

The Tao of tmux

and Terminal Tricks

Tony Narlock

This book is for sale at http://leanpub.com/the-tao-of-tmux

This version was published on 2017-01-23

* * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the
right book and build traction once you do.

* * * * *

© 2016 - 2017 Tony Narlock

http://leanpub.com/the-tao-of-tmux
http://leanpub.com
http://leanpub.com/manifesto

This book is dedicated to those who use my software. There’s no better feeling of
satisfaction or meaning than someone else using what I created.

I’d also like to thank those in open source who sacrifice their time and often go
unnoticed; To my international friends abroad who exchanged language and culture

with me. To those who deal with naysayers, keep your head in the books and ABC
(Always Be Coding), as Linus Torvalds’ said, “Talk is Cheap. Show me the code.”

To anyone else who has supported me and stuck with me along the way, you have my
gratitude.

Table of Contents

Foreword
About this book
Styles
How this book is structured
Donations
Available Formats
Errata
Thanks
Book Updates and tmux changes

1. Thinking in tmux
Window manager for the terminal
Multitasking
Keep your applications running in the background
Powerful combos

2. Terminal fundamentals
POSIX stuff
Terminal interface
Terminal emulators
Shell languages
Shell interpreters (Shells)
It’s about context

3. Practical Usage
The prefix key
Session persistence and the server model
It’s all commands

4. Server
What? tmux is a server?
Zero config needed
Stayin’ alive
Servers hold sessions
How servers are “named”
Clients
Clipboard

5. Sessions
Creating a session

Switching sessions within tmux
Naming sessions
Does my session exist?

6. Windows
Naming windows
Traversing Windows
Moving Windows
Layouts
Closing windows

7. Panes
Creating new panes
Traversing Panes
Zoom in
Resizing panes
Outputting pane to a file

8. Configuration
Updating configs in current sessions
How configs work
Common options

9. Status bar
The symbology behind windows
Date and time
Shell command output
Styling
Tweaking your status bar, live!
Turn your status line off
Example: default config
Example: Dressed up
Example: Powerline

10. Scripting tmux
Aliases
Pattern matching
Targets
Formats

11. Tips and Tricks
Read the tmux manual in style
Log tailing
File watching

Session Managers
More code and examples
tmux-plugins and tpm

12. Cheatsheets
Commands
Keybindings
Formats

Appendix: Installing tmux
macOS / OS X
Linux
BSD
Windows 10

Appendix: tmux on Windows 10

Troubleshooting
E353: Nothing in register * when pasting on vim
tmuxp: command not found and powerline: command not found

Foreword

Pretty much all my friends use tmux. I remember going out at night for drinks and the 3 of
us would take a seat at a round table and take our smart phones out. This was back when
phones still had physical “QWERTY” keyboards.

Despite our home computers being asleep or turned off, our usernames in the IRC
channel we frequently visited persisted in the chatroom list. Our screens were lit by a
kaleidoscope of colors on a black background. We ssh’d with ConnectBot into our cloud
servers and reattached by running screen(1). Just as it hit 2AM, our Turkish coffee
arrived, the |away status indicator trailing our online nicknames disappeared.

It was funny that even though we knew each other by our real names, we sometimes
opted to call each other by our nicks. It’s something about how personal relationships,
formed completely online, persist in real life.

It seemed as if it were orchestrated, but each of us fell into the same ebb and flow of
living our lives. No one told us to do it, but bit by bit we incrementally optimized our
lifestyles personally and professionally to arrive at destinations that felt eerily alike.

Like many things in life, when we act on autopilot, we sometimes arrive at similar
destinations. This is often completely unplanned.

So when I go off and write an educational book about a computer application, I hope to
write it for human beings. I’m not trying to sell you on tmux, not to make you like it, or
hate it, but to tell you what it is, how some people use it. I’ll leave the rest up to you.

About this book
I’ve helped thousands learn tmux through my free resource under the name The Tao of
tmux, which I kept as part of the documentation for the tmuxp session manager. And now,
it’s been expanded into a full blown book with refined graphics, examples and much
more.

You do not need a book to use or understand tmux. If you want a technical manual, look
at the manpage for tmux. Manpages, however, are almost never sufficient to wrap your
brain around abstract concepts, they’re there for reference. This learning book is the
culmination of years of explaining tmux to others online and in person.

In this book we will break down tmux by the way of its objects, from servers down to
panes. It also includes a rehash of terminal facilities we use every day to keep us
autodidacts up to speed with what is what. On top of that, I’ve included numerous

https://en.wikipedia.org/wiki/GNU_Screen
https://tmuxp.git-pull.com/en/latest/about_tmux.html
https://github.com/tony/tmuxp
http://man.openbsd.org/OpenBSD-current/man1/tmux.1

examples of projects, permissively licensed source code and workflows designed for
efficiency in the world of the terminal.

tmux is a tool I find incredibly useful. While I don’t attach it to my personal identity, it’s
been part of my daily life for years. In addition to the original resource, I’ve written a
popular tmux starter configuration, a pythonic tmux library, and a tmux session manager.

I am writing this from vim running in a tmux pane, inside a window, in a session, on the
server, through a client.

A word to absolute beginners: don’t feel you need to grasp the concepts of the command
line and terminal multiplexing in a single sitting. You have the choice of picking out
concepts of tmux that you like according to your needs or interests. If you haven’t
installed tmux yet, please view the Installation section in the Appendix of the book.

Feel free to follow @TheTaoOfTmux for updates or share on Twitter!

Styles
Formatted text like this is source code.

Formatted text with a $ in front is a terminal command. $ echo 'like this'. This
means you type that text right into the console, without the dollar character. For more
information on the meaning of the “dollar prompt”, check out What is the origin of the
UNIX $ (dollar) prompt? on Super User.

Shortcuts require a prefix key to be sent before hand. Sections describing similar
keyboard commands typically will appear in a table. For example:

Shortcut Action
Prefix + d Detach client from session.

How this book is structured
First, anything involving installation and hard technical details are in the Appendix. A
lot of books tend to use installation instructions as filler in the early chapters. For me
it’s more of not wanting to confuse complete beginners.

For special circumstances like tmux on Windows 10, I decided that adding screenshots
is best since many readers may be more comfortable with a visual approach.

Thinking Tmux goes over what tmux does and how it relates to the GUI desktops
already on our computers. You’ll understand the big picture of what tmux is and how it
can make your life easier.

https://github.com/tony/tmux-config
https://github.com/tony/libtmux
https://github.com/tony/tmuxp
https://twitter.com/TheTaoOfTmux
https://twitter.com/intent/tweet?text=I%27m%20reading%20The%20Tao%20of%20tmux%20online%20at&url=https://leanpub.com/the-tao-of-tmux/read&hashtags=tmux&via=TheTaoOfTmux
https://superuser.com/questions/57575/what-is-the-origin-of-the-unix-dollar-prompt
http://man.openbsd.org/OpenBSD-current/man1/tmux.1

Terminal Fundamentals shows the text-based environments you’ll be dealing with. It’s
great for those new to tmux, but also presents some technical background for developers
who learned the ropes through examples and osmosis. At the end of this section you’ll
be more confident and secure using the essential components underpinning a modern
terminal environment.

Practical Usage covers common bread and butter uses for you to start using tmux
immediately.

Server gives life to the unseen workhorse that powers tmux behind the scenes. You’ll
think of tmux differently, and may be impressed that a client-server architecture could be
presented so seamlessly to end users.

Sessions are the containers holding windows. You’ll learn what sessions are and how
they helps organize your workspace in the terminal. You’ll learn how to manipulate and
rename and traverse sessions.

Windows are what you see when tmux is open in front of you. You’ll learn how to
rename and move windows.

Panes are a terminal in a terminal. This is where you get to work and do your magic!
You’ll learn how to create, delete, move between, and resize panes.

Configuration discusses customization of tmux and set the foundation for how to think
about .tmux.conf so you can customize your own.

Status bar is devoted singularly to the customization of the status line in tmux. You’ll
even learn how to show CPU and memory usage via the status line.

Scripting tmux goes into command shorthands, as well as the advanced and powerful
Targets and Formats concepts.

Technical Stuff is a glimpse at tmux source code and how it works under the hood. You
may learn enough to be able to impress friends who currently use tmux daily. If you like
programming on Unix-like systems, this one is for you.

Tips and Tricks wraps up with a whirlwind of useful terminal tutorials you can use in
conjunction with tmux to improve day to day development and administration
experience.

Cheatsheets are organized tables of commands, shortcuts and formats grouped by
section.

Donations

If you enjoy my learning material or my open source software projects, please consider
donating. Donations go directly to me and my current and future open source projects
and are not squandered. Visit http://www.git-pull.com/support.html for ways to
contribute.

Available Formats
This book is available for sale on Leanpub and Amazon Kindle.

It’s also available to read for free on the web.

Errata
This is my first book. I am human and make mistakes.

If you find errors in this book please submit them to me at tao.of.tmux <AT> nospam git-
pull.com.

You can also submit a pull request via https://github.com/git-pull/tao-of-tmux.

I will update digital versions of the book with the changes where applicable.

Thanks
Thanks to the contributors that helped me spot errors in this book.

Some copy, particularly in cheatsheets comes straight out of the manual of tmux, which
is ISC-licensed.

Book Updates and tmux changes
This book was written for tmux 2.3, released September 2016.

As of January 2017, it’s pretty trivial for me to push out minor changes to this book on
Leanpub and Amazon.

tmux does intermittently receive updates. I’ve accommodated many of them over the past
5 or so years on my personal configurations as well as software libraries which are set
with continuous integration tests against multiple tmux versions. Sometimes publishers
overplay version numbers to make it seem as if its worth striking a new edition of a
book over it. It’s effective for them, but I’d rather be honest to my readership.

You can refer to tmux’s CHANGES for a list of changes between versions.

http://www.git-pull.com/support.html
https://leanpub.com/the-tao-of-tmux
http://amzn.to/2gPfRhC
https://leanpub.com/the-tao-of-tmux/read
https://github.com/git-pull/tao-of-tmux
https://github.com/git-pull/tao-of-tmux/graphs/contributors
https://github.com/tmux/tmux/blob/master/COPYING
https://github.com/tony/libtmux/blob/master/.travis.yml
https://github.com/tmux/tmux/blob/master/CHANGES

1. Thinking in tmux

In the world of modern computing, user interaction has 2 realms:

1. The text realm
2. The graphical realm

tmux lives in the graphical realm in which fixed-width fonts appear in a rectangular grid
in a window, like in a terminal from the 1980s.

Window manager for the terminal
tmux is to the console what a desktop is to gui apps. It’s a world inside the text
dimension. Inside tmux you can:

multitask inside the terminal, run multiple applications
have multiple command lines (pane) in the same window
have multiple windows (window) in the workspace (session)

switch between multiple workspaces, like virtual desktops

tmux “Desktop”-Speak Plain English
Multiplexer Multi-tasking Multiple applications
 simultaneously.
Session Desktop Applications are visible here
Window Virtual Desktop or A desktop that stores it own screen
 applications screen
Pane Application Performs operations

Just like in a graphical desktop environment, they throw in a clock too.

top-left: KDE. top-right: Windows 10. center: macOS Sierra. bottom: tmux 2.3
default status bar.

Multitasking
tmux allows you to keep multiple terminals running on the same screen.

(After all, that’s where the abbreviation “tmux” comes from - Terminal Multiplexer.)

In addition multiple terminals on one screen, tmux allows you to create and link multiple
“windows”, all within the confines of the tmux session you attached.

Even better, you can copy and paste as well as scroll. No requirement for graphics
either, so you have full power even if you’re SSH’ing or on a system without X.

Here are a few common scenarios:

Running tail -F /var/log/apache2/error.log in a pane to get a live stream
of the latest system events.
Running a file watcher like watchman, gulp-watch, grunt-watch, guard or entr. On
file change, you could do stuff like:

rebuild LESS or SASS files, minimize CSS and/or assets and static files
lint with linters like cpplint, Cppcheck, rubocop, ESLint, or Flake8
rebuild with make or ninja

https://github.com/facebook/watchman
https://github.com/gulpjs/gulp/blob/master/docs/API.md#gulpwatchglob-opts-tasks
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/guard/guard
http://entrproject.org/
https://github.com/google/styleguide/tree/gh-pages/cpplint
http://cppcheck.sourceforge.net/
https://github.com/bbatsov/rubocop
http://eslint.org/
http://flake8.pycqa.org/en/latest/
https://ninja-build.org/

reload your Express server
run any other custom command of your liking

Keeping a text editor like vim, emacs, pico, nano, etc. open in a main pane, while
leaving two other open for CLI commands and building via make or ninja.

http://expressjs.com/

vim + building a C++ project w/ CMake + Ninja using entr to rebuild on file changes, lldb bottom right

With tmux, you quickly have the makings of an IDE! And on your terms.

Keep your applications running in the background
Sometimes GUI applications will have an option to be sidelined to the system tray to run
in the background. The application is out of the sight, but events and notifications can
still come in and the app can be instantly brought to the foreground.

In tmux, a similar concept exists where we can “detach” a tmux session.

Detaching can be especially useful on:

Local machines. You start all your normal terminal applications within a tmux
session, you restart X. Instead of losing your processes as your normally would if
you were using an X terminal like xterm or konsole, you’d be able to tmux attach
after and find all processes that were alive and kicking all along. :)
Remote SSH applications and workspaces you run in tmux. You can detach your
tmux workspace at work before you clock out, then next morning reattach your
session. Ahhh. Refreshing. :)

Those servers you rarely log into. It could be that cloud instance you have that you
log into 9 months later, and as a reflex, tmux attach to see if there we anything on
there. And boom, you’re back in a session that’s 9 months old. It’s like a hack to
restore your short term memory.

Powerful combos
Chatting on irssi or weechat, one of the “classic combos”, along with a bitlbee server to
manage AIM, MSN, Google Talk, Jabber, ICQ, even Twitter. Then you can detach your
IRC and “idle” in your favorite channels, stay online on instant messengers, and get back
to your messages when you return.

https://irssi.org/
https://weechat.org/
https://www.bitlbee.org

Chatting on weechat w/ tmux

Some keep development services running in a session. Hearty emphasis on
development, you probably will want to daemonize and wrap your production web
applications using a tool like supervisor with its own safe environmental settings.

You can also have multiple users attach their clients to the same sessions, which is great
for pair programming. If you were in the same session, you and the other person would
see the same thing, share the same input, and the same active window and pane.

The above are just examples, but any general workspace you’d normally use in a
terminal for any task can gain the benefit of you being able to persist it! That includes
projects or repetitive efforts you’d multitask on. The tips and tricks section will dive
into specific flows you can start using today.

http://supervisord.org/

Do tmux sessions persist after a system restart?
Unfortunately not. A restart will kill the tmux server and any processes running within it.

Thankfully, the modern server can stay online for a long time. Even for consumer
laptops and PC’s with a day or two uptime, having tmux persist tasks for organizational
purposes is satisfactory to run it.

It comes as a disappointment because some are interested in the idea of being able to
persist a tree of processes after restart. That goes out of scope of what tmux is meant to
do.

For tasks you repeat often, you can always use a tool like tmuxp, tmuxinator or teamocil
to resume common sessions.

In addition to session managers, tmux-resurrect is a tool that attempts to preserve
running programs, working directories and so on within tmux. The benefit with tmux-
resurrect is there’s no JSON/YAML config needed.

https://github.com/tony/tmuxp
https://github.com/tmuxinator/tmuxinator
https://github.com/remiprev/teamocil
https://github.com/tmux-plugins/tmux-resurrect

2. Terminal fundamentals

Before getting into tmux, a few fundamentals of the command line should be reviewed.
Often, we’re so used to using these out of street smarts and muscle memory a great deal
of us never see the relation of where these tools stand next to each other.

Seasoned developers are familiar with zsh, Bash, iTerm2, konsole, /dev/tty, shell
scripting, and so on. If you use tmux, you’ll be around these all the time, regardless of
whether you’re in a GUI on a local machine or SSH’ing into a remote server.

If you want to learn more about how processes and TTY’s work at the kernel level (data
structures and all) the book The Design and Implementation of the FreeBSD Operating
System (2nd Edition) by Marshall Kirk McKusick is nice. In particular, Chapter 4,
Process Management and Section 8.6, Terminal Handling. The TTY demystified by
Linus Åkesson (available online) dives into the TTY and is a good read as well.

Much more exists to glean off the history of Unix, 4.2 BSD, etc. I probably could have a
coffee / tea with you discussing it for hours. You could look at it from multiple
perpsectives (The C Language, anything from the Unix/BSD lineage, etc.) and some
clever fellow would likely chime in mentioning Linux, GNU and so on. It’s like Game of
Thrones, there’s multiple story arcs you can follow, some of which intersect. A few
good resources would be A Narrative History of BSD by Marshall Kirk McKusick
(Video), The UNIX Operating System by AT&T (Video), Early days of Unix and design
of sh (Video) by Stephen R. Bourne.

POSIX stuff
Operating systems like macOS (formerly OS X), Linux and the BSD’s all follow
something similar to the POSIX specification in terms of how they square away various
responsibilities and interfaces of the operating system. They’re categorized as “Mostly
POSIX-compliant”.

In daily life we often break compatibility with POSIX standards for reasons of sheer
practicality. Operating systems like macOS will drop you right into Bash. make(1),
which is also a POSIX standard, is in actuality GNU Make on macOS by default. Did
you know that as of September 2016 POSIX Make has no conditionals?

I’m not saying this to take a run at purists, as someone who tries to remain as compatible
as possible in my scripting, it gets hard to do simple things after a while. On FreeBSD,
the default Make (PMake) uses dots between conditionals:

http://amzn.to/2iTmVyv
http://www.linusakesson.net/programming/tty/index.php
https://www.youtube.com/watch?v=bVSXXeiFLgk
https://www.youtube.com/watch?v=tc4ROCJYbm0
https://www.youtube.com/watch?v=FI_bZhV7wpI
https://en.wikipedia.org/wiki/POSIX#Mostly_POSIX-compliant
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
https://www.gnu.org/software/make/
https://www.freebsd.org/doc/en_US.ISO8859-1/books/pmake/

.IF

.ENDIF

But on most Linux systems and macOS, GNU Make is the default so they get to do:

IF

ENDIF

This is one of the many tiny inconsistencies span across operating systems, their
userlands, their binary / library / include paths and adherence / interpretation of the
Filesystem Hierarchy Standard or whether they follow their own.

Find your path

Most operating systems inspired by Unix (BSD’s, macOS, Linux) will allow you to get
the info of your systems’ filesystem hierarchy via hier(7).

$ man hier

These differences add up so much a good deal of software infrastructure out there exists
solely to abstract the differences across them. For example: CMake, Autotools, SFML,
SDL2, interpreted programming languages and their standard libraries are dedicated to
normalizing the banal differences across BSD-derivatives and Linux distributions.
Many, many #ifdef preprocessor directives in your C and C++ applications. You want
open source, you get choice, but be aware there’s a lot of upkeep cost in keeping these
upstream projects (and even your personal ones) compatible. But I digress, back to
terminal stuff.

Why does it matter, why bring it up? You’ll see this kind of stuff everywhere. So let’s
separate the common suspects into their respective categories.

Terminal interface
The terminal interface can be best introduced by citing official specification laying out
its technical properties, interfaces and responsibilities. This can be viewed in its
POSIX specification.

That’s your TTY’s, including text terminals and X sessions that live within them. On
Linux / BSD systems, you can switch between sessions via <ctrl-alt-F1> through
<ctrl-alt-F12>.

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://www.freebsd.org/cgi/man.cgi?hier(7)
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html

Terminal emulators
GUI Terminals: Terminal.app, iterm, iterm2, konsole, lxterm, xfce4-terminal, rxvt-
unicode, xterm, roxterm, gnome terminal, cmd.exe + bash.exe

Shell languages
Shell languages are programming languages.

Sure you may not compile the code into binaries with gcc or clang. And there may not
be a shiny npm for them. But a language is a language.

Each shell interpreter has its own language features. Like with shells themselves, many
will resemble the POSIX shell language and strive to be compatible with it. Zsh and
Bash should be able to understand POSIX shell script you write, but not the other way
around (we will cover that in shell interpreters).

The top of .sh files shebang statement which can invoke shellscripts in different
dialects.

Zsh scripts are implemented by the Zsh shell interpreter, Bash scripts by Bash. But the
languages are not as closely regulated and standardized as say, C++’s standards
committee workgroups or python’s PEPs. Bash and Zsh take features from Korn and C
Shell’s languages, but without all the ceremony and bureaucracy that other languages
entail.

Shell interpreters (Shells)
Examples: POSIX sh, Bash, Zsh, csh, tcsh, ksh, fish

Shell interpreters implement the shell language. They are a layer on top of the kernel
and are what allow you to, interactively, run commands and applications inside them.

As of October 2016 the latest POSIX specification covers in technical detail the
responsibilities of the shell.

When it comes to shells and operating systems: each distro or group does their own darn
thing. On most Linux distributions and macOS, you’ll typically be dropped into Bash.
That’s because it’s what Apple decided to use as a default shell for users.

On BSD you may be placed into use plain vanilla sh unless you specify otherwise
during the installation process. In Ubuntu, /bin/sh used to be bash (Bourne Again
Shell) but was replaced with dash (Debian Almquist Shell). So here you are thinking
“hmm, /bin/sh, probably just a plain old POSIX shell”, however, system startup
scripts on Ubuntu used to allow non-POSIX scripting via Bash. This is because
specialty shell languages like Bash, Zsh and so on add a lot of helpful and practical

https://gcc.gnu.org/
http://clang.llvm.org/
https://www.npmjs.com/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_01
https://en.wikipedia.org/wiki/Shebang_(Unix)
http://www.open-std.org/jtc1/sc22/wg21/
https://www.python.org/dev/peps/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sh.html
https://en.wikipedia.org/wiki/Bourne_shell
https://wiki.ubuntu.com/DashAsBinSh
https://en.wikipedia.org/wiki/Almquist_shell

features may work on one interpreter, but not another. For instance, you would need to
install the interpreter across all your systems if you rely on Zsh-specialized scripting. If
you conformed with POSIX shell scripting, your scripting would have the highest level
of compatibility, at the cost of being more verbose.

Recent versions of macOS include Zsh by default. Linux distributions typically require
you to install it via package manager and installs it to /usr/bin/zsh. BSD systems
build it via the port system, pkg(8) on FreeBSD or pkg_add(1) on OpenBSD and it
will install to /usr/local/bin/zsh.

It’s fun to experiment with different shells. On many systems you can use chsh -s to
update the default shell for a user.

The other thing to mention is that in order for chsh -s to work you typically need to
have it added to /etc/shells.

It’s about context
To wrap it up, you’re going to hear people talking about shells all the time. Context is
key. It could be:

A generic way to refer to any terminal you have open. “Type $ top into your shell
and see what happens.”, (Press q to quit.)
A server they have to log into. Before the era of the cloud, it would be popular for
small hosts to sell “C Shells” with root access.
A shell within a tmux pane.
If scripting is mentioned, it is likely either the script itself, the scripting issue at
hand or something about the shell language.

But overall, once you get out of this chapter, go back to doing what you’re doing, if shell
is what people say and they understand it, use it. The backing you got here should make
you more confident in yourself. It’s an ongoing battle these days to keep street smarts we
pick up with book smarts.

https://www.freebsd.org/cgi/man.cgi?query=pkg&apropos=0&sektion=0&manpath=FreeBSD+10.3-RELEASE+and+Ports&arch=default&format=html
http://man.openbsd.org/pkg_add.1
https://en.wikipedia.org/wiki/Chsh
https://bash.cyberciti.biz/guide//etc/shells

3. Practical Usage

This is the easiest part, open up your terminal and type tmux, hit enter.

$ tmux

You’re in tmux.

The prefix key
The prefix is how we send commands into tmux. With this, we can split windows, move
windows, switch windows, switch sessions, send in custom commands, you name it.

And it’s a hump we have to get over.

It’s kind of like Street Fighter. In this video game the player inputs a combination of
buttons in sequence to perform flying spinning kicks and shoot fireballs; sweet. As the
player grows more accustomed with the combos, they begin to repeat moves by intuition
since they grow muscle memory.

Without understanding how to send command sequences to tmux via the prefix key,
you’ll pretty much be dead in the water.

Key sequences will come up later if you use Vim, Emacs or other TUI (Terminal User
Interface) applications. If you haven’t internalized the concept, let’s do it now. If you
already have done similar command sequences before in TUI/GUI applications, that’ll
come in handy.

When you memorize a key combo it’s one less time you’ll be moving your hand away
from the keyboard to grab your mouse. You can focus your short term memory on getting
stuff done, that means less mistakes.

https://en.wikipedia.org/wiki/Street_Fighter

Coming from GNU Screen?
Your tmux prefix key can be set via your tmux configuration later on! In your
~/.tmux.conf file, set the prefix option:

set-option -g prefix C-a

This will set the prefix key to screen(1)’s (another terminal multiplexer’s) prefix key.

The default leader prefix is <Ctrl-b>. That’s holding down the control key, then b.

Sending tmux commands
Practice:

1. Press control key down, and hold it.
2. Press b, and hold it.
3. Release both keys at the same time.

That’s all it takes. Now let’s try something:

<Ctrl-b> d. So,

1. Press control key down, and hold it.
2. Press b, and hold it.
3. Release both keys at the same time.
4. Hit d!

You’ve sent tmux your first command, and you’re now outside of tmux!

You’ve detached the tmux session you were in.

Session persistence and the server model
If you use Linux or similar system, you’ve likely brushed through Job Control, such as
fg(1), jobs(1) before. tmux behavior feels similar, it feels like you ran <ctrl-z>
except technically you were in a “job” all along, you were just using a client to view it.

Another way of understanding it: <Ctrl-b> d closed the client connection, therefore
‘detached’ from the session.

https://en.wikipedia.org/wiki/Job_control_(Unix)
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/fg.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/jobs.html

Your tmux client disconnected from the server instance. The session however is still
running in the background.

It’s all commands
Multiple roads can lead you to the same behavior. Commands are what tmux uses to
define instructions for setting options, resizing, renaming, traversing, switching modes,
copying and pasting and so forth.

Configs are the same as automatically running commands via $ tmux command.
Internal tmux commands via Prefix + : prompt.
Settings defined in your configuration can also set shortcuts which can execute
commands via keybindings via bind-key.
Commands called from CLI via $ tmux cmd
To pull it all together, source code files are prefixed cmd-.

4. Server

Your server holds sessions and the windows and Panes within them.

What happens in tmux is you are connected via a socket connection to a server. What
you see presented to you in your shell is merely a client connection. In this chapter, we
go into the one of the secret sauces that allow your terminal applications to persist for
months or even years if you want to.

What? tmux is a server?
Often when “server” is mentioned what comes to mind for many may be rackmounted
hardware, to others it may be software running daemonized on a server and managed
through a utility like upstart, supervisor and so on.

Unlike web or database software, tmux doesn’t require specialized configuration
settings or creating a service entry to start things.

tmux uses a client-server model, but the server is forked to the background for you.

Zero config needed
You don’t notice it, but when you use tmux normally, a server is launched and being
connected via a client.

tmux is so streamlined the book could continue to explain usage and not even mention
servers. But I’d rather you have a solid understanding that while tmux feels like magic,

it’s utilitarian first and foremost. One cannot deny it’s exquisitely executed from a user
experience standpoint.

How is it utilitarian? We’ll go into it more in future chapters where we dive into
Formats, Targets and tools such as libtmux that I made which utilize these features.

It surprises some because servers often beget a setup process. But servers being
involved doesn’t necessarily entail hours of configuration on each machine you run on.
There’s no setup.

When people think server, they think pain. It invokes an image of digging around /etc/
for configuration files and flipping settings on and off just to get basic systems online.
But not with tmux. It’s a server, but in the good way.

Stayin’ alive
The server part of tmux is how your sessions are able to stay alive even after your client
is detached.

You can detach a tmux session from an SSH server and reconnect at a later time. You
can detach a tmux session, stop your X server in Linux/BSD, and reattach your tmux
session in a TTY or new X server.

The tmux server won’t go away until all sessions are closed first.

Servers hold sessions
One server can contain one or multiple sessions.

Recurring usage of tmux after a server already exist will create a new session inside that
server.

Advanced: Multiple servers
tmux is nimble. If you want to use a separate server, pass in the -L flag to any
command.

tmux -L moo - start a new tmux server + session if non-exists under the socket name
“moo”

tmux -L moo attach try to re-attach to session if one exists

https://github.com/tony/libtmux

How servers are “named”
The default name for the server is default, which is stored as a socket in /tmp. The
default directory for storing this can be overridden via setting the TMUX_TMPDIR
environment variable.

So something like:

$ export TMUX_TMPDIR=$HOME
$ tmux

Will give you a tmux directory created within your $HOME folder. On OS X, your home
folder will probably be something like /Users/yourusername. On other systems it may
be /home/yourusername. If you want to find out, type echo $HOME.

Clients
Servers will have clients (you) connecting to them.

When you connect to a session and see windows and panes, it’s a client connection into
tmux.

You can retrieve a list of active client connections via:

$ tmux list-clients

There commands in practice are rather rare. As well as the other list- commands for
that matter. But they are part of the tools that make tmux highly scriptable should you
want to get creative. You can learn more about that in formats.

Clipboard
tmux clients wield a powerful clipboard feature you can use to copy and paste across
sessions, windows and panes.

Much like vi, tmux handles clipboard as a mode (or a state) which a pane is temporarily
placed in while text can be copied.

The default key to enter copy mode is Prefix + [.

1. From within, use [space] to enter copy mode.
2. Use the arrow keys to adjust the text to be selected.
3. Press [enter] to copy the selected text.

The default key to paste the text copied is Prefix +].

Vi-like copy-paste

In your config, put this:

Vi copypaste mode
set-window-option -g mode-keys vi
bind-key -t vi-copy 'v' begin-selection
bind-key -t vi-copy 'y' copy-selection

5. Sessions

Welcome to the session, the highest level entity residing in the server instance. Server
instances are forked to the background upon starting a fresh instance and reconnected to
when reattaching sessions. Your interaction with tmux will have at least one session
running.

A session holds one or more windows.

The active window will have a * symbol next to it.

The first window, ID 1, titled “manuscript” is active. The second window, ID 2, titled zsh.

Creating a session
The simplest command to create a new session is just typing tmux:

$ tmux

The $ tmux application without any commands is equivalent to $ tmux new-session.
Nifty!

By default, your session name will be given a number. Which isn’t too descriptive. What
would be better is:

$ tmux new-session -s'my rails project'

Switching sessions within tmux
Some acquire the habit of detaching their tmux client and reattaching via tmux att -t
session_name. Thankfully, you have the ability to switch to session from within tmux!

Shortcut Action
Prefix + (Switch the attached client to the previous session.
Prefix +) Switch the attached client to the next session.
Prefix + L Switch the attached client back to the last
 session.
Prefix + s Select a new session for the attached client
 interactively.

Prefix + s will allow you to switch between sessions within the same tmux client.

This command name can be a bit confusing. switch-client will allow you to traverse
between sessions in the server.

Example usage:

$ tmux switch-client -t dev

This will switch to a session named “dev”, if it exists. No need to enter the target-
client if you’re in a client already.

Naming sessions
Sometimes the default session name given by tmux isn’t descriptive enough. It only takes
a few seconds to update it.

You can name it whatever you want. Typically if I’m working on multiple web projects
in one session I’ll name it “web”. If I’m assigning one software project to a single
session, I’ll name it after the software project. You’ll likely develop your own naming
conventions, but pretty much anything is more descriptive than the default.

Renaming a session ‘zsh’ to ‘renamed’

If you don’t name your sessions, it’ll be difficult to keep track of what is inside that
session from the outside. Sometimes you may forget you already have a project opened
that is a few days old and you can just re-attach or switch to that.

You can rename sessions from within tmux with Prefix + $. The status bar will be
temporarily altered into a text field to allow altering the session name.

Through command line, you can try:

$ tmux rename-session -t1 "my session"

Does my session exist?
If you’re scripting tmux, you will want to be able to see if a session already exists. has-
session will return a 0 exit code if the session exists, but will report a 1 exit code and
print an error if a session does not exist.

$ tmux has-session -t1

It’s assume the session “1” exists, it’ll just return 0 with no output.

But if it doesn’t, you’ll get something like this in a response:

$ tmux has-session -t1
> can't find session 4

To try it in a shell script:

if tmux has-session -t0 ; then
 echo "has session 0"
fi

https://en.wikipedia.org/wiki/Exit_status

6. Windows

Windows hold panes. They reside within a session.

They also have layouts, which can be one of many preset dimensions or a custom one
done through pane resizing.

You can see the current open windows through the status bar.

Naming windows
Just like with sessions, windows can have names. Labelling them helps keep track of
what you’re doing inside them.

Renaming

When inside tmux, the most common way of doing that is Prefix + ,. This will open a
prompt in the tmux status line where you can alter the name of the current window.

Traversing Windows
Prefix + 1, Prefix + 2, and so on… will get you to navigate to windows by their
index.

Prompt for a window index (useful for indexes greater than 9) with Prefix + '.

POWER MOVE: Search + Traverse Windows for Text
You can forward to a window with a match of a text string by doing Prefix + f.

You can move to the last selected window with Prefix + l.

You can bring up a list of current windows with Prefix + w. The benefit of this is it also
gives you some info on what’s inside the window. Helpful if you’re juggling around a lot
of things!

Moving Windows
$ tmux move-window can be used to move windows.

The accepted arguments are -s (the window you are moving) and -t, where you are
moving the window to.

You can also use $ tmux movew for short.

Example: move the current window to number 2:

$ tmux movew -t2

Example: move window 2 to window 1:

$ tmux movew -s2 -t1

The shortcut to prompt for an index to move the current window to is Prefix + ..

Layouts
Prefix + space switches window layouts. These are preset configurations which
handle proportions of panes.

As of tmux 2.3, the supported layouts are:

Specific touch-ups can be done via resizing panes.

To reset the proportions of the layout (such as after splitting or resizing panes), you have
to run $ tmux select-layout again for the layout.

This is different behavior than some tiling window managers. awesome and xmonad, for
instance, automatically handle proportions upon new items being added to their layouts.

To allow easily resetting to a sensible layout across machines and terminal dimensions,
you can try this in your config:

bind m set-window-option main-pane-height 60\; select-layout main-horizontal

This allows you to set a main-horizontal layout and automatically set the bottom
panes proportionally on the bottom everytime you do Prefix + m.

Layouts can also be totally custom. To get the custom layout snippet for your current
window, try this:

$ tmux lsw -F "#{window_active} #{window_layout}" | grep "^1" | cut -d " " -\
f2

To apply that layout, do this:

$ tmux lsw -F "#{window_active} #{window_layout}" | grep "^1" | cut -d " " -\
f2
> 5aed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,88x19,88,60,2}]

resize your panes or try doing this in another window to see the outcome
$ tmux select-layout "5aed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,\
88x19,88,60,2}]"

Closing windows
From inside the current window, try this:

$ tmux kill-window

Another thing, when scripting or trying to kill the window from outside, use a target of
the window index:

$ tmux kill-window -t2

You can easily find the window index through the middle section of the status line.

https://en.wikipedia.org/wiki/Tiling_window_manager
https://awesomewm.org/
http://xmonad.org/

7. Panes

Panes are pseudoterminals that contain your shell (e.g. Bash, Zsh). They reside within a
window.

Creating new panes
To create a new panes, you can split-window from within the current window and
pane you are in.

Shortcut Action
Prefix + % split-window -h (split horizontally)
Prefix + " split-window -v (split vertically)

https://en.wikipedia.org/wiki/Pseudoterminal

Example usage:

Create pane horizontally, $HOME directory, 50% width of current pane
$ tmux split-window -h -c $HOME -p 50 vim

create new pane, split vertically with 75% height
tmux split-window -p 75

Traversing Panes
Shortcut Action
Prefix + ; Move to the previously active pane.
Prefix + Up / Change to the pane above, below,
Down / Left / to the left, or to the
Right the right of the current pane.
Prefix + o Select the next pane in the current window.

Movin around vimtuitively

If you like vim (hjkl) keybindings, add these to your config:

hjkl pane traversal
bind h select-pane -L
bind j select-pane -D
bind k select-pane -U
bind l select-pane -R

Zoom in
To zoom in on a pane, navigate it and do Prefix + z.

You can use any pane traversal to unzoom and move a pane at the same time.

Resizing panes
Panes can be resized within windows.

Another technique that resizes panes is window layouts. The difference is a window
layout switch the proportions and order of the panes. Resizing the panes target a specific
pane inside that window.

Resizing a pane in a specific layout may subsequently resize that whole row.

Shortcut Action
Prefix M-Up resize-pane -U 5
Prefix M-Down resize-pane -D 5
Prefix M-Left resize-pane -L 5
Prefix M-Right resize-pane -R 5
Prefix C-Up resize-pane -U
Prefix C-Down resize-pane -D
Prefix C-Left resize-pane -L

Prefix C-Right resize-pane -R

Outputting pane to a file
You can output the display of a pane to a file.

$ tmux pipe-pane -o 'cat >>~/output.#I-#P'

The #I and #P are formats for window index and pane index, so the file created is
unique. Clever!

8. Configuration

Configuration of tmux is managed through .tmux.conf in your $HOME directory. The
paths ~/.tmux.conf and $HOME/.tmux.conf should work on OS X, Linux and BSD.

For a sample config, I maintain a pretty decked out one at https://github.com/tony/tmux-
config.

Custom Configs

You can specify your config via the -f command. Like this:

$ tmux -f path/to/config.conf

Note that if a tmux server is already running in the background and you want to test a
fresh config, you must either shut down the rest of the tmux sessions or use a different
socket name. Like this:

$ tmux -f path/to/config.conf -Ltesting_tmux

And you can treat everything like normal, just keep passing -Ltesting_tmux (or
whatever socket name you feel like testing configs with) for reuse.

$ tmux -Ltesting_tmux attach

Updating configs in current sessions
You can apply config files in live tmux sessions. Compare this to source or “dot” in the
POSIX standard.

Prefix + : will open up the tmux prompt, then type:

:source /path/to/config.conf

And hit return.

$ tmux source-file /path/to/config.conf can also achieve the same result via
command line.

https://github.com/tony/tmux-config
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#dot

Easy reloadin’

Even better, often you will keep your default tmux config stored in $HOME/.tmux.conf.
So what can you do? You can bind-key to source-file ~/.tmux.conf:

bind r source ~/.tmux.conf

You can also have it give you a confirmation afterwards:

bind r source ~/.tmux.conf\; display "~/.tmux.conf sourced!"

Now you can type prefix + r to get the config to reload.

How configs work
The tmux configuration is processed just like run commands in a ~/.zshrc or
~/.bashrc file. bind r source ~/.tmux.conf in the tmux configuration is the same
as $ tmux bind r source ~/.tmux.conf.

You could always create a shell script that prefixes tmux in front of every entry and run
that file on fresh servers. The result is the same. Same goes if you manually type in $
tmux set-option and $ tmux bind-key commands into any terminal (in or outside
tmux).

This in .tmux.conf:

bind-key a send-prefix

Is the same as having no .tmux.conf (or $ tmux -f/dev/null) and typing:

$ tmux bind-key a send-prefix

Common options
Tweak wait time between key sequences:

set -s escape-time 0

-s sets the option server wide.

Set the starting number (base index) for windows:

set -g base-index 1

https://en.wikipedia.org/wiki/Run_commands

Will make newly created windows start at 1 and count upwards.

Customize your prefix key:

bind-key a send-prefix

Prompt for window name upon creating a new window, Prefix + C (capital C):

bind-key C command-prompt -p "Name of new window: " "new-window -n '%%'"

For more ideas, I have a .tmux.conf you can copy-paste from on the internet at
https://github.com/tony/tmux-config/blob/master/.tmux.conf.

In the next chapter, we will go into configuring the status line.

https://github.com/tony/tmux-config/blob/master/.tmux.conf

9. Status bar

The status bar, or status line lies in the bottom of the screen. It is customizable through
the .tmux.conf config and live through set-option.

Finding your current status line settings

$ tmux show-options -g | grep status

The status line is compromised of 3 sections. The status fields on either side of the
status line are customizable. The center field is a window list.

The status-left and status-right option can be configured to accept a variety of
variables.

The symbology behind windows
The center part of the status line contains a list of windows, each of which can be
followed by a symbol:

Symbol Meaning
* Denotes the current window.
- Marks the last window (previously selected).
Window is monitored and activity has been detected.
! A bell has occurred in the window.

~ The window has been silent for the monitor-silence
interval.

M The window contains the marked pane.
Z The window’s active pane is zoomed.

Date and time
status-left and status-right accepts variables for the date.

This happens via piping the status templates through format_expand_time in
format.c, which routes right into strftime(3) from time.h.

https://github.com/tmux/tmux/blob/2.3/format.c#L868
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strftime.html

For a full list of the variables you can use, view the documentation for strftime(3).
You find that in the link above, or through your manpages by typing $ man strftime.

Shell command output
You can also call applications such as tmux-mem-cpu-load and conky, as well as
powerline.

Styling
You can use [bg=color] and [fg=color] to adjust the text color and background
within for status line text.

Prompt colors
The benefit of wrapping your around this type of styling is you will see it message-
command-style, message style and so on.

Let’s try this:

$ tmux set-option -ag message-style fg=yellow,blink\; set-option -ag message\
-style bg=black

Top: default scheme for prompt. Bottom: newly-styled.

Tweaking your status bar, live!
So you want to customize your tmux status line before you write the changes to your
config file.

First start by grabbing your current status line section you want to edit, for instance:

$ tmux show-options -g status-left
> status-left "[#S] "
$ tmux show-options -g status-right
> status-right " "#{=21:pane_title}" %H:%M %d-%b-%y"

Also, you can try to snip the variable off with | cut -d' ' -f2-:

$ tmux show-options -g status-left | cut -d' ' -f2-
> "[#S] "
$ tmux show-options -g status-right | cut -d' ' -f2-
> " "#{=21:pane_title}" %H:%M %d-%b-%y"

Turn your status line off
Turn it off:

https://github.com/thewtex/tmux-mem-cpu-load
https://github.com/brndnmtthws/conky

$ tmux set-option status off

Turn it on:

$ tmux set-option status on

Toggle it (regardless or current state):

$ tmux set-option status

Bind toggling status line to Prefix + q:

$ tmux bind-key q set-option status

Example: default config

status on
status-interval 15
status-justify left
status-keys vi
status-left "[#S] "
status-left-length 10
status-left-style default
status-position bottom
status-right " "#{=21:pane_title}" %H:%M %d-%b-%y"
status-right-length 40
status-right-style default
status-style fg=black,bg=green

Example: Dressed up

status on
status-interval 1
status-justify centre
status-keys vi
status-left "#[fg=green]#H #[fg=black]• #[fg=green,bright]#(uname -r | cut -\
c 1-6)#[default]"
status-left-length 20
status-left-style default
status-position bottom
status-right "#[fg=green,bg=default,bright]#(tmux-mem-cpu-load) #[fg=red,dim\
,bg=default]#(uptime | cut -f 4-5 -d " " | cut -f 1 -d ",") #[fg=white,bg=de\
fault]%a%l:%M:%S %p#[default] #[fg=blue]%Y-%m-%d"
status-right-length 140
status-right-style default
status-style fg=colour136,bg=colour235

Configs can print the output of an application. In this example, tmux-mem-cpu-load is
providing system statistics in the right side section of the status line.

In order to get tmux-mem-cpu-load built you have to install CMake and have a C++
compiler like clang or GCC.

On Ubuntu, Debian and Mint machines you can do this via $ sudo apt-get install
cmake build-essential. On macOS w/ brew via $ brew install cmake.

Source: https://github.com/tony/tmux-config

Example: Powerline
By far the most full-featured solution available for tmux status lines is powerline, which
heavily utilizes the shell command outputs to not only give direct system statistics, but to
also generate tmux-friendly styling alongside emoji-like glyphs.

To get these to work correctly, you have to set your fonts up to handle the powerline
symbols. The easiest way to use this is to install powerline fonts, which are a great

https://github.com/thewtex/tmux-mem-cpu-load
https://cmake.org/
http://clang.llvm.org/
https://gcc.gnu.org/
http://brew.sh/
https://github.com/tony/tmux-config
https://github.com/powerline/powerline/
https://github.com/powerline/fonts

collection of fixed width coder fonts which look great in terminal.

Installation instructions are on Read the Docs. For a better idea:

$ pip install --user powerline-status psutil

psutil is a cross-platform tool powerline uses to help gather system information.

The first option to get powerline working with tmux is sourcing powerline.conf from
your config, the only difficulty is nailing down the location across systems and python
versions. As a way to try getting powerline found across varying installations, I use if-
shell:

pip install --user git+git://github.com/powerline/powerline
if-shell 'test -f ~/.local/lib/python2.7/site-packages/powerline/bindings/tm\
ux/powerline.conf' 'source-file ~/.local/lib/python2.7/site-packages/powerli\
ne/bindings/tmux/powerline.conf'

[sudo] pip install git+git://github.com/powerline/powerline
if-shell 'test -f /usr/local/lib/python2.7/site-packages/powerline/bindings/\
tmux/powerline.conf' 'source-file /usr/local/lib/python2.7/site-packages/pow\
erline/bindings/tmux/powerline.conf'

[sudo] pip install git+git://github.com/powerline/powerline
if-shell 'test -f /usr/local/lib/python2.7/dist-packages/powerline/bindings/\
tmux/powerline.conf' 'source-file /usr/local/lib/python2.7/dist-packages/pow\
erline/bindings/tmux/powerline.conf'

python 3.4
if-shell 'test -f /usr/local/lib/python3.4/dist-packages/powerline/binding\
s/tmux/powerline.conf' 'source-file /usr/local/lib/python3.4/dist-packages/p\
owerline/bindings/tmux/powerline.conf'

python 3.5
if-shell 'test -f /usr/local/lib/python3.5/dist-packages/powerline/binding\
s/tmux/powerline.conf' 'source-file /usr/local/lib/python3.5/dist-packages/p\
owerline/bindings/tmux/powerline.conf'

python 3.6
if-shell 'test -f /usr/local/lib/python3.6/dist-packages/powerline/binding\
s/tmux/powerline.conf' 'source-file /usr/local/lib/python3.6/dist-packages/p\
owerline/bindings/tmux/powerline.conf'

A simpler method, after you assured properly adding python to your PATH, try adding
this to your config:

set -g status-interval 2
set -g status-right '#(powerline tmux right)'

Powerline requires a specialized font

https://powerline.readthedocs.io/en/latest/installation.html
https://github.com/giampaolo/psutil

10. Scripting tmux

The command line in tmux is one of those areas often uncharted.

I will use some tables in this chapter. Never get a feeling that you have to commit a table
to memory immediately. Not my intention, but every person’s way of using tmux is
slightly different, I want to be able to cover points most likely to benefit people’s flows.
Full tables are in the cheatsheets.

Aliases
tmux supports a variety of alias commands. So don’t feel you always have to type tmux
attach. Aliases, alongside fnmatch-style pattern commands make it very intuitive to
type those commands in a pinch.

Most of these aliases come to mind via intuition and are a lot friendlier than typing the
full hyphenated commands.

Command Alias
attach-session attach
break-pane breakp
capture-pane capturep
display-panes displayp
find-window findw
join-pane joinp
kill-pane killp
kill-window killw
last-pane lastp
last-window last
link-window linkw
list-panes lsp
list-windows lsw
move-pane movep
move-window movew
new-session new
new-window neww
next-layout nextl
next-window next
pipe-pane pipep

previous-layout prevl

previous-window prev
rename-window renamew
resize-pane resizep
respawn-pane respawnp
respawn-window respawnw
rotate-window rotatew
select-layout selectl
select-pane selectp
set-option set
set-window-option setw
show-options show
show-window-options showw
split-window splitw
swap-pane swapp
swap-window swapw
unlink-window unlinkw

If you already know the full name of the command, if you were to chop the hyphen (-)
from the command and add the first letter of the last word, you’d get the shortcut. e.g.
swap-window is swapw, split-window is splitw.

Pattern matching
tmux commands and arguments may all be accessed via fnmatch(3) patterns.

For instance, you don’t need to type $ tmux attach-session every time. First there’s
the alias of $ tmux attach, but in addition to that, you can pattern match $ tmux
attac, $ tmux att, $ tmux at and $ tmux a work as well.

Every tmux command has shorthands, let’s try this for $ tmux new-session:

$ tmux new-session

$ tmux new-sessio

...

$ tmux new-s

and so on, until:

$ tmux new-
ambiguous command: new-, could be: new-session, new-window

http://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

The limitation, as seen above, is command matches can collide. There are multiple
commands which begin with new-. So, if you wanted to use matches, $ tmux new-s for
a new session, or $ tmux new-w for a new window would be the most efficient way.
But the alias of $ tmux new for new session and $ tmux neww for new windows is
even better than the matching in that case.

Targets
If a command allows target specification, it’s usually done through -t.

Think of targets as tmux’s way of specifying a unique key in a relational database.

Entity Prefix Example
server n/a n/a, uses socket-name and socket-path
client n/a n/a, uses /dev/tty{p,s}[000-9999]
session $ $13
window @ @2313
pane % %5432

What I use to help me remember:

So sessions are represented by dollar signs ($) because they hold your projects
(ostensibly where you make money, or help someone else do it).

Windows are represented by the at sign (@). So windows are kind of like referencing /
messaging a user on a social networking website.

Panes are the fun one, represented by the percent sign (%), like the default prompt for
csh and tcsh. Hey, makes sense, since panes are pseudoterminals!

To give you an idea of the possibilities of where you can use targets, here are the
commands with you can use targets:

$ tmux attach-session [-t target-session]

$ tmux detach-client [-s target-session] [-t target-client]

$ tmux has-session [-t target-session]

$ tmux kill-session [-t target-session]

$ tmux list-clients [-t target-session]

$ tmux lock-client [-t target-client]

$ tmux lock-session [-t target-session]

$ tmux new-session [-t target-session]

https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/At_sign
https://en.wikipedia.org/wiki/C_shell
https://en.wikipedia.org/wiki/Tcsh

$ tmux refresh-client [-t target-client]

$ tmux rename-session [-t target-session]

$ tmux show-messages [-t target-client]

$ tmux suspend-client [-t target-client]

$ tmux switch-client [-c target-client] [-t target-session]

Formats
tmux provides a minimal template language and set of variables you can use to access
information about your tmux environment.

Formats are specified via the -F flag.

You know how template engines such as mustache, handlebars ERB in ruby, jinja2 in
python, twig in PHP and JSP in Java allow template variables? Formats are a similar
concept.

The amount of FORMATS (variables) made available by tmux has expanded greatly since
version 1.8. Some of the most commonly used formats as of tmux 2.3 are listed below.
See the appendix section on formats for a complete list.

Let’s try to output it:

$ tmux list-windows -F "#{window_id} #{window_name}"
> @0 zsh

Here’s a cool trick, list all panes with the x and y coordinates of the cursor position:

$ tmux list-panes -F "#{pane_id} #{pane_current_command} \
 #{pane_current_path} #{cursor_x},#{cursor_y}"
> %0 vim /Users/me/work/tao-of-tmux/manuscript 0,34
 %1 tmux /Users/me/work/tao-of-tmux/manuscript 0,17
 %2 man /Users/me/work/tao-of-tmux/manuscript 0,0

Panes
Variable name Description
cursor_x Cursor X position in pane
cursor_y Cursor Y position in pane
pane_active 1 if active pane
pane_current_command Current command if available
pane_current_path Current path if available
pane_dead 1 if pane is dead
pane_dead_status Exit status of process in dead pane

https://mustache.github.io/
http://handlebarsjs.com/
http://ruby-doc.org/stdlib-2.3.3/libdoc/erb/rdoc/ERB.html
http://jinja.pocoo.org/docs/dev/
http://twig.sensiolabs.org/
https://en.wikipedia.org/wiki/JavaServer_Pages

pane_height Height of pane
pane_id Unique pane ID (Alias: #D)
pane_in_mode If pane is in a mode
pane_index Index of pane (Alias: #P)
pane_pid PID of first process in pane
pane_start_command Command pane started with
pane_title Title of pane (Alias: #T)
pane_tty Pseudo terminal of pane
pane_width Width of pane

Sessions
Variable name Description
session_attached Number of clients session is attached to
session_activity Integer time of session last activity
session_created Integer time session created
session_last_attached Integer time session last attached
session_group Number of session group
session_grouped 1 if session in a group
session_height Height of session
session_id Unique session ID
session_many_attached 1 if multiple clients attached
session_name Name of session (Alias: #S)
session_width Width of session
session_windows Number of windows in session

Windows
Variable name Description
window_activity Integer time of window last activity
window_activity_flag 1 if window has activity
window_active 1 if window active
window_bell_flag 1 if window has bell
window_flags Window flags (Alias: #F)
window_height Height of window
window_id Unique window ID
window_index Index of window (Alias: #I)
window_layout Window layout description, ignoring zoomed
 window panes
window_linked 1 if window is linked across sessions
window_name Name of window (Alias: #W)
window_panes Number of panes in window

 zoomed window panes
window_width Width of window
window_zoomed_flag 1 if window is zoomed

Servers
Variable name Description
host Hostname of local host (alias: #H)
host_short Hostname of local host (no domain name)
 (alias: #h)
socket_path Server socket path
start_time Server start time
pid Server PID

11. Tips and Tricks

Read the tmux manual in style
$ man tmux is the command to load up the “man page” for tmux. You can do the same to
find instructions for just about any comment, here’s a couple of fun ones:

$ man less
$ man man

most(1) is a solid PAGER that drastically improves readability of manual pages by acting
as a syntax highlighter for them.

left: man, version 1.6c on macOS Sierra. right: MOST v5.0.0

So to get this working, you need to set your PAGER environmental variable to point to the
MOST binary. You can test is like this:

$ export PAGER=more man ls

If you found that you like most, you’ll probably want to make it your default manpage
reader. You can do this by setting an environmental variable in your “rc” (Run
Commands) for your shell. The location of the file depends on your shell. You can use $
echo $SHELL to find it on most shells). In Bash and zsh, these are kept in ~/.bashrc or
~/.zshrc, respectively:

export PAGER="most"

In my configurations, I often reuse configs and some machines may not have most
installed, so I will have my scripting only set PAGER if most is found:

#!/bin/sh

if command -v most > /dev/null 2>&1; then

https://en.wikipedia.org/wiki/Man_page
http://www.jedsoft.org/most/
http://pubs.opengroup.org/onlinepubs/9699919799//utilities/man.html
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Run_commands

 export PAGER="most"
fi

So save that to a file, let’s say ~/.dot-config/most.sh.

Then you can source is in via your main rc file.

source $HOME/.dot-config/most.sh

If you keep that pattern (or something close to it), you’re on your way to have a cross-
platform, modular dot config. If you need some inspiration you can check my public
permissively licensed config at https://github.com/tony/.dot-config. I document it pretty
well and welcome you to copy/paste from it too.

Log tailing
Not tmux specific, but powerful when used in tandem with it. You can run a follow (-f)
using tail(1). More modern versions of tail have the -F (capitalized) which checks for
file renames and rotation.

On OS X, you can do:

$ tail -F /var/log/system.log

and keep that open in a pane. It’s kind of like a Facebook newsfeed, except for
programmers and system administrators.

For monitoring logs multitail is a terminal friendly solution. It’d be an Inception
moment, because you’d be using a log multiplexer in a terminal multiplexer.

File watching
In my never ending conquest to get software projects working in symphony with code
changes, I’ve come to taste test many file watching applications and patterns. In an effort
to get that perfect feedback look upon files changing, I’ve gradually become the
internet’s unofficial connoisseur on them.

What this kind of application does is wait for a file to be updated, then executes a
custom command, like restarting a server, rebuilding an application, running tests, linters
and so on. It gives you as a developer instant feedback in the terminal and is one of
those things that can trick out a tmux workspace into an IDE-like environment.

I eventually settled on entr(1), which works superbly across Linux distros, BSD’s and
OS X / macOS.

The trick to make entr work is to pipe a list of files into it to watch.

https://en.wikipedia.org/wiki/Dot_(command)
https://github.com/tony/.dot-config
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/tail.html
https://vanheusden.com/multitail/
http://www.imdb.com/title/tt1375666/
http://entrproject.org/
https://en.wikipedia.org/wiki/Pipeline_(Unix)

Let’s search for all .go files in a directory and run tests on file change:

$ ls -d *.go | entr -c go test ./...

Sometimes we may want to watch files recursively, and we need to do that in a cross-
platform way. We can’t depend on ** existing to grab files recursively. So something
more POSIX friendly would be find . -print | grep -i '.*[.]go':

$ find . -print | grep -i '.*[.]go' | entr -c go test ./...

Only run file watcher if entr is installed, let’s wrap in a conditional command -v test:

$ if command -v entr > /dev/null; then find . -print | grep -i '.*[.]go' | e\
ntr -c go test ./...; fi

And have it fallback to go test in the event entr isn’t installed (you’ll thank me when
you end up scripting this command in a session manager:

$ if command -v entr > /dev/null; then find . -print | grep -i '.*[.]go' | e\
ntr -c go test ./...; else go test ./...; fi

Show a notice message to user to install entr if not installed on the system:

$ if command -v entr > /dev/null; then find . -print | grep -i '.*[.]go' | e\
ntr -c go test ./...; else go test ./...; echo "\nInstall entr(1) to run tas\
ks when files change. \nSee http://entrproject.org/"; fi

Here’s why you want patterns like that: you can put it into a Makefile and commit it to
your project’s VCS so you and other developers can have access to this reusable
command across different UNIX-like systems, with and without that certain program
installed.

Note: You may have to convert the indentation within the Makefiles from spaces to
tabs.

So let’s go ahead see what a Makefile with this looks like:

watch_test:
 if command -v entr > /dev/null; then find . -print | grep -i '.*[.]go' |\
 entr -c go test ./...; else go test ./...; echo "\nInstall entr(1) to run t\
asks when files change. \nSee http://entrproject.org/"; fi

To run this, do $ make watch_test in the same directory as the Makefile.

But that was a tad bloated and hard to read. We have a couple tricks at our disposal.
One would be to add continuation to the next line with a trailing backslash (\):

https://en.wikipedia.org/wiki/Go_(programming_language)
https://golang.org/cmd/go/#hdr-Test_packages
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/command.html
https://en.wikipedia.org/wiki/Makefile
https://en.wikipedia.org/wiki/Version_control

watch_test:
 if command -v entr > /dev/null; then find . -print | \
 grep -i '.*[.]go' | entr -c go test ./...; \
 else go test ./...; \
 echo "\nInstall entr(1) to run tasks on file change. \n"; \
 echo "See http://entrproject.org/"; fi

Another would be to break the command up into variables and make subcommands. So
let’s try that:

WATCH_FILES= find . -type f -not -path '*/\.*' | \
grep -i '.*[.]go$$' 2> /dev/null

test:
 go test $(test) ./...

entr_warn:
 @echo "---"
 @echo " ! File watching functionality non-operational ! "
 @echo " "
 @echo " Install entr(1) to run tasks on file change. "
 @echo " See http://entrproject.org/ "
 @echo "---"

watch_test:
 if command -v entr > /dev/null; then ${WATCH_FILES} | \
 entr -c $(MAKE) test; else $(MAKE) test entr_warn; fi

$(MAKE) is used for portability purposes. One reason is recursive calls, such as here.
On BSD systems, you may try invoking make via gmake (to call GNU Make
specifically). This ended up happening to me personally while building PDF’s for the
book AlgoXY. I had to write a patch to make it properly use $(MAKE) for recursive
calls.

The $(test) after go test allows passing a shell variable with arguments in it. So you
could do make watch_test test='-i'. For examples of a similar Makefile in action
see the one in my tmuxp project. The project is licensed BSD (permissive), so you can
grab code and use it in compliant with the LICENSE.

One more thing, let’s say you’re running a server like Gin, Iris or Echo. entr -c likely
won’t be restarting the server for you. Try entering the -r flag to send a SIGTERM to the
process before restarting it. Combining the current -c flag with the new -r will give you
entr -rc:

run:
 go run main.go

watch_run:
 if command -v entr > /dev/null; then ${WATCH_FILES} | \
 entr -c $(MAKE) run; else $(MAKE) run entr_warn; fi

Session Managers

https://www.gnu.org/software/make/
https://github.com/liuxinyu95/AlgoXY/
https://github.com/liuxinyu95/AlgoXY/pull/16
https://github.com/tony/tmuxp/blob/master/Makefile
https://github.com/tony/tmuxp/blob/master/LICENSE
https://github.com/gin-gonic/gin
https://github.com/kataras/iris
https://github.com/labstack/echo
https://en.wikipedia.org/wiki/Unix_signal

For those who use tmux regularly to perform repetitive tasks, such as opening the same
software project, view the same logs, etc. Applications that store your layouts
declaratively in a YAML or JSON file and help you boot up your session fast.

Teamocil and Tmuxinator are the first ones I tried. By far the most popular one is
tmuxinator. They are both programmed in Ruby. There’s also tmuxomatic, where you can
“draw” your tmux sessions in text and have tmuxomatic build the layout.

I sort of have a home team advantage here, as I’m author of tmuxp. I written it already
having used teamocil and tmuxinator but with many more features. For one, it builds on
top of libtmux, a library which abstracts tmux server, sessions, windows and panes to
actively build the state of tmux sessions. In addition it has a naive form of session
freezing, support for JSON, more flexible configuration options, and it will even offer to
attach sessions that already exist instead of redundantly running script commands against
the session if it already is running.

So in tmuxp, we’ll hollow out a tmuxp config directory with $ mkdir ~/.tmuxp then
create a YAML file at ~/.tmuxp/test.yaml:

session_name: 4-pane-split
windows:
- window_name: dev window
 layout: tiled
 shell_command_before:
 - cd ~/ # run as a first command in all panes
 panes:
 - shell_command: # pane no. 1
 - cd /var/log # run multiple commands in this pane
 - ls -al | grep \.log
 - echo second pane # pane no. 2
 - echo third pane # pane no. 3
 - echo forth pane # pane no. 4

gives a session titled 4-pane-split, with one window titled dev window that has 4 panes
in it. 3 of them are in the home directory, the other is in /var/log and is printing a list
of all files ending with .log.

To launch it, install tmuxp and load the configuration:

$ pip install --user tmuxp
$ tmuxp -V # verify tmuxp is installed, if not you need to fix your `PATH`
 # to point to your python bin folder. More help below.
$ tmuxp load ~/.tmuxp/test.yaml

If tmuxp isn’t found, there is a troubleshooting entry on fixing your paths in the appendix.

More code and examples

https://github.com/remiprev/teamocil
https://github.com/tmuxinator/tmuxinator
https://github.com/oxidane/tmuxomatic
https://github.com/tony/tmuxp
https://github.com/tony/libtmux

I’ve decided to dust off a C++ space shooter and a new go webapp I’ve been playing
with. They’re licensed under MIT so you can use them, copy and paste from them, etc:

c++14 space shooter minigame - side scrolling shmup demo (sdl2, cmake, json
resource manifests, linux/BSD/OS X compatible)
golang tmux web frontend - display current tmux session and window information
via browser (gin, bower)

Both of the above support tmuxp load . within the project directory to load up the
project.

Make sure to install entr(1) beforehand!

tmux-plugins and tpm
tmux-plugins and tmux package manager are a suite of tools dedicated toward enhancing
the experience of tmux users.

tmux-resurrect: Persists tmux environment across system restarts.
tmux-continuum: Continuous saving of tmux environment. Automatic restore when
tmux is started. Automatic tmux start when computer is turned on.
tmux-yank: Tmux plugin for copying to system clipboard. Works on OSX, Linux
and Cygwin.
tmux-battery: Plug and play battery percentage and icon indicator for Tmux.

https://github.com/tony/tot-cpp-shmup
https://en.wikipedia.org/wiki/Shoot_'em_up
https://github.com/tony/tot-go-webapp
https://github.com/gin-gonic/gin
https://bower.io/
http://entrproject.org/
https://github.com/tmux-plugins
https://github.com/tmux-plugins/tpm
https://github.com/tmux-plugins/tmux-resurrect
https://github.com/tmux-plugins/tmux-continuum
https://github.com/tmux-plugins/tmux-yank
https://github.com/tmux-plugins/tmux-battery

12. Cheatsheets

These are taken directly from tmux’s manual pages, tabled and organized by hand into
sections for convenience.

Commands

Session
Command Action
no command Short-cut for new-session
attach-session Attach or switch to a session
choose-session Put a window into session choice mode
has-session Check and report if a session exists on the server
kill-session Destroy a given session
list-sessions List sessions managed by server
lock-session Lock all clients attached to a session
new-session Create a new session
rename-session Rename a session

Window
Command Action
choose-window Put a window into window choice
find-window Search for a pattern in windows
kill-window Destroy a given window
last-window Select the previously selected
link-window Link a window to another
list-windows List windows of a session
move-window Move a window to another
new-window Create a new window
next-window Move to the next window in a sesssion
previous-window Move to the previous window in session
rename-window Rename a window
respawn-window Reuse a window in which a command has exited
rotate-window Rotate positions of panes in a window
select-window Select a window
set-window-option Set a window option
show-window-options Show window options

split-window Splits a pane into two
swap-window Swap two windows
unlink-window Unlink a window

Pane
Command Action
break-pane Break a pane from an existing into a new window
capture-pane Capture the contents of a pane to a buffer
display-panes Display an indicator for each visible pane
join-pane Split a pane and move an existing one into the new space
kill-pane Destroy a given pane
last-pane Select the previously selected pane
list-panes List panes of a window
move-pane Move a pane into a new space
pipe-pane Pipe output from a pane to a shell command
resize-pane Resize a pane
respawn-pane Reuse a pane in which a command has exited
select-pane Make a pane the active one in the window
swap-pane Swap two panes

Keybindings
Shortcut Action
C-b Send the prefix key (C-b) through to the
 application.

Miscellaneous
Shortcut Action
C-z Suspend the tmux client.
r Force redraw of the attached client.
t Show the time.
~ Show previous messages from tmux, if any.
f Prompt to search for text in open windows.
d Detach the current client.
D Choose a client to detach.
? List all key bindings.
: Enter the tmux command prompt.

Copy/Paste
Shortcut Action
List all paste buffers.
[Enter copy mode to copy text or view the history.
] Paste the most recently copied buffer of text.
Page Up Enter copy mode and scroll one page up.
= Choose which buffer to paste interactively from a
 list.
- Delete the most recently copied buffer of text.

Session
Shortcut Action
$ Rename the current session.

Session Traversal

Shortcut Action
L Switch the attached client back to the last
 session.
s Select a new session for the attached client
 interactively.

Window
Shortcut Action
c Create a new window.
& Kill the current window.
i Display some information about the current window.
, Rename the current window.

Window Traversal

Shortcut Action
0 to 9 Select windows 0 to 9.
w Choose the current window interactively.
M-n Move to the next window with a bell or activity
 marker.
M-p Move to the previous window with a bell or activity
 marker.
p Change to the previous window.
n Change to the next window.
l Move to the previously selected window.
' Prompt for a window index to select.

Window Moving

Shortcut Action
. Prompt for an index to move the current window.

Pane
Shortcut Action
x Kill the current pane.
q Briefly display pane indexes.
% Split the current pane into two, left and right.
" Split the current pane into two, top and bottom.

Pane Traversal

Shortcut Action
; Move to the previously active pane.
Up, Down Change to the pane above, below, to the left, or to
Left, Right the right of the current pane.
o Select the next pane in the current window.

Pane Moving

Shortcut Action
C-o Rotate the panes in the current window forwards.
M-o Rotate the panes in the current window backwards.
{ Swap the current pane with the previous pane.
} Swap the current pane with the next pane.
! Break the current pane out of the window.

Pane Resizing

Shortcut Action
M-1 to M-5 Arrange panes in one of the five preset layouts:
 even-horizontal, even-vertical, main-horizontal,
 main-vertical, or tiled.
C-Up, C-Down Resize the current pane in steps of one cell.
C-Left, C-Right
M-Up, M-Down Resize the current pane in steps of five cells.
M-Left, M-Right

Formats

Copy / paste
Variable name Description
buffer_name Name of buffer
buffer_sample Sample of start of buffer
buffer_size Size of the specified buffer in bytes

Clients
Variable name Description
client_activity Integer time client last had activity
client_created Integer time client created
client_control_mode 1 if client is in control mode
client_height Height of client
client_key_table Current key table
client_last_session Name of the client’s last session
client_pid PID of client process
client_prefix 1 if prefix key has been pressed
client_readonly 1 if client is readonly
client_session Name of the client’s session
client_termname Terminal name of client
client_tty Pseudo terminal of client
client_utf8 1 if client supports utf8
client_width Width of client
line Line number in the list

Panes
Variable name Description
alternate_on If pane is in alternate screen
alternate_saved_x Saved cursor X in alternate screen
alternate_saved_y Saved cursor Y in alternate screen
cursor_flag Pane cursor flag
cursor_x Cursor X position in pane
cursor_y Cursor Y position in pane
insert_flag Pane insert flag
keypad_cursor_flag Pane keypad cursor flag
keypad_flag Pane keypad flag
mouse_any_flag Pane mouse any flag

mouse_button_flag Pane mouse button flag
mouse_standard_flag Pane mouse standard flag
pane_active 1 if active pane
pane_bottom Bottom of pane
pane_current_command Current command if available
pane_current_path Current path if available
pane_dead 1 if pane is dead
pane_dead_status Exit status of process in dead pane
pane_height Height of pane
pane_id Unique pane ID (Alias: #D)
pane_in_mode If pane is in a mode
pane_input_off If input to pane is disabled
pane_index Index of pane (Alias: #P)
pane_left Left of pane
pane_pid PID of first process in pane
pane_right Right of pane
pane_start_command Command pane started with
pane_synchronized If pane is synchronized
pane_tabs Pane tab positions
pane_title Title of pane (Alias: #T)
pane_top Top of pane
pane_tty Pseudo terminal of pane
pane_width Width of pane
scroll_region_lower Bottom of scroll region in pane
scroll_region_upper Top of scroll region in pane
scroll_position Scroll position in copy mode
wrap_flag Pane wrap flag

Sessions
Variable name Description
session_alerts List of window indexes with alerts
session_attached Number of clients session is attached to
session_activity Integer time of session last activity
session_created Integer time session created
session_last_attached Integer time session last attached
session_group Number of session group
session_grouped 1 if session in a group
session_height Height of session
session_id Unique session ID
session_many_attached 1 if multiple clients attached

session_name Name of session (Alias: #S)
session_width Width of session
session_windows Number of windows in session

Windows
Variable name Description
history_bytes Number of bytes in window history
history_limit Maximum window history lines
history_size Size of history in bytes
window_activity Integer time of window last activity
window_activity_flag 1 if window has activity
window_active 1 if window active
window_bell_flag 1 if window has bell
window_find_matches Matched data from the find-window
window_flags Window flags (Alias: #F)
window_height Height of window
window_id Unique window ID
window_index Index of window (Alias: #I)
window_last_flag 1 if window is the last used
window_layout Window layout description, ignoring zoomed
 window panes
window_linked 1 if window is linked across sessions
window_name Name of window (Alias: #W)
window_panes Number of panes in window
window_silence_flag 1 if window has silence alert
window_visible_layout Window layout description, respecting
 zoomed window panes
window_width Width of window
window_zoomed_flag 1 if window is zoomed

Servers
Variable name Description
host Hostname of local host (alias: #H)
host_short Hostname of local host (no domain name)
 (alias: #h)
socket_path Server socket path
start_time Server start time
pid Server PID

Commands

For $ tmux list-commands.

Variable name Description
command_hooked Name of command hooked, if any
command_name Name of command in use, if any
command_list_name Command name if listing commands
command_list_alias Command alias if listing commands
command_list_usage Command usage if listing commands

Appendix: Installing tmux

macOS / OS X

brew
$ brew install tmux

macports
$ sudo port install tmux

fink
$ fink install tmux

Linux

Ubuntu / Mint / Debian, etc.
$ sudo apt-get install tmux

CentOS / Fedora / Redhat, etc.
$ sudo yum install tmux

Arch Linux (pacman)
$ sudo pacman -S tmux

Gentoo (portage)
$ sudo emerge --ask app-misc/tmux

BSD

FreeBSD
pkg(1)

pkg install tmux

pkg_add(1)

pkg_add -r tmux

OpenBSD
As of OpenBSD 4.6, tmux is part of the base system.

If you are using an earlier version:

pkg_add tmux

NetBSD
$ make -C /usr/pkgsrc/misc/tmux install

Windows 10
Check out the tmux on Windows 10 appendix section.

https://www.openbsd.org/46.html

Appendix: tmux on Windows 10

As of Windows 10 build 14361 you can run tmux via the Linux Subsystem feature.

Usage requires enabling Developer mode via the “For Developers” tab in the “Update
& security” settings.

After you enable that, you open up “Windows Features”, you can find it by searching for
“Turn Windows features on or off”. Then check “Windows Subsystem for Linux (Beta)”.

You may be asked to restart.

Then open up Command Prompt as you normally would (Run cli.exe). Then type

C:\Users\tony> bash.exe

It will prompt you to agree to terms, create a user. In my build, tmux was already
installed! But if it’s not, type sudo apt-get install tmux.

https://blogs.msdn.microsoft.com/commandline/2016/06/08/tmux-support-arrives-for-bash-on-ubuntu-on-windows/

Find Turn Windows Features on or off

Check Windows Subsystem for Linux (Beta)

Windows completed the requested changes. Restart

Use Developer features

Select Developer mode in Update & Security

Installing Ubuntu from Windows Store

Create Linux user

In bash!

yourusername@COMPUTERNAME-ID321FJ:/mnt/c/Users/username$ tmux

In tmux!

This should allow you to run tmux within bash.exe.

This is a real ubuntu installation, so you can continue to install packages via sudo apt-
get install **packagename** and update packages via sudo apt-get update &&
sudo apt-get upgrade.

Troubleshooting

E353: Nothing in register * when pasting on vim
If you are using macOS / OS X with vim inside tmux, you may get the error E353:
Nothing in register * when trying to paste.

Try installing reattach-to-user-namespace via brew.

$ brew install reattach-to-user-namespace

tmuxp: command not found and powerline: command not found
This is due to your site package bin path (where application entry points are installed
to) not being in your paths. To find your user site packages base directory:

$ python -m site --user-base

This will get you something like /Users/me/Library/Python/2.7 on macOS with
Python 2.7 or /home/me/.local on Linux/BSD boxes.

The applications are in the bin/ folder inside that. So you need to concatenate the two
and add them to your PATH. Try adding one of these in your ~/.bashrc or ~/.zshrc:

export PATH=/Users/me/Library/Python/2.7/bin:$PATH # macOS w/ python 2.7
export PATH=$HOME/.local/bin:$PATH # Linux/BSD
export PATH="`python -m site --user-base`/bin":$PATH # May work all-around

Then open a new terminal, or . ~/.zshrc / . ~/.bashrc in your current one. Then you
can run $ tmuxp -V, $ tmuxp load and $ powerline tmux right commands.

https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard
http://brew.sh
https://en.wikipedia.org/wiki/PATH_(variable)

Table of Contents

Foreword 7
About this book 7
Styles 8
How this book is structured 8
Donations 9
Available Formats 10
Errata 10
Thanks 10
Book Updates and tmux changes 10

1. Thinking in tmux 11
Window manager for the terminal 11
Multitasking 12
Keep your applications running in the background 14
Powerful combos 15

2. Terminal fundamentals 18
POSIX stuff 18
Terminal interface 19
Terminal emulators 20
Shell languages 20
Shell interpreters (Shells) 20
It’s about context 21

3. Practical Usage 22
The prefix key 22
Session persistence and the server model 23
It’s all commands 24

4. Server 25
What? tmux is a server? 26
Zero config needed 26
Stayin’ alive 27
Servers hold sessions 27
How servers are “named” 28
Clients 28
Clipboard 28

5. Sessions 30

Creating a session 32
Switching sessions within tmux 32
Naming sessions 33
Does my session exist? 34

6. Windows 35
Naming windows 35
Traversing Windows 36
Moving Windows 36
Layouts 37
Closing windows 39

7. Panes 40
Creating new panes 40
Traversing Panes 42
Zoom in 42
Resizing panes 42
Outputting pane to a file 43

8. Configuration 44
Updating configs in current sessions 44
How configs work 45
Common options 45

9. Status bar 47
The symbology behind windows 47
Date and time 47
Shell command output 48
Styling 48
Tweaking your status bar, live! 48
Turn your status line off 48
Example: default config 49
Example: Dressed up 50
Example: Powerline 51

10. Scripting tmux 53
Aliases 53
Pattern matching 54
Targets 55
Formats 56

11. Tips and Tricks 59
Read the tmux manual in style 59

Log tailing 60

File watching 60
Session Managers 62
More code and examples 63
tmux-plugins and tpm 64

12. Cheatsheets 65
Commands 65
Keybindings 67
Formats 71

Appendix: Installing tmux 75
macOS / OS X 75
Linux 75
BSD 75
Windows 10 76

Appendix: tmux on Windows 10 77
Troubleshooting 87

E353: Nothing in register * when pasting on vim 87
tmuxp: command not found and powerline: command not found 87

	Foreword
	About this book
	Styles
	How this book is structured
	Donations
	Available Formats
	Errata
	Thanks
	Book Updates and tmux changes

	1. Thinking in tmux
	Window manager for the terminal
	Multitasking
	Keep your applications running in the background
	Powerful combos

	2. Terminal fundamentals
	POSIX stuff
	Terminal interface
	Terminal emulators
	Shell languages
	Shell interpreters (Shells)
	It’s about context

	3. Practical Usage
	The prefix key
	Session persistence and the server model
	It’s all commands

	4. Server
	What? tmux is a server?
	Zero config needed
	Stayin’ alive
	Servers hold sessions
	How servers are “named”
	Clients
	Clipboard

	5. Sessions
	Creating a session
	Switching sessions within tmux
	Naming sessions
	Does my session exist?

	6. Windows
	Naming windows
	Traversing Windows
	Moving Windows
	Layouts
	Closing windows

	7. Panes
	Creating new panes
	Traversing Panes
	Zoom in
	Resizing panes
	Outputting pane to a file

	8. Configuration
	Updating configs in current sessions
	How configs work
	Common options

	9. Status bar
	The symbology behind windows
	Date and time
	Shell command output
	Styling
	Tweaking your status bar, live!
	Turn your status line off
	Example: default config
	Example: Dressed up
	Example: Powerline

	10. Scripting tmux
	Aliases
	Pattern matching
	Targets
	Formats

	11. Tips and Tricks
	Read the tmux manual in style
	Log tailing
	File watching
	Session Managers
	More code and examples
	tmux-plugins and tpm

	12. Cheatsheets
	Commands
	Keybindings
	Formats

	Appendix: Installing tmux
	macOS / OS X
	Linux
	BSD
	Windows 10

	Appendix: tmux on Windows 10
	Troubleshooting
	E353: Nothing in register * when pasting on vim
	tmuxp: command not found and powerline: command not found

