Creating a Round Robin Database with
RRDTool

Introduction

There are two essential components that should be defined when creating a Round-Robin
Database (RRD) using rrdtool: the Data Source (DS) and the Round-Robin Archive (RRA).
The Data Source definition dictates how the data is entered into the database and can provide
rules for the interpretation, limits, and expected frequency of updates. The Round-Robin
Archive definition dictates the storage of the data including how the data is consolidated, the
time resolution, and the span of time the archive covers. A single RRD instance must contain
at least one Data Source and Round-Robin Archive, but may contain more.

Data Source Definition
The general format for a DS specification is:
DS:Label:Type:Heartbeat:Min:Max

Label is the name of the Data Source. It may be from 1-19 characters long and consists of
characters in the set [a-zA-Z0-9_]. The label should be descriptive of the data being collected.
Example labels include “temperature”, “BytesIn”, “bytes_out”, etc.

Type is one of rrdtool’s defined data types: GAUGE, COUNTER, DERIVE, ABSOLUTE, or
COMPUTE.

GAUGE is for storing simple measurements that are rate independent. Data types such as
temperatures, prices, or system load are suitable for this data type.

COUNTER is for storing continuously incrementing counters. Data values input into this type
of Data Source should never decrease except due to an overflow condition (which is handled
by rrdtool). Data of this type is stored as a per-second rate. Example measurements that are
suitable for this data type are velocity and throughput.

DERIVE stores the derivative of the line between the current and previous data points. This is
useful for converting an input of simple measurements into a rate. For example, with an input
of temperature readings, it will record the rate of temperature change instead of simply the
raw temperature readings.

ABSOLUTE is used for counters which are reset upon reading. This behavior is often found in
fast-moving counters that would otherwise overflow frequently. It is otherwise similar to the
COUNTER type.

COMPUTE provides a means of applying a formula to other Data Sources in the RRD. As
such, the DS specification for a COMPUTE type is differs than the general form:

DS:Label:COMPUTE:rpn-expression

The COMPUTE type can be thought of as a “virtual” Data Source that calculates its value
based off of the values of other Data Sources.

Heartbeat defines the maximum number of seconds between two data updates before the
value of the data is assumed to be unknown. This determines how rrdtool will interpolate data
between readings.

Min and Max establish the expected range values for the data. Setting appropriate values
provides additional safeguards against the accidental inclusion of invalid data. If the expected
range values are unknown a value of “U” can be set instead.

Round Robin Archive Definition
The general format for a RRA specification is:
RRA:Consolidation Function:XFF:Steps:Rows

Consolidation Function (CF) is one of rrdtool’s defined functions: AVERAGE, MIN, MAX, and
LAST. The different functions provide flexibility when aggregating Primary Data Points (PDP)
into a RRA. Note that regardless of the CF chosen, aggregation will result in the loss of
resolution for the data. For many applications, this is perfectly acceptable as maintaining fine-
grained resolution on older data is often not necessary.

AVERAGE stores the average of all the Primary Data Points within the designated time range.
MIN stores the smallest value of all the Primary Data Points within the designated time range.
MAX stores the largest value of all the Primary Data Points within the designated time range.

LAST stores only the last (most recent) value of all the Primary Data Points within the
designated time range.

XFF is the “X Files Factor”. This defines how many Primary Data Points may be unknown
before the Consolidated Data Point is also defined as unknown. It is expressed as the ratio of
the number of unknown PDP’s over the total number PDP’s for the aggregation period. As
such, valid values are between 0 and 1. As an example, a XFF of 0.5 dictates that a CDP will
be stored as unknown if the number of unknown PDP’s within the time period exceeds 50% of
the total number of PDP’s.

Steps defines how many Primary Data Points will be aggregated into a Consolidated Data
Point. The Consolidated Data Point is then recorded in the RRA. Each RRA Step is a multiple
of the Step value associated with the Primary Data Point. For example, if the Primary Data
Point Step has a resolution of 300 seconds and the RRA Step value is 12, then each
Consolidated Data Point will be aggregated over 3600 seconds (12 x 300 seconds).

Rows defines how many Consolidated Data Point Steps are stored in the RRA. As each Row
represents the time span defined by the RRA Step, it is a simple calculation to determine the
maximum time represented in the archive. For example, if the Primary Data Point has a Step
value of 300 seconds, and the RRA Step value is 12, and the Row value is 8760, then the
RRA will be able to store 1 year’s worth of data. (300s x 12 x 8760 == 1 year)

rrdtool create

Before attempting to create a RRD, it is best to have fully defined the relevant Data Sources
and Round Robin Archives the RRD will be storing. With those defined, there are only a
couple other command line options to define in order to successfully create the RRD.

The general format for creating a RRD is as follows:

rrdtool create filename --start time --step secs \
DS:Label:Type:Heartbeat:Min:Max \
RRA:Consolidation Function:XFF:Steps:Rows

filename is any legitimate filename permitted by the filesystem. It is suggested that a suffix of
“.rrd” be used to identify the file as a Round Robin Database.

start is the earliest time represented in the RRD. The RRD will not accept any times that
predate (or equal) this value. The time is frequently presented as a standard Unix epoch value
(number of seconds since Jan 1, 1970 UTC) although it it will also parse other formats
including “now”, “now — 1 hour”, and more. (See the manual page for the at command for
more details on the time format rrdtool supports.) The default value is the current time minus

10 seconds.

step is the number of seconds each Primary Data Point represents. The default value (300
seconds) provides a resolution of 1 PDP every 5 minutes.

Examples

Example 1

rrdtool create sysinfo.rrd --start now --step 300 \
DS:load:GAUGE:600:0:U \
RRA:AVERAGE:0.5:1:8928

This example creates a RRD with the filename of sysinfo.rrd. The starting time is “now” which
rrdtool will determine at the time the command is executed. The step value for the Primary
Data Points is 300 seconds.

The only Data Source defined in this RRD is labelled “load” and is of type GAUGE. It has a
heartbeat value of 600 seconds, a minimum value of 0 and an unlimited (“U”) maximum value.

There is only one Round Robin Archive defined, and it uses the AVERAGE method to
aggregate Primary Data Points into Consolidated Data Points. It has an XFF of 0.5, which
means that no more than 50% of the PDP’s can be of the “unknown” type or the CDP will also
be of “unknown” type. The RRA step value is 1, which in this case means there is a 1:1
correspondence between a PDP and a CDP. (i.e. no aggregation is actually performed) There
are 8928 data rows in the RRA, so this archive represents a span of 31 days (8928 x 300
seconds).

Example 2

rrdtool create sysinfo.rrd --start now --step 300 \

DS:load:GAUGE:600:0:U \
RRA:AVERAGE:0.5:1:8928 \
RRA:AVERAGE:0.5:12:8760

This example is identical to Example 1 with the exception that it contains more than one RRA.

In this case, the first RRA defines a “high-resolution” view of the data but only for the last 31
days. In many applications, the value of the data is highest for the most recent data, and so
maintaining it with a high fidelity is warranted.

The second RRA defines a “low-resolution” view of the data for a substantially longer period
of time. In this example, the RRA step value is 12, so the AVERAGE Consolidation Function
will be applied to 12 Primary Data Points to generate a single Consolidated Data Point. As
each PDP represents 300 seconds, each step in this RRA will represent 3600 seconds, or 1
hour (300s x 12). With 8760 rows for this RRA, this archive represents a total time span of 1
year (365 days x 24 hours = 8760).

When generating graphs, rrdtool is smart enough to use the appropriate RRA(s) to provide
the appropriate resolution for the time span requested.

Example 3

rrdtool create sysinfo.rrd --start now --step 300 \
DS:1load:GAUGE:600:0: U\

DS:diskfree:DERIVE:600:U:U \

RRA:AVERAGE:0.5:1:8928 \

RRA:AVERAGE:0.5:12:8760

This example further extends the setup illustrated in Example 2. In this case, an additional
Data Source has been defined to track the rate of change in the free disk space. As the
amount of free disk space may increase or shrink, the DERIVE data type is required. Like the
GAUGE Data Source, it has a heartbeat value of 600 seconds but both the minimum and
maximum values are unknown for this DS. Note that the RRA’s apply to both of the Data
Sources.

RRDTool Example Data

Introduction

Many of the postings about using rrdtool reference this example setup. This example is
representative of the type of data frequently gathered as part of routine system monitoring. It
has been designed to facilitate the illustration of the techniques and problems referenced in
the other postings and is not necessarily representative of actual system monitoring
conditions. While a more typical usage would probably separate out groups of the statistics
into several files, this example collects them all in a single file for the sake of simplicity.

The rrdtool must be installed prior to any attempt to create or load data. It is readily available

as a package for installation for a number of Unix distributions or may be downloaded directly
from the developer’s website and built locally.

Creating the RRD

The example RRD creates a file named sysinfo.rrd, a start date of Jan 1, 2009 00:00:00 PST
(Unix epoch time 1230796800)and a Primary Data Point (PDP) step value of 300 seconds.
There are a number of different measurements that it retains: the system load, temperature,
CPU fan speed, amount of used disk space, rate of change in the use of disk space, and the
number of bytes written or read from the disk. For these measurements, it maintains five
Round Robin Archives (RRA): three RRAs with a resolution of 5 minutes spanning 31 days
using the AVERAGE, MIN, and MAX consolidation functions, a RRA with a resolution of 15
minutes for 90 days, and a RRA with a resolution of 1 hour for 365 days.

rrdtool create sysinfo.rrd —start 1230796800 —step 300 \
DS:load:GAUGE:600:0:U \

DS:temperature:GAUGE:600:0:500 \

DS:cpu fan:GAUGE:600:0:U \
DS:disk used:GAUGE:600:0:U \
DS:disk change:DERIVE:600:U:U
DS:disk2 used:GAUGE:600:0:U \
DS:disk2 change:DERIVE:600:0:U
DS:bytes written:COUNTER:600:0:
DS:bytes read:COUNTER:600:0:U \
RRA:AVERAGE:0.5:1:8928 \
RRA:MIN:0.5:1:8928 \
RRA:MAX:0.5:1:8928 \
RRA:AVERAGE:0.5:3:8640 \
RRA:AVERAGE:0.5:12:8760

\
\
U\

Adding Data

The general format for adding data to the RRD is through the update command. The general
format for adding a set of datapoints for the same time value is as follows:

rrdtool update filename timestamp:DS1[:DS2][:DS3]...

filename is the name of the RRD to be updated. An update command can update only a
single RRD file at a time.

timestamp is the time of the event. This is typically specified in the standard Unix epoch
format (number of seconds elapsed since Jan 1, 1970 UTC), however it may also be
represented as “N” (for Now) which will insert the data using the current time value. An
alternate format may also be specified using the formats as accepted by the at command.
(See the manual page for the at command for more details on the time format rrdtool
supports.) If the at format is used, the “@” symbol should be used to separate the timestamp

from the data values instead of the “:” character.

DS is the value of the data point(s) that are to be inserted into the RRD for the time specified.
The data points are processed in the same order as the Data Sources were specified when
the RRD was created. If there is no data for a particular DS, then a “U” (for Unknown) should

http://oss.oetiker.ch/rrdtool/download.en.html

be used instead. If there is more than one DS to be updated in the RRD, the values should be

separated by a “:” character.

An alternate update format is also available which may assign a unique time value for each
data point:

rrdtool update filename timestamp:DS1 [timestamp:DS2] [timestamp:DS3]...

Data Generation

The perl script sysinfo-sample.pl is available which will create the RRD as well as populate it
with a full year’s worth of data. The data is randomly generated but should bear enough
semblance to real data to help illustrate the concepts. Also, because it is randomly generated
it will result in different results each time it is run.

Please note that this script will automatically overwrite any previous instance of the sysinfo.rrd
file in the working directory.

1. Create a directory that will hold the example data and associated files.
mkdir rrd_example

2. Download the sysinfo-sample.pl file into the newly created directory.

3. Verify the permissions on the perl script are set as executable.
chmod 0755 sysinfo-sample.pl

4. Execute the perl script and wait for the command prompt to reappear. (This may take 5-

15 minutes depending on the speed of your system.)
./sysinfo-sample.pl

Upon completion, a file named sysinfo.rrd should be created in the working directory. It will
be filled with one year’s worth of data starting on Jan 1, 2009.

Simple Line Graphs with RRDTool

Introduction

This post covers some of the basic techniques for generating graphs using RRD tool. The
demonstration examples assumes that the data has been created as described in the RRD
Example Data posting. It should provide a basic understanding of how to specify data sources
and transform them into basic line graphs using some of RRDTool’s built-in graphing options.

Data Definitions

The data definition is the source of the data to be graphed. It provides a label that is
referenced by the graphing directives. There can be multiple data definitions in a single graph
and the data may be manipulated extensively by other operations (CDEFs and VDEFs). In
addition, it is possible to specify data from multiple files to be combined in a single graph.

http://wiki.springsurprise.com/2009/08/08/rrdtool-example-data/
http://wiki.springsurprise.com/2009/08/08/rrdtool-example-data/
http://wiki.springsurprise.com/wp-content/uploads/2009/08/sysinfo-sample.pl
http://wiki.springsurprise.com/wp-content/uploads/2009/08/sysinfo-sample.pl

The basic format for a Data Definition (DEF) is as follows:
DEF:Label=RRD File:Data Source:Consolidation Function

Label is the name of the data definition. It may be from 1-19 characters long and consists of
characters in the set [a-zA-Z0-9_]. The label should be descriptive of the data being graphed
and may be the same label as used in the original Data Source. Example labels include
“temperature”, “BytesIn”, “bytes_out”, etc.

RRD File is the path and name of the data file. If the full path is not specified, then rrdtool
assumes the current working directory.

Data Source is the name of the data source (DS) within the RRD file. See the posting on
Creating a RRD File for a reference of the DS definition if necessary.

Consolidation Function specifies how rrdtool may consolidate data prior to display. This does
not affect the actual data stored in the RRD file; it is used to aggregate data points if the
resolution of the graph is too low to display each data point individually. The available
consolidation functions are MIN, MAX, AVERAGE, and LAST.

MIN uses only the smallest value of the Primary Data Points within the resolution’s
time span.

MAX uses only the largest value of the Primary Data Points within the resolution’s
time span.

AVERAGE uses the average of the all Primary Data Points within the resolution’s
time span.

LAST uses only the last (most recent) Primary Data Point within the resolution’s
time span.

Graphing Directive for Lines

With the data definitions established, graphing directives can be used to specify how the data
will be displayed. Note that the graphing directives should be specified only after the data
definitions (DEF) have been declared. The general format for a line directive is as follows:

LINE[Width]:Label#Color:Legend
Width is an optional element for line graphs. It defines the width of the line used to draw the
graph.
Label refers to the label given to a previously defined data definition (DEF). This defines the
source of the data to be graphed.

Color defines the color of the line or area graph. This is expressed in the web-standard RGB
hexadecimal triplet and must be separated from the label by a ‘#’. Example color definitions
are: 333399 (blue), 33FF00 (bright green), and CC0000 (red). If the color is not specified,
then the line will be “invisible”.

http://wiki.springsurprise.com/2009/08/04/creating-a-round-robin-database-with-rrdtool/

Legend is the text associated with the legend entry for the graph. It is an optional element,
and if it is omitted the ‘" separator should also be omitted.

Display Options

There are a number of options available that define how the graph is rendered. These options
can define the size, format, time span, legend, title, etc. of the graph. None of them are
explicitly required (default values will be used), but they help provide some basic
customization of the graphs.

- -width specifies the width (in pixels) of the graphing canvas. The actual image width may
be wider to accommodate any border or label elements.

- -height specifies the height (in pixels) of the graphing canvas. The actual image height
may be taller to accommodate any border, title, or legend elements.

--imgformat specifies the desired output format of the graph. Available options include:
PNG, SVG, EPS, and PDF.

- -start specifies the start time (in absolute or relative terms) for the data displayed on the
graphing canvas. Frequently, the start time is a relative offset of the end time (e.g. “end-24

hours”, “end-1 month”, “end-2 weeks”)

- -end specifies the end time (in absolute or relative terms) for the data displayed on the
graphing canvas. The most frequently used value for the end time is “now”, which results in a
graph showing the latest data.

- -title specifies the text to be displayed above the graphing canvas.

--vertical-label specifies the text to be displayed next to the y-axis. Typically, this
indicates the units of the measurement.

Examples

Example 1

This basic example creates a graph with the flename “Example 1.png”. As specified by the
start and end dates, it encompasses the entire year of 2009. The resulting PNG file will have
a data canvas of 500 x 120 pixels, although the full size of the image will be larger to
accommodate the legend and border. This example uses only one data definition (DEF) which
references the sysinfo.rrd file’s “load” data element (but note that the label for the DEF itself is
called “sysload”). The line directive (LINE1) in turn references the “sysload” label to draw a 1
pixel wide blue line.

rrdtool graph "Example 1l.png" \

--start="Jan 1, 2009" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
DEF:sysload=sysinfo.rrd:load:AVERAGE \
LINE1:sysload#0000FF

4@ 7

30

20

1@

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Maow Dec

Example 2

This example is similar to the first with the exception that it illustrates the use of relative dates
to define the graphing period. In this case, the start time is defined as 2 weeks less than the
end time. A frequent use of relative dates is specifying the end time as “now” and the start
time relative to that (such as “end-24 hours” or “end-1 week”). Note also RRDTool adjusts the
x-axis legend to reflect the different time span.

rrdtool graph "Example 2.png" \

--start="end-2 weeks" --end "Dec 31, 2009" \

--imgformat PNG --width 500 --height 120 \

DEF:load=sysinfo.rrd:load:AVERAGE \
LINE1: load#0000FF

36 7

20

) “‘ﬂmm ﬂN\

[¢]]
Sat Man

Wed Fri Sun Tue Thu

Example 3

This example extends the previous example by adding an additional data definition and line.
Note that the lines are drawn in the order they are specified, which means that where lines
overlap, the line specified /atest in the graph command will be on top.

rrdtool graph "Example 3.png" \
--start="end-2 weeks" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
DEF:load=sysinfo.rrd:load:AVERAGE \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
LINEL1: Load#0000FF \

LINEL: temp#FFOO00O

200

15a@

10a@

50

Sat Man Wed Fri Sun Tue Thu

Example 4

Extending the example further, this iteration introduces some basic legend and title
information. This example creates a title for the graph (“Example 4") and a label for the
vertical axis (“Units”). In addition, each of the line directives are amended to include a legend
specification. RRDTool will create the appropriate “color squares” for the legend entries.

rrdtool graph "Example 4.png" \
--start="end-2 weeks" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 4" \

--vertical-label "Units" \
DEF:load=sysinfo.rrd:load:AVERAGE \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
LINELl:load#0000FF: "System Load" \

LINELl: temp#FF0O000:"CPU Temperature"

Example 4
200 §
150
u
= loa
[=
35
50
@ _mwﬂ_&_&ﬂmmﬂm&_&&nm_ﬂ&m@
Sat Mon Wed Fri Sun Tue Thu
B System Load B CPU Temperature
Example 5

This example simply illustrates a variation of the width of the line element. In this case, the
line representing the temperature has been specified as being 3 pixels wide (LINE3). Line
width can be specified as 1, 2 or 3 pixels wide.

rrdtool graph "Example 5.png" \
--start="end-2 weeks" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 5" \

--vertical-label "Units" \
DEF:1load=sysinfo.rrd:load:AVERAGE \

DEF:temp=sysinfo.rrd:temperature:AVERAGE \
LINELl:load#0000FF: "System Load" \
LINE3: temp#FF0000: "CPU Temperature"

Example 5
200
158

100

Units

5@

6]
Sat Men Wed Fri Sun Tue Thu

B System Load B CPU Temperature

Example 6

This final example illustrates the use of different round-robin archives (RRAs) within a graph
definition. In this case, the different RRAs use a different consolidation function (CF) in order
to record different aspects of the data patterns. Specifying the MIN and MAX consolidation
functions in the DEFs allow us to retrieve and plot the min and max temperature readings.

rrdtool graph "Example 6.png" \
--start="end-30 days" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 6" \

--vertical-label "Celsius" \
DEF:mintemp=sysinfo.rrd:temperature:MIN \
DEF:maxtemp=sysinfo.rrd:temperature:MAX \
LINEl:mintemp#0000FF: "Minimum Temperature" \
LINELl:maxtemp#FF0000: "Maximum Temperature"

Example &
250 1

208

150

Celsius

100

.

Wesk 49 Week 50 Week 51 Week 52 Weeak .53
Bl Minimum Temperature B Maximum Temperature

Basic Area Graphs with RRDTool

Introduction
This post describes some basic techniques for generating area charts using RRD tool. It

builds upon the previous Line Graphs posting which describes DEFs and other basic graphing
options. The data used for the examples was generated using the tool specified in the RRD
Example Data posting.

Area Chart Graphing Directives

As specified in the Line Graphs posting, the data definitions (DEFs) must be declared prior to
the display directives. The general format for an area directive is as follows:

AREA:Label#Color:Legend:STACK

Label refers to the label given to a previously defined data definition (DEF). This defines the
source of the data to be graphed.

Color defines the color of the line or area graph. This is expressed in the web-standard RGB
hexadecimal triplet and must be separated from the label by a ‘#’. Example color definitions
are: 333399 (blue), 33FF00 (bright green), and CC0000 (red). If the color is not specified,
then the area will be “invisible”.

Legend is the text associated with the legend entry for the graph. It is an optional element,
and if it is omitted the ‘" separator should also be omitted.

STACK specifies that the results in the graph element be offset from the top of the previous
display output instead of the normal 0-based offset. It is case-sensitive and should always be
specified in all-caps. It is an optional element, and if it is omitted the *:’ separator should also
be omitted. To specify a stacked element without a legend, simply omit any entry for the
legend but remember the colon. (e.g. AREA:label#00FFAA::STACK)

Examples

Example 1

This is a simple example of an area graph. In this case, there is only one data element
defined and displayed (“disk1").

rrdtool graph "Example 1l.png" \

--start "end-28 hours" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 1" \

--vertical-label "Bytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk 1"

http://wiki.springsurprise.com/2010/09/20/rrdtool_line_graphs/
http://wiki.springsurprise.com/2009/08/08/rrdtool-example-data/
http://wiki.springsurprise.com/2009/08/08/rrdtool-example-data/
http://wiki.springsurprise.com/2010/09/20/rrdtool_line_graphs/

Example 1
508 M

830 M

200 M

Bytes

750 M

J00 M

Thu 08 86 Thu 12: 00

B Disk 1

Example 2

This example illustrates more than one display element. In this case, the elements are not
stacked and so both use the default 0-based offset. Note that the order of display directives
also defines the drawing order, which may result in some (or all) of an area graph in being
hidden.

rrdtool graph "Example 2.png" \

--start "end-48 hours" --end "Jan 4, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 2" \

--vertical-label "Bytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
DEF:disk2=sysinfo.rrd:disk2 used:AVERAGE \
AREA:disk1#0000FF:"Disk 1" \
AREA:disk2#FF0000:"Disk 2"

Example 2

Bytes

8.8 G
Sat 00: @ Sat 12: 00 Sun Q0: 0@ Sun 12: 0@
W Disk 1 W Disk 2

Example 3

This example illustrates the use of the STACK option for the AREA directive. Remember that
the STACK offsets the data display to start from the top of the previously displayed element. If
there is no previous element, then the STACK option uses the default 0-based offset. Any
number of display directives can use the STACK option. A frequent use of the STACK option is
to illustrate a “summation” of a set of servers or services.

Compare this graph with that of Example 2, which covers the same set of data.

rrdtool graph "Example 3.png" \

--start "end-48 hours" --end "Jan 4, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 3" \

--vertical-label "Bytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
DEF:disk2=sysinfo.rrd:disk2 used:AVERAGE \
AREA:disk1#0000FF:"Disk 1":STACK \
AREA:disk2#FF0O000:"Disk 2":STACK

Example 3

Bytes
G HHFEREFERMBRW
[T e TR % T S T = = R - Y S T
L5 IO T O T e T 5 O e O O

Sat 00:00 Sat 12: 00 Sun 0O0: 00 Sun 12: 00
B Disk 1 W Disk 2

Example 4

This example illustrates the technique of making an “invisible” element. In this case, the
“disk1" directive has no color or legend specified. However, despite it not being displayed, it is
still present as applicable to the STACK option for the “disk2” element.

rrdtool graph "Example 4.png" \

--start "end-48 hours" --end "Jan 4, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 4" \

--vertical-label "Bytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
DEF:disk2=sysinfo.rrd:disk2 used:AVERAGE \
AREA:diskl::STACK \

AREA:disk2#FF0000:"Disk 2":STACK

Example 4

Bytes
o HHFEHKFEFRKMRWDRW
[TR % T R B =« R I % R)
Lo T T e T 5 O s T % T T % I 5

-

8 ¥
Sat 00: 00 Sat 12: 00 Sun 00: 00 Sun 12: 00
W Disk 2

Rules, Legends and Scales with RRDTool

Introduction

This section covers some of the basic options and directives that can be used to personalize
the graph. There are a number of options available to control how the legends and other text
are displayed, adjustments for the scaling behavior, as well as means for demarcating
significant levels or marking points in time.

Rule Directives

Rules are simply straight lines that are drawn in the graphing area. There are two variations:
Horizontal Rules (HRULEs) and Vertical Rules (VRULES). Typical usages of rules may include
displaying a bar across the graph that may indicate an important threshold or a delimiter that
reflects a system change. Note that rules will not be drawn if they are not within the scope of
the actual data ranges being displayed. The general format for rules are as follows:

HRULE:Value#Color:Legend
VRULE:Time#Color:Legend

Value represents the value on the y-axis that will apply to a horizontal rule. Note that
horizontal rules can only be perfectly horizontal; it is not possible to supply a formula for a
sloped line. If the values of the data being displayed are not within the range of the horizontal
line, then the line will not be displayed. A frequent use of a HRULE is to demarcate a critical
threshold in the data.

Value represents the value on the y-axis that will apply to a horizontal rule. Note that
horizontal rules can only be perfectly horizontal; it is not possible to supply a formula for a
sloped line. If the values of the data being displayed are not within the range of the horizontal
line, then the line will not be displayed. A frequent use of a HRULE is to demarcate a critical
threshold in the data.

Time represents the value on the x-axis that will apply to a vertical rule. The time must be
presented as a standard Unix epoch value (number of seconds since Jan 1, 1970 UTC). Note
that if the time range of the data displayed does not contain the time specified for the VRULE,
the rule will not be displayed. A common use of a VRULE is to flag a “state change” in the
measured systems, such as a new software release.

Color defines the color of the line or area graph. This is expressed in the web-standard RGB
hexadecimal triplet and must be separated from the label by a ‘#. Example color definitions
are: 333399 (blue), 33FF00 (bright green), and CC0000 (red). If the color is not specified,
then the area will be “invisible”.

Legend is the text associated with the legend entry for the graph. It is an optional element,
and if it is omitted the ‘" separator should also be omitted.

Rule Examples

Example 1

The following example is a simple example of the different rule types. The HRULE specifies a
red horizontal line drawn at the value of 750,000,000 on the y-axis. The VRULE specifies a
light green vertical line drawn at the value of 11:30am Dec 30, 2009 (1262201400 in Unix

epoch format).

rrdtool graph "Example 1l.png" \

--start "end-48 hours" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 1" \

--vertical-label "Bytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk 1" \

HRULE : 750000000#FF0000: "750 MB Warning" \
VRULE:1262201400#00FF00: "Software Rollout"

Example 1

oga M$
n 800 M
L]
+
)
i)

TJog M

GO0 M

Wed 0O: 00 Wed 12:00 Thu 80: 88 Thu 12: 00
W Disk 1 W 750 ME Warning O software Rollout
Example 2

The following example illustrates use of a time value for the VRULE (Dec 18, 2009) that is not
within the scope of the graphed data. Note that the rule in this case is not displayed nor is
there a legend element. If the scope of the graphed data is changed to encompass the value
of the VRULE, then the rule will again be displayed. This behavior provides some utility in
demarcating significant events without causing the y-axis to be “pinned” to a specified time.

rrdtool graph "Example 2 Rule.png" \

--start "end-48 hours" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 2" \

--vertical-label "Bytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk 1" \
HRULE:750000000#FF0000: "750 MB Warning" \
VRULE:1261201400#00FF00: "Software Rollout"

Example 2

h

60 M
. 500 M
w
o
[
o
Foa M
GO0 M
Wed 00: 00 Wed 12: 00 Thu 08 86 Thu 12: 00
M Disk 1 B 750 MB Warning

Legend and Title Options
- -title specifies the text to be displayed above the graphing canvas.

--vertical-label specifies the text to be displayed next to the y-axis. Typically, this
indicates the units of the measurement.

- -right-axis specifies an alternate y-axis scale that will be displayed on the right side of
the graph. This can be used to realign the units displayed which may have been adjusted to
increase the legibility of the graph. This parameter requires both a scale and offset
(scale:offset) be specified.

--right-axis-label specifies the text to be displayed on the right axis.
- -no- legend omits the legend information from being drawn.

- -legend-position defines where the legend will be displayed in the graph. Acceptable
values are north, south, east and west. The default value is south.

Legend and Title Examples

Example 1

This simple example illustrates the title, vertical-label, and legend-position parameters in use.
Note that the text for the label and title is quoted to ensure proper parsing. The legend-
position overrides the default value of south with east.

rrdtool graph "Example 1 Legend.png" \
--start "end-48 hours" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 1" \

--vertical-label "Bytes" \

--legend-position east \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk 1"

Example 1

g8 M1
B Cisk 1

200 M

Bytes

Joa M

aa M
Wed 0000 Wed 12: 00 Thu ©0: 08 Thu 12: 0@

Example 2

This example illustrates the use of the right-axis to specify an alternate scale. In this case, the
y-axis scale on the left (the default) reflects the CPU temperature measured in Celsius. The y-
axis scale on the right reflects the fan speed measured in RPM. For this example, the scale
has been set to 1 and the offset specified as 0.

rrdtool graph "Example 2 Legend.png" \
--start "end-48 hours" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 2" \

--vertical-label "Celsius" \

--right-axis 1:0 \

--right-axis-label RPM \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
DEF:fan=sysinfo.rrd:cpu_ fan:AVERAGE \
AREA: temp#0000FF:"CPU Temperature" \
LINEL: fan#0OFFQO: "Fan"

Example 2
a0kt o4k
R O e T ettt e o Mt SO ot Bt e B o 3.0k
W
=
— =
n 20k 20k &
i
o
1.0k 1.0k
Wed 0O0: 00 Wed 12:00 Thu 00: 60 Thu 12:00 .
W CPU Temperature O Fan
Example 3

This example further refines the graph defined in Example 2 by adjusting the values of the fan
so that they are closer to the range of the temperatures. (This is performed by the CDEF
directive, which will be further described in later examples.) To keep the units correct, the
scale for the right-label is adjusted to re-compensate. Note that in this example the variations
in temperature and RPM are now both clearly visible and the left and right scales on the y-
axis reflect the different scales of the datatypes.

rrdtool graph "Example 3 Legend.png" \
--start "end-48 hours" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 3" \

--vertical-label "Celsius" \

--right-axis 20:0 \

--right-axis-label RPM \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
DEF: fan=sysinfo.rrd:cpu_fan:AVERAGE \
CDEF:fan20=fan, 20,/ \

AREA: temp#0000FF: "CPU Temperature" \
LINE1l: fan20#00FF00: "Fan"

Example 3
240 5 k
220 4k
Z
= 208 4k 5
L &
i 180 4 k
Y 150 2k
140 3k
Wed 00: 00 Wed 12: 00 Thu @a: a8 Thu 12: 08
Bl CPU Temperature [Fan

Scale Options

- -upper-1limit provides an override of the default auto-scaling behavior by setting an
explicit upper limit value for the y-axis. Note that the value provided by this option will continue
to be overridden if an actual data value in the graph exceeds the limit specified.

--lower-1imit provides an override of the default auto-scaling behavior by setting an
explicit lower limit value for the y-axis. Note that the value provided by this option will continue
to be overridden if an actual data value in the graph is lower than the limit specified.

--rigid is used in conjunction with the upper-limit and lower-limit options to provide a
definitive maximum and minimum y-axis value. With this option specified, the auto-scaling
behavior will not adjust the scale even if a data value would exceed (or fall below) the upper or
lower limits specified.

- -logarithmic changes the y-axis to use a logarithmic scale instead of the default linear
scale. This can be useful to visualize fine-grain patterns in the data that may otherwise be
obscured if the values are wide-ranging.

--units-exponent sets the exponent expressed in the y-axis scale to a fixed value. For
example, setting this to 3 would lead to the scale to consistently use units of 1000 (10/3).

--units-length defines how many characters rrdtool should assume are present in the y-
axis scale labels. This may be necessary to specify when deviating from the default values for
the expression of the units (via the units-exponent, logarithmic, or units=si options)
in order to prevent rrdtool from overlapping the vertical label and scale labels.

- -units=s1i overrides the exponential notation with the standard S| unit symbols (k, M, etc.)
Note that the exponential notation is the default only for logarithmic graphs; linear graphs
already use the Sl notation.

Scale Examples

Example 1

This example illustrates the use of the upper and lower limit options. Note that in this case the
specified lower-limit is ignored, as an actual data value is lower than the value specified and
so the auto-scaler adjusts the lower range of the scale to compensate.

rrdtool graph "Example 1 Scale.png" \
--start "end-1 month" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 1" \

--vertical-label "Bytes" \

--upper-limit 1000000000 \

--lower-limit 500000000 \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk"

Example 1

Bytes
oo oo oo
W = W@\ o= 00w O
L N 5 TR T % T = TR % B % B %

Wesk 49 Week 50 Week 51 Week 52 Week 53
B Disk

Example 2

This example demonstrates how the rigid option can be used to enforce the specified upper
and lower limits. Note that this strict adherence to the specified limits may prevent data that is
out of range from being displayed.

rrdtool graph "Example 2 Scale.png" \
--start "end-1 month" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 2" \

--vertical-label "Bytes" \

--upper-limit 1000000000 \

--lower-limit 500000000 \

--rigid \

DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk"

Example 2
1.0 61

0.9 G

0BG

Bytes

0.7 G

0.6 G

0.5 G__._l..l..l_ﬂ

Weslk 49 Week 50 Week 51 Week 52 Week 53

.

B Disk

Example 3

In this example, the logarithmic option is specified to alter the y-axis scaling behavior. The
units-exponent is also specified which maintains the expression of the scale at the fixed rate
of 1073 (1000's).

rrdtool graph "Example 3 Scale.png" \
--start "end-1 month" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 3" \

--vertical-label "kilobytes" \

--logarithmic \

--units-exponent 3 \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk"

Example 3

le+03

Te+0B8
Se+08

kilobytes

2e+08

Weesk 43 Week S50 Wesk 51 Week 52 Wesk 53
B Disk

Example 4

This is an alternate view of the previous graph using the Sl notation instead of the default
exponential notation for a logarithmic graph. In addition, the units-length option is specified to
facilitate the alignment of the axis label and scale units.

rrdtool graph "Example 4 Scale.png" \
--start "end-1 month" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 4" \

--vertical-label "Bytes" \

--logarithmic \

--units=si \

--units-length 5 \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
AREA:disk1#0000FF:"Disk"

Example 4

16

m 700 M
. 500 M
1]

200 M
Week 43 Wesk S0 Week 51 Week 52 Wesk 53

W Disk

Using CDEFs to manipulate data in
RRDTool

Introduction

The CDEF directive provides a means for manipulating the “raw” data stored in a round-robin
archive (RRA). It is typically used to apply a mathematical function to each data point
referenced by one or more DEF statements which results in an array of new values — each of
remains associated with the respective time of the original “raw” data point. This is an in-
memory transformation only; the original data remains unchanged in the RRA.

There is often much confusion regarding the differences of the DEF, CDEF, and VDEF
directives. It may help to think of the different directives in the following manner:

» A DEF directive references a set of “raw” data as it is stored in a RRA
» A CDEF directive applies a function to each data point it references
+ A VDEF directive applies a function to an aggregate of data points

The CDEF Directive
The basic format for a CDEF directive is as follows:
CDEF:Label=RPN Expression

Label is the name of the CDEF. It may be referenced in other directives for inclusion in LINE,
AREA charts or even other CDEF calculations. It may be from 1-19 characters long and
consists of characters in the set [a-zA-Z0-9_]. Note that the label must be unique and cannot
overlap with any labels assigned to other DEFs, CDEFs, or VDEFs.

RPN Expression is the mathematical or logical expression that may be used to manipulate the

raw data values as referenced by DEF or CDEF directives or even a pure mathematical
function. The expression uses Reverse Polish Notation to eliminate confusion or errors that
may occur with the precedence rules required of traditional infix notation. There are a number
of mathematical, boolean and logical operators available for inclusion in a CDEF directive.

CDEF Examples

Example 1

This example illustrates the commonly used transformation of bytes to megabytes. Disk and
memory readings are often reported in bytes, but frequently this is not the most convenient
unit for visualization. In this case, the CDEF directive divides the “raw” data value as
referenced by the DEF and divides it by 1048576 (1024 x 1024). Note that the AREA directive
now references the CDEF label and that the vertical label has been updated to reflect the
proper units.

rrdtool graph "Example 1 CDEF.png" \

--start "end-48 hours" --end "Dec 31, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 1" \

--vertical-label "Megabytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
CDEF:megadiskl=diskl,1048576,/ \
AREA:megadisk1#0000FF: "Disk 1"

Example 1
sge
H
u 800
=9
0
[14]
o
o 700
(fee]
Wed 00: 80 Wed 12:00 Thu 8a: 88 Thu 12:08
W Disk 1
Example 2

This example shows a slightly more complex instance of the reverse-polish math that may be
referenced in a CDEF. In this case, the CDEF first sums up the the “raw” values as referenced
by the two DEF statements and then converts the sum to megabytes.

rrdtool graph "Example 2 CDEF.png" \

--start "end-48 hours" --end "Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 2" \

--vertical-label "Megabytes" \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
DEF:disk2=sysinfo.rrd:disk2 used:AVERAGE \
CDEF:megadisk=diskl,disk2,+,1048576,/ \

http://oss.oetiker.ch/rrdtool/doc/rrdgraph_rpn.en.html
http://en.wikipedia.org/wiki/Reverse_Polish_notation

AREA:megadisk#0000FF:"Total Disk Used"

Example 2

18 k
18 k
18 k

9k

Megabytes

9k

9k
Sat 12: 00 Sun Q8: 00 Sun 11: 08 Sun 23: 00

W Total Disk Used

Example 3

This example illustrates a common technique for differentiating several types of related
measurements. It is a frequent graphing style for disk 1O (reads vs. writes) as well as network
IO (octets in vs. octets out). It is achieved by simply negating the values of one of the
operations and graphing the result. In this example, a horizontal rule (HRULE) at the 0 point
has also been added in order to highlight the baseline. Note that the HRULE is specified as
the last element to be drawn, which ensures that it will overlay the other graphed elements.

rrdtool graph "Example 3 CDEF.png" \

--start "end-48 hours" --end "Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 3" \

--vertical-label "Bytes" \
DEF:read=sysinfo.rrd:bytes read:AVERAGE \
DEF:write=sysinfo.rrd:bytes written:AVERAGE \
CDEF:negwrite=0,write,- \
AREA:read#0000FF: "Bytes Read" \
AREA:negwrite#00FF00: "Bytes Written" \
HRULE : 0#000000

Example 2
20 k
20 k
L]
[T}
+ 18 k
is]
¢}
-18 k- »
Sat 12: 00 Sun Q8: 00 Sun 11: @0 Sun 23: 00
Ml Bytes Read O Bytes Written
Example 4

This is a more complex example which illustrates the use of the IF operation as well as a

more advanced graphing style useful to call out anomalous behaviors. In this case, the
temperature values (referenced by the DEF “temp”) are first assessed by the LE (less than or
equal to) and GT (greater than) operations. The values assigned in these CDEFs (iscool,
ishot) will then be used in the CDEFs with the IF operations. The IF operations evaluate
iscool/ishot and if it is “true” (i.e. not zero), then the value for temp is returned. Otherwise, the
special constant “unknown” is returned. These values for the cool/hot CDEFs are then
graphed and result in a clear demarcation where the system is over-heated.

rrdtool graph "Example 4 CDEF.png" \
--start "end-48 hours" --end "Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 4" \

--vertical-label "Temperature" \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
CDEF:iscool=temp,175,LE \
CDEF:ishot=temp,175,GT \

CDEF:cool=iscool, temp,UNKN, IF \
CDEF:hot=ishot, temp,UNKN, IF \

AREA: cool#0000FF:"cool" \
AREA:hot#FF0000: "hot"

Example 4

240
= 220
o
+ 208
=
'JEd'_ 180
w 160
'_

140

Fri 12:00 Sat 00: 00 Sat 12: 00 Sun 00: 0@
W cool W hot
Example 5

This example illustrates the use of the LIMIT operation to achieve a similar effect for
highlighting anomalous conditions. In this case, the entire data set is initially graphed using
the “hot” color and then the “cool” data set is overlayed on top of the appropriate sections.

rrdtool graph "Example 5 CDEF.png" \

--start "end-48 hours" --end "12am Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 5" \

--vertical-label "Temperature" \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
CDEF:cool=temp,0,175,LIMIT \

AREA: temp#FF0000: "hot" \

AREA: cool#0000FF: "cool"

Example 5

240

e 220
=]
i 200
| 4
'12-'_ 180
w 160
'_
14
Fri 00:00 Fri 12: 80 Sat 00: a0 Sat 12: 00 Sun 08: 00
M hot B cool
Example 6

This example shows the use of the MIN operation to provide a “layer cake effect” in the graph.
This is a popular graphing technique that can be used either to signify a state change above a
given threshold or simply to provide a color gradient in the graph for extra polish. This
particular example again relies on overlaying the “cool” graph to mask out the relevant
sections of the data.

rrdtool graph "Example 6 CDEF.png" \

--start "end-48 hours" --end "12am Nov 1, 2009" \

--imgformat PNG --width 500 --height 120 \

--title "Example 6" \

--vertical-label "Temperature" \

DEF:temp=sysinfo.rrd:temperature:AVERAGE \

CDEF:cool=temp,175,MIN \

AREA: temp#FF0000: "hot" \

AREA: cool#0000FF: "cool"

Using VDEFs for set calculations in
RRDTool

Introduction

The VDEF directive provides a mechanism for applying mathematical operations on sets of
data. Unlike the CDEF directive, the result of a VDEF is a single value. The VDEF can
reference either a DEF or CDEF data set and can perform a number of operations including
calculating averages, standard deviations, least squares lines, and more. These values can
then be further referenced in CDEFs for graphing or printed out.

There is often much confusion regarding the differences of the DEF, CDEF, and VDEF
directives. It may help to think of the different directives in the following manner:

» A DEF directive references a set of “raw” data as it is stored in a RRA
« A CDEF directive applies a function to each data point it references
* A VDEF directive applies a function to an aggregate of data points

The VDEF Directive
The basic format for a VDEF directive is as follows:
VDEF:Label=RPN Expression

Label is the name of the VDEF. It may be referenced in other directives including HRULEs or
CDEF calculations. It may be from 1-19 characters long and consists of characters in the set

[a-zA-Z0-9_]. Note that the label must be unique and cannot overlap with any labels assigned
to other DEFs, CDEFs, or VDEFs.

RPN Expression is the mathematical or logical expression that is applied to a data set. The
expression uses Reverse Polish Notation to eliminate confusion or errors that may occur with
the precedence rules required of traditional infix notation. There are a number of
mathematical, boolean and logical operators available for inclusion in a VDEF directive.

VDEF Examples

Example 1

This is a simple example which illustrates the use of VDEFs to reveal information about the
set of data. In this case, the MINIMUM, MAXIMUM, and AVERAGE operations are used to
determine the respective values for the data set. The resulting value for each operation is then
used as the value for a HRULE providing a clear illustration in the resulting graph. Note that
the VDEF values are based only on the data referenced. In this case, the data is bounded by
the start and end time specified and so would likely differ for a different window into the
original data set.

rrdtool graph "Example 1 VDEF.png" \
--start "end-48 hours" --end "12am Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 1" \

--vertical-label "Temperature" \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
VDEF :min=temp, MINIMUM \

VDEF :max=temp, MAXIMUM \

VDEF:avg=temp, AVERAGE \

AREA: temp#FFEF0O \

HRULE : max#FF0000: "Max" \

HRULE:avg#000000: "Average" \

HRULE :min#0000OFF: "Min"

http://oss.oetiker.ch/rrdtool/doc/rrdgraph_rpn.en.html
http://en.wikipedia.org/wiki/Reverse_Polish_notation

Example 1

F

240
e 220
=
+ 200
| 4
'é-'_ 180
w 160
'_

140

Fri 60:080 Fri 12:00 Sat 00: 00 Sat 12:00 Sun EI;B: s

B Max M Average B Min
Example 2

This example uses the average and standard deviation VDEF operations to identify
temperature ranges that exceed the average temperature by more than one standard
deviation. The VDEF operations determine the appropriate values, which are then used in the
CDEF operations to generate new data sets. The original data set is graphed in the “hot” color
with the “normal” and “cool” graphs overlayed on top of the appropriate sections.

The CDEF calculations may be difficult to parse for a novice to Reverse Polish syntax. It may
help to break it down as follows:

1. cool=temp,avg,stdev,-,LE temp,UNKN,IF

2. cool=temp,(avg — stdev),LE temp,UNKN,IF

3. cool=(temp <= (avg — stdev)),temp,UNKN,IF

4. cool=if (temp <= (avg — stdev)) then temp else UNKN

rrdtool graph "Example 2 VDEF.png" \

--start "end-48 hours" --end "12am Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 2" \

--vertical-label "Temperature" \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
VDEF :avg=temp, AVERAGE \

VDEF:stdev=temp,STDEV \
CDEF:cool=temp,avg,stdev, -,LE, temp,UNKN, IF \
CDEF:medium=temp,avg,stdev,+,LE, temp,UNKN, IF \
AREA: temp#FF0000: "Hot" \

AREA:medium#FFEF0O: "Normal" \
AREA:cool#0000FF: "Cool"

Example 2

F

240
T 220
=
+ 200
| 4
E 180
w 160
'_

140

Fri 60:080 Fri 12:00 Sat 00: 00 Sat 12:00 Sun 00: 02

B Hot O Normal W Cool
Example 3

This example illustrates how to use the least squares line VDEF operations to draw a
trendline. The LSLSLOPE operation can determine the slope of line and the LSLINT can
provide the y-axis intercept value. A trendline can then be generated using the classic
"y=mx+b" formula (where m is the slope and b is the intercept).

The CDEF operation implements this formula using several “tricks” of rrdtool: a workaround
for the CDEF requirement to reference a DEF or CDEF, and the use of the COUNT operation
to increment a value for each data point in the graph set. In the example, the CDEF reference
requirement is satisfied by the “temp,POP” elements, which effectively puts a value from the
temp DEF on the stack and then pops it back off, discarding it.

rrdtool graph "Example 3 VDEF.png" \

--start "end-48 hours" --end "12am Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 3" \

--vertical-label "Temperature" \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
VDEF:slope=temp, LSLSLOPE \
VDEF:intercept=temp, LSLINT \

CDEF:trendline=temp, POP,COUNT,slope, *,intercept,+ \
AREA: temp#FFEFQO \

LINE2:trendline#000000

Example 3

240
220
200
180
160

Temperature

140

=

Fri 0@ 00 Fri 12:00 Sat 00: 00 Sat 12:00 Sun dﬂ:ﬂﬂ

Example 4

http://en.wikipedia.org/wiki/Least_squares

This examples uses the PERCENTNAN operation in order to identify the 5% coolest and 5%
hottest temperatures in the data set. These values are then applied as part of the CDEF
calculations to generate the appropriate data sets for graphing. Note that it is frequently best
to use the PERCENTNAN operation instead of the PERCENT operation as the
PERCENTNAN variant handles any gaps in the data in a more graceful manner.

rrdtool graph "Example 4 VDEF.png" \
--start "end-48 hours" --end "12am Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 4" \

--vertical-label "Temperature" \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
VDEF: cool5=temp,5,PERCENTNAN \
VDEF:hot95=temp, 95, PERCENTNAN \
CDEF:cool=temp,cool5,LE, temp,UNKN, IF \
CDEF :medium=temp, hot95,LE, temp,UNKN, IF \
AREA: temp#FF0000: "Hot" \
AREA:medium#FFEF00: "Normal" \

AREA: cool#0000FF: "Cool"

Example 4
F

240
T 220
=
+ 208
|
'12-'_ 180
w 16@
'_

140 I I

Fri 60: 00 Fri 12:008 Sat 00: 00 Sat 12: 00 Sun 00 0@

B Hot O Normal Hl Cool

Advanced Color Graphing Techniques
using RRDTool

Introduction

This section covers some of the more advanced uses of color in a RRDTool graph. These
techniques can not only help in providing an additional bit of polish to an otherwise ordinary
graph, but can also be useful in clarifying interpretation and providing additional information.

Despite the availability of the techniques outlined below, it is still essential that proper color
conventions and patterns be observed. For example, red typically denotes “hot” in the context
of temperature or “severe” in a notification/aberration detection. Using red to denote a cool
temperature on a temperature graph or a “normal” operating condition is very likely to lead to
viewer confusion. For more information, please be sure to consult a good reference on color
theory.

Examples

Example 1

This is a simple example of a “stock” graph. It uses no special color treatments but it is still
able to clearly convey the necessary information. In this case, it simply presents a graph of
the system temperature.

rrdtool graph "Example 1 Colors.png" \

--start "end-48 hours" --end "12am Nov 1, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 1" \

--vertical-label "Temperature" \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \

AREA: temp#FF0000

Example 1

240
220
200
180
160

Temperature

140

Fri 0Q:00 Fri 12:00 Sat 00: Q0 Sat 12:00 Sun 00: 00

Example 2

In this example, the use of an “alpha channel” in the color specification is introduced. The
easiest way to think of an alpha channel is as a transparency measure. A alpha channel of
“FF” would be completely opaque, while an alpha channel of “00"” would be completely
transparent. The alpha channel is specified in hexadecimal form at the end of the RGB color
value. In the example below, the color value of “FF000044" has specified an alpha channel
value of “44". If no alpha channel is specified, then a default value of “FF” (fully opaque) is
used.

rrdtool graph "Example 2 Colors.png" \

--start "end-48 hours" --end "12am Nov 1, 2009" \

--imgformat PNG --width 500 --height 120 \

--title "Example 2" \

--vertical-label "Temperature" \

DEF:temp=sysinfo.rrd:temperature:AVERAGE \
AREA: temp#FF000044

Example 2

F
240
e 220
=]
i 200
| 4
'12-'_ 180
w 160
'_
14
Fri 00:00 Fri 12: 80 Sat 00: a0 Sat 12: 00 Sun EI;B: ele]
Example 3

This example illustrates the use of the “layer cake” effect. This technique can help to provide
additional context to a graph, as the colored layers can help clearly delineate when a system
is operating within tolerances or not. Thus, the health of the system can be determined at a
glance and is not dependent on the viewer being intimate with the operational thresholds. This
example breaks down the temperature readings into four layers (cold, cool, warm, and hot) of
50 degrees each, but it would be a trivial extension to increase/decrease the number of
layers.

The CDEF for the middle layers can be somewhat intimidating for those who are not experts
in Reverse Polish Notation. In this example, each layer relies on being stacked and so the
appropriate calculation is determining the portion of the temperature (if any) that makes up the
layer. The following breakdown may help make it more palatable:
cool=temp,50,GT, temp, 100,GT, 50, temp, 50, -, IF,UNKN, IF

if (temp > 50) then
if (temp > 100) then

cool = 50
else
cool = temp - 50
else
cool = UNKN

As each layer is a maximum of 50 degrees, the trick is to determine how much (if any) of a
layer falls within the designation. If the actual temperature exceeds that of the layer, then
simply use the maximum value (50). If the temperature falls within the layer, then the value
should be the temperature less the total of any previous bands. If the temperature is less than
the minimal temperature for this layer, then simply return the “unknown” value to prevent any
graphing.

rrdtool graph "Example 3 Colors.png" \

--start "end-48 hours" --end "1l2am Dec 5, 2009" \

--imgformat PNG --width 500 --height 120 \

--title "Example 3" \

--vertical-label "Temperature" \

--lower-limit @ --rigid \

DEF:temp=sysinfo.rrd:temperature:AVERAGE \

CDEF:cold=temp,50,LE, temp,50,IF \

CDEF:cool=temp,50,GT, temp,100,GT,50, temp,50, -, IF,UNKN, IF \

CDEF :warm=temp, 100,GT, temp, 150,GT,50, temp, 100, -, IF,UNKN, IF \
CDEF:hot=temp, 150,GT, temp, 150, - ,UNKN, IF \

AREA: cold#0000FFAA:cold:STACK \

AREA: cool#0000FF44:cool:STACK \

AREA:warm#FF000044 :warm:STACK \

AREA: hot#FFOO00AA:hot:STACK

Example 2
160 T g S
148
i
e 120
3
-E 106
g 80
E (6]
- 4@
20
[¢] ! .
Thu 8a: 88 Thu 12: 88 Fri 0Q0: 08 Fri 12:00 Sat 00: 00
B cold O cool O warm H hot
Example 4

There are several techniques for “feathering” the colors in a graph as shown in this example.
The technique illustrated in this example is suitable for a representing a single color palette
with the gradient lightest at the top and darkest at the bottom. It is achieved by simply
overlaying the graph with the same color selection at selected proportions and relying on the
alpha channel to “build up” as the layers overlap. Care should be made when using this
technique not too make the top layers so translucent they become difficult to discern.

This example simply maps the set of data values into sets for 1/4, 1/2 and 3/4 values and then
overlays the original value graph. Additional looks can also be achieved through the use of
alternative data transformation maps/ratios.

rrdtool graph "Example 4 Colors.png" \
--start "end-48 hours" --end "12am Dec 5, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 4" \

--vertical-label "Temperature" \
--lower-limit 0 --rigid \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
CDEF:tierl=temp,4,/ \

CDEF:tier2=temp,2,/ \
CDEF:tier3=temp,4,/,3,* \
AREA:temp#FF000022: \

AREA:tier3#FF000022: \
AREA:tier2#FF000022: \
AREA:tierl#FF000022:

Example 4

160 7
140
120
100
20
&0
40
20

Temperature

=

6]
Thu 0@: 80 Thu 12: 86 Fri 00:00

Example 5

Fri 12: 06 Sat 0000

This example illustrates another method of “feathering” the colors in the graph. In this case,
the color gradient is lightest at the bottom and darkest at the top. In order to achieve this, the

value is simply divided up and then each layer is stacke
increasing the alpha channel value.

rrdtool graph "Example 5 Colors.png" \
--start "end-48 hours" --end "12am Dec 5,
--imgformat PNG --width 500 --height 120 \
--title "Example 5" \

--vertical-label "Temperature" \
--lower-limit 0 --rigid \
DEF:temp=sysinfo.rrd:temperature:AVERAGE \
CDEF:tier=temp,4,/ \
AREA:tier#FF000022::STACK \
AREA:tier#FF000044::STACK \

d on top of the other while steadily

2009" \

AREA: tier#FF000066: :STACK \
AREA: tier#FF000088: :STACK
Example S

160 T

148
u
= 120 > sz -
= 168 i e s L
= BE [A - Do B
= [=0e]
= 40

20

T|'|l.|:;:I 0a: a8 Thu 12: 88 Fri 668:88 Fri 12:00 Sat K;ﬂ:ﬂﬂ

Example 6

This example illustrates the use of highlights to clearly delineate the borders between stacked

area graphs. It allows the use of a softer color palette w
color scheme to define the borders.

The highlight lines should be specified after all the area

ithout having to resort to a clashing

graphs have been declared. Each

highlight should be specified in the same order as its corresponding area graph in order to
ensure the proper color is “on top” should the data sets have any overlap. It is typically easiest
to maintain the same color scheme by using the same RGB value as the area graph but
specifying high alpha channel value.

rrdtool graph "Example 6 Colors.png" \
--start "end-48 hours" --end "12am Jan 15, 2009" \
--imgformat PNG --width 500 --height 120 \
--title "Example 6" \

--vertical-label "Bytes" \

--lower-limit @ --rigid \
DEF:diskl=sysinfo.rrd:disk used:AVERAGE \
DEF:disk2=sysinfo.rrd:disk2 used:AVERAGE \
AREA:disk1#0000FF22:: \
AREA:disk2#00F00022: :STACK \
LINE1l:disk1#0000FFAA:"Disk 1" \
LINE1:disk2#00FQ00AA: "Disk 2":STACK

Example &
F
2.0 G
1.5 G
[hi]
[T}
o I O O 0 S e St
o e S S S S S S S S S S
8.5 G
0.8 >
Tue 00: 00 Tue 12: 080 Wed 00: 00 Wed 12: 00 Thu G0: @6

W Disk 1 O oisk =2

