	one	you’d	like	to	install.	You’ll	find	one	for	the	batter
meter	we	set	up,	another	for	OS-specific	clipboards,	and	even	one	with	sensible	configuration
options.

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

What’s	Next?
There’s	so	much	more	you	can	do	with	tmux	now	that	you	know	the	basics	and	you’ve	had	some
experience	playing	around	with	various	configurations.	The	tmux	manual,	which	you	can	access
from	your	terminal	with

​	 ​$	 ​​man​​	 ​​tmux ​

has	the	complete	list	of	configuration	options	and	available	commands.

And	don’t	forget	that	tmux	itself	is	rapidly	evolving.	The	next	version	will	bring	new
configuration	options,	which	will	give	you	even	more	flexibility.

As	you	integrate	tmux	into	your	workflow,	you	may	discover	other	techniques	you	start	to	rely	on.
For	example,	you	can	use	tmux	and	a	text-based	editor	on	a	remote	server	to	create	an	incredibly
effective	development	environment	that	you	can	use	to	collaborate	with	another	developer.	You
can	even	use	irssi	(a	terminal-based	IRC	client)	and	Alpine	(a	terminal-based	email	app)	within
your	tmux	sessions,	either	alongside	of	your	text	editor	in	a	pane,	or	in	background	windows.
Then	you	can	detach	from	the	session	and	come	back	to	it	later,	with	your	entire	environment
ready	to	go.

Keep	working	with	tmux	and	before	you	know	it,	it’ll	be	an	indispensable	part	of	your	workflow.

For	Future	Reference

Command Description
PREFIX 	 ! Converts	the	currently	selected	pane	into	a	new

window.
join-pane	-s	[session]:[window].[pane] Converts	the	specified	session’s	window	or	pane	into	a

pane	in	the	current	window.
join-pane	-s	[session]:[window].[pane]	-t	[other

session]
Converts	the	specified	session’s	window	or	pane	into	a
pane	in	the	target	session.

PREFIX 	 z Zooms	the	current	pane,	making	it	full	screen.	Pressing
it	again	restores	the	pane	to	its	original	size.

tmux	new-session	"[command]" Launches	tmux	and	executes	a	command.	When	the
command	completes,	the	tmux	session	closes.

split-pane	"[command]" Splits	the	current	window	and	executes	the	specified
command	in	the	new	pane.	When	the	command
completes,	the	pane	closes.

split-window	-c	"#{pane_current_path}" Splits	the	pane	and	sets	the	working	directory	of	the
new	pane	to	the	current	working	directory	of	the
focused	pane.

set-window-option	synchronize-panes Toggles	pane	synchronization,	where	keystrokes	are
issued	to	all	panes	simultaneously	instead	of	only	the
current	pane.

PREFIX 	 (Moves	to	the	next	tmux	session.
PREFIX) Moves	to	the	previous	tmux	session.
PREFIX 	 s Shows	the	session	selection	list.
move-window	-s	[source	session]:[window]	-t

[target	session]
Moves	a	window	from	one	session	to	another.	Also
available	with	 PREFIX 	 . ,	followed	by	the	target	session
name.

set	-g	default-shell	[shell] Sets	the	default	shell	that	tmux	uses	when	creating	new
windows.

set	-g	default-command	[command] Sets	the	default	command	that	tmux	uses	when	creating
new	windows.	Blank	by	default.

if-shell	"[condition]"	"[command]" Performs	a	given	command	if	the	condition	evaluates	to
true.

pipe-pane	-o	"cat	>>~/#W.log" Records	the	current	pane	to	a	text	file.

[16]

[17]

[18]

Footnotes

https://github.com/christoomey/vim-tmux-navigator

https://github.com/tmux-plugins/tmux-resurrect

https://github.com/tmux-plugins

Copyright	©	2016,	The	Pragmatic	Bookshelf.

https://github.com/christoomey/vim-tmux-navigator
https://github.com/tmux-plugins/tmux-resurrect
https://github.com/tmux-plugins

Appendix	1

Our	Configuration
	

Throughout	the	book,	we’ve	built	up	a	somewhat	complex	.tmux.conf	file.	Here’s	the	entire	file	for
your	reference.

workflows/tmux.conf

​	 ​#	Setting	the	prefix	from	C-b	to	C-a ​
​	 set	-g	prefix	C-a
​	 ​#​
​	 ​#	Free	the	original	Ctrl-b	prefix	keybinding ​
​	 unbind	C-b
​	 ​#​
​	 ​#setting	the	delay	between	prefix	and	command ​
​	 set	-s	escape-time	1
​	 ​#​
​	 ​#	Ensure	that	we	can	send	Ctrl-A	to	other	apps ​
​	 bind	C-a	send-prefix
​	
​	 ​#	Set	the	base	index	for	windows	to	1	instead	of	0 ​
​	 set	-g	base-index	1
​	
​	 ​#	Set	the	base	index	for	panes	to	1	instead	of	0 ​
​	 setw	-g	pane-base-index	1
​	
​	 ​#	Reload	the	file	with	Prefix	r ​
​	 bind	r	source-file	~/.tmux.conf	​\; ​	display	​"Reloaded!" ​
​	
​	 ​#	splitting	panes	with	|	and	- ​
​	 bind	|	split-window	-h
​	 bind	-	split-window	-v
​	
​	 ​#	moving	between	panes	with	Prefix	h,j,k,l​
​	 bind	h	​select ​-pane	-L
​	 bind	j	​select ​-pane	-D
​	 bind	k	​select ​-pane	-U
​	 bind	l	​select ​-pane	-R

​	 ​#	Quick	window	selection ​

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

​	 bind	-r	C-h	​select ​-window	-t	:-
​	 bind	-r	C-l	​select ​-window	-t	:+
​	
​	 ​#	Pane	resizing	panes	with	Prefix	H,J,K,L​
​	 bind	-r	H	resize-pane	-L	5
​	 bind	-r	J	resize-pane	-D	5
​	 bind	-r	K	resize-pane	-U	5
​	 bind	-r	L	resize-pane	-R	5
​	
​	 ​#	mouse	support	-	set	to	on	if	you	want	to	use	the	mouse ​
​	 set	-g	mouse	off
​	
​	 ​#	Set	the	default	terminal	mode	to	256color	mode ​
​	 set	-g	default-terminal	​"screen-256color" ​
​	
​	 ​#	set	the	status	line's	colors ​
​	 set	-g	status-style	fg=white,bg=black
​	
​	 ​#	set	the	color	of	the	window	list​
​	 setw	-g	window-status-style	fg=cyan,bg=black
​	
​	 ​#	set	colors	for	the	active	window​
​	 setw	-g	window-status-current-style	fg=white,bold,bg=red
​	
​	 ​#	colors	for	pane	borders ​
​	 setw	-g	pane-border-style	fg=green,bg=black
​	 setw	-g	pane-border-active-style	fg=white,bg=yellow
​	
​	 ​#	active	pane	normal,	other	shaded	out​
​	 setw	-g	window-style	fg=colour240,bg=colour235
​	 setw	-g	window-active-style	fg=white,bg=black
​	
​	 ​#	Command	/	message	line ​
​	 setw	-g	message-style	fg=white,bold,bg=black
​	
​	 ​#	Status	line	left	side	to	show	Session:window:pane ​
​	 set	-g	status-left-length	40
​	 set	-g	status-left	​"#[fg=green]Session:	#S	#[fg=yellow]#I	#[fg=cyan]#P" ​
​	
​	 ​#	Status	line	right	side	-		50%	|	31	Oct	13:37 ​
​	 set	-g	status-right	​"#(~/battery	Discharging)	|	#[fg=cyan]%d	%b	%R" ​
​	
​	 ​#	Update	the	status	line	every	sixty	seconds ​
​	 set	-g	status-interval	60
​	
​	 ​#	Center	the	window	list	in	the	status	line ​
​	 set	-g	status-justify	centre
​	
​	 ​#	enable	activity	alerts ​
​	 setw	-g	monitor-activity	on
​	 set	-g	visual-activity	on

​	
​	 ​#	enable	vi	keys. ​
​	 setw	-g	mode-keys	vi
​	
​	 ​#	shortcut	for	synchronize-panes	toggle ​
​	 bind	C-s	set-window-option	synchronize-panes
​	
​	 ​#	split	pane	and	retain	the	current	directory	of	existing	pane ​
​	 bind	_	split-window	-v	-c		​"#{pane_current_path}" ​
​	 bind	​\	 ​split-window	-h	-c	​"#{pane_current_path}" ​
​	
​	 ​#	Log	output	to	a	text	file	on	demand ​
​	 bind	P	pipe-pane	-o	​"cat	>>~/#W.log" ​	​\; ​	display	​"Toggled	logging	to	~/#W.log" ​
​	 ​#​
​	 ​#	Load	mac-specific	settings ​
​	 ​if​-shell	​"uname	|	grep	-q	Darwin" ​	​"source-file	~/.tmux.mac.conf" ​
​	
​	 ​#	load	private	settings	if	they	exist​
​	 ​if​-shell	​"[-f	~/.tmux.private]" ​	​"source	~/.tmux.private" ​
​	
​	 is_vim=​"ps	-o	state=	-o	comm=	-t	'#{pane_tty}'	 ​​\​
​	 ​				|	grep	-iqE	'^[^TXZ]+	+(​​\\​​S+​​\\​​/)?g?(view|n?vim?x?)(diff)? ​$'​" ​
​	 bind-key	-n	C-h	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-h" ​		​"select-pane	-L" ​
​	 bind-key	-n	C-j	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-j" ​		​"select-pane	-D" ​
​	 bind-key	-n	C-k	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-k" ​		​"select-pane	-U" ​
​	 bind-key	-n	C-l	​if​-shell	​" ​$is_vim​" ​	​"send-keys	C-l" ​		​"select-pane	-R" ​
​	 bind-key	-n	C-​\	 ​​if​-shell	​" ​$is_vim​" ​	​"send-keys	C- ​​\\​​" ​	​"select-pane	-l" ​
​	
​	 bind	C-l	send-keys	​'C-l'​
​	
​	 set	-g	@plugin	​'tmux-plugins/tpm'​
​	 set	-g	@plugin	​'tmux-plugins/tmux-resurrect'​
​	 run	​'~/.tmux/plugins/tpm/tpm'​

Copyright	©	2016,	The	Pragmatic	Bookshelf.

You	May	Be	Interested	In…
Click	a	cover	for	more	information

http://pragmaticprogrammer.com/titles/bhh52e
http://pragmaticprogrammer.com/titles/bhwb
http://pragmaticprogrammer.com/titles/wbdev2
http://pragmaticprogrammer.com/titles/dnvim2
http://pragmaticprogrammer.com/titles/atcrime
http://pragmaticprogrammer.com/titles/rjnsd
http://pragmaticprogrammer.com/titles/kdnodesec
http://pragmaticprogrammer.com/titles/tbcoffee2
http://pragmaticprogrammer.com/titles/mwjsember

http://pragmaticprogrammer.com/titles/smreactjs
http://pragmaticprogrammer.com/titles/liftoff
http://pragmaticprogrammer.com/titles/dlret
http://pragmaticprogrammer.com/titles/fsfire
http://pragmaticprogrammer.com/titles/jkthp

	Acknowledgments
	Preface
	What Is tmux?
	Who Should Read This Book
	What’s in This Book
	Changes in the Second Edition
	What You Need
	Conventions
	Online Resources

	1. Learning the Basics
	Installing tmux
	Starting tmux
	The Command Prefix
	Detaching and Attaching Sessions
	Working with Windows
	Working with Panes
	Working with Command Mode
	What’s Next?
	For Future Reference

	2. Configuring tmux
	Introducing the .tmux.conf File
	Customizing Keys, Commands, and User Input
	Visual Styling
	Customizing the Status Line’s Content
	What’s Next?
	For Future Reference

	3. Scripting Customized tmux Environments
	Creating a Custom Setup with tmux Commands
	Using tmux Configuration for Setup
	Managing Configuration with tmuxinator
	What’s Next?
	For Future Reference

	4. Working With Text and Buffers
	Scrolling Through Output with Copy Mode
	Copying and Pasting Text
	Working with the Clipboard on Linux
	Using OS X Clipboard Commands
	What’s Next?
	For Future Reference

	5. Pair Programming with tmux
	Pairing with a Shared Account
	Using a Shared Account and Grouped Sessions
	Quickly Pairing with tmate
	Pairing with Separate Accounts and Sockets
	What’s Next?
	For Future Reference

	6. Workflows
	Working Effectively with Panes and Windows
	Managing Sessions
	tmux and Your Operating System
	Extending tmux with Plugins
	What’s Next?
	For Future Reference

	A1. Our Configuration

