tmux 2

Productive
Mouse-Free
Development

Brian P. Hogan

Edited by Susannah Davidson Pfalzer

tmux 2

Productive Mouse-Free Development
by Brian P. Hogan

Version: P1.0 (November 2016)

Copyright © 2016 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf

The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us

at http:/pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via Dropbox.
You get free updates for the life of the edition. And, of course, you can always come back and re-
download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/frequently-asked-
questions/ebooks. To learn more about this book and access the free resources, go to

https://pragprog.com/book/bhtmux2, the book's homepage.

Thanks for your continued support,

Dave Thomas and Andy Hunt
The Pragmatic Programmers

The team that produced this book includes: Susannah Davidson Pfalzer (editor),
Nicole Abramowitz (copyeditor), Gilson Graphics (layout), Janet Furlow (producer)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com
https://pragprog.com
https://pragprog.com
https://pragprog.com/frequently-asked-questions/ebooks
https://pragprog.com/book/bhtmux2
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

Acknowledgments

Preface
What Is tmux?
Who Should Read This Book
What’s in This Book
Changes in the Second Edition
What You Need

Conventions

Online Resources

1. Learning the Basics
Installing tmux
Starting tmux
The Command Prefix
Detaching and Attaching Sessions
Working with Windows
Working with Panes
Working with Command Mode
What’s Next?

For Future Reference

2. Configuring tmux
Introducing the .tmux.conf File
Customizing Keys, Commands, and User Input
Visual Styling
Customizing the Status Line’s Content
What’s Next?

For Future Reference

3. Scripting Customized tmux Environments
Creating a Custom Setup with tmux Commands
Using tmux Configuration for Setup

Managing Configuration with tmuxinator
What’s Next?

For Future Reference

4. Working With Text and Buffers
Scrolling Through Output with Copy Mode
Copying and Pasting Text
Working with the Clipboard on Linux

Using OS X Clipboard Commands
What’s Next?

For Future Reference

5. Pair Programming with tmux
Pairing with a Shared Account
Using a Shared Account and Grouped Sessions
Quickly Pairing with tmate

Pairing with Separate Accounts and Sockets
What’s Next?

For Future Reference

6. Workflows

Working Effectively with Panes and Windows
Managing Sessions
tmux and Your Operating System

Extending tmux with Plugins
What’s Next?

For Future Reference

Al. Our Configuration

Copyright © 2016, The Pragmatic Bookshelf.

What readers are saying about tmux 2:
Productive Mouse-Free Development

A must-have book for anyone that uses the command line daily. This is a book I have been
recommending since it was first published, and I will definitely recommend it again!

— Jeff Holland
Senior software engineer, Ackmann & Dickenson

The tricks mentioned in this book completely changed my workflow. I recommend this book to
anyone who is looking to improve their workflow on the command line.

— Jacob Chae
Software engineer, Assurant

The author always has something amazing in store for you: custom commands to fire up your
development environment, customizing it, pair programming, and many use cases. This book
makes you step up your game in becoming a more efficient developer.

— Peter Perlepes
Software engineer, adaplo
I had zero tmux experience before picking up the book, and I could use tmux in my day-to-day

routine after reading the book.

— Nick McGinness
Software engineer, Direct Supply

Acknowledgments

Thank you for reading this book. It’s my sincere hope that this book will help you get better at
what you do by making you faster and more productive.

Thank you, Chris Johnson, for initially showing me what tmux was all about, and for pointing me
in the right direction with my initial questions. It completely changed how I work, and it’s what
motivated me to share this amazing tool with everyone.

Thank you, Dave Thomas, for convincing me to publish the first edition of this book. I'm very
proud of the first edition and how many people it helped. And thank you, Andy Hunt and Janet
Furlow, for all the work you do to deliver the best technical books out there.

Thank you, Susannah Pfalzer, for working with me again. You challenged me once again to grow
as an author, and this book and I are better for it.

Thank you, Alessandro Bahgat, Jacob Chae, Jeff Holland, Michael Hunter, Sean Lindsay, Lokesh
Kumar Makani, Nick McGinness, Stephen Orr, Peter Perlepes, Charley Stran, and Colin Yates,
for reviewing this book. The second edition is more clear and has better explanations because of
the time you took to read through this book and try out every example. Anything that’s still broken
is my fault.

Thank you to my business associates, Mitch Bullard, Kevin Gisi, Alex Henry, Jeff Holland, Nick
LaMuro, Austen Ott, Erich Tesky, Myles Steinhauser, Josh Swan, Chris Warren, and Mike Weber,
for your continued support.

Thank you, Ana and Lisa, for your love and inspiration.

Finally, thank you, Carissa, for your love and support. Thank you for all you do for our family.

Copyright © 2016, The Pragmatic Bookshelf.

Preface

Your mouse is slowing you down.

When it was first introduced, the mouse created a new way for people to interact with computers.
We can click, double-click, and even triple-click to open documents, switch windows, and select
text. And thanks to trackpads, we can even swipe and use gestures to interact with our
applications. The mouse, along with graphical interfaces, made computers just a little easier to
use for the average person. But there’s a downside to the mouse, especially for programmers.

As we build software, we work with multiple programs throughout the course of our day. A web
developer, for example, might have a database console, a web server, and a text editor running at
the same time. Switching between these with the mouse can slow you down. It may not seem like
much, but moving your hand off of the keyboard’s home row, placing it on the mouse, locating the
pointer, and performing the task can eat up time and break your focus. And it can also induce
strain on your wrist, arm, or shoulder. That repetitive movement of reaching for your mouse can
cause some serious discomfort if you’re not careful about how you hold that mouse.

Using tmux, you can create an environment like this, right in your terminal, managed entirely
without a mouse:

dex . html _erb[1] [uni y][5e%] [eaal eaa1][1]

Session: devproject l.'.tlin'- - t
Using tmux’s windows, you can easily manage a text editor, a database console, and a local web
server within a single environment. And you can split tmux windows into sections, so multiple

apps can run side by side. This means you can run a text-based browser, an IRC client, or your
automated tests in the same window as your main editor.

Best of all, you can quickly move between these windows and panes using only the keyboard.
Over time, the keystrokes you use to manage your environment will become second nature to you,
which will greatly increase both your concentration and your productivity.

In this book, you’ll learn how to configure, use, and customize tmux. You’ll learn how to manage
multiple programs simultaneously, write scripts to create custom environments, and use tmux to
work remotely with others. With tmux, you can create a work environment that keeps almost
everything you need at your fingertips.

What Is tmux?

tmux is a terminal multiplexer. It lets you use a single environment to launch multiple terminals,
or windows, each running its own process or program. For example, you can launch tmux and
load up the Vim text editor. You can then create a new window, load up a database console, and
switch back and forth between these programs all within a single session.

If you use a modern operating system and a terminal that has tabs, this doesn’t sound like anything
new. But running multiple programs simultaneously is only one of tmux’s features. You can divide
your terminal windows into horizontal or vertical panes, which means you can run two or more
programs on the same screen side by side. And you can do it all without using the mouse.

You can also detach from a session, meaning you can leave your environment running in the
background. If you’ve used GNU-Screen before, you’re familiar with this feature. In many ways,
tmux is like GNU-Screen with a lot of extra features and a much simpler configuration system.
And since tmux uses a client-server model, you can control windows and panes from a central
location, or even jump between multiple sessions from a single terminal window. This client-
server model also lets you create scripts and interact with tmux from other windows or
applications.

Over the course of this book, we’ll explore all of these features and more.

Who Should Read This Book

Whether you’re a system administrator or a software developer who spends a good part of your
time using the terminal and command-line tools, this book aims to help you work faster.

If you’re a software developer, you’ll see how to use tmux to build a development environment
that can make working with multiple terminal sessions a breeze. And if you’re already
comfortable using Vim or Emacs, you’ll see how tmux can accelerate your workflow even more.

If you’re a system administrator or a developer who spends some time working with remote
servers, you’ll be interested in how you can leverage tmux to create a persistent dashboard for
managing or monitoring servers.

What’s in This Book

This book will show you how to incorporate tmux into your work by taking you through its basic
features and showing you how you might apply them to everyday situations.

In Chapter 1, Learning the Basics, you’ll learn about the basic features of tmux as you create
sessions, panes, and windows and learn how to perform basic navigation.

In Chapter 2, Configuring tmux, you’ll redefine many of the default keybindings and customize
how tmux looks.

In Chapter 3, Scripting Customized tmux Environments, you’ll script your own development
environment using the command-line interface, configuration files, and the tmuxinator program.

After that, you’ll work with text in Chapter 4, Working With Text and Buffers. You’ll use the
keyboard to move backwards through the buffer, select and copy text, and work with multiple
paste buffers.

Next, in Chapter 5, Pair Programming with tmux, you’ll set up tmux so that you and a coworker
can work together on the same codebase from different computers using tmux.

Finally, Chapter 6, Workflows covers more advanced ways to manage windows, panes, and
sessions, and shows you how to be even more productive with tmux.

Changes in the Second Edition

This new edition has some notable changes from the first edition. tmux 2.1 and 2.2 introduced
several backwards-incompatible changes that this edition addresses; this edition also introduces
some new options. And tmux is now more popular than it was, so there are more tools and tricks
you can use to improve your workflow. Here’s what’s new:

o All examples require at least tmux 2.3.

e This book now covers installation on Windows 10, where tmux is supported under
Microsoft’s Windows Subsystem for Linux.

e Chapter 2, Configuring tmux includes more options for identifying the active pane, uses
more updated methods for controlling tmux’s visual styles, and removes some outdated
configuration options that no longer work.

e Chapter 3, Scripting Customized tmux Environments contains updated instructions for
Tmuxinator and its new configuration format, as well as information on how to export tmux
scripts from Tmuxinator.

e Chapter 4, Working With Text and Buffers has an updated method for getting text to and from
system clipboards on Linux and Mac.

e Chapter 5, Pair Programming with tmux now includes instructions on generating an SSH
key, and discusses how to use tmate as a quick alternative.

e Chapter 6, Workflows. contains several new sections:

o Opening a Pane in the Current Directory.

o Keeping Specific Configuration Separate.

o Integrating Seamlessly with Vim

o Extending tmux with Plugins.

What You Need

In order to use tmux, you’ll need a computer that runs Mac OS X, Windows 10 with Bash support,
or a flavor of Unix or Linux. Unfortunately, tmux doesn’t run under the regular Windows
Command Prompt or Powershell, but it will run great on a virtual machine, VPS, or shared
hosting environment running Linux or FreeBSD.

You should also have a good grasp of using command-line tools on a Linux or Unix system. We’ll
use the Bash shell in this book, and being comfortable with creating directories and text files, as
well as some basic scripting, will help you move more quickly through the examples.

While not required, experience with text editors such as Vim or Emacs might be helpful. tmux
works much the same way, and it has some predefined keyboard shortcuts that you may find
familiar if you use one of these text editors.

Conventions

tmux is a tool that’s driven by the keyboard. You’ll encounter many keyboard shortcuts throughout
the book. Since tmux supports both lowercase and uppercase keyboard shortcuts, it may
sometimes be unclear which key the book is referencing.

To keep it simple, these are the conventions I’ve used.

e ¢ -b means “press the (¢ and b keys simultaneously.”

e ¢ - R means you’ll press the (¢ and r keys simultaneously, but you’ll need to use the
surer. key to produce the capital “R.” I won’t explicitly show the [sur key in any of these
keystrokes.

»

® cr -b d means “press the ¢ and b keys simultaneously, then release, and then press d.

In Chapter 1, Learning the Basics, you’ll learn about the command prefix, which will use
this notation, but shortened to |prerrx| (d .

e I’ll show some terminal commands throughout the book, like

$ tmux new-session

The dollar sign represents the prompt from the Bash shell session. You won’t need to type it
when you type the command. It just denotes that this is a command you should type.

e Finally, as you’ll see in Chapter 2, Configuring tmux, you can configure tmux with a
configuration file called tmux.conf. Filenames starting with a period don’t show up in

directory listings on most systems or text editors by default. Code listings in this book have a
header that points to the file in the book’s source code download, like this:

config/tmux.conf

Setting the prefix from C-b to C-a
set -g prefix C-a

To make it easy for you to find the file in the source code download, I’ve named the example
file tmux.conf, without the leading period. The headers above the code listing reference that

file.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Online Resources

The book’s websitel has links to an interactive discussion forum as well as a place to submit
errata for the book. You’ll also find the source code for the configuration files and scripts we use
in this book. You can click the box above the code excerpts to download that source code

directly.

Working with tmux has made me much more productive, and I’m excited to share my experiences
with you. Let’s get started by installing tmux and working with its basic features.

Footnotes

[1 http://pragprog.com/titles/bhtmux2

Copyright © 2016, The Pragmatic Bookshelf.

http://pragprog.com/titles/bhtmux2

Chapter 1

Learning the Basics

tmux can be an incredible productivity booster once you get the hang of it. In this chapter, you’ll
get acquainted with tmux’s basic features as you manage applications within sessions, windows,
and panes. These simple concepts make up the foundation of what makes tmux an amazing
environment for developers and system administrators alike.

But before you can learn how to use these basic features, you need to get tmux installed.

Installing tmux

You can install tmux in one of two ways: using a package manager for your operating system, or
building tmux from source.

Whichever method you choose, you’ll want to ensure you install tmux version 2.2 or higher.
Earlier versions of tmux don’t support some of the features we’re going to cover in this book, or
have configuration that’s incompatible.

Installing on a Mac

The easiest way to install tmux on the Mac is with Homebrew.2!

First, install Xcode through the Mac App Store. Once Xcode is installed, open a new terminal
and run the command

$ xcode-select --install

to install the command-line tools that Homebrew needs.
Next, install Homebrew by following the instructions on the Homebrew website.

Finally, install tmux with the following terminal command:
$ brew install tmux

To ensure that tmux is installed properly, and to check that you have the correct version, execute
this command from your terminal:

$ tmux -V
tmux 2.3

Installing on Windows 10

In August of 2016, Microsoft released an update to Windows 10 that brings the Bash shell to
Windows. This shell is powered by Ubuntu and supports tmux. To use it, first put your machine in
Developer mode. Open the Settings app, select Update & Security, and then choose For
Developers. Enable the “Developer Mode” option.

Next, open the Control Panel and select Programs. Then click Turn Windows Features On Or Off.
Locate and enable the option for “Windows Subsystem For Linux.” Then reboot your computer.

When the computer reboots, open a Command Prompt and type

C:\> bash

You’ll be prompted to install Bash from the Windows Store. It’s a free download that takes
several minutes to download and extract, but in a short time you’ll be ready to install tmux.

Once Bash is installed, move on to the next section, as you’ll install tmux from source as if you
were using Ubuntu.

Installing on Linux

On Linux, your best bet is to install tmux by downloading the source code and compiling it
yourself. Package managers don’t always have the most recent version of tmux available. The
process of installing tmux is the same on all platforms. You’ll need the GCC compiler, and libevent

and ncurses, which tmux depends on.

For Ubuntu, you can install all of these with the apt package manager:

$ sudo apt-get install build-essential libevent-dev libncurses-dev

Once you have the compilers and prerequisites installed, grab the tmux source code and
download it.2! Untar the downloaded version and install it like this:

$ tar -zxvf tmux-2.3.tar.gz
$ cd tmux-2.3

$./configure

$ make

$ sudo make install

You can test out the installation by executing this from the terminal, which returns the currently
installed version of tmux:

$ tmux -V
tmux 2.3

Now that you have tmux properly installed, let’s explore the core features of tmux, starting with a
basic session.

Starting tmux
Starting tmux is as easy as typing
$ tmux

from a terminal window. You’ll see something that looks like the following image appear on your
screen.

[0] @:bash* "puzzles" 03:04 28-0Oct-16

This is a tmux “session,” and it works just like your normal terminal session. You can issue any
terminal command you’d like, and everything will work as expected.

To close the tmux session, simply type
$ exit

in the session itself. This will close tmux and then return you to the standard terminal.

But, unless you’re only using tmux for a very brief period, this isn’t the best way to work with
sessions in tmux. You can instead create “named sessions” that you can then identify and work
with later.

Creating Named Sessions

You can have multiple sessions on a single computer, and you’ll want to be able to keep them
organized. For example, you might have one session for each application you’re developing, or a

session for work and a session for your cool side project. You can keep these sessions organized
by giving each session you create its own unique name. Try it out right now. Create a named
session called “basic” with the following command:

$ tmux new-session -s basic
You can shorten this command to

$ tmux new -s basic

When you enter this command, you’ll be brought into a brand-new tmux session, but you won’t
really notice anything special or different than if you started things up normally. If you typed exit,
you’d just be right back at the terminal. Named sessions come in handy when you want to leave
tmux running in the background, which we’ll discuss shortly. But before you continue, type

$ exit

to exit tmux.

Before we look at how to work with tmux sessions and run programs in the background, let’s talk
about how we send commands to tmux.

The Command Prefix

Since our command-line programs run inside tmux, we need a way to tell tmux that the command
we’re typing is for tmux and not for the underlying application. The [cw -b' combination does just

that. This combination is called the command prefix.

You prefix each tmux command with this key combination. To get a feel for how this works, open
tmux again:

$ tmux

Then, inside of tmux, press cw -b, then press [t. A large clock will appear on the screen.

[0] @:[tmux]* "puzzles" 03:00 28-0Oct-16

It’s important to note that you don’t hold all these keys down together. Instead, first press cm -b

simultaneously, release those keys, and then immediately press the key for the command you want
to send to tmux.

Throughout the rest of this book, I’ll use the notation per:x, followed by the shortcut key for tmux
commands, like 'perix [d) for detaching from a session. In Chapter 2, Configuring tmux, you’ll
remap the prefix to an easier combination, but until then, you’ll use the default of ‘¢ b

whenever you see |prerrx.

Press the (ewe: key to dismiss the clock, and exit tmux by typing exit. Now let’s ook at how to run

programs in the background.

Detaching and Attaching Sessions

One of tmux’s biggest advantages is that you can fire it up, start up programs or processes inside
the tmux environment, and then leave it running in the background by “detaching” from the
session.

If you close a regular terminal session, all the programs you have running in that session are
killed off. But when you detach from a tmux session, you’re not actually closing tmux. Any
programs you started up in that session will stay running. You can then “attach” to the session and
pick up where you left off. To demonstrate, let’s create a new named tmux session, start up a
program, and detach from the session. First, create the session:

$ tmux new -s basic

Then, within the tmux session, start an application called top, which monitors our memory and
CPU usage, like this:

$ top

You’ll have something that looks like the following figure running in your terminal.

(1B Swap:

PID USER PR NI
1 root 20
Z root
3 root
S root B -£8 i £ 5 0.0 B.¢ 008,00 &

{ root 20 g A i & 0.8 8.8 1:24 .25 rcu_sched
& root
9 root
10 root
o0
12 root
13 root
i raal
15 root

16 root

pasic) @:top® : “puzzles” 03:12 28-Oct-16
Now, detach from the tmux session by pressing [peer:x [d . This returns you to your regular terminal

prompt.

Now, let’s look at how to get back in to that tmux session we left running. But before we do, close

your terminal window.

Reattaching to Existing Sessions

We’ve set up a tmux session, fired up a program inside the session, detached from it, and closed
our terminal session, but the tmux session is still chugging along, along with the top application we
launched.

You can list existing tmux sessions using the command
$ tmux list-sessions

in a new terminal window. You can shorten the command to this:
$ tmux Is

The command shows that there’s one session currently running;
basic: 1 windows (created Tue Aug 23 16:58:26 2016) [105x25]

To attach to the session, use the attach keyword. If you only have one session running, you can
simply use

$ tmux attach

and you’ll be attached to the session again. Things get more tricky if you have more than one
session running. Detach from the basic session with [peerrx [d .

Now create a new tmux session in the background using the command
$ tmux new -s second_session -d

This creates a new session, but doesn’t attach to the session automatically.

Now list the sections, and you’ll see two sessions running:
$ tmux Is
basic: 1 windows (created Tue Aug 23 16:58:26 2016) [105x25]
second_session: 1 windows (created Tue Aug 23 17:49:21 2016) [105x25]

You can attach to the session you want by using the -t flag, followed by the session name. Run the
following command:

$ tmux attach -t second_session

This attaches you to the second_session tmux session. You can detach from this session just as you did

previously, using 'erer1x| [d, and then attach to a different session. In Moving Between Sessions,

you’ll see some other ways to move between active sessions. But for now, let’s remove the active
sessions.

Killing Sessions

You can type exit within a session to destroy the session, but you can also kill off sessions with the
kill-session command. It works just like tmux attach:

$ tmux kill-session -t basic
$ tmux kill-session -t second_session

This is useful for situations where a program in a session is hanging.

If you list the sessions again, you’ll get this message:

$ tmux Is
no server running on /tmp/tmux-1002/default

Since there are no tmux sessions running, tmux itself isn’t running, so it isn’t able to handle the
request.

Now that you know the basics of creating and working with sessions, let’s look at how we can
work with multiple programs within a single session.

Working with Windows

It’s possible, and very common, to run multiple, simultaneous commands within a tmux session.
We can keep these organized with windows, which are similar to tabs in modern graphical
terminal emulators or web browsers.

When we create a new tmux session, the environment sets up an initial window for us. We can
create as many as we’d like, and they will persist when we detach and reattach.

Let’s create a new session that has two windows. The first window will have our normal prompt,
and the second window will run the top command. Create a named session called “windows,” like

this:
$ tmux new -s windows -n shell

By using the -n flag, we tell tmux to name the first window so we can identify it easily.

Now let’s add a window to this session.

Creating and Naming Windows

To create a window in a current session, press [peerix ¢ . Creating a window like this

automatically brings the new window into focus. From here, you can start up another application.
Let’s start top in this new window.

$ top

The first window has a name you defined, called “shell,” but the second window now appears to
have the name “top.” This window’s name changes based on the app that’s currently running
because you never gave it a default name when you created it. So let’s give this window a proper
name.

To rename a window, press perix followed by |, | (a comma), and the status line changes, letting

you rename the current window. Go ahead and rename the window to “Processes.”

You can create as many windows in a tmux session as you’d like. But once you have more than
one, you need to be able to move between them.

Moving Between Windows

So far, you’ve created two windows in your environment, and you can navigate around these
windows in several ways. When you only have two windows, you can quickly move between

windows with [peerrx 'n, for “next window.” This cycles through the windows you have open.

Since you only have two windows right now, this just toggles between them.

You can use |prerix| [p 1o g0 to the previous window.

By default, windows in tmux each have a number, starting at 0. You can quickly jump to the first
window with [peerix [0, and the second window with peerix (1. This zero-based array of windows

isn’t always intuitive, and in Chapter 2, Configuring tmux, you’ll see how to make the list of
windows start at one instead of zero.

If you end up with more than nine windows, you can use |pwrix [w to display a visual menu of your
windows so you can select the one you’d like. You can also use 'pwrix (7 to find a window that
contains a string of text. Typing the text and pressing (eve: displays a list of windows containing
that text.

From here, you can continue creating new windows and launching programs. When you detach
from your session and reattach later, your windows will all be where you left them.

To close a window, you can either type “exit” into the prompt in the window, or you can use | prerix
&, which displays a confirmation message in the status bar before killing off the window. If you

accept, your previous window comes into focus. To completely close out the tmux session, you
have to close all the windows in the session.

Creating windows is great, but we can make tmux even more useful by splitting a window into
panes.

Working with Panes

Having programs in separate windows is fine for stuff we don’t mind having out of the way. But
with tmux, we can divide a single session into panes.

Create a new tmux session called “panes” so we can experiment with how panes work. Exit any
existing tmux sessions and create a new one like this:

$ tmux new -s panes

We can split windows vertically or horizontally. Let’s split the window in half vertically first,
and then horizontally, creating one large pane on the left and two smaller panes on the right, as
shown in the figure.

[panes] @:bash* "puzzles" 03:09 28-0ct-16

In the tmux session, press pw«rix (%, and the window will divide down the middle and start up a

second terminal session in the new pane. In addition, the focus will move to this new pane.

Pressing pwrix " (double quote) will split this new pane in half horizontally. By default, new
panes split the existing pane in half evenly.

To cycle through the panes, press pwrix (0. You can also use 'pwerix, followed by the (ue, (pown, [Leer,

or riwewr keys to move around the panes.

With just a couple keystrokes, we’ve divided one window into a workspace with three panes.
Let’s look at how we can rearrange these panes with layouts.

Pane Layouts

We can resize a pane, either using incremental resizing or by using templates. Resizing panes
incrementally using the default keybindings is quite awkward. In Chapter 2, Configuring tmux,
we’ll define some shortcuts to make resizing panes easier. For now, we’ll use one of tmux’s
several default pane layouts:

® even-horizontal Stacks all panes horizontally, left to right.
e even-vertical stacks all panes vertically, top to bottom.
® main-horizontal Creates one larger pane on the top and smaller panes underneath.

® main-vertical Creates one large pane on the left side of the screen, and stacks the rest of the
panes vertically on the right.

e iled arranges all panes evenly on the screen.

You can cycle through these layouts by pressing (prerox | Seacesss .

Closing Panes

You close a pane the same way you exit a terminal session or a tmux window: you simply type
“exit” in the pane. You can also kill a pane with 'peerix| [x, which also closes the window if there’s

only one pane in that window.

You’ll be asked to confirm if you want to kill the specified pane. Killing a pane like this is great
for situations where the pane has gotten stuck, or you can’t interact with it anymore.

So far, we’ve been able to create new sessions, create windows and panes, and move around a
bit. Before we move on to more advanced topics, let’s explore some additional tmux commands.

Working with Command Mode

So far, we’ve used key combinations to create windows and panes, but those keybindings are
actually just shortcuts for tmux commands with some preset options. We can execute tmux
commands two ways: from the terminal itself or from the command area in the tmux status line.
You’ll learn about using tmux commands from the terminal in Chapter 3, Scripting Customized
tmux Environments, but for now, let’s explore tmux’s Command mode by using it to create some
new windows and panes in our workspace.

To enter Command mode, press pwrix | :| (the colon) from within a running tmux session. The

status line changes color and we get a prompt that indicates that we can type our command. Create
a new window by using the new-window command, like this:

new-window -n console

By using a command rather than the shortcut, you can create a new window and give it a name at
the same time by using the -n flag. Let’s take this a step further and launch a new window that

starts the top program. To do that, we enter Command mode and type this command:

new-window -n processes "top"

When you press [ev:, a new window appears and the top application runs, showing your running

processes.

Specifying an initial command for a window is extremely handy for short-term tasks, but there’s a
slight wrinkle; if you exit the top app by pressing (¢, the tmux window you created will also close.
You can use configuration settings to get around this, but if you want the window to persist,
simply create it without specifying an initial command, and then execute your own command in
the new window.

You can use Command mode to create new windows, new panes, or new sessions, or even set
other environmental options. In Chapter 2, Configuring tmux, we’ll create a few custom
keybindings to make some of these commands easier to use.

What’s Next?

In this chapter, you explored the very basic usage of tmux sessions, panes, windows, and
commands, but there’s a lot more you can try.

By pressing ewrix (2, you can get a list of all predefined tmux keybindings and the associated

commands these trigger.

As you work with tmux, think about how you can create different environments for your work. If
you’re monitoring servers, you could use tmux panes to create a dashboard that shows your
various monitoring scripts and log files.

With the basics under our belt, let’s put together a custom configuration we can use for the rest of
our work.

For Future Reference

Creating Sessions

Command Description

tmux new-session Creates a new session without a name. Can be shortened to
tmux new OI simply tmux.

tmux new -s development Creates a new session called “development.”

tmux new -s development -n editor Creates a session named “development” and names the
first window “editor.”

tmux attach -t development Attaches to a session named “development.”

Default Commands for Sessions, Windows, and Panes

Command Description

Prer1x | | d Detaches from the session, leaving the session running in the background.

Prer1x | | : Enters Command mode.

Prer1x | [C Creates a new window from within an existing tmux session. Shortcut for new-
window.

Prer1x | |1 Moves to the next window.

Prer1x | | p Moves to the previous window.

PreF1x Selects windows by number.

Ql...19

Prerix| [w Displays a selectable list of windows in the current session.

Prer1x | | Searches for a window that contains the text you specify. Displays a selectable
list of windows containing that text in the current session.

PreFx | |, Displays a prompt to rename a window.

Prer1x | (& Closes the current window after prompting for confirmation.

Prer1x | | % Divides the current window in half vertically.

Prer1x | | " Divides the current window in half horizontally.

Prer1x | |0 Cycles through open panes.
Prer1x | g Momentarily displays pane numbers in each pane.
Prer1x | | X Closes the current pane after prompting for confirmation.

prerx | Smce. Cycles through the various pane layouts.

Footnotes
[2] http//brew.sh
[31 https/tmux. github.io/

http://brew.sh
https://tmux.github.io/

Chapter 2

Configuring tmux

tmux, by default, doesn’t have the most friendly commands. Many of the most important and useful
features are assigned to hard-to-reach keystrokes or consist of long, verbose command strings.
And tmux’s default color scheme isn’t very easy on the eyes. In this chapter, you’ll build a basic
configuration file for your environment that you’ll then use for the rest of this book. You’ll start
out by customizing how you navigate around the screen and how you create and resize panes, and
then you’ll explore some more advanced settings. You’ll also learn how to make sure your
terminal is properly configured so that some of the settings you’ll make to tmux’s appearance look
good on your screen. When you’re done, you’ll have a better understanding of how flexible tmux
is, and you can start making it your own. Let’s start by talking about how to configure tmux in the
first place.

Introducing the .tmux.conf File

By default, tmux looks for configuration settings in two places. It first 1ooks in /etc/tmux.conf for a
system-wide configuration. It then looks for a file called .tmux.conf in the current user’s home

directory. If these files don’t exist, tmux simply uses its default settings. We don’t need to create a
system-wide configuration, so let’s create a brand-new configuration file in our home directory.
Execute the following command in your shell:

$ touch ~/.tmux.conf

In this file we can do everything from defining new key shortcuts to setting up a default
environment with multiple windows, panes, and running programs. Let’s start by setting a couple
basic options that will make working with tmux much easier.

The .tmux.conf file is a hidden file and doesn’t show up in file explorers or directory

listings by default. The labels above the code listings in this book reference the file
as tmux.conf, without the leading period, so it corresponds with the file in the book’s

source code download.

Defining an Easier Prefix

As you saw earlier, tmux uses ‘¢ /b as its command prefix. Many tmux users started out using
GNU-Screen, which uses (¢ -'a for its command prefix. ¢ - a is an excellent choice for a
prefix because it’s easier to trigger, especially if you remap your computer’s [css Locx| key to e

as explained in the sidebar that follows. This keeps your hands on the home row of your
keyboard.

Remapping the Caps Lock Key
On many keyboards, the Cars Lock key sits right next to the |a| key on the home row of the keyboard. By remapping this key

to Crre , you can make triggering commands more comfortable.

On your Mac, you can remap the |Cars Lock key under the Keyboard preference pane, under System Preferences. Just press
the Modifier Keys button and change the action for | Caps Lock | to “Control.”

Under Linux, the process can be a little more tricky depending on your distribution or window manager, but you can find

several methods described on the Emacs wiki.[4!

This small change to your configuration can save you a surprising amount of time over the course of a day.

To set options in the .tmux.conf file, use the set-option command, which you can shorten to set. You
define the tmux prefix by adding this to the .tmux.conf file:

config/tmux.conf

Setting the prefix from C-b to C-a
set -g prefix C-a

In this example, we’re using the -g switch, for “global,” which sets the option for all tmux

sessions we create.

The line starting with # is a comment. It’s a good idea to put comments in your configuration files;
they’ll jog your memory later on when you go back and look at your configuration a few months
from now. Comments in a tmux configuration file work just like comments in source code.

While not necessary, we can use the unbind-key, or unbind command, to remove a keybinding that’s
been defined, so we can assign a different command to this key later. Let’s free up cw -/b like

this:
config/tmux.conf

Free the original Ctrl-b prefix keybinding
unbind C-b

Changes to the file aren’t read by tmux automatically. So if you’re editing your .tmux.conf file while

tmux is running, you’ll either need to completely close all tmux sessions, or enter tmux’s
Command mode with /e« [and type this whenever you make a change:

source-file ~/.tmux.conf

You can now use [cr - a for your prefix. The rest of the examples in this book will continue to

refer to it as [prerux s thOUgh.

Changing the Default Delay

tmux adds a very small delay when sending commands, and this delay can interfere with other
programs such as the Vim text editor. We can set this delay so it’s much more responsive. Add this
line to your configuration file:

#setting the delay between prefix and command
set -s escape-time 1

Once you reload the configuration file, you’ll be able to issue keystrokes without delay.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Setting the Window and Panes Index

In Chapter 1, Learning the Basics, you learned about windows and how when you create more
than one window in a session, you have to reference windows by their index. This index starts at
zero, which can be a little awkward, since you’d have to use [prerix [0 to access the first window.

By adding this line to your configuration file

Set the base index for windows to 1 instead of 0
set -g base-index 1
the window index will start at 1, so you can use |pwerix (1| to jump to the first window. That’s a lot

easier since the keys on the keyboard now directly correspond with the windows listed in the
status line.

You can also set the starting index for panes using the pane-base-index option. Add this line to your
configuration so you have some consistency between pane and window numbering.

config/tmux.conf

Set the base index for panes to 1 instead of 0
setw -g pane-base-index 1

Up until now, we’ve used the set command, which sets options for the tmux session. In order to

configure options that affect how we interact with windows, we have to use another command,
called set-window-option, which we can shorten to setw. In this book, I’ve used the shortened versions

of commands to make the configuration examples fit on one line.

Now let’s build some useful shortcuts that will increase your productivity.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Customizing Keys, Commands, and User Input

Many of the default keyboard shortcuts in tmux are a bit of a stretch, both physically and mentally.
Not only is (peerix| ‘% hard to press, as it involves holding three keys, but without looking at the

command reference, there’s no easy way to remember what it does.

In this section, we’ll define, or redefine, some of the most-used tmux commands. Let’s start by
creating a custom keybinding to reload the tmux configuration.
Creating a Shortcut to Reload the Configuration

Every time you make a change to your configuration file, you either have to shut down all sessions
and then restart tmux, or issue the source command to reload your configuration from within the
running instances. Let’s create a custom keybinding to reload the configuration file.

The bind command defines a new keybinding. You specify the key you want to use, followed by the
command you want to perform.

Let’s define 'pwerix (1| SO it reloads the .tmux.conf file in the current session. Add this line to your

configuration file:
bind r source-file ~/.tmux.conf

When you define keybindings using bind, you still have to push the [p::x key before you can press

the newly defined key. And while you just defined a new command to make reloading the tmux
configuration easier, you can’t use it until you reload the configuration file. So be sure to enter
Command mode with pwerix ;| and type

source-file ~/.tmux.conf

one more time.

When you reload the file, you might not always be able to tell that anything changed, but you can
use the display command to put a message in the status line. Modify your reload command to display
the text “Reloaded!” when the configuration file loads:

config/tmux.conf

Reload the file with Prefix r
bind r source-file ~/.tmux.conf \; display "Reloaded!"

As you can see, you can bind a key to a series of commands by separating the commands with the

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

\; character combination.

Defining Keybindings That Don't Require a Prefix
Using the bind command with the -n prefix tells tmux that the keybinding doesn’t require pressing the prefix. For example,

bind-key -n C-r source-file ~/.tmux.conf

would make Crre - r reload the configuration file. Unfortunately, this would completely disable that key combination in any
application that’s running in a tmux session, so you’ll want to use this with care.

With this keybinding in place, you can make additional changes to the configuration file and then
immediately activate them by pressing 'peerrx v .

Sending the Prefix to Other Applications

We’ve remapped (¢ - a as the Prefix, but programs such as Vim, Emacs, and even the regular

Bash shell also use that combination. You’ll probably want to configure tmux to send that
command through when you need it. You can do that by binding the send-prefix command to a

keystroke, like this:

Ensure that we can send Ctrl-A to other apps
bind C-a send-prefix
After reloading the configuration file, you can send ¢ -/a to an application running within tmux

simply by pressing (cw -/a twice.

Splitting Panes
The default keys for splitting panes can be difficult to remember, so let’s set our own keys that we
won’t be able to forget. We’ll set the horizontal split to [prerix || and the vertical split to [prerix

To do that, add these lines to your configuration:

config/tmux.conf

splitting panes with | and -
bind | split-window -h
bind - split-window -v

At first glance, this may look backwards. The -v and -h flags on split-window stand for “vertical” and
“horizontal” splits, but to tmux, a vertical split means creating a new pane below the existing

pane so the panes are stacked vertically on top of each other. A horizontal split means creating a
new pane next to the existing one so the panes are stacked horizontally across the screen. So, in

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

order to divide the window vertically, we use a “horizontal” split, and to divide it horizontally,
we use a “vertical” split.

These new shortcuts give us a nice visual association. If we want our windows split, we simply
press the key that looks like the split we want to create.

Remapping Movement Keys

Moving from pane to pane with [perix| [0 is cumbersome, and using the arrow keys means you have

to take your fingers off the home row. If you use the Vim text editor, you’re probably familiar with
its use of (n, (i, 'k, and '1 for movement keys. You can remap the movement keys in tmux to these
same keys.

moving between panes with Prefix h,j,k,l

bind h sele ct-pane -L

bind j sele ct-pane -D

bind k select-pane -U

bind 1 select-pane -R

In addition, you can use peerix [cre-'h and peerix (e - 1) to cycle through the windows by binding

those keystrokes to the respective commands:

Quick window selection
bind -r C-h sele ct-window -t :-
bind -r C-l select-window -t :+
Provided you’ve mapped your cws Lok key to the ‘¢ key, you can now move between panes

without moving your hands off the home row.

Resizing Panes

To resize a pane, you can enter Command mode and type resize-pane -D to resize a pane downward

one row at a time. You can increase the resizing increment by passing a number after the
direction, such as resize-pane -D 5. The command itself is pretty verbose, but you can make some

keybindings to make resizing panes easier.

Let’s use a variation of the Vim movement keys to resize windows. We’ll use prerix| (1, [Prerix| (3],

prerx| K, and prerrx| (L) to change the size of the panes. Add these lines to your configuration file:

bind H resize-pane -L 5
bind J resize-pane -D 5
bind K resize-pane -U 5
bind L resize-pane -R 5

Notice that we’re using uppercase letters in the configuration file. tmux allows both lowercase
and uppercase letters for keystrokes. You’ll need to use the 'sur key to trigger the uppercase

keystroke.

Using these movement keys will help us keep track of which way we want the window size to
change. For example, if we have a window divided into two panes stacked vertically, like this

and we want to increase the size of Pane 1, then we’d place our cursor inside Pane 1 and then
press [peerix |3, which moves the horizontal divider downward. If we pressed [prerix 'k, we would

move the horizontal divider up.

With the configuration we just used, you have to use the pw+:x| each time you want to resize the

pane. But if you use the -r flag with the bind command, you can specify that you want the key to be

repeatable, meaning you can press the prefix key only once and then continuously press the
defined key within a given window of time, called the repeat limit.

Redefine the window resizing commands by adding the -r option:

Pane resizing panes with Prefix H,J,K,L
bind -r H resize-pane -L 5

bind -r J resize-pane -D 5

bind -r K resize-pane -U 5

bind -r L resize-pane -R 5

Now you can resize the panes by pressing pw:x (3 once, and then press (s until the window is the

size you want. The default repeat limit is 500 milliseconds, and can be changed by setting the
repeat-time Option to a higher value.

Now let’s turn our attention to how tmux can work with the mouse.

Handling the Mouse

While tmux is meant to be completely keyboard-driven, there are times when you may find it
easier to use the mouse. If your terminal is set up to forward mouse clicks and movement through

to programs in the terminal, then you can tell tmux how to handle certain mouse events.

Sometimes it’s nice to be able to scroll up through the terminal buffer with the mouse wheel, or to
select windows and panes, especially when you’re just getting started with tmux. To configure
tmux so we can use the mouse, we need to enable mouse mode.

set -g mouse on

This setting configures tmux so it will let us use the mouse to select a pane or resize a pane, let us
click the window list to select a window, or even let us use the mouse to scroll backwards
through the buffer if your terminal supports it.

This can be a handy addition to your configuration, but remember that using the mouse with tmux
will slow you down. Even though being able to scroll and click might seem like a neat idea, you
should learn the keyboard equivalents for switching panes and moving forward and backward
through the buffers. So, for our configuration file, we’re going to disable the mouse.

config/tmux.conf

mouse support - set to on if you want to use the mouse
set -g mouse off

Setting this option prevents us from accidentally doing things when we select the terminal
window with our mouse, and it forces us to get more comfortable with the keyboard.

The flexible configuration system tmux provides lets you customize the way you interact with the
interface, but you can also configure its appearance to make its interface easier to see, and in
some cases, more informative.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Visual Styling

tmux provides quite a few ways to customize your environment’s appearance. In this section,
we’ll walk through configuring some of these options, as we customize the status line and other
components. We’ll start by configuring the colors for various elements, then we’ll turn our bland
status line into something that will provide us with some vital information about our environment.

Configuring Colors

To get the best visual experience out of tmux, make sure that both your terminal and tmux are
configured for 256 colors.

Using the tput command, you can quickly determine the number of colors supported by your
terminal session. Enter the command

$ tput colors
256

into your terminal. If you don’t see 256 as the result, you’ll need to do a little configuration.

You may need to configure your terminal to use xterm’s 256 mode. On the Mac, you can configure
this in the Terminal app by editing the profile as shown in the following figure:

~General Colors Text Window _Sessiof Keys Advanced
Scrollback Buffer

Scrollback Lines: 1,000 Unlimited scrollback

Save lines to scrollback when an app status bar is present
Save lines to scrollback in alternate screen mode

Terminal Emulation

Character Encoding: Unicode (UTF-8)
Report Terminal Type: xterm-256color
ENQ Answer Back:

If you’re using iTerm2,"! you can find this by editing the default profile and changing the terminal
mode to xterm-256color, as shown in the following figure:

General Colors Text Window BREEUGEIN Session Keys Advanced
Scrollback Buffer
Scrollback Lines: 1,000 Unlimited scrollback

Save lines to scrollback when an app status bar is present
Save lines to scrollback in alternate screen mode

Terminal Emulation
Character Encoding: Unicode (UTF-8)
Report Terminal Type: xterm-256color
ENQ Answer Back:

QO

If you’re using Linux, you might need to add
[-z "$TMUX"] && export TERM=xterm-256color

to your .bashre file to enable a 256-color terminal. This conditional statement ensures that the TERM
variable is only set outside of tmux, since tmux sets its own terminal.

Also, ensure that your terminal emulator supports displaying UTF-8 characters so that visual
elements such as the pane dividers appear as dashed lines.

To make tmux display things in 256 colors, add this line to our .tmux.conf file:

config/tmux.conf

Set the default terminal mode to 256color mode
set -g default-terminal "screen-256color"

Once the right color mode is set, you’ll find it much easier to use programs such as Vim, Emacs,
and other full-color programs from within tmux, especially when you are using more complex
color schemes for syntax highlighting. Just take a look at this figure to see the difference.

Z require 't

_hello{nome) |

name

HelloTest <« Test::Unit::Testlase
test_hello_uses_nome
ossert_equal "He Ted", hellol"Ted")

Now let’s configure the appearance of tmux’s components, starting with colors.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Changing Colors

You can change the colors of several parts of the tmux interface, including the status line, window
list, message area, and even the pane borders.

tmux provides variables you can use to specify colors, including black, red, green, yellow, blue, magenta,
cyan, OT white. YOU can also use colour0 to colour255 to reference more specific colors on the 256 color
palette.

To find the numbers for those colors, you can run this simple shell script to get the color variable
you’d like to use:®

foriin {0..255} ; do
printf "\x1b[38;5;${i}m${i} "
done

When you execute this command, you’ll see the following output in your terminal, displaying the
colors:

154 155 156 157 158 159

{ 187 183
190 191 192 193 194 195

2 253 254 255 ~ $ []

tmux has specific configuration options to change foreground and background colors for each of
its components. Let’s start exploring these by customizing the colors of the status line.

Changing the Status Line Colors

The default status line has black text on a bright green background. It’s pretty bland, and

depending on your terminal configuration, it can be hard to read. Let’s make it have white text on
a black background by default, so it looks like this:

[0] 1:bash* "puzzles" 03:57 31-Oct-16

The status-style option sets the foreground and background colors of the status line, as well as the
style. Add the following line to your configuration to set the status line colors:

config/tmux.conf

set the status line's colors
set -g status-style fg=white,bg=black

You can set the foreground color and the background color, and you can control the appearance of
the text, depending on whether or not your terminal supports it. As you can probably guess, the fg

option sets the foreground color, and the bg option sets the background color.

This command supports the options dim, bright (Or bold), reverse, and blink in addition to colors. For
example, to make the status line’s text white and bold, you’d use the following configuration:

set -g status-style fg=white,bold,bg=black

You can also customize the colors of the items within the status line. Let’s start by customizing the
window list.

Changing the Window List Colors

tmux displays a list of windows in the status line. Let’s make it more apparent which window is
active by styling the active window red and the inactive windows cyan. The option window-status-
style controls how regular windows look, and the window-status-current-style option controls how the
active window looks. To configure the colors, you use the same syntax you used for the status-style
option.

Let’s make the names of the windows cyan, like this:

"puzzles"” 04:02 31-0Oct-16

Add this to your configuration file:

config/tmux.conf

set the color of the window list
setw -g window-status-style fg=cyan,bg=black

You can use default for a value so it inherits from the color of the status line.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

To style the active window with a red background and bold white text, add this to your
configuration:

set colors for the active window
setw -g window-status-current-style fg=white bold,bg=red

Now inactive windows are cyan, and the active window is easily identifiable:

This takes care of the window list. Let’s look at how we can customize how panes within a
window appear.

Changing the Appearance of Panes

We have a few options to control how panes look. We can control the color of the pane dividers,
we can define colors to make the active pane more apparent, and we can even “dim out” the
inactive panes.

Panes have both foreground and background colors. The foreground color of a pane is the actual
dashed line that makes up the border. The background color, by default, is black, but if we color it
when the pane is active, we can make the active pane extremely noticeable, as shown in the
following figure:

index.html[1][unix] [html][4%] [0001,0801][1]

Add this to your configuration file to add this effect to your environment:

config/tmux.conf

colors for pane borders

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

setw -g pane-border-style fg=green,bg=black
setw -g pane-active-border-style fg=white,bg=yellow

Finally, you may want to be able to more easily determine what the active pane is by changing the
color of the foreground or background of the current pane. Or, you might want to fade out panes
that are not in use. The set-window-style and set-window-active-style options let you control the foreground
and background colors, although you have to specify both the foreground and background colors
as part of the value you set for the option.

Let’s dim out any pane that’s not active. We’ll achieve this by actually dimming all of the panes,
and then making the active pane look normal. Add these lines to your configuration:

active pane normal, other shaded out
setw -g window-style fg=colour240,bg=colour235
setw -g window-active-style fg=white bg=black

To create the dimming effect, we set the foreground text color to a lighter grey, and then use a
darker grey for the background color. Then for the active window, we use black and white.

With this change and the active pane borders, it should be pretty clear which pane is active. Now
let’s touch up the area of tmux where we issue commands.

Customizing the tmux Command Line

We can also customize the command line, where we enter tmux commands and see alert messages.
The approach is almost identical to the way we styled the status line itself. Let’s change the
background color to black and the text color to white. We’ll use a bright white so the message
stands out in more detail. Add this to your configuration:

config/tmux.conf

Command / message line
set -g message-style fg=white bold,bg=black

That was easy. Now let’s change the areas of the status line on both sides of the window list.

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

Customizing the Status Line’s Content

The tmux status line can display nearly any information we want. We can use some predefined
components or create our own by executing shell commands.

The status line consists of three components: a left panel, the window list, and a right panel. By
default, it looks like this:

[development] O:bash* "example.local" 13:37 31-Oct-16

On the left side, we have the name of the tmux session followed by the list of windows. The list
of windows shows the numerical index of the current window and its name. On the right side, we
have the hostname of our server followed by the date and time. Let’s customize the content of our
status line.

Configuring Status Line Items

You can change the content in the left or right panels of the status bar using a combination of text
and variables. The following table shows the possible variables we can use in our status line.

Table 1. Status Line Variables

Variable Description

#H Hostname of local host

#h Hostname of local host without the domain
name

#F Current window flag

#1 Current window index

#P Current pane index

#S Current session name

#T Current window title

#W Current window name

#it A literal #

#(shell-command) First line of the shell command’s output

#[attributes] Color or attribute change

For example, if you wanted to show just the name of the current tmux session on the left, you’d
use the set-option -g status-left OptiOD with the #s value, like this:

set -g status-left "#S"

But you can also make it stand out more by using an attribute to set the foreground color, like this:

set -g status-left "#[fg=green]#S"

You can add as many attributes and items to the status line as you want. To demonstrate, let’s alter
the left side of the status line so it shows the session name in green, the current window number in
yellow, and the current pane in cyan. Add this line to your configuration file:

set -g status-left "#[fg=green]#S #[fg=yellow]#I #[fg=cyan]#P"

You can add any arbitrary text into the status line, too. Let’s add text to make the session, window,
and pane more noticeable, like this:

config/tmux.conf
Status line left side to show Session:window:pane
set -g status-left-length 40

set -g status-left "#[fg=green]Session: #S #[fg=yellow]#I #[fg=cyan]#P"

We set the status-left-length option because the output we’ve specified is too long for the default
length, so we have to make that region wider.

You can configure the right side of the status line too. Add the current date and time, like this:

config/tmux.conf

Status line right side - 31-Oct 13:37
set -g status-right "#[fg=cyan]%d %b %R"

This formats the date as “31-Oct 13:37,” but you can format it however you’d like, using the
standard strftime time formatting mechanism used in many programming languages..Z Your status
line should now look like this:

You can take things a step further by incorporating shell commands into the mix by using the #(shell-
command) variable to return the result of any external command-line program into the status line.
We’ll go into this in detail in Adding Battery Life to the Status Line.

Keeping Status Line Info Up to Date

We’ve added the current time and some other dynamic information to our status line, but we need
to tell tmux how often to refresh that information periodically. By default, tmux refreshes the
status line every 15 seconds. We can specify exactly how quickly tmux refreshes its status line

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

with set-option -g status-interval followed by the refresh interval in seconds, like this:

Update the status line every sixty seconds
set -g status-interval 60

This would refresh the status line every 60 seconds. Keep in mind that if you’re firing off shell
commands, those will be executed once per interval, so be careful not to load too many resource-
intensive scripts.

Centering the Window List

We can also control the placement of the window list. By default, the window list is left-aligned,
but we can center the window list in between the left and right status areas with a single
configuration change:

config/tmux.conf

Center the window list in the status line
set -g status-justify centre

With this in place, the window list appears centered:

As you create new windows, the window list will shift accordingly, staying in the center of the
status line.

Identifying Activity in Other Windows

When you’re working with more than one window, you’ll want to be notified when something
happens in one of the other windows in your session so you can react to it. You can do that by
adding a visual notification, like this:

config/tmux.conf

enable activity alerts

setw -g monitor-activity on

set -g visual-activity on
The monitor-activity on command highlights the window name in the status line when there’s activity in
that window. The visual-activity on line tells tmux to show a message in the status line as well.

Now when one of the other windows has some activity, it’ll stand out with a cyan background,
like the “top” window shown here:

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

2:bash*
Once you switch to that window, the colors will revert back to normal. If you want to configure
different colors, you can do so with setw -g window-status-activity-style and the colors of your choice.

What’s Next?

We’ve built up a pretty solid configuration file throughout this chapter. Look at Appendix 1, Our
Configuration to see the whole .tmux.conf file.

You can define additional options in your .tmux.conf file. For example, in Chapter 3, Scripting
Customized tmux Environments, you’ll set up a custom default work environment using project-
specific configuration files.

In addition, you can configure a default configuration for your system in /etc/tmux.conf. This is great

for situations where you’ve set up a shared server so members of your team can collaborate, or if
you just want to ensure that every user on the system has some sensible defaults.

Now that you have a configuration defined, let’s look at creating your own custom development
environments with scripts so you can take advantage of tmux’s panes and windows without having
to set them up every day.

For Future Reference

Keybindings defined in this chapter

Command

CTrRL -/ @

PRreEFIX

PRreFIX

PRreFIX

PRreFIX

PRreFIX

PRreFIX

PRreFIX

PRreFIX

PRreFIX

h, |PreFzx | |j |, |PreFIx| |k, and

1

H|, |PreFix | |J |, |PreFix| K|, and

L

CtrL = h ElIl(i Prer1x | | CtrRL = 1

Description
The NeW | Prerix .

Sends ¢ -a to the program running in a tmux window or

pane.
Reloads the tmux configuration file.

Splits the window horizontally.
Splits the window vertically.

Moves between panes.

Resizes the current pane.

Moves forward and backward through windows.

Commands to control tmux’s behavior

Command
set -g prefix C-a

set -sg escape-time n

set -g base-index 1

setw -g pane-base-index 1

source-file [file]

bind C-a send-prefix

bind-key [key] [command]

bind-key -r [key] [command]

Description
Sets the key combination for the Prefix key.

Sets the amount of time (in milliseconds) tmux waits for a
keystroke after pressing prerrx .

Sets the base index for windows to 1 instead of 0.

Sets the base index for panes to 1 instead of O.

Loads a configuration file. Use this to reload the existing
configuration or bring in additional configuration options
later.

Configures tmux to send the prefix when pressing the 'prerix
combination twice consecutively.

Creates a keybinding that executes the specified command.
Can be shortened to bind.

Creates a keybinding that is repeatable, meaning you only
need to press the pwerix| key once, and you can press the

unbind-key [key]

display-message OI display

set-option [flags] [option] [value]

set-window-option [option] [value]

set -a

set -g mouse off

set -g default-terminal "screen-256color"

assigned key repeatedly afterwards. This is useful for
commands where you want to cycle through elements or
resize panes. Can be shortened to bind.

Removes a defined keybinding so it can be bound to a
different command. Can be shortened to unbind.

Displays the given text in the status message.

Sets options for sessions. Using the -g flag sets the option
for all sessions.

Sets options for windows, such as activity notifications,
cursor movement, or other elements related to windows and
panes.

Appends values onto existing options rather than replacing
the option’s value.

Disables mouse support in tmux. Set to on if you wish to use
the mouse.

Defines the terminal type for windows. Sets the value of
TERM, which other programs will use. screen-256color ensures
the widest compatibility with programs originally written
for the screen program.

Commands to control tmux’s appearance

Command

set -g status-style

setw -g window-status-style

setw -g window-status-current-style

setw -g window-status-activity-style

setw -g pane-border-style

Description

Sets the foreground and background color for the status line.
Supports the options dim, bright (Or bold), reverse, and blink in
addition to colors.

EX&II]plEZ set -g status-style fg=white bold,bg=black
Sets the foreground and background color of the window
list in the status line. Uses the same options as status-style.

Sets the foreground and background color of the active
window in the window list in the status line. Uses the same
OptiOIlS as status-style.

Sets the foreground and background color of any window
with background activity. Uses the same options as status-

style.

Sets the foreground and background color of the pane

setw -g pane-active-border-style

setw -g window-style

setw -g window-active-style

setw -g message-style

set -g status-length-left and set -g status-

length-right

set -g status-left and set -g status-right

set -g status-interval n

set -g status-justify centre

setw -g monitor-activity on

set -g visual-activity on

Footnotes

borders. Uses the same options as status-style.
Sets the foreground and background color of the active
pane’s border. Uses the same options as status-style.

Sets the foreground and background color of the window.
Uses the same options as status-style.

Sets the foreground and background color of the active
window. Uses the same options as status-style.

Sets the foreground and background color of the message
area and tmux command line. Uses the same options as status-
style.

Controls the number of visible characters in the left and
right sides of the status line.

Configures the items that appear in the left and right sides of
the status line.

Defines the refresh interval for the status line, where n is
the number of seconds between refreshes.

Centers the window list in the status line.

Looks for activity in other windows and highlights the name
of the window with background activity.

Displays a message in the message area when there is
activity in another window.

[4] http//www.emacswiki.org/emacs/MovingTheCtrlKey

[5]1 httpy//www.iterm?.com

[6] httpy//superuser.com/questions/285381/how-does-the-tmux-color-palette-work

[71 See http//www.foragoodstrftime.com/ for a handy tool to help you find the perfect time format.

Copyright © 2016, The Pragmatic Bookshelf.

http://www.emacswiki.org/emacs/MovingTheCtrlKey
http://www.iterm2.com
http://superuser.com/questions/285381/how-does-the-tmux-color-palette-work
http://www.foragoodstrftime.com/

Chapter 3

Scripting Customized tmux Environments

You probably run a wide collection of tools and programs as you work on your projects. If you're
working on a web application, you most likely need to have a command shell, a text editor, a
database console, and another window dedicated to running your automated test suite for your
application. That’s a lot of windows to manage, and a lot of commands to type to get it all fired

up.

Imagine being able to come to your workstation, ready to tackle that new feature, and being able
to bring every one of those programs up, each in its own pane or window in a single tmux session,
using a single command. We can use tmux’s client-server model to create custom scripts that build
up our development environments, splitting windows and launching programs for us
automatically. We’ll explore how to do this manually first, and then we’ll look at more advanced
automatic tools.

Creating a Custom Setup with tmux Commands

We’ve already explored how we use the tmux command to create new tmux sessions, but the tmux

command takes many other options. We can take an existing session and split its windows into
panes, change layouts, or even start up applications within the session.

The key to this is the -t switch, or the “target.” When you have a named tmux session, you can
attach to it like this:

$ tmux attach -t [session_name]

You can use this target switch to direct a tmux command to the appropriate tmux session. Create a
new tmux session called “development,” like this:

$ tmux new-session -s development

Then detach from the session with perix [d. Even though you’re no longer connected, you can split

the window in the tmux session horizontally by issuing this command:
$ tmux split-window -h -t development

When you attach to the session again, the window will split into two panes. Attach to your session
again to see for yourself.

$ tmux attach -t development

In fact, you don’t even have to detach from a tmux session to send commands. You can open
another terminal and split the window again, but this time with a vertical split. Try it out. Open a
second terminal window or tab, and enter this command:

$ tmux split-window -v -t development

Using this approach, you can customize your environment easily. Let’s explore this concept by
creating our own development environment.

Scripting a Project Configuration

In Chapter 1, Learning the Basics, we discussed tmux commands such as new-session and new-

window. Let’s write a simple script using these and similar commands that creates a new tmux

session and creates a window with a couple panes and two additional windows with one pane
each. To top it off, we’ll launch applications in each of the panes.

Let’s start by creating a new script called development in our home directory. We’ll make this script

executable too, so we can run it like any other executable program from our shell. Execute these
commands in your terminal:

$ touch ~/development
$ chmod +x ~/development

When we start up our session, we want to change to the directory for our project. We’ll call that
directory devproject. And before we can change to that directory, we’d better create it first.

$ mkdir ~/devproject

Now, open the ~/development script in your text editor and add this line to create a new tmux session
called “development™:

scripting/development
tmux new-session -s development -n editor -d

We’re passing a couple additional parameters when we create this new session. First, we’re
creating this session and naming it with the -s flag like we’ve done before. Then we give the
initial window a name of “editor,” and then immediately detach from this new session with the -d
flag.

Next, add a line to our configuration that uses tmux’s send-keys command to change the current
directory to the one we’re using for our project:

tmux send-keys -t development 'cd ~/devproject’ C-m

We place c-m at the end of the line to send the Carriage Return sequence, represented by Ctrl-M.L&
This is how we tell tmux to press the [eve: key.

We’ll use the same approach to open the Vim text editor in that window. Add this line to your
script:
tmux send-keys -t development 'vim' C-m

With these three commands, we’ve created a new session, changed to a directory, and opened a
text editor, but our environment isn’t yet complete. Let’s split the main editor window so we have
a small terminal window on the bottom. We do this with the split-window command. Add this line to

your script:
tmux split-window -v -t development

This splits the main window in half horizontally. You could have specified a percentage using

http://media.pragprog.com/titles/bhtmux2/code/scripting/development

something like
tmux split-window -v -p 10 -t development

but for now, just leave the split-window command as is and then select one of the default tmux layouts
—the main-horizontal one—Dby adding this to your script:

tmux select-layout -t development main-horizontal

We’ve created our first window and split it into two panes, but the bottom pane needs to open in
the project folder. We already know how we send commands to tmux instances, but now we have
to target those commands at specific panes and windows.

Targeting Specific Panes and Windows

With commands such as send-keys, you can specify not only the target session, but also the target

window and pane. In the configuration file you created back in Chapter 2, Configuring tmux, you
specified a base-index of 1, meaning that your window numbering starts at 1. This base index doesn’t

affect the panes, though, which is why you also set the pane-base-index to 1. In our case, we have two
panes in our current setup, like the following example:

| Pane 1 |

| Pane 2 |

We have the Vim text editor open in Pane 1, and we want to send a command to Pane 2 that
changes to our project directory. We target a pane using the format [session]:{window].[pane], SO tO
target Pane 2, we’d use development:1.2. So, add this line to your script, and you’ll get exactly what
you want:

tmux send-keys -t development:1.2 'cd ~/devproject’ C-m

We’re almost there. Let’s finish up this configuration by adding a couple more windows to the
session.

Creating and Selecting Windows

We want a second window in our session that will be a full-screen console. We can create that
new window using the new-window command. Add these lines to your script:

tmux new-window -n console -t development
tmux send-keys -t development:2 'cd ~/devproject’ C-m

After we create the window, we use send-keys to once again change into our project directory. We

only have one pane in our new window, so we only have to specify the window number in the
target.

When we start up our session, we want our first window to be displayed, and we do that with the
select-window command:

tmux select-window -t development:1
tmux attach -t development

We could continue to add to this script, creating additional windows and panes, starting up remote
connections to our servers, tailing log files, connecting to database consoles, or even running
commands that pull down the latest version of our code when we start working. But we’ll stop
here, and simply end our script by finally attaching to the session so it shows up on the screen,
ready for us to begin working. Our entire script looks like this:

tmux new-session -s development -n editor -d

tmux send-keys -t development 'cd ~/devproject’ C-m
tmux send-keys -t development 'vim' C-m

tmux split-window -v -t development

tmux select-layout -t development main-horizontal

tmux send-keys -t development:1.2 'cd ~/devproject’ C-m
tmux new-window -n console -t development

tmux send-keys -t development:2 'cd ~/devproject’ C-m
tmux select-window -t development:1

tmux attach -t development

When you run it with
$ ~/development

your environment will look like this:

[No Name][@] [unix][100%] (0082, 0001][1]

1 1:editor* ct |
One drawback to this approach is that this script creates a brand-new session. It won’t work

properly if you run it a second time while the development session is currently running. You could
modify the script to check if a session with that name already exists by using the tmux has-session
command and only create the session if it’s not there, like this:

scripting/reattach/development

tmux has-session -t development

if[$?1=0]

then
tmux new-session -s development -n editor -d
tmux send-keys -t development 'cd ~/devproject’ C-m
tmux send-keys -t development 'vim' C-m
tmux split-window -v -t development
tmux select-layout -t development main-horizontal
tmux send-keys -t development:1.2 'cd ~/devproject’ C-m
tmux new-window -n console -t development
tmux send-keys -t development:2 'cd ~/devproject’ C-m
tmux select-window -t development:1

fi

tmux attach -t development

This approach works well for a single project setup. You could modify this further by using a
variable for the project name to make the script more generic, but let’s look at a couple other
ways we can configure things to manage multiple projects.

http://media.pragprog.com/titles/bhtmux2/code/scripting/reattach/development

Using tmux Configuration for Setup

The .tmux.conf file itself can include commands that set up a default environment. If you wanted

every tmux session to start in the same default folder, or automatically open a split window, you
could bake that right in to your default configuration, simply by using the appropriate commands.

But you can also specify a configuration file when you start up an instance of tmux, by using the -f
flag. This way you don’t have to change your original default configuration file, and you can
check your configuration file in with your project’s source code. You can also set up your own
per-project configuration options, such as new keyboard shortcuts to run commands or start your
test suite.

Let’s try this out. Create a new file called app.conf.

$ touch app.conf

Inside this file, you can use the same commands you just learned about in the previous section, but
since you’re inside the configuration file rather than a shell script, you don’t have to explicitly
prefix each command with tmux. Add this code to your app.conf file:

scripting/app.conf

source-file ~/.tmux.conf

new-session -s development -n editor -d

send-keys -t development ‘cd ~/devproject’' C-m
send-keys -t development 'vim' C-m

split-window -v -t development

select-layout -t development main-horizontal
send-keys -t development:1.2 ‘cd ~/devproject’' C-m
new-window -n console -t development

send-keys -t development:2 'cd ~/devproject’ C-m
select-window -t development:1

This code first loads your existing .tmux.conf file. This way you’ll have all your environment
settings you previously defined, including your keybindings and status bar settings. This isn’t
mandatory, but if you left this off, you’d have to use all the default keybindings and options, or
you’d have to define your own options in this file.

To use this configuration file, pass the -f flag followed by the path to the config file. You also have
to start tmux with the attach command, like this:

$ tmux -f app.conf attach

http://media.pragprog.com/titles/bhtmux2/code/scripting/app.conf

This is because, by default, tmux always calls the new-session command when it starts. This file
creates a new session already, so you’d have two tmux sessions running if you left off attach.

This approach gives you a lot of flexibility, but you can gain even more by using a command-line
tool called tmuxinator.

Managing Configuration with tmuxinator

tmuxinator is a simple tool you can use to define and manage different tmux configurations. You
define window layouts and commands in a simple YAML format, and then launch them with the
tmuxinator command. Unlike the other approaches, tmuxinator offers a central location for your

configurations and a much easier dialect for creating complex layouts. It also lets you specify
commands that should always run before each window gets created.

tmuxinator requires the Ruby interpreter, so you’ll need to have that on your system. Mac OS X
users already have Ruby installed, and Linux users can usually install Ruby through a package
manager. However, if you plan to use Ruby for anything beyond tmuxinator, I strongly encourage
you to install Ruby through RVM by following along with the instructions on the RVM website.2!

Install tmuxinator by using Rubygems, which is the package management system for Ruby.
$ gem install tmuxinator

If you are not using RVM, you will need to run this as root or with the sudo command.

tmuxinator needs the $EDITOR shell environment to be defined, so if you haven’t set yours yet,
you’ll want to do that in your .bashrc file on Linux, or .bash_profie on OS X. For example, to define
Vim as the default editor, you’d add this line to your Bash configuration:

export EDITOR=vim

Now we can create a new tmuxinator project. Let’s call it “development.” Execute this command:

$ tmuxinator open development

This pops open the editor you assigned to the $EDITOR environment variable and displays the
default project configuration, which looks like this:

scripting/default.yaml
~/.tmuxinator/development.yml

name: development
root: ~/

a bunch of comments....
windows:

- editor:
layout: main-vertical

http://media.pragprog.com/titles/bhtmux2/code/scripting/default.yaml

panes:
- vim
- guard
- server: bundle exec rails s
- logs: tail -f log/development.log

This is an environment that a Ruby on Rails developer who works with Git might really
appreciate. This creates a tmux session with three windows. The first window is divided into two
panes, using the main-vertical layout scheme. The left pane opens Vim, and the right pane opens
Guard, a Ruby program that watches files for changes and executes tasks, like test runners. The
second window launches Rails’ built-in web server, and the third window uses the til command
to follow the application’s development log file.

As you can see, tmuxinator makes it trivial to define not only the windows and panes, but also
what commands we want to execute in each one. Let’s use Tmuxinator to construct our
development environment, with Vim in the top pane and a terminal on the bottom, starting in the
~/devproject folder. Remove the contents of this file and replace it with the following code:

scripting/development.yaml

name: development
root: ~/devproject
windows:
- editor:
layout: main-horizontal
panes:
- vim
- #empty, will just run plain bash
- console: # empty

The yml file format uses two spaces for indenting, so it’s really important to ensure you format the
file correctly and that you don’t accidentally use tabs when you write the file.

To fire up the new environment, save the config file and then execute the following command:
$ tmuxinator development

tmuxinator automatically loads up your original .tmux.conf file, applies the settings, and then

arranges the windows and panes for you, just like you specified. If you want to make more
changes to your environment, just use

$ tmuxinator open development

again and edit the configuration.

By default, the configuration files for tmuxinator are located in ~/.tmuxinator/, S0 you can find those

http://media.pragprog.com/titles/bhtmux2/code/scripting/development.yaml

and back them up, or share them with others.

Under the hood, tmuxinator is just constructing a script that executes the individual tmux
commands just like we did when we wrote our own script. However, it’s a nicer syntax that’s
pretty easy to follow. It does require a Ruby interpreter on your machine, though, so it may not be
something you’ll set up on every environment where you’d like to use tmux. However, you can
use Tmuxinator to generate a configuration you can use anywhere. The tmuxinator debug command can

display the script that Tmuxinator will use:
$ tmuxinator debug development
Here’s what the output looks like:
#l/bin/bash
Clear rbenv variables before starting tmux
unset RBENV_VERSION
unset RBENV_DIR
tmux start-server;
cd /home/brianhogan/devproject
Run pre command.
Create the session and the first window. Manually switch to root
directory if required to support tmux < 1.9
TMUX= tmux new-session -d -s development -n editor

tmux send-keys -t development:1 cd\ /home/brianhogan/devproject C-m

Create other windows.
tmux new-window -t development:2 -n console

Window "editor"
tmux send-keys -t development:1.1 vim C-m

tmux splitw -c /home/brianhogan/devproject -t development:1
tmux select-layout -t development:1 tiled

tmux select-layout -t development:1 tiled

tmux select-layout -t development:1 main-horizontal
tmux select-pane -t development:1.1

Window "console"

tmux sele ct-window -t 1

if [-z "$TMUX"]; then
tmux -u attach-session -t development
else

tmux -u switch-client -t development
fi

You could save the output of tmuxinator debug t0 a script you can run on any machine. You can also

use this option to troubleshoot any issues you might be having as you develop your configuration
file.

What’s Next?

You can use every tmux command through the shell, which means you can write scripts to
automate nearly every aspect of tmux, including running sessions. For example, you could create a
keyboard binding that sources a shell script that divides the current window into two panes and
logs you into your production web and database servers.

We’ve covered a lot so far. You know how to set up projects, move around panes and windows,
and launch your consoles. You’ve tinkered around with your configuration enough to understand
how to customize things to your liking. And you’ve experimented with three separate ways to
script out your tmux environment. But as you start to integrate tmux into your workflow, you’ll
start to notice some new issues crop up. For example, the results of tests or application logs start
to scroll off the screen, and you’ll want to be able to scroll up to read things. And you’ll probably
want to copy and paste text between panes, windows, or other applications. So let’s learn how to
work with tmux’s output buffers next.

For Future Reference

Scriptable tmux commands

Command
tmux new-session -s
development -n
editor

tmux attach -t
development
tmux send-keys -t
development
"[keys]’ C-m
tmux send-keys -t
development:1.1

"[keys]’ C-m

tmux select-window
-t development:1
tmux split-window -
v-p 10 -t
development

tmux select-layout -t
development main-
horizontal

tmux source-file
[file]

tmux -f app.conf

attach

Description
Creates a session named “development” and names the first window
“editor.”

Attaches to a session named “development.”

Sends the keystrokes to the “development” session’s active window or pane.
C-m is equivalent to pressing the v key.

Sends the keystrokes to the “development” session’s first window and first

pane, provided the window and pane indexes are set to 1. C-m is equivalent to
pressing the (ewer key.

Selects the first window of “development,” making it the active window.

Splits the current window in the “development” session vertically, dividing it
in half horizontally, and sets its height to 10% of the total window size.

Sets the layout for the “development” session to main-horizontal.

Loads the specified tmux configuration file.

Loads the app.conf configuration file and attaches to a session created within
the app.conf file.

tmuxinator commands

Command
tmuxinator open
[name]
tmuxinator

[name]

Description
Opens the configuration file for the project name in the default text editor. Creates
the configuration if it doesn’t exist.

Loads the tmux session for the given project. Creates the session from the
contents of the project’s configuration file if no session currently exists, or

tmuxinator list
tmuxinator copy
[source]
[destination]
tmuxinator
delete [name]
tmuxinator
implode
tmuxinator
doctor
tmuxinator

debug

Footnotes

attaches to the session.

Lists all current projects.
Copies a project configuration.
Deletes the specified project.
Deletes all current projects.

Looks for problems with the tmuxinator and system configuration.

Shows the script that tmuxinator will run, helping you figure out what’s going
wrong.

[8] httpy//en.wikipedia.org/wiki/Carriage return

[91 httpsy/rvm.io/

Copyright © 2016, The Pragmatic Bookshelf.

http://en.wikipedia.org/wiki/Carriage_return
https://rvm.io/

Chapter 4

Working With Text and Buffers

Throughout the course of your average day, you’ll copy and paste text more times than you can
keep track of. When you’re working with tmux, you will eventually come to the point where you
need to scroll backwards through the terminal’s output buffer to see something that scrolled off the
screen. You might also need to copy some text and paste it into a file or into another program.
This chapter is all about how to manage the text inside your sessions. You’ll see how to use the
keyboard to scroll through tmux’s output buffer, how to work with multiple paste buffers, and how
to work with the system clipboard.

Scrolling Through Output with Copy Mode

When you work with programs in the terminal, it’s common that the output from these programs
scrolls off the screen. But when you use tmux, you can use the keyboard to move backwards
through the output buffer so you can see what you missed. This is especially useful for those times
when you’re running tests or watching log files and you can’t just rely on the less command or your
text editor.

Pressing ewix ([places you in Copy mode. You can then use your movement keys to move the

cursor around the screen. By default, the arrow keys work. But in Chapter 2, Configuring tmux,
you configured tmux to use Vim keys for moving between windows and resizing panes so you
wouldn’t have to take your hands off the home row. tmux has a vi mode for working with the buffer
as well. To enable it, add this line to .tmux.conf:

config/tmux.conf

enable vi keys.
setw -g mode-keys vi

With this option set, you can use n, i, k, and [1 to move around your buffer.

To get out of Copy mode, press the [ewe: key. Moving around one character at a time isn’t very

efficient. Since you enabled vi mode, you can also use some other visible shortcuts to move
around the buffer.

For example, you can use w to jump to the next word and (b to jump back one word. And you can
use 7, followed by any character, to jump to that character on the same line, and (¢ to jump
backwards on the line.

Moving Quickly Through the Buffer

When you have several pages of buffered output, moving the cursor around to scroll isn’t going to
be that useful. Instead of moving word by word or character by character, you can scroll through
the buffer page by page, or jump to the beginning or end of the buffer.

You can move up one page with ¢ -'b and down one page with ¢ - . You can jump all the

way to the top of the buffer’s history with ‘g, and then jump all the way to the bottom with .

Searching Through the Buffer

You don’t have to browse through the hundreds of lines of content page by page if you know what

http://media.pragprog.com/titles/bhtmux2/code/config/tmux.conf

you’re looking for. By pressing » in Copy mode, you can search upwards for phrases or
keywords. Simply press (2, type in the search phrase, and press (e to jump to the first
occurrence of the phrase. Then press n| to jump to the next occurrence, or v to move to the

previous.

To search downward, press [/ instead of 2. Pressing (n then jumps to the next occurrence, and v

jumps to the previous occurrence.

Learning to move around the buffer this way will dramatically speed you up. It’s faster to type the
word you want to move to instead of using the arrows to move around, especially if you’re
looking through the output of log files.

Now let’s explore how to copy text from one pane and paste it to another. This is Copy mode,
after all.

Copying and Pasting Text

Moving around and looking for things in the output buffer is usually only half the equation. We
often need to copy some text so we can do something useful with it. tmux’s Copy mode gives us
the opportunity to select and copy text to a paste buffer so we can dump that text elsewhere.

To copy text, enter Copy mode and move the cursor to where you want to start selecting text. Then
press 'saace and move the cursor to the end of the text. When you press (e, the selected text gets

copied into a paste buffer.

To paste the contents you just captured, press [prerr (7.
Let’s look at a few ways to copy and paste text from our main output buffer.

Capturing a Pane

tmux has a handy shortcut that copies the entire visible contents of a pane to a paste buffer. Enter
tmux’s Command mode with (prerrx : and type

capture-pane

The contents of the pane will be in a paste buffer. You can then paste that content into another
pane or window by pressing [peerrx (1.

Showing and Saving the Buffer

You can display the contents of your paste buffer by using the show-buffer command in Command
mode, or from a terminal session with

$ tmux show-buffer

However, by using the save-buffer command, you can save the buffer to a file, which can often be a
real time saver. In fact, you can capture the contents of the current pane to a text file.

In Command mode, execute the command capture-pane; save-buffer buffer.txt. You could easily map that
command to a keystroke if you wanted.

Using Multiple Paste Buffers

tmux maintains a stack of paste buffers, which means you can copy text without replacing the
buffer’s existing content. This is much more flexible than the traditional clipboard offered by the

operating system.

Every time you copy some new text, tmux creates a new paste buffer, putting the new buffer at the
top of the stack. To demonstrate, fire up a new tmux session and load up a text editor such as Vim
or Nano. In the editor, type the following sentences, one per line:

First sentence is first.

Next sentence is next.

Last sentence is last.
Now copy some text to the paste buffer using tmux. Enter Copy mode with (prerix ([. Move to the
start of the first sentence, press |sece| to start selecting text, move to the end of the first sentence,

and press [eve: to copy the selection. Repeat this with the second and third sentences.

Each time you copied text, tmux created a new buffer. You can see these buffers with the list-buffers
command.

0: 22 bytes: "Last sentence is last.”

1: 22 bytes: "Next sentence is next."

2: 24 bytes: "First sentence is first."

Pressing (prerix |1 always pastes buffer 0, but you can issue the command choose-buffer to select a

buffer and paste the contents into the focused pane.

Split the current window in half and launch Nano in the second pane, then enter Command mode
and type this:

choose-buffer

You’ll be presented with a list that 1ooks like this:

GNU nano 2.0.6 New Buffer Modified

You can select any entry in the list, press e, and the text will be inserted into the selected pane.

This is an excellent way to manage multiple bits of text, especially in text-based environments
where you don’t have access to an OS-level clipboard.

These buffers are shared across all running tmux sessions, too, so you can take content from one
session and paste it into another.

Remapping Copy and Paste Keys

If you use Vim and you’d like to make the copy and paste command keys a little more familiar,
you can remap the keys in your configuration. For example, you can use prerix [Escee| to enter Copy

mode, then use v to start Visual mode to select your text, use 'y to “yank” text into the buffer, and

use [p to paste the text:

bind Escape copy-mode

bind -t vi-copy 'v' begin-selection
bind -t vi-copy 'y’ copy-selection
unbind p

bind p paste-buffer

This can be a real productivity boost if you happen to do a lot of copying and pasting between
windows and panes and are already comfortable with the keys that Vim uses.

Working with the Clipboard on Linux

Using the xclip utility,™¥ you can integrate your buffers with the Linux system clipboard so you can
more easily copy and paste between programs.

First, you have to install xclip. On Ubuntu, use this command:

$ sudo apt-get install xclip

Then we use tmux’s save-buffer and set-buffer commands with xclip.

To copy the current buffer to the system clipboard, we add this command to our .tmux.conf file:

bind C-c run "tmux save-buffer - | xclip -i -sel clipboard"
This configures (prerix| ‘¢ -/c| SO it pipes the current buffer to xclip.
So, you enter Copy mode, select your text, press |y, and then press pwrix [cre - c| tO get your text

on the clipboard. You can speed up the process by binding the 'y key to send the output to xclip
directly:

bind -t vi-copy y copy-pipe "xclip -sel clip -i"

Now text you select and copy in Copy mode will be on your system clipboard.

To paste text from the system clipboard into a tmux session, add this line to your configuration:
bind C-v run "tmux set-buffer \"$(xclip -o -sel clipboard)\"; tmux paste-buffer"

This configures tmux to pull the content from xclip into a new tmux buffer and then pastes it into the
selected tmux window or pane when you press [peerix| | cree = v .

Using OS X Clipboard Commands

If you’re a Mac user, you may be familiar with OS X’s command-line clipboard utilities pbcopy
and pbpaste. These simple utilities make it a snap to work with the clipboard. The phcopy command
captures text to the system clipboard, and the pbpaste command pastes content out. For example,
you can use pbeopy and cat together to easily put the contents of your .tmux.conf file into the clipboard
SO you can paste it in an email or on the web, like this:

$ cat ~/.tmux.conf | pbcopy

This is a pretty handy way to work with text, but tmux doesn’t have access to these utilities, so we
can’t use them while running inside a tmux session. We can use a wrapper program written by
Chris Johnsen to get around this limitation,1!

To use this wrapper script, we first install the script with Homebrew. While you could install this
from source, using Homebrew simplifies the process:

$ brew install reattach-to-user-namespace

Then configure tmux to use the wrapper by adding this line to your .tmux.conf:

set -g default-command "reattach-to-user-namespace -1 /bin/bash"

This configures the default command that tmux uses for new windows, so it loads the Bash shell
through the wrapper script. If you use a shell other than Bash, like Fish or zsh, you’d specify its
path or command instead.

Once you reload the configuration file, you’ll be able to use the pbcopy command again. And as an
added bonus, you can send the contents of the current tmux buffer to the system clipboard:

$ tmux show-buffer | pbcopy
Or you can paste the clipboard contents with this:
$ tmux set-buffer $(pbpaste); tmux paste-buffer

This means that you can also create keyboard shortcuts to do this, just like you did in Working
with the Clipboard on Linux. Unfortunately, the wrapper program we’re using doesn’t work with
tmux’s run command. The workaround is to explicitly prefix pbpaste and pbcopy with the wrapper

script. So, to support copying the buffer to the system clipboard, add this line to your .tmux.conf
file:

bind C-c run "tmux save-buffer - | reattach-to-user-namespace pbcopy"

Just like with Linux, you can also configure tmux’s Copy mode to send the text you copy directly
to the system clipboard by adding this keybinding to your configuration:

bind -t vi-copy y copy-pipe "reattach-to-user-namespace pbcopy"

Now when you select text in Copy mode and press |y, the text will be sent to pbcopy and will be on

your system clipboard, ready for use in other programs.

To support pasting from the system clipboard, we’d add this longer command, which must be all
on one line.

bind C-v run |
"tmux set-buffer \"$(reattach-to-user-namespace pbpaste)\"; tmux paste-buffer"

This provides a simple solution to an otherwise fairly complex problem.

What’s Next?

By using tmux paste buffers to move text around, you gain the ability to have a clipboard in
situations where you might not have one, such as when you’re logged into the console of a server
or without a graphical terminal. Being able to scroll back through the history of a long console
output can be a huge help. It’s worth installing tmux directly on your servers for that reason alone.

Now that you have a good understanding of how to find, copy, and paste text, you can start
working tmux into your daily routine. For many developers, pair programming is often part of that
routine. Let’s take a look at how to use tmux to work with another developer.

For Future Reference

Shortcut keys

Shortcut Description

Prerrx | | [Enters Copy mode.
Prerx | |] Pastes current buffer contents.
peerrx = Lists all paste buffers and pastes selected buffer contents.

Copy mode movement keys (vi mode)

Command

h, 5, k,and 1

b

 followed by any character
r followed by any character
CTrL |~/ b

Crre |=| T

g
G

?

/

Commands

Command

show-buffer
capture-pane
list-buffers
choose-buffer

save-buffer [filename]

Footnotes

Description
Moves the cursor left, down, up, and right, respectively.

Moves the cursor forward one word at a time.
Moves the cursor backward one word at a time.
Moves to the next occurrence of the specified character.

Moves to the previous occurrence of the specified character.
Scrolls up one page.
Scrolls down one page.

Jumps to the top of the buffer.

Jumps to the bottom of the buffer.

Starts a search backward through the buffer.
Starts a search forward through the buffer.

Description

Displays current buffer contents.

Captures the selected pane’s visible contents to a new buffer.
Lists all paste buffers.

Shows paste buffers and pastes the contents of the one you select.
Saves the buffer’s contents to the specified file.

[101 http/sourceforge.net/projects/xclip/
[11] https:/github.com/ChrisJohnsen/tmux-MacOSX-pasteboard

http://sourceforge.net/projects/xclip/
https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard

Chapter 5

Pair Programming with tmux

Up until now, you’ve been making configuration changes and learning how to work within tmux on
your own machine. But one of the most popular uses of tmux by developers is pair programming.
It was actually my first introduction to tmux, and I immediately saw the potential as my friend
walked me through using its various features.

Pair programming has a lot of great benefits. Working with another developer can help you see
things you might not have seen on your own, but unless you’re physically in the same location,
pair programming can be somewhat difficult. Screen-sharing through iChat, Skype, or even
GoToMeeting takes up a lot of bandwidth and can be dodgy when you’re not using the best
network connection. In this chapter, we’ll explore using tmux for pair programming, so you can
work remotely with another developer on even the slowest hotel Wi-Fi connection.

There are two ways to work with remote users. The first method involves creating a new user
account that you and others share. You set up tmux and your development environment under that
account and use it as a shared workspace. The second approach uses tmux’s sockets so you can
have a second user connect to your tmux session without having to share your user account.

Both of these methods have an inherent security flaw: they let someone else see things on your
screen and in your account. You’re inviting someone in to potentially look at your files. To get
around this, it’s wise to use an intermediate server for pairing. Using a low-cost VPS or a virtual
machine with VirtualBox12 and Vagrant!d, you can quickly create a development environment for
pairing. In this chapter, we’ll be working with a remote server as we explore both of these
approaches.

Pairing with a Shared Account

Using a shared account is the simplest way to work with another user. In a nutshell, you enable
SSH access on the machine that will act as the host, install and configure tmux on that machine,
and then create a tmux session there. The second user logs into that machine with the same user
account and attaches to the session. By using SSH public keys, you can make the login process
somewhat transparent. Let’s walk through the setup. For this example, we’ll use a server called
puzzles running Ubuntu that has the SSH daemon installed.

First, create a “tmux” user on the server. This is the user everyone will use to connect to the
pairing session. On the remote server, execute this command:

tmux@puzzles$ adduser tmux

We want to configure the account so we can take SSH keys from other developers and use them to
log into this account. We do this by creating the file ~/.ssh/authorized_keys under the tmux account. So,

use the su command to switch to the user:

tmux@puzzles$ su tmux

Then create the .ssh folder and the .ssh/authorized keys file, setting the appropriate permissions. Only
the tmux user should be allowed to read, write, or execute the folder and file.

tmux@puzzles$ mkdir ~/.ssh

tmux@puzzles$ touch ~/.ssh/authorized_keys
tmux@puzzles$ chmod 700 ~/.ssh

tmux@puzzles$ chmod 600 ~/.ssh/authorized_keys

Each user you’d like to connect needs a public key, which they would generate on their local
machine. To generate a key, use the command

$ ssh-keygen

and follow the prompts on the screen.

Then each user would transfer their public key over to the server and add it to the authorized_keys
file. There are a number of ways to do this, but the most universal approach would be to use cat
and ssh to transfer the key and append it to authorized keys at the same time, like this:

$ cat ~/.ssh/id_rsa.pub | ssh tmux@your_server ‘cat >> .ssh/authorized_keys'

You’ll be prompted for the tmux user’s password before you can connect.

The command ssh-copy-id makes this process slightly easier. If you install this command using your
package manager on your client, then you can transfer the key like this:

$ ssh-copy-id tmux@your_server

This copies the .id_rsa.pub file automatically.

You would repeat this process for any other users you wanted to share this account with.

Then on the remote server, you’d set up tmux, text editors, compilers, programming languages,
and version control systems just like you would on any other development environment. Then you
create a new tmux session on the server:

tmux@puzzles$ tmux new-session -s Pairing
Another member of your team can log in to the same machine and attach to the session with this:
tmux@puzzles$ tmux attach -t Pairing

You can then work collaboratively on the project. What’s more, you can detach from the session
and reattach to it later, which means you can leave your environment running for days or even
weeks at a time. You’d have a persistent development environment you can log into from
anywhere that has a terminal with SSH support.

Using a Shared Account and Grouped Sessions

When two people are attached to the same tmux session, they usually both see the same thing and
interact with the same windows. But there are times when it’s helpful if one person can work in a
different window without completely taking over control.

Using “grouped sessions,” you can do just that. Let’s demonstrate by creating a new session on
our remote server called groupedsession.

tmux@puzzles$ tmux new-session -s groupedsession

Then, instead of attaching to the session, another user can join that session by creating a new
session by specifying the target of the original session groupedsession and then specifying their own
session name, like this:

tmux@puzzles$ tmux new-session -t groupedsession -s mysession

When the second session launches, both users can interact with the session at the same time, just
as if the second user had attached to the session. However, the users can create windows
independent of each other. So, if our new user creates a window, you’ll both see the new window
show up in the status line, but you’ll stay on the window you’re currently working in! This is great
for those “Hey, let me just try something” moments, or when one person wants to use Emacs and
the other person prefers Vim:

file Edit Options Buffers Tools Help

*lcome to GMU Emacs, one component of the GNU/Linux opeb,

Linux-gnu, GTK+ Version 3.18%

odified
are Four

U Emocs comes with ABSOLUTELY NO WARRANTY; type C-h C-%

[No Mame] [@] [unix] [100%] (62600, 0001][1] ' F

L 115

The second user can kill off their session with kill-session, and the original will still exist. However,
both sessions will be killed if all windows are closed, so be careful!

That’s a lot of work to go through if you just want someone to jump in and help you out with some
code. So let’s look at a simple alternative that takes almost no time to set up.

Quickly Pairing with tmate

tmate® is a fork of tmux designed to make pair programming painless. Using tmate, you can
quickly invite another developer to collaborate. When you launch tmate, it generates an address
that your pair can use to make the connection. You don’t have to set up any keys or use any
intermediate services. Instead, tmate’s servers handle tunneling the connection for you.

The catch is that you have to install tmate and use it instead of tmux. But don’t worryj; it
completely supports the configuration you’ve already built. Let’s look at how to get it installed.

On Ubunty, you can install it by adding the tmate PPA to your package manager:
$ sudo apt-get install software-properties-common
$ sudo add-apt-repository ppa:tmate.io/archive
$ sudo apt-get update & & sudo apt-get install tmate
On the Mac, you can install it with Homebrew:
$ brew install tmate
Once tmate is installed, fire it up with

$ tmate

and tmate will launch, displaying the connection address in the bottom of the window where your
status line would be.

[tmate] ssh session: ssh 4PYwF3x1eHEG76EB4EWEyiE2i@ny2.tmate.1i0
Copy that address and send it to your pair, and they’ll be able to join you instantly. If the address
disappears before you can copy it, or you’d like to see it again, execute the command

$ tmate show-messages

to view the address again, along with some other interesting details, including a read-only
address you can send to someone if you just want to demonstrate something and don’t want them
to have any control:

Sun Sep 25 17:46:13 2016 [tmate] Connecting to ssh.tmate.io...

Sun Sep 25 17:46:13 2016 [tmate] Note: clear your terminal before sharing readonly
access

Sun Sep 25 17:46:13 2016 [tmate] web session read only: https://...

Sun Sep 25 17:46:13 2016 [tmate] ssh session read only: ssh ...

Sun Sep 25 17:46:13 2016 [tmate] web session: https/...

Sun Sep 25 17:46:13 2016 [tmate] ssh session: ssh ...

tmate supports the same commands that tmux supports, so you can create named sessions and even
script up your configurations. You can even use it with Tmuxinator by adding the following to
your Tmuxinator YAML file:

tmux_options: -S /tmp/your_project_name_tmate_socket
tmux_command: tmate

Since tmate creates a randomly named socket file, we just tell it not to do that by passing the -s
switch. Then we tell Tmuxinator that it should use tmate instead of tmux.

Using tmate with Your Own Servers
If you feel uncomfortable going through http://ssh.tmate.io to connect to other sessions, you can find instructions for setting up

your own server at the tmate website.[13) Tt provides you with the server, which you compile and install on your own Linux
server. Then you run the server and configure client machines to use that server instead of the default service. This may add
more security, but you’ll want to think about redundancy and availability. For example, the tmate.io address resolves to
multiple backend servers, ensuring high availability. If you want to ensure continuity, you’ll want to configure your
environment in a similar way.

Using shared accounts or tmate is easy, but it’s not always desirable to share user accounts with
team members or let someone remotely access your development machine. Let’s look at an
alternative approach.

http://ssh.tmate.io

Pairing with Separate Accounts and Sockets

Using tmux’s support for sockets, you can create sessions that multiple users can connect to with
ease.

To test this out, create two new user accounts for the session: one called “ted” and another named
“barney.”

tmux@puzzles$ sudo adduser ted

tmux@puzzles$ sudo adduser barney

Next, create the “tmux” group and the /var/mux folder that will hold the shared sessions.
tmux@puzzles$ sudo addgroup tmux
tmux@puzzles$ sudo mkdir /var/tmux

Next, change the group ownership of the /var/tmux folder so that the tmux group has access:

tmux@puzzles$ sudo chgrp tmux /var/tmux

Then alter the permissions on the folder so that new files will be accessible for all members of
the tmux group:

tmux@puzzles$ sudo chmod g+ws /var/tmux
Finally, add ted and barney to the tmux group.

tmux@puzzles$ sudo usermod -aG tmux ted

tmux@puzzles$ sudo usermod -aG tmux barney

Now let’s look at how these users can work together on a project.

Creating and Sharing Sessions

So far, you’ve used the new-session command to create these sessions, but that uses the default

socket location, which won’t be reachable by every user. Instead of creating named sessions, we
create our sessions using the -s switch.

Log in to your server as ted and create a new tmux session using a socket file in the var/tmux/ folder:

ted@puzzles$ tmux -S /var/tmux/pairing

In another terminal window, log in as barney and then attach to the session. But instead of
specifying the target with the -t switch, specify the location of the socket file, like this:

barney@puzzles$ tmux -S /var/tmux/pairing attach

The barney user now attaches to the tmux session and sees everything that the ted user sees.

It’s important to note that when using this approach, the .tmux.conf file used is the one that started up
the session. Having two separate accounts doesn’t mean that each account gets to use its own
configuration files within the tmux session, but it does mean they can customize their accounts for
other purposes, and can each initiate their own tmux session as needed. More importantly, it
keeps barney out of ted’s home directory.

What’s Next?

Now that you know how to use tmux to share your screen with others, you can use it for remote
training, impromptu collaboration on open source projects, or even presentations.

In addition, you could use this technique to fire up a tmux session on one of your production
servers, load up monitoring tools or consoles, and then detach from it, leaving those tools running
in the background. Then you simply connect to your machine, reattach to the session, and
everything is back where you left it. I do something similar with my development environment. I
set up tmux on a VPS, which lets me use nothing more than an iPad, an SSH client, and a
Bluetooth keyboard to hack on code when I’'m away from home. It even works brilliantly over the
3G network.

Pair programming and working remotely are just two examples of how incorporating tmux into
your workflow can make you more productive. In the next chapter, we’ll look at other
enhancements we can make to our environment as we explore advanced ways to work with
windows, panes, and our system in general.

For Future Reference

Command
tmux new-session -t [existing session] -s
[new session]

tmux show-me ssages

tmux -S [socket]

tmux -S [socket] attach

Footnotes

[12] https://www.virtualbox.org/

Description
Creates a connection to a grouped session.

Displays a log of messages in the current window, useful
for debugging.
Creates a new session using a socket instead of a name.

Attaches to an existing session using a socket instead of a
name.

[13] https//www.vagrantup.com/docs/getting-started/

[14] httpsy/tmate.io/

[15] httpsy/tmate.io/

Copyright © 2016, The Pragmatic Bookshelf.

https://www.virtualbox.org/
https://www.vagrantup.com/docs/getting-started/
https://tmate.io/
https://tmate.io/

Chapter 6

Workflows

By itself, tmux is just another terminal with a few bells and whistles that let us display...more
terminal sessions. But tmux makes it easier to work with the programs we run in those sessions,
so this chapter will explore some common, and uncommon, configurations and commands that you
may find useful in your day-to-day work. You’ll see some advanced ways to manage your panes
and sessions, how to make tmux work with your shell of choice, how to extend tmux commands
with external scripts, and how to create keybindings that execute several commands. Let’s start
with windows and panes.

Working Effectively with Panes and Windows

Throughout this book, you’ve seen ways to divide up your tmux sessions into panes and windows.
In this section, we’ll look at more advanced ways to work with those panes and windows.
Turning a Pane into a Window

Panes are great for dividing up a workspace, but sometimes you might want to “pop out” a pane
into its own window. tmux has a command to do just that.

Inside any pane, press (prer:x |1 and tmux will create a new window from your pane, removing the

original pane.

Turning a Window into a Pane
Occasionally, it’s nice to consolidate a workspace. You can easily take a window and turn it into

a pane. To do this, issue the join-pane command.

Try it out. Create a new tmux session with two windows.

$ tmux new-session -s panes -n first -d
$ tmux new-window -t panes -n second
$ tmux attach -t panes

Now, to move the first window into a pane in the second window, press ewsix [: to enter
Command mode, and type this:

join-pane -s panes:1

This means “Take window 1 of the panes session and join it to the current window,” since we did

not specify a target. When you “join” a pane, you’re essentially moving a pane from one session
to another. You specify the source window and pane, followed by the target window and pane. If
you leave the target off, the current focused window becomes the target.

You can use this technique to move panes around as well. If your first window had two panes, you
could specify the source pane like this, keeping in mind that you set the window and pane base
indexes to 1 instead of 0 back in Chapter 2, Configuring tmux.

join-pane -s panes:1.1

This command grabs the first pane of the first window and joins it to the current window.

To take it a step further, you can specify a different source session, using the notation [session_name]:
[window].[pane], and you can specify a target window using the -t flag using the same notation. This
lets you pull panes from one session into another.

Maximizing and Restoring Panes

Sometimes you just want a pane to go full-screen for a bit so you can see its contents or work in a
more focused way. You could use the break-pane command. But then you’d have to use join-pane to put

it back where it was. But there’s a better way. The resize-pane command accepts the -z option for
zooming a pane. Best of all, it’s already mapped to (prer1x| 2, and pressing it again restores the

pane to its original size.

Launching Commands in Panes

In Chapter 3, Scripting Customized tmux Environments, we explored how to use shell commands
and send-keys to launch programs in our panes, but we can execute commands automatically when

we launch a window or a pane.

We have two servers, burns and smithers, which run our web server and database server,

respectively. When we start up tmux, we want to connect to these servers using a single window
with two panes.

Let’s create a new script called servers.sh and create one session connecting to two servers:

$ tmux new-session -s servers -d "ssh deploy@burns"
$ tmux split-window -v "ssh dba@smithers"
$ tmux attach -t servers

When we create a new session, we can pass the command we want to execute as the last
argument. In our case, we fire off the new session and connect to burns in the first window, and we

detach the session. Then we divide the window using a vertical split and then connect to smithers.

This configuration has a handy side effect: when we log off of our remote servers, the pane or
window will close.

Opening a Pane in the Current Directory

When you open a new pane, tmux places you in the directory where you originally launched tmux.
Sometimes that’s exactly what you want, but if you navigated into another directory, you might
want to create a new pane that starts in that directory instead.

You can use the pane_current_path variable provided by tmux when creating a new pane. Open

Command mode and execute
split-window -v -c "#{pane_current_path}"

This splits the window horizontally, but opens the new terminal session in the same working
directory as the current pane or window.

You can add this to your configuration file to make this easy. Instead of changing the existing
bindings for splits, add new ones so you can choose the behavior you’d like:

workflows/tmux.conf
split pane and retain the current directory of existing pane
bind _ split-window -v -c "# pane_current_path}"

bind \ split-window -h -c "#{ pane_current_path}"

This configures things so that (peerix| | splits the window horizontally and (peersx| [/ splits the

window vertically.

Issuing Commands in Many Panes Simultaneously

Every once in a while, you might need to execute the same command in multiple panes. You might
need to run the same update script on two servers, for example. You can do this easily with tmux.

Using the command set-window-option synchronize-panes on, anything you type in one pane will be
immediately broadcast to the other panes in the current session. Once you’ve issued the command,
you can turn it off with set-window-option synchronize-panes off.

To make this easier to do, you can map this to [pwerix (e -s |, like this:

workflows/tmux.conf

shortcut for synchronize-panes toggle
bind C-s set-window-option synchronize-panes

By not specifying the off or on option, the synchronize-panes command acts as a toggle. While this isn’t
something you’ll use very often, it’s amazingly handy when you need it.

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

Managing Sessions

As you get more comfortable with tmux, you may find yourself using more than one tmux session
simultaneously. For example, you may fire up unique tmux sessions for each application you’re
working on so you can keep the environments contained. There are some great tmux features to
make managing these sessions painless.

Moving Between Sessions

All tmux sessions on a single machine route through a single server. That means you can move
effortlessly between your sessions from a single client.

Let’s try this out. Start two detached tmux sessions, one named “editor,” which launches Vim, and
the other running the top command, called “processes”:

$ tmux new -s editor -d vim
$ tmux new -s processes -d top

Connect to the “editor” session with
$ tmux attach -t editor

and then press [peerrx| [(| to gO to the previous session and [peerrx| |)| to move to the next session.

You can also use [prerix (s to display a list of sessions, so you can quickly navigate between

sessions:

(@) + editor: 1 windows (attached)
(1) + processes: 1 windows

You can use the [j and 'k keys to move up and down if you’ve configured tmux to use Vim-like

movement, and you can press sec: to expand a session so you can jump to a specific window or

pane.

You can add custom keybindings for this to your .tmux.conf file by binding keys to the switch-client
command. The default configuration looks like this:

bind (switch-client -p
bind) switch-client -n

If you’ve set up multiple workspaces, this is an extremely efficient way to move around your

environments, without detaching and reattaching.

Moving Windows Between Sessions

You can move a window from one session to another. This is handy in case you’ve started up a
process in one environment and want to move it around or want to consolidate your workspaces.

The move-window command is mapped to [prerix . (the period), so you can bring up the window you

want to move, press the key combination, and then type the name of the target session.

To try this out, create two sessions, with the names “editor” and “processes,” running vim and top
respectively:

$ tmux new -s editor -d vim
$ tmux new -s processes -d top

Let’s move the window in the “processes” session into the “editor” session.

First, attach to the “processes” session with this:

$ tmux attach -t processes

Then, press pwrix . and type “editor” in the command line that appears.

This removes the only window in the “processes” session, causing it to close. If you attach to the
“editor” session, you’ll see both windows.

You can use shell commands to do this, too, so you don’t need to consolidate things by opening
sessions. To do that, use move-window, like this:

$ tmux move-window -s processes:1 -t editor

This moves the first window of the “processes” session to the “editor” session.

Creating or Attaching to Existing Sessions

So far, we’ve always taken the approach of creating new tmux sessions whenever we want to
work. However, we can actually detect if a tmux session exists and connect to it if it does.

The has-session command returns a Boolean value that we can use in a shell script. That means we
can do something like this in a Bash script:

if ! tmux has-session -t development; then
exec tmux new-session -s development -d
other setup commands before attaching....

fi
exec tmux attach -t development

If you modify the script to take an argument, you can use this to create a single script that you can
use to connect to or create any tmux session.

tmux and Your Operating System

As tmux becomes part of your workflow, you may want to integrate it more tightly with your
operating system. In this section, you’ll discover ways to make tmux and your system work well
together.

Using a Different Shell

In this book, we’ve used the Bash shell, but if you’re a fan of zsh, you can still get all the tmux
goodness.

Just explicitly set the default shell in .tmux.conf like this:

set -g default-shell /bin/zsh

Since tmux is just a terminal multiplexer and not a shell of its own, you just specify exactly what
to run when it starts.

Launching tmux by Default

You can configure your system to launch tmux automatically when you open a terminal. And using
what you know about session names, you can create a new session if one doesn’t exist, or attach
to one that does.

When tmux is running, it sets the TERM variable to “screen” or the value of the default-terminal setting
in the configuration file. You can use this value in your .bashrc (0r .bash_profile on macOS) file to

determine whether or not you’re currently in a tmux session. You set your tmux terminal to
“screen-256color” back in Chapter 2, Configuring tmux, so you could use that to detect if tmux is
actually running,

For example, you could add these lines to the end of your .bashrc file:

if [["$STERM" != "screen-256color"]]
then

tmux attach-session -t "SUSER" || tmux new-session -s "$USER"
fi

This first checks that you’re not already in a tmux session. If that’s the case, it attempts to attach to
a session with a session name of $USER, which is your username. You can replace this with any
value you want, but using the username helps avoid conflicts.

If the session doesn’t exist, tmux will throw an error that the shell script can interpret as a false

value. It can then run the right side of the expression, which creates a new session with your
username as the session’s name. It then exits out of the script.

When the tmux session starts up, it will run through our .bashrc or .bash_profile file again, but this time

it will see that we’re in a tmux session, skip over this chunk of code, and execute the rest of the
commands in our configuration file, ensuring that all our environment variables are set for us.

Now every time you open a new terminal, you’ll be in a tmux session. Be careful, though, since
each time you open a new terminal session on your machine, it will be attached to the same
session. Exiting tmux in one terminal will exit tmux in all of them.

Keeping Specific Configuration Separate

In Chapter 4, Working With Text and Buffers, you learned how to make tmux work with the OS X
and Linux system clipboards, and this involved adding some specific configuration options to
your .tmux.conf file. But if you wanted your configuration to work on both operating systems, you’d
run into some conflicts.

The solution is to move your OS-specific configuration into a separate file and then tell tmux to
load it up by using tmux’s if-shell command and the source command.

Try it out. Create a new file called .tmux.mac.conf in your home directory:

$ touch ~/.tmux.mac.conf

In that file, put all the code to make the Mac’s clipboard work with tmux:

workflows/tmux.mac.conf

Setting the namespace
set -g default-command "reattach-to-user-namespace -1 /bin/bash"

Prefix C-c copy buffer to system clipboard
bind C-c run "tmux save-buffer - | reattach-to-user-namespace pbcopy"

Prefix C-v paste system clipboard into tmux
bind C-v run \
"tmux set-buffer \"$(reattach-to-user-namespace pbpaste)\"; tmux paste-buffer"

use y in visual mode to copy text to system clipboard
bind -t vi-copy y copy-pipe "reattach-to-user-namespace pbcopy"

Then open .tmux.conf and remove any lines related to OS X if you’ve put them in. Then add this to
the end of the file:

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.mac.conf

workflows/tmux.conf

Load mac-specific settings

"non

if-shell "uname | grep -q Darwin" "source-file ~/.tmux.mac.conf"

The if-shell command runs a shell command, and if it was successful, it executes the step. In this
case, we tell tmux to run the uname command and use grep to see if it contains the word “Darwin.”
If it does, it’s a safe bet we’re on a Mac, so we load the configuration file.

You could use a similar approach to load an additional bit of configuration only if it exists. For
example, you may want to share your main .tmux.conf file with the world on GitHub, but you may

want to keep some of your own secret sauce private. So move all of those tricks into .tmux.private,
and add this to your .tmux.conf file:

workflows/tmux.conf

load private settings if they exist

if-shell "[-f ~/.tmux.private]" "source ~/.tmux.private"

This will only load the file if it exists.

Recording Program Output to a Log

Sometimes it’s useful to be able to capture the output of a terminal session to a log. You already
learned how to use capture-pane and save-buffer to do this, but tmux can actually record the activity in

a pane right to a text file with the pipe-pane command. This is similar to the script command available
in many shells, except that with pipe-pane, you can toggle it on and off at will, and you can start it
after a program is already running.

To activate this, enter Command mode and type pipe-pane -o "cat >> mylog.txt".

You can use the -o flag to toggle the output, which means if you send the exact command again, you

can turn the logging off. To make it easier to execute this command, add this to your configuration
script as a shortcut key.

workflows/tmux.conf

Log output to a text file on demand

bind P pipe-pane -o "cat >>~/#W.log" \; display "Toggled logging to ~/#W.log"
Now you can press pwerix (P to toggle logging. Thanks to the display command (short for display-
message), you’ll see the name of the log file displayed in the status line. The display command has

access to the same variables as the status line, which you learned about in Table 1, Status Line
Variables.

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf
http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

Adding Battery Life to the Status Line

If you use tmux on a laptop, you may want to show the remaining battery life in your status line,
especially if you run your terminal in full-screen mode. It turns out that this is a simple thing to
add thanks to the #(shel-command) variable.

Let’s add the battery status to our configuration file. Grab a shell script that can fetch the
remaining battery charge and display it to the screen. We’ll place this in a file called battery in our

home folder and tell tmux to run it for us.

First, download the file:

$ wget --no-che ck-certificate \
https ://raw.github.com/richo/batte ry/master/bin/battery

You can also find the battery script in the book’s source code downloads.

Now make it executable so tmux can use it:
$ chmod +x ~/battery

Test it out by running
$ ~/battery Discharging

If you’re running this on a laptop without the power cord plugged in, you’ll see the percentage left
on the battery.

We can get tmux to display the output of any command-line program in its status bar by using #
(<command>). S0, to display the battery in front of the clock, change the status-right line in .tmux.conf to
this:

Status line right side - 50% | 31 Oct 13:37
set -g status-right "#(~/battery Discharging) | #[fg=cyan]%d %b %R"

Now, when you reload the .tmux.conf file, the battery status indicator will appear.
To get battery status when it’s charging, you’ll need to execute the command

$ ~/battery Charging
and work that into the status line. I’ll leave that up to you.

You can use this approach to customize your status line further. You’d simply need to write your

own script that returns the value you want to display, and then drop it into the status line.

Integrating Seamlessly with Vim

The Vim text editor works pretty well with tmux, but developer Mislav Marohni¢ developed a
solution that lets you move between tmux panes and Vim splits seamlessly. To make this work,
you’ll need to install Chris Toomey’s vim-tmux-navigator plugin for Vim*® and add some
keybindings to your .tmux.conf file.

This setup will create the following keybindings:

® Ccw - j MOVes up
® ¢ -k moves down
® cr. - h moves left

® cw -1 moves right

If you’re in tmux and you move into Vim, then the Vim plugin will take over. If you’re in Vim and
you move to tmux, then tmux will take over. Instead of having to learn two sets of commands to
navigate, you just have one. To set this up, install the Vim plugin using Vundle by adding this to
your .vimre file:

Plugin 'christoomey/vim-tmux-navigator'
Then save your .vimrc file and run

:Pluginlnstall

in Vim to install the plugin.
Then in .tmux.conf, add these lines:

workflows/tmux.conf

is_vim="ps -o state= -0 comm= -t '#{pane_tty}'\

| grep -igE 'N[ATXZ]+ +(\S+\\)?g?(view|n?vim?x?)(diff)?$'""
bind-key -n C-h if-shell "$is_vim" "send-keys C-h" "select-pane -L"
bind-key -n C-j if-shell "$is_vim" "send-keys C-j" "select-pane -D"
bind-key -n C-k if-shell "$is_vim" "send-keys C-k" "select-pane -U"
bind-key -n C-l if-shell "$is_vim" "send-keys C-1" "select-pane -R"
bind-key -n C-\ if-shell "$is_vim" "send-keys C-\\" "select-pane -1"

bind C-1 send-keys 'C-I'

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

cr -1 is the keybinding used by the readiine library in many shells for clearing the screen. The last

line of this configuration sets up [prerix| cree -1 to issue that command instead.

Extending tmux with Plugins

So far, we’ve made modifications directly to the tmux configuration file. While that works, it can
be a little awkward when doing something more complex. Bruno Sutic developed a solution to
this called TPM, the tmux plugin manager. Since then, more and more people have come together
to build plugins to extend tmux. Let’s use TPM to install the incredibly useful tmux-resurrectZ

plugin, which can restore tmux sessions even after a reboot!

To set it up, first clone the repository into a folder called ~/.tmux/plugins/tpm:

$ git clone https://github.com/tmux-plugins/tpm ~/.tmux/plugins/tpm

Then add these lines to your .tmux.conf file:

workflows/tmux.conf

set -g @plugin 'tmux-plugins/tpm’
set -g @plugin 'tmux-plugins/tmux-resurrect’
run '~/.tmux/plugins/tpm/tpm'’

First we list TPM itself, followed by the tmux-resurrect plugin. Then we load TPM so it can load
other plugins. Save this file and reload your configuration. Then press (pwrix (1| to install the

plugin. You’ll see this output in tmux:
Already installed "tpm"

Installing "tmux-resurrect"
"tmux-resurrect" download success

TMUX environment reloaded.
Done, press ENTER to continue.

Now test out the tmux-resurrect program. Open a couple more panes, and then press 'peerix [cre-[s tO

save the state of the tmux session. Then close all of the panes and exit tmux. Finally, reload tmux
and press (prerix e - r toO restore the session you saved. All of your panes will come back!

Visit the list of tmux plugins!® and find one you’d like to install. You’ll find one for the batter
meter we set up, another for OS-specific clipboards, and even one with sensible configuration
options.

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

What’s Next?

There’s so much more you can do with tmux now that you know the basics and you’ve had some
experience playing around with various configurations. The tmux manual, which you can access
from your terminal with

$ man tmux

has the complete list of configuration options and available commands.

And don’t forget that tmux itself is rapidly evolving. The next version will bring new
configuration options, which will give you even more flexibility.

As you integrate tmux into your workflow, you may discover other techniques you start to rely on.
For example, you can use tmux and a text-based editor on a remote server to create an incredibly
effective development environment that you can use to collaborate with another developer. You
can even use irssi (a terminal-based IRC client) and Alpine (a terminal-based email app) within
your tmux sessions, either alongside of your text editor in a pane, or in background windows.
Then you can detach from the session and come back to it later, with your entire environment
ready to go.

Keep working with tmux and before you know it, it’ll be an indispensable part of your workflow.

For Future Reference

Command

PrerIx | | !

join-pane -s [session]:[window].[pane]
join-pane -s [session]:[window].[pane] -t [other
session]

PrerIx |z

tmux new-session "[command]"

split-pane "[command]"

split-window -c "#{pane_current_path}"

set-window-option synchronize-panes

PreF1x | | (
PReFIx | |)
PRerFIX | S

move-window -s [source session]:{window] -t

[target session]

set -g default-shell [shell]
set -g default-command [command]

if-shell "[condition]" "[command]"

pipe-pane -o "cat >>~/#W.log"

Description

Converts the currently selected pane into a new
window.

Converts the specified session’s window or pane into a
pane in the current window.
Converts the specified session’s window or pane into a
pane in the target session.

Zooms the current pane, making it full screen. Pressing
it again restores the pane to its original size.

Launches tmux and executes a command. When the
command completes, the tmux session closes.

Splits the current window and executes the specified
command in the new pane. When the command
completes, the pane closes.

Splits the pane and sets the working directory of the
new pane to the current working directory of the
focused pane.

Toggles pane synchronization, where keystrokes are
issued to all panes simultaneously instead of only the
current pane.

Moves to the next tmux session.

Moves to the previous tmux session.

Shows the session selection list.

Moves a window from one session to another. Also
available with [perix [, followed by the target session

name.

Sets the default shell that tmux uses when creating new
windows.

Sets the default command that tmux uses when creating
new windows. Blank by default.

Performs a given command if the condition evaluates to

true.

Records the current pane to a text file.

Footnotes

[16]1 https:/github.com/christoomey/vim-tmux-navigator

[17] https/github.com/tmux-plugins/tmux-resurrect

[18] https:/github.com/tmux-plugi

https://github.com/christoomey/vim-tmux-navigator
https://github.com/tmux-plugins/tmux-resurrect
https://github.com/tmux-plugins

Appendix 1

Our Configuration

Throughout the book, we’ve built up a somewhat complex .tmux.conf file. Here’s the entire file for
your reference.

workflows/tmux.conf

Setting the prefix from C-b to C-a

set -g prefix C-a

#

Free the original Ctrl-b prefix keybinding
unbind C-b

#

#setting the delay between prefix and command
set -s escape-time 1

#

Ensure that we can send Ctrl-A to other apps
bind C-a send-prefix

Set the base index for windows to 1 instead of 0
set -g base-index 1

Set the base index for panes to 1 instead of 0
setw -g pane-base-index 1

Reload the file with Prefix r
bind r source-file ~/.tmux.conf \; display "Reloaded!"

splitting panes with | and -
bind | split-window -h
bind - split-window -v

moving between panes with Prefix h,j,k,l
bind h sele ct-pane -L
bind j sele ct-pane -D
bind k select-pane -U
bind 1 select-pane -R

Quick window selection

http://media.pragprog.com/titles/bhtmux2/code/workflows/tmux.conf

bind -r C-h select-window -t :-
bind -r C-1 sele ct-window -t :+

Pane resizing panes with Prefix H,J,K,L
bind -r H resize-pane -L 5

bind -r J resize-pane -D 5

bind -r K resize-pane -U 5

bind -r L resize-pane -R 5

mouse support - set to on if you want to use the mouse
set -g mouse off

Set the default terminal mode to 256color mode
set -g default-terminal "screen-256color"

set the status line's colors
set -g status-style fg=white,bg=black

set the color of the window list
setw -g window-status-style fg=cyan,bg=black

set colors for the active window
setw -g window-status-current-style fg=white bold,bg=red

colors for pane borders
setw -g pane-border-style fg=green,bg=black
setw -g pane-border-active-style fg=white,bg=yellow

active pane normal, other shaded out
setw -g window-style fg=colour240,bg=colour235
setw -g window-active-style fg=white bg=black

Command / message line
setw -g message-style fg=white,bold,bg=black

Status line left side to show Session:window:pane
set -g status-left-length 40
set -g status-left "#[fg=green]Session: #S #[fg=yellow]#I #[fg=cyan]#P"

Status line right side - 50% | 31 Oct 13:37
set -g status-right "#(~/battery Discharging) | #[fg=cyan]%d %b %R"

Update the status line every sixty seconds
set -g status-interval 60

Center the window list in the status line
set -g status-justify centre

enable activity alerts
setw -g monitor-activity on
set -g visual-activity on

enable vi keys.
setw -g mode-keys vi

shortcut for synchronize-panes toggle
bind C-s set-window-option synchronize-panes

split pane and retain the current directory of existing pane
bind _ split-window -v -c "# pane_current_path}"
bind \ split-window -h -c "#{ pane_current_path}"

Log output to a text file on demand

bind P pipe-pane -o "cat >>~/#W.log" \; display "Toggled logging to ~/#W.log"
#

Load mac-specific settings
if-shell "uname | grep -q Darwin

"non

source-file ~/.tmux.mac.conf"

load private settings if they exist
if-shell "[-f ~/.tmux.private]" "source ~/.tmux.private"

is_vim="ps -o state= -0 comm= -t '#pane_tty}'\

| grep -iqE 'N'ATXZ]+ +(\\S+\V)?g?(view|n?vim?x?)(diff)?$'"
bind-key -n C-h if-shell "$is_vim" "send-keys C-h" "select-pane -L"
bind-key -n C-j if-shell "$is_vim" "send-keys C-j" "select-pane -D"
bind-key -n C-k if-shell "$is_vim" "send-keys C-k" "select-pane -U"
bind-key -n C-l if-shell "$is_vim" "send-keys C-1" "select-pane -R"
bind-key -n C-\ if-shell "$is_vim" "send-keys C-\\" "select-pane -1"

nmon

bind C-1 send-keys 'C-I'

set -g @plugin 'tmux-plugins/tpm’
set -g @plugin 'tmux-plugins/tmux-resurrect’
run '~/.tmux/plugins/tpm/tpm'’

Copyright © 2016, The Pragmatic Bookshelf.

You May Be Interested In...

Click a cover for more information

T o
'K.

HTMLS and CS53 e PR,
Second Edition J Q F',,\(*I‘(‘l‘-;t‘h 101‘ Weh

o Programmers Development
T

Recipes ":""F

&

%

‘L'L"" § | !.._f"':'f..

J.._-"‘-" I-;r:.nnl' Hagas i ot
ol) '
Practical YourCodeasa The Nature
Crime Scene of Software
Development

Vim

bt Bemi geed rwalgl =)

el

: < res, le, 1T
11 = checkRe w1,

e

$oTI AR ARG 1 b o
l;;& & ik

http://pragmaticprogrammer.com/titles/bhh52e
http://pragmaticprogrammer.com/titles/bhwb
http://pragmaticprogrammer.com/titles/wbdev2
http://pragmaticprogrammer.com/titles/dnvim2
http://pragmaticprogrammer.com/titles/atcrime
http://pragmaticprogrammer.com/titles/rjnsd
http://pragmaticprogrammer.com/titles/kdnodesec
http://pragmaticprogrammer.com/titles/tbcoffee2
http://pragmaticprogrammer.com/titles/mwjsember

™ -
- _— gt [B < i
- T B |
-' — Wl

with Rxal:

Reactive Programming Liftoffie ‘Lf\ﬁf‘il,lqﬂspﬂ{:ifv €5

Malkiigg Ceod Teagis Gaeal

- Esiher Derbay
INana Larsen

The

Fire in the Valley Healthy
et Programmer

Giet Fit, Feel Better,
amnd Heep Coding

Jowe Buriner
Paspeaviral by i, Fd Waktan

http://pragmaticprogrammer.com/titles/smreactjs
http://pragmaticprogrammer.com/titles/liftoff
http://pragmaticprogrammer.com/titles/dlret
http://pragmaticprogrammer.com/titles/fsfire
http://pragmaticprogrammer.com/titles/jkthp

	Acknowledgments
	Preface
	What Is tmux?
	Who Should Read This Book
	What’s in This Book
	Changes in the Second Edition
	What You Need
	Conventions
	Online Resources

	1. Learning the Basics
	Installing tmux
	Starting tmux
	The Command Prefix
	Detaching and Attaching Sessions
	Working with Windows
	Working with Panes
	Working with Command Mode
	What’s Next?
	For Future Reference

	2. Configuring tmux
	Introducing the .tmux.conf File
	Customizing Keys, Commands, and User Input
	Visual Styling
	Customizing the Status Line’s Content
	What’s Next?
	For Future Reference

	3. Scripting Customized tmux Environments
	Creating a Custom Setup with tmux Commands
	Using tmux Configuration for Setup
	Managing Configuration with tmuxinator
	What’s Next?
	For Future Reference

	4. Working With Text and Buffers
	Scrolling Through Output with Copy Mode
	Copying and Pasting Text
	Working with the Clipboard on Linux
	Using OS X Clipboard Commands
	What’s Next?
	For Future Reference

	5. Pair Programming with tmux
	Pairing with a Shared Account
	Using a Shared Account and Grouped Sessions
	Quickly Pairing with tmate
	Pairing with Separate Accounts and Sockets
	What’s Next?
	For Future Reference

	6. Workflows
	Working Effectively with Panes and Windows
	Managing Sessions
	tmux and Your Operating System
	Extending tmux with Plugins
	What’s Next?
	For Future Reference

	A1. Our Configuration

